
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN

COMPUTER SCIENCE AND ENGINEERING

Ciclo 35

Settore Concorsuale: 01/B1 - INFORMATICA

Settore Scientifico Disciplinare: INF/01 - INFORMATICA

SUPPORTING REQUIREMENT ELICITATION AND ONTOLOGY TESTING IN
KNOWLEDGE GRAPH ENGINEERING

Presentata da: Fiorela Ciroku

Supervisore

Valentina Presutti

Esame finale anno 2023

Coordinatore Dottorato

Ilaria Bartolini

Abstract

Knowledge graphs and ontologies are closely related concepts in the field of knowl-

edge representation. A knowledge graph is a knowledge base that uses a graph-structured

data model or topology to integrate data. In recent years, knowledge graphs have gained

increasing popularity and are serving as essential components in many knowledge engi-

neering projects that view them as crucial to their success. The conceptual foundation

of the knowledge graph is provided by ontologies. An ontology is a formal, explicit

specification of a shared conceptualization within a domain, providing a blueprint for

the organization of information. The process of developing the associated ontologies is

addressed by well-known methodologies. Ontology modeling is an iterative engineering

process that consists of steps such as the elicitation and formalization of requirements,

the development, testing, refactoring, and release of the ontology. The testing of the

ontology is a crucial and occasionally overlooked step of the process due to the lack of

integrated tools to support it. As a result of this gap in the state-of-the-art, the testing

of the ontology is completed manually, which requires a considerable amount of time and

effort from the ontology engineers. The lack of tool support is noticed in the requirement

elicitation process as well. Long-established methods of collecting requirements, such as

interactions with domain and application experts, investigation of datasets, and relevant

literature, although highly functional, are performed manually. The rise in the adoption

and accessibility of knowledge graphs allows for the development and use of automated

tools to assist with the elicitation of requirements from such a complementary source

of data. Moreover, despite the relevance of the requirements and the testing in the

ontology development process, their documentation is often not complete and at times

nonexistent, which impacts the reuse of the ontology. Therefore, this doctoral research

i

ii ABSTRACT

is focused on developing methods and tools that support the requirement elicitation and

testing steps of an ontology engineering process. To support the testing of the ontol-

ogy, we have developed XDTesting, a web application that is integrated with the GitHub

platform. The application is able to create, annotate, execute, and document a test case,

and graphically summarize the testing status of the ontology. XDTesting is considered

an acceptable, grade B, excellent tool according to the System Usability Scale question-

naire performed during the first evaluation. Concurrently, to support the elicitation and

documentation of competency questions, we have defined and implemented RevOnt, a

method to extract competency questions from knowledge graphs by firstly abstracting

the triple verbalization, secondly generating questions, and lastly filtering competency

questions. The elicited competency questions can be used to understand the knowledge

graph itself, to drive the development of an ontology, and to provide input for the test-

ing of the ontology. The implementation using data from the Wikidata knowledge graph

has been evaluated, and the results show that the automatic abstraction of the triple

verbalization and the generation of competency questions have a good to a high-quality

based on the BLEU score. To conclude, the automation of the ontology testing process

through XDTesting facilitates the workload of the ontology engineer in terms of time and

effort. While the automation of an approach for eliciting requirements from knowledge

graphs, RevOnt, is achievable and performs well with the help of language models.

Acknowledgements

I would like to express my deepest appreciation to my supervisor Valentina Presutti.

Thank you so much for being an exceptional supervisor. Your guidance and support

throughout the entire process was invaluable and made a significant impact on the qual-

ity of my work. Your expertise, patience, and encouragement helped me navigate the

challenges and allowed me to bring my research to a successful conclusion. I am deeply

grateful for your unwavering support and encouragement, and I feel honored to have had

the opportunity to work with you. Thank you for being a true mentor and for having a

profound impact on my life.

I would like to give my sincere thanks to Albert Meroño-Peñuela, Jacopo de Benar-

dinis and Elena Simperl for the warm welcome you extended during my visit at King’s

College London. The opportunity to meet with you, learn about your research, and work

together was an incredible and memorable experience. Your passion and dedication for

your work were inspiring and made a lasting impression on me.

I would like to extend my gratitude to Prof. Paolo Ciancarini and Prof. Andrea

Omicini for following my research throughout the doctorate. Your insights and sugges-

tions were invaluable in helping me improve the quality of my work. Your dedication to

the scholarly community is an inspiration and I am honored to have had the opportunity

to receive your feedback.

iii

iv ABSTRACT

I would like to take a moment to express my sincere appreciation to the STLab group.

Your commitment to the scientific community and to advancing knowledge through re-

search was evident in all of our interactions, and I am grateful for the support and

feedback that you provided. Your dedication to quality, accuracy, and attention to de-

tail has been a source of inspiration.

I would like to acknowledge the support from the Polifonia project group. Your

collaboration and dedication to the success of the project were truly inspiring and I am

honored to have had the opportunity to work alongside such talented and dedicated

individuals. I am grateful for the lessons I have learned from each of you.

My dear family, your unwavering love, support, and encouragement throughout my

doctoral journey were invaluable. Your belief in me and my abilities gave me the strength

and motivation to keep going, even during the most challenging times. Your unwavering

commitment to my success has meant the world to me and I could not have done it

without you. Thank you!

I would like to dedicate this work to myself, as a show of strength and endurance

beyond personal limits. During these last three years, I have been strong and weak,

brave and coward, proud and humble, bright and gloomy, dedicated and neglectful, but

most importantly, I have been me. We did it!

Contents

Abstract i

1 Introduction 1

1.1 Motivation . 5

1.2 Research questions . 8

1.3 Methodology . 9

1.4 Contribution and impact . 10

2 Related work 13

2.1 Ontology engineering methodologies and related tools 13

2.2 Competency questions and their role in the ontology engineering process 15

2.3 Relevant ontology testing related tools 16

2.4 Relevant techniques from ontology learning and schema discovery 21

3 Ontology engineering background 25

3.1 The eXtreme Design methodology . 25

3.2 Requirement elicitation techniques . 28

3.3 Ontology testing spectrum in eXtreme Design 29

4 RevOnt - An ontology requirement elicitator 33

4.1 RevOnt method . 33

4.2 RevOnt implementation . 36

4.2.1 The WDV dataset . 37

4.2.2 Verbalization Abstraction . 37

v

vi CONTENTS

4.2.3 Question Generation . 41

4.2.4 Question Filtration . 42

5 XDTesting - An ontology testing manager 45

5.1 Managing ontology testing with XDTesting 45

5.2 Requirement collection and surveys . 46

5.3 XDTesting method . 49

5.4 XDTesting development . 52

5.4.1 The XDTesting GitHub automated workflow 53

5.4.2 The XDTesting Configurator . 56

6 Evaluation 63

6.1 Evaluation of RevOnt . 63

6.1.1 Experimental setup . 64

6.1.2 Results . 68

6.2 Evaluation of XDTesting . 71

6.2.1 Experimental setup . 72

6.2.2 Results . 76

7 Conclusions and future work 81

7.1 Discussion . 81

7.2 Future work . 84

7.3 Conclusion . 85

Bibliography 89

List of Figures

1.1 A datamodel in Wikidata. The datamodel provides key information for

a Wikidata item such as identifier, label, description, aliases, statements,

and references. 4

1.2 A synthesis of the main steps in an ontology development process 6

1.3 Overview of the component diagram for the eXtreme Design tool support

system. 8

3.1 An overview of the eXtreme Design framework 26

4.1 An overview of the RevOnt framework. The first stage, Verbalization

Abstraction, generates the abstraction of a triple verbalization. The ab-

straction is used as input in the second stage, Question Generation, to

generate three questions per triple and perform a grammar check. Lastly,

the third stage, Question Filtration, filters the questions by performing

different techniques. 34

4.2 A claim verbalization from the WDV dataset. For the claim, the dataset

provides the ID, rank, theme, and verbalization of the claim. There are

present also the label, description, aliases and ID of the subject, property

and object of the triple. 38

5.1 An illustration of an ontology module with its fragments. 46

5.2 A donut chart representing the presence of ontology related repositories

in the GitHub platform. 49

5.3 An illustration of the use case diagram of the XDTesting tool 50

vii

viii LIST OF FIGURES

5.4 The workflow of the XDTesting tool automation 51

5.5 A component diagram showing the dependencies between the components

of the XDTesting tool. 52

5.6 The directory structure automatically created in GitHub of the Musical

Performance module of the Polifonia Ontology Network 55

5.7 The documentation in GitHub of the execution of a test case from the

Musical Performance module of the Polifonia Ontology Network 57

5.8 The login view of the XDTesting configurator 58

5.9 The repository selection view of the XDTesting configurator 59

5.10 The Dashboard view of the XDTesting configurator 59

5.11 The Ontologies view of the XDTesting configurator 60

5.12 The Ontology Fragments view of the XDTesting configurator 60

5.13 Inside the Ontology Fragments view of the XDTesting configurator for

displaying test cases . 61

5.14 Inside the Ontology Fragments view of the XDTesting configurator for

uploading data files . 61

5.15 The test case view of the XDTesting configurator 62

5.16 The Help view of the XDTesting configurator 62

6.1 An illustration of example data including the triple verbalisation, the la-

bels and descriptions of the subject and object of the triple. The example

serves to explain the data needed to perform the tasks. 64

6.2 Example illustration for task 1. In this illustration, we describe the first

task that is to abstract the verbalisation using the given data. The ab-

straction is completed by generalizing the subject and the object of the

triple, and not the property. 66

6.3 Example illustration for task 2. The example describes task 2 that is the

generation of three questions, when the answer is provided. The answers

are the subject, property, and object of the triple. 66

6.4 BLEU score for the Verbalisation Abstraction stage. In the plot is shown

the distribution of BLEU scores for the Verbalisation Abstraction stage

for all the domains of the dataset. 69

ix

6.5 BLEU score for the Question Generation stage. In the plot is shown the

distribution of BLEU scores for the Question Generation stage for all the

domains of the dataset including the three types of questions. 70

6.6 BLEU score for the Question Generation stage individualized. In the plot

is shown the distribution of BLEU scores for each type of question that

is produced by the Question Generation stage for all the domains of the

dataset. 71

6.7 BLEU score for the RevOnt framework. In the plot is shown the distri-

bution of BLEU scores for the RevOnt framework containing the Verbali-

sation Abstraction and the Question Generation stage with only one type

of question (the question that is answered by the object of the triple). . 72

6.8 Grade rankings of SUS scores. Figure retrieved from [14] 76

6.9 Percentile rankings of SUS scores. Figure retrieved from [14] 77

6.10 SUS scores of the participants in the experiment 79

List of Tables

3.1 A list of competency questions extracted from a user story in the Polifonia

project . 29

3.2 An overview of the testing protocol in eXtreme Design 32

4.1 A list of the language models, modules, datasets and services used in the

RevOnt framework . 36

5.1 General information of the XDTesting tool 53

6.1 An overview of the number of tasks based on themes. The number of tasks

corresponds to the number of distinct properties of the triples of theme. . 65

6.2 Interpretation of BLEU scores . 67

xi

Listings

3.1 Template of a Competency Question Verification test 30

3.2 Template of an Inference Verification test 30

3.3 Template of an Error Provocation test 30

6.1 SPARQL query for the Competency Question Verification test 73

6.2 Expected results for the Competency Question Verification test 73

xiii

Chapter 1

Introduction

Knowledge graphs are quickly becoming a standard for knowledge management. In

recent years, there has been a change in the landscape of knowledge engineering projects.

A decade earlier, such projects terminated with the development of the ontology, and the

population of the ontology was an after-project task. Nowadays, an increasing number

of knowledge engineering projects (e.g. Polifonia1, SPICE2, ArCo3) consider knowledge

graphs the key to the project. In other cases, knowledge graphs are the starting point,

making the development of ontologies take place after the creation of the knowledge

graph. Most methodologies [1, 58, 76, 39, 59, 63] describe ontology development as a

complex and iterative engineering process that generally consists of steps such as elicita-

tion and formalization of requirements, development, testing, refactoring, and release of

the ontology. Testing is the step of the process that assures the quality of the ontology

and, indirectly, its knowledge graph. The testing of the ontology is an essential and

often underestimated aspect of the process. In contrast to software testing practices,

ontology testing is limited in terms of integrated tool support and occasionally protocols

[23]. The techniques used for ontology testing vary based on the methodology used,

the stage of the ontology’s development when they are applied, and the layer and role

that they test [34]. For instance, eXtreme Design (XD) is an ontology design methodol-

ogy that defines an abundantly descriptive protocol for the testing of the ontology [63].

1https://polifonia-project.eu/
2https://spice-h2020.eu/
3http://wit.istc.cnr.it/arco/

1

2 1. Introduction

The protocol dictates the creation, execution, and documentation of different types of

tests that assess whether a requirement of the ontology has been implemented, if the

inferences retrieved from a reasoner are correct, and if the ontology is able to handle

erroneous data. Considering the lack of tools to support the process, the testing of the

ontology is handled manually, which requires a considerable amount of time and effort

from the ontology engineers. Another aspect to consider is that many methodologies de-

lineate the development of the ontology as an iterative process. This indicates that the

ontology engineer needs to rerun the tests every time a new development is integrated

into the ontology to assure that the results are correct. The workload associated with

this scenario may lead to testing being performed after the development of the ontology

has been completed rather than as a parallel process with the modeling. Such an action

might impede the detection of modeling issues during the development phase and cause

further work for ontology engineers. This situation is not dependent on whether the

ontology is developed before or after the knowledge graph.

The lack of tool support is noted in the requirement elicitation process as well. The

requirements are mainly represented in the form of Competency questions (CQs) or Gen-

eral constraints (GCs). The competency questions play an important role in the ontology

development life-cycle, as they represent the ontology requirements and are criteria for

the evaluation of the ontology [8, 63]. Generally, the requirements are collected by in-

teracting with domain and application experts, investigating datasets, and consulting

relevant literature. As noted from the elicitation techniques, the process is carried out

manually, and similarly to the testing, it requires significant effort and time from the

ontology engineers. A favorable aspect is the fact that the sources from which the on-

tology requirements are elicited can be extended. As mentioned above, since knowledge

engineering projects also begin with knowledge graphs (at times even with collabora-

tively built knowledge graphs such as Wikidata [89] and DBPedia [7]), it provides an

opportunity to design a bottom-up approach rather than the typical top-down approach.

Thanks to the availability of technologies such as language models, we can define and

implement methods to extract competency questions from the knowledge graph.

Moreover, besides representing a common understanding of a domain, an ontology’s

purpose is also to enable the reuse of the domain knowledge. The reuse of the ontology

3

is highly dependent on the documentation, which optimally includes the competency

questions, the design choices, the ontology, and the testing. Despite the relevance of the

requirement elicitation and testing processes in the development of the ontology, their

documentation is often not complete and at times non-existent. On the one hand, partial

or missing documentation of the competency questions highly influences the testing of

the ontology. In this scenario, the ontology engineers will not be able to fully test the

ontology, given that they don’t have documentation of what knowledge the ontology

represents. On the other hand, partial or missing documentation of the testing may

impact the reuse of the ontology because its quality cannot be guaranteed to an external

party.

Considering the negative impact that issues such as lack of tool support and partial

or missing documentation of the processes have on knowledge engineering projects, this

doctoral research is focused on developing methods and tools that support the elicitation

of the requirements needed to drive the development of ontologies, and the testing of

ontologies. To support the elicitation of the requirements, we have defined RevOnt,

an approach that enables the extraction of the competency questions from knowledge

graphs. The knowledge graph that we use to experiment4 and evaluate the method is

Wikidata, which is a collaboratively-edited multilingual knowledge graph. It is a popular

knowledge graph, it reflects common knowledge on many domains and provides resources

that help to evaluate the approach, such as ID, label, description, and statements. The

limitations of this use case remain in the fact that the knowledge graph is not domain-

specific. An example of a data model in Wikidata is shown in Figure 1.15.

Meanwhile, to support the ontology testing, we have developed XDTesting, a tool for

testing ontologies based on the eXtreme Design methodology. The tool is developed as

a web application integrated with the GitHub platform. It offers numerous features that

are in coherence with the testing methodology, mainly the annotation, creation, execu-

tion, and documentation of test cases. The work aims to open the path for competency

question discovery in non-traditional sources and aspires to encourage the practice of

ontology testing as a process that goes alongside ontology development practices.

4The implementation of the approach is found at https://github.com/FiorelaCiroku/RevOnt.
5Picture retrieved from https://www.wikidata.org/wiki/Q16222597

4 1. Introduction

Figure 1.1: A datamodel in Wikidata. The datamodel provides key information for a

Wikidata item such as identifier, label, description, aliases, statements, and references.

The overview of the thesis is described below:

• The rest of Chapter 1: Introduction is structured as follows. Section 1.1

presents the motivation of the research with an example and an illustrated work-

flow description. Section 1.2 introduces the research questions with the respective

hypotheses. In Section 1.3 we describe the methodology followed in this research

work. Section 1.4 lists the contributions of the research and their potential impact

in the field of ontology engineering.

• Chapter 2: Related work discusses related work in the fields of knowledge en-

gineering, ontology learning, schema induction, requirement elicitation techniques,

and cutting-edge ontology testing tools.

• Chapter 3: Ontology engineering background provides background knowl-

1.1 Motivation 5

edge of the eXtreme Design ontology development methodology, as well as a de-

tailed understanding of the testing protocols.

• Chapter 4: RevOnt - An ontology requirement elicitator presents RevOnt,

an approach for extracting competency questions from knowledge graphs. We

discuss each step of the method with examples and describe the implementation

choices.

• Chapter 5: XDTesting - An ontology testing manager presents the tool

XDTesting, which manages the unit testing of ontology modules based on the XD

methodology. The method and implementation of the tool are described in detail.

• Chapter 6: Evaluation reports the experimental setup and the results of the

evaluation for the XDTesting tool and the RevOnt approach.

• Chapter 7: Conclusions discusses the limitations of the XDTesting and RevOnt,

presents the planned future work, and concludes the research work.

1.1 Motivation

Generally, the process for engineering an ontology starts with the requirement elic-

itation phase. An initial set of requirements is formalized and prioritized by ontology

engineers. Based on the priority given to the competency questions, ontology engineers

develop an ontology in an iterative mode. Besides driving the development, the com-

petency questions are simultaneously used for the testing of the ontology. When the

ontology is built and tested, the engineers construct the respective knowledge graph. A

synthesis of the main steps in an ontology development process is displayed in Figure 1.2.

Based on our experience with eXtreme Design, requirement elicitation is an engaging

task that includes continuous interactions with experts and data investigation. In-person

or online meetings with domain experts generally require substantial planning and time

for the ontology engineer to thoroughly grasp the domain. Meanwhile, the current tool

support, like Google forms and GitHub templates, is inadequate to provide a consistent

framework for gathering information. The process still requires time and effort to analyze

6 1. Introduction

Figure 1.2: A synthesis of the main steps in an ontology development process

the information, structure it, and comprehend the input. An illustrative example of the

requirement collection procedure based on eXtreme Design comes from the Polifonia

project. First, we asked domain experts to create stories. In the context of the project,

a story is a template for collecting requirements that might include information about

the persona, the goal, the scenario, competency questions, and resources, as described in

detail by [12]. Considering that the domain experts are often not knowledge engineers,

the competency questions that we received required a considerable amount of manual

work to be transformed into formal competency questions. For instance, an informal

competency question was “In which historical documents is there evidence of a musical

composition?” 6. This competency question was followed up by additional interaction

with the domain experts to understand what the concept of evidence means to them,

which in turn was defined as “any direct linguistic sign that refers to concepts (name,

or part of it)”. This information was used to reformulate and formalize the competency

question as follows “Which historical document mentions a musical composition?”. The

newly formulated competency question follows an in-house standard for the vocabulary

6The complete story is found at https://github.com/polifonia-project/stories

1.1 Motivation 7

used in the modeling of the overall ontology. This process is performed with most of the

competency questions retrieved in this modality, which illustrates repeatedly that the

requirement elicitation process lacks standardization, is time-consuming, and requires a

significant amount of effort. The same techniques and constraints apply to extracting

competency questions from data sets.

Moreover, based on XD, the requirements are used as input for different types of

tests. Normally, in order to create a test case, the ontology engineer has to create a

SPARQL query with its expected results and the dataset to run the test case against,

using real-life or fictive data. This information is then used to fill in the template of the

test case. Once the test case has been created, the engineer prepares the environment for

the testing, which includes downloading a Java jar that enables the execution or usage of

Protégé7, an open-source ontology editor. The test case is executed, and its results are

documented in a separate file. This complete process of creating, annotating, executing,

and documenting the test case is done manually for each requirement, demonstrating

the immense amount of effort required from the ontology engineers.

Thus, considering the above-mentioned issues, we have developed a support system

that includes two main components, RevOnt, the requirement elicitation method, and

XDTesting, the testing support tool. In Figure 1.3 we show how both of these compo-

nents fit into the ontology development process and assist with specific steps. The entry

point to the framework is the input, which is obtained from two different sources: the

domain expert and a knowledge graph. When a domain expert provides a story or a

dataset, it is the responsibility of the ontology engineer to break it down into compe-

tency questions and general constraints. Meanwhile, when the RevOnt method extracts

competency questions from a knowledge graph relevant to the domain, the competency

questions are already extracted from the source, formulated, and documented. Once

the competency question and the general constraints are documented and prioritized,

the process of ontology modeling can start. The ontology testing initiates when a set

of requirements has been modelled into an ontology. In this step of the process, it is

the implemented XDTesting method that deals with the management of the unit testing

of the requirements. XDTesting, with the support of OWLUnit, creates, executes, and

7https://protege.stanford.edu/

8 1. Introduction

Figure 1.3: Overview of the component diagram for the eXtreme Design tool support

system.

documents five types of test cases: Competency Question Verification test, Inference Ver-

ification test, Error Provocation test, Integration test, and Regression test. We describe

each of the types of tests in Chapter 3, Section 3.3. This framework connecting two

methods, one that extracts requirements from a knowledge graph and another assisting

with the testing of the ontology, is an added value to the ontology engineering process.

On the one hand, the RevOnt method provides a new source of requirements for the

development of an ontology and consequently a knowledge graph. On the other hand,

the XDTesting method reused the documented requirement provided by RevOnt to test

the ontology.

1.2 Research questions

Motivated by the need for tool support for the knowledge engineering process, the

opportunities that knowledge graphs offer in terms of application, and by leveraging

1.3 Methodology 9

recent advances in natural language processing, we raise the following research questions

and formulate the respective hypothesis:

1. Can an approach for eliciting requirements from knowledge graphs be defined with

the means of language models?

• What are the quality features that a requirement must have in order to be

classified as a competency question?

– H1: The quality feature that an elicited requirement from a knowledge

graph must show to be classified as a competency question is its ability

to be transformed into a query.

• What is the quality of the elicited requirements generated with means of

language models from a knowledge graph?

– H2: The quality of the elicited requirements that are generated with

the means of language models from a knowledge graph is comparable to

human-generated requirements.

2. Can the automation of the testing phase of an ontology engineering process reduce

the workload of the ontology engineers/testers?

– H3: The automation of the testing phase of an ontology engineering pro-

cess can reduce the workload of the ontology engineer/tester.

1.3 Methodology

As mentioned above, this research is highly motivated by the gaps that are present

in the state-of-the-art regarding the methodology and especially tool support for certain

stages of an ontology engineering process such as requirement elicitation and ontology

testing.

Concerning RQ1, the work is firstly focused on defining a method to extract require-

ments (competency questions) from a knowledge graph, independent of the latter, by

using language models. Next in the line of work is the implementation of the method

10 1. Introduction

using a sample knowledge graph in order to evaluate the defined method. For the im-

plementation, two very important tasks need to be performed. The first is an extensive

literature review to determine the consensus on the concept of a competency question

and any features that they show. This research offers a criterion on how to filter com-

petency questions out of simple questions that are elicited from a knowledge graph and

prove that what is being extracted from the knowledge graph are indeed competency

questions. Secondly, the work includes an assessment of the quality of the elicited com-

petency questions. This demonstrates that the defined method is able to automatically

generate requirements that are comparable in quality to human-formulated ones.

With respect to RQ2, we speculate that the testing phase of an ontology engineering

process is in great need of automated tool support. Therefore, the work includes a method

defining how automation of the ontology testing tool support should work and which

feature it must include in order to reduce the workload of an ontology engineer/tester;

research on the state-of-the-art of collaborative platforms to understand what is already

available in terms of automation and the necessity for automation in the platform; and

lastly, an implementation of the method based on the fore-mentioned research. The

evaluation of the implementation provides insight if the automation of the ontology

testing phase has reduces the workload of the engineer and to what extent.

1.4 Contribution and impact

As described above, the objective of the research is to define methods and develop

tools to support the requirement elicitation and testing phases of an ontology engineering

process. Hence, the contribution of this research is:

1. RevOnt : an approach for automatically extracting competency questions from a

knowledge graph and a dataset containing competency questions extracted from a

knowledge graph and competency question templates mapped to SPARQL query

templates.

2. XDTesting : a method for automating the ontology testing phase and an implemen-

tation in the form of a web application for managing ontology test case creation,

annotation, execution, and documentation.

1.4 Contribution and impact 11

A direct application of the RevOnt method is being able to query the knowledge

graph of origin in order to understand its content. Modern knowledge graphs are built

using a combination of human and automated actions (e.g., information extraction from

text, data input from databases). Usually, these actions are not well-documented and

derive an ontology that is not adequately structured [60]. Therefore, understanding what

competency questions a knowledge graph answers may support the development of its

ontology, the knowledge graph’s testing, documentation, and reuse. Another application

of the method can be to support the knowledge engineering process. We speculate that

the requirement elicitation and evaluation phases can be enhanced, both in terms of

procedure, and in terms of the quality of the outcomes, with such a method. Regarding

the requirement elicitation, the data from a knowledge graph can provide a different

view of the domain of the ontology that is being constructed, complementary to the

view provided by domain experts that are involved in the process or other sources. This

additional information can improve the coverage of the domain and, in turn, of the on-

tology model. At the same time, these competency questions, if properly formulated and

documented, can later be used as criteria for the evaluation of the ontology. Meanwhile,

the XDTesting tool provides a well-integrated approach for facilitating the process of

unit testing of the ontology requirements. Additionally, it offers automated, standard-

ized documentation of the testing of an ontology, which might augment the reuse of the

ontology.

Chapter 2

Related work

This chapter analyzes works that describe ontology engineering methodologies and

tools that support the development process described in Section 2.1. In Section 2.2, we

discuss the concept of competency questions and their role in the ontology engineering

process. Section 2.3 describes methodologies that assist ontology testing and associated

tools. Section 2.4 presents research in ontology learning and schema induction that is

highly related to the work of extracting competency questions from knowledge graphs.

2.1 Ontology engineering methodologies and related

tools

The first works in ontology engineering appeared in the early 1990s with projects

such as TOVE by [25], Enterprise Model Approach by [20], METHONTOLOGY by [18],

Ontolingua by [32], etc. These works intend to define methodologies that are closer

to engineering practices than subjective modeling. An enhanced methodology in [81]

and OntoEdit in [54] were presented in the early 2000s. After a decade, ontology engi-

neering methodologies that include cyclic processes, continuous integration, and testing

[1, 58, 76, 39, 59, 63] emerge and become a shared practice among engineers. Alongside

many ontology engineering methodologies, there were also tools developed to assist with

13

14 2. Related work

different ontology life-cycles. For instance, tools such as Protégé1, OWLAPI2, CENtree

Ontology Manager3, VocBench4, OntoBee5 support the engineering and management

of ontologies. These tools serve as ontology editors, with capabilities such as running

a reasoner, creating import modules, running reports, and various other tasks. Other

tools such as ZOOMA6, Prodigy7, Ontotext8, PoolParty9 support the ontology annota-

tion. They are offered in the form of web applications, APIs and Python packages. It

is important to emphasise that most of the tools are specifically trained and cater to

the medical domain. The tool OxO10 is a web service that helps users locate mappings,

also known as cross-references, between terms derived from ontologies, vocabularies, and

coding standards. OxO imports mappings from a variety of sources, one of which is the

Ontology Lookup Service11. This tool can be helpful in the process of ontology alignment.

Lastly, OOPS12 is a web application for detecting some of the most common pitfalls that

appear when developing ontologies [62]. Interestingly, this tool signals pitfalls from a

a catalog of the 40 most common issues in ontology modelings as creating polysemous

elements, creating unconnected ontology elements, missing domain and range, etc. Al-

though the feedback that the tool provides is very helpful, it is particularly related to the

development of the ontology rather than the testing of it in specific. Certainly, this is not

an exhaustive list of tools, as there are many other web applications, APIs, Java jars, and

repositories that offer different functionalities related to the engineering, management,

annotation, mapping, and matching of ontologies [55].

1https://protege.stanford.edu/
2https://github.com/owlcs/owlapi
3https://www.scibite.com/platform/centree-ontology-management-platform/
4http://vocbench.uniroma2.it/
5https://ontobee.org/
6https://www.ebi.ac.uk/spot/zooma/
7https://prodi.gy/
8https://www.ontotext.com/
9https://www.poolparty.biz/

10https://www.ebi.ac.uk/spot/oxo/
11https://www.ebi.ac.uk/ols/index
12https://oops.linkeddata.es/

2.2 Competency questions and their role in the ontology engineering process 15

2.2 Competency questions and their role in the on-

tology engineering process

The concept of competency questions, first defined in [33], is one of the common

denominators among ontology engineering methodologies. According to the authors,

each of the ontologies and microtheories (a necessary and sufficient set of axioms for

describing and solving tasks [46]) is described using competency questions. The use of

competence questions serves two functions: (1) they characterize the ontologies and mi-

crotheories that have been developed for each activity, and (2) they give guidance for

the construction of new ontologies and microtheories. Meanwhile, the authors of [21], a

work describing the generic enterprise resource ontology, define competency questions as

the starting point for ontology creation; the needs for the ontology. The most apparent

approach to showing competence is to establish a set of questions that the ontology can

answer. Given a representation and a theorem prover, questions can be submitted in the

form of queries that the theorem prover can answer. The authors in [87] support the

same statement by concluding that competency questions may be beneficial in the later

stages of assessing the ontology code and developing scenarios (microtheories/stories).

Similarly, in [86], the authors state that the engineering of ontologies is motivated by

scenarios that arise in the application, a principle that is also found in [63]. Furthermore,

the notions of informal and formal competency questions are introduced. In [26], a com-

petency question is defined as “a typical query that an expert might want to submit to a

knowledge base of its target domain, for a certain task.” In addition, the authors specify

that a domain ontology should specify all and only the conceptualizations required in or-

der to answer all the competency questions formulated by or acquired from experts. The

author emphasizes in [88] that in order to enable automatic evaluation of competency

questions, the competency questions must be formalized in a query language that can

be used by the tool the ontology is developed for, posing a constraint on what type of

property a question must have in order to be considered a competency question. In [69],

the authors define a competency question as “a natural language sentence that expresses

a pattern for a type of question people expect an ontology to answer”. They consider

competency questions to be invalid when they are redundant, incomplete, or ambiguous,

16 2. Related work

going beyond the expressive power of a DL-based ontology language. To summarize,

the role of a competency question is twofold: (1) to drive the modeling of the ontology

by serving as a requirement; and (2) to assist in the evaluation of the ontology by be-

ing expressed as a query. This literature review regarding the concept of competency

questions and their role in the ontology engineering process supports the significance of

hypothesis H1 of the research. This hypothesis claims that the quality feature that an

elicited requirement from a knowledge graph must have to be classified as a competency

question is its ability to be transformed into a query. This criterion is used to evaluate

the quality of the questions extracted from knowledge graphs with the RevOnt method.

2.3 Relevant ontology testing related tools

There are many ontology engineering methodologies that support the testing of on-

tologies. In [34], the authors provide a classification of methods and tools for the evalua-

tion of ontologies for industrial practice, which gave us a basis for research about the field

and a sense of classification of the tools that support the testing. Methods such as Onto-

Metric [43], OntoClean [31], EvaLexon [78] and tools such as ODEval [17], OntoManager

[80], etc are described in the report. OntoMetric offers a series of procedures that the user

should follow in order attain metrics of the adequacy of existing ontologies in relation to

the requirements of a certain system. OntoClean focuses on taxonomy cleaning and is

used to clean the upper level of the WordNet taxonomy. Meanwhile, EvaLexon’s goal is

to be simple enough for non-specialists to grasp, to be objective, automatable, and simply

applicable to any text that represents an application domain and serves as input for the

ontology mining/creation process. As for the tools, ODEval does syntactic evaluations of

RDF(S), DAML+OIL, and OWL ontologies, as well as concept taxonomies evaluations

from the standpoint of knowledge representation. Inconsistencies and redundancies in

ontology concept taxonomies are detected using this tool. OntoManager is concerned

with an ontology’s truthfulness in relation to its target domain, regarding the question

whether the ontology accurately represent a piece of reality and the users’ requirements

(users are end-users of ontology-based portals or applications).

Another survey of the state-of-the-art of ontology evaluation is presented in [13],

2.3 Relevant ontology testing related tools 17

where the authors classify the methodologies found into the following categories: those

based on comparing the ontology to a “golden standard”, those based on using the on-

tology in an application and evaluating the results, those involving comparisons with a

source of data about the domain to be covered by the ontology, and those where evalua-

tion is done by humans who try to assess how well the ontology meets a set of predefined

criteria, standards, and requirements. Similar classifications can be found in another

survey by Raad in [64]. Meanwhile, in [27], the authors present a model that consists

of a meta-ontology that characterizes ontologies as semiotic objects and an ontology of

ontology validation called oQual that provides the means to devise the best set of criteria

for choosing an ontology over others in the context of a given project. In more recent

work, the authors in [24] present a web-based tool called Themis, independent of any

ontology engineering environment, for validating ontologies by means of the application

of test expressions that follow lexico-syntactic patterns. While, in [41] the authors intro-

duce the approach of test-driven development (TDD) for ontology authoring. Their tool

is implemented as a Protégé plugin so that one can perform a TDD test as a black box

test. In another work, [45], the authors present the development of TDDOnto, which

implements a subset of TDD tests.

Lastly, eXtreme Design is a test-driven approach to ontology engineering [10, 63, 9].

This methodology is aligned with the Software Testing Life Cycle, meaning that the

process followed for the testing of an ontology is very similar in concept to the life

cycle of a software testing process. XD follows a white box approach for the testing,

similar to software testing. White box testing is particularly effective since it tests not

only the functionality of the software but also the internal structure of the application

[37]. Furthermore, the testing principles from software testing [75] are adopted into the

eXtreme Design methodology. Such principles include testing a program/ontology to try

to make it fail (similar to the Error Provocation Verification type of test in XD), starting

testing early (the testing of the ontology is highly encouraged early in the development

and the modular principle of the modeling is favorable to this aspect), define a test

plan (the competency question are a good start to kick off the testing of the ontology),

testing must be done by different persons at different levels (this is a crucial aspect of

the XD methodology as is described in Chapter 3), etc. Despite the close alignment in

18 2. Related work

methodology between software testing and ontology testing with eXtreme Design, the

tool support for each field of work is very different. While software testing is supported

extensively by tools [77], ontology testing is not in the same plan. The testing process

of the eXtreme Design methodology is to some extent supported by three tools NeOn

toolkit13, TESTaLOD14 and the OWLUnit jar15.

In terms of testing and automated testing, NeOn recommends an iterative approach,

stating that “knowledge acquisition, documentation, configuration management, evalu-

ation, and assessment” should take place throughout the entire ontology network devel-

opment, that is, “in any scenario used for developing the ontology network” [82]. Over

the years, various NeOn plugins have been proposed for automating parts of ontology

testing; for example, [11] proposes the XD Tool, which integrates with NeOn and of-

fers support for SPARQL-based competency question verification. Yet, the tool is not

maintained and accessible any longer.

TESTaLOD is a Web application that provides a testing toolbox for the XD method-

ology to support knowledge graph testing [15]. It leverages the TestCase OWL meta-

model16 as the standard schema for describing unit tests, as well as a way to validate

ontologies and data commitments. The tool is a two-step workflow powered by a web-

based user interface that allows a user to pick and execute an arbitrary number of defined

test cases using the TestCase OWL meta model. A user must first provide one or more

test cases as input in the first phase. Those test cases can be simply uploaded from

a local file system or fetched from a Github repository. TESTaLOD gets all test cases

available in a GitHub repository by recursively traversing the subfolders reachable from

the repository root when the user selects it. After all of the test cases have been re-

trieved, the user is presented with a view that allows them to choose whether or not

to run all of the test cases in the repository. When files are uploaded from a local file

system, however, all uploaded local files are tested directly. Both options provide a visual

representation of the output of the automated execution of the selected test cases. The

execution of a test case with TESTaLOD can result in one of three outcomes: (i) The

13http://neon-toolkit.org/wiki/Main_Page.html
14https://github.com/TESTaLOD/TESTaLOD
15https://github.com/luigi-asprino/owl-unit
16http://www.ontologydesignpatterns.org/schemas/testannotationschema.owl

2.3 Relevant ontology testing related tools 19

test case is fully successful, and the corresponding record in the user interface is green;

(ii) The test case is partially successful (the test results do not match completely the ex-

pected results), and the corresponding record in the user interface is yellow; (iii) The test

case is fully unsuccessful, and the corresponding record in the user interface is colored

red. To conclude, TESTaLOD is a tool that provides support for the testing process by

executing test cases that have already been constructed by the ontology testers. To our

knowledge, TESTaLOD has not seen active development in the last two years and does

not currently provide certain features that would ameliorate the testing process, such

as not being able to upload files or access GitHub repositories. Furthermore, it does

not provide support for the creating of the test cases, their annotation and the docu-

mentation of their execution. All these task are highly relevant and more importantly

time-consuming.

Lastly, OWLUnit is a Java jar that allows the ontology tester to run unit tests for

ontologies defined according to the OWLUnit Ontology17. OWLUnit runs four kinds of

test cases: annotation verification, competency question verification, inference verifica-

tion, and error provocation verification. For the annotation verification test, it verifies

that the tested ontology complies with its default ontology shape18. Alternatively, you

can define your shape and specify it by using the owlunit:hasShapes property. While

for the competency question verification test, OWLunit makes sure that: 1. the IRIs

used within the SPARQL query are defined either in the tested ontology or in the input

test data (if provided); the IRIs that don’t meet this condition are printed in the console;

2. If input data is provided, the result of the SPARQL unit test query evaluated over

the input data is isomorphic to the expected result. The expected result can be specified

either as a JSON serialization of the result set of the query or according to this vocab-

ulary19. Moreover, you can also test multiple ontologies at a time. For the inference

verification test, OWLunit makes sure that: 1. the tested ontology is consistent; 2. If

input data is provided, the ontology and input data together don’t lead to any incon-

sistencies; and 3. If a SPARQL unit test is provided, the result of the SPARQL unit

17https://raw.githubusercontent.com/luigi-asprino/owl-unit/0.2.0/ontology/ontology.

owl
18https://raw.githubusercontent.com/luigi-asprino/owl-unit/main/shapes/ontology.ttl
19https://www.w3.org/2001/sw/DataAccess/tests/result-set#

20 2. Related work

test is equivalent to the expected result. Lastly, for the error provocation verification

test, OWLunit makes sure that ontology and input data are inconsistent together. The

drawback of OWLUnit is the fact that it is just a Java jar, so its use is not the easiest

process for a non-technically savvy tester. Moreover, the jar provides very general feed-

back regarding the failure of a test case execution, making it very difficult to understand

what the cause of the failure is.

Mostly all the above-mentioned works describe methodologies for testing and briefly

refer to any tool support that exists to support them. We emphasize that, to our knowl-

edge, the literature on the state-of-the-art primarily refers to dated tools, some of which

are no longer actively maintained, such as OntoManager20 or, in the worst case, are not

accessible online, such as ODEVal21. Meanwhile, the current tool support is either not

integrated with developing platforms (e.g. GitHub, GitLab) or it assists with only one

specific task, and does not work as an overall manager for the testing of the ontology.

So, to perform the testing of an ontology, an engineer might need to use several tools

for different types of tests, adding to their workload more time and effort. A strong

emphasis is put on the fact that besides TESTaLOD and OWLUnit, all the other tools

do not support the unit testing of the ontology. This enforces, even more, our motiva-

tion to support the ontology testing process with tools and guarantee a certain level of

ontology quality. XDTesting, our proposed method to support ontology testing, offers a

complete testing manager for unit testing of an ontology, including the automatic cre-

ation of a test case, preparation of the execution environment, the execution of the test

case, and the annotation and documentation of the execution. Besides the execution of

the test case, all the other tasks are not currently supported by other tools, ergo are

performed manually. In addition, XDTesting is integrated with an external platform

such as GitHub.

20https://github.com/IvS-KULeuven/OntoManager
21http://minsky.dia.fi.upm.es/odeval

2.4 Relevant techniques from ontology learning and schema discovery 21

2.4 Relevant techniques from ontology learning and

schema discovery

In consideration of the method and techniques that are used in the definition of an ap-

proach to extract competency questions from knowledge graphs, relevant related fields of

research are ontology learning, and schema induction and discovery. Ontology learning

is a multidisciplinary field that extracts terms, concepts, properties, and relationships

from unstructured text using approaches from several disciplines such as knowledge rep-

resentation, natural language processing, machine learning, etc. Surveys in ontology

learning, such as [5], classify ontology learning techniques into three categories: linguis-

tic, statistical, and logical. Linguistic techniques are based on language features and are

commonly used for data preparation (speech tagging, parsing, and lemmatization) as well

as various other ontology learning tasks such as knowledge extraction. Prime examples

of such techniques are Text2Onto22, CRCTOL23. Statistical techniques rely entirely on

statistics from the underlying corpus and overlook the underlying semantics. The ma-

jority of statistical approaches make substantial use of probabilities and are commonly

used in the stages of ontology learning following linguistic preprocessing. Relevant tools

that use statistical techniques are OntoGain24, OntoLearn25, ASIUM26. Lastly, Inductive

logic programming is a machine learning discipline that employs logic programming to

generate hypotheses based on prior knowledge and a set of examples. Significant tools

are Syndikate27 and TextStorm28.

Meanwhile, surveys such as [38] and [42] present an overview of the state-of-the-

art in schema induction and discovery, a research field dealing with the extraction

or discovery of semantic schemas from unstructured or semi-structured data [28]. The

research is motivated by the fact that the data in the semantic web, whether expressed

in RDF or JSON, is not based on a predefined schema. The most widely used techniques

22http://neon-toolkit.org/wiki/1.x/Text2Onto.html
23http://nlp.cs.berkeley.edu/
24https://github.com/Neuw84/CValue-TermExtraction
25https://github.com/dice-group/Ontolearn
26http://www-ai.ijs.si/ilpnet2/systems/asium.html
27http://pyke.sourceforge.net/
28https://dwijottam-dutta.github.io/TextStorm/about/about.html

22 2. Related work

in the schema discovery approaches are machine learning (classification, clustering, and

frequent pattern mining) and formal techniques (Formal Concept Analysis, bisimulation).

The surveys discuss valuable works regarding implicit and explicit schema discovery

approaches by taking into consideration the target problem, techniques, features, input,

output, and quality aspects.

Relevant surveys such as [61] and [16] describe ontology summarisation approaches

that use centrality metrics (e.g., PageRank) to identify the most informative concepts

or nodes or extract important subgraphs to facilitate query-testing for verifying require-

ments against accessible data. In contrast, recent research related to the extraction

of Common Conceptual Components29 from multiple ontologies using Ontology Design

Patterns30 is presented in [6]. The authors present a method that employs a non-

extractive method to assist in the comprehension and comparison of different ontologies.

Starting with a corpus of ontologies, it uses community detection, word sense disam-

biguation, frame recognition, and clustering to automatically produce a catalogue of

conceptual components and observable ontology design patterns. Further, in [53], the

authors present a study for discovering Encyclopedic Knowledge Patterns (EKP)31 from

Wikipedia32 page links. The patterns, according to the authors, may be used as lenses for

exploring DBpedia33 or for developing new ontologies that inherit the data and textual

grounding offered by DBpedia and Wikipedia. Data linking can also benefit from EKPs

by modularizing the datasets to be linked.

Our research contributes to the field of knowledge engineering by enhancing the

requirement elicitation and ontology testing processes. The extraction of competency

questions from a knowledge graph supports ontology learning tasks since the approach

retrieves terms and relations with the help of natural language processing models and

machine learning. In addition, RevOnt can support the extraction of a schema from a

knowledge graph through its abstraction stage, where the natural language verbalisation

29A conceptual component (CC) is a complex (cognitive) relational structure that a designer imple-

ments in an ontology by using classes, properties, axioms, etc.
30http://ontologydesignpatterns.org/wiki/Main_Page
31EKPs are Knowledge Patterns that are grounded in encyclopedic knowledge and expressed as linked

data and as natural language text.
32https://en.wikipedia.org/wiki/Main_Page
33https://www.dbpedia.org/

2.4 Relevant techniques from ontology learning and schema discovery 23

of a triple is abstracted from the instance level to the class level. In terms of the

XDTesting tool, we claim that it can fill a gap in the state-of-the-art and provide a

useful solution for ontology testing management.

Chapter 3

Ontology engineering background

The chapter covers the theoretical background of eXtreme Design, the ontology mod-

eling methodology on which we have founded the development of the XDTesting tool.

Section 3.1 describes the principles of the methodology and the role of each phase. Sec-

tion 3.2 presents examples of techniques for eliciting requirements based on XD. Lastly,

Section 3.3 focuses on the testing protocol of the methodology.

3.1 The eXtreme Design methodology

eXtreme Design is an ontology design methodology that puts the reuse of Ontology

Design Patterns (ODPs) at its core, both as a principle and as an explicit activity. The

main characterizing principles of the method are the intensive use of ODPs, the modular

design, and the test-driven approach [63]. Ontology Design Patterns address recurring

modeling issues. They are ontologies that serve as a bridge between use cases (problem

types) and design solutions. They are used as modeling components: an ontology should

ideally be the result of a composition of ODPs with appropriate dependencies between

them, as well as the necessary design expansion based on specific needs [26]. ODPs can

be found in catalogs, such as The Ontology Design Patterns Portal1, The workshop on

Ontology Design Patterns series2, and The University of Manchester catalogue3.

1http://ontologydesignpatterns.org/wiki/Main_Page
2http://ontologydesignpatterns.org/wiki/WOP:Main
3http://www.gong.manchester.ac.uk/odp/html/

25

26 3. Ontology engineering background

The principle of modular design consists of separating the modeling of the require-

ments into independent, interchangeable modules. Each of the modules contains every-

thing required to perform only one component of the desired requirement. In addition,

XD is focused on unit testing of the ontology, making it analogous to software testing,

while other ontology modelling methodologies include tests that have a more semantic

nature. Considering these aspects of the methodology and the fact that it is based on a

test-driven approach, it is a great foundation for the development of a tool to manage

the testing.

Figure 3.1: An overview of the eXtreme Design framework

An overview of the eXtreme Design framework is shown in Figure 3.1, retrieved from

[9]. In this process, there are several actors that operate in different phases. There is

the customer team, including domain and application experts, that provides and defines

the requirements for the ontology. Another team is the design team which is comprised

of ontology engineers that develop the ontologies. The testing team, a separate team

from the design team, assists with the testing of the ontology module. The integration

team, a group of ontology engineers, deals with the integration and refactoring of the

3.1 The eXtreme Design methodology 27

ontology. In [9], the authors describe the process of developing an ontology with the

following steps:

1. Collect requirements: Domain experts on the customer team elicit requirements

that drive the design and testing processes. While the design team manages the

design process by defining and executing the Ontology Design Patterns that best

meet the requirements, the design team generalizes the user stories in collaboration

with the customer team, outlining the primary principles for eliciting the CQs.

2. Formalize requirements: The customer team is directed to break down poten-

tially complex stories into smaller, easier ones. The design team, in collaboration

with the customer team, establishes general constraints and formulates one or more

competency questions from the generalization of user stories.

3. Develop ontology module: The design team investigates existing ontology de-

sign patterns that may be able to answer the same CQ collected from the require-

ment collection. ODP’s CQs are frequently more general than an ontology project’s

domain-specific CQs. In this situation, the designer will further generalize the CQs

to determine whether the candidate ODP can be reused, and then specialize its

properties and/or classes.

4. Test and revise: The testing team decides how to test each requirement. The

testing includes the definition of the test case, the creation of test data, and the

determination of expected results. Then, they execute the test run OWL-file with

its test data and record the results. Once the testing team has completed the

testing of the ontology module, the module is revised if needed.

5. Release: If there are no more revisions, the ontology module is released with the

proper annotations, examples, and documentation.

6. Integration and refactoring: The integration team deals with the integration

of the newly released ontology module into the whole ontology. To ensure that

the new ontology module has not caused inconsistencies or other issues, the team

needs to evaluate the ontology after the integration. Then, it revises the ontology

based on the results of the evaluation. Lastly, they release the ontology.

28 3. Ontology engineering background

3.2 Requirement elicitation techniques

The requirements in eXtreme Design are collected from different sources in the form

of user stories. “A user story is a set of sentences that describes, by example, the kind

of facts that the knowledge graph is required to encode.” [63]. The design team, in

cooperation with the customer team, extracts requirements, Competency questions and

General constraints from the user stories. There are several techniques that can be

used in the interaction with the customer team, such as structured and unstructured

interviews, introspection, document and protocol analysis, ethnographic techniques, etc.

Structured interviews are interviews that have a set of definite questions that are asked

in a specific order, whereas unstructured interviews are interviews that have neither the

question nor the category of the answer predefined, but rather rely on social interaction

[96]. Introspection offers the possibility to “imagine” the ideal outcome based on the

needs and the means of the experts [29]. Document analysis consists of consulting the

available documentation or literature for the knowledge that is to be represented. A

protocol analysis requires a person to perform a task while also talking aloud about his

or her cognitive process. Lastly, ethnographic techniques are beneficial when addressing

contextual aspects like usability and when researching collaborative work scenarios where

understanding interactions between multiple users with the system is critical [36]. To

collect requirements, a technique or a combination of techniques is chosen based on the

domain. Below is presented a user story4 provided by the domain experts of the Polifonia

project with the means of an asynchronous interview technique.

Frank regularly comes together with his friends from church. They want to

plan a little weekend trip to the other side of the country and go to the church

mass on Sunday in the city nearby where they are staying. To prepare for the

visit, he wants to learn about the church and the organ. In general, Frank

wants to find out more about the history of the church, but also what the

similarities are between how the organ he usually plays and the one he will

listen to sound. For this, Frank is primarily interested in the disposition and

4\textbf{https://github.com/polifonia-project/stories/blob/main/Frank:\%20Organist/

Frank\%231_OrganKnowledge.md}

3.3 Ontology testing spectrum in eXtreme Design 29

who built the organ.

The competency questions extracted from the user story are shown in Table 3.1.

ID Requirement

CQ1 Who built and/or renovated an organ?

CQ2 What is the disposition of the organ at a specific point in time?

CQ3 What are the art-historical features of the front of the organ?

CQ4 What are the decorative elements of the organ?

Table 3.1: A list of competency questions extracted from a user story in the Polifonia

project

3.3 Ontology testing spectrum in eXtreme Design

Considering that eXtreme Design is a test-driven methodology, its testing protocol is

quite descriptive and clear. The methodology includes different types of tests described

below [10].

• Competency Question Verification test allows verifying if the ontology can

answer the competency questions that have been collected during the requirement

collection.

• Inference Verification test allows verifying that the inference mechanisms are

in place, to ensure the correct fulfillment of the inference requirement.

• Error Provocation test allows verifying how the ontology acts when it is fed

random or incorrect data.

• Integration test allows verifying if the integration of an ontology fragment into

the ontology module has been successful.

• Regression test allows verifying if the integration of an ontology fragment to

the ontology module has been successful network-wide, i.e., if it has caused any

inconsistencies relating to other modules that import the module that was updated.

30 3. Ontology engineering background

In Listing 3.1, 3.2 and 3.3 are displayed the templates for the test cases of the Com-

petency Question Verification, Inference Verification and Error Provocation tests respec-

tively.

1 @prefix owlunit: <https :// w3id.org/OWLunit/ontology/> .

2 @prefix on: <https :// w3id.org/myOntology/> .

3 @prefix ex: <https :// w3id.org/myOntology/example > .

4

5 ex:xx a owlunit:CompetencyQuestionVerification ;

6 owlunit:hasCompetencyQuestion " " ;

7 owlunit:hasSPARQLUnitTest " " ;

8 owlunit:hasInputData ex:xx ;

9 owlunit:hasInputTestDataCategory owlunit:ToyDataset ;

10 owlunit:hasExpectedResult " ";

11 owlunit:testsOntology on: .

Listing 3.1: Template of a Competency Question Verification test

1 @prefix owlunit: <https :// w3id.org/OWLunit/ontology/> .

2 @prefix on: <https :// w3id.org/myOntology/> .

3 @prefix ex: <https :// w3id.org/myOntology/example > .

4

5 ex:xx a owlunit:InferenceVerification ;

6 owlunit:hasInputData ex:xx ;

7 owlunit:hasSPARQLUnitTest " " ;

8 owlunit:hasReasoner owlunit:HermiT ;

9 owlunit:hasExpectedResult true/false ;

10 owlunit:testsOntology on: .

Listing 3.2: Template of an Inference Verification test

1 @prefix owlunit: <https :// w3id.org/OWLunit/ontology/> .

2 @prefix on: <https :// w3id.org/myOntology/> .

3 @prefix ex: <https :// w3id.org/myOntology/example > .

4

5 ex:xx a owlunit:ErrorProvocation ;

6 owlunit:hasInputData ex:xx ;

7 owlunit:testsOntology on: .

Listing 3.3: Template of an Error Provocation test

3.3 Ontology testing spectrum in eXtreme Design 31

To formulate and execute the test cases, the testing team is assigned in pairs for each

module. The protocol that is followed for the testing of the ontologies based on XD

is presented in Table 3.2. As seen in the figure, the team needs to gather all relevant

requirements for a specific type of test and select them one by one for testing. Then,

they have to determine how to test it, e.g., with a SPARQL query. When the testing

procedure is formulated, the ontology testers create a test case, add the test data, and

determine the expected results of the test. With the test case ready, the ontology testers

are ready to execute it. Later, they compare the actual result of the test case with the

expected one. If they are not the same, the test case needs to be analyzed, and any

changes should be documented. If the actual result matches the expected result, the

test case is documented using the test meta-model. The documentation of a test case

execution must include the test case ID, the test category, the requirement, the test, the

input test data, the expected result, the actual result, the execution time, the execution

environment, the execution result, and comments. If there are any requirements left

from the module, the process is iterated.

32 3. Ontology engineering background

Step Task Task description

1 Gather requirements For a specific type of test, retrieve all the require-

ments of the current module that are relevant to

this type of test.

2 Select requirement Following the principle of unit testing, select one

requirement to test of each test case.

3 Formulate test proce-

dure

Determine how to test that particular requirement.

4 Create test case Create the test case OWL-file, and an additional

OWL-file for storing the first test run and describe

both using the test case metamodel and its prop-

erties.

5 Add test data Add the test data, needed to perform the proce-

dure according to step 3, in the test run OWL-file.

6 Determine expected re-

sults

Depending on the test data, what would be the

output of a correct test run?

7 Run test Execute the procedure from step 3 on the test run

OWL-file with its data from step 5, and record the

result.

8 Compare results Verify the expected output (step 6) against the

actual result (step 7).

9 Analyze unexpected re-

sult

If the result is not the expected one, analyze and

document any change suggestions or issues.

10 Document Store all information about the test run and its

related test case by using the properties of the test

metamodel.

11 Iterate If there are more requirements of this module to

test, return to step 2.

Table 3.2: An overview of the testing protocol in eXtreme Design

Chapter 4

RevOnt - An ontology requirement

elicitator

Chapter 4 presents RevOnt, an approach for extracting competency questions from

knowledge graphs. Section 4.1 provides an overview of the RevOnt method with a

description of each of the steps. In Section 4.2 we describe in detail the implementation

of the RevOnt method. In Subsection 4.2.1 introduces the WDV dataset that is used for

the implementation of the approach. Later, Subsections 4.2.2, 4.2.3, and 4.2.4 explain

respectively the Verbalization Abstraction, Question Generation, and Question Filtration

steps of the framework with examples.

4.1 RevOnt method

RevOnt is a framework for extracting competency questions from a knowledge graph.

As depicted in Figure 4.1, the framework is divided into three stages: 1) Verbalization

Abstraction, 2) Question Generation, and 3) Question Filtration, each with specific

objectives.

The purpose of the Verbalization Abstraction stage is to transform the verbaliza-

tion from the instance level to the class level. For example, given the triple verbal-

ization ”Michael Jackson is a member of the Michael Jackson discography.”, without

the abstraction, the generated questions are ”Who is a member of the Michael Jackson

33

34 4. RevOnt - An ontology requirement elicitator

Figure 4.1: An overview of the RevOnt framework. The first stage, Verbalization Ab-

straction, generates the abstraction of a triple verbalization. The abstraction is used as

input in the second stage, Question Generation, to generate three questions per triple

and perform a grammar check. Lastly, the third stage, Question Filtration, filters the

questions by performing different techniques.

discography?” or ”What is Michael Jackson a member of?”. These questions are not

competency questions because they ask for specific instances, and not classes or prop-

erties. Thus, there is a need to abstract the verbalization into a more general form.

To complete the task, the Verbalization Abstraction stage begins with a dataset, which

contains the verbalizations of triples from a knowledge graph, as an input. The dataset

should include data about the subject, predicate, and object of the triple, descriptions

of the instances, IDs that align them to a knowledge graph; and most importantly, the

verbalization of the triple. This information is necessary for the selection of the class in

which the subject and the object of the triple is an instance of or a subclass of.

4.1 RevOnt method 35

For the purpose of abstracting the triple verbalizations from the instance level to the

class level, we designed a novel method to abstract the subject and object of a triple to

the most similar-to-context Wikidata classes. The procedure is shown in Algorithm 1.

Firstly, the algorithm creates the sentence embedding of the description of the subject

and the object. Next, it retrieves the classes that the subject/object is a instance of or a

subclass of. After the classes are retrieved, for each class it gets the related sunsets. For

each synset, it gets the definition of the synset and creates its sentence embedding. Lastly,

the cosine similarity between the embedding of the synset definition and the embedding

of the subject/object description. The algorithm returns the most similar synset. This

synset is chosen as the most similar-to-context class where the subject/object belongs.

Algorithm 1 Abstraction of a triple

1: procedure Triple verbalization abstraction

2: Create the sentence embedding of the subject description

3: Create the sentence embedding of the object description

4: Retrieve the Wikidata classes

5: for each class do

6: Get the synsets

7: for each synset do

8: Get the synset definition

9: Create the sentence embedding of the synset definition

10: Calculate the cosine similarity between the synset definition

and the descriptions

11: return Most similar synset

The second stage of the framework is Question Generation. The aim of this stage

is to generate three questions for each triple verbalization. This choice of design is

made to understand the types of questions that are generated when the method asks

the model about different parts of the verbalization sentence. Essentially, this stage

generates questions based on the abstraction of the triple verbalization, as shown in the

example above. Part of this stage is a grammar check task that corrects errors that are

found in the questions.

36 4. RevOnt - An ontology requirement elicitator

Lastly, the Question Filtration stage deals with the quality check and reduction of

the questions generated in the previous step. The two main tasks of this stage are 1)

mapping question templates to query templates, and 2) reduction of questions based on

their similarity. The task of mapping question templates to query templates addresses

the question ”When is a question a competency question?”. As discussed in Section 2,

the answer is that a competency question must be used to query the ontology. Therefore,

such a mapping would confirm whether the generated question is indeed a competency

question. While the question reduction task filters redundant questions by searching for

semantically similar or exact competency questions. This stage is needed to identify a

set of core competency questions from the whole set of questions that were generated in

the previous stage.

4.2 RevOnt implementation

In this section, we describe the implementation details of the RevOnt method. In Ta-

ble 4.1 we show a list of Natural Language Processing (NLP) models, modules, datasets,

and services used for the implementation of the framework, their category, and the stage

where they are used.

Model Category Stage

WDV Dataset Input

MiniLM LM verbalization abstraction

Wikidata query service Service verbalization abstraction

T5 LM Question generation

T5 Grammar Correction LM Question generation

BigCQ Dataset Question filtration

Table 4.1: A list of the language models, modules, datasets and services used in the

RevOnt framework

4.2 RevOnt implementation 37

4.2.1 The WDV dataset

There are several datasets that provide verbalizations of data such as the T-REx1

and WDV dataset2 for Wikidata entries, WebNLG3 for DBPedia4 entries, NYT-FB by

[51] and FB15K-237 by [84] for Freebase5, and so on.

A first implementation of the RevOnt method was achieved for Wikidata, by lever-

aging the WDV dataset [4]. This dataset provides verbalizations of Wikidata claims and

contains 7.6K unique triples. According to [3], WDV has considerably more entity types

and predicates than comparable datasets, and it is intended to serve as a benchmark

dataset for data verbalization models used on Wikidata. WDV enables a tight coupling

between single claims and text by directly connecting a triple-based claim to a natural

language phrase. The WDV dataset contains verbalizations of claims from 20 different

themes (or domains), from the most common like artist, sport teams, university to celes-

tial body, chemical compounds, taxon, et cetera. The diversity of triple verbalizations in

the dataset contributes to interesting results and imposes challenges as well. An example

of a verbalization from the Artist theme is shown in Figure 4.2.

4.2.2 Verbalization Abstraction

The first stage of the RevOnt framework is the Verbalization Abstraction. Its role

is to generate an abstraction of a triple verbalization. To perform the abstraction, it is

necessary to recognize and categorize the entities present in the verbalization. The initial

intuition for this task was to use a Named Entity Recognition (NER) model. We exper-

imented with language models such as Camembert-ner6, Camembert-base-multilingual-

cased-ner-hrl7, Ner-english-large8, Bio-Ner9 and the SpaCy library. The performance of

each of these models was not satisfactory for 50% of the themes in the dataset. For

1https://hadyelsahar.github.io/t-rex/
2https://github.com/gabrielmaia7/WDV
3https://gitlab.com/shimorina/webnlg-dataset
4https://www.dbpedia.org/
5https://developers.google.com/freebase
6https://huggingface.co/Jean-Baptiste/camembert-ner
7https://huggingface.co/Davlan/bert-base-multilingual-cased-ner-hrl
8https://huggingface.co/flair/ner-english-large
9https://github.com/librairy/bio-ner

38 4. RevOnt - An ontology requirement elicitator

Figure 4.2: A claim verbalization from the WDV dataset. For the claim, the dataset

provides the ID, rank, theme, and verbalization of the claim. There are present also the

label, description, aliases and ID of the subject, property and object of the triple.

4.2 RevOnt implementation 39

example, in themes like Celestial body, Astronaut and Chemical compound, any of the

fore mentioned language model had issues with identifying and categorizing entities in

questions such as ”What is the orbital eccentricity of Tau1 Gruis b?”, ”What is the name

of the device that encodes Hsa-mir-1180?”, ”Where is PR00122 found?”.

Based on the these observations, we defined Algorithm 1, shown in Section 4.1. For

each triple, the method extracts the sentence embeddings of the descriptions of the

subject and the object using the MiniLM language model10. MiniLM is a sentence-

level transformer model [71] that maps sentences to a 384-dimensional dense vector

space. By leveraging a pre-trained language model11, MiniLM is fine-tuned on a number

of datasets12 using a contrastive objective. Intuitively, a contrastive loss is used to

minimize the cosine similarity between similar sentence pairs while maximizing that of

other sentences in the same batch.

In the next step, Revont selects the English label of Wikidata classes where an entity

is an instance of or a subclass of. The query that we use for selecting this information

from the knowledge graph is shown below. For this task, we use the Wikidata Query

Service13. Wikidata Query Service is an implementation of a SPARQL server, based on

Blazegraph14 engine, to service queries for Wikidata and other data sets.

SELECT DISTINCT ?cLabel

WHERE {{

wd:{id} wdt:P31/wdt:P279? ?c .

?c rdfs:label ?cLabel .

FILTER(LANG(?cLabel) = "en") }}

For instance, for the triple verbalization ”Michael Jackson is a member of the Michael

Jackson discography.”, according to the dataset shown in Figure 4.2, the subject is

Michael Jackson and the object is Michael Jackson discography. The respective descrip-

tions are American recording artist; singer and songwriter (1958-2009) and Wikimedia

10https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
11https://huggingface.co/nreimers/MiniLM-L6-H384-uncased
12https://www.sbert.net/docs/pretrained_models.html
13https://query.wikidata.org/
14https://github.com/blazegraph/database/wiki/Main_Page

40 4. RevOnt - An ontology requirement elicitator

artist discography. RevOnt extracts the sentence embeddings of the subject and object

description and queries the Wikidata knowledge graph to select the classes of the subject

and object of the triple. The result for the subject is shown in Example 4.2.1.

Example 4.2.1. The Wikidata classes for the subject ”Michael Jackson”

[’human’, ’natural person’, ’omnivore’, ’person’,

’mammal’, ’Homo sapiens’]

Once RevOnt retrieves the classes, it gets the corresponding WordNet synsets for each

class. Wordnet is a large electronic lexical database for English [22]. Cognitive synonyms

(synsets) are groups of nouns, verbs, adjectives, and adverbs that each communicate

a separate notion. Synsets are linked together via conceptual-semantic and linguistic

relationships. In Example 4.2.2 we present the respective synsets of the classes where

”Michael Jackson is an instance of/subclass of. For each synset, it retrieves the definition

and computes its sentence embeddings using the MiniLM model.

Example 4.2.2. The synsets of the Wikidata classes

{[Synset(’homo.n.02’)], [],

[Synset(’omnivore.n.01’), Synset(’omnivore.n.02’)],

[Synset(’person.n.01’), Synset(’person.n.02’),

Synset(’person.n.03’)], [Synset(’mammal.n.01’)], []}

In the last step, RevOnt calculates the cosine similarity between the definition of the

synsets of each class and the description of the subject or object. The cosine similarity

is calculated with the help of the Natural Language Toolkit (NLTK). NLTK is a suite

of Python modules providing many NLP data types, processing tasks, corpus samples,

and readers, together with animated algorithms, tutorials, and problem sets [47]. For

the example shown above, the Wikidata class that is the most similar to the description

of the subject Michael Jackson is human. As for the object of the triple, the Wikidata

class is discography.

The values that the algorithm returns populate a Python dictionary that is used for

the abstraction task. More specifically, the subjects/objects and their corresponding

most similar-to-description class are added to a dictionary, as shown in Example 4.2.3.

4.2 RevOnt implementation 41

Example 4.2.3. The pattern dictionary

{’Michael Jackson’: ’human’,

’Michael Jackson Discography’: ’discography’}

This dictionary is used to replace the subject and the object in a triple with the

respective class. To continue with the same example above, the result of the verbalization

abstraction is presented in Example 4.2.4. This concludes the first stage of the framework,

and the abstracted verbalizations are passed on to the second stage, Question generation.

Example 4.2.4. The abstraction of the verbalization

Verbalization: Michael Jackson is a member of the

Michael Jackson discography.

Abstraction: Human is a member of the discography.

4.2.3 Question Generation

After the abstraction of the verbalization, the next stage of the approach is to generate

questions. For this task, we have used the Text-to-Text Transfer Transformer (T5)

[73] fine-tuned on the Stanford Question Answering Dataset (SQuAD) [66] for question

generation. This was achieved by prepending the answer to the context. The specific T5

model instance is t5-base-finetuned-question-

generation-ap 15. Notably, [74] demonstrated how the model can be applied successfully

to generative tasks such as abstractive summarization, classification tasks such as natural

language inference, and even regression tasks.

To generate questions, the model requires as input a context (sentence) and an answer.

When an answer is not provided, the model will generate a question that is answered

by the object of the sentence. For each triple, we have provided the model with the

abstraction of the verbalization as the context, and three answers: the class of subject,

the property, and the class of the object. In most observed cases, when the class of subject

and class of the object are the answers, the questions that are generated are inverse. As

for the cases when the property is the answer, the questions that are generated are often

15https://huggingface.co/mrm8488/t5-base-finetuned-question-generation-ap

42 4. RevOnt - An ontology requirement elicitator

the same as the ones when the answer is the class of the object, but there are also many

cases when the questions are quite interesting and not so straightforward. This behavior

of the model can be explained by the distance between the triple and the verbalization.

As noticed in the example below, while the property of the triple is discography, this

property is not present in the verbalization. This is the case for the majority of the

verbalizations present in the dataset. In Example 4.2.5, we show the results of the

Question Generation stage given the abstraction from Example 4.2.4.

Example 4.2.5. Question generation

Context: Human is a member of the discography.

Answer 1: human

Question 1: What is a member of the discography?

Answer 2: is a member of

Question 2: What is the relation between a human and a discography?

Answer 3: discography

Question 3: What is a human a member of?

Once the questions are generated, RevOnt performs a grammar check to detect and

fix errors. This task is performed by the T5 Grammar Correction model16. Trivially,

the model generates a revised version of the given text with the goal of addressing

grammatical errors. It is trained with Happy Transformer17 using the JFLEG dataset

[52].

4.2.4 Question Filtration

The third and last stage of RevOnt consists in the filtration of the questions that

are generated from the second stage. To address H2, regarding the quality of the ex-

tracted questions from a knowledge graph, we filter the questions that are generated

from the abstraction of the verbalization with the help of the BigCQ dataset18 by [93].

16https://huggingface.co/vennify/t5-base-grammar-correction
17https://github.com/EricFillion/happy-transformer
18https://github.com/dwisniewski/BigCQ

4.2 RevOnt implementation 43

The dataset contains a set of Competency Question templates paired with SPARQL-

OWL query templates, and it has been built upon previous work, CQ2SPARQLOWL by

[94]. The method and dataset in CQ2SPARQLOWL are a benchmark of schema-level

Competency Questions and corresponding SPARQL-OWL patterns. Therefore, in this

task, we select the questions that are mapped to SPARQL queries, proving that they

are indeed competency questions. To perform this task, we need to transform questions

into templates. The transformation is shown in Example 4.2.6, where EC1 and EC2 are

entity chunks.

Example 4.2.6. The transformation from question to question template

Question: What is a member of the discography?

Question template: What is EC1 of EC2?

The next step is to add the new templates to the BigCQ dataset and regenerate

the dataset. The result of the regeneration is a file with a list of unique competency

question templates, a file with a list of unique SPARQL-OWL query templates, and a

folder with mappings from SPARQL-OWL templates to CQ templates. Each file is a

JSON document containing a different SPARQL-OWL query template that follows the

schema in Example 4.2.7.

Example 4.2.7. Question template to SPARQL query template mapping

{

’query’: ’SPARQL_OWL_QUERY’,

’cqs’: [’CQ1’, ’CQ2’, ...]

}

From the new dataset, we are able to select the competency questions which have

templates mapped to SPARQL queries. A present SPARQL query template assures that

the extracted question from the knowledge graph is indeed a competency question. In

conclusion, this stage filtrates only competency questions from the pool of the generated

questions.

Chapter 5

XDTesting - An ontology testing

manager

Chapter 5 present XDTesting, a tool developed to provide support for the testing

of an ontology based on the eXtreme Design methodology. Section 5.1 provides an

overview of the method, and Section 5.2 describes the requirement collection process

and design choices that were made for its implementation. Section 5.3 presents the

XDTesting method in detail with the means of the artifacts that were produced during

the inception phase. Section 5.4 discusses the iterations of the development and describes

each of the features that are implemented. Lastly, Subsections 5.4.1 and Subsection 5.4.2

presents the GitHub workflow and the XDTesting Configurator, a web application that

serves as the interface of the tool.

5.1 Managing ontology testing with XDTesting

XDTesting is a method and tool created to support ontology testing based on the

eXtreme Design methodology. The tool is implemented as an automated workflow on

the GitHub platform and is comprised of numerous features that are in line with the

testing methodology. The features are identified from personal experience, interactions

with fellow ontology engineers and testers, and also from investigations of state-of-the-art

tools and literature. To enhance the usability of the tool, we have developed an interface

45

46 5. XDTesting - An ontology testing manager

in the form of a web application named XDTesting Configurator, described in Section

5.4.2.

As described in Chapter 3, eXtreme Design is an ontology modeling methodology

based on the intensive use of ODPs, modularity, and the test-driven approach. XDTest-

ing is a realization of the test-driven approach of the methodology. Furthermore, the

modularity principle has been incorporated into XDTesting by allowing ontology testers

to create an ontology module and an ontology fragment that belongs to the module.

Once the testing of the ontology fragment is complete, the tool integrates it with the

ontology module and runs the necessary tests. An illustration of an ontology module

and its fragments is shown in Figure 5.1. In this figure, the ontology module is the

Instrument ontology module from the Polifonia Ontology Network. The fragments are

the ontology design patterns such as AgentRole, Project, Parthood, and TimeInterval.

Figure 5.1: An illustration of an ontology module with its fragments.

5.2 Requirement collection and surveys

In this section, we describe how we collected the initial set of requirements for the

refinement of the existing tool support, OWLUnit, and the request for new features.

In addition to the requirement collection, we present two small-scale surveys that we

conducted to assess the state-of-the-art of testing tool support and the need for testing

automation in the GitHub platform.

To collect requirements for the testing automation, we had a brainstorming meeting

5.2 Requirement collection and surveys 47

with researchers from STLab1, a laboratory dedicated to the representation and pro-

cessing of knowledge. The participants are researchers that are specialized in ontology

engineering and testing based on eXtreme Design and have experience with the OWLU-

nit jar. The aim of the meeting was to discuss the improvement of the current tool

support and new features that are necessary to ease the testing process. The outcome

of the meeting resulted in the identification of the following action points.

1. The tool should enable the testing of an ontology module under development and

not published under the official URI of the ontology.

2. The tool should enable the automatic rerun of all test cases when a competency

question, SPARQL query, or expected result is updated.

3. The tool should enable the addition of an annotation property or a datatype prop-

erty to specify the version of the test case.

4. The tool should enable the provision of detailed information in the response mes-

sages to understand why the tests fail.2

5. Create a test to check whether a SPARQL query, that is necessary to execute

Competency Questions Verification and Inferences Verification tests, is executable.

After identifying these requirements, we investigated the possibility of using GitHub

actions for the automation of the testing process. As standard practice, we surveyed

existing actions and apps that are available in the GitHub marketplace. The actions

and apps that we took into consideration for analysis are under the testing category.

A selection criterion besides the category is also the certification of the creators, which

guarantees a certain quality of the tools. In total, in the GitHub marketplace, there are

1329 actions and apps under the testing category, but merely 109 are verified by Github.

The information that we retrieved for each action and app are the URL, action name,

description, creator, and review. After analyzing each of the 109 tools, it was concluded

1http://stlab.istc.cnr.it/stlab/
2Currently the information that the ontology tester receives in case of failed tests are orderly Java

errors or highly general messages that make it difficult to pinpoint the problem in the test case or

dataset.

48 5. XDTesting - An ontology testing manager

that there are no actions or apps that provide support for ontology testing. Investigating

beyond these restrictions, we searched for uncertified actions or apps in the Marketplace,

and still, none support ontology testing.

To justify our decision to implement tool automation in GitHub, we conducted an-

other survey to determine the presence of repositories containing ontologies or tools for

interacting with ontologies in GitHub. We searched the keyword ontology on GitHub,

and as a result, we got 11,065 repositories. From these 11,065 repositories, we investi-

gated the Top 900 ranking of Best matched results with the purpose of categorizing them

to assess the percentage of repositories that store ontologies. We classified the reposito-

ries into two categories: 1) repositories that store ontologies; and 2) repositories of tools

for handling, editing, and visualizing ontologies. The categorization was done manually

based on the description of the repository. If the description is missing, the categoriza-

tion was done based on the name of the repository, e.g., /example-ontology, or the tag

of the repository, e.g., ontology. As for the description of the repository, to categorize

it under the ontology repository, we took into consideration phrases such as ontology

of, example ontology, ontology for, ontology to describe. While for the categorization

under the tool repository, we searched for phrases such as tool, package, visualization,

code, manager, editor, etc. Based on the sample under consideration, which is roughly

10% of the total results, it resulted in approximately 66% being repositories that store

ontologies and 34% repositories of tools for handling, editing, and visualizing ontologies.

Ergo, we decided to develop from scratch an automation, comprised of several actions,

in GitHub to provide tool support for the testing of the numerous ontologies that are

stored on this platform.

Considerably, there are many online repositories and libraries, such as BioPortal3,

Ontology Design Patterns 4, OLS5, Obo-Foundry6, Ontobee7, etc, whose purpose is to

store ontologies of a multitude of domains. Ontologies are also stored locally on private

servers, public websites, and collaborative spaces. In contrast to these repositories,

3https://bioportal.bioontology.org/
4http://ontologydesignpatterns.org/wiki/Main_Page
5https://www.ebi.ac.uk/ols/index
6https://obofoundry.org/
7https://www.ontobee.org/

5.3 XDTesting method 49

Figure 5.2: A donut chart representing the presence of ontology related repositories in

the GitHub platform.

GitHub offers features that enable the possibility of having a tool support that can reduce

the workload of ontology testers instead of building APIs and Java jars to interact with

the foregoing repositories.

5.3 XDTesting method

In the present section, we describe the XDTesting method which aims to reduce the

workload of ontology engineers in the testing phase of an ontology engineering process.

The method is described using the following artifacts: a use case diagram, a workflow

diagram, and a component diagram. It stands to reason that the workflow diagram that

we will describe in this section is heavily based on the use case diagram in Figure 5.3.

The XDTesting method is then implemented as described in Section 5.4.

The artifact depicted in Figure 5.4 is a diagram illustrating the workflow of the

XDTesting tool automation based on XD methodology. As shown in the diagram, there

are two actors that interact within the workflow and perform tasks that are in line

with the use case diagram. The automation is triggered to start whenever an ontology

50 5. XDTesting - An ontology testing manager

Figure 5.3: An illustration of the use case diagram of the XDTesting tool

engineer or tester needs an ontology fragment to be tested. To do so, he/she adds

the ontology module, the ontology fragment, and test case data. This action triggers

the GitHub workflow, which pulls the data to the platform and stores it in a specific

directory structure. Once this step is completed, the system checks if the input provided

is sufficient for constructing a unit test case. If this is the case, it checks the syntax of

the input, more specifically of the SPARQL query, and the expected results in JSON and

the Turtle datasets. If not, it requires the complete data for the test case. If the syntax

check is passed, the system constructs the unit test, prepares the testing environment,

and executes it. If the syntax is not correct, then the system reports that the input

5.3 XDTesting method 51

Figure 5.4: The workflow of the XDTesting tool automation

data are not syntactically correct. The course of the workflow depends on the result of

the test case execution. If it is successful, the test case is documented, and the process

ends. If it is not successful, the system documents the test case execution and waits

for the issue to be analyzed by the ontology engineer. Once the input for the test case

is modified, the system starts the process again at the cross-check step. The workflow

terminates when all test cases have been passed successfully.

Lastly, the component diagram in Figure 5.5 depicts how individual components are

interconnected to create the overall system. The components are User input retrieval,

Ontology fragment directory structure, GitHub, Input cross-check, OWLUnit jar,

Setup testing environment, Check syntax, Validate toy dataset, Construct test

case, Execute test case, and Document test case. The entry-point component is

the User input retrieval which enables the access to the input data. This compo-

nents is used by the components that perform the input cross check, the syntax check, the

toy dataset validation, the construction of the test case, and the creation of the ontology

fragment directory structure. Meanwhile, the component Execute test case uses the

output of the Construct test case component and the Setup testing environment

which prepares the environment for the test by using the OWLUnit jar. Lastly, the

Document test case uses the results of the test case execution to document it and

pulls the files to GitHub.

52 5. XDTesting - An ontology testing manager

Figure 5.5: A component diagram showing the dependencies between the components of

the XDTesting tool.

5.4 XDTesting development

In this section we describe the development of the XDTesting tool as a automatic

workflow in the GitHub platform. Initially, we summarize the exploitability of the tool.

In Subsection 5.4.1 we describe in detail the technical development of XDTesting, in-

cluding pseudocode and a recap of the used libraries. In Subsection 5.4.2 we present the

XDTesting Configurator that is the web application of XDTesting.

XDTesting is a ontology testing manager based on the eXtreme Design methodology.

The tool is developed as a web application integrated with GitHub. The aim is to assist

ontology engineers with the task of creating, annotating, executing, and documenting test

cases. In addition, XDTesting provides a visual summary of the testing of the ontology

module and a complete versioned documentation of the testing in the GitHub repository.

The general information of XDTesting with links to the source code, documentation,

release and running instance is shown in Table 5.1.

5.4 XDTesting development 53

Information

ID https://zenodo.org/badge/latestdoi/466713931

Type Software

Title XDTesting

Description XDTesting is an ontology testing manager integrated with the

GitHub platform.

Source code https://github.com/FiorelaCiroku/XDTestingSession

Documentation https://github.com/FiorelaCiroku/XDTestingSession/

readme.md

Release https://github.com/FiorelaCiroku/

XDTesting-Configurator/releases/tag/v1.0.0

Licence CC BY

Running instance http://testing.extremedesign.info/

Table 5.1: General information of the XDTesting tool

5.4.1 The XDTesting GitHub automated workflow

For the back-end of XDTesting we have used GitHub. The role of the platform is

threefold: (1) it runs the workflow described in Algorithm 2; (2) it stores the data from

the XDTesting Configurator; and (3) it stores the documentation of the test cases. The

workflow listens to changes in the UserInput.json file, which is the file where the user

input is stored. When a commit is completed on the file, the workflow is triggered to

start. The workflow creates an Ubuntu environment and performs a checkout of the

repository by using the Checkout8 action. This action checks out the workspace of the

repository workflow can access it.

Later, it install Python and a set of libraries needed to execute the commands that

follow. One of the main libraries that we have used is the Json (JavaScript Object

Notation) library, which is a collection of functions and methods that may be used in

several computer languages, including Python, JavaScript, and others, to effortlessly

parse, produce, and manipulate JSON data [40]. The library is used to parse data that

8https://github.com/marketplace/actions/checkout

54 5. XDTesting - An ontology testing manager

Algorithm 2 The GitHub workflow of XDTesting

1: procedure GitHub Workflow

2: Trigger on push in UserInput.json

3: Run on Ubuntu

4: Checkout repository

5: Install Python

6: Install Python libraries

7: Create GitHub directory structure

8: Create test case and dataset

9: Commit to GitHub

10: Create testing environment

11: Execute test case

12: Commit to GitHub

13: return Clean environment

is exchanged between the front end and the back end of the XDTesting tool. More

specifically, it is in a JSON file that the input is stored, and later on, the output results

are stored. In addition, this package is also used to validate the expected results of a

query in the JSON format. We have used the os library to create a structure of directories

and files in the GitHub repository in order to guarantee a standard in documentation.

The os library is a built-in library in Python that provides a way to interact with the

operating system and perform various tasks such as creating, reading, and deleting files

and directories, getting information about the system, and running shell commands [56].

To help with the process, we have also used the sys library, which is a built-in library

in Python that provides access to various system-specific parameters and functions [83].

To validate the syntax of a SPARQL query, we use the requests and rdflib. The

requests library allows to send HTTP requests and handle HTTP responses in a simple

and elegant way [70]. In our implementation the HTTP requests are sent to a querying

service to test the SPARQL query. The rdflib library is a third-party library in Python

that allows you to parse, manipulate, and serialize RDF data in Python. It also provides

support for several RDF serialization formats such as RDF/XML, N3, Turtle, N-Triples,

and JSON-LD [67]. Lastly, to document the execution of the test cases as a Markdown

5.4 XDTesting development 55

[48] table in GitHub we use the pytablewriter library. This library is a third-party

library in Python that allows to write various formats of table data into files or strings

[90]. Part of the documentation is also the date when the test case was executed, for

which we use the datetime library, which is a built-in library in Python that provides a

way to work with dates and times [19].

After the libraries are installed, the workflow runs a Python script to create the

GitHub directory structure, as shown in Figure 5.6. The directories that are created

are: CompetencyQuestionVerificationTest, InferenceVerificationTest, ErrorProvocation-

Test, and TestDocumentation. Each of the first three directories includes two other

directories named TestCase and DataSet. All the directories are briefly described in

their respective ReadMe.md files.

Figure 5.6: The directory structure automatically created in GitHub of the Musical

Performance module of the Polifonia Ontology Network

At the same time, the workflow creates the files for the test cases and the datasets

using the information stored in the UserInput.json file. Part of the creation of the test

56 5. XDTesting - An ontology testing manager

cases is the validation of the syntax of the expected results, the SPARQL query, and the

toy dataset, if present. If the syntax of the data is valid, the script constructs the test

case. An important aspect of the feature is that it makes it possible for the system to

automatically generate the prefixes that are used in the test case. Then, it stores it in

the correct directory in the GitHub repository and commits the changes. In the opposite

case, it throws an error indicating incorrect syntax.

Next, it prepares the testing environment using a GitHub action named XDTesting

Setup environment9. This action is developed and published in the GitHub market-

place. It deals with the installation in a GitHub hosted runner (server) of the technical

components that are essential for the execution of the test case. The components are

Java and the OWLUnit jar. Java is downloaded and installed by using a verified GitHub

action named Setup Java JDK 10. While the OWLUnit jar is downloaded from its original

repository and installed.

With the testing environment ready, the workflow executes the test case and commits

the documentation of the results in the repository. The documentation is done based on

a GitHub template that includes information such as the test ID, the requirement that is

being tested, the category of the test, the test case description, the test itself, the input

test data, the expected results, the actual results, time of the execution, environment of

the execution, the execution result and comments. An example of the documentation

of a test case execution is shown in Figure 5.7. After this step, the workflow cleans any

remaining processes and completes.

5.4.2 The XDTesting Configurator

XDTesting Configurator is web application that serves as the front-end of the system.

This interface is built using Angular 1211 and can perform the actions listed below.

• The user can log in using their GitHub credentials.

• The user can select the repository in which it desires to work.

9https://github.com/marketplace/actions/xdtesting-environment-setup
10https://github.com/marketplace/actions/setup-java-jdk
11https://angular.io/

5.4 XDTesting development 57

Figure 5.7: The documentation in GitHub of the execution of a test case from the Musical

Performance module of the Polifonia Ontology Network

• The user can create new ontologies or select from ontologies that are found in the

GitHub repository.

• The user can create new ontology fragments or edit existing ones.

• The user can create Competency Question Verification tests, Inference Verification

tests, and Error Provocation tests for each ontology fragment.

• The user can provide the requirement, SPARQL query, expected results, and

dataset for the competency question verification test.

• The user can provide a SPARQL query, select a reasoner, and upload a dataset for

the inference verification test.

• The user can provide the dataset for the error provocation test.

• The user can create the SPARQL query, dataset, and expected results on the fly

instead of uploading the files.

58 5. XDTesting - An ontology testing manager

• The user can edit or delete the test cases.

• The user can check the status of the execution of the test case.

• The user can view the test case that is created and the documentation associated

with it.

• The user can view the list and progress of the actions running in the selected

repository.

• The user can find information about the tool’s instructions in the Help section.

In order to use XDTesting Configurator, the user must log in with their GitHub ac-

count, as seen in Figure 5.8. When accessing the application for the first time, GitHub

is going to require the confirmation of the password or another means of identity confir-

mation.

Figure 5.8: The login view of the XDTesting configurator

After the user has logged in, is required to select a GitHub repository and the branch

to work on. The view of the selection is displayed in Figure 5.9.

5.4 XDTesting development 59

Figure 5.9: The repository selection view of the XDTesting configurator

When the repository is selected, the user is directed to the dashboard view of the

XDTesting configurator, as shown in Figure 5.10. This dashboard displays statistics for

the testing of the selected ontology fragments, such as the number of tests that have

errors, have failed, are running, or are successful. On the right side of the dashboard, is

projected the number of ontology modules and ontology fragments present in the repos-

itory. On the lower center section of the dashboard is shown a graph that summarizes

the types of testing performed for each modules and their respective number. In the left

side panel are the sections of Dashboard, Ontologies, Ontology fragments, and Help.

Figure 5.10: The Dashboard view of the XDTesting configurator

If one selects Ontologies, the application will redirect to the Ontology view, shown in

Figure 5.11. The user can choose to create a new ontology or to select one from the list

60 5. XDTesting - An ontology testing manager

shown in the view. In addition, it can view the list of ontologies present in the repository

and delete ontologies.

Figure 5.11: The Ontologies view of the XDTesting configurator

The Ontology Fragments section is displayed in Figure 5.12. In this view of the inter-

face, the user can create a new ontology fragment or use the ones on the list. Similarly

to the ontology section, the user can view a list of the fragments, with information about

their belonging ontology. An ontology fragment can be searched by a keyword or with

filters, e.g., by ontology name. Lastly, an ontology fragment can be edited and deleted.

Figure 5.12: The Ontology Fragments view of the XDTesting configurator

If the user decides to edit an ontology fragment, then it is directed to the view shown

in 5.13. Here, the user can create a new test case or view a list of existing test cases.

Each of the test cases present in the repository is identified by an automatically assigned

5.4 XDTesting development 61

ID, the type of the test case, and the status of the execution. The Configurator displays

three possible outcome from the test case execution: (1) test case is executed and the

result is success, (2) test case is executed and the result is fail, and (3) test case is

not executed. The first type of outcome is notated with a green pass check, while the

remaining types are notated with a red fail check. Under the details, the tool shows

further information about the outcome of the execution.

Figure 5.13: Inside the Ontology Fragments view of the XDTesting configurator for

displaying test cases

In Figure 5.14, is shown another feature present in the ontology fragment view. This

feature enables the user to upload data files by specifying the type of file. The user can

also search files by keyword of by filtering the extension, or the type. Additionally, it

can download the files.

Figure 5.14: Inside the Ontology Fragments view of the XDTesting configurator for

uploading data files

If the user wants to create a new test case, they will be directed to the view shown in

Figure 5.15 after clicking the Create New Test Case button on the right upper corner.

62 5. XDTesting - An ontology testing manager

By default, the type of the test case that is selected is the Competency Question Verifi-

cation test, but it can be changed by selecting another option from the dropdown list.

Based on the selected type of the test case, different input is required. The SPARQL

query, expected results, and sample dataset can be provided in three modalities: (1) by

selecting a previously uploaded file, (2) by uploading a file, and (3) by directly writing

it in the textbox.

Figure 5.15: The test case view of the XDTesting configurator

In each of the views, the user can find quick information regarding important terms

and concepts by hovering on the information bubbles. For more detailed information,

he can redirect to the Help section for information on how to use the tool for creating

ontologies, ontology fragments, and test cases.

Figure 5.16: The Help view of the XDTesting configurator

Chapter 6

Evaluation

Chapter 6 reports the evaluation of the RevOnt method and the XDTesting method

developed and implemented in this research. Section 6.1 and 6.2 describe the experi-

mental setup and the results of the evaluation for RevOnt and XDTesting respectively.

6.1 Evaluation of RevOnt

In this section, we describe the end-to-end and component evaluation of the RevOnt

framework. The evaluated components are the Verbalisation Abstraction and the Ques-

tion Generalisation stage. The end-to-end evaluation provides a meaningful quantifi-

cation of system’s effectiveness. While, with component evaluations, it is possible to

observe the impact that each component has on the system effectiveness [72]. One of

the challenges of ontology learning and natural language processing is the dependency

between the tools and techniques used in a pipeline; therefore, such an evaluation would

provide meaningful insight into the performance of the components and the approach

overall. The objective of the evaluation is to prove the hypothesis H2 which claims that

the quality of the elicited requirements that are generated with the means of language

models from a knowledge graph is comparable to human generated requirements.

63

64 6. Evaluation

6.1.1 Experimental setup

We have conducted a two-step user-based experiment including 15 participants with

an engineering background and familiar with ontology development. The experiment

consisted of manually reproducing the stages of Verbalisation Abstraction, and Question

Generation in order to assess the quality of the components individually. In total, we

created 20 forms1 (one for each theme), with a varying number of tasks. The tasks were

created with data from the WDV dataset, and their number depends on the number

of different triple verbalizations (properties) existing in a theme. An overview of the

themes and the number of tasks is shown in Table 6.1.

Firstly, we introduced the participants to the theme and the data that they needed

to complete the tasks. For each task, we provide the triple verbalization, the subject,

the subject description, the object, and the object description. The illustration used to

describe the data is shown in Figure 6.1.

Figure 6.1: An illustration of example data including the triple verbalisation, the labels

and descriptions of the subject and object of the triple. The example serves to explain

the data needed to perform the tasks.

Then, using examples, we describe the two tasks that they must complete. The first

task is to abstract a triple verbalization given the information provided, as shown in

Figure 6.2. The second task is to formulate questions based on the abstraction that they

have created. The participants are asked to formulate 3 questions, where the answers

1https://drive.google.com/drive/folders/1M7LCmqw4dc33U73GTauec02h3JNnNxv4?usp=

sharing

6.1 Evaluation of RevOnt 65

Theme No of tasks Annotation/Theme

Airport 27 7%

Artist 65 17%

Astronaut 57 16%

Athlete 53 13,7%

Building 67 17,4%

Celestial body 25 6,4%

Chemical compound 33 8,6%

City 73 19%

Comics character 79 21%

Food 64 17,3%

Mean of transportation 58 15,4%

Monument 62 16,3%

Mountain 23 5,9%

Painting 29 7,5%

Politician 56 14,5%

Sports team 49 12,7%

Street 22 5,7%

Taxon 27 7%

University 62 16,4%

Written work 21 5,4%

Total 952

Table 6.1: An overview of the number of tasks based on themes. The number of tasks

corresponds to the number of distinct properties of the triples of theme.

66 6. Evaluation

to the questions will be: 1) the subject of the abstraction; 2) the property; and 3) the

object of the abstraction. The tasks are represented in Figure 6.3.

Figure 6.2: Example illustration for task 1. In this illustration, we describe the first task

that is to abstract the verbalisation using the given data. The abstraction is completed

by generalizing the subject and the object of the triple, and not the property.

Figure 6.3: Example illustration for task 2. The example describes task 2 that is the

generation of three questions, when the answer is provided. The answers are the subject,

property, and object of the triple.

We arranged for each theme to be covered by two participants. In total, we have gath-

ered 40 responses from the forms, containing approximately 1.9K annotations. Mean-

while, the WDV dataset has, on average, 380 triple verbalizations per theme. The

coverage of each theme with annotations can be found in the Table 6.1. We used the

6.1 Evaluation of RevOnt 67

annotations from the user-based experiment to calculate the BLEU score, a metric for

automatically evaluating machine-translated text. The BLEU score is a number between

zero and one that measures the similarity of the machine-translated text to a set of high-

quality reference translations [57]. The annotations serve as grams, each with a weight

of 0.5. The number of reference human translations influences the results. Usually, more

references result in better and more accurate scores. According to [44] and [30], scores

over 0.3 generally reflect understandable translations, and scores over 0.5 generally re-

flect high-quality translations. The interpretation of BLEU scores is shown in Table 6.2.

We have chosen this metric for the evaluation of the RevOnt implementation because

according to a set of experiments presented in [57], BLEU correlates highly with human

judgments. The experiments consisted of two groups of people, named the monolingual

and the bilingual group, rating from 1 to 5 the translations of a set of questions. The

high correlation coefficient of 0.99 shows that BLEU accurately tracks human judgment.

Moreover, as mentioned above, the participants of our experiment have an engineer-

ing background, which insinuates that the annotations that they have done are of good

quality.

BLEU Score Interpretation

< 0.10 Almost useless

0.10 - 0.19 Hard to get the gist

0.20 - 0.29 The gist is clear, but has significant

grammatical errors

0.30 - 0.40 Understandable to good translations

0.40 - 0.50 High quality translations

0.50 - 0.60 Very high quality, adequate,

and fluent translations

> 0.60 Quality often better than human

Table 6.2: Interpretation of BLEU scores

68 6. Evaluation

6.1.2 Results

In this subsection, we present the results of the evaluation of the RevOnt framework.

In the following subsections, we interpret the results for each of the stages of the approach

and summarize the results for the whole system. To interpret the distribution of the

BLEU scores for the Verbalisation Abstraction and the Question Generation stages, we

have created Box and Whisker Plots.

The distribution of the BLEU scores for the Verbalisation Abstraction stage is pre-

sented in Figure 6.4. As seen from the plot, the mean of the scores is 0.41, which is

interpreted as a high-quality translation. The 75th percentile is 0.55 and the 25th per-

centile is 0.3. Meanwhile, the highest and the lowest data points are respectively 1 and

0. These results mean that 75% of the abstractions generated from RevOnt have a good

to high-quality.

By observing the differences between the abstractions generated by RevOnt and those

created by the user, we can conclude that the abstractions generated by RevOnt are more

general. Usually, the system abstracts the subject and the object of the verbalisation

into more general classes than a user. As shown in Example 6.1.1, the system abstracts

Michael Jackson as a human, while a user abstracts it as a singer.

Example 6.1.1. The difference between the abstraction generated by RevOnt and by the

users

Verbalisation: Michael Jackson is a member of the

Michael Jackson discography.

RevOnt: Human is a member of the discography.

User annotation: A singer is a member of the discography.

As for the second component of Revont, Question Generation, we display the distri-

bution of BLEU scores in Figure 6.5. The mean is 0.3, which is on the border of being

interpreted as a good translation. The 75th percentile is 0.47 and the 25th percentile is

0.21. The highest and lowest data points are 0.81 and 0.1 respectively.

The non-satisfactory evaluation of this stage is explained in Figure 6.6. In this

plot, we have evaluated individually the generation of each type of question. The red

plot represents the generation of the questions when the answer is the subject of the

6.1 Evaluation of RevOnt 69

Figure 6.4: BLEU score for the Verbalisation Abstraction stage. In the plot is shown the

distribution of BLEU scores for the Verbalisation Abstraction stage for all the domains

of the dataset.

abstraction, the yellow plot when the answer is the property of the triple, and the green

plot when the answer is the object of the abstraction.

Visibly, the generation of the question when the answer is a property of the triple

performs poorly. This result supports the hypothesis that the questions that T5 generates

in this case are generally identical to the ones that it generates when the answer is the

object of the abstraction. In Example 6.1.2, we show the difference between the question

that is generated by RevOnt and the one generated by the user when the answer is the

property of the triple.

Example 6.1.2. The difference between the questions generated by RevOnt and the users

when the answer is the property of the triple.

Verbalisation: Michael Jackson is a member of the

Michael Jackson discography.

Answer: discography/member of

70 6. Evaluation

Figure 6.5: BLEU score for the Question Generation stage. In the plot is shown the

distribution of BLEU scores for the Question Generation stage for all the domains of the

dataset including the three types of questions.

RevOnt: What is a human a member of?

User annotation: Which is the relation between a singer

and the discography?

Comparing the scenarios when the subject and the object of the abstraction are the

answer, we observe that the latter is more accurate with a mean of 0.42, which is a high

quality translation. The 75th percentile is 0.61, the 25th percentile 0.28, and the highest

point is 1.0 and lowest is 0.08. 75% of the scores for this category of questions is of good

to high quality.

The results provide valuable insight into the Question Generation stage in particular.

The evaluation of the quality of each type of question is certainly a matter that is to be

taken into account for the refinement of the RevOnt framework. As mentioned earlier,

the design choice to include all three types of questions is for experimentation only

and to provide feedback for future development. In Figure 6.7 is the RevOnt Box and

6.2 Evaluation of XDTesting 71

Figure 6.6: BLEU score for the Question Generation stage individualized. In the plot is

shown the distribution of BLEU scores for each type of question that is produced by the

Question Generation stage for all the domains of the dataset.

Whisker plot if we consider that the Question Generation stage produces only questions

where the object of the abstraction is the answer (which is the best performing category

of questions). Overall, the system’s BLEU scores have a mean of 0,4, indicating good

translation quality.Â

6.2 Evaluation of XDTesting

In this section, we describe the experimental setup and results of the evaluation of the

XDTesting tool. The goal of the evaluation is to prove the hypothesis H3. Hypothesis

H3 claims that the automation of the testing phase of an ontology engineering process

can reduce the workload of the ontology engineer. To prove it, we have designed an

experiment that focuses on the efficiency and usability of the XDTesting tool.

72 6. Evaluation

Figure 6.7: BLEU score for the RevOnt framework. In the plot is shown the distribution

of BLEU scores for the RevOnt framework containing the Verbalisation Abstraction

and the Question Generation stage with only one type of question (the question that is

answered by the object of the triple).

6.2.1 Experimental setup

The evaluation of the XDTesting tool is realized in the form of a session in collab-

oration with ontology engineers and testers. We have selected a group of 7 researchers

from the STLab research lab. Each of the participants is familiar with or an expert in

ontology development and testing and the eXtreme Design methodology. The goals of

the experiment are to evaluate the efficiency and usability of XDTesting and to identify

action points for further development. The task for the participants is to complete a

competency question verification test, an inference verification test, and an error provo-

cation test by using the XDTesting tool. Completing a test case consists of creating,

executing, and documenting a test case. The data that the participants need are an

ontology, a competency question with the respective SPARQL query and expected re-

sult, general constraints, and datasets for each of the tests. The only prerequisite for the

participants was for them to have an active GitHub account.

6.2 Evaluation of XDTesting 73

Initially, we presented a quick background related to the types of tests in eXtreme

Design and described to the participants the task, the data that were provided to them,

and the overall instructions. To share the data files and the scripts, we created a demo

GitHub repository2 that they could fork into their own accounts. In addition, we in-

structed the participants to grant Read and write permission to the actions workflow

and enable the workflow that they forked from the demo repository. Lastly, in order to

test some of the features of the tool, we asked the participants to download the data files

locally. The ontology that the participants tested is the Musical Performance ontology

module3 developed in the Polifonia project. For the Competency Question Verification

test, the participants had to test the requirement “When was a musical performance

recorded?”, with the SPARQL query and expected results shown respectively in Listings

6.1 and 6.2.

1 PREFIX mp: <https :// w3id.org/polifonia/ontology/musical -performance/>

2 PREFIX core: <https :// w3id.org/polifonia/ontology/core/>

3 SELECT DISTINCT ?time

4 WHERE {

5 ?composition mp:isInvolvedInMusicalPerformance ?performance .

6 ?performance core:hasTimeInterval ?time }

Listing 6.1: SPARQL query for the Competency Question Verification test

1 {"head": {"vars": ["time "]} ,

2 "results ": {" bindings ":

3 [{" time": {

4 "type": "uri",

5 "value": "https ://raw.githubusercontent.com/polifonia -project/

musical -performance/main/test/competency -question/toy -dataset/TI2018

" } }] } }

Listing 6.2: Expected results for the Competency Question Verification test

After the completion of the task, the participants were asked to provide their feed-

back in different modalities. To document the problems that they encounter during the

2https://github.com/FiorelaCiroku/XDTestingDemo
3https://w3id.org/polifonia/ontology/musical-performance/

74 6. Evaluation

session, we had created two GitHub issue templates4. One template is to document bug

reports, and the other is for requesting features that they would like to have. We have

also opened several discussion boards5 to light up conversations regarding features, bugs,

documentation, and general feedback. Mainly, to document the insights of the partici-

pants for the tool, we created a questionnaire6 which is divided into three sections. The

goal of the first section is to gather information about the ontology engineers’ experience

with testing. More specifically, the questions asked are:

• Are you an ontology engineer?

• Do you perform ontology testing?

• How long does it take to create, execute and document a test case?

• What are the most common issues that you encounter while creating, executing

and documenting a test case?

• Which tools/applications do you use for the creation and execution of a test case?

• Which platforms do you use for the documentation of the testing?

The goal of the second section is to gather feedback on the functionality of specific

features of the XDTesting tool and new requirements for the further development of the

tool through the comment section of the survey. The questions asked are:

• Does the dashboard provide useful statistics about the testing of an ontology?

• What other statistics would you prefer to be displayed in the dashboard?

• Does XDTesting provide an efficient documentation structure in GitHub? If not,

what can be improved?

• Does XDTesting have a good selection of features that meet your needs?

4https://github.com/FiorelaCiroku/XD-TestingSession/issues
5https://github.com/FiorelaCiroku/XD-TestingSession/discussions
6https://xdtesting.limesurvey.net/493542

6.2 Evaluation of XDTesting 75

• Is there any feature that you would like to have as part of XDTesting? If yes,

which?

• Does XDTesting tackle any of the issues that you encounter while completing the

testing manually? If yes, which?

• Would you prefer XDTesting to be integrated with other platforms other than

GitHub? If yes, which?

• Does XDTesting have a complete documentation, including clear instructions and

troubleshooting guides?

Lastly, the third section is a standard System Usability Scale (SUS) which is a com-

monly used, standardized questionnaire designed to assess a system’s perceived usability

[14]. The SUS is frequently used as a benchmark to compare different systems or to track

usability changes over time. It consists of ten assertions, as shown in the list below, that

users must rate on a 5-point Likert scale, with values ranging from 1 (strongly disagree)

to 5 (strongly agree). The scores for each statement are then totaled up and multiplied

by 2.5 to yield a final score ranging from 0 to 100.

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use this

system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

76 6. Evaluation

10. I needed to learn a lot of things before I could get going with this system.

In Figure 6.8, the grade ranking of SUS scores is displayed, where the scores are

categorized based on acceptability ranges, grade scale, and adjective ratings. The ac-

ceptability ranges are not acceptable, low and high marginal, and acceptable. While the

grade scale starts from the F grade, which is the lowest, to the A grade, which is the

highest. Lastly, the adjective ratings vary from worst imaginable to best imaginable.

Figure 6.8: Grade rankings of SUS scores. Figure retrieved from [14]

In Figure 6.9 is shown the percentile ranking of the SUS scores. In accordance to

Figure 6.8, scores below 50 is a grade F and fall under 12%, and scores above 85 are a

grade A and are above 90%.

6.2.2 Results

In this subsection, we present the results of the evaluation of XDTesting. The results

are gathered through a questionnaire, direct feedback, and GitHub issues. Firstly, we

summarize the experience that the ontology engineers have relating to testing. Secondly,

we outline their feedback regarding the features of XDTesting. Thirdly, we present the

overall SUS score of the system and interpret it.

Seven ontology engineers participated in the XDTesting tool evaluation. Five of the

engineers are experts in ontology testing, while the remaining two are familiar with the

process. The findings of the first section of the questionnaire uphold the claims that

we have made throughout the thesis regarding the tediousness of creating test cases,

6.2 Evaluation of XDTesting 77

Figure 6.9: Percentile rankings of SUS scores. Figure retrieved from [14]

the most common issues when executing test cases, and the main tools that are used

to assist with the process. Based on the survey, an ontology engineer spends from 10

to 60 minutes to create a test case, execute it, and document it, which is a substantial

amount of time when testing ontologies. The main issues they encounter during the

testing are the syntax errors with the SPARQL and expected results, the conversion

of a SPARQL query written from a common text editor into a one-liner escaped form

(that is, removing new lines, escaping spaces, and so on), and formatting errors. They

notice that the lack of tools to automatically assist with the filling of the template, the

execution, and documenting the executions is particularly a concern. To complete a

test case, the engineers use a combination of disconnected tools such as TESTaLOD for

the creation of test cases, the OWLUnit jar for the execution of the test case, Protégé

for Inference Verification and Error Provocation tests, LODE7 for testing the ontology

module by means of its generated documentation, LodView8 for assessing the quality of

data associated with the ontology module, and text editors for creating data and queries

to triplestores for storing test data and executing queries. For the documentation of the

7https://essepuntato.it/lode/
8https://lodview.it/

78 6. Evaluation

testing, almost all of the participants use GitHub with manually created files, while others

do not document because of the lack of an integrated tool to automatically generate it.

The second section of the survey provides valuable insights regarding the features of

XDTesting. All the participants have responded that the dashboard of the application

provides useful statistics about the status of the testing of the ontology. Suggested im-

provements that can be made to the dashboard are the addition of a clickable button

to direct to failed tests or their documentation, the replacement of the line plot with

a scatter or bar plot, the addition of a list of fragments with a “fully completed” and

“error presence” flag, and lastly, the possibility to select a specific kind of test. An in-

teresting statistic that can be added to the dashboard is the calculated average for fails

and successes, and the coverage of the test, which can be computed as the number of

classes and properties in the tested ontology and the number of them involved in any

test. When asked about the documentation structure on GitHub, the participants agreed

that it is efficient. Though it can be improved by adding more documentation regarding

the structure of the repository in the readme.md file and by adding links between files.

Regarding the selection of features in XDTesting, the ontology engineers acknowledged

that it meets their needs and tackles issues that they encounter while completing the

testing manually. According to the feedback, the XDTesting tool facilitates the elimina-

tion of formatting issues, the automation of the test documentation with the versioning

of the files, and it provides a coherent, homogeneous, and integrated tool for supporting

ontology testing that reduces the effort. Considering that the main platform used for the

documentation of the ontologies and their testing is GitHub, only two of the participants

responded that they would like for XDTesting to be integrated into another platform.

The suggested options are BitBucket9 and GitLab10. Lastly, when asked if XDTesting

has complete documentation, including clear instructions and troubleshooting guides,

the participants unanimously agreed. One suggestion is for the documentation in the

application to be integrated with the documentation in the GitHub repository.

The last section of the evaluation survey was the System Usability Scale questionnaire.

As previously described, the results of the questionnaire are transformed into a score.

9https://bitbucket.org/
10https://gitlab.com/

6.2 Evaluation of XDTesting 79

The mean of the scores received is 83.57, and according to Figure 6.8 XDTesting can be

evaluated as acceptable and a grade B tool. The mean score of the SUS questionnaire

for the XDTesting tool is above the 90 percentile rank, as shown in Figure 6.9. The

standard deviation is 6.79, which means that the data is relatively close to the mean.

The margin of error is 2.56. The skewness of the data is calculated to be -0.092588,

indicating that the data are roughly symmetrical and that we can use the t-test. We

performed a one-sample t-test and raise the following hypothesis H0 : µ = 78.5 and

H1 : µ > 78.5, where 78.5 is the hypothesized population mean of SUS scores. The

calculated value is 1.9755. Based on the t-test score, we calculated the p-value with a

degree of freedom of 6 (sample number - number of parameters from t-test). Its value is

0.047 and we can reject H0 at the significance level 0.05, because the p-value does not

exceed 0.05. The fact that the null hypotheses is rejected, does not necessarily mean

that the alternative hypothesis is true. If we test whether the mean of SUS scores for the

population is 80, the t-test value is 1.391, and the p-value is 0.10. There is not enough

evidence to reject H0 at the significance level 0.05, because the p-value is greater than

0.05. This result is expected considering the small sample (seven). A new evaluation

session will be carried out after the second iteration of the XDTesting development.

Figure 6.10: SUS scores of the participants in the experiment

Chapter 7

Conclusions and future work

In Chapter 7, we discuss the limitations of the work in Section 7.1, plans for future

work in Section 7.2 and present the overall conclusions of the research in Section 7.3.

7.1 Discussion

Even though the results from the evaluation of RevOnt are satisfying, the work ex-

tensively depends on state-of-the-art natural language processing methods to achieve

good results in extracting competency questions from knowledge graphs. These methods

come with well-known issues and limitations, which inevitably propagate into Revont’s

pipeline. Below is our discussion regarding issues in the fields of natural language pro-

cessing, ontology learning, and schema induction and discovery, which are reflected to

some extent in our work.

1. Methods based on language models are highly sensitive to the input data [44].

This issue is generally observed in the generation of questions by RevOnt, where

the distance between the triple and its verbalization plays a significant role. The

quality of the extracted competency questions is decidedly related to the quality

of the dataset that is used in the implementation. This is clearly noted in the

difference in quality between the different types of questions that are generated

when the answer is the subject/object of the verbalisation and when the answer is

the predicate of the verbalisation. Given that there is a higher distance between

81

82 7. Conclusions and future work

the property of the triple with its verbalisation compared to the distance between

the subject/object and their verbalisation, it is understandable that the quality of

the generated questions is going to differ. An important emphasis should be put on

the fact that for the implementation, we did not extract the data directly from the

knowledge graph and rather from a verbalization dataset of the knowledge graph.

To extract data directly from a knowledge graph, it is necessary to retrain the

language models that were reused with new data.

2. The WDV dataset showed limitations in the reuse of NER models considering

that the ones that were analysed performed poorly for specific themes (50% of the

WDV dataset). Their performance is explained by the heterogeneous data used

to train these models, which is comprehensively different compared to the dataset.

These models are often trained with data from news articles, and emails/chat data,

which explains the good performance with themes such as Artist, Athlete, City,

etc. This issue prompted the need to create an algorithm to classify the subject

and object of the triple to the nearest class they belong to. The concern is that

the implementation of the algorithm is dependent on the Wikidata query service,

which does not make the method robust if one prefers to use another knowledge

graph as input. By training a NER model with data specific to the domain of

interest, it is possible to make the approach independent from the Wikidata query

service, and more available to be reused.

3. The dependency between the language models and methods used in such a system

poses another limitation. The performance of the system is impacted by the per-

formance of each component. For natural language processing systems, the effect

of errors is multiplicative. Because each component is dependent on the preceding,

errors propagate along a processing pipeline, resulting in a final output that may

be unsatisfactory despite the good performance of each component [72]. A solution

to this problem could be to add a manual validation phase between each passage

in the system, which would incur high costs in terms of time and effort. In most

cases, the validation phase proposed in the above point would consist of a human

intervention, which is not always desirable. Although interesting ideas such as us-

7.1 Discussion 83

ing crowd-sourcing and social media to validate the results of language models are

proposed by [5].

4. The scalability of a system with combines language models and querying services

is one of the main drawbacks. Firstly, language models need time to perform

their tasks and high processing capabilities. Secondly, knowledge graph querying

services have limitations in usage, meaning that one is not allowed to make more

than a certain number of requests per minute. So, despite a high computational

power in use, the execution time is still not satisfying even for small datasets.

As for the XDTesting tool, the implementation of the method and its evaluation

brought to the surface several limitations related to design choices and feature inclusion.

Below we discuss these issues together with possible solutions.

1. The main limitation is the dependency on the GitHub platform. Even though

GitHub is a highly used platform for collaborating on projects and showcasing

work, there are as well other platforms that have relatively the same function such

as GitLab, BitBucket, etc. Moreover, considering that the automation of several

tasks of the ontology testing process is executed in GitHub, it might cause delay

issues if several tasks are trying to access the workflow at the same time.

2. The evaluation session brought several features to our attention that might boost

its usability. Most of the suggestions mention the integration of other platforms

and APIs into the XDTesting Configurator. The main feature requested by the

ontology testers was for the tool to assist with the creation of SPARQL queries and

datasets. A suggested API to support the creation of SPARQL queries is YASGUI1,

which is a query editor that offers syntax highlighting, syntax validation, auto-

completion, and a variety of different SPARQL result visualizations [95]. Currently,

the users are requested to either write the SPARQL query in the text field or

upload a file, which might be a redundant task. Meanwhile, for the creating and

validating the dataset on-the-fly, rdf-editor2 is suggested. It is a text editor

1https://yasgui.triply.cc/
2https://www.npmjs.com/package/@rdfjs-elements/rdf-editor

84 7. Conclusions and future work

custom element which parses and serializes RDF/JS Quads using a selected RDF

format. Another suggestion is to have to XDTesting tool as a Protégé plug-in

that would provide ontology engineers with an all-in-one type of application for

the creation, management, and testing of an ontology. By implementing these

features, XDTesting might reduce the workload of the engineer to a greater extent

and increase its usability within the community.

7.2 Future work

In its first implementation, RevOnt generated questions based on the abstraction of

triple verbalizations, rather than the triple itself. In particular, the question generation

model (T5) performs better when provided with the sentence and the answer. This

limits the usability of the method with datasets where the answer is not explicit. It

requires additional steps such as Part-Of-Speech tagging, parsing, and lemmatization to

be able to provide an entity as an answer. We plan to refine this aspect of the method

by 1) detecting entities that might serve as answers, and 2) not providing an answer.

Furthermore, we are currently working on applying the RevOnt approach in a different

setting by using AMR graphs3 as input. The chosen AMR graph is constructed from

a multilingual corpus produced by the Polifonia project. This extension requires the

annotation and preparation of data to be used as a training set for the language models

and the retraining of the models with multilingual data. The results of the method will

be used as a testbed for a Question Answering system.

As for XDTesting, as previously stated, the tool is developed based on the testing

protocols of the eXtreme Design methodology. Even though XD complies with other

ontology engineering methodologies, a direct future work is the experimentation of the

tool with ontologies that are not built using this methodology. This experimentation

would help identify new requirements for a third iteration, detect bugs, and make the

tool more inclusive of other methodologies. A second direction is the extension of the tool

automation beyond the GitHub platform. We are considering options such as self-hosted

3AMR graphs are a graph-based representation that aims to preserve semantic relations.

7.3 Conclusion 85

servers, cloud-hosted management, or expansion to other platforms such as GitLab4.

Recent development of the tool attempts to dissociate from the platform by integrating

all the automation in one script independent from the GitHub marketplace.

7.3 Conclusion

The use of knowledge graphs and ontologies has increased significantly in recent years,

due to the growing need for better data management and integration. Many organiza-

tions are recognizing the advantages of implementing these technologies to increase data

accessibility, consistency, and quality, as well as to aid in the creation of knowledge-based

systems.

On the one hand, collecting requirements for ontologies is an important step in the

ontology development process since it defines the ontology’s structure and content. Tra-

ditional techniques of extracting requirements, such as surveys and interviews, take time

and are prone to inaccuracies and misunderstandings. The creation of methods that use

natural language processing algorithms and language models aids in extracting require-

ments from large volumes of (un)structured data (e.g., knowledge graphs). RevOnt is an

approach that can extract competency questions from knowledge graphs with the means

of multiple natural language processing models. The approach is based on the reverse

engineering of an ontology development process and uses the verbalization of knowledge

graph triples as input. RevOnt abstracts the verbalization, generates three questions

for each triple, and filtrates the questions. The end result of the approach is a set of

competency questions that represent the triples from which they were extracted, and

the templates of the competency questions are mapped to SPARQL query templates.

The RevOnt approach has been implemented using the WDV dataset. Based on a first

evaluation, 75% of the abstractions generated by the first component of the approach,

Verbalization Abstraction, have a good-to-high quality. Meanwhile, the questions gen-

erated by the second component, Question generation, have a wider range of quality,

starting from poor to high. The type of question that received a higher score quality-

wise is the one that RevOnt generates when the answer is the object of the triple. The

4https://about.gitlab.com/

86 7. Conclusions and future work

RevOnt method directly answers RQ1 which asks whether an approach for eliciting re-

quirements from knowledge graphs can be defined with the means of language models.

To answer H1 regarding the quality features that a requirement must have in order to

be classified as a competency question, the literature research concludes in the fact that

a competency question is considered as such if it is able to be translated into a query

that is used to question the respective ontology. As for H2, the evaluation through the

implementation of the RevOnt method confirms that the quality of the elicited require-

ments that are generated with the means of language models from a knowledge graph is

comparable to human-generated requirements.

On the other hand, despite the growing importance of ontologies in knowledge man-

agement, there is still a scarcity of comprehensive and user-friendly ontology testing

tools. The test procedure is generally laborious and time-consuming, including checks

for the ontology’s completeness, consistency, and accuracy. As a result, ontology test-

ing continues to be a bottleneck in knowledge graph engineering processes, and tools

that automate the testing process are required. To fill a gap in the state-of-the-art, we

defined the XDTesting method and implemented it in the form of a web application

integrated with the GitHub platform. Referring RQ2, XDTesting reduces the workload

of the ontology testers because it can create, annotate, execute, and document test cases

automatically. The results of the test cases’ execution are displayed graphically in the

XDTesting Configurator and in more detail in the ontology fragment view. The complete

documentation of the test case execution is stored in a standardized directory structure

in GitHub. XDTesting has been evaluated as an acceptable, grade B, excellent tool ac-

cording to the System Usability Scale questionnaire. The tool fulfills an immediate need

for support in ontology testing. Furthermore, it contributes to the research community

by encouraging the ontology testing process and making it a standard practice.

To conclude, requirement collection and ontology testing are critical steps in the

knowledge graph engineering process, but they are frequently impeded by a lack of

tool support. Traditional requirements elicitation methods and ontology testing require

significant time and effort, and at times can result in errors and inconsistencies in the final

ontology. The lack of tools for automating these steps hinders the effective application of

knowledge graphs and ontologies across multiple domains. The development of tools to

7.3 Conclusion 87

support the requirements elicitation process with the help of natural language processing

algorithms, such as RevOnt, as well as to automate ontology testing, such as XDTesting,

improves the quality and efficiency of the ontology engineering process. The value of

these tools in the ontology engineering process cannot be overstated, as they might be

vital to the development, documentation, and reuse of knowledge graphs and ontologies.

Bibliography

[1] Abdelghany Salah Abdelghany, Nagy Ramadan Darwish, and Hesham Ahmed

Hefni. An agile methodology for ontology development. International Journal Of

Intelligent Engineering And Systems. Volume 12. pp. 170-181 (2019). https:

//doi.org/10.22266/ijies2019.0430.17.

[2] Aggarwal, Charu C., Alexander Hinneburg, and Daniel A. Keim. On the surprising

behavior of distance metrics in high dimensional space. Lecture Notes in Computer

Science. pp. 420-434 (2001). https://doi.org/10.1007/3-540-44503-x_27.

[3] Amaral, Gabriel, Odinaldo Rodrigues, and Elena Simperl. ”WDV: A Broad Data

Verbalisation Dataset Built from Wikidata.” Lecture Notes in Computer Science.

pp. 556â574 (2022). https://doi.org/10.1007/978-3-031-19433-7_32.

[4] Amaral, Gabriel. WDV. https://figshare.com/articles/dataset/WDV/

17159045. (2022) 10.6084/m9.figshare.17159045.v1 .

[5] Asim, Muhammad Nabeel, Muhammad Wasim, Muhammad Usman Ghani Khan,

Waqar Mahmood, Hafiza Mahnoor Abbasi. A survey of ontology learning techniques

and applications. Database. Volume 2018. pp. 1-24 (2018). https://doi.org/10.

1093/database/bay101.

[6] Asprino, Luigi, Valentina Anita Carriero, and Valentina Presutti. Extraction of com-

mon conceptual components from multiple ontologies. Proceedings Of The 11th On

Knowledge Capture Conference. pp. 185-192 (2021). https://doi.org/10.1145/

3460210.3493542.

89

90 BIBLIOGRAPHY

[7] Auer, Sören, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cy-

ganiak, and Zachary Ives. Dbpedia: A nucleus for a web of open data. Lec-

ture Notes in Computer Science. pp. 722-735 (2007). https://doi.org/10.1007/

978-3-540-76298-0_52.

[8] Bezerra, Camila, Fred Freitas, and Filipe Santana. Evaluating ontologies with com-

petency questions. IEEE/WIC/ACM International Joint Conferences on Web In-

telligence (WI) and Intelligent Agent Technologies (IAT). Volume 3. pp. 284-285

(2013). https://doi.org/10.1109/wi-iat.2013.199.

[9] Blomqvist, Eva, Karl Hammar, and Valentina Presutti. Engineering Ontologies with

Patterns-The eXtreme Design Methodology. Ontology Engineering With Ontology

Design Patterns. pp. 23-50 (2016).

[10] Blomqvist, Eva, Valentina Presutti, Enrico Daga, and Aldo Gangemi. Experi-

menting with eXtreme design. International Conference On Knowledge Engineering

And Knowledge Management. pp. 120-134 (2010). http://dx.doi.org/10.1007/

978-3-642-16438-5_9.

[11] Blomqvist, Eva, Azam Seil Sepour, and Valentina Presutti. Ontology testing-

methodology and tool. International Conference On Knowledge Engineering

And Knowledge Management. pp. 216-226 (2012). http://dx.doi.org/10.1007/

978-3-642-33876-2_20.

[12] Bottini, Thomas, Valentina Anita Carriero, Jason Carvalho OU, Philippe Cathé,

Fiorela Ciroku, Enrico Daga OU, Marilena Daquino et al. Polifonia: a digital har-

moniser for musical heritage knowledge, H2020. (2021).

[13] Brank, Janez, Marko Grobelnik, and Dunja Mladenic. A survey of ontology evalua-

tion techniques. Proceedings Of The Conference On Data Mining And Data Ware-

houses (SiKDD 2005). pp. 166-170 (2005).

[14] Brooke, John. SUS: a retrospective. Journal Of Usability Studies. Volume 8, pp.

29-40 (2013).

BIBLIOGRAPHY 91

[15] Carriero, Valentina Anita, Fabio Mariani, Andrea Giovanni Nuzzolese, Valentina

Pasqual, and Valentina Presutti. Agile Knowledge Graph Testing with TESTaLOD.

ISWC Satellites. pp. 221-224 (2019).

[16] Čebirić Šejla, François Goasdoué, Haridimos Kondylakis, Dimitris Kotzinos, Ioana

Manolescu, Georgia Troullinou, and Mussab Zneika. Summarizing semantic graphs:

a survey. The VLDB Journal. Volume 28, pp. 295-327 (2019). https://doi.org/

10.1007/s00778-018-0528-3.

[17] Corcho, Óscar, Asunción Gómez-Pérez, Rafael González-Cabero, and M. Car-

men Suárez-Figueroa. ODEval: a tool for evaluating RDF (S), DAML+ OIL,

and OWL concept taxonomies. IFIP International Conference On Artificial Intel-

ligence Applications And Innovations. pp. 369-382 (2004). https://doi.org/10.

1007/1-4020-8151-0_32.

[18] Corcho, Óscar, Mariano Fernández-López, Asunción Gómez-Pérez, and Angel

López-Cima. Building legal ontologies with METHONTOLOGY and WebODE.

Law And The Semantic Web. pp. 142-157 (2005). https://doi.org/10.1007/

978-3-540-32253-5_9.

[19] Datetime - Basic Date and Time Types. Python Documentation, https://docs.

python.org/3/library/datetime.html. Accessed 19 Jan. 2023.

[20] Dietz, Jan LG. What is Enterprise ontology?. Springer Berlin Heidelberg. pp. 7-13

(2006). https://doi.org/10.1007/3-540-33149-2_2.

[21] Fadel, Fadi George, Mark S. Fox, and Michael Grüninger. A generic enterprise

resource ontology. Proceedings Of 3rd IEEE Workshop On Enabling Technologies:

Infrastructure For Collaborative Enterprises. pp. 117-128 (1994). https://doi.org/

10.1109/enabl.1994.330496.

[22] Fellbaum, Christiane. WordNet. Theory And Applications Of Ontology:

Computer Applications. pp. 231-243 (2010). https://doi.org/10.1007/

978-90-481-8847-5_10.

92 BIBLIOGRAPHY

[23] Fernández-Izquierdo, Alba and Raúl Garćıa-Castro. Ontology verification testing us-

ing lexico-syntactic patterns. Information Sciences. Volume 582. pp. 89-113 (2022).

https://doi.org/10.20868/upm.thesis.66728.

[24] Fernández-Izquierdo, Alba and Raúl Garćıa-Castro. Themis: a tool for validating

ontologies through requirements. Proceedings of the 31st International Conference

on Software Engineering and Knowledge Engineering. pp. 573-753 (2019). https:

//doi.org/10.18293/seke2019-117.

[25] Fox, Mark S., Mihai Barbuceanu, and Michael Gruninger. An organisation ontol-

ogy for enterprise modeling: Preliminary concepts for linking structure and be-

haviour. Computers In Industry. Volume 29. pp. 123-134 (1996). https://doi.

org/10.1016/0166-3615(95)00079-8.

[26] Gangemi, Aldo and Valentina Presutti. Ontology design patterns. Handbook On

Ontologies. pp. 221-243 (2009), https://doi.org/10.1007/978-3-540-92673-3_

10.

[27] Gangemi, Aldo, Carola Catenacci, Massimiliano Ciaramita, and Jos Lehmann. Mod-

elling ontology evaluation and validation. The Semantic Web: Research and Appli-

cations. pp. 140-154. (2006). https://doi.org/10.1007/11762256_13.

[28] Gick, Mary L. and Keith J Holyoak. Schema induction and analogical transfer.

Cognitive Psychology. Volume 15. pp. 1-38 (1983). https://doi.org/10.1016/

0010-0285(83)90002-6.

[29] Goguen, Joseph A. and Charlotte Linde. Techniques for requirements elicitation.

[1993] Proceedings Of The IEEE International Symposium On Requirements Engi-

neering. pp. 152-164 (1993). https://doi.org/10.1109/isre.1993.324822.

[30] Google Evaluating models - AutoML translation documentation. Google.

https://cloud.google.com/translate/automl/docs/evaluate#:~:text=

BLEU\%20(BiLingual\%20Evaluation\%20Understudy)\%20is,of\%20high\

%20quality\%20reference\%20translations. (2022).

BIBLIOGRAPHY 93

[31] Guarino, Nicola, and Christopher A Welty. An overview of OntoClean. Handbook On

Ontologies. pp. 151-171 (2004). https://doi.org/10.1007/978-3-540-24750-0_

8.

[32] Gruber, Thomas R. Ontolingua: A mechanism to support portable ontologies. Cite-

seer. (1992).

[33] Grüninger, Michael and Mark S. Fox. The role of competency questions in enterprise

engineering. Benchmarking - Theory And Practice. pp. 22-31 (1995). https://doi.

org/10.1007/978-0-387-34847-6_3.

[34] Hartmann, Jens, Peter Spyns, Alain Giboin, Diane Maynard, Roberto Cuel, Mc

Suarez-Figeroa, and York Sure. Methods for Ontology Evaluation. KnowledgeWeb

Deliverable D1.2.3, Karlsruhe (2005).

[35] Ioffe, Sergey and Christian Szegedy. Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift. International Conference On Ma-

chine Learning. pp. 448-456 (2015).

[36] Iqbal, Tabbassum and Mohammad Suaib. Requirement elicitation techniques: a

review paper. International Journal of Computer Mathematics. Volume 3, pp. 1-6

(2014).

[37] Jamil, Muhammad Abid, Muhammad Arif, Normi Sham Awang Abubakar, and

Akhlaq Ahmad. Software testing techniques: A literature review. In 2016 6th inter-

national conference on information and communication technology for the Muslim

world (ICT4M). pp. 177-182 (2016).

[38] Ji, Qiu, Guilin Qi, Huan Gao, and Tianxing Wu. Survey on Schema Induction

from Knowledge Graphs. China Conference On Knowledge Graph And Semantic

Computing. pp. 136-142 (2018). https://doi.org/10.1007/978-981-13-3146-6_

12.

[39] John, Santhosh, Nazaraf Shah, and Craig Stewart. Towards a Software Centric

Approach for Ontology Development: Novel Methodology and its Application. 2018

94 BIBLIOGRAPHY

IEEE 15th International Conference On E-Business Engineering (ICEBE). pp. 139-

146 (2018). https://doi.org/10.1109/icebe.2018.00030.

[40] Json - JSON Encoder and Decoder. Python Documentation, https://docs.

python.org/3/library/json.html. Accessed 19 Jan. 2023.

[41] Keet, C. Maria, and Agnieszka Lawrynowicz. Test-driven development of ontologies.

European Semantic Web Conference. pp. 642-657 (2016).

[42] Kellou-Menouer, Kenza, Nikolaos Kardoulakis, Georgia Troullinou, Zoubida Kedad,

Dimitris Plexousakis, and Haridimos Kondylakis. A survey on semantic schema

discovery. The VLDB Journal. Volume 31. pp. 675-710 (2022). https://doi.org/

10.1007/s00778-021-00717-x.

[43] Lantow, Birger. OntoMetrics: Putting Metrics into Use for Ontology Evalua-

tion. Proceedings of the 8th International Joint Conference on Knowledge Dis-

covery, Knowledge Engineering and Knowledge Management. pp. 186-191 (2016).

https://doi.org/10.5220/0006084601860191.

[44] Lavie, Alon. Evaluating the output of machine translation systems. Proceedings Of

The 9th Conference Of The Association For Machine Translation In The Americas:

Tutorials. (2010).

[45] Lawrynowicz, Agnieszka and C. Maria Keet. The TDDonto tool for test-driven

development of DL knowledge bases. CEUR-WS Proceedings. (2016).

[46] Lenat, DB and RV Guha. Building large knowledge-based systems: Representation

and inference in the CYC project. Artificial Intelligence. Volume 61. pp. 4152 (1993).

[47] Loper, Edward and Steven Bird. Nltk: The natural language toolkit. Proceedings of

the ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural

Language Processing and Computational Linguistics. (2002). https://doi.org/10.

3115/1118108.1118117.

[48] Markdown Guide. https://www.markdownguide.org/. Accessed 30 Jan. 2023.

BIBLIOGRAPHY 95

[49] McInnes, Leland, John Healy, and Steve Astels. hdbscan: Hierarchical density based

clustering. Journal of Open Source Software. Volume 2. pp. 205 (2017). https:

//doi.org/10.21105/joss.00205.

[50] McInnes, Leland, John Healy, and James Melville. Umap: Uniform manifold approx-

imation and projection for dimension reduction. Journal of Open Source Software.

Volume 3. pp. 861 (2018). https://doi.org/10.21105/joss.00861.

[51] Mintz, Mike, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision for

relation extraction without labeled data. Proceedings Of The Joint Conference Of

The 47th Annual Meeting Of The ACL And The 4th International Joint Conference

On Natural Language Processing Of The AFNLP. Volume 2. pp. 1003-1011 (2009).

https://doi.org/10.3115/1690219.1690287.

[52] Napoles, Courtney, Keisuke Sakaguchi, and Joel Tetreault. JFLEG: A fluency corpus

and benchmark for grammatical error correction. Proceedings of the 15th Conference

of the European Chapter of the Association for Computational Linguistics. Volume

2. (2017). https://doi.org/10.18653/v1/e17-2037.

[53] Nuzzolese, Andrea Giovanni, Aldo Gangemi, Valentina Presutti, and Paolo

Ciancarini. Encyclopedic knowledge patterns from wikipedia links. Lecture

Notes in Computer Science. pp. 520-536 (2011). https://doi.org/10.1007/

978-3-642-25073-6_33.

[54] Öhgren, Annika and Kurt Sandkuhl. Towards a methodology for ontology develop-

ment in small and medium-sized enterprises. IADIS International Conference Ap-

plied Computing. pp. 369-376 (2005).

[55] Ontology-Related Tools and Services. https://fairplus.github.

io/the-fair-cookbook/content/recipes/interoperability/

ontology-operations-tools.html. Accessed 30 Jan. 2023.

[56] Os - Miscellaneous Operating System Interfaces. Python Documentation, https:

//docs.python.org/3/library/os.html. Accessed 19 Jan. 2023.

96 BIBLIOGRAPHY

[57] Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method

for automatic evaluation of machine translation. Proceedings Of The 40th Annual

Meeting Of The Association For Computational Linguistics. pp. 311-318 (2001).

https://doi.org/10.3115/1073083.1073135.

[58] Paschke, Adrian and Ralph Schäfermeier. OntoMaven-maven-based ontology devel-

opment and management of distributed ontology repositories. Synergies Between

Knowledge Engineering And Software Engineering. pp. 251-273 (2018). https:

//doi.org/10.1007/978-3-319-64161-4_12.

[59] Peroni, Silvio. A simplified agile methodology for ontology development. OWL: Ex-

periences And Directions - reasoner Evaluation. pp. 55-69 (2017). https://doi.

org/10.1007/978-3-319-54627-8_5.

[60] Piscopo, Alessandro and Elena Simperl. Who models the world? Collaborative

ontology creation and user roles in Wikidata. Proceedings Of The ACM On Human-

Computer Interaction. Volume 2. pp. 1-18 (2018). https://doi.org/10.1145/

3274410.

[61] Pouriyeh, Seyedamin, Mehdi Allahyari, Krys Kochut, and Hamid Reza Arabnia. A

comprehensive survey of ontology summarization: measures and methods. ArXiv

Preprint ArXiv:1801.01937. (2018).

[62] Poveda-Villalón, MarÃa, Asunción Gómez-Pérez and Mari Carmen Suárez-

Figueroa. OOPS! (OntOlogy Pitfall Scanner!): An Online Tool for Ontology Evalua-

tion. International Journal On Semantic Web And Information Systems (IJSWIS).

10, 7-34 (2014). https://doi.org/10.4018/ijswis.2014040102.

[63] Presutti, Valentina, Enrico Daga, Aldo Gangemi, and Eva Blomqvist. eXtreme de-

sign with content ontology design patterns. Proc. Workshop On Ontology Patterns.

pp. 83-97 (2009).

[64] Raad, Joe and Christophe Cruz. A survey on ontology evaluation methods. Pro-

ceedings Of The International Conference On Knowledge Engineering And Ontol-

ogy Development, Part Of The 7th International Joint Conference On Knowledge

BIBLIOGRAPHY 97

Discovery, Knowledge Engineering And Knowledge Management. (2015). https:

//doi.org/10.5220/0005591001790186.

[65] Raffel, Colin, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu, and others. Exploring the limits

of transfer learning with a unified text-to-text transformer. The Journal of Machine

Learning Research. Volume 21. pp. 1-67 (2020).

[66] Rajpurkar, Pranav, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 100,000+

questions for machine comprehension of text. Proceedings of the 2016 Conference

on Empirical Methods in Natural Language Processing. (2016). https://doi.org/

10.18653/v1/d16-1264.

[67] Rdflib 6.2.0 - Rdflib 6.2.0 Documentation. https://rdflib.readthedocs.io/en/

stable/. Accessed 19 Jan. 2023.

[68] Re - Regular Expression Operations. Python Documentation, https://docs.

python.org/3/library/re.html. Accessed 19 Jan. 2023.

[69] Ren, Yuan, Artemis Parvizi, Chris Mellish, Jeff Z Pan, Kees van Deemter, and

Robert Stevens. Towards competency question-driven ontology authoring. European

Semantic Web Conference: Trends and Challenges. pp. 752-767 (2014). https:

//doi.org/10.1007/978-3-319-07443-6_50.

[70] Requests: HTTP for Humans - Requests 2.28.2 Documentation. https://

requests.readthedocs.io/en/latest/. Accessed 19 Jan. 2023.

[71] Reimers, Neils and Irina Gurevych. Sentence-bert: Sentence embeddings using

siamese bert-networks. Proceedings of the 2019 Conference on Empirical Methods in

Natural Language Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP). (2019). https://doi.org/10.18653/v1/

d19-1410.

[72] Resnik, Philip and Jimmy Lin. 11 evaluation of NLP systems. The Handbook Of

Computational Linguistics And Natural Language Processing. Volume 57. pp. 271-

295 (2010). https://doi.org/10.1002/9781444324044.ch11.

98 BIBLIOGRAPHY

[73] Roberts, Adam and Colin Raffel. Exploring transfer learning with t5: the text-to-

text transfer transformer. Google AI Blog - ArXiv Preprint ArXiv:arXiv:1910.10683.

(2020).

[74] Romero, Manuel. T5 (base) fine-tuned on SQUAD for QG

via AP. Hugging Face Hub. https://huggingface.co/mrm8488/

t5-base-finetuned-question-generation-ap (2021).

[75] Sawant, Abhijit A., Pranit H. Bari, and P. M. Chawan. Software testing tech-

niques and strategies. International Journal of Engineering Research and Appli-

cations (IJERA). Volume 2. pp. 980-986 (2012).

[76] Schekotihin, Konstantin, Patrick Rodler, Wolfgang Schmid, Matthew Horridge, and

Tania Tudorache. Test-Driven Ontology Development in Protégé. International Con-

ference on Biological Ontology. (2018).

[77] Sneha, Karuturi, and Gowda M. Malle. Research on software testing techniques

and software automation testing tools. In 2017 international conference on energy,

communication, data analytics and soft computing (ICECDS). pp. 77-81 (2017).

https://doi.org/10.1109/icecds.2017.8389562.

[78] Spyns, Peter. Validating EvaLexon: validating a tool for evaluating automatically

lexical triples mined from texts. Lecture Notes in Computer Science. pp. 11-12

(2007). https://doi.org/10.1007/978-3-540-76888-3_6.

[79] Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

The Journal Of Machine Learning Research. Volume 15. pp. 1929-1958 (2014).

[80] Stojanovic, Ljiljana, Nenad Stojanovic, Jorge Gonzalez, and Rudi Studer. OntoMan-

ager - a system for the usage-based ontology management. OTM Confederated Inter-

national Conferences ”On The Move To Meaningful Internet Systems”. pp. 858-875

(2003). https://doi.org/10.1007/978-3-540-39964-3_54.

[81] Sure, York, Michael Erdmann, Juergen Angele, Steffen Staab, Rudi Studer, and

Dirk Wenke. OntoEdit: Collaborative ontology development for the semantic web.

BIBLIOGRAPHY 99

International Semantic Web Conference. pp. 221-235 (2002). https://doi.org/

10.1007/3-540-48005-6_18.

[82] Suárez-Figueroa, Mari Carmen, Asunción Gómez-Pérez, and Mariano Fernández-

López. The NeOn methodology for ontology engineering. Ontology Engineer-

ing In A Networked World. pp. 9-34 (2012). https://doi.org/10.1007/

978-3-642-24794-1_2.

[83] Sys - System-Specific Parameters and Functions. Python Documentation, https:

//docs.python.org/3/library/sys.html. Accessed 19 Jan. 2023.

[84] Toutanova, Kristina and Danqi Chen. Observed versus latent features for knowledge

base and text inference. Proceedings Of The 3rd Workshop On Continuous Vector

Space Models And Their Compositionality. pp. 57-66 (2015). https://doi.org/10.

18653/v1/w15-4007.

[85] Urllib - URL Handling Modules. Python Documentation, https://docs.python.

org/3/library/urllib.html. Accessed 19 Jan. 2023.

[86] Uschold, Michael and Michael Grüninger. Ontologies: Principles, methods and

applications. The Knowledge Engineering Review. Volume 11. pp. 93-136 (1996).

https://doi.org/10.1017/s0269888900007797.

[87] Uschold, Michael and Martin King. Towards a methodology for building ontologies.

Edinburgh: Artificial Intelligence Applications Institute, University of Edinburgh.

(1995).

[88] Vrandečić, Denny. Ontology evaluation. Handbook On Ontologies. pp. 293-313

(2009). https://doi.org/10.1007/978-3-540-92673-3_13.

[89] Vrandečić, Denny and Markus Krötzsch. Wikidata: a free collaborative knowl-

edgebase. Communications Of The ACM. Volume 57. pp. 78-85 (2014). https:

//doi.org/10.1145/2629489.

[90] Welcome to Pytablewriter’s Documentation! - Pytablewriter 0.64.1 Documentation.

https://pytablewriter.readthedocs.io/en/stable/. Accessed 19 Jan. 2023.

[91] Wang, Zhichun, Qingsong Lv, Xiaohan Lan, and Yu Zhang. Cross-lingual knowledge

graph alignment via graph convolutional networks. Proceedings Of The 2018 Con-

ference On Empirical Methods In Natural Language Processing. pp. 349-357 (2018).

https://doi.org/10.18653/v1/d18-1032.

[92] Wang, Zhiguo, Wael Hamza, and Radu Florian. Bilateral multi-perspective match-

ing for natural language sentences. Proceedings of the Twenty-Sixth International

Joint Conference on Artificial Intelligence. (2017). https://doi.org/10.24963/

ijcai.2017/579.

[93] Wisniewski, Dawid, Jkedrzej Potoniec, and Agnieszka Lawrynowicz. BigCQ: A

large-scale synthetic dataset of competency question patterns formalized into

SPARQL-OWL query templates. arXiv preprint arXiv:2105.09574. (2021).

[94] Wisniewski, Dawid, Jkedrzej Potoniec, Agnieszka Lawrynowicz, and Maria Keet.

Competency questions and SPARQL-OWL queries dataset and analysis. ArXiv

Preprint ArXiv:1811.09529. (2018).

[95] Yasgui Documentation. Triply. https://triply.cc/docs/yasgui. Accessed 30

Jan. 2023.

[96] Zhang, Yan and Barbara M. Wildemuth. Unstructured interviews. Applications Of

Social Research Methods To Questions In Information And Library Science. pp.

222-231 (2009).

