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Abstract

The design process of any Electric Vehicle (EV) system has to be oriented towards
the best energy efficiency, together with the constraint of maintaining comfort in the
vehicle cabin. Main aim of this study is to research the best thermal management
solution in terms of HVAC efficiency without compromising occupant’s comfort and
internal air quality. The work started with a literature review of the studies focused on
maintaining thermal comfort in dynamic, asymmetrical condition and studies regarding
the minimisation of energy use from the Heating, Ventilation and Air Conditioning
(HVAC).

In terms of hardware, the use of Low Cost Sensor (LCS) in the automotive landscape
was thoroughly explored. An Arduino controlled Low Cost System of Sensors (LCSoS)
was developed and compared against reference instrumentation, against which has
an average R2 of 0.92. then used to characterise the vehicle cabin of a production
electric vehicle in terms of thermal comfort and air quality in real parking and driving
conditions trials. At same time, data about the energy use of the HVAC was retrieved
from the car On-Board Diagnostic (OBD) port. This part of the work showed that energy
savings using recirculation can reach 30 %, but pollutants concentration in the cabin
builds up in this operating mode. Moreover, the temperature profile appeared strongly
nonuniform with air temperature differences up to 10 ◦C.

Optimisation methods often require a high number of runs to find the optimal
configuration of the system. Fast models proved to be beneficial for these task, while
CFD-1D model are usually slower despite the higher level of detail provided. In this
work, the collected dataset was used to train a fast Machine Learning (ML) model of
both cabin and HVAC using linear regression. Average scaled RMSE over all trials
is 0.4 %, while computation time is 0.0077 ms for each second of simulated time on a
laptop computer.

Finally, a Reinforcement Learning (RL) environment was built in OpenAI and Stable-
Baselines3 using the built-in Proximal Policy Optimisation (PPO) algorithm to update
the policy and seek for the best compromise between comfort, air quality and energy
reward terms. The learning curves show an oscillating behaviour overall, with only 2

ii



iii

experiments behaving as expected even if too slow (minor improvements over 24 days
of simulated time). This result leaves large room for improvement, ranging from the
reward function engineering to the expansion of the ML model.
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Chapter 1

Introduction

One of the major barriers to electric vehicle adoption is due to the limited amount of
energy stored in the batteries which is needed for traction and auxiliary systems oper-
ation. Focusing on passenger’s thermal requirements, ICE vehicles can rely on waste
heat, at least for heating operations. Conversely, an optimised thermal management
of heat loads and gains is crucial for battery electric vehicles (BEVs). This work sits
in line with the studies regarding this unprecedented shift from heat disposal to heat
management in vehicle cabins [Opt21; 23].

Reducing the energy consumption of the HVAC system, as well as other auxiliary
systems, is of paramount importance in the era of migration to electric powered trans-
portation; the major challenge being to achieve this while maintaining high levels of
comfort inside the cabin. On one hand, the best thermal management of the car’s cabin
is obtained by maximising the comfort level along with minimising electrical power
demand [140; Nil04; Zha+19; PBW19]. On the other hand, Internal Air Quality (IAQ)
related quantities inside the vehicle’s enclosure are affected by outside weather condi-
tions as well as by the HVAC settings. From this perspective, every improvement of the
cabin thermal management must be IAQ aware [Org14; Org10; HRO09; SMA20].

In terms of modeling and optimisation, different choices can be made depending on
the focus being on passenger’s comfort or on the HVAC system and its control, with the
cabin model representing the link between the two extremes. Comfort-driven studies
usually require a great level of detail on the passenger and its surroundings, together
with complex and expensive experimental work involving manikins, computational
fluid dynamics (CFD) and access to Climatic Wind Tunnel (CWT) facilities [War+20;
Oze+19; Oi+19]. HVAC-driven studies instead, make often use of simplified cabin
environments, often relying on 1D physics based simulators to save computational
resources for the exploitation of the dynamic evolution of the system [Cho+18; KTM21].

Similarly to HVAC and control studies, also optimisation techniques seek for fast

1



1.1. MOTIVATION 2

models, given the frequently high number of runs needed to find the optimal configura-
tion and operation of the system. A state of the art approach to solve this problem relies
on the use of ML systems with policy gradient reinforcement learning (PGRL) methods
to find the optimal compromise between comfort and energy use [Che21]. Where RL is
a discipline halfway between ML and control theory consisting in interaction between
an agent and the environment happening by subsequent observation of the state of
the environment and taking actions according to a certain policy with the objective of
maximising a reward [BK19]. A convenient, stepped model of the cabin, HVAC and
control system is required in this case, with some authors using machine learnt CWT
and 1D model simulation data to build it [Jes+22].

1.1 Motivation

State of the art 1D cabin models can be very accurate. They consist of several
thermal masses corresponding to the main inertial masses that interact between them
and the HVAC components by conduction and radiation and with the air by convection.
ML-based simulators however, can be accurate and fast enough to provide a solid
alternative, opening the way for novel optimisation approaches. To achieve this, a lot of
data from measurements and simulations are needed, as more information could be
added if enough data is available to train and test the model.

In order to train the model, we opted for the experimental characterization of the
vehicle cabin using a system of low-cost sensors based on Arduino. On one hand, this
required the construction of the system, its performance evaluation against a reliable
measuring station, and the execution of several experiments in summer and winter
real driving conditions. On the other hand, it provided a portable and customisable
setup which relies on open hardware and software thus improving the reproducibility
of research. On top of this, the use of RL in systems for EVs thermal management
optimisation is still an under-explored field, particularly if combined with real-driving
data from low-cost sensors.

1.2 Research questions

The aim of this study is to demonstrate the capabilities of an optimisation framework
that uses low-cost sensor data, ML and RL to solve a thermal management problem in
electric vehicle cabins.

The overall aim can be broken down into the following sub-aims, each associated
with a research question:
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• First aim is to build a low-cost system of sensors capable of providing good enough
data to charachterise the cabin environment in terms of comfort and air quality.
This is also to demonstrate the metrological capabilities of a low-cost sensors in
the automotive field, thus enabling its operation in transient, non-uniform and
moving environments such as vehicle cabins.

Research Question 1 - Can a low-cost sensor system accurately characterize the cabin
environment in terms of comfort and air quality?

• Second aim is to verify if it is possible to build an accurate model without the
use of a detailed CFD-1D simulation of the cabin environment and CWT data but
using a dataset obtained from low-cost sensors in real driving conditions instead.

Research Question 2 - Is it possible to build an accurate cabin and HVAC model without
detailed simulation using real driving data from low-cost sensors?

• Third aim is to perform the training of the RL agent in Stable Baselines3 with PPO
to find the optimal thermal management policy.

Research Question 3 - Can a reinforcement learning agent be trained to find the optimal
thermal management policy that maximizes comfort and air quality while minimizing
energy use?

By answering these questions, the study aims to demonstrate the feasibility and
effectiveness of using low-cost sensors and machine learning techniques for thermal
management in vehicle cabins.

1.3 Publications

This research has lead to the following publications:
Journal

• Luigi Russi et al. “Air Quality and Comfort Characterisation within an Electric
Vehicle Cabin in Heating and Cooling Operations”. In: Sensors 22.2 (2 Jan. 2022), p.
543. ISSN: 1424-8220. DOI: 10.3390/s22020543. URL: https://www.mdpi.com/1424-
8220/22/2/543

Conference Proceedings

• Luigi Russi et al. “Air Quality and Comfort Characterisation within an Electric
Vehicle Cabin”. In: 2021 IEEE International Workshop on Metrology for Auto-
motive (MetroAutomotive). 2021 IEEE International Workshop on Metrology for
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Automotive (MetroAutomotive). July 2021, pp. 169–174. DOI : 10.1109/MetroAu-
tomotive50197.2021.9502853.

1.4 Thesis structure

The remaining part of the thesis has the following structure:

Chapter 2 starts with a review of the comfort models used in vehicle cabins depending
on the scope, main research directions are outlined in the subfields of comfort,
air quality and HVAC operation modeling.

Chapter 3 contains the description of the experimental setup, from design principles to
its performance evaluation against reference instrumentation.

Chapter 4 reports a series of experiments on air quality and energy efficiency inside
the passenger compartment of an electric vehicle. The relation between
consumed energy, HVAC system settings and pollutant concentrations is
obtained, together with the thermal profile of the vehicle cabin.

Chapter 5 describes the construction of the machine learnt cabin-HVAC model, of the
simulation environment. A progressive detach of the model from the data
that generated it to end up in completely virtualised optimisation framework
based on RL in shown.

Chapter 6 summarises the main results, it also contains some limitations of the work as
well as future research directions.



Chapter 2

Background of comfort, HVAC, and
control-driven modeling approaches in
vehicle cabins

In revieving the state of the art, we did not define an hypothesis to test in advance,
but rather we worked in the cabin HVAC context and the important questions emerged
during the review. Main aim of the chapter is to review state of the art comfort models
in order to locate the most suitable one to be coupled with the HVAC system model of
an EV. Then to investigate the effectiveness of available range improvement techniques
in terms of driving performance and range. In other words, we first aim to review most
popular thermal comfort models and methods for vehicle cabins. Second we aim to
define which one is the best in terms of performance if coupled with an HVAC model
of an electric vehicle. Third we aim to give a contribution in consistently organising the
knowledge base of thermal comfort in vehicles. Lastly we aim to define major research
directions in cabins thermal management and enter one or more of them.

The chapter has the following structure. Once defined the boundaries of the study
and underlined its importance, we report the extent of existing knowledge of the matter
together with some limitations. In Section section 2.1 we present the approach adopted
for the review. Starting from the tools used for documents collection, then we introduce
the thematic organisation of papers through a 5 terms taxonomy. At the end of the
section we focus on key publications presenting them in a classification table. Section
section 2.2 is about the main findings in the field of comfort-driven studies, which is the
first one of the two terms of the taxonomy first layer. The most widely used comfort
models depending on the application are compiled, together with techniques used in
state of the art studies. In Section section 2.3 the focus is on the second term of the
first layer: HVAC-driven studies. First, techniques regarding heat load reduction are

5
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compiled, then main HVAC efficiency techniques are given. An overview on internal air
quality (IAQ) in cabins, an often considered secondary but always more important topic,
is given in Section section 2.4. Some motivations on the choice of low-cost sensors in
terms of sensing equipment for this research are presented. Section section 2.5 explores
the wide field of modeling introducing a few key concepts about Machine Learning (ML)
and Reinforcement Learning (RL), using physics based model as a reference. Finally,
main research directions, as well as the approaches suitable for electric vehicles, in terms
of both comfort model and HVAC system optimisation, as well as air quality studies
are then summarised in section 2.6, proposing some research questions to be addressed
in this work.

2.1 Literature review methodology

Figure 2.1: State of the art bibliometric map by keywords made with VOSviewer, with
the aim of discovering thematic clusters in the cabin thermal management landscape.

In order to perform a consistent and well organised state of the art exploration
(review), we followed a qualitative, semi-structured approach [JJ19; Sny19]. In other
words, we explored the state of the art to find major research directions, in a qualitative
tree structured approach, but without the conceit of providing quantitative results. In
fact, given the wide scope of the matter, ranging from pure comfort studies to pure
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HVAC-system and optimisation studies, it is not reccomended to quantitatively compare
the results. The very first step was the definition of as relevant and unbiased as possible
search terms, a limited time interval and a result selection criterion to trigger and filter
the output from the following databases:

• ScienceDirect – Physical Sciences and Engineering

• IEEE Xplore - Electrical and Electronic Engineering

• SAE MOBILUS – Automotive and Mobility Engineering

• Google Scholar – Scholarly Research and Patents

The search terms used were "thermal comfort", "vehicle", "cabin", "automotive",
"EVs", "method", "assessment", "air quality" and meaningful combination of them. We
decided to limit the search to documents not older than 5 years, exception made for a
few milestones. Moreover, the search output was limited to the first 20-25 results.

The whole search output has been collected in an open source reference manager
called Zotero [Zot20], which enabled us to keep track of a collection of almost 400
documents, organise them in the same place, perform targeted searches within the
collection and also to manage the bibliography in a simple and effective way.

A visual representation of the state of the art resulting from the bibliographic search
is provided in Figure 2.1. The database compiled in Zotero has been exported and
processed with VOSviewer, a weel estabilished tool for bibliometric mapping [vEW20].
The construction of the map is based on a co-occurrence matrix with a three step process
described in detail in [vEW10]. It is interesting to note that a map created with keywords
from the collection, using link strength as weight and publication year as score, provides
clusters representative of the main research directions in this field. Among the main
clusters, the most recent ones are focused on electric vehicles of course, but also hvac
system operation and air quality. A cluster related to hardware and sensig technologies
is also well connected with theme of thermal comfort.

Table 2.1: Documents classification

Reference Main focus

[War+20] Data-driven prediction of thermal comfort

Thermal model Vehicle cabin CFD model, with virtual thermal manikin and machine learning
used to represent a wide range of environmental conditions, HVAC settings
and glazing properties

Numerical approach Cabin and manikin CFD model in STAR CCM+, coupled with three machine
learning algorithms, a linear model, an ensemble predictor and an artificial
neural network
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Continuation of Table 2.1

Reference Main focus

Experimental Climatic wind tunnel for CFD model, 10 fold cross validation for machine
learning algorithms

Indexes EHT, Teq, PMV, PPD

[ZLC19] Thermal comfort analysis under outdoor driving conditions

Thermal model Four terms heat balance, measured quantities outside and inside cabin, surveys

Numerical approach Experimental data processing and manipulation

Experimental Comparison of measured and calculated quantities (MST) against surveys data
(TSV)

Indexes MST, TSV

[Xie+19] Comfort based HVAC control strategy

Thermal model Component based for HVAC, thermal network method and five heat loads for
cabin

Numerical approach CFD for condenser and evaporator, lumped parameters learner-regulator

Experimental Measures in environmental chamber

Indexes PMV, Tcom f ort

[SS19] Cabin thermal management strategy, HVAC efficiency

Thermal model Cabin and HVAC models with recirculation, blower, evaporator, heat exchanger

Numerical approach Dynamical model with four states for cabin, quasi-static model for HVAC
components. Linear quadratic approximation

Experimental Comparison against nonlinear and baseline strategy

Indexes PMV (extended with Tamb and Qsun)

[PBW19] Impact of occupant-HVAC interaction on comfort

Thermal model Nilsson equivalent temperature model

Numerical approach Traditional sense-and send system, MySQL database

Experimental Real driving conditions trials on production vehicles, measures of temperature,
humidity, air speed, mean radiant temperature, CO2, solar loading.

Indexes TSV, Teq

[Pau+19] Evaluation of thermal comfort according to ISO 14505

Thermal model Comfort evaluation in transient, non-uniform environment using Fanger, Nils-
son model and direct methods

Numerical approach Dedicated automatic PMV apparatus, neuro-fuzzy control thermal manikin,
data processing and manipulation

Experimental Comfort sense measurement tool, measure of air temperature and velocity in
the cabin, thermal manikin, surveys

Indexes PMV, TSV, Teq

[Och+19] Ceiling circulator optimisation

Thermal model Separate outlet (high induction) and blower (centrifugal) to make the circulator
thinner, thermal comfort verification

Numerical approach air outlet CFD based on lattice-Boltzmann method

Experimental CFD comparison against conventional outlet, cooling down test using thermal
manikin with vehicle placed in a wind tunnel

Indexes SET, TSV

[Hep+18] Evaluate a vehicle HVAC with a passive sensor manikin coupled with a thermal
comfort model

Thermal model Passive sensor manikin coupled with TAITherm Human Comfort Model
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Continuation of Table 2.1

Reference Main focus

Numerical approach multi-physics solver for thermal conduction, radiation, and convection under
both steady-state and transient conditions

Experimental Human subject thermal sensation and comfort in the same test conditions

Indexes EHT, Teq

[YFL18] Novel multi-objective HVAC control strategy considering comfort and effi-
ciency

Thermal model Fanger for comfort, Zhang energy based HVAC model, thermal dynamic model
of cabin and powertrain

Numerical approach Matlab/simulink like 1D model

Experimental Comparison against two widely used control strategies, thermostat and PI

Indexes PMV, PPD

[Thi+18] investigation of Zhang model in a controlled thermal environment

Thermal model Compare thermal sensation and comfort from Zhang and Fiala with experi-
mental votes

Numerical approach standalone implementation of both Zhang thermal sensation and comfort
algorithm, Fiala DTS thermal comfort algorithm

Experimental thermal test bench on a b-segment car with human subjects

Indexes Sensation index, comfort index

[Pau+18] Effect of human presence in vehicle cabin

Thermal model Numerically evaluate the cabin thermal environment with and without a
virtual manikin

Numerical approach Cabin and manikin CFD models solved in Ansys 18

Experimental Comparison of two study cases

Indexes PMV, PPD

[Mor+18b] Develop an occupant comfort prediction under non uniform an unsteady
conditions

Thermal model Quantitative evaluation of comfort using equivant temperature of a thermal
manikin

Numerical approach Experimental data processing and manipulation

Experimental Thermal manikin in wind tunnel using air-enthalpy and refrigerant-enthalpy
methods

Indexes Teq

[Man+18] Assessment of auxiliary energy needs under WLTP cycle

Thermal model Monozonal modelling approach with wall, cabin interior and HVAC models

Numerical approach 1D Dymola thermal vehichle model, medium class hybrid vehicle in dynamic
programming

Experimental Comparison against baseline scenario simulations

Indexes SET

[Lah+18b] Dynamic programming to solve the optimal control problem of balancing
comfort and range

Thermal model EV model composed of three sub-systems: the HVAC system, the powertrain
and the battery, quadratic discomfort criterion based on temperature and
humidity ranges

Numerical approach Dinamic programming (DP) 1D model of EV with a comfort criterion

Experimental Comparison of two study cases
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Continuation of Table 2.1

Reference Main focus

Indexes Tre f , Hre f

[ISM18] Develop a method to evaluate thermal sensation of a human body when using
various thermal control devices like: seat and stearing wheel heater, ventilated
seats

Thermal model Extention of human thermal model constructed by Imai with conduction, 16 to
26 sbody segments,

Numerical approach 1D human thermal model, experimental data processing

Experimental Human subject thermal sensation in 26 locations and whole body, environmen-
tal measures with thermal manikin

Indexes local SET*, TSV, WSV

[Bru+18] Show that Reinforcement Learning (RL) reliably produces a controller that
uses less energy while delivering better comfort than existing hand-coded
approaches

Thermal model Comfort control as a Markov Decision Process (MDP), learning in simulation,
1D cabin and HVAC model

Numerical approach "Monte Carlo Exploring Starts (MCES) and Monte Carlo -soft, continuous state
MDPs, Sarsa(λ)"

Experimental Data from real car in a climatic wind tunnel, comparison with other control
techniques

Indexes Tair , Tavg, Teq

[Psi+17] Manikin-based metodologies for thermo-physiological response

Thermal model Thermal manikin coupled with human thermoregulation model

Numerical approach Real time iterative exchange of data between manikin and model (feedback
loop)

Experimental Human subject data from literature, mean skin and body core temperatures

Indexes Teq, LMV

[Nea+17] compare the global and absolute thermal comfort indexes for two vehicles with
different air distribution systems

Thermal model

Numerical approach Numerical simulation of cabin and occupants to calculate global thermal com-
fort indexes

Experimental Comparison of old comfort indexes against proposed ones

Indexes PMV, PPD, DTS, GTCI, GATCI

[KKJ17] Impact of cabin insulation, thermal mass and glazing on comfort

Thermal model detailed numerical model of cabin surfaces, 1D GT_SUITE comfort and HVAC
model, Fanger for comfort

Numerical approach Complete cabin model in STAR-CCM+ of both baseline and insulated ceiling,
N-S for compressible 1D flow

Experimental Comparison with baseline result in terms of insulation and glazing

Indexes PMV

[Hep+15] Comparison of adaptive and passive manikin for thermal comfort assessment

Thermal model Adaptive manikin with thermoregulation model and passive manikin with a
thermo-physiological model

Numerical approach Real time coupling with RadTherm Human Thermal Model plus virtual
manikin for the passive case

Experimental Human subject in the same test conditions
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Continuation of Table 2.1

Reference Main focus

Indexes Teq, Mean Skin Temperature, Overall Sensation, Overall Comfort

[Cro+15] Review of thermal comfort models for buildings and vehicles

Thermal model Comfort definition, main comfort models, practical assessment with manikins
and CFD

Numerical approach CFD, virtual thermal manikin with thermo physiological model

Experimental Ranging from sensors to human subjects

Indexes PMV,PPD, DR, EDT, ADPI, UTCI, Teq

[DMS15] Cabin heating of EVs with solar load

Thermal model 6 segments cabin, ASHRAE Standard 55, thermal time constant of the vehicle

Numerical approach Comparison between measured and computed temperature

Experimental Experiments on a Renault ZOE, 6 cabin and one outdoor temperature. Each
repeated at head, torso and foot level

Indexes Tcom, Tindoor

2.1.1 Taxonomy and key publications

experimental

modeling and simulation

HVAC model

comfort model

comfort-driven vs HVAC-driven

Figure 2.2: Taxonomy developed to categorize articles

Making a scan of abstracts and summaries in the collection is possible to have a
general idea of the state of the art regarding thermal comfort in vehicles, this process is
also useful to reject articles that match the search terms but are related to other sectors,
such as buildings, aircraft and submersibles for example. Analysing the scheme allowed
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us to develop a taxonomy (a systematic set of types and entities, figure 2.2) which
guided us toward the goal of answering a first attempt research question: "Identify the
major research directions for comfort aware HVAC operation in electric vehicles". The
taxonomy has been used as a sieve to select and categorize the articles in a structured
way.

The first distinction to make regards two main approaches that arose during the
review. In fact, while the common research direction goes toward finding a balance
between minimising energy use of auxiliaries and maintaining thermal comfort in
the cabin, there are some studies which focus on the HVAC system, others on the
comfort evaluation. However, both use a thermal model to quantitatively evaluate the
performance of a certain design. For this reason we decided to consider also studies
regarding HVAC performance using comfort models, together with studies on pure
thermal comfort in vehicle cabins. In the following sections we will refer at the former
as "HVAC-driven" approaches, the latter being "comfort-driven" approaches.The first
layer of the taxonomy is about this two different approaches.

Second layer regards the comfort model chosen among different studies, with this
type we want to gain knowledge about most widely used and effective comfort models
in each one of the previous categories.

Third layer categorises HVAC model in terms of system components and vehicle
cabin. It should be noted that cabin model is the link between thermal comfort and
HVAC models, being the environment in which both approaches want to evaluate
and control relevant parameters such as temperature, humidity, TSV, and pollutants
concentration just to name some.

Having addressed the theoretical approach in the previous types, we continue with
the fourth layer. This type assesses the HVAC modeling and simulation schemes used
in the studies, which may vary a lot ranging from simple calculations to CFD.

In the fifth layer we categorise the validation techniques adopted.
After processing the articles database using the developed taxonomy as a sieve, we

were able to identify major research directions for comfort-driven and HVAC-driven
approaches. A summary of selected studies is given in Table 2.1, where the whole
landescape of vehicle thermal management is organised. For each study a summary
of the comfort, cabin and HVAC model is given, together with experimental methods
and main indexes used. Main comfort indexes are also organised in systematically in
Table 2.2, which contains input parameters required for their calculation and a brief
description. Further considerations could be made with the aim of proposing comfort
and HVAC techniques suitable for improving efficiency of battery electric vehicles
(BEVs). In fact, an accurate evaluation of thermal comfort along with an energy efficient
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HVAC system is crucial for BEVs, given that range is still an issue because of the limited
amount of energy stored on board. Moreover, BEVs market share is expected to grow
consistently in the next years, with companies building electric cars being more inclined
to invest in research and development of their products, if compared with a technology
that is becoming obsolete like internal combustion engine (ICE) vehicles [21].

Table 2.2: Comfort Indexes

Index Input Parameters Description

Predicted Mean Vote (PMV) ta-dry bulb air temperature (◦C), tmr -mean
radiant temperature (◦C), vr -relative air ve-
locity (m/s), RH-relative humidity (%), M-
metabolic rate (met), Icl -clothing insulation
(clo)

Predicts the mean value of the thermal sensation votes (self-reported
perceptions) of a large group of people on a sensation scale expressed
from –3 to +3 corresponding to the categories “cold,” “cool,” “slightly
cool,” “neutral,” “slightly warm,” “warm,” and “hot”.

Predicted Percentage of Dissatisfied (PPD) PMV The PPD is an index that establishes a quantitative prediction of the
percentage of thermally dissatisfied people determined from PMV.

Standard Effective Temperature (SET) ta-dry bulb air temperature in (◦C) tmr -
mean radiant temperature (◦C) va-air ve-
locity (m/s) RH-relative humidity (%) M-
metabolic rate (met) Icl -clothing insula-
tion (clo) Sb-body surface area (m2) patm-
atmospheric pressure (bar)

The temperature of an imaginary environment at 50% RH, 0.1 m/s
average air speed (va), and tr = tdb , in which the total heat loss from
the skin of an imaginary occupant with an activity level of 1.0 met
and a clothing level of 0.6 clo is the same as that from a person in the
actual environment with actual clothing and activity level.

Universal Thermal Climate Index (UTCI) ta-dry bulb air temperature in (◦C) tmr -
mean radiant temperature in (◦C) va-air ve-
locity in (m/s) RH-relative humidity (%)

Defined as the air temperature of the reference environment which
produces the same strain index value in comparison with the reference
individual’s response to the real environment. It is regarded as one of
the most comprehensive indices for calculating heat stress in outdoor
spaces.

Draft Rate (DR) ta-dry bulb air temperature in (◦C) va-air
velocity (m/s) Tu-air turbulence intensity
in (%)

Correlation between local turbulence and thermal sensation.

Effective Draft Temperature (EDT) ta i-local air temperature (K) tm-mean air
temperature (K) va i-air velocity in (m/s)

Predicts comfort in terms of any sensation of coolness or warmth due
to air temperature and velocity.

Equivalent Temperature (Teq) ta-dry bulb air temperature in (◦C) tmr -
mean radiant temperature in (◦C) va-air
velocity in (m/s) Icl -clothing insulation
(clo) hc-convective heat transfer coefficient
(W m2/°C) hr -radiation heat transfer coeffi-
cient (W m2/°C)

The uniform temperature of an imaginary black enclosure in which
an occupant would exchange the same amount of heat by radiation
and convection as in the actual non uniform environment.

Equivalent Homogeneous Temperature
(EHT)

ta-dry bulb air temperature in (◦C) tmr -
mean radiant temperature in (◦C) va-air ve-
locity in (m/s) Qs-solar load (W/m2)

The uniform temperature of an imaginary enclosure with air velocity
equal to zero in which a person will exchange the same dry heat by
radiation and convection as in the actual non-uniform environment

Mean Skin Temperature (MST) tsk-local skin temperature in (◦C) Ask-local
surface area (m2) Sb-body surface area (m2)

Area weighted temperature value of the local skin portion

Thermal Sensation Vote (TSV) Survey The overall or local thermal sensation responce of a human subject in
an certain environment

Thermal Comfort Vote (TCV) Survey The overall or local thermal comfort responce of a human subject in
an certain environment

2.2 Comfort-driven methods

Thermal comfort evaluation in vehicle cabins is gaining always more attention from
both academy and industry, this is mainly for two reasons:

1. Every improvement on HVAC systems needs to be tested with a comfort model
to verify that a certain component or technique has a positive (or at least neutral)
effect on passengers thermal sensation.
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2. Thermal comfort investigation in transient and strongly non-uniform environ-
ments like vehicle cabins is a challenging task and the knowledge on the topic is
still fragmented.

According to some authors, the available standards are obsolete and there is not a
clear consensus on which comfort model should be used in these environments [DVD16].
Control system studies for example, often use simple comfort models based on strong
simplifying assumptions suitable for buildings like Fanger’s Predicted Mean Vote (PMV)
[YFL18]. Studies with thermal manikins instead, usually adopt sophisticated comfort
evaluation techniques with detailed comfort zones segmentation and realistic physics.
For the accurate evaluation of human thermal comfort in vehicle cabins it is necessary
to use a detailed heat transfer model of the human body with its surroundings.

Before going deeper into comfort-driven methods, it is worth underlining the differ-
ence between thermal sensation and thermal comfort. If thermal sensation probably
reflects the pure response of thermoreceptors, thermal comfort describes the synthesized
human feeling about the body’s thermal state as claimed by [Zha+10].

2.2.1 Thermal sensation and comfort models

A/C

Qrad

QAC

Qconv Qcond

Figure 2.3: Typical external heat loads in a vehicle cabin that affect passenger’s
comfort.

Vehicle cabins are a difficult type of thermal environments because of their low
thermal mass and their exposure to rapidly changing external conditions [ZLC19].
Figure 2.3 shows the main external loads that affect thermal sensation and comfort
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inside the cabin in terms of the three heat exchange mechanism (convection, conduction,
radiation), as well as the contribution of the HVAC system.

Thermal sensation alone is not sufficient to evaluate a subject’s comfort, this is
because the relationship between sensation and comfort is very different in transient
and asymmetrical environments than in uniform, stable conditions [Zha03]. Thermal
sensation models predict subjective perception in transient conditions linking the sen-
sation with the physiological parameters (skin, core temperatures, rate of change of
skin temperature). Some authors found that an averaged approach between Fiala DTS
and Berkeley OS performed better than the models alone and the reason behind this
behaviour is still unclear [Hep+18]. Available thermal sensation model to date:

• Stable asymmetrical

– Weighting factor approach:

– Ingersoll, Kalman et al. 1992

– Matsunaga, Sudo et al. 1993

– Kohri, Kataoka et al. 1995

– Jones and Ogawa 1992

– Brown and Jones 1997

– Hagino and Hara 1992

– EHT and piste approach:

– Wyon, Larsson et al. 1989

– Nilsson 2003

• Dynamic symmetrical

– Hensel 1982

– Ring and de Dear (DTS) 1993

– Taniguchi, Aoki et al. 1992

– Wang and Peterson 1992

– Fiala DTS 1998

– Guan, Hosni et al. 2003

– Frank, Raja et al. 1999

– Berkeley OS
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The models summarised above each have a piece of the whole picture; they either
address dynamic conditions without addressing asymmetrical conditions (e.g., Fiala,
Wang, de Dear and Ring) or they address asymmetrical conditions (e.g., EHT) but
without addressing dynamic conditions.

Despite having been developed for steady-state, uniform thermal environments,
comfort models based on a fictive representation of the thermal environment with
fixed parameters derived from empirical models are still widely used for vehicle cabins
[Cro+15]. This is particularly true for studies which need a simple and straightforward
model of the cabin, like control purposes models, as we will later explain in Section
section 2.3.

Thermal comfort models known to date:

• Fanger

• Standard Effective Temperature (SET)

• Equivalent Temperature (Teq)

• Nilsson

• Bedford

• Madsen

• Zhang (Berkeley)

Fanger for example, proposed a single equation approach which leads to the evalua-
tion of PMV and Predicted Percentace of Dissatisfied (PPD). Two indexes that are still
used for predicting thermal sensation of cabin occupants. Several attempts have been
made to improve thermal comfort prediction in transient and non-uniform environ-
ments. Among these, methods based on equivalent temperature Teq are considered to
provide the best results [PBW19]. Equivalent temperature or Nilsson’s comfort model is
indeed the method proposed by the only available standards [ANS17; ISO07]. That is
still one of the most widely used methods based on equivalent temperature is, which
provides two Teq (one for hot and one for cold sensation) used to define an acceptable
comfort range. With Teq being the temperature of the stationary environment at which
the human body exchanges the same amount of heat as in the transient one. Despite
its reliability, ISO 14505 standard requires complex calculations on many body parts
as well as the knowledge of radiant temperature. The latter is a quantity not easy do
measure, if not with lab scale equipment [dAlf+21]. For this reason, some authors to
simplify its calculation using linearisation techniques [Rom+21]. A step forward was
made by Zhang with his PhD thesis, in which he deepened two main concepts:
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1. Thermally asymmetrical environments lead to local body parts comfort being
dependent on the conditions that the whole body is experiencing.

2. Transient thermal conditions lead to perception of comfort dependent on the
changing conditions in time.

Zhang proposed to develop a local sensation model in the form of a function of skin
and core (or mean skin) temperatures and their rates of change (Equation 2.1).

Local sensation = f (Tskin
dTskin

dt
, Tcore,

dTcore

dt
) (2.1)

It should be noted that a sensation model needs physiological quantities that can
be measured or calculated with a thermo-physiological model. Then the local thermal
sensation can be calculated as a function of the physiological parameters. Having the
local thermal sensation available, local thermal comfort depends on local sensation and
overall sensation. Finally, overall thermal comfort can be calculated from the local one,
but paying attention that it is not an additive quantity [Zha03].

The former approach was proved to perform well in asymmetrical and transient con-
ditions and the associated results suggest that in these environments thermal neutrality
becomes less relevant if compared with partial relief of discomfort, which becomes
the main driver of climate control systems design process. A schematic representation
of Zhang’s approach is reported in figure 2.4, being one of the most complete and
exhaustive view of the thermal sensation and comfort evaluation problem. Despite
this, it should be noted that some authors criticised its application to practical comfort
evaluation studies for control purposes [Hin+14].

Thermo-physiological models

When going forward with the understanding of local comfort concepts, one has to
deal with thermo-physiological models of human body [Foj+20]. According to [Psi+17],
a thermo-physiological model consists in a virtual representation of the human body
made by a combination of a passive system reproducing the human body tissues proper-
ties and of an active system simulating the human thermo-physiological response. The
active part of the system aims at reproducing the thermoregulatory function of the hu-
man body. They can cover different levels of detail depending on the thermoregulatory
functions considered: heat storage, blood flow, sweating.
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Figure 2.4: A complete thermal sensation and comfort model proposed by Zhang
[Zha03]

2.2.2 Manikins

Latest available standard [ISO08] contemplates the use of thermal manikins as
measuring instruments of local and whole body equivalent temperature (Teq). A thermal
manikin is defined as a "human sized and shaped sensor with its surface covered with
numerous, individually controlled, heated zones". It is noticeable however, that with the
development of this particular sector of comfort prediction different kinds of thermal
manikins have been developed, they can be divided in three main categories: active
(adaptive), passive (sensor) and virtual (numerical).

Available from many manufacturers, adaptive manikins are generally accurate,
providing an estimation of human thermoregulatory functions. Passive manikins can
measure the conditions at the boundary of the body that can then be used in a virtual
human model to predict comfort [Hep+15; The20]. The use of numerical manikins is
gaining always more attention from the scientific community and having even a related
standard under development [ISO20]. One of the main drawbacks of thermal manikins
is related to their cost and complexity. However, examples of low-cost systems has been
successfully used by [Lan+18] as heat loads and obstruction to determine Teq with an
appropriate prior calibration. It should be noted though, that a thermal manikin alone is
not sufficient for thermal comfort evaluation and it needs to be coupled with a thermal
sensation and comfort model to translate the quantities measured by the manikin in an
information about comfort.



2.2. COMFORT-DRIVEN METHODS 19

A step forward in manikins accuracy comprises the concept of thermo-physiological
human simulator. An extensive overview of the opportunities and constraints of
adaptive manikins together with the related manikin based methodologies is provided
by [Psi+17]. According to the authors there are two emerging trends in coupling thermal
manikins with thermo-physiological models in feedback loop (i.e. thermo-physiological
human simulators):

1. Set a heat production in the manikin to obtain surface temperature as feedback
parameter for the thermo-physiological model (type 1 or Dirichlet approach)

2. Set surface temperature in the manikin to obtain heat production as feedback
parameter for the thermo-physiological model.

Both have pros and cons, the main being the lack of an active cooling system to measure
also heat gains not only heat loss of the human body. Another main issue has to do
with the impossibility to reproduce some body reactions like skin perspiration and an
accurate prediction of skin wetness. Moreover, fast changing environments are still
challenging in terms of responsiveness of the system [Psi+17].

Going towards a complete virtualization of the comfort evaluation framework for
design purposes, the works of [Oi+19; Lor+14] are among the most representative.
A combined virtual cabin and manikin model was built and validated against the
real system in order to evaluate the equivalent temperature or the Fiala Physiological
Comfort (FPM) model numerically, a good agreement is shown to be achieveable for
practical use. It should be noted though, that if the virtual manikin can be built with
heat exchange models only, the use of CFD is almost mandatory for the cabin model,
being air velocity field one of the most influencing factors of thermal comfort especially
in summer.

2.2.3 CFD

Several effort have been made in the development of CFD codes for the evaluation of
thermal comfort in recent years. Starting with [Fia98], which suggested the use of CFD
for detailed analyses of complex environments, most of the following research used
CFD for thermal comfort evaluation in cabins [Lor+14; Psi+17; Pau+18; Oi+19; War+20].
Main advantages of CFD are related to the avoidance of costly and problematic human
subject tests, at least in the design phase. Moreover, if correctly validated it provides a
very good spatial resolution of the quantities used to calculate different comfort indexes
and possibly compare them. It should be noted though, that complex CFD models of
human-cabin interaction in transient environments is still a challenging task from the
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computational point of view. This said it is still possible to use CFD to obtain boundary
condition and quantities needed to feed a simpler dynamical model.

2.3 HVAC-driven methods

Designing an optimised HVAC system is not an easy task because of the many
aspects that need to be balanced at the same time. Among the methods to improve
the efficiency of cabin thermal management, a first distiction can be made in terms of
passive or active solutions [Dim].

A possible workflow for a modern HVAC system design is given in figure 2.5. Where
the main techniques and research directions are summarised, together with their relation
with HVAC and comfort models for design purposes.

Figure 2.5: Comfort aware HVAC design

2.3.1 Heat load reduction

Passive solutions are focused on reducing the heat load that comes from the envi-
ronment through the vehicle envelope by conduction and radiation. This can be done
mainly reducing the thermophysical properties of the shell or changing the amount of
solar radiation transmitted from the windows using different methods, often combined,
each with advantages and drawbacks: [Kak15; GRP15; KKJ17; Lah+18a; Soc+16]:

• surface glazing
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• surface tinting

• photovoltachromic devices

• idle ventilation

• thermal storage

• conditioned seats

2.3.2 HVAC efficiency

In recent years, several techniques are emerging over the classic centralised cabin
thermal management, the most promising are focused on providing a more passenger
centric thermal comfort or a reduced energy use in terms of finer control [LYE20; Mar+19;
Kub+18; KLZ16]:

• zoned cooling

• individualised cooling

• automatic climate control (ACC)

• human in the loop control (HITL)

2.4 Air quality inside cabins and its sensing

Interest in air quality monitoring is gaining more and more attention from public
authorities, companies and citizens for both outdoor and indoor environments. Nowa-
days, more than 80% of the world urban population exposed to pollution levels that
exceed WHO limits, with estimated 6 million deaths each year related to it [Com+19;
SMA20]. Climate change, pollution and COVID-19 issues are well known air quality
related topics, but also automotive sector is pushing the development of novel air
quality standards. Several studies have underlined the relevance of particle counters
in the determination of adverse health effect air pollution, thus suggesting that both
particle number and mass concentrations should be measured [Tit+08].

Research in the field of vehicle air quality is leading to new methods of testing and
best practices, but still a dedicated standard on performance indicators does not exist.
Several efforts have been made to define a standardised test method for interior air
quality in the automotive field [Pha+19], but this is still an open question. A possible
approach to address this issue relies on fractional air recirculation, demonstrating
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that a compromise is achievable between the benefits of full recirculation and its side
effects [Gra+13]. Other authors propose approaches based on the use of a signal from
environmental prediction services [Alg+19], and/or on-board sensors [NEW19] to
trigger automatic climate control, even though there is still no clear consensus on how
to implement these techniques in the HVAC system’s control strategy. Such an approach
would require a trade-off between real time and integral I/O techniques, the former
leading to large uncertainties but faster, while the latter provide slower but more stable
results [Li+18a].

The Joint Research Centre of the European Commission and DG Service Environ-
ment are pushing for advancement in this field by stimulating research improvements
achieved through the use of low-cost sensors. Although the data measured with these
type of sensors are less accurate than laboratory reference equipment, their use has
grown greatly in recent years, in applications concerning indoor air quality [MLA17].
Their ease of use, coupled with current scientific advancements [RHB18; YYT12; Try+20],
makes them suitable for real-time monitoring applications. The road has therefore been
opened for the employment of low-cost sensors in the automotive sector, such as moni-
toring air quality inside the passenger compartment.

In this context, the thorough diffusion of medium-cost [Ada+19] and low-cost sen-
sors is considered a promising technology for the improvement of spatial and temporal
resolution of these measurements. Though, it must be noted that accuracy and data
quality of the devices output is often questionable if compared with reference measure-
ments techniques and still matter of research[MLA17; Rai+17; Cas+17]. Recent efforts in
the development[Alf+20] and performance assessment[Zau+21] of these devices have
been made, both at sensor level as well as system of sensors implementation level, thus
underlining the importance of calibration for a reliable output. Belosi et al. evaluated
the performance of four optical particle counters (OPCs) with a standardised particle
generator; they found good results for total particle number concentration, while aerosol
size distribution and average particle density must be improved as they relate closely
with particle mass concentration [BSP13]. As probably clear at this point, conversion
from particle to mass concentration represents a crucial task if a good performance of
OPCs is desired. A study from Franken et al. compared different conversion methods
with a focus on PM2.5 mass concentrations [Fra+19]. They found that while good
correlations (Pearson) are possible with the developed method, other methods resulted
in an underestimation of particle mass concentration if compared with gravimetric data.

However, many manufacturers perform only calibration in environmental chambers
with controlled process parameters. The latter being a necessary but not sufficient
procedure, thus indicating field calibration as a mandatory task, particularly if the acqui-
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sition system needs to be relocated. Recent studies have investigated the performance
of different calibration approaches, ranging from simple linear regression to machine
learning (ML) techniques [Lia21]. The selection of the best method is strongly case
specific and must be performed considering experiment setup, sensor selection, site
location and measurement duration. An example of field calibration is given by Dinoi
et al. [Din+17]. The work reports a comparison between three OPCs against a urban
background reference station; showing that effect of relative humidity (RH) is consid-
erable and should be compensated, especially for mass concentration evaluation. On
the contrary, Zou et al. investigated the relationship between environmental variables
such as air temperature and RH on eight low-cost particle sensor output [ZCM21], but
using a controlled chamber and common particle sources. On one hand, they found no
significant effect of temperature, on the other hand RH has an impact on magnitude of
particle readings but still may be compensated with a simple RH-based calibration as
the output correlates well with reference instrumentation.

More generally, If a low cost system of sensors (LCSoS) deployed in a vehicle cabin is
considered as mobile, therefore continuously relocated system, the robustness of its field
calibration method becomes of paramount importance. Existing assessment techniques
rely on relevant factors probability distribution changes that allow performance predic-
tion of field calibration models, but still co-located reference measurements involving
several months are required to address site specific issues [De +20].

2.5 Cabin modeling and control optimisation

A superior cabin thermal management is needed to ensure safety, efficiency and per-
formance without compromising passenger’s comfort. Performance of HVAC systems
are strongly dependent on their control strategy, hence many researchers are making
efforts to improve this subsystem. Several control strategies are available today while
most advanced techniques are being developed. There are three main hand coded con-
trollers that work with a similar logic, namely: bang-bang, proportional and commercial.
Their general control strategy is based on a fan speed v f control using a function of
cabin temperature Tc as feedback, even though more advanced feedback controls are
available [Foj+17]. A different approach comes from fuzzy logic controllers, they are still
hand coded but use a set of rules to go from multiple inputs (e.g. sensor temperature,
interior mass temperature) to multiple outputs (e.g. vent temperature and fan speed).
Fuzzy controllers have been shown to perform better than traditional ones because of
their ability to represent some unpredictable aspects of thermal comfort, unfortunately
they are also computationally expensive and sometimes difficult to design [Bru+18].
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State of the art control strategies however are almost all based on machine learning
techniques, they are shown to provide the best results if compared with conventional
control strategies. One of the reasons for this performance is due to accelerated al-
gorithm training enabled by coupling them with high fidelity CFD-simulation of the
vehicle cabin [War+20]. This has to be done from single components design to system
operation and control, with the aid of advanced simulation tools [LYE20].

Multi-physics multi-scale simulation software combining detailed computational
fluid dynamics (CFD) of the cabin with 1D models of the HVAC system are considered
the gold standard nowadays. However, they come with a high degree of complexity
and long computation times. Moreover, to build these models, many parameters
often owned only by the manufacturer are needed, thus limiting the reproducibility of
research in this field. A path of potential improvement could rely on machine learning
(ML) techniques to accelerate scientific computing and develop enhanced reduced
order models. Such approach is already widely used in numerical simulation of fluid
flows [VB21], as well as in a great number of sectors related with the Sustainable
Development Goals (SDGs) [Vin+20]. Cabin environments, provided their transient and
non uniform nature, come with severe the challenges of understanding nonlinearity and
unknown dynamical behaviour, even though the physical laws governing the processes
at component level are often well known. This makes difficult to perform tasks as
future state prediction, estimation and control [BK19]. For EVs in particular, design and
optimisation goals become more demanding as well.

State of the art 1D cabin models consists of several thermal masses corresponding
to the main inertial masses that interact between them and the HVAC components by
conduction and radiation and with the air by convection. ML-based simulators however,
can be accurate and fast enough to provide a solid alternative, opening the way for novel
optimisation approaches. To achieve this, a lot of data from measurements and simu-
lations are needed, as more information could be added if enough data is available to
train and test the model [Jes+22]. Several research teams are already using combinations
of experimental and synthetic data to increase the simulation speed, with applications
ranging from weather forecasting to electronics cooling. In physics informed neural
networks (PINNs), physical equation are part of the loss function, making them more
tolerant to prior assumptions. This improved performance comes at a cost: PINNs are
considerably harder to train [Edw22]. Among ML methods, reinforcement learning
(RL), a ML approach to artificial intelligence (AI), has recently gained promising results
in the solution of complex problems that require intelligence. Extraordinary examples
are the capabilities of tools like ChatGPT, DALL-E and DeepLoco which profoundly
revolutionised the way we think at AI. Research on thermal management for electric
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vehicles is ongoing, with a focus on finding ways to improve efficiency and reduce
energy consumption. One area of study is the use of RL to optimise the operation of
the vehicle’s cooling system. This approach has the potential to improve the overall
efficiency of the vehicle, as well as reducing the energy consumption of the cooling
system itself. Infact, if described as the task of learning an optimal policy through
recursive interactions with a model of an environment, RL has been successfully used
in the thermal management field, either on powertrain [Kum20], on the HVAC system
[Eng+19] and on control systems [Bru+18]. All using a different approach for cabin
modeling depending on the design objective. Another implementation relies on consid-
ering human domain rules in a reward function for RL, which are found to be enough
to predict optimal setpoint temperature [Rao19] or to perform optimal thermal man-
agement in some pioneristic work [PU19; Che21]. As for the comfort models applied
to cabin environments, the Nilsson’s model seems to provide the best result together
with fewer inputs required [Hin+14]. Despite these efforts, very few works include air
quality in the ML model as this is still a poorly explored research path.

2.6 Chapter summary

With reflexivity and reproducibility in mind, this chapter starts with a description
of the methods used for the literature review. A bibliometric map of the existing
knowledge underlines connections between a few key research areas for the thermal
management of electric vehicle cabins: thermal comfort, HVAC efficiency and air quality.
Powertrain and battery thermal requirements is also a big area of research, but it will be
excluded from this study. Key studies are compiled in a comparison table in terms of
thermal model, numerical and experimental approach. The review shows that the three
clusters have their own methods and modeling approaches, so that a distillation always
comes with a compromise. From pure comfort to pure control and optimisation studies
the level of detail of comfort model decreases, with detailed local thermal sensation and
comfort models making room to lumped parameters and ML models.

The best compromise between complexity and accuracy is still considered to be
the equivalent temperature model, mainly because of it flexibility. In fact, it can be
as detailed as considering more than 40 body parts, but also requires less parameters
than PMV model to predict thermal comfort. As for thermal characterisation, compact
low-cost radiant temperature sensors are still far from reality, but some previous studies
show that is possible to characterise a vehicle cabin using temperature sensors only. In
this study an approach halfway between this and equivalent temperature is taken.

In terms of sensing and IAQ, low-cost sensors constitute a new promising path
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of research, where new methods and practices are currently under development. A
common approach relies on inside-outside correlation that can be either instantaneous
or integral. Calibration of the experimental setup is also an issue and a whole chapter
will be devoted to this issue.

In terms of cabin modeling, multi-physics multi-scale simulation software combining
detailed computational fluid dynamics (CFD) of the cabin with 1D models of the HVAC
system are considered the gold standard nowadays. However, they often require a high
number of parameters and long computation times that make them often unsuitable for
control and optimisation purposes. A promising and highly regarded solution to this
relies on the use of ML and PPO-RL for achieving fast models and frame the thermal
management of electric vehicle cabins as an unsupervised optimisation problem.



Chapter 3

The low-cost system of sensor and its
performance evaluation

In the context thermal and air quality sensing in vehicles, the thorough diffusion
of medium-cost [Ada+19] and low-cost sensors is considered a promising technol-
ogy for the improvement of spatial and temporal resolution of these measurements.
Though, it must be noted that accuracy and data quality of the devices output is often
questionable if compared with reference measurements techniques and still matter of
research[MLA17; Rai+17; Cas+17].

In this chapter, the costruction and the fast field calibration with reference instrumen-
tation of a low-cost SoS controlled by Arduino hardware is shown in Sections sections 3.1
to 3.3. First, effects of environmental variables on particle-related output variables are
discussed. Secondly, the assessment of the performance of the SPS30 particle matter
sensor itself, a quite new and powerful device that has still poor literature support is
given in Section section 3.4. An overall demonstration of the metrological capabilities of
a LCSoS in the automotive field, thus enabling its operation in transient, non-uniform
and moving environments such as vehicle cabins is summarised in Section section 3.5.

3.1 Arduino-based sensor system

Two independent measurement systems (IS,ES) controlled by an Arduino Mega 2560
were built for the measurement of environmental parameters [Kon+21; KMP19]. The
systems have an on-board Real Time Clock (RTC), a data logger on flash memory, a
fan and a TFT display. The RTC clocks of the two systems are constantly synchronised
thanks to time data received from the GPS module.

Both systems can measure Particulate Matter (PM) concentration (Sensirion SPS30
sensor), air TVOC concentration (Sensirion SGP30 sensor), air CO2 concentration (Win-

27



3.1. ARDUINO-BASED SENSOR SYSTEM 28

sen MH-Z19B non-dispersive infrared sensor), concentration formaldehyde (Winsen
ZE08 sensor), air temperature, relative humidity and pressure (Bosch Sensortec BME280
sensor), air flow velocity (hot wire analog sensor) and GPS position. The systems
are equipped with a fan that conveys air inside the device enclosure, where CO2 and
formaldehyde sensors are mounted, while the SPS30 sensor is equipped with its built-
in fan. Both systems independently sampled data at 10-second intervals. All digital
sensors used in the measurement device include a microcontroller that implements
optimization and self-calibration algorithms. Among all the quantities measured by the
low-cost SoS, only those overlapping with the reference instrumentation are considered
in this study and reported in table 3.1 together with available daily values from the
closest ARPA reference station. The quantities subset can be related to two of the sensors
installed in the LCSoS, namely the BME280 and SPS30.

Table 3.1: Measured quantities and daily summary.

Variable Specifications Summary (Day2,Day3)

(Unit) Description Sensor IS ES AS MSR

ta(◦C) Air temp. BME280 (21.0,20.8) (19.5,19.6) (19.1,18.9) (18.7,15.8)

RH(%) Air rel. hum. BME280 (51,43) (55,46) (71,62) (42,57)

PM1(µg/m3) PM1 conc. SPS30 (1,1) (1,1) (0,0) n.d.

PM2.5(µg/m3) PM2.5 conc. SPS30 (1.5,1.4) (1.4,1.3) (1.1,1.1) (5.2,2.4)

PM10(µg/m3) PM10 conc. SPS30 (2,1) (1,1) (2,3) (15,6)

NC1(#/cm3) Number conc. SPS30 (11,11) (10,10) (6,8) n.d.

NC2.5(#/cm3) Number conc. SPS30 (11,11) (10,10) (6,8) n.d.

NC10(#/cm3) Number conc. SPS30 (11,11) (10,10) (6,8) n.d.
a mv = measured value.

The BME280 is a high linearity and high accuracy air temperature, humidity and
pressure sensor. Respectively, its operating range is −45 ◦C to 85 ◦C for temperature,
and 0 % to 100 % for humidity. It features an extremely fast response time τ63% of 1 s,
thus enabling a consistent oversampling if compared with the current application time
granularity [Bos21].

The laser scattering-based SPS30 PM sensor allows mass concentration and number
concentration sensing. The sensor encapsulates a miniaturised fan and a High Efficiency
Particulate Air (HEPA) filter to reduce the optical particle contamination; it also runs its
fan at full speed for 10 seconds every 7 days and at startup as an automatic cleaning
procedure. Mass concentration measurement range: 0 to 1000 µg/m3. As discussed
in [Li+18b] and [Try+20], the SPS30 is an optical particle counter (OPC) optimised for
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PM2.5 and smaller particle analysis. In fact, Sensirion PM sensors are calibrated using
regularly maintained and aligned with high-end reference instruments (e.g., the TSI
Optical Particle Sizer Model 3330 or the TSI DustTrak™ DRX 8533) only for 2.5 µm
particles size. Moreover, as reported in the sensor specification statement from the
producer, PM4 and PM10 outputs are not directly measured but estimated from smaller
particle counts using typical aerosol profiles. This behaviour is also confirmed by the
SPS30 detection range being identical for 1 µm and above, thus warning about the use
of the sensor for bigger particles sensing [Kuu+20].

Figure 3.1: Location of the urban background reference station site in Bologna,
northern Italy, decimal degrees (DD): (44.523698,11.340034).

3.2 Measurement site and reference instrumentation

The reference site is located in northern Italy, inside the research area of CNR in
Bologna (figure 3.1). The site is classified as urban background station. Measurements
from this instrumentation will be referenced as ARPAE System (AS) in the following
sections.

The reference measurements chosen were performed by an OPC FAI (Multichannel
Monitor, FAI Instrument - Rome, Italy) which classifies particles in 8 size intervals from
0.28 µg to 10 µg and is equipped with a 10 µg inlet head and operates with a 1 l/min



3.2. MEASUREMENT SITE AND REFERENCE INSTRUMENTATION 30

flow rate.
The measurement principle is the laser scattering: the sensor uses a 35 mW laser

diode as the light source and a mirror collecting system elliptical. The light diffused by
the particles and collected by the elliptical mirror is concentrated in a photodiode that
converts light energy into electric current. The air sample is transferred to the mixing
chamber where it is diluted with clean and dehumidified air (free of particles and with
low humidity level relative): a smart heater placed in the diluter along the mixing
chamber that is automatically operated only when needed. OPC Multichannel Monitor
is therefore equipped with a temperature and relative humidity sensor in the external
environment, protected from direct solar radiation and from rain, and one inside the
instrument to detect temperature and humidity relative to the diluted sampling air
that passes through the Laser Sensor. Furthermore, the FAI instrument implements
a tool (Zero Test) to verify that the sensor provides “zero” counts in the presence of
particle-free air. This test also makes it possible to verify that there are no infiltrations
of external air in the dilution circuit (in the first hour 15 test zero minutes are dropped
every day).

OPC FAI also provides measurement of estimated PM (PM1, PM2.5, PM10) and is
integrated with a Swam Dual Channel (SWAM 5a DC, FAI Rome, Italy) that determines
PM2.5 and PM10 daily mass concentration with β-ray attenuation method using a
low volume (2.3 m3/h). The integration gives an automatic correction with real mass
values supplied by SWAM DC with self-learning procedure. Conversion from number
to PM mass concentration is performed using the algorithms provided by the FAI
manufacturer.

Figure 3.2: Experimental setup for the LCSoS on the reference station roof, with
insulation and meshed enclosure.
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3.3 Measurement campaign and experimental setup

Experimental campaign started 2021-05-18 at 12:00:00 and finished 2021-05-21 at
12:00:00. Total test duration was 3 full days, thus providing enough points for the
chosen temporal resolution of 1 h. The latter was defined according to the typical time
resolution of the two classes of instruments. Reference instrumentation provides data
with a sample rate of 1 min, but verified measures are usually provided as a daily
average. On the other hand, low-cost SoS can output data at 10 s sample rate. Given
the different time granularity of the two systems, we opted for a 1 h time averaging,
which gives a total of 72 samples calculated averaging 4320 minutely samples available
(26 000 for the LCSoS). Nevertheless, a 24-h average of data measured during the parallel
measurement with the reference method shall always be calculated and reported [ISO19].
Only two central days of the measurement period are suitable for such a comparison
given in table 3.1, also because a daily average should be considered valid only if 75 %
of the hours are covered; this is not the case for first and last day.

The experimental setup has been built balancing the needs of the experimental
campaign with those of the sensors. To ensure the best performance of the SoS we
extended the design and assembly guidelines provided by Sensirion for the SPS30 to
the whole system. The most important being:

• A good coupling with ambient air and a proper exposition to external conditions

• Avoidance of exposure to direct sunlight or external heat sources

The low-cost SoS was placed near the sampling inlet of the reference station. A 4 cm
thick thermal insulating layer has been used at the bottom and top to provide shading
and thermal insulation, a pierced plastic shell was used to connect the two planes thus
providing support for the top plane but allowing a good air exchange in the sampling
volume (figure 4.1).

3.3.1 Methods used to acquire and manipulate the data

The two Arduino Mega 2560-based acquisition systems were programmed using
the standard Arduino IDE. The following specific libraries were used for the sensors
mentioned in the previous section: sps30.h, DallasTemperature.h, Adafruit SGP30.h,
Adafruit BME280.h, DFRobotHCHOSensor.h and TinyGPS++.h. Each acquired data
is saved on an SD memory card together with a time reference, synchronised in both
systems by the reference clock signal received from GPS by both systems.
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Table 3.2: Particle count buckets grouping.

AS IS, ES
Channel size range (µm) Channel size range (µm)

1 0.28-0.4
1 0.3-0.5

2 0.4-0.5
3 0.5-0.7

2 0.5-1.0
4 0.7-1.1
5 1.1-2.0

3 1.0-2.5
6 2.0-3.0
7 3.0-5.0 4 2.5-4
8 5.0-10 5 4.0-10

((a)) ((b))

Figure 3.3: AS row buckets in 8 size channels 3.3(a) and IS row buckets in 5 size
channels 3.3(b).

An Exploratory Data Analysis (EDA) approach was applied to the data-set, thus
providing insights to the problem definition and model imposition only after analysing
the data [Gut20]. The open source tools chosen for the EDA were python 3.8 and
several scientific computing libraries (pandas, matplotlib, numpy and scipy above all).
Procedures used are more graphical than quantitative as required by EDA approach.

When comparing multiple particle sensing devices, their builtin size buckets must
be considered. Reference instrumentation often comes with a higher size resolution
than LCSs, and an accurate grouping of size bins becomes inevitable [Kel+17]. Table
3.2 shows the grouping adopted in this study for EDA and confirmatory data analysis,
while figure 3.3 exhibits channell splitting for reference and low-cost instrumentation
respectively.
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3.4 LCSoSs preformace evaluation

Figure 3.4: Comparison between hourly data acquired from the two LCS (IS,ES) and
from reference instrumentation (AS). Variables of interest are air temperature, relative
humidity, PM1, PM2.5, PM10.

A qualitative overview of the SoS performance is shown in figures 3.4 and 3.6
for the whole test duration. Five variables of interest have been selected considering
their overall correlation with particulate matter mass concentration as shown in figure
3.5. Conversely, variables that showed a poor Pearson’s correlation coefficient R have
been disregarded. The two LCS show an excellent consistency between themselves as
already stated in previous studies [Kuu+20]. A good agreement on temperature data is
appreciable. Particular attention must be paid to RH as it has a direct impact on sensing
mechanism of OPCs, and poor performance at full-scale raises an alert. Regarding
PM, correlation seems to decrease ranging from smaller particle size to bigger ones. A
quantitative analysis of the SoS performance is given in the following sections, with a
focus on effects of time-granularity, relative humidity, mass conversion from particle
counts and size detection response. Prior to that, an accent must be put on the small
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Figure 3.5: Global correlation heatmap built with Pearson’s correlation coefficient,
ranging from -1 for negatively correlated variables to +1 for positively correlated ones.

PM values observed during the test, thus making the instrumentation operate on the
low-end of the measurement range.

3.4.1 Time granularity

Choosing the best time granularity for data analysis is not a simple task. Some
authors suggest to define it in the EDA phase and before the data analysis is performed;
moreover they warn against the use of statistical significance as a selection metric
for time granularity as it can lead to misinterpretation of results [Wak+20; Ma+17].
Averaging is often used to decrease autocorrelation in timeseries data, but a coarser
time granularity can lead to unacceptable reduction of significance [Col+20]. In this
study, the following factors are considered: total test duration, different time scales
between SoS and official data, field of application. A compromise is needed between
the time scale which is best for automotive application (minutely or less) and the time
scale of validated data from ARPAE (daily values with a 6 months validation process).
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Figure 3.6: Univariate kernel density estimation plots (diagonal) and bivariate scatter
plots (off diagonal) of ta, RH, NC2.5 and PM2.5 distributions.

A common approach, which we also adopted, for ambient validation of PM data is to
perform the analysis on hourly averaged results [Kel+17].

3.4.2 RH sensitivity analysis

It is well known that among the factors influencing PM measurements, RH plays a
major role [ZCM21]. This is true to the point that reference gravimetric methods rely on
a controlled sampling process in terms of temperature an relative humidity of the air
sample across the filter. These methods are not applicable for LCS and the definition of
a RH correction factor is quite common [Lia21]. In order to evaluate the influence of
RH on the sensor response, we can look at figures 3.7 and 3.8, which show scatter and
box plots of number and mass concentration for 2.5 µm particle size. RH values have
been aggregated in four uniformly spaced bins, thus providing insights on statistical
dispersion in each RH bin. Despite being in agreement among themselves, LCS, IS and
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((a)) ((b))

Figure 3.7: Effect of RH on 2.5 µm particle count values with data aggregated in 4
uniformly spaced RH bins.

((a)) ((b))

Figure 3.8: Effect of RH on PM2.5 values with data aggregated in 4 uniformly spaced
RH bins.

ES have a wider inter quartile range (IQR) toghether with a greater number of outliers;
the worst case scenario corresponds to values of RH above 75 %. Similar consideration
can be drawn from figure 3.9, which reports the same quantities but without binning.
It is noticeable an increased dispersion of the data with growing RH values; also in
this case higher particle counts associated high RH values do not fit well with the
reference system AS. It should be noted that the dispersion of data points increases
in the transition from particle count to particle mass, probably due to the theoretical
mass conversion adopted in OPCs. Further results dealing with mass conversion will
be presented in the following section.

In order to quantify the impact of the predictor variable RH on the response variable
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Figure 3.9: Scatter plot of 2.5 µm particle count values without RH binning.

((a)) ((b))

Figure 3.10: Linear regression for 2.5 µm particle size using the full data-set in terms
of RH 0-100% or a reduced data-set with RH 0-50% (less data points).

NC2.5, an univariate linear regression has been adopted. Results from the ordinary
least squares (OLS) analysis are reported in figure 3.10, showing again that the sensor
performance degrades at high RH values. The improvement in R2 approaches 0.11
when values of RH above 50 % are dropped from the data-set.

3.4.3 Mass conversion correction

Before delving into mass conversion results, it is worth recalling how mass concen-
tration can be calculated from particle counts, together with associated challenges. Mass
conversion adopted in OPC is based on the assumption that particle are spherical and
with common density in each size bin [Fra+19]; in practice this is made according to the
following equation 3.1:
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PMi = 10−9 · ρp,i ·
π

6
· d̃3

i · NCi (3.1)

where i is the particle size bin, PM is the mass concentration in µg/m3, ρp,i is the
particle average density, d̃ is the median particle diameter in nm and NC is number
concentration for a given size bin. It is immediately clear from equation 3.1, that a good
estimation of ρp,i as input parameter for the conversion algorithm is crucial. A widely
adopted value is 1.65 g/cm3 [Wei+04], but its variability in time and space must be
considered carefully after relocation. Mass conversion based on equation 3.1 requires d̃
to be known in each size bin; an information not always available for LCSs. Sensirion
SPS30 provides a typical particle size output dtyp that is correlated with weighted
average of the number concentration bins measured with a reference particle sizer.
Substituting dtyp in equation 3.1 leads to the calculation of a typical particle mass, which
can be used to perform a manual conversion whose results are displayed in Figure 3.11.

((a)) ((b))

Figure 3.11: Particle count to mass concentration conversion. 3.11(a) Calculated
from particle count according to equation 3.1; 3.11(b) corrected according to reference
station average particle mass

Pearson correlation between LCS and AS increases from 0.43 to 0.60 in this case.
An alternative approach proposed in this study relies instead on the calculation of a
constant ratio PMi

NCi
= mp,i,AS between mass and particle counts in the chosen bin from the

reference instrumentation data. The defined quantity can be seen as an average particle
mass used to calculate a corrected mass concentration from the number concentration
of the LCS. The latter being a direct and more reliable measurement, as shown in the
previous section. Figure 3.11, contains two plots that clarify the correction procedure.
With this method, the Pearson correlation of PM values between LCS and AS increases
from 0.43 to 0.81, a value again comparable with the correlation between particle number
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concentration. This approach, if repeated periodically and automated, could lead to an
increase in the accuracy of LCS using data from fixed stations[Ren+21].

3.5 Chapter summary

In this chapter, we showed the development of a low-cost system of sensors capable
of a high spatiotemporal resolution and evaluated its performance in terms of particle
concentration measurement through a field comparison against reference instrumen-
tation operated by ARPAE. Main factors influencing particle sensors output were first
measured and then identified with an EDA approach; their impact in terms of data
quality and correlation with reference instrumentation was also analyzed. The LCSoS is
constituted by an Arduino open-hardware platform and commercially available LCSs.
Open-source software tools were used for acquisition and post-processing algorithms,
thus further supporting the reproducibility of the experiment and spreadability of
the device. Results show that the system has a relatively good performance with re-
spect to air temperature, relative humidity and smaller particle number concentration
(dp ≤ 2.5 µm) with coefficient of determination approaching R2 = 0.92 for the reduced
data set, as also confirmed in previous studies [Kel+17]; RH has a strong impact on
performance indicators and correction techniques are strongly recommended [De +20;
ZCM21]. If few works were found to deal with Sensirion SPS30, even fewer were deal-
ing with mass conversion [Fra+19; ZHF17]. In the last part of this work we compared
three conversion approaches: the sensor builtin output, a mass concentration calculated
from particle concentration and a mass concentration corrected according to reference
instrumentation data. Both techniques provide an improvement of the overall Pearson
R ranging from 0.2 to 0.4 on the PM10 value. It is also important to underline that PM
correlation with daily values from the verified ARPAE network are quite poor; on the
other hand, a good quality and consistency of the data among LCSoS was observed.
An IAQ monitoring system like the one proposed in this research can be subject to
frequent relocation (moving measurements), this can lead to calibration issues that must
be addressed. More sophisticated calibration models (ML) are supposed to provide
more effective calibration procedures, but require longer training [Zau+21; Lia21] and
might result in unpractical methods for automotive and high spatiotemporal resolution
applications. For this reason we opted for a short measurement period of three days
and well established yet simple performance assessment procedures. Thus making a
step towards addressing the lack of quantitative specification, formulate requirements
for mobile applications and conditions of intended use of these devices and their output
[Mor+18a]. Further research on these aspects must be carried on, as useful insight are
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possible from LCSs, but their reliability is still far from reference instrumentation. In
the following chapters, measurements from the LCSoSs are used first to characterise the
vehicle cabin [Rus+21; Rus+22], and then to build a model suitable for RL.



Chapter 4

Characterisation of the vehicle cabin

This chapter describes a series of experiments on air quality and energy efficiency in-
side the passenger compartment of an electric vehicle. The measurements were carried
out using the two portable LCSoS described in previous chapter and reading the car’s
On-Board Diagnostic bus (OBD) [Rus+21]. The correlation between experimentally mea-
sured air quality data and the energy spent by the HVAC system inside the vehicle cabin
is investigated. Concentrations of some pollutants in the vehicle cabin are measured by
means of a low-cost Arduino sensor-based system. The use of an open-source electronic
platform like Arduino allowed fast prototyping and simplified design of the system.
In addition, it helped to relax the constraint involved in the construction of hardware
and software platforms for data acquisition, following a path that has been outlined by
many authors in literature [Kon+21; KMW18; KMP19]. The first hypothesis being tested
in this chapter is whether LCSoSs have the required spatiotemporal resolution, accuracy
and responsiveness to characterise the cabin when deployed in a vehicle rather that
in open-air. The second hypothesis deals with the HVAC settings that affect the most
comfort, {IAQ and energy use parameters; together with their improvement potential.

A brief description of the experimental setup, the positioning and the details of the
low-cost system of sensors is given in Sections 4.1 and 4.2. Section 4.3 contains results
where HVAC system configuration fresh-air and recirculation mode of the intake air
are varied, while PM2.5 and Volatile Organic Compounds (VOC) concentrations are
measured. Gaps and limitation of the vehicle HVAC control system are underlined.
HVAC air filter performance is also evaluated by making cabin air quality measurements
with and without the filter installed. The relation between consumed energy, HVAC
system settings and pollutant concentrations is obtained, with the aim of provinding
a data basis to the concurrent optimisation of comfort, air quality and energy use in
the next chapter. The methodology, summarised in Section 4.4 is applied to a Nissan
Leaf Acenta 40 kWh MY2018 in this case, but it is generally applicable to other EVs
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with minor modifications. To show that the use of these sensors for the control of the
cabin can enable energy savings together with air quality and comfort gains, specially if
appropriately optimised.

4.1 Description of the experimental setup

To characterise the thermal profile and air quality inside the vehicle cabin, two tests
have been performed in outdoor parking conditions in the faculty parking lot with the
front of the car oriented south.

The temperature distribution within the vehicle cabin is obtained with a grid of
18 DS18B20 temperature sensors following the approach used in [DM19; DMS15] to
develop a thermal model of a BEV cabin for energy consumption predictions [Kor+20].
The cabin has been ideally divided into three slices horizontally: namely the top, middle
and bottom levels, as shown in Figure 4.1 from a lateral view.

Figure 4.1: Lateral view of the experimental setup.

On the grid, six sensors are placed for each plane: three in the front side and three in
the back side of the cabin. In addition, air quality related quantities have been measured
with low-cost sensors on a unique location in the cabin; near the gear shift knob together
with the acquisition system.

As external conditions can strongly affect the internal micro-climate [ISO19], a
second acquisition system has been placed on the car roof. This is identical to the
internal one, except for the presence of a single temperature sensor only. The presence
of the second acquisition system is needed to characterise the environment outside
the vehicle and to facilitate inside/outside comparisons with data having the same
structure and same metrologic fingerprint.

The approach used in the study, conversely from the one used in ISO standards
regarding the interior air of road vehicles [ISO12], does not rely on a vehicle test chamber.
The latter is well-documented and reliable, but not suitable for real-time operation and
low-cost equipment.
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To have clearer insights on HVAC capabilities, an on-board diagnostic (OBD) Linux
platform was cleverly installed inside the car to directly retrieve and collect different
variables from the electronic control units [Agu21]. Specifically, it was the iWave OBD-II:
a little device with an ARM Cortex-A7 processor embedded that runs a light Yocto Poky
Linux distribution. The iWave OBD-II can upload data via a 4G/LTE CAT4/CAT1 sim
modem, geolocate the device with a GPS receiver and it can transmit messages with the
Bluetooth Low Energy 4.2 module. Communicating via the OBD-II interface, the board
reads the HVAC power consumption, the power used by the auxiliary equipment (e.g.,
lights, infotainment, rear defroster etc.), and the power used by the heater. A fine-time
granularity monitoring of those parameters was necessary to correctly interpret how
the cabin air changes throughout the experiment.

The overall measured quantities are: air temperature ta, relative humidity RH, air
pressure pa, TVOC concentration CTVOC and PM2.5 concentration CPM. The temperature
is measured in 18 points as described above, while the other measurements are taken in
one point. The same quantities are measured also outside the cabin. Finally, the power
usage of the HVAC system is also logged. Table 4.1 lists the measured quantities and
the correspondent accuracy.

Table 4.1: Measured quantities.

Variable Sensors Specifications

(Unit) Description Manufacturer Model Accuracy (offset + gain)

ta(◦C) Air temp. Maxim Integrated DS18B20 ±(0.5 ◦C + 1% mv a)

RH(%) Air rel. hum. Bosch BME280 ±(3%RH + 1%RH)

pa(hPa) Air pres. Bosch BME280 ±(1.5 hPa + 0.12 hPa)

TVOC(ppb) TVOC conc. Sensirion SGP30 ±(15% mv)

PM (µg/m3) PM2.5 conc. Sensirion SPS30 ±(10 µg/m3 + 10% mv)

Pi(kW)
Subsystem i

iWave OBD/Linux ±(250 W)
power usage

a mv = measured value.

Sensor performance is a device dependent issue that can be measured with various
qualifiers [CW14] and ideally addressed individually. In this study, the same approach
for all the measured quantities was used. A sampling time of Ts = 10 s has been adopted.
The raw data from the acquisition system has been filtered with a moving mean over a
one minute period, this leads to a six-point moving mean. Subsequently, the filtered data
has been converted into time-stamped data in tabular form, and eventually re-sampled
and synchronised among the three acquisition systems. The data analysis process has
been performed using open-source tools, including Python 3.8 and several scientific
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computing libraries (pandas, matplotlib, numpy and scipy above all) following the
exploratory data analysis (EDA) approach provided in [Gut20].

4.2 Description of the Arduino-based system of sensors

Two independent measurement systems based on Arduino Mega 2560 were built
for the measurement of environmental parameters. The systems have an on-board real
time clock (RTC), a data logger on flash memory, a fan and a TFT display. The RTC
clocks of the two systems are constantly adjusted thanks to time data received from the
GPS module. This operation is implemented to facilitate the synchronization of signals
from the three acquisition systems.

The internal system is capable of measuring temperatures at 18 locations in the
cabin (Maxim Integrated DS18B20 probes). Moreover, the internal system can measure
particulate air matter (PM) concentration (Sensirion SPS30 sensor), air TVOC concentra-
tion (Sensirion SGP30 sensor), air CO2 concentration (Winsen MH-Z19B non-dispersive
infrared sensor), concentration formaldehyde (Winsen ZE08 sensor), air temperature,
relative humidity and pressure (Bosch BME280 sensor), air flow velocity (hot wire ana-
log sensor) and GPS position, at a unique location. The external system, albeit sharing
the same characteristics and using the same sensors, it lacks the 18-spots temperature
measurement, the GPS receiver and the air flow velocity sensor.

Both systems are equipped with a fan that conveys air inside the device enclosure,
where CO2 and formaldehyde sensors are mounted, while the SPS30 sensor is equipped
with its built-in fan. Both systems independently sampled data at 10-s intervals. All dig-
ital sensors used in the measurement device include a microcontroller that implements
optimisation and self-calibration algorithms.

High-precision, easy-to-use DS18B20 sensors were used to measure temperatures
inside the cabin in 18 distinct positions; they have a typical accuracy of ±0.5 ◦C from
−10 ◦C to 85 ◦C and digitally transmit temperature data on a 1-Wire® bus. The use of
1-Wire protocol [Max], together with the unique 64-bit serial code allows many sensors
on the same bus, thus reducing the cable length and allowing to uniquely associate
a sensor output with its position in the network through a serial-position coupling.
Specifically, the DS18B20 actual temperature is provided by a 12-bit analog to digital
converter built-in in the digital sensor, with a fine temperature resolution up to 0.0625 ◦C.
Its operating range is between −55 ◦C to 125 ◦C.

The BME280 is a high linearity and high accuracy combined temperature, humid-
ity and pressure digital sensor. Its pressure sensing mechanism is resistive, with an
operation range of 300 hPa to 1100 hPa, the temperature sensing principle is of the
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type diode-voltage with a measurement range of −45 ◦C to 85 ◦C, the measurement
principle behind humidity is capacitive and its range is 0% to 100% [Bos21]. It features
an extremely fast response time τ63% of 1 s, thus enabling a consistent oversampling if
compared with the current application time granularity of 1 min.

The sensing principle of SPS30 PM sensor is based on laser-scattering, and allows
mass concentration and number concentration sensing for particle sizes ranging from
1 µm to 10 µm. As discussed in [Li+18b; Try+20], the SPS30 is an optical particle counter
(OPC) optimised for PM2.5 and smaller particle analysis. Sensirion PM sensors are in-
deed calibrated using regularly maintained and aligned high-end reference instruments
(e.g., the TSI Optical Particle Sizer Model 3330 or the TSI DustTrak™ DRX 8533) only
for 2.5 µm particles size. Moreover, as stated in the sensor specification sheet from the
manufacturer, PM4 and PM10 outputs are not directly measured but estimated from
smaller particle counts using typical aerosol profiles. A miniaturized fan and a high
efficiency particulate air (HEPA) filter are included to reduce the optical part contamina-
tion; it also runs its fan at full speed for 10 s every seven days as an automatic cleaning
procedure. The mass concentration measurement range is 0 µg/m3 to 1000 µg/m3.

The SGP30 TVOC sensor is a digital “multi-pixel” gas sensor. It uses multiple
sensors, housed on a single metal-oxide gas sensor chip, placed on a thermally controlled
hotplate. Digital data output from the sensor includes raw measurements of ethanol
and H2, and calculated values of TVOC and equivalent CO2 via internal algorithm,
such as automatic baseline compensation of the measurement [RHB18]. The TVOC data
range from this sensor is between 0 to 60,000 ppb. This sensor’s equivalent CO2 were
disregarded due to its low sensitivity to external pollutants and due to the absence of
passengers in parking conditions.

The measurement system has been characterised both in winter and in summer
conditions. In the following sections, two typical conditions for winter and summer
have been chosen in order to characterise the HVAC system performance in heating
and cooling operations, respectively. Winter tests have been performed on 29 January
2021, while summer test have been carried out from 14 July to 15 July 2021.

4.3 Measurements in heating and cooling operation

In this section, the combined measurements of air quality and comfort parameters,
together with the energy consumption by the electric car are shown and discussed in
different seasons, in order to show the differences in relation to the operational mode
for the air conditioning. Moreover, an estimation of the filtration performances of the
HVAC system is given, by comparing the results corresponding to new and used filters.
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Ultimately, a detailed treatment of high spatial resolution cabin air temperature profiles
is provided in the supplementary materials.

4.3.1 Heating operation

Two different test conditions have been investigated for the winter, starting from a
state of equilibrium with the external environment, obtained maintaining all systems off
and all doors opened for 15 min. Once the equilibrium was reached, the proper test was
performed while maintaining the heater on for one hour, and the set-point temperature
at its maximum of 30 ◦C, the fan speed was at its maximum (position 7), and all of the
windows and all the doors were closed. During the first test, the recirculation system
was off (meaning that the air ventilation system was in the fresh-air configuration),
while during the second test the recirculation system was on instead.

Fresh-air mode

Figure 4.2: Heating temperature profiles, fresh-air mode.

All the experiments confirm that the heating system is capable of reaching a quasi-
steady state condition in about 20 min, even though the temperature reached by the air
inside the cabin is well over the set-point temperature. Figure 4.2 shows the readings
from all the 18 temperature sensors in the cabin for the case with fresh-air mode with a
3 letters naming scheme [Rus+21]:

1. The first letter tells us if we are in the front (F) or in the back (B) of the cabin.

2. The second letter refers to the location in vertical direction, namely bottom (B),
middle (M) and top (T) plane.
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Figure 4.3: Heating temperature difference profiles, fresh-air mode.

3. The third letter refers to the location in the horizontal direction, namely left (L) or
driver, center (C) or right (R) side.

Colder spots can be found at feet level of the back seats, moreover this is in disagreement
with the studies of Nilsson on equivalent temperature of body segments [Nil04]. In
other words, analysing the results of the work that led to the development of the only
available standard for comfort evaluation in vehicles (ISO-14505), we can infer that
occupants will be likely to accept colder temperatures in upper body parts during
winter, while here we are in the opposite situation. Data from position FBC have a
different behaviour because it refers to the sensor installed inside the acquisition system
box, thus suffering from thermal inertia issues.

Defining a temperature difference ∆t = ti − tavg; where ti is the temperature in one
generic position of the grid, and tavg the mean value of the 18 temperature readings for
each timestamp; is possible to obtain Figure 4.3. It is worth noting that air temperature
inside the cabin can reach discrepancies of more than 15 ◦C in the first minutes of
operation, while the ∆t values at the end of test is lower and the temperature distribution
much more uniform.

The temperature measured inside and outside the cabin keeping the fresh-air mode
on is shown in Figure 4.4a. The air temperature inside the cabin is obtained by the
average of the air temperature measurements on the sensors placed on the grid shown
in Figure 4.1, i.e., tint = tavg. The TVOC concentration measured inside and outside the
cabin in fresh-air mode are shown in Figure 4.4b. It is shown that the TVOC concen-
tration increases while the HVAC system is working, even in the fresh-air mode. This
effect is related to the presence of sources of VOC inside the vehicle cabin and the build
up phenomena during the HVAC operation, as expected from the literature [ISO12].
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Figure 4.4c displays the PM2.5 concentration measured inside and outside the cabin in
fresh-air mode. The PM concentrations decrease while the HVAC system is working
due to the filtering activity of the HVAC filter. This result ties with what is found in the
literature [Heo+19]. For the case analysed, a filtration efficiency of about η = 0.5 for
PM2.5 is ascertained. The power usage of the HVAC system, with the contributions of
power used by auxiliary equipment, A/C system and PTC heater recorded by the OBD
system is shown in the stacked line plot in Figure 4.4d.

(a) (b)

(c) (d)

Figure 4.4: Results regarding the fresh-air mode. (a) Temperature inside (blue) and
outside (red) the cabin; (b) TVOC concentration inside (blue) and outside (red) the
cabin; (c) PM2.5 concentration inside (blue) and outside (red) the cabin; (d) power
usage of the HVAC system.

Recirculation mode

Figure 4.5 shows the readings from all the 18 temperature sensors in the cabin for the
case with recirculation mode. Air temperature inside the cabin shows slightly higher
discrepancies with respect to the previous case, colder spots can be found again at feet
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level of the back seats. Signal from the FBC sensor shows similar responsiveness issues
as for the case without recirculation. Higher temperature gradients in the startup phase
are evident from Figure 4.6, while a smoother profile is reached at the end of test.

Figure 4.5: Heating temperature profiles, recirculation mode.

Figure 4.6: Heating temperature difference profiles, recirculation mode.

Similar considerations can be made for the case with recirculation activated. From
the results shown in Figure 4.7 it is clear that the time to steady state is close to 20 min;
again the over-temperature issue remains significant. TVOC concentration reached
a value similar to the case without recirculation, but in a longer time with respect
to the fresh-air mode. A possible explanation for this behaviour could rely on the
fact the source of VOCs inside the cabin is compensated by an improved adsorption
performance, as observed by [Heo+19]. The PM concentrations decrease to lower values
with respect to the fresh-air mode, as shown in Figure 4.7c. This result shows that the
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filtration performance is improved by the recirculation mode. Figure 4.7d shows the
power usage of the HVAC system. The figure shows the contributions of auxiliary
equipment, the A/C system and the PTC heater to the overall power usage.

(a) (b)

(c) (d)

Figure 4.7: Results regarding the recirculation mode. (a) Temperature inside (blue)
and outside (red) the cabin; (b) TVOC concentration inside (blue) and outside (red)
the cabin; (c) PM2.5 concentration inside (blue) and outside (red) the cabin; (d) power
usage of the HVAC system.

Comparison between fresh-air and recirculation mode in winter

The open-field tests conducted in this work have been chosen because representative
of the real operating conditions of the vehicle. On the other hand, the experiments have
been performed with no control on the environment outside the cabin, with repeatability
issues. In order to compare the experiments, the following dimensionless temperature
is defined:

t∗ =
tint − text

tset − text
(4.1)
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where t∗ is the dimensionless temperature, tint is the air temperature measured inside
the cabin, text is the air temperature measured outside the cabin and tset is the set-point
temperature. It is worth to underline that when tint = text, dimensionless temperature t∗

is equal to 0, while when tint = tset, then t∗ is equal to 1. These two key points represent
two relevant physical states, equilibrium with the external environment and fulfilment
of the set-point request, respectively. Figure 4.8a shows a comparison between the
dimensionless temperatures obtained for the two experiments.

It is noticeable that the dimensionless temperature obtained without recirculation is
always higher than the one obtained in the case of recirculation mode, thus suggesting
that the over-temperature issue is more significant in this case. In addition, the set-point
is reached faster during the fresh-air mode than during the recirculation mode.

(a) (b)

Figure 4.8: (a) Dimensionless temperature profiles, comparison between fresh-air
(solid line) and recirculation (dashed line) mode. (b) Filtration efficiency, comparison
between fresh-air (solid line) and recirculation mode (dashed line).

The filtration efficiency of the vehicle can be defined using a black box approach,
where the vehicle cabin is considered as a system with an unknown filtration capacity,
while inlet (external) and outlet (internal) concentrations are known. The filtration
efficiency is then defined by

η = 1− Cint

Cext
(4.2)

where Cint and Cext are the internal and external concentrations, respectively. Figure 4.8b
shows a comparison between the PM filtration efficiency obtained in the two regimes.
The figure shows that PM filtration efficiency with recirculation mode is almost double
than the one obtained with the fresh-air mode. It is also noticeable that the filtration
efficiency does never reach the ideal value of η = 1, suggesting that infiltration rate not
equal to zero occur even if the vehicle is parked.
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An alternative method to get insights about IAQ of a vehicle cabin relies on a time
integrated inside/outside approach proposed in [Pha+19]. The associated index, the
cabin air quality index (CAQI), is defined as follows:

CAQI =

∫ t f
ti

Cint(t) dt∫ t f
ti

Cext(t) dt
(4.3)

where Cint is the internal concentration , Cext is the external concentration, ti is the start
time and t f is the stop time. Results based on this index for PM2.5 and TVOC are given
in Figure 4.9.

The figure shows that the CAQI indexes for PM2.5 and VOC obtained for the
fresh-air mode are much greater than the one obtained for the recirculation mode.
Figure 4.10 shows the comparison between the cumulative energy consumption in the
two cases of recirculation on and off, calculated as the approximate cumulative integral
of Ptot = Paux + PAC + PHtr via the trapezoidal method, in order to integrate numeric
data rather than a functional expression:

E =
∫ t f

ti

Ptot(t) dt ≈
t f − ti

2N

N

∑
n=1

(Ptot(tn) + Ptot(tn+1)) (4.4)

where ti is the start time, t f the final time and N+1 the number of samples available
(equally spaced). The total energy consumption obtained in the recirculation mode is
about 3/4 of the value obtained for in fresh-air mode. This result can explain what is
shown in Figures 4.4d and 4.7d. These figures show that the power usage from the
HVAC system is similar for the two modes in the first minutes of operation. However,
when the effects of recirculation become prevalent, the values of the HVAC power usage
related to the two modes differ considerably. In fact, while Ptot peaks at more than 4 kW
in the first minutes of operation in both modes, it varies significantly towards the end
of the test.
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(a) (b)

Figure 4.9: (a) CAQI for PM2.5 and (b) CAQI for TVOC.

Figure 4.10: Cumulative energy use, comparison between fresh-air (solid line) and
recirculation (dashed line) mode.

4.3.2 Cooling operation

Two different test conditions have been investigated starting from a state of equi-
librium with the external environment, obtained by maintaining all systems off and
all doors opened for 15 min. Once the equilibrium was reached, the proper test was
performed while maintaining the A/C on for one hour, the set-point temperature at its
minimum of 16 °C, the fan speed at its maximum (position 7), and all windows and all
doors closed. During the first test, the recirculation system was off (that means that the
air ventilation system was in fresh-air configuration), while during the second test the
recirculation system was on.
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Fresh-air mode

All the experiments confirm that the cooling system is not capable of reaching a
quasi-steady state condition in about 60 min, i.e., the temperature reached by the air
inside the cabin is far from the set-point temperature value.

Figure 4.11: Cooling temperature profiles, fresh-air mode.

Figure 4.12: Cooling temperature difference profiles, fresh-air mode.

All the experiments confirm that the cooling system is not capable of reaching a
quasi-steady state condition in about 60 min, textiti.e. the temperature reached by the
air inside the cabin is far from the set-point temperature value. Figure 4.11 shows the
readings from all the 18 temperature sensors in the cabin for the case with fresh-air
mode with the same naming scheme introduced in the previous section.
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Temperature discrepancies in the cabin can approach 12 ◦C; warmer spots can
be found at top and middle locations, while bottom zone is generally colder (Fig.
4.12). To a certain extent, this is in agreement with a stratification of cabin air during
operation, despite the vents working at full power. Looking at "Light summer" Comfort
Zones defined by [Nil04], we can infer that occupants will be likely to accept warmer
temperatures in lower body parts during summer, while this result goes in the opposite
direction. Self heating and thermal inertia issue of the sensor positioned at FBC position
are still evident.

Figure 4.13a shows the temperature measured inside and outside the cabin keeping
the fresh-air mode. Like for the winter operation, the air temperature inside the cabin is
calculated as the mean value of the 18 temperature readings for each timestamp.

Figure 4.13b shows TVOC measured inside and outside the cabin in fresh-air mode.
The figure reports that the TVOC concentration is higher than that of the external air at
the beginning, but decreases while the HVAC system operates. The lowest concentration
is reached, despite the fluctuation on the outside. This behaviour can be explained with
a drop of temperature inside the cabin combined with fresh-air mixing, thus reducing
the emission from the internal sources.
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(a) (b)

(c) (d)

Figure 4.13: Results regarding the fresh-air mode. (a) Temperature inside (blue) and
outside (red) the cabin; (b) TVOC concentration inside (blue) and outside (red) the
cabin; (c) PM2.5 concentration inside (blue) and outside (red) the cabin; (d) power
usage of the HVAC system.

Figure 4.13c reports plots of the PM2.5 concentration measured inside and outside
the cabin in fresh-air configuration. This result appears to be in contrast with the results
shown by [Heo+19], i.e., the cabin filter is not able to lower the PM concentration inside
the car with a steady state filtration efficiency η = 0 to 0.2. Here we need to consider
that the value of PM2.5 concentrations measured were extremely low and under the
sensor precision for that particle size range (±10 µg/m3).

Figure 4.13d shows the power usage of the HVAC system. The figure shows the
contributions of power used by auxiliary equipment and A/C system; with PTC heater
power being indeed equal to zero in cooling operation.
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Recirculation mode

As for the previous case with recirculation activated, time to steady state is close to
20 min of operation, while the over-temperature issue is still significant.

Figure 4.14: Cooling temperature profiles, recirculation mode.

Figure 4.15: Cooling temperature difference profiles, recirculation mode.

Figures 4.14 and 4.15 show the readings from all the 18 temperature sensors in the
cabin for the case with recirculation mode. Air temperature stratification with respect
to the vertical axis is again considerable, colder spots can be found at feet level of the
back seats. The main difference with the fresh-air case is that bottom right location are
well capable of reaching the set-point temperature.

TVOC concentration shows a different trend. Despite external concentration peaks
at the end of the test, the internal one remains quite low. As for PM values, they
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follow a completely different trend; it is quite clear from Figure 4.16c how the filtration
performance is improved by the recirculation mode, even with absolute values well
within the precision range as is the previous test. Figure 4.16d shows the power usage
of the HVAC system, with the contributions of power used by auxiliary equipment and
A/C system recorded by the OBD system.

(a) (b)

(c) (d)

Figure 4.16: Results regarding the recirculation mode. (a) Temperature inside (blue)
and outside (red) the cabin; (d) TVOC concentration inside (blue) and outside (red)
the cabin; (c), PM2.5 concentration inside (blue) and outside (red) the cabin; (d)
power usage of the HVAC system.

Comparison between fresh-air and recirculation mode in summer

Experiments in cooling as well as heating mode have been performed in real parking
conditions with no control on the environment outside the cabin, repeatability issues
are worsen by the increased contribution of solar load in summer. In order to compare
the experiments, a temperature adimensionalisation is performed according to Equa-
tion (4.1). Figure 4.17a shows a comparison between the dimensionless temperatures
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obtained for the two experiments.
It is noticeable that the value of dimensionless temperature obtained with recircula-

tion is always higher than the one obtained in the fresh-air case, thus suggesting that
the cabin approaches better the set-pot in the first case.

The filtration efficiency of the vehicle can be defined again using a black box ap-
proach, where the vehicle cabin is considered as a system with an unknown filtration
capacity, while inlet (external) and outlet (internal) concentrations are known, according
to Equation (4.2). Figure 4.17b shows a comparison between the two cases. The PM
filtration efficiency with recirculation mode is well over the one with the fresh-air mode.
It is also noticeable that as for the winter case the filtration efficiency never does reach
the ideal value of η = 1, but it is even lower indeed. This trend can be explained
with η being a function of particle size [Heo+19], but also of particle concentration
itself. As shown for the winter case, another way to investigate cabin performance on
airborne pollutants is provided by Equation (4.3). Figure 4.18 reports the CAQI trend
for PM2.5 and TVOC in fresh-air and recirculation, the latter being less prone to build
up of pollutants during operation.

(a) (b)

Figure 4.17: (a) Dimensionless temperature profiles, comparison between fresh-air
(solid line) and recirculation (dashed line) mode. (b) Filtration efficiency, comparison
between fresh-air (solid line) and recirculation mode (dashed line).
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(a) (b)

Figure 4.18: (a) CAQI for PM2.5 and (b) CAQI for TVOC.

Figure 4.19 shows the comparison between the cumulative energy consumption in
the two cases of recirculation on and off, calculated as the approximate cumulative
integral of Ptot = Paux + PAC via the trapezoidal method as done in the winter case with
Equation (4.4). The total energy consumption obtained in the recirculation mode on is
about 4/5 of the value obtained for the fresh-air mode. This result can explain what is
shown in Figures 4.13d and 4.16d. These figures show that the power usage from the
HVAC system is similar for the two modes in the first minutes of operation. However,
when the effects of recirculation become prevalent, the HVAC power usage related to
this mode decreases after about 20 min, even though the difference is less prominent
than in winter operation.

Figure 4.19: Cumulative energy use, comparison between fresh-air mode (solid line)
and recirculation (dashed line) mode.
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4.3.3 Effect of filter condition on filtration performance

In this section we report some results regarding the filtration performances of the
Leaf cabin filter (Figure 4.20). In detail we performed two tests in summer operating
conditions manipulating the filter. First, we performed the experiment without the
filter. Then, a second experiment was performed after installing a brand-new filter.
Figure 4.20a shows that the presence of the filter has an effect of filtration efficiency,
lowering its value from 80% to 60%. The figure shows that even without a filter the
recirculation mode provides a sort of filtration. This result suggests that part of the
filtration is made by the filter and part is given by other devices in the HVAC system, i.e.,
a fraction of the pollutants is captured by the evaporator fins, or by the ducts between
the cabin and the evaporator. Curves for fresh-air mode show filtration efficiency
around zero for both the cases (no filter and with a filter), with more fluctuations for the
case without a filter. Then, the presence of the filter does not improve the air quality
within the cabin both by using a filter and by not using it.

(a) (b)

Figure 4.20: Filtration efficiency, comparison between fresh-air mode (solid line) and
recirculation (dashed line) mode, with (a) no cabin filter installed and (b) with brand
new cabin filter installed.

4.4 Chapter summary

In this chapter, a characterisation of the thermal profiles and air quality within
the cabin of a Battery Electric Vehicle (BEV), together with real time measurements of
HVAC system energy consumption has been presented. The temperature, PM, and
VOC concentrations have been measured by means of a low-cost Arduino-based system
of sensors. Comparisons between the air quality obtained in the cabin during in two
different configurations of the HVAC system have been carried out.



4.4. CHAPTER SUMMARY 62

The data collected shows that, while PMs are filtered, VOCs concentration increases
during operation in recirculation mode. At the same time, the HVAC energy con-
sumption in recirculation mode is about 70% of the energy consumption measured in
fresh-air mode during heating operation. In the cooling operation, the HVAC energy
consumption in recirculation mode is about 80% of the energy consumption measured
in fresh-air mode.

Recirculation mode is found to be the best choice for BEVs, both for reducing some
pollutants concentrations and for saving energy. The use of a new filter can improve the
filtration efficiency in recirculation mode.

The air quality is strongly related to air-circulation modes, such as the fresh-air or
recirculation. The recirculation mode should be chosen for energy saving in order to
extend the BEV driving range, but a fresh-air mode is needed in some cases to ensure
low concentrations of pollutants within the cabin. Control systems should consider
these results in order optimally manage the HVAC system operation in BEVs.

In the next chapter, the same experimental setup is used to generate real driving
data for a ML model of the cabin and HVAC system for optimal control purposes.



Chapter 5

Machine learnt model and
Reinforcement Learning control

The previous chapter describes an application of the low-cost system of sensors to
charachterise the cabin of a production electric vehicle in terms of thermal and air quality
profiles. In a wider perpective, the charachterisation stage can be seen as the precursor
to building and evaluation of the model stage. It also provides knowledge of context,
intuition as well as development of the computational toolbox from pre-processing to
visualisation.

In this chapter we aim to use the output of the LCSoS to build a ML model of the
cabin and HVAC system, formulate its transient behaviour as a linear state space control
problem and immerse it in a RL environment to investigate the possibility of finding
the best iaq-aware, energy efficient thermal management policy for the vehicle cabin
using the proximal policy optimisation (PPO) algorithm.

The chapter starts with a description of the physics based modeling approaches in
Section 5.1, ranging from their typical structure to the most used software tools, together
with some limitations for our application. Section 5.2 introduces the ML approach to
thermal modeling in vehicle cabins, the trials specifications, the requirements of data
preparation and cross-validation of the linear regression prediction on the test datasetset
during the construction of the model, state and actuation inputs are also introduced. In
Section 5.3 the ML model is benchmarked progressively detaching it from the data, first
using actuation imput from data and then connecting the model with a mathematical
model of a bang-bang controller. The algorithmic loop that updates successively state
and control inputs is given.

Section 5.4 introduces the basic concepts behind RL. Starting from the definition
of an agent learning the best policy from interaction with an environment (which
comprises a cabin, HVAC model), the Q-learning and PPO algorithms as well as the
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reward function are described. Section 5.5 contains results on the learning process in
terms of the evolution in time of the mean reward for each episode. A total number of 8
trials has been executed, the values used to inizialise the environment toghether with a
discussion of the results is also provided.

5.1 Physics based models

Despite the complexity involved in the modelig of transient and non uniform thermal
environments like vehicle cabins, physics based models are extensively used in their
design process with exceptional results [LYE20]. CFD simulation tools in particular, are
unrivaled when a fine spatial resolution is required, often combined in co-simulation
with a lumped parameters model of the HVAC and control system.

The main reason behind the wide adoption of this modeling scheme both in academia
and industry, is the inevitable performance tradeoff between spatial and temporal res-
olution. Among the commercial tools used in combination with CFD we can find
AMESim, Modelica, MATLAB & Simulink and more recently Simscape. Most com-
mercial 1D modeling tools offer a robust equation based platform, capable of native
interaction well established control software. They also provide a wide variety of ad-
vanced thermal-hydraulic and two-phase flow libraries for modeling evaporation and
condensation. The main drawback is that they often require many parameters to be set
up and are usually slower than custom algorithms built on purpose. Moreover, most
of the state of the art numerical methods for ML are written in other languages like
Python.

The typical structure of lumped models is based on building blocks that represent
a particular physical phenomenon using the mass and energy balance equations that
best describe it. Thermal blocks for example can be used for conduction, convection
and radiation, they then can linked to form a thermal network together with a solver
block [MAT18]. Different physics like fluid flow or electrical components can be linked
together through dedicated ports, in some cases is possible to modify the equation used
and even build custom blocks. For example, a conduction block would solve the well
known Fourier equation between two layers of the same material:

Q = k · A
d
(t1 − t2) (5.1)

where Q is the heat flow, k is the thermal conductivity of the material, A is the area
normal to the heat flow direction, d is the distance between the two layers and t1, t2 are
the temperatures of the layers.
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State of the art studies make use of 0-dimensional (0D) volumes connected with
1-dimensional (1D) for the fluid phase, an extensive thermal network for heat exchange
and custom Simulink blocks for the control network, even though no mention in made
to the computing time per computed time step [Cho+18; Tit+16; CZ19]. Since its
first releases, Simscape has been successfully used by some authors for vehicle cabin
modeling tasks, with some interesting studies proposing a recovery of the spatial
resolution using multiple volumes linked to represent the different section of the cabin
[MS11]. Further developments of this scheme present a detailed description of the
envelope layers and of the heat exchange mechanism involving the cabin, with a
particular focus on the external side convection which uses Nusselt number to include
a speed dependent convection heat transfer coefficient. The importance and the lack
of prior art on moisture, CO2 and pollutants build up is also underlined [KTM21]. As
imaginable, solving heat transfer equations in each layer of each component of the
vehicle envelope can be accurate but model speed will be reduced.

Figure 5.1: An example of the cabin model that was initially built in Simscape to
fit data from the LCSoS. The model required about 40 min to fit data from a single
20 min trial.

In this work, a simple thermal and fluid cabin model shown in Figure 5.1 was
initially built in Simscape with the aim of fitting it to the experimental data from a
Nissan Leaf as described in Chapter 4, in an effort to develop a complementary tool to
the one already available on the same vehicle that focus on powertrain modeling [IT19].
It was soon discovered that the process of tuning the model was quite slow using the
builtin optimiser, taking up to 2 seconds to process 1 second of experimental data in
the learning stage. Moreover, the structure of the model, the difficulties in retrieving
thermophysical properties for each block, on a production car without support from
the manufacturer and its poor interoperability with state of the art RL Python libraries
made us opt for an alternative approach.
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A slightly different approach was taken by Doyle et al., which developed a tempera-
ture prediction algorithm based on global heat energy supplied to the cabin environment
as a function of setpoint and cabin temperature [DM19; DMS15]. Similarly, a global heat
balance like the one in Equation (5.2) comprising heat exchange with environment and
heating/cooling energy from the HVAC system can be used to predict internal cabin
temperature if all other quantities are know. Which, for a given time step yields:

Q̇ = UA · (ti − te) or ti = te +
Q̇

UA
(5.2)

where Q̇(ti) is the sum of the rate of heat exchanged with the environment and with
HVAC system, UA is the heat transfer rate and ti, te are internal and external temper-
atures. With such formulation the internal-external relation to estimate future cabin
states becomes explicit.

In the same way, also IAQ related pollutant concentrations can be described in terms
of finding the correspondence between concentrations inside and outside the vehicle
cabin, pollutant sources/sinks and internal-external air mass flow rate [Kor20]. Which
for a given time step can be written as:

VĊ = G + H · (Ce − Ci) or Ci = Ce +
VĊi − G

H
(5.3)

where V is the volume, Ċi is the rate of change of internal concentration, G is the
generation/removal term, H is the internal-external exchange rate while Ci, Ce are
the internal and external concentrations. It should be noted though, that despite this
implicit formulation a composite functional relationship remains between left and right
hand side of Equations (5.2) and (5.3).

5.2 Machine learning models

Another interesting result in this field, which poses the ground for machine learning
approaches, relies on the implementation of the Newton’s Law for the analysis and
dynamical simulation of physical systems. In fact, starting from the assumption that
many systems can be described using current state and control inputs, with most
complex and highly non-linear systems requiring also information on state and control
inputs at previous time steps [Jes+22], it is possible to show that the behaviour of these
systems can be approximated with good accuracy with a linear relationship. For a
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general Newton’s model, considering a small time interval this can be written as:

dy
dt

= −k · (y− y0) with
∆y
∆t
≈ dy

dt
(5.4)

y(t + ∆t)− y(t)
∆t

≈ ∆y
∆t

(5.5)

y(t + ∆t) ≈ k∆ty0 + (1− k∆t) · y(t) (5.6)

which shows how the prediction on the next time step has a linear correlation with the
previous one if y0, k, ∆t are constants.

Another way to look at the problem is provided by the definition of dynamic mode
decomposition with control (DMDc) and its formulation in terms of linear regression.
The latter does not rely on physics equations but aims at finding the relationship
between state and control variables at time t (remember that complex and dynamic
environments often require also state at time t− 1) on one side, and state at time t + 1
which represents a prediction on the evolution of the system [BK19]. The generalised
evolution equation can be written in terms of a dynamic mode decomposition with
control (DMDc) problem:

xt+1 = Axt + But (5.7)

where A and B are the best fit linear operators that satisfy the dynamics of measurement
data, xt is the snapshot of the system at time t + 1, xt is the snapshot of the system at
time t, and ut is the actuation input at time t.

In the next sections, it will be shown how to use this formulation to build a ML
model of the Leaf cabin and HVAC directly from the data collected with the equipment
shown in Chapter 4.

5.2.1 Real driving condition trials

Every ML task starts with the collection of data, in this study we personally collected
all the data from a real driving experiment using the equipment as well as the same
pre-processing described in the previous chapters. Test specification for heating and
cooling operation are given in Tables 5.1 and 5.2.

For the cooling trials, a fourth sensing system (Seward Solar Survey 200r) was
also installed to measure direct solar radiation Isol. The device is a silicon based solar
Irradiance meter with a measurement range of 0 W/m2 to 1500 W/m2, a resolution of
1 W/m2 and minimum sampling time of 60 s, it is widely used in the solar industry even
though some alternatives relying on solar illuminance have recently been proven viable
[MJM20]. The resulting dataset was appended to the previous ones, using a secondly
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Figure 5.2: Successive training and testing sets are super-sets of those that come
before them,thus adding surplus data to the previous training partition, which is then
used to train the model using cross-validation.

upsampling to match the other three LCSoS.
The main difference with prior data preparation is that in this case there is a need

to feed a ML task using the scikit-learn python package. Two widely used techniques
for this scope are scaling and cross-validation. Often performed together in the same
algorithm [KJ13]. All inputs and outputs are scaled to the range 0 p to 1 prior to
learning with sklearn minmax scaler, so that the minimum value on the dataset can
be represented with 0 and the maximum value with 1 for each variable. The scaling
is performed at the algorithmic step right before cross-validation and is thus a small
influence on validity.

The advantage of incorporating scaling within cross-validation sets is that it better
reflects unseen data that may have a range outside that of seen data and this has an
even more significant impact when used with neural networks that produce outputs
strictly in the range 0 to 1

In the case of linear regression scaling is not really required, but for an improved
interpretability of the results requires that model output regarding physical quantities
are obtained scaling back the results using the same minmax scaler object. Another
advantage of the use of scaling is that it allows to compute basic in-training performance
metrics of several different quantities with different units, which would otherwise be
impossible to compare.
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Table 5.1: Real driving test specification in heating operation

Trial Date Start Time Duration Setpoint Distribution Fan
(CET) (mins) (°C)

R6 2021-11-23 17:49 42 20 fresh 4
R7 2021-11-23 18:34 39 20 rec 4
R8 2021-11-24 9:36 44 16 fresh 4
N5 2021-12-14 17:00 32 16 rec 4
N6 2021-12-14 17:33 26 16 rec 1
N7 2021-12-14 18:00 29 20 rec 1
N8 2021-12-14 18:30 30 25 rec 4

Table 5.2: Real driving test specification in cooling operation

Trial Date Start Time Duration Setpoint Distribution Fan
(CEST) (mins) (°C)

RC1 2022-10-07 12:56 27 16 fresh 1
RC2 2022-10-07 13:28 25 16 rec 1
RC3 2022-10-07 13:58 25 20 fresh 1
RC4 2022-10-07 14:31 26 20 rec 1
RC5 2022-10-07 15:02 25 16 fresh 4
RC6 2022-10-07 15:37 23 16 rec 4
RC7 2022-10-07 16:06 28 20 fresh 4
RC8 2022-10-07 16:45 25 20 rec 4
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Linear regression model learning

A special type of k-fold cross-validation technique, suitable for timeseries data,
called time series group splitting is used to produce a more appropriate estimate of
the model on the training set. While a subsection of the dataset is stored to be used as
test set. To make it representative of the time correlation between two consecutive time
steps in the model, successive training and testing sets are super-sets of those that come
before them,thus adding surplus data to the previous training partition, which is then
used to train the model [Ped+11].

A graphical representation of the cross validation process is given in Figure 5.2,
where the dataset is split in terms of the different trials which form the groups. Within
each group, five successive training-testing cross validation are performed. The index
correspond to a single sample of data or 1 s for the considered database. A time series
split k-fold cross-validation is performed within each group (trial), while the training
happens across all groups at each fold.

A summary of the cross-validation accuracy for each trial is given in Table 5.3, which
tells how well the model performs in predicting the next state of the system when the
previous two states and the actual control variables are available, if compared with
unseen experimental data from the test set. Average scaled RMSE on the test set is
±0.004 or 0.4%. The resulting linear regression model is then ready to be used in the RL
environment, being able to predict 1300 s of simulated time in 0.01 s of computational
time.

State and action variables definition

The definition of state and action variables, as well as which one and how many of
them should be used is not straightforward and it is linked with interpretability issues.
On one hand, if a model is built using too many features, they could be redundant,
cross-correlated and both the ML and RL model could end up being unnecessarily slow.
On the other hand, using too few of them could lead to a poor prediction accuracy.
Ultimately, using a control variable as a state variable and vice versa may produce
conflicts in the simulation pipeline, with more than one actor trying to control the same
quantity.

A general framing of the problem relies on the assumption that all the quantities that
are sensed and can not be modified by an agent are state variables, while all external
thus non controllable inputs, as well as the quantities associated with the HVAC and
control system are considered action variables, although some exceptions may apply in
special cases.
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Table 5.3: Summary of cross-validation accuracy for predicted values against the test
set, train R-squared: 0.99, train time: 0.02 s.

Trial simulate MSE

N5 0.00139
N6 0.00577
N7 0.00865
N8 0.00214
R6 0.00914
R7 0.00540
R8 0.00244
RC1 0.00169
RC2 0.00234
RC3 0.00079
RC4 0.01335
RC5 0.00649
RC6 0.00854
RC7 0.00086
RC8 0.00123

average 0.00468
+/- 0.00373
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Table 5.4: Variables that form the elements of the state x and control u vectors.

State variable Name Description Unit

x1 FBC Front Bottom Center air temperature °C

x2 BTR Back Top Right air temperature °C

x3 BTC Back Top Center air temperature °C

x4 BMR Back Middle Right air temperature °C

x5 BTL Back Top Left air temperature °C

x6 BBR Back Bottom Right air temperature °C

x7 BMC Back Middle Center air temperature °C

x8 BBC Back Bottom Center air temperature °C

x9 BML Back Middle Left air temperature °C

x10 BBL Back Bottom Left air temperature °C

x11 RHi Internal relative humidity %

x12 PM25i Internal PM.2.5 concentration µg/m3

Control variable Name Description Unit

u1 Te External air temperature °C

u2 RHe External relative humidity %

u3 PM25e External PM2.5 concentration µg/m3

u4 Isol Direct solar radiation W/m2

u5 S Vehicle speed Km/h

u6 Paux Auxiliary power usage W

u7 Pcomp Compressor power usage W

u8 Phtr Heater power W

u9 PAC Total AC power usage W

u10 Tset Setpoint temperature °C

u11 Mdist Air distribution mode -

u12 L f an Fan level -
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Another consideration about the availability and definition of state and action
variables deal with correspondence between the variables available in the model and
those available in the real application, specially for controlled systems. From this point
of view, data-driven models have a clear advantage as they are built directly on the same
quantities that will possibly be available to the real controller rather that on fictitious
quantities that are only available in a Physics based model for example. On the contrary,
A ML model will be constrained by the limited data available, and will only have a
partial but hopefully good enough sensing of the physics phenomena involving the
cabin.

In the current model, air temperature in 10 locations (Ti), relative humidity (RH)
and PM2.5 concentration in the cabin are considered as state variables. While external
air temperature (Te) and RH, PM2.5 concentration, direct solar radiation (Isol), together
with vehicle speed (S), HVAC power consumption Phvac, temperature setpoint Tset, air
distribution mode Mdist (0 for fresh air and 1 for recirculation) and fan level L f an (0–7)
are considered the forcing variables that lead to the system snapshot at the following
time step. A detailed overview of the structure of vectors x and u is available in Table
5.4.

Figure 5.3: Linear ML scheme for the simulator with xlag = 1 and ulag = 0.

One last consideration about state and control vectors definition, that is directly
related with the simulator structure and RL environment, deals with the lag choice.
Following the prescriptions of Equation (5.4), before calling the learn() function the
dataset is expanded according to two variables: xlag and ulag. They define how many
timesteps backwards we want to inform the model.

In other words, they establish how the prediction should rely on past data, again
also here a compromise is needed. Using high lag values could improve the accuracy of
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the prediction but reduce its responsiveness to the dynamical evolution of the system.
In this work we opted for xlag = 2 and ulag = 1, meaning that at the given timestep
t, the model is considering also state variables at time t− 1, t− 2 and action variables
at time t− 1 to make its prediction on state at time t + 1. This can be easily achieved
expanding the data creating new columns, as is they were effectively extra variables.
The same structure has to be conserved in the simulator and in every call that uses the
predict() method on the saved model. A visual insight on the ML process workflow is
given in Figure 5.3.

5.3 Simulator structure

5.3.1 Results with control actions from data

The LR model is able to predict 1300 s of simulated time in 0.01 s of computational
time with a coefficient of determination above 0.99 on a commercial 8-core 11th Gen
Intel(R) Core(TM) i7-1165G7 @ 2.80GHz laptop machine. The results shown in Figures
5.4 to 5.7 are based on the possibility to predict the next state when only the true initial
value is given, toghether with the true control variable. That means at each time step
the control value is the same used in the training process but the state variable at future
timesteps are calculated on the previous prediction and not on the test data.

It is worth observing that the model is able to represent the general trend in the data,
with some divergence occuring towards the end of the trial. A good corerspondence
is observed for the first 500 s, which in a real world deployment scenario may be well
providing enough time to train and run the model before the next simulation is needed.
Unfortunately, a consistent divergence is observed after that time, even if the absolute
values are near the sensitivity of the LCSoS, which leads to the consideration that a the
model is not suitable for long term accurate predictions. It must be underlined that
despite the relatively high number of trials (similar studies used 5, this study uses 15
trials), there was a small variability between them, specially within the same thermal
operating mode. This may overestimate the model predictive capabilities as well as
forcing a high degree of extrapolation when used with simulated control inputs.

For the sake of completeness, results comparing simulated and measured value of
all 12 state variables in all 15 trials are given in the Appendix A.

It should be noted though, that the quality of the prediction is related to the fact
that the model runs on the same control variable used for training, so it could very well
present lack of generalisation as well as over-fitting the data. For this reason, furher
results will be presented in the next section where the control action is not related with
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the data. Another aspect that deserves further comment is the ambiguity between
system dynamics and actuation for closed-loop systems. One way to address this issue
is to add perturbation to the actuation signal in order to be able to distinguish between
the two [BK19].

Figure 5.4: Cabin air T heating.
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Figure 5.5: Cabin air T cooling.

Figure 5.6: Cabin air RH.
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Figure 5.7: Cabin air PM2.5.

Using MLSim class

At the core of the simulation workflow is the MLSim class from the Domus project.
From MLSim documentation1:

The idea of this class is to wrap up the ML simulator and deal with scaling,
lagged state and actions, and differing intervals to make the simulator easier
to call. The initial state and prior actions are provided to the constructor and
then the simulator can be run by successive calls to step.

The concept of stepped objects is crucial in this work, it starts from requirements of the
RL environment (as will be shown in 5.4) and goes back over the LR model construction,
borrowing the same formulation of linear state space control systems [WL07]. A sample
code that demonstrates how the simulator can be put together with the learnt model to
produce an output that predicts the state of the cabin using the action variables from
data is the following:

1 import pandas as pd
2 import numpy as np
3 import joblib
4 from domus_mlsim import MLSim

1For further details about this class see the GitHub repository with all the code listings [Bru21b].
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5

6 xlag=2
7 ulag=1
8 uc = ’R7’
9 scaler_and_model = joblib.load(’lr.joblib ’)

10 leaf = pd.read_pickle("trials.pickle.gz")
11 initial_state = leaf.loc[uc].loc[start_t -1: start_t ][xt]. to_numpy ().

reshape(xlag , -1)
12 actions = leaf.loc[uc].loc[start_t :: interval ][ut]
13 mlsim = MLSim(scaler_and_model , initial_state=initial_state , xlag=xlag ,

ulag=ulag , xlen=len(xt), ulen=len(ut))
14 res = np.array([ mlsim.step(actions.to_numpy ()[i, :])[1] for i in range(

len(actions)) ])
15 resdf = pd.DataFrame(np.array(res).reshape(-1, len(xt)), columns=xt ,

index=actions.index)

Listing 5.1: Sample code that calls the MLSim class with the LR model, initial state
from data, control actions from data and stores the result in a pandas data frame for
comparison with trial R7.

5.3.2 Results with control action from bang-bang controller

Cabin + HVAC
ML model

Controller
math model

Update
bu,t

Update
cu,t

cx,t ← cx,t+1

bx,t ← bx,t+1

bx,t+1

bx,t

cx,t

cx,t+1

bu,t

cu,t

Figure 5.8: Schematic diagram of the interaction between the controller and the ML
model.

After testing the model with the true action values from data, the idea behind this
section is to add another layer of virtualisation using simulated control actions. To do
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this, we use the simple-pid python package. A basic PID controller which given the
proportional, integral and differential constants, and sensing the cabin state is able to
set the next control action to reach a desired setpoint.

Conversely from the previous section, where the actuation vector was known in
advance, to end up in a condition where the ML model of the cabin and the HVAC
system can interact with a controller, the latter will need to provide the actuation input
at each step, and to be stepped itself. The addition of a second model even though it is
a simple mathematical one, leads to a slightly more complicated simulation structure
that is shown in Figure 5.8.

It should be noted that learning cabin and HVAC system together simplifies the
simulator structure. In fact, learning them separately would require a third model
for the HVAC system. Such approach was taken in the Domus project, where an
HVAC model was built on top of 1D simulation data and then broadcast with the
cabin and controller ones. Other studies on buildings call directly the 1D model istead
of building a ML model from it, which results in higher computation times but also
enables the opportunity to try differend design solutions, while ML model are difficult
to extrapolate to different designs [Bra+20; Han+19; WH20].

For a clearer formulation of the problem, it is helpful to define state and actuation
input vectors for each of the two models, so that they contain the information on xlag

and ulag in a more compact notation. In particular we will call bx,t the set of state
and lagged state variables for the cabin, bu,t the set of actuation and lagged actuation
variables for the cabin, cx,t the set of state and lagged state variables for the controller,
cu,t the set of actuation and lagged actuation variables for the controller. A complete
step cycle can be summarised as follows:

1. Initialise the state and actuation vectors.

2. Step the cabin and HVAC model to compute the new cabin state with MLSim

3. Step the controller to compute the next controller state with simple-pid

4. Update all old states with the newer values

5. Use the cabin and HVAC state to update the controller actuation input

6. Use the controller state to update cabin and HVAC actuation input

7. Continue with the next step
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Figures 5.9 to 5.11 contain plots of internal air temperature, relative humidity and
particulate matter concentration for a heating case where the control actions are set from
a bang-bang controller with constants P = 600, I = 0.3, D = 0.01. Setpoint is fixed at
20 ◦C and PM2.5 concentration treshold that triggers recirculation on is set to 15 µg/m3.
External and initial temperatures are both set to 1 ◦C, external and initial RH are both
set to 50 %, external and initial PM2.5 are set to 100 and 10 respectively. The intention
in this setup is to model a cold startup

A big overshooting issue is evident on temperature but it then stabilised correctly
around the setpoit, Some unrealistic negative values for the relative humidity are pre-
dicted corresponding to the overshoot, showing room for improovement, but in general
it follows an inverse relationship with temperature which suggests an explainable result.
Also Further tuning of PID constants may improve the results, but some overshoot as
well as poor responsiveness issues may probably remain, this may be due to the filtering
of data during pre-processing or lack of variability in the trials data.

Figure 5.9: Predicted temperature profile where the model is controlled with a simple
PID controller.
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Figure 5.10: Predicted humidity profile where the model is controlled with a simple
PID controller.

Figure 5.11: Predicted PM2.5 concentration where the model is controlled with a
simple PID controller.
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5.4 Reinforcement learning scheme

Cabin + HVAC
model

RL
agent

Initial state s0
Policy π(s, a)

Action at

Reward Rt(s, a)

State st

Update
st+1 ← st

Rt+1 ← Rt

Figure 5.12: The agent-environment interaction with reinforcement learning feedback
used in this work.

In this section we will frame cabin thermal management as an optimisation problem
in terms of an agent (the controller) interacting with a ML model of an environment
(cabin and HVAC), in each interaction the agent will receive a reward and update its
policy for future interaction to maximise this reward (Figure 5.12). In terms of tools,
OpenAI as environment structure and Stable-Baselines3 as experiment manager were
used like in the Domus project. The fundamental building block of OpenAI Gym is
the Env class. It is a Python class that basically implements a simulator that runs the
environment in which the training of the agent happens. Main functions of the Env
class that enable the agent to interact with the environment are:

• reset: This function resets the environment to its initial state, and returns the ob-
servation of the environment corresponding to the initial state. The reset function
returns four things:

• observation: The observation of the state of the environment.

• reward: The reward that you can get from the environment after executing the
action that was given as the input to the step function.

• done: Whether the episode has been terminated. If true, you may need to end the
simulation or reset the environment to restart the episode.
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• info: This provides additional information depending on the environment, such
as value of hyperparameters, or general information that may be conducive in
debugging.

• step: This function takes an action as an input and applies it to the environment,
which leads to the environment transitioning to a new state.

Q-learning

In reinforcement learning, we want our agent to take actions that will maximise
the possible rewards it receives from its environment. Q-learning is a reinforcement
learning algorithm that seeks to find the best possible next action given its current state,
in order to maximise the reward it receives.

The Q-learning algorithm will help our agent update the current Q-value Q(St, At)

with its observations after taking an action. Thus increasing Q if it encountered a
positive reward, or decreasing Q if it encountered a negative one:

Q(St, At)← Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, a)−Q(St, At)] (5.8)

where a refers to all the possible actions available in a state. There are two hyperparam-
eters which we can specify:

1. Learning rate (α): how easily the agent should accept new information over
previously learnt information

2. Discount factor (γ): how much the agent should take into consideration the
rewards it could receive in the future versus its immediate reward

As the agent learns more about the environment (exploration), it uses this knowledge
to take more optimal actions and converge faster (exploitation).

Proximal Policy Optimisation and reward function

To make use of the ML model in the defined environment and run the RL we
opted for a tool called Stable-Baselines3, an open-source framework implementing
commonly used RL algorithms, with PPO being one of them. Moreover, it comes with
an experimental framework, namely RL Baselines Zoo that provides scripts to train
and evaluate agents, tune hyperparameters, record videos, store experiment setup and
visualize results. Is also comes with a test suite that covers 95 % of the code in order to
minimise implementation errors [Raf+21]. All the test available from Stable-Baselines3



5.4. REINFORCEMENT LEARNING SCHEME 84

as well as those available from the Domus project code base were passed successfully.
Which leaves out essentially the data import and preprocessing scripts used in this
work.

The PPO method performs multiple epochs of policy gradient update per data
sample, namely batches of states, actions and rewards being used to estimate policy. Is
has been used extensively in traning for locomotion, image generation and NLP tasks
with a good success rate and data efficiency, such that is has become the default RL
algorithm in organisations like OpenAI [Bro+16].

A detailed algorithmic analysis of PPO and its variants is out of the scope of this
work, rather we focus on exploiting its well proven performance in benchmark tasks
(Atari, MuJoCo) or other research areas, namely: good balance between ease of imple-
mentation, sample efficiency and ease of tuning. Another peculiarity of PPO is that after
an update in the policy, the new one should not differ too much from the old policy
[Sch+17; Sch16]. This can be done through clipping, so that given the ratio between
the old stochastic policy (or the probability of taking a certain action in the current
state), and the current policy (or an estimate of the advantage of the new policy using a
gradient estimator):

rt(θ) =
πθ(at|st)

πθold(at|st)
(5.9)

the surrogate objective to be maximised will be:

LCLIP(θ) = Ê
[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
(5.10)

where ϵ is a hyperparameter, θ is the policy parameter, Ât is the estimated advantage at
time t and Et is the expectation or the average over a batch of samples in an alternation
between exploration and exploitation.

More generally, we want the agent to take actions that will maximise the rewards
it receives from the environment. The reward R(s,a) is used to evaluate how good the
current state-action pair is for the current cabin plus HVAC plus RL agent jointly. The
design process of the reward function is extremely difficult, if the RL agent is not given
the right rewards or it is not receiving enough or not meaningful enough feedback from
the environment it will almost certainly fail to reach the global optimum, or simply
develop a policy that gives a reward for a reason that was not considered in the design
process [Yu+21].

One way to increase the reliability of the model is to carefully define shaped rewards,
the downside is that in doing so the agent may become too constrained in its exploration
of the environment and follow a biased learning path. In this work, the optimisation
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trade off between comfort, energy use and air quality is implemented through the
following reward function, shaped on cabin temperature between two consecutive steps
with a discount factor γ = 0.99 and a scaling factor of 0.1, to guide the learning process
of the RL agent:

R(s, a) = wcRc(s) + wqRq(s)− weRe(s, a) (5.11)

where R represents the reward, s is state, a is action, w is the weight while the c, q, e
subscripts stand for comfort, air quality and energy.

Looking at Equation (5.11), comfort and air quality terms give a positive reward,
while the energy term gives a negative reward. Overall it acts as a penalty, so that the
agent will seek for values that bring R(s, a) close to 0. Each term at right hand side is
normalised, cabin temperature is already scaled in the model. Energy is normalised
between 0 i to 1 in terms of the maximum and minimum values set as control action,
calculated as the sum of heating and cooling energy use [Val+19]. IAQ is instead nor-
malised using a threshold value, 0 if the PM2.5 value is below the WHO 24h maximum
exposure, −1 otherwise. Once the optimal control policy is available, meaning enough
information to do the inference (i.e. convert observations into an sction prediction) is
available, the trained agent be called in the same environment (without performing the
training but using it as a playground) with the step() method. Similarly to what is
shown in Section section 5.3, using the same model and scaler but changing the initial
as well as the boundary conditions if needed.

5.5 Training results

The RL environment in the current configuration completes a traning task in about
10 h on a 32-cores 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz machine. A good
way to benchmark the agent performance in terms of evaluating its ability to learn from
interaction with the cabin environment is to monitor the evolution in time of the reward
value also referred as learning curve. What drives the PPO agent in the policy update
is the maximisation of the received reward, calculated as the sum of the state-action
reward that the agent receives from the environment in a epoch.

We can look at each epoch as a virtual experiment similar to those performed during
the experiments with the real system, but it this case instead of a human operator
following a schedule there is a RL agents setting actuation inputs and measuring the
outcome in terms of comfort, energy use and IAQ in that experiment. The process is
then repeated over a large number of epochs until the agent learns the best set of actions
to take when a certain state of the cabin and HVAC environment is sensed.
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The following learning curves refer to a set of virtual experiments where, after
initialising the state vector and the external conditions, the RL agent explores the control
actions space for 1 epoch, then the environment is re-initialised. Each epoch has a
duration randomly sampled from an exponential distribution with a mean value of 25
minutes. This is meant to reduce the dependency of the results from the duration of
the experiment. Different sets of reward weights were also fixed for the whole duration
of each training experiment. These, together with initial and fixed values are given in
Table 5.5.

Figures 5.13 to 5.20 show the the learning curves for all the set of trials. The general
appearance is not smooth as they all seem to be affected by some kind of disturbance
or noise with an highly unsteady convergence if any. The most promising result are
from trial 12 and 22 where an overall decreasing trend of the reward is observable. Both
trials use a reduced comfort weight suggesting that reducing the constraint on cabin
temperature leads to a still too slow (total simulated training time caps over 2× 106 s or
23 days in most trials) and oscillating but converging reward. Further experiments that
use double the amount of total timesteps show no significant changes in the reward
profile, thus suggesting that doubling the simulated training time does not help the
learning process in this case. In other words seems that the agent is able to do minor or
no improvements to the policy even over a very long period of time. The only other
work in the field shows a coverging learning curve after 100 min of global simulated
time, but it is using data from CWT for the cabin and from a 1D AMESim model for the
HVAC [Che21].

As discussed in section 5.4, designing the right reward function can be an extremely
difficult task, requiring a lot of tuning on time consuming simulations. Moreover, in ML
pipelines there are two additional dimensions along which bugs are common: the actual
model and the data. Those two add up to the classic implementation error dimension
to prune the search space of possible bugs becomes harder [MSA22; Mak+21; MSA20].
With this in mind, there are a number of reasons that could be proposed to explain this
behaviour. Among them we can find the quality of the data collected. If compared with
lab-scale equipment or simulated data, this is still an open issue for LCSs. On top of
that, dealing with variable and not controllable test environment may play a crucial
role in the quality of the model. In fact, real driving data may be more representative of
the vehicle final operating condition but also add an unaccepptable amount of noise
and bias to the model. Another factor that should be taken into account is the amount
of data used to train the model, adding more data may be beneficial for the accuracy
of the prediction. Finally, adding more features to the model is considered beneficial,
given that they are not cross correlated [KJ13].
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Table 5.5: Initial values and reward function weights used in the RL environment in
different trials.

Variable Value

Trial 4 5 11 12 13 14 17 22

Te 1 1 12 17 35 35 35 35
RHe 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
PM25e 100 20 20 20 100 20 20 20
Ti 1 1 1 1 35 35 35 35
RHi 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
PM25i 10 10 10 10 10 10 10 10
Tset 22 22 22 22 24 24 24 24

weights
(0.5,-0.5,0.5) (0.5,-0.5,0.5) (0.5,-0.5,0.2) (0.3,-0.5,0.2) (0.5,-0.5,0.5) (0.5,-0.5,0.5) (0.3,-0.5,0.2) (0.3,-0.5,-0.2)

(c,e,q)

Figure 5.13: Smoothed learning curve for trial 4, heating mode.
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Figure 5.14: Smoothed learning curve for trial 5, heating mode.

Figure 5.15: Smoothed learning curve for trial 11, heating mode.
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Figure 5.16: Smoothed learning curve for trial 12, heating mode.

Figure 5.17: Smoothed learning curve for trial 13, cooling mode.
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Figure 5.18: Smoothed learning curve for trial 14, cooling mode.

Figure 5.19: Smoothed learning curve for trial 17, cooling mode.
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Figure 5.20: Smoothed learning curve for trial 22, cooling mode.

5.6 Chapter summary

In this chapter we showed how to use of the LCSoS to build a ML model of the
cabin and HVAC system, formulate its transient behaviour as a linear state space control
problem and immerse it in a RL environment to investigate the possibility of finding the
best iaq-aware, energy efficient thermal management policy for the vehicle cabin using
the proximal policy optimisation (PPO) algorithm in an OpenAI gym environment.

Conversely from a physics based models the ML model is built directly on real
driving data organised in 15 trials. Meaningful variables for comfort, air quality and
energy use are selected from those available in the dataset and then restructured to
form the input-output variables of a linear state space control problem. After a data
preparation stage, a linear regression model is built on the test set using time series
group splitting. A cross-validation is performed within learning in each super-set of the
train and test set, which gives an average RMSE over all trials of 0.4 %.

To benchmark the ML model, it was progressively detached from train data. The
results regarding actuation imput from data show a relatively good performance in
predicting the first 500 s, while a considerable divergence is observed for successive
timesteps.

A further step away from the data is made coupling the ML cabin and HVAC
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model with a simple bang-bang controller, so that the mathematical model of the
controller sets actuation inputs to the ML model. Results show an overall overshooting
issue indicating that the model is not sensible enough to the actuation or that the PID
constants need further tuning. The steady state behaviour seems reasonable overall for
cabin temperature and humidity, while some unexplainable fluctuation are observed
for PM2.5.

The implementation of a RL environment for the ML model is successfully built, with
a three terms reward function that contributes as a penalty to the total episodic reward.
Results about the learning process for a total of 8 experiment in terms of the mean
reward for each training episode leave a wide margin for improvement. In particular,
only two experiments present an observable learning trend, while the remaining have
an unsteady oscillating profile. Relaxing the comfort weight is shown to be helpful
for a smoother learning process, which suggest further reward function engineering is
needed.



Chapter 6

Conclusions

This thesis addresses the issues associated with one of the main barriers to a greater
penetration of electric vehicles (EVs) in the transportation sector, namely the energy
use due to the Heatin Ventilation and Air Conditioning (HVAC) system operation. In
this context, despite being highly regarded as a solution to reduce dependence on fossil
fuels increasing the share of renewables (SDG 7) and improve community health (SDG
3), there are still several gaps that need to be filled. In order to increase their driving
range or to reduce the mass of the battery (given also the rare and costly materials used
in their construction) is crucial to aim for the best possible thermal management of both
cabin and powertrain, as this can cover up to 30 % of the energy use.

The research started from the human element, with a review of studies regarding
thermal comfort in vehicles that evidentiated the main research direction in this field. Air
quality was also included as a further element of comfort in such enclosed environments
like vehicle cabins. Once defined the starting points, the focus switched to sensing and
modeliing solutions, with one key refrexivity objective in mind, they needed to be as
human-centric and reproducible as possible. The choice of using an open hardware
platform of low-cost sensors (LCS) as well as set of free, open-source software tools did
not came without compromise, but became part of the study itself to some extent. The
data from the LCSs was used to charachterise the cabin together with the HVAC system
and build a fast Machine Learning (ML) model of the vehicle Finally, an optimisation
framework was needed, and as Reinforcement Learning (RL) recently proved to be an
outstanding tool for this purpose, it was used in this work to seek the best compromise
between comfort, air quality and energy use. Besides that, the primitive formulation of
RL as the process of learning by trial and error while interacting with an environment
was inspired by the way living beings learn, thus beautifully closing the loop with the
human element.

In terms of research questions the following findings can be used to answer them:

93
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• Aim 1: Is it possible to build a low-cost system of sensors (LCSoS) capable of
providing good enough data to characterise the cabin environment in terms of
thermal comfort and air quality, without using Climatic Wind Tunnels (CWT) and
lab scale equipment?

– Aim 1.1: Is it possible to demonstrate the metrological capabilities of a low-
cost sensors, particularly IAQ sensing devices, in real driving conditions, thus
enabling its operation in transient, non-uniform and moving environments
such as vehicle cabins?

Yes. The development of a portable LCSoS for thermal and air quality monitoring
and carachterisation in vehicle cabins, was succesfully performed. The system
is capable of high spatiotemporal resolution, with sampling times as low as
5 s. The LCSoS has a typycal coefficient of determination R2 = 0.92. which
can replace or at least reduce the use of rare and expensive facilities like
climatic wind tunnels.

Yes. The LCSoS is suitable for charachterising the cabin with real driving data
as shown in this work. A step towards addressing the lack of quantitative
specification, formulate requirements for mobile applications and condi-
tions of intended use of these devices and their output was addressed.
Results on real parking condition trials show that the systemis able to
quantify a strong effect of recirculation on IAQ and energy use. Cabin
air temperature in some locations of the cabin can differ up to 10 ◦C from
the average in all 18 locations. While recirculation can produce energy
saving of 70 % and 80 % in heating and cooling mode respectively.

• Aim 2: Is it possible to build a fast and accurate model of the cabin without the
use of detailed CFD-1D simulations and CWT data but using a dataset obtained
from LCS in real driving conditions instead?

Yes. A fast, machine learnt thermal and air quality model of an EV cabin in an open
source framework was built, ranging from data gathering, preprocessing,
model training, testing and cross-validation on timeseries data. Results show
that it is possible to build a fast thermal model of an EV cabin with data from
an open source framework. Average scaled RMSE over all trials is ±0.4 %,
while computation time is 0.0077 ms for each second of simulated time on
a laptop computer. Which makes it suitable for near realtime operation. If
compared with measurment data, the model is able to predict pretty well
the first 500 s of simulated time for cabin air temperature, relative humidity
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and PM2.5 concentration. Some divergence is observed after that time even
though the main trend respected. Interaction with bang-bang controller
provides a stable responce of the ML model, leaving room for improvement
on overshoot issue and responsiveness.

• Aim 3: Third aim is to perform the training of the RL agent in Stable Baselines3
with proximal policy optimisation (PPO) to find the optimal thermal management
policy that finds the best trade-off between comfort, air quality and energy use.

Yes. A training environment for the RL algorithm with PPO was built, and a three
factor weighted reward funcion was defined, with the aim of finding the
best compromise between comfort, air quality and energy use. The current
simulation environment takes about 10 h to train the agent on an HPC node.
Only 2 out of 8 experiments show a decreasing trend in the learning curve,
which means the RL agent is able to improve the policy over time while
interacting with the environment. A large oscillation is observed in all the
learning curves, this suggest the agent in not receiving the right reward
signal from the environment, or the model is not representative enough.
Improvement of quantity and quality of data, together with more variables
in the model could help smooting the curve.

6.1 Limitations and future work

Several further actions could be proposed to improve this work building up on its
findings. Among which are:

• Implementation of Teq instead of Ti using low-cost radiant temperature sensors (if
available) for comfort, conserving the model structure

• Use of more structured IAQ index in reward function, for example CAQI instead
of threshold values

• Use more data (trials) and more variables (CO2, TVOC, powertrain, battery) to
train ML model of cabin, HVAC and possibly powertrain all together

• Define a more complex RL environment with more state and action variables to
train RL agent

• Further reward function engineering
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In a scenario where all the improvements above are addressed, and a remote com-
munication channel is available on-board, a practical implementation of this thesis work
would enable to:

• Implement a fast realtime on vehicle ML and offline remote RL training

• Perform a field test with portable RL specific hardware capable of running the
trained agent
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A.1 Appendix - Simulator results for all trials
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A.2 Appendix - Code listings

1 ’’’
2 Import and prepare raw Leaf data into a form suitable for further

processing.
3 Then saves the single trial dataframes in separate csv and pickle files.
4

5 Inspired from the domus project
6

7 @autor: Luigi Russi
8

9

10 HEATING OPERATION
11 ’’’
12

13 import os
14 import pickle
15 import numpy as np
16 from numpy.core.shape_base import block
17 import pandas as pd
18 from pandas.core import indexing
19 from pandas.core.indexes.base import Index
20 from pandas.tseries.offsets import Minute
21 from datetime import datetime , date , time , timezone , timedelta
22

23

24

25 def pp(folder , test_start , duration):
26 ’’’
27 Given a path to NasoInt , NasoExt , CANBUS logs it reads the raw data ,

aligns
28 the datasets , slices according to test setup AC_on and REC. Then

resamples
29 secondly and merges the three dataframes.
30

31 Parameters
32 ----------
33 path (string): path to single test raw data
34

35 test_start (ISO datetime string YYYY -MM -DD hh:mm): time at which AC
is turned on

36

37 duration (int): test duration in minutes
38
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39 Returns
40 -------
41

42 TTT: pandas dataframe
43

44 ’’’
45

46 # define paths
47 path_Ext = folder + "/LOG_NasoExt.CSV"
48 path_Int = folder + "/LOG_NasoInt.CSV"
49 path_Can = folder + "/LOG_CAN.csv"
50

51 # define test setup
52 duration = duration.tolist () # ensure duration is of the type int
53 test_start = pd.to_datetime(test_start)
54 test_end = test_start + timedelta(minutes=duration)
55

56 # import data from NasoExt SD card (datetime in CEST)
57 def import_data_ext ():
58 raw_data_df = pd.read_csv(path_Ext , parse_dates =[
59 [’Date’, ’Time’]], sep=’,’, decimal=’,’,

quotechar=’"’, engine=’python ’, error_bad_lines=False)
60 return raw_data_df
61

62 TE = import_data_ext ()
63 TE.head() # show the first 5 rows of the imported table
64

65 # convert to numeric except datetime
66 TE.rename ({’Date_Time ’: ’DateTime ’}, axis=1, inplace=True)
67 TE[TE.columns [1:]]. apply(pd.to_numeric , downcast=’float’, errors=’

coerce ’)
68

69 # set correct datetime type
70 TE.DateTime = pd.to_datetime(TE.DateTime , errors=’coerce ’)
71

72 TE[’DateTime ’] = TE[’DateTime ’] + timedelta(hours=-1, minutes =0)
73 TE = TE.set_index(TE.DateTime)
74

75 # for some reason humidity is not converted , also lat and long have
wrong separator

76 # let’s force conversion , check with TE.info()
77

78 TE[TE.columns [1:]] = TE[TE.columns [1:]]. astype(’float’)
79

80 # index the series object with datetime column
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81 TE = TE.set_index(TE.DateTime)
82 TE.head()
83

84 # slice dataset
85 TE = TE.loc[(TE.index > test_start) & (TE.index < test_end)]
86

87 # use a rolling average for smoothing
88 # 5 seconds for this dataset (add automation for sample rate

retrievement)
89 sample_rate = 5
90 roll = int (60/ sample_rate)
91 TE_roll = TE.rolling(roll , center=True).mean().dropna ()
92

93 # resample the smoothed dataset with secondly frequency
94 TE_mm = TE_roll.resample(’1s’).mean()
95 TE_mm = TE_mm.interpolate ()
96

97 # import data from NasoInt SD card (datetime in CEST)
98 def import_data_int ():
99 raw_data_df = pd.read_csv(path_Int , parse_dates =[

100 [’Date’, ’Time’]], sep=’,’, decimal=’,’,
quotechar=’"’, engine=’python ’, error_bad_lines=False)

101 return raw_data_df
102

103 TI = import_data_int ()
104 TI.head() # show the first 5 rows of the imported table
105

106 # import DS sensorserial
107

108 DSser = pd.read_csv(’sensorserial.csv’)
109 DSser.rename ({0:’position ’ ,1:’serial ’},inplace=True)
110 TI.rename ({0:’serial ’},inplace=True) # rename first line containing

serials
111

112 # connect naming scheme to serials in TI
113 DSpos=pd.merge(DSser.T.astype(str),TI.T.astype(str),how=’right ’,

left_on=’serial ’,right_on=’serial ’)
114

115 # rename variables accordingly
116 DSpos[’position ’][23:43]
117 newcolname=DSpos[’position ’][23:43]
118 oldcolname=TI.columns [23:43]
119 raw_dict=oldcolname.to_series ().reset_index ().drop(columns=’index ’).

join(newcolname.reset_index ().drop(columns=’index ’))
120 dict=raw_dict.set_index (0).to_dict ()
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121 TI.rename(columns=dict[’position ’],inplace=True)
122 TI.rename(columns ={’Temp(C)’:’FBC’},inplace=True)
123 # clean dataset
124 TI = TI.loc[:, TI.columns.notnull ()] # drop nan column name
125 TI.drop(’serial ’,inplace=True) # drop serial row
126

127 DS = [’FBC’,’BTR’,’BTC’,’BMR’,’BTL’,’BBR’,’BMC’,’BBC’,’BML’,’BBL’]
128

129 # convert to numeric except datetime
130 TI.rename ({’Date_Time ’: ’DateTime ’}, axis=1, inplace=True)
131 TI[TI.columns [1:]]. apply(pd.to_numeric , downcast=’float’, errors=’

coerce ’)
132

133 # set correct datetime type
134 TI.DateTime = pd.to_datetime(TI.DateTime , errors=’coerce ’)
135

136 TI[’DateTime ’] = TI[’DateTime ’]+ timedelta(hours=-1, minutes =0)
137 TI = TI.set_index(TI.DateTime)
138

139 # for some reason humidity is not converted , also lat and long have
wrong separator

140 # let’s force conversion , check with TE.info()
141

142 TI[TI.columns [1:]] = TI[TI.columns [1:]]. astype(’float’)
143

144 # index the series object with datetime column
145 TI = TI.set_index(TI.DateTime)
146

147 # compute mean over DS
148 TI[’T_avg ’]=TI[DS].mean(axis =1)
149

150 TI.head()
151

152 # slice dataset
153 TI = TI.loc[(TI.index > test_start) & (TI.index < test_end)]
154

155 # use a rolling average for smoothing
156 # 5 seconds for this dataset (add automation for sample rate

retrievement)
157 roll = int (60/ sample_rate)
158 TI_roll = TI.rolling(roll , center=True).mean().dropna ()
159

160 # resample the smoothed dataset with secondly frequency
161 TI_mm = TI_roll.resample(’1s’).mean()
162 TI_mm = TI_mm.interpolate ()
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163

164 # import data from CANBUS (datetime in UTC)
165 def import_data_canbus ():
166 raw_data_df = pd.read_csv(path_Can , parse_dates =[
167 ’DateTime ’], sep=’,’, decimal=’.’,

quotechar=’"’, engine=’python ’, error_bad_lines=False)
168 return raw_data_df
169

170 TC = import_data_canbus ()
171

172 TC[’DateTime ’] = TC[’DateTime ’]+ timedelta(hours =1)
173 TC = TC.set_index(TC.DateTime)
174

175 # slice dataset
176 TC = TC.loc[(TC.index > test_start) & (TC.index < test_end)]
177

178 # use a rolling average for smoothing
179 # 5 seconds for this dataset (add automation for sample rate

retrievement)
180 roll = int (60/ sample_rate)
181 TC_roll = TC.rolling(roll , center=True , min_periods =1).mean()
182

183 # resample the smoothed dataset with minutely frequency
184 TC_mm = TC_roll.resample(’1s’).mean()
185 TC_mm = TC_mm.interpolate ()
186

187 # merge the datasets
188 TT = TE_mm.join(TI_mm , how=’inner’, lsuffix=’_TE’, rsuffix=’_TI’)
189 TTT = TT.join(TC_mm , how=’inner ’, lsuffix=’’, rsuffix=’_TA’)
190

191 return TTT
192

193

194 # Define trials specs
195 trials = pd.DataFrame(
196 columns =[’folder ’, ’trial’, ’start_time ’, ’duration ’, ’setpoint ’, ’

distribution ’, ’fan’])
197

198 trials.loc[0] = [’Test_20211123 ’, ’R6’, ’2021 -11 -23 17:49 ’, 42, 20, ’
fresh’, 4]

199 trials.loc[1] = [’Test_20211123 ’, ’R7’, ’2021 -11 -23 18:34 ’, 39, 20, ’rec
’, 4]

200 trials.loc[2] = [’Test_20211124 ’, ’R8’, ’2021 -11 -24 09:36 ’, 44, 16, ’
fresh’, 4]

201 trials.loc[3] = [’Test_20211214 ’, ’N5’, ’2021 -12 -14 17:00 ’, 32, 16, ’
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rec’, 4]
202 trials.loc[4] = [’Test_20211214 ’, ’N6’, ’2021 -12 -14 17:33 ’, 26, 16, ’

rec’, 1]
203 trials.loc[5] = [’Test_20211214 ’, ’N7’, ’2021 -12 -14 18:00 ’, 29, 20, ’

rec’, 1]
204 trials.loc[6] = [’Test_20211214 ’, ’N8’, ’2021 -12 -14 18:30 ’, 30, 25, ’

rec’, 4]
205

206

207 for i in range(len(trials)):
208

209 # execute pp() function
210 TTT = pp(trials.loc[i, ’folder ’], trials.loc[i, ’start_time ’],

trials.loc[i, ’duration ’])
211 # save to pickle and csv
212 pickle.dump(TTT , open(’trials/’ + trials.loc[i, ’trial’] + ’-data.

pickle ’, ’wb’))
213 TTT.to_csv(’trials/’ + trials.loc[i, ’trial’] + ’-data.csv’,

encoding=’utf -8’)
214

215

216 print(’Done.’)

Listing A.1: Import and prepare data from the LCSoS heating trials.

1 ’’’
2 Import and prepare raw Leaf data into a form suitable for further

processing.
3 Then saves the single trial dataframes in separate csv and pickle files.
4

5 Inspired from the domus project
6

7 @autor: Luigi Russi
8

9 Make sure python process runs in this directory , use run -python from
this buffer.

10

11 COOLING OPERATION
12 ’’’
13

14 import os
15 import pickle
16 import numpy as np
17 from numpy.core.shape_base import block
18 import pandas as pd
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19 from pandas.core import indexing
20 from pandas.core.indexes.base import Index
21 from pandas.tseries.offsets import Minute
22 from datetime import datetime , date , time , timezone , timedelta
23

24

25

26 def pp(folder , test_start , duration):
27 ’’’
28 Given a path to NasoInt , NasoExt , CANBUS logs it reads the raw data ,

aligns
29 the datasets , slices according to test setup AC_on and REC. Then

resamples
30 secondly and merges the three dataframes.
31

32 Parameters
33 ----------
34 path (string): path to single test raw data
35

36 test_start (ISO datetime string YYYY -MM -DD hh:mm): time at which AC
is turned on

37

38 duration (int): test duration in minutes
39

40 Returns
41 -------
42

43 TTT: pandas dataframe
44

45 ’’’
46

47 # define paths
48 path_Ext = folder + "/LOG_NasoExt.CSV"
49 path_Int = folder + "/LOG_NasoInt.CSV"
50 path_Can = folder + "/LOG_CAN.csv"
51 path_Sun = folder + "/LOG_Sun.csv"
52

53 # define test setup
54 duration = duration.tolist () # ensure duration is of the type int
55 test_start = pd.to_datetime(test_start)
56 test_end = test_start + timedelta(minutes=duration)
57

58 # import data from NasoExt SD card (datetime in CEST)
59 def import_data_ext ():
60 raw_data_df = pd.read_csv(path_Ext , parse_dates =[
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61 [’Date’, ’Time’]], sep=’,’, decimal=’,’,
quotechar=’"’, engine=’python ’, error_bad_lines=False)

62 return raw_data_df
63

64 TE = import_data_ext ()
65 TE.head() # show the first 5 rows of the imported table
66

67 # convert to numeric except datetime
68 TE.rename ({’Date_Time ’: ’DateTime ’}, axis=1, inplace=True)
69 TE[TE.columns [1:]]. apply(pd.to_numeric , downcast=’float’, errors=’

coerce ’)
70

71 # set correct datetime type
72 TE.DateTime = pd.to_datetime(TE.DateTime , errors=’coerce ’)
73

74 TE[’DateTime ’] = TE[’DateTime ’] + timedelta(hours=0, minutes =0)
75 TE = TE.set_index(TE.DateTime)
76

77 # for some reason humidity is not converted , also lat and long have
wrong separator

78 # let’s force conversion , check with TE.info()
79

80 TE[TE.columns [1:]] = TE[TE.columns [1:]]. astype(’float’)
81

82 # index the series object with datetime column
83 TE = TE.set_index(TE.DateTime)
84 TE.head()
85

86 # slice dataset
87 TE = TE.loc[(TE.index > test_start) & (TE.index < test_end)]
88

89 # use a rolling average for smoothing
90 # 5 seconds for this dataset (add automation for sample rate

retrievement)
91 sample_rate = 5
92 roll = int (60/ sample_rate)
93 TE_roll = TE.rolling(roll , center=True).mean().dropna ()
94

95 # resample the smoothed dataset with secondly frequency
96 TE_mm = TE_roll.resample(’1s’).mean()
97 TE_mm = TE_mm.interpolate ()
98

99 # import data from NasoInt SD card (datetime in CEST)
100 def import_data_int ():
101 raw_data_df = pd.read_csv(path_Int , parse_dates =[



A.2. APPENDIX - CODE LISTINGS 114

102 [’Date’, ’Time’]], sep=’,’, decimal=’,’,
quotechar=’"’, engine=’python ’, error_bad_lines=False)

103 return raw_data_df
104

105 TI = import_data_int ()
106 TI.head() # show the first 5 rows of the imported table
107

108 # import DS sensorserial
109

110 DSser = pd.read_csv(’sensorserial.csv’)
111 DSser.rename ({0:’position ’ ,1:’serial ’},inplace=True)
112 TI.rename ({0:’serial ’},inplace=True) # rename first line containing

serials
113

114 # connect naming scheme to serials in TI
115 DSpos=pd.merge(DSser.T.astype(str),TI.T.astype(str),how=’right ’,

left_on=’serial ’,right_on=’serial ’)
116

117 # rename variables accordingly
118 DSpos[’position ’][23:43]
119 newcolname=DSpos[’position ’][23:43]
120 oldcolname=TI.columns [23:43]
121 raw_dict=oldcolname.to_series ().reset_index ().drop(columns=’index ’).

join(newcolname.reset_index ().drop(columns=’index ’))
122 dict=raw_dict.set_index (0).to_dict ()
123 TI.rename(columns=dict[’position ’],inplace=True)
124 TI.rename(columns ={’Temp(C)’:’FBC’},inplace=True)
125 # clean dataset
126 TI = TI.loc[:, TI.columns.notnull ()] # drop nan column name
127 TI.drop(’serial ’,inplace=True) # drop serial row
128

129 DS = [’FBC’,’BTR’,’BTC’,’BMR’,’BTL’,’BBR’,’BMC’,’BBC’,’BML’,’BBL’]
130

131 # convert to numeric except datetime
132 TI.rename ({’Date_Time ’: ’DateTime ’}, axis=1, inplace=True)
133 TI[TI.columns [1:]]. apply(pd.to_numeric , downcast=’float’, errors=’

coerce ’)
134

135 # set correct datetime type
136 TI.DateTime = pd.to_datetime(TI.DateTime , errors=’coerce ’)
137

138 TI[’DateTime ’] = TI[’DateTime ’]+ timedelta(hours=0, minutes =0)
139 TI = TI.set_index(TI.DateTime)
140

141 # for some reason humidity is not converted , also lat and long have



A.2. APPENDIX - CODE LISTINGS 115

wrong separator
142 # let’s force conversion , check with TE.info()
143

144 TI[TI.columns [1:]] = TI[TI.columns [1:]]. astype(’float’)
145

146 # index the series object with datetime column
147 TI = TI.set_index(TI.DateTime)
148

149 # compute mean over DS
150 TI[’T_avg ’] = TI[DS].mean(axis =1)
151

152 TI.head()
153

154 # slice dataset
155 TI = TI.loc[(TI.index > test_start) & (TI.index < test_end)]
156

157 # use a rolling average for smoothing
158 # 5 seconds for this dataset (add automation for sample rate

retrievement)
159 roll = int (60/ sample_rate)
160 TI_roll = TI.rolling(roll , center=True).mean().dropna ()
161

162 # resample the smoothed dataset with secondly frequency
163 TI_mm = TI_roll.resample(’1s’).mean()
164 TI_mm = TI_mm.interpolate ()
165

166 # import data from CANBUS (datetime in UTC)
167 def import_data_canbus ():
168 raw_data_df = pd.read_csv(path_Can , sep=’;’, decimal=’.’,

quotechar=’"’, engine=’python ’, error_bad_lines=False)
169 return raw_data_df
170

171 # drop nan columns
172 TC = import_data_canbus ().dropna(axis =1)
173

174 # set corret datetime import format
175 TC[’DateTime ’] = pd.to_datetime(TC.loc[:, ’DateTime ’], format=’%d-%m

-%Y %H:%M:%S.%f’)
176

177 # adjust to Bologna local time
178 TC[’DateTime ’] = TC[’DateTime ’]+ timedelta(hours =+2)
179 TC = TC.set_index(TC.DateTime).sort_index(ascending=True)
180

181 # slice dataset
182 TC = TC.loc[(TC.index > test_start) & (TC.index < test_end)]
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183

184 # use a rolling average for smoothing
185 # 5 seconds for this dataset (add automation for sample rate

retrievement)
186 roll = int (60/ sample_rate)
187 TC_roll = TC.rolling(roll , center=True , min_periods =1).mean()
188

189 # resample the smoothed dataset with secondly frequency
190 TC_mm = TC_roll.resample(’1s’).mean()
191 TC_mm = TC_mm.interpolate ()
192

193 # import data from Solar sensor (datetime in CEST)
194 def import_data_solar ():
195 raw_data_df = pd.read_csv(path_Sun , parse_dates =[
196 [’Date’,’Time’]], usecols =[’Date’,’Time’,’Irr’], sep=’,’,

quotechar=’"’, engine=’c’, on_bad_lines=’skip’)
197 return raw_data_df
198

199 TS = import_data_solar ().dropna ()
200

201 # set correct datetime type
202 datetime = pd.to_datetime(TS.loc[:, ’Date_Time ’], format=’%d.%m.%y %

H:%M:%S’)
203 TS[’DateTime ’] = datetime
204

205 # convert to numeric except datetime
206 Irr = TS[’Irr’].str.replace(’<’, ’’).apply(pd.to_numeric , downcast=’

float’, errors=’coerce ’)
207 TS[’Irr’] = Irr
208

209 TS[’DateTime ’] = TS[’DateTime ’]+ timedelta(hours=0, minutes =55)
210 TS = TS.set_index(TS.DateTime)
211

212 TS = TS.drop(columns =[’Date_Time ’, ’DateTime ’])
213

214 # slice dataset
215 TS = TS.loc[(TS.index > test_start) & (TS.index < test_end)]
216

217 # use a rolling average for smoothing
218 # 60 seconds for this dataset (add automation for sample rate

retrievement)
219 roll = int(3) # rolling average over 5 minutes
220 TS_roll = TS.rolling(roll , center=True , min_periods =1).mean()
221

222 # resample the smoothed dataset with secondly frequency
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223 TS_mm = TS_roll.resample(’1s’).mean()
224 TS_mm = TS_mm.interpolate ()
225

226 # merge the datasets
227 TT = TE_mm.join(TI_mm , how=’inner’, lsuffix=’_TE’, rsuffix=’_TI’)
228 TTT = TT.join(TC_mm , how=’inner ’, lsuffix=’’, rsuffix=’_TC’)
229 TTTT = TTT.join(TS_mm , how=’inner’, lsuffix=’’, rsuffix=’TS’)
230

231 return TTTT , TTT , TT, TE, TI , TC, TS
232

233

234 # Define trials specs
235 trials = pd.DataFrame(
236 columns =[’folder ’, ’trial’, ’start_time ’, ’duration ’, ’setpoint ’, ’

distribution ’, ’fan’])
237

238 trials.loc[0] = [’Test_20221007 ’, ’RC1’, ’2022 -10 -07 12:56 ’, 27, 16, ’
rec’, 1]

239 trials.loc[1] = [’Test_20221007 ’, ’RC2’, ’2022 -10 -07 13:28 ’, 25, 16, ’
fresh’, 1]

240 trials.loc[2] = [’Test_20221007 ’, ’RC3’, ’2022 -10 -07 13:58 ’, 25, 20, ’
rec’, 1]

241 trials.loc[3] = [’Test_20221007 ’, ’RC4’, ’2022 -10 -07 14:31 ’, 26, 20, ’
fresh’, 1]

242 trials.loc[4] = [’Test_20221007 ’, ’RC5’, ’2022 -10 -07 15:02 ’, 25, 16, ’
rec’, 4]

243 trials.loc[5] = [’Test_20221007 ’, ’RC6’, ’2022 -10 -07 15:37 ’, 23, 16, ’
fresh’, 4]

244 trials.loc[6] = [’Test_20221007 ’, ’RC7’, ’2022 -10 -07 16:06 ’, 28, 20, ’
rec’, 4]

245 trials.loc[7] = [’Test_20221007 ’, ’RC8’, ’2022 -10 -07 16:45 ’, 25, 20, ’
fresh’, 4]

246

247

248 for i in range(len(trials)):
249

250 # execute pp() function
251 # return all the values but save only TTTT in each loop
252 TTTT , TTT , TT , TE, TI, TC , TS = pp(trials.loc[i, ’folder ’], trials.

loc[i, ’start_time ’], trials.loc[i, ’duration ’])
253 # save to pickle and csv
254 pickle.dump(TTTT , open(’../ trials/’ + trials.loc[i, ’trial’] + ’-

data.pickle ’, ’wb’))
255 TTTT.to_csv(’../ trials/’ + trials.loc[i, ’trial ’] + ’-data.csv’,

encoding=’utf -8’)
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256

257

258 print(’Done.’)

Listing A.2: Import and prepare data from the LCSoS heating trials.

A.3 Appendix - Domus code listings

THe following codes from the Domus project were used or adapted to this work’s
study case [23; Bru21b; Bru21a]:

1 """ harness.py
2

3 Author
4 ------
5 J. Brusey
6

7 Date
8 ----
9 May 27, 2021

10

11 Description
12 -----------
13

14 Connect simulators and controller together and run for a certain
15 number of timesteps under specific conditions.
16

17 """
18

19

20 import joblib
21 import numpy as np
22 import pkg_resources
23

24 from .cols import (
25 DV0_UT_COLUMNS ,
26 DV0_UT_MAX ,
27 DV0_UT_MIN ,
28 DV0_XT_COLUMNS ,
29 DV1_UT_COLUMNS ,
30 DV1_UT_MAX ,
31 DV1_UT_MIN ,
32 DV1_XT_COLUMNS ,
33 HVAC_UT_COLUMNS ,
34 HVAC_UT_MAX ,
35 HVAC_UT_MIN ,
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36 HVAC_XT_COLUMNS ,
37 DV0Ut ,
38 DV0Xt ,
39 DV1Ut ,
40 DV1Xt ,
41 HvacUt ,
42 HvacXt ,
43 )
44 from .mlsim import MLSim
45 from .simple_hvac import SimpleHvac
46 from .util import kw_to_array
47

48

49 def estimate_cabin_temperature_dv0(b_x):
50 """ estimate the cabin temperature based on the average front bench

temperatures.
51 Assumes DV0 model
52 """
53 assert len(b_x) == len(DV0Xt)
54 return np.mean(
55 b_x[
56 [
57 DV0Xt.t_drvr1 ,
58 DV0Xt.t_drvr2 ,
59 DV0Xt.t_drvr3 ,
60 DV0Xt.t_psgr1 ,
61 DV0Xt.t_psgr2 ,
62 DV0Xt.t_psgr3 ,
63 DV0Xt.m_drvr1 ,
64 DV0Xt.m_drvr2 ,
65 DV0Xt.m_drvr3 ,
66 DV0Xt.m_psgr1 ,
67 DV0Xt.m_psgr2 ,
68 DV0Xt.m_psgr3 ,
69 ]
70 ]
71 )
72

73

74 def estimate_cabin_temperature_dv1(b_x):
75 """ estimate the cabin temperature based on the average front bench

temperatures.
76 Assumes DV1 model
77 """
78 assert len(b_x) == len(DV1Xt)
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79 return np.mean(
80 b_x[
81 [
82 DV1Xt.t_drvr1 ,
83 DV1Xt.t_drvr2 ,
84 DV1Xt.t_drvr3 ,
85 DV1Xt.t_psgr1 ,
86 DV1Xt.t_psgr2 ,
87 DV1Xt.t_psgr3 ,
88 DV1Xt.m_drvr1 ,
89 DV1Xt.m_drvr2 ,
90 DV1Xt.m_drvr3 ,
91 DV1Xt.m_psgr1 ,
92 DV1Xt.m_psgr2 ,
93 DV1Xt.m_psgr3 ,
94 ]
95 ]
96 )
97

98

99 def update_control_inputs_dv0(c_u , b_x , h_x , cab_t):
100 """ update control vector based on cabin , hvac , and front bench

temperatures.
101 Assumes DV0 model.
102 """
103 c_u[SimpleHvac.Ut.cabin_temperature] = cab_t
104

105 c_u[SimpleHvac.Ut.window_temperature] = b_x[DV0Xt.ws]
106

107 c_u[[ SimpleHvac.Ut.cabin_humidity , SimpleHvac.Ut.vent_temperature ]]
= h_x[

108 [HvacXt.cab_RH , HvacXt.vent_T]
109 ]
110

111

112 def update_control_inputs_dv1(c_u , b_x , h_x , cab_t):
113 """ update control vector based on cabin , hvac , and front bench

temperatures.
114 Assumes DV1 model.
115 """
116 c_u[SimpleHvac.Ut.cabin_temperature] = cab_t
117

118 c_u[SimpleHvac.Ut.window_temperature] = b_x[DV1Xt.ws]
119
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120 c_u[[ SimpleHvac.Ut.cabin_humidity , SimpleHvac.Ut.vent_temperature ]]
= h_x[

121 [HvacXt.cab_RH , HvacXt.vent_T]
122 ]
123

124

125 def update_hvac_inputs(h_u , c_x , cab_t):
126 """ update hvac input vector based on control , cabin , and front bench

temperatures."""
127 h_u[HvacUt.cab_T] = cab_t
128

129 h_u[
130 [
131 HvacUt.blw_power ,
132 HvacUt.cmp_power ,
133 HvacUt.hv_heater ,
134 HvacUt.fan_power ,
135 HvacUt.recirc ,
136 ]
137 ] = c_x[
138 [
139 SimpleHvac.Xt.blower_level ,
140 SimpleHvac.Xt.compressor_power ,
141 SimpleHvac.Xt.heater_power ,
142 SimpleHvac.Xt.fan_power ,
143 SimpleHvac.Xt.recirc ,
144 ]
145 ]
146

147

148 def update_dv0_inputs(b_u , h_x , c_x):
149 """ update dv0 input vector b_u based on hvac state h_x and control

state c_x."""
150 b_u[[DV0Ut.t_HVACMain , DV0Ut.v_HVACMain ,]] = h_x[
151 [
152 HvacXt.vent_T ,
153 HvacXt.evp_mdot ,
154 ]
155 ]
156

157 b_u[[DV0Ut.recirc , DV0Ut.dist_defrost ]] = c_x[
158 [SimpleHvac.Xt.recirc , SimpleHvac.Xt.dist_defrost]
159 ]
160

161
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162 def update_dv1_inputs(b_u , h_x , c_x):
163 """ update dv1 input vector b_u based on hvac state h_x and control

state c_x."""
164 b_u[
165 [
166 DV1Ut.new_air_mode_Floor_SO_Defrost ,
167 DV1Ut.seat_off ,
168 ]
169 ] = [1, 1]
170

171 b_u[[DV1Ut.HvacMain ,]] = h_x[
172 [
173 HvacXt.vent_T ,
174 ]
175 ]
176

177 b_u[[DV1Ut.recirc , DV1Ut.window_heating , DV1Ut.dist_defrost ]] = c_x[
178 [SimpleHvac.Xt.recirc , SimpleHvac.Xt.window_heating , SimpleHvac.

Xt.dist_defrost]
179 ]
180 # simplification to get dv1 working
181 b_u[DV1Ut.vent_flow_rate] = np.interp(
182 c_x[SimpleHvac.Xt.blower_level],
183 np.array ([5, 10, 18], dtype=np.float32) * 17 + 94,
184 np.array ([1, 3, 5], dtype=np.float32),
185 )
186

187

188 def load_dv0 ():
189 fname = pkg_resources.resource_filename(__name__ , "model /3d_lr.

joblib")
190 scaler_and_model = joblib.load(fname)
191

192 return scaler_and_model
193

194

195 def load_dv1 ():
196 fname = pkg_resources.resource_filename(__name__ , "model/dv1_lr.

joblib")
197 scaler_and_model = joblib.load(fname)
198

199 return scaler_and_model
200

201

202 def load_hvac ():
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203 fname = pkg_resources.resource_filename(__name__ , "model/hvac_lr.
joblib")

204 scaler_and_model = joblib.load(fname)
205

206 return scaler_and_model
207

208

209 def make_dv0_sim(scaler_and_model , cabin_state):
210 return MLSim(
211 scaler_and_model ,
212 initial_state=np.vstack ([ cabin_state] * 2),
213 xlag=2,
214 ulag=2,
215 xlen=len(DV0_XT_COLUMNS),
216 ulen=len(DV0_UT_COLUMNS),
217 ut_min=DV0_UT_MIN ,
218 ut_max=DV0_UT_MAX ,
219 )
220

221

222 def make_dv1_sim(scaler_and_model , cabin_state):
223 return MLSim(
224 scaler_and_model ,
225 initial_state=np.vstack ([ cabin_state ]),
226 xlag=1,
227 ulag=1,
228 xlen=len(DV1_XT_COLUMNS),
229 ulen=len(DV1_UT_COLUMNS),
230 ut_min=DV1_UT_MIN ,
231 ut_max=DV1_UT_MAX ,
232 )
233

234

235 def make_hvac_sim(scaler_and_model , hvac_state):
236 return MLSim(
237 scaler_and_model ,
238 initial_state=np.vstack ([ hvac_state ]),
239 xlag=1,
240 ulag=1,
241 xlen=len(HVAC_XT_COLUMNS),
242 ulen=len(HVAC_UT_COLUMNS),
243 ut_min=HVAC_UT_MIN ,
244 ut_max=HVAC_UT_MAX ,
245 )
246
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247

248 def run_dv0_sim(
249 dv0_scaler_and_model ,
250 hvac_scaler_and_model ,
251 controller ,
252 setpoint ,
253 n,
254 ambient_t ,
255 ambient_rh ,
256 cabin_t ,
257 cabin_v ,
258 cabin_rh ,
259 solar1 ,
260 solar2 ,
261 car_speed ,
262 log_inputs=False ,
263 ):
264 b_x = kw_to_array(
265 DV0_XT_COLUMNS ,
266 t_drvr1=cabin_t ,
267 t_drvr2=cabin_t ,
268 t_drvr3=cabin_t ,
269 t_psgr1=cabin_t ,
270 t_psgr2=cabin_t ,
271 t_psgr3=cabin_t ,
272 t_psgr21=cabin_t ,
273 t_psgr22=cabin_t ,
274 t_psgr23=cabin_t ,
275 t_psgr31=cabin_t ,
276 t_psgr32=cabin_t ,
277 t_psgr33=cabin_t ,
278 v_drvr1=cabin_v ,
279 v_drvr2=cabin_v ,
280 v_drvr3=cabin_v ,
281 v_psgr1=cabin_v ,
282 v_psgr2=cabin_v ,
283 v_psgr3=cabin_v ,
284 v_psgr21=cabin_v ,
285 v_psgr22=cabin_v ,
286 v_psgr23=cabin_v ,
287 v_psgr31=cabin_v ,
288 v_psgr32=cabin_v ,
289 v_psgr33=cabin_v ,
290 m_drvr1=cabin_t ,
291 m_drvr2=cabin_t ,
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292 m_drvr3=cabin_t ,
293 m_psgr1=cabin_t ,
294 m_psgr2=cabin_t ,
295 m_psgr3=cabin_t ,
296 m_psgr21=cabin_t ,
297 m_psgr22=cabin_t ,
298 m_psgr23=cabin_t ,
299 m_psgr31=cabin_t ,
300 m_psgr32=cabin_t ,
301 m_psgr33=cabin_t ,
302 rhc=cabin_rh ,
303 ws=cabin_t ,
304 )
305 h_x = kw_to_array(
306 HVAC_XT_COLUMNS , cab_RH=cabin_rh , evp_mdot=cabin_v , vent_T=

cabin_t
307 )
308

309 cabin_mlsim = make_dv0_sim(dv0_scaler_and_model , b_x)
310

311 hvac_mlsim = make_hvac_sim(hvac_scaler_and_model , h_x)
312

313 cabin = np.zeros ((n, len(b_x)), dtype=np.float32)
314 cabin [0] = b_x
315 hvac = np.zeros((n, len(h_x)), dtype=np.float32)
316 hvac [0] = h_x
317 ctrl = np.zeros((n, len(SimpleHvac.Xt)), dtype=np.float32)
318 c_u = np.zeros((len(controller.Ut)), dtype=np.float32)
319 c_u[controller.Ut.setpoint] = setpoint
320 h_u = np.zeros((len(HvacUt)), dtype=np.float32)
321 h_u[[ HvacUt.ambient , HvacUt.humidity , HvacUt.solar , HvacUt.speed]] =

[
322 ambient_t ,
323 ambient_rh ,
324 solar1 ,
325 car_speed ,
326 ]
327 b_u = np.zeros((len(DV0Ut)), dtype=np.float32)
328 b_u[
329 [
330 DV0Ut.t_a ,
331 DV0Ut.rh_a ,
332 DV0Ut.rad1 ,
333 DV0Ut.rad2 ,
334 DV0Ut.VehicleSpeed ,



A.3. APPENDIX - DOMUS CODE LISTINGS 126

335 ]
336 ] = [ambient_t , ambient_rh , solar1 , solar2 , car_speed / 100 *

27.778]
337 if log_inputs:
338 b_u_log = np.zeros((n, len(b_u)), dtype=np.float32)
339 h_u_log = np.zeros((n, len(h_u)), dtype=np.float32)
340 c_u_log = np.zeros((n, len(c_u)), dtype=np.float32)
341 for i in range(n):
342 # average temperature over front bench
343 cab_t = estimate_cabin_temperature_dv0(b_x)
344 update_control_inputs_dv0(c_u , b_x , h_x , cab_t)
345 # print(c_u , cab_t)
346 c_x = controller.step(c_u)
347

348 # drive HVAC
349 update_hvac_inputs(h_u , c_x , cab_t)
350 # print(h_u)
351 _, h_x = hvac_mlsim.step(h_u)
352 # print(h_x)
353 # if h_x[HvacXt.evp_mdot] < 0:
354 # h_x[HvacXt.evp_mdot] = 0
355 # drive cabin
356 update_dv0_inputs(b_u , h_x , c_x)
357 _, b_x = cabin_mlsim.step(b_u)
358 cabin[i] = b_x
359 hvac[i] = h_x
360 ctrl[i] = c_x
361 if log_inputs:
362 b_u_log[i] = b_u
363 h_u_log[i] = h_u
364 c_u_log[i] = c_u
365

366 if log_inputs:
367 return cabin , hvac , ctrl , b_u_log , h_u_log , c_u_log
368 else:
369 return cabin , hvac , ctrl
370

371

372 def run_dv1_sim(
373 dv1_scaler_and_model ,
374 hvac_scaler_and_model ,
375 controller ,
376 setpoint ,
377 n,
378 ambient_t ,
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379 ambient_rh ,
380 cabin_t ,
381 cabin_v ,
382 cabin_rh ,
383 solar1 ,
384 solar2 ,
385 car_speed ,
386 log_inputs=False ,
387 ):
388 b_x = kw_to_array(
389 DV1_XT_COLUMNS ,
390 t_drvr1=cabin_t ,
391 t_drvr2=cabin_t ,
392 t_drvr3=cabin_t ,
393 t_psgr1=cabin_t ,
394 t_psgr2=cabin_t ,
395 t_psgr3=cabin_t ,
396 t_psgr21=cabin_t ,
397 t_psgr22=cabin_t ,
398 t_psgr23=cabin_t ,
399 t_psgr31=cabin_t ,
400 t_psgr32=cabin_t ,
401 t_psgr33=cabin_t ,
402 v_drvr1=cabin_v ,
403 v_drvr2=cabin_v ,
404 v_drvr3=cabin_v ,
405 v_psgr1=cabin_v ,
406 v_psgr2=cabin_v ,
407 v_psgr3=cabin_v ,
408 v_psgr21=cabin_v ,
409 v_psgr22=cabin_v ,
410 v_psgr23=cabin_v ,
411 v_psgr31=cabin_v ,
412 v_psgr32=cabin_v ,
413 v_psgr33=cabin_v ,
414 m_drvr1=cabin_t ,
415 m_drvr2=cabin_t ,
416 m_drvr3=cabin_t ,
417 m_psgr1=cabin_t ,
418 m_psgr2=cabin_t ,
419 m_psgr3=cabin_t ,
420 m_psgr21=cabin_t ,
421 m_psgr22=cabin_t ,
422 m_psgr23=cabin_t ,
423 m_psgr31=cabin_t ,
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424 m_psgr32=cabin_t ,
425 m_psgr33=cabin_t ,
426 rhc=cabin_rh ,
427 ws=cabin_t ,
428 )
429 h_x = kw_to_array(
430 HVAC_XT_COLUMNS , cab_RH=cabin_rh , evp_mdot=cabin_v , vent_T=

cabin_t
431 )
432

433 cabin_mlsim = make_dv1_sim(dv1_scaler_and_model , b_x)
434

435 hvac_mlsim = make_hvac_sim(hvac_scaler_and_model , h_x)
436

437 cabin = np.zeros ((n, len(b_x)), dtype=np.float32)
438 cabin [0] = b_x
439 hvac = np.zeros((n, len(h_x)), dtype=np.float32)
440 hvac [0] = h_x
441 ctrl = np.zeros((n, len(SimpleHvac.Xt)), dtype=np.float32)
442 c_u = np.zeros((len(controller.Ut)), dtype=np.float32)
443 c_u[controller.Ut.setpoint] = setpoint
444 h_u = np.zeros((len(HvacUt)), dtype=np.float32)
445 h_u[[ HvacUt.ambient , HvacUt.humidity , HvacUt.solar , HvacUt.speed]] =

[
446 ambient_t ,
447 ambient_rh ,
448 solar1 ,
449 car_speed ,
450 ]
451 b_u = np.zeros((len(DV1Ut)), dtype=np.float32)
452 b_u[
453 [
454 DV1Ut.t_a ,
455 DV1Ut.rh_a ,
456 DV1Ut.rad1 ,
457 DV1Ut.rad2 ,
458 DV1Ut.VehicleSpeed ,
459 ]
460 ] = [ambient_t , ambient_rh , solar1 , solar2 , car_speed / 100 *

27.778]
461

462 if log_inputs:
463 b_u_log = np.zeros((n, len(b_u)), dtype=np.float32)
464 h_u_log = np.zeros((n, len(h_u)), dtype=np.float32)
465 c_u_log = np.zeros((n, len(c_u)), dtype=np.float32)
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466 for i in range(n):
467 # average temperature over front bench
468 cab_t = estimate_cabin_temperature_dv1(b_x)
469 update_control_inputs_dv1(c_u , b_x , h_x , cab_t)
470 c_x = controller.step(c_u)
471

472 # drive HVAC
473 update_hvac_inputs(h_u , c_x , cab_t)
474 _, h_x = hvac_mlsim.step(h_u)
475 update_dv1_inputs(b_u , h_x , c_x)
476 _, b_x = cabin_mlsim.step(b_u)
477 cabin[i] = b_x
478 hvac[i] = h_x
479 ctrl[i] = c_x
480 if log_inputs:
481 b_u_log[i] = b_u
482 h_u_log[i] = h_u
483 c_u_log[i] = c_u
484

485 if log_inputs:
486 return cabin , hvac , ctrl , b_u_log , h_u_log , c_u_log
487 else:
488 return cabin , hvac , ctrl

Listing A.3: Connector between stepped objects.

1 """
2

3 mlsim
4

5

6 Author
7 ------
8 J. Brusey
9

10 Date
11 ----
12 4-March -2021
13

14

15 MLSim class that packages up a machine learnt model and scaler.
16

17 """
18

19



A.3. APPENDIX - DOMUS CODE LISTINGS 130

20 import numpy as np
21

22 from .partial_scaler import PartialScaler
23

24

25 class MLSim:
26 """ Discrete time simulator derived from machine -learnt model.
27

28 The idea of this class is to wrap up the ML simulator and deal
29 with scaling , lagged state and actions , and differing intervals to
30 make the simulator easier to call. The initial state and prior
31 actions are provided to the constructor and then the simulator can
32 be run by successive calls to ~step~.
33

34 """
35

36 def __init__(
37 self ,
38 scaler_and_model ,
39 initial_state ,
40 xlag ,
41 ulag ,
42 xlen ,
43 ulen ,
44 interval=1,
45 initial_clock =0,
46 prior_actions=None ,
47 ut_min=None ,
48 ut_max=None ,
49 ):
50 """ construct a simulator object
51

52 Parameters
53 ----------
54 scaler_and_model : tuple
55

56 tuple containing scaler and model. The scaler transforms the
57 combined x, u vector , while model provides a single step
58 simulator for scaled values.
59

60 initial_state : array -like
61

62 vector containing initial state. Can also be a 2D array of
63 xlag vectors for more complete initialisation. If only a
64 single vector is supplied , that vector is replicated xlag
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65 times to make up the initial state.
66

67 xlag : integer
68

69 number of lagged state values. This must match the
70 parameters used to develop the model
71

72 ulag : integer
73

74 number of lagged control values. This must match the
75 parameters used to develop the model
76

77 xlen : integer
78

79 length of the state vector
80

81 ulen : integer
82

83 length of the control vector
84

85 interval : integer
86

87 time interval that the simulator was developed using , in
88 seconds
89

90 initial_clock : integer
91

92 initial clock value so that first step will have time
93 initial_clock + interval
94

95 prior_actions : array
96

97 ulag - 1 actions
98

99 ut_min : array
100

101 action array minimum values (used for clipping)
102

103 ut_max : array
104

105 action array maximum values (used for clipping)
106

107 """
108 scaler , self.model = scaler_and_model
109 self.xt = initial_state
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110 assert initial_state.shape == (xlag , xlen)
111 self.xlag = xlag
112 self.ulag = ulag
113 self.xlen = xlen
114 self.ulen = ulen
115 self.interval = interval
116 self.clock = initial_clock
117 self.prior_actions = prior_actions
118 self.first = True
119 self.x_scaler = PartialScaler(scaler , 0, xlen , xlen + ulen)
120 self.u_scaler = PartialScaler(scaler , xlen , xlen + ulen , xlen +

ulen)
121 self.xt = self.x_scaler.transform(self.xt)
122 self.ut_min = ut_min
123 self.ut_max = ut_max
124 assert (ut_min is None) == (ut_max is None)
125

126 def step(self , ut):
127 """ simulate a single time step
128

129 Given the current state history given by ~xt~ and current
130 control history ~ut~
131

132 Parameters
133 ----------
134

135 ut : array -like
136

137 control input for current time step
138

139 Returns
140 -------
141

142 (time , state vector at end of time step)
143

144 """
145 ut = np.array(ut , dtype=np.float32).reshape(1, -1)
146 if self.ut_min is not None and self.ut_max is not None:
147 ut = np.clip(ut , self.ut_min , self.ut_max)
148 ut = self.u_scaler.transform(ut)
149 assert self.xt.shape [0] == self.xlag
150 assert self.xt.shape [1] == self.xlen
151 if self.first:
152 # for first step , assume that the same control inputs were
153 # used for all previous steps
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154 if self.prior_actions is not None:
155 self.ut = np.vstack ([self.u_scaler.transform(self.

prior_actions), ut])
156 else:
157 self.ut = np.vstack ([ut] * (self.ulag))
158 self.first = False
159 else:
160 self.ut = np.append(self.ut[1:], ut , axis =0)
161 assert self.ut.shape == (self.ulag , self.ulen)
162

163 x = np.hstack ((self.xt.reshape(1, -1), self.ut.reshape(1, -1)))
164 new_xt = self.model.predict(x)
165 self.xt = np.append(self.xt[1:], new_xt.reshape(1, -1), axis =0)
166 self.clock += self.interval
167 return (self.clock , self.x_scaler.inverse_transform(new_xt)[0])

Listing A.4: MLSim class.

1 import numpy as np
2

3 from domus_mlsim import (
4 DV0_XT_COLUMNS ,
5 KELVIN ,
6 DV0Ut ,
7 DV0Xt ,
8 HvacUt ,
9 estimate_cabin_temperature_dv0 ,

10 hcm_reduced ,
11 kw_to_array ,
12 load_dv0 ,
13 make_dv0_sim ,
14 update_control_inputs_dv0 ,
15 update_dv0_inputs ,
16 )
17

18 from . import DomusContEnv
19 from .acoustics import calc_sound_level
20

21

22 class DomusDv0ContEnv(DomusContEnv):
23 CABIN_ENERGY = np.zeros ((len(DV0Ut)))
24

25 def __init__(
26 self ,
27 **kwargs ,
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28 ):
29 """ Description:
30 Simulation of the DV0 thermal environment of a Fiat 500e car
31 cabin.
32

33 This modifies DomusContEnv by overriding use of DV1 with DV0
where needed.

34

35 """
36 super().__init__ (** kwargs)
37 self.b_u = np.zeros ((len(DV0Ut)))
38 self.dv1_scaler_and_model = None
39 self.dv0_scaler_and_model = load_dv0 ()
40

41 def _convert_state(self):
42 """ given the current state , create a vector that can be used as

input to the controller """
43 cab_t = estimate_cabin_temperature_dv0(self.b_x)
44 update_control_inputs_dv0(self.c_u , self.b_x , self.h_x , cab_t)
45 return self.obs_tr.transform(self.c_u)
46

47 def _body_state(self , b_x , n):
48 """ return the body state matrix for passenger n where 0 is the

driver , etc"""
49 if n == 0:
50 v = b_x[
51 [
52 DV0Xt.t_drvr1 ,
53 DV0Xt.m_drvr1 ,
54 DV0Xt.v_drvr1 ,
55 DV0Xt.t_drvr2 ,
56 DV0Xt.m_drvr2 ,
57 DV0Xt.v_drvr2 ,
58 DV0Xt.t_drvr3 ,
59 DV0Xt.m_drvr3 ,
60 DV0Xt.v_drvr3 ,
61 ]
62 ]
63 elif n == 1:
64 v = b_x[
65 [
66 DV0Xt.t_psgr1 ,
67 DV0Xt.m_psgr1 ,
68 DV0Xt.v_psgr1 ,
69 DV0Xt.t_psgr2 ,
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70 DV0Xt.m_psgr2 ,
71 DV0Xt.v_psgr2 ,
72 DV0Xt.t_psgr3 ,
73 DV0Xt.m_psgr3 ,
74 DV0Xt.v_psgr3 ,
75 ]
76 ]
77 elif n == 2:
78 v = b_x[
79 [
80 DV0Xt.t_psgr21 ,
81 DV0Xt.m_psgr21 ,
82 DV0Xt.v_psgr21 ,
83 DV0Xt.t_psgr22 ,
84 DV0Xt.m_psgr22 ,
85 DV0Xt.v_psgr22 ,
86 DV0Xt.t_psgr23 ,
87 DV0Xt.m_psgr23 ,
88 DV0Xt.v_psgr23 ,
89 ]
90 ]
91 elif n == 3:
92 v = b_x[
93 [
94 DV0Xt.t_psgr31 ,
95 DV0Xt.m_psgr31 ,
96 DV0Xt.v_psgr31 ,
97 DV0Xt.t_psgr32 ,
98 DV0Xt.m_psgr32 ,
99 DV0Xt.v_psgr32 ,

100 DV0Xt.t_psgr33 ,
101 DV0Xt.m_psgr33 ,
102 DV0Xt.v_psgr33 ,
103 ]
104 ]
105 # hcm uses celsius not kelvin
106 v = v - np.array([KELVIN , KELVIN , 0, KELVIN , KELVIN , 0, KELVIN ,

KELVIN , 0])
107 return v.reshape ((3, 3))
108

109 def _comfort(self , b_x , h_u):
110 # temporarily just assess driver and front passenger comfort
111

112 # assess driver comfort
113 hcm = [
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114 hcm_reduced(
115 model=self.hcm_model ,
116 pre_clo=self.pre_clo ,
117 pre_out=h_u[HvacUt.ambient] - KELVIN ,
118 body_state=self._body_state(b_x , i),
119 rh=b_x[DV0Xt.rhc] * 100,
120 sound=calc_sound_level(h_u[HvacUt.speed], h_u[HvacUt.

blw_power ])[0],
121 )
122 for i in self.configured_passengers
123 ]
124 return np.mean(hcm)
125

126 def _ws_and_rh(self , b_x):
127 return b_x[DV0Xt.ws], b_x[DV0Xt.rhc]
128

129 def _step_cabin(self , c_x):
130 self.b_u[
131 [
132 DV0Ut.t_a ,
133 DV0Ut.rh_a ,
134 DV0Ut.rad1 ,
135 DV0Ut.rad2 ,
136 DV0Ut.VehicleSpeed ,
137 ]
138 ] = [
139 self.ambient_t ,
140 self.ambient_rh ,
141 self.solar1 ,
142 self.solar2 ,
143 self.car_speed / 100 * 27.778 ,
144 ]
145 update_dv0_inputs(self.b_u , self.h_x , c_x)
146 _, self.b_x = self.dv0_sim.step(self.b_u)
147

148 def _make_cabin_state(self):
149 return kw_to_array(
150 DV0_XT_COLUMNS ,
151 t_drvr1=self.cabin_t ,
152 t_drvr2=self.cabin_t ,
153 t_drvr3=self.cabin_t ,
154 t_psgr1=self.cabin_t ,
155 t_psgr2=self.cabin_t ,
156 t_psgr3=self.cabin_t ,
157 t_psgr21=self.cabin_t ,
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158 t_psgr22=self.cabin_t ,
159 t_psgr23=self.cabin_t ,
160 t_psgr31=self.cabin_t ,
161 t_psgr32=self.cabin_t ,
162 t_psgr33=self.cabin_t ,
163 v_drvr1=self.cabin_v ,
164 v_drvr2=self.cabin_v ,
165 v_drvr3=self.cabin_v ,
166 v_psgr1=self.cabin_v ,
167 v_psgr2=self.cabin_v ,
168 v_psgr3=self.cabin_v ,
169 v_psgr21=self.cabin_v ,
170 v_psgr22=self.cabin_v ,
171 v_psgr23=self.cabin_v ,
172 v_psgr31=self.cabin_v ,
173 v_psgr32=self.cabin_v ,
174 v_psgr33=self.cabin_v ,
175 m_drvr1=self.cabin_t ,
176 m_drvr2=self.cabin_t ,
177 m_drvr3=self.cabin_t ,
178 m_psgr1=self.cabin_t ,
179 m_psgr2=self.cabin_t ,
180 m_psgr3=self.cabin_t ,
181 m_psgr21=self.cabin_t ,
182 m_psgr22=self.cabin_t ,
183 m_psgr23=self.cabin_t ,
184 m_psgr31=self.cabin_t ,
185 m_psgr32=self.cabin_t ,
186 m_psgr33=self.cabin_t ,
187 rhc=self.cabin_rh ,
188 ws=self.cabin_t ,
189 )
190

191 def _make_cabin_sim(self):
192 self.dv0_sim = make_dv0_sim(self.dv0_scaler_and_model , self.b_x)

Listing A.5: Reinforcement Learning Gym environment.
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