
Alma Mater Studiorum – Università di Bologna

DOTTORATO DI RICERCA IN

OTTORATO DIRICERCA IN

INGEGNERIA BIOMEDICA, ELETTRICA E DEI
SISTEMI

Ciclo 35

Settore Concorsuale: 01/A6 - RICERCA OPERATIVA

Settore Scientifico Disciplinare: MAT/09 - RICERCA OPERATIVA

Models and Algorithms for Real-World
Optimization Problems

Presentata da: Antonio Punzo

Coordinatore Dottorato Supervisore

Prof. Michele Monaci Prof. Daniele Vigo

Prof. Michele Monaci

Esame finale anno 2023

ALMA MATER STUDIORUM - UNIVERSITÀ DI

BOLOGNA

DOTTORATO DI RICERCA IN
INGEGNERIA BIOMEDICA, ELETTRICA E DEI SISTEMI

CICLO XXXV
Settore Concorsuale: 01/A6 - RICERCA OPERATIVA

Settore Scientifico Disciplinare: MAT/09 - RICERCA OPERATIVA

Models and Algorithms for Real-World
Optimization Problems

Author:
Antonio PUNZO

Supervisor:
Dr. Daniele VIGO

Co-Supervisor:
Dr. Michele MONACI

Esame Finale anno 2023

https://www.unibo.it/en
https://www.unibo.it/en

iii

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

Abstract
DIPARTIMENTO DI INGEGNERIA DELL’ENERGIA ELETTRICA E

DELL’INFORMAZIONE "GUGLIELMO MARCONI"- DEI

Ingegneria Biomedica, Elettrica e dei Sistemi
(Curriculum Ricerca Operativa)

Models and Algorithms for Real-World Optimization Problems

by Antonio PUNZO

This thesis deals with efficient solution of optimization problems of practical inter-
est.

The first part of the thesis deals with bin packing problems. The bin packing
problem (BPP) is one of the oldest and most fundamental combinatorial optimiza-
tion problems. The problem is defined as follow: Given a set of n items with weight
wj, j = 1 . . . n, and an unbounded set of identical bins with capacity c, assign each
item to a bin so that the sum of the weights of the items assigned to a bin does not
exceed c and the number of used bins is minimized.

The bin packing problem and its generalizations arise often in real-world ap-
plications, from manufacturing industry, logistics and transportation of goods, and
scheduling.

After an introductory chapter, I will present two applications of two of the most
natural extensions of the bin packing: Chapter 2 will be dedicated to an application
of bin packing in two dimension to a problem of scheduling a set of computational
tasks on a computer cluster, while Chapter 3 deals with the generalization of BPP
in three dimensions that arise frequently in logistic and transportation, often com-
plemented with additional constraints on the placement of items and characteristics
of the solution, like, for example, guarantees on the stability of the items, to avoid
potential damage to the transported goods, on the distribution of the total weight of
the bins, and on compatibility with loading and unloading operations.

The second part of the thesis, and in particular Chapter 4 considers the Trans-
mission Expansion Problem (TEP), where an electrical transmission grid must be
expanded so as to satisfy future energy demand at the minimum cost, while main-
taining some guarantees of robustness to potential line failures. These problems are
gaining importance in a world where a shift towards renewable energy can impose
a significant geographical reallocation of generation capacities, resulting in the ne-
cessity of expanding current power transmission grids.

In the TEP, the objective is to find a subset of candidate expansion measures
to be installed in a transmission network so as to increase its capability to satisfy
the predicted future demand while minimizing both the installment costs and the
operational costs.

HTTPS://WWW.UNIBO.IT/EN
https://dei.unibo.it/en
https://dei.unibo.it/en

v

Acknowledgements
First of all, I thank my supervisors Prof. Daniele Vigo and Prof. Michele Monaci,
who supported me during all the three years of my Ph.D and has always been will-
ing to devote their time to clarify any kind of doubt. Thanks also to all the other
professors of the Operations Research group of the Department of Electrical, Elec-
tronic and Information Engineering “Guglielmo Marconi” (DEI) of the University of
Bologna: Prof. Andrea Lodi, Prof. Enrico Malaguti, Prof. Valentina Cacchiani, Prof.
Silvano Martello, Prof. Paolo Toth, and thanks to all my colleagues: Paolo Paronuzzi,
Silvia Anna Cordieri, Alan Osorio Mora, Francesco Cavaliere, Federico Michelotto
and Henri Bertrand Roger Jean-Marc Arthur Lefebvre.

vii

Contents

Abstract iii

1 Introduction 1
1.1 Operations Research . 1
1.2 Bin Packing Problems . 2
1.3 Transmission Expansion Problem . 4

2 Two dimensional strip bin packing for HPC clustering problems 7
2.1 Introduction . 7
2.2 Problem Description . 7
2.3 Models . 8

2.3.1 Shelf based model . 8
2.3.2 coordinate based model . 9

2.4 Matheuristic . 10
2.5 Instances . 10

3 Genetic Algorithms for Bin Packing Problem 19
3.1 Introduction . 19
3.2 Solution approach . 19

3.2.1 Parameters Selection . 21
3.3 Results . 23

3.3.1 Test instances . 23
3.4 Parameter selection . 23
3.5 Computational Results . 24
3.6 Results with additional constraints . 29

4 Transmission Expansion Problem 31
4.1 Introduction . 31
4.2 Problem Description . 31
4.3 Mathematical Model . 33

4.3.1 Input sets . 33
4.3.2 Variables . 33
4.3.3 Objective function . 34
4.3.4 Investment constraints . 35
4.3.5 Operational constraints . 36

4.4 Solution Method . 38
4.4.1 A Benders decomposition approach 38
4.4.2 Relaxation . 40
4.4.3 Biased Random Key Genetic Algorithm 41

4.5 Computational Results . 43
4.5.1 Exact methods . 44
4.5.2 Heuristics . 44

viii

Bibliography 47

ix

List of Figures

1.1 Example of a BPP3D solution . 4
1.2 Sample Expansion and operation measures (source: D6.2 PlaMES EU

Project) . 5

3.1 BRKGA scheme . 20
3.2 Example of difference process . 21
3.3 Insertion order . 22
3.4 Heuristics results . 25
3.5 Comparison with literature’s algorithms 26
3.6 Comparison quality of solution . 27
3.7 Comparison runtime . 28

xi

List of Tables

2.1 instances . 12
2.2 results . 17

3.1 params . 21
3.2 instance types . 23
3.3 Computational Results . 24
3.4 . 26
3.5 support and balance . 29

4.1 Characteristic of the instances . 43
4.2 Results for exact algorithms. Time limit = 10,000 seconds, * = out of

memory . 44
4.3 Results for heuristic algorithms. Time limit = 600 seconds, * = out of

memory . 45

1

Chapter 1

Introduction

1.1 Operations Research

Operations research (OR) is a discipline that uses mathematical models, statistical
analysis, and computer algorithms to improve decision-making in complex systems.
It involves the application of advanced analytical methods and techniques to solve
problems in areas such as optimization, simulation, network analysis, and decision
analysis.

The objective of operations research is to identify the best possible solutions
to complex problems by considering all possible alternatives and evaluating them
based on various criteria, such as efficiency, effectiveness, cost, and risk. OR is used
in a wide range of industries, including transportation, logistics, manufacturing,
healthcare, finance, and government.

One of the principal technique used in operations research is the field of Mathe-
matical optimization (also also known as mathematical programming) i.e, the field
of mathematics that deals with finding the best possible solution to a problem within
a set of constraints. The goal of mathematical optimization is to maximize or min-
imize an objective function while satisfying a set of constraints that describe the
problem.

Optimization problems can be classified based on the characteristics of the vari-
ables and the constraints involved in the problem formulation: for example, prob-
lems with linear constraints and continuous variables are classified as Linear Pro-
gramming problems where problem with continuous variables and convex con-
straints are classified as Convex Programming and ones dealing with countable ob-
ject are classified as Combinatorial Optimization. While linear and convex optimiza-
tion problems are “easy” to solve, presenting polynomial time, combinatorial ones
can be particularly hard to solve, especially when instances coming from real-world
application are considered. Indeed, many well known and studied combinatorial
problems are strongly NP-hard.

Optimization problems can be classified based on the characteristics of the vari-
ables and the constraints involved in the problem formulation: for example, prob-
lems with linear constraints and continuous variables are classified as Linear Pro-
gramming problems where problem with continuous variables and convex con-
straints are classified as Convex Programming and ones dealing with countable
object are classified as Combinatorial Optimization. While linear and convex opti-
mization problems are “easy” to solve, presenting general algorithms that can solve
to optimality instances of these problems within a running time that is bounded by
a polynomial of the size of the input, combinatorial ones can be particularly hard
to solve, especially when instances coming from real-world application are consid-
ered. Indeed, many well known and studied combinatorial problems are strongly
NP-hard. For each optimization problem, the techniques used to find a solution can

2 Chapter 1. Introduction

be divided in three main categories: exact algorithms, approximation algorithms
and heuristics. Exact methods are algorithms that can find the exact optimal solu-
tion to a problem and guarantee that the solution found is the best possible solu-
tion given the constraints and the objective function. Examples of exact methods
include the simplex algorithm for linear programming and interior point methods
for both linear and convex programming, dynamic programming and branch-and-
bound for integer programming. Some exact algorithms are quite general and can be
applied to a wide set of problems sharing the same characteristics like for example
the branch-and-bound algorithm can solve any problem (given enough time) that
can be expressed as a set of linear constraints involving integer and continuous vari-
ables. There are also more specialized algorithms for a specific class of problem like
for examples Dijkstra’s algorithm for the shortest path problem or the Hungarian al-
gorithm for the assignment problem. These algorithms have a lower computational
complexity than the generic ones.

On the other hand, heuristics are a class of algorithms designed to resolve a very
specific problem in a fast way, without giving any formal guarantee on the quality
of the solution. Given the complexity of some problems and the need of solving
big instances of practical interest, sometimes heuristics are the only viable meth-
ods. Approximation algorithms sit in a middle ground between exact and heuristic
algorithms as they are usually faster than exact methods and can be used to find so-
lutions that are guaranteed to be within a certain factor or percentage of the optimal
solution In this thesis I will present both exact and heuristic solution strategies for a
set of problems arising from real-world applications.

1.2 Bin Packing Problems

The Bin Packing Problem (BPP) is one of the most studied combinatorial problems
due to both its rather simple description and its vast practical applications.

The classical bin packing problem in one dimension asks to pack a set of n items
each with a weight wj in the minimum number of identical bins with capacity c so
that the sum of the wights of the items inserted in a bin does not exceed the bin
capacity.

Many variation and generalization of the BPP where studied through the years.
one of the first appearing in literature is the cutting stock problem where instead of
n distinguished items we are given n item types each one with a weight wj and a
demand dj of copies of type j to pack/cut. The bin packing problem can be viewed
as a specialization of the cutting stock problem where all the demand dj equals to 1.

Another class natural extensions are the ones to higher dimensions, where both
the items and the bins have more than one dimension and the problem ask to pack all
the items in the minimun number of bins with no overlap between items. Although
is possible to generalize the problem to arbitrary dimensions, for pratical reason the
most studied variants are the two-diemnsional bin packing (2D-BPP) and the three-
diemnsional bin packing (3D-BPP).

Two-dimensional packing problems appear for the first time in P. Gilmore and
R. Gomory, 1965 where the authors presented a column generation approach that
generalize the method used in P. C. Gilmore and R. E. Gomory, 1961 by the same
authors for the one-dimensional case. In their paper, Gilmore and Gomory, for the
pricing problem use a more tractable case where the items have to be packed in row
forming layers.

1.2. Bin Packing Problems 3

A coordinate approach to the formulation of the two-dimensional variant was
considered Beasley, 1985 for a problem where there is a single rectangular bin and
to each item is associated a profit and the objective is to maximize the profit of the
item packed.

Those two approaches, the layer-based one and the coordinate-based one, are the
base for most of the formulations and heuristics for this class of problem.

Another interesting approach is the one proposed in Fekete and Schepers, 2003,
Fekete, Schepers, and Veen, 2006 the feasible packings are represented with a graph-
theoretical characterization.

The three-dimensional version (3D-BPP) is a generalization of the classical prob-
lem where each items is characterized by three dimensions (dj, wj, hj) and must be
packed in the minimum number of three-dimensional bins of size (D, W, H) so that
each item is inscribed in a bin and there is no overlap with others items. Additional
constraints may arise in real-world applications, for example, in road transporta-
tion, it is important that each item has enough support from the items beneath so to
guarantee the stability of the cargo and avoid potential damage of the goods.

Although the BPP problem and the BPP-3D, being a BPP generalization, are NP-
Hard problems, different exact methods are present in the literature. For example, in
(Martello, Pisinger, and Vigo, 1998) the authors presented a two level branch-and-
bound algorithm that use the and extension to the concept of corner points to the
three-dimensional case and a new proposed lower bound L2. Another exact algo-
rithms is proposed in (Fekete, Schepers, and Veen, 2006), here, the authors presented
a two level tree search based on a characterization of feasible solution as interval
graph by projecting the items dimensions to the "walls" of the bin and the use of fast
heuristics for dismissing infeasible solutions.

However, exact solver, especially for the three-dimensional variant, are imprac-
tical for the size of the instances of real-world problems, even more so if additional
constraints are included in the model. Thus, for the BPP-3D there is also a rich lit-
erature of heuristic methods: (Faroe, Pisinger, and Zachariasen, 2003) presented an
heuristic based on the Guided Local Search (GLS). First, a initial solution is build
with a greedy approach, then the algorithm use the GLS procedure to reduce itera-
tively the number of bins by moving the items in the last bin to other bins and than
minimize an objective function given by the sum of the overlaps between pair of
items.

In (Lodi, Martello, and Vigo, 2002) the authors proposed a tabu search algorithm
that solves a three-dimensional by solving first a two-dimensional packing problem
and than a one-dimensional packing problem. The algorithm packs items in layers
where the top of a layer is the base for the next one. The heuristic tries to both
produce a good vertical filling of the space by inserting items with similar height in
the same layer and a good horizontal space occupation by producing good solution
for the two-dimensional problem for each layer.

In (Crainic, Perboli, and Tadei, 2009) the authors presented a two phase tabu
search algorithm where a first phase assign the items to the bins and the second one
use the interval graph representation to optimize the actual accommodation of the
items in the bins.

In Chapter 4, we propose an algorithm based on the biased random-key genetic
algorithm framework (BRKGA) presented in (Gonçalves and Resende, 2013) and we
consider some extensions for considering some additional constraints, in particular
balancing and stability constraints.

4 Chapter 1. Introduction

FIGURE 1.1: Example of a BPP3D solution

Our algorithm uses the BRKGA to evolve the order in which the boxes are in-
serted into the bin while a constructive heuristic based on the maximal space rep-
resentation for the free spaces within the bin is used for decide the position of each
item.

1.3 Transmission Expansion Problem

The Transmission Expansion Planning (TEP) aims at identifying cost-efficient ex-
pansion and congestion management measures to ensure the system security and
reliability of future electrical transmission grids.

From a modelling point of view, the problem consist of a graph where every node
is characterized by a generation capacity and a power demand and arcs represent the
transmission lines that connect the center of power production/consumption. A set
of decision variables control the installment of measures to expand the capabilities
of the infrastructure while the operation of the network follow from the Kirchhoff’s
law.

The nonlinear, nonconvex nature of the problem make the TEP an challenging
problem. Since it first appearance, different optimization techniques have been pre-
sented in order to solve the TEP problem, both exact and heuristic. In (Mahdavi
et al., 2019) the authors provide a complete classification of the models and solution
methods proposed in literature.

1.3. Transmission Expansion Problem 5

in Chapter 4 we propose a expanded model based on (Franken et al., 2019) where
different expansion and reinforcement measures are taken into account and a solu-
tion method based on Benders decomposition.

Figure 1.2 show a solution which combines all the expansion measures deter-
mined expansion measures, determined by the TEP to be part of the cost optimized
solution.

FIGURE 1.2: Sample Expansion and operation measures (source: D6.2
PlaMES EU Project)

7

Chapter 2

Two dimensional strip bin packing
for HPC clustering problems

2.1 Introduction

A High-Performance Computing (HPC) system is a specialized computing environ-
ment designed to perform large-scale computations at very high speeds, using a
large number of interconnected processors and a massive amount of memory and
storage.

There are two distinct utilization patterns observed in high-performance com-
puting systems: multi user varying workload and repetitive throughput oriented.
The former is commonly seen in research compute facilities where a diverse set of
users submit different types of jobs in a highly variable sequence, necessitating on-
line scheduling with limited scheduling system flexibility. The latter is typical of
"production" HPC sites such as the European Centre for Medium-Range Weather
Forecasts (ECMWF), where the system executes the same set of jobs at predeter-
mined times of the day in a repetitive manner for long periods, with minor varia-
tions in job properties resulting from software changes that can gradually alter the
execution properties of some jobs over time.

In this work we are focusing on the repetitive-throughput-oriented. We cast the
problem of scheduling m tasks, each of which must be repeated a given number of
times, on a cluster with n cores as a two dimensional strip bin packing problem with
deformable items. We propose two MILP models adapted from the literature and a
mat-heuristic obtained by combining the two models.

2.2 Problem Description

The problem ask to schedule m tasks on W computer resources (for example, proces-
sors) with the objective of minimizing the total time required to complete the whole
batch of tasks (makespan).

To each task j is associated a set of possible configurations Ij that represent the way
a task can be executed: a configuration is characterized by the number of computer
resources assigned to the task wi, wi ≤ W and the resulting executing time hi. Also,
every task has to be repeated Rj times.

We define n = ∑m
j=1|Ij| as the number of all available configurations and Ri as

the upper bound on the number of configurations of type i that can be packed, that
correspond to the number of repeat of the task j, that is: Ri = Rj | i ∈ Ij, (i =
1, . . . , n).

8 Chapter 2. Two dimensional strip bin packing for HPC clustering problems

2.3 Models

The problem can be modelled as a two-dimensional strip packing problem (2SP)
with deformable items.

We propose two models, both adapted from models presented in the literature
of 2SP and extended to handle repetitions and the possibility of different configura-
tions for each task. The first model is a layer-based approach presented in Lodi and
Monaci, 2003. The second model is a coordinate-based approach presented in Chen,
Lee, and Shen, 1995.

2.3.1 Shelf based model

A typical heuristic approach for two-dimensional cutting or packing problems is to
restrict the cutting or packing of items only to horizontal slice of the strip/bin called
shelves with width W and height given by the tallest item in the shelf. The first shelf
has as basis the bottom of the strip while all the subsequent shelves have as basis the
horizontal line that coincide with the top of the tallest item in the precedent shelf.

As noted in Lodi, Martello, and Vigo, 2004, The following observation holds: For
any optimal solution of the problem where items are packed/cut from shelves, there
is a equivalent solution so that:

• in each shelf, the tallest item is the one on the left;

• the bottom shelf is the tallest one.

The left-most item in each shelf is said to initialize it.
These considerations allow to take into account only the solutions that satisfy

these conditions. For these reasons, we can considers the configurations ordered in
such a way that h1 ≥ h2 ≥ · · · ≥ hn.

The model assume that there are Ri possible shelves for each configuration i that
may be initialized. The initialization of a shelf is described by the following binary
variables, notice that if shelf (i, r) is used, must be initialized by configuration i.

yir =

{
1 if shelf (i, r) is used,
0 otherwise

(i = 1, . . . , n; r = 1, . . . , Ri) (2.1)

The number of configurations of type k packed in a shelf is described by the
following integer variables:

xkir =

{
number of configurations k in shelf (i, r), if i ̸= k
additional number of configurations k in shelf (i, r) if i = k

(2.2)

(k = 1, . . . , n; i = 1, . . . , n; r = 1, . . . , Ri) (2.3)

The model is than as follows:

2.3. Models 9

min
n

∑
i=1

Ri

∑
r=1

hiyir (2.4)

s.t ∑
i∈Ij

Ri

∑
r=1

yir + ∑
k∈Ij

k

∑
i=1

Ri

∑
r=1

xkir = Rj (j = 1, . . . , m) (2.5)

n

∑
k=i

wkxkir ≤ (W − wi)yir (i = 1, . . . , n; r = 1, . . . , Ri) (2.6)

yir ∈ {0, 1} (i = 1, . . . , n; r = 1, . . . , Ri) (2.7)
xkir ∈N (k = 1, . . . , n; i = 1, . . . , n; r = 1, . . . , Ri) (2.8)

The objective (2.4) minimizes the sum of the heights of the used shelves. Con-
straint (2.5) imposes that for each task, the sum of the used shelves associated with
a task and the number of configuration associated with the task inserted in other
shelves must be equal to the repeat number Rj. Lastly, constraint (2.6) imposes the
knapsack constraint on the width of the used shelves.

2.3.2 coordinate based model

This model follow the modelling approach presented for the first time in Beasley,
1985. The space of the strip is seen as a two-dimensional integer lattice where con-
figurations are inserted by putting their bottom-left corner in one of the integer co-
ordinates.

The set of available coordinate for the insertion of the i-th configuration are Wi ×
Hi where Wi = 1, . . . , W − wi and Hi = 1, . . . , H − hi.

We introduce the variables set

xi
pq =

{
1 if configuration i bottom-left corner is in (p, q),
0 otherwise

(2.9)

(j = 1, . . . , m; i ∈ Ij; p ∈Wi; q ∈ Hi) (2.10)

min z (2.11)

s.t ∑
i∈Ij

∑
p∈Wi

∑
q∈Hi

xi
pq = Rj (j = 1, . . . , m) (2.12)

m

∑
j=1

∑
i∈Ij

r

∑
p=r−wi+1

p∈Wi

s

∑
q=s−hi+1

q∈Hi

xi
pq ≤ 1 (r = 0, . . . , W − 1; s = 0, . . . , H − 1) (2.13)

(q + hi)xi
pq ≤ z (j = 1, . . . , m; i ∈ Ij; p ∈Wi; q ∈ Hi) (2.14)

xi
pq ∈ {0, 1} (j = 1, . . . , m; i ∈ Ij; p ∈Wi; q ∈ Hi) (2.15)

z ∈ R+ (2.16)

Constraints (2.12) Says that the number of scheduled configurations for each task
must be equal to the number of repeats for the task (2.13) model the non-overlap of
the configurations packed: each integer point in the lattice, can be covered at most
by one configuration, and constraints (2.14) set the value of the objective function,
that is, the maximum height of the top-right corner of the packed configurations.

10 Chapter 2. Two dimensional strip bin packing for HPC clustering problems

Note that this model requires an estimation of the maximum height of the strip
H, necessary to define the number of x variables, i.e, the possible coordinate for
inserting the left-bottom corner of the configurations.

2.4 Matheuristic

In this section, we discuss a matherustic that combines the previously discussed
models in an efficient way. We first solve the shelf based model with a short time
limit, then we create a new instance from each pair of shelves containing the tasks
that were packed in the shelves with the relative number of repeats and solve these
new instances with the coordinate based model. If the solution produced by the
coordinate base model is lower than the sum of the heights of the two shelves, the
overall solution is updated accordingly. If the shelf base model does not produce
a feasible solution, we use the fast first fit heuristic to produce the shelves. If the
number of shelves is odd, we add a dummy shelf with zero tasks packed and a zero
height.

Algorithm 1 Matheuristic

1: procedure MATHEURISTIC(instance)
2: let obj = 0 be the current value of the ottimal solution.
3: solve the instance with the shelf model and a timelimit of 10 seconds
4: for pairs i, j of shelves in the solution do
5: ub = hi + hj
6: create a new coordinate model instance with estimated height H = ub

and with the tasks
7: that where packed in shelves i and j with their repeats and all their con-

figurations.
8: solve the new instance with the coordinate base model model
9: let obji,j be the optimal solution of the coordinate based model.

10: if obji,j < ub then obj = obj + obji,j
11: else obj = obj + ub
12: end if
13: end for
14: end procedure

2.5 Instances

Instances with deformable items were generated from reference base instances al-
ready present in the literature to test classical packing problems. We use the in-
stances originally proposed for bidimensional knapsack problem Beasley, 1985, named
NGCUT. This is a set of 12 instances that have a number of tasks between 7 and 22
with a number of resources between 10 and 30. They give a height that we use as
the deadline and for each task j ,a width wj and a height hj that we keep as an area
ej = whhj.

Starting from the NGCUT dataset we set a maximum for the number of repeats
RMAX and a maximum for the number of resources assignable to a task as WMAX.
The number of repeats of each task is generated with uniform distribution in the
range [1, RMAX]. and for each task we generate at most WMAX configurations
defined by a width of wi with wi = 1, . . . wi = WMAX and the correspondent height

2.5. Instances 11

hi is given by ej/wj rounded up to the nearest integer. Rounding up can lead to
dominated configurations that have a different number of assigned resources, but
same height. These configurations are removed from the possible choices for a task.

4.1 Table shows the characteristics of the generated instances. Column name re-
port the name of the original instance in the NGCUT dataset. W is the width of the
strip, wmax and rmax are respectively the maximum number of assignable resources
and the maximum number of repeats. Nitems is the total number of configurations
and reff is the sum of repeats, that is, the effective number of configurations that
must be scheduled while ub and lb report the upper and lower bound of the objec-
tive function for instance.

The upper bound is computed with a fast first fit heuristic based on the shelves
formulation where for each task and repeat a random configuration is picked. The
lower bound is obtained by dividing the sum of the area of the tasks by the width of
the strip.

nitems reff ub lb
name W ntasks rmax wmax

NGCUT01 10 10 05 05 48 23 51 43
08 62 31 75 60
10 68 29 59 56

10 05 48 49 97 94
08 62 39 75 73
10 68 66 136 128

NGCUT02 10 17 05 05 77 49 89 81
08 98 59 103 95
10 104 53 86 79

10 05 77 86 154 142
08 98 118 191 180
10 104 76 140 126

NGCUT03 10 21 05 05 90 66 97 85
08 111 62 97 80
10 116 56 91 75

10 05 90 99 153 139
08 111 89 141 125
10 116 120 177 160

NGCUT04 10 7 05 05 34 14 34 31
08 46 20 54 48
10 49 21 57 50

10 05 34 45 109 102
08 46 39 105 95
10 49 42 108 93

NGCUT05 10 14 05 05 67 42 112 100
08 91 44 134 116
10 99 42 119 105

10 05 67 58 145 137
08 91 63 184 162
10 99 58 176 158

NGCUT06 10 15 05 05 70 38 72 66

Continued on next page

12 Chapter 2. Two dimensional strip bin packing for HPC clustering problems

nitems reff ub lb
name W ntasks rmax wmax

08 92 45 100 86
10 98 43 89 79

10 05 70 71 145 136
08 92 74 158 139
10 98 87 178 170

NGCUT07 20 8 05 05 33 17 25 23
08 42 22 35 31
10 48 27 32 30

10 05 33 57 63 58
08 42 46 63 57
10 48 41 44 41

NGCUT08 20 13 05 05 65 31 83 76
08 96 37 95 88
10 109 41 106 95

10 05 65 71 176 163
08 96 64 157 142
10 109 65 171 158

NGCUT09 20 18 05 05 86 49 139 128
08 127 60 165 153
10 150 63 189 179

10 05 86 87 258 243
08 127 76 246 235
10 150 99 320 304

NGCUT10 30 13 05 05 65 38 202 183
08 101 40 186 155
10 124 37 184 174

10 05 65 56 294 269
08 101 69 359 341
10 124 60 221 210

NGCUT11 30 15 05 05 75 41 173 156
08 117 42 166 145
10 142 43 160 148

10 05 75 92 311 294
08 117 87 280 257
10 142 75 265 256

NGCUT12 30 22 05 05 107 59 245 222
08 161 77 320 299
10 193 65 238 226

10 05 107 113 421 403
08 161 116 452 427
10 193 91 343 329

TABLE 2.1: instances

As the table 2.2 shows, the shelf based model is able to solve almost all the in-
stances to optimality while the coordinate based model is not able to find a provable
optimal solution in the time given. Note that this model tends to produce a bad

2.5. Instances 13

lower bound that is hard to close. Our algorithm was able to produce solutions as
good or better than the ones of the shelf based model with lower running times.

14
C

hapter
2.

Tw
o

dim
ensionalstrip

bin
packing

for
H

PC
clustering

problem
s

shelves-init coord-init matheuristic
obj bound gap runtime obj bound gap runtime obj bound gap runtime

name rmax wmax

NGCUT01 05 05 44 44 0 0.11 43 43 0.00 46.50 44 - - 0.23
08 60 60 0 0.06 60 60 0.00 237.14 60 - - 1.06
10 57 57 0 0.08 56 56 0.00 141.30 56 - - 29.99

10 05 94 94 0 0.05 94 94 0.00 1098.47 94 - - 0.90
08 73 73 0 0.11 73 73 0.00 91.47 73 - - 3.32
10 128 128 0 0.06 128 128 0.00 1819.07 128 - - 4.30

NGCUT02 05 05 82 82 0 0.26 81 81 0.00 1009.83 82 - - 1.26
08 95 95 0 0.08 95 95 0.00 1209.65 95 - - 1.53
10 80 80 0 0.49 79 79 0.00 838.89 80 - - 1.12

10 05 143 143 0 384.91 142 121 14.79 TL 143 - - 12.32
08 180 180 0 3.65 190 11 94.21 TL 180 - - 9.99
10 127 127 0 0.65 126 126 0.00 3491.61 127 - - 3.41

NGCUT03 05 05 85 85 0 3.06 85 85 0.00 727.54 85 - - 1.75
08 80 80 0 0.09 80 80 0.00 891.54 80 - - 0.70
10 75 75 0 0.23 75 75 0.00 736.67 75 - - 0.87

10 05 139 139 0 0.17 139 116 16.55 TL 139 - - 4.44
08 125 125 0 0.26 126 78 38.10 TL 125 - - 1.68
10 160 160 0 0.27 171 11 93.57 TL 159 - - 2.57

NGCUT04 05 05 31 31 0 0.03 31 31 0.00 3.22 31 - - 0.27
08 48 48 0 0.03 48 48 0.00 78.61 48 - - 0.56
10 50 50 0 0.02 50 50 0.00 65.37 50 - - 0.47

10 05 103 103 0 0.11 102 102 0.00 759.09 103 - - 3.24
08 96 96 0 0.15 95 95 0.00 1100.49 96 - - 0.68
10 93 93 0 0.05 93 93 0.00 764.85 93 - - 1.49

Continued on next page

2.5.
Instances

15

shelves-init coord-init matheuristic
obj bound gap runtime obj bound gap runtime obj bound gap runtime

name rmax wmax

NGCUT05 05 05 101 101 0 0.22 100 100 0.00 1066.89 101 - - 1.49
08 117 117 0 0.27 116 116 0.00 2964.34 117 - - 4.29
10 105 105 0 0.23 105 105 0.00 1615.33 105 - - 1.54

10 05 137 137 0 2.52 137 137 0.00 2076.21 137 - - 1.94
08 162 162 0 0.21 168 17 89.88 TL 162 - - 4.91
10 158 158 0 0.35 166 9 94.58 TL 158 - - 3.05

NGCUT06 05 05 67 67 0 0.06 66 66 0.00 531.87 67 - - 0.65
08 86 86 0 0.12 86 86 0.00 1316.41 86 - - 1.05
10 80 80 0 0.20 79 79 0.00 635.82 80 - - 0.59

10 05 137 137 0 0.18 136 136 0.00 2753.32 137 - - 1.15
08 139 139 0 0.25 142 81 42.96 TL 139 - - 2.40
10 170 170 0 0.19 177 10 94.35 TL 170 - - 2.69

NGCUT07 05 05 24 24 0 0.01 23 23 0.00 5.17 24 - - 0.16
08 31 31 0 0.04 31 31 0.00 75.10 31 - - 0.88
10 30 30 0 0.03 30 30 0.00 89.60 30 - - 0.88

10 05 59 59 0 0.13 58 58 0.00 762.99 59 - - 2.79
08 58 58 0 0.14 57 57 0.00 728.19 58 - - 1.86
10 41 41 0 0.04 41 41 0.00 301.83 41 - - 0.88

NGCUT08 05 05 77 77 0 0.70 76 76 0.00 1444.89 77 - - 2.35
08 89 89 0 0.45 90 15 83.33 TL 89 - - 8.74
10 95 95 0 2.32 99 11 88.89 TL 95 - - 22.93

10 05 165 164 0.61 TL 175 21 88.00 TL 164 - - 22.14
08 142 142 0 1.74 156 14 91.03 TL 141 - - 13.69
10 159 158 0.63 TL 170 8 95.29 TL 158 - - 26.41

Continued on next page

16
C

hapter
2.

Tw
o

dim
ensionalstrip

bin
packing

for
H

PC
clustering

problem
s

shelves-init coord-init matheuristic
obj bound gap runtime obj bound gap runtime obj bound gap runtime

name rmax wmax

NGCUT09 05 05 129 129 0 1.65 135 18 86.67 TL 129 - - 9.37
08 154 154 0 2.36 164 13 92.07 TL 154 - - 13.93
10 180 180 0 2.77 188 8 95.74 TL 180 - - 80.24

10 05 244 244 0 10.22 257 6 97.67 TL 244 - - 21.20
08 236 236 0 31.47 245 13 94.69 TL 234 - - 24.76
10 304 304 0 5.33 318 10 96.86 TL 304 - - 49.48

NGCUT10 05 05 186 186 0 2443.39 193 49 74.61 TL 184 - - 889.66
08 156 156 0 0.85 170 31 81.76 TL 156 - - 141.67
10 174 174 0 0.64 184 19 89.67 TL 174 - - 174.76

10 05 269 269 0 0.15 294 35 88.10 TL 269 - - 72.19
08 342 342 0 2.42 - - - - 341 - - 2301.01
10 211 211 0 2.05 - - - - 211 - - 2753.18

NGCUT11 05 05 160 160 0 44.40 169 40 76.33 TL 159 - - 35.69
08 147 147 0 1007.62 162 26 83.95 TL 146 - - 3620.07
10 - - - - 158 15 90.51 TL 150 - - 103.44

10 05 296 295 0.34 TL 311 23 92.60 TL 296 - - 65.37
08 258 258 0 2.26 - - - - 258 - - 114.09
10 257 257 0 4.53 - - - - 257 - - 331.10

NGCUT12 05 05 226 225 0.44 TL 239 42 82.43 TL 226 - - 337.87
08 300 300 0 14.85 - - - - 301 - - 3811.87
10 227 227 0 5.76 - - - - 227 - - 713.13

10 05 406 405 0.25 TL - - - - 406 - - 132.14
08 428 428 0 48.76 - - - - 428 - - 495.74
10 331 330 0.30 TL - - - - 331 - - 3809.27

Continued on next page

2.5.
Instances

17

shelves-init coord-init matheuristic
obj bound gap runtime obj bound gap runtime obj bound gap runtime

name rmax wmax

TABLE 2.2: results

19

Chapter 3

Genetic Algorithms for Bin
Packing Problem

3.1 Introduction

The bin packing problem consists in inserting a given set of rectangular box (called
items), in a minimal number of rectangular containers (called bins) in such a way
that every items is completely inscribed in a bin and there is no overlap between
different items. Three-dimensional packing problems arise often in industrial appli-
cation such as loading cargo into vehicles, container or pallet. In some application,
additional constrains are necessary such as stability or cargo balance.

The problem is strongly NP-Hard so finding solution in reasonable time often
require the use of some heuristic. In section 3.2 we give a overview of the BRKGA
framework and it’s specialization for the problem at hand. Finally in 3.3 we provide
some computational result.

3.2 Solution approach

The proposed heuristic is based on the biased random-key genetic algorithm frame-
work presented in Gonçalves and Resende, 2013. In this framework, each solution
is encoded as a vector of random keys (that is, real numbers generated in the [0− 1]
interval). Those value are used by ad constructive heuristic (called decoder) which
build the corresponding packing solution and it’s fitness value. At each iteration a
population of p solution is constructed and the solutions are then partitioned in two
disjoint subset: a small one called elite of pe element and a bigger one of p− pe non
elite elements. The subsequent generation is computed first by copying the pe elite
element, then pm random value are produced for introduce some mutation in the
process with the scope of exit eventual local minima. The remaining p− pe − pm so-
lutions are generated picking up a random element of the elite population (with rep-
etition) and a random element of the total population and combine the two solution
via parameterized uniform crossover: given a parameter chosen by the user ρe ∈ [0− 1]
each element of the new offspring vector is inherited from the elite parent with prob-
ability ρe or from the the other one with probability 1− ρe.

This approach allowed a clear separation of the problem specific part of the
heuristic (namely, the decoder and the specification of the encoding of the solution in
random-key vectors) from the problem-independent part, namely the evolutionary
process.

Another important aspect of the framework it’s that it allowed the evaluation of
fitness of the solution to be run in parallel, which enhances greatly the efficiency of
the approach.

20 Chapter 3. Genetic Algorithms for Bin Packing Problem

FIGURE 3.1: BRKGA scheme

For the decoder, the empty-maximal space rapresentation (EMS) Lai and Chan, 1997
is choosen. The free space in the bin is represented as a set of not disjoint rettagular
shapes each represented by the coordinates of the left-bottom-back corner and the
upper-right-top corner and not contained in a other space. Every time a item is
inserted the list of free space is updated with the difference process.

difference process

Given the i− th EMS of coordiante [(xi, yi, zi), (Xi, Yi, Zi)] and the j− th item inserted
at coordinate [(xj, yj, zj), (Xj, Yj, Zj)] and assumed:

xi ≤ xj ≤ Xj ≤ Xi, yi ≤ yj ≤ Yj ≤ Yi, zi ≤ zj ≤ Zj ≤ Zi

The new spaces are generated considering the projections along the axis:

[(xi, yi, zi), (Xi, Yi, Zi)]− [(xj, yj, zj), (Xj, Yj, Zj)] =

[[(xi, yi, zi), (xj, Yi, Zi)],

[(Xj, yi, zi), (Xi, Yi, Zi)],

[(xi, yi, zi), (Xi, yj, Zi)],

[(xi, Yj, zi), (Xi, Yi, Zi)],

[(xi, yi, zi, (Xi, Yi, zj)],

[(xi, yi, Zj), (Xi, Yi, Zi)]]

This process must be repeated for each EMS that overlap the item.
After that, all the spaces with a null dimension or that are totally inscribed in a

other space must filtered out. That is, the space must be removed from the list of
EMS if:

(xi ≥ xj) ∧ (yi ≥ yj) ∧ (zi ≥ zj) ∧ (Xi ≤ Xj) ∧ (Yi ≤ Yj) ∧ (Zi ≤ Zj) dove i ̸= j ∈ S

or:

(xi = Xi) ∨ (yi = Yi) ∨ (zi = Zi)

3.2. Solution approach 21

FIGURE 3.2: Example of difference process

TABLE 3.1: params

parameter description recommended value

p population size p = an, where 1 ≤ a ∈ IR
pe elite population size 0.10p ≤ pe ≤ 0.25p
pm mutant population size 0.10p ≤ pm ≤ 0.30p
ρe probability of inherit from

elite parent
0.5 < ρe ≤ 0.8

Figure 3.2 show an example of difference process where an object is inserted at
the origin of the EMS.

3.2.1 Parameters Selection

In the BRKGA algorithm there are a set of parameters that the user can set:

• genes number in the chromosome (n);

• population size (p);

• elite population size (pe);

• mutant population size (pm);

• probability of inherit from the elite parent (ρe);

Although there is not a precise way to select these parameters, in Gonçalves and
Resende, 2013 some guidelines are suggested, we report such suggestion in table 3.1.

22 Chapter 3. Genetic Algorithms for Bin Packing Problem

FIGURE 3.3: Insertion order

Decoder

For our problem, each solution is encoded as a vector of n random-keys, where n
is the number of items in the instace of the problem. This vector define the inser-
tion order of the items: sorting the random-keys in non-increasing order give us a
permutation of the items as show in figure 3.3.

The EMS is selected based on a best-fit search, that is, the smaller one that can
contain the item is choosen.

The item rotation is choosen so to minimize the residual space in the fitter di-
mension. That is, if P is the set of all the permutation of the dimensions of the item
and (e1, e2, e3) are the dimension of the selected EMS, the choosen rotation is the one
that permute the dimension so that:

min
σ∈P

min(e1 − σ(x), e2 − σ(y), e3 − σ(z))

The pseudocode of the decoder is given in 2.

Algorithm 2 Decoder

1: procedure DECODER(BPS)
2: let B be the set of open bins;
3: for i← 0, n do
4: boxToPack← BPSi;
5: let selEMS The EMS, for every bin in B,
6: with minimal volume that can contain boxToPack;
7: if selEMS = null then
8: B← B ∪ {newBin};
9: selEMS = newBin;

10: end if
11:
12: select the rotation of boxToPack;
13: that minimize the residual space;
14:
15: insert boxToPack in the origin of selEMS;
16: update the EMS list with difference process;
17: end for
18: compute fitness value;
19: end procedure

3.3. Results 23

TABLE 3.2: instance types

Type 1: wj ∈ [1, 1
2W], hj ∈ [2

3 H, H], dj ∈ [2
3 D, D];

Type 2: wj ∈ [2
3W, 1

2W], hj ∈ [1, 1
2 H], dj ∈ [2

3 D, D];

Type 3: wj ∈ [2
3W, 1

2W], hj ∈ [2
3 H, H], dj ∈ [1, 1

2 D];

Type 4: wj ∈ [1
2W, W], hj ∈ [1

2 H, H], dj ∈ [1
2 D, D];

Type 5: wj ∈ [1, 1
2W], hj ∈ [1, 1

2 H], dj ∈ [1, 2
2 D];

3.3 Results

3.3.1 Test instances

The algorithm is banchmarked on a set of 320 problems presented in Martello, Pisinger,
and Vigo, 1998.

The instances are grouped into 8 class with 40 instances each, 10 for each value of
n ∈ {50, 100, 150, 200}. For the classes 1-5, the bins dimensions W = D = H = 100
and there are 5 types of items with dimensions (dj, wj, hj) uniformely generated in
the intervals shown in table 3.2. For each class k, an item is of type k with probability
60% and one of the others 4 classes with probability 10% each.

The classes 6-8 are defined in the following way:

• class 6: W = H = D = 10; wj, hj, dj ∈ [1, 10];

• class 7: W = H = D = 40; wj, hj, dj ∈ [1, 35];

• class 8: W = H = D = 100; wj, hj, dj ∈ [1, 100];

3.4 Parameter selection

As discussed in 3.2.1, the BRKGA algorithm requires the specifications of some ini-
tial parameters. Following the suggestion given in table 3.1, the algorithm was tested
on a set of 5 challenging instances using all the possible combinations of the follow-
ing values for the parameters:

• pe ∈ {0.10, 0.15, 0.20};

• pm ∈ {0.10, 0.15, 0.25};

• ρe ∈ {0.70, 0.75, 0.80};

• population of 10, 20 o 30 times the number of the items in the instance;

The configuration that produced the best solutions of the instances tested is pe =
0.1, pm = 0.1, ρe = 0.7 with a population of 30 times the items count.

24 Chapter 3. Genetic Algorithms for Bin Packing Problem

TABLE 3.3: Computational Results

Goncalves et al.
Class Bin size n L2 6r NB aNB Time(s) 6r NB aNB Time(s)

1 100 50 12.5 11.5 13.4 13.4 2.1 11.5 13.4 13.4 0.46
100 100 25.1 22.9 26.7 26.6 17.8 22.9 26.6 26.7 12.09
100 150 34.7 32.0 36.6 36.3 45.2 31.6 36.4 36.8 74.79
100 200 48.4 43.7 51.0 50.7 69.1 43.0 50.7 51.1 145.67

2 100 50 12.7 11.7 13.9 13.8 3.9 11.7 13.9 13.8 0.52
100 100 24.1 22.5 25.7 25.5 20.5 22.4 25.8 25.5 10.95
100 150 35.1 32.2 37.0 36.7 39.2 31.5 37.1 36.6 65.27
100 200 47.5 42.9 49.6 49.4 91.6 42.2 50.0 49.4 145.29

3 100 50 12.3 11.6 13.3 13.3 4.1 11.5 13.3 13.3 0.56
100 100 24.7 22.7 26.2 25.9 21.2 22.5 26.4 25.9 9.61
100 150 36.0 32.4 37.6 37.5 43.6 32.0 37.6 37.5 46.19
100 200 47.8 43.0 50.1 49.8 78.2 42.4 50.3 49.8 155.23

4 100 50 28.7 28.9 29.4 29.4 5.0 28.9 29.4 29.4 0.038
100 100 57.6 58.4 59.0 59.0 26.4 58.4 59.0 59.0 0.17
100 150 85.2 86.4 86.8 86.8 40.7 86.4 86.8 86.8 0.47
100 200 116.3 118.3 118.8 118.8 60.3 118.3 118.8 118.8 0.98

5 100 50 7.3 7.5 8.3 8.3 6.9 7.5 8.4 8.3 0.26
100 100 12.9 13.7 15.0 15.0 15.0 13.7 15.1 15.0 8.93
100 150 17.4 18.5 20.1 19.9 33.7 18.6 20.1 19.9 194.0
100 200 24.4 25.3 27.1 27.1 67.5 25.3 27.1 27.0 356.1

6 10 50 8.7 8.9 9.8 9.8 5.4 8.9 9.9 9.8 0.35
10 100 17.5 17.9 19.0 18.8 25.9 17.9 19.0 18.9 4.80
10 150 26.9 27.6 29.2 29.2 42.3 27.5 29.2 29.2 14.39
10 200 35.0 35.5 37.2 37.2 75.0 35.5 37.2 37.2 47.01

7 40 50 6.3 6.4 7.4 7.4 6.5 6.4 7.4 7.4 0.99
40 100 10.9 10.8 12.3 12.2 12.6 10.8 12.4 12.3 18.43
40 150 13.7 13.7 15.5 15.2 27.2 13.7 15.5 15.3 115.45
40 200 21.0 21.6 23.4 23.4 72.5 21.6 23.4 23.4 189.37

8 100 50 8.0 8.3 9.2 9.2 11.7 8.3 9.4 9.2 0.27
100 100 17.5 17.5 18.9 18.9 21.4 17.5 19.0 18.9 14.78
100 150 21.3 22.0 23.6 23.5 48.2 21.8 23.8 23.7 98.54
100 200 26.7 27.5 29.4 29.2 64.0 27.3 29.4 29.2 299.39

total bin 9242 9038 9805 9772 8995 9831 9776

3.5 Computational Results

Table 3.3 Provide the numerical results obtained on the tested instances. The algo-
rithm was implemented in C++ and compiled using clang. The experiments were
performed on a Intel processor i5-8259U @2.3 GHz with 8GB of RAM.

In column L2, we reported the lower bound as defined by Martello, Pisinger,
and Vigo, 1998, the column 6r is the result with all rotation allowed, NB is the result
without rotation and with the fitness function that only count the number of open
bins, aNB the result with the aNB fitness function and lastly column Time is the
average run time of the three runs.

Fig. 3.4 show how our algorithm manage to produce better solution when the
rotation of items is permitted while maintaining competitive result in the other cases.

The figures 3.6 and 3.7 compare, respectively, the results obtained by the two
heuristics with rotations and fitness function aNB. The new procecure produces so-
lution that are better or equivalent to the ones obtained by Gonçalves and Resende,
2013.

Finally, table 3.4 ed figure 3.5 show the comparison of the results with other al-
gorithms in the literature.

3.5. Computational Results 25

6r NB
aN

B

9,000

9,200

9,400

9,600

9,800

9,038

9,805
9,772

8,995

9,831
9,776

nu
m

er
of

bi
ns

Goncalves et al. Punzo at al.

FIGURE 3.4: Heuristics results

The figure shows the total of used bins (excluding the instances for class 2 and
class 3, for which there are no solution for the alghoritms TS2PACK e GLS).

The rot bar represent the total number of bin with rotations and with fitness func-
tion aNB, bars NB e aNB are the results without rotations and with the correspond-
ing fitness function.

26 Chapter 3. Genetic Algorithms for Bin Packing Problem

ro
t

NB
aN

B
TS3

GVND

TS2
PA

CK
GLS

6,800

7,000

7,200

6,833

7,287
7,258

7,320
7,286 7,2997,311

nu
m

er
o

di
bi

ns

FIGURE 3.5: Comparison with literature’s algorithms

TABLE 3.4

Class Bin size n 6r NB aNB Time(s) TS3 GVND TS2PACK GLS

1 100 50 11.5 13.4 13.4 0.46 13.4 13.4 13.4 13.4
100 100 22.9 26.6 26.7 12.09 26.6 26.6 26.7 26.7
100 150 31.6 36.4 36.8 74.79 36.7 36.4 37.0 37.0
100 200 43.0 50.7 51.1 145.67 51.2 50.9 51.1 51.2

2 100 50 11.7 13.9 13.8 0.52 13.8 13.8 - -
100 100 22.4 25.8 25.5 10.95 25.7 25.7 - -
100 150 31.5 37.1 36.6 65.27 37.2 36.9 - -
100 200 42.2 50.0 49.4 145.29 50.1 49.4 - -

3 100 50 11.5 13.3 13.3 0.56 13.3 13.3 - -
100 100 22.5 26.4 25.9 9.61 26.0 26.0 - -
100 150 32.0 37.6 37.5 46.19 37.7 37.6 - -
100 200 42.4 50.3 49.8 155.23 50.5 50.0 - -

4 100 50 28.9 29.4 29.4 0.038 29.4 29.4 29.4 29.4
100 100 58.4 59.0 59.0 0.17 59.0 59.0 58.9 59.0
100 150 86.4 86.8 86.8 0.47 86.8 86.8 86.8 86.8
100 200 118.3 118.8 118.8 0.98 118.8 118.8 118.8 119.9

5 100 50 7.5 8.4 8.3 0.26 8.4 8.3 8.3 8.3
100 100 13.7 15.1 15.0 8.93 15.0 15.0 15.2 15.1
100 150 18.6 20.1 19.9 194.0 20.4 20.1 20.1 20.2
100 200 25.3 27.1 27.0 356.1 27.6 27.1 27.4 27.2

6 10 50 8.9 8.9 9.8 0.35 9.9 9.8 9.8 9.8
10 100 17.9 19.0 18.9 4.8 19.1 19.0 19.1 19.1
10 150 27.5 29.2 29.2 14.39 29.4 29.2 29.2 29.4
10 200 35.5 37.2 37.2 47.01 37.7 37.4 37.7 37.7

7 40 50 6.4 7.4 7.4 0.99 7.5 7.4 7.4 7.4
40 100 10.8 12.4 12.3 18.43 12.5 12.5 12.3 12.3
40 150 13.7 15.5 15.3 115.5 16.1 16.0 15.8 15.8
40 200 21.6 23.4 23.4 189.4 23.9 23.5 23.5 23.5

8 100 50 8.3 9.4 9.3 0.27 9.3 9.2 9.2 9.2
100 100 17.5 19.0 18.9 14.78 18.9 18.8 18.9 18.9
100 150 21.8 23.8 23.7 98.54 24.1 24.1 23.9 23.9
100 200 27.3 29.4 29.2 299.4 30.3 29.8 30.0 29.9

Total bin 8995 9831 9776 9863 9813

3.5. Computational Results 27

50 100 150 200
10

20

30

40

aN
B

class1

50 100 150 200
10

20

30

40

class2

50 100 150 200
10

20

30

40

aN
B

class3

50 100 150 200

50

100

class4

50 100 150 200

10

15

20

25

aN
B

class5

50 100 150 200

10

20

30

class6

50 100 150 200
5

10

15

20

aN
B

class7

50 100 150 200

10

20

class8

resende
punzo

FIGURE 3.6: Comparison quality of solution

28 Chapter 3. Genetic Algorithms for Bin Packing Problem

50 100 150 200
0

50

100

150

Ti
m

e(
s)

class1

50 100 150 200
0

50

100

150

class2

50 100 150 200
0

50

100

150

Ti
m

e(
s)

class3

50 100 150 200
0

20

40

60

class4

50 100 150 200
0

100

200

300

Ti
m

e(
s)

class5

50 100 150 200
0

20

40

60

80
class6

50 100 150 200
0

100

200

Ti
m

e(
s)

class7

50 100 150 200
0

100

200

300

class8

resende
punzo

FIGURE 3.7: Comparison runtime

3.6. Results with additional constraints 29

TABLE 3.5: support and balance

Class Bin size n Unsupported time(s) Support time(s) Load Balance time(s)

1 100 50 11.5 0.5 12.2 8.5 11.8 2.3
100 100 22.9 26.0 24.5 147.1 23.8 211.5
100 150 31.6 116.3 35.0 622.4 33.9 465.0
100 200 43.0 245.7 48.5 971.9 46.2 1041.7

2 100 50 11.7 1.13 12.7 6.7 11.9 8.8
100 100 22.4 17.0 23.8 123.9 22.8 217.6
100 150 31.5 114.1 35.4 559.9 33.9 441.16
100 200 42.2 266.2 47.6 1132.5 45.4 1174.7

3 100 50 11.5 1.6 13.3 10.1 11.7 4.0
100 100 22.5 22.9 26.2 115.9 22.6 208.0
100 150 32.0 110.8 38.2 559.5 33.6 484.3
100 200 42.4 249.2 49.5 1675.5 44.5 1501.0

4 100 50 28.9 0.0 28.9 0.2 28.9 0
100 100 58.4 0.2 58.4 1.0 58.5 0
100 150 86.4 0.5 86.7 66.8 86.4 0
100 200 118.3 1.1 118.3 15.6 118.3 0

5 100 50 7.5 0.2 8.2 4.1 7.5 1.3
100 100 13.7 15.1 15.4 120.9 13.7 180.0
100 150 18.6 178.9 21.6 904.6 18.8 1499.8
100 200 25.3 275.9 28.9 2061.4 25.5 3541.4

6 100 50 8.9 0.1 10.0 7.8 8.9 1.2
100 100 17.9 2.5 20.0 101.4 17.9 41.5
100 150 27.5 20.4 30.8 509.7 27.6 144.2
100 200 35.5 35.2 40.5 1327.0 35.5 457.4

7 100 50 6.4 0.8 7.1 13.2 6.5 28.3
100 100 10.8 21.4 13.7 92.8 11.0 100.7
100 150 13.7 168 18.3 928.6 14.1 698.8
100 200 21.6 204.5 27.1 1989.3 26.6 1041.5

8 100 50 8.3 0.3 8.8 12.3 8.3 4.2
100 100 17.5 12.2 18.9 106.7 17.7 66.4
100 150 21.8 152.2 25.1 854.5 22.3 1070.0
100 200 27.3 287.0 31.6 2500.0 27.9 1947.0

total 8995 9852 9463

3.6 Results with additional constraints

Lastly, in table 3.5 are reported the results obtained with support and balance con-
straints.

The column Unsupported show the result without additional constraints, while
the column Support show the result with the support constraint and the column load
Balance with both support and balance.

For the support constraint, a items is considered supported if at least 70% of its
base in in direct contact with the underlying items or bin floor while the cargo is
considered balanced if the mass center is distant from the geometrical center of less
than the 10% of the size of the bin.

Differently from the previous tables, this one report only run time for the run
with permitted rotations.

31

Chapter 4

Transmission Expansion Problem

4.1 Introduction

The general objective of the project is the development of an integrated planning
tool for multi-energy systems on a European scale. To reach the COP21 goals con-
cerning a stepwise reduction of energy-related greenhouse gas (GHG) emissions in
a cost effective way, the decarbonization of multiple energy sectors is necessary. The
projected increase in the power load in the near future and the shift towards a in-
creased share of renewable resources, that are usually placed in remote areas, far
away from the major centers of energy consumption, require a substantial addition
of transmission capacity.

The scope of the Transmission Expansion Planning (TEP) is the minimization of
the investment and operational costs necessary to expand the transmission grid in
a way that allow to meet the future demand, security and environmental require-
ments.

The rest of this chapter is organized as follow: in Section 4.2 we formally de-
scribe the TEP problem. Section 4.3 gives an overview of the basic assumptions for
the DC power flow model and introduces a mathematical formulation of the prob-
lem. In 4.4 we describe an exact solution method based on Benders decomposition
and a metaheuristic algorithm based on a genetic algorithm. Finally, computational
experiments on real instances are given in Section 4.5.

4.2 Problem Description

Given an energy network and a profile for demand and generation for each node
along a given time horizon, the objective of the Transmission Expansion Planning
(TEP) problem is to determine an optimal extension of the network, i.e, the selection
of a set of new lines and other exapnsion measures, so that all demands are satisfied
at minimum investment and operational cost.

To obtain a robust solution, the network is analyzed at different instants of time
(called grid snapshots), each one characterized by a specific load/generation pattern.
Also, different outages situations are taken into account to ensure the capacity to meet
demands in case of failure of some power line.

The starting topology of the transmission grid is defined by a set of nodes, cor-
responding to electrical busses and by a set of transmission corridors. Nodes are
associated with a a power load for each grid snapshot and with a set of generation
units, including renewable plants that provide a certain power output at each grid
snapshot.

Transmission corridors have multiple position in which parallel circuits may be
installed. While some of these positions are already occupied by pre-existing lines,

32 Chapter 4. Transmission Expansion Problem

the remaining ones are available for new lines. We consider the possibility to install
both AC lines and HVDCs (A high-voltage direct current (HVDC) electric power
transmission system).

Some of the existing lines can be upgraded in different ways, namely by in-
stalling a Phase Shift Transformer (PST) or a Thyristor Controller Series Compen-
sator (TCSC), or by upgrading the voltage level, or by rewiring the circuits with a
conductor having an increased transmission capacity. Some of these expansion op-
erations require the definition of additional parameters, such as, for example, the
voltage angle for the PST.

The construction of a new line or the extension of an existing one are modelled
by a set of binary variables.

In case of power grids, several representations exist, each one with a different
trade off between accuracy and computational complexity. The more accurate model
is the AC power flow model.

In this model the active power flow through a lossless transmission line is given
by

PL =
|VN ||VQ|

XL
sin (δN − δQ) (4.1)

where VN and VQ are the voltage amplitude at node N and node Q, respectively,
δN and δQ are the associated voltage angles, and XL is the reactance of the line.

Given the non-linearity of this formulation, the model is seldom used in practice.
Indeed a grid of N nodes result in a system of 2N non-linear equations, i.e., a com-
putationally intractable model in practice. A more practical representation of the
system can however be obtained using the so-called DC power flow model, which
is obtained by a linearization of the AC model, and is based on three assumptions:

1. line resistances are negligible compared to line reactances, i.e.,:

BL =
−XL

R2
L + X2

L
≈ − 1

XL

2. the voltage profile is flat, i.e., the amplitude is equal for all nodes (p.u is the
unit value):

|VN | ≈ 1 p.u (4.2)

3. the voltage angles differences are small. This assumption allows to approxi-
mate the sin of this difference with the difference itself in the following way:

sin (δN − δQ) ≈ δN − δQ (4.3)

It follows from the previous assumptions that equation (4.1) simplifies to

PL = BL(δN − δQ), (4.4)

where BL is the susceptance of the line.
The resulting model includes linear constraints only. However, some decision

variables are forced to be binary as they model the possibility of selecting the expan-
sions measures, which yields an MILP formulation. This model will be detailed in
the next section.

4.3. Mathematical Model 33

4.3 Mathematical Model

4.3.1 Input sets

The structure of the network is defined by a set ΩK of node/busses, and a set of ΩT
transmission corridors. Each node comprises a set ΩGk of generation units, including
traditional power plant (ΩPPk) and renewable (ΩRESk). Each transmission corridor t
is characterized by a set of available voltage levels (ΩVt) and multiple position (ΩNt)
for the installation of parallel circuits. Some of these positions are occupied by pre-
existing circuits (ΩNt,0), whereas the remaining ones are free for installation of some
candidate new circuit (ΩNt,c).

Both AC and HVDC lines (set ΩDC) are available as new circuits, and a wide
portfolio of expansions measures can be used to upgrade some of the existing cir-
cuits. In particular, set ΩNt,0 includes the following subsets:

• ΩNt,0,pst is the set of circuits in which a Phase Shifting Transformers can be in-
stalled in series with the circuit;

• ΩNt,0,tcsc represents the set of circuits in which a Thyristor Controlled Series
Compensator can be installed;

• ΩNt,0,vu is the set of circuits whose voltage level can be upgraded; and

• ΩNt,0,rew denotes the set of circuits that can be rewired with a conductor charac-
terised by an increased transmission capacity.

Note that an existing line may belong to more than one of these subsets.
Each line is identified by the triplets (t, n, v) where, t ∈ ΩT, n ∈ ΩNt , v ∈ ΩVt

Lastly, the grid is analyzed to different grid snapshots (set ΩU) and at different
outage situations (set Ωcs).

4.3.2 Variables

The construction of new lines or the reinforcement of the pre-existing ones are con-
trolled by the introduction of the following binary variables:

• yAC
t,n,v: 1 if AC line of voltage level v is installed in corridor t and position n, 0

otherwise; t ∈ ΩT; n ∈ ΩNt,c ; v ∈ ΩVt

• yREW
t,n,v0

: 1 if pre-existing line in transmission corridor t and position n is rewired,
0 otherwise; t ∈ ΩT; n ∈ ΩNt,0,rew

• yVU
t,n,v0

: 1 if pre-existing line in transmission corridor t and position n voltage
level is upgraded, 0 otherwise;
t ∈ ΩT; n ∈ ΩNt,0,vu

• yDC
t : 1 if HVDC line in corridor t is installed, 0 otherwise; t ∈ ΩT

• yPST
t,n,v0

: 1 if a phase shift transformer is installed serially to the pre-existing line
in corridor t and position n, 0 otherwise; t ∈ ΩT; n ∈ ΩNt,0,pst

• yTCSC
t,n,v0

: 1 if Thyristor-controlled series capacitor is installed on line in corridor t
and position n, 0 otherwise;
t ∈ ΩT; n ∈ ΩNt,0,tcsc

34 Chapter 4. Transmission Expansion Problem

As explained in 4.2, the power flowing along line (t, n, v) at grid snapshot u and
outage situation cs (f AC,u,cs

t,n,v) depends to the difference of the voltage phase angles at
starting and ending node of the line: (θu,cs

k ft,n,v0
and θu,cs

ktt,n,v0
, respectively).

These θ values are represented as continuous variables that are bounded by a
maximum and minimum value.

From the Kirchhoff first law, nodal power balance equations are derived. Re-
dispatch variables (∆p+,u

g and ∆p−,u
g) are introduced to model the possibility for the

transmission system operator for instructing the power plant operators to adjust the
active power feed-in, so as to avoid congestions (or to solve them, if they happen).
Additional slacks variables (ru,cs

gk andru,cs
dk

) are introduced for modelling the impossi-
bility to satisfy the demand of the node with the current infrastructure.

Finally, we introduce further continuous variables that are used to model the
control parameters of some of the expansions expansion measures, namely:

• θPST,u
t,n,v0

is the voltage angle of the Phase Shift Transformer that can be installed
in series with the circuit in corridor t and position n and grid snapshot u;

• θTCSC,u
t,n,v0

is the equivalent voltage angle of the Thyristor Controlled Series Com-
pensator that can be installed on the circuit in corridor t and position n and
grid snapshot u.

4.3.3 Objective function

The TEP formulation aims at minimising overall costs resulting from the expansion
and operation of the electrical transmission grid.

min IC + OC (4.5)

The investment costs IC include the costs for the installation of new assets as well
as costs related with the operation of these assets. Operational costs for installed
assets are modelled as a percentage of corresponding investment costs.

where the investment cost is defined by:

IC = (1 + COP(1 +
1
α
)) ∑

t∈ΩT

ICt (4.6)

COP is the operational cost associated with the installment of new assets, while α
is the annual discount factor.

The investment of a single transmission corridors t is given by:

ICt = ∑
n∈ΩNt,c

∑
v∈ΩVt

CAC
t,n,vyAC

t,n,v + CDC
t yDC

t +

∑
n∈ΩNt,0,vu

CVU
t,n,v0

yVU
t,n,v0

+ ∑
n∈ΩNt,0,rew

CREW
t,n,v0

yREW
t,n,v0

+

∑
n∈ΩNt,0,pst

CPST
t,n,v0

yPST
t,n,v0

+ ∑
n∈ΩNt,0,tcsc

CTCSC
t,n,v0

yTCSC
t,n,v0

∀t ∈ ΩT

(4.7)

Where the parameters C are the costs associated with the correspondent expan-
sion measures or the installations of new lines.

4.3. Mathematical Model 35

Operational costs arise at a single grid snapshot of a single year. Hence, the
appropriate analysis of expansion and operational costs requires weighting oper-
ational costs within the objective function. This weighting is done by calculating
operational costs as perpetual annuity to compare operational costs of one single
year with long-term expansion costs.

The operational costs OC contain costs for congestion management interventions
(OCCM,u) as well as load shedding and generation curtailment (OCSlack,u).

OC = (1 +
1
α
) ∑

u∈ΩU

WCM,u(OCCM,u + OCSlack,u) (4.8)

Congestion management interventions are distinguished in those for redispatch
of conventional power plants and curtailment of renewable energies.

OCCM,u = ∑
g∈ΩPP

CPP
g (∆p+,u

g − ∆p−,u
g) + CRES ∑

g∈ΩRES

∆p−,u
g

∀u ∈ ΩU

(4.9)

(OCSlack,u) are modelled as node-specific slack variables to ensure the solvability
of the optimisation problem.

OCSlack,u = Cr ∑
cs∈ΩCS

∑
k∈ΩK

(ru,cs
gk

+ ru,cs
dk

) ∀u ∈ ΩU (4.10)

4.3.4 Investment constraints

The investment problem deals with restrictions limiting the construction of new as-
sets due to mutual interdependencies between different measures. On the one hand,
the expansion costs can depend on the order in which the assets are placed and, on
the other hand, the number of measures which can be realised per circuit is limited.

In context of constructing new AC circuits, it is differentiated between the rein-
forcement of existing and the development of new transmission corridors. Develop-
ing new transmission corridors requires the installation of new line towers whereas
reinforcing existing ones requires only an upgrade of existing line towers. Further-
more, costs for upgrading an existing one depend on the number of circuits being
already installed within the corridor taking all available voltage levels into account.
Therefore, it has to be ensured that per line tower place only one circuit of the avail-
able voltage levels can be installed:

∑
v∈ΩVt

yAC
t,n,v ≤ 1 ∀t ∈ ΩT, ∀n ∈ ΩNt,c (4.11)

Furthermore, the order in which parallel circuits can be constructed has to be
restricted. A circuit n can only be placed when the circuit n− 1 is already installed.

∑
v∈ΩVt

yAC
t,n,v − ∑

v∈ΩVt

yAC
t,n−1,v ≤ 0

∀t ∈ ΩT, ∀n ∈ ΩNt,c , n ≥ 1
(4.12)

It is assumed that each circuit can only be expanded or reinforced by one tech-
nological measure. Hence, either a parallel circuit can be installed, the voltage level

36 Chapter 4. Transmission Expansion Problem

can be upgraded, the circuit can be re-wired, a PST can be placed in series or a TCSC
can be installed serially. Nevertheless, the restriction allows the parallel placement
of more than one parallel measure.

yAC
t,nc,v0

+ yVU
t,n,v0

+ yREW
t,n,v0

+ yPST
t,n,v0

+ yTCSC
t,n,v0

≤ 1

∀t ∈ ΩT, ∀nc ∈ ΩNt,c , ∀n ∈ ΩNt,0

(4.13)

4.3.5 Operational constraints

The operational variables are constrained by physical law, investment choices and
functional limit of the expansion measures.

Kirchhoff’s first law imposes that the power injected into a node is equal to the
power ejected at the same node:

∑
t∈ΩTk

∑
n∈ΩNt

∑
v∈ΩVt

f AC,u,cs
t,n,v + ∑

t∈ΩTk

f DC,u
t + Pu

gk
− ru,cs

gk
+ ∑

g∈ΩPPk

∆p+,u
g =

Pu
dk
− ru,cs

dk
+ ∑

g∈ΩGk

∆p−,u
g

∀k ∈ ΩK, ∀u ∈ ΩU , ∀cs ∈ ΩCS

(4.14)

Here, ΩTk is the set of transmission corridors incident on node k, Pu
gk

is the power
produced by generation unit gk at grid snapshot u while Pu

dk
is the power demand of

the node at grid snapshot u. Signs of f AC,u,cs
t,n,v and f DC,u

t are taken with the usual sign
convention.

The power flowing in a line is formulated separately for existing and candidate
lines as well as for lines those voltage level can be upgraded

f AC,u,cs
t,n,v0

− γAC
t,n,v0

(θu,cs
k ft,n,v0

− θu,cs
ktt,n,v0

+ θPST,u
t,n,v0

+ θTCSC,u
t,n,v0

) = 0

∀t ∈ ΩT, ∀n ∈ ΩNt,0 \ΩNt,0,vu , ∀u ∈ ΩU , ∀cs ∈ ΩCS

(4.15)

Define the flow for the existing line minus the ones that can be voltage upgraded.
γAC

t,n,v0
is the susceptance of the line, θu,cs

k ft,n,v0
and θu,cs

ktt,n,v0
are the voltage phase angle of

the starting and ending node of the line, respectively. θPST,u
t,n,v0

and θTCSC,u
t,n,v0

take into
account the possibility to install voltage phase transformer and thyristor controlled
series compensators in series to the circuit.

For candidate lines, the flow is defined using a big M value so to limit the flow
only if the line is constructed.

| f AC,u,cs
t,n,v − γAC

t,n,v(θ
u,cs
k ft,n,v
− θu,cs

ktt,n,v
)| ≤ M(1− yAC

t,n,v)

∀t ∈ ΩT, ∀n ∈ ΩNt,c , ∀v ∈ ΩVt , ∀u ∈ ΩU , ∀cs ∈ ΩCS
(4.16)

Upgrading the voltage level of a line requires the construction of a new line with
an increased voltage level and different reactance as well as the deconstruction of
the existing one. Both measures are indicated by the same decision variable yVU

t,n,v0
.

4.3. Mathematical Model 37

| f AC,u,cs
t,n,v0

− γAC
t,n,v0

(θu,cs
k ft,n,v0

− θu,cs
ktt,n,v0

+ θPST,u,cs
t,n,v0

+ θTCSC,u,cs
t,n,v0

)| ≤ MyVU
t,n,v0

∀t ∈ ΩT, ∀n ∈ ΩNt,0,vu , ∀u ∈ ΩU , ∀cs ∈ ΩCS

| f AC,u,cs
t,n,vvu

− γAC
t,n,vvu

(θu,cs
k ft,n,v0

− θu,cs
ktt,n,v0

)| ≤ M(1− yVU
t,n,v0

)

∀t ∈ ΩT, ∀n ∈ ΩNt,0,vu , ∀u ∈ ΩU , ∀cs ∈ ΩCS

(4.17)

If variable yVU
t,n,v0

is set to 0, the first equation limit the power flow of the pre-
existing line, if is set to 1, the the power of the new line is limited.

To compute the voltage phase angle differences, a node is choosen as reference
node and the correspondent angle is set to 0:

θu,cs
kre f

= 0 ∀u ∈ ΩU , ∀cs ∈ ΩCS (4.18)

The voltage angle of each node is limited by an maximum voltage angle:

|θu,cs
k | ≤ θmax ∀k ∈ ΩK, ∀u ∈ ΩU , ∀cs ∈ ΩCS (4.19)

The flow on a line, which can’t be re-wired, is limited by the maximum transmis-
sion capacity:

| f AC,u,cs
t,n,v0

| ≤ f AC,max
t,n,v0

∀t ∈ ΩT, ∀n ∈ ΩNt,0 \ΩNt,0,rew , ∀u ∈ ΩU , ∀cs ∈ ΩCS
(4.20)

The maximum flow on AC circuits, which can be re-wired, is formulated under
consideration of the binary variable indicating the re-wiring status. In the case of
re-wiring the circuit, the maximum capacity is increased, otherwise it is restricted to
the original transmission capacity.

| f AC,u,cs
t,n,v0

| ≤ f AC,max
t,n,v0

(1− yVU
t,n,v0

) + (f REW,max
t,n,v0

− f AC,max
t,n,v0

)yREW
t,n,v0

∀t ∈ ΩT, ∀n ∈ {ΩNt,0,rew ∪ΩNt,0,vu}∀u ∈ ΩU , ∀cs ∈ ΩCS
(4.21)

The first term on the right hand-side ensure that the power flow on the existing
line is set to 0 in case the line is deconstructed and replaced by the line with the
increased voltage level.

The power flowing on the new constructed lines is limited to the maximum one
taking the corresponding construction status into account:

| f AC,u,cs
t,n,v | ≤ f AC,max

t,n,v yAC
t,n,v

∀t ∈ ΩT, ∀n ∈ ΩNt,c , ∀v ∈ ΩVt , ∀u ∈ ΩU , ∀cs ∈ ΩCS

| f AC,u,cs
t,n,vvu

| ≤ f AC,max
t,n,vvu

yVU
t,n,v0

∀t ∈ ΩT, ∀n ∈ ΩNt,0,vu , ∀u ∈ ΩU , ∀cs ∈ ΩCS

| f DC,u
t | ≤ f DC,max

t yDC
t ∀t ∈ ΩT, ∀u ∈ ΩU

(4.22)

38 Chapter 4. Transmission Expansion Problem

The outage of a line is simulated by reproducing the grid snapshot and forcing
the power flow of the line to 0:

f AC,u,cs
tcs,ncs,vcs

= 0 ∀t ∈ ΩT, ∀n ∈ ΩNt , ∀v ∈ ΩVt , ∀u ∈ ΩU (4.23)

The voltage phase angle for the PST and the TCSC, if construted, are limited by
an upper bounds:

|θPST,u
t,n,v0
| ≤ θPST,maxyPST

t,n,v0
∀t ∈ ΩT, ∀n ∈ ΩNt,0,pst , ∀u ∈ ΩU

|θTCSC,u
t,n,v0

| ≤ θTCSC,max
t,n,v0

yTCSC
t,n,v0

∀t ∈ ΩT, ∀n ∈ ΩNt,0,tcsc , ∀u ∈ ΩU
(4.24)

Positive redispatch for traditional power plant is caped by the difference between
the maximum power output of the plan and the power output at a given grid snap-
shot:

0 ≤ ∆p+,u
g ≤ Pmax

g − Pu
g ∀g ∈ ΩPP, ∀u ∈ ΩU (4.25)

In a similar way, the negative redispatch for the traditional power plants is caped
by the maximum between the difference of the power output at a given grid snap-
shot and the minimum power output and 0:

0 ≤ ∆p−,u
g ≤ max(Pu

g − Pmin
g , 0) ∀g ∈ ΩPP, ∀u ∈ ΩU (4.26)

For renewable resources, the negative redispatch is caped by the power output
at a given grid snapshot:

0 ≤ ∆p−,u
g ≤ Pu

g ∀g ∈ ΩRES, ∀u ∈ ΩU (4.27)

4.4 Solution Method

The mathematical formulation given in the previous section can be solved using
a general purpose MILP solver. Though nowadays effective commercial solvers,
that include highly sophisticated tools (e.g., preprocessing, heuristics, cut genera-
tion procedures, . . .) are available on the market, the direct application of a solver to
this formulation seems to be unpractical as the number of variables and constraints
in the model is typically very large for real instances. For this reason, we developed
a solution approach, described in the next section, that is based on a Benders decom-
position. To improve the performances of the approach, we also use a metaheuristic
algorithm based (see Section 4.4.3) that proved to be extremely effective in practice.

4.4.1 A Benders decomposition approach

Benders decomposition is a solution approach that is typically used to attack large
scale optimization problems by exploiting the structure of the constraint matrix. In
particular, the method is effective for problems that can be easily decomposed into
subproblems when the value of a limited number of complicating variables has been
estabilished.

4.4. Solution Method 39

The general scheme of a Benders decomposition consists of the iterative ap-
proach in which, at each iteration:

• a master problem is solved and determines the candidate value for the compli-
cating variables; and

• given the current value of the complicating variables, one or more subproblems
are solved, to check feasibility and cost of the proposed master solution.

The solution of the subproblems may produce additional cuts to be added to the
master problem, in which case the process is iterated. The algorithm halts when
an iteration is encountered in which the solution of the subproblems produces no
cuts to be added. A key aspect is that the master problem works in the space of
the complicating variables only, i.e., it is much smaller than the original problem.
For this reason, the master can therefore be solved efficiently, and the cuts must be
expressed in terms of the complicating variables only.

In the TEP model, the complicating variables are the the strategic variables y that
control the installation of new assets. By fixing a value for each strategic variable,
the remaining problem, involving operational variables only, reduces to a pure LP
problem that can be easily resolved through decomposition. In particular, one can
identify |ΩU | subproblems, each associated with a specific snapshot.

As subproblems determine the cost of the solution, it is convenient to introduce
in the master additional non-negative variables zi (i ∈ ΩU), to take into account the
cost of each subproblem. Accordingly, the master problem is defined by objective
function

min IC + ∑
i∈ΩU

zi

under constraints (4.11) - (4.13). The initial formulation of the master includes no
constraints that involves the z variables (but for their sign). The correct value of
these variables will be estabilished by the cuts that are dynamically generated by the
separation phase. Finally, note that the master problem includes integer (actually,
binary) variables. This integrality requirement will be considered later, i.e., assume
that one is interested in solving the LP relaxation of the master problem only.

Each subproblem is defined by objective function (4.8) and by constraints (4.9),
(4.10) and (4.14) - (4.27). Note that, subproblems are solved for a given tentative
value of the complicating variables. As these variables appear on the right-hand
side of the constraints only, the subproblems are purely LP, i.e., they can be solved
efficiently in practice. Moreover, as subproblems are always feasible (though, pos-
sibly, having a very large cost), all cuts that are generated are optimality cuts, i.e.,
inequalities that are used to correctly define the cost of the subproblems. In particu-
lar, denote by

min{gix : Eix ≥ bi − Di y}

the i-th subproblem with optimal value qi. If qi > zi, we generate and add to the
master the following cut

zi ≥ πi(bi − Di y) (4.28)

where πi denotes the vector of dual variables associated with the constraints of the
i-th subproblem.

Our solution method is described in Algorithm 3. Observe that, for the correct-
ness of the method, the separation phase is required only for integer ȳ solutions. For
this reason, and to avoid the generation of a very large number of cuts, we execute

40 Chapter 4. Transmission Expansion Problem

Algorithm 3 Benders decomposition algorithm

1: function BENDERS

2: solve the continuous relaxation of the master problem;
3: let (ȳ, z̄) an optimal solution of the relaxation;
4: if ȳ is not integer then
5: return (ȳ, z̄, infeasible)
6: end if
7: ▷ separation phase

8: feasible← true
9: for all i ∈ ΩU do

10: fix y := ȳ and update the right-hand side;
11: solve subproblem i and let qi its optimal value;
12: if qi > z̄i then
13: add zi ≥ πi(bi − Di y) to master;
14: feasible← false
15: end if
16: end for
17: if feasible = true then
18: return (ȳ, z̄, feasible)
19: end if
20: goto 2
21: end function

separation only in case ȳ is integer. The procedure returns an optimal solution of the
current LP relaxation, and a status indicating whether this solution is feasible or not.

As already mentioned, our Benders decomposition method solves the LP relax-
ation of the problem, in which the integrality requirement of the y variables has been
dropped. To restore these constraints, the scheme is embedded into a branch-and-
cut algorithm built on top of the general-purpose MILP solver Gurobi. At each node
of the branching tree, a callback function is executed to possibly produce additional
cuts that can be added to the master. To avoid the addition of a very large number
of cuts, the separation phase is applied only to integer solutions. In particular, if y
is not integer, a branching is performed to define two descendant nodes that will
be explored later; the choice of the branching variable as well as the node selection
strategies are left to the solver. If instead y is integer, each subproblem is solved to
possibly separate new cuts. If some violated cuts have been detected, the master
problem is solved again, possibly inducing a branching or another execution of the
separation phase. If instead the cost of each subproblem matches with the value of
corresponding z variable, the solution is accepted and the incumbent may be up-
dated.

The pseudo-code of the callback function is given in Algorithm 4, that makes use
of a parameter z∗ denoting the incumbent best solution found so far.

4.4.2 Relaxation

Our computational experiments, that will be discussed in Section 4.5, showed that
the direct solution of the mathematical formulation of the problem using a general-
purpose MILP solver is very challenging from a computational viewpoint. This is
due to the size of the model and to the fact that the objective function includes sev-
eral costs, that have different relevance in the definition of the total solution cost.

4.4. Solution Method 41

Algorithm 4 Node callback

1: function CALLBACK(z∗)
2: (ȳ, z̄, status)← Benders
3: set L be the cost of solution (ȳ, z̄)
4: if L ≥ z∗ then
5: fathom the node;
6: end if
7: if status = infeasible then
8: select a fractional ȳ value and perform branching
9: else

10: update the incumbent z∗

11: end if
12: end function

To ease the solution of the model, we consider a relaxation of the problem in
which only the slacks variables ru,cs

gk and ru,cs
dk

are minimized in the objective function.
On the one hand, these variables are associated with the largest by far cost in the
objective function. On the other hand, an optimal solution value of this problem is
very useful from a practical viewpoint, as it provides two relevant information:

• its value is a valid lower bound on the optimal solution value;

• it provides a tight indication on the minimum amount of demand that cannot
be satisfied.

finally, note that an optimal solution of this model is a feasible solution for the
complete problem. Plugging all cost terms back in the objective function, one can
evaluate the cost of this solution, thus producing an upper bound on the optimal
value.

4.4.3 Biased Random Key Genetic Algorithm

As it typically happens for enumerative algorithms, the performances of the method
are strongly affected by the availability of primal heuristics able to determine tight
upper bounds on the optimal solution value. For this reason, we implemented a
metaheuristic based on the Biased Random-Key Genetic Algorithm (BRKGA) frame-
work, to be applied as a warm-start for the solution approach.

BRKGA is a variant of genetic algorithms in which each solution is encoded by
a vector of random-keys, each having a value in the interval [0, 1]. To evaluate fea-
sibility and cost of an element of the population, the associated vector of random
keys is decoded using a problem-specific heuristic, called the decoder. This allow to
clearly separate the heuristic procedure used to define a solution (which is typically
dependent on the problem at hand) from the evolutionary process, which is instead
absolutely general.

The initial population is generated with p random vectors. At each iteration,
the fitness of each solution in the population is computed by means of the decoder.
Then, the population is partitioned in two disjoint subset: the first one contains a
small fraction of solutions, namely the pe elements with the best fitness elite solu-
tions, whereas the second one includes the remaining p− pe non elite solutions. The
population for the next iteration is obtained as follows:

• including all elite solutions from the current iteration;

42 Chapter 4. Transmission Expansion Problem

• defining a small number of pm mutants to the population;

• generating the remaining p− pe − pm elements by means of a crossover.

Mutation is used to avoid of being trapped in local minima. The parameterized
uniform crossover is applied to a pair of randomly selected elements (one from each
subset) as works as follows: given a parameter ρe ∈ [0, 1], each element of the new
solution is inherited from the elite parent with probability ρe and from the the other
parent with probability 1− ρe. At each iteration, the fitness of each solution is com-
puted and possibly used to update the incumbent solution value. Note that this
framework allows for an efficient implementation in which the fitness of the solu-
tions are computed in parallel. The process is halted after a maximum of iterations
or in case the incumbent has not been updated for a given number of iterations.

Algorithm 5 Decoder

function DECODER(vector, subs, nac)
▷ step1: define the strategic variables

for all t ∈ ΩT do
extract entries At and Bt from vector;
prev← true
for n = 1 to |ΩNt,c | do

if prev = true then
let ant be the set of At entries associated with position n
val ← max ant

v← arg max ant

if val ≥ θ then
ȳAC

t,n,v ← 1
new_line = true

else
prev = f alse

end if
end if
if new_line = f alse then

let bnt be the set of Bt entries associated with position n
val ← max bnt

u← arg max bnt ▷ u ∈ {VU, REW, PST, TCSC}
if val ≥ θ then

ȳu
t,n,v0
← 1

end if
end if

end for
end for

▷ step2: complete the solution

for all s ∈ subs do
use ȳ to fix s right-hand side
solve(s) return cTy + ∑s∈subs s.obj

end for
end function

In our implementation for solving TEP, each solution is encoded using a vector
of n elements, each corresponding to a strategic variable y. A decoding procedure,
described in Algorithm 5, is used to define a feasible solution associated with a given

4.5. Computational Results 43

key vector. The procedure operates in two phases: in the first phase, it determines
the value of each y variable, taking into account the investment constraints described
in Section 4.3.4. In the second phase these value are used to define the right-hand
side of the constraints that appear in the subproblems, that are solved using a MILP
solver.

Note that, in the first phase the procedure makes use of an input a parameter θ
(to be discussed later), and exploits the fact that each investment constraint refers to
one transmission corridor. Accordingly, the procedure considers one corridor at a
time and partitions the key vector in |ΩT| parts, each composed of |ΩVt | × |ΩNt,c |+
α|ΩNt,0 | entries, where α is the number of possible upgrades for the existing lines
(α = 4 in our formulation).

To easy the notation, we let t be the current transmission corridor, and denote
by At ∈ [0, 1]|ΩVt |×|ΩNt,c | the set of entries associated to corridor t and variables that
model the construction of new AC circuits, and by Bt ∈ [0, 1]α×|ΩNt,0 | the remaining
values. Constraints (4.12) impose that a new AC circuit can be installed in position
n ∈ ΩNt,c only if a circuit has been installed in position n− 1 as well. For this reason,
circuits are considered one at a time by increasing position index, and the installation
of the current circuit is evaluated only in case the previous circuit has been installed.
In this case, as constraints (4.11) impose that at most one available voltage level is
used, we evaluate all the At entries associated with the current transmission corridor
and circuit, and consider the one with maximum value. The corresponding variable
is set to 1 if and only if this value is not below the threshold; all the other variables
associated with transmission corridor t and circuit n are set to 0. Finally, constraints
(4.13) allow at most one variable associated with an entry in Bt be one, only in case
no new line is constructed in the same transmission corridor. In this case as well, we
scan the corresponding entries and possibly set to one the y variable associated with
the entry having maximum value, provided it is not below the threshold.

Once the strategic variables have been fixed, the problem can be decomposed
into subproblems, each one being an LP. Solving these subproblems one at a time
allows to produce a complete solution that can be used to possibly update the in-
cumbent.

4.5 Computational Results

Computational test were performed using 4 real-world instances of different size
that we received from our partners within PlaMES. In Table 4.1 we report the char-
acteristics of each instance, in terms of number of nodes, corridors, branches, snap-
shots, and outages; in addition, we give the number of constraints and variables of
the associated complete formulation.

TABLE 4.1: Characteristic of the instances

name nodes corridors branches snapshot outages constraints variables

inst1 120 254 439 6 3 18318 10235
inst2 120 477 778 11 149 335254 146886
inst3 120 477 764 20 340 725575 319216
inst4 1589 1702 6379 20 812 12401547 6558991

All experiments were executed an AMD ryzen 3700x 8c/16t running at @3.6Ghz
and equipped with 32GB of RAM.

44 Chapter 4. Transmission Expansion Problem

4.5.1 Exact methods

For what concerns the exact solution of the problem, we consider the following al-
gorithms:

• single model: the direct application of solver Gurobi to the complete formula-
tion;

• Benders: the exact method based on Benders’ decomposition described in Sec-
tion 4.4.1;

• Benders∗: this is a variant of the previous scheme in which, at the root node,
separation is carried out also for non-integer solutions.

Each method was run in single-thread mode with a time limit equal to 10,000 sec-
onds per instance. Table 4.2 reports the corresponding results and provides, for each
algorithm, the value of the best solution found, the best lower bound, the associated
percentage gap, the computing time and the number of nodes.

The table shows that, though Gurobi is a state-of-the-art solver for MILPs, it can
successsfully be used for solving the first instance only. On the other hand, Benders
decomposition allows to compute an optimal solution for other two instances within
the given time limit. Separating Benders cuts in a more aggressive way at the root
node gives some improvement as it reduces the internal gap of the algorithm before
enumeration starts. Nevertheless, all methods run out of memory (without even
computing a feasible solution) for the last instance, in which the large number of
outages produces a very large formulation.

4.5.2 Heuristics

Our second set of experiments concern the approximate solution of the TEP problem.
To this aim, we consider the following algorithms:

• only delta: the cost of the heuristic solution produced solving the relaxation
introduced in Section 4.4.2;

• BRKGA: this is the result computed with the biased random key genetic algo-
rithm;

When comparing heuristics, we used a reduced time limit equal to 600 seconds.
Table 4.3 reports, for each algorithm, the value of the best solution found, the associ-
ated percentage gap with respect to the optimal value (best known solution for the
last instance), and the required computing time.

TABLE 4.2: Results for exact algorithms. Time limit = 10,000 seconds,
* = out of memory

single model Benders Benders∗

name obj lb %gap time #node obj lb %gap time #node obj lb %gap time #node
inst1 188.31 188.31 0.00 25 1672 188.31 188.31 0.00 18 3537 188.31 188.31 0.00 9 3227
inst2 8.31e+12 -334.45 100.00 limit 0 2.50e+9 2.50e+9 0.00 8437 29937 2.50e+9 2.50e+9 0.00 6214 81892
inst3 1.81e+13 8.87e+8 99.99 limit 0 3.21e+10 3.21e+10 0.00 3768 24851 3.21e+10 3.21e+10 0.00 1655 1923
inst4 * * * * * * * * * * * * * * *

4.5. Computational Results 45

TABLE 4.3: Results for heuristic algorithms. Time limit = 600 seconds,
* = out of memory

only delta BRKGA
name obj %gap time obj %gap time
inst1 188.31 25 3.02e+11 1248
inst2 8.31e+12 limit 1.57e+14 limit
inst3 1.81e+13 limit 2.35e+14 limit
inst4 * * * *

Acknowledgements

This research is part of the project PlaMES (Integrated Planning of Multi- Energy
Systems). PlaMES has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 863922.

47

Bibliography

Beasley, J. E. (1985). “An Exact Two-Dimensional Non-Guillotine Cutting Tree Search
Procedure”. In: Operations Research 33.1. Publisher: INFORMS, pp. 49–64. ISSN:
0030-364X. URL: https://www.jstor.org/stable/170866 (visited on 03/04/2023).

Chen, C. S., S. M. Lee, and Q. S. Shen (Jan. 1995). “An analytical model for the
container loading problem”. en. In: European Journal of Operational Research 80.1,
pp. 68–76. ISSN: 0377-2217. DOI: 10.1016/0377-2217(94)00002-T. URL: https:
//www.sciencedirect.com/science/article/pii/037722179400002T (visited
on 02/22/2023).

Crainic, Teodor Gabriel, Guido Perboli, and Roberto Tadei (June 2009). “TS2PACK:
A two-level tabu search for the three-dimensional bin packing problem”. en. In:
European Journal of Operational Research 195.3, pp. 744–760. ISSN: 0377-2217. DOI:
10 . 1016 / j . ejor . 2007 . 06 . 063. URL: https : / / www . sciencedirect . com /
science/article/pii/S0377221707010995 (visited on 01/15/2023).

Faroe, Oluf, David Pisinger, and Martin Zachariasen (Aug. 2003). “Guided Local
Search for the Three-Dimensional Bin-Packing Problem”. In: INFORMS Journal
on Computing 15.3. Publisher: INFORMS, pp. 267–283. ISSN: 1091-9856. DOI: 10.
1287/ijoc.15.3.267.16080. URL: https://pubsonline.informs.org/doi/abs/
10.1287/ijoc.15.3.267.16080 (visited on 01/15/2023).

Fekete, Sandor P. and Joerg Schepers (Oct. 2003). A combinatorial characterization of
higher-dimensional orthogonal packing. arXiv:cs/0310032. DOI: 10.48550/arXiv.
cs/0310032. URL: http://arxiv.org/abs/cs/0310032 (visited on 01/15/2023).

Fekete, Sandor P., Joerg Schepers, and Jan C. van der Veen (Apr. 2006). An exact algo-
rithm for higher-dimensional orthogonal packing. arXiv:cs/0604045. DOI: 10.48550/
arXiv . cs / 0604045. URL: http : / / arxiv . org / abs / cs / 0604045 (visited on
01/15/2023).

Franken, Marco et al. (June 2019). “Transmission Expansion Planning Considering
Detailed Modeling of Expansion Costs”. In: 2019 IEEE Milan PowerTech, pp. 1–6.
DOI: 10.1109/PTC.2019.8810437.

Gilmore, P. and Ralph Gomory (Feb. 1965). “Multi-Stage Cutting Stock Problems of
Two or More Dimensions”. In: Operations Research 13. DOI: 10.1287/opre.13.1.
94.

Gilmore, P. C. and R. E. Gomory (Dec. 1961). “A Linear Programming Approach
to the Cutting-Stock Problem”. In: Operations Research 9.6. Publisher: INFORMS,
pp. 849–859. ISSN: 0030-364X. DOI: 10.1287/opre.9.6.849. URL: https://
pubsonline.informs.org/doi/10.1287/opre.9.6.849 (visited on 03/27/2023).

Gonçalves, José Fernando and Mauricio G. C. Resende (Oct. 2013). “A biased ran-
dom key genetic algorithm for 2D and 3D bin packing problems”. en. In: Inter-
national Journal of Production Economics 145.2, pp. 500–510. ISSN: 0925-5273. DOI:
10 . 1016 / j . ijpe . 2013 . 04 . 019. URL: https : / / www . sciencedirect . com /
science/article/pii/S0925527313001837 (visited on 01/30/2023).

Lai, K. K. and Jimmy W. M. Chan (Jan. 1997). “Developing a simulated annealing al-
gorithm for the cutting stock problem”. en. In: Computers & Industrial Engineering
32.1, pp. 115–127. ISSN: 0360-8352. DOI: 10.1016/S0360-8352(96)00205-7. URL:

https://www.jstor.org/stable/170866
https://doi.org/10.1016/0377-2217(94)00002-T
https://www.sciencedirect.com/science/article/pii/037722179400002T
https://www.sciencedirect.com/science/article/pii/037722179400002T
https://doi.org/10.1016/j.ejor.2007.06.063
https://www.sciencedirect.com/science/article/pii/S0377221707010995
https://www.sciencedirect.com/science/article/pii/S0377221707010995
https://doi.org/10.1287/ijoc.15.3.267.16080
https://doi.org/10.1287/ijoc.15.3.267.16080
https://pubsonline.informs.org/doi/abs/10.1287/ijoc.15.3.267.16080
https://pubsonline.informs.org/doi/abs/10.1287/ijoc.15.3.267.16080
https://doi.org/10.48550/arXiv.cs/0310032
https://doi.org/10.48550/arXiv.cs/0310032
http://arxiv.org/abs/cs/0310032
https://doi.org/10.48550/arXiv.cs/0604045
https://doi.org/10.48550/arXiv.cs/0604045
http://arxiv.org/abs/cs/0604045
https://doi.org/10.1109/PTC.2019.8810437
https://doi.org/10.1287/opre.13.1.94
https://doi.org/10.1287/opre.13.1.94
https://doi.org/10.1287/opre.9.6.849
https://pubsonline.informs.org/doi/10.1287/opre.9.6.849
https://pubsonline.informs.org/doi/10.1287/opre.9.6.849
https://doi.org/10.1016/j.ijpe.2013.04.019
https://www.sciencedirect.com/science/article/pii/S0925527313001837
https://www.sciencedirect.com/science/article/pii/S0925527313001837
https://doi.org/10.1016/S0360-8352(96)00205-7

48 Bibliography

https://www.sciencedirect.com/science/article/pii/S0360835296002057
(visited on 01/31/2023).

Lodi, Andrea, Silvano Martello, and Daniele Vigo (Sept. 2002). “Heuristic algorithms
for the three-dimensional bin packing problem”. en. In: European Journal of Opera-
tional Research 141.2, pp. 410–420. ISSN: 0377-2217. DOI: 10.1016/S0377-2217(02)
00134 - 0. URL: https : / / www . sciencedirect . com / science / article / pii /
S0377221702001340 (visited on 01/30/2023).

— (Sept. 2004). “Models and Bounds for Two-Dimensional Level Packing Prob-
lems”. en. In: Journal of Combinatorial Optimization 8.3, pp. 363–379. ISSN: 1573-
2886. DOI: 10.1023/B:JOCO.0000038915.62826.79. URL: https://doi.org/10.
1023/B:JOCO.0000038915.62826.79 (visited on 02/07/2023).

Lodi, Andrea and Michele Monaci (Jan. 2003). “Integer linear programming models
for 2-staged two-dimensional Knapsack problems”. en. In: Math. Program., Ser.
B 94.2, pp. 257–278. ISSN: 1436-4646. DOI: 10.1007/s10107-002-0319-9. URL:
https://doi.org/10.1007/s10107-002-0319-9 (visited on 02/07/2023).

Mahdavi, Meisam et al. (Sept. 2019). “Transmission Expansion Planning: Literature
Review and Classification”. en. In: IEEE Systems Journal 13.3, pp. 3129–3140. ISSN:
1932-8184, 1937-9234, 2373-7816. DOI: 10.1109/JSYST.2018.2871793. URL: https:
//ieeexplore.ieee.org/document/8482504/ (visited on 01/15/2023).

Martello, Silvano, David Pisinger, and Daniele Vigo (Feb. 1998). “The Three-Dimensional
Bin Packing Problem”. In: Operations Research 48. DOI: 10.1287/opre.48.2.256.
12386.

https://www.sciencedirect.com/science/article/pii/S0360835296002057
https://doi.org/10.1016/S0377-2217(02)00134-0
https://doi.org/10.1016/S0377-2217(02)00134-0
https://www.sciencedirect.com/science/article/pii/S0377221702001340
https://www.sciencedirect.com/science/article/pii/S0377221702001340
https://doi.org/10.1023/B:JOCO.0000038915.62826.79
https://doi.org/10.1023/B:JOCO.0000038915.62826.79
https://doi.org/10.1023/B:JOCO.0000038915.62826.79
https://doi.org/10.1007/s10107-002-0319-9
https://doi.org/10.1007/s10107-002-0319-9
https://doi.org/10.1109/JSYST.2018.2871793
https://ieeexplore.ieee.org/document/8482504/
https://ieeexplore.ieee.org/document/8482504/
https://doi.org/10.1287/opre.48.2.256.12386
https://doi.org/10.1287/opre.48.2.256.12386

	Abstract
	Introduction
	Operations Research
	Bin Packing Problems
	Transmission Expansion Problem

	Two dimensional strip bin packing for HPC clustering problems
	Introduction
	Problem Description
	Models
	Shelf based model
	coordinate based model

	Matheuristic
	Instances

	Genetic Algorithms for Bin Packing Problem
	Introduction
	Solution approach
	Parameters Selection

	Results
	Test instances

	Parameter selection
	Computational Results
	Results with additional constraints

	Transmission Expansion Problem
	Introduction
	Problem Description
	Mathematical Model
	Input sets
	Variables
	Objective function
	Investment constraints
	Operational constraints

	Solution Method
	A Benders decomposition approach
	Relaxation
	Biased Random Key Genetic Algorithm

	Computational Results
	Exact methods
	Heuristics

	Bibliography

