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Abstract

Given a transitive Anosov diffeomorphism on a closed manifold it is known that,

for smooth enough observables, the system is mixing w.r.t. the measure of maximal

entropy. Therefore, it makes sense to investigate the speed of decay of correlations

and to look for the so-called Ruelle-Pollicott resonances, in order to determine a

complete asymptotics for the decay of correlations. In this thesis we are able to

find the first terms of that asymptotics and to prove an estimate for the speed of

decaying of correlations. The proof is based on a surprising connection between the

action of a transfer operator on suitable anisotropic Banach spaces of currents and

the action induced by the Anosov map on the de Rham cohomology.
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Introduction

Hyperbolic dynamics has a long history in the field of dynamical systems. Both

discrete-time and continuous-time systems consist of smooth maps, or smooth flows,

which acts on a differentiable manifold and, at least in a region of that manifold,

it defines an expanding and a contracting direction for the derivative. This double

behavior produces very complicated orbits, so that the dynamics can be considered

random, even if the system is entirely deterministic. Thus, these systems show a de-

terministic chaos. Anosov systems falls into the category of (uniformly) hyperbolic

dynamical systems and they owe their name to D.V. Anosov [2], one of the great

mathematicians, with S. Smale [69], R. Bowen [15], D.Ruelle [65], Ya. Sinai [66, 67],

who gave the main initial contributions to the topic. The investigation of chaotic

dynamical systems, which include Anosov systems, is generally complex, and the

computation of a few single orbits, when achievable, turns out to be meaningless

for the study of real phenomena. To give an idea of this, think for instance of a

hyperbolic dynamical system which models a real phenomenon and assume that one

wants to predict the evolution of some initial state x0. The measurement of the

initial state is subjected to errors, hence one gets an x̃0 which is close to x0, but

may not coincide with x0. Since the system is chaotic, the computed evolution of

x̃0 is usually far from the real orbit of x0. In view of this fact, the usual approach

to study these dynamical systems is a qualitative and quantitative statistical ap-

proach, through the use of ergodic theory [71]. The main statistical properties that

one generally wants to study concern topological transitivity, topological mixing,

minimality, ergodicity, unique ergodicity, mixing, exponential mixing, central limit

theorems, etc. (see [47] for definitions). Some of these properties require to set a

reference invariant probability measure, which is usually the SRB measure [74] or

the measure of maximal entropy [54].

i



ii INTRODUCTION

In this thesis, we deal with smooth Anosov diffeomorphisms f ∈ C∞(M), acting

on a Riemannian manifold M , with expansion factor λ > 1 and contraction factor

λ−1 < 1(see Definition 1.1). We study the mixing property, and consequently the

speed of mixing w.r.t. the measure of maximal entropy µBM , also named Bowen-

Margulis measure, after R. Bowen [13, 14] and G.Margulis [54], who gave two differ-

ent, but equivalent, constructions of this important invariant measure (see Appendix

D). For the sake of completeness, recall that the f -invariance of µBM means that,

for any continuous function ϕ ∈ L1(M,µBM), µBM(ϕ ◦ f) = µBM(ϕ). In addition,

µBM is mixing, that is,

lim
n→+∞

∫
M

(ϕ ◦ fn)ψ dµBM =

∫
M

ϕ dµBM

∫
M

ψ dµBM ,

for any ϕ, ψ ∈ L2(M,µBM). The mixing property is equivalent to the so-called decay

of correlations, namely lim
n→+∞

Cf
n(ϕ, ψ) = 0, for all ϕ, ψ ∈ L2(M,µBM), where the

correlation function is defined to be

Cf
n(ϕ, ψ) =

∫
M

(ϕ ◦ fn)ψ dµBM −
∫
M

ϕ dµBM

∫
M

ψ dµBM .

Once the decay of correlations is established, natural questions are: how fast is the

convergence to the limit? Is there a complete asymptotics for the correlation func-

tion, for n→ +∞? By classical results [15], the decay of correlations is exponential,

at least for Hölder observables, in the sense that there exists a σ ∈ (0, 1) such that

|Cf
n(ϕ, ψ)| ≤ Cϕ,ψσ

n, whenever ϕ and ψ are Hölder functions on M . With the ter-

minology “classical” we refer to all results obtained by coding the system, through

the construction of a Markov partition, and then by studying spectral properties of

transfer operator of the induced shift map (see for instance [5] for an overview of

the transfer operator tool). This is the point of view adopted by the authors above

cited. On the other hand, a “modern” approach to solve this kind of problems was

introduced in [11], where the authors studied spectral properties of transfer opera-

tors, on appropriate anisotropic Banach spaces of distributions, without coding the

system. This pioneering work opens the possibility to gain deeper results, princi-

pally with the work of C.Liverani, S.Gouëzel, V.Baladi, M.Tsujii et al. [6, 37, 38,

50, 52, 8, 9, 35, 36]. We point out that the construction of Gouëzel and Liverani

is quite different from the one of Baladi and Tsujii. In effect, the first two give a

geometric definition, obtained considering cones in tangent space, while the others
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adopt a dual point of view, considering cones in cotangent space, via Fourier trans-

form, obtaining anisotropic Sobolev spaces. In this thesis, we follow the geometric

construction of Gouëzel and Liverani. By using anisotropic Banach spaces, they

proved in [38] the following result, that we rewrite with our setting in mind, and

they answered our second question, i.e., the existence of the asymptotics for the

correlation function, for n→ +∞.

Theorem 0.1. Let f ∈ C∞ be a topologically transitive Anosov diffeomorphism on

M , with expansion, resp. contraction, factor λ > 1, resp. λ−1 < 1. Then there

exists a unique measure of maximal entropy µBM . In addition, for every ϵ > 0 there

exists r ∈ N, with λ−r < ϵ, and a finite set Ξ(r) = {ξ1, . . . , ξnϵ} ⊂ C, with |ξi| < 1,

such that, for every ξi there are a finite number Ni ∈ Z+ of nonzero bilinear forms

{cξi,k(·, ·)}
Ni
k=1, for which∫

M

(ϕ◦fn)ψ dµBM =

∫
M

ϕ dµBM

∫
M

ψ dµBM+
nϵ∑
i=1

Ni∑
k=1

ξni n
kcξi,k(ϕ, ψ)+o(ϵ

n), (0.1)

for any ϕ, ψ ∈ Cr(M). In particular, Ξ(r′) ⊇ Ξ(r), whenever r′ ≥ r.

The equality (0.1) is generally called a Ruelle-Pollicott asymptotics, after D.Ruelle

[63, 64] and M.Pollicott [60], and the complex numbers {1, ξ1, . . . , ξnϵ} are called

Ruelle-Pollicott resonances. We point out that (0.1) holds true for any ϵ > 0 only

for observables ϕ, ψ ∈ C∞(M). We also underline that above theorem only proves

the existence of the asymptotics of the decay of correlations, but it does not give

any information about the number and location of Ruelle-Pollicott resonances. For

instance, it is well known that for hyperbolic automorphisms of tori (see Example

1.6), which are the easiest example of Anosov diffeomorphisms, Ξ = ∅ and the

set of Ruelle-Pollicott resonances reduces to {1}. This fact can be easily proved

by using Fourier analysis. On the other hand, there exist Anosov diffeomorphisms

which admit nontrivial Ruelle-Pollicott resonances for the SRB measure [1, 68, 61],

or for which there is an estimate on the number of resonances [45]. We warn the

reader that some to these references use equivalent definitions of Ruelle-Pollicott

resonances, such as the poles of dynamical zeta functions or the inverse of zeros of

Ruelle-Fredholm determinants (see [7]).

Concerning the measure of maximal entropy, there are few results about the exis-

tence and location of Ruelle-Pollicott resonances and a complete asymptotics (0.1) is
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known only in the trivial case of hyperbolic automorphisms of tori, when the Bowen-

Margulis measure coincides with the SRB measure and the Lebesgue measure. Some

new ideas to face this problem arose from [20, Section 5], which, in turn, is inspired

by results of [31] (see also [70] for another recent application of these ideas). In

fact, the authors of [31] found the complete set of Ruelle-Pollicott resonances for

linear pseudo-Anosov maps on half-translation surfaces, that are a generalization to

higher genus surfaces of hyperbolic automorphisms of the 2-torus [32]. Their proof

is based on the investigation of the spectrum of Koopman composition operator

T ϕ = ϕ ◦ f on anisotropic Banach spaces of distributions, since eigenvalues of T co-

incide with Ruelle-Pollicott resonances. Moreover, since linear pseudo-Anosov maps

admit, up to a finite set of points, smooth 1-dimensional stable/unstable foliations,

one can take the normalized vector field vs (resp. vu), tangent to the stable (resp.

unstable) foliation. Then, since in their case the Lie derivatives Lvs and Lvu map

eigenvectors to eigenvectors, they are able to obtain all eigenvalues of T and to

relate them to eigenvalues of the induced action on the first de Rham cohomology

group. On the other side, the authors of [20] considered transitive (not necessarily

linear) Anosov diffeomorphisms of the 2-torus. They constructed anisotropic Ba-

nach spaces of currents (the 2-dimensional version of the spaces used in these thesis),

obtained as the closure of differential forms w.r.t. a suitable norm, and looked for

eigenvalues of the pushforward operator. Unlike [31], the role of the Lie derivative

in this case is taken by the exterior derivative. By relating the spectrum of the

pushforward operator on 1-currents and the induced action on the first de Rham

cohomology group, they proved that there are no Ruelle-Pollicott resonances in the

annulus {z ∈ C| e−htop ≤ z < 1}, for the measure of maximal entropy (htop rep-

resents the topological entropy of the system, see Appendix D). As a consequence,

they obtained the following result for the speed of mixing relative to the measure of

maximal entropy.

Theorem 0.2. There exist r ∈ N, C > 0 and κ ∈ (0, 1) such that, for any couple

of observables ϕ, ψ ∈ C∞(T2),∣∣∣∣∫
T2

(ϕ ◦ fn)ψ dµBM −
∫
T2

ϕ dµBM

∫
T2

ψ dµBM

∣∣∣∣ ≤ C∥ϕ∥Cr∥ψ∥Cr(κe−htop)n

The aim of this thesis is to extend [20] to include every transitive Anosov dif-

feomorphism on manifolds of every dimension. Notice that every known example
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of Anosov diffeomorphism is topologically transitive and it is conjectured that this

is always the case (see Remark 1.14). Accordingly, the following main theorem we

prove in this thesis is currently the analogous, except for a small detail (see Remark

0.3), of Theorem 0.2.

Theorem (Main Theorem). Let M be an orientable, closed (compact and without

boundary), connected Riemannian manifold and let f : M → M be a C∞ a topo-

logically transitive Anosov diffeomorphism on M with expanding, resp. contracting,

factor λ > 1, resp. λ−1 < 1. Let θ = max{|Λ2|, λ−1ehtop}, where Λ2 is the second

largest eigenvalue of the induced action f# on the ds-de Rham cohomology group

Hds
dR(M) (ds is the dimension of stable manifolds). Then, there exist r ∈ N and

C > 0 such that, for every couple of observables ϕ, ψ ∈ C∞(M),∣∣∣∣∫
M

(ϕ ◦ fn)ψ dµBM −
∫
M

ϕ dµBM

∫
M

ψ dµBM

∣∣∣∣ ≤ Cθne−nhtop∥ϕ∥Cr∥ψ∥Cr

We actually obtain the following stronger result.

Theorem (Strong Theorem). Let M be an orientable, closed (compact and without

boundary), connected Riemannian manifold and let f : M → M be a C∞ a topo-

logically transitive Anosov diffeomorphism on M with expanding, resp. contracting,

factor λ > 1, resp. λ−1 < 1. Let {Λ1 = ehtop ,Λ2, . . . ,Λm} be the set of eigenvalues

of the induced action f# on Hds
dR(M) such that |Λi| > λ−1ehtop, for any i = 1, . . . ,m.

Then, there exist r ∈ N, C > 0 and, for any i = 2, . . . ,m, there exist Ni ∈ N and

nonzero bilinear forms {cΛi,k(·, ·)}
Ni−1
k=0 , such that∣∣∣∣∫

M

(ϕ ◦ fn)ψ dµBM−
∫
M

ϕ dµBM

∫
M

ψ dµBM−

−
m∑
i=2

Ni−1∑
k=0

(Λie
−htop)nnkcΛi,k(ϕ, ψ)

∣∣∣∣∣ ≤ Cλ−n∥ϕ∥Cr∥ψ∥Cr

for every couple of observables ϕ, ψ ∈ C∞(M).

The strong theorem shows that Ruelle-Pollicott resonances larger than λ−1, as

well as theirs multiplicities, are completely determined by the action induced by f

on de Rham cohomology. On the other hand, we are not aware of any example for

which |Λ2| ≥ λ−1ehtop . In particular, assuming f to be topologically conjugated to

a hyperbolic automorphism of a torus, a property which is satisfied in many cases

(see Proposition 1.18), we obtain the following corollary.
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Corollary (Main Corollary). Let f : M →M be a C∞ Anosov diffeomorphism of a

torus M with expanding, resp. contracting, factor λ > 1, resp. λ−1 < 1. Then, there

exist r ∈ N and C > 0 such that, for every couple of observables ϕ, ψ ∈ C∞(M),∣∣∣∣∫
M

(ϕ ◦ fn)ψdµBM −
∫
M

ϕdµBM

∫
M

ψdµBM

∣∣∣∣ ≤ Cλ−n∥ϕ∥Cr∥ψ∥Cr (0.2)

Moreover, when M = T2,∣∣∣∣∫
T2

(ϕ ◦ fn)ψdµBM −
∫
T2

ϕdµBM

∫
T2

ψdµBM

∣∣∣∣ ≤ Ce−nhtop∥ϕ∥Cr∥ψ∥Cr (0.3)

Remark 0.3. As a consequence of this corollary, there are no Ruelle-Pollicott res-

onances in the annulus {z ∈ C | λ−1 < |z| < 1} ({z ∈ C | e−htop < |z| < 1}
in the 2-dimensional case). Notice that the bound of (0.3) is stronger than (0.2),

since ehtop ≥ λ. We point out that the authors of [20] proved a slightly stronger

result for Anosov diffeomorphisms of the 2-torus. In effect, they showed that there

are no Ruelle-Pollicott resonances in the annulus {z ∈ C | e−htop ≤ |z| < 1}, ex-
cluding values of modulus |e−htop |. This is a peculiarity of the 2-dimensional case

and Remark 3.26 gives an idea of the proof and why it cannot be generalized to

higher-dimensional cases.

The thesis is organized as follows. In Chapter 1, we firstly recall some basic con-

cepts of Anosov diffeomorphisms, we give the setup of the problem and we restate

our main results. In Chapter 2, we introduce a suitable family Bp,q,l of anisotropic
Banach spaces of currents. They are obtained as the closure of spaces of differential

forms on M w.r.t. an appropriate anisotropic norm. Anisotropic means that this

norm encodes different behaviors along stable and unstable subbundles. In particu-

lar, the elements of our Banach spaces behave as differential forms along the unstable

subbundle, while they behave as currents (the dual of differential forms) along the

stable subbundle. As already specified, anisotropic spaces have been largely used

in the last twenty years, starting with [11], and there are nowadays many different

versions. The ones that inspired our spaces are taken by [37, 38, 36], and coincide

with the spaces used in [20] for the case of the 2-torus. Secondly, we prove that

the pushforward operator f∗, i.e., the suitable transfer operator to get our results,

is quasi-compact. Quasi-compact means that the spectrum of f∗ on Bp,q,l is made of

a finite set of eigenvalues of finite multiplicity out of a small ball of radius slightly
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larger than the essential spectrum. Accordingly, we may consider the action of f∗,

limited to eigenspaces corresponding to the largest eigenvalues, as the action of a

matrix on a finite-dimensional vector space. We exploit Hennion’s Theorem 2.9 to

do it. Chapter 3 contains the key part of the thesis and it is dedicated to the investi-

gation of the spectrum of f∗ on Bp,q,l. For later use, we are interested in the spectrum

of f∗ when acting on Bp,q,ds , where ds is the dimension of the stable subbundle. The

first section of the chapter contains an adaptation to our setting of some results in

[38]. In particular, we prove that ehtop is the unique maximal eigenvalue of f∗|Bp,q,ds ,

it is simple and the corresponding eigenvector, joined to its dual eigenvector, de-

fines the measure of maximal entropy. The second and third sections include the

cohomology aspects of our reasoning and contain the main original contributions.

We relate part of the spectrum of f∗|Bp,q,ds to the spectrum of the induced action f#

on the anisotropic de Rham cohomology ‹Hp,q,ds
dR , obtained as the quotient of closed

ds-currents w.r.t. exact currents in Bp,q,ds . The next point consists in the proof that

the anisotropic de Rham cohomology is isomorphic to the standard de Rham coho-

mology. It is difficult, at least to us, to prove directly that the two vector spaces

are isomorphic (see Remark 3.24). Hence, in Section 3.3, we define a new family of

anisotropic Banach spaces of currents Cp,q,l, which are an intermediate version of the

spaces Bp,q,l, that is Bp+1,q−1,l ⊆ Cp,q,l ⊆ Bp,q,l. Once we have these spaces, we are

able to define the anisotropic de Rham cohomology H̄p,q,l
dR (M), which turns out to be

isomorphic to the standard de Rham cohomology. In conclusion, we can study the

action on the standard de Rham cohomology to get information about the discrete

spectrum of f∗ on Bp,q,ds , or equivalently on Cp,q,ds . The last section of Chapter 3

contains the proofs of the main results above stated. In Appendix A and Appendix

B we recall some tools of functional analysis and Hodge theory that we use in the

thesis. Appendix C contains the proof of some technical results, while Appendix D

contains a basic overview of entropy theory in dynamical systems.

We conclude this introduction by saying that the thesis is almost self-contained.

For the few results that are stated without proof, we indicate direct references.
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Chapter 1

Setup and results

In this chapter we first recall some basic notions of Anosov diffeomorphisms,

then we state the assumptions regarding the dynamics we are going to study and

our main result.

1.1 A survey about Anosov diffeomorphisms

This section is a brief reminder of the main properties of Anosov diffeomorphisms.

For a complete introduction to this topic we refer to the original monograph of D.V.

Anosov [2], which collects most of the oldest known results about these dynamical

systems. We also suggest the following more recent references [17, Chapter 5] and

[47, Part 4]. We also rewrite the proof of some results, while for the others we just

mention the reference.

Definition 1.1. Let M be a C1 Riemannian manifold and let f : M → M be a C1

diffeomorphism on M . The discrete dynamical system defined by repeated iterations

of f is said to be Anosov if M is a hyperbolic set. This means that the tangent

bundle TM splits into two subbundles

TM = Es ⊕ Eu

such that:

1. both subbundles Es/u are invariant under the action of df , i.e.,

dxfE
s/u
x = E

s/u
f(x) for all x ∈M ;

1
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2. there exist real constants c > 0 and λ > 1 such that, for all n ∈ N,

∥dxf−nv∥ > cλn∥v∥ for all v ∈ Es
x,

∥dxfnv∥ > cλn∥v∥ for all v ∈ Eu
x ,

(1.1)

where the norm is induced by the metric g of M .

Es and Eu are called the stable and the unstable subbundles, respectively.

Lemma 1.2. The subbundles Es/u depends continuously on x ∈M . Accordingly, if

M is connected, then dim(Es) and dim(Eu) are constant.

Proof. Let {xk}k∈Z+ be a sequence converging to x0. Up to subsequences, we

can assume that dim(Es
xk
) = m is constant. Let vk,1, . . . vk,m be an orthonormal

basis of Es
xk
. Since the unit tangent bundle T 1M is compact, up to considering

subsequences, we obtain an orthonormal basis v0,1, . . . , v0,m of Es
x0
, which satisfies

the first condition of (1.1), since df is continuous. In addition, dim(Es
x0
) ≥ m =

dim(Es
xk
). Repeating the argument for Eu on a subsequence of {xk}, one obtains

that dim(Eu
x0
) ≥ dim(Eu

xk
). But, dim(Es

x0
) + dim(Eu

x0
) = dim(M), hence Es and Eu

depends continuously on x and, if M is connected, their dimension is constant.

Q.E.D.

The following lemma shows that there exists an equivalent adapted metric ḡ,

such that (1.1) holds for c = 1.

Lemma 1.3 ([55, Mather]). For every λ̃ ∈ (1, λ) and ϵ > 0, there exists a metric

ḡ, equivalent to g, such that (1.1) holds true for c = 1 and for λ replaced by λ̃.

Moreover,

ḡ(vs, vu) < ϵ

for all vs ∈ Es and vu ∈ Eu.

Proof. Fix a constant λ̃ ∈ (1, λ) and consider K ∈ N such that c(λ/λ̃)K > 1. Let

v, w ∈ TxM and assume v = vs + vu, w = ws +wu ∈ Es
x ⊕Eu

x is the unique splitting

into stable and unstable components. We define

g̃x(v, w) = g̃x(vs, ws) + g̃x(vu, wu),

where

g̃x(vs, ws) =
K−1∑
k=0

λ̃−kgf−k(x)(dxf
−kvs, dxf

−kws),
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g̃x(vu, wu) =
K−1∑
k=0

λ̃−kgfk(x)(dxf
kvu, dxf

kwu).

In order to simplify the notation, from now on we drop the dependence on x ∈ M .

Given vs ∈ Es and vu ∈ Eu their induced norms are

|vs|2 =
K−1∑
k=0

∥λ̃−kdf−kvs∥2, |vu|2 =
K−1∑
k=0

∥λ̃−kdfkvu∥2.

Thus, for vs ∈ Es,

|df−1vs|2 =
K−1∑
k=0

∥λ̃−kdf−k−1vs∥2 = λ̃2
K∑
j=1

∥λ̃−jdf−jvs∥2 =

= λ̃2(|vs|2 − ∥vs∥2 + ∥λ̃−Kdf−Kvs∥2) > λ̃2(|vs|2 − ∥vs∥2 + c(λλ̃−1)K∥vs∥) >

> λ̃2|vs|2

Similarly, one can prove that |dfvu|2 > λ̃2|vu|2 for vu ∈ Eu. Notice that g̃ is a

continuous but generally not smooth metric, because it depends on the splitting of

the tangent bundle into stable/unstable subbundles which is generally not smooth.

Moreover, we remark that Es and Eu are orthogonal with respect to g̃. Finally,

using classical results of differential geometry [43], given a small ϵ > 0, one can

approximate g̃ with a smooth adapted metric ḡ, which is hyperbolic with constant

λ̃−ϵ and with the angle between stable and unstable subbundles uniformly bounded

by ϵ. Q.E.D.

An equivalent definition of Anosov diffeomorphisms involves invariant cones.

Recall that a subset K of a vector space is a cone if cv ∈ K, for any vector v ∈ K,

and for any constant c. When f is an Anosov diffeomorphism, we can write any

vector vx ∈ TxM , in a unique way, as a sum vx = vsx+v
u
x , with v

s
x ∈ Es

x and v
u
x ∈ Eu

x .

Accordingly, for any α ∈ (0, 1), we define the following families of stable/unstable

cones:

Cs,αx = {v ∈ TxM | v = vs + vu, ∥vu∥ ≤ α∥vs∥},

Cu,αx = {v ∈ TxM | v = vs + vu, ∥vs∥ ≤ α∥vu∥}
(1.2)

Proposition 1.4. For any α ∈ (0, 1) and for any x ∈M

dxf
−1Cs,αx ⊆ int(Cs,αf−1(x)) ∪ {0}, dxfCu,αx ⊆ int(Cu,αf(x)) ∪ {0}.
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Moreover, for any δ ∈ (0, λ), there exists α ∈ (0, 1) such that

∥dxf−nv∥ > (λ− δ)n∥v∥ if v ∈ Cs,αx ,

∥dxfnv∥ > (λ− δ)n∥v∥ if v ∈ Cu,αx .

Proof. Let v ∈ Cs,αx be a nonzero vector in the stable cone and let v = vu + vs be

the decomposition of v along the unstable and stable directions with ∥vu∥ ≤ α∥vs∥.
Accordingly, dxf

−1v = dxf
−1vu + dxf

−1vs and, by using (1.1), we obtain that

∥dxf−1vu∥ < λ−1∥vu∥ ≤ λ−1α∥vs∥ < λ−2α∥dxf−1vs∥.

We conclude that dxf
−1v ∈ int(Cs,αf−1(x)). A similar computation shows the second

inclusion.

Let us prove the second part of the statement. By using the inclusions we have

just proved, we can limit to consider the case n = 1. Let v = vu + vs ∈ Cs,αx be as

above. Then

∥dxf−1v∥ > λ∥vs∥ − λ−1∥vu∥ ≥ (λ− λ−1α)∥vs∥ ≥
Å
λ− λ−1α

1 + α

ã
∥v∥,

where we used that ∥vu∥ ≤ α∥vs∥ and ∥v∥ ≤ (1 + α)∥vs∥. By setting

α ≤ δ

λ+ λ−1 − δ
,

we obtain that
λ− λ−1α

1 + α
≥ λ− δ,

which concludes the proof of the first inequality. The second one can be proved with

a similar argument. Q.E.D.

Next proposition shows that one can actually define Anosov diffeomorphisms

using families of stable/unstable cones.

Proposition 1.5. Let f be a C1 diffeomorphism on the Riemannian manifold M .

Let us suppose that there exists α > 0 for which there are two continuous bundles

Ēs/u that define two families of cones Cs/u,αx , as in (1.2). Assume that

1. dxf
−1Cs,αx ⊆ int(Cs,αf−1(x)) ∪ {0} and dxfCu,αx ⊆ int(Cu,αf(x)) ∪ {0};

2. ∥dxfv∥ < ∥v∥ if v ∈ Cs,αx \ {0} and ∥dxf−1v∥ < ∥v∥ if v ∈ Cu,αx \ {0}.
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Then f is an Anosov diffeomorphism.

Proof. Since the unit tangent bundle T 1M is compact, there exists λ > 1 such

that

∥dxf−1v∥ > λ∥v∥ if v ∈ Cs,αx
∥dxfv∥ > λ∥v∥ if v ∈ Cu,αx

Next, define

Es
x =

⋂
k∈N

dfk(x)f
−kCs,α

fk(x)
and Eu

x =
⋂
k∈N

df−k(x)f
kCu,α

f−k(x)
.

Since Es
x, resp. E

u
x , belong to the stable, resp. unstable, cone Cs,αx , resp. Cu,α

x , the

condition (1.1) is verified. In addition, if v ∈ Es
x ∩ Eu

x , then v ∈ Cs,αx ∩ Cu,αx , which

implies v = 0. Since the dimensions of Es and Eu coincide with the dimensions of

Ēs and Ēu, respectively, we conclude that TM = Es ⊕ Eu.

Q.E.D.

Example 1.6 (hyperbolic automorphisms of tori). Let M = Td = Rd/Zd be the

d-dimensional torus, with d ≥ 2. Given a matrix A ∈ SL(d,Z) with no eigenvalues

of modulus 1, the action of A on Rd induces a hyperbolic automorphism of Td

f : Td → Td

x 7→ Ax mod Z

This is the easiest example of Anosov diffeomorphism, whose stable (resp. unstable)

subspace is the direct sum of generalized eigenspaces corresponding to the eigenvalues

of modulus smaller (resp. greater) than 1.

Hyperbolic toral automorphisms do not exhaust the set of Anosov diffeomor-

phisms. In effect, we have the following

Proposition 1.7. [17, Corollary 5.5.2] The Anosov property is an open condition

in the space of smooth diffeomorphisms with respect to the C1 topology.

Example 1.8. Consider the linear automorphism of T2

f0 : T2 → T2[
x

y

]
7→

[
2x+ y

x+ y

]
,
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Given δ ∈ (0, 1), let fδ be the family of C∞ diffeomorphisms

fδ : T2 → T2[
x

y

]
7→

[
2x+ y − δ

2π
sin(2πx)

x+ y − δ
2π

sin(2πx)

]
,

One can easily check that ∥fδ − f0∥C1 ≤ Cδ, hence, by Proposition 1.7, there exists

δ̄ > 0 such that, for every δ ∈ (0, δ̄), fδ is a nonlinear Anosov diffeomorphism. To

learn more about this nonlinear examples see for instance [35, 49, 51].

In addition, the following result also holds

Proposition 1.9. [17, Corollary 5.5.4] Anosov diffeomorphisms are structurally

stable (a diffeomorphism f of M is structurally stable if, for each ϵ > 0, there exists

δ > 0 such that, for any other diffeomorphism g, with ∥f − g∥C1 < δ, there exists a

homeomorphism h of M for which h ◦ f = g ◦ h and ∥h− id∥C0 < ϵ).

Proposition 1.7 and Proposition 1.9 imply that, if f is an Anosov diffeomorphism

and g is C1 close to f , then g is Anosov and f is topologically conjugated to g (see

Definition 1.17), with a conjugacy homeomorphism h close to the identity.

An Anosov diffeomorphism defines a geometric structure on M which is summa-

rized by the following stable/unstable manifold theorem.

Theorem 1.10. [17, Theorem 5.6.4, Proposition 5.6.5, Corollary 5.6.6, Proposition

5.9.1] Let f be a Cr Anosov diffeomorphism, with r ≥ 1 or r = ∞. Assume that

λ > 1 is the expansion factor and that the metric g is adapted. Then there exist

ϵ > 0 and δ > 0 such that, for any x ∈M ,

1. denoting by d the distance induced by the metric g, the local stable manifolds

W s
ϵ (x) = {y ∈M | d(fn(x), fn(y)) < ϵ for any n ≥ 1}

and the local unstable manifolds

W u
ϵ (x) = {y ∈M | d(f−n(x), f−n(y)) < ϵ for any n ≥ 1}

are Cr embedded disks.

2. TyW
s
ϵ (x) = Es(y), if y ∈ W s

ϵ (x), and TyW
u
ϵ (x) = Eu(y), if y ∈ W u

ϵ (x).
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3. f(W s
ϵ (x)) ⊆ W s

ϵ (f(x)) and f
−1(W u

ϵ (x)) ⊆ W u
ϵ (f

−1(x)).

4. Let ds, resp. du, be the distance induced by d on W s
ϵ (x), resp. W

u
ϵ (x). Then

ds(f−1(y), f−1(z)) > λds(y, z),

when y, z ∈ W s
ϵ (x), and

du(f(y), f(z)) > λdu(y, z),

when y, z ∈ W u
ϵ (x).

5. Denote by expp : TpM → M the exponential map at p. If 0 < d(x, y) < ϵ and

exp−1
x (y) belongs to the stable cone Cs,αx , then

d(f−1(x), f−1(y)) > λd(x, y)

If 0 < d(x, y) < ϵ and exp−1
x (y) belongs to the unstable cone Cu,αx , then

d(f(x), f(y)) > λd(x, y)

6. If y ∈ W s
ϵ (x), there exists ϵ′ such that W s

ϵ′(y) ⊆ W s
ϵ (x). If y ∈ W u

ϵ (x), there

exists ϵ′ such that W u
ϵ′ (y) ⊆ W u

ϵ (x).

7. For every ϵ > 0 there exists δ > 0 such that, if d(x, y) < δ, then W s
ϵ (x) and

W u
ϵ (y) are uniformly transversal and W s

ϵ (x)∩W u
ϵ (y) consists of a single point,

denoted by [x, y].

8. The global stable manifolds

W s(x) = {y ∈M | lim
n→+∞

d(fn(x), fn(y)) = 0}

and the global unstable manifolds

W u(x) = {y ∈M | lim
n→+∞

d(f−n(x), f−n(y)) = 0}

are Cr immersed manifolds. In particular, there exists ϵ̄ > 0 such that, for

any ϵ ∈ (0, ϵ̄)

W s(x) =
+∞⋃
n=0

f−n(W s
ϵ (f

n(x))), W u(x) =
+∞⋃
n=0

fn(W u
ϵ (f

−n(x)))

As a consequence, ds(f−1(x), f−1(y)) > λds(x, y), whenever y ∈ W s(x), and

du(f(x), f(y)) > λdu(x, y), whenever y ∈ W u(x). f(W s(x)) = W s(f(x)) and

f(W u(x)) = W u(f(x)).
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Remark 1.11. Notice that global stable/unstable manifolds define two transversal

foliations, called the stable/unstable foliation. We point out that, despite each leaf

of the stable/unstable foliation has the same degree of smoothness as f , the foliation

itself is generally only Hölder [47, Theorem 19.1.6].

We recall some basic concepts of topological dynamics.

Definition 1.12. A topological dynamical system f : X → X, where f is a home-

omorphism of a topological space X, is topologically transitive if, for any U, V

nonempty open sets, there exists n ∈ N such that fn(U) ∩ V ̸= ∅. When X is a

compact metric space, topological transitivity is equivalent to the existence of a dense

orbit [71, Theorem 5.8], i.e., there exists x ∈ X such that {fn(x)| n ∈ Z} =M. f is

topologically mixing if, for any U, V nonempty open sets, there exists n0 > 0 such

that fn(U) ∩ V ̸= ∅, for any n > n0.

For Anosov diffeomorphisms the following equivalence holds.

Proposition 1.13. [17, Theorem 5.10.3] Let f be an Anosov diffeomorphism on a

connected manifold M . Then the following properties are equivalent.

• Every unstable manifold is dense in M ;

• Every stable manifold is dense in M ;

• f is topologically transitive;

• f is topologically mixing.

Remark 1.14. Every known example of Anosov diffeomorphism is topologically

transitive, hence Proposition 1.13 applies. In effect, it is conjectured that every

Anosov diffeomorphism is topologically transitive.

Up to now, we only gave examples of Anosov diffeomorphisms on tori (Example

1.6, Example 1.8). On the other hand, there are also other manifolds (i.e., manifolds

not homeomorphic to tori) which admit Anosov diffeomorphism. The following

example by Smale should be the first appearance of nontoral Anosov diffeomorphism.

Example 1.15. [69, Section I.3.] Let G1, G2 two copies of the Heisenberg Lie group.

Hence, the Lie Algebra gi, i = 1, 2, is generated by {Xi, Yi, Zi} with [Xi, Yi] = Zi and
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[Xi, Zi] = [Yi, Zi] = 0. Let us consider G = G1 × G2 and let us define a hyperbolic

automorphism of f on G by defining the action of df on gi, i = 1, 2. Set λ = 2+
√
3

and assume that

df(X1) = λX1 df(X2) = λ−1X2

df(Y1) = λ2Y1 df(Y2) = λ−2Y2

df(Z1) = λ3Z1 df(Z2) = λ−3Z2

Recall that every element of Gi, resp. gi, can be represented as a 3× 3 matrixÜ
1 x z

0 1 y

0 0 1

ê
, resp.

Ü
0 x z

0 0 y

0 0 0

ê
,

where x, y, z ∈ R. Let Q(
√
3) be the field of rational numbers extended with

√
3

and let σ : Q(
√
3) → Q(

√
3) be the nontrivial Galois automorphism. Let h be the

subgroup of g = g1 × g2 containing the 6× 6 matrices

0 x z 0 0 0

0 0 y 0 0 0

0 0 0 0 0 0

0 0 0 0 σ(x) σ(z)

0 0 0 0 0 σ(y)

0 0 0 0 0 0


h is a lattice of g, while H = exp(h), which is defined through the exponential map, is

a uniform discrete subgroup of G. The quotient M = G/H is a manifold, actually a

nilmanifold, i.e, the quotient of a nilpotent Lie group w.r.t. a uniform lattice. Since

f preserves H, it induces an Anosov action on M . Finally, by topological reasons,

M cannot be homeomorphic to a torus.

Remark 1.16. Notice that tori are particular examples of nilmanifolds, i.e., they

are the quotient of the nilpotent Lie group Rn w.r.t. the lattice Zn. Accordingly,
nilmanifolds Anosov diffeomorphisms include toral Anosov diffeomorphisms. There

are also other manifolds, called infranilmanifolds, that are not nilmanifolds, but are

finitely covered by a nilmanifold, and that could support this dynamical systems.

We do not get into details and refer to [42, 24, 25]. We only mention that these
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algebraic manifolds cover all known examples of Anosov diffeomorphisms. In fact,

it is conjectured [69] that there are no other manifolds, in addition to infranilmani-

folds, which admit Anosov diffeomorphisms. To conclude, we specify that there are

infranilmanifolds which do not admit Anosov diffeomorphisms and there is a lot of

recent literature about the problem of classifying infranilmanifolds which do (see for

instance [26, 48, 28]).

In view of Remark 1.16, every known manifold admitting Anosov diffeomorphism

is of algebraic nature. Accordingly, one can define hyperbolic automorphisms of in-

franilmanifolds, which generalize the concept of hyperbolic automorphisms on tori.

Thus, given an infranilmanifold M admitting Anosov diffeomorphisms, there are

examples of linear hyperbolic invertible maps on M , which can be easily studied,

because of linearity (Example 1.15 is a hyperbolic automorphism of a 6-dimensional

nilmanifold). Nonlinear Anosov diffeomorphisms are, of course, much more compli-

cated, but, in many cases, one can relate it to linear cases. In effect, let us recall

the following definition.

Definition 1.17. Let fi : Mi →Mi, i = 1, 2, be two (at least continuous) invertible

dynamical systems. f1 is topologically conjugated to f2 if there exists a homeomor-

phism h : M1 →M2, which makes the following

M1 M1

M2 M2

f1

h h

f2

a commutative diagram. Consequently, M1 and M2 are homeomorphic.

By classical results of Franks and Newhouse we have the following proposition.

Proposition 1.18. The following statements hold true.

1. Let f : Td → Td be an Anosov diffeomorphism of the torus Td. Then f is

topologically conjugated to a hyperbolic automorphism of Td [34].

2. Let f : M → M be a codimension 1 Anosov diffeomorphism of M , i.e., as-

sume that the dimension of the stable or unstable subbundle is 1. Then f

is topologically conjugated to a hyperbolic automorphism of the torus Tdim(M).

Accordingly, M is homeomorphic to a torus [33, 58].
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Franks’ theorem (statement 1. above) was extended by Manning [53] to include

Anosov diffeomorphisms on infranilmanifold. Only recently [25], it was discovered

that there is a mistake in Manning’s proof, because he makes use of a lemma by

Auslander [3], which in turn is false. What remains true of Manning’s paper is the

following proposition.

Proposition 1.19. Let f : M →M be an Anosov diffeomorphism of the nilmanifold

M . Then f is topologically conjugated to a hyperbolic automorphism of M .

The author of [25] gives an explicit example of an Anosov diffeomorphism of an

infranilmanifold M which is not topologically conjugated to a hyperbolic automor-

phism of M . Defining the broader concept of hyperbolic affine automorphism of an

infranilmanifold he also conjectured the following.

Conjecture 1 ([25]). Let f : M →M be an Anosov diffeomorphism of the infranil-

manifold M . Then f is topologically conjugated to a hyperbolic affine automorphism

of M .

Remark 1.20. The veracity of this conjecture is reasonable. In effect, Gromov [39]

firstly proved a parallel, actually stronger, results for expanding maps. Then the

author of [25] fixed the same mistake as above. In particular, they proved that every

expanding map of a compact manifold M is topologically conjugated to an affine

expanding infranilmanifold endomorphism. As a consequence, it is reasonable to

state the following stronger conjecture.

Conjecture 2 ([25]). Let f : M →M be an Anosov diffeomorphism of the compact

manifold M . Then f is topologically conjugated to a hyperbolic affine automorphism

of the infranilmanifold M .

We conclude this section devoted to the basic prerequisites with a warning about

notation.

Notation. Throughout this thesis we denote by C a generic constant that could

depend on the manifold, the dynamics or the atlas of M . We underline that C may

change also inside the same equation. If we want to point out the dependence of C

from a parameter a, we write Ca. Also this constant could change at any occurrence

inside a single equation.
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1.2 The dynamical system

In this section we set assumptions about the dynamical system we are going to

study in this thesis.

Let M be an orientable, closed (compact and without boundary), connected

Riemannian manifold, endowed with the metric g. We consider a smooth diffeomor-

phism f ∈ C∞(M) on the manifold which satisfies the Anosov property. In view of

Proposition 1.4 and Proposition 1.5, we can assume that f satisfies the hypotheses

of Definition 1.1, or, equivalently, the cones condition (1.2), with expansion fac-

tor λ > 1. We always assume to work with an adapted metric g, in the sense of

Lemma 1.3 and we denote by ds, resp. du, the dimension of the stable, resp. unstable,

subbundle Es, resp. Eu.

Next, we need to introduce cohomology. By classical algebraic topology, every

homeomorphism f on a topological manifold M induces an action on homology

and cohomology. For a complete overview of this subject we refer the reader to

[40]. Hence, we simply recall the basics of de Rham cohomology. In fact, since M

is a differentiable manifold and f is a diffeomorphism, it makes sense to consider

the space of C∞ differential forms Ωl(M) endowed with the coboundary operator

d : Ωl(M) → Ωl+1(M) given by the exterior derivative. Since d ◦ d = 0, this defines

a cochain complex. A differential form ω ∈ Ωl(M) is closed if dω = 0, while it is

exact if there exists u ∈ Ωl−1(M) such that du = ω. From d◦d = 0, one obtains that

exact forms are a vector subspace of closed forms. Finally, one defines the de Rham

cohomology group Hk
dR(M) as the quotient of closed k-forms w.r.t. exact k-forms.

The pushforward f∗ of a C∞-diffeomorphism f on M preserves closed and exact

forms, thus it induces a linear map from the cohomology group Hk
dR(M) to itself

defined by f#[ω] = [f∗ω]. In particular, let us consider the action of f# on Hds
dR(M),

i.e., the de Rham cohomology group of degree corresponding to the dimension of

the stable subbundle. Since M is a compact manifold, the action of f# is a linear

automorphism of a finite dimensional vector spaces. Therefore, it admits a finite

(complex) spectrum {Λ1, . . . ,ΛN} with

|Λ1| ≥ |Λ2| ≥ · · · ≥ |ΛN−1| ≥ |ΛN | > 0

In Chapter 3, we prove that Λ1 = ehtop ∈ R, where htop is the topological entropy
of the dynamical system (see Appendix D for details about topological entropy). In
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addition, let us consider the second highest eigenvalue Λ2 and let us set

θ = max{|Λ2|, λ−1ehtop},

where again λ represents the expansion factor of the Anosov splitting (1.1).

To conclude this section, we also need to assume the following.

Assumption 1. The Anosov diffeomorphism f is topologically transitive.

As already anticipated in Remark 1.14, this is not a strict condition and it is

satisfied by every known Anosov diffeomorphism.

1.2.1 Statement of the main theorem

We can now state our main result. As already specified in the introduction, it

generalizes [20, Theorem 5.10] to Anosov diffeomorphisms on generic manifold (not

necessarily tori) with dim(M) ≥ 2.

Theorem 1.21. Let M be an orientable, closed (compact and without boundary),

connected Riemannian manifold. Let f : M → M be a topologically transitive C∞

Anosov diffeomorphism. Then, there exist r ∈ N and C > 0 such that∣∣∣∣∫
M

ϕψ ◦ fndµBM −
∫
M

ϕdµBM

∫
M

ψdµBM

∣∣∣∣ ≤ Cθne−nhtop∥ϕ∥Cr∥ψ∥Cr

for any ϕ, ψ ∈ C∞(M).

We actually obtain Theorem 1.21 as consequence of the following stronger result,

which gives partial Ruelle-Pollicott asymptotics for these systems.

Theorem 1.22. Let M be an orientable, closed (compact and without boundary),

connected Riemannian manifold. Let f : M → M be a topologically transitive C∞

Anosov diffeomorphism. Assume that, for any i = 1, . . . ,m, the complex eigenvalue

Λi satisfies |Λi| > λ−1ehtop. Then, there exist r ∈ N, C > 0 and, for any i =

2, . . . ,m, Ni ∈ N and nonzero bilinear forms {cΛi,k(·, ·)}
Ni
k=1, such that∣∣∣∣∫

M

ϕψ ◦ fndµBM−
∫
M

ϕdµBM

∫
M

ψdµBM−

−
m∑
i=1

Ni∑
k=2

(Λie
−htop)nnkcΛi,k(ϕ, ψ)

∣∣∣∣∣ ≤ Cλ−n∥ϕ∥Cr∥ψ∥Cr

for every ϕ, ψ ∈ C∞(M).
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Notice that we refer to Theorem 1.21, and not to the stronger Theorem 1.22,

as our main result. The reason is that we do not have any example of Anosov dif-

feomorphism for which |Λ2| > λ−1. In particular, let us assume that f : M → M is

a C∞ Anosov diffeomorphism of a torus M . Then, by Proposition 1.18, f is topo-

logically conjugated to a hyperbolic automorphism of M . This assumption actually

reduces the set of Anosov diffeomorphisms to which the following Corollary 1.23

can be applied. For instance, Example 1.15 gives an Anosov diffeomorphism on a

nilmanifold which is not a torus. On the other hand, since every codimension 1

Anosov diffeomorphism acts on a torus (Proposition 1.18 - 2.), the following Corol-

lary 1.23, applies, at least, to every Anosov diffeomorphism on a manifold M with

dim(M) ≤ 3.

Corollary 1.23. Let f : M → M be a C∞ Anosov diffeomorphism of a torus M .

Then, there exist r ∈ N and C > 0 such that∣∣∣∣∫
M

ϕψ ◦ fndµBM −
∫
M

ϕdµBM

∫
M

ψdµBM

∣∣∣∣ ≤ Cλ−n∥ϕ∥Cr∥ψ∥Cr

for any ϕ, ψ ∈ C∞(M). Moreover, when M = T2,∣∣∣∣∫
T2

(ϕ ◦ fn)ψdµBM −
∫
T2

ϕdµBM

∫
T2

ψdµBM

∣∣∣∣ ≤ Ce−nhtop∥ϕ∥Cr∥ψ∥Cr

Notice that we have also dropped the assumption on topological transitivity. In

effect, every Anosov diffeomorphism of a torus is topologically conjugate to a hy-

perbolic automorphism, the topological transitivity is invariant under topological

conjugacy and it is well-known (see for instance [56]) that every hyperbolic auto-

morphism of a torus is topologically transitive.

Remark 1.24. Corollary 1.23 follows from Theorem 1.21 by proving that θ =

max{|Λ2|, λ−1ehtop} = λ−1ehtop We obtain this estimate for tori, because, in these

cases, we can easily compute the eigenvalues of the induced action on cohomology

and we are able to prove that |Λ2| ≤ λ−1ehtop . If Conjecture 2 were true, it would

be possible to extend Theorem 1.22 or Corollary 1.23 to every Anosov diffeomor-

phism, up to computing the spectrum of the action on de Rham cohomology for the

corresponding infranilmanifold.



Chapter 2

Anisotropic Banach spaces of

currents

This chapter is devoted to the construction of a family of anisotropic Banach

spaces which makes the transfer operator we are interested in quasi-compact (see

Section 2.4 for details and Appendix A for a short introduction to quasi-compact

operators). Anisotropic means that the elements belonging to our spaces have differ-

ent behaviors along stable and unstable manifolds. In particular, our objects behave

as smooth differential forms in the unstable direction, while they behave as distri-

butional differential forms, actually currents, in the stable direction (see Definition

2.5 and Lemma 2.8). We cannot avoid mentioning [11] where similar spaces were

firstly defined to investigate Anosov diffeomorphisms, without coding the system.

The spaces we use in this chapter recall the ones introduced in [37, 36](see also [4,

20, 21, 35, 38]). In particular, Section 2.2 is focused on a suitable set of stable

leaves and it refers to [37, Section 3]. Then, Section 2.3 is a simplified version of [36,

Section 3.2], because we work with Anosov diffeomorphisms, while the cited paper

treats Anosov flows. For a recent survey of this construction we also refer to [27].

2.1 Local charts and norms

We now introduce local coordinates on the manifold, conformed to the hyperbolic

dynamics. Given a small constant ρ > 0, there exists a smooth atlas (Ui, ψi)
m
i=1, such

15
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that1

Bds(0, 3ρ)× Bdu(0, 3ρ) ⊆ Ui

and the maps ψi : Ui →M satisfy the following properties:2

1.
⋃m
i=1 ψi(B(0, ρ)) =M ;

2. d0ψi(Rds × {0}) = Es
pi
and d0ψi({0} × Rdu) = Eu

pi
, where pi = ψi(0);

3. For every x ∈ Ui, let

ζsx,i = {v + w ∈ TxUi : v ∈ Rds × {0}, w ∈ {0} × Rdu , ∥w∥ ≤ ∥v∥},

and let

ζux,i = {v + w ∈ TxUi : v ∈ Rds × {0}, w ∈ {0} × Rdu , ∥v∥ ≤ ∥w∥}.

Choosing ρ > 0 small enough, we require that the Euclidean stable/unstable

cones ζ
s/u
x,i satisfy

Csψi(x)
⊆ dxψiζ

s
x,i, Cuψi(x)

⊆ dxψiζ
u
x,i

dψi(x)f
−1(Csψi(x)

\ {0}) ⊆ dψi(x)f
−1dxψi(ζ

s
x,i \ {0}) ⊆ int(Csf−1◦ψi(x)

),

dψi(x)f(Cuψi(x)
\ {0}) ⊆ dψi(x)fdxψi(ζ

u
x,i \ {0}) ⊆ int(Cuf◦ψi(x)

),

where Cs/u = Cs/u,α are the stable/unstable bundles of (1.2) for some α ∈ (0, 1).

As a consequence, ζ
s/u
x,i fulfill Property 1. of Proposition 1.5 with respect to

the Euclidean metric and also the cone hyperbolicity property, i.e.,

dx(ψ
−1
j ◦ f−1 ◦ ψi)ζsx,i ⊂ int(ζs

ψ−1
j ◦f−1◦ψi(x),j

) ∪ {0},

dx(ψ
−1
j ◦ f ◦ ψi)ζux,i ⊂ int(ζu

ψ−1
j ◦f◦ψi(x),j

) ∪ {0}.

Once we have fixed local charts, we introduce appropriate norms on some spaces

of functions, whose properties will be used over and over again in this chapter. We

first recall that a Banach space (B, ∥ · ∥) is a Banach algebra if it is a linear algebra

1We denote by Bt(p, r) the ball centered in p of radius r in Rt. When the subscript t is not

specified we mean t = dim(M).
2One may use the exponential map to construct such charts around every point of the manifold.

A finite covering of M gives the atlas we need.
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and ∥xy∥ ≤ ∥x∥∥y∥, whenever x, y ∈ B. We define particular norms on Cr(U,B),
for r ∈ N, U ⊆ Rd and B Banach algebra, so that this becomes a Banach algebra.

We point out that, in our context, r will be chosen as big as we want, because our

Anosov map is C∞. Given a ≥ 1, to be fixed at the end of the proof of Lemma 2.1,

we define by induction

∥ϕ∥C0(U,B) = sup
v∈U

∥ϕ(v)∥,

∥ϕ∥Ck+1(U,B) = sup
i=1,...,d

∥ ∂xi ϕ∥Ck + a∥ϕ∥Ck , for k ≥ 0.

A short computation shows that Cr(U,B) is a Banach algebra and

∥ϕ∥Ck =
k∑
i=0

Ç
k

i

å
ak−i sup

|β|=i
∥ ∂β ϕ∥C0 . (2.1)

Finally, given a linear map L : Cr(U,B) → Cr(U,B), we define the usual operator

norm

∥L∥(Cr)⋆ = sup
ϕ∈Cr

∥ϕ∥Cr≤1

∥Lϕ∥Cr .

2.2 Set of stable leaves

First of all, we describe the set of stable leaves that we are going to use to define

our anisotropic Banach spaces. We remark that by stable leaf we do not mean a

piece of stable manifold, but instead a small piece of manifold whose tangent space

belongs to the stable cone bundle Cs.
We consider the following set of stable graphs in Rdim(M)

F = {F ∈ Cr(Bds(0, 2ρ);Rdu)| F (0) = 0,

∥F∥C0(Bds (0,2ρ))
≤ 2ρ, ∥dF∥(Cr(Bds (0,2ρ)))

⋆ ≤ 1}.
(2.2)

Given F ∈ F and a point x ∈ B(0, ρ) let Gx,F be the graph of F in Rdim(M) centered

at x, namely Gx,F (Bds(0, 2ρ)) = x+(y, F (y))y∈Bds (0,2ρ)
. Notice that the tangent space

to the graph Gx,F belongs to the Euclidean stable cone ζsx,i. Finally, we define the

set of full admissible leaves

Σ̃ = {ψi ◦Gx,F (Bds(0, 2ρ))| x ∈ B(0, ρ), F ∈ F , i = 1, . . . ,m}
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and the set of admissible leaves

Σ = {ψi ◦Gx,F (Bds(0, ρ))| x ∈ B(0, ρ), F ∈ F , i = 1, . . . ,m}.

Observe that, for any admissible leaf W ∈ Σ, there is a full admissible leaf W̃ ∈ Σ̃

containing W . Moreover, notice that the sets of leaves Σ and Σ̃ are well-defined. In

effect, the graph of F ∈ F is included in Bds(0, 2ρ)×Bdu(0, 2ρ) and, since x ∈ B(0, ρ),
Gx,F (Bds(0, 2ρ)) ⊂ Bds(0, 3ρ)× Bdu(0, 3ρ) ⊆ Ui, for all i = 1, . . . ,m.

The importance of the set Σ is given by the following lemma. This is a simplified

version of [37, Lemma 3.3], where the authors proved a similar result for what

they call γ-admissible leaves, which are useful to study perturbations of the Anosov

system.

Lemma 2.1. There exists n0 ∈ N and ρ > 0 small enough such that for each full

admissible leaf W̃ , with corresponding admissible leaf W, and for each n ≥ n0, there

exists a finite number (depending only on n) of admissible leaves W1, . . . ,Wl ∈ Σ

such that

1. f−n(W ) ⊆ ∪li=1Wi ⊆ f−n(W̃ )

2. The leaves W1, . . . ,Wl admit a uniformly finite (in W and n) number of over-

laps.

3. There exists a constant Cρ and a Cr partition of unity η1, . . . , ηl subordinated

to {W1, . . . ,Wl} on f−n(W ), such that ∥ηi∥Cr ≤ Cρ, for any i = 1, . . . , l.

Proof. Let W = ψi ◦ Gx,F (Bds(0, ρ)) be an admissible leaf and let W̃ be the

corresponding full admissible leaf. Since the tangent space to W̃ belongs to the

stable cone, there exists n0 ∈ N such that the distance between the boundary of

f−n(W ) and the boundary of f−n(W̃ ) is greater than 2r, for every n ≥ n0. Let

n ≥ n0 and p ∈ f−n(W ). By definition there exists t ∈ Bds(0, ρ) such that p =

f−n◦ψi◦Gx,F (t). Moreover, by property 1. of the charts, there exists j ∈ {1, . . . ,m}
such that p ∈ ψj(B(0, ρ)); thus we denote by y = ψ−1

j (p) ∈ B(0, ρ). The uniform

hyperbolicity of the Anosov map implies that there exists Fp ∈ Cr(Bds(0, 2ρ),Rdu)

such that Fp(0) = 0, ∥Fp∥C0 ≤ 2ρ and W̃p = ψj ◦ Gy,Fp(Bds(0, 2ρ)) ⊆ f−n(W̃ ).

We need to prove that ∥dFp∥Cr−1 is bounded by 1, so that Fp ∈ F . Let f−n
i,j =
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ψ−1
j ◦f−n ◦ψi : Ui → Uj be the dynamics induced by f−n on the charts. There exists

a subset I ⊆ Bds(0, 2ρ) and a bijection α : I → Bds(0, 2ρ) such that

f−n
i,j (Gx,F (s)) = f−n

i,j (x+ (s, F (s))) = Gy,Fp(α(s)) = y + (α(s), Fp(α(s))).

Computing the differential at s ∈ I we obtain

dGx,F (s)f
−n
i,j

(
id

dsF

)
=

(
dsα

dα(s)Fpdsα

)
(2.3)

Notice that, by assumption 2. on the charts, if x = pi = ψi(0) and y = pj = ψj(0),

then the differential

dpif
−n
i,j =

(
Ai,j(pi) 0

0 Di,j(pi)

)
,

where Ai,j(pi) is a ds × ds matrix such that ∥Ai,j(pi)−1∥⋆ ≤ λ−n, while Di,j(pi) is a

du × du matrix such that ∥Di,j(pi)∥⋆ ≤ λ−n. By continuity of the differential, given

every δ > 0 there exists ρ > 0 small enough such that, for every i, j ∈ {1, . . . ,m}
and for all z ∈ Ui,

dzf
−n
i,j = dpif

−n
i,j +∆i,j(z) =

(
Ai,j(z) Bi,j(z)

Ci,j(z) Di,j(z)

)
,

where ∆i,j =

(
∆ds,ds
i,j ∆du,ds

i,j

∆ds,du
i,j ∆du,du

i,j

)
is a dim(M)×dim(M) matrix such that ∥∆i,j∥ < δ,

Ai,j(z) = Ai,j(pi) + ∆ds,ds
i,j (z), Bi,j(z) = ∆du,ds

i,j (z), Ci,j(z) = ∆ds,du
i,j (z) and Di,j(z) =

Di,j(pi) + ∆du,du
i,j (z). Equation (2.3) impliesAi,j(Gx,F (s)) +Bi,j(Gx,F (s))dsF = dsα

Ci,j(Gx,F (s)) +Di,j(Gx,F (s))dsF = dα(s)Fpdsα

from which it follows

dsFp =
[
Ci,j(Gx,F (α

−1(s))) +Di,j(Gx,F (α
−1(s)))dα−1(s)F

]
·[

id+ [Ai,j(Gx,F (α
−1(s)))Bi,j(Gx,F (α

−1(s)))dα−1(s)F
]−1

Ai,j(Gx,F (α
−1(s)))−1

(2.4)

We now want to estimate ∥dFp∥(Cr)⋆ . To this end, we need the following trivial

computation.
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Lemma 2.2 ([27, Sub-lemma 4.5]).

sup
|β|≤r

a−|β|∥ ∂β dFp∥C0 ≤ ∥dFp∥(Cr)⋆ ≤ er(r!)2 sup
|β|≤r

a−|β|∥ ∂β dFp∥C0

Since ∥∆i,j∥C0 ≤ δ, using Lemma 2.2, we can choose a large enough so that there

exists a constant Cr, depending only on r, such that ∥∆i,j∥(Cr)⋆ ≤ Crδ, for all i, j.

Moreover, for every constant C > 1 large enough, we can fix δ small enough and n0

large enough, so that

sup
i,j

{∥Bi,j ◦Gx,F∥(Cr)⋆ + ∥Ci,j ◦Gx,F∥(Cr)⋆ ,

∥A−1
i,j ◦Gx,F∥(Cr)⋆ , ∥Di,j ◦Gx,F∥(Cr)⋆} ≤ 1

2C

(2.5)

To conclude the proof we need the following

Lemma 2.3 ([27, Sub-lemma 4.6]). There exists a constant, depending exclusively

on r, such that

∥dGx,F ◦α−1(·)f
−n
i,j ◦ α−1∥(Cr)⋆ ≤ Cr∥dGx,F (·)f

−n
i,j ∥(Cr)⋆

Using Lemma 2.3, (2.4) and (2.5), we conclude that

∥dFp∥(Cr)⋆ = ∥
[
Ci,j(Gx,F (α

−1(·))) +Di,j(Gx,F (α
−1(·)))dα−1(·)F

]
·[

id+ [Ai,j(Gx,F (α
−1(·)))Bi,j(Gx,F (α

−1(·)))dα−1(·)F
]−1

Ai,j(Gx,F (α
−1(·)))−1∥(Cr)⋆ ≤

≤ Cr∥ [Ci,j(Gx,F (·)) +Di,j(Gx,F (·))dF ]

[id+ [Ai,j(Gx,F (·))Bi,j(Gx,F (·))dF ]−1Ai,j(Gx,F (·))−1∥(Cr)⋆ ≤

≤ Cr
4C2

(1 + ∥dF∥(Cr)⋆)Ä
1 +

∥dF∥(Cr)⋆

4C2

ä ≤ Cr
2C2

≤ 1

provided that C > 1 is large enough.

The construction of a Cr partition of unity is a standard argument (see for

example [44, Theorem 1.4.5]). Q.E.D.

2.3 Norms and Banach spaces

We are ready to construct our family of anisotropic Banach spaces. In particular,

we are going to define anisotropic norms on spaces of differential forms, and then we
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obtain the suitable family of anisotropic spaces by completing spaces of differential

forms with respect to these norms.

We denote by Ωl(M), for each l = 0, . . . , dim(M), the space of complex smooth

differential forms on M, namely the set of C∞ sections of the l-exterior algebra

of the cotangent bundle T ∗M over M, with values in C. Given an admissible leaf

W = ψi ◦Gx,F (Bds(0, ρ)) ∈ Σ, s ≥ 0 and l ∈ {0, . . . , dim(M)}, we denote by Γl,s0 (W )

the space of complex Cs sections of the fiber bundle over W , with the fiber space

∧l(T ∗M) and compact support. In other words, we may think the elements Γl,s0 (W )

as l−differential forms of class Cs, defined on W and vanishing in a neighborhood

of ∂ W. This is exactly the space introduced in [36, Section 3] and, in the definition

of the norm, its elements have the role of “test forms”. Let Vs(W ) be the space of

Cs vector fields defined in a dim(M) -dimensional neighborhood U(W ) ⊆ Ui of W.

We want to express forms and vector fields in local coordinates. Given the atlas

{Ui, ψi}mi=1, let {χi}mi=1 be a smooth partition of unity subordinate to the atlas, such

that χi|ψi(B(0,3ρ)) = 1. We denote by ∂r1 , ∂r2 , . . . , ∂rdim(M)
a basis for the vector

fields on Ui such that ∂x1 := ψ∗
i (∂r1), ∂x2 := ψ∗

i (∂r2), . . . , ∂xds := ψ∗
i (∂rds ) ∈ Cs and

∂xds+1
:= ψ∗

i (∂rds+1
), ∂xds+2

:= ψ∗
i (∂rds+2

), . . . , ∂xds+su
:= ψ∗

i (∂rds+du
) ∈ Cu. Without

loss of generality, we may suppose that this is an orthonormal basis of vector fields,

otherwise one to apply the Gram-Schmidt procedure without essentially affecting

the forthcoming arguments. Finally, let dx1, dx2, . . . , dxd be the dual basis of

∂x1 , ∂x2 , . . . , ∂xd , i.e., the corresponding basis of differential forms on ψi(Ui). Let

Jl = {j = (j1, . . . , jl) ∈ {1, . . . , d}l|j1 < j2 < · · · < jl} the set of ordered l-

multi-indexes. We adopt the following notation for fields and differential forms:

∂xi := ∂xi1 ∧ · · · ∧ ∂xil , dxi := dxi1 ∧ · · · ∧ dxil , whence dxi(∂xi) = l!.

We can decompose every form h ∈ Ωl(M) as h =
∑

i=1 hi, where hi = hχi ∈
Ωl

0(ψi(Ui)), i.e., hi is a smooth differential form on ψi(Ui) with compact support.

Moreover, using the local basis, we can write every hi in coordinates as hi =∑
j∈Jl

hjidxj. We define the Cs norm of h ∈ Ωl(M) as

∥h∥Cs(M) = sup
i=1,...,m

sup
j∈Jl

∥hji∥Cs(ψi(Ui)) = sup
i=1,...,m

sup
j∈Jl

∥hji ◦ ψ−1
i ∥Cs(Ui). (2.6)

Similarly, given ϕ ∈ Γs,l0 (W ), we can write

ϕ =
m∑
i=1

ϕχi =
m∑
i=1

ϕi =
m∑
i=1

∑
j∈Jl

ϕjidxj
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and

∥ϕ∥Γl,s
0 (W ) = sup

i=1,...,m
sup
j∈Jl

∥ϕji∥Cs(ψi◦Gx,F (Bds (0,δ)))
= sup

i=1,...,m
sup
j∈Jl

∥ϕji◦ψ−1
i ∥Cs(Gx,F (Bds (0,δ)))

.

The last ingredient we need is a scalar product for differential forms. We point

out that this scalar product, and consequently the induced norm, depends on the

metric. On the other hand, the Banach space we are establishing is independent from

the metric. Let us consider the adapted metric g (see Lemma 1.3) and the induced

volume form ω0 ∈ Ωdim(M)(M). The non-degeneracy condition of g induces an

isomorphism ξ between smooth vector fields V(M) and smooth 1-forms Ω1(M) such

g(v, ·) = ξ(v)(·) for every v ∈ V(M). A pointwise scalar product between 1-forms

ω1, ω2 ∈ Ω1(M) is ⟨ω1, ω2⟩ = g(ξ−1(ω1), ξ
−1(ω2)). Similarly, for {ωi,j}i=1,2; j=1,...,l ⊆

Ω1(M), it is defined a pointwise scalar product between l-forms

⟨ω1,1 ∧ · · · ∧ ω1,l, ω2,1 ∧ · · · ∧ ω2,l⟩ = det

Ü
⟨ω1,1, ω2,1⟩ . . . ⟨ω1,l, ω2,1⟩

...
. . .

...

⟨ω1,1, ω2,l⟩ . . . ⟨ω1,l, ω2,l⟩

ê
Finally, the scalar product between l-forms is the integral of the pointwise scalar

product, i.e.,

(ω1, ω2) =

∫
M

⟨ω1, ω2⟩ω0, ω1, ω2 ∈ Ωl(M)

Remark 2.4. The scalar product ⟨·, ·⟩ induces a duality operator between l-forms

and (dim(M) − l)-forms, the so-called Hodge star operator (see Appendix B for

a review of Hodge theory). In effect, given ω1, ω2 ∈ Ωl(M) there exist unique

⋆ω1, ⋆ω2 ∈ Ωd−l(M) such that

ω2 ∧ ⋆ω1 = (−1)l(d−l) ⋆ ω1 ∧ ω2 = ω1 ∧ ⋆ω2 = ⟨ω1, ω2⟩ω0.

We are now ready to define the anisotropic norms.

Definition 2.5. Let p, q ∈ N. Given h ∈ Ωl(M), we define a seminorm

∥h∥−p,q,l = sup
W∈Σ

sup
v1,...,vp∈Vp+q(U(W ))
∥vk∥Cp+q(U(W ))≤1

sup
ϕ∈Γp+q,l

0 (W ),
∥ϕ∥

Γ
p+q,l
0 (W )

≤1

∣∣∣∣∫
W

⟨ϕ, Lv1 . . . Lvph⟩ωW
∣∣∣∣ ,

where Lvi is the Lie derivative of the l-form h w.r.t. the vector field vi and ωW is

the measure induced by g on W. We define, for every h ∈ Ωl(M), the norm

∥h∥p,q,l = max
t≤p

∥h∥−t,q,l.
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Finally, we denote by Bp,q,l = Ωl(M)
∥·∥p,q,l

the closure of the space of l-forms w.r.t.

such a norm.

Remark 2.6. The following inequalities are trivial consequences of the definition.

∥h∥p,q,l ≤ ∥h∥p+1,q−1,l and ∥h∥p,q,l ≤ C∥h∥Cp , hence Bp+1,q−1,l ⊆ Bp,q,l and Ωl(M) ⊆
Bp,q,l. Furthermore,

sup
v1,...,vp∈Vp+q(U(W ))
∥vk∥Cp+q(U(W ))≤1

∥Lv1 . . . Lvph∥−0,p+q,l ≤ ∥h∥−p,q,l.

Remark 2.7. Notice that the Banach space Bp,q,l coincide with the space studied

in [20, Section 5] for Anosov map acting on a 2-torus. The authors of [20] were

in turn inspired by [36], where these spaces were exploited to analyze dynamical

zeta functions of Anosov flows. The following proposition, whose proof recalls [36,

Lemma 3.10], shows that we can think these spaces as subspaces of currents, i.e., the

continuous dual space of differential forms. For an overview of currents’ properties

we refer the reader to de Rham’s book [23].

Given p, q ∈ N, let us denote by Ωl
p+q(M) the space of Cp+q l-forms equipped

with the Cp+q norm as defined in (2.6). Let (Ωl
p+q(M))⋆ be its dual space with the

weak-⋆topology, i.e., the space of currents of dimension l, degree dim(M) − l and

regularity Cp+q.

Lemma 2.8. The space Bp,q,l can be identified with a subspace of the space of cur-

rents of dimension dim(M) − l, degree l and regularity Cp+q on the manifold M ;

i.e., there exists an injective bounded linear operator ι : Bp,q,l → (Ωl
p+q(M))⋆.

Proof. Given a smooth differential form h ∈ Ωl(M), we define

ι(h)(g) = (h, g) =

∫
M

⟨h, g⟩ω0, for each g ∈ Ωl
p+q(M).

Notice that, by Remark 2.4, we may consider ⋆g ∈ Ω
dim(M)−l
p+q (M), so that ι(h)(g) =∫

M
h∧ ⋆g, and the dimension of h is consistent with the definition of the dimension

for currents. We can break down M into admissible leaves belonging to Σ. Thus,

recalling the definition of the norm, there exists a constant C > 0 such that, for all

g ∈ Ωl
p+q(M),

|ι(h)(g)| ≤ C∥h∥p,q,l∥g∥Cp+q
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As a consequence, the map ι extends to a bounded linear operator, denoted by the

same symbol, ι : Bp,q,l → (Ωl
p+q(M))⋆.

It remains to show that this operator is injective. Let us consider h ∈ Bp,q,l,
such that ι(h) ≡ 0. By definition, there exists a sequence of smooth forms {hn} ∈
Ωl(M) such that lim

n→+∞
hn = h, which means that lim

n→+∞
∥hn − h∥p,q,l = 0. We want

to prove that h = 0, i.e., ∥h∥p,q,l = 0. Let W = ψi(Gx,F (Bds(0, ρ))) ∈ Σ be an

admissible leaf and let ϕ ∈ Γp+q,l0 (W ) be a test form. We need to smoothen ϕ, that

we suppose equal zero out of W. Given a classical mollifier κ ∈ C∞(Rdim(M),R)
such that k ≥ 0,

∫
Rdim(M) κ = 1 and supp(κ) ⊆ B(0, 1), we consider, for ϵ > 0,

κϵ(x) = ϵ− dim(M)κ (xϵ−1) . Since W belongs to ψi(Ui), we limit ourselves to consider

the chart (Ui, ψi). In particular, the coordinate form of ϕ becomes ϕ =
∑

j∈Jl
ϕjidxj,

where supp(ϕji ) ⊆ ψi(Ui). We can define

ϕϵ(t) =
∑
j∈Jl

Å∫
Rdim(M)

κϵ(ψ
−1
i (t)− y)ϕji (ψi(y))dy

ã
dxj,

so that ϕϵ ∈ Ωl(ψi(Ui)) and∫
W

⟨hn, ϕ⟩ωW = lim
ϵ→0+

∫
M

⟨hn, ϕϵ⟩ω0 = lim
ϵ→0+

j(hn)(ϕϵ),

hence

lim
n→+∞

∫
W

⟨hn, ϕ⟩ωW = lim
n→+∞

lim
ϵ→0+

j(hn)(ϕϵ), (2.7)

Moreover, given p vector fields v1, . . . , vp ∈ Vp+q(U(W )) as required in the definition

of the norm,

lim
n→+∞

∫
W

⟨Lv1 . . . Lvphn, ϕ⟩ωW = lim
n→+∞

lim
ϵ→0+

j(Lv1 . . . Lvphn)(ϕϵ), (2.8)

We claim that, assuming ϵ small enough, for each g ∈ Ωl(M) and ϕ ∈ Γq0(W )∣∣∣∣∫
M

⟨g, ϕϵ⟩ω0

∣∣∣∣ ≤ C∥g∥0,q,l∥ϕ∥Γq,l
0 (W ). (2.9)

Additionally, for p > 0, v1, . . . , vp ∈ Vp+q(U(W )) as in the definition of the norm

and for ϵ small enough,∣∣∣∣∫
M

⟨Lv1 . . . Lvpg, ϕϵ⟩ω0

∣∣∣∣ ≤ C∥g∥p,q,l∥ϕ∥Γp+q,l
0 (W ), (2.10)

for each g ∈ Ωl(M) and ϕ ∈ Γp+q0 (W ).
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As a consequence of (2.9) we obtain that, for m,n ∈ N,

|j(hn)(ϕϵ)− j(hm)(ϕϵ)| =
∣∣∣∣∫
M

⟨hn − hm, ϕϵ⟩ω0

∣∣∣∣ ≤ C∥hn − hm∥0,q,l∥ϕ∥Γq,l
0 (W ).

Therefore, we can swap the two limits in (2.7) gaining

lim
n→+∞

∫
W

⟨hn, ϕϵ⟩ωW = lim
ϵ→0+

lim
n→+∞

j(hn)(ϕϵ) = lim
ϵ→+∞

j(h)(ϕϵ) = 0,

that is ∥h∥0,q,l = 0. Similarly, one can prove that ∥h∥p,q,l = 0 using (2.8) and (2.10).

We finally prove the claim. Although a more general result is proven in [36, Lemma

D.2.], we give a proof adapted to our context. Let g =
∑

i

∑
j∈Jl

gji dxj ∈ Ωl(M)

and let ϕ ∈ Γq,l0 (W ). We compute∣∣∣∣∫
M

⟨g, ϕϵ⟩ω0

∣∣∣∣ =
∣∣∣∣∣∣
∫
M

∑
j∈Jl

gji (x)

∫
Rdim(M)

ϕji (ψi(y))κϵ(ψ
−1
i (x)− y)dyω0(dx)

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
∫
M

∫
Rdim(M)

∑
j∈Jl

gji (x)ϕ
j
i (ψi(ψ

−1
i (x)− z))κϵ(z)dzω0(dx)

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
∫
Rdim(M)

κϵ(z)

∫
M

∑
j∈Jl

gji (x)ϕ
j
i (ψi(ψ

−1
i (x)− z))ω0(dx)dz

∣∣∣∣∣∣ = (∗)

Assuming ϵ small enough, for each z ∈ B(0, ϵ), there existWz ∈ Σ and ϕz ∈ Γq,l0 (Wz)

such that (ϕz)
j
i (x) = ϕji (ψi(ψ

−1
i (x)− z)), so that ∥ϕz∥Γq,l

0 (Wz)
= ∥ϕ∥Γq,l

0 (W ), and

(∗) =
∣∣∣∣∫

Rdim(M)

kϵ(z)

∫
Wz

⟨g, ϕz⟩ωWzdz

∣∣∣∣ ≤ C∥h∥0,q,l∥ϕ∥Γq,l
0
.

In addition, the same computation shows that, given p vector fields v1, . . . , vp as

above and for each ϕ ∈ Γp+q,l0 (W )∣∣∣∣∫
M

⟨Lv1 . . . Lvpg, ϕϵ⟩ω0

∣∣∣∣ ≤ C∥Lv1 . . . Lvpg∥0,p+q,l∥ϕ∥Γp+q,l
0 (W ) ≤ C∥g∥p,q,l∥ϕ∥Γp+q,l

0 (W ),

where the last inequality is a consequence of the last property in Remark 2.6. This

concludes the proof of the claim. Q.E.D.

2.4 Quasi-compactness of the transfer operator

This section is devoted to proof of the spectral properties of the pushforward

operator f∗, whose action on differential form, extends to a bounded linear operator
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on Bp,q,l. In the field of dynamical systems, f∗ falls into the category of transfer

operators. The transfer operator approach to statistical properties of dynamical

systems was inspired by classical results of statistical mechanics and it was firstly

carried out by Ya.G. Sinai [66, 67], D. Ruelle [62, 65] and R. Bowen [15]. Their main

idea was to code the system through the construction of a Markov partition, with

a suitable transfer matrix, and then to apply Perron-Frobenius theory (we refer the

reader to [5] for a complete description of the topic). As already said, the authors

of [11] firstly defined anisotropic Banach spaces to tackle directly transfer operators

of Anosov systems without coding it. With this new idea, many original, as well

as already known results, have been demonstrated applying these techniques. At

the same time, their great flexibility gave the opportunity to analyze many other

dynamical systems, including partially hyperbolic, non-uniformly hyperbolic and

parabolic systems. We only mention papers of C. Liverani and S. Gouëzel [37, 38]

or papers of V. Baladi and B. Tsujii[8, 9], which are at the cornerstone of the theory.

When we talk about a transfer operator without specifying it, we generally refer

to a linear operator L acting on the space L2(M,ω0), which is the adjoint, w.r.t. the

L2(M,ω0)-scalar product, of the composition (Koopman) operator, that is

⟨g ◦ f, h⟩L2 = ⟨g,Lh⟩L2 .

In particular, given h ∈ L2(M,ω0), there is an explicit formula

Lh(x) = h ◦ f−1(x)

| det df−1(x)f |
for ω0-a.a. points x ∈M.

In the context of Anosov diffeomorphisms, L does not have good spectral properties

when acting on L2, but it behaves very well when it acts on anisotropic Banach

spaces of distributions, for example the ones introduced in [37]. In fact, the authors

of [37] proved that, under transitivity, L is quasi-compact (see Definition A.14), 1

is the unique, maximal and simple eigenvalue, whose eigenvector is density of the

SRB measure (see [74] for a survey of SRB measures). Additionally, they obtain

exponential mixing, as well as the existence of a complete asymptotic expansion for

the decay of correlations, of smooth observables [37, Corollary 2.6].

We now notice that, for every ω ∈ Ωdim(M)(M), can write ω = hω0, where

h ∈ C∞(M) and ω0 is the volume form induced by the metric g. For all x ∈M, for
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all v1, v2, . . . , vd ∈ TxM it holds

(f∗ω)x(v1, . . . , vd) = h ◦ f−1(x)(ω0)f−1(x)(dxf
−1(v1), . . . , dxf

−1(vd)) =

= h ◦ f−1(x)| det dxf−1|(ω0)x(v1, . . . , vd) =

= (Lh)(x)ω0(v1, . . . , vd)

(2.11)

In other terms, the action of f∗ on smooth dim(M)-forms (i.e., a subset of Bp,q,dim(M))

corresponds to the action of the transfer operator L on the corresponding density.

This means that we can read results of [37] studying how f∗ behaves on Bp,q,dim(M).

We are interested in the spectral properties of the pushforward operator acting on

Bp,q,l for l = 0, . . . , dim(M). In particular, our main theorem will be a consequence

of our analysis on the action of f∗ on the Banach space of currents Bp,q,ds , where we
recall that ds is the dimension of stable manifolds.

The first ingredient we need to investigate the spectrum of our transfer operator

is a quasi-compactness result. We recall that a bounded linear operator T on the

Banach space B is quasi-compact if the essential spectral ρess(T ) radius is strictly

smaller than the spectral radius ρ(T ). Roughly speaking, this means that, for all

t ∈ (ρess(T ), ρ(T )), the annulus {z ∈ C| t < z < ρ(T )} contains finitely many eigen-

values of finite multiplicity. The standard procedure to prove quasi-compactness of

linear operators is based on the following classical result of Hennion [41], whose

proof is recalled in Appendix A-Section 3.

Theorem 2.9 ([41] Corollary 1). Let T be a bounded linear operator on the Banach

space (B, ∥ · ∥). Assume that there exists another norm | · | on B such that

1. the immersion i : (B, ∥ · ∥) → (B, | · |) is bounded and compact;

2. for all n ∈ N there exist Rn, rn > 0, with lim infn→+∞ r
1/n
n < ρ(T ) such that

∥T nf∥ ≤ rn∥f∥+Rn|f |;

then the operator, acting of (B, ∥ · ∥), is quasi-compact with essential spectral radius

ρe(T ) ≤ lim infn→+∞ r
1/n
n .

Lemma 2.10. The inclusion ι : Bp,q,l → Bp−1,q+1,l is compact for each p ∈ Z+, q ∈ N
and for all l = 1, . . . , dim(M).
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The above lemma is proved in [37, Lemma 2.1] for the anisotropic Banach space

of distributions Bp,q,0. We generalize their proof to anisotropic currents.

Proof of Lemma 2.10. By definition, the inclusion ι is compact if the open

unit ball B ⊆ Bp,q,t is relatively compact in Bp−1,q+1,t. We use a general criterion[31,

Proposition 2.8] to prove that a linear operator L : (B, ∥·∥B) → (C, ∥·∥C) is compact.

Assume that, for all ϵ > 0, there are finitely many continuous linear operators

li : B → R such that ∥x∥C ≤ ϵ∥x∥B +
∑

i |li(x)|, then L is compact. We recall the

proof of this criterion in Appendix A - Lemma A.3.

We fix a chart (Ui, ψi), for some i = 1, . . . ,m, and h ∈ Ωl(M). Recall that we fixed

r in (2.2) as large as we want. Therefore, we may suppose that p+q < r, so that the

inclusion i : Cr(Bds(0, 2ρ,Rdu)) → Cp+q(Bds(0, 2ρ,Rdu)) is compact. Consequently,

for any ϵ > 0, there exists a finite number of full admissible leaves›W1, . . . ,›Wn, such

that ›Wj = ψi ◦ Gxj ,Fj
(Bds(0, 2ρ)), with j = 1, . . . , n, xj ∈ B(0, ρ) and Fj ∈ F , and,

in addition, for any other W = ψi ◦ Gx,F (B(0, ρ)), there exists j ∈ {1, . . . , n} such

that |x − xj| < ϵ and ∥F − Fj∥Cp+q(Bds (0,ρ),Rdu ) < ϵ. We now introduce a family of

admissible stable leaves {W t}t∈[0,1], such thatW 0 = W andW 1 = Wj. In particular,

let xt = x+ t(xj − x) and let F t = F + t(Fj −F ). We define W t = ψi ◦Gxt,F t
(B0, ρ)

and we denote by {Ψt}t∈[0,1] the family of maps mappingW toW t. One can trivially

check that {W t}t∈[0,1] is actually a family of admissible leaves, i.e they are shortening

of full admissible leaves. Consequently, for any ϕ ∈ Γp+q,l0 (W ), ∥ϕ∥Γp+q,l
0 (W ) ≤ 1, and

for v1, . . . , vp−1 ∈ Vp+q(U(W )), with ∥vi∥Cp+q(U(W )) ≤ 1,

∫
W

⟨ϕ, Lv1 . . . Lvp−1h⟩ωW −
∫
Wj

⟨ϕ1, L(v1)1 . . . L(vp−1)1h⟩ω(Wj)1
=

=

∫ 1

0

∫
W t

d

dt
⟨ϕt, L(v1)t . . . L(vp−1)th⟩ω(Wj)t

dt

where ϕt = Ψ∗
t (ϕ) and (vk)t = Ψ∗

t (vk), for any k = 1, . . . , p− 1. Writing last integral

in coordinates the r.h.s. becomes

∫ 1

0

∫ ρ

−ρ
⟨ϕt, ∂t L(v1)t . . . L(vp−1)th⟩(x+ t(xj − x) + F (s) + t(Fj(s)− F (s)))ω(Wj)t

(ds)dt

which is bounded by Cϵ∥h∥p,q,l, since |x−xj| < ϵ and ∥F−Fj∥Cp+q < ϵ (with a slight
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abuse of notation, ∂t denotes the vector field v = (ψi)∗[(xj − x) ∂t].) Accordingly,

∥h∥p−1,q+1,l = max
k≤p−1

∥h∥−k,q+1,l ≤ Cϵ∥h∥p,q,l+

+ max
k≤p−1

sup
j=1,...,n

sup
v1,...,vk∈Vk+q+1(U(W ))
∥vi∥Ck+q+1(U(W ))

≤1

sup
ϕ∈Γk+q+1,l

0 (W ),
∥ϕ∥

Γ
k+q+1,l
0 (W )

≤1

∫
Wj

⟨ϕ, Lv1 . . . Lvkh⟩ωWj

and, up to a small error, we can reduce to consider the integral on a finite number

of admissible leaves W1, . . . ,Wj. Therefore, assume W = Wj. The set of test forms

Γp+q,l0 (W ), with ∥ϕ∥Γp+q,l
0 (W ) ≤ 1 is relatively compact inside Γp+q−1,l

0 (W ). As a

consequence, for any ϵ > 0, there exist ϕ1, . . . , ϕN ∈ Γp+q−1,l
0 (W ), such that for

each ϕ ∈ Γp+q,l0 (W ), ∥ϕ∥Γp+q,l
0 (W ) ≤ 1, it holds ∥ϕ − ϕj∥Γp+q−1,l

0 (W ) < ϵ, for some

j ∈ {1, . . . , dim(M)}. Similarly, there exist v1, . . . , vM ∈ Vp+q−1(U(W )) such that

for each v ∈ V(U(W )), ∥v∥Cp+q ≤ 1, it holds ∥v − vj∥Cp+q−1 < ϵ, for some j ∈
{1, . . . , dim(M)}. It follows that∣∣∣∣∫

W

⟨ϕ, Lv1 . . . Lvp−1h⟩ωW −
∫
W

⟨ϕj, L(v1)j1
. . . L(vp−1)jp−1

h⟩ωW
∣∣∣∣ ≤ Cϵ∥h∥p−1,q+1,l

≤ Cϵ∥h∥p,q,l.

Defining

lj,j1,...,jp−1(h) =

∫
W

⟨ϕj, L(v1)j1
. . . L(vp−1)jp−1

h⟩ωW ,

we obtain

∥h∥p−1,q+1,l ≤ Cϵ∥h∥p,q,l +
∑

j,j1,...,jp−1

|lj,j1,...,jp−1(h)| (2.12)

for any h ∈ Ωl(M). By density, we can extend (2.12) to Bp,q,l and we can apply

Lemma A.3. Q.E.D.

Property 2. of Hennion’s theorem is generally called a Lasota-Yorke type inequal-

ity. The following theorem states that such inequalities hold for the pushforward

operator when acting on the anisotropic banach spaces Bp,q,l. Notice that by prop-

erty 1. of Theorem 2.9 | · | ≤ ∥ · ∥, hence the norm ∥ · ∥ is stronger than | · |. In

our context the role of the strong norm is taken by ∥ · ∥p,q,l, while the weak norm is

∥ · ∥p−1,q+1,l.



30 2. Anisotropic Banach spaces of currents

Theorem 2.11. f∗ acts as a bounded linear operator on the spaces Bp,q,l. In par-

ticular, for p ≥ 0 and for 0 < l < dim(M),

∥fn∗ h∥p,q,0 ≤ C∥h∥p,q,0; (2.13)

∥fn∗ h∥p,q,l ≤ Cλ−|ds−l|nehtopn∥h∥p,q,l; (2.14)

∥fn∗ h∥p,q,dim(M) ≤ C∥h∥p,q,dim(M). (2.15)

Moreover, for p > 0 and for 0 < l < dim(M),

∥fn∗ h∥p,q,0 ≤ Cλ−nmin{p,q}∥h∥p,q,0 + C∥h∥p−1,q+1,0; (2.16)

∥fn∗ h∥p,q,l ≤ Cλ−n(min{p,q}+|ds−l|)ehtopn∥h∥p,q,l + Cλ−n|ds−l|enhtop∥h∥p−1,q+1,l; (2.17)

∥fn∗ h∥p,q,dim(M) ≤ Cλ−nmin{p,q}∥h∥p,q,dim(M) + C∥h∥p−1,q+1,dim(M). (2.18)

Remark 2.12. Notice that (2.14) and (2.17) also work for l = 0 and l = ds, but they

give weaker bounds than the other four inequalities. In effect, by using Ledrappier-

Young entropy formula [19, Theorem D.3.1], it is easy to check that ehtopλ−ds ≥ 1.

The reasons behind this mismatch will be clear at the end of the proof, but, just to

give an idea, the factor λ−|ds−l|ehtop comes up from the estimate on the expansion of

l-dimensional subspaces of the tangent bundle, under the action of the differential.

Hence, there is no expansion on 0-dimensional subspaces when l = 0 and, by using

the duality (2.11), when l = dim(M). On the other hand, the bounds of (2.14)

and (2.17) work for every Anosov diffeomorphism, but they could be improved on a

case by case basis. Since our main results strongly depend on such bounds, better

estimates of that factor would improve them.

Proof. Let us prove (2.13) for p = 0. Let h ∈ C∞(M), W ∈ Σ, ϕ ∈ Γq,00 (W ) =

Cq
0(W ). The following integral can be split, using the partition of unity (Wi, ηi)i∈I

of Lemma 2.1, as∫
W

ϕfn∗ h =

∫
W

ϕh ◦ f−n =

∫
f−nW

ϕ ◦ fnhλsn =
∑
i

∫
Wi

ϕ ◦ fnhλsnηi,

where λsn(x) is the Jacobian of the change of variables. As a consequence of Lemma

C.1, the Cq-norm of λsn is bounded by C|fn(Wi)|, where |fn(Wi)| is the ωW̃ -measure

of fn(Wi). Moreover, the Cq-norm of ϕ◦fn is bounded by the Cq-norm of ϕ, because

the composition with fn reduces norms along stable manifolds. Thus, since we can
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assume that the Cq-norm of ηi is uniformly bounded, the norm of ϕ ◦ fnλsnηi is
bounded by C|fn(Wi)|∥ϕ∥Cq

0 (W ) , hence∣∣∣∣∫
W

ϕfn∗ h

∣∣∣∣ ≤ C
∑
i

|fn(Wi)|∥ϕ∥Cq
0 (W )∥h∥0,q,l.

Choosing an appropriate covering of f−n(W ), without many overlaps, the sum is

bounded by a constant and, by density, we get (2.13) with p = 0.

Let us tackle together (2.13) for p ≥ 0 and (2.16). We firstly show that, for

h ∈ Ωl(M),

∥fn∗ h∥−t,q,0 ≤

Cλ
−nq∥h∥p,q,0 + Cn∥h∥p−1,q+1,0 if t < p

Cλ−nmin{p,q}∥h∥p,q,0 + Cn∥h∥p−1,q+1,0 if t = p
(2.19)

so that

∥fn∗ h∥p,q,0 = max
t≤p

∥fn∗ h∥−t,q,0 ≤ Cλ−nmin{p,q}∥h∥p,q,0 + Cn∥h∥p−1,q+1,0. (2.20)

The inequality (2.20) does not prove (2.16), as well as (2.13) for p ≥ 0, because the

coefficient of the weak norm does depend on n. We proceed by induction on p to

remove the dependence on that n. We already proved (2.13) for p = 0. Assume that

(2.13) holds for p−1, then we show (2.16) and (2.13) for p. Let λ̃ > λ be a constant

for which the Anosov property (1.1) continues to be true. Then (2.20) implies

∥fn∗ h∥p,q,0 ≤ C̃λ̃−nmin{p,q}∥h∥p,q,0 + C̃n∥h∥p−1,q+1,0.

Let N ∈ Z+ be a positive integer such that C̃λ̃−N min{p,q} ≤ λ−N min{p,q}. Then, for

every n ∈ Z+, we write n = QnN+Rn with 0 ≤ Rn < N and Qn ∈ N. Consequently,

∥fn∗ h∥p,q,0 ≤C̃λ̃−N min{p,q}∥fn−N∗ h∥p,q,0 + C̃N∥fn−N∗ h∥p−1,q+1,0 ≤

≤C̃λ̃−N min{p,q}∥fn−N∗ h∥p,q,0 + C̃N∥h∥p−1,q+1,0 ≤

≤
Ä
C̃λ̃−N min{p,q}

ä2
∥fn−2N

∗ h∥p,q,0 + C̃N C̃λ̃
−N min{p,q}∥fn−2N

∗ h∥p−1,q+1,0+

+ C̃N∥h∥p−1,q+1,0 ≤

≤
Ä
C̃λ̃−N min{p,q}

äQn ∥fRn
∗ h∥p,q,0 +›CN QN−1∑

i=0

Ä
C̃λ̃−N min{p,q}

äi
∥h∥p−1,q+1,0 ≤

≤Cλ−(NQn+Rn)min{p,q}∥h∥p,q,0 +›CN 1− λ−NQn min{p,q}

1− λ−N min{p,q} ∥h∥p−1,q+1,0+

+ CRn∥h∥p−1,q+1,0 ≤ Cλ−nmin{p,q}∥h∥p,q,0 + C∥h∥p−1,q+1,0,
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where we used (2.20) to estimate ∥fRn
∗ h∥p,q,0 and the inductive hypothesis to estimate

∥fn−iN∗ h∥p−1,q+1,0. This computation also proves (2.13) for p. Moreover, both (2.13)

and (2.16) extend by density to Bp,q,0.
We are left with the proof of (2.20). Let h ∈ Ω0(M) = C∞(M), W ∈ Σ,

ϕ ∈ Γt+q,00 (W ) = Ct+q
0 (W ), such that ∥ϕ∥Ct+q

0 (W ) ≤ 1, and v1, . . . , vt ∈ V t+q(U(W ))

with ∥vi∥Ct+q ≤ 1. We compute∫
W

ϕ(x)Lv1 . . . Lvtf
n
∗ h(x) =

∫
W

ϕ(x)v1 . . . vt(h ◦ f−n)(x).

By linearity we can assume that vj = gj ∂xj where ∂xj is a coordinate vector field,

hence∫
W

ϕ(x)v1 . . . vt(h ◦ f−n)(x) =

∫
W

ϕ(x)
t∏

j=1

(gj(x) ∂xj)(h ◦ f−n)(x) =

=
∑
i

∫
fn(Wi)

ϕ(x)ηi(f
−n(x))

t∏
j=1

gj(x)
t∏

j=1

∂xj(h ◦ f−n)(x) + Cn∥h∥p−1,q+1,0

where the last term comes out deriving at least one of the coefficients of the vector

fields. With a slight abuse of notations we rewrite ϕ(x)ηi(f
−n(x))

∏d
j=1 gj(x), which

is again a test function, as ϕ(x). By [37, Lemma 6.5], given a Ct+q(U(Wi)) vector

field v, there exist Ct+q vector fields wu and ws, in a neighborhood U(Wi) of Wi,

such that v = wu + ws and

• for all x ∈ fn(Wi) w
s
x ∈ Txf

n(Wi);

• ∥ws∥Ct+q(Ui) ≤ Cn;

• ∥ws ◦ fn∥Ct+q−1(Wi) ≤ C;

• ∥dfn(x)f−nwu(fn(x))∥Ct+q(f−n(U(W ))) ≤ Cλ−n;

We obtain∫
fn(Wi)

ϕ(x)
d∏
j=1

∂xj(h ◦ f−n)(x) =
∑

σ∈{s,u}t

∫
fn(Wi)

ϕ(x)
d∏
j=1

w
σj
j (h ◦ f−n)(x).

Since wujw
s
k = wskw

u
j + [wuj , w

s
k], we can swap two vector fields up to a term which is

again Cn∥h∥p−1,q+1,0. Thus, we need to estimate terms of the form∫
fn(Wi)

ϕ(x)

g∏
j=1

wsj

d∏
j=g+1

wuj (h ◦ f−n)(x) =(−1)g
∫
fn(Wi)

g∏
j=1

wsjϕ(x)
d∏

j=g+1

wuj (h ◦ f−n)(x)
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where we applied an integration by parts. Every vector field wsj can be written again

in terms of the coordinate vector fields wsj =
∑d

z=1 bj,z ∂xz . As above, if one of the

vector fields acts on one of the coefficients we get a term bounded by Cn∥h∥p−1,q+1,o.

Therefore, we remain with the following terms∫
fn(Wi)

g∏
j=1

∂xj ϕ(x)

g∏
j=1

bj,zj(x)
d∏

j=g+1

wuj (h ◦ f−n)(x) =

=

∫
Wi

g∏
j=1

(∂xj ϕ) ◦ fn(x)
g∏
j=1

bj,zj ◦ fn(x)
d∏

j=g+1

w̃uj (h)λ
s
n(x)

By the third property ∥
∏g

j=1 bj,zj(x)◦fn∥Ct+q ≤ C.We distinguish two cases If t = p

and g = 0 it holds ∣∣∣∣∣∣
∫
Wi

p∏
j=1

w̃uj (h)ϕ

∣∣∣∣∣∣ ≤ Cλ−np∥h∥p,q,o∥ϕ∥Cp+q
0
.

On the other hand, if t < p or g > 0, let ϕ =
∏g

j=1 ∂xj ϕ ∈ Cq+t−g
0 (W̃ ). We need to

smoothen this function through the following standard lemma.

Lemma 2.13. Let α be the bigger integer smaller than q+t−g. For ϵ > 0, there exists

ϕϵ ∈ Cq+t−g+1 such that ∥ϕϵ∥Cq+t−g ≤ C∥ϕ∥Cq+t−g , ∥ϕϵ∥Cq+t−g+1 ≤ Cϵ−1∥ϕ∥Cq+t−g

and ∥ϕϵ − ϕ∥Cα ≤ Cϵq+t−g−α∥ϕ∥.

The proof of the above lemma easily follows convolving the function ϕ with a

mollifier of order ϵ and then computing the norms. In our context we fix ϵ to be

λ−(q+t−g)n/(q+t−g−α), so that

∥ϕϵ − ϕ∥Cα ≤ Cλ−(q+t−g)n∥ϕ∥.

This implies that∣∣∣∣∣∣
∫
Wi

g∏
j=1

(∂xj ϕ) ◦ fn(x)
g∏
j=1

bj,zj ◦ fn(x)
d∏

j=g+1

w̃uj (h)λ
s
n(x)

∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣∣
∫
Wi

(ϕ− ϕϵ) ◦ fn(x)
g∏
j=1

bj,zj ◦ fn(x)
d∏

j=g+1

w̃uj (h)λ
s
n(x)

∣∣∣∣∣∣+
+

∣∣∣∣∣∣
∫
Wi

ϕϵ ◦ fn(x)
g∏
j=1

bj,zj ◦ fn(x)
d∏

j=g+1

w̃uj (h)λ
s
n(x)

∣∣∣∣∣∣
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The first term is bounded by

Cλ−(q+t−g)nλ−(t−g)n∥ϕ∥Cq+t∥h∥p,q,0 ≤ Cλ−qn∥ϕ∥Cq+t∥h∥p,q,0

where we used that λ−(q+t−g)λ−(t−g) ≤ λ−q when g ≤ t. Since the function ϕϵ is

strictly more regular than ϕ, because t − k < p, the second term is bounded by

Cn∥h∥p−1,q+1,0. This concludes the proof of (2.19).

For (2.14) and (2.17), we proceed as above. Hence, we firstly prove (2.14) for

p = 0, then we show the analogous of (2.20) and, finally, we conclude by induction

proving that (2.14) for p− 1 implies (2.17) and (2.14) for p. Let us show (2.14) for

p = 0. We consider h ∈ Ωl(M), W ∈ Σ and a test form ω ∈ Γl,q0 (W ). We need to

compute the integral ∫
W

⟨ω, fn∗ h⟩.

We fix the local bases for vector fields and forms introduced in section 2.3. Assuming

thatW ⊆ ψz(Uz, ), we can write ω = ω◦χz =
∑

j∈Jl
ωjdxJ on ψz(B(0, 3ρ)). It follows

that∫
W

⟨ω, fn∗ h⟩ =
∫
W

∑
j∈Jl

ωj⟨dxj, fn∗ h⟩ =
∑
j∈Jl

∫
f−n(W )

ωj ◦ fn⟨dxj, fn∗ h⟩ ◦ fnλsn =

=
∑
j,k∈Jl

∑
i

∫
Wi

hkωj ◦ fn⟨dxj, fn∗ dxk⟩ ◦ fnλsnηi.

where h = h◦χi =
∑

k∈Jl
hkdxk, on ψi(B(0, 3ρ)) ⊇ Wi. The C

q-norm of the functions

⟨dxj, fn∗ dxk⟩ ◦ fnλsn is bounded by Cλ−|ds−l|n (see Lemma C.2). Thus,∣∣∣∣∫
W

⟨ω, fn∗ h⟩
∣∣∣∣ ≤ Cλ−|ds−l|n|f−n(W )|∥ω∥Γl,q

0
∥h∥0,q,l

By classical results (see for instance Theorem D.7), the volume growth of f−n(W )

fulfills |f−n(W )| ∼ ehtopn|W |, where htop is the topological entropy of f . By density,

we get (2.14) for p = 0.

Next, let us prove that, for h ∈ Ωl(M),

∥fn∗ h∥p,q,l ≤ Cλ−nmin{p,q}−n|ds−l|enhtop∥h∥p,q,l + Cn∥h∥p−1,q+1,l. (2.21)

Let h ∈ Ωl(M), W ∈ Σ, ω ∈ Γp+q0 (W ) and let v1, . . . , vt ∈ V t+q(U(W )) be t vector

fields such that ∥vi∥Cp+q(U(W )) ≤ 1. As above, we can write ω =
∑

j∈Jl
ωjdxj and we
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compute∫
W

⟨ω, Lv1 . . .Lvpfn∗ h⟩=
∑
i

∫
fn(Wi)

∑
j,k∈Jl

ωj⟨dxj, Lv1 . . .Lvp [(hk ◦ f−n)fn∗ (dxk)]⟩ηi ◦ f−n

=
∑
i

∫
fn(Wi)

∑
j,k∈Jl

∑
A⊆{1,...,p}

ωj
∏
a∈A

Lva(hk ◦ f−n)⟨dxj,
∏
a∈Ac

Lva(f
n
∗ (dxk))⟩ηi ◦ f−n

where h =
∑

k∈Jl
hkdxk on Wi, while the product of derivatives is ordered. If

A = {1, . . . , p} the terms

∑
i

∫
fn(Wi)

∑
j,k∈Jl

ωj

p∏
a=1

Lva(hk ◦ f−n)⟨dxj, fn∗ (dxk)⟩ηi ◦ f−n

can be treated putting together the proofs of (2.14), for p = 0, and (2.16). Hence,

it is bounded by Cλ−nmin{p,q}λ−n|ds−l|enhtop∥h∥p,q,l+C∥h∥p−1,q+1,l. Every other term

has the form∑
i

∫
fn(Wi)

∑
j,k∈Jl

ωj
∏
a∈A

Lva(hk ◦ f−n)⟨dxj,
∏

a∈Ac ̸=∅

Lva(f
n
∗ (dxk))⟩.

Since there are t < p derivatives acting on (hk ◦ f−n), (2.14), for p = 0, and (2.16)

imply that these terms are bounded by Cn∥h∥p−1,q+1,l and this concludes the proof

of (2.21). Finally, by the same inductive procedure used to prove (2.13) and (2.16),

one can prove (2.14) for p > 0 and (2.17). Moreover, by density, these inequalities

extend to Bp,q,l. Notice that in this case we cannot expect that coefficient in front

of the weak norm in (2.17) is uniformly bounded. On the contrary, we have just

proved that it cannot grow more that λ−n|ds−l|ehtop .

We are left with the proof of (2.15) and (2.18). We have already noticed in

(2.11) the duality, induced by the volume form ω0, between ds-forms and functions.

Accordingly, (2.15) and (2.18) hold true in Ωds(M) for f∗ if and only if the same

are satisfied by the transfer operator L acting on functions C∞(M) = Ω0(M). The

authors of [37, Lemma 2.2] proved Lasota-Yorke inequalities for L. By density, we

conclude that (2.15) and (2.18) extend to Bp,q,dim(M).

Q.E.D.

Remark 2.14. The inequalities (2.17) and (2.14), for l = ds, also implies the

following inequality that we are going to use later (see the proof of Lemma 3.9). In
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fact, for p > 0, q > 0, l = ds and ω ∈ Bp,q,ds , one can easily prove by induction that

∥fpn∗ ω∥p,q,ds ≤ Cepnhtopλ−n∥h∥p,q,ds + Cepnhtop∥h∥0,p+q,ds , (2.22)

where the p in fpn∗ represents the same parameter p of the norm. In effect, (2.17)

gives (2.22) for p = 1. Assume (2.22) true up to p− 1. Then, by using (2.14), (2.17)

and the property ∥ · ∥p−1,q+1,ds ≤ ∥ · ∥p,q,ds , we obtain

∥fpn∗ h∥p,q,ds ≤Cenhtopλ−n∥f (p−1)n
∗ h∥p,q,ds + Cenhtop∥f (p−1)n

∗ h∥p−1,q+1,ds ≤

≤Cepnhtopλ−n∥h∥p,q,ds + Ce2nhtopλ−n∥f (p−2)n
∗ h∥p−1,q+1,ds+

+ Cepnhtop∥h∥0,p+q,ds ≤

≤Cepnhtopλ−n∥h∥p,q,ds + Cepnhtop∥h∥0,p+q,ds ,

which proves (2.22).

Corollary 2.15. The spectral radius and the essential spectral radius of f∗ : Bp,q,l →
Bp,q,l fulfill

ρ(f∗|Bp,q,l) ≤

1 if l = 0 or l = d

λ−|ds−l|ehtop if 0 < l < d

ρess(f∗|Bp,q,l) ≤

λ−min{p,q} if l = 0 or l = d

λ−min{p,q}λ−|ds−l|ehtop if 0 < l < d

Proof. The estimates on spectral radii follow by (2.13), (2.14) and (2.15), using

Lemma A.9. The estimates on the essential spectral radii are consequence of Hen-

nion’s theorem 2.9 whose hypotheses are satisfied by Lemma 2.10 and Theorem 2.11.

Q.E.D.

Once we have established this spectral picture a natural question may arise: how

does the spectrum of f∗ acting on Bp,q,l, denoted by σ(f∗|Bp,q,l), depends on p and

q? The following lemma answers this question, at least for the spectrum we are

interested in.

Lemma 2.16. Let Bp,q,l and Bp′,q′,l be two anisotropic Banach spaces of currents for

some parameters p, q, p′, q′ ∈ N. Assume that ρess(f∗|Bp′,q′,l) ≤ ρess(f∗|Bp,q,l). Then

σ(f∗|Bp,q,l)∩{z ∈ C : |z| > ρess(f∗|Bp,q,l)} = σ(f∗|Bp′,q′,l)∩{z ∈ C : |z| > ρess(f∗|Bp,q,l)}.

Moreover, the corresponding generalized eigenspaces coincide and they are included

in Bp,q,l ∩ Bp′,q′,l.
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Proof. This is a consequence of Lemma A.15, where B0 = Ωl(M), B1 = Bp,q,l,
B2 = Bp′,q′,l and B = Bmin{p,p′},max{q,q′},l. Q.E.D.
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Chapter 3

The spectrum of the pushforward

operator

We now want to investigate the spectrum of the pushforward operator acting on

anisotropic Banach spaces Bp,q,l, 0 ≤ l ≤ dim(M). In particular, we are going to use

information about the spectrum of f∗ : Bp,q,ds → Bp,q,ds , where ds is the dimension

of the stable bundle, to prove our main theorem.

From now on, we always assume p and q large enough, so that there exists

ν ∈ (0, 1) such that

max
i=0,...,ds

max{λ−min{p±i,q∓i}−|ds−l|ehtop , λ−min{p±i,q∓i}} < ν < 1, (3.1)

for any i = 0, . . . , dim(M). Corollary 2.15 and (3.1) ensure that the essential spec-

tral radius f∗ acting on the Banach spaces we are interested in is bounded by ν.

Results of this chapter reflect the reasoning of [20, Sections 5.5.2 and 5.5.3] for the

2-dimensional case. Since the dimension of the stable bundle in their case was 1,

the authors of that paper were interested in the action of f∗ on Bp,q,1. The key point

of their idea was to relate some eigenvalues of f∗ : Bp,q,1 → Bp,q,1 to the action of

the dynamics on de Rham cohomology. This is why in this chapter we also recall

some basic notions of de Rham cohomology, we define the anisotropic de Rham co-

homology (Section 3.2) and we prove the connection between the standard and the

anisotropic de Rham cohomology (Section 3.3). Before approaching the cohomo-

logical aspects, we analyze the peripheral spectrum of f∗ : Bp,q,ds → Bp,q,ds and we

construct the measure of maximal entropy. This is the content of the following sec-

39
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tion. Most of the results of Section 3.1 are inspired by [38, Section 4, 5], where the

authors treat a generalization of Anosov diffeomorphisms as well as other invariant

measures. They also use different Banach spaces, which in some sense contain our

anisotropic Banach spaces. For all these reasons, we rewrite the proofs we need in

our simplified setting.

3.1 Peripheral spectrum and measure of maximal

entropy

By peripheral spectrum we mean the set of eigenvalues of f∗|Bp,q,ds of maximal

modulus. Corollary 2.15 only tells us that the spectral radius ρ(f∗|Bp,q,ds ) is bounded

by ehtop . On the other hand, the following lemma proves that this upper bound is

actually attained.

Lemma 3.1. The spectral radius of f∗|Bp,q,ds is exactly ehtop .

Before giving the proof of Lemma 3.1, we introduce the following ds-differential

form ωΣ ∈ Ωds(M), that we are going to use along this section. We need a ds-form

which gives positive volume to every admissible stable leaf W ∈ Σ, in the sense that∫
W
ωΣ > 0, for any W ∈ Σ. The first idea would be to consider the volume ωW

induced by ω0 on every admissible leaf W ∈ Σ, but this is only a ds-form on W and

not on M . On the other hand, on every chart (Ui, ψi), one can easily define a ds-

differential form ui which gives positive volume to every leaf with tangent space in

the Euclidean stable cone bundle ζs. Consequently, ψ∗
i ui ∈ Ωds(ψi(Ui)) gives positive

volume to every W ∈ ψi(Ui). Finally, by using the partition of unity {χi}mi=1, we

define ωΣ =
∑m

i=1 χiψ
∗
i (ui) ∈ Ωds(M).

Proof of Lemma 3.1. We have already used that

ehtop = lim sup
n→+∞

Å
sup
W∈Σ

|f−n(W )|
ã 1

n

,

where |f−n(W )| is the volume of f−n(W ) w.r.t. the measure induced by the Rieman-

nian volume ω0 on f−n(W ) (see Theorem D.7). Let ωΣ ∈ Ωds(M) the differential

form defined above which gives positive volume to every admissible stable leaf of

Σ. Then, given any W ∈ Σ, let {Wi}li=1 be the covering of f−n(W ), constructed in
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Lemma 2.1. By compactness of every Wj, there exists Cj such that∫
Wj

ωWj
≤ Cj

∫
Wj

ωΣ,

where ωWj
is the volume form induced by ω0 on Wj. As a consequence,

|f−n(W )| ≤
l∑

j=1

|Wj| ≤
l∑

j=1

Cj

∫
Wj

ωΣ ≤
l∑

j=1

Cj

∫
fn(Wj)

fn∗ ωΣ

≤ C

∫
W

fn∗ ωΣ ≤ C∥fn∗ ωΣ∥p,q,ds ≤ C∥fn∗ ∥Bp,q,ds→Bp,q,ds ,

hence

ehtop = lim sup
n→+∞

Å
sup
W∈Σ

|f−n(W )|
ã 1

n

≤ lim sup
n→+∞

∥fn∗ ∥
1
n

Bp,q,ds→Bp,q,ds = ρ(f∗|Bp,q,ds ),

where last equality follows by Lemma A.9. Corollary 2.15 gives ρ(f∗|Bp,q,ds ) ≤ ehtop ,

hence we conclude that ρ(f∗|Bp,q,ds ) = ehtop . Q.E.D.

As a consequence of Lemma 3.1 and the quasi-compactness of f∗, we can write

f∗ =
N∑
i=0

(zie
htop)Πi +R, (3.2)

where every zi is a complex number of modulus 1, the operator Πi is the finite

rank projection on the eigenspace corresponding to the eigenvalue zie
htop and R is

a quasicompact linear operator whose spectral radius is strictly smaller than ehtop .

Moreover, Πi ◦ Πj = δi,jΠi and Πi ◦ R = R ◦ Πi = 0. Notice that, as a consequence

of (2.14), the operator e−nhtopfn∗ is bounded for all n and there cannot be Jordan

blocks for eigenvalues of modulus ehtop .

Remark 3.2. Up to now, we have not considered orientability issues. We have just

assumed that M is an orientable manifold, but we have never made any assumption

about the orientation of the stable/unstable foliation. In effect, up to considering

a finite covering of M we can always assume that these two foliation are oriented.

Moreover, we can also suppose that f preserves the orientation of both foliations.

Otherwise, it would be enough to consider f 2 in place of f . Accordingly, from now

on, we assume to work with a diffeomorphism f preserving the orientation of the

oriented stable and unstable manifolds.
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The rest of this section is devoted to the proof of the following proposition.

Proposition 3.3. ehtop is the unique simple maximal eigenvalue of f∗ acting on

Bp,q,ds . Let ω̄ ∈ Bp,q,ds be a corresponding eigenvector and let t̄ ∈ (Bp,q,ds)′ be the

dual eigenvector such t̄(ω̄) = 1. The continuous linear operator ϕ 7→ t̄(ϕω̄), defined

on Cp+q-functions, extends to a bounded linear operator on C0-functions, i.e., it is

a measure. In particular, µBM(·) = t̄(· ω̄) is a positive measure and it is the unique

measure of maximal entropy.

Proof. Let us consider the ds-differential form ωΣ that gives positive volume to

every admissible leaf W ∈ Σ and that is defined before the proof of Lemma 3.1. We

set ω̄ = Π1ωΣ, where Π1 is the eigenprojector related to the eigenvalue ehtop of (3.2).

Accordingly, f∗ω̄ = ehtopω̄. Notice that, a priori, ω̄ could be null, because we do not

know yet that ehtop is an eigenvalue of f∗. On the other hand, we are going to prove

that ω̄ is actually nonzero.

Next lemma recalls [38, Lemma 4.9] adapting it to our setting.

Lemma 3.4. Let ω ∈ Bp,q,ds be an eigenvector for the eigenvalue zie
htop such that

|zi| = 1. Then ω gives a measure on every admissible leaf W ∈ Σ. Moreover, every

such ω is absolutely continuous with bounded density w.r.t. the measure defined by

ω̄.

Proof of Lemma 3.4. We firstly show that, given W ∈ Σ and ϕ ∈ Γq,ds0 (W ), it

holds ∣∣∣∣∫
W

⟨ϕ, ω⟩ωW
∣∣∣∣ ≤ C∥ϕ∥Γ0,ds

0
. (3.3)

In fact, since Ωds(M) is dense in Bp,q,ds , Πzi is continuous and ΠziΩ
ds(M) is closed,

we get ΠziΩ
ds(M) = ΠziBp,q,ds . Thus, there exists a smooth form ω̃ ∈ Ωds(M) such

that Πziω̃ = ω and, by (3.2),∫
W

⟨ϕ, ω⟩ωW = lim
n→+∞

1

n

n−1∑
k=0

(zie
htop)−k

∫
W

⟨ϕ, fk∗ ω̃⟩ωW . (3.4)

Therefore,∣∣∣∣∫
W

⟨ϕ, ω⟩ωW
∣∣∣∣ ≤ lim

n→+∞

1

n

n−1∑
k=0

e−khtop
∣∣∣∣∫
W

⟨ϕ, fk∗ ω̃⟩ωW
∣∣∣∣

≤ lim
n→+∞

1

n

n−1∑
k=0

e−khtop∥ϕ∥Γ0,ds
0

∥fk∗ ω̃∥0,0,ds ≤ C∥ϕ∥Γ0,ds
0

∥ω̃∥0,0,ds .
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where last inequalities follows by the smoothness of ω̃ and by (2.14).

We point out that, since ω ∈ Bp,q,ds , then above integral can always be estimated

by the Cq-norm of ϕ. The lemma we have just proved shows that for eigenvectors

corresponding to maximal eigenvalues, the bound is given by the C0 norm of ϕ.

Next, let us consider a function ψ ∈ C0
0(W ), then ψωW ∈ Γ0,ds

0 and we define∫
W

ψMW (ω) =

∫
W

⟨ψωW , ω⟩ωW .

As a consequence of (3.3), ∣∣∣∣∫
W

ψMW (ω)

∣∣∣∣ ≤ C∥ψ∥C0(W ),

hence ω defines a measure on any admissible leaf W ∈ Σ. When ω = ω̄ = Π1ωΣ,

the equality (3.4) implies that MW (ω̄) is a nonnegative measure. In addition, for

every ψ ∈ Cq
0(W ),∣∣∣∣∫

W

ψMW (ω)

∣∣∣∣ = ∣∣∣∣∫
W

⟨ψωW , ω⟩ωW
∣∣∣∣ =

∣∣∣∣∣
∫
W

⟨ψωW , lim
n→+∞

1

n

n−1∑
k=0

(zie
htop)−kfk∗ω⟩ωW

∣∣∣∣∣ ≤
≤
∫
W

∣∣∣∣∣⟨ψωW , lim
n→+∞

1

n

n−1∑
k=0

e−khtopfk∗ω⟩
∣∣∣∣∣ωW =

∫
W

|⟨ψωW ,Π1ω⟩|ωW ≤

≤C
∫
W

|⟨ψωW , ω̄⟩|ωW ≤ C

∫
W

|ψ|MW (ω̄)

and, since above inequality extends to continuous functions by density, the measure

MW (ω) is absolutely continuous w.r.t. MW (ω̄) with bounded density.

Q.E.D.

Let ω ∈ Ωds and let W,W ′ ∈ Σ be admissible leaves, whose intersection is again

a ds-dimensional submanifold. In addition, assume that the orientations of W and

W ′ agree on W ∩W ′. Then, for every function ψ ∈ Cq
0(W ), the operator MW (ω),

such that ∫
W

ψMW (ω) =

∫
W

⟨ψωW , ω⟩ωW ,

is a bounded operator on Cq
0(W ). Moreover, for ψ ∈ Cq

0(W ∩W ′)∫
W

ψMW (ω) =

∫
W

⟨ψωW , ω⟩ωW =

∫
W

⟨ψi∗Wω0, ω⟩i∗Wω0 =

=

∫
W ′

⟨ψi∗W ′ω0, ω⟩i∗W ′ω0 =

∫
W ′

⟨ψωW ′ , ω⟩ωW ′ =

∫
W ′
ψMW ′(ω),
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where iW , resp. iW ′ , are the embeddings of W, resp W ′, in M . Accordingly, every

ω ∈ Ωds defines an element of the dual of Cq
0(S), where S can be obtained by gluing

elements of Σ. By density, if ω ∈ Bp,q,l is an eigenvector such that Πziω = ω, then ω

induces a measure, denoted by M(ω), on every oriented stable manifold of M .

The following lemma takes up [38, Lemma 4.10] by adapting it to our context.

Lemma 3.5. The function ω 7→ M(ω), defined on the eigenspace ΠziBp,q,l corre-
sponding to the eigenvalue zie

htop , is injective. Additionally, ω̄ is nonzero.

Proof of Lemma 3.5. Assume that M(ω) = 0 for some ω ∈ ΠziBp,q,ds .We firstly

show that ∥ω∥0,q,ds = 0. Along the proof of Lemma 2.10, we proved that there exists

a constant C > 0 such that, for any ϵ > 0, there are a finite number of admissible

leaves W1, . . . ,Wk ∈ Σ, such that for every W ∈ Σ and for any ϕ ∈ Γq,ds0 , there is at

least one Wj such that∣∣∣∣∣
∫
W

⟨ϕ, ω⟩ωW −
∫
Wj

⟨ϕ̄1, ω⟩ωWj

∣∣∣∣∣ ≤ Cϵ∥ϕ∥Γq,ds
0
, (3.5)

where ϕ̄1 = Ψ∗
1ϕ (see the proof of Lemma 2.10). Since Wj is a compact oriented

ds-dimensional manifold endowed with a volume form ωWj
, there exists ψ̄1 ∈ Cq

0(Wj)

such that ϕ̄1 = ψ̄1ωWj
. Consequently, if Wj is contained in a stable manifold, then∫

Wj

⟨ϕ̄1, ω⟩ωWj
=

∫
Wj

ψ̄1M(ω) = 0

and above inequality becomes∣∣∣∣∫
W

⟨ϕ, ω⟩ωW
∣∣∣∣ ≤ Cϵ∥ϕ∥Γq,ds

0
.

More generally, there exist n0 ∈ N and a sequence {ϵn}n>n0 , going exponentially fast

to zero, such that, for each n > n0 and for any full admissible leaf W̃ ∈ Σ̃,

f−n(W ) ⊆ ∪li=1W
(n)
i ⊆ f−n(W̃ ),

as stated in Lemma 2.1. In addition, every W
(n)
i is ϵn-closed to some leaf contained

in a stable manifold in the sense of (3.5). Next, given W ∈ Σ and ϕ ∈ Γq,ds0 (W ),
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there exists ψ ∈ Cq
0(W ) such that ϕ = ψωW . We compute∣∣∣∣∫

W

⟨ϕ, ω⟩ωW
∣∣∣∣ = ∣∣∣∣e−nhtop ∫

W

⟨ϕ, fn∗ ω⟩ωW
∣∣∣∣ =

=

∣∣∣∣e−nhtop ∫
W

(−1)l(dim(M)−l)⟨⋆(fn)∗ ⋆ ϕ, ω⟩ ◦ f−n det(df−n)ωW

∣∣∣∣ ≤
≤e−nhtop

∑
i

∣∣∣∣∣
∫
W

(n)
i

(−1)l(dim(M)−l)⟨⋆(fn)∗ ⋆ ϕ, ω⟩ det(df−n) ◦ fnλsnωWi

∣∣∣∣∣ = (♢)

Notice that ⟨⋆(fn)∗⋆ϕ, ω⟩ = ψ◦fn⟨⋆(fn)∗⋆ωW , ω⟩, while (−1)l(dim(M)−l)⋆(fn)∗⋆ωW =

(λsn)
−1 det(dfn)ωW . In effect, by definition ωW ∧⋆ωW = ω0, resp. ωW (n)

i
∧ω

W
(n)
i

= ω0,

on W , resp. on W
(n)
i , hence

λsnωW (n)
i

∧ (fn)∗ ⋆ ωW = (fn)∗ωW ∧ (fn)∗ ⋆ ωW = det(dfn)ω0 = det(dfn)ω
W

(n)
i

∧ ⋆ω
W

(n)
i
,

that is ⟨ω
W

(n)
i
, (−1)l(dim(M)−l) ⋆ (fn)∗ ⋆ ωW ⟩ = ⟨ω

W
(n)
i
, (λsn)

−1 det(dfn)ω
W

(n)
i

⟩ and that

proves the second equality. Continuing the calculation

(♢) = e−nhtop
∑
i

∣∣∣∣∣
∫
W

(n)
i

ψ ◦ fn⟨ω
W

(n)
i
, ω⟩ω

W
(n)
i

∣∣∣∣∣ ≤ Cϵne
−nhtop#{W (n)

i }∥ψ ◦ fn∥Cq

Since |e−nhtop#{W (n)
i }| ≤ C and ϵn decays exponentially to zero, we obtain that

∥ω∥0,q,ds = 0. Let us proceed by induction on p in order to prove that ∥ω∥p,q,ds = 0.

Assume that the result is true up to p− 1. Then, using the Lasota-Yorke inequality

(2.17),

∥ω∥p,q,ds = e−nhtop∥fn∗ ω∥p,q,ds ≤ Cλ−nmin{p,q}∥ω∥p,q,ds −−−−→
n→+∞

0

We conclude that ω = 0, that is ω 7→ M(ω) is injective. Finally, assume by

contradiction that ω̄ = 0, then, by injectivity M(ω̄) = 0. Thus, for any other

eigenvector ω corresponding to an eigenvalue of modulus ehtop , it must hold that

M(ω) = 0, because M(ω) is absolutely continuous with respect to M(ω) by Lemma

3.4. We conclude that any such ω = 0, hence the spectral radius of f∗ acting on

Bp,q,ds is strictly smaller than ehtop and this contradicts Lemma 3.1.

Q.E.D.

The following step consists in proving that, assuming f topologically transitive,

ehtop is a simple eigenvalue and it is the unique maximal eigenvalue of f∗|Bp,q,ds .



46 3. The spectrum of the pushforward operator

Before proceeding with the proof, we need to recall some basic notions regarding

continuous leafwise measure and their properties. We avoid to rewrite the proofs of

results about this concept, but refer the reader to the survey [38, Section 9], where

they are proved in great generality.

Definition 3.6. Let X be a locally compact space. We assume that there exists an

atlas {U, ϕU} such that U ⊆ X is open and it is homeomorphic to Bd(0, 1) × KU ,

for some locally compact space KU , under the homeomorphism ϕU . In addition, we

assume that the changes of coordinates fulfill ϕU ◦ ϕ−1
V (x, y) = (a(x, y), b(y)), i.e.,

they map leaves to leaves. A continuous leafwise measure m is a family of Radon

measures, each one defined on a leaf, such that, for every continuous function ψ

supported on the chart (U, ϕU), the integral

Iψ(y) =

∫
ϕ−1
U (Bd(0,1)×{y})

ϕ dm

is a continuous function of y.

Suppose that there exists a family of metrics on X, each one defined on a leaf,

such that they also vary continuously with the leaf. Let T : X → X, be a continuous,

leaves preserving homeomorphism, which uniformly expands distances on every leaf

(i.e., there exists δ > 0 and C > 1, such that dW (Tx, Ty) ≥ CdW (x, y), whenever

x, y belong to the leaf W and dW (x, y) < δ). We can now recall the result we need

in order to prove the subsequent Lemma 3.8.

Proposition 3.7. [38, Proposition 9.1, Proposition 9.4]

Let m be a nonnegative continuous leafwise measure and let m′ be another complex

continuous leafwise measure. Assume that there exists C > 0 for which |m′| ≤ Cm

on every leaf. Moreover, suppose that T ∗m = m and T ∗m′ = γm′, with |γ| = 1.

Finally, assume that T is topologically mixing and that given any open set O of a

leaf, there exists x ∈ O with dense orbit. Then there is a c ∈ C such that m′ = cm,

hence γ = 1 or m′ = 0.

Lemma 3.8. Under the assumption that f is topologically transitive, ehtop is the

unique maximal eigenvalue of f∗|Bp,q,ds . In addition, ehtop is simple.

Proof of Lemma 3.8. We already know that ω̄ ̸= 0 and f∗ω̄ = ehtopω̄, hence

ehtop is an eigenvalue of f∗|Bp,q,ds . Let ω ∈ Bp,q,ds be any other eigenvector with
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corresponding eigenvalue γehtop , such that |γ| = 1. As a consequence of Lemma 3.4,

ω is a continuous leafwise measure on each stable manifold and |M(ω)| ≤ CM(ω̄).

We check that the other hypotheses of Proposition 3.7 hold true. Firstly, an Anosov

diffeomorphism is topologically transitive if and only if it is topologically mixing [17,

Theorem 5.10.3]. Next, setting T = f−1, then T is uniformly expanding on stable

leaves of f . Moreover, defining T ∗M(ω) = M(T ∗ω), we get T ∗M(ω̄) = ehtopM(ω̄)

and T ∗M(ω) = γehtopM(ω). It remains to prove that every open set O contained

in a stable manifold admits a point x ∈ O with dense orbit. Let x be a point

in O. By topological transitivity, there exists a y close to x, with dense orbit.

By classical results (see Theorem 1.10), the local stable manifold centered at x,

W s
ϵ (x), and the local unstable manifold centered at y, W u

ϵ (y), intersect in exactly

one point z = [x, y] = W s
ϵ (x) ∩W u

ϵ (y). Accordingly, z ∈ O and its orbit is dense.

By Proposition 3.7, we conclude that M(ω) = cM(ω̄), which in turn implies that

ω = cω̄ and γ = 1.

Q.E.D.

It remains to prove that the eigenvectors corresponding to the unique eigenvalue

ehtop defines a positive invariant measure and this is the measure of maximal entropy.

Let ω̄ ∈ Bp,q,ds be, as above, the eigenvector for which f∗ω̄ = ehtopω̄. Let t̄ ∈ (Bp,q,ds)′

the unique element of the dual space of Bp,q,ds such that1 f ′
∗t̄ = ehtop t̄ and t̄(ω̄) = 1.

Lemma 3.9. The linear operator µBM = t̄( · ω̄), actually defined on Cp+q(M)

functions, extends to a bounded linear operator on continuous functions, i.e., it is a

measure. In addition, for every ψ ∈ C0(M), µBM(ψ ◦ f) = µBM(ψ) and µBM is a

positive probability measure.

Proof of Lemma 3.9. As above, we adapt to our setting the proofs of [38,

Lemma 6.1, Lemma 6.2]. Notice that, for every ω ∈ Bp,q,l and for every function

ψ ∈ Cp+q(M), the product ψω ∈ Bp,q,l. Moreover, for every ω ∈ Bp,q,ds it holds

|t̄(ω)| ≤ C∥ω∥0,p+q,ds . (3.6)

In effect, using (2.22),

|t̄(ω)| =e−pnhtop|(f ′
∗)
pnt̄(ω)| = e−pnhtop|t̄(fpn∗ ω)| ≤ e−pnhtop∥fpn∗ ω∥p,q,ds ≤

≤Cλ−n∥ω∥p,q,ds + C∥ω∥0,p+q,ds
1We recall that the dual action of f∗ is the linear operator f ′

∗ : (Bp,q,ds)′ → (Bp,q,ds)′ such that,

for each t ∈ (Bp,q,ds)′ and for each ω ∈ Bp,q,ds , f ′
∗(t)(ω) = t(f∗ω).
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Taking the limit for n going to ∞ we get (3.6). Next, by (3.3), we obtain that

∥ψω̄∥0,p+q,ds ≤ C∥ψ∥C0 . Thus,

|t̄(ψω̄)| ≤ C∥ψ∥C0

and t̄( · ω̄) extends to a bounded operator on continuous functions. Furthermore,

µBM(ψ ◦ f) = t̄(ψ ◦ fω̄) = ehtop t̄(f ∗(ψω̄)) = ehtop(f ∗)′t̄(ψω̄) = t̄(ψω̄) = µBM(ψ),

which proves that µBM is f -invariant.

Let us prove that µBM is a positive measure. By the spectral decomposition

(3.2), we can write

lim
n→+∞

e−nhtopfn∗ ω = π1(ω)ω̄,

whenever ω ∈ Bp,q,ds , where π1 is a linear form on Bp,q,l. Moreover, since t̄(ω̄) = 1,

π1(ω) = π1(ω)t̄(ω̄) = t̄(π1(ω)ω̄) = t̄( lim
n→+∞

e−nhtopfn∗ ω) = lim
n→+∞

e−nhtop t̄(fn∗ ω) = t̄(ω)

Accordingly,

lim
n→+∞

e−nhtopfn∗ ω = t̄(ω)ω̄

Given ϕ, ψ ≥ 0 and a leaf W ∈ Σ, we get

0 ≤ lim
n→+∞

∫
W

⟨ϕωW , e−nhtopfn∗ (ψωΣ)⟩ωW = t̄(ψωΣ)

∫
W

ϕMW (ω̄) (3.7)

Lemma (3.4) shows thatM(ω) is a nonnegative and nonzero measure. Consequently,

we can choose W and ϕ > 0 so that last integral of (3.7) is strictly positive. This

shows that, for every ψ ≥ 0, t̄(ψωΣ) ≥ 0. Thus, for ψ ≥ 0, we get

µBM(ψ) =t̄(ψω̄) = lim
n→+∞

e−nhtop t̄(ψfn∗ ωΣ) = lim
n→+∞

e−nhtop t̄(fn∗ (ψ ◦ fnωΣ)) =

= lim
n→+∞

t̄(ϕ ◦ fnωΣ) ≥ 0,

which shows that µBM is a positive measure. Finally, since t̄(ω̄) = 1, we conclude

that µBM is a probability measure.

Q.E.D.

It remains to prove that µBM is the unique measure of maximal entropy. What

follows is proved in full generality in [38, Theorem 6.4], where the authors showed
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that the measure given by the maximal eigenvalue of their transfer operator max-

imizes the variational principle. Since we are studying the action of pushforward

operator, our case can be read by their paper considering a null potential. As

above, we give the proofs adapting them to our case. The following Lemma 3.10 is

a streamlined version of [38, Proposition 6.3].

Lemma 3.10. Given n ∈ N, x ∈M and ϵ > 0, we denote by

Bn(x, ϵ) = {y ∈M | d(f−i(y), f−i(x)) < ϵ, for i = 0, 1, . . . , n− 1}

the dynamical ball centered at x, of length n and radius ϵ. Then, there exist two

constants cϵ, Cϵ > 0 such that

cϵe
−nhtop ≤ µBM(Bn(x, ϵ)) ≤ µBM(Bn(x, ϵ)) ≤ Cϵe

−nhtop

Proof of Lemma 3.10. Let ϕ ∈ Cp+q be a compactly supported function such

that 0 ≤ ϕ ≤ 1, supp(ϕ) ⊆ Bn(x, ϵ) and ϕ|Bn(x,ϵ/2) = 1. We show that

cϵe
−nhtop ≤ µBM(ϕ) ≤ Cϵe

−nhtop ,

which implies the lemma. Let W ∈ Σ, ψ ∈ Γq0(W ), with ∥ψ∥Γq
0(W ) ≤ 1. Then,

writing ψ = ψ0ωW for some ψ ∈ Cq
0(W ), and proceeding as in the proof of Lemma

3.5, we get∫
W

⟨ψ, ϕω̄⟩ωW =e−nhtop
∫
W

ψ0ϕ⟨ωW , fn∗ ω̄⟩ωW = e−nhtop
∫
W

ψ0ϕ⟨ωW , ω̄⟩ ◦ f−n(λsn)
−1ωW =

=e−nhtop
∑
j

∫
Wj

ρjψ0 ◦ fnϕ ◦ fn⟨ωW , ω̄⟩ωWj

The number of Wj on which the integral is nonzero is uniformly bounded, because

ϕ is supported in Bn(x, ϵ). Accordingly,

|µBM(ϕ)| = |t̄(ϕω̄)| ≤ C∥ϕω̄∥0,q,ds ≤ C sup
W,ψ

∣∣∣∣∫
W

⟨ψ, ϕω̄⟩ωW |
∣∣∣∣ ≤ Cϵe

−nhtop

To estimate the other inequality, firstly notice that M(ω̄) gives strictly positive

measure to any open piece of stable leaf. If it were not the case, there would be

a ball B = Bds(x, δ), contained in a stable manifold, such that M(ω̄)(B) = 0. By

invariance, M(ω̄) also assigns zero measure to f−n(B). By reasoning as in the proof
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of Lemma 3.8, using the topological mixing property, f−n(B) will meet a point

z ∈ W s(x) with dense orbit. Finally, since M(ω̄) is a continuous leafwise measure

and since the orbit of z is dense, we conclude that M(ω̄) = 0, which contradicts

Lemma 3.5.

Next we prove that, if W is a piece of stable manifold and W contains a point y

with d(x, y) < ϵ/10 and d(y, δW ) ≥ ϵ, then∫
W

ϕM(ω) ≥ cϵe
−nhtop .

In fact, f−n(W ) contains a ds-dimensional ball B of radius ϵ/10, which is contained

in f−n(Bn(x, ϵ/2)). Consequently,∫
W

ϕM(ω̄) =

∫
W

ϕe−nhtopM(fn∗ ω̄) =

=

∫
f−n(W )

ϕ ◦ fne−nhtopM(ω̄) ≥ e−nhtop
∫
B
M(ω̄) ≥ cϵe

htop ,

where, in the last inequality, we used that M(ω̄) assigns positive measure to B.
Notice that, by compactness, the constant cϵ does not depend on the leaf W .

Topological mixing also implies the following fact: for every δ > 0 there exists

M , depending on ϵ and δ, such that, for each m ≥M, there is a constant C, which

depends on ϵ, δ and m, such that, for every connected W contained in a stable

manifold, with diam(W ) ≥ 2δ, it holds∫
f−m(W )

ϕM(ω̄) ≥ Ce−nhtop . (3.8)

Finally, we prove that, for a full admissible stable leaf W̃ , contained in a stable

manifold, there exists C, depending on ϵ and W̃ , such that, if p is large enough,

e−phtop
∫
W̃

fp∗ (ϕM(ω)) ≥ Ce−nhtop (3.9)

Let L be a positive integer such that M ≤ L ≤ p. Let {Wj} be the subdivision of

f−p(W ) as described by Lemma 2.1. Then∫
W̃

fp∗ (ϕM(ω̄)) =

∫
f−p+L(W̃ )

fp∗ (ϕM(ω̄)) ≥ C
∑
j

∫
Bj

fL∗ (ϕM(ω̄)) = C
∑
j

∫
f−L(Bj)

ϕM(ω̄)),

where Bj is a ds-dimensional ball of radius 2δ contained in fL(Wj). To every integral

on f−L(Bj) we can apply (3.8) and, since the sum growth as ephtop , we obtain that∫
W̃

fp∗ (ϕM(ω̄)) ≥ Cephtope−nhtop ,
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which implies (3.9). Since

lim
p→+∞

e−phtopfp∗ (ϕω̄) = t̄(ϕω̄),

considering a W which satisfies (3.9), we conclude that

µBM(ϕ) ≥ t̄(ϕω̄) ≥ lim
p→+∞

e−phtop
∫
W̃

fp∗ (ϕM(ω̄)) ≥ cϵe
−nhtop .

Q.E.D.

Next result is the last ingredient for the proof of Proposition 3.3.

Lemma 3.11. The measure µBM is the unique measure of maximal entropy, i.e., it

is the Bowen-Margulis measure of the system.

Proof of 3.11. Recall that, for every invariant measure µ for f , the metric

entropy hµ(f) measure the average information given by the knowledge of the present

state, assuming to know arbitrarily long past. The Variational Principle (Theorem

D.6) states that

sup{hµ(f)| µ is a f -invariant measure} = htop.

For a basic overview of these topics we refer to [47, Sections 4.3-4.5]. Next, notice

that the spectral decomposition (3.2) implies that µBM is mixing, hence ergodic.

Thus, by the local entropy theorem [16], since µBM is a f -invariant, ergodic, prob-

ability measure, we obtain

lim
ϵ→+∞

lim sup
n→+∞

− 1

n
log(µBM(Bn(x, ϵ)))= lim

ϵ→+∞
lim inf
n→+∞

− 1

n
log(µBM(Bn(x, ϵ)))=hµBM

(f)

By Lemma 3.10 we conclude that htop = hµ(BM)(f), hence µBM is a measure of

maximal entropy. The proof that this µBM is the unique measure of maximal entropy

easily follows repeating the proof of [47, Theorem 20.3.7]

Q.E.D.

This concludes the proof of Proposition (3.3).

Q.E.D.



52 3. The spectrum of the pushforward operator

3.2 Anisotropic de Rham cohomology and spec-

trum

We recall that the space of C∞ (complex) differential forms Ωl(M) with the

exterior derivative d : Ωl(M) → Ωl+1(M) is a cochain complex, i.e., d ◦ d = 0.

ω ∈ Ωl(M) is closed if dω = 0, while ω is exact if there exists u ∈ Ωl−1(M) such

that du = ω. Since d ◦ d = 0, exact forms are a vector subspace of closed forms.

Accordingly, it makes sense to define the de Rham cohomology group with complex

coefficients H l
dR(M,C) = H l

dR(M) as the quotient of closed l-forms w.r.t. exact l-

forms. The pushforward f∗ of a C∞-diffeomorphism f on M preserves closed and

exact forms, hence it induces a linear map from the cohomology group H l
dR(M) to

itself defined by f#[ω] = [f∗ω].

Next lemma give us the possibility to extend these ideas to our anisotropic Ba-

nach spaces.

Lemma 3.12. The exterior derivative extends to a continuous operator, denoted by

the same letter, d : Bp,q,l → Bp−1,q+1,l+1. It holds true again that d ◦ d = 0.

Proof. Consider h ∈ Ωl(M), W ∈ Σ, ϕ ∈ Γp+q−1,l+1
0 and v1, . . . , vp−1 ∈ Vp+q−1(U(W )).

If W ⊆ ψi(Ui), then we can write, using coordinates, h = h ◦ χi =
∑

j∈Jl
hjdxj on

ψi(B(0, 3ρ)). Accordingly,∣∣∣∣∫
W

⟨ϕ, Lv1 . . . Lvp−1dh⟩ωW
∣∣∣∣ =

∣∣∣∣∣∣
∫
W

⟨ϕ, Lv1 . . . Lvp−1d

Ñ∑
j∈Jl

hjdxj

é
⟩ωW

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣∑
j∈Jl

dim(M)∑
s=1

∫
W

⟨ϕ, Lv1 . . . Lvp−1 ∂xs hjdxj ∧ dxs⟩ωW

∣∣∣∣∣∣ ≤ C∥ϕ∥Γp+q−1,l+1
0

∥h∥p,q,l.

We conclude that d extends to a bounded operator d : Bp,q,l → Bp−1,q+1,l+1. Let us

prove d ◦ d = 0. Recall that, given two differential forms h, g ∈ Ωl(M), h behaves as

a current in the following way:

i(h)(g) = (h, g) =

∫
M

⟨h, g⟩ω0 =

∫
M

h ∧ ⋆g.

Consequently, given h ∈ Bp,q,l and a sequence hn ∈ Ωl(M) converging to h in the

∥ · ∥p,q,l-norm, then dhn converges to dh in Bp−1,q+1,l+1 and, for each g ∈ Ωl+1(M),

i(dh)(g) = lim
n→+∞

i(dhn)(g) = lim
n→+∞

i(hn)(δg) = i(h)(δg),
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where δ, defined in Definition B.3, is the dual operator of d (Lemma B.4). Accord-

ingly, since δ ◦ δ = 0, we conclude that, for h ∈ Bp,q,l, i(d ◦ dh)(g) = i(h)(δ ◦ δg) = 0,

for any g ∈ Ωl+2(M), hence d ◦ d = 0.

Q.E.D.

We say, by analogy, that a current ω ∈ Bp,q,l is closed if dω = 0, while it is exact

if there exists u ∈ Bp+1,q−1,l−1 such that du = ω. As a consequence of Lemma 3.12,

we define the anisotropic De Rham cohomology ‹Hp,q,l
dR (M) as the quotient of closed

currents w.r.t. exact currents of Bp,q,l. Since f∗ : Bp,q,l → Bp,q,l and d : Bp+1,q−1,l−1 →
Bp,q,l are both continuous linear operators, f∗ sends closed currents in closed currents

and exact currents in exact currents. Consequently, it induces a linear map on‹Hp,q,l
dR (M) such that f#[ω] = [f∗ω].

Next proposition relates the spectrum of f∗ acting on anisotropic Banach spaces

and the spectrum f# on anisotropic de Rham cohomology. We just consider the

spectrum of f∗ contained in the set {z ∈ C | |z| > ν}, where ν is the bound defined

in (3.1). Accordingly, we only consider discrete spectrum.

Proposition 3.13.

σ(f∗|Bp,q,l)∩{|z| > ν} ⊆
î
σ(f∗|Bp+1,q−1,l−1) ∪ σ(f#|‹Hp,q,l

dR
) ∪ σ(f∗|Bp−1,q+1,l+1)

ó
∩{|z| > ν},

Proof. Let ω ∈ Bp,q,l be an eigenvector of the pushforward operator f∗ corre-

sponding to the eigenvalue µ, with |µ| > ν, that is f∗ω = µω. If ω is not closed,

then f∗dω = df∗ω = µdω, i.e., dω ̸= 0 is an eigenvector for f∗ in Bp−1,q+1,l+1. This

proves that µ ∈ σ(f∗|Bp−1,q+1,l+1). On the other hand, if ω is closed, i.e., dω = 0 we

need to distinguish two cases. If ω is not exact, then it defines a nontrivial coho-

mology class [ω] ∈ ‹Hp,q,l
dR and, by definition, f#[ω] = [f∗ω] = [µω] = µ[ω], hence

µ ∈ σ(f#|‹Hl
dR
). Finally, if ω is exact, then there exists q ∈ Bp+1,q−1,l−1 such that

ω = dq. It follows that f∗dq = df∗q = µdq. This is not enough to conclude that

µ ∈ σ(f∗|Bp+1,q−1,l−1), because it only gives that d(f∗q− µq) = 0, hence f∗q = µq + v

with v ∈ Bp+1,q−1,l−1 closed. On the other hand, if the operator f∗ −µid was invert-

ible on closed (l − 1)-currents of Bp+1,q−1,l−1, then u = (f∗ − µid)−1v and u would

be closed. But du = ω ̸= 0, hence we obtain that f∗ − µid cannot invertible on

closed currents of Bp+1,q−1,l−1. Accordingly, µ must be an eigenvalue with a closed

eigenvector in Bp+1,q−1,l−1, because the spectrum of f∗|Bp+1,q−1,l−1 in {z ∈ C| |z| > ν}
is discrete.
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Q.E.D.

We can also prove that the spectrum of the action on anisotropic cohomology

out of the ball of radius ν is included into the spectrum of f∗.

Proposition 3.14.

σ(f#|‹Hp,q,l
dR

) ∩ {|z| > ν} ⊆ σ(f∗|Bp,q,l) ∩ {|z| > ν}

Proof. If [ω] ∈ ‹Hp,q,l
dR is an eigenvector of f# of modulus greater than ν, then

f#[ω] = µ[ω] and [ω] ̸= 0. If f∗ω = µω, then µ ∈ σ(f∗|Bp,q,l). On the other hand,

there exists u ∈ Bp+1,q−1,l−1 such that

f∗ω = µω + du.

We can proceed as above looking for a current ω′ = ω + du′, with u′ ∈ Bp+1,q−1,l−1,

so that [ω] = [ω′], and with f∗ω
′ = µω′. Last equality means

µω + µdu′ = µω′ = f∗ω
′ = f∗ω + f∗du

′ = µω + du+ f∗du
′,

hence (f∗−µid)du′ = −du. If (f∗−µid) is invertible on exact currents of Bp,q,l, then
the desired u′ = (f∗ − µid)−1u and µ ∈ σ(f∗|Bp,q,l). Conversely, if (f∗ − µid) is not

invertible, on exact currents of Bp,q,l, since the spectrum is discrete in {|z| > ν},
there exists dū ∈ Bp,q,l such that f∗dū = µdū. Q.E.D.

In the particular case l = ds we can identify the spectrum of f∗ with the spectrum

of the action on anisotropic cohomology out of the ball of radius λ−1ehtop .

Corollary 3.15.

σ(f∗|Bp,q,ds ) ∩ {z ∈ C : |z| > λ−1ehtop} = σ(f#|‹Hp,q,ds
dR

) ∩ {z ∈ C : |z| > λ−1ehtop}

Proof. It follows by Proposition 3.13, Proposition 3.14 and Corollary 2.15, because

the spectral radius of f∗ on Bp+1,q−1,l−1 and on Bp−1,q+1,l+1 is bounded by λ−1ehtop .

Q.E.D.
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3.3 Connection with the standard de Rham coho-

mology

In view of Corollary 3.15, it makes sense to study the spectrum of f# on the

anisotropic de Rham cohomology group ‹Hp,q,ds
dR (M). The first attempt to solve this

problem could be trying to show that anisotropic de Rham cohomology is actually

isomorphic to the standard de Rham cohomology recalled at the beginning of Section

3.2. In fact, it is well-known by classical results of G. de Rham [23] that the de Rham

cohomology for currents is isomorphic to the de Rham cohomology for differential

forms. On the other hand we are working with a linear subspace Bp,q,l of the dual

space of Cp+q differential forms (Ωl
p+q(M))⋆(see Lemma 2.8) , which is in turn a

subspace of the space of currents (Ωl(M))⋆, i.e., the dual of C∞ differential forms.

Therefore, we have fewer closed currents and fewer exact currents than the full

space of currents and, a priori, there is no relation between our cohomology and the

standard cohomology.

The authors of [20, Section 5.7] showed that this isomorphism exists when ds = 1

and it is enough to prove our main result for Anosov diffeomorphisms of the 2-torus.

Their strategy also works for our Anosov diffeomorphisms on higher dimensional

manifolds whenever ds = 1, but unfortunately, the extension to other cases requires

a bit of work. A motivation for which their proof fails is given in Remark 3.24.

In order to overcome this obstacle, we firstly need to introduce an intermediate

version of our anisotropic Banach spaces.

Definition 3.16. Let ω ∈ Ωl(M) be a C∞ differential form and let p, q ∈ N. We

define the following norm

|ω|p,q,l = ∥ω∥p,q,l + ∥dω∥p,q,l+1,

where ∥ · ∥p,q,l is the norm of Definition 2.5. Let us denote by Cp,q,l = Ωl(M)
|·|p,q,l

the closure of the space of l-forms w.r.t. this norm.

The following proposition collects all the properties we need about this new

anisotropic Banach spaces.

Proposition 3.17. The following properties hold
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a) Bp+j,q−j,l ⊆ Cp,q,l ⊆ Bp,q,l for any p, q ∈ N and for each j = 1, . . . , q;

b) ω ∈ Cp,q,l if and only if ω ∈ Bp,q,l and dω ∈ Bp,q,l+1;

c) The exterior derivative extends to a bounded linear operator d : Cp,q,l → Cp,q,l+1

and d ◦ d = 0.

d) f∗ extends to a bounded linear operator f∗ : Cp,q,l → Cp,q,l. The spectral radius

ρ(f∗|Cp,q,l) ≤ λ−|ds−l|ehtop , while, for p and q large enough, the essential spectral

radius ρess(f∗|Cp,q,l) ≤ ν, where ν is the same as in (3.1).

Proof. By definition ∥ω∥p,q,l ≤ ∥ω∥p,q,l + ∥dω∥p,q,l+1 = |ω|p,q,l, hence Cp,q,l ⊆ Bp,q,l.
Next, |ω|p,q,l = ∥ω∥p,q,l + ∥dω∥p,q,l+1 ≤ ∥ω∥p,q,l + ∥d∥∥ω∥p+1,q−1,l ≤ C∥ω∥p+1,q−1,l,

where the first inequality follows by the continuity of d : Bp+1,q−1,l → Bp,q,l+1 (see

Lemma 3.12), while the second one is a consequence of the inclusion Bp+1,q−1,l ⊆ Bp,q,l

(see Remark 2.6). Accordingly, Bp+1,q−1,l ⊆ Cp,q,l ⊆ Bp,q,l and, using again Remark

2.6, we get a). b) is a trivial consequence of Definition 3.16. To prove c) notice that

|dω|p,q,l+1 = ∥dω∥p,q,l+1 ≤ ∥ω∥p,q,l + ∥dω∥p,q,l+1 = |ω|p,q,l, hence d : Cp,q,l → Cp,q,l+1 is

bounded. d ◦ d = 0 easily follows by the inclusions a) and by Lemma 3.12. Finally,

let us prove d). The statement about the spectral radius is a consequence of the

inclusion Cp,q,l ⊆ Bp,q,l and Corollary 2.15. Moreover, by using the Lasota-Yorke

inequality (2.17), we obtain

|fn∗ ω|p,q,l = ∥fn∗ ω∥p,q,l + ∥fn∗ dω∥p,q,l+1 ≤

≤Cλ−n(|ds−l|+min{p,q})enhtop∥ω∥p,q,l + Cλ−n|ds−l|enhtop∥ω∥p−1,q+1,l+

+ Cλ−n(|ds−l−1|+min{p,q})enhtop∥dω∥p,q,l+1 + Cλ−n|ds−l−1|enhtop∥dω∥p−1,q+1,l+1 ≤

≤Cmax{λ−n|ds−l|, λ−n|ds−l−1|}λ−nmin{p,q}enhtop|ω|p,q,l+

+ Cmax{λ−n|ds−l|, λ−n|ds−l−1|}enhtop |ω|p−1,q+1,l

Hence, using again Hennion’s Theorem, we conclude that the essential spectral ra-

dius is bounded by max{λ−|ds−l|, λ−|ds−l−1|}λ−min{p,q}ehtop , which is smaller than ν

for p and q large enough.

Q.E.D.

Property c) of Proposition 3.17 gives the following cochain complex

0
d−→ Cp,q,0 d−→ Cp,q,1 d−→ Cp,q,2 → . . .

d−→ Cp,q,dim(M)−1 d−→ Cp,q,dim(M) d−→ 0,
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hence we can define H̄p,q,l
dR (M) as the quotient of closed currents w.r.t. exact currents

of Cp,q,l. Collecting information about the spectrum of f∗ acting on different versions

of anisotropic Banach space we obtain the following result.

Corollary 3.18. Let p, q ∈ N be large enough. Then

1. σ(f∗|Cp,q,l) ∩ {|z| > ν} = σ(f∗|Bp±i,q∓i,l) ∩ {|z| > ν} for any i = 0, . . . , dim(M);

2. σ(f∗|Cp,q,l)∩{|z| > ν} ⊆
î
σ(f∗|Cp,q,l−1) ∪ σ(f#|H̄p,q,l

dR
) ∪ σ(f∗|Cp,q,l+1)

ó
∩{|z| > ν};

3. σ(f#|H̄p,q,l
dR

) ∩ {|z| > ν} ⊆ σ(f∗|Cp,q,l) ∩ {|z| > ν};

4. σ(f∗|Cp,q,ds )∩ {z ∈ C | |z| > λ−1ehtop} = σ(f#|H̄p,q,ds
dR

)∩ {z ∈ C | |z| > λ−1ehtop}

Proof. Equality 1. is a consequence of Lemma A.15 with B0 = Ωl(M), B1 = Cp,q,l,
B2 = Bp±i,q∓i,l and B = Bmax{p,p±i},min{q,q∓i},l. 2., resp. 3. can be proved by repeating

the proof of Proposition 3.13, resp. Proposition 3.14, with Bp,q,l replaced by Cp,q,l

and ‹Hp,q,ds
dR replaced by H̄p,q,ds

dR . Finally, 2., 3. and d) of Proposition 3.17 imply 4.

Q.E.D.

Remark 3.19. Notice that one may directly study the action of f∗ on Cp,q,l, without
considering the original anisotropic Banach spaces Bp,q,l. There are several reasons

that have led us to our choice. In fact, proofs of Lasota-Yorke inequalities (Lemma

2.13) and compact inclusion(Lemma 2.10), as well as the inclusion into currents

(Lemma 2.8) turn out to be simpler from a technical point of view. Secondly, these

spaces have been largely investigated in recent years [37, 38, 36] and we have picked

up some ideas from the literature. Lastly, we found the issue when we started

treating anisotropic cohomology for ds > 1 and we discovered that without our trick

the proof of the isomorphism Theorem 3.21 does not work with ‹Hp,q,l
dR , that is the

cohomology obtained with Bp,q,l (see Remark 3.24 below).

We are now ready to prove the isomorphism between the anisotropic de Rham

cohomology H̄p,q,l
dR and the standard de Rham cohomology. It is well known, in the

fields of algebraic topology and differential geometry, that the standard (complex)

de Rham cohomology is isomorphic to the (complex) Čech cohomology. In effect,

denoting with H∗
Č
(M,C) = H∗

Č
(M) the Čech cohomology with complex coefficients,

it holds
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Theorem 3.20 (De Rham isomorphism theorem). There exists a natural isomor-

phism between the standard de Rham cohomology and the Čech cohomology

H∗
dR(M) ∼= H∗

Č
(M)

There are several different proofs of above result. The most elegant one, due to

André Weil [72] (see also [57], [12]), inspires our proof of the following isomorphism

theorem. In fact, the careful reader may also be able to reconstruct the proof of

Theorem 3.20 from the one of Theorem 3.21.

Theorem 3.21. Let p, q ∈ N be large enough. There exists a natural isomorphism

between the anisotropic de Rham cohomology and the Čech cohomology

H̄p,q,∗
dR (M) ∼= H∗

Č
(M).

By Theorem (3.20), we obtain

H̄p,q,∗
dR (M) ∼= H∗

dR(M).

Before giving the proof of Theorem (3.21), we recall the basic facts about Čech

cohomology (for a complete treatment of the topic see [40, 57]).

Let U = {Ua}a∈A be a contractible open covering of the manifold M, i.e., we

suppose that every finite nonempty intersection

Ua1 ∩ Ua2 ∩ · · · ∩ Uan ̸= ∅

is contractible (homotopic to a point). We denote by (a0, . . . , ak) := Ua0 ∩ · · · ∩Uak .
Let Čk(M,U) be the complex vector space generated by elements (a0, . . . , ak) ̸= ∅;

the elements in Čk(M,U) are called (Čech) k-chains. A (Čech) k−cochain c is an

element of the dual of Čk(M,U) such that, for every permutation σ of the indexes

{0, . . . , k},
c(a0, . . . , ak) = sgn(σ)c(aσ(0), . . . , aσ(k)).

Let Čk(M,U) be the complex vector space of all k−cochains. We define the cobound-

ary operator

δ : Čk(M,U) → Čk+1(M,U)

such that

(δc)(a0, . . . , ak+1) =
k+1∑
j=0

(−1)jc(a0, . . . , aj−1, aj+1, . . . , ak+1).
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A straightforward computation (see Lemma 3.22) shows that δ2 = δ ◦ δ = 0, hence

the couple (Č∗(M,U), δ) is a cochain complex. Recall that a k-cochain c ∈ Čk(M,U)
is a k-cocycle if δ(c) = 0, and it is a k-coboundary if there exists c′ ∈ Čk−1(M,U)
such that δ(c′) = c. As always, every k-coboundary is a k-cocycle, because of δ2 = 0.

Therefore, we define the Čech k-cohomology group Hk
Č
(M,U) as the quotient of

k-cocycles with respect to k-coboundaries. A priori, this new cohomology depends

on the covering U of the manifoldM. It will be clear from the proof of Theorem 3.21

that it is actually independent of that choice and it make sense to write HČ(M) in

place of HČ(M,U).
Without loss of generality we can assume that the sets {Vi = ψi(Ui)}mi=1 is a

contractible covering of the manifold M. Let ϕi be a smooth partition of unity

subordinated to the covering {Vi}mi=1. We can also suppose that {int(supp(ϕk))}mk=1,

where int(supp(ϕk)) is the interior of the support of ϕk, is a contractible open

covering. If ω is a differential form on M , then the restriction to Vi is well-defined.

On the other hand, in our case ω is a current and the restriction of ω to the subset

Vi can be defined as ωϕi. A straightforward computation shows that ωϕi ∈ Cp,q,l.
We are now ready to present the proof of Theorem 3.21.

Proof of of Theorem 3.21. Let us introduce the following notations. Cp,q,l(M)

denotes the above anisotropic Banach space Cp,q,l. Let Cp,q,l,k(U) be the vector space
of linear functions

ω : Čk(M,U) → Cp,q,l,

such that, for every permutation σ of the set {0, . . . , k},

ω(aσ(0), . . . , aσ(k)) = sgn(σ)ω(a0, . . . , ak). (3.10)

We extend the operators δ and d defining:

δ̄ : Cp,q,l,k(U) → Cp,q,l,k+1(U)

ω 7→ δ̄ω : Čk+1(M,U) −→ Cp,q,l

(δ̄ω)(a0, a1 . . . , ak+1) =
k+1∑
j=0

(−1)jω(a0, . . . , aj−1, aj+1, . . . , ak+1)

d̄ : Cp,q,l,k(U) → Cp,q,l+1,k(U)

ω 7→ d̄ω : Čk(M,U) −→ Cp,q,l+1

(d̄ω)(a0, . . . , ak) = d(ω(a0, . . . , ak))
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Moreover, we define

i : Cp,q,l →Cp,q,l,0

ω 7→i(ω) : Č0(M,U) → Cp,q,l

i(ω)(a0) = ω

j : Čk(M,U) →Cp,q,0,k

c 7→j(c) : Čk(M,U) → Cp,q,0

j(c)(a0, . . . , ak) = c(a0, . . . , ak)

Lemma 3.22. The following equalities hold true.

δ ◦ δ = δ̄ ◦ δ̄ = d ◦ d = d̄ ◦ d̄ = δ̄ ◦ i = d̄ ◦ j = 0,

d̄ ◦ δ̄ = δ̄ ◦ d̄, j ◦ δ = δ̄ ◦ j, i ◦ d = d̄ ◦ i.

Proof of Lemma 3.22. For every (a0, . . . , ak+2) ∈ Čk+2(M,U)

δ̄2ω(a0, . . . , ak+2) =
k+2∑
t=0

(−1)tδ̄ω(a0, . . . , at−1, at+1, . . . , ak+2) =

=
k+2∑
t=0

(−1)t
t−1∑
s=0

(−1)sω(a0, . . . , as−1, as+1, . . . , at−1, at+1, . . . , ak+2)+

+
k+2∑
t=0

(−1)t
k+2∑
s=t+1

(−1)s−1ω(a0, . . . , at−1, at+1, . . . , as−1, as+1, . . . , ak+2) = 0,

because each term of the first sum appears in the second one with opposite sign.

The same computation, with ω ∈ Bp,q,l,k replaced by c ∈ Čk(M,U), gives δ ◦ δ = 0.

The equality d ◦ d = 0 is a trivial consequence of Lemma 3.12 and, by definition,

(d
2
ω)(a0, . . . , ak) = d2(ω(a0, . . . , ak)) = 0. Next, (δ̄ ◦ i(ω))(a0, a1) = i(ω)(a1) −

i(ω)(a0) = ω − ω = 0. Moreover, d̄ ◦ j(c)(a0, . . . , ak) = d(c(a0, . . . , ak)) = 0, because

c(a0, . . . , ak) is a constant smooth function on M . This proves the first line of

equalities. Let us show commutation properties.

(d̄ ◦ δ̄ω)(a0, . . . , ak+1) = d(δω(a0, . . . , ak+1)) =

=
k+1∑
t=0

(−1)td(ω(a0, . . . , at−1, at+1, . . . , ak+1)) = δ̄ ◦ d̄ω(a0, . . . , ak+1).
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Similarly,

(j ◦ δ(c))(a0, . . . , ak+1) = δ(c)(a0, . . . , ak+1) =
k+1∑
t=0

(−1)tc(a0, . . . , at−1, at+1, . . . , ak+1) =

=
k+1∑
t=0

(−1)tj(c)(a0, . . . , at−1, at+1, . . . , ak+1) = δ̄ ◦ j(c)(a0, . . . , ak+1).

Finally,

(d̄ ◦ i)(ω)(a0) = d(i(ω)(a0)) = dω = (i ◦ d)(ω).

This concludes the proof of Lemma 3.23.

Q.E.D.

As a consequence of Lemma 3.22, we obtain the following commutative diagram.

In particular, we underline that the first column contains the anisotropic de Rham

cohomology complex (Cp,q,∗(M), d), while the bottom row represents the Čech coho-

mology complex (Č∗(M,U), δ).

...
...

...
...

Cp,q,l(M) Cp,q,l,0(U) Cp,q,l,1(U) · · · Cp,q,l,k(U) · · ·

...
...

...
...

Cp,q,1(M) Cp,q,1,0(U) Cp,q,1,1(U) · · · Cp,q,1,k(U) · · ·

Cp,q,0(M) Cp,q,0,0(U) Cp,q,0,1(U) · · · Cp,q,0,k(U) · · ·

Č0(M,U) Č1(M,U) · · · Čk(M,U) · · ·

i

d

δ̄

d̄

δ̄

d

δ̄

d̄

δ̄

d d̄ d̄ d̄

i

d

δ̄

d̄

δ̄

d̄

δ̄

d̄

δ̄

d

i

d̄

δ̄

d̄

δ̄ δ̄

d̄

δ̄

j

δ

j

δ δ

j

δ

The key idea of our proof is a zigzag argument which links closed non-exact

elements of the first column to a closed non-exact elements of the bottom row, and

vice versa. The next Lemma 3.23 is the tool we exploit to go through vertical

arrows. In fact, we recall that, by classical results of differential geometry, every
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closed differential form is locally exact. This is an informal way of writing Poincaré’s

lemma. The following statement generalizes Poincaré’s lemma to the context of our

anisotropic Banach spaces. In particular, this is analogous to [20, Lemma 5.15]

where the authors proved that every closed 1-currents is, in a way, locally exact.

Lemma 3.23. Let h ∈ Cp,q,0 be a closed 0-current. Then, for any k = 1, . . . ,m,

there exists ck ∈ C, such that ϕk · (h − ck) = 0. Let ω ∈ Cp,q,l(M) be an l-current,

for l > 0.If (dω)ϕk = 0, then there exists uk ∈ Cp,q,l−1(M) such that

d(ukϕk) = ωϕk + (−1)l−1uk ∧ dϕk.

Remark 3.24. Lemma 3.23 represents the main difference between this thesis and

[20, Section 5] and it justifies the introduction of the spaces Cp,q,l. In effect, they

only considered closed elements of Bp,q,1 and such currents are locally exact with

potential in Bp+1,q−1,0. In general, if ω ∈ Bp,q,l is a closed current for l > 1, then

this is locally exact, but we cannot expect that the potential is more regular than

ω. Notice that the same issue holds for differential forms. In fact, if ω is a closed

Cr 1-form on a star-shaped domain U , then ω = du where u ∈ Cr+1(U). On the

other hand, if ω is a closed Cr l-form on U for some l > 1, then ω = du for some

(l−1)-form u of class Cr and coefficients of u are Cr+1 exclusively in some directions.

We postpone the proof of Lemma 3.23 to Appendix C and we describe its ap-

plication to our problem. We use the above diagram and Lemma 3.23 to define an

isomorphism

Φ: H̄p,q,l
dR (M) → HČ(M,U).

Let [ω] ∈ H̄p,q,l
dR (M) be an element of the anisotropic de Rham cohomology, where ω ∈

Cp,q,l is closed. By definition, i(ω) ∈ Cp,q,l,0(U), (d̄◦i(ω)) = dω = 0 and (δ̄◦i(ω)) = 0,

by Lemma 3.22. Therefore, by Lemma 3.23, for any a0 = 1, . . . ,m, there exists

u
(l−1)
a0 ∈ Cp,q,l−1 such that d(u

(l−1)
a0 ϕa0) = ωϕa0 + (−1)l−1u

(l−1)
a0 ∧ dϕa0 . Let us define

u(l−1) ∈ Cp,q,l−1,0(U), such that u(l−1)(a0) = u
(l−1)
a0 . Consequently, (d̄u(l−1))(a0)ϕa0 =

(du
(l−1)
a0 )ϕa0 = ωϕa0 . Next, we consider δ̄u(l−1) ∈ Cp,q,l−1,1(U). Since the diagram

commutes,

(d̄ ◦ δ̄u(l−1))(a0, a1)ϕa0ϕa1 = (δ̄ ◦ d̄u(l−1))(a0, a1)ϕa0ϕa1 =

=(du(l−1)
a1

)ϕa0ϕa1 − (du(l−1)
a0

)ϕa0ϕa1 = ωϕa0ϕa1 − ωϕa0ϕa1 = 0.
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As a consequence, d(δ̄u(l−1)(a0, a1))ϕa0ϕa1 = 0, hence, by Lemma 3.23 there exists

u
(l−2)
a0,a1 ∈ Cp,q,l−2 such that (du

(l−2)
a0,a1 )ϕa0ϕa1 = δ̄u(l−1)(a0, a1)ϕa0ϕa1 and

d(u(l−2)
a0,a1

ϕa0ϕa1) = δ̄u(l−1)(a0, a1)ϕa0ϕa1 + (−1)l−2u(l−2)
a0,a1

∧ d(ϕa0ϕa1).

As above, we define u(l−2) ∈ Cp,q,l−2,2(U) such that u(l−2)(a0, a1) = u
(l−2)
a0,a1 . We point

out that the choice of u(l−2)(a0, a1) is not unique, but it is unique up to elements

v ∈ Cp,q,l−2 such that (dv)ϕa0ϕa1 = 0. Therefore, we set u(l−2)(a0, a1) = u
(l−2)
a0,a1 for

a0 < a1, while we impose that u(l−2)(a1, a0) = −u(l−2)
a0,a1 . In fact, this agrees with

(3.10) and

du(l−2)(a0, a1)ϕa0ϕa1 = δ̄u(l−1)(a0, a1)ϕa0ϕa1 = (u(l−1)(a1)− u(l−1)(a0))ϕa0ϕa1 =

=− (u(l−1)(a0)− u(l−1)(a1))ϕa0ϕa1 = −δ̄u(l−1)(a1, a0)ϕa0ϕa1 = −du(l−2)(a1, a0)ϕa0ϕa1 .

Repeating the argument, we consider δ̄u(l−2). Then, for any a0, a1, a2 ∈ {1, . . . ,m},

d(δ̄u(l−2)(a0, a1, a2))ϕa0ϕa1ϕa2 = (d̄ ◦ δ̄u(l−2))(a0, a1, a2)ϕa0ϕa1ϕa2 =

=(δ̄ ◦ d̄u(l−2))(a0, a1, a2)ϕa0ϕa1ϕa2 = (dul−2
a1,a2

− dul−2
a0,a2

+ dul−2
a0,a1

)ϕa0ϕa1ϕa2 =

=(δ̄u(l−1)(a1, a2)− δ̄u(l−1)(a0, a2) + δ̄u(l−1)(a0, a1))ϕa0ϕa1ϕa2 =

=(δ̄ ◦ δ̄u(l−1))(a0, a1, a2)ϕa0,a1,a2 = 0,

where, in the last line, we used δ̄◦ δ̄ = 0. Consequently, there exists u
(l−3)
a0,a1,a2 ∈ Cp,q,l−3

such that (du
(l−3)
a0,a1,a2)ϕa0ϕa1ϕa2 = δ̄u(l−2)(a0, a1, a2)ϕa0ϕa1ϕa2 and

d(u(l−3)
a0,a1,a2

ϕa0ϕa1ϕa2) = δ̄u(l−1)(a0, a1)ϕa0ϕa1ϕa2 + (−1)l−3u(l−3)
a0,a1,a2

∧ d(ϕa0ϕa1ϕa2).

We fix a representative u(l−3)(a0, a1, a2) = u
(l−3)
a0,a1,a2 , for a0 < a1 < a2, and we define

u(l−3)(aσ(0), aσ(1), aσ(2)) = sgn(σ)u
(l−3)
a0,a1,a2 , for any permutation σ of {0, 1, 2}. After l

steps, using the same procedure, we obtain u(0) ∈ Cp,q,0,l−1(U) such that, for any

a0, . . . , al−1 ∈ {1, . . . ,m},

d(u(0)(a0, . . . , al−1)ϕa0 . . . ϕal−1
) =δ̄u(1)(a0, . . . , al−1)ϕa0 . . . ϕal−1

+

+u(0)(a0, . . . , al−1) ∧ d(ϕa0 . . . ϕal−1
),

d(u(0)(a0, . . . , al−1))ϕa0 . . . ϕal−1
=δ̄u(1)(a0, . . . , al−1)ϕa0 . . . ϕal−1

and

(u(0)(aσ(0), . . . , aσ(l−1))) = sgn(σ)(u(0)(a0, . . . , al−1))
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for any permutation σ of {0, . . . , l − 1}. Using again the commutation property of

the diagram, we obtain that

d(δ̄u(0)(a0, . . . , al))ϕa0 . . . ϕal = 0,

for any a0, . . . , al ∈ {1, . . . ,m}. Thus, by Lemma 3.23, there exists ca0,...,al ∈ C such

that

(δ̄u(0)(a0, . . . , al)− ca0,...,al)ϕa0 . . . ϕal = 0.

Consequently, we can choose c : Čl(M,U) → C fixing c(a0, . . . , al) = ca0,...,al , when-

ever a0 < a1 < · · · < al, and define c(aσ(0), . . . , aσ(l)) = sgn(σ)caσ(0),...,aσ(l)
, for each

permutation σ of {0, . . . , l}. Thus, c ∈ Č l(M,U) and j(c)(a0, . . . , al)ϕa0 . . . ϕal =

δ̄u(0)(a0, . . . , al)ϕa0 . . . ϕal . Since

j ◦ δ(c)(a0, . . . , al+1)ϕa0 . . . ϕal+1
= δ̄ ◦ j(c)(a0, . . . , al+1)ϕa0 . . . ϕal+1

=

=δ̄ ◦ δ̄u(0)(a0, . . . , al+1)ϕa0 . . . ϕal+1
= 0

and j is injective, δ(c)(a0, . . . , al+1)ϕa0 . . . ϕal+1
= 0, hence δ(c)(a0, . . . , al+1) = 0.

Accordingly, c is a coboundary and we set Φ([ω]) = [c].

Now, we need to prove that Φ is well-defined, that is, if [ω̃] = [ω] ∈ H̄p,q,l
dR (M),

then it must be true that [cω] = Φ([ω]) = Φ([ω̃]) = [cω̃]. In fact, if [ω] = [ω̃], then

there exists q ∈ Cp,q,l−1 such that dq = ω − ω̃. Clearly, i(ω) and i(ω̃) are cohomolo-

gous, i.e., i(ω) − i(ω̃) = i(ω − ω̃) = i(dq) = d̄(i(q)). Let u(l−1), ũ(l−1) ∈ Cp,q,l−1,0(U)
such that, for any a0 ∈ {1, . . . ,m}, du(l−1)(a0)ϕa0 = i(ω)ϕa0 and dũ(l−1)(a0)ϕa0 =

i(ω̃)ϕa0 , as determined above. It holds true that

d̄(ũ(l−1) − u(l−1))(a0)ϕa0 = d̄(i(ω̃ − ω))(a0)ϕa0 = d̄ ◦ d̄(i(q))(a0)ϕa0 = 0,

hence, by Lemma 3.23, there is q(l−1) ∈ Cp,q,l−2,0(U) such that

d̄q(l−1)(a0)ϕa0 = (ũ(l−1) − u(l−1))(a0)ϕa0 ,

for each a0 ∈ {1, . . . ,m}. Iterating the previous procedure, we obtain that

(ũ(0) − u(0))(a0, . . . , al−1)ϕa0 . . . ϕal−1
= j(q(0))(a0, . . . , al−1)ϕa0 . . . ϕal−1

,

for some q(0) ∈ Č l−1(M,U). Moreover,

δũ(0)(a0, . . . , al)ϕa0 . . . ϕal − j(cω̃)(a0, . . . , al)ϕa0 . . . ϕal = 0
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and

δu(0)(a0, . . . , al)ϕa0 . . . ϕal − j(cω)(a0, . . . , al)ϕa0 . . . ϕal = 0.

Accordingly,

(j(cω̃)− j(cω))(a0, . . . , al)ϕa0 . . . ϕal = δ̄(ũ(0) − u(0))(a0, . . . , al)ϕa0 . . . ϕal =

=δ̄ ◦ j(q(0))(a0, . . . , al)ϕa0 . . . ϕal = j ◦ δ(q(0))(a0, . . . , al)ϕa0 . . . ϕal ,

hence, by injectivity of j,

(cω̃ − cω)(a0, . . . , al) = δq(0)(a0, . . . , al),

i.e., cω and cω̃ are cohomologous.

We now need to show that Φ is invertible. In particular, we construct the inverse

map following the strategy of the direct map. Next result plays the role of Lemma

3.23 for the rows of the abelian diagram, i.e., it is a Poincaré’s lemma for δ̄.

Lemma 3.25. Let h ∈ Cp,q,l,0(U), such that δ̄h = 0. Then there exists ω ∈ Cp,q,l

such that i(ω) = h. Let ω ∈ Cp,q,l,k(U) for some k > 0.If δ̄ω = 0, there exists

u ∈ Cp,q,l,k−1(U) such that δ̄u = ω.

As above, we postpone the proof of Lemma 3.23 to Appendix C and we apply it to

conclude this proof. Let [c] ∈ H l
Č
(M,U) be a Čech cohomology class. Since δ(c) = 0,

it holds δ̄ ◦ j(c) = j ◦ δ(c) = 0. Consequently, Lemma 3.25 implies that there exists

v(0) ∈ Cp,q,0,l−1 such that δ̄v(0) = j(c). Considering d̄v(0), we get δ̄ ◦ d̄v(0) = d̄◦ δ̄v(0) =
d̄◦j(c) = 0. Thus, we can apply again Lemma 3.25 to find a v(1) ∈ Cp,q,1,l−2 such that

δ̄v(1) = d̄v(0). Iterating this argument, after l steps, we obtain a v(l) ∈ Cp,q,l−1,0 such

that δ̄v(l) = d̄v(l−1). Since δ̄ ◦ d̄v(l) = d̄ ◦ δ̄v(l) = d̄ ◦ d̄v(l−1) = 0, we can apply again

Lemma 3.25 and we conclude that there exists ω ∈ Cp,q,l such that i(ω) = d̄v(l). One

can easily check, using the same method described in the definition of Φ, that ω is

a closed current and it is unique up to exact currents. As a consequence, we can

define Ψ: H l
Č
(M,U) → H̄p,q,l

dR (M) such that Ψ([c]) = [ω].

It remains to show that Φ and Ψ are each other’s inverses to get the required

isomorphism. Let [ω] ∈ H̄p,q,l
dR (M), where ω ∈ Cp,q,l. Then we associated to ω a

sequence (u(s))s=0,...,l−1 of elements u(s) ∈ Cp,q,s,l−1−s(U) such that

d(u(s)(a0, . . . , al−1−s))ϕa0 . . . ϕal−1−s
= δ̄u(s+1)(a0, . . . , al−1−s)ϕa0 . . . ϕal−1−s

.
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On the other hand, the construction of Ψ produces a sequence (v(s))s=0,...,l−1 such

that v(s) ∈ Cp,q,s,l−1−s such that δ̄(v(s+1)) = d̄v(s), that is

δ̄v(s+1)(a0, . . . , al−1−s)ϕa0 . . . ϕal−1−s
= d(v(s)(a0, . . . , al−1−s))ϕa0 . . . ϕal−1−s

.

Without loss of generality we can assume v(s) = u(s), so that Φ ◦ Ψ = Ψ ◦ Φ = id.

This concludes the proof of Theorem 3.21.

Q.E.D.

3.4 Proof of Theorems 1.21, 1.22 and Corollary

1.23

We are ready to prove our main theorem and its corollary. In particular, Theo-

rem 1.21 trivially follows by Theorem 1.22. Accordingly, let us prove the stronger

Theorem 1.22.

Proof of Theorem 1.22. As a consequence of Theorem 3.21 and Corollary 3.18

σ(f∗|Cp,q,ds ) ∩ {z ∈ C : |z| > λ−1ehtop} = σ(f#|H̄p,q,ds
dR

) ∩ {z ∈ C : |z| > λ−1ehtop}

= σ(f#|Hds
dR
) ∩ {z ∈ C : |z| > λ−1ehtop}

Since ehtop is a simple maximal eigenvalue of f∗|Bp,q,ds , it holds that Λ1, the maximal

eigenvalue of f#|Hds
dR(M), is e

htop , while the second one fulfills |Λ2| < ehtop . In addition,

by Proposition 3.3, the eigenvector ω̄ and the dual eigenvector t̄ related to ehtop

defines the measure of maximal entropy µBM . Furthermore, for any other eigenvalue

Λi, with |Λi| > λ−1ehtop , we set a Jordan basis {ω̄i,k}Ni
k=1, such that f∗(ω̄i,1) = Λiω̄i,1

and f∗(ω̄i,k) = Λiω̄i,k + ω̄i,k−1, for k = 2, . . . , Ni. Let {t̄i,k}Ni
k=1 be the dual Jordan

basis, such that t̄i,k(ω̄i,j) = δk,j. Notice that f
′
∗t̄i,Ni

= Λit̄i,Ni
and f ′

∗t̄i,k = Λit̄i,k+t̄i,k+1,

for k = 1, . . . , Ni−1. We point out that every Λi represents a single Jordan, because

eigenvalues are counted according to their algebraic multiplicity. We obtain that

f∗ = ehtopω̄ ⊗ t̄+
m∑
i=2

[
Λi

(
Ni∑
j=1

ω̄i,j ⊗ t̄i,j

)
+

Ni−1∑
j=1

ω̄i,j ⊗ t̄i,j+1

]
+Q,

where Q is a linear operator such that ∥Q∥(Cp,q,ds )′ ≤ λ−1ehtop . As a consequence,

fn∗ = ehtopω̄ ⊗ t̄+
m∑
i=2

Ni−1∑
k=0

Ç
n

k

å
Λn−ki

(
Ni−k∑
j=1

ω̄i,j ⊗ t̄i,j+k

)
+Qn,
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where
(
n
k

)
= 0 for k > n. Then, for any ϕ, ψ ∈ C∞(M),∫

M

ϕψ ◦ fndµBM = µBM(ϕψ ◦ fn) = t̄(ϕψ ◦ fnω̄) = e−nhtop t̄(fn∗ (ϕψ ◦ fnω̄)) =

=e−nhtop t̄(ψ(fn∗ (ϕω̄)) = t̄(ϕω̄)t̄(ψω̄)+

+
m∑
i=2

Ni−1∑
k=0

Ç
n

k

å
Λn−ki e−nhtop

(
Ni−k∑
j=1

t̄i,j+k(ϕω̄)t̄(ψω̄i,j)

)
+ e−nhtop t̄(ψQn(ϕω̄))

By defining a finite number of bilinear forms {cΛi,k(·, ·)} i=2,...,m
k=0,...,Ni−1

such that

Ni−1∑
k=0

Ç
n

k

å
Λ−k
i

(
Ni−k∑
j=1

t̄i,j+k(ϕω̄)t̄(ψω̄i,j)

)
=

Ni−1∑
k=0

nkcΛi,k(ϕ, ψ),

we get∫
M

ϕψ ◦ fndµBM =µBM(ϕ)µBM(ψ)+

+
m∑
i=2

Ni−1∑
k=0

(Λie
−htop)nnkcΛi,k(ϕ, ψ) + e−nhtop t̄(ψQn(ϕω̄)),

hence∣∣∣∣∫
M

ϕψ ◦ fndµBM−
∫
M

ϕdµBM

∫
M

ψdµBM−

−
m∑
i=2

Ni−1∑
k=0

(Λie
−htop)nnkcΛi,k(ϕ, ψ)

∣∣∣∣∣ ≤ Cλ−n∥ϕ∥Cr∥ψ∥Cr

Q.E.D.

Proof of Corollary 1.23. Proposition 1.18 implies that f is topologically

conjugate to a hyperbolic automorphism of the torus F : Tdim(M) → Tdim(M). Ac-

cordingly, since F is topologically transitive [56], the same goes for f and we can

apply Theorem 1.22. It is enough to show that the second highest eigenvalue Λ2 of

F#|Hds
dR(M) satisfies |Λ2| < λ−1ehtop . Since the action of the dynamics on de Rham

cohomology is invariant under topological conjugacy, it holds f# = F#. But F is

linear, hence, with a slight abuse of notation we can write F−1 = F#|H1
dR(M). No-

tice that this equality makes no sense, because F−1 acts on Tdim(M), while F# acts

on H1
dR(Tdim(M)). On the other hand, fixing a basis of Rdim(M), F−1 is induced by

a dim(M) × dim(M) matrix A ∈ GLdim(M)(Z) with det(A) = ±1, and the same
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A is the matrix associated to F# w.r.t. the canonical basis of H1
dR(Tdim(M)), that

is {[dx1], [dx2], . . . , [dxdim(M)]}. Next, assume that σ1 = {ν1, ν2, . . . , νdim(M)} is the

spectrum of f# acting on H1
dR(Tdim(M)). Then, we can assume that

|ν1| ≤ |ν2| ≤ · · · ≤ |νdu| < 1 < |νdu+1| ≤ |νdu+2| ≤ · · · ≤ |νdim(M)|

and it holds true that
∣∣∣∏dim(M)

i=1 νi

∣∣∣ = 1. Moreover, the spectrum σl of F# acting

on H l
dR(Tdim(M)) can be determined by multiplying l eigenvalues of σ1, i.e., σl =

{
∏

i∈I νi| I ⊆ {1, . . . , dim(M)}, |I| = l}. Since ehtop is the maximal eigenvalue of

F#|Hds
dR(M), we have

ehtop =

dim(M)∏
i=du+1

νi =
ds∏
i=1

ν−1
i .

Notice that this equality agrees with Ledrappier-Young entropy formula [19, Theo-

rem D.3.1]

htop =

dim(M)∑
i=ds

ln νi =

(
du∑
i=1

ln νi

)−1

.

In addition, we deduce that

Λ2 = νdu

dim(M)∏
i=du+2

νi,

while the maximal eigenvalues of F# acting on Hds−1
dR (M), resp. Hds+1

dR (M), is

ζds−1 =

dim(M)∏
i=du

νi, resp. ζds+1 =

dim(M)∏
i=du+2

νi.

Furthermore, |ζds−1| ≤ λ−1ehtop and |ζds+1| ≤ λ−1ehtop . In fact, by 3.18, ζds−1, resp.

ζds+1, is an eigenvalue of f∗|Cp,q,ds−1 , resp. f∗|Cp,q,ds+1 , and ρ(f∗|Cp,q,ds±1) ≤ λ−1ehtop .

Finally, noticing that

|Λ2| < min{|ζds−1|, |ζds+1|} ≤ λ−1ehtop ,

we conclude that

|Λ2| < λ−1ehtop .

Q.E.D.
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Remark 3.26. We recall the argument of [20] which works for Anosov diffeomor-

phisms on the 2-dimensional torus (see Remark 0.3) and that cannot be extended

to higher-dimensional spaces. Let f : T2 → T2 be a C∞ Anosov diffeomorphism of

the 2-torus. Then, by Corollary 1.23,∣∣∣∣∫
T2

(ϕ ◦ fn)ψdµBM −
∫
T2

ϕdµBM

∫
T2

ψdµBM

∣∣∣∣ ≤ Ce−nhtop∥ϕ∥Cr∥ψ∥Cr

On the other hand, authors of [20] proved that there exists a κ ∈ (0, 1) such that∣∣∣∣∫
T2

(ϕ ◦ fn)ψdµBM −
∫
T2

ϕdµBM

∫
T2

ψdµBM

∣∣∣∣ ≤ Cκe−nhtop∥ϕ∥Cr∥ψ∥Cr ,

excluding Ruelle-Pollicott resonances of modulus e−htop , i.e., eigenvalues of f∗|Cp,q,1

of modulus 1. In fact, by Corollary 2.15, ρ(f∗|Cp,q,0) ≤ 1, ρ(f∗|Cp,q,1) ≤ ehtop and

ρ(f∗|Cp,q,2) ≤ 1. Assume that ω ∈ Cp,q,1 satisfies f∗ω = νω with |ν| = 1. Then ν does

not belong to the spectrum of the action on cohomology f#|H1
dR(M), which contains

e±htop . Accordingly, either ω is not closed or ω is exact. In the first case, dω ̸= 0 and

f∗dω = νdω. As a consequence of [20, Lemma 5.14], the Hodge operator, actually

defined on differential forms, extends to a bounded isomorphism

⋆ : Cp,q,0 → Cp,q,2

h 7→ ⋆h = hω0

In addition, Lh = f∗ ⋆ h as in (2.11). Consequently, dω = hω0, where h = ⋆dω and

Lh = νh. [37, Theorem 2.3] states that 1 is the unique maximal eigenvalue of L
and the corresponding eigenvector is the density of the SRB-measure µSRB. Thus,

L ⋆ dω = ⋆dω and dω = µSRB. We conclude that
∫
M
µSRB =

∫
M
dω = 0 and this

contradicts the property that µSRB is a positive measure, hence ω must be closed.

Assume ω = dh for some h ∈ Cp,q,0. Then f∗h = νh + c with dc = 0. In particular,

Lemma 3.23 implies that c is a constant. Let µ−
SRB be the SRB-measure for f−1.

Then we can write h = a+g where a is a constant and
∫
M
gµ−

SRB = 0. Since f∗a = a

and the space of null µ−
SRB-measures is f∗-invariant, we obtain that

c+ νa+ νg = f∗g + f∗a.

By integrating w.r.t. µ−
SRB, we conclude that c = a(1− ν), hence f∗g = νg. By [20,

Lemma 5.17], 1 is the unique maximal eigenvalue of f∗|Cp,q,0 and the corresponding
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eigenvector is constant. We obtain that f∗g = g and g is constant, that is g = 0.

We conclude that h = c and 0 = dh = ω, which contradicts the assumptions.

Accordingly, f∗|Cp,q,1 does not have eigenvalues of modulus 1.



Appendix A

A toolbox of Functional Analysis

This appendix contains basic concepts of Functional Analysis that we use in this

thesis. It is not our intention to provide a complete description of the topics, but

we refer the interested reader to [29, 30].

A.1 Linear operators on Banach spaces

Let (B, ∥·∥B) and be (C, ∥·∥C) be Banach spaces, i.e., a complete normed spaces.

We denote by L(B, C) the vector space of bounded, hence continuous, linear operator
from B to C, namely the set of linear maps T : B → C such that sup0̸=x∈B

∥T (x)∥C
∥x∥B

<

+∞. L(B, C) becomes a Banach space once equipped with the norm

∥T ∥ = sup
0 ̸=x∈B

∥T (x)∥C
∥x∥B

.

Moreover, one may prove that, if (B, ∥ · ∥) is a Banach algebra, i.e., ∥xy∥ ≤ ∥x∥∥y∥,
for all x, y ∈ B, then also (L(B,B), ∥ · ∥) is a Banach algebra w.r.t. composition.

Given T ∈ L(B, C), we denote by ker(T ) = {x ∈ B : T (x) = 0} and im(T ) =

{T (x) : x ∈ B} the kernel and the range of T , respectively. Notice that, by

continuity, ker(T ) is a closed subspace of B.

Definition A.1. A bounded linear operator T ∈ L(B, C) is compact if T (BB(0, 1))

is compact, i.e., if the image of the unit ball in B is relatively compact in C.

Remark A.2. We underline that T is compact if and only if T (B) is compact for

any bounded set B ⊆ B. In effect, it is clear that, if the second condition is true, then

71
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T is compact. On the other hand, if T is compact, then, for any bounded set B ⊆ B,
there is R > 0 such that B ⊆ B(0, R). Consequently, T (B) ⊆ RT (B(0, 1)). Since,
by assumption, T (B(0, 1)) is compact and T (B) is closed, then T (B) is compact.

The following is a useful criterion to prove that a linear operator is compact.

Lemma A.3. [31, Proposition 2.8] Let T ∈ L(B, C) be a bounded linear operator.

Assume that for all ϵ > 0 there are finitely many continuous linear maps li : B → R,
i = 1, . . . ,m, such that ∥T (x)∥C ≤ ϵ∥x∥B +

∑
i |li(x)| for each x ∈ B, then T is

compact.

Proof. Let (xn)n∈N ⊂ BB(0, 1) be a sequence inside the unit ball of B. Up to

considering a subsequence, we can assume that (li(xn))n∈N converges for every i =

1, . . . ,m. Accordingly,

lim sup
m,n→+∞

∥T (xn)− T (xm)∥C ≤ 2ϵ,

hence we can extract a Cauchy subsequence (T (xnk
)). Since C is a Banach space,

(T (xnk
)) converges and we conclude that T is compact. Q.E.D.

A.2 Bochner integral and functions with values

in a Banach space

In the following we need to integrate functions on measure spaces (M,Σ, µ) with

values in a Banach space (B, ∥·∥). The Bochner integral (see also [73]) plays exactly

this role. As in the definition of Lebesgue integral, we firstly want to integrate

simple functions. Let A1, . . . , Am be disjoint elements of the σ-algebra Σ and let

b1, . . . , bm ∈ B. If µ(Ai) < +∞ for each i = 1, . . . ,m, then we say that the simple

function is integrable and we define the integral∫
M

m∑
i=1

1Ai
(x)biµ(dx) =

m∑
i=1

µ(Ai)bi.

Let us endow B of the Borel σ-algebra induced by the norm.
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Definition A.4. Let f : M → B be a measurable function. We say that f is Bochner

integrable, if there is a sequence (ϕn)i∈N such that

lim
i→+∞

∫
M

∥f − ϕi∥dµ = 0,

where every ϕi is a simple integrable function. In that case we define∫
M

fdµ = lim
i→+∞

∫
M

ϕidµ

Lemma A.5. Bochner integral is well-defined, i.e., it does not depends on the se-

quence of simple integrable functions we choose.

Proof. Let (ψi)i∈N be another sequence of simple integrable functions. Then for

all ϵ > 0 there exists i0 ∈ N such that for all i ≥ i0∥∥∥∥∫
M

ψi − ϕidµ

∥∥∥∥ =

∥∥∥∥∫
M

ψi − f + f − ϕidµ

∥∥∥∥ ≤
∥∥∥∥∫

M

ψi − fdµ

∥∥∥∥+∥∥∥∥∫
M

ϕi − fdµ

∥∥∥∥ < 2ϵ.

Therefore,

lim
i→+∞

∫
M

ϕidµ = lim
i→+∞

∫
M

ψidµ.

Q.E.D.

We also need to extend the definition of analytic functions to maps of C0(C,B).

Definition A.6. Let U ⊆ C be an open set and let f ∈ C0(C,B). We say that f is

analytic on U if, for each z0 ∈ U there is a neighborhood U(z0) ⊆ U containing z0

and a sequence (an)n∈N in B such that

f(z) =
∑
n∈N

an(z − z0)
n

for every z ∈ U(z0).

The following proposition collects properties of analytic functions with values in

C that are also true for analytic functions with values in B. We leave the proof to

the reader, since it reflects the proof for functions with values in C.

Proposition A.7. Let f ∈ C0(C,B) and suppose that f is analytic in a simply

connected open set U ⊆ C. Let γ be a simple smooth closed curve inside U and let

z̄ be a point in the interior of the region bounded by γ. Then∫
γ

f(z)dz = 0; (A.1)

f(z̄) =
1

2πi

∫
γ

(ζ − z̄)−1f(ζ)dζ. (A.2)
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A.3 Specturm and essential spectrum

Definition A.8. Let T ∈ L(B,B) be a bounded linear operator. We say that z ∈ C
belongs to the spectrum σ(T ) of T , if the operator (zid−T ) does not admit a bounded

inverse. Otherwise, z ∈ C belongs to the resolvent R(T ) of T . If z ∈ R(T ), we

denote by R(z, T ) = (zid− T )−1 the resolvent operator.

Lemma A.9. Given T ∈ L(B,B), the limit

ρ(T ) = lim
n→+∞

∥T n∥
1
n

exists, it is finite and

ρ(T ) = sup
z∈σ(T )

|z|.

Accordingly, we call ρ(T ) the spectral radius of T .

Proof. We firstly notice that the sequence an = ln ∥T n∥ is subadditive, that is

an+m ≤ am + an. In fact, since L(B,B) is a Banach algebra,

an+m = ln ∥T n+m∥ ≤ ln(∥T n∥∥T m∥) ≤ ln ∥T n∥+ ln ∥T m∥ ≤ an + am.

We now show that, for a subadditive sequence, (an)n∈Z+ the limit limn→+∞
an
n
exists

and it equals infn∈N
an
n
. Let us denote by A = infn∈N

an
n
. For all ϵ > 0, let n ∈ Z+

such that an < n(A + ϵ), and let An = max1≤i≤n an. Then, for m ≥ n, we write

m = qn+ r, where 0 ≤ r ≤ n− 1, and we obtain

am
m

≤ qan
m

+
An
m

<
qn(A+ ϵ)

m
+
An
m

−−−−→
m→+∞

A+ ϵ.

As a consequence, the limit

lim
n→+∞

∥T n∥
1
n = lim

n→+∞
exp

Å
1

n
ln ∥T n∥

ã
= inf

n∈Z+
exp

Å
1

n
ln ∥T n∥

ã
exists. Moreover, since T is bounded and L(B,B) is a Banach algebra,

ρ(T ) = lim
n→+∞

∥T n∥
1
n ≤ ∥T ∥ < +∞.

We now prove the second equality. Let us recall that, by Neumann’s theorem,

(id− T )−1 =
+∞∑
i=0

T i
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in case the series at the right hand side converges in L(B,B). In fact, considering

the partial sum Sn =
∑n

i=0 T i we have

(id− T )Sn =
n∑
i=0

T i −
n+1∑
i=1

T i = id− T n+1 −−−−→
n→+∞

id,

because T n+1 −−−−→
n→+∞

0 as a consequence of the convergence of the series. Notice

that a sufficient (not necessary) condition for the convergence of Neumann’s sum is

∥T ∥ < 1. It is actually sufficient that there exist n̄ ∈ N and a ∈ (0, 1) such that, for

any n ≥ n̄, ∥z−nT n∥ < an < 1. We can write

(zid− T )−1 = z−1(id− z−1T )−1 = z−1

+∞∑
n=0

z−nT n

Moreover, for any ϵ > 0, there exists nϵ ∈ N such that, for all n ≥ nϵ, it holds ∥T n∥ <
(ρ(T ) + ϵ)n. Accordingly, the Neumann’s series converges whenever ∥z−nT n∥ <

|z|−n(ρ(T ) + ϵ)n < an < 1, for instance when |z| > ρ(T ) + 2ϵ. Since ϵ is arbitrary

small, we conclude that

sup
z∈σ(T )

|z| ≤ ρ(T )

To prove the equality, assume by contradiction that supz∈σ(T ) |z| < r < ρ(T ).

Let γ be the boundary of B(0, r) ⊂ C. Then, we compute

1

2πi

∫
γ

zn(zid− T )−1dz = T n +
1

2πi

∫
γ

(znid− T n)(z − T )−1dz =

= T n +
1

2πi

∫
γ

n−1∑
i=0

ziT n−idz = T n.

where we used (A.1) in the first equality and (A.2) in the last equality. Accordingly,

∥T n∥ ≤ Crn for all n ∈ N, hence ρ(T ) ≤ r against the assumption. Q.E.D.

Lemma A.10. Let P ∈ L(B,B) be a projection operator, which means that P 2 = P.

Then B = ker(P )⊕ im(P ). Furthermore, both ker(P ) and im(P ) are closed.

Proof. If x ∈ B, then x = (id− P )x+ Px and P (id− P )x = Px− P 2x = 0, i.e.,

(id−P )x ∈ ker(P ). In addition, if x ∈ ker(P )∩ im(P ), then Py = x and 0 = P (x) =

P 2(y) = P (y) = x. Thus, ker(P )∩im(P ) = {0}. In addition, ker(P ) = P−1(0) and P

is continuous, hence ker(P ) is closed. The same is true for im(P ), because it is easy
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to show that im(P ) = ker(id−P ). In effect, (id−P )Px = Px−P 2x = Px−Px = 0,

that is im(P ) ⊆ ker(id−P ). On the other hand, if (id−P )x = 0, then Px = x, i.e.,

x ∈ im(P ) and im(P ) ⊇ ker(id− P ). Q.E.D.

The following result allows us to decompose a bounded linear operator in accor-

dance with a splitting of the spectrum.

Proposition A.11. Let T ∈ L(B,B) be a bounded linear operator. Suppose that

the spectrum of T splits into two disjoint nonempty subsets σ(T ) = σ1 ∪ σ2. Let γ
be a simple smooth closed curve on R(T ) such that σ1 and σ2 are divided by γ. In

particular, suppose that σ1 is contained in the interior of γ. We define the linear

operator

P =
1

2πi

∫
γ

(zid− T )−1dz.

Then P is a projection, it does not depends on γ and it commutes with T , i.e.,
T P = PT . Moreover, ker(P ) and im(P ) are T invariant linear subspaces of B,
σ(T |im(T )) = σ1 and σ(T |ker(T )) = σ2.

Proof. One can prove that the definition of P does not depend on γ repeating the

analogous proof for analytic functions. Let γ̄ be another curve containing γ in its

interior and satisfying the hypothesis. Then, we compute

P 2 =
1

(2πi)2

∫
γ

∫
γ̄

(zid− T )−1(z̄id− T )−1dz̄dz =

=
1

(2πi)2

∫
γ

∫
γ̄

1

z − z̄
[(zid− T )−1 − (z̄id− T )−1]dz̄dz =

=
1

(2πi)2

∫
γ

(zid− T )−1

∫
γ̄

1

z̄ − z
dz̄dz − 1

(2πi)2

∫
γ̄

(z̄id− T )−1

∫
γ

1

z̄ − z
dzdz̄,

where in the second equality we used

1

z̄ − z
[(zid− T )−1 − (z̄id− T )−1](zid− T )(z̄id− T ) =

=
1

z̄ − z
[z̄id− T − zid + T ] = id.

Since γ̄ is outside γ, (z̄ − z)−1 is analytic in the region bordered by γ, we obtain∫
γ
(z̄ − z)−1dz̄ = 0. On the other hand, the function ϕ(z̄) = (z̄ − z)−1 has a simple

pole inside the region bordered by γ̄. Accordingly, by Cauchy’s residue theorem∫
γ̄
(z̄ − z)−1dz̄ = 2πi and we conclude that

P 2 =
1

2πi

∫
γ

(zid− T )−1dz = P.
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Since (zid−T )T −1 = zT −1−id = T −1(zid−T ), T commutes with (zid−T ), hence T
commutes with P. As a consequence, T (ker(P )) ⊆ ker(P ) and T (im(P )) ⊆ im(P ),

that is T |ker(P ) and T |im(P ) are well-defined linear endomorphisms. It remains to

prove that σ(T |im(T )) = σ1 and σ(T |ker(T )) = σ2. Let λ ∈ σ2, we must show that

(λid− T |im(P )) is invertible. Let us define, given γ as above,

Q =
1

2πi

∫
γ

(zid− T |im(P ))
−1

λ− z
dz.

Notice that

(λid− T |im(P ))Q =
1

2πi

∫
γ

(λid− T |im(P ))(zid− T |im(P ))
−1

λ− z
dz =

=
1

2πi

∫
γ

(λid− zid + zid− T |im(P ))(zid− T |im(P ))
−1

λ− z
dz =

=
1

2πi

∫
γ

(zid− T |im(P ))
−1dz +

1

2πi

∫
γ

id

λ− z
dz = P,

(A.3)

where we used the fact that (λ−z)−1 is analytic for λ ∈ σ2, hence last integral equals

0. Therefore, given y = Px ∈ im(P ), (λid − T |im(P ))Qy = Py = y, that is (λid −
T |im(P ))Q = id|im(P ). Accordingly, σ(T |im(P )) ⊆ σ1. Let us prove that σ(T |ker(P )) ⊆
σ2. Let λ ∈ σ1, then we consider Q as above. The computation (A.3) holds with

T |im(P ) replaced by T |ker(P ), except for last integral. In fact, since λ is inside γ,

then it is a pole of (λ− z)−1. Using again Cauchy’s residue theorem, we get (λid−
T |ker(P ))Q = P+id. Consequently, if x ∈ ker(P ), then (λid−T |ker(P ))Qx = Px+x =

x, i.e., (λid − T |im(P ))Q = id. By Lemma A.10, we conclude that σ(T |im(P )) = σ1

and σ(T |ker(P )) = σ2. Q.E.D.

Definition A.12. Let T ∈ L(B,B) be a bounded linear operator. We say that

λ ∈ σ(T ) belongs to the discrete spectrum of T if

1. λ is isolated inside σ(T );

2. the projection

P =
1

2πi

∫
γ

(zid− T )−1dz,

where γ is a simple smooth closed curve in R(T ) around λ, has finite rank;

3. the range of λid− T is closed.
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We denote by σdis(T ) ⊆ σ(T ) the discrete spectrum, while we denote by σess(T ) ⊆
σ(T ) the complementary part, that is the essential spectrum. In particular, λ belongs

to the essential spectrum if at least one of the following conditions is true:

1. the range of (λid− T ) or the range of (λid− T )−1 is not closed;

2. ∪i≥1 ker((λid− T )i) is infinite dimensional;

3. λ is a limit point in σ(T ) \ {λ}.

We finally denote by

ρess(T ) = sup
z∈σess(T )

|z|

the essential spectral radius.

Remark A.13. There are many different definitions of essential spectrum. The

one we use in this thesis is the most common in the field of dynamical systems and

it is Browder’s definition [18]. We point out that, although the essential spectrum

depends on the definition, for bounded linear operator, the essential spectral radius

is independent of it [30, Corollary 4.11].

Definition A.14. Let T ∈ L(B, C) be a bounded linear operator between Banach

spaces. We say that T is quasi-compact if there exist a bounded linear operator

Tess ∈ L(B, C) and a compact linear operator of finite rank Tdis ∈ L(B, C), such

that T = Tess + Tdis and ∥Tess∥ < ∥Tdis∥. As a consequence of Proposition A.11,

if T ∈ L(B,B) is a linear endomorphism, then T is quasi-compact if and only if

ρess(T ) < ρ(T ).

We conclude this section recalling a useful result [9, Lemma A.1.] about the

spectrum of quasicompact operators acting on different Banach spaces.

Lemma A.15. Let B be a separable topological vector space and let (B1, ∥ · ∥1)
and (B2, ∥ · ∥2) be two Banach spaces that are continuously embedded in B. Assume

that there exists a linear subspace B0 ⊆ B1 ∩ B2 which is dense in B1 and B2. Let

T : B → B be a continuous linear map preserving B0, B1 and B2. Assume that there

exists ρ̄ > 0 such that

max {ρess(T |B1), ρess(T |B2)} < ρ̄.
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Then the eigenvalues of the operators T |B1 and T |B2 coincide out of the ball {z ∈ C :

|z| < ρ̄}. In addition, the generalized eigenvectors corresponding to such eigenvalues

coincide and belong to B1 ∩ B2.

Proof. We firstly prove that

ρess(T ) = inf{ρ(T |W ) : W ∈ W}, (A.4)

where W is the family of closed T -invariant linear subspaces W ∈ W of finite

codimension. In effect, for any ρ̃ > ρess(T ), let W be the image of the projection

corresponding to the spectrum contained in {z ∈ C : |z| < ρ̃}. As a consequence

of Lemma A.10, Proposition A.11 and Definition A.12, W is a closed T -invariant

linear subspace of finite codimension, i.e., W ∈ W . Accordingly, ρ̃ ≥ inf{ρ(T |W ) :

W ∈ W} for any ρ̃ > ρess(T ), hence ρess(T ) ≥ inf{ρ(T |W ) : W ∈ W}. On the

other hand, let W ∈ W and let W ′ a complementary finite dimensional subspace in

B. Denoting by π : B → W and π′ : B → W ′ the corresponding projections, one can

decompose T = T ◦ π + T ◦ π′, where T ◦ π′ is a finite rank operator. This implies

that ρess(T ) ≤ ρ(T |W ) for any W ∈ W , hence ρess(T ) ≤ inf{ρ(T |W ) : W ∈ W}.
Let us consider B1∩B2. This is a Banach space once we endow it with ∥·∥1+∥·∥2.

Using (A.4), we get ρess(T |B1∩B2) ≤ max{ρess(T |B1), ρess(T |B2)}. In fact, let Wi be

the family of closed T -invariant linear subspaces of finite codimension in Bi, for
i ∈ {1, 2}. Similarly, let W1,2 be the analogous family for B1 ∩ B2. The existence

of the linear subspace B0 ⊆ B1 ∩ B2, which is dense in B1 and B2, implies that

W1,2 ⊆ W1∪W2, i.e., the relation among essential spectral radii. As a consequence,

we assume, without loss of generality, that B1 ⊆ B2 and ∥ · ∥2 ≤ ∥ · ∥1.
Fix ρ̃ as in the statement of the lemma. Denote by E ⊆ B1 the finite dimensional

subspace obtained as the direct sum of generalized eigenspaces corresponding to

eigenvalues λ with |λ| ≥ ρ̃. Up to considering the quotient spaces Bi/E, for i = 1, 2,

we can assume that E = {0}, so that ρ(T |B1) < ρ̃. We finally show that there are

no eigenvalues λ for T : B2 → B2 such that |λ| ≥ ρ̃. Assume by contradiction that

such a λ exists, then there exists a nonzero v ∈ B2 such that T v = λv. By the

density of B0 ⊆ B2, there exists v′ ∈ B0, close enough to v in both the B1 and B2

topologies, such that, for all n ≥ 0, ∥T nv′∥1 ≥ ∥T nv′∥2 ≥ |λ|n∥v′∥2. Accordingly
∥T ∥B1→B1 ≥ |λ|, and this contradicts the assumption ρ(T |B1) < ρ̃.

Q.E.D.
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A.4 Proof of Hennion’s theorem

In this section we prove Theorem 2.9. We essentially follow [27], but we give the

original proof of Hennion [41], which is a consequence of Nussbaum formula [59].

In effect, the authors of [27] prove a generalization of Hennion’s original result (see

also [10]).

We firstly recall some prerequisites.

Definition A.16. Let (B, ∥ · ∥) be a Banach space and let W ⊆ B be a linear

subspace. The distance between a point x ∈ B and the subspace W is

d(x,W ) = inf
y∈W

∥x− y∥.

The following result, which is intuitive for finite-dimensional Banach spaces, also

holds for infinite-dimension spaces.

Lemma A.17. Let W ⊂ B be a proper subspace of the Banach space B, that is

0 ̸= W ̸= B. Then for each ϵ > 0 there exists x ∈ B such that ∥x∥ = 1 and

d(x,W ) ≥ 1− ϵ.

Proof. Let y ∈ B \W , then by definition, for all δ > 0 there exists z ∈ W such

that d(y,W ) ≤ ∥y − z∥ ≤ d(y,W ) + δ. Let consider x = y−z
∥y−z∥ and δ = ϵd(y,W )

1−ϵ . For

every q ∈ W we have

∥x− q∥ =
∥y

∈W︷ ︸︸ ︷
−z − q∥y − z∥ ∥

∥y − z∥
≥ d(y,W )

d(y,W ) + δ
= 1− ϵ.

Q.E.D.

Definition A.18. Let B be a Banach space. B is locally compact if every bounded

sequence in B has a convergent subsequence.

Lemma A.19. Let B be a locally compact Banach space. Then B is finite-dimensional.

Proof. Assume by contradiction that B is infinite-dimensional. LetW1 = span{w1}
be a 1-dimensional subspace with ∥w1∥ = 1. Then, by Lemma A.17, we can define

by induction Wn = span{w1, . . . , wn}, n ∈ Z+, such that ∥wi∥ = 1, for i = 1, . . . , n,

and ∥wi−wj∥ ≥ 1
2
, for all i, j = 1, . . . , n, i ̸= j. Therefore, we have built a bounded

sequence (xn)n∈N with no convergent subsequences. Q.E.D.
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Definition A.20. Let T : X → Y be a continuous function between topological

spaces. We say that T is proper if, for every compact set A ⊆ Y, T−1(M) is compact

in X.

Lemma A.21. Let T ∈ L(B, C) be a bounded linear operator, such that T restricted

to closed bounded sets is proper. Then ker(T ) is finite-dimensional and im(T ) is

closed.

Proof. By assumption, T is proper when restricted to bounded closed sets. There-

fore, ker(T ) is locally compact. As a consequence of Lemma A.19, it is finite-

dimensional. To prove the second part, let (T (xn))n∈N be a sequence in im(T ), such

that (T (xn)) −−−−→
n→+∞

y ∈ C. The set A = {y, T (xn)| n ∈ N} is compact, hence

T −1A is compact and we can extract a convergent subsequence (xnk
)k∈N, such that

xnk
−−−−→
k→+∞

x ∈ B. By continuity, T (xnk
) −−−−→

k→+∞
T (x) = y ∈ im(T ). We conclude

that im(T ) is closed. Q.E.D.

Definition A.22 (Measure of noncompactness). Let B be a Banach space and let

B ⊆ B be a bounded subset. The measure on noncompactness of B, denoted by

γ(B) ≥ 0, is the infimum over d > 0, such that there exists B1, . . . , Bn, subsets of

B of diameter diamBi ≤ d, for which B ⊆ ∪ni=1Bi. When B1, . . . , Bn are balls of

radius smaller that d, the same definition gives the ball-measure of noncompactness

γ̃(B). Given a bounded linear operator T ∈ L(B, C), we define the measure of

noncompactness of T

γ(T ) = inf{d > 0| γC(T (B)) ≤ dγB(B), for each bounded B ⊆ B}

and the ball-measure of noncompactness of T

γ̃(T ) = inf{d > 0| γ̃C(T (B)) ≤ dγ̃B(B), for each bounded B ⊆ B}

The following lemma collects some properties of the (ball-)measure of noncom-

pactness.

Lemma A.23. Let A,B ⊆ B be bounded subsets of the Banach space B and let

T ∈ L(B, C) be a bounded linear operator. The following properties hold:

1) The closure of A, Ā, is compact if and only if γ(A) = 0. Moreover, Ā is

compact if and only if γ̃(A) = 0;
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2) T is compact if and only if γ(T ) = 0. Moreover, T is compact if and only if

γ̃(T ) = 0;

3) γ(T ) ≤ ∥T ∥;

4) γ(A+B) ≤ γ(A) + γ(B) and γ̃(A+B) ≤ γ̃(A) + γ̃(B)

Proof. If Ā is compact, then for all ϵ > 0 there is a finite open covering of Ā

made of bounded subsets of B of radius ϵ. Thus, γ(A) = 0. Similarly, γ̃(A) = 0.

On the other hand, if Ā is not compact, then there is a sequence (xn)n∈N with no

accumulation points. Let us consider the family of balls (B(xn, ϵ))n∈N of radius ϵ.

We claim that there is a subsequence (xnk
)k∈N, such that B(xnk1

, ϵ)∩B(xnk2
, ϵ) = ∅,

for some ϵ > 0 and for each k1, k2 ∈ N. In effect, if this is not true, then for all ϵ > 0

and for any subsequence (xnk
)k∈N, there are k1, k2 ∈ N such that d(xnk1

, xnk2
) < 2ϵ.

Accordingly, there is Cauchy subsequence (xnk
)k∈N which converges to some point

x ∈ Ā, against the assumption. We conclude that γ̃(T ) ≥ γ(T ) > ϵ > 0.

Let us prove 2). If T is compact, then, by Remark A.2, T (B) is compact,

whenever B ⊂ B is bounded. By 1) γ̃(T (B)) = γ(T (B)) = 0, i.e., γ̃(T ) = γ(T ) = 0.

If γ(T ) = 0, then let us take B ⊂ B bounded and contained in a ball of radius R.

For any ϵ > 0, we have γ(T (B)) < ϵ
R
γ(B) < ϵ, i.e., γ(T (B)) = 0, which implies

that T (B) is compact by 1).

For any B ⊆ B bounded, let l > γ(B), so that B is covered by bounded

sets B1, . . . , Bn of diameter smaller than l. Consequently, T (B) is covered by

T (B1), . . . , T (Bn) and diam(T (Bi)) = supx,y∈Bi
∥T (x) − T (y)∥ ≤ ∥T∥diam(Bi) ≤

l∥T ∥. This proves 3).
We now show 4). Let l > γ(A) and let t > γ(B). By definition there are cov-

erings {Ai}ni=1 and {Bi}mi=1 of A and B, respectively, such that diam(Ai) ≤ l and

diam(Bi) ≤ t. It is clear that A+B is covered by sets {Ai +Bj}i,j whose diameter

is bounded by l+ t. We conclude that γ(A+B) ≤ γ(A)+γ(B). The proof of second

inequality is essentially the same noticing that the sum of two balls is again a ball.

Q.E.D.

Lemma A.24. Let T ∈ L(B,B) be a bounded linear operator. Suppose that there

exists n ∈ Z+ such that γ̃(T ) ≤ k < 1. Then (id− T )r restricted to bounded closed

sets is proper, for any r ≥ 1.
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Proof. Let B ⊂ B be a bounded closed set. By definition, we need to show that,

for any compact set C ∈ B, D = (id − T )−1(C) is compact, which is equivalent to

γ̃(D) = 0. For any x ∈ D x = T x + c, with c ∈ C. Iterating this equality we get

x = T n(x) +
∑n−1

i=0 T i(c). Writing C̃ =
∑n−1

i=0 T iC, we get that C̃ is compact, since

it is the image of a compact set under a continuous map, and D ⊆ T n(D) + C̃.

Accordingly, γ̃(D) ≤ γ̃(T nD) ≤ kγ̃(D), i.e., γ̃(D) = 0. For r > 1 we proceed by

induction. Assume the statement is true up to r − 1, then, for any compact set

C ⊆ B, [(id− T )r]−1(C) = (id − T )−1[(id− T )r−1]−1(C) is compact and (id− T )r

is proper. Q.E.D.

Lemma A.25. Let T ∈ L(B, C) be a bounded linear operator. Denote by B∗ the dual

space of the Banach space B, that is the space of bounded linear forms l : B → C.
Let T ∗ ∈ L(C∗,B∗) be the dual map of T , i.e.,T ∗(l)(x) = l(T (x)) for any l ∈ C∗ and

for any x ∈ B. Then γ(T ∗) ≤ γ̃(T ).

Proof. We have to prove that for any bounded set S ⊆ C∗, T ∗(S) can be covered

by finitely many bounded set of diameter less or equal than γ̃(T )diam(S) + ϵ, for

any ϵ > 0. By definition, γ̃(B(0, 1)) ≤ 1, hence T (B(0, 1)) can be covered by finitely

many balls B1, . . . , Bn in C of radius γ̃(T ) + ϵ
2diam(S)

. Let ci ∈ C be the center of

Bi. We fix M ∈ R+ such that ∥ci∥ ≤ M for any i = 1, . . . , n, and ∥c∗∥ ≤ M for

any c∗ ∈ S. Consequently, |c∗(ci)| < M2 for any c∗ ∈ S and any i = 1, . . . , n. Now,

we subdivide the interval [−M2,M2] into subintervals ∆j, j = 1, . . . , p, of length

smaller than ϵ
2
and we define the following equivalence relation: c∗ ∼ d∗ if and only

if c∗(ci) and d
∗(ci) belong to the same interval ∆j(i). Let S̃ = S/ ∼ be the quotient

w.r.t. the relation ∼. We show that, for any s ∈ S, diam([s]) ≤ γ̃(T )diam(S) + ϵ,

where [s] ∈ S̃ represents the equivalence class of s ∈ S. Consider c∗1, c
∗
2 ∈ [s]. Then

∥T ∗(c∗1)− T ∗(c∗2)∥ = sup
x∈B(0,1)

|c∗1(T (x))− c∗2(T (x))| = sup
y∈T (B(0,1))

|c∗1(y)− c∗2(y)|.

Assume that y ∈ B
Ä
ci, γ̃(T ) + ϵ

2diam(S)

ä
, then

|c∗1(y)− c∗2(y)| ≤ |c∗1(y − ci)− c∗2(y − ci)|+ |c∗1(ci)− c∗2(ci)| =

=|(c∗1 − c∗2)||y − ci|+ |c∗1(ci)− c∗2(ci)| ≤ diam(S)

Å
γ̃(T ) +

ϵ

2diam(S)

ã
+
ϵ

2
=

=diam(S)γ̃(T ) + ϵ.
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This gives diam(T ∗(Si)) ≤ diam(S)γ̃(T ) + ϵ and, since these sets cover T ∗(S), we

conclude that γ(T ∗) < γ̃(T ) + diam(S)
ϵ

for any ϵ > 0, that is γ(T ∗) ≤ γ̃(T ).

Q.E.D.

The following theorem gives an important formula to estimate the essential spec-

tral radius.

Theorem A.26 (Nussbaum formula [59]). Let T ∈ L(B,B) be a bounded linear

operator. Then it holds

lim
n→+∞

γ(T n)
1
n = inf

n
γ(T n)

1
n ≤ inf

n
γ̃(T n)

1
n = lim

n→+∞
γ̃(T n)

1
n .

Moreover, denoting by ρ̃ess = infn∈N γ̃(T n)
1
n , if |λ| > ρ̃ess, then ker((λid − T )r) is

finite-dimensional, for any r ∈ Z+, im(λid− T ) is closed and λ is not a limit point

of σ(T ) \ {λ}. By Definition A.12, we get ρess ≤ ρ̃ess.

Proof. Let T ,S ∈ L(B,B) be bounded operators. We firstly show that γ̃(T ◦S) ≤
γ̃(T )γ̃(S), so that ln γ̃(·) is a subadditive function and the last limit exists, and

equals ρ̃ess by the same reason of the limit in Lemma A.9. By definition, for any

bounded B ⊆ B, γ̃(T (B)) ≤ γ̃(T )γ̃(B). Therefore γ̃(T ◦ S(B)) ≤ γ̃(T )γ̃(S(B)) ≤
γ̃(T )γ̃(S)γ̃(B), hence γ̃(·) is submultiplicative. The proof for γ(·) is exactly the

same, while the inequality is a consequence of γ(·) ≤ γ̃(·).
Let |λ| > ρ̃ess, then there exists n such that γ̃(T n)

1
n < |λ|.Accordingly γ̃(T nλ−n) <

1 and, by Lemma A.24, (id−T λ−1) is proper on closed and bounded sets. By Lemma

A.21, ker((λid− T )r) = ker((id− T λ−1)r) is finite-dimensional and im(λid− T ) =

im(id− T λ−1) is closed.

Finally, we prove that λ is an isolated point of σ(T ). In particular, we show

that there is a neighborhood U containing λ, such that U \ {λ} ∈ R(T ). Since

the resolvent is open, the result is trivial if λ ∈ R(T ). Assume λ ∈ σ(T ). We

claim that ker(id − T ) ̸= 0 or ker(id − T ∗) ̸= 0. Otherwise, the inverse function

(λid − T )−1 : im(λid − T ) → B exists and the domain is closed. If we prove that

im(λid − T ) = B, then λ ∈ R(T ) and we gain a contradiction. On the other

hand, if im(λid − T ) ̸= B, then, by Lemma A.17, there exists x ∈ B, ∥x∥ = 1

and d(x, im(λid − T )) > 1
2
. Let y ∈ span{x, im(λid − T )}, hence y = ax + q, with

q ∈ im(λid− T ) and a ∈ C. We define l(y) = a, so that

∥y∥ = ∥ax+ q∥ = |a|∥x− (−a−1q)∥ > |a|
2

=
l(y)

2
.
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Since, |l(y)| ≤ 2∥y∥, by Hahn-Banach theorem we can extend l to a linear form on

B. Consequently, (λid − T ∗)l(z) = l((λid − T )(z)) = 0, for any z ∈ B. Thus, l ∈
ker(λid−T ∗) against the assumption. So, B = im(λid−T ) and λ ∈ R((T )), which

is a contradiction. To conclude we need to show that there is no sequence {λn}n∈N
in σ(T ) \ {λ} which converges to λ. Assume that such a sequence exists. Then, for

any ϵ > 0 there exists n0 ∈ N such that |λn− λ| < ϵ, for each n > n0. By the claim,

there are infinitely many nonzero xn ∈ ker(λnid − T ) or infinitely many nonzero

ln ∈ ker(λnid − T ∗). In the first case, we consider Xk = span{xn0+1, . . . , xn0+k} for

any k ∈ Z+. Xk−1 is proper inside Xk, hence, by Lemma A.17, there exists yk ∈ Xk

such that d(yk, Xk−1) ≥ 1 − ϵ. In addition, yk = akxn0+k + wk−1, with ak ∈ C and

wk−1 ∈ Xk−1. For any k, s, r ∈ Z+, with s > k

∥T r(ys)− T r(yk)∥ = ∥T r(asxn0+s) + T r(ws−1)− T r(yk)∥ =

=∥λnsasxn0+s + T r(ws−1)− T r(yk)∥ = |λns |∥ys − (ws−1 − λ−ns (T r(ws−1 − yk)))∥ ≥

≥|λrs|(1− ϵ) = |λrs − λr + λr|(1− ϵ) = |λr|
∣∣∣∣1 + λrs − λr

λr

∣∣∣∣ (1− ϵ) ≥

≥|λr|
Å
1−

∣∣∣∣λs − λ

λ

∣∣∣∣ãr (1− ϵ) ≥ |λr|(1− ϵ)r+1.

The computation shows that we cannot cover T r(B(0, 1)) with finitely many sets

of diameter 1
4
|λ|r(1 − ϵ)r, for any r ∈ Z+ and any ϵ > 0. We have prove that

γ̃(T r) ≥ γ(T r) > 1
4
|λ|r. In the other case, the same proof gives γ((T ∗)r) > 1

4
|λ|r.

Lemma A.25 implies that γ̃(T r) ≥ γ((T ∗)r) > 1
4
|λ|r, hence ρ̃ess > |λ| against the

assumption. This proves that λ is an isolated point in σ(T ). Q.E.D.

We now have all the ingredients to prove Hennion’s theorem (see Theorem 2.9

for the statement).

Proof of Theorem 2.9. We want to apply Nussbaum formula (Theorem A.26),

hence we need to compute γ̃(T n). Since i is compact and B is bounded, we get that

i ◦ T (B∥·∥(0, 1)) is compact. Consequently, for any ϵ > 0, there exists x1, . . . , xm ∈
B∥·∥(0, 1), such that

i ◦ T (B∥·∥(0, 1)) ⊆
m⋃
i=1

B|·|(T (xi), ϵ) ∩ B|·|(0, ∥T ∥).

For any y ∈ B|·|(T (xi), ϵ) ∩ B|·|(0, ∥T∥), then, by second assumption,

∥T n(xi)− T n(y)∥ ≤ rn∥T (xi)− y∥+Rn|T (xi)− y| < 2rn∥T ∥+ 2Rnϵ.
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Accordingly, γ̃(T n+1) ≤ 2rn∥T ∥, hence ρess ≤ lim infn(rn)
1
n .

Q.E.D.



Appendix B

A toolbox of Hodge theory

In this appendix we recall some basic facts about Hodge ⋆ operator. References

we suggest to the reader are [46, Chapter 2] and [22], where these concepts are

deepened.

Let M be an orientable, closed, Riemannian manifold equipped with the metric

g, which induces a volume form ω0, as in Chapter 1. We assume to work with

an oriented atlas {Ui, ψi}, with an orthonormal, positively oriented basis of vector

fields {∂x1 , . . . , ∂xdim(M)
}, and with the corresponding basis of differential forms (see

Section 2.3).

Definition B.1. The Hodge ⋆ operator is the unique linear map

⋆ : Ωl(M) → Ωdim(M)−l(M)

such that

⟨ω1, ω2⟩ω0 = ω1 ∧ ⋆ω2, for ω1, ω2 ∈ Ωl(M).

The existence of ⋆ω is a consequence of the nondegeneracy of the scalar product

⟨·, ·⟩. In addition, ⋆ is unique, because if ∗ is another Hodge operator, than

ω1 ∧ (⋆ω2 − ∗ω2) = ⟨ω1, ω2 − ω2⟩ω0 = 0,

for any ω1, ω2 ∈ Ωl(M). Thus, ⋆ω2 = ∗ω2.

Remark B.2. Notice that, using the orthonormal basis {dx1, . . . , dxdim(M)} of TM ,

the Hodge operator can be written as

⋆dxi1 ∧ dxi2 ∧ · · · ∧ dxil = dxj1 ∧ dxj2 ∧ · · · ∧ dxjdim(M)−l

87
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where dxi1 , dxi2 , . . . , dxil , dxj1dxj2 , . . . , dxjdim(M)−l
is a positively oriented. Accord-

ingly, if h =
∑

j∈Jl
hjdxj on ψi(Ui), then

⋆h =
∑
j∈Jl

hj ⋆ dxj.

Definition B.3. We define the linear operator δ : Ωl(M) → Ωl−1(M)

δ = (−1)dim(M)(l+1)+1 ⋆ d ⋆ .

The following proposition put together some properties of the Hodge operator,

the exterior derivative d and the linear operator δ.

Lemma B.4. The Hodge ⋆ operator satisfies

1. ⋆ ⋆ |Ωl(M) = (−1)l(dim(M)−l)id|Ωl(M);

2. ω2 ∧ ⋆ω1 = (−1)l(d−l) ⋆ ω1 ∧ ω2 = ω1 ∧ ⋆ω2;

3. δ is the adjoint of d w.r.t. the scalar product (·, ·);

4. δ ◦ δ = 0.

Moreover, let f : M → N be a diffeomorphism of Riemannian manifolds. Let ω1 ∈
ωl(M) and let ω2 ∈ Ωl(N), then

5. ⟨f∗ω1, ω2⟩ = (−1)l(dim(M)− l)⟨ω1, ⋆f
∗ ⋆ ω2⟩ ◦ f−1 det(df−1)

Proof. Let us prove 1. Notice that ⋆⋆ maps Ωl(M) onto itself and suppose

⋆dxi1 ∧ dxi2 ∧ · · · ∧ dxil = dxj1 ∧ dxj2 ∧ · · · ∧ dxjdim(M)−l
.

Consequently,

⋆ ⋆ dxi1 ∧ dxi2 ∧ · · · ∧ dxil = ⋆dxj1 ∧ dxj2 ∧ · · · ∧ dxjdim(M)−l
= ϵdxi1 ∧ dxi2 ∧ · · · ∧ dxil ,

where ϵ is the sign. Since,

dxi1 ∧ dxi2 ∧ · · · ∧ dxil ∧ dxj1 ∧ dxj2 ∧ · · · ∧ dxjdim(M)−l
=

=(−1)l(dim(M)−l)dxj1 ∧ dxj2 ∧ · · · ∧ dxjdim(M)−l
∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxil ,

we conclude that ϵ = l(dim(M)− l).
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As a consequence of the definition, we obtain∫
M

ω1 ∧ ⋆ω2 = (ω1, ω2) = (ω2, ω1) =

∫
M

ω2 ∧ ⋆ω1 = (−1)l(d−l)
∫
M

⋆ω1 ∧ ω2.

Let us show that δ is the adjoint operator of d. For ω1 ∈ Ωl−1(M) and ω2 ∈
Ωl(M),

d(ω1 ∧ ⋆ω2) = dω1 ∧ ⋆ω2 + (−1)l−1ω1 ∧ d ⋆ ω2 =

=dω1 ∧ ⋆ω2 + (−1)l−1(−1)−(l−1)(dim(M)−l+1)ω1 ∧ ⋆ ⋆ d ⋆ ω2 =

=dω1 ∧ ⋆ω2 − (−1)d(l+1)+1ω1 ∧ ⋆ ⋆ d ⋆ ω2

By Stokes’ theorem,

0 =

∫
M

d(ω1 ∧ ⋆ω2) =

∫
M

dω1 ∧ ⋆ω2 −
∫
M

ω1 ∧ ⋆δω2 = (dω1, ω2)− (ω1, δω2).

Trivially, δ ◦ δ = ⋆d ⋆ ⋆d⋆ = ± ⋆ d ◦ d⋆ = 0 proves 4.

Finally, we check point 5. In fact, denoting by ωM , resp. ωN , the volume form

induced by the metric on M , resp. N, we compute

⟨f∗ω1, ω2⟩ωN = f∗ω1 ∧ ⋆ω2 = f∗(ω1 ∧ f ∗ ⋆ ω2) = (−1)l(dim(M)−l)f∗(ω1 ∧ ⋆ ⋆ f ∗ ⋆ ω2) =

= (−1)l(dim(M)−l)f∗(⟨ω1, ⋆f
∗ ⋆ ω2⟩)ω0 = (−1)l(dim(M)−l)⟨ω1, ⋆f

∗ ⋆ ω2⟩ ◦ f−1 det(df−1)ω0.

Q.E.D.
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Appendix C

Technical results

In this section we collect some technicalities that we used in some proofs of this

thesis, as well as some technical results.

Lemma C.1 (Distortion Lemma). Let W ∈ Σ be an admissible leaf. Let Wi be

an admissible leaf, as in Lemma 2.1, such that Wi ⊆ f−n(W ). Define λsn(x) =

|det(dxfn|TxWi
)|, that is the contraction of fn along the stable manifold Wi. Let

λsn,i = minx∈Wi
λsn(x). Then there exists a constant C > 0 such that, for any n ∈ N

and for each x ∈ Wi,

λsn,i ≤ λsn(x) ≤ Cλsn,i.

In addition, ∥λsn∥Cq(Wi) ≤ |fn(Wi)|.

Proof. We claim that there exists a constant D > 0 such that for any n ∈ N and

for any x, y ∈ Wi

D−1 ≤ λsn(x)

λsn(y)
≤ D.

In fact, assuming that the claim is true, we get λsn(x) ≤ Dλsn(y), for all x, y ∈ Wi,

hence λsn(x) ≤ Dminy∈Wi
λsn(y) = Dλsn,i.

Let us prove the claim. Denoting by W t
i = f t(Wi), we obtain

λsn(x) = |det(dxfn|TxWi
)| =

∣∣∣∣∣det
(
n−1∏
t=0

df t(x)f |Tft(x)W t
i

)∣∣∣∣∣ =
n−1∏
t=0

∣∣∣det Ädf t(x)f |Tft(x)W t
i

ä∣∣∣ .
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Consequently,

ln
λsn(x)

λsn(y)
=

n−1∑
t=0

ln

∣∣∣det(df t(x)f |Tft(x)W t
i
)
∣∣∣

det
∣∣∣df t(y)f |Tft(y)W t

i

∣∣∣ =
n−1∑
t=0

⟨∇ ln
∣∣∣det(df t(z)f |Tft(z)W t

i
)
∣∣∣ , x− y⟩ =

=
n−1∑
t=0

⟨(dzf t)T∇ ln
∣∣∣det(df t(z)f |Tft(z)W t

i
)
∣∣∣ , x− y⟩ =

=
n−1∑
t=0

⟨∇ ln
∣∣∣det(df t(z)f |Tft(z)W t

i
)
∣∣∣ , dzf t(x− y)⟩ ≤

≤
n−1∑
t=0

max
l∈W t

i

∥∇ ln
∣∣∣det(dlf |TlW t

i
)
∣∣∣ ∥ max

x,y∈Wi

∥x− y∥︸ ︷︷ ︸
≤C

max
z∈Wi

∥dzf t|TxWi
∥︸ ︷︷ ︸

Cλ−t

≤

≤
n−1∑
t=0

Cλ−t ≤ C
λ−1

1− λ−1
≤ D.

We have proved ∥C0(Wi)∥ ≤ Cλsn,i. Notice that

|fn(Wi)| =
∫
fn(Wi)

ωW =

∫
Wi

λsn(x)ωWi
(x) ≥ λsn,i|Wi| ≥ Cλsn,i,

hence ∥λsn∥C0(Wi) ≤ C|fn(Wi)|. Let us consider derivative of λsn. We compute

∂xj λ
s
n(x) = ∂xj

(
n−1∏
t=0

∣∣∣det(df t(x)f |Tft (x)W t
i
)
∣∣∣) =

=
n−1∑
h=0

n−1∏
t=0

∣∣∣det(df t(x)f |Tft (x)W t
i
)
∣∣∣ ∂xj

∣∣∣det(dfh(x)f |T
fh

(x)Wh
i
)
∣∣∣∣∣∣det(dfh(x)f |T

fh
(x)Wh

i
)
∣∣∣ =

=λsn(x)
n−1∑
h=0

∂xj ln
(∣∣∣det(dfh(x)f |T

fh(x)
Wh

i
)
∣∣∣) =

=λsn(x)
n−1∑
h=0

〈
∇ ln

(∣∣∣det(dfh(x)f |T
fh(x)

Wh
i
)
∣∣∣) , ∂xj fh(x)|TxWi

〉
≤

≤λsn(x)
n−1∑
h=0

max
y∈Wh

i

∥∇ ln | det(dyf |TyWh
i
)|∥∥dxfh|TxWi

∥ ≤ Cλsn(x)
n−1∑
h=0

λ−h ≤ Cλsn(x).

Accordingly, ∥λsn∥C1(Wi) ≤ C∥λsn∥C0(Wi) ≤ C|fn(Wi)| and, iterating the reasoning,

∥λsn∥Cq(Wi) ≤ C|fn(Wi)|.
Q.E.D.
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Lemma C.2. Let W ∈ Σ be an admissible leaf in ψz(Uz). Let Wi be an admis-

sible leaf, as in Lemma 2.1, such that Wi ⊆ f−n(W ) in ψi(Ui). Define λ
s
n(x) =

|det(dxfn|TxWi
)|, that is the contraction of fn along the stable manifold Wi. Let

dxk ∈ Ωl(ψi(Ui)) and dxj ∈ Ωl(ψz(Uz)), as defined in Section 2.3. Then,

∥⟨dxj, fn∗ dxk⟩ ◦ fnλsn∥Cq(Wi) ≤ Cλ−|ds−l|n.

Proof. We firstly consider the case l ≤ ds. Let S lx be the family of l-dimensional

vector subspaces of Csx. For any Vx ∈ S lx and for any n ∈ N, let us denote by

Vfn(x) = dxf
nVx. Then

|⟨dxj, fn∗ dxk⟩ ◦ fn(x)λsn(x)| = |⟨dxj, fn∗ dxk⟩ ◦ fn(x) det(dxfn|TxWi
)| ≤

≤ max
Vx∈Sl

x

| det(dfn(x)f−n|Vfn(x)
) det(dxf

n|TxWi
)| = max

Vx∈Sl
x

∣∣∣∣∣ det(dfn(x)f−n|Vfn(x)
)

det(dfn(x)f−n|Tfn(x)W
)

∣∣∣∣∣
Notice that

max
Vx∈Sl

x

| det(dfn(x)f−n|Vfn(x)
)| ≤ max

Vx∈Sds
x

| det(dfn(x)f−n|Vfn(x)
)|λ−(ds−l)n,

hence

max
Vx∈Sl

x

∣∣∣∣∣ det(dfn(x)f
−n|Vfn(x)

)

det(dfn(x)f−n|Tfn(x))W
)

∣∣∣∣∣ ≤ max
Vx∈Sds

x

∣∣∣∣∣ det(dfn(x)f−n|Vfn(x)
)

det(dfn(x)f−n|Tfn(x)W
)

∣∣∣∣∣λ−(ds−l)n

Since both dfn(x)f
−n(Vfn(x)) and dfn(x)f

−n(Tfn(x)W ) converge to the stable subbundle

as n → +∞, by continuity of the differential, there exist ν ∈ (0, 1) and n̄ ∈ N such

that, for m > n̄,

| det(dfm(x)f
−1|Vfm(x)

)| − | det(dfm(x)f
−1|Tfm(x)f

m(Wi))| < ν < 1,

hence

| det(dfn(x)f−n|Vfn(x)
)| − | det(dfn(x)f−n|Tfn(x)W )| < Cνn−n̄ ≤ C

We obtain that

max
Vx∈Sds

x

∣∣∣∣∣ det(dfn(x)f−n|Vfn(x)
)

det(dfn(x)f−n|Tfn(x)W
)

∣∣∣∣∣ ≤ 1 +
1

| det(dfn(x)f−n|Tfn(x)W
)|

≤ 1 +
C

λnds
≤ C

We conclude that

∥⟨dxj, fn∗ dxk⟩ ◦ fn(x)λsn(x)∥C0(Wi) ≤ Cλ−(ds−l)n
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Let us compute derivatives. W.l.o.g. we can assume that ∂xj ∈ TxWi. Then

∂xj(| det(dfn(x)f−n|Vfn(x)
)λsn(x)|) = ∂xj(| det(dfn(x)f−n|Vfn(x)

)∥)λsn(x)+

+ | det(dfn(x)f−n|Vfn(x)
)∥ ∂xj λsn(x)

Since ∂xj λ
s
n(x) (see the proof of Lemma C.1), the second term of the sum can be

estimated by the C0-norm. Similarly, one can repeat the argument of the proof of

Lemma C.1 to prove that

∂xj | det(dfn(x)f−n|Vfn(x)
)| ≤ C| det(dfn(x)f−n|Vfn(x)

)|

Thus, also the first term of the sum can be estimated by the C0-norm. By iterating

that procedure one obtains the estimate for the Cq-norm. It remains to prove the

case l > ds. Let Vx be an l-dimensional subspace of TxM. The worst estimate for

| det(dfn(x)f−n|Vfn(x)
)| is given by the case for which Vx = Sx ⊕ Ux, where Sx is a

ds-dimensional subspace in the stable cone and Ux is a (l−ds)-dimensional unstable

subspace. Since | det(dfn(x)f−n|Ufn(x)
)| ≤ λ−(l−ds)n, we obtain again

|⟨dxj, fn∗ dxk⟩ ◦ fn(x)λsn(x)| ≤ max
Sx∈Sds

x

∣∣∣∣∣ det(dfn(x)f−n|Sfn(x)
)

det(dfn(x)f−n|Tfn(x)W )

∣∣∣∣∣λ−(l−ds)n

and we can conclude as above. Q.E.D.

We now prove two generalizations of Poincaré’s lemma that we used in Section

3.3 to get the isomorphism between the anisotropic de Rham cohomology and the

Čech cohomology.

Proof of Lemma 3.23. The first part the lemma informally says that closed

0-currents are constant and it generalizes [20, Lemma 5.15] to higher-dimensional

manifolds. Let h ∈ Cp,q,0 be a closed current of degree 0 (and dimension dim(M)). By

Lemma 2.8, Bp,q,0 can be identified with a subspace the dual space of Cp+q function

on M, i.e., a space of distribution, and the behavior of h, acting on ϕ ∈ Cp+q as a

current, is obtained disintegrating the integral

i(h)(ϕ) =

∫
M

hϕω0

along leaves of Σ. The same holds true for Cp,q,0, which is a subspace of Bp,q,0. Let
ϕ ∈ Cp+q(M) such that supp(ϕ) ⊆ int(supp(ϕk)), where we recall that {ϕk}mk=1 is
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the partition of unity subordinated to the contractible open covering {Vk = ψk(Uk)}.
Then

i(∂xi h)(ϕ) =

∫
M

ϕ ∂xi hω0 =

∫ b1

a1

. . .

∫ bdu

adu

∫
Wt1,...tdu

ϕ ∂xi hft1,...,tduωt1,...,tdudt1 . . . dtdu

where we disintegrated the integral along ds-dimensional “stable” leavesWt1,...tdu
∈ Σ

depending on du parameters t1, . . . tdu . Notice that, since leaves are smooth, the

Jacobian ft1,...,tdu is a smooth function. Consequently,

i(∂xi h)(ϕ) =

∫ b1

a1

. . .

∫ bdu

adu

∫
Wt1,...tdu

⟨ft1,...,tduϕ
−1
k ϕdxi, ϕkdh⟩ωt1,...,tdudt1 . . . dtdu = 0.

This implies that ∂xi h = 0 as a distribution on the interior of supp(ϕk). Since, by

assumption, supp(ϕk) is simply connected, hence connected, there exists ck ∈ C such

that ϕk ·(h−ck) = 0 in (Cp+q)∗. Thus, ϕk ·(h−ck) = 0 in Cp,q,0, because the inclusion
i′ : Cp,q,0 → Bp,q,0 and the map i : Bp,q,0 → (Cp+q)∗ are injective (see Lemma 2.8).

Let us prove the second part of the lemma. We firstly introduce an enlarged

partition of unity {ϕ̄k}mk=1 such that supp(ϕk) ⊆ supp(ϕ+
k ) ⊆ Vk and ϕ+

k = 1 on

supp(ϕk). Next consider a differential form ω ∈ Ωl(M) such that dωϕk = 0 for

some k ∈ {1, . . . ,m}. We fix xk ∈ Vk \ supp(ϕ+
k ) and we define the linear operator

αk : Ω
l(M) → Ωl−1(M) such that

αk(ω)x = ψk∗

Ç∫ 1

0

tl−1(ιψ−1
k (x)−ψ−1

k (xk)
ψ∗
kω)ψ−1(xk)(1−t)+ψ−1

k (x)tdt

å
,

where ιvω denotes the interior product of ω with a vector field v. Next, denoting

by yk = (r
(k)
1 , . . . , r

(k)
dim(M)) = ψ−1

k (xk) and y = (r1, . . . , rdim(M)) = ψ−1
k (x), we can

compute

((dαk + αkd)ω)x = ψk∗

Ç∫ 1

0

tl−1((dιy−yk + ιy−ykd)ψ
∗
kω)yk(1−t)+ytdt

å
=

=ψk∗

Ç∫ 1

0

tl−1(Ly−ykψ
∗
kω)yk(1−t)+ytdt

å
= (∗)

where, in the second line, we used Cartan’s magic formula [57, Theorem 2.11] which

states that, given a smooth vector field X, LX = dιX + ιXd. Let Φs(y) = yk+ e
s(y−

yk), so that Φ0(y) = y and d
ds
|s=0Φs(y) = y − yk. Writing vk in place of ψ∗

kω and
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assuming that (vk)z =
∑

j∈J l fj(z)drj in coordinates, we get (Φ∗
svk)z = els(vk)Φs(z)

and

(Ly−ykvk)z =
d

ds

∣∣∣∣
s=0

(Φ∗
svk)z = l(vk)z +

dim(M)∑
i=1

(z − yk)i
∂ fj
∂ ri

(z)drj,

where the first equality is the definition of the Lie derivative. Consequently,

tl−1(Ly−ykvk)yk(1−t)+yt =

= tl−1

Ñ
l(vk)yk(1−t)+yt +

∑
j∈J l

dim(M)∑
i=1

t(y − yk)i
∂ fj
∂ ri

(yk(1− t) + yt)drj

é
=

=

Ñ
ltl−1(vk)yk(1−t)+yt + tl

∑
j∈J l

⟨∇fj(yk(1− t) + yt), y − yk⟩drj

é
=

d

dt

(
tl(vk)yk(1−t)+yt

)
hence

(∗) = ψk∗

∫ 1

0

d

dt

(
tlψ∗

kωyk(1−t)+yt
)
dt = ωx.

We have thus proved that (dαk + αkd)ω = ω. Accordingly, if ω is a l-form such

that dωϕk = 0, then we get dαk(ω)ϕk = ωϕk − αk(dω)ϕk = ωϕk, that is we have

just proved Poincaré’s lemma for differential forms. Once we have the result for

forms, we could try to extend αk to a bounded linear operator from Cp,q,l to Cp,q,l−1.

Unfortunately, αk(ω), for a differential form ω, is not defined on every admissible

stable leaf ofW ∈ Σ. In fact, we can just consider leaves inside ψk(Uk). On the other

hand, the product αk(ω)ϕ
+
k is well defined on the full manifold, because it is null out

of supp(ϕ+
k ).Accordingly, we consider the operator βk : Ω

l(M) → Ωl−1(M), such that

βk(ω) = αk(ω)ϕ
+
k , and we want to prove that it can be extended to a bounded linear

operator from Cp,q,l to Cp,q,l−1. Let ω ∈ Ωl(M), and ψk ◦ Gp,F (Bds(0, ρ)) = W ∈ Σ,

with p ∈ B(0, ρ) and F ∈ F , as defined in Section 2.2. Let ϕ ∈ Γq,l−1
0 (W ) be a test

form. Then, denoting again by y = ψ−1
k (x), yk = ψ−1

k (xk), vk = ψ∗
kω, and χk = ψ∗

kϕ∫
W

⟨ϕx, αk(ω)x⟩ϕ+
k (x)ωW (x)=

∫
W

⟨ϕx, ψk∗

Ç∫ 1

0

tl−1(ιy−ykvk)yk(1−t)+ytdt

å
x

⟩ϕ+
k (x)ωW (x) =

=ψk∗

Ç∫
ψ−1
k W

⟨(χk)y,
∫ 1

0

tl−1(ιy−ykvk)yk(1−t)+ytdt⟩ϕ
+
k (ψk(y))ψ

∗
kωW (y)

å
= (⋆)

Setting lt(y) = yk(1 − t) + yt, we have tl−1(iy−ykvk)lt(y) = (lt∗iy−ykvk)y and (χk)y =
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(l∗t lt∗χk)y = tl−1(lt∗χk)lt(y). Thus,

(⋆) =ψk∗

Ç∫
ψ−1
k W

∫ 1

0

⟨(χk)y, (l∗t ιy−ykvk)y⟩ϕ+
k (ψk(y))dtψ

∗
kωW (y)

å
=

=ψk∗

Ç∫
ψ−1
k W

∫ 1

0

tl−1⟨lt∗(χk)lt(y), (ιy−ykvk)lt(y)⟩ϕ+
k (ψk(y))dtψ

∗
kωW (y)

å
=

=

dim(M)∑
i=1

ψk∗

Ç∫
ψ−1
k W

∫ 1

0

tl−1⟨lt∗χk ∧ dri, vk⟩lt(y)(y − yk)iϕ
+
k (ψk(y))dtψ

∗
kωW (y)

å
= (⋄)

Next, we compute∫
ψ−1
k W

∫ 1

0

tl−1⟨lt∗χk∧dri, vk⟩lt(y)(y − yk)iϕ
+
k (ψk(y))dtψ

∗
kωW (y) =

=

∫
Bds (0,ρ)

∫ 1

0

tl−1⟨lt∗χk∧dri, vk⟩lt(Gp,F (s))(Gp,F (s)−yk)iG∗
p,Fψ

∗
kϕ

+
k (s)dtG

∗
p,Fψ

∗
kωW (s) =

=

∫ 1

0

∫
Bds (0,tρ)

tl−1−ds⟨lt∗χk∧dri, vk⟩lt((Gp,F (t−1z)))(Gp,F (t
−1z)−yk)iG∗

p,Fψ
∗
kϕ

+
k (t

−1z)G∗
p,Fψ

∗
kωW (z)dt

Let qt = yk(1 − t) + tp and Ft : Bds(0, tρ) → Bdu(0, ρ) such that Ft(z) = F (t−1z).

Then qt ∈ B(0, ρ) and Ft can be extended to a function F̄t ∈ F . As a consequence,

setting Wt = ψk ◦Gqt,Ft(Bds(0, tρ)) ⊆ Ŵt = ψk ◦Gqt,Ft(Bds(0, ρ)) ∈ Σ and

(ϕ̄t)x =

dim(M)∑
i=1

(ψk∗lt∗χk ∧ dxi)x(ψ−1
k (x)− yk)iϕ

+
k (x), (C.1)

we obtain

(⋄) =
∫ 1

0

tl−1−ds
∫
Wt

⟨(ϕ̄t)x, ωx⟩ωWt(x)dt.

In summary, we have shown that∣∣∣∣∫
W

⟨ϕx, αk(ω)x⟩ϕ+
k (x)ωW (x)

∣∣∣∣ ≤ C

∫ 1

0

tl−1−ds∥ϕ̄t∥Γq,l
0
∥ω∥0,q,l|Wt|dt

One can easily check, using (C.1), that ∥ϕ̄t∥Γq,l
0

≤ C∥ϕ∥Γq,l−1
0

. In addition, |Wt| ≤
Ctds |Ŵt| ≤ Ctds , hence we conclude that∣∣∣∣∫

W

⟨ϕx, αk(ω)x⟩ϕ+
k (x)ωW (x)

∣∣∣∣ ≤ C

∫ 1

0

tl−1∥ϕ∥Γq,l−1
0

∥ω∥0,q,ldt

≤ C∥ϕ∥Γq,l−1
0

∥ω∥0,q,l,
(C.2)
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i.e., ∥βk(ω)∥0,q,l−1 ≤ C∥ω∥0,q,l and βk : B0,q,l → B0,q,l−1 is a bounded linear operator.

Similarly, let γk : Ω
l(M) → Ωl(M), such that γk(ω) = αk(ω) ∧ dϕ+

k . Then, by the

same proof, one can easily check that it can be extended to a bounded linear operator

γk : B0,q,l → B0,q,l. Next, we compute∫
W

⟨ϕ, dβk(ω)⟩ωW =

∫
W

⟨ϕ, dαk(ω)⟩ϕ+
k ωW + (−1)l

∫
W

⟨ϕ, αk(ω) ∧ dϕ+
k ⟩ωW =

=

∫
W

⟨ϕ, ω⟩ϕ+
k ωW −

∫
W

⟨ϕ, αk(dω)⟩ϕ+
k ωW + (−1)l

∫
W

⟨ϕ, αk(ω) ∧ dϕ+
k ⟩ωW ,

(C.3)

hence∣∣∣∣∫
W

⟨ϕ, dβk(ω)⟩ωW
∣∣∣∣ ≤ C∥ϕ∥Γq,l

0
∥ω∥0,q,l + C∥ϕ∥Γq,l

0
∥βk(dω)∥0,q,l + C∥ϕ∥Γq,l

0
∥γk(dω)∥0,q,l+1

≤ C∥ϕ∥Γq,l
0
∥ω∥0,q,l + C∥ϕ∥Γq,l

0
∥dω∥0,q,l+1,

(C.4)

where, in the last inequality, we used the continuity of βk : B0,q,l+1 → B0,q,l and

γk : B0,q,l+1 → B0,q,l+1. From (C.2) and (C.4) we get

|βk(ω)|0,q,l−1 = ∥βk(ω)∥0,q,l−1 + ∥dβk(ω)∥0,q,l ≤ C∥ω∥0,q,l + C∥dω∥0,q,l+1 ≤ C|ω|0,q,l,

that is βk : C0,q,l → C0,q,l−1 is continuous. Since ω is closed, dγk(ω) = ω ∧ dϕ+
k and

∥γk(ω)∥0,q,l ≤ C∥ω∥0,q,l. Therefore, |γk(ω)|0,q,l ≤ C|ω|0,q,l and also γk : C0,q,l → C0,q,l

is bounded.

We now want to prove that βk : C1,q,l → C1,q,l−1 is still a bounded linear operator.

Therefore, let ω ∈ Ωl(M), W ∈ Σ, ϕ ∈ Γq+1,l−1
0 (W ) and v ∈ Vq+1(U(W )). We firstly

show that ιvαk(ω) = −αk(ιvω). In fact, once we have this preliminary result, we get

Lvαk(ω) = (dιv + ιvd)αk(ω) = −dαk(ιvω) + ιvω − ιvαk(dω) = −ιvω + αk(dιvω) +

ιvω + αk(ιvdω) = αk(Lvω). With a slight abuse of notation, in order to simplify

notations, we confuse ω, x, xk and v, with ψk∗ω, ψk(x), ψk(xk) and ψk∗v, respectively.

Accordingly, we compute

ιvαk(ω) =ιv

Ç∫ 1

0

tl−1(ιx−xkω)xk(1−t)+xtdt

å
=

∫ 1

0

ιv(l
∗
t ιx−xkω)xdt

=

∫ 1

0

(l∗t ιlt∗vιx−xkω)xdt =

∫ 1

0

t−1(l∗t ιvιx−xkω)xdt =

=−
∫ 1

0

t−1(l∗t ιx−xkιvω)xdt = −
∫ 1

0

tl−2ιx−xk(ιvω)xk(1−t)+txdt = −αk(ιvω).
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As a consequence,∫
W

⟨ϕ, Lvβk(ω)⟩ωW =

∫
W

⟨ϕ, Lvαk(ω)⟩ϕ+
k ωW +

∫
W

⟨ϕ, αk(ω)vϕ+
k ⟩ωW =

=

∫
W

⟨ϕ, αk(Lvω)⟩ϕ+
k ωW +

∫
W

⟨ϕ, αk(ω)vϕ+
k ⟩ωW

=

∫
W

⟨ϕ, βk(Lvω)⟩ωW +

∫
W

⟨ϕ, αk(ω)vϕ+
k ⟩ωW , ,

hence∣∣∣∣∫
W

⟨ϕ, Lvβk(ω)⟩ωW
∣∣∣∣ ≤C∥ϕ∥Γq+1,l−1

0
∥βk(Lvω)∥0,q+1,l−1 + C∥ϕ∥Γq+1,l−1

0
∥v∥Cq+1∥ω∥0,q+1,l ≤

≤C∥ϕ∥Γq+1,l−1
0

∥v∥Cq+1∥ω∥1,q,l + C∥ϕ∥Γq+1,l−1
0

∥v∥Cq+1∥ω∥0,q+1,l,

which proves that ∥βk(ω)∥1,q,l−1 ≤ C∥ω∥1,q,l. By the same procedure of (C.3) we

obtain ∫
W

⟨ϕ, Lvdβk(ω)⟩ωW =

∫
W

⟨ϕ, Lvω⟩ϕ+
k ωW −

∫
W

⟨ϕ, αk(Lvdω)⟩ϕ+
k ωW+

+(−1)l
∫
W

⟨ϕ, αk(Lvω) ∧ dϕ+
k ⟩ωW ,

hence∣∣∣∣∫
W

⟨ϕ, Lvdβk(ω)⟩ωW
∣∣∣∣ ≤C∥ϕ∥Γq+1,l−1

0
∥Lvω∥0,q+1,l + C∥ϕ∥Γq+1,l−1

0
∥βk(Lvdω)∥0,q+1,l+

+C∥ϕ∥Γq+1,,l−1
0

∥γk(Lvω)∥0,q+1,l ≤ C∥ϕ∥Γq+1,l−1
0

∥v∥Cq+1∥ω∥1,q,l+

+C∥ϕ∥Γq+1,l−1
0

∥v∥Cq+1∥dω∥1,q,l+1 + C∥ϕ∥Γq+1,l−1
0

∥v∥Cq+1∥ω∥1,q,l,

i.e ∥dβk(ω)∥1,q,l ≤ C∥ω∥1,q,l + C∥dω∥1,q,l+1. We conclude that

|βk(ω)|1,q,l−1 = ∥βk(ω)∥1,q,l−1 + ∥dβk(ω)∥1,q,l ≤ C∥ω∥1,q,l + C∥dω∥1,q,l+1 ≤ C|ω|1,q,l,

so that βk : C1,q,l → C1,q,l−1 is a bounded linear operator. A similar computation

show that γk : C1,q,l → C1,q,l is a continuous operator. By the same argument βk and

γk extend to bounded linear operators βk : Cp,q,l → Cp,q,l−1 and γk : Cp,q,l → Cp,q,l.
Finally, since ϕ+

k ϕk = ϕk, we obtain

d(βk(ω)ϕk) =dβk(ω)ϕk + (−1)l−1βk(ω) ∧ dϕk =

=ωϕ+
k ϕk + (−1)l−1αk(ω) ∧ dϕ+

k ϕk + (−1)l−1βk(ω) ∧ dϕk =

=ωϕk + (−1)l−1βk(ω) ∧ dϕk,
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hence, setting uk = βk(ω) we get the lemma.

Q.E.D.

Proof of Lemma 3.25. Let h ∈ Cp,q,l,0 such that δ̄h = 0. Then 0 = δ̄h(a0, a1) =

h(a1) − h(a0), i.e., h(a0) = h(a1), for all a0, a1 ∈ {1, . . . ,m}. Accordingly, defining
ω = h(a0) ∈ Cp,q,l, we get i(ω) = h.

Next, we consider ω ∈ Cp,q,l,k, for some k > 0, such that δ̄ω = 0. We define the

operator Ξ: Cp,q,l,k → Cp,q,l,k−1 such that

Ξ(ω)(a0, . . . , ak−1) =
m∑
j=1

ϕjω(j, a0, . . . , ak−1),

where {ϕj}mj=1 is the partition of unity subordinated to the cover {Vj = ψj(Uj)}mj=1

that we used to define Čech cohomology. We show that δ̄ ◦Ξ+Ξ ◦ δ̄ = id. In effect,

δ̄ ◦ Ξω(a0, . . . , ak) =
k∑
i=0

(−1)iΞω(a0, . . . , ai−1, ai+1, . . . , ak) =

=
k∑
i=0

(−1)i
m∑
j=1

ϕjω(j, a0, . . . , ai−1, ai+1, . . . , ak),

while

Ξ ◦ δ̄ω(a0, . . . , ak) =
m∑
j=1

ϕj δ̄ω(j, a0, . . . , ak) =
m∑
j=1

ϕjω(a0, . . . , ak)+

+
k∑
i=0

(−1)i+1

m∑
j=1

ϕjω(j, a0, . . . , ai−1, ai+1, . . . , ak) =

=(ω − δ̄ ◦ Ξω)(a0, . . . , ak).

Accordingly, if δ̄(ω) = 0, defining u = Ξω, we get

δ̄u = δ̄ ◦ Ξω = ω − Ξ ◦ δ̄ω = ω.

Q.E.D.



Appendix D

A minimal introduction to entropy

For the sake of completeness, in this appendix we recall the key aspects of entropy

of dynamical systems used in this thesis. We underline that this short survey is far

to be a complete treatment of the topic, which can be found for instance in [47, 17,

71].

D.1 Measure-theoretic entropy

Let (X,B, µ) be a probability space and let P = {Pi}i∈I be finite or countable

measurable partition. This means that every Pi ∈ B, µ(X \
⋃
i∈I Pi) = 0 and

µ(Pi ∩ Pj) = 0, for any couple of distinct indexes i, j ∈ I. The entropy of this

partition is

H(P) = −
∑
i∈I

µ(Pi) log µ(Pi) ∈ [0,+∞]

with the convention that 0 log 0 = 0. A finite or countable measurable partition R
is finer than P , or equivalently P is coarser than R, if for any R ∈ R there exists

P ∈ P such that R ⊆ P mod (µ). Given another finite or countable measurable

partition Q = {Qj}j∈J , the joint partition is

P ∨Q = {Pi ∩Qj| i ∈ I, j ∈ J}

Let T : X → X be a measure preserving transformations, i.e., a map which

satisfies µ(T−1(B)) = µ(B), for any B ∈ B. Given a finite or countable measurable

partition P of X, we define

PT
n = P ∨ T−1(P) ∨ · · · ∨ T−n(P),

101
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where T−m(P) = {T−mPj| j ∈ J}. Notice that, since µ is T -invariant, then T−m(P)

is again a measurable partition and H(T−m(P)) = H(P).

Proposition D.1. The limit

hµ(T,P) = lim
n→+∞

1

n
H(PT

n )

exists and hµ(T,P) ∈ [0,+∞] is called the metric entropy of T relative to the par-

tition P .

Proof. Let us recall the definition of conditional entropy. In P and Q are finite or

countable measurable partition, then the conditional entropy of P w.r.t. Q is

H(P|Q) = −
∑
j∈J

µ(Qj)
∑
i∈I

µ(Pi|Qj) log µ(Pi|Qj),

where µ(Pi|Qj) = µ(Pj ∩Qj)/µ(Qj) when µ(Qj) ̸= 0, and it is zero otherwise. It is

not difficult to prove that (see for instance [47, Proposition 4.3.3. - (4)])

H(P ∨Q) ≤ H(P) +H(Q).

Thus,

H(PT
n+m) ≤ H(PT

n ) +H(PT
m),

hence (H(PT
n ))n∈N is subadditive and we conclude that this limit exists (see the

proof of Lemma A.9). Q.E.D.

Definition D.2. The entropy of (T, µ) is

hµ(T ) = sup{hµ(T,P)| hµ(T,P) < +∞}

D.2 Topological entropy and the Variational Prin-

ciple

In this section we recall the topological counterpart to the metric entropy hµ(T ),

i.e., the topological entropy, introduced by Dinaburg and Bowen. Roughly speaking,

the topological entropy htop is a number which measures the exponential growth rate

of orbits segments that can be distinguished with arbitrarily fine, but finite precision.
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Definition D.3. Let (X, d) be a metric space and let T be a continuous map on X.

We define the dynamic distance of length n of X

dn(x, y) = max
0≤i<n

d(T i(x), T i(y)).

Let us denote by Bn(x, r) the open dynamic ball of length n and radius r, that is

Bn(x, r) = {y ∈ X| dn(x, y) < r}.

Given ϵ > 0, a set E ⊆ X is said to be an (n, ϵ)-spanning set, if

X =
⋃
x∈E

Bn(x, ϵ).

Let Sd(n, ϵ) = min{#(E)| E is a (n, ϵ)-spanning set}. Then we define

hd(T ) = lim
ϵ→0

lim sup
n→+∞

1

n
log(Sd(n, ϵ))

Proposition D.4. Let d d′ be two metrics which induce the same topology on X.

Then hd(T ) = hd′(T ) and we can write htop = htop(T ) = hd(T ) = hd′(T ). We call

htop the topological entropy of T . In particular, htop is invariant under topological

conjugation.

Proof. Let d′ be another metric on X. For any ϵ > 0, let Dϵ be the subset of points

(x, y) ∈ X × X such that d(x, y) ≥ ϵ. Dϵ is compact in X × X and the metric d′

is continuous on Dϵ. Accordingly, there exists the minimum mϵ = min d′|Dϵ . Notice

that mϵ > 0, otherwise, there would exists (x, y) ∈ Dϵ, such that d′(x, y) = 0, but

then x = y and d(x, y) = 0, i.e., (x, y) /∈ Dϵ. As a consequence, if d′(x, y) < mϵ, then

d(x, y) < ϵ, hence Bn,d′(x,mϵ) ⊆ Bn,d(x, ϵ) and Sd′(n,mϵ) ≥ Sd(n, ϵ). We conclude

that hd′(T ) ≥ hd(T ). By reversing the roles of d and d′ one obtains hd(T ) = hd′(T ),

hence htop does not depend on d.

Finally, assume that T̃ : ‹X → ‹X is topologically conjugated to T , with a home-

omorphism Φ: X → ‹X. Let d be a metric on X and let d̃ be the pushforward

metric d̃(x̃, ỹ) = d(Φ−1(x̃),Φ−1(ỹ)). Then hd(T ) = hd̃(T̃ ) and we conclude that

htop(T ) = htop(T̃ ).

Q.E.D.
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Remark D.5. An equivalent definition of topological entropy is obtained through

the (n, ϵ)-separated sets. In fact, E ⊂ X is (n, ϵ)-separated if dn(x, y) > ϵ for any

x, y ∈ E. SettingZd(n, ϵ) = max{#(E)| E is a (n, ϵ)-separated set}, we define

hd(T ) = lim
ϵ→0

lim sup
n→+∞

1

n
logZd(n, ϵ)

Notice that Sd(n, ϵ) ≤ Zd(n, ϵ) ≤ Sd(n, ϵ/2). In effect, If E is an (n, ϵ)-separated

set with maximal cardinality, then it is also an (n, ϵ)-spanning set. Thus, Sd(n, ϵ) ≤
Zd(n, ϵ). On the other hand, if E is an (n, ϵ)-separated set and F is an (n, ϵ/2)-

spanning set, then to every x ∈ E we can assign injectively a point ϕ(x) ∈ F such

that dn(x, ϕ(x)) < ϵ/2. Accordingly, #(E) ≤ #(F ) and Zd(n, ϵ) ≤ Sd(n, ϵ/2). We

conclude that

hd(T ) = lim
ϵ→0

lim sup
n→+∞

1

n
logZd(n, ϵ) = lim

ϵ→0
lim sup
n→+∞

1

n
logSd(n, ϵ),

i.e., the two definitions of topological entropy are equivalent.

Next theorem gives the connection between metric entropy and topological en-

tropy. We do not rewrite the proof, but we refer the interested reader to [47, Theorem

4.5.3] or [71, Theorem 8.6]

Theorem D.6 (Variational Principle). Let M(T ) be the space of Borel T -invariant

probability measures , where T is a homeomorphism of a compact metric space (X, d).

Then

htop(T ) = sup{hµ(T )| µ ∈ M(T )}.

If the r.h.s. is a maximum, then µ is said to be a measure of maximal entropy.

D.3 Volume growth of invariant manifolds for Anosov

diffeomorphisms

We conclude this chapter showing that the volume of stable leaves of Σ (see

Section 2.2) of Anosov diffeomorphisms asymptotically grow as enhtop under the

action of f−n. Notice that we used this estimate in the proof of Lasota-Yorke

inequalities (Theorem 2.11). Consequently, in this section we assume the setup of

the problem of this thesis (see Section 1.2). The proof is taken by [36, Appendix C]
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We point out that there is a small mistake in their result, because W are close to

stable leaves, hence they grow under the action of f−n, and not fn, as specified in

[36, Appendix C].

Let ρ+n = supW∈Σ |f−n(W )| and let ρ−n = infW∈Σ |f−n(W )|, where |f−nW | repre-
sents the volume of f−n(W ). We prove the following theorem.

Theorem D.7. If f is topologically transitive, then, for every n ∈ N,

enhtop ≤ ρ+n ≤ Cenhtop .

Before proving Theorem D.7, we need a couple of lemmas.

Lemma D.8. Given n,m ∈ N, ρ+n+m ≤ Cρ+n ρ
+
m and ρ−n+m ≥ Cρ−n ρ

−
m. Moreover, if

f is topologically transitive, then ρ+n ≤ Cρ−n .

Proof. Let W ∈ Σ and let Wn = {Wi}i∈I ⊆ Σ, of maximal cardinality, such that

f−n(W ) ⊇ ∪i∈IWi and Wi ∩Wj = ∅ for i ̸= j. Thus, #Wn ≥ C|f−n(W )| and

|f−n−m(W )| ≥
∑
i∈I

|f−m(Wi)| ≥ Cρ−n ρ
−
m.

Taking the inf on the l.h.s., we obtain that ρ−n+m ≥ Cρ−n ρ
−
m. The other inequality can

be proved similarly by considering a minimal disjoint covering Wn of f−n(W ). Let

δ be the sup on the volume of leaves of Σ. By topological transitivity, for any ϵ > 0

there exists nϵ, such that, given B1, B2, balls of radius ϵ, then f
−nB1 ∩B2 ̸= ∅, for

some n ≤ nϵ. We set n̄ = nδ. For any n ≥ n̄, let Wn ∈ Σ such that |f−n+n̄(Wn)| ≥
1
2
ρ+n−n̄. Let x ∈ Wn and consider a ball B1 of center x and radius cδ, for some

c ∈ (0, 1), that we fix later. For any W ∈ Σ let B2 be a ball of radius cδ with

center in a point z ∈ W. Since f is topologically transitive, there exists m ≤ n̄ such

that f−m(B2)∩B1 ̸= ∅. By uniform transversality of stable and unstable manifolds,

there exists a c ∈ (0, 1) such that, for any point y ∈ Wn, the local unstable manifold

W u
δ (y) intersect f

−m(W ) and consists of a single point r ∈ f−m(W ). Since r ∈ W u
δ (y),

the distance between y and r is always smaller than δ iterating f−1. Accordingly,

|f−k(W )| ≤ C|f−k−m(W )|. Hence,

|f−n(W )| ≥ C|f−n+m(Wn)| ≥ Cρ+n−n̄ ≥ ρ+n .

By taking the the inf on W ∈ Σ we obtain the desired inequality.

Q.E.D.
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Lemma D.9. If f is topologically transitive, then, for any n ∈ N and for each ϵ > 0,

Cϵρ
+
n ≤ Zd(n, ϵ) ≤ Cϵρ

+
n ,

where Zd(n, ϵ) is the maximal cardinality of a (n, ϵ)-separated set (see Remark D.5).

Proof. Let W ∈ Σ and let Sn be an ϵ-separated set on f−n(W ), in the sense that

the distance between points of Sn is at least ϵ, with respect to the distance induced

by the metric of M on f−n(W ). Since W ∈ Σ, this distance does not grow under

iterations of f . Thus, Sn is an (n, ϵ)-separated set. Since #Sn ≥ Cϵ|f−n(W )|, we
obtain that Zd(n, ϵ) ≥ Cϵρ

+
n .

Next, let W ∈ Σ and let E be an (n, ϵ)-separated set of maximal cardinality.

Let us consider a family of balls {Bi}ki=1 of radius cϵ. By topological transitivity, for

any i = 1, . . . , k, there is ni ≤ n̄ such that f−niW ∩ Bi ̸= ∅ (n̄ is the same of the

proof of Lemma D.8). Let Wi ∈ Σ, Wi ⊆ f−ni(W ), be a leaf which intersect the

ball B. To every point of x ∈ B ∩ E we assign the unique point y ∈ W u
δ (x) ∩Wi.

Two point x1, x2 ∈ S ∩B are (n, ϵ)-separated if and only if the corresponding y1, y2

are (n,Cϵ)-separated. In particular, y1, y2 are (n,Cϵ)-separated in f−n(Wi). We

conclude that the number of these points yj is at most Cϵ|f−n(Wi)|, hence

Zd(n, ϵ) ≤
∑
i∈I

Cϵ|f−n−ni(W )| ≤ Cϵρ
+
n .

Q.E.D.

Proof of Theorem D.7. Lemma D.8 and Lemma D.9 imply that

logZd(n, ϵ)

kn
≤ log(Cϵρ

+
kn)

kn
≤ logCϵ

kn
+

log ρ+n
n

By passing to the limit for k → +∞ and ϵ→ 0, we get

enhtop ≤ ρ+n

On the other hand, Lemma D.8 gives ρ+kn ≥ Ck(ρ+n )
k, hence

log(Cρ+n ) ≤
log(ρ+kn)

k
≤ lim

n→+∞

log(ρ+kn)

k
≤ n lim

ϵ→0
lim sup
n→+∞

log(Zd(nϵ))

kn
≤ nhtop,

where we used again Lemma D.9. Q.E.D.
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hanno permesso di valorizzare il lavoro svolto.

Non posso dimenticare di ringraziare i miei colleghi e i miei amici. In partico-

lare, Matteo, Elisa, Gioia, Lorenzo, Valentina, Gabriele, Letizia e Fabio. La vostra

presenza ha spesso consentito di dimenticare, per un po’ di tempo, preoccupazioni

e dubbi che questo lavoro comporta. Grazie di cuore ai miei genitori, ad Alessia,

Francesco, nonna Ornella e i nonni che mi guardano da lassù. Il vostro sostegno non
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