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Abstract

This Thesis studies the optimal control problem of single-arm and dual-arm serial
robots to achieve the time-optimal handling of liquids and objects.
The first topic deals with the planning of time-optimal anti-sloshing trajectories of
an industrial robot carrying a cylindrical container filled with a liquid, considering 1-
dimensional and 2-dimensional planar motions. A technique for the estimation of the
sloshing height is presented, together with its extension to 3-dimensional motions.
An experimental validation campaign is provided and discussed to assess the thor-
oughness of such a technique. As far as anti-sloshing trajectories are concerned, 2-
dimensional paths are considered and, for each one of them, three constrained opti-
mizations with different values of the sloshing-height thresholds are solved. Experi-
mental results are presented to compare optimized and non-optimized motions.
The second part focuses on the time-optimal trajectory planning for dual-arm object
handling, employing two collaborative robots (cobots) and adopting an admittance-
control strategy. The chosen manipulation approach, known as cooperative grasping,
is based on unilateral contact between the cobots and the object, and it may lead to
slipping during motion if an internal prestress along the contact-normal direction is
not prescribed. Thus, a virtual penetration is considered, aimed at generating the nec-
essary internal prestress. The stability of cooperative grasping is ensured as long as
the exerted forces on the object remain inside the static-friction cone. Constrained-
optimization problems are solved for 3-dimensional paths: the virtual penetration
is chosen among the control inputs of the problem and friction-cone conditions are
treated as inequality constraints. Also in this case experiments are presented in order
to prove evidence of the firm handling of the object, even for fast motions.
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Chapter 1

Introduction

Robotics entered the industrial world in the last decades, especially with the employ-
ment of serial manipulators1. To control the motion of a serial robot, offline planning
of the trajectory that its end-effector has to follow is needed. In most cases, the trajec-
tory planning of serial robots is made by writing the path in terms of a path parameter.
The path parameter, together with its first and second-time derivatives, composes the
motion law, hence giving the speed and acceleration with which the path has to be
traveled. In other words, the path-parameter motion law allows the definition of the
path time evolution, i.e., the end-effector trajectory. Nowadays, serial robots are widely
used to fulfill tasks that could represent a danger for human operators or that may re-
quire an unsustainable human effort in the long run (i.e., welding of car chassis parts,
grinding or milling, lifting of heavy objects, etc.). In addition, serial robots are inserted
within operations that need a certain degree of precision and repeatability, such as
pick&place tasks or accurate transport of goods between the machines of an industrial
line. However, the benefits deriving from the use of serial robots may not justify the
investment costs if the accomplishment of the described tasks does not envisage the
observance of a certain optimality criterion.
The latter can be conveniently selected depending on the final purpose to be pursued
by defining an appropriate objective function or cost functional that has to be mini-
mized within the robot trajectory planning. Hence, the objective function can be cho-
sen to:

• minimize the execution time of the trajectory in order to maximize the robot
productivity without neglecting the limits on the available hardware in terms of
maximum joint velocities and/or torques;

• minimize the power consumption for trajectory execution in order to reduce the
mechanical stress in the motors and the variable costs for operating the robot.

Typically, multi-criterion optimizations are taken into account to minimize more than
one quantity. The most common objective functions are the ones that consider a trade-
off between minimum time and minimum energy consumption, or those balancing
minimum time and minimum overall jerk of the path parameter, in order to obtain a
smooth behavior in the robot accelerations.

1A serial manipulator represents an open kinematic chain in which a sequence of bodies is connected
by means of successive revolute (in the majority of cases) or prismatic joints.
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So far, the discussion has only focused on optimality concerning the robot character-
istics and behavior without considering the state of the object to be processed or ma-
nipulated. In some cases, the condition of the components subject to the mechanical
processing or the pick&place or transport operations is not influenced by the robot be-
havior during the execution of the trajectory. For example, in a welding operation, the
parts to be linked are fixed on a specific frame; the robot only needs to follow the weld-
ing path executing the operation at a given velocity. Similarly, the rigid goods moved in
a pick&place operation usually do not change their status along the trajectory, if they
are suitably grabbed.
On the other hand, some industrial applications exist in which the trajectory planning
needs the inclusion of ad-hoc time-dependent constraints, depending on the inter-
action between the robot and the manipulated item. An example is the transport of
liquid-filled containers, in which the container is attached to the robot end-effector,
and the liquid, free to move inside the container, is subject to the excitation repre-
sented by the end-effector acceleration. The behavior of the liquid inside the container
is known as sloshing and has to be controlled during the whole motion to avoid over-
flowing. In this scenario, the trajectory planning needs to minimize an objective func-
tion (typically addressing minimal time), simultaneously respecting constraints on the
given hardware (e.g., limits on the robot joint velocities and torques) and maintaining
the sloshing height under a specified value.
A more complex case regards transporting heterogeneous objects with different sizes,
shapes and weights. To achieve the highest degree of flexibility with respect to (w.r.t.)
the object characteristics, a dual-arm setup can be considered. In order to avoid the
use of specific grippers, the two robots may hold the manipulated item through con-
tact points (or contact areas), without grabbing it, but rather relying on friction, thus
realizing what is called cooperative grasping. In this case, the sole time-optimal tra-
jectory would represent a failure in the execution of the task, as, given the unilateral
constraints between the robot end-effectors and the object, the robots may lose con-
tact with it. To avoid slipping of the object during motion, the forces exerted by the
robots have to remain inside the static-friction cone. This constraint has to be added
within the optimization, alongside the limits on the hardware.
This Thesis addresses the aforementioned two topics, namely the time-optimal anti-
sloshing trajectory planning of a single-arm robot and the time-optimal dual-arm tra-
jectory planning. In both cases, modeling the dynamics of the liquid and the object is
needed. In the former case, the liquid dynamics have to be evaluated to estimate the
peaks reached by the liquid during motion, hence allowing to relate the motion law of
the path parameter with the liquid sloshing height. In the latter case, the net wrench
necessary to grant the correct motion of the object has to be computed in order to
express the friction-cone constraints as a function of the path parameter and its time
derivatives.
The fact that the quantities under examination evolve within a specified time interval
implies the arising of an optimal control problem. An optimal control problem can be
seen as an infinite-dimensional extension of a nonlinear programming (NLP) problem,
and its resolution requires particular techniques.
The structure of the Thesis is as follows. Chapter 2 gives a brief recap regarding the
basics of nonlinear optimization; the general optimal control problem is presented,
and the technique adopted to convert the infinite-dimensional problem into a prob-
lem with a finite set of variables and constraints is outlined, together with a practical

14



description of the algorithm employed for the NLP resolution.
Chapter 3 addresses the anti-sloshing problem; in particular, a novel technique for the
sloshing-height estimation considering 3-dimensional motions of a cylindrical con-
tainer carried by a serial robot is presented; the equations of motion governing the liq-
uid behavior are provided, and the formulation of the sloshing height is given in terms
of the corresponding generalized coordinates. The constrained-optimization problem
is described with a particular focus on the expression of the sloshing constraints. The
experimental setup is illustrated, and the video post-processing, adopted to compare
the experimental results with the model predictions, is explained. Experiments, both
for validation purposes of the proposed technique and for assessment of the optimiza-
tion, are described and discussed.
Chapter 4 deals with dual-arm cooperative grasping. First, brief survey is given about
the direct and indirect force control of serial robots. Then, the model for determining
the interaction forces between the robots and the object is provided; the constrained-
optimization problem is formulated, highlighting how the friction-cone inequalities
are expressed in terms of the input variables. The setup for the experiments is de-
picted, and the relative results are provided and commented.
Finally, Chapter 5 draws conclusions and gives suggestions for further developments.
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Chapter 2

Optimal Control Problem

2.1 Introduction

The constrained time-optimal trajectory planning of serial robots involves an optimal
control problem (OCP) [1], in which the variables interested in the optimization evolve
in time, and their trends are mostly represented by nonlinear functions, in the majority
of cases. From a theoretical point of view, this implies an infinite-dimensional nonlin-
ear programming (NLP) problem. The discretization of this kind of problem is crucial
for a numerical resolution, and it can be achieved through direct methods. In partic-
ular, multiple-shooting algorithms enable the division of the time interval into smaller
discretized time steps. This way, the problem results in a finite-dimensional NLP prob-
lem.
In NLP problems, the aim is to minimize a specific objective function or cost func-
tional, simultaneously satisfying equality and inequality constraints. The main chal-
lenge in solving NLP problems is represented by the presence of inequality constraints.
In particular, one of the main problems is detecting which constraints are active1. A
technique, on which active-set methods are based, starts by guessing on the optimal
active set (called working set), and then it solves a problem in which the constraints
in the working set are treated as equalities and the others are ignored. If a solution is
not found, a different working set is chosen and the procedure is repeated. It can be
noted that the number of choices for the working set can be very large. For this reason,
techniques based on active-set methods choose the working set in a more convenient
way, by exploiting the knowledge of the functions that define the problem.
A different approach is represented by interior-point methods, in which the solutions
generated at each iteration stay away from the barrier represented by the boundary of
the feasible region defined by the inequality constraints. As the solution of the problem
is approached, the barrier constraints are weakened to allow an increasingly accurate
estimation of the solution.
The algorithms based on active-set or interior-point methods are usually combined
with a series of techniques (called globalization strategies) that give information about
the progress of the process toward the solution or prevent iterations from falling in
infeasible points. More theoretical details regarding the available optimization tech-
niques are outside the scope of this Thesis and can be found in the literature [2].
In our case, the OCP is tackled by adopting a multiple-shooting method to discretize
the problem, and the problem-solving code is written by using CasADi [3], a framework

1An inequality constraint is termed active if it is satisfied as an equality.



Chapter 2. Optimal Control Problem

implemented in Matlab, that adopts IPOPT2, an open-source library based on a filter
line-search interior-point method [4], for the NLP resolution.
This Chapter is structured as follows. Section 2.2 gives a short summary of the the-
ory behind NLP resolution, starting from the Newton method up to the definition of
the Karush-Kuhn-Tucker (KKT) system for an optimization problem with equality con-
straints. In Section 2.3 globalization strategies are illustrated. Section 2.4 provides an
overview of the basic procedures of interior-point methods, before outlining the main
steps of the IPOPT algorithm. Finally, in Section 2.5 the technique of multiple-shooting
is introduced to translate the continuous OCP into a discrete NLP problem.

2.2 Nonlinear Programming Basics

The resolution of NLP problems requires finding a finite number of variables such that
an objective function is minimized without violating a set of constraints. The involved
functions are nonlinear in the interested variables, hence requiring particular tech-
niques for the problem resolution [1].

2.2.1 Unconstrained Optimization in One Variable

A simple optimization problem involving one variable may be solved by the Newton
method. The aim is to find x∗ such that the value of the nonlinear objective function
F (x∗) is a minimum.
Hereafter, the solution of the problem will be indicated with x∗, the current guess for
the solution will be denoted as x and x will represent the new point for the solution. To
extend the Newton method for root finding to the optimization problems, the objective
function is approximated about the current position x by the first three terms of the
Taylor series. This yields the approximation of the function in correspondence of the
new point x, namely:

F (x) = F (x)+F ′(x)(x −x)+ 1

2
F ′′(x)(x −x)2 (2.1)

where F ′ and F ′′ indicate the first and the second derivatives of F computed in x, re-
spectively. The condition for x to be a minimum point for F is to ask that the derivative
of F computed in x equals zero, i.e.

∂F

∂x
= 0 =⇒ F ′(x)+F ′′(x)(x −x) = 0 (2.2)

Rearranging Equation (2.2), a new estimation of the solution can be obtained as

x = x − F ′(x)

F ′′(x)
(2.3)

The condition F ′(x) = 0 only defines a stationary point, which can be a minimum, a
maximum, or a point of inflection. The missing information to discern between the
type of stationary point is represented by the knowledge of the function curvature.
Point x∗ is a minimum point only if therein the function curves upwards, namely the
second derivative F ′′ is positive. Hence, the conditions for x∗ to represent an optimizer
of the objective function F are:

2https://github.com/coin-or/Ipopt
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• necessary conditions:

F ′(x∗) = 0 (2.4)

F ′′(x∗) ≥ 0 (2.5)

• sufficient conditions:

F ′(x∗) = 0 (2.6)

F ′′(x∗) > 0 (2.7)

Sufficient conditions define a strong local minimizer, whereas necessary conditions
define a weak local minimizer.

2.2.2 Unconstrained Optimization in n Variables

Considering the multidimensional extension of the case presented in Section 2.2.1, the
aim is to find the solution vector x∗ = [x∗

1 . . . x∗
n]T ∈ Rn such that the scalar objective

function F :Rn →R is at a minimum in x∗. Like in the 1-dimensional case, F is approx-
imated about point x by means of the Taylor series up to the third term, namely:

F (x) = F (x)+g(x)T (x−x)+ 1

2
(x−x)T H(x)(x−x) (2.8)

where g ∈Rn is the gradient vector of F

g(x) =∇xF =


∂F

∂x1
...
∂F

∂xn

 (2.9)

and H ∈Rn×n is the (symmetric) Hessian matrix

H(x) =∇2
xF =



∂2F

∂x2
1

∂2F

∂x1∂x2
. . .

∂2F

∂x1∂xn

∂2F

∂x2∂x1

∂2F

∂x2
2

. . .
∂2F

∂x2∂xn

...
...

. . .
...

∂2F

∂xn∂x1

∂2F

∂xn∂x2
. . .

∂2F

∂x2
n


(2.10)

Defining the search direction p = (x−x), Equation (2.8) can be re-written as

F (x) = F (x)+gT (x)p+ 1

2
pT H(x)p (2.11)

The scalar term gT p is the directional derivative along p and the scalar term pT Hp is
the curvature or second directional derivative in the direction p. Note that the gradient
and the Hessian matrix are computed in correspondence of x.
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By imposing that the derivative w.r.t. x of the function approximation (2.11) is equal to
zero, the search direction p can be obtained, namely:

∂F

∂x
= 0 =⇒ g+Hp = 0 (2.12)

from which then new iteration can be computed as

x = x−H−1(x)g(x) (2.13)

If x∗ is a local minimum, the value of the objective function in correspondence of its
neighboring points must be larger, i.e. F (x) > F (x∗). This implies that the slope of the
function in all directions, computed in x∗, has to be equal to zero, namely:

g(x∗) =

g1(x∗)
...

gn(x∗)

= 0 (2.14)

The local-minimum condition is satisfied if the function, computed in x∗, curves up-
wards in all directions, hence requiring that the third term in Equation (2.11) is positive,
i.e.

pT H(x∗)p > 0 (2.15)

which is granted if and only if the Hessian matrix is positive definite. If there are some
directions with zero curvature, i.e. pT H(x∗)p ≥ 0, H(x∗) is positive semidefinite.
To sum up, the following conditions for x∗ to be a minimizer of F hold:

• necessary conditions:

g(x∗) = 0 (2.16)

pT H(x∗)p ≥ 0 (2.17)

• sufficient conditions:

g(x∗) = 0 (2.18)

pT H(x∗)p > 0 (2.19)

2.2.3 Equality-Constrained Problem

Suppose that we want to find the vector x∗ = [x∗
1 . . . x∗

n]T ∈ Rn that satisfies the con-
straints

c(x∗) =

 c1(x∗)
...

cm(x∗)

= 0 (2.20)

The linear approximation of the vector function c :Rn →Rm around x is

c(x) = c(x)+G(x)(x−x) (2.21)
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where G ∈Rm×n is the Jacobian matrix

G(x) = ∂c

∂x
=



∂c1

∂x1

∂c1

∂x2
. . .

∂c1

∂xn

∂c2

∂x1

∂c2

∂x2
. . .

∂c2

∂xn

...
...

. . .
...

∂cm

∂x1

∂cm

∂x2
. . .

∂cm

∂xn


(2.22)

The solution of the problem can be found by imposing that c(x) = 0 in Equation (2.21),
thus obtaining the linear system

G(x)p =−c(x) (2.23)

The resolution of the linear system in (2.23) provides the search direction p, from which
the new iteration for the solution can be computed as

x = x+p (2.24)

Hence, each Newton iteration requires the linearization of the function c expressing
the equality constraints. The n-dimensional Newton method for root finding shares
the same properties of the simple 1-dimensional case. In particular, the method is
quadratically convergent, but it may diverge if globalization strategies are not properly
applied. In addition, the method requires the computation of matrix G, which may be
time consuming from a computational point of view.

2.2.4 Equality-Constrained Optimization

The Newton method can be applied to both optimize an objective function F (x) (see
Section 2.2.2) or satisfy a set of constraints c(x) = 0 (see Section 2.2.3). In equality-
constrained optimization, the aim is to solve both problems simultaneously, that is to
find x∗ ∈Rn to minimize F (x) subject to m ≤ n constraints c(x) = 0, namely:

mi n
x

F (x) (2.25a)

subject to
c(x) = 0 (2.25b)

The classical approach is to define the Lagrangian of the problem as

L(x,λ) = F (x)−λT c(x) = F (x)−
m∑

i=1
λi ci (x) (2.26)

where λ ∈ Rm represents the array of Lagrange multipliers. Optimality requires the
vanishing of the derivatives of L w.r.t. x andλ. As a consequence, the necessary condi-
tions for (x∗,λ∗) to represent an optimum are

∇xL(x∗,λ∗) = 0 (2.27a)

∇λL(x∗,λ∗) = 0 (2.27b)
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where the gradients of L w.r.t. x andλ are, respectively:

∇xL =∇xF −
m∑

i=1
λi∇xci = g−GTλ (2.28a)

∇λL =−c (2.28b)

Similarly to Section 2.2.2, the conditions (2.27a), (2.27b) do not allow distinction be-
tween a minimum and a maximum point. Additional conditions on the curvature of L
are needed. In particular, we have to require that

vT HL(x∗,λ∗)v > 0 (2.29)

with HL being the Hessian matrix of the Lagrangian, namely

HL =∇2
xL =∇2

xF −
m∑

i=1
λi∇2

xci (2.30)

and v is an arbitrary vector belonging to the constraint tangent space3. The main dif-
ference between the curvature condition in the unconstrained case (2.15) and the anal-
ogous condition in the constrained problem (2.29) is that, in the former case, the cur-
vature has to be positive along all directions p, whereas in the latter case (2.29) applies
only to directions v in the tangent constraint space.
The Newton method can be exploited to find the values of (x,λ) that satisfy the condi-
tions on the Lagrangian gradients (see (2.27a, 2.27b)). For the sake of clarity, a vector
function S : Rm+n → Rm+n can be defined as composed of the two functions ∇xL and
∇λL, namely:

S =
[

S1

S2

]
=

[∇xL
∇λL

]
(2.31)

To find the point (x,λ), the function S is approximated around (x,λ), i.e.:

S(x,λ) = S(x,λ)+S′(x,λ)

[
x−x
λ−λ

]
(2.32)

with S′ indicating the Jacobian matrix of S w.r.t. both x andλ, namely

∂S

∂(x,λ)
=


∂S1

∂x

∂S1

∂λ

∂S2

∂x

∂S2

∂λ

 (2.33)

where the block matrices can be computed by employing the results of Equations (2.28)
and (2.30), hence obtaining:

∂S1

∂x
= ∂

∂x
(∇xL) = HL

∂S1

∂λ
= ∂

∂λ
(∇xL) =−GT (2.34)

∂S2

∂x
= ∂

∂x
(∇λL) =−G

∂S2

∂λ
= ∂

∂λ
(∇λL) = 0 (2.35)

3A vector v ̸= 0 belongs to the tangent space of the contraints if G(x)v = 0.
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Imposing that S(x,λ) = 0 and substituting the expression of S′(x,λ) in Equation (2.32),
we obtain a linear system called Karush-Kuhn-Tucker (KKT) systemHL(x) G(x)T

G(x) 0

−p

λ

=
g(x)

c(x)

 (2.36)

where p is the search direction for a step x = x + p and λ is the vector of Lagrange
multipliers at the new point.

2.2.5 Inequality-Constrained Optimization

Inequality-constrained optimization problems aim at minimizing an objective func-
tion F subject to inequality constraints. In formulas:

mi n
x

F (x) (2.37a)

subject to
c(x) ≥ 0 (2.37b)

While in equality-constrained optimization (see Section 2.2.4)), the number of con-
straints must be lower or equal to the number of variables, i.e. m ≤ n, inequality-
constrained optimization enables a number of constraints greater than the number
of variables. A point that satisfies the inequality constraint is called feasible and the set
of all feasible points is indicated as feasible region.
Regarding the fulfillment of the inequality constraints, two situations could occur in
correspondence of the solution x∗:

• some constraints may be satisfied as equalities, i.e. ci (x∗) = 0 ∀i ∈ A, where A is
called active set;

• some constraints may be strictly satisfied as inequalities, i.e. ci (x∗) > 0 ∀i ∈ A′,
where A′ is called inactive set.

Active constraints, for which the inequalities are fulfilled as equalities, can be treated
as described in Section 2.2.4. Algorithms employed to solve inequality-constrained
optimizations need a strategy to identify the active constraints, which is referred to as
active set strategy. In addition, when applying active set strategies, another necessary
condition on the sign of the Lagrange multipliers must be respected, i.e.:

λ∗
i ≥ 0 ∀i ∈ A. (2.38)

2.2.6 Quadratic Programming

A special case of constrained-optimization problems is represented by the quadratic
programming (QP) case, in which the objective function is a quadratic form of x and
all constraints are linear. The formulation of a QP problem is thus as follows:

mi n
x

F (x) = rT x+ 1

2
xT Dx (2.39a)

subject to
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Ax = a (2.39b)

Bx ≥ b (2.39c)

where r is a vector of constant weights and D is a constant symmetric matrix; A and
a are the coefficient matrix and the known-variable vector of the linear equality con-
straints Ax−a = 0, respectively, whereas B and b play the same role of A and a, con-
sidering the linear inequality constraints Bx − b ≥ 0. A problem of this type can be
tackled by adopting an active-set method. Assume that an estimate of the active set A0

is given together with the initial feasible point x0. An active-set QP algorithm proceeds
according to the following steps:

A-1 Solve the KKT system (2.36), where the constraints in the active set A are treated
as equalities.

A-2 Take the largest possible step in the direction p that does not violate any inactive
inequalities, i.e. x = x+αp, where α ∈ [0,1] is chosen to maintain feasibility w.r.t.
inactive inequality constraints.

A-3 If the step is restricted, i.e. α < 1, then add the limiting inequality to the active
set A and return to step A-1.

A-4 Otherwise, take the full step (α= 1) and check the sign of the Lagrangian multi-
pliers.

A-4.1 If all inequalities have positive multipliers terminate the algorithm.

A-4.2 Otherwise, delete the inequality with the most negative λ from the active
set and return to A-1.

Step A-1 requires the resolution of the KKT system. To this aim, the formulation de-
scribed in Section 2.2.4 can be exploited, by considering the following Lagrangian:

L(x,λ,η) = F (x)−λT (Ax−a)−ηT (B̃x− b̃) (2.40)

where A and B̃ represent the Jacobian matrices of the equalities and the active-inequality
constraints. The Lagrange multipliers of the equalities are indicated with λ, whereas
the ones relative to the active set are indicated with η. The gradient and the Hessian
matrix of L w.r.t. x are given by:

∇xL = g−ATλ− B̃η= r+Dx−ATλ− B̃η (2.41a)

H =∇2
xL = D (2.41b)

thus proving that the Hessian matrix for a QP problem is constant. Hence, the KKT
system can be written as: 

H AT B̃T

A 0 0

B̃ 0 0




−p

λ

η

=


g(x)

a

b̃

 (2.42)

It is worth noting that, as long as the initial active set coincides with the final one,
the algorithm computes the solution in one iteration. On the other hand, the QP algo-
rithm may require many iterations if the initial active set differ from the final one and

24



2.3. Globalization Strategies

this may increase the computational time. Active-set QP algorithms represent the ba-
sis for sequential quadratic programming (SQP), in which the NLP problem (the con-
straints are not linear as in (2.39) but are represented by nonlinear functions of the
varibale x) is divided in subsequential QP problems. A more detailed presentation of
active-set SQP algorithms is not object of this Thesis; however, it must be said that SQP
methods represent an equivalent alternative to interior-point methods for the resolu-
tion of NLP problems.

2.3 Globalization Strategies

As far as the resolution of constrained optimization problems is concerned, the New-
ton method can be developed for the purpose of approximating the Lagrangian and
finding the iterative solutions that satisfy the necessary and sufficient conditions. How-
ever, the Newton method may have some deficiencies, even for simple problems. To
improve the behavior of the Newton method, the so-called globalization strategies are
needed.

2.3.1 Merit Functions

If the method is working properly, the sequence of iterates xk should converge to the
solution x∗. To measure the efficiency of the algorithm progress toward the solution, a
merit function M can be defined and the following condition must hold, namely

M(xk+1) < M(xk ) (2.43)

In the case of unconstrained optimization (see Section 2.2.2), the merit function can
be chosen as coincident with the objective function, i.e. M(x) = F (x). On the other
hand, if the aim is to find the root of a vector function (see Section 2.2.3), the choice
of the appropriate merit function may not be trivial. The most commonly used merit
function for nonlinear equations is

M(x) = 1

2
c(x)T c(x) (2.44)

where c(x) represents the equality-constraint function computed at x. Alternatively,
different norms of the constraint function c can be employed:

M(x) = ||c||1 =
m∑

i=1
|ci | (2.45)

M(x) = ||c||2 =
√

m∑
i=1

c2
i (2.46)

M(x) = ||c||∞ = m
max

i=1
|ci | (2.47)

When constrained-optimization problems (see Section 2.2.4) have to be taken into ac-
count, the selection of the merit function becomes more complex, due to the presence
of the conflicting goals represented by the minimization of the objective function and
the fulfillment of the constraints. In this case, rather than employing a merit function
giving information about the convergence progress, another type of function P can be
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built. The function P has to be chosen such that its unconstrained minimum is the
desired constrained solution x∗ or it is related to x∗ in a known way. This method will
be indicated as penalty function method. One possible choice for P is

P (x,ρ) = F (x)+ ρ

2
c(x)T c(x) (2.48)

with ρ being called penalty weight or penalty parameter and c(x) representing the
equality-constraint function computed at x. When this penalty function is minimized
for successively larger values of ρ, it can be shown that the unconstrained minimizers
approach the constrained solution. However, this implies computational inefficiency,
due to the fact that, as ρ→∞, the successive unconstrained problems become difficult
to solve. An alternative is the augmented Lagrangian function that is formulated as

P (x,λ,ρ) = L(x,λ)+ ρ

2
c(x)T c(x) (2.49)

with L(x,λ) being the Lagrangian of the problem (see Equation 2.26). With this posi-
tion, it can be proven that the unconstrained minimum is equal to x∗ for a finite value
of ρ. However, attention must be paid when the value of ρ is too large or too small,
since, in these cases, the problem may be ill-conditioned.

2.3.2 Line-Search Methods

While a merit function (Section 2.3.1) is mainly employed as an indicator of the progress
of the algorithm, an approach that can be used to alterate the search direction is repre-
sented by the line-search method. The basic idea is to modify the way the new iterate
is computed by acting on the magnitude of the step p, namely

x = x+αp (2.50)

where 0 ≤ α ≤ 1. This way, if at the k-th iteration the values of x and p are fixed, an
appropriate merit function can be written as a function of the single variable α

M(x) = M(x+αp) = M(α) (2.51)

where α can be chosen so that M(α) is approximately minimized. In most algorithms
implementing line search, the starting step is taken with α = 1; then, estimations are
computed until a steplengthαk is found satisfying a sufficient decrease condition based
on the Goldstein-Armijo principle, that is

0 <−k1αk M ′(0) ≤ M(0)−M(αk ) ≤−k2αk M ′(0) (2.52)

with M ′(0) indicating the direction derivative (∇M(0))T p at α= 0, and k1, k2 satisfying
0 < k1 ≤ k2 < 1.

2.3.3 Trust-Region Methods

Another technique that suitably modifies the search direction p is called trust-region
method. Both the magnitude and the direction of p are conveniently adjusted. By
fixing the current point x, the aim is to find the value of p that minimizes

F (x+p) = F (x)+gT p+ 1

2
pT Hp (2.53a)
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subject to
1

2
pT p ≤ δ2 (2.53b)

We say that the prediction F (x+p) is trustable as long as the components of p lie within
the region defined by the trust radius ρ. The Lagrangian of the problem expressed in
(2.53) is

LT (p,τ) = F (x)+gT p+ 1

2
pT Hp−τ

(
δ2 − 1

2
pT p

)
(2.54)

with τ representing the Lagrange multiplier associated with the trust-region inequality
constraint. By writing the necessary condition, we obtain

∇pLT (p,τ) = g+Hp+τp = g+ (H+τI)p = 0 (2.55)

If the trust-radius constraint is inactive (i.e. 1
2 pT p < δ2), then τ = 0 and the search

direction is the unmodified Newton direction. Conversely, if the trust-radius constraint
is active (i.e. 1

2 pT p = δ2), the norm of p is ||p|| =p
2δ and τ> 0. The limit behavior of δ

and τ can be summarized as follows

• τ→∞,δ→ 0: the search direction approaches the gradient direction−g/||g|| and
its norm tends to zero ||p||→ 0;

• τ→ 0,δ→∞: the search direction tends to −H−1g.

Trust-region methods are often combined with other globalization strategies. For in-
stance, it is a common practice to modify the trust radius from one iteration to the
next one by comparing the values of a specific merit function in correspondence of the
predicted and actual directions.

2.3.4 Filters

In order to evaluate if the algorithm is going towards the goals of constraint fulfillment
and objective-function reduction, an ad-hoc filter can be established. The filter ac-
cepts the Newton step if the objective function or the constraint violation is decreas-
ing [5]. This filtering approach recognizes the two conflicting aims in NLP, i.e., choose
x to minimize F (x) and choose x to minimize the constraint violation v[c(x)]. The latter
can be defined by considering any suitable norm of c.
The basic idea is to compare information from the current iteration with information
from previous iterates and then discard the bad iterates. By denoting the values of the
objective function and the constraint violation in correspondence of point xk as

{F (k), v (k)} = {F (xk ), v[c(xk )]} (2.56)

we will say that, considering two points xk and x j , a couple {F (k), v (k)} dominates an-
other pair {F ( j ), v ( j )} if and only if both the following conditions hold

F (k) ≤ F ( j ) (2.57)

v (k) ≤ v ( j ) (2.58)

This way, a pair {F (l ), v (l )} is included in the filter if it is not dominated by any other pair
in the current filter.
The filter method only provides a way to accept or reject an iterate, hence requiring an
additional strategy to correct the step if a point is rejected. Typically, filter methods are
combined with a trust-region approach or a line-search technique.

27



Chapter 2. Optimal Control Problem

2.4 Interior-Point Methods

2.4.1 Overview of the Method

The general constrained problem that has to be taken into account has the form:

mi n
x

F (x) (2.59a)

subject to

c(x) = 0 (2.59b)

b(x) ≥ 0 (2.59c)

where x∗ = [x∗
1 . . . x∗

n]T ∈ Rn is the vector of variables to be determined to minimize
F : Rn → R, simultaneously satisfying the equality constraints expressed by the vector
function c : Rn → RmE and the inequalities formulated in the vector function b : Rn →
RmI , with mE and mI denoting the number of equalities E and inequalities I , respec-
tively.
Interior-point methods were first established in the 1960s, but only 30 years later, the
promising results obtained in the linear-programming resolution renewed interest in
them also for nonlinear optimization. The numerical results show that interior-point
methods are often faster than active-set SQP methods on large problems, particularly
when the number of free variables is large. For convenience reasons, the problem at
hand is re-formulated in the following fashion:

mi n
x,s

F (x) (2.60a)

subject to
c(x) = 0 (2.60b)

b(x)−s = 0 (2.60c)

s ≥ 0 (2.60d)

where the vector x and the functions F,c,b have the same meaning as described in
(2.59), with the difference that the inequalities b(x) ≥ 0 have been translated to equali-
ties with the introduction of a vector s of slack variables.
The interior-point method can be interpreted in two ways. Regarding the first ap-
proach, one can write the KKT conditions for the nonlinear problem, namely:

∇F −GT
Eλ−GT

Iν= 0 (2.61a)

Sν−µe = 0 (2.61b)

c(x) = 0 (2.61c)

b(x)−s = 0 (2.61d)

having denoted the Jacobian matrices of c and b w.r.t. x with GE and GI , respec-
tively; matrix S is the diagonal matrix composed of the slack-vector components, i.e.
S = diag(s) and e = [1 . . . 1]T ∈ RmI . The described approach consists of solving the
perturbed KKT conditions for a sequence of positive parameters µk that converges to
zero, while maintaining s,ν≥ 0. By doing so, a point that satisfies KKT conditions can
be reached. Finally, by requiring the iterates to decrease according to a merit function
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or to be accepted by an appropriate filter, the iteration tends to a problem minimizer.
Hence, for all sufficiently small positive values of µ, the KKT conditions have a locally
unique solution

(
x(µ),s(µ),λ(µ),ν(µ)

)
, that converges to the optimizer (x∗,s∗,λ∗,ν∗)

as µ→ 0. The trajectory described by the points
(
x(µ),s(µ),λ(µ),ν(µ)

)
towards the so-

lution is called primal-dual central path.
The second interpretation of interior-point methods foresees the combination of the
problem with the barrier approach, namely:

mi n
x,s

F (x)−µ
mI∑
i=1

log si (2.62a)

subject to
c(x) = 0 (2.62b)

b(x)−s = 0 (2.62c)

whereµ is a positive parameter and log(·) indicates the natural logarithm function. The
condition s ≥ 0 is not included, due to the fact that minimizing the logarithmic term
−µ∑mI

i=1 log si prevents the components of s from becoming too close to zero4. The
solution to the barrier problem does not coincide with the one sought for the general
problem (2.59). The barrier approach aims at finding approximate solutions to the
barrier problem for a sequence of positive barrier parametersµk that converges to zero
and then verify if they represent an optimizer for the overall main problem (2.59) with
a certain tolerance. If the KKT conditions for the problem (2.62) are written, we obtain:

∇F −GT
Eλ−GT

Iν= 0 (2.63a)

−µS−1e+ν= 0 (2.63b)

c(x) = 0 (2.63c)

b(x)−s = 0 (2.63d)

The second condition (2.63b) differs from the second condition (2.61b) of the corre-
sponding primal-dual version. However, we can re-arrange Equation (2.63) by multi-
plying all the terms by the diagonal matrix S, hence obtaining that the KKT conditions
for the barrier problem 2.63 coincide with the perturbed KKT system 2.61.
The barrier approach is the reason behind the name interior point. Indeed, early bar-
rier methods [6] do not use slack variable and start from an initial point x0 feasible
w.r.t. the inequalities b(x) ≥ 0; by employing a barrier function, the methods prevent
the iterates from leaving the feasible region, hence always lying internally.
Applying the Newton method to the nonlinear system (2.61), we obtain the so-called
primal-dual system:

HL(xk ) 0 GE (xk )T GI (xk )T

0 diag(νk ) 0 Sk

GE (xk ) 0 0 0

GI (xk ) −I 0 0





px
k

ps
k

pλk

pνk


=



∇F (xk )−GE (xk )Tλk −GI (xk )Tνk

Skνk −µk e

c(xk )

b(xk )−sk


(2.64)

4Remember that (− log t ) →∞ as t → 0.
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where HL is the Hessian matrix corresponding to the Lagrangian L(x,s,λ,ν) = F (x)−
λT c(x)−νT (b(x)−s). The resolution of the primal-dual system (2.64) allows the deter-
mination of the search directions (px

k ,ps
k ,pλk ,pνk ), through which the new iterates can

be computed, namely:

xk+1 = xk +αmax
s px

k (2.65a)

sk+1 = sk +αmax
s ps

k (2.65b)

λk+1 =λk +αmax
ν pλk (2.65c)

νk+1 =νk +αmax
ν pνk (2.65d)

where the step lengths αmax
s and αmax

ν are employed to prevent variables s and ν from
reaching their lower bounds of 0 too quickly, and are computed thanks to the following
expressions:

αmax
s = max{α ∈]0,1] : sk +αps ≥ (1−τ)sk } (2.66a)

αmax
ν = max{α ∈]0,1] :νk +αpν ≥ (1−τ)νk } (2.66b)

The described iterations are the basis of an interior-point method, together with the
choice of the sequence of the barrier parameters µk . Some techniques [6] keep the
barrier parameter constant for a series of iterations until the KKT conditions are sat-
isfied according to a certain tolerance. Alternatively, the barrier parameter is updated
at each iteration. A way to verify if the KKT conditions are respected is by defining the
error function, based on the perturbed KKT system:

Eµ(x,s,λ,ν) = max{||∇F −GT
Eλ−GT

Iν||, ||Sν−µe||, ||c(x)||, ||b(x)−s||} (2.67)

An example of a basic interior-point algorithm is depicted in the procedure described
below:

A-1 Initialize. Initialize the counter k = 0 and σ ∈]0,1].

A-2 Check convergence of the overall problem. Repeat the outer loop until an optimality-
error condition is satisfied to stop the algorithm.

A-2.1 Check convergence of the barrier problem. Repeat the inner loop until
Eµk (xk ,sk ,λk ,νk ) ≤µk .

A-2.1.1 Compute the search direction. Solve (2.64) to find (px
k ,ps

k ,pλk ,pνk ).

A-2.1.2 Compute the step lengths. Compute αmax
s and αmax

ν using (2.66).

A-2.1.3 Compute the next iterate. Compute (xk+1,xk+1,λk+1,sk+1) using (2.65).

A-2.1.4 Increase the counter. Set k = k +1 and µk =µk+1.

A-2.2 End inner loop.

A-2.3 Choose the barrier parameter. Choose µk ∈]0,σµk [.

A-3 End the outer loop.
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2.4.2 IPOPT Algorithm

As briefly seen in Section 2.4.1, interior-point methods need to be combined with glob-
alization strategies, in order to define a decreasing logic of the barrier parameter, to-
gether with a way to assess the progress of the iterations toward the solution and decide
whenever the algorithm has to stop. In [4], the implementation of a filter line-search
strategy integrated within an interior-point method is proposed. The algorithm is then
written in the IPOPT code. Here, we provide a summary of the main features of IPOPT.
To simplify the following formulations, the tackled NLP problem is set in the form:

mi n
x

F (x) (2.68a)

subject to
c(x) = 0 (2.68b)

x ≥ 0 (2.68c)

The extension of the technique for the general case can be found in [4]. The equivalent
barrier problem of (2.68) can be considered, i.e.:

mi n
x

φµ(x) = F (x)−µ
n∑

i=1
log xi (2.69a)

subject to
c(x) = 0 (2.69b)

The Lagrangian of the original problem (2.68) is

L(x,λ,ν) = F (x)−λT c−ν (2.70)

whereλ and ν represent the Lagrangian multipliers for the equality constraints (2.68b)
and the inequalities (2.68c), respectively. Hence, the KKT conditions can be derived,
namely

∇F −GTλ−ν= 0 (2.71a)

c(x) = 0 (2.71b)

X diag(ν)e−µe = 0 (2.71c)

The primal-dual Equations (2.71), for µ = 0 together with x,ν ≥ 0, coincide with the
KKT conditions of the original problem (2.68). The proposed method computes an ap-
proximate solution of the barrier problem (2.69) for a fixed value of µ, then decreases
the barrier parameter and continues the solution of the next barrier problem (charac-
terized by a lower value of µ), starting from the approximate solution of the previous
barrier problem. The procedure ends when some conditions are respected regarding
the achievement of the problem optimizer.
Exploiting the primal-dual Equations (2.71) the optimality error for the barrier prob-
lem can be defined as

Eµ(x,λ,ν) = max

{ ||∇F −GTλ−ν||∞
sd

,
||Sν−µe||∞

sc
, ||c(x)||∞

}
(2.72)

with sd , sc ≥ 1 being scaling parameters. If the multipliers λ and ν become very large
and the algorithm may encounter numerical issues satisfying the unscaled primal-
dual Equations (2.71). To handle these circumstances, the termination criteria can be
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adapted by including the aforementioned scaling parameters, whose expressions can
be suitably chosen [4]. By definition of Eµ, the optimality error for the original prob-
lem is given by Equation (2.72) with µ = 0 and is indicated as E0(x,λ,ν). The overall
algorithm terminates if the point (x∗,λ∗,ν∗) satisfies the condition

E0(x∗,λ∗,ν∗) ≤ ϵtol (2.73)

with ϵtol > 0 being chosen by the user. Considering the iterations employed to find
the approximate solution of the barrier problem, the barrier parameter µ j is decreased
step by step, where j indicates the iteration counter. The next approximate solution
for the barrier problem has to respect the condition

Eµ j (x̂∗,λ̂
∗

, ν̂∗) ≤ kϵµ j (2.74)

where the symbol ∧ on the variables is employed to indicate a solution of the barrier
problem, whereas kϵ > 0. The achievement of fast local convergence to a local solution
of the main problem (2.68) satisfying the second-order sufficient optimality conditions
is granted by following the strategy 2 described in [7], where the new value of µ j+1 is
computed as:

µ j+1 = max
{ϵtol

10
,min

{
kµµ j ,µ

θµ
j

}}
(2.75)

where the values of kµ and θµ belong to the intervals kµ ∈]0,1[ and θµ ∈]1,2[. This way,
the computation of µ j+1 does not allow the barrier parameter to become smaller than
necessary given the desired value of the tolerance ϵtol , in order to avoid numerical
issues at the end of the optimization.
To solve the barrier problem for a fixed value of µ j the linearization of the primal-dual
equations (2.71) can be performed by extending what was explained in Section (2.2.4).
In particular, by approximating the functions on the left-hand side of Equations (2.71)
in Taylor series around the new point (xk+1,λk+1,νk+1) and imposing their zeroing, we
can write the linear system

HL(xk ) −GT (xk ) −I

−G(xk ) 0 0

diag(νk ) 0 diag(xk )




px

k

pλk

pνk

=


∇F (xk )−GT (xk )λk −νk

c(xk )

diag(xk )diag(νk )−µ j e

 (2.76)

where the vector of unknowns represents the search directions px
k = xk+1 − xk , pλk =

λk+1 −λk , pνk =νk+1 −νk , from which the next iterates can be compute as

xk+1 = xk +αk px
k (2.77)

λk+1 =λk +αk pλk (2.78)

νk+1 =νk +ανk pνk (2.79)

where ανk is given by

ανk = max{α ∈]0,1] :νk +αpνk ≥ (1−τ j )νk }, (2.80)

whereas the value of αk is chosen among the interval ]0,αmax
k ] by a backtracking line-

search procedure that employs a decreasing sequence of trial step sizesαk,l = 2−lαmax
k

(l = 0,1,2, . . .), to ensure global convergence [5], [8]. The value of αmax
k is given by

αmax
k = max{α ∈]0,1] : xk +αpx

k ≥ (1−τ j )xk } (2.81)
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The value of τ j present in Equations (2.80), (2.81) is given by

τ j = max{τmi n ,1−µ j } with τmi n ∈]0,1[ (2.82)

The line-search filter method used in the algorithm to solve the barrier problem for
µ j accepts the trial point xk (αk,l ) = xk +αk,l px

k if it leads to sufficient progress toward
the goal of minimizing the barrier function φµ j (x) and the constraint violation θ(x) =
||c(x)||, i.e., if

φµ j (xk (αk,l )) ≤φµ j (xk )−γφθ(xk ) (2.83a)

θ(xk (αk,l )) ≤ (1−γθ)θ(xk ) (2.83b)

with γθ,γφ ∈]0,1[. If, in correspondence of the iterate xk , it results θ(xk ) ≤ θmi n , for an
arbitrary θmi n ∈]0,∞[ and the following conditions hold

∇φµ j (xk )T px
k < 0 ∩ αk,l [−∇φµ j (xk )T px

k ]sφ > δ[θ(xk )]sθ (2.84)

with δ> 0, sθ > 1 and sφ ≥ 1, the trial point has to satisfy the Armijo condition

φµ j (xk (αk,l )) ≤φµ j (xk )+ηφαk,l∇φµ j (xk )T px
k (2.85)

instead of 2.83, to be accepted; the value of ηφ is chosen among the interval ]0, 1
2 [.

In addition, another filter is operated at iteration k. This filter, indicated with Fk , con-
tains the combination of constraint violation and objective function values that are
prohibited. Hence, during the line search, a trial point xk (αk,l ) is rejected if the couple(
φµ j (xk (αk,l )),θ(xk (αk,l ))

) ∈Fk . When the optimization starts, the filter is initialized to

F0 = {(φ,θ) ∈R2 : θ ≥ θmax} (2.86)

for some θmax , to ensure that the algorithm will never allow points for which the con-
straint violation is larger than θmax . As the algorithm evolves, the filter is augmented
using the formula

Fk+1 =Fk ∪ {(φ,θ) ∈R2 :φ≥φµ j (x⋄
k )−γφθ(x⋄

k ) ∩ θ ≥ (1−γθ)θ(x⋄
k )} (2.87)

where x⋄
k represents a point that does not satisfy specific conditions explained in de-

tail in [4]. With the filter augmentation, the iterates are prevented from falling into the
neighborhood of x⋄

k . A feasibility restoration phase may be needed if it is not possible
to find a trial step size αk,l that satisfies the criteria of the filter. In such a scenario,
linearization of the involved functions is performed to find a value of αk,l that may be
lower than a specified threshold [4]. If this case occurs, the algorithm attempts to find a
new iterate xk+1 that can be accepted by the current filter and for which the conditions
in (2.83) hold, but attention must be paid, since this restoration procedure might lead
to the infeasibility of the problem.
Furthermore, it may happen that an iterate is rejected by the filter, even if it actu-
ally grants better progress toward the solution of the problem. This undesirable phe-
nomenon is often called Maratos effect [2]. A way to avoid the Maratos effect is the
second-order correction (SOC), in which the search direction is conveniently adjusted
[9].
Once the basics of the algorithm implemented in IPOPT have been briefly described,
its pseudocode can be depicted:

33



Chapter 2. Optimal Control Problem

A-1 Initialize. Initialize the counters j = 0 and k = 0, as well as the filter F0 and τ0

from 2.82.

A-2 Check convergence of the overall problem. If E0(xk ,λk ,νk ) ≤ ϵtol , then stop the
algorithm.

A-3 Check convergence for the barrier problem. If Eµ j (xk ,λk ,νk ) ≤ kϵµ j , then:

A-3.1 Compute µ j+1 and τ j+1 and set j = j +1.

A-3.2 Re-initialize the filter Fk = {(φ,θ) ∈R2 : θ ≥ θmax}.

A-3.3 If k = 0 repeat A-3; otherwise go to A-4.

A-4 Compute the search direction. Compute (px
k , pλk , pνk ) from resolution of (2.76).

A-5 Perform the backtracking line search.

A-5.1 Initialize the line search. Set αk,0 =αmax
k and set l = 0.

A-5.2 Compute the new trial point. Set xk (αk,l ) = xk +αk,l px
k .

A-5.3 Check acceptance to the filter. If
(
φµ j (xk (αk,l )),θ(xk (αk,l ))

) ∈ Fk , reject the
trial step and go to steo A-5.5.

A-5.4 Check sufficient decrease with respect to the current iterate.

• Case I : θ(xk ) ≤ θmi n and (2.84) holds; if (2.85) holds, accept the trial
step xk+1 := xk (αk,l ) and go to A-6. Otherwise, continue to A-5.5.

• Case II : θ(xk ) > θmi n or (2.84) is not satisfied; if (2.85) holds, accept the
trial step xk+1 := xk (αk,l ) and go to A-6. Otherwise, continue to A-5.5.

A-5.5 Perform the second-order correction. Initialize and compute the second-
order correction; apply the verifications A-5.3 and A-5.4 for the new SOC
iterate.

A-5.6 Choose the new trial step size. Setαk,l+1 =
1

2
αk,l and l = l +1. If the trial step

becomes too small, i.e., αk,l ≤ αmi n
k , go to the feasibility restoration phase

A-9. Otherwise go back to A-5.2.

A-6 Accept the trial point. Set αk = αk,l (or αk = αSOC
k if the SOC point was selected

in A-5.5) and update the multipliersλk+1, νk+1 with ανk .

A-7 Augment the filter if necessary. If (2.84) and (2.85) do not hold for αk , augment
the filter using (2.87). Otherwise, leave the filter unchanged, i.e., set Fk+1 =Fk .

A-8 Continue with the next iteration. Increase the iteration counter k = k +1 and go
back to A-2.

A-9 Perform the feasibility restoration phase. Augment the filter using (2.87) and com-
pute a new iterate xk+1 > 0 by relaxing the infeasibility measure θ(x), so that xk+1

is accepted by the augmented filter, i.e.,
(
φµ j (xk+1),θ(xk+1)

) ̸∈ Fk+1. Then con-
tinue re-starting from step A-8.
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2.5 Investigation on Optimal Control Problems

In the time-optimal trajectory planning of serial robots, point-to-point or prescribed-
path motions are typically considered [10]. In the former case, only the initial and final
poses of the robot end-effector are fixed, whereas in the latter case, the path that the
robot end-effector needs to follow is imposed. The path can be parameterized in terms
of a path parameter s, whose motion law s(t ) and its time derivatives ṡ(t ), s̈(t ) describe
the evolving in time of the path, i.e., the trajectory.
The aim of time-optimal trajectory planning is to search for the optimal control input
u(t ) that grants the trajectory execution in the minimum time (hence minimizing a
cost functional), at the same time satisfying the constraints imposed not only on the
control u(t ) but eventually also on a state x(t ) that explicitly describes the status of the
system (e.g., the state x(t ) can include the joint angles of the robot under exam). In
most cases, the time evolution of the state x(t ) is obtained by integrating the so-called
dynamical system, that connects the state x(t ) with the input u(t ) through a system of
ordinary differential equations (ODEs).
A problem of this type, composed of the minimization of a cost functional, the res-
olution of the dynamical system, and the fulfillment of some physically meaningful
constraints goes under the name of optimal control problem (OCP), whose general for-
mulation can be written as:

mi n
te ,x(t ),u(t )

[∫ te

0
[1+L(x(t ),u(t ))] d t

]
(2.88a)

subject to

ẋ(t )− f(x(t ),u(t )) = 0 (2.88b)

x(0)−x0 = 0 (2.88c)

g(x(te )) ≤ 0 (2.88d)

h(x(t ),u(t )) ≤ 0, ∀t ∈ [0, te ] (2.88e)

The cost functional (2.88a) is a trade-off between minimal time (
∫ te

0 d t ) and minimal
integral cost (

∫ te
0 L(x(t ),u(t ))d t ). The function L(x(t ),u(t )) can be conveniently chosen

and written by the user to minimize a specific quantity throughout the motion, de-
pending on the application. The OCP is subject to initial and final conditions (2.88c)
and (2.88d), respectively. Initial conditions are usually written in the form of equali-
ties, representing the starting values attributed to the system state x. In contrast, final
conditions can be written as inequalities, in order to limit the system state x below a
specified limit at the end of the motion, rather than constraining it to a precise value.
While the aforementioned initial and final conditions represent discrete constraints,
the dynamical system (2.88b) and the constraints in (2.88e) are continuous constraints
that have to be fulfilled during the whole motion, i.e. ∀t ∈ [0, te ], thus resulting in an
infinite-dimensional problem. To deal with this issue, the original OCP is discretized
in order to obtain a finite-dimensional problem. Therefore, the time domain is divided
into N itervals with (N +1) knots, going from t0 = 0 to tN = te .

2.5.1 Single Shooting Method

The OCP presented in Section 2.5 can be re-written as:

mi n
te ,u(t )

[∫ te

0
[1+L(x(t ),u(t ))] d t

]
(2.89a)
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subject to

x(t ) = x(0)+
∫ te

0
f(x(t ),u(t ))d t (2.89b)

g(x(te )) ≤ 0 (2.89c)

h(x(t ),u(t )) ≤ 0, ∀t ∈ [0, te ] (2.89d)

By virtue of the constraint (2.89b), that allows to express the state x(t ) as a function of
u(t ), the considered problem is only influenced by the control u(t ). This is the reason
why, in the cost functional (2.89a), the quantity x(t ) has been omitted (compared with
the cost functional in (2.88a)). As a consequence, the OCP is subject to the dynamical
system which is included in (2.89b) through forward time integration with initial con-
dition x(0), to the final condition (2.89c) and to the continuous constraints (2.89d) that
must be respected ∀t ∈ [0, te ].
The discretization of the problem is achieved by splitting the continuity of u(t ) in
(N +1) variables stored inside the discrete matrix wu

wu = [u0 u1 . . . uN ] (2.90)

This way, the discretization of the OCP can be formulated as:

mi n
te ,wu

[∫ te

0
[1+L(x(t ),u(t ))] d t

]
(2.91a)

subject to

x(t ) = x(0)+
∫ te

0
f(x(t ),u(t ))d t (2.91b)

g(xN ) ≤ 0 (2.91c)

h(xk ,uk ) ≤ 0, k = 0, . . . , N (2.91d)

The time domain is discretized in N time intervals with a constant time step∆t = te /N .
The discretized cost functional (2.91a) is composed of the final time te (to be mini-
mized) and the integral cost which is computed through a suitable numerical integra-
tion (e.g. Runge-Kutta method), as well as the dynamical system. The final conditions
(2.91c) are checked in correspondence of xN , whereas the constraints (2.91d) are veri-
fied at the checkpoints (xk ,uk ), rather than being examined along the whole time do-
main [0,T ] (2.89d).
The main advantage of single shooting methods lies in the small number of variables
that characterize the problem regarding the resolution of the dynamical system. It can
be shown that the number of iteration variables is equal to the number of differential
equations. However, when the differential equations are either nonlinear or stiff (or
both), the single shooting method suffers from large propagation errors that may com-
promise the fulfillment of the final conditions. To reduce the sensitivity affecting single
shooting methods, an alternative is to solve the problem considering shorter time in-
tervals (see Section 2.5.2).

2.5.2 Multiple Shooting Method

In multiple shooting methods, the problem is divided into shorter steps, in order "not
to shoot too far". The optimization variables are represented by both the control and
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the state. In particular, the discretized trends of u and x can be stored inside the matri-
ces:

wu = [u0 u1 . . . uN ] (2.92a)

wx = [x0 x1 . . . xN ] (2.92b)

This implies the storage of the problem inside the discrete matrix w

w =
[

wu

wx

]
(2.93)

The OCP can be re-written in finite-dimensional form, i.e.:

mi n
te ,w

N−1∑
k=0

[∫ tk+1

tk

[1+L(x(t ),u(t ))] d t
]

(2.94a)

subject to

xk+1 =
∫ tk+1

tk

f(x(t ),u(t ))d t k = 0, . . . , N −1 (2.94b)

x0 −x0 = 0 (2.94c)

g(xN ) ≤ 0 (2.94d)

h(xk ,uk ) ≤ 0, k = 0, . . . , N (2.94e)

The cost functional (2.94a) is reformulated to reflect the fact that the state, being an
optimization variable belonging to w (see Equation (2.93)), is split into intervals. The
dynamical system is solved by integration along the single time intervals [tk , tk+1] with
k = 0, . . . , N −1, rather than over the entire time domain.
The partition of the time domain into smaller time intervals aids the numerical in-
tegration of the dynamical system, also avoiding large propagation errors that may
occur for longer time intervals. As a consequence of the multiple shooting method,
the size of the problem increases w.r.t. the case in which a single shooting method is
adopted. In particular, the number of NLP variables and constraints, characterizing
the discretization of the dynamical system, for a multiple shooting application is equal
to nxN , where nx is the dimension of the state vector x. Indeed, the constraints cor-
responding to the resolution of the dynamical system 2.94b are necessary to grant the
continuity between the shooting procedure performed along the time steps [tk , tk+1]
and can be written in the form:

c(wx) =


x1 − x̂1

x2 − x̂2
...

xN − x̂N

=


c1(wx)
c2(wx)

...
cN (wx)

= 0 (2.95)

where c : RnxN → RnxN is the function expressing the closing-gap equalities. Note that
from the 2-nd to the N -th row of c, x̂1, . . . x̂N are the quantities obtained by numerical
integration along the time-steps, i.e.

x̂k+1 =
∫ tk+1

tk

f(x(t ),u(t ))d t , k = 0, . . . , N −1 (2.96)
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The linearization of the equality constraints (see Section 2.2.3) requires the computa-
tion of the Jacobian matrix ∂c

∂wx
∈RnxN×nxN , namely

∂c

∂wx
=



∂c1

∂x1

∂c1

∂x2
. . .

∂c1

∂xN

∂c2

∂x1

∂c2

∂x2
. . .

∂c2

∂xN

...
...

. . .
...

∂cN

∂x1

∂cN

∂x2
. . .

∂cN

∂xn


(2.97)

in which it can be noticed that the sub-matrices
∂c j

∂xl
= 0 for j ̸= l . The fact that the con-

straints influencing the k-th time interval do not depend on the variables of the (k−1)-
th one grants the sparsity of the Jacobian matrix related to the nonlinear problem. In
particular, among the (nxN )2 elements of the Jacobian matrix, n2

xN are nonzero. Thus,
the percentage of nonzeros is proportional to 1/N , indicating that the problem be-
comes sparser as the number of time intervals N grows. Furthermore, the indepen-
dency between intervals concerning the time integration allows parallel computation
of all integrations, hence reducing the computational time.

2.6 Conclusions

In this Chapter, the main ingredients for the numerical resolution of OCPs were in-
troduced, by giving an overview of the interior-point method and a multiple-shooting
technique. Before explaining the main features of the optimization algorithm used in
this Thesis, the fundamentals concerning NLP problems were provided. In particular,
the first and second-order conditions for the optimality of NLP problems were illus-
trated. The discussion also focused on the use of particular globalization strategies
aimed at giving information about the progress of the iterations toward the solution
or about the logic used to change the search direction during the algorithm advance.
A general procedure for the interior-point method was introduced, in which the main
meaning of the method is to maintain the iterates inside the feasible region, never let-
ting them approach the boundaries. The IPOPT algorithm, based on a filter line-search
interior-point method, was presented, highlighting the main steps characterizing it. In
the end, the multiple-shooting method adopted to convert the time continuity of the
variables into a set of discretized variables was described. The obtained discretized
variables constitute the variables to be optimized, in order to minimize an objective
function, at the same time satisfying the initial and final constraints and the closing-
gap constraints needed to reproduce the continuous evolution in time of the variables.
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Chapter 3

Anti-Sloshing Motions of Serial Robots

This Chapter studies time-optimal anti-sloshing motions performed by serial robots.
In particular, a novel technique, based on the discrete equivalent mass-spring-damper
model, for sloshing-height estimation is presented. The model is validated by performing
experiments with an industrial robot carrying a liquid-filled cylindrical container and
following 2-dimensional planar paths. The extension of the formulation to 3-dimensional
translational motions is proposed, and a validation campaign is carried out for this case,
too. Taking into account 2-dimensional paths, a constrained-optimization problem is
solved to impose limits on the sloshing height during task execution. A comparison be-
tween the non-optimized motions and the optimized ones is provided.
The work presented in this Chapter is published in [11], [12], [13].

3.1 Motivation

The transport of containers filled with liquids finds application in several industrial
scenarios, e.g. in food&beverage or pharmaceutical production and packaging lines.
Typically, the manipulation of such containers is assigned to linear transport systems
or industrial serial robots; in many cases the required motion follows planar curves.
The prediction of the liquid movement inside the container, referred to as sloshing, is
important to prevent the liquid from overflowing. In the automotive context, the fuel
movement during the launch of a spacecraft or during the cornering or breaking of ve-
hicles, can be studied to reduce the inertia actions that may arise in such situations.
For instance, the vehicle motions can be conveniently reproduced through the trajec-
tories performed by an industrial robot following 3-dimensional paths.
The aforementioned applications justify the need for a reliable sloshing prediction
model, not only for assessment purposes, but also to limit the stirring of the liquid
during task execution. The latter aspect can be pursued through the offline resolution
of a constrained-optimization problem.
For assessment purposes, machine-learning methodologies are presented in [14] and
[15], where, starting from data collection, predictive algorithms are built to inspect
the behavior of discrete liquid particles inside a cylindrical container. This technique,
though very powerful, requires experiments to be run in advance, together with a not
negligible computational effort.
In [16] and [17], the Finite Element Method (FEM) is adopted for the analysis of slosh-
ing in rectangular containers, requiring a preliminary generation of the mesh able to
replicate the liquid behavior.
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The mesh-less Smooth Particle Hydrodynamics (SPH) method is employed in [18] and
[19] to model the sloshing by discretizing the liquid in tens of thousands particles: the
simulations accurately match the experimental data, at a cost of days of computation.
In [20] the coefficients of the nonlinear sloshing dynamics model presented in [21] are
provided to evaluate the sloshing height for 3-dimensional motions, leading to a com-
plex formulation, which may be difficult to use.
A ready-to-use and fast alternative is represented by the development of equivalent
discrete mechanical models. The literature considers two main discrete approaches for
the modelling of sloshing dynamics inside a container subjected to 2-dimensional pla-
nar motion [22]: a spherical pendulum and a 2-DOF (degree of freedom) mass-spring-
damper system. In the former case, the generalized coordinates describing the system
are the angles defining the position of the pendulum mass, whereas, in the latter one,
they are the mass displacements from the reference position. Although being intuitive,
the use of the angular coordinates of the pendulum mass to assess the sloshing behav-
ior of the liquid (see [23, 24]) lacks physical meaning, in particular when the knowl-
edge of the liquid peak height is important. For this reason, in the spherical pendulum
model used in [25], [26] and [27], the sloshing height is estimated by means of the tan-
gent functions of the spherical coordinates. However, estimating the sloshing height
by means of the tangent of the pendulum angles may lead to singularity conditions,
when the container acceleration is high, since in this case these angles can approach
90◦ and the tangent tends to assume unrealistic high values.
To overcome this drawback, a novel approach, based on the mass-spring-damper model
[28], is proposed in [29] for the sloshing-height estimation. This model is validated
for 1-dimensional motions in [29] and the possible extension to 2-dimensional planar
motions is presented, without providing an experimental validation. The latter is the
objective of this Chapter, particularly referring to 2-dimensional planar motions of a
cylindrical container, with accelerations up to 9.5 m/s2 [11]. In addition, this Chapter
reports an extension of the formulation to 3-dimensional motions comprising a verti-
cal acceleration up to 5 m/s2, also performing experiments to validate it [13].
As far as the study of anti-sloshing motion laws [30] is concerned, an appropriate filter
can be designed to counteract the sloshing effect by re-orienting the container moved
by a serial robot, hence exploiting all the manipulator degrees of freedom [25–27].
In [31], a 1-DOF-pendulum model is considered and an input shaper is used to sup-
press sloshing for a 1-dimensional excitation of the container, whereas in [23] the same
approach is extended to 3-dimensional motions, by using a spherical pendulum model.
Input shaping introduces a delay in the motion duration and the liquid free-surface
peaks at the beginning of motion cannot be bound to remain below a specific value.
In [24], the formulation of a constrained-optimization problem taking into account a
3-dimensional motion is presented, but only 1-dimensional motion experiments are
shown. The adopted model is again the spherical pendulum, and sloshing is limited
by re-orienting the robot end-effector.
This research studies the time-optimal trajectory planning of an industrial robot car-
rying a cylindrical container filled with liquid. The objective is to impose stringent
limits on the liquid sloshing prescribing 1-dimensional and 2-dimensional paths of the
end-effector on a horizontal plane, without changing the end-effector orientation. The
sloshing dynamics is modelled by using the mass-spring-damper model and the tech-
nique described in [29]. For the resolution of the constrained-optimization problem,
different approaches are available. Pre-validated trajectory profiles may be used [32],
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but this way no control on the imposed sloshing height is ensured. Alternatively, the
velocity limit curve can be defined, but this requires the problem constraints to be ex-
plicitly written in terms of the path parameter s and its time derivatives ṡ, s̈ [33], which,
for the problem addressed in this work, may not be easily fulfilled. For this reason,
we solve the optimization problem by adopting a multiple shooting method and using
CasADi [3], a software framework implemented in Matlab for nonlinear optimization
and optimal control.
The Chapter is structured as follows. Section 3.2 presents the model parameters and
the equations of motion (EOMs) in terms of the corresponding generalized coordi-
nates. Section 3.3 provides the formulation of the sloshing-height estimation up to a
3-dimensional motion of the liquid-filled container. In Section 3.4, the constrained-
optimization problem is described, showing how the sloshing constraints are writ-
ten as functions of the path parameter and its time derivatives. Section 3.5 illustrates
the experimental setup, together with an explanation of the experimental video post-
processing; the validation campaign is described and discussed thanks to a quanti-
tative analysis; furthermore, the experimental results comparing non-optimized and
optimized motions are presented. Finally, in Section 3.6 conclusions are drawn and
suggestions for future developments are given.

3.2 Sloshing Model

3.2.1 Model Parameters

We will consider a cylindrical container of radius R, filled with a liquid of height h and
mass mF . A simplified discrete mechanical model can be used to reproduce the liquid-
sloshing dynamics. In particular, the mass-spring-damper model comprises a rigid
mass m0 (whose signed vertical distance from the liquid’s center of gravity G is h0) that
moves rigidly with the container, and a series of moving masses mn , with each one of
them representing the equivalent mass of a sloshing mode (Figure 3.1a). Each modal
mass mn is restrained by a spring kn and a damper cn , and its signed vertical distance
from G is hn .
The model parameters can be determined by imposing a number of equivalence con-
ditions with the original system [22]:

• the overall mass must be the same:

mF = m0 +
∞∑

n=1
mn (3.1)

• the height of the center of gravity G must remain the same for small oscillations
of the liquid:

m0h0 +
∞∑

n=1
mnhn = 0 (3.2)

• the natural frequency associated with the n-th mode must coincide with the one
that can be obtained from the continuum model:

ω2
n = kn

mn
= g

ξ1n

R
tanh

(
ξ1n

h

R

)
1 (3.3)

1This result is obtained from the formulation of the fluid field equations described in [22]. If a cylin-
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(a) Model Parameters. (b) Top view showing the
n-th generalized coordi-
nates.

(c) Sloshing mass sliding
on a parabolic surface.

Figure 3.1: Mass-spring-damper model.

• the sloshing force acting on the container wall must be the same as the one calcu-
lated from the continuum model, leading to the determination of the n-th slosh-
ing mass:

mn = mF
2R

ξ1nh(ξ2
1n −1)

tanh
(
ξ1n

h

R

)
. (3.4)

In Equations (3.3) and (3.4), ξ1n is the root of the derivative of the Bessel function of
the first kind with respect to the radial coordinate r , for the 1st circumferential mode
and the n-th radial mode [34], while g is the gravity acceleration. The damping ratio

ζn = cn

2
√

knmn

can be determined by using empirical formulas [22]. In this Thesis, we

will use:

ζn = 0.92

√
υ/ρ√
g R3

[
1+ 0.318

sinh(ξ1nh/R)

(
1+ 1−h/R

cosh(ξ1nh/R)

)]
(3.5)

with υ and ρ being the dynamic viscosity and density of the liquid, respectively. In
the case of an industrial robot carrying a container filled with liquid, the container is
typically mounted on a tray which is attached to the robot end-effector. When the lat-
ter motion has no angular velocity, the container and the robot end-effector share the
same translational acceleration, indicated with r̈E . For a container under 2-dimensional
motion on the horizontal x y plane, the excitation is provided by the container accel-
erations along the x and y directions, denoted with {r̈E }0 = [r̈x r̈y 0]T . Here r̈x and
r̈y indicate the projections of r̈E on the x and y axes of the inertial frame F0, respec-
tively. The motion of the n-th sloshing mass is described by the generalized coordi-
nates (xn , yn), whose definition is illustrated in Figure 3.1b. The latter are then used to
compute the liquid sloshing height.

3.2.2 Equations of Motion

In general, three dynamic regimes are possible [22]:

drical container is considered and only the 1st circumferential mode is taken into account, substituting
the solution of the Laplace equation inside the free-surface boundary condition of the liquid yields the
expression of natural frequency for the n-th radial mode.
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(a) Assumption of planar free
surface.

(b) Assumption of non-planar
free surface.

Figure 3.2: Liquid free-surface shapes.

• small oscillations in which the liquid free surface remains planar (Figure 3.2a);

• relatively-large-amplitude oscillations in which the liquid free surface is no longer
planar (Figure 3.2b);

• strongly nonlinear motion, where the liquid free surface exhibits instantaneous
peaks characterized by swirling shapes.

While the third motion regime will not be object of the present study, the first and sec-
ond cases can be analyzed by means of a linear mass-spring-damper model (L model)
and a nonlinear mass-spring-damper model (NL model), respectively.
The NL model considers the sloshing mass mn as sliding on a parabolic surface, with

an attached nonlinear spring of order w (Figure 3.1c) [28]. The analytical expression of
the parabolic surface allows the writing of the vertical coordinate zn as a function of xn

and yn , namely:

zn = Cn

2R
(x2

n + y2
n) (3.6)

where Cn =ω2
n

R

g
. The time derivative of Equation (3.6) yields:

żn = Cn

R
(ẋn xn + ẏn yn) (3.7)

The nonlinear spring exerts the forces αnkn x2w−1
n and αnkn y2w−1

n , along the x and
y direction respectively. In this paper, we choose w = 2 and αn = 0.58, as suggested

in [28]. If the radial generalized coordinate rn =
√

x2
n + y2

n is introduced, the nonlinear-

spring force in the radial direction can be written as αnknr 2w−1
n .

The EOMs, describing the time evolution of the generalized coordinates (xn , yn), can
be obtained by means of the Lagrange Equations:

d

d t

( ∂T

∂ẋn

)
− ∂T

∂xn
+ ∂V

∂xn
=− ∂D

∂ẋn

d

d t

( ∂T

∂ẏn

)
− ∂T

∂yn
+ ∂V

∂yn
=− ∂D

∂ẏn

(3.8)

where:
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• the kinetic energy T of the n-th sloshing mass can be computed by taking into
account its velocity ṙn = [ẋn ẏn żn]T , the container velocity {ṙE }0 = [ṙx ṙy 0]T

and by exploiting Equation (3.7):

T = 1

2
mn[(ṙx + ẋn)2 + (ṙy + ẏn)2 + ż2

n] =

= 1

2
mn

[
(ṙx + ẋn)2 + (ṙy + ẏn)2 + C 2

n

R2
(ẋn xn + ẏn yn)2

] (3.9)

• the potential energy V considers the contribution of gravity and nonlinear-spring
forces, namely:

V = mn g zn +
∫ rn

0
αnknr 2w−1

n drn = mn g
Cn

2R
(x2

n + y2
n)+ αnkn

2w
(x2

n + y2
n)w (3.10)

• the Rayleigh function D accounts for energy dissipation:

D = 1

2
cn(ẋ2

n + ẏ2
n + ż2

n) = mnζnωn

[
ẋ2

n + ẏ2
n + C 2

n

R2
(ẋn xn + ẏn yn)2

]
. (3.11)

The substitution of Equations (3.9), (3.10) and (3.11) in the system (3.8) leads to the
formulation of two coupled EOMs for the NL model:

ẍn +2ωnζn[ẋn +C 2
n(x2

n ẋn + yn ẏn xn)]+
+C 2

n(xn ẋ
2
n +x2

n ẍn +xn ẏ
2
n +xn ÿn yn)+

+ω2
n xn[1+αn(x2

n + y2
n)w−1]+ r̈x

R
= 0

ÿn +2ωnζn[ẏn +C 2
n(y2

n ẏn +xn ẋn yn)]+
+C 2

n(yn ẏ
2
n + y2

n ÿn + yn ẋ
2
n + yn ẍn xn)+

+ω2
n yn[1+αn(x2

n + y2
n)w−1]+ r̈y

R
= 0

(3.12)

where xn = xn/R, yn = yn/R. As far as the L model is concerned, the linearization of the
EOMs in Equation (3.12) provides two decoupled EOMs in the generalized coordinates
(xn , yn) of the n-th mode:{

ẍn +2ζnωn ẋn +ω2
n xn + r̈x = 0

ÿn +2ζnωn ẏn +ω2
n yn + r̈y = 0

(3.13)

3.2.3 Extension to 3-Dimensional Motion

If an excitation r̈z along the z-axis of F0 is added to the one on the x y plane, the con-
tainer is subject to a 3-dimensional motion, namely {r̈E }0 = [r̈x r̈y r̈z]T . As long as we
assume to employ the mass-spring-damper model presented in Section 3.2.1 to repro-
duce the liquid behavior, the same model parameters can be used. This choice allows
the derivation of a fast and easy model extension, without the complication inherent
in the construction of a different discrete model. As a consequence, we assume that
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the additional motion along the z-axis only influences the kinetic energy of the n-th
sloshing mass:

T = 1

2
mn[(ṙx + ẋn)2 + (ṙy + ẏn)2 + (ṙz + żn)2] =

= 1

2
mn

{
(ṙx + ẋn)2 + (ṙy + ẏn)2 +

[
ṙz + Cn

R
(ẋn xn + ẏn yn)

]2} (3.14)

where żn is still given by Equation (3.7). Hence, combining Equation (3.8) with Equa-
tions (3.14), (3.10) and (3.11), the NL-model EOMs for the 3-dimensional motion be-
come:

ẍn +2ωnζn[ẋn +C 2
n(x2

n ẋn + yn ẏn xn)]+
+C 2

n(xn ẋ
2
n +x2

n ẍn +xn ẏ
2
n +xn ÿn yn)+

+ω2
n xn[1+αn(x2

n + y2
n)w−1]+ r̈x

R
+ r̈z

g
ω2

n xn = 0

ÿn +2ωnζn[ẏn +C 2
n(y2

n ẏn +xn ẋn yn)]+
+C 2

n(yn ẏ
2
n + y2

n ÿn + yn ẋ
2
n + yn ẍn xn)+

+ω2
n yn[1+αn(x2

n + y2
n)w−1]+ r̈y

R
+ r̈z

g
ω2

n yn = 0

(3.15)

whereas, the L-model EOMs yield:
ẍn +2ζnωn ẋn +ω2

n xn + r̈x + r̈z

g
ω2

n xn = 0

ÿn +2ζnωn ẏn +ω2
n yn + r̈y + r̈z

g
ω2

n yn = 0

(3.16)

3.3 Analytical Sloshing-Height Estimation

3.3.1 1-Dimensional Motion

If only a 1-dimensional excitation in the y direction is given to the container and the
phenomenon of rotary sloshing is neglected [22], solely the generalized coordinate
yn is different from zero. In such a case, the conservation of the center of gravity y-
coordinate, between the continuum model and the equivalent model, yields:

yG mF =
∞∑

n=1
ynmn + y0m0 =

∞∑
n=1

ynmn (3.17)

Considering a cylindrical container with cross section S = πR2, filled with a liquid of
height h, yG can be computed as:

yG = 1

Sh

Ï
S

∫ h
2 +η(r,θ,ηn )

− h
2

y d zdS =

= 1

πR2h

∫ R

0

∫ 2π

0

∫ h
2 +η(r,θ,ηn )

− h
2

r 2 sinθ d zdθdr,

(3.18)
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where the function η(r,θ,ηn) describes the liquid free-surface shape, ηn is the sloshing
height of the n-th mode, (r,θ) are the polar coordinates, with x = r cosθ, y = r sinθ,
dS = r dθdr . As for the L model, the function η(r,θ,ηn) describes a plane (Figure 3.2a):

η(r,θ,ηn) =
∞∑

n=1
ηn

r

R
sinθ, (3.19)

whereas, for the NL model, the non-planar free surface can be described by means of
the first-kind Bessel function (Figure 3.2b), namely:

η(r,θ,ηn) =
∞∑

n=1
ηn

J1(ξ1n
r
R )

J1(ξ1n)
sinθ. (3.20)

Independently from the adopted function η, the expression of yG from Equation (3.18)
can be used in Equation (3.17) to express ηn as a function of the model parameters
and the generalized coordinates (xn , yn), with the latter being obtained by solving the
EOMs (see Section 3.2.2). The L-model assumption of planar surface leads to:

yG = 1

πR2h

∫ R

0

∫ 2π

0

∫ h
2 +

∑
ηn

r
R sinθ

− h
2

r 2 sinθ d zdθdr = R

4h

∞∑
n=1

ηn (3.21)

Regarding the NL model, by exploiting one of the Bessel function properties, i.e.∫ R

0
r 2 J1(ξ1n

r

R
) dr = R3 J1(ξ1n)

ξ2
1n

, (3.22)

yG can be evaluated as:

yG = 1

πR2h

∫ R

0

∫ 2π

0

∫ h
2 +

∑
ηn

J1(ξ1n
r
R )

J1(ξ1n ) sinθ

− h
2

r 2 sinθ d zdθdr = R

h

∞∑
n=1

ηn

ξ2
1n

(3.23)

Inserting the results from Equation (3.21) in Equation (3.17) yields:( R

4h

∞∑
n=1

ηn

)
mF =

∞∑
n=1

ynmn (3.24)

hence allowing the formulation of the n-th sloshing height (SH) for the L model:

ηn = 4hmn

mF R
yn (3.25)

where the n-th generalized coordinate yn is obtained from (3.13).
The same can be done regarding the NL model, exploiting the outcome of Equation
(3.23) and substituting the value of yG in Equation (3.17), namely:(R

h

∞∑
n=1

ηn

ξ2
1n

)
mF =

∞∑
n=1

ynmn . (3.26)

This way, the estimation of the SH for the NL model is:

ηn = ξ2
1nhmn

mF R
yn (3.27)

with yn computed by solving the EOMs of (3.12). For the sake of convenience, these
results are summarized in the leftmost column of Table 3.1.
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Table 3.1: SH estimation for a 1-dimensional planar motion, without (left column) and
with (right column) an excitation along the z-axis.

{r̈E }0 = [0 r̈y 0]T {r̈E }0 = [0 r̈y r̈z]T

L model ηn = 4hmn

mF R
yn (3.28) ηn = 4hmn

mF R
yn (3.29)

yn from (3.13) yn from (3.16)

NL
model

ηn = ξ2
1nhmn

mF R
yn (3.30) ηn = ξ2

1nhmn

mF R
yn (3.31)

yn from (3.12) yn from (3.15)

3.3.2 2-Dimensional Motion

When accounting for a 2-dimensional excitation, the planeΠ, on which the maximum
sloshing height (MSH) occurs, changes its orientation instantaneously, according to a
rotation about the z-axis by the angle (Figure 3.1b):

φn = arctan
( yn

xn

)
(3.32)

If the liquid behavior is analyzed on the plane Π at every instant, Equation (3.17) can

be extended to the radial coordinate of G , remembering that rn =
√

x2
n + y2

n :

rG mF =
∞∑

n=1
rnmn =

∞∑
n=1

mn

√
x2

n + y2
n (3.33)

Equations (3.21) and (3.23) can be used to express rG in terms of ηn , depending on the
adopted model. The approach seen in Section 3.3.1 can be similarly followed. In par-
ticular, the expression of rG = R

4h

∑∞
n=1ηn from the L model can be inserted in Equation

(3.33) to write the estimation of the MSH for the L model, namely:

ηn = 4hmn

mF R

√
x2

n + y2
n (3.34)

where xn , yn are computed from the EOMs in (3.13). On the other hand, considering

the NL-model expression of rG = R
h

∑∞
n=1

ηn

ξ2
1n

allows to write the formula for the n-th

MSH evaluation for the NL model, i.e.:

ηn = ξ2
1nhmn

mF R

√
x2

n + y2
n (3.35)

with xn , yn from (3.12). For convenience, the formulas for the n-th MSH evaluation,
both for the L model and the NL model, considering a 2-dimensional motion of the
container are recapitulated in the leftmost column of Table 3.2.
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Table 3.2: MSH estimation for a 2-dimensional planar motion, without (left column)
and with (right column) an excitation along the z-axis.

{r̈E }0 = [r̈x r̈y 0]T {r̈E }0 = [r̈x r̈y r̈z]T

L model ηn = 4hmn

mF R

√
x2

n + y2
n (3.36) ηn = 4hmn

mF R

√
x2

n + y2
n (3.37)

xn , yn from (3.13) xn , yn from (3.16)

NL
model

ηn = ξ2
1nhmn

mF R

√
x2

n + y2
n (3.38) ηn = ξ2

1nhmn

mF R

√
x2

n + y2
n (3.39)

xn , yn from (3.12) xn , yn from (3.15)

3.3.3 Remarks

By looking at the leftmost columns of Tables 3.1 and 3.2, one can point out that, for
equal values of the generalized coordinates (xn , yn), the ratio between ηn obtained
from the L model in Equations (3.28, 3.36) and ηn from the NL model in Equations
(3.30, 3.38) is always 4/ξ2

1n . If only the 1st mode is considered, this ratio is equal to
4/ξ2

11 ≈ 1.18 and shows that the assumption of a planar free surface always overesti-
mates the sloshing height compared to the assumption of a non-planar free surface.
Furthermore, while in Equations (3.28, 3.30), ηn has the same sign of yn , in Equations
(3.36, 3.38) ηn is always positive. This means that Equations (3.28, 3.30) express the
trend of the sloshing height only on one side of the container , with the sloshing height
on the other side being estimated as the opposite of ηn : in this case, we will simply
talk about sloshing height (SH). Conversely, in Equations (3.36, 3.38), ηn indicates the
maximum peak that occurs on the container wall on a plane oriented as described
in Equation (3.32): in this case, we will use the expression maximum sloshing height
(MSH).

3.3.4 Extension to 3-Dimensional Motion

When an additional excitation along the z-axis is taken into account, the formulas for
the SH and the MSH estimation are reported in the rightmost columns of Table 3.1
and 3.2. They are seemingly identical to the ones employed in the case of a planar
motion along the x y plane. However, the generalized coordinates xn , yn are obtained
by solving the EOMs in (3.15) for the NL model and in (3.16) for the L model, instead of
Equations (3.12) and (3.13), respectively.
Summing up, once the liquid properties are known (in terms of container radius R,
static height h and density ρ), the equivalent-discrete model parameters (see Section
3.2) can be computed, and the 3-dimensional formulation can be applied to study the
liquid sloshing for a general motion of the container, namely {r̈E }0 = [r̈x r̈y r̈z]T , by
simply employing the EOMs in (3.16) if the L model is adopted, or by solving the EOMs
in (3.15) if the NL model is chosen. Once that the generalized coordinates (xn , yn) of

48



3.4. Time-Optimal Trajectory Planning

6

Figure 3.3: Flowchart describing the computation of the liquid sloshing height, de-
pending on the type of container acceleration and the adopted model.

the n-th sloshing mass are computed, if the container is not subject to an acceleration
along the x-axis throughout the whole motion (r̈x = 0 [m/s2]), we may refer to Table
3.1 for the SH estimation. Conversely, if both r̈x and r̈y are different from zero, the
MSH may be estimated by referring to Table 3.2. The aforementioned procedure for
sloshing-height estimation is illustrated by the flowchart in Figure 3.3.
Hence, the sloshing-height estimation requires the numerical solution of the EOMs to
find the generalized coordinates (xn , yn) of the n-th sloshing mass, together with the
computation of the formulas in Tables 3.1 and 3.2, depending on the adopted model.
Regarding our (non-optimized) Matlab implementation, the average computational
time is 0.7 secs, for either the linear and the non-linear formulations.

3.4 Time-Optimal Trajectory Planning

3.4.1 Trajectory Definition

The path and the orientation that the robot end-effector has to follow to realize the
desired task are prescribed. In particular, the end-effector orientation is usually con-
stant, so that we choose zero angular velocity and acceleration throughout the motion,
namelyωE =αE = 0. The path of the reference point on the end-effector is parameter-
ized in terms of a parameter s (arc length):

rE = rE (s), s ∈ [0,1] (3.40)
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and can be defined by using B-splines [35], [32] as

rE (s) =
m∑

j=0
B d

j (s)p j , s ∈ [0,1] (3.41)

where B d
j are the B-spline basis functions of degree d and p j are the m + 1 control

points. The motion law of the path parameter s(t ) allows the trajectory to be defined
as:

ṙE (s, ṡ) = r′E (s)ṡ (3.42)

r̈E (s, ṡ, s̈) = r′′E (s)ṡ2 + r′E (s)s̈ (3.43)

where ()′ = ∂()/∂s denotes the derivative w.r.t. the path parameter s.

3.4.2 Sloshing Limits

In order to define the constraints of the optimization problem, we use the L model
for the SH (MSH) estimation, because it is more conservative (see Section 3.3.3). Fur-
thermore, in [29], it is experimentally proven that the influence of sloshing modes
higher than 1 is negligible when considering the L model. For these reasons, in the
optimization-problem formulation of this paper, only the 1st -mode generalized coor-
dinates x1, y1 obtained from the resolution of the L-model EOMs are considered. This
approach allows an easy composition of the constraints that the generalized coordi-
nates must respect to fulfill the limit on the admissible value ηl i m of the SH (MSH).
Accordingly, for a 1-dimensional excitation along the y-direction, the constraint is:

|y1| ≤ mF R

4hm1
ηl i m (3.44)

Instead, for a 2-dimensional excitation in the x y plane, the boundaries on the general-
ized coordinates x1, y1 can be determined by assuming |x1| = |y1|, so that:

|x1| ≤ 1p
2

mF R

4hm1
ηl i m (3.45a)

|y1| ≤ 1p
2

mF R

4hm1
ηl i m (3.45b)

If compared with the constraint√
x2

1 + y2
1 ≤ mF R

4hm1
ηl i m (3.46)

whose corresponding feasible set for (x1, y1) is represented by a circle of radius
mF R

4hm1
ηl i m ,

the chosen constraints in (3.45) are represented by the square which is inscribed inside
the aforementioned circle, thus providing a more restrictive feasible set for the general-
ized coordinates (x1, y1). Furthermore, the assumption |x1| = |y1|, besides being more
conservative, leads to the formulation of two linear constraints, hence avoiding a non-
linear constraint and aiding the numerical solution of the optimization.
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3.4.3 Problem Formulation

The jerk of the path parameter s is used as control input, in order to ensure a smooth
trajectory [32]:

u = ...
s (3.47)

The system state is defined by a vector x ∈R13, namely:

x = [s ṡ s̈ qT x1 y1 ẋ1 ẏ1]T (3.48)

where q ∈ R6 is the array of robot joint coordinates. Hence, the overall optimization
problem can be formulated as

mi n
te ,u

[∫ te

0
(1+ku2) d t

]
(3.49a)

subject to

ẋ = f(x,u) (3.49b)

x(0) = [0 0 0 qT
0 0 0 0 0]T (3.49c)

x(te ) = [1 0 0 qT
e 0 0 0 0]T (3.49d)

|q̇| ≤ q̇max (3.49e)

|ΘB (q, q̇, q̈)pB | ≤ QM ,max (3.49f)

h(x1, y1,ηl i m) ≤ 0 (3.49g)

|u| ≤ umax (3.49h)

The cost functional in (3.49a) is a trade-off between minimal time and minimal overall
jerk, determined by the constant k, whose value can be conveniently tuned. Function
f (3.49b) takes into account the integration chain of the path parameter s from the
control u (3.50a), the robot inverse kinematics (3.50b) and the EOMs expressing the
sloshing dynamics (3.50c), namely:

d

d t

 s
ṡ
s̈

=
 ṡ

s̈
u

 (3.50a)

d

d t
q = J−1ξE (s, ṡ) (3.50b)

d

d t


x1

y1

ẋ1

ẏ1

=


ẋ1

ẏ1

−2ζ1ω1ẋ1 −ω2
1x1 − r̈E ,x(s, ṡ, s̈)

−2ζ1ω1 ẏ1 −ω2
1 y1 − r̈E ,y (s, ṡ, s̈)

 (3.50c)

In (3.50b), the term J = J(q) is the Jacobian matrix of the robot, whereas ξE = [ṙT
E ω

T
E ]T

represents the end-effector twist. Equality constraints (3.49c, 3.49d) are the initial and
final conditions on the state vector x, where q0 = q(0) and qe = q(te )2 are obtained by
solving the inverse position analysis of the robot in correspondence of the initial and

2The final condition on the robot joint coordinates is relaxed into an inequality by asking that the
values of the final joint angles, computed by the optimizer, fall into the neighborhood of q(te ) according
to a certain tolerance, rather than restraining them to the precise value of q(te ).

51



Chapter 3. Anti-Sloshing Motions of Serial Robots

Table 3.3: Maximum velocity and torque for the i -th joint of the robot.

i 1 2 3 4 5 6

q̇i ,max [rad/s] 4.3 4.3 5.5 6.4 7.5 17.6

QMi ,max [Nm] 6.24 6.24 6.08 2.16 5.92 4.24

final poses of the end-effectors. Inequality constraints (3.49e, 3.49f) consider the limits
on the maximum joint velocities q̇max and joint motor torques QM ,max , respectively.
The values of q̇max and QM ,max for the industrial robot used for experiments (Stäubli
RX130L3) are reported in Table 3.3. The computation of the joint torques requires the
knowledge of the base parameters pB (which are a linear combination of independent
and dependent robot dynamic parameters [36]), with ΘB being the matrix obtained
from the QR decomposition of the regressor matrix [37]. The inequality (3.49g) refers to
the constraints that are imposed on the generalized coordinates x1, y1 to limit sloshing,
as defined in (3.44, 3.45). The value of umax is set to 1000 1/s3 [38].

3.5 Experiments

3.5.1 Experimental Setup and Sloshing Measurement

The experimental setup comprises a cylindrical container with radius R = 50mm and
a liquid static height h = 70mm. The liquid is water, which is colored by adding dark
brown powder, in order to obtain a better contrast for the image processing analysis.
Motions are performed by an industrial robot (Stäubli RX130L) and recorded by a Go-
Pro Hero34 camera attached on the same tray that hosts the container.
From the recorded videos, the extraction of the experimental sloshing height is ob-
tained by means of a routine implemented in Matlab. In particular, once that each
frame of the video is binarized according to a proper threshold level of the grayscale,
the image must be processed in two different ways, depending on the excitation type:

• SH detection: when the excitation is given by a 1-dimensional acceleration along
the y-axis with or without the addition of r̈z on the vertical direction, the trend
of the SH can be examined on only one side of the container (Section 3.3.3); in
this case, the SH is detected by identifying the black pixel with the highest z-
coordinate on the rightmost side of the container (Figures 3.4a, 3.4b); then, the
SH is evaluated as the difference (converted in mm) between the vertical coordi-
nate of the detected pixel and the one of the pixel representing the liquid static
height h.

• MSH detection: when the excitation is a general planar or spatial motion, the
MSH can occur wherever on the container wall. The MSH is again detected as
the black pixel with the highest z-coordinate, but in this case the whole lateral
surface of the container is considered. Furthermore, a distinction is made be-
tween a peak occurring on the front part of the container and a peak on the
rear wall, noticing that, in the former case the liquid image presents a uniform

3https://www.staubli.com
4https://gopro.com
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black shape (Figure 3.4c), whereas, in the latter case, the liquid image is char-
acterized by white regions, due to the light reflection on the liquid free surface
(Figure 3.4d). If the ratio between the area occupied by the white regions and
the area of the liquid image is under a certain percentage threshold, the peak
is estimated in the front part of the container; conversely, the peak is detected
in the rear part of the container if the ratio is greater than the specified thresh-
old. Through this distinction, the peak can be correctly located on the container
surface and the knowledge of the image depth can be used to obtain a more real-
istic measure of the MSH. In particular, thanks to a preliminary detection of the
container pose w.r.t. the camera frame, the expression of the container lateral
surface is known. Additionally, the identification of the peak in the image plane
allows the computation of the line connecting the camera frame origin with the
identified peak. The intersection between the line and the cylindrical lateral sur-
face provides two points in the 3-dimensional space. If the condition of Figure
3.4c occurs, the point nearest to the camera is taken and its vertical coordinate
is representative of the MSH; in case the condition of Figure 3.4c is verified, the
vertical coordinate of the farthest point is used to obtain the MSH.

3.5.2 Validation Trajectories

The trajectories are planned so that the robot follows three geometrical paths on the
x y plane (Figure 3.5), each of them with different motion profiles, characterized by
increasing container accelerations:

• a back-and-forth linear path (indicated as l-motion);

• an eight-shaped path (e-motion);

• a circular path, performed twice in succession (c-motion).

In Figure 3.6, the trends of the second time derivative s̈ of the path parameter are illus-
trated: for every path, all three motion profiles are shown. Note that the legend refers
to the maximum of the container acceleration norm ∥r̈E∥max reached during the cor-
responding motion.

Additionally, the 2-dimensional planar motions obtained from a modified trapezoidal
motion law with 6 segments of s̈, are extended into 3-dimensional motions (l3-motion,e3-
motion,c3-motion), through the inclusion of an excitation along the z-axis (Figure 3.7a).
In particular, for the e3-motion and the c3-motion, the accelerations along the x and
y directions are kept unchanged with respect to the corresponding e-motion and c-
motion of the 2-dimensional case, respectively. The same cannot be said about the
l3-motion, where the acceleration along the y-axis was slightly modified, to meet the
robot limits. As a result of the extension, if 2-dimensional and 3-dimensional paths
are observed from the top of the x y plane, they share the same shape, whereas, from
a front perspective, the vertical coordinate changes along the path according to an ex-
cursion ∆z (Figure 3.7b). On each 2-dimensional path, two different trends of r̈z are
considered, thus providing two different 3-dimensional paths, characterized by two
different values of ∆z:

• a profile with moderate dynamics, namely |r̈z |max ∈ [2,3]m/s2;
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inspection area

(a) SH detection: positive peak on the rightmost container
wall.

inspection area

(b) SH detection: negative peak on the rightmost container
wall.

liquid image

(c) MSH detection: front peak.

liquid image

(d) MSH detection: back peak.

Figure 3.4: Snapshots from the image processing analysis of the recorded videos.
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Figure 3.5: The three planar paths followed by the robot during experimental valida-
tion.

(a) l-motion. (b) e-motion. (c) c-motion.

Figure 3.6: The three motion profiles performed per each planar path.

• a profile with more prominent dynamics, namely |r̈z |max ∈ [4,5]m/s2.

3.5.3 Experimental Results

In Figure 3.8, the 2-dimensional L and NL model predictions are compared with the
results from the experimental motions, only considering the 1st sloshing mode. A
good adherence between the experiments and the models can be appreciated for the
1-dimensional motions (Figures 3.8a, 3.8b, 3.8c), and tracking remains reliable also for
2-dimensional motions, especially when considering lower values of ∥r̈E∥max (Figures
3.8d, 3.8g). As the value of the 2-dimensional excitation r̈E is increased, the model
predictions still capture the trend of the real liquid MSH, although they seem to lose
accuracy in correspondence of the peaks reached by the liquid (Figures 3.8e, 3.8f, 3.8h,
3.8i). This can be eventually attributed to two reasons:
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(a) General view. (b) Front view.

Figure 3.7: The 3-dimensional paths obtained as an extension of the 2-dimensional
case.

• the high dynamics given to the container causes a regime of strongly nonlinear
motions, where the liquid free surface loses the assumed shape and shows in-
stantaneous swirly peaks, as illustrated in Figure 3.9a, that cannot be tracked by
the models;

• the height of the frames that are employed for the image processing analysis,
grants a greater field of view when the liquid peak occurs on the rear wall of the
container (Figure 3.9b), whereas, for a peak on the front wall (Figure 3.9c), the
value of the real MSH is saturated by the frame upper limit; this explains the
discrepancy between the experiments and the prediction models in the red areas
that are highlighted in Figures 3.8e, 3.8f, 3.8h, 3.8i.

Regarding the former case, the L-model assumption of a planar surface during mo-
tion loses adherence with reality when the container acceleration is roughly greater
than ∥r̈E∥max ≈ 8m/s2, with a maximum jerk of ∥ ...

r E∥max ≈ 60m/s3. This is reflected
in a less accurate correspondence between the model prediction and the experimen-
tal results, even though the model evaluation is still reliable. It is worth observing
that the maximum peaks are always overestimated by the L model. As far as the NL
model is concerned, the assumption of a free surface described by means of the first-
kind Bessel function finds a better correspondence with reality, if compared with the
L model. The model estimation begins to lose adherence with reality when the con-
tainer acceleration reaches a value of roughly ∥r̈E∥max ≈ 9.5m/s2, with a maximum
jerk of ∥ ...

r E∥max ≈ 74m/s3. However, the global maxima predicted by the NL model are
always below the experimental ones.
Table 3.4 summarizes the obtained results by reporting the accuracy index ϵmod ex-
pressing the error between the model and the experimental maxima:

ϵmod =
ηmax,mod −ηmax,exp

ηmax,exp
×100% (3.51)

where the subscripts mod and exp denote the adopted model (2-dimensional L/NL)
and the experimental results, respectively. For all motions, |ϵ2D−L| is always below 18%,
and |ϵ2D−N L| never exceeds 19%, with the NL model granting a better tracking during
the whole time period. Furthermore, the positive sign of ϵ2D−L proves that the L model
always overestimates the real SH and MSH peaks, as expected (see Section 3.3.3), hence
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(a) l-motion: ∥r̈E∥max ≈
5.2m/s2.

(b) l-motion: ∥r̈E∥max ≈
7.4m/s2 .

(c) l-motion: ∥r̈E∥max ≈
8.1m/s2.

(d) e-motion: ∥r̈E∥max ≈
4.7m/s2.

(e) e-motion: ∥r̈E∥max ≈
8.1m/s2.

(f) e-motion: ∥r̈E∥max ≈
9.2m/s2.

(g) c-motion: ∥r̈E∥max ≈
5.8m/s2.

(h) c-motion: ∥r̈E∥max ≈
8.9m/s2.

(i) c-motion: ∥r̈E∥max ≈
9.5m/s2.

Figure 3.8: Comparison between the proposed models and the experimental results
from the planar motions.

(a) Swirly peak. (b) Back peak. (c) Front peak.

Figure 3.9: Snapshots from the recorded videos, showing the different peaks reached
by the liquid.

57



Chapter 3. Anti-Sloshing Motions of Serial Robots

Table 3.4: Accuracy index ϵmod evaluated for the planar motions.

l-motion ∥r̈E∥max ≈ 5.2m/s2 ∥r̈E∥max ≈ 7.4m/s2 ∥r̈E∥max ≈ 8.1m/s2

ϵ2D−N L =−11.9% ϵ2D−N L =−9.5% ϵ2D−N L =−14.1%
ϵ2D−L = 8.8% ϵ2D−L = 15.8% ϵ2D−L = 12.8%

e-motion ∥r̈E∥max ≈ 4.7m/s2 ∥r̈E∥max ≈ 8.1m/s2 ∥r̈E∥max ≈ 9.2m/s2

ϵ2D−N L =−2.1% ϵ2D−N L =−7.5% ϵ2D−N L =−9.2%
ϵ2D−L = 18.3% ϵ2D−L = 16.2% ϵ2D−L = 17.1%

c-motion ∥r̈E∥max ≈ 5.8m/s2 ∥r̈E∥max ≈ 8.9m/s2 ∥r̈E∥max ≈ 9.5m/s2

ϵ2D−N L =−8.7% ϵ2D−N L =−14.3% ϵ2D−N L =−19%
ϵ2D−L = 17.6% ϵ2D−L = 11.6% ϵ2D−L = 16.9%

providing a more conservative estimation.
In Figure 3.10, the results from the 3D motions are illustrated: for each motion, the
3-dimensional L and NL model predictions are compared with the 2-dimensional L
and NL ones, to show the benefit obtained by employing the extended formulation.
In general, the 3-dimensional models exhibit a better correspondence with respect to
the 2-dimensional ones, especially when the vertical acceleration is more significant
(e.g. when |r̈z |max ∈ [4,5]m/s2). The definition of the index σmod expresses the mean
absolute error between the experimental results and the model predictions:

σmod =
∑N

i=1|ηexp (ti )−ηmod (ti )|
N

(3.52)

where the subscripts mod and exp denote the adopted model (2-dimensional L/NL
or 3-dimensional L/NL) and the experimental results, respectively, whereas ti refers to
the i -th time instant and N represents the number of samplings. The analysis of Table
3.5, in which the index σmod is evaluated for the 3-dimensional motions, confirms the
qualitative evidence, i.e.:

• for equal formulations (3-dimensional or 2-dimensional), the NL model grants a
better tracking of the real-liquid trends with respect to the L model (for instance,
in most cases, σ3D−N L <σ3D−L and σ2D−N L <σ2D−L);

• in general, the 3-dimensional formulation provides a more reliable correspon-
dence with reality, compared to the 2-dimensional formulation; indeed, in most
cases σ3D−N L <σ2D−N L and σ3D−L <σ2D−L .

3.5.4 Remarks

In the described experiments, the employed amount of liquid inside the container
(R = 50mm, h = 70mm, with h/R = 7/5) has a mass of mF ≈ 0.55 kg. Considering only
the first sloshing mode to model the liquid dynamics, from Equation (3.4), we can the-
oretically compute the mass m1 which is responsible of the liquid sloshing (m1 ≈ 0.18
kg). If the case with the highest dynamics is taken into account (e.g. the c-motion
with ∥r̈E∥max ≈ 9.5m/s2), it can be shown, from the simulations, that the inertia forces
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(a) l3-motion: medium (first row) and high (second row) vertical acceleration.

(b) e3-motion: medium (first row) and high (second row) vertical acceleration.

(c) c3-motion: medium (first row) and high (second row) vertical acceleration.

Figure 3.10: Results from the 3D motions.
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Table 3.5: Accuracy index σmod evaluated for the 3-dimensional motions, comparing
the 3-dimensional and the 2-dimensional formulations.

l3-motion (|r̈z |max ∈ [2,3]m/s2) σ3D−N L = 1.7mm σ2D−N L = 2.4mm

σ3D−L = 3.3mm σ2D−L = 4.1mm
l3-motion (|r̈z |max ∈ [4,5]m/s2) σ3D−N L = 2.3mm σ2D−N L = 4.5mm

σ3D−L = 4.2mm σ2D−L = 6.1mm
e3-motion (|r̈z |max ∈ [2,3]m/s2) σ3D−N L = 1.9mm σ2D−N L = 2.2mm

σ3D−L = 4.0mm σ2D−L = 3.3mm
e3-motion (|r̈z |max ∈ [4,5]m/s2) σ3D−N L = 2.0mm σ2D−N L = 4.3mm

σ3D−L = 3.7mm σ2D−L = 4.0mm
c3-motion (|r̈z |max ∈ [2,3]m/s2) σ3D−N L = 2.3mm σ2D−N L = 3.0mm

σ3D−L = 3.9mm σ2D−L = 4.2mm
c3-motion (|r̈z |max ∈ [4,5]m/s2) σ3D−N L = 3.0mm σ2D−N L = 5.0mm

σ3D−L = 3.8mm σ2D−L = 5.3mm

transmitted by the liquid on the robot end-effector are negligible, hence not influenc-
ing the robot dynamics. Conversely, as the value of mF increases (and consequently
so m1 does, if h/R is fixed), the forces acting on the robot end-effector may become
more important. This means that, in the performed experiments, the net force needed
to hold and move the liquid-filled container does not influence the robot dynamics.
Conversely, if a container with larger dimensions and filled with a greater amount of
liquid is chosen, attention must be paid to its inertia actions. In this case, the dynam-
ics of the liquid-filled container have to be inserted inside the formulation of the robot
dynamics [39], in order to compute the necessary robot joint torques able to grant the
correct accomplishment of the desired trajectory.
It is also worth mentioning the influence of the ratio h/R. In particular, for a fixed
value of mF , when h/R increases, the value of the sloshing mass m1 drops down [22],
whereas m1 represents a more important contribution as h/R decreases. As long as the
sloshing mass m1 grows, the sloshing of the liquid becomes more significant, and the
free surface might not satisfy the model assumptions. Consequently, for lower values
of h/R, the prediction models may lose adherence with reality. This also finds confir-
mation by looking at the correlation between the first natural frequency and the ratio
h/R (v. Equation (3.3)). The natural frequencies of the sloshing modes obtained by the
equivalent mass-spring-damper model represent the frequencies in correspondence
of which the liquid-free surface is predisposed to oscillate. When h/R decreases, ω1

tends to lower values, meaning that the fundamental of the liquid free surface can be
easily excited by the motion-law spectrum, in correspondence of the highest ampli-
tudes [30]. This may result in a more non-linear behavior and shape of the liquid free
surface, that might not be detected by the models, although an higher number of slosh-
ing modes is considered.
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(a) l-motion. (b) e-motion. (c) c-motion.

Figure 3.11: Non-optimized motions: for each type of motion, the values of ||r̈E ||max

and ηmax are shown.

3.5.5 Anti-Sloshing Trajectories

The same planar paths (see Figure 3.5) followed during the validation campaign de-
scribed in Section 3.5.2 are employed to assess the optimization efficacy. In particular,
the non-optimized trajectory planning considers a modified trapezoidal motion pro-
file of s̈ from which the trend of the robot end-effctor acceleration r̈E is computed (See
Equation (3.43)). The results for the non-optimized motions are shown in Figure 3.11.
For each motion, the first plot displays the acceleration of the robot end-effector (and
thus of the container), whereas in the second one a comparison between the SH (MSH)
from the experiments and that estimated by the NL model and the L model is provided.
While for the 1-dimensional case (Figure 3.11a), both models exhibit a good tracking
of the real SH, for the 2-dimensional motions (Figure 3.11b, 3.11c), a less accurate cor-
respondence between the real MSH and the prediction models can be noticed. Never-
theless, the L model always overestimates the real SH and MSH peaks (indicated with
ηmax in the plots), hence leading to a more conservative evaluation. In Figure 3.12 the
snapshots taken from the recorded videos show the worst cases that occurred during
the non-optimized motions: in all situations, the liquid would have spilled out if the
container were not closed (notice that the upper limit of the image coincides with the
lid front view)5.
For each path, three optimizations were carried out, each of them differing in the
imposed value of ηl i m . Figure 3.13 reports the results obtained by solving the con-
strained optimization for the l-motion, the e-motion and the c-motion, imposing a
limit on the SH (MSH) of ηl i m = 20mm. In particular, the left-most plot of each sub-
figure 3.13a, 3.13b, 3.13c depicts the ratio between the robot joint velocities and their
maximum admissible values, namely q̇i /q̇i−max , with i = 1, . . . ,6; the central plot rep-
resents the ration between the robot joint torques and their maximum values, namely
QMi /QMi−max , with i = 1, . . . ,6; finally, in the right-most plot the 1st mode generalized

5Both non-optimized and optimized motions can be seen at the link sloshing videos. In the non-
optimized ones, the liquid oscillations are not negligible, even after the task execution.
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(a) l-motion. (b) e-motion. (c) c-motion.

Figure 3.12: Snapshots from the non-optimized motion videos, exhibiting the peaks
reached by the liquid.

coordinates x1, y1, as obtained from the optimization, are shown. It can be noticed
that, for each motion, among the three different constraints (see Equations (3.49e),
(3.49f), (3.49g)) the conditions on the maximum robot joint velocities and torques are
always inactive (i.e. they are always fulfilled with margin), whereas the conditions on
the sloshing height, and hence on the 1st mode generalized coordinates, are active.
Indeed, at some instants, either x1 or y1 reaches the allowed limit, which finds corre-
spondence with constraints (3.44, 3.45) and proves the achievement of a time-optimal
solution (in the model scenario).
Figure 3.14 illustrates the experimental results of the optimized motions. In the l-
motion the value ηmax almost saturates the boundaries (Figure 3.14a) or exceeds them
by a negligible value (Figure 3.14b, 3.14c), whereas in the e-motion (Figure 3.14d, 3.14e,
3.14f) and in the c-motion (Figure 3.14g, 3.14h, 3.14i), the MSH peaks are always below
the imposed limits, as expected, since (3.45) is based on a conservative assumption
(see Section 3.4.2).
In Table 3.6, an evidence of the optimization thoroughness is given by introducing two
performance indices:

%η= ηmax,N−OPT −ηmax,OPT

ηmax,N−OPT
×100 (3.53)

%T = TOPT −TN−OPT

TN−OPT
×100 (3.54)

where OPT and N −OPT denote the optimized and non-optimized motions, respec-
tively. Index %η gives a measure of the benefit obtained from the optimized motion
w.r.t. the non-optimized one, whereas %T indicates the effort required to achieve such
a benefit. It is apparent from Table 3.6 that, while the advantage in terms of η is always
significant, the tighter is the constraint on the SH (MSH), the higher is the required
effort in terms of trajectory duration.

3.6 Conclusions

In this Chapter, a novel technique for the sloshing-height estimation of a liquid inside
a cylindrical container subject to 2-dimensional planar motions was proposed [11],
extending what was presented in [29]. The technique is based on simple discrete me-
chanical models, rather than machine-learning or complex fluid dynamics method-
ologies, thus granting a reliable and easy-to-compute estimation.
Experiments, considering three container planar paths performed by an industrial robot
with different motion profiles, were presented and the relative results were discussed.
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(a) Optimized l-motion with ηl i m = 20mm.

(b) Optimized e-motion with ηl i m = 20mm.

(c) Optimized c-motion with ηl i m = 20mm.

Figure 3.13: Results from the constrained optimization.

Table 3.6: Performance indices for the optimized motions.

l-motion ηl i m = 20mm ηl i m = 15mm ηl i m = 8mm

%η= 56.4% %η= 66.4% %η= 81.4%

%T =−2% %T = 10.6% %T = 46.5%

e-motion ηl i m = 20mm ηl i m = 16mm ηl i m = 10mm

%η= 74.2% %η= 78.8% %η= 86.5%

%T = 47% %T = 60.4% %T = 96.3%

c-motion ηl i m = 20mm ηl i m = 15mm ηl i m = 10mm

%η= 73.1% %η= 78.5% %η= 85.7%

%T = 12.1% %T = 26% %T = 49.9%

63
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(a) Optimized cl1-motion
with ηl i m = 20mm .

(b) Optimized l-motion
with ηl i m = 15mm.

(c) Optimized l-motion
with ηl i m = 8mm.

(d) Optimized e-motion
with ηl i m = 20mm.

(e) Optimized e-motion
with ηl i m = 16mm.

(f) Optimized e-motion
with ηl i m = 10mm.

(g) Optimized c-motion
with ηl i m = 20mm.

(h) Optimized c-motion
with ηl i m = 15mm.

(i) Optimized c-motion
with ηl i m = 10mm.

Figure 3.14: Optimized motions.

An accuracy index, expressing the error between the model and the experimental max-
ima of the sloshing height, was used to prove the effectiveness of the estimation, even
for high values of the container acceleration (up to 9.5m/s2).
Additionally, the 2-dimensional formulation was extended to a 3-dimensional one, to
take into account an additional excitation along the vertical direction, hence resulting
in a 3-dimensional motion of the container [13]. The planar paths of the 2-dimensional
case were extended by adding a z-axis acceleration (up to 5m/s2). The mean absolute
error between the experimental results and the model predictions was examined to
evaluate the benefit, in terms of accuracy, obtained by employing the 3-dimensional
formulation instead of the 2-dimensional one.
In addition, the technique for the sloshing-height evaluation was used for the time-
optimal trajectory planning of an industrial robot, with the aim of limiting liquid slosh-
ing inside a cylindrical container subject to 1-dimensional and 2-dimensional pla-
nar motions [12]. Experimental results were described and discussed, for both non-
optimized and optimized motions. Two performance indexes were introduced to as-
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sess the constrained-optimization effectiveness. The main advantage of the presented
approach lies in the possibility of keeping the liquid sloshing height below a specified
threshold during the whole robot motion, while at the same time guaranteeing the
shortest trajectory duration compatible with this constraint and the given hardware.
Future work will include a further validation study considering higher values of the ver-
tical acceleration and the use of the proposed sloshing-height estimation for square-
section containers, adapting the formulation that was presented in Section 3.3. In ad-
dition, a detailed sensitivity analysis will be addressed to assess the influence of the
container dimensions on the accuracy of the model predictions (see Section 3.5.4).
Furthermore, regarding the planning of anti-sloshing trajectories, the proposed opti-
mization approach will be extended to 3-dimensional motions and different optimiza-
tion strategies will be examined, for a comparison in terms of computational time and
accuracy.
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Chapter 4

Cooperative Grasping

In this Chapter, the dual-arm manipulation, employing two collaborative robots (cobots)
carrying a common object, is addressed. The adopted control strategy is admittance con-
trol, aimed at compliantly modulating the forces exerted by the cobot end-effectors on
the object. The chosen manipulation approach is cooperative grasping, which is char-
acterized by unilateral contact constraints, hence enabling relative motion between the
end-effectors and the object. To ensure the stability of the cooperative grasping (i.e. no
slipping of the object), a normal internal force, granting the fulfillment of the friction-
cone conditions, can be prescribed. In this work, the trend of the internal force is inserted
among the inputs of a time-optimal trajectory planning, to find the minimal internal
prestress able to satisfy the friction-cone conditions and manipulate the object in mini-
mal time. To validate this novel approach, experiments on different paths are presented
and discussed.
The work presented in this Chapter is under review at [40].

4.1 Motivation

The automotive industry was the first to employ robotics within assembly lines [41].
Nowadays, industrial robots accomplish half of the tasks required in a typical auto-
motive factory. Industrial robots usually present high-dynamics performances, which,
combined with their heavy and sharp-cornered bodies, may produce large inertia ac-
tions, becoming harmful in case of collisions with things or humans. For this reason,
the installation of industrial robots often requires cages and large basements, thus
making them stationary and relegating industrial robots to spaces that are inacces-
sible to human operators.
With the advent of Industry 4.0, which puts robots and humans working side by side
in shared environments, a particular class of serial robots, called collaborative robots
(cobots1) has had a high impact on the industrial world [42]. Thanks to their lightweight
architecture, the smooth silhouettes of their bodies, and the presence of force and
torque sensors aboard, cobots can be easily installed in factories without altering the
preexisting layout. Additionally, the fenceless installation allows cobots to safely work
in cooperation with human workers and enables them to be mounted on Autonomous

1The term “cobot” was coined in 1996 by J. E. Colgate and M. Peshkin, professors at Northwestern
University, who issued a homonym US patent in 1997, in which they described this new technology
as "An apparatus and method for direct physical interaction between a person and a general purpose
manipulator controlled by a computer."
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Mobile Robots (AMRs), freely moving around to perform different tasks.
In [43, 44], a combination of a serial manipulator and a mobile platform, both char-
acterized by collaborative features, was employed to automatize the process of raw-
material feeding to a tea-packaging automatic machine. The authors showed how
an ad-hoc architecture and industrial components could represent an efficient and
saleable solution for accomplishing machine-tending tasks.
The integration of a lightweight two-armed robot with a mobile omnidirectional base
was achieved in [45], with the objective of picking up items from shelves within a gro-
cery store. Similarly, an anthropomorphic mobile robot was studied for bin-picking
operations in [46].
Within the COORSA project [47–49], a mobile manipulation system was employed for
the accomplishment of depalletizing/palletizing tasks. In particular, the combination
of an autonomous platform, a collaborative robotic arm and a lifting device was used
to drag items aboard the mobile vehicle.
In the work presented in [50], a forklift Automated Guided Vehicle (AGV) with a cobot
onboard was used for the autonomous picking of goods, their placement on a EUR pal-
let, and the transport of the pallet towards a final destination.
The Robo-Partner EU project [51] combined the perception and dexterity of human
operators with the robot strength, repeatability, and precision, in human-robot coop-
eration (HRC) scenario, aimed at the assembly of the rear axle of a passenger vehicle.
In the Valeri EU project [52], an omnidirectional platform supplemented with a rotat-
ing vertical axis on which a lightweight manipulator was mounted, was tested for the
aerospace industry.
The mobile robotic system presented in [41] was tested in automotive factories, per-
forming prototypical assembly tasks on approximately 200 cars.
As seen, the installation of cobots on mobile platforms has become current practice,
not only in the academia, but also in industrial use cases. A single mobile robot can
replace many stationary robots that would otherwise operate only for short periods,
hence justifying such an investment [43].
However, when the object that has to be manipulated is heavy and bulky (e.g. car chas-
sis parts or engine components), a single cobot may not be enough, due to its low pay-
load capabilities. To overcome this drawback, a collaborative dual-arm setup, in which
two cobots, mounted on a mobile platform, hold the same object, can be taken into
account. The dual-arm manipulation employing two collaborative robots is an object
of this PhD research and will be addressed in this Chapter.

4.2 Dual-arm Investigation

The study of dual-arm manipulation is characterized by challenges that may not be
present in the single-arm manipulation case, hence lying at a higher degree of com-
plexity. This higher complexity results in the need for more advanced system integra-
tion (e.g., force/torque sensors), together with viable control approaches.
The first aspect that has to be considered regards the type of interaction between the
end-effectors of the manipulators and the object. Typically, two are the types of coop-
erative tasks [53]:

• Cooperative robot manipulators holding an object with fixed grasp points: the
object is rigidly grasped by each robot, e.g. using a gripper; this implies that no
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relative motion can occur in the interaction points;

• Cooperative robot manipulators holding an object through contact points or con-
tact areas: relative motion between the end-effectors and the object is enabled,
due to the fact that the contact constraints are unilateral; in this case, a pulling
force results in slipping of the object and hence in contact loss.

The latter strategy, which will be hereafter indicated as cooperative grasping, has some
advantages compared to the one employing grippers, namely the minor investment
costs that the installation of two grippers would require and the higher flexibility w.r.t.
uncertainties in the object shape and size. Grabbing an object with a gripper requires
ad hoc geometric features, and the object needs to be small enough to be hosted within
the stroke of the gripper fingers.
In [54], cooperative grasping was pursued by adopting the impedance control of two
industrial manipulators carrying the object; experiments were performed and discussed.
In [55], the impedance control of two 7-DOF collaborative robots was implemented at
three levels: at the object level to control the interaction forces between the object and
the environment, at the end-effector level, to control the internal forces exerted on the
object, and finally at body level, to limit contact between the robots and the environ-
ment. The algorithm was verified only in a simulation scenario.
The work in [56] addressed the case of a rigidly grasped object by proposing an adaptive
hybrid intelligent control, based on multi-input multi-output fuzzy logic, to be inde-
pendent from the knowledge of the system dynamics; results from simulations were
provided.
A primary-secondary strategy was adopted in [57], where the left robot was position
controlled and the right one was controlled through a force/position scheme; the mo-
tions were performed with low dynamics on objects with different shapes. Faster tra-
jectories were executed in [58], with the two collaborative robots being admittance-
controlled.
More recently, the authors of [59] addressed the problem of time-optimal cooperative
grasping, by adopting the admittance control of two industrial robots.
In the scenario of cooperative grasping, the correct accomplishment of dual-arm ma-
nipulation is achieved if a stable grasp is ensured, i.e. no slipping of the object occurs.
To this aim, the normal force and the tangential forces that the two robots exert on
the object must be inside the static-friction cone. This is granted if an internal force
(which does not contribute to the object motion) in the normal direction of the con-
tact is taken into account.
In [59] the time-optimal trajectory planning of both manipulators was carried out, to
perform the dual-arm task in minimal time. The internal force, aimed at enabling the
stability of the cooperative grasping, was achieved by prescribing a constant virtual
penetration on the object, whose value however was not optimized. The experiments
showed that slipping could occur for high-dynamics motion of the object.
In our work, the virtual penetration used to generate the internal force and the path pa-
rameter defining the trajectory of the object are chosen as independent variables of the
optimization. Additionally, the friction-cone constraint is inserted within the formu-
lation of the time-optimal trajectory planning. This way the resolution of the problem
leads to the optimal motion profile that the two robots have to follow to keep the con-
tact forces inside the friction cone, while at the same time guaranteeing the shortest
trajectory duration compatible with this constraint. The structure of this Chapter is as
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(a) Hybrid force/position control scheme.

(b) Parallel force/position control scheme.

Figure 4.1: Schemes of the direct force control.

follows. Section 4.3 gives a brief survey about direct and indirect force control of serial
robots. Section 4.4 describes the model employed for the determination of the forces
exerted on the object. Section 4.5 depicts the constrained optimization problem, high-
lighting how the forces that are used to formulate the friction-cone inequalities are
written in terms of the input variables. Section 4.6 illustrates the setup used for the
experiments, together with the obtained results and the corresponding quantitative
analysis.

4.3 Direct/Indirect Robot Force Control

Many robotics applications require the manipulator to interact with the external en-
vironment (e.g., pushing, grinding, polishing, etc.). In such cases, the robot not only
needs to follow the prescribed path, but it also has to comply with the environment
[60]. Compliant control aims to modulate the interaction between the robot and the
environment to avoid the arising of large, unacceptable contact forces. This represents
a keynote for the accomplishment of dual-arm manipulation, where, in the same man-
ner as two human operators have to compliantly adjust their motion one to another
while commonly lifting a weight, each of the two robots cannot apply a force on the
manipulated object without being concerned of the action made by the other one.
Compliant control has evolved from hybrid to parallel force/position control and to
impedance and admittance control [61].
To better understand the meaning of impedance and admittance, a 2nd -order system
described by a mass md , a stiffness kd , and a damping cd , can be considered. The
impedance Υ and the admittance A can be seen as the equivalent dynamic quantities
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of stiffness and compliance for the static relation, namely:

Υ(ν) = A(ν)−1 = ∆ f (ν)

∆x(ν)
= mdν

2 + cdν+kd (4.1)

with ν indicating the Laplace variable,∆ f (ν) = fd (ν)− f (ν) and∆x(ν) = xd (ν)−x(ν) be-
ing the Laplace transforms of the force and position errors, between the desired quan-
tity (denoted by the subscript d) and the actual measured one (without subscript).
Compliant control can be divided into two categories:

• direct force control, in which the force feedback loop is closed by a force con-
troller;

• indirect force control, where the force control is achieved by means of a motion
control.

As far as direct force control is taken into account, two approaches are available:

• hybrid force/position control [62]: the space is divided into complementary or-
thogonal subspaces by the selection matrix S = diag([s1, . . . , sn]T ), with n being
the number of controlled DOFs [39]. The directions along which the motion is
constrained (s j = 0) must be force-controlled, whereas the free directions (s j = 1)
need to be motion-controlled. This approach, while granting a reliable tracking
of the desired force and position within the respective subspaces, requires de-
tailed knowledge of the environment and its applicability becomes complex in
the case of non-planar contact surfaces. The control scheme is depicted in Fig-
ure 4.1a, where the hybrid command u(ν) is

u(ν) = SΠ(ν)[xd (ν)−x(ν)]+ [I−S]Ψ(ν)[fd (ν)− f(ν)], (4.2)

with Π(ν) and Ψ(ν) being the Laplace transforms of the position and force con-
trol loops, respectively; xd and x represent the desired and measured robot end-
effector position; fd and f are the desired and measured force exerted by the robot
on the environment; finally I ∈Rn×n is the identity matrix;

• parallel force/position control [63, 64]: unlike hybrid force/position control, in
parallel force/position control the outputs of the force and motion controllers
are superimposed, hence eventually acting along the same directions. The ad-
vantages of this approach are represented by a reliable tracking of the desired
force and position, together with robustness in the presence of environment
model uncertainties and planning errors; however, this technique grant slower
dynamics w.r.t. to the hybrid one. In the control scheme (see Figure 4.1b) the
parallel command is computed as

u(ν) =Π(ν)[xd (ν)−x(ν)]+Ψ(ν)[fd (ν)− f(ν)], (4.3)

with the employed quantities having the same meaning as the ones in Equation
(4.2).

For indirect force control, two complementary strategies can be considered:
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(a) Implicit (black lines) and explicit (black and gray
lines) impedance control scheme.

(b) Admittance control scheme.

Figure 4.2: Schemes of the indirect force control.

• impedance control [65]: in the case of implicit impedance control (only black
lines of Figure 4.2a), the position error ∆x is combined with the desired force fd

to obtain the command on the force u f :

u f (ν) =Υ(ν)[xd (ν)−x(ν)]+ fd (ν). (4.4)

The command u f represents the force that the robot end-effector needs to apply
on the environment to cancel the position error and track the value of the desired
force.
This approach does not require force measurement; however, its implicitness is
given by the need to control the robot through a force command, which may not
be a standard feature of the employed manipulator. For this reason, an inner
force control loop is usually inserted within the control scheme (black and gray
lines of Figure 4.2a), to achieve an explicit impedance control;

• admittance control: the force error ∆f is combined with the desired position xd

to obtain the command on the motion ux (see Figure 4.2b):

ux(ν) = A(ν)[fd (ν)− f(ν)]+xd (ν). (4.5)

The output of the admittance block (i.e. ux) is the correction on the motion that
the robot needs to perform to cancel the force error and follow the desired tra-
jectory xd .
The command ux can be directly fed as input to the manipulator or it can be
employed as input of an inner position control, providing the so-called explicit
admittance control. In both cases, the manipulator receives a motion command,
which represents a standard feature of industrial or collaborative robots.

When cooperative grasping has to be performed, the choice of the force-control
strategy to be pursued is crucial. With the perspective of achieving maximum flexibil-
ity in the manipulation task, objects of different sizes and shapes are the main target,
hence not granting detailed knowledge of their characteristics. This randomness ex-
cludes the hybrid force/position control approach. On the other hand, the robustness
to uncertainties ensured by the parallel force/position control can represent a viable
alternative. In this scenario, the two manipulators cannot act at the same hierarchy
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Inverse 
Kinematics

Adm/Pos 
Control 

Direct
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Figure 4.3: Admittance control scheme adopted for the dual-arm manipulation.

level, but a primary-secondary strategy has to be foreseen. This implies that one of the
two manipulators (primary) is position-controlled, whereas the other one (secondary)
is controlled through parallel force/position control. In the case of cooperative grasp-
ing, the stability of the contact may be invalidated by the fact that the primary robot
only follows the desired trajectory and the secondary one has to chase it and simulta-
neously apply an internal force on the object to avoid slipping.
For this reason, in the addressed work, attention is given to indirect force control,
which allows the two manipulators to be controlled at the same hierarchy level. In
particular, since the equipment of a force sensor does not represent a discriminant
(both admittance control and explicit impedance control require force measurement),
admittance control is chosen. Admittance control provides the direct translation of
a force input into a command at motion level, which represents standard practice in
robot control. Conversely, impedance control would need an additional inner force
loop (gray lines in Figure 4.2a) to convert the obtained force command in a command
that can be eventually fed to the robot.
The adopted scheme is reported in Figure 4.3: the same controller is applied to both
manipulators. For the sake of clarity, subscipts referring to one or the other robot are
omitted. The first loop is a combination of admittance and position control. The in-
put is represented by the desired end-effector pose zEd = [

rT
Ed

QT
Ed

]T , with QT
Ed

be-
ing the quaternion representing the desired rotation matrix REd , the end-effector twist

ξEd
= [

ṙT
Ed

ωT
Ed

]T and the first-time derivative of the twist ξ̇Ed
= [

r̈T
Ed

ω̇T
Ed

]T . The
feedback on the measured end-effector wrench h and on the actual kinematics of the
robot end-effector zE = [

rT
E QT

E

]T , ξE = [
ṙT

E ωT
E

]T , is employed to obtain the motion
command ξ̇Ec

. Note that the desired force is implicitly inserted within the desired po-
sition rEd through the concepts of virtual penetration and contact stiffness, as it will be
clarified at the end of Section 4.4. The actual values of zE and ξE are obtained online
by computing the direct kinematics of the robot [66]. The control law of this first block
is:

ξ̇Ec
= M−1

E (DE∆ξE +KE∆zE −h)+ ξ̇Ed
(4.6)

where ∆zE = [
(rEd − rE )T ϵT

d

]T denotes the pose error of the end-effector, with ϵd

being the vectorial part of the quaternion QEd ,E extracted from RT
E REd [67], [68] (REd

and RE are the desired and actual rotation matrices of the robot end-effector w.r.t. the
base frame, respectively). The error on the end-effector twist is expressed as ∆ξE =[
(ṙEd − ṙE )T (ωEd −ωE )T

]T .
Note that there is no direct correspondence between the control schemes of Figures
4.2b and 4.3. Indeed, since the normal force that the robots have to exert on the object
is prescribed by using a virtual penetration on the object, this combined view of force
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Figure 4.4: General scheme of the dual-arm cooperative grasping.

exertion is reflected in the control scheme indicated as "Adm/Pos Control". In the lat-
ter, the input is represented by the desired motion zEd ,ξEd

, ξ̇Ed
, where the desired force

is hidden inside the variable zEd . Through the feedback on the measured wrench h, the
force error is computed by subtraction between the part of zEd expressing the desired
force and the measured one. Instead of using the latter result and adding it to the de-
sired motion to obtain an intermediate command (as it is done for ux in Equation (4.5))
to feed to the position-control loop (see Figure 4.2b), the position and velocity errors
are directly taken into account at the same stage of the admittance control. Matrices
ME , DE , KE are diagonal matrices, whose values can be conveniently tuned to achieve
the desired compliant behavior. In particular, the matrix ME is representative of the
object inertia, whereas DE and KE have to replicate the damping and stiffness desired
behavior. Trial-and-error procedures can be performed to obtain the matrix values
that grant the zeroing of the position error at the end of the motion. The commanded
motion, expressed by ξ̇Ec

, is transformed in joint space through the robot inverse kine-
matics, by computing the robot Jacobian matrix J(q) and its time derivative J̇(q, q̇) in
correspondence of the actual configuration and velocities of the robot joints q, q̇ (mea-
sured by the encoders). This gives the commanded joint accelerations

q̈c = J−1(q)
[
ξ̇Ec

− J̇(q, q̇)q̇
]
. (4.7)

Finally, an integrator is used to compute the commanded joint velocities q̇c to feed the
robot.

4.4 Force Model

The object motion is prescribed in terms of the desired trajectory given by:

• the position r(t ), where r indicates the position vector connecting the origin O of
the inertial frame F0 to the object centre of mass (COM) B (Figure 4.4);
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Figure 4.5: Schemes employed for the equilibrium of the object.

• the orientation R(t ), with R being the rotation matrix between the frame F0 and
the frame Fb with origin in B and attached to the object (Figure 4.4).

The object motion is achieved as long as the following net wrench hb = [fT
b tT

b ]T is ap-
plied on the object:

fb =−mbg+mb r̈ (4.8a)

tb =ΘB ω̇+ ω̃ΘBω (4.8b)

where mb is the mass of the object and ΘB is the inertia matrix w.r.t. the COM B , g is

the gravity acceleration, r̈ = d 2

d t 2 r and ω̇= d
d tω are the object translational and angular

accelerations, respectively, and the symbol ∼ denotes the skew-symmetric represen-
tation of a 3-dimensional vector. Due to the equilibrium of the object, the wrenches
hl = [fT

l tT
l ]T and hr = [fT

r tT
r ]T exerted by the two cobots on the object must produce

the desired net wrench, namely (Figure 4.5):

fl + fr =−mbg+mb r̈ (4.9a)

tl + tr + r̃BEl fl + r̃BEr fr =ΘB ω̇+ ω̃ΘBω (4.9b)

Note that the subscripts l and r stand for left and right, respectively. The grasp kineto-
statics of the cobots on the object can be written in compact form:

W hl ,r = hb (4.10)

where hl ,r is the vector hl ,r = [hT
l hT

r ]T = [fT
l tT

l fT
r tT

r ]T ∈ R12 and W ∈ R6×12 is the grasp
matrix

W =
[

I 0 I 0
r̃BEl I r̃BEr I

]
(4.11)
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Given the hyperstatic nature of the problem, which is characterized by the 12 scalar un-
knowns hl ,r contained in the 6 scalar equations (4.11), its resolution is under-determined,
namely:

hl ,r = W⊥hb +V hp (4.12)

Here, W⊥ = GWT (WGWT )−1 ∈ R12×6 is a pseudo-inverse of W [39], whose weighting
matrix is G, and V ∈R12×6 is an orthogonal complement matrix such that WV = 0. Addi-
tionally, hp = [fT

p tT
p ]T represents a desired penetrating wrench that generates internal

prestressing. The way the two cobots distribute the wrenches hl and hr on the object is
influenced by the weighting matrix G, whose choice has to be done to avoid the arising
of null-space components. For this reason, the employed weighting matrix G is [69]

G =


0 I 0 0
I 0 0 0
0 0 0 I
0 0 I 0

 (4.13)

and consequently the pseudo-inverse W⊥ results in

W⊥ =


1
2 I 0

−1
2 r̃BEl

1
2 I

1
2 I 0

−1
2 r̃BEr

1
2 I

 (4.14)

The orthogonal complement matrix V can be chosen as

V =


I 0

−r̃BEl I
−I 0

r̃BEr −I

 (4.15)

From Equations (4.12), (4.14) and (4.15), the expressions of fl , tl , fr and tr can be iso-
lated, i.e.

fl =
1

2
(−mbg+mb r̈)+ fp (4.16a)

tl =
1

2
(ΘB ω̇+ ω̃ΘBω)− r̃BEl

(
1

2
fb + fp

)
+ tp (4.16b)

fr = 1

2
(−mbg+mb r̈)− fp (4.16c)

tr = 1

2
(ΘB ω̇+ ω̃ΘBω)− r̃BEr

(
1

2
fb − fp

)
− tp (4.16d)

Equations (4.16) represent an equal distribution of the reactions among the cobot end-
effectors. In particular, Equations (4.16a) and (4.16c) imply that each cobot may apply
half of the net wrench fb to make the object follow its desired trajectory, setting aside
the prestress fp . Regarding Equations (4.16b) and (4.16d), in general, no internal grasp
torque is desired, implying that tp can be set to zero, namely tp = 0. In addition, it can
be stated that the torques tl and tr exerted by the cobots on the object are not involved
in the friction-cone analysis. For this reason, only the exerted forces fl and fr will be
hereafter taken into account. In the case of a pure-translation motion of the object, the
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Fl x

y

z

El

Er
Figure 4.6: Projection of the forces fl and fr on the coordinate frame Fl .

angular velocity and acceleration are kept equal to zero, i.e. ω= ω̇= 0. In this scenario,
a suitable coordinate frame Fl attached to the object can be chosen. The origin of Fl is
in correspondence of El , the interface point between the left robot and the object. Fl is
oriented such that its y-axis is always along the vertical direction (this is possible since
the orientation of the object is kept constant throughout the motion), and the z-axis
points towards the pushing direction of the left robot on the object (Figure 4.5a). Ac-
cordingly, the projection of vector g on Fl is {g}l = [0 −g 0]T . For the sake of simplicity,
we can assume that the only component of the internal prestress which is other than
zero is the one in the z-axis direction of frame Fl , thus resulting in {fp }l = [0 0 fp ]T . Fur-
thermore, the projections of the forces fl and fr on Fl are composed of the tangential
forces along the x and y directions and by the normal force along the z-axis. For the
sake of clarity, taking advantage of the illustration in Figure 4.6, these projections will
be indicated as:

{fl }l =
 fl ,T x

fl ,T y

fl ,N

 , {fr }l =
 fr,T x

fr,T y

fr,N

 (4.17)

By exploiting the definitions in Equation (4.17), the projections of Equations (4.16a)
and (4.16c) on Fl yield:

{fl }l =
 fl ,T x

fl ,T y

fl ,N

= mb

2

 r̈x

g + r̈y

r̈z

+
 0

0
fp

 (4.18a)

{fr }l =
 fr,T x

fr,T y

fr,N

= mb

2

 r̈x

g + r̈y

r̈z

−
 0

0
fp

 (4.18b)

The presented force model holds as far as none of the two robot loses contact with the
manipulated object, i.e. there is no slipping of the object. This is not sure in advance,
as, if the internal prestress is not taken into account ( fp = 0N), the resolution of Equa-
tions (4.18) may lead to a contact force f j (with j = l ,r ) pulling away from the object.
This is the main reason why the value of fp must be chosen to ensure a stable grasp on
the object. In other words, fp plays a role in granting that the friction-cone condition
is satisfied on both sides of the contact, namely:√

f 2
j ,T x + f 2

j ,T y ≤µ | f j ,N |, j = l ,r (4.19)

withµbeing the static friction coefficient between the cobot extremities and the object.
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Figure 4.7: Physical meaning of the virtual penetration ∆z.

In general, when addressing robot indirect force control, prescribing a specified in-
teraction force can be translated into requiring the robot to virtually go beyond the
contact surface of the manipulated object [39]. Considering the sole position variables
as characterizing the robot operational space, Fig. 4.7 shows the condition above. In-
dicating with rE j ( j = l ,r ) the reference position of E j , if the robot desired target rE j ,d

coincides with rE j at position level, the robot is asked to apply no force on the object
(i.e. fp = 0). Conversely, if the target position rE j ,d is beyond the contact surface, the
robot is obliged to exert a certain internal prestress on the object (i.e. fp ̸= 0).
According to the elastic model, the internal prestress depends on the difference be-
tween the desired position rE j ,d and the reference one rE j :

fp = K(rE j ,d − rE j ) (4.20)

where K represents the matrix of contact stiffness at the interface. In the scenario ana-
lyzed in this research, given the absence of internal prestress along the tangential direc-
tions ( fp,x = fp,y = 0N), the command of going beyond the contact surface only applies
along the z-axis, according to a virtual penetration ∆z. This allows expressing rE j ,d

( j = l ,r ) in the corresponding end-effector frames Fl and Fr , with the latter having the
origin at the interface point Er and axes oriented as in Figure 4.4:

{rE j ,d } j = {rE j } j + [0 0 ∆z]T , j = l ,r (4.21)

Substituting (4.21) into ((4.20), the internal prestress along the normal direction can be
written as a function of the virtual penetration ∆z, namely

fp = k∆z (4.22)

where the value of the penetration stiffness k can be experimentally identified.

4.5 Time-Optimal Trajectory Planning

4.5.1 Trajectory Definition

The path and the orientation of the object are prescribed. In particular, the object ori-
entation is constant, so that its angular velocity and acceleration are equal to zero dur-
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Figure 4.8: Scheme for a general dual-arm trajectory planning.

ing the entire motion, namelyω=α= 0. The path of the object COM is parameterized
in terms of a parameter s (arc length):

r = r(s), s ∈ [0,1] (4.23)

and can be defined by using B-splines [35], [32] as

r(s) =
m∑

j=0
B d

j (s)p j , s ∈ [0,1] (4.24)

where B d
j are the B-spline basis functions of degree d and p j are m +1 control points.

The motion law of the path parameter s(t ) allows the trajectory to be defined:

ṙ(s, ṡ) = r′(s)ṡ (4.25)

r̈(s, ṡ, s̈) = r′′(s)ṡ2 + r′(s)s̈ (4.26)

with ()′ = ∂()/∂s denoting the derivative w.r.t. the path parameter s.
Assuming that both cobots do not lose contact with the object, the reference position
of their end-effectors can be obtained as:

rE j (s) = r(s)+ rBE j − rOO j , j = l ,r (4.27)

where rBE j is the position vector from the object COM B to the corresponding interface
point E j ( j = l ,r ) and rOO j is the position vector connecting the origin of F0 with the
origin of F j , which is the base frame of the k-th ( j = l ,r ) cobot (v. Figure 4.8). Since the
prescribed motion foresees a constant orientation of the object, the velocity and the
acceleration of the cobot end-effector reference points are:

ṙE j (s, ṡ) = ṙ(s, ṡ), j = l ,r (4.28)

r̈E j (s, ṡ, s̈) = r̈(s, ṡ, s̈), j = l ,r (4.29)
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4.5.2 Force Limits

Once the motion of the object and the cobot end-effectors is written in terms of the
path parameter s and its time derivatives ṡ, s̈, the modeled forces (v. Equations (4.18a),
(4.18b)) can be expressed as a function of the same motion law, that is: fl ,T x(s, ṡ, s̈)

fl ,T y (s, ṡ, s̈)
fl ,N (s, ṡ, s̈,∆z)

= mb

2

 r̈x(s, ṡ, s̈)
g + r̈y (s, ṡ, s̈)

r̈z(s, ṡ, s̈)

+
 0

0
k∆z

 (4.30a)

 fr,T x(s, ṡ, s̈)
fr,T y (s, ṡ, s̈)

fr,N (s, ṡ, s̈,∆z)

= mb

2

 r̈x(s, ṡ, s̈)
g + r̈y (s, ṡ, s̈)

r̈z(s, ṡ, s̈)

−
 0

0
k∆z

 (4.30b)

By substituting the expressions of Equations (4.30) inside the friction-cone inequality
(4.19), the no-slipping conditions for both cobots can be written as functions of the
motion law (s, ṡ, s̈) and the virtual penetration ∆z:

f 2
l ,T x + f 2

l ,T y ≤µ2
(mb

2
r̈z +k∆z

)2
(4.31a)

f 2
r,T x + f 2

r,T y ≤µ2
(mb

2
r̈z −k∆z

)2
(4.31b)

The fulfillment of the friction-cone inequalities (4.31) requires a trade-off between the
fastest motion law and the minimum virtual penetration, in order to grant the fewest
internal prestress possible on the object that is able, at the same time, to avoid slipping
of the object. This suggests that the problem can be represented by the independent
variables s and ∆z, which can be stored inside the vector σ= [s ∆z]T .

4.5.3 Problem Formulation

The jerk of the vector σ is chosen as the control input, in order to ensure smoothness
of the trajectory and of the internal force fp = k∆z:

u = ...
σ = [

...
s

...
∆z]T (4.32)

The system state is defined as a vector x ∈R18, namely:

x =
[
σT σ̇T σ̈T qT

l qT
r

]T
(4.33)

where ql ∈R6 and qr ∈R6 are the arrays of the two cobot joint coordinates (Figure 4.8).
The overall optimization problem can be formulated as [12], [38]

mi n
te ,u,∆z

[∫ te

0
(1+k1∆z +k2uT u) d t

]
(4.34a)

subject to

ẋ =Γ(x,u) (4.34b)

x(0) = [0 ∆z(0) 0 0 0 0 ql (0)T qr (0)T ]T (4.34c)

x(te ) = [1 ∆z(te ) 0 0 0 0 ql (te )T qr (te )T ]T (4.34d)

|q̇ j | ≤ 0.9 q̇ j ,max j = l ,r (4.34e)

f
p
≤ k∆z ≤ f p (4.34f)

Φ({fl }l , {fr }l ) ≤ 0 (4.34g)

|u| ≤ umax (4.34h)

80



4.6. Experiments

The cost functional (4.34a) is a trade-off between minimal time te of the motion, and
minimal overall virtual penetration and jerk. The latter are weighted by the constants
k1 and k2, whose values can be conveniently tuned. Function Γ (4.34b) takes into ac-
count the integration chain of the vector σ from the control u (4.35a), and the cobot
inverse kinematics (4.35b, 4.35c), namely:

d

d t

 σ

σ̇

σ̈

=
 σ̇

σ̈

u

 (4.35a)

d

d t
ql = J−1

l ξEl
(s, ṡ) (4.35b)

d

d t
qr = J−1

r ξEr
(s, ṡ) (4.35c)

In (4.35b) and (4.35c), the terms Jl = Jl (ql ) and Jr = Jr (qr ) represent the Jacobian ma-
trices of the cobots, whereas ξEl

= [ṙT
El
ωT ]T and ξEr

= [ṙT
Er
ωT ]T are the end-effector

twists, in which the cobots share the same angular velocityω= 0 of the object.
Equality constraints (4.34c, 4.34d) are the initial and final conditions on the state vec-
tor x. The initial and final values of the virtual penetration, namely the 2nd elements
of x(0) and x(te ), are left free, so that the solver is asked to find the values needed to
satisfy the inequalities (4.31) in static conditions (ṡ = s̈ = 0)

∆z(0) ≥ mb g

2kµ
(4.36a)

∆z(te ) ≥ mb g

2kµ
(4.36b)

The values of q j (0) and q j (te )2, with j = l ,r , are obtained by solving the inverse po-
sition analysis of the cobots in correspondence of the initial and final poses of the
end-effectors [70]. Inequality constraints (4.34e) consider the limits on the maximum
joint velocities q̇ j ,max of the cobots, with the addition of a coefficient equal to 0.9, to
be on the side of safety. The inequality (4.34f) is employed to limit the internal pre-
stress on the object, with f

p
and f p representing the minimum and the maximum

value of fp , respectively. The constraint (4.34g) represents the friction-cone conditions
(4.31a,4.31b) that must be respected to avoid slipping on both sides of the cooperative
grasping.

4.6 Experiments

4.6.1 Experimental Setup

The experimental setup (depicted in Figure 4.9) consists of two UR10 e-Series from
Universal Robots3, both equipped with an integrated force/torque sensor at the end-
effector. The two cobots are mounted aboard a mobile platform from MiR4, which

2The final conditions on the cobot joint coordinates are relaxed into inequalities by asking that the
values of the final joint angles, computed by the optimizer, fall into the neighborhood of q j (te ) according
to a certain tolerance, rather than restraining them to the precise value of q j (te ).

3www.universal-robots.com
4www.mobile-industrial-robots.com
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Figure 4.9: Dual-arm setup employed for the experiments.
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(a) Scheme of the object trans-
lational equilibrium.
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(b) Scheme of the gripper
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Figure 4.10: Schemes employed for the equilibrium of the manipulated object and the
right-cobot gripper.

remains still during the tests. Each cobot end-effector is interfaced with a 3D-printed
flange, on which a rubbered tape is applied. The manipulated object is a cardboard
box with dimensions 195×130×250mm and a mass mb = 1kg.
The friction coefficient is estimated by employing an inclined-plane test. The object
that has to be manipulated is placed on a rubbered plane, whose inclination can be
manually varied thanks to a revolute joint. By acting on the revolute joint in quasi-
static conditions, as soon as slipping of the object is detected, the friction angle is read
on the angular scale attached to the plane. The static friction between the cardboard
and the rubbered flange is hence estimated as µ= tan32◦.

4.6.2 Adopted Model

While the left-cobot end-effector only presents the aforementioned rubbered flange,
the right-cobot end-effector also mounts a gripper that could not be removed during
the experiments; the gripper mass is me = 2.21kg (Figure 4.9). Since me is not negligi-
ble w.r.t. mb , the force modeling presented in Section 4.4 has to be slightly revised. To
maintain coherence with the symbols employed in Section 4.4, the forces exerted on
the object are still indicated with fl and fr .
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While the experimental value of fl can be easily read as the force measured by the in-
tegrated sensor of the left cobot, the value of fr depends on the force measured by the
right cobot, butthe two quantities are not equal. In fact, the force read by the right-
cobot sensor is equal to fe , which is the reaction force of the right-cobot end-effector
on the gripper. By writing the equilibrium of the gripper as (Figure 4.10b)

−fr + fe =−me g+me ae (4.37)

with ae indicating the acceleration of the mass me , the force acting on the object from
the right side is

fr = fe +me g−me ae (4.38)

The equilibrium of the manipulated object is still given by Equation (4.9a), namely
(Figure 4.10a)

fl + fr =−mbg+mb r̈ (4.39)

Under the assumption of zero angular velocity of the object, the acceleration of the
gripper and the object are the same, namely ae = r̈ and, adding Equations (4.38) and
(4.39) side by side, we obtain

fl + fe =−(mb +me )g+ (mb +me )r̈ (4.40)

Equation (4.40) implies that the forces fl and fe , as expected, have to generate the net
force able to grant the translational motion of both the object and the gripper. The
equilibriums expressed in Equations (4.37) and (4.39) can be written in matrix form as

[
0 −I I
I I 0

]fl

fr

fe

=
[−me g+me r̈
−mbg+mb r̈

]
(4.41)

Analogously to the case presented in Section 4.4, the problem is hyperstatic with 9 un-
knowns in 6 scalar equations. To solve it, a force distribution among the ∞3 solutions
can be chosen. In this case, it is assumed that, along the two tangential directions
(x, y-axes of Fr ) the cobot on the right withstands the whole weight and inertia of the
gripper plus half of the net force needed to lift the object. As a consequence, the tan-
gential forces exerted on the object on both sides of the grasping (i.e. at the interfaces
El and Er ) equally distribute the weight and the inertia of the object. Regarding the
normal direction, each of the two cobots (in correspondence of the interfaces El and
Ee ) is subjected to half of the inertia of both the object and the gripper, disregarding the
internal prestress fp = k∆z. To better clarify this force distribution, we can consider the
projections of the force fl , fr and fe on the coordinate frame Fl :

 fl ,T x

fl ,T y

fl ,N

=


mb

2
r̈x

mb

2
(r̈y + g )

mb +me

2
r̈z +k∆z

 (4.42a)

 fr,T x

fr,T y

fr,N

=


mb

2
r̈x

mb

2
(r̈y + g )

mb −me

2
r̈z −k∆z

 (4.42b)
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 fe,T x

fe,T y

fe,N

=


(
me + mb

2

)
r̈x(

me + mb

2

)
(r̈y + g )

mb +me

2
r̈z −k∆z

 (4.42c)

Since the gripper is attached to the right-cobot end-effector, a calibration procedure
(made available by the robot manufacturer) made the weight of the gripper transparent
to the force/torque sensor measurement. This means that the read force is not fe , but
f′e = fe +me g, whose projection on Fl gives

 f ′
e,T x

f ′
e,T y

f ′
e,N

=


(
me + mb

2

)
r̈x

me r̈y + mb

2
(r̈y + g )

mb +me

2
r̈z −k∆z

 (4.43)

Hence, the sum of the reaction forces measured by both sensors theoretically equals
the inertia of the object and the gripper plus the weight of the sole object, i.e.:

fl + f′e =−mbg+ (mb +me )r̈ (4.44)

4.6.3 Optimization Problem Resolution

As far as the resolution of the time-optimal trajectory planning problem is concerned
(v. Section 4.5), the values of some parameters must be chosen or identified.
The penetration stiffness k is identified by employing the controller of Section 4.3 in
zero-motion conditions. In practice, the two cobots are commanded to hold the po-
sition of their end-effectors on the object, while their targets are given by {rE j ,d } j =

l-motion path
c-motion path
r-motion path
g-motion path

left

right
cobot

cobot

Figure 4.11: The four paths prescribed for the dual-arm tests.
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Table 4.1: Maximum velocity for the i -th joint, considering the left and the right cobots.

i 1 2 3 4 5 6
q̇l ,i−max [rad/s] 1.05 1.05 1.05 1.05 1.05 1.05
q̇r,i−max [rad/s] 1.05 1.05 1.05 1.05 1.05 1.05

{rE j } j +[0 0∆z]T ( j = l ,r ), and a linear trend of the virtual penetration∆z from 0mm to

100mm is chosen5. By reading the normal forces exerted by the cobots on the object,
the value of k is estimated as k ≈ 1000N/m.
The two cobots, as already mentioned, are two UR10e, hence having the same nomi-
nal kinematic parameters and limits. In particular, the values of the joint velocity limits
employed in the inequality (4.34e) are the same for both cobots, and they are reported
in Table 4.1.
Regarding the inequality (4.34f), whose aim is to limit the internal prestress on the ob-
ject, its maximum and minimum values are chosen equal to f p = 30N and f

p
= 5N,

respectively.
Given the force-model adjustment described in Section 4.6.2, due to the presence of
the gripper me attached to the right-cobot end-effector, the constraint (4.34g) aimed
at satisfying the friction-cone conditions has to be adapted to the Equations (4.42a),
(4.42b). By inserting the assumed force distributions of Equations (4.42a), (4.42b) in-
side the inequality (4.19), the functionΦ (v. (4.34g)) can be written as

Φ=
 f 2

l ,T x + f 2
l ,T y −µ2

(
mb+me

2 r̈z +k∆z
)2

f 2
r,T x + f 2

r,T y −µ2
(

mb−me
2 r̈z −k∆z

)2

 (4.45)

The initial and final conditions of the cobot joint angles are computed by solving the
inverse position analysis, where the translational vector of the homogeneous transfor-
mation matrices TE j (0) and TE j (te ) depends on the desired position of the object COM
and on the position vector between the object COM B and the interface E j ( j = l ,r ).
The assumption is that the interaction points E j ( j = l ,r ) are the centroids of the ob-
ject contact surface and that the object mass is equally distributed, hence making the
COM B coincide with the object geometric center. As a consequence, the expression of
the position vector rBE j projected on F j ( j = l ,r ) simplifies in

{rBE j } j =
[

0 0 − l

2

]T
, j = l ,r (4.46)

Figure 4.11 shows the four different paths considered by the trajectory planning:

• an up-and-down linear path (l-motion);

• a circular path (c-motion);

• a rectangular path (r-motion);

• a general path (g-motion).

5Note that these values correspond to a virtual penetration and are not related to the actual deforma-
tion of the object. For the latter aspect, the measurement of the object deformation was not performed,
given its irrelevance for the admittance-control implementation.
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For the definition of the four paths, the B-spline degree is set to d = 4 (v. Equation
(4.24)). The expression of the object path r(s) as a function of the path parameter s
is then used in Equation (4.27) to write the reference paths that the two end-effectors
have to follow during motion. The actual target of each cobot is hence written as a
combination of the reference path rE j (s) and the virtual penetration ∆z as explained
in Equation (4.21). The trend of the virtual penetration ∆z and hence of the internal
prestress fp = k∆z is optimized within the resolution of the constrained time-optimal
trajectory planning. Regarding the latter aspect, for each path, two optimizations, that
consider different trends of ∆z and thus of fp , are carried out:

• the first one imposes a constant optimal value of∆z (which is found by the solver)
throughout the whole motion;

• the second one considers a variable optimal ∆z (the optimal trend is computed
by the solver) during the trajectory execution.

For the friction-cone constraint, a safety factor of 0.8 is employed: this results in a static
friction µ∗ used within the optimization equal to µ∗ = 0.8tan32◦ = 0.5.
The constrained time-optimal trajectory planning is solved by adopting a multiple-
shooting method and using CasADi [3], a software framework implemented in Mat-
lab for nonlinear optimization and optimal control. The employed algorithm is the
interior-point method.
Figures 4.12, 4.13, 4.14, 4.15 show the results obtained by solving the constrained opti-
mization for the l-motion, the c-motion, the r-motion and the g-motion, respectively.
For each motion, the subfigures 4.12a, 4.13a, 4.14a, 4.15a illustrate the resolution con-
sidering a constant value of the virtual penetration ∆z and hence of the internal pre-
stress fp , whereas in subfigures 4.12b, 4.13b, 4.14b, 4.15b the resolution with a vary-
ing virtual penetration ∆z and hence a varying internal prestress fp is depicted. The
first column of each subfigure shows the optimized trend of the motion law s, ṡ, s̈ and
of the virtual penetration ∆z. The second column represents the ratio between the
cobot joint velocities and their maximum values, namely q̇ j ,i /q̇ j ,i−max , with j = l ,r
and i = 1, . . . ,6. The last column reports the absolute values of the normal force | f j ,N |
and the tangential forces | f j ,T x |, | f j ,T y |, acting on the object on both sides of the grasp-
ing ( j = l ,r ); furthermore, in the same plots, the purple line indicates the quantity

f j ,T /µ∗, with f j ,T =
√

f 2
j ,T x + f 2

j ,T y , whereas the black dashed line stands for the inter-

nal prestress fp = k∆z.
As far as the required motion lies on a plane that is orthogonal to the z-axis of frame Fl

(i.e. r̈z = 0 m/s2), the normal force | f j ,N | is only characterized by the internal prestress
fp = k∆z. This is the case of the l-motion and the c-motion, where, looking at the third
column of Figures 4.12 and 4.13, the blue line always coincides with the black dashed
one. On the contrary, when the object motion has a component along the z-axis of
frame Fl (i.e. r̈z ̸= 0 m/s2), the normal force is composed of the internal prestress fp

and of a combination of the inertia force of the object and the gripper along the z-axis,
as expressed in Equations (4.42a) and (4.42b). This is the reason why, for the r-motion
and the g-motion, in the third column of Figures 4.14 and 4.15, the blue line does not
replicate the black dashed one.

In all the friction-cone plots (see the third column of Figures 4.12, 4.13, 4.14, 4.15),
the purple line is always under the blue one, indicating that the no-slipping constraint
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(a) Constant virtual penetration ∆z.

(b) Varying virtual penetration ∆z.

Figure 4.12: Optimization results for the l-motion.
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(a) Constant virtual penetration ∆z.

(b) Varying virtual penetration ∆z.

Figure 4.13: Optimization results for the c-motion.
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(a) Constant virtual penetration ∆z.

(b) Varying virtual penetration ∆z.

Figure 4.14: Optimization results for the r-motion.

89



Chapter 4. Cooperative Grasping

(a) Constant virtual penetration ∆z.

(b) Varying virtual penetration ∆z.

Figure 4.15: Optimization results for the g-motion.
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Table 4.2: Initial, maximum and mean values of the internal prestress fp obtained as a
result of the time-optimal trajectory planning, with an indication of the final time te of
the corresponding trajectory.

Constant ∆z Varying ∆z
l-motion te = 2.52s te = 2.52s

fp (0) = 10.7N fp (0) = 10.6N
fp,max = 10.7N fp,max = 10.8N
fp,med = 10.7N fp,med = 10.4N

c-motion te = 3.27s te = 3.25s
fp (0) = 11.0N fp (0) = 11.6N
fp,max = 11.0N fp,max = 11.6N
fp,med = 11.0N fp,med = 10.2N

r-motion te = 2.47s te = 2.31s
fp (0) = 12.6N fp (0) = 11.9N
fp,max = 12.6N fp,max = 15.8N
fp,med = 12.6N fp,med = 11.8N

g-motion te = 4.41s te = 4.33s
fp (0) = 13.0N fp (0) = 12.5N
fp,max = 13.0N fp,max = 15.2N
fp,med = 13.0N fp,med = 12.1N

(inequality (4.34g) with the functionΦ expressed in Equation (4.45)) is satisfied in the
model scenario. Furthermore, in the second column of Figures 4.12, 4.13, 4.14, 4.15,
the ratios between the joint velocities and their maximum values always have a certain
distance from the lower and upper dashed lines, hence reflecting the safety factor of
0.9 employed in the inequality (4.34e). Table 4.2 summarizes the main results of the
optimizations, with an indication of the final time te of the corresponding trajectory,
together with the initial, maximum and mean values of the obtained internal prestress
fp for each motion. Looking at Table 4.2, it can be stated that, for the l-motion and the
c-motion, no apparent advantage in terms of trajectory duration te is gained by choos-
ing the optimization with a varying∆z instead of the one with a constant∆z, and even
for the other two motions (r-motion and g-motion), the time saving is almost imper-
ceptible (6% and 2%, respectively). Furthermore, for a given motion type, the maxi-
mum value fp,max reached by the internal prestress in the model scenario is higher in
the trajectory with a varying ∆z w.r.t. the one with a constant penetration. Conversely,
the trajectory with a varying virtual penetration grants a smaller mean value fp,max of
the internal prestress throughout the motion. In addition, the initial value of fp is cho-
sen, in every optimization, by the solver in order to satisfy the friction-constraint (4.19)
in static conditions (i.e. r̈ = 0), namely:

fp (0) = k∆z(0) ≥ mb g

µ∗ (4.47)
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(a) Constant virtual penetration ∆z.

(b) Varying virtual penetration ∆z.

Figure 4.16: Assessment of the friction-cone condition for the l-motion.
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(a) Constant virtual penetration ∆z.

(b) Varying virtual penetration ∆z.

Figure 4.17: Assessment of the friction-cone condition for the c-motion.
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(a) Constant virtual penetration ∆z.

(b) Varying virtual penetration ∆z.

Figure 4.18: Assessment of the friction-cone condition for the r-motion.
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(a) Constant virtual penetration ∆z.

(b) Varying virtual penetration ∆z.

Figure 4.19: Assessment of the friction-cone condition for the g-motion.

95



Chapter 4. Cooperative Grasping

4.6.4 Experimental Results

During the experiments, performed within the R&D department of IMA Spa6, the two
cobots are controlled by using ROS7, with an admittance-controller node implemented
in C++. The preliminary operations aimed at placing the object in correspondence of
its desired initial pose are the following:

• the left and right cobots are sent to the corresponding initial configurations ql (0)
and qr (0);

• the left cobot, through a linear motion along the opposite direction of its end-
effector z-axis, is retracted to leave the space for manual placement of the object;

• with the same opposite linear motion, the left cobot moves towards the object
until a contact force of 1N along the z-axis is detected;

• the two sensor measurements are tared to zero.

The value of 1N for the detection of the contact is chosen to avoid an higher internal
prestress on the object, which may compromise the reliability of the experiment.
This way, the two cobots, in correspondence of their initial reference positions rE j (0)
( j = l ,r ), are led to exert a negligible internal prestress on the object (v. Figure 4.7). A
transitory procedure of roughly 3s is then started to bring the prestress to the initial
value of fp (0). This procedure is needed since, while during the preliminary opera-
tions, the object is lying on a support plane and its gravity force is counterbalanced by
the plane itself, hence not requiring an internal prestress to satisfy the friction-cone
conditions, as soon as the desired motion starts and the object has to be lifted by the
cobots, the internal prestress must equal the value fp (0) to avoid slipping.
This also justifies why, in Figure from 4.16 to 4.27, where the results from the experi-
ments are illustrated, the time reported on the x-axis starts from a value greater than 3s.
In particular, Figures 4.16, 4.17, 4.18, 4.19 show the comparison between the model and
the experimental forces exerted on the object during the l-motion, c-motion, r-motion
and g-motion, respectively. For each of the figures, the cases with a constant and vary-
ing ∆z are provided. To better explain the content of the aforementioned figures, the
first column compares the tangential and normal forces exerted by the left cobot on the
object in the model scenario with the ones read by the sensor of the left cobot; the sec-
ond column shows the comparison between the forces exerted on the right interface
of the object in the model scenario with the ones obtained from the measurements of
the right-cobot sensor. In addition, a purple line indicates the quantity | f j ,T |/µ∗ for the
model case and | f̂ j ,T |/µ for the experimental measurement to allow a visual check on
the friction-cone condition, where the symbolˆis employed for measured quantities.
To sum up, indicating with f̂l and f̂′e the forces measured by the left and right sen-
sors, respectively, the comparison between the modeled fl and the measured f̂l is rep-
resented in the first column, whereas the modeled fr is compared with the quantity
f̂′e −me r̈ (v. Section 4.6.2) in the second column. Finally, the third column represents
the sum of the sides of the friction-cone inequalities (see (4.19)), for both the model
and the experimental scenarios. The comparison of the blue line (corresponding to
the sum | fl ,N |+ | fr,N |) with the purple line (corresponding to the sum fl ,T /µ∗+ fr,T /µ∗

6https://ima.it
7https://www.ros.org
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for the model and fl ,T /µ+ fr,T /µ for the experiments) provides a necessary but not
sufficient condition for the fulfillment of the no-slipping conditions. This means that,
slipping is detected when the purple line exceeds the blue one, whereas, when the blue
line is over the purple one, slipping is prevented as long as the friction-cone inequali-
ties are individually respected.
The experimental plots of Figures 4.16, 4.17, 4.18, 4.19 show that the blue line is always
over the purple one, except for some isolated time instants, hence confirming that the
friction inequalities are respected during the execution of the trajectories. This also
finds evidence by looking the recorded videos8, where no apparent slipping of the ob-
ject occurs. Table 4.3 reports the accuracy indexes ε j ,max and ε j ,med that take into
account the maxima and the mean values of the normal forces acting on the object
and are defined as

ε j ,max = | f j ,N |max−exp −| f j ,N |max−mod

| f j ,N |max−mod
×100%, j = l ,r (4.48)

ε j ,med = | f j ,N |med−exp −| f j ,N |med−mod

| f j ,N |med−mod
×100%, j = l ,r (4.49)

with | f j ,N |med−p (p = exp,mod) being the mean value of f j ,N ( j = l ,r ) during the mo-
tion time period, namely

| f j ,N |med−p =
∑Ntot

i=1 | f j ,N ,p (ti )|
Ntot

, j = l ,r, p = exp,mod (4.50)

where mod and exp denote the model and the experimental quantities, respectively,
and Ntot is the total number of samples. It can be noted that, in the majority of the
cases, for a given motion type, the trajectory with a varying ∆z grants lower values
of the accuracy indexes ε j ,max and ε j ,med ( j = l ,r ), w.r.t. the case characterized by
a constant ∆z. Furthermore, the value of ε j ,med is always below the 19.1%, proving
that the general trend of the normal forces exerted on the object remains in line with
the commanded trend, even when the percentage error of the maxima ε j ,max is high.
For instance, the worst case is represented by the c-motion with a constant ∆z, where,
even, if the values of εl ,max and εr,max equal 52.5% and 47.8%, the general trends are
still acceptable (εl ,med = 17.1% and εr,med = 14.5%). Regarding the correspondence
of the force components between the model and the experiment, the plots on the first
column exhibit a good adherence of the predicted forces with the measured ones, even
in correspondence of the boundary friction conditions when the purple and the blue
lines touch. The same cannot be stated for the plots of the second column, where the
tangential forces present some disparities between model and experimental values.
This can be attributable to the fact that, while the first column compares model quan-
tities with directly measured ones, on the second column the model forces exerted on
the object on the right side of the contact are compared with experimental quantities
that are not directly measured, but they are obtained as a combination of a measured
force (i.e. f̂′e ) and a model term (i.e. me r̈).

Figures 4.20, 4.21, 4.22, 4.23 illustrate, for each motion, with both a constant and a
varying ∆z, the sum of the reaction forces fl and f′e , projected on the coordinate frame

8The performed motions can be seen at the link dual-arm videos.
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Table 4.3: Normal force accuracy indexes.

Constant ∆z Varying ∆z
l-motion εl ,max = 28.4% εl ,max = 19.7%

εl ,med = 6.6% εl ,med = 4.4%
εr,max = 26.4% εr,max = 13.2%
εr,med = 5.6% εr,med = 4.8%

c-motion εl ,max = 52.5% εl ,max = 35.7%
εl ,med = 17.1% εl ,med = 16.4%
εr,max = 47.8% εr,max = 27.0%
εr,med = 14.5% εr,med = 13.5%

r-motion εl ,max = 31.8% εl ,max = 40.2%
εl ,med = 3.7% εl ,med = 0.2%
εr,max = 28.1% εr,max = 23.4%
εr,med = 2.5% εr,med = 2.1%

g-motion εl ,max = 27.5% εl ,max = 20.2%
εl ,med = 17.0% εl ,med = 19.1%
εr,max = 35.4% εr,max = 24.3%
εr,med = 9.8% εr,med = 11.3%

x
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y

(a) Constant virtual penetration ∆z.

x
x

y
y

(b) Varying virtual penetration ∆z.

Figure 4.20: Assessment on the application of the net wrench on both the object and
the gripper for the l-motion.
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x
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(a) Constant virtual penetration ∆z.
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y

(b) Varying virtual penetration ∆z.

Figure 4.21: Assessment on the application of the net wrench on both the object and
the gripper for the c-motion.
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(a) Constant virtual penetration ∆z.
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y

(b) Varying virtual penetration ∆z.

Figure 4.22: Assessment on the application of the net wrench on both the object and
the gripper for the r-motion.
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(a) Constant virtual penetration ∆z.

x
x

y
y

(b) Varying virtual penetration ∆z.

Figure 4.23: Assessment on the application of the net wrench on both the object and
the gripper for the g-motion.

Fl . Recalling Equation (4.44), this sum only depends on the motion law and, thus, is not
affected by either the subjective choices related to force distributions or the presence
of the gripper on the right cobot. In each subfigure, the left-most plot displays the sum
fl ,T x + f ′

e,T x , the central plot the sum fl ,T y + f ′
e,T y and the right-most plot reports the

quantity fl ,N + f ′
e,,N . In particular, the coloured solid lines indicate the experimental

trends, and the black dashed lines are the model predictions. The good correspon-
dence between the model and the experiment demonstrates that the net force exerted
by the cobots on the object and the gripper equals the desired dynamics, as mentioned
in Equation (4.44), hence making the object follow the prescribed trajectory.

In Figures 4.24, 4.25, 4.26, 4.27, the trends of the normal forces exerted by the cobots
fl ,N and f ′

e,N and of the tangential norms fl ,T and f ′
e,T are reported. Analogously to the

case of Figures from 4.20 to 4.23, the solid lines indicate the experimental quantities,
compared with the model ones in black dashed lines. For all motions, the model cap-
tures the experimental trends of the forces, with some tolerable discrepancies, espe-
cially if the results of the c-motion and the g-motion are taken into account. Nonethe-
less, the good adherence of the model predictions with reality proves the reasonable-
ness of the assumption on the force distribution described in Section 4.6.2. This also
finds confirmation by looking at Table 4.4, where the mean value of the relative er-
rors γl ,d and γe,d between the experiment and the model of the normal force and the
tangential norm (d = N ,T ) on both cobots, is reported. For a better explanation, the
relative errors are computed as follows:

γl ,d (ti ) = | fl ,d−exp (ti )− fl ,d−mod (ti )|
| fl ,d−mod (ti )| ×100%, d = N ,T (4.51)

γe,d (ti ) =
| f ′

e,d−exp (ti )− f ′
e,d−mod (ti )|

| f ′
e,d−mod (ti )| ×100%, d = N ,T (4.52)
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(a) Constant virtual penetration ∆z.

(b) Varying virtual penetration ∆z.

Figure 4.24: Assessment on the assumed force distribution for the l-motion.
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(a) Constant virtual penetration ∆z.

(b) Varying virtual penetration ∆z.

Figure 4.25: Assessment on the assumed force distribution for the c-motion.
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(a) Constant virtual penetration ∆z.

(b) Varying virtual penetration ∆z.

Figure 4.26: Assessment on the assumed force distribution for the r-motion.
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(a) Constant virtual penetration ∆z.

(b) Varying virtual penetration ∆z.

Figure 4.27: Assessment on the assumed force distribution for the g-motion.
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Table 4.4: Mean value of the relative error, considering the normal and tangential forces
read by the two sensors.

Constant ∆z Varying ∆z
l-motion γl ,N−med = 8.3% γl ,N−med = 6.8%

γl ,T−med = 29.8% γl ,T−med = 17.6%
γe,N−med = 5.6% γe,N−med = 6.8%
γe,T−med =− γe,T−med = 88.4%

c-motion γl ,N−med = 18.5% γl ,N−med = 18.5%
γl ,T−med = 28.5% γl ,T−med = 24.0%
γe,N−med = 12.8% γe,N−med = 13.6%
γe,T−med = 57.0% γe,T−med = 48.1%

r-motion γl ,N−med = 9.9% γl ,N−med = 11.2%
γl ,T−med = 18.5% γl ,T−med = 13.9%
γe,N−med = 11.2% γe,N−med = 14.8%
γe,T−med =− γe,T−med =−

g-motion γl ,N−med = 21.7% γl ,N−med = 22.5%
γl ,T−med = 37.7% γl ,T−med = 27.9%
γe,N−med = 12.1% γe,N−med = 13.5%
γe,T−med = 53.9% γe,T−med = 76.2%

As far as the left cobot is considered, the value of γl ,N−med is always below the 22.5%,
confirming, as in Table 4.3, that the experimental trend of the normal force exerted by
the left cobot is reliable w.r.t. to the predicted one. A better result is obtained regarding
the normal force of the right cobot, with a maximum value of γe,N−med that reaches the
14.8%. The correspondence between the experiment and the model loses reliability if
the mean value of the relative error along the tangential direction is considered. In
particular, for the left cobot, γl ,T−med reaches a value of 37.7% in correspondence of
the g-motion with a constant∆z. A different investigation is needed for the right cobot,
for which γe,T−med presents high values, that are omitted in some cases (v. the symbol
− in Table 4.4). The fact that the tangential norm of the force f′e in the model scenario
is near to small values in correspondence of some time instants (due to the fact that
f′e does not take into account the gripper gravity) makes the ratio γe,T very unstable,
namely

lim
| f ′

e,T−mod (ti )|→0
γe,T (ti ) =∞. (4.53)

4.7 Conclusive Remarks

In this Chapter, the prescription of a virtual penetration on the manipulated object was
adopted to accomplish the dual-arm task. The virtual penetration, aimed at exerting
an internal force along the normal-contact direction between the cobot end-effectors
and the object, was inserted within the inputs of a constrained-optimization problem.
The resolution of the time-optimal trajectory planning considered, for each path fol-
lowed by the two cobots, an optimized constant value and an optimized varying trend
of the virtual penetration. The motions were performed by employing two collabo-
rative robots, which were controlled in ROS, and an admittance-control strategy was
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implemented.
The experiments showed that no evident slipping of the object occurred even consid-
ering fast motions, hence making an advance in the state of the art where the value of
the virtual penetration was found by trial-and-error procedures and slipping of the ob-
ject was detected. The correct exertion of the net wrench on the object was confirmed
by the force measurements, thus ensuring that the object followed the desired trajec-
tory. A quantitative analysis was reported, highlighting that the accuracy index regard-
ing the application of the normal force on the object was always under an acceptable
threshold. This proved the efficacy of the control, especially considering the case with
an optimized varying trend of the virtual penetration. In this case, the lower accuracy
index not only proved a more reliable tracking of the commanded normal force w.r.t.
the case with a constant virtual penetration, but it also granted a lower internal pre-
stress on the object. Finally, the assumption on the force distribution among the two
cobots, needed when hyperstatic problems, such as the one regarding dual-arm ma-
nipulation, have to be taken into account, turned out to be reasonable by comparing
the experimental results with the model ones.
Further developments will see the extension of the experiments to trajectories with a
varying orientation of the object. In addition, a deeper investigation on the force dis-
tribution will be addressed, by exploiting previous research [71, 72].
To conclude, point-to-point motions (in which only the initial and final poses are fixed)
will be considered to release the object from following a prescribed path. This ap-
proach can be pursued offline, by making the optimization algorithm find the shortest
path to be followed in minimal time and fulfilling the friction-cone conditions, also
taking into account collision-avoidance constraints [73, 74].
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Conclusions

In this Thesis, the optimal control problem of single- and dual-arm serial robots was
formulated to achieve the time-optimal handling of liquids and objects.
In Chapter 3, the planning of time-optimal anti-sloshing trajectories of an industrial
serial robot carrying a cylindrical container filled with liquid was addressed consider-
ing 1-dimensional and 2-dimensional planar motions. The technique for the estima-
tion of the sloshing height, firstly proposed in [29], was presented for 2-dimensional
motions, and the model was extended to 3-dimensional motions. The quantitative and
qualitative analysis of the experimental validation showed good reliability considering
1-dimensional and 2-dimensional motions with an acceleration of the container up
to 9.5m/s2. The performed 3-dimensional motions were obtained from the previous
2-dimensional ones by adding a vertical acceleration along the z-axis (up to 5m/s2).
The model extension was justified by achieving better accuracy indexes, representing
the mean absolute error between the experimental results and the model predictions,
compared to the adoption of the simpler 2-dimensional model.
For each of the 2-dimensional paths employed in the validation campaign, three op-
timizations were solved with different values of the sloshing-height thresholds. The
comparison between the non-optimized and the optimized motions showed that the
benefit in terms of sloshing-height reduction was obtained at the expense of a rea-
sonable execution-time increase. In addition, in the optimized motions, the stringent
limits imposed on the sloshing height were efficiently satisfied.
Future work will consider modeling the sloshing height for square-section containers
and a further validation campaign with larger vertical accelerations. A sensitivity anal-
ysis will also be carried out to evaluate the reliability of the model w.r.t. the container
dimensions. In the end, anti-sloshing trajectories will be planned for 3-dimensional
motions, and different approaches for resolving the optimization problem will be con-
sidered.
The second topic of the Thesis, addressed in Chapter 4, regarded the time-optimal tra-
jectory planning for dual-arm object handling. The main problem affecting the ma-
nipulation strategy called cooperative grasping is represented by the unilateral con-
tact between the robots and the object, which may cause slipping during motion. To
overcome this drawback, a virtual penetration was considered, aimed at generating an
internal prestress in the contact-normal direction. The virtual penetration, together
with the path parameter, was chosen as control input of the optimal control problem.
This way, the resolution of the optimization provided, for each of the considered 3-
dimensional translational motions, the minimum virtual penetration able to grant the
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fulfillment of the friction-cone constraint, simultaneously executing the stable grasp
of the object in minimal time.
Experiments were performed by employing two collaborative robots controlled in ROS,
and an admittance control strategy was implemented. During the motions, the object
was firmly handled by the cobots, even for fast motions, hence making progress w.r.t.
previous work [59], where the value of the virtual penetration was found by trial and
error, and slipping was detected.
Experimental results proved the correct exertion of the net wrench on the object, thus
granting that the object faithfully followed the desired trajectory. An accuracy index ex-
pressing the error between the expected normal force on the object and its correspond-
ing measured quantity showed the reliability of the control strategy. Furthermore, the
force distribution among the two cobots, assumed during the model formulation, was
revealed to be reasonable.
Additional experiments will foresee 6-dimensional motions of the object, hence con-
sidering an angular velocity other than zero. Regarding the optimization problem,
point-to-point motions will be deemed to avoid constraining the object from following
a prescribed path. This way, the algorithm will find the shortest path connecting the
initial pose to the final one, respecting the criterion of minimum time, and fulfilling
the friction-cone conditions, with the addition of collision-avoidance constraints.
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