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Abstract 
Ground deformation provide valuable insights on subsurface processes with pattens 

typically reflecting the characteristics of the source at depth. In active volcanic sites 

displacements can be observed in unrest phases; therefore, a correct interpretation is 

essential to assess the hazard potential. Inverse modeling techniques are employed to 

obtain quantitative estimates of parameters describing the source. However, despite 

the robustness of the available approaches, a realistic imaging of these reservoirs is 

still challenging. While analytical models return quick but simplistic results, 

assuming an isotropic and elastic crust, more sophisticated numerical models, 

accounting for the effects of topographic loads, crust inelasticity and structural 

discontinuities, require much higher computational effort and information about the 

crust rheology may be challenging to infer. All these approaches require a-priori 

source shape constraints, influencing the reliability of the solution. In this thesis, we 

present a new approach aimed at overcoming the aforementioned limitations. We 

model deformation sources free of a-priori shape constraints, benefiting from the 

advantages of FEM simulations, but with a cost-efficient procedure. The source is 

represented as an assembly of elementary units, consisting in cubic elements of a 

regular FE mesh loaded with a unitary stress tensors. The surface response due to 

each of the six stress tensor components for each unit is computed and linearly 

combined to obtain the total displacement of the composite source. In this way, the 

source can assume potentially any shape. Our direct tests prove the equivalence of 

the deformation fields due to our assembly, appropriately loaded, and that caused by 

corresponding cavities with uniform boundary pressure. Our ability to simulate 

pressurized cavities in a continuum domain permits to pre-compute unitary surface 

responses, avoiding remeshing. A Bayesian trans-dimensional inversion algorithm 

implementing this strategy is developed, using 3D Voronoi cells to sample the model 

domain, selecting the elementary units contributing to the source solution and those 

remaining inactive as part of the crust. 
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Introduction 
 

A wide range of natural and anthropogenic phenomena, such as landslides, glaciers 

retreat, seismic and volcanic processes, can be investigated through the analysis of 

the ground displacement they cause (e.g., Biggs and Wright, 2020; Poland and de 

Zeeuw-van Dalfsen, 2021). In particular, subsurface processes can produce 

deformation signals as a response to the stress field variations in the Earth’s crust, 

caused by mass redistributions and pressure changes. By means of geodetic 

measurements, we are able to retrieve valuable insights about processes that are not 

directly accessible, improving our capacity of understanding deep systems and, in the 

case of natural hazards, of better assessing the hazards. 

Permanent, or campaign style, Global Navigation Satellite Systems (GNSS) geodetic 

monitoring networks, leveling benchmarks and borehole stations (tiltmeters and 

strain meters) are routinely supported by other satellite-based systems, such as those 

having Synthetic Aperture Radar (SAR) sensors onboard. The most widely used 

application of SAR imagery is the InSAR (Interferometric SAR), exploiting phase 

differences between successive radar acquisitions to detect ground changes over a 

chosen time period (e.g., days or months). Multi-temporal InSAR analysis of 

multiple images allows to depict ground velocities over longer timescales (months to 

years). InSAR data accuracy is in the order of 1 cm (Dzurisin, 2003) but the spatial 

resolution is very high, especially when compared to the discrete coverage of in-situ 

measurements (Casu et al. 2006). 

In active volcanic areas, ground deformation can be observed in all the phases of 

activity (pre-, syn-, and post-eruptive), especially during the phases of unrest (Biggs 

et al., 2014 and references therein). The presence of an unrest period is typically      

determined by anomalous increase of seismicity, deformation, degassing and/or other 

signals (Acocella, 2019).  
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Not all the unrests lead to a volcanic eruption, as their nature can be linked to magma 

emplacement at shallow depths, as well as to hydrothermal activity or any far-field 

triggering events (Newhall and Dzurisin, 1988). In particular, uplift and subsidence, 

along with horizontal displacements, are commonly attributed to stress field 

variations in the crust caused by pressure and volume changes in deep reservoirs (e.g. 

due to magma injections) and/or by the ascent and emplacement of a shallow magma 

intrusions (i.e. dike) (Lisowski et al., 2007). Thus, our ability to predict periods with 

increased hazard potential relies, in part, on the correct interpretations of such signals  

(Rosi et al., 2022). 

The interpretation of geodetic data in volcano monitoring typically aims at the 

retrieval of information about the deformation source at depth. In fact, the 

deformation field patterns we observe on the surface are highly dependent on the 

characteristics of the source. A link between observed deformation and the deep 

magmatic system, that we cannot not directly access, is provided by mathematical 

models. In particular, inverse modeling methods are employed to obtain quantitative 

estimates of parameters describing the deformation source such as: the location and 

the depth, the volume and pressure changes and the shape. The goodness of these 

models is often evaluated in terms of fit, with a comparison between the observed 

system response and that predicted by a theoretical forward model. In principle, 

considering equal data quality, the more sophisticated is the forward model, the 

closer we expect to be to a realistic representation of the source. However, 

sophistication typically involves higher computational cost, encouraging the use of 

simpler models and a-priori assumptions. Therefore, a wide variety of modeling 

methods is currently available and in use, accounting for different orders of 

complexity and based on several types of statistical methods. 

The simplest models assume the Earth’s crust as an isotropic, elastic flat half-space, 

embedding inflating or deflating magma chambers with simple a-priori shape. 
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Despite these simplistic assumptions, these models are commonly employed for 

quick first-order estimations and short-term interpretation (Lisowski et al., 2007).  

The first application of an analytical volcanic source model  Kilauea volcano (Mogi, 

1958), the source is represented as a dimensionless centre of dilatation (i.e., point 

source). Since then, several other types of geometric source solutions have been 

proposed as, for example, spherical, spheroidal, sill-like and tabular (e.g. faults or 

dike intrusions) models, respectively described in McTigue (1987), Yang et al. 

(1988), Fialko et al. (2001) and Okada (1985). In addition, a more versatile point-

source (i.e. moment tensor source) simulating several symmetric geometries by 

means of appropriate compositions of dipoles and double couples of forces, has been 

proposed by Davis (1986) and will be further described in this thesis, as one of the 

starting points from which we develop our original methodology. All these models 

(Figure 1) are implemented in open source modeling inversion tools such as 

dMODELS, GBIS and VSM, respectively presented by Battaglia et al. (2013), 

Bagnardi and Hooper (2018) and Trasatti (2022). 

 

More complexities can be considered with Finite Element Methods (FEMs), in which 

the crust can be characterized with informations from geological (e.g., structural 

maps) and geophysical studies (e.g. seismic tomography models) of the study area, 

when available. In this way, a better representation of the natural medium (i.e. the 

crust) embedding the volcanic magma chamber, or in general the deformation source, 

can be modeled. The influence of crustal heterogeneities, such as the presence of 

rock formations with different rheological behavior and structural discontinuities, as 

well as the topography, has been proved to be relevant by several authors (Trasatti et 

al., 2003; Hickey et al., 2015). In fact, the stress field in the crust and, consequently, the 

deformation field on the surface can differ a lot when accounting for different complexities in a 

Finite Element Method model.  
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Although FEM-based numerical models provide more sophisticated solutions, they 

are not optimally suitable for the implementation in inversion frameworks, since 

each change in the position or dimension of the source would require 

computationally expensive re-meshing procedures.  

For such reason, FEMs methods commonly rely on sources with fixed position and 

simplified geometries, such as those analytical presented above. Several geological 

and geophysical evidences demonstrate that magma chambers should be 

characterized by much more complex geometries (e.g. Smith et al., 2009; Burchardt 

et al., 2010; Huang et al., 2015), claiming the need for new modeling procedures. 

 
Figure 1. Geodetic measurements and deformation sources in inverse problems. a,b) 
Simplified sketch illustrating how over-pressures at depth and related stress field variations 
in the crust (a) or seismic fault slip (b) can cause measurable surface displacements. c) The 
most common analytical solutions for deformation sources, from left to right, isotropic point-
source (Mogi, 1958), finite spherical source (McTigue, 1987), penny-shaped crack (Fialko et 
al., 2001), moment tensor source (Davis, 1986) and rectangular dislocation (Okada, 1985). 
Figure from Trasatti (2022). 
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In the past years, some authors attempted to develop geometry-free modeling 

schemes based on clusters of point pressure sources, i.e., Mogi (1958) source, in 

elastic half-space conditions (Mossop and Segall, 1999; Vasco et al., 2002; 

Masterlark and Lu, 2004; Camacho et al., 2011) or in FEM domains (Ronchin et al., 

2017). In the first cases, the use of multiple isotropic point sources fails in 

representing a cavity of the same shape with constant overpressure on its boundary. 

This setting does not fulfill basic principles of continuum mechanics, since the sum 

of the surface displacements due by the single small cavities is different from those 

given by a cavity of the same shape (it holds only if the aggregation represents a 

sphere). In fact, according to Yang et al. (1988), the deformation field produced by a 

cavity with uniform pressure applied at the boundaries can be reproduced only by a 

distribution of appropriate dipoles and couples of forces mechanisms, with 

magnitudes ratios mimicking the mutual relationships existing among the source axis 

ratios (Figure 2). 

 
Figure 2. Uniform distributions of forces to reproduce a pressurized cavity. A uniform 
distribution of centers of dilatations and dipoles of forces reproduces an ellipsoidal cavity, 
according to Yang et al. (1988) and Segall (2010). 

original figure in Yang et al.,(1988)

dilatation center

force dipole

single force

original figure in Segall.,(2010)



7

In addition, these methods based on analytical solutions are limited to the 

homogeneous elastic half-space, oversimplifying the solution of a source in a 

complex domain. Contrarily, the second type of approach, presented by Ronchin et 

al. (2017), has the advantage of using a Finite Element three-dimensional space, but 

it relies on another type of a-priori source shape constraint, as the FEM volume in 

which the source exists is derived from other independent data (e.g. seismic 

tomography). In this pre-defined portion of the model domain, pressurized points are 

distributed in the location of FE cubic element centers. These elements are removed 

iteratively from the meshed domain to form the pressurized cavity, representing the 

volcanic source. These pressure centers are characterized by non-uniform 

magnitudes estimated during the inversion. With this approach, the principle of 

uniform pressure at the source boundaries is, again, not fulfilled. Moreover, the 

process of removing one element at the time from the domain, together with the 

estimation of different magnitudes of pressure change in every location, makes this 

non-linear problem particularly expensive in terms of computation. 

A strategy to model point-sources without a priori fixed shapes in Finite Element 

domains, avoiding re-meshing, is proposed by Trasatti et al. (2008). Based on 

Eshelby (1957) and Davis (1986), this strategy consists in the application of a stress 

tensor to the faces of a solid cubic element of the FEM, as a combination of dipoles 

and couples of forces, representing the six normal and shear components: , 

. In this way, a source that mimics the moment tensor solution 

described by Davis (1986) is implemented in a Finite-Element domain without 

cavities. The authors remark the advantages of this source representation, as the 

possible combinations of the potencies of the stress components foresee a subset of 

triaxial source shapes (Trasatti et al. 2008, 2011; Ferrari et al., 2015).  

The moment tensor solution is interpreted by means of a diagonalization to find the 

principal moment values (i.e. the matrix eigenvalues). If these values are identical, 

σxx

σyy, σzz, σxy, σyz, σzx



8

the solution refers to an isotropic spherical source; otherwise, the solutions can range 

from a shear dislocation (a double couple) to ellipsoidal cavities with any 

orientation. The principal values ratios, in fact, are linked to the source axis ratios, as 

reported in Table 1 of Davis (1986), permitting to infer the source shape. However, 

this approach is only valid for a single element source in the point-source 

approximation, which means in the case of sources with dimensions significantly 

smaller than their depth (Segall, 2010). We know, nevertheless, that this is not always 

occurring in reality, particularly nowadays, thanks to the knowledge provided by 

high resolution geodetic data. 

In this thesis, we present a new theoretical approach based on FEM to model 

deformation sources free of shape constraints, and the inversion algorithm 

implementing the methodology. This work aims at overcoming the aforementioned 

limitations, for a full exploitation of large amounts of geodetic data and for a more 

realistic representation of volcanic environments in inversion frameworks. We start 

from the approach of Trasatti et al. (2008), and we extend it to model a finite source 

made of several elementary units, represented as a cubic element loaded with the 

stress tensor. We reproduce the concept illustrated in Yang et al. (1988) and Segall 

(2010) (Figure 2), obtaining a uniform distribution of combinations of forces loading 

the elementary units with an appropriate stress tensor. We are able, then, to compute 

surface responses from a solid aggregate that numerically equals that of a cavity with 

uniform pressure at the boundary. 

In conclusion, our method is (a) rigorous in terms of continuum mechanics; (b) 

allows for domain complexities; (c) is exempt from re-meshing iterations, as we use 

a full fixed mesh; (d) cost-efficient, thanks to pre-computed unitary surface 

responses scaled with only six factors, one for each stress component; and to a 

specifically designed Bayesian trans-dimensional inversion algorithm and represents 

a step forward in the state of the art in this field. 
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In the following chapters, a detailed description of the method is provided, starting 

from the initial conceptualization, including the design of the elementary unit in a 

FEM mesh and the initial synthetic testing phase, to the original inversion algorithm 

that has been developed to support our novel approach and the relative testing. 

Finally, we discuss the results and the future steps in the development of this 

approach, meant for being released as an open source software. 
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Chapter 1 

The elementary source unit in the FEM domain 

The objective of the thesis is, among all, to develop an original modeling approach 

for deformation sources free of shape constraints. To achieve this goal, we represent 

the source as a composite assembly of elementary units, fulfilling the continuum 

mechanics principles. The use of a FEM domain, together with the advantages of 

potentially account for complexities of the medium (e.g., heterogeneous crust 

layering, topography and discontinuities), allow us to build such source, thanks to its 

intrinsic property of being discretized. A variety of elementary unit configurations 

have been formulated and intensely tested in the preliminary phase of this study. We 

recognize that the most convenient strategy is to extend the Trasatti et al. (2008) 

approach to multiple contiguous FE elements. In this way, no modifications in the 

original mesh are required, as the final modeled source consists of a solid assembly. 

Thanks to specific expedients described in this chapter, the aggregation of single 

element-sources numerically equals the response on surface due to a cavity of the 

same shape with uniform pressure applied at the boundaries. A cost-efficient problem 

is, therefore, formulated to avoid unnecessary re-meshing procedures in favor of a 

model involving other levels of complexity and highly sophisticated. In the following 

paragraphs, we describe the characteristic of the FEM domain, built ad hoc for our 

original method, as well as the details about the elementary unit and the methodology 

we use to build the deformation source. 
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  1.1. The Finite Element domain 

The first step in the development of our approach is the creation of a three- 

dimensional Finite Element domain (Figure 3a). We use the MSC Marc/Mentat 2013 

software to build a non-uniform mesh, consisting of 144.000 elements, of which 

nearly 10.000 constitutes a central regular portion (Figure 3b). In this portion, the 

elements are cubic and sized 400x400x400 m, occupying a volume of the mesh that 

extends laterally for ~16 km and until 15 km of depth. Our model solution is built in 

this volume (Figure 3c). 

 
 
Figure 3. The Finite Element domain. a) Non uniform FE-mesh used in our approach with 
semi- infinite elements at the lateral and lower boundaries (dark grey); b) detail of the 
regular portion of the mesh grid; c) selected volume of cubic elements in the regular grid, 
used to model the deformation source. 

a)

b) c)

3-D Arbitrary 
Distorted Brick

Twelve-node 3-D 
Semi-in!nite Stress Element
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This starting grid has been used for all the synthetic tests we present in the next 

chapters, but can be scaled and characterized ad-hoc by the user accordingly to the 

information available for the case study area where the model is applied. Therefore, 

as it is intended for the sole theoretical and methodological development purposes, 

we use a domain with a flat free surface and homogeneous elastic properties. 

We set the material properties based on the literature, defining a Young’s modulus of 

2.5 GPa and a Poisson’s ratio of 0.25. A study has been performed on the effects of 

different types of boundary conditions on the surface solution. The application of 

semi-infinite elements at the lateral and lower boundaries of the mesh (Figure 3a) is 

proved to be the best way to simulate an infinite crust and avoid boundary effects. 

We define, also, a set of surface element nodes (~4000), where the displacements 

solutions due to our source model are extracted by means of Python subroutines. 

  1.2. The elementary source unit 

We design an elementary unit suitable to be assembled into aggregates with 

potentially any shape. A variety of configurations in the FEM have been tested such 

as, for example, a tensile opening acting on the centers of contiguous element faces 

patches at the source boundaries (Figure S1 in SM), simulating uniform pressure 

conditions. Although the efficiency of this method has been validated we discard this 

option for the high complexity, in favor of simpler and more versatile unit. In fact, 

we achieve our goal by loading the faces of a chosen number of cubic elements with 

a stress of 1 MPa. These elements belong to the regular central portion of the three-

dimensional grid. In particular, by means of Fortran subroutines compatible with 

MSC Marc/Mentat software, we apply these stresses to each element in the form of 

the six components of a stress tensor ( ), similarly to the approach of Trasatti et 

al. (2008). The six components are, namely, the three normal stresses (i.e. 

) and three shear stresses (i.e. ), represented as combinations of 

dipoles and double couples of forces, as illustrated in Figure 4. 

σij

σxx, σyy, σzz σxx, σyy, σzz
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Figure 4. The Elementary source unit. The elementary unit mechanism consists in the 
application of dipoles and double couple of forces to the faces of a cubic element. These 
forces of 1MPa are applied as a unitary stress tensor. 

We use, then, this source mechanism to reproduce the conceptual model illustrated in 

Figure 2, described in Yang et al. (1988) and Segall (2010), for which the 

deformation field of a pressurized cavity with uniform pressure applied to the 

boundary, is numerically equivalent to that of a uniform distribution of dipoles and 

couples of forces, appropriately scaled to respect the source aspect ratios 

relationships. We know, that the total deformation field ( ) from the single 

element-source can be obtained by summing the surface responses of the six 

stress components ( ), according to the superposition 

principle as in the following equation: 

         (1) 

uk

uxx, uyy, uzz, uxy, uyz, uzx

uk(x, y, z) = sxxuxx + syyuyy + szzuzz + sxyuxy + syzuyz + szxuzx

ıxx ıyy ızz

ıxy ıyz ızx
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where,  represent the scaling factors applied to each 

displacement solution, indirectly tuning the stress components magnitudes to obtain  

appropriate source mechanism. 

In this study, we extend this concept to multiple elementary sources in an assembly, 

that constitutes our original source representation. We sum the contributions of each 

unit belonging to the source solution to obtain the total deformation field on surface, 

under the condition that the forces applied to each element must be identical, in order 

to reproduce the case presented in Figure 2. Therefore, we can define six uniform 

scaling factors to be applied to the sum of the surface responses from all the elements 

of the assembly. With this strategy, we are able to formulate a model solution of easy 

implementation, reducing the number of parameters to be estimated. For clarity, we 

summarize our technique in five main steps as follows: 

1. We apply unitary forces of 1 MPa, in the form of six components of the stress 

tensor ( ), to the faces of each cubic element in a chosen 

volume of the regular portion of the FE mesh grid. 

2. The displacement at the surface due to each stress component applied to each 

element source is computed ( ) and stored in a matrix of 

unitary solutions. 

3. The contributions to each displacement solution from all the elementary units 

included in the source assembly are summed to obtain the total unitary 

displacements: . 

4. Six scaling factors ( ) for the corresponding classes of total 

displacements are estimated to calibrate the magnitude of the forces applied to 

each elementary unit. Thanks to the applicability of the superposition principle 

and given the condition that all the units in the assembly have uniform stress 

sxx, syy, szz, sxy, syz, szx

σxx, σyy, σzz, σxy, σyz, σzx

uxx, uyy, uzz, uxy, uyz, uzx

Uxx, Uyy, Uzz, Uxy, Uyz, Uzx

sxx, syy, szz, sxy, syz, szx
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tensors applied, we are able to adjust the unitary solution a-posteriori, obtaining 

a deformation field that is numerically equivalent to that of a pressurized cavity   

(see Chapter 2 synthetic tests). 

5. The displacement field due to the composite source is, finally, obtained as a 

linear combination of summed displacements and appropriate scaling factors, in 

a formulation similar to Eq. 1, as follows: 

 (2) 

The validity of this approach is proved by an extensive collection of synthetic tests, 

illustrated in detail in the following chapter. We verify the numerical equivalence 

among the deformation fields produced by uniformly loaded elementary units in 

composite source configurations and those computed from equivalent cavities with 

uniform pressure applied at their boundaries. We perform in this way model 

benchmarking with both analytical and FEM cavity solutions in a comparative 

analysis. 

Utot(x, y, z) = sxxUxx + syyUyy + szzUzz + sxyUxy + syzUyz + szxUzx
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Chapter 2 

Benchmarking of synthetic source assemblies 

In this chapter, we illustrate a selection of synthetic tests performed with the aim of 

benchmarking the proposed modeling approach. In particular, the surface response 

due to pressurized cavities with uniform pressure applied at their boundaries is 

compared with that of equivalent source assemblies loaded with appropriate stress 

tensors, following the methodology described in the previous chapter. We employ 

analytical source models proposed in the literature, providing solutions for cavities at 

depth in the elastic half-space with simple symmetric geometries. In addition, we 

create equivalent cavities in the Finite Element domain and apply normal pressures 

to their external faces, to fulfill the uniform pressure requirement. Thanks to this 

extensive testing phase we validate the robustness of our method, proving that the 

original source representation in a domain without cavities is suitable to reproduce 

correctly the deformation and stress feels of a pressurized cavity. 

In the following paragraphs, the comparison of the deformation fields produced by 

sources with different geometries is presented. We start from the simple case of a 

spherical source, to spheroidal sources (with unequal axis ratios), both vertical and 

with dip and a strike angles, and finally a sill-like source. The different combinations 

of scaling factors, indirectly tuning the potencies of the forces applied to the 

elementary units in the source assemblies, are estimated for each test to reproduce 

the deformation field of the equivalent cavities. For this task we use a simple linear 

inversion based on the differential evolution (DE) method (Robič et al., 2005) 

implemented in Python SciPy package. We verify, for each test, that the principal 

moment values we obtain are consistent with the source axis ratios, according to 

Table 1 of Davis (1986). 
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  2.1. The spherical source 

The simplest test aims at reproducing the surface deformation field of a finite 

spherical cavity. In this case, we compute the horizontal and vertical displacements 

from a pressurized cavity using the McTigue (1987) analytical model function 

implemented in VSM software (Trasatti, 2022). This analytical model is described by 

five parameters in total: three parameters for the location of the source (i.e. x, y, z), 

the sphere radius (r), and the ratio between the overpressure (ΔP) and the rigidity 

modulus (µ). In addition, the solution depends on the Poisson’s ratio of the medium 

(ν). We set these parameters to represent a spherical source at 7 km depth, with a 

radius of 1500 meters and fixing ΔP/µ and ν, respectively to values of 10-3 and 0.25 

(Figure 5c). We create a cavity as well in the FE mesh by removing 203 elements in 

the regular portion of the grid, corresponding to an assembly shaping a spherical 

source equivalent to the analytical model, and we apply pressures of 1 MPa to the 

boundaries to simulate uniform pressure conditions (Figure 5b). Finally, we build our 

composite source in the domain without the cavity, according to the new 

methodology proposed in this thesis, loading the same 203 solid elements with 

unitary stress tensor components of 1 MPa (Figure 5a). 

Figure 5. Spherical deformation source configurations. a) Solid assembly of elementary 
source units loaded with uniform stress tensors; b) spherical cavity obtained removing 
elements from the mesh and applying uniform normal pressure at the source boundary; c) 
analytical model for finite a spherical deformation source (McTigue, 1987). 

a) c)b)
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We compute the displacements due to each source configuration at the location 

points corresponding to the set of surface nodes of the FE domain (see paragraph 1.1 

in Chapter 1). We perform a comparative analysis of the deformation fields of both 

cavities (i.e. analytical and FEM) with our source assembly, scaling the six classes of 

unitary displacements, obtained from the sum of each elementary unit contribution, 

with appropriate factors retrieved by a linear inversion, as in the Eq. 2. As shown in 

Figure 6, we reproduce remarkably good the deformation field on surface of both 

cavities by scaling the displacements of our solid assembly.  

 
Figure 6. Comparison of deformation fields from a spherical source assembly using our 
method with relative scaling factors and those from equivalent pressurized cavities. a) 
Comparison between our source and the analytical cavity. b) Comparison between our source 
and the FEM cavity with uniform pressure applied at the boundaries. 

 

We make use of only three stress components (i.e. ), as the source we 

model is isotropic and its orientation does not affect the surface response not 

requiring the shear stress components. We find uniform values for  of ~ 2.46 

to best fit the deformation due to the equivalent analytical source model (Figure 6a) 
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and ~ 2.35 for that of the FEM cavity (Figure 6b). The misfit, in terms of 

minimization of the objective function approaches to zero in both comparisons 

(~1.2e-8; ~5.4e-10), with sub-millimeter displacement differences. Finally, the 

principal moment values are consistent with the relations existing among equal 

source axis, as in Davis (1986), where the spherical source is represented by three 

orthogonal dipoles of the same intensity. 

 

  2.2. The vertical spheroid 

In the second numerical experiment, we test a prolate spheroidal source. In this case, 

the source shape is characterized by non-equal axis, with an elongation oriented in 

the vertical direction. We employ the analytical source model formulated by Yang et 

al. (1988) and implemented in VSM, which is described, as in the previous case by 

the three location parameters, the intensity ΔP/µ, but also by the length of the major 

semi-axis (a), the axis ratio (b/a) and the two orientation angles, dip and strike. We 

compute the surface displacement of a spheroid at 5 km of depth with a major semi-

axis of 3000 m, avoiding the point-source approximation conditions (z/a ~ 1.7), and 

fixing the axis ratio to 1/3. As we aim at a vertical spheroid model, the orientation 

angles dip and strike are set, respectively, to 90° and 0°. A visual representation of the 

analytical spheroid is presented in Figure 7a. The equivalent FEM cavity is created 

by removing 179 cubic elements from the FE mesh and applying normal pressures to 

its boundaries (Figure 7b), while the same elements are used to build the source 

aggregate in the domain without the cavity, with unitary stress loads (Figure 7a), 

following the same procedure described in the previous paragraph. 

Similarly to the previous test, the shear stress contributions are not required to 

reproduce the deformation field of the spheroidal cavities. The forces applied in the 

elementary source mechanisms are, in fact, represented only by the three dipoles of 

the normal stresses, since the source axes are oriented along the x, y, z directions.  
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Figure 7. Vertical spheroidal deformation source configurations. a) Solid assembly of 
elementary source units loaded with uniform stress tensors; b) spheroidal cavity obtained 
removing elements from the mesh and applying uniform normal pressure at the source 
boundary; c) analytical model for vertical spheroidal deformation source (Yang et al, 1988). 

 

We find the optimal values for the scaling factors  respectively of ~2.86, 

~2.86 and ~2.08, to fit the deformation field of the analytical solution (Figure 8a); 

while in the case of the FEM cavity, these factors are equal to ~2.77, ~2.77 and 

2.04 (Figure 8b). In both cases, we notice that the forces applied along x and y 

directions (i.e. ) have a ratio equal to 1, while of ~ 0.7 for z/x (and z/y). These 

values correspond to the principal moment ratios proposed by Davis (1986) for a 

spheroidal cavity with axis ratios b/a = 1/3 and b=c, where a is the maximum semi-

axis of the spheroid and b and c, the other two. We validate, then, our approach for 

the case of a non-isotropic geometry, being able to represent a vertical 

ellipsoidal source as an assembly of solid elements, loaded with an appropriate 

combination of forces, that numerically replicate the response due to cavities with 

uniform pressure applied at the boundary, just like in sketch proposed by Yang et al. 

(1988) and illustrated in Figure 1a.  
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Also in this case, the misfit approaches to zero in both comparisons (~6.9e-8; 

~3.4e-10), with sub-millimeter displacement differences. 

 
Figure 8. Comparison of deformation fields from a vertical spheroidal source assembly 
using our method with relative scaling factors and those from equivalent pressurized 
cavities. a) Comparison between our source and the analytical cavity. b) Comparison 
between our source and the FEM cavity with uniform pressure applied at the boundaries. 

  2.3. The spheroid with dip and strike 

We now proceed to a higher level of complexity, testing the case of a prolate 

spheroidal source arbitrarily oriented in space. In this case, we use a dip angle ≠ 90° 

and a strike angle ≠ 0°, and this will lead to non-zero shear stress components 

( ) in the elementary source mechanisms, unlike the previous tests. We 

compute the deformation field due to an analytical pressurized cavity using the Yang 

et al. (1988) model. We set the length of the major semi-axis to 3000 m and the axis 

ratio to 1/3, as in the previous test, but we place the source at 9 km depth and fix the 

dip and strike angles, respectively, to 60° and 45° (Figure 9c).  
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An equivalent cavity in the FE domain is shaped by removing 187 cubic elements to 

the mesh and applying 1 MPa pressure at the cavity boundaries (Figure 9b). On the 

other hand, in the FE domain without the cavity, we load the same 187 elements with 

a stress tensor (Figure 9a) and we compute the total unitary displacements on the 

surface nodes of the grid due to the six stress tensor components. 

Figure 9. Inclined spheroidal deformation source configurations. a) Solid assembly of 
elementary source units loaded with uniform stress tensors; b) spheroidal cavity obtained 
removing elements from the mesh and applying uniform normal pressure at the source 
boundary; c) analytical model for inclined spheroidal deformation source (Yang et al, 1988). 

The scaling factors for the unitary displacements referred to the source assembly, 

resulting from the inversion procedure to best fit the spheroidal cavities responses, 

are shown in Figure 10. We observe that, in this case, both normal and shear stress 

displacements are needed (Figure 10). This means that, the optimal elementary unit 

mechanism is a combination of dipoles and double couple of forces, differently from 

the tests illustrated so far.  

a) c)b)
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We verify that the principal moment ratios of the stress tensor, defining the single 

element mechanism in the assembly, are consistent with those proposed by Davis 

(1986) for the same source we modeled.  

Dedicated Fortran routines for the diagonalization of the stress matrix and 

interpretation of the principal values ratios based on Table 1 of Davis (1986) are 

employed, as in this case the analysis of the results is not straightforward. We verify 

that, in both cases, the relationships among the forces are consistent with the shape 

and orientation of the target source, according to Davis (1986). In fact, The resulting 

parameters are: b/ a=0.33 and c/a=0.33, dip=60.48° and strike=44.99°. The fit of the 

surface deformation is remarkably good in both the comparisons (misfit values 

respectively of: 1.3e-8 and 3.7e-10), proving that with our strategy we can model 

finite symmetric sources with any orientation in space. 

Figure 10. Comparison of deformation fields from an inclined spheroidal source assembly 
using our method with relative scaling factors and those from equivalent pressurized 
cavities. a) Comparison between our source and the analytical cavity. b) Comparison 
between our source and the FEM cavity with uniform pressure applied at the boundaries. 
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  2.4. The sill-like source 

The last test we present aims at verifying the equivalence of surface displacements 

due to sill-like sources, built in the three configurations illustrated in Figure 11. The 

goal is to reproduce the example presented by Segall (2010) and illustrated in Figure 

2b, using our approach to distribute appropriate and uniform force combinations to 

simulate a pressurized cavity. Therefore, we first compute the response on surface 

with the analytical solution described in Fialko et al. (2001), employing the 

respective function from VSM software. The parameters describing this analytical 

model are the location of the source (i.e. x, y, z), the sphere radius (r), the ratio 

between the overpressure (ΔP), the rigidity modulus (µ) and the Poisson’s ratio (ν) of 

the medium. We set the radius to 1400 m and the depth to 9800 m, while ΔP/µ and ν 

are the same of the previous tests (Figure 11c). The equivalent pressurized cavity in 

the FEM domain is created by removing 29 elements from the regular portion of the 

grid, in an assembly that shapes a horizontal penny-shaped cavity, and applying 

normal pressures on the faces at the cavity boundary (Figure 11b). Finally, the 

equivalent source as solid assembly is created by loading these same 29 elements 

with a unitary stress tensor, using the same procedure described in the previous 

paragraphs (Figure 11a). 

Figure 11. Sill-like deformation source configurations. a) Solid assembly of elementary 
source units loaded with uniform stress tensors; b) spheroidal cavity obtained removing 
elements from the mesh and applying uniform normal pressure at the source boundary; c) 
analytical model for penny shaped crack (or sill-like) deformation source (Fialko et al., 2001). 

a) c)b)
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The sill-like model is horizontal, in fact, no strike and dip angles are foreseen in this 

solution, and it is symmetrical respect to the vertical axis. As in the case of the 

spherical source and the vertical spheroid, in order to fit the surface response of the 

analytical and FEM equivalent cavities, only the contribution from the three normal 

stress components are required. The best fit values for these parameters retrieved by 

the inversion code are shown in Figure 12. Again, we can reproduce the deformation 

field due to a sill-like cavity, scaling the displacements of an assembly of elementary 

sources using only three factors (see values in Figure 12). Misfit, as in all the test 

performed, is null (both cases ~1.1e-10). The deformation source model proposed in 

this work is, thus, extensively validated as a rigorous and cost- efficient strategy to 

simulate the most common settings of pressurized cavities at depth in FEM domains 

Figure 12. Comparison of deformation fields from a sill-like source assembly using our 
method with relative scaling factors and those from equivalent pressurized cavities. a) 
Comparison between our source and the analytical cavity. b) Comparison between our source 
and the FEM cavity with uniform pressure applied at the boundaries. 
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Chapter 3 

The trans-dimensional inversion algorithm 

In the previous chapters, we described our original forward model and its validation 

through synthetic testing with dataset from sources with known parameters, using 

models of pressurized cavities from analytical solutions from the literature and, also, 

built with FEM. The implementation of the new approach in an inversion modeling 

method is discussed in the following paragraphs. We present an original algorithm 

we designed ad-hoc for our problem, capable of shaping the deformation source 

assembly in the FEM domain based on the information provided by geodetic data. 

As discussed earlier in this thesis, one of the key advantages that our method brings, 

is the possibility to pre-compute a library of displacements on surface for a volume 

of elements loaded with unitary stress tensor components, with efficient 

computational time of the inversion. In fact, as discussed earlier, we design a 

procedure that allows to adjust the forces applied to each the elementary unit in the 

source a-posteriori, scaling the displacements classes with uniform parameters. The 

matrix of unitary responses, computed for the elementary units in the portion of the 

domain where the source is expected to exist, on a set of surface nodes in the FE 

mesh, is provided as an input file to the algorithm. 

During the inversion procedure an ensemble of solutions is formulated, defining 

simultaneously the assembly of elementary units and the appropriate scaling factors 

for the relative unitary responses. In particular, we use a Voronoi cells-based partition 

to sample the model space, implementing an innovative approach that foresees two 

competing sets of three-dimensional cells that determine which of the available 

element units belong to the source assembly and which to the inactive outer crust set. 

The numerical problem with an unknown number of parameters, i.e. the number of 

cells, is handled by a Bayesian trans-dimensional inversion approach of which we 

describe the main characteristics. 
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  3.1. The Bayesian inference in inversion methods 

In geophysics, the solution of inverse problems, that commonly consist in deriving 

models of the earth from surface observations, represents one of the main goals. This 

implies the use of mathematical relationships linking the data and the model, that for 

long time were based on simplistic assumptions and solved with linearized inversion 

approaches. With the advent of supercomputers and parallel computers a change 

towards highly sophisticated and CPU-time-consuming analyses has been 

experienced in the scientific field. Optimization processes in which the solution is 

presented as a single “final” best-fit model, can be replaced by probabilistic 

approaches, in which an ensemble of models is considered in comparison. This is the 

case of Bayesian inference algorithms, quantifying the information about the model 

parameters by their full posterior probability density distribution (PPD) (Tarantola, 

2006). In particular, the objective is to investigate if and how the data provide 

additional knowledge to the a-priori information on the model parameters. Therefore, 

according to the Bayes’ rule (Bayes, 1763) the PPD is defined as: 

 (3) 

where, p() indicates a probability density and the conditional dependence, such as A 

given B, is written as A|B. The observed data (d), the prior information (I) and the 

model (m), appear in the notation of target PPD, i.e. p(m d, I ), which is obtained as 

a combination of the prior knowledge of a given model, p(m I ) with the likelihood 

of the model given the data, i.e. p(d m, I ). Finally, the ‘evidence’ p(d I ) represents 

the probability of the data in the model space computed used as a normalization 

factor for the PPD. Methods based on Markov chain Monte Carlo (McMC), 

exhaustively described in the next paragraph, do not require the evidence, that is a 

high-dimensional integral difficult to calculate.  

p(m |d, I ) =
p(m | I )p(d |m, I )

p(d | I )
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These methods, are based on PPDs ratios from different models and allow to extract 

parameters information from the histograms of the sampled values, approximating 

the marginal probability density function (PDF), such as the mean and the standard 

deviation. 

  3.2. The Reversible-Jump McMC 

Markov chain Monte Carlo (McMC) methods have been largely employed in inverse 

problems in geophysics to solve non-linearity and non-uniqueness, particularly in 

Bayesian frameworks (Sambridge & Mosegaard, 2002). In McMC algorithms, the 

direct computation of the analytic solution of Eq. (3) is replaced by the sampling of 

the model space with a random walk, according to probability rules (see Metropolis 

rule by Metropolis, 1953;  described in paragraph 3.5.2) so that the chain of sampled 

parameters values is asymptotically distributed as in the PPD (Mosegaard & 

Tarantola, 1995). 

We have seen (Chapter 2) that the number of model parameters in kinematic 

analytical models of deformation is constant. In the case proposed in this thesis, we 

use a workflow that does not require to fix the model dimension a-priori, since the 

number of model parameters varies during the iteration. In fact, the number of 

elements forming the composite source or, precisely, the number of Voronoi cells 

(see paragraph 3.3) containing these elements, is one of the unknowns of our model. 

We make use of an extension of McMC, known as reversible-jump McMC or trans- 

dimensional approach (trans-D) (Green, 1995; Denison et al. 2002), to invert for the 

number of parameters. This approach has been implemented in several geophysical 

problems such as, for example, resistivity tomography (Malinverno,  2002),  seismic  

tomography  (Bodin  &  Sambridge,  2009;  Piana Agostinetti et al., 2015), and 

data-space exploration (Agostinetti & Sgattoni, 2021). By means of trans-D 

approaches the complexity of the model can be directly constrained by the data, 
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avoiding a subjective smoothing, in a framework that is proven to be parsimonious, 

preferring simpler models rather than more complex ones, in accord to Ockham’s 

razor logic (Malinverno, 2002). In addition, the level of detail of the solution is 

locally controlled by the data, thanks to an adaptive parametrization scheme 

(e.g. ,Voronoi cells, described in detail in the following paragraph). The model 

resolution is refined during the inversion process according to the quality of the data 

coverage (Sambridge & Faletič, 2003), obtaining a fully data-driven solution. A 

correct evaluation of data uncertainties is, therefore, crucial in trans-D sampling, 

since this method produces models whose complexity is consistent with the level of 

data noise. If the nature of the noise is not clear, a parametrization of the error 

would be appropriate. W e  employ a hierarchical Bayes approach, in which the 

standard deviation of the data errors ( ) is treated as an unknown parameter in the 

inversion process, following Malinverno & Briggs (2004). 

  3.3. Voronoi cells 

In our inversion problem, we consider the Earth’s crust as a discretized three 

dimensional domain in a FE mesh (see paragraph 1.1). In this domain, a volumetric 

deformation source is shaped as an assembly of elementary units, each one 

participating with its unitary contribution to the total surface response. Since the goal 

of the inversion is to find composite source configurations explaining the 

deformation we observe on the surface, we formulate a strategy to sample the 

available units, to identify which belong to the source and which to the embedding 

crust. We employ the Voronoi tessellation for this task, representing a way to divide a 

volume with non- overlapping, convex, polyhedral cells based on a distribution of 

points (e.g. Sambridge et al., 1995). These points represent the nuclei of the cells, 

i.e. Voronoi centers, while the edges of the cells are defined by the distance existing 

between them. In fact, a given point in the Euclidean space, belongs to the Voronoi 

cell having its center closer to this point than any other cell. 

σerr



33

The resulting three-dimensional partition in our model is an ensemble of polyhedral 

cells built on our FE-domain, in particular, on the selected volume of element- 

sources for which we compute the solutions. Previous studies employed the Voronoi 

cells as a parametrization method in trans-dimensional algorithms, using them to 

assign Earth model parameters to regions of the model space (e.g. Malinverno, 2002; 

Bodin & Sambridge, 2009; Piana Agostinetti et al., 2015).  

In our case, we formulate an innovative application of Voronoi tessellation, 

employing two different sets of competing cells to sample the model domain. One set 

of cells has the task of sampling the elements that form the source assembly and that 

contribute to the solution. The responses related to these elements are summed and 

scaled according to the method illustrated in the previous chapters, to compute the 

predicted observations of the composite source model. We will refer to this set, in the 

following paragraphs, as the set of Voronoi cells ‘IN’, as it samples the units that are 

inside the source. The second set, on the contrary, fills the remaining space in the 

three-dimensional model domain, where all the elements that remain inactive as part 

of the outer crust are localized. This set is, therefore, referred to as the OUT set of 

Voronoi cells, comprising all the elementary units that are left outside the solution. 

However, the role of the cells OUT is fundamental, as their distribution around the 

IN cells, defines the shape of the deformation source (Figure 13). In fact, by means 

of this strategy we can image volumetric deformation sources with potentially any 

shape, with geometries refined proportionally to the level of resolution of the data 

(e.g. data coverage, data accuracy). During the inversion process, the number and the 

position of Voronoi nuclei IN and OUT can vary, so does the model dimension in the 

RJMcMC. In this way a model is defined by a collection of both IN and OUT cells. 
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Figure 13. Three-dimensional model in terms of Voronoi polyhedral cells. Visual 
representation of the model domain sampled by two competing sets of cells: IN and OUT. In 
red, the ensemble of IN cells representing the deformation source; while OUT cells are 
represented by the black lines defining their edges and their nuclei (black dots) for a more 
clear visualization. 

  3.4. RJMcMC recipe 

One of the fundamental ingredients of McMC based algorithms is the ‘recipe’, a list 

of moves that are defined to perturb the current model to produce a candidate, in the 

chain of models sampled during the inversion (Mosegaard & Tarantola, 1995). Our 

code is composed of 17 moves, designing a specific recipe for our problem. These 

moves are: 

1. Perturbation of the scaling factor  for displacements due to . 

2. Perturbation of the scaling factor  for displacements due to . 

3. Perturbation of the scaling factor  for displacements due to . 
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4. Perturbation of the scaling factor  for displacements due to . 

5. Perturbation of the scaling factor  for displacements due to . 

6. Perturbation of the scaling factor  for displacements due to . 

7. Perturbation of the standard deviation ( ) of the InSAR data error. 

8. Perturbation of the standard deviation ( ) of the GNSS data error. 

9. Perturbation of the standard deviation ( ) of the Leveling data error. 

10. Perturbation of the position along x of one Voronoi nucleus IN. 

11. Perturbation of the position along y of one Voronoi nucleus IN. 

12. Perturbation of the position along z of one Voronoi nucleus IN. 

13. Perturbation of the position along x of one Voronoi nucleus OUT. 

14. Perturbation of the position along y of one Voronoi nucleus OUT. 

15. Perturbation of the position along z of one Voronoi nucleus OUT. 

16. Perturbation of the number of Voronoi nuclei IN. 

17. Perturbation of the number of Voronoi nuclei OUT. 

During the inversion, a perturbation according to one of these moves, randomly 

selected, is chosen. Each move is assigned with a prescribed probability that can 

defined by the user based on the prior knowledge or, when lacking of a-priori 

information is equally distributed among all the moves. Therefore, it is important to 

set the scale of the perturbation and the probability associated to each move, in a way 

that the parameter space is explored with a reasonable number of samples. In 

practice, if the perturbation is ‘weak’, a small change will occur from the current to 

the candidate model (see 3.5), then the new model will be likely accepted but the 

convergence will be reached in a longer time. On the contrary, ‘strong’ perturbations 

might result very inefficient, as the data fit would be likely worse, and the model 
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would be not accepted, slowing down the chain convergence (Mosegaard, 2006). 

Several numerical experiments show that an acceptance probability equal to 0.25 

maximizes the efficiency in the model space exploration (Gelman et al., 1996), 

therefore, is appropriate to set the recipe conditions according to this value. 

The last two moves in the list, represent the trans- dimensional moves, controlling 

the dimensionality of the problem by adding or removing Voronoi cells, with the so 

called “Birth/Death” proposals (Geyer, 1944; Hawkins et al., 2019). Following the 

approach of Mosegaard & Tarantola (1995), a new cell nucleus is created at a 

random location foreseen in the prior distribution, or a random existing nucleus is 

removed by the model. We know from Mosegaard & Tarantola (1995) that, 

theoretically, different recipes can be employed for solving an inverse problem, as 

the Eq. 3 is independent from McMC characteristics, as it is based on the data and 

the prior information. This is true, under the condition that the proposed recipe 

fulfills the required probabilistic rules, as discussed in Sambridge & Mosegaard 

(2002). The recipe formulation has, nevertheless, an impact on the workflow 

efficiency, controlling the time required to adequately sample the PPD and so, to 

reach the convergence state. 

  3.5. Algorithm workflow and performances 

In this paragraph, we illustrate in detail the algorithm workflow (Figure 14), based 

on a main loop implementing the McMC sampling. As previously mentioned, the 

algorithm reads different types of input files, including the observations, the pre- 

computed matrix of responses, relative to the elementary units selected from the FE- 

mesh, and the prior distributions of the model parameters. A starting model is 

randomly picked from the prior information (or specified by the user), and is 

perturbed according to the ‘recipe’. The perturbed model (i.e. candidate model) is 
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accepted or rejected, becoming the new current model or not. A sequence of models 

are sampled and stored to define the PPD. The output files are collecting the 

information about the process and can be analyzed to extract the final results. 

3.5.1. Model inputs: Data, Responses and Prior 

In this paragraph, we start with a description of the input files we must provide to the 

code, before starting the inverse modeling procedure. 

First of all, a geodetic dataset is required, containing the observations about the 

deformation field we want to model. The algorithm allows for different type of data, 

derived from the most commonly used techniques (i.e. InSAR, GNSS and leveling) 

performing a joint inversion. These data files must be adapted to the required format, 

as shown in Table 1. 

In the case of InSAR data, multiple files from different orbits (i.e. ascending or 

descending) and different satellites can be handled. The use of observations from 

different geometries of acquisition is recommended, as it helps to approach a more 

accurate three dimensional representation of the displacement field. The unit vectors 

related to the sensor Line-of-Sight (LOS) must be specified at first.These three 

values, one for each direction, can be computed from the radar incidence ( ) and 

heading ( ) angles using the equations: 

                   (4) 

                   (5) 

                    (6) 

θ

ϕ

LOSE = − sin(θ )cos(ϕ)

LOSN = sin(θ )sin(ϕ)

LOSZ = cos(θ )
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In addition, the statistics model associated to the error (i.e. exponential or gaussian), 

the correlation length of the data point, and the number of points can be specified. 

The data are accepted as LOS velocities, with the relative standard deviations. The 

GNSS data must be reported in the files, one component per row, assigning an index 

to each row that corresponds to East, North or uplift (Table 1). 

Table 1. Supported format for data files. 

a Columns LOS are the Line of Sight unit vector components. 
b Index for the error statistics model: 0 = exponential, 1 = Gaussian. 
c Correlation length of data points value between 0 and 1 ( 0 = uncorrelated ) 
d Geographical coordinates projected in meters 
e Index for the velocity component: 0 = East, 1 = North, 2 = Uplift 

InSAR

LOS E a LOS N a LOS Z a

Error statistics model 
b

Correlation length c

N° data points

Easting d Northing d Data Error

GNSS

N° data points

Error statistics model 
b

Easting Northing Data Error Component Index 
e

Leveling

N° data points

Error statistics model 
b

Easting Northing Data Error
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The second category of input files, includes the matrix of pre-computed responses 

from a selected number elementary units, with 1 MPa loads applied in the form of 

the six components of the stress tensor (see Chapter 1). This matrix will be used in 

the algorithm as the forward solver G(m). These responses are extracted for a given 

set of points, corresponding to the FE mesh surface nodes. The structure of this 

matrix is complex, as the rows are organized in Nx6, where N is the number of 

elementary units for which the responses are calculated six times, one for each stress 

component; while the columns are Mx3, corresponding to the three horizontal (x,y) 

and vertical (z) displacements each computed on M surface nodes. To allow the 

algorithm to interpret this matrix, two additional files are provided: one file with the 

number and the locations of the surface nodes, on which the solutions are extracted, 

and one file with the number of elementary units, their identification number and the 

location of their centroids. Finally, the prior information must be defined as 

probability density distributions representing our initial state of knowledge about the 

model parameters. The prior distributions of our model parameters are all uniform 

over a range set by the user. Therefore, the minimum and maximum number of 

Voronoi cells IN and OUT, as well as the limits of the three-dimensional volume in 

which the Voronoi cells nuclei can be located, the range of values for the scaling 

factors for the six displacements classes and for data error, are listed in an input file. 

 

3.5.2. The main loop: Candidate model and Metropolis’ rule 

As illustrated in Figure 14, the core of the algorithm is the McMC sampling, 

operating with an iterative process, in which a sequence of models are sampled 

following this logic: 

1. After reading the input files, the algorithm creates a random starting model based 
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on the prior distribution ranges. This model is the first ‘current’ model (mcurr) of 

the McMC chain. 

2. The current model is perturbed with a random move, according to the probability 

defined in the recipe. The perturbed model is, therefore, recognized as the 

‘candidate’ model (mcand), 

3. The predicted observations associated to the candidate model are computed and 

so its likelihood function p(d m, I ). The likelihood is a way to measure the fit 

of the predicted data respect to the observed, based on a simple least squares 

misfit. The general likelihood function is formulated as follows: 

                                                                  (7) 

where, Nd is the number of data points, Cerr is the covariance matrix of the errors, 

 represents the difference between the predicted and the observed data, and  

is defined as: 

 
 

                                                                  (8) 

where, G(m) is the forward solver, that in our method is pre-computed as the 

matrix of unitary responses The covariance matrix Cerr, is referred to errors of 

different nature. If we assume that these errors are uncorrelated (correlation length 

set to zero), we also imply that they all  share the same standard deviation , 

foreseeing a diagonal covariance matrix. This assumption is commonly adopted in 

modeling approaches with the aim of simplifying the computation, whereas our 

p(d |m, I ) =
1

((2π)Nd |Cerr | )
1
2

e
−ϕ(m)

2

ϕ

ϕ(m) = (d − G(m)TC−1
err(d − G(m))

σerr
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code offers the option to consider a grade of correlation for a more sophisticated 

analysis. 

4. The acceptance or rejection of the candidate model (mcand ) as the new current 

(mcurr ) is based on the Metropolis-Hastings algorithm (Metropolis et al., 1953; 

Hastings 1970). The acceptance probability is defined by the ratio between the 

likelihood computed for the candidate model and for the current model, as: 

 

                                                                             (9) 

According to this probability, if the likelihood of the candidate model is higher 

than that of the current model, the model is accepted with a probability equal to 

1, otherwise, the model is accepted with the probability equal to the value of (can 

be rejected if =0). If accepted, the candidate model (mcand ) becomes the 

new current model (mcurr ), otherwise the current model is kept. The the chain 

starts a new loop until the steps reach the number of iterations defined by the 

user. 

5. The sampled models are stored and participate to the PPD distribution, 

representing the final output of the inversion. 

α = min [1,
p(d |mcand, I )
p(d |mcurr, I ) ]



42

Figure 14. Flowchart describing the main loop of the inversion algorithm. In green, input 
files that are read by the code. The initial model is perturbed as illustrated in blue, according 
to the probability of each move. The new candidate model is accepted or rejected based on 
the likelihood as in Metropolis-Hastings rule. The current models are stored to build the PPD 
(red box). The loop ends when the number of models defined a-priori by the user has been 
created. 

3.5.3. Model outputs 

The algorithm creates several output files, in which all the informations about the 

simulation are kept for post-processing and interpretation of the results. In particular, 

the output files produced for each chain are: 

• One file containing information about the starting model for a given chain. 

• One file with the chain sequence details (e.g. type of move, acceptance info, 

likelihood computed for candidate and current model, number of cell IN and 

OUT). 

END

do i=1, N  *
N= number 
of iterations

i +1

if i<N

if i=N

accepted

rejected

read data
· es. InSAR,GNSS, tilt
· correlation lengths 

read prior info
· bounds for prior 
  probability distribution 

read responses
· surface displacements 
· surface grid nodes 
· elements centroids  

get initial model
randomly from prior

Compute misfit
likelihood L(m)=p(m|d) 
using covariance matrix

Metropolis-Hastings
candidate model (m1) 
acceptance based on 
likelihood ratio:

                  L(m1 )
                  L(m0 )
Į� �min[1,     ]

Candidate model
       becomes 
 the current model

* parallel independent chains computation allowed  posterior probability density 
(PPD) of model parameters
from saved models   

save current model

Perturb current model (m0)
selecting a random move from 
the recipe (17 moves):

- scaling factors (displacements,
           data error)

- V-cell nucleii number**, position

       Two sets of 3D Voronoi cells:
          - IN = deformation source 
          - OUT = outer crust      

** trans-dimensional moves changing the model dimension
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• One file reporting the parameters for each sampled model such as: the Voronoi 

nuclei coordinates, the values of the scaling factors of the six displacements and 

the data errors, the number of elementary sources included in the cells IN. 

• One file with the moves statistics. 

The ensemble of models stored are distributed according to the posterior probability 

density function (PPD). From the distribution of the PPDs of the model parameters 

we can extract the mean values and the standard deviations associated. Three 

dimensional plots of the Voronoi diagram based on the distribution of the cells nuclei 

allows for a visualization of the source shape. The predicted data can be computed 

for a model with the mean parameters extracted from the PPDs, or for any model. 

3.5.4. Performances 

The code presented in thesis is developed using FORTRAN programming language 

for its best performances in terms of CPU time. We account for the possibility of 

using high performance computers (HPC), allowing the use of multiple independent 

McMC chains ( ideally one for each CPU available in a cluster) for an exploration of 

a larger portion of the model space and shorter chains. In general, we observed that 

the number of models required to reach the convergence state is in the order of 105. 

The computation time required depends, in part, on the number of datasets included 

in the inversion, as well as on the computer performance. We run for our tests, 

averagely, a complete inversion with two InSAR datasets and 105 models per chain 

in ~2-3 hours, a more than sustainable time for a numerical modeling approach of 

this complexity. These simulations are performed on Ing580 machine (four hex-core 

processors) and other computational resources from Istituto Nazionale di Geofisica e 

Vulcanologia. Further enhancements of the algorithm performances can be done, e.g. 
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increasing the model sampling interval in the output files. As discussed in the final 

paragraphs of this thesis, as we foresee the use of large datasets to fully exploit the   

RJMCMC potential in terms of model resolution, a more sophisticated structure in 

the parallelization is planned, consisting in a master/slave approach (Mandolesi et al., 

2018). This approach is based on a master chain defining the jobs for a number of 

slave CPUs, in our case distributing the computation of the synthetic responses, the 

heaviest part of the algorithm workflow.  



45



46

Chapter 4 

Algorithm validation through synthetic tests 

In this chapter, we give a practical example of the inversion procedure, with a one 

representative test performed for code debugging and validation. We highlight the 

capacity of our code to deal with a complex problem and solve it following the 

principle of parsimony. In fact, we observe that along the sequence in the McMC 

chains, although the misfit has already reached a steady state value, the algorithm 

continues to sample models with a decreasing number of cells to assess the 

dimensionality of the problem (i.e. the number of parameters). In addition, we 

illustrate how the two sets of competing Voronoi cells interact in the model domain 

partition. The use of two trans-D elements in a reversible jump McMC algorithm is 

an original characteristic of our approach, that we conceptualized ad hoc for our 

problem. Our tests follow the same logic of those proposed in Chapter 2, as we 

compare the deformation fields due to different source configurations. We pass, in 

fact, from the assembly of elementary units in the FE domain, to an equivalent source 

sampled by a given distribution of Voronoi cells IN and OUT. We create noisy 

synthetics with our algorithm, defining the Voronoi cells nuclei that shape the target 

source and we let the inversion code retrieve a solution with simpler configurations 

of cells. Even if a more extensive testing and simulation would be appropriate to 

fully investigate the code potential and logic, we are already able to draw attention 

on the promising characteristics of the algorithm, that provide new insights for trans- 

dimensional algorithm applications. 
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  4.1. From analytical to V-cells source representation 

As anticipated in the previous paragraph, a testing phase of the algorithm has been 

carried out, since the level of sophistication we foresee and the innovative trans-D 

applications requires refinement and investigation. We present here a selected 

example of a practical inversion process. 

We analyze the outputs from a test aimed at retrieving a vertical spheroidal source at 

depth. This target source is equivalent to an analytical vertical spheroid (Yang et al., 

1988) with semi-major axis (a) of 1500 m, b/a (or c/a) ratio of 0.5 and ΔP/µ of 10-3 

and 0.25 (Figure 15a). The source assembly to retrieve is formed by 30 cubic 

elementary units (Figure 15b) sided 500 m, loaded with only the three force dipoles 

corresponding to the normal stresses (see 2.2). The scaling factors (sxx, syy, szz) 

for these components are, respectively, 2.57, 2.57 and 1.99. The synthetic source used 

to compute the surface observations to be inverted is created using our algorithm. We 

define IN and OUT Voronoi cells nuclei sampling the same 30 elements of the target 

source, in a way that the IN cells boundaries correspond to the faces of the cubic 

elements (Figure 15c). We place, therefore, the cells nuclei at the elementary unit 

center locations of the 30 elements in the assembly for the cells IN, and of the 50 

surrounding elements for the cells OUT. 

The inversion is performed to find the simplest models configurations explaining the 

data, in the way illustrated in the example of Figure 15d. The model reported is an 

ideal solution, by way of an example, that samples the 30 elements of the synthetic 

source with a reduced number of cells (a single IN cell at the center of the source and 

14 OUT), keeping the model dimension small. All these sources produce the same 

deformation field at the surface, validating our approach. 
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Figure 15. Comparison of source configurations following the logic of our tests. a) analytical 
pressurized cavity (Yang et al., 1988); b) assembly of elementary source unit loaded with an 
appropriate stress tensor; c) source assembly in terms of V-cells used to compute the synthetic 
data; d) example of an ideal solution after the inversion, sampling the same units of c with less 
cells. 

  4.2. Data and fit 

We compute synthetic data with our algorithm from the source configuration of 

Figure 15c. The data are obtained in the form of InSAR LOS displacements from an 

ascending orbit with unit vector values of, respectively, 0.67, -0.11 and 0.72. We 

define a non uniform grid of data points, more dense at the center of the grid and 

more sparse in the far field, with a total number of 887 points. For a better 

visualization, in Figure 16, we interpolate these points on the surface grid of nodes of 

the FE mesh (4249). Gaussian white noise with zero mean is applied to the synthetic 

data as shown in Figure 16b.  
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An example of predicted data is shown in Figure 16c, using the last sampled model 

of one of the 20 independent chains, characterized by the lowest value of misfit. The 

comparison highlights that the predicted data from the model are nearly identical to 

the observations. The maximum LOS displacements is 

~0.007 m for data and predicted. 

 
Figure 16. Comparison of observed and predicted data. a) Synthetic data computed as 
ascending orbit LOS displacement without noise; b) noisy synthetic observations; c) 
predicted data from a selected model sampled at the end of a McMC chain. 

   4.3. Voronoi cells sampling of the model space 

In this paragraph, we illustrate how the sets of Voronoi cells works for sampling the 

model domain. The combination of cells IN and OUT, in fact, defines the region of 

the domain representing the deformation source, namely, the ensemble of 3D IN cells 

shaped by the OUT cells position (Figure 13, 17). The IN cells englobe a number of 

elementary sources that concur to the model solution, as the sum of their 

contributions gives the total displacement field (see Chapter 2). We initialize the test 

inversion, starting with a given initial model, described by a combination of 418 

OUT cells, having their nuclei at the centers of the elements located at the extremes 

of the volume we considered as the model space, while a single cell IN center of the 

target source (coordinates: 0, 0, -7250 m) is considered.   
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To reduce the computational time we perform our test using a subsample of 

elementary units (~1000), in a volume ranging between -2500 m to 2500 m along X 

and Y directions and between -4500 m and -9500 m along Z (Figure 17). During the 

inversion, the number of cells and their positions can be perturbed according to 

section 3.5.2, changing the source shape. 

An example of the model solutions is provided in Figure 17, consisting of the last 

sampled model of the chain showing the lowest misfit at the end of the test inversion 

(16000 samples). Only the surfaces of the IN polyhedral cells are drawn in grey, 

omitting those of the OUT cells and showing only their nuclei distribution, for a 

more clear visualization. This ensemble of two IN cells approximates the vertical 

spheroidal source, although longer chains would be appropriate and spatially denser 

data, for a better refinement of the shape. We are able, nevertheless, with the 

presented results, to show that our innovative approach, based on competing cells, is 

suitable to sample the model domain, solving for deformation sources free of shape 

constraints. 

Figure17. Three dimensional plot of a source model. The surface of the Voronoi cells IN is 
drawn in grey. The source shape is depending on the position of the Voronoi cells OUT 
nuclei and their surfaces. In this figure the edges and faces of the polyhedral OUT cells are 
omitted. 
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Moreover, an analysis of the sampled elementary units, based on the last models 

stored in each of the 20 independent McMC chains, gives an idea about the capacity 

of the inversion to locate the source in the correct portion of the model domain. We 

can highlight that the most sampled elementary units are those we used to build the 

synthetics (Figure 18). The elements that are sampled fewer times and that are not 

belonging to the synthetic source, on the left and right extremes of the plot, are 

contiguous to the synthetic assembly. This is an expression of the solution variability 

that is controlled, mostly, by the resolution power of the observations. In particular, 

we notice that two elements belonging to the synthetic assembly are not sampled 

almost at all, which are identified by the IDs 383 (0, 0, -5750) and 428 (0, 0, -8250). 

These elements IDs correspond to the two element at the top and bottom tip in the 

assembly, likely meaning that the data are blind for this level of detail, as they their 

contribution to the predicted data is negligible, or null ( see fit Figure 16c). 

 
Figure 18. Histogram showing the sampled elementary sources in the last models of the chain. We 
show the counts of sampled element units in the ensemble of the last model of each chain. In the 
box the IDs identifying the elements that are used to build the synthetic source assembly, 
highlighted by the red lines. These elements are the most sampled, except 383 and 428, that are 
probably not resolved by the data. 
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  4.4. Misfit and parsimonious solutions 

One of the key characteristics of our algorithm, related to the use of reversible jump 

McMC, is that it tends to estimate the solution without introducing unnecessary 

details. In this section, we demonstrate that the inversion progressively discards 

solutions characterized by an overcomplexity, tending to the smallest problem 

dimension for the same model misfit. In the graph presented in Figure 19, we plot the 

trends of the likelihood values for the current models sampled by the 20 chains. We 

observe that the misfit decreases quickly during the inversion, reaching a stationary 

value after few hundred models for the test we propose. Typically, the steady value of 

LPPD0 approximates that of the data points, in this case amount to nearly ~900. The 

stage when the misfit values are stable is the convergence point of the inversion. 

Figure 19. Misfit trends for the 20 independent McMC chains. The misfit, defined in terms 
of likelihood of the current models, decreases quickly in all the chains. After few hundreds 
samples the misfit reaches stationary values approximating the number of data points. 
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We observe that our algorithm continues to enhance the solutions in terms of 

complexity, even if an optimal misfit value has been reached. This is evident from 

the comparison of the misfit convergence plateau starting from 200-300 models in 

Figure 19 and the trends in Figure 20, describing the number of Voronoi cells in the 

models sampled by each chain. In particular, the plot shows the number of Voronoi 

cells OUT trends, highlighting that a consistent decrease in the number of cells 

occurs throughout all the chains sampling sequences. Simulations verify that all the 

trends, at one point, asymptotically lie on the lowest possible number of cells nuclei  

OUT that are necessary to constrain the source shape. An example of model result is  

represented by the source in Figure 18, that produces the deformation field on the 

surface in Figure 16c, being the last sampled model of the chain with the lowest 

misfit. This model is described by 2 IN cells and only 22 OUT cells, against the 418 

OUT cells of the initial model. We conclude that the algorithm is operative and that 

owns specific features that might open the ways to a number of applications and 

further developments. 

Figure 20. Number of OUT cells trends for the 20 independent McMC chains. In this plot, the 
decreasing trends represents the numbers of OUT cells in the sampled models, highlighting the 
algorithm tendency to reduce the problem dimension. All the chains starts from the same initial 
point (418 OUT). The simulation we show requires more samples to reach the convergence. 
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Chapter 5 

The Long Valley caldera case study 

We present in this last chapter a study about Long Valley caldera, in California 

(USA), that we chose for the application of our new modeling method. This volcanic 

site is one of the most studied worldwide, therefore, an extensive literature and 

variety of dataset are available for our implementation (e.g. Battaglia et al., 2003). 

The Long Valley caldera is in an unrest phases since 1979, experiencing since then 

episodes of seismicity and ground deformation, occurring in the area of the resurgent 

dome inside the caldera (Hill et al., 2020). The last inflationary trend started in 2011 

and continued for more than a decade (Montgomery-Brown et al., 2015). We collect 

and process geodetic data that fully cover the period from 2011 to the end of 2021. In 

particular, we produce Interferometric Synthetic Aperture Radar (InSAR) data using 

different satellite sensors, i.e. TerraSAR-X (TSX), COSMO-SkyMed (CSK) and 

Sentinel-1 (S1), with different acquisition geometries and operating with X and C-

bands, to increase the accuracy in mapping the deformation. Also, we use GNSS 

velocities from the monitoring network of the California Volcano Observatory. We 

correct for tectonic, hydrological and seismic contributions to the displacement field 

to derive the signals caused by the caldera dynamics. With our dataset, we are able to 

investigate the characteristics of the deformation source at depth by means of inverse 

modeling. In particular, we employ the moment tensor source model (Davis, 1986) to 

retrieve the relationships among the principal moment values, describing the source 

and infer the source geometry. These results are preparatory for the application of our 

modeling approach, based on the moment tensor application. Our findings show that 

the source can be represented as a nearly vertical spheroid, having a shallower depth 

in the second half of the period analyzed. This result is consistent with previous 

studies and the modeling of the previous unrest in 1988-1999 we additionally 

performed. 
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  5.1. Introduction 

The Long Valley Caldera (USA), located in Eastern California, experienced in the 

last decades unrest phases with seismic swarms and ground uplift. The ground 

inflationary trends were observed in the central caldera, near the resurgent dome area 

(Figure 21), characterized by a nearly axisymmetric tumescence (Montgomery et al., 

2015; Hill et al., 2020). The highest rates have been recorded in 1997-1998, when 

nearly 10 cm of uplift occurred (Battaglia et al., 2003; Langbein, 2003), while the 

last deformation period started in late 2011 (Montgomery et al., 2015; Hill et al., 

2020). Deformation source models have been produced by several authors for 

different uplift phases, using EDM, leveling, GNSS, InSAR and microgravity data. 

The most frequent solution, and preferred by the authors, is the one seeing the 

deformation source as a nearly vertical spheroidal shape, with a depth ranging from 6 

to 10 km, located below the resurgent dome (Tiampo et al., 2000; Fialko et al., 2001; 

Battaglia et al., 2003; Langbein, 2003; Tizzani et al., 2009; Liu et al., 2011; 

Montgomery-Brown et al., 2015; Silverii et al., 2021). The mentioned studies 

implement the prolate spheroid source solution provided by Yang et al. (1988), 

except Langbein (2003), that used the moment tensor point-source described by 

Davis (1986). A vertical spheroidal cavity was also modeled using viscoelastic 

rheology by Newman et al. (2006). A review of the unrest at Long Valley is provided 

by Hill et al. (2020). 

Although part of the observed deformation in Long Valley caldera has origin from 

hydrological processes, occurring at different spatial and temporal scales, and from 

seismic events (Silverii et al., 2020 and 2021), the main signals are proven to be 

related to deep dynamics of the caldera plumbing system. The involvement of 

magmatic, or of purely hydrothermal processes, at the origin of the observed signals 

is the object of an open scientific debate where geological and geophysical 

observations lead to contrasting conclusions (Hildreth, 2017; Hill, 2020). While 

geological studies support the non-magmatic unrest hypothesis, considering the 
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caldera in a moribund stage (Hildreth, 2017), geophysics brings evidences of 

possible presence of partial melts in the mid- and lower crust, suggesting that the 

magmatic system is still active (Battaglia et al., 1999; Nakata and Shelly, 2018; 

Seccia et al., 2011). 

 
Figure 21. Simplified map of Long Valley caldera, CA, region. The map shows the caldera 
boundary (blue dotted line), the main structural lineaments (black lines), the area of the 
resurgent dome (yellow) and the locations of all the GNSS stations we used in this study. 

  5.2. Data 

5.2.1. InSAR 

We perform a multi-temporal InSAR analysis to map the ground deformation rates at 

the Long Valley caldera, adopting the Persistent Scatterers (PS) approach (Ferretti et 

al., 2001).  
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The PS technique (i.e., PS-InSAR, IPTA, STAMPS) analyzes only stable radar 

reflectors, consisting of single targets unaffected by temporal and spatial 

decorrelation, and we use a functional model of how deformation varies with time to 

identify PS pixels. 

Acquisitions from multiple SAR missions are collected to detect the deformation 

field evolution through the years (Figure 2b, c, d). In particular, the analysis provided 

full temporal data coverage from the onset of the last inflation phase in late 2011 to 

late 2021 (Figure 22e). We collect images from ascending and descending orbits of 

SAR systems operating in the X- and C-band. In addition to the TerraSAR-X (TSX) 

descending orbit dataset from Montgomery et al. (2015), spanning the years 2011.3 - 

2015.1, data from COSMO-SkyMed (CSK) and Sentinel-1 (S1) sensors has been 

processed. A total of 152 images have been considered in the analysis of CSK (125 

for the ascending and 27 for the descending orbits, respectively). The ascending track 

data span the time from mid 2012 to 2017, while the descending from 2015 to mid 

2016. The S1 dataset consists of 96 and 102 images (C-band, TOPSAR acquisition 

mode) for the ascending and descending orbits, respectively, covering the period 

from 2017 to 2020. 

The SRTM Digital Elevation Model from the NASA Shuttle Mission (Farr et al., 

2007) at 30 m ground resolution is used to remove the topographic contribution. The 

Goldstein filtering (Goldstein et al., 1988) is adopted to filter out the noise from all 

the interferometric pairs. Finally, the multi-temporal InSAR outcomes are geocoded 

in the WGS84 reference system. SAR data are processed using the Sarscape software 

(SARMAP®, CH). 

The time series in Figure 22e compares the projected InSAR uplift velocities and the 

GNSS data at the RDOM station location. In this figure, we observe an inflation rate 

of slightly less than 2 cm/yr between 2011 and late 2014. Then, the inflation 
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continues until 2021 but with a lower rate of a few mm/yr. The positive LOS signal 

since 2015 is retrieved by CSK descending orbit and S1 both orbits (Figure 22). To 

better exploit the different datasets and the corresponding temporal spans, we split 

the whole temporal interval in two main periods, T1 (from 2011 to end of 2014) and 

T2 (from January 2015 to end of 2021), according to Montgomery-Brown et al. 

(2015) and Silverii et al. (2021). In this way, we finally obtain two LOS velocity 

datasets, the first including TSX descending and CSK ascending, and the second 

dataset with ascending CSK and both orbits from S1. We exclude from the following 

analysis the descending CSK orbit data, since they are affected by high levels of 

noise, mainly due to the low number of available images preventing a reliable 

estimate and removal of the artifacts affecting data processing. 

5.2.2. GNSS 

Our dataset includes deformation velocities estimated from a dense network of 

GNSS continuous stations, distributed within the caldera and in the surroundings as 

shown in Figure 22a. The daily positions we use are available at https:// 

earthquake.usgs.gov/monitoring/gps/LongValley (Murray and Svark, 2017). We start 

from NA-fixed trended time series and first remove the steady-state tectonic 

component, estimated for each station as the linear velocity rate in the time frame 

2006-2010, a period of low deformation rates (Montgomery et al., 2015; Silverii et 

al., 2021). These velocities are obtained by means of a simple linear regression 

model. The study area is known to be affected by non-negligible deformation due to 

hydrological processes, as highlighted by Silverii et al. (2021), and by seismic 

swarms. 

We, therefore, perform a correction of such signals, removing manually the semi- 

annual and annual oscillatory signals and the significant earthquake offsets using a 

GAMIT/GLOBK Matlab tool for time series analysis, tsview (http://www- 

gpsg.mit.edu/~tah/GGMatlab/). In particular, for the offset removal we consider the 

https://earthquake.usgs.gov/monitoring/gps/LongValley
https://earthquake.usgs.gov/monitoring/gps/LongValley
http://www-/
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seismic catalog, available at https://earthquake.usgs.gov/earthquakes/search/, as a 

guide for a better interpretation. In this way, we filter most of the superimposed 

deformations, allowing for a more accurate estimate of the velocity rates associated 

to the caldera dynamics.  

 
Figure 22. InSAR and GNSS data. a) GNSS velocities derived for T1 and T2 time intervals; 
b) InSAR COSMO-SkyMed ascending orbit data; c) InSAR Sentinel-1 ascending orbit data; 
d) InSAR Sentinel-1 descending data; e) Time series comparing the GNSS uplift velocity 
at RDOM station (grey) with InSAR decomposed up velocity components from TSX, 
CSK, S1 at the same location. The black dotted line marks the separation between T1 and 
T2. 
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For this task, we fit linear trends to the two temporal subsets of each time series, 

analogously to the approach employed for the InSAR data. The first phase, T1, spans 

the period from mid 2011 to end of 2014, while the second phase, T2, goes from 

January 2015 to mid 2021 (Figure 22e). We obtain velocities and errors for 36 

stations selected for our models (Figure 22a). Finally, we consider the station P628 as 

a background velocity in the far field, assuming no deformation related to the caldera 

in that location. We remove this velocity from the whole dataset, to compensate 

possible inaccuracies in the removal of superimposed deformations due to non-

volcanic processes. 

  5.3. Deformation source modeling of T1 and T2 phases. 

We investigate the volcanic deformation source that caused the observed inflation 

within the caldera. The modeling software employed is the open-source Python tool 

VSM (Trasatti, 2022), using the Bayesian Inference algorithm implemented in this 

software as the sampling algorithm. We run separated inversions for the two periods 

suggested (T1, 2011-end of 2014 and T2, 2015- mid 2021) obtaining results for 

different model setups, setting different weights combinations among the data types, 

InSAR and GNSS. In this way, we investigate the influence of the type of dataset 

upon the model solution. We use subsampled InSAR datasets with higher density of 

points in the deformation area, discarding limited zones too noisy or affected by 

deformation of other nature. For example, in the subsiding area SW of the caldera a 

significant deformation is caused by the presence of geothermal power plants 

(Lagbein, 2003; Tizzani et al., 2007; Montgomery-Brown et al., 2015; Silverii et al., 

2021), while in the South Moat (i.e. South Moat Seismic Zone, SMSZ) is due to the 

high rates of seismicity takes place. For further validation, we apply the same 

methodology to model the deformation source of a previous inflation phase observed 

in this area. We use leveling and EDM data (Battaglia et al., 2003), for the period 

spanning 1985-1999. 
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In this study, we use the moment tensor source described by Davis (1986) and 

implemented in VSM, for its versatility and the reduced number of parameters 

involved ( see Introduction and Chapter 1). A limitation is the point-source 

approximation of the formulation, but it is suitable at Long Valley based on previous 

findings, since the source depth, between 6-10 km, is much larger than the source 

dimension (e.g., Battaglia et al., 2003; Newman et al., 2006; Montgomery-Brown et 

al., 2015). 

Only a limited combination of moment tensor principal values can be interpreted in 

terms of triaxial ellipsoid (Trasatti et al., 2011). The shape (defined by the axes 

ratios) and the orientation (strike and dip) of the ellipsoid are determined based on 

the combination of the retrieved optimal dipoles and double couples. In particular, 

the source orientation is obtained by the eigenvectors from the diagonalization of the 

Pij matrix, while the relative size of the axes, b/a and c/a, where a is the maximum 

semi-axis, b is the intermediate and c is the minimum (a > b > c), are inversely 

related to the Pij eigenvalues (the moment tensor principal values P3 > P2 > P1). The 

absolute axes size depends on the well known combination of VΔP/µ, where V is the 

source volume, ΔP the overpressure on the source boundary and µ is the shear 

modulus of the medium. Instead, we use Eq. 3 from Amoruso and Crescentini (2009) 

to estimate the volume change of the ellipsoidal inclusion, ΔV: 

 

                                                                       (10) 

where, v is the Posson’s ratio, PT=P1+P2+P3. This formula points out that the 

volume variation depends on the ellipsoid shape, since it is determined from the 

ratios P1 / P3 and P2 / P3. 

ΔV =
1 − 2ν

2(1 + ν)
P
μ ( PT

P
− 3)
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  5.4. Results and discussions 

 

From the analysis of the retrieved moment tensor values of the mean models sampled 

in the PPD distributions, we extract a series of parameters describing the sources. 

Knowing the principal moment tensor ratios, P1 / P3 and P2 / P3 , we can infer the 

source geometry by plotting these values into the diagram represented in Figure 23a. 

All the solutions, for all the three periods we analyze, fall into the ellipsoids field. In 

particular, we find remarkably consistent parameters for the source shape, 

represented by a nearly vertical (averagely dipping with an angle of ~ 80°) ellipsoidal 

cavity, and with axis ratios b/a ~ 0.6 and c/a ~ 0.4 (Table 2, Figure23b, c). 

These results persist among the different periods of interest, with independent 

datasets, and for changing data weights. For the two time phases T1 and T2 the 

source depth changes from ~ 7 km in T1 to ~ 5 km in T2. Also, the volume changes 

involved pass from 4.6·106 m3/yr to 0.9·106 m3/yr, consistently with the lower 

deformation velocities detected in the last years of the inflationary trend. In all the 

cases the source location falls in the area of the resurgent dome, but slightly migrates 

to the SE sector of the caldera in the T2 phase. 

We compare these solutions with those obtained from the inversion of leveling and 

EDM data (Battaglia et al., 2003c) referred to the inflation of 1985-1999. Also in this 

case, we obtain a source with similar shape and orientation and a depth like the T1 

source (~7 km). The volume change we estimate for this older event is 124 ·106 m3, 

corresponding to a volume variation rate of ~ 8.86·106 m3/yr. This volume variation 

estimate is nearly double the value we obtain for T1 (during 2011-2014), in 

accordance with the observed uplift rate in 1985-1999, twice the one we detect for 

T1 (respectively, 2.5 - 3.0 cm/yr against ~ 1.5 cm/yr). The PPD distributions of the 

model parameters and the model fit is presented in Supplementary Materials (Figures 

S2, S4, S5). 



64

Figure 23. Results from the inversions for different unrest phases and different data types 
weight combinations. a) Principal moment tensor ratios defining the type of source 
geometry, the solutions fall in the ellipsoids field b,c) axis ratios based on the principal 
values ratios; the solutions lie along the b/a and c/a values of, respectively, ~0.6 and ~0.4; 
d) Depths for different data weight combinations e) Dip angles; f) Strike angles; g) Volume 
variations. 

We observe that for the period T1 the GNSS data are well reproduced by the model 

(Figure S1a, b), except at MWTP station, which is located in the geothermal power 

plant area, where subsidence signals can be observed. The InSAR data from CSK 

ascending orbit are affected by significant noise (Figure S1c), therefore, residuals are 

considerably high in the western side of the caldera (Figure S1e). On the contrary, a 

good fit is shown for the TSX data, with residuals in the order of the data error 
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(Figure S1f, g, h). The same applies to T2 model fit, characterized by the highest 

residual for GNSS data near MWTP (Figure S3b), and in same area for the InSAR 

data, particularly in S1 ascending (Figure S3h). In general, also in this case the fit of 

the deformation field predicted by the model is satisfying, with residuals in the range 

of data uncertainties inside the caldera. Finally, we consider leveling and EDM data 

from the past unrest during 1985-1999. We apply the same methodology as for the 

recent data, and the results are shown in Figure S5. In this case, the comparison of 

observed and predicted data highlights a remarkably good fit of the leveling data, 

with very small residuals (Figure S5a, b, c). The EDM results are, as well, 

satisfyingly linearly correlated (Figure S5d) 

Table 2. Mean parameters and associated errors from the inversion results for different 
unrest phases and different data types weight combinations. 
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Table 2. Moment tensor source (Davis, 1986) interpretation results

InSAR 
weight 

GNSS 
weight 

X UTM Y UTM depth (m) dip 
(°)

strik
e (°)

s.rot 
(°)

b/a c/a P2/P3 P1/P3 dVol/yr                
(10^6 m3/

yr)

T1

1 0 329050 ±50 4173400 ±100 8900±150 -2 83 -6 0,72 0,28 0,4634 0,4487 5 ±0,086

0,75 0,25 329400 ±100 4173100 ±150 8550±100 4 89 -3 0,33 0,16 0,5277 0,4820 4,8 ±0,088

0,5 0,5 330200 ±100 4173100 ±100 7000±100 75 178 -3 0,62 0,40 0,7313 0,6475 4,6 ±0,075

0,25 0,75 330650 ±50 4172950 ±100 6150±100 80 184 2 0,44 0,36 0,8629 0,6836 4,6 ±0,088

0 1 330950 ±100 4172750 ±100 6350±150 80 174 73 0,51 0,45 0,9026 0,7235 5,5 ±0,147

T2

1 0 333300 ±100 4172100 ±200 4300±200 87 316 -19 0,59 0,44 0,8064 0,6891 0,8 ±0,033

0,75 0,25 333200 ±100 4172000 ±200 4400±200 85 287 -19 0,58 0,44 0,8244 0,6970 0,8 ±0,032

0,5 0,5 333000 ±150 4171700 ±250 4600±200 80 272 -20 0,56 0,46 0,8573 0,7122 0,9 ±0,041

0,25 0,75 332450 ±150 4171200 ±250 5100±250 75 269 -25 0,52 0,49 0,9562 0,7551 1,1 ±0,058

0 1 330200 ±300 4170750 ±250 7800±400 67 344 70 0,60 0,40 0,7390 0,6490 2,4 ±0,58

Unrest 
85-99

Leveling 
weight

EDM 
weight

0,5 0,5 331800±150 4172900 ±150 6750±200 79 72 -64 0,66 0,44 0,7530 0,6710 8.86 ± 5,420
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  5.5. Conclusion 

The outcomes of this study highlight that the deformation of Long Valley caldera can 

be explained by the presence of a pressurized source at depth. Our models are 

supported by an extensive dataset, with multi-satellite InSAR data and GNSS, that 

reinforcing the reliability of our results. The misfit in our models is mostly located in 

the area of the geothermal power plants, near GNSS station MWTP, similarly to what 

results from the analysis of Montgomery et al. (2015). Also, we observe in the 

InSAR data deformations that cannot be resolved by the source model, along the 

western side of the caldera. We attribute the associated deformation signals as a 

superimposed deformation due to the hydrological processes acting in the area of the 

Mammoth Lakes, in accord with the findings of Silverii et al. (2020,2021). In fact, 

no corrections for the non-negligible superimposed deformation signals can be 

applied to InSAR, contrarily to what we did for GNSS velocities (see section 5.2.2.). 

The deformation source, according to our findings, has an ellipsoidal shape, 

vertically oriented. The retrieved parameters describing the source shape are 

consistent in all the three periods we analyzed with independent datasets. Also, our 

results are consistent with the deformation source models presented in the literature. 

A key point deriving from our analysis is that the source depth remained mostly 

stable to ~ 7 km from the 1985-99 unrest to 2015, end of the phase T1 according to 

our distinction. From 2015, we retrieve a source at shallower depth (~ 5 km) 

suggesting the possibility of some intrusive process ascent. However, in the second 

phase of the last unrest, the source location slightly changes, moving towards the 

South Eastern sector of the caldera. 
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Conclusions and future developments 

In this thesis, we presented an original deformation source modeling approach based 

on Finite Element Methods. We develop a specific trans-dimensional algorithm to 

deal with our problem, that sees the deformation source shaped in a FE-mesh free of 

cavities and a-priori geometric constraints. The aim is to represent more realistic 

pressurized magma reservoirs in comparison with the solutions proposed by the 

existing methods, avoiding the user control on the source geometry and letting the 

solution be purely guided by the data.  

 

Differently from previous attempts in the literature, using Finite Elements Methods 

to model free shaped sources, this method solves the point-source limitation we 

discussed in the Introduction of this thesis. We create, in fact, an original forward 

model that is used as the elementary unit of a composite source assembly, with 

features that allow to rigorously account for fundamental continuum mechanics 

principles, as we prove by means of several synthetic tests. This unit is obtained by 

loading solid cubic elements of the FE grid with a unitary stress tensor. We apply the 

six stress tensor components, normal and shear, in the form of dipoles and double 

couples of forces acting on each element faces using a FEM commercial software 

(i.e. Marc Mentat 2013). The six surface displacements, relative to each stress 

component applied, are computed for each unit in a given source assembly. This 

deformation can be summed and linearly scaled to obtain the total deformation field 

according to the superposition principle. We verify with synthetic tests the 

equivalence of the deformation fields caused by pressurized cavities with uniform 

pressure applied at their boundaries and that caused by our assembly with scaled 

stress components.  
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Also, our method represents a cost-efficient approach permitting to avoid 

computationally expensive re-meshing processes, as our forward model is built in a 

continuum domain without cavities. Therefore, we exploit the possibility to pre-

compute unitary displacements on a fixed mesh, that can be stored and combined a-

posteriori for our simulations.  

We develop an inversion code handling the information in the matrix of pre-

computed unitary responses and producing models of the deformation source based 

on geodetic datasets of different types. The code is characterized by a high level of 

sophistication, employing Bayesian inference and the reversible-jump McMC 

(Trans-D) approach, that deals with numerical problems of changing dimensions. 

The number of parameters is inverted itself and consists of the number of partitions  

of the three-dimensional model space that are required to shape the deformation 

source. In particular, we use a Voronoi diagram made of two competing sets of 

polyhedral three-dimensional Voronoi cells that sample the domain and define the 

volume occupied by the deformation source. The use of two trans-dimensional 

elements (i.e. two sets of cells) represents a novel application in Trans-D algorithms.  

We highlight the potential of our code with synthetic tests and future applications to 

real case studies are planned, as well as code improvements for ever more efficiency. 

In fact, the complexity of the problem and the variety of analysis options we foresee 

requires more work and investigation about the logic of the algorithm. One of the 

short-term goals is the introduction of parallelization options (i.e. master/slave 

CPUs) for a more efficient chain sampling and shorter computational time; therefore, 

a higher number of data points allowed. We aim, then, to the real case study 

application at the Long Valley caldera volcanic site, the subject of our preparatory 

study presented in Chapter 5.  
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Finally, the proposed approach represents a promising starting point for the retrieval 

of fully irregular sources with inverse modeling, one of the main targets in the 

volcanic deformation source modeling field now that large datasets with 

unprecedented accuracy are accessible. 



71



72

References 
Acocella, V. (2019). Bridging the gap from caldera unrest to resurgence. Frontiers in 
Earth Science, 7, 173. 

Amoruso, A., & Crescentini, L. (2009). Shape and volume change of pressurized 
ellipsoidal cavities from deformation and seismic data. Journal of Geophysical 
Research: Solid Earth, 114(B2). doi:10.1029/2008JB005946. 

Amoruso, A., & Crescentini, L. (2013). Analytical models of volcanic ellipsoidal 
expansion sources. Annals of Geophysics, 56(4), S0435-S0435. doi:10.4401/ag-6441. 

Bagnardi, M., and Hooper, A. (2018). Inversion of Surface Deformation Data for 
Rapid Estimates of Source Parameters and Uncertainties: A Bayesian Approach. 
Geochem. Geophys. Geosyst. 19, 2194–2211. doi:10.1029/2018GC007585 

Battaglia, M., Roberts, C., & Segall, P. (1999). Magma intrusion beneath Long 
Valley caldera confirmed by temporal changes in gravity. Science, 285(5436), 
2119-2122. 

Battaglia, M., Segall, P., & Roberts, C. (2003). The mechanics of unrest at Long 
Valley caldera, California. 2. Constraining the nature of the source using geodetic 
and micro-gravity data. Journal of Volcanology and Geothermal Research, 127(3-4), 
219-245. doi: 10.1016/S0377-0273(03)00171-9. 

Battaglia, M., Cervelli, P. F., and Murray, J. R. (2013). Modeling Crustal 
Deformation Near Active Faults and Volcanic Centers—A Catalog of Deformation 
Models. Available at: http://pubs.er.usgs.gov/publication/tm13B1. 

Bayes, T. (1763). LII. An essay towards solving a problem in the doctrine of chances. 
By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John 
Canton, AMFR S. Philosophical transactions of the Royal Society of London, (53), 
370-418. 

Biggs, J., Ebmeier, S. K., Aspinall, W. P., Lu, Z., Pritchard, M. E., Sparks, R. S. J., & 
Mather, T. A. (2014). Global link between deformation and volcanic eruption 
quantified by satellite imagery. Nature communications, 5(1), 1-7. 

Biggs, J., and Wright, T. J. (2020). How Satellite InSAR Has Grown from 
Opportunistic Science to Routine Monitoring over the Last Decade. Nat. Commun. 
11, 3863. doi:10.1038/s41467-020-17587-6 

https://doi.org/10.1029/2008JB005946
https://doi.org/10.4401/ag-6441
https://doi.org/10.1016/S0377-0273(03)00171-9
http://pubs.er.usgs.gov/publication/tm13B1


73

Bodin, T., & Sambridge, M. (2009). Seismic tomography with the reversible jump 
algorithm. Geophysical Journal International, 178(3), 1411-1436. 

Burchardt S. , Tanner D.C., Krumbholz M., 2010. Mode of emplacement of the 
Slaufrudalur Pluton, Southeast Iceland inferred from three-dimensional GPS 
mapping and model building, Tectonophysics480(1–4), 232–240. 
Camacho, A. G., González, P. J., Fernández, J., & Berrino, G. (2011). Simultaneous 
inversion of surface deformation and gravity changes by means of extended bodies 
with a free geometry: Application to deforming calderas. Journal of Geophysical 
Research: Solid Earth, 116(B10). 

Casu, F., Manzo, M., & Lanari, R. (2006). A quantitative assessment of the SBAS 
algorithm performance for surface deformation retrieval from DInSAR data. Remote 
Sensing of Environment, 102(3-4), 195-210. 

Davis, P. M. (1986). Surface Deformation Due to Inflation of an Arbitrarily Oriented 
Triaxial Ellipsoidal Cavity in an Elastic Half-Space, with Reference to Kilauea 
Volcano, Hawaii. J. Geophys. Res. 91, 7429–7438. doi:10.1029/ jb091ib07p07429 

Denison, D. G., Holmes, C. C., Mallick, B. K., & Smith, A. F. (2002). Bayesian 
methods for nonlinear classification and regression (Vol. 386). John Wiley & Sons. 

Dzurisin, D. (2003). A comprehensive approach to monitoring volcano deformation 
as a window on the eruption cycle. Reviews of Geophysics, 41(1). 

Eshelby, J. D. (1957). The Determination of the Elastic Field of an Ellipsoidal 
Inclusion, and Related Problems. Proc. R. Soc. Lond. A 241, 376–396. doi:10.1098/ 
rspa.1957.0133 

Farr, T. G., et al. (2007), The Shuttle Radar Topography Mission, Rev. Geophys., 45, 
RG2004, doi:10.1029/2005RG000183. 

Ferrari, C., Bonafede, M., & Trasatti, E. (2015). Relations between pressurized 
triaxial cavities and moment tensor distributions. Annals of Geophysics, 58(4), 
S0438-S0438. 

Ferretti A., Prati C. and Rocca F.; 2001: Permanent scatterers in SAR interferometry. 
IEEE Trans. Geosci. Remote Sens., 39, 8-20. 

Fialko, Y., Khazan, Y., and Simons, M. (2001). Deformation Due to a Pressurized 
Horizontal Circular Crack in an Elastic Half-Space, with Applications to Volcano 
Geodesy. Geophys. J. Int. 146, 181–190. doi:10.1046/j.1365-246X.2001.00452.x 

https://doi.org/10.1029/2005RG000183


74

Geyer, C.J. & Møller, J., 1994. Simulation procedures and likelihood infer- ence for 
spatial point processes, Scand. J. Stats., 21, 359–373. 

Gelman, A., Roberts, G.O. & Gilks, W.R., 1996. Efficient Metropolis Jumping Rules, 
Oxford University Press, 599–607 pp 

Goldstein R.M., Zebker H.A. and Werner C.L.; 1988: Satellite radar interferometry: 
two-dimensional phase unwrapping. Radio Sci., 23, 713-720. 

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and 
Bayesian model determination. Biometrika, 82(4), 711-732. 

Hastings, W.K., 1970. Monte Carlo sampling methods using Markov chains and their 
applications, Biometrica, 57, 97–109. 

Hawkins, R., Bodin, T., Sambridge, M., Choblet, G., & Husson, L. (2019). Trans- 
dimensional surface reconstruction with different classes of parameterization. 
Geochemistry, Geophysics, Geosystems, 20(1), 505-529. 

Hickey, J., Gottsmann, J., & Mothes, P. (2015). Estimating volcanic deformation 
source parameters with a finite element inversion: The 2001–2002 unrest at Cotopaxi 
volcano, Ecuador. Journal of Geophysical Research: Solid Earth, 120(3), 1473-1486. 

Hill, D. P., Montgomery-Brown, E. K., Shelly, D. R., Flinders, A. F., & Prejean, S. 
(2020). Post-1978 tumescence at Long Valley caldera, California: A geophysical 
perspective. Journal of Volcanology and Geothermal Research, 400, 106900. 

Hildreth, W. (2017). Fluid-driven uplift at Long Valley Caldera, California: geologic 
perspectives. Journal of Volcanology and Geothermal Research, 341, 269-286. 

Huang H.H. , Lin F.C., Schmandt B., Farrell J., Smith R.B., Tsai V.C., 2015. The 
Yellowstone magmatic system from the mantle plume to the upper crust, Science348, 
doi:10.1126/science.aaa5648. 

Langbein, J. O. (2003). Deformation of the Long Valley Caldera, California: 
inferences from measurements from 1988 to 2001. Journal of Volcanology and 
Geothermal Research, 127(3-4), 247-267. 

Lisowski, M. (2007). Analytical volcano deformation source models. In Volcano 
deformation (pp. 279-304). Springer, Berlin, Heidelberg. 



75

Liu, Z., Dong, D., Lundgren, P., 2011. Constraints on time-dependent volcanic 
source models at Long Valley Caldera from 1996 to 2009 using InSAR and geodetic 
measure- ments. Geophys. J. Int. 187 (3), 1283–1300. 

Malinverno, A. (2002). Parsimonious Bayesian Markov chain Monte Carlo inversion 
in a nonlinear geophysical problem. Geophysical Journal International, 151(3), 
675-688. 

Malinverno, A., & Briggs, V. A. (2004). Expanded uncertainty quantification in 
inverse problems: Hierarchical Bayes and empirical Bayes. Geophysics, 69(4), 
1005-1016. 

Mandolesi, E., Ogaya, X., Campanyà, J., & Agostinetti, N. P. (2018). A reversible-
jump Markov chain Monte Carlo algorithm for 1D inversion of magnetotelluric data. 
Computers & Geosciences, 113, 94-105. 

Masterlark T. , Lu Z., 2004. Transient volcano deformation sources imaged with 
interferometric synthetic aperture radar: application to Seguam Island, Alaska, J. 
geophys. Res.109, B01401, doi:10.1029/2003JB002568. 

McTigue, D. F. (1987). Elastic Stress and Deformation Near a Finite Spherical 
Magma Body: Resolution of the Point Source Paradox. J. Geophys. Res. 92, 12931. 
doi:10.1029/jb092ib12p12931 

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. 
(1953). Equation of state calculations by fast computing machines. The journal of 
chemical physics, 21(6), 1087-1092.Mogi, K. (1958). Relations between the 
Eruptions of Various Volcanoes and the Deformations of the Ground Surfaces 
Around Them. Bull. Earthq. Res. Inst. 36, 99– 134. 

Montgomery-Brown, E. K., Wicks, C. W., Cervelli, P. F., Langbein, J. O., Svarc, J. 
L., Shelly, D. R., Hill, D.P. & Lisowski, M. (2015). Renewed inflation of long valley 
caldera, california (2011 to 2014). Geophysical Research Letters, 42(13), 5250-5257. 
doi: 10.1002/2015GL064338. 

Mosegaard, K., 2006. Monte Carlo analysis of inverse problem, PhD thesis, 
Copenhagen University. 

Mosegaard, K., & Tarantola, A. (1995). Monte Carlo sampling of solutions to inverse 
problems. Journal of Geophysical Research: Solid Earth, 100(B7), 12431-12447. 

Mossop, A., & Segall, P. (1999). Volume strain within The Geysers geothermal field. 
Journal of Geophysical Research: Solid Earth, 104(B12), 29113-29131. 

https://doi.org/10.1002/2015GL064338


76

Murray, J. R., & Svarc, J. (2017). Global Positioning System data collection, 
processing, and analysis conducted by the US Geological Survey Earthquake 
Hazards Program. Seismological Research Letters, 88(3), 916-925. doi: 
10.1785/0220160204. 

Newhall, C. G., & Dzurisin, D. (1988). Historical unrest at the large calderas of the 
world (No. 1855). Department of the Interior, US Geological Survey. 

Newman, A.V., Dixon, T.H., Gourmelen, N., 2006. A four-dimensional viscoelastic 
de- formation model for Long Valley Caldera, California, between 1995 and 2000. J. 
Volcanol. Geotherm. Res. 150 (1–3), 244–269. https://doi.org/10.1016/j. 
jvolgeores.2005.07.017. 

Okada, Y. (1985). Surface Deformation Due to Shear and Tensile Faults in a Half- 
Space. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 75, 1135–1154. doi:10.1785/ 
bssa0750041135. 

Piana Agostinetti, N., Giacomuzzi, G., & Malinverno, A. (2015). Local three- 
dimensional earthquake tomography by trans-dimensional Monte Carlo sampling. 
Geophysical Journal International, 201(3), 1598-1617. 

Piana Agostinetti, N., & Sgattoni, G. (2021). Changepoint detection in seismic 
double-difference data: application of a trans-dimensional algorithm to data-space 
exploration. Solid Earth, 12(12), 2717-2733. 

Poland, M. P., and de Zeeuw-van Dalfsen, E. (2021). “Volcano Geodesy: A Critical 
Tool for Assessing the State of Volcanoes and Their Potential for Hazardous Eruptive 
Activity,” in Forecasting and Planning for Volcanic Hazards, Risks, and Disasters 
(Amsterdam, Netherlands: Elsevier), 75–115. doi:10.1016/b978-0-12-818082-2. 
00003-2 

Robič, T., & Filipič, B. (2005). Differential evolution for multiobjective 
optimization. In Evolutionary Multi-Criterion Optimization: Third International 
Conference, EMO 2005, Guanajuato, Mexico, March 9-11, 2005. Proceedings 3 (pp. 
520-533). Springer Berlin Heidelberg. 

Ronchin, E., Masterlark, T., Dawson, J., Saunders, S., & Martì Molist, J. (2017). 
Imaging the complex geometry of a magma reservoir using FEM-based linear 
inverse modeling of InSAR data: application to Rabaul Caldera, Papua New Guinea. 
Geophysical Journal International, 209(3), 1746-1760. 

Rosi, M., Acocella, V., Cioni, R., Bianco, F., Costa, A., De Martino, P., ... & 
Inguaggiato, S. (2022). Defining the pre-eruptive states of active volcanoes for 
improving eruption forecasting. Frontiers in Earth Science. 

https://doi.org/10.1785/0220160204


77

Sambridge, M., Braun, J., & McQueen, H. (1995). Geophysical parametrization and 
interpolation of irregular data using natural neighbours. Geophysical Journal 
International, 122(3), 837-857. 

Sambridge,  M.,  &  Faletič,  R.  (2003).  Adaptive  whole  Earth  tomography. 
Geochemistry, Geophysics, Geosystems, 4(3). 

Sambridge, M., & Mosegaard, K. (2002). Monte Carlo methods in geophysical 
inverse problems. Reviews of Geophysics, 40(3), 3-1. 

Seccia, D., Chiarabba, C., De Gori, P., Bianchi, I., Hill, D.P., 2011. Evidence for the 
contempo- rary magmatic system beneath Long Valley Caldera from local earthquake 
tomogra- phy and receiver function analysis. J. Geophys. Res. 116 (B12). https:// 
doi.org/ 10.1029/2011JB008471. 

Segall, P. (2010). Earthquake and Volcano Deformation. New Jersey, United States: 
Princeton Univeristy Press. doi:10.1515/9781400833856. 

Nakata, N., Shelly, D.R., 2018. Imaging a crustal low-velocity layer using reflected 
seismic waves from the 2014 Earthquake Swarm at Long Valley Caldera, California: 
the Mag- matic System Roof? Roof of magmatic system at long valley. Geophys. 
Res. Lett. 45 (8), 3481–3488. https://doi.org/10.1029/2018GL077260. 

Silverii, F., Montgomery-Brown, E. K., Borsa, A. A., & Barbour, A. J. (2020). 
Hydrologically induced deformation in long valley caldera and adjacent Sierra 
Nevada. Journal of Geophysical Research: Solid Earth, 125(5), e2020JB019495. 

Silverii, F., Pulvirenti, F., Montgomery-Brown, E. K., Borsa, A. A., & Neely, W. R. 
(2021). The 2011-2019 Long Valley Caldera inflation: New insights from separation 
of superimposed geodetic signals and 3D modeling. Earth and Planetary Science 
Letters, 569, 117055. doi: 10.1016/j.epsl.2021.117055 . 

Smith R.B. et al. , 2009. Geodynamics of the Yellowstone hotspot and mantle 
plume: seismic and GPS imaging, kinematics, and mantle flow, J. Volc. Geotherm. 
Res.188(1–3), 26–56 

Tarantola, A. (2006). Popper, Bayes and the inverse problem. Nature physics, 2(8), 
492-494. 

Tiampo, K.F., Rundle, J.B., Fernandez, J., Langbein, J.O., 2000. Spherical and 
ellipsoidal vol- canic sources at Long Valley caldera, California, using a genetic 
algorithm inversion technique. J. Volcanol. Geotherm. Res. 102 (3–4), 189–206. 
https://doi.org/10.1016/ S0377-0273(00)00185-2. 

https://doi.org/10.1016/j.epsl.2021.117055


78

Tizzani, P., Berardino, P., Casu, F., Euillades, P., Manzo, M., Ricciardi, G. P., ... & 
Lanari, R. (2007). Surface deformation of Long Valley caldera and Mono Basin, 
California, investigated with the SBAS-InSAR approach. Remote Sensing of 
Environment, 108(3), 277-289. 

Trasatti, E. (2022). Volcanic and seismic source modeling: an open tool for geodetic 
data modeling. Frontiers in Earth Science. 

Trasatti, E., Bonafede, M., Ferrari, C., Giunchi, C., and Berrino, G. (2011). On 
Deformation Sources in Volcanic Areas: Modeling the Campi Flegrei (Italy) 1982-84 
Unrest. Earth Planet. Sci. Lett. 306, 175–185. doi:10.1016/j.epsl.2011.03.033 

Trasatti, E., Giunchi, C., & Bonafede, M. (2003). Effects of topography and 
rheological layering on ground deformation in volcanic regions. Journal of 
Volcanology and Geothermal Research, 122(1-2), 89-110. 

Trasatti, E., Giunchi, C., & Agostinetti, N. P. (2008). Numerical inversion of 
deformation caused by pressure sources: application to Mount Etna (Italy). 
Geophysical Journal International, 172(2), 873-884. 

Vasco, D. W., Wicks Jr, C., Karasaki, K., & Marques, O. (2002). Geodetic imaging: 
reservoir monitoring using satellite interferometry. Geophysical Journal 
International, 149(3), 555-571. 

Yang, X.-M., Davis, P. M., and Dieterich, J. H. (1988). Deformation from Inflation of 
a Dipping Finite Prolate Spheroid in an Elastic Half-Space as a Model for Volcanic 
Stressing. J. Geophys. Res. 93, 4249–4257. doi:10.1029/ JB093iB05p04249 



79



80

Supplementary materials 

Figure S1. Model fit for the phase T1 relative to the inversion with data weight Insar 
0,5 and GNSS 0,5. a) Comparison between observed and predicted GNSS velocities; 
b) GNSS residuals; c,d,e) Data, Model, Residual of COSMO-SkyMed InSAR data; 
f,g,h) Data, Model, Residual of TerraSAR-X data. 
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Figure S2. Parameters distributions for the inversion of the T1 dataset. 
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Figure S3. Model fit for the phase T2 relative to the inversion with data weight Insar 0,5 
and GNSS 0,5. a) Comparison between observed and predicted GNSS velocities; b) 
GNSS residuals; c,d,e) Data, Model, Residual of COSMO-SkyMed InSAR data; f,g,h) 
Data, Model, Residual of Sentinel-1 ascending data; i,l,m) Data, Model, Residual of 
Sentinel-1 descending data. 

37.750°N

37.667°N

37.583°N

118.983°W 118.867°W 118.750°W 118.633°W

37.833°N

118.983°W 118.867°W 118.750°W 118.633°W

0.005m/yr

Model

Residual

Data

A B

-0.008    -0.005                 0                 0.005          0.008 -0.005         -0.002          0          0.002           0.005
LOS m/yr LOS m/yr

37.750°N

37.667°N

37.583°N

118.983°W 118.867°W 118.750°W 118.983°W 118.867°W 118.750°W 118.983°W 118.867°W 118.750°W

37.750°N

37.667°N

37.583°N

118.983°W 118.867°W 118.750°W 118.983°W 118.867°W 118.750°W 118.983°W 118.867°W 118.750°W

-0.008    -0.005                 0                 0.005          0.008 -0.005         -0.002          0          0.002           0.005
LOS m/yr LOS m/yr

37.750°N

37.667°N

37.583°N

118.983°W 118.867°W 118.750°W

37.833°N

119.100°W 118.983°W 118.867°W 118.750°W119.100°W 118.983°W 118.867°W 118.750°W119.100°W

LOS m/yr
-0.008    -0.005                    0                       0.005      0.008 -0.005         -0.002          0          0.002           0.005

LOS m/yr

DATA MODEL RESIDUAL

C D E

F G H

I L M



83

Figure S4. Parameters distributions for the inversion of the T2 dataset 
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Figure S5. Model fit and parameters distributions for the unrest 85-99. a,b,c) Data, 
Model, Residual of Leveling data. d) correlation of observed and predicted EDM data. 
e) Parameters distributions (PPD) and mean values. 
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