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An approach to digitalise activities of combine harvesters 

through CANBUS 

 

Dott. Michielan Enrico 

 

Abstract 

 

The increase in the efficiency of agricultural machinery is a theme that attracted the attention 

and investments of the industrial and research community. In addition, in a global market, 

where the prices of agricultural commodities are so volatile and the prices of the inputs 

increase, farmers and agricultural contractors struggle to obtain at the end of the agricultural 

season a consolidated profit. For these reasons, it is important to carefully plan the usage of 

combine harvesters, to reduce the unproductive time and the input usage such as the fuel, 

that at the end of the harvesting season could increase costs.  

This study aims to develop an algorithm able to automatically identify and evaluate the time 

spent by the combines in each of the identified activities, identify the field boundaries of the 

harvested fields and perform a performance evaluation. To be able to develop the algorithm, 

during the harvesting seasons of 2020 and 2022, two combine harvesters operating in real-

world conditions in Bologna’s Province were monitored. The data necessary to perform the 

analysis were acquired as CANBUS data and processed by using the MATLAB ® suite. 

The results obtained from this analysis show that the monitored combines have spent over 

60% of the time performing harvesting activities, 13% of the time idling at the field, 10% 

performing headland turn, the 3% and 4% of the time respectively in transport on the field 

and road and 2% of the time in unloading. In addition, the performance of the monitored 

combines resulted similarly to the performance reported in other studies. 
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“The first rule of any technology used in a 

business is that automation applied to an 

efficient operation will magnify the 

efficiency. The second is that automation 

applied to an inefficient operation will 

magnify the inefficiency”. 

Bill Gates 
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Chapter 1 

 

1. Introduction 

 

1.1 Problem description 

Farmers and agricultural managers struggle to obtain a profit at the end of the harvesting 

season, and this pushed researchers to investigate the performance of every single activity 

carried out for growing crops. This is necessary in order to cut the operational costs of 

machines which are accounted for almost 30%[1]. 

The performance of agricultural machinery increased thanks to technological developments 

which led to an increased in the size of agricultural machinery, a reduction in the required 

workforce, and an increase in machinery’s functionalities. All these improvements permitted 

to increase field capacities, grain quality, and minimise losses. Field capacity is the area 

covered by agricultural machinery in an hour and it represents a key parameter for 

performance evaluation. Instead, grains quality ensembles several characteristics such as 

physical (i.e., moisture content, bulk density, etc.), safety (i.e., absence of fungal infections, 

mycotoxins, etc.), and compositional factors (i.e., protein content, starch content, etc.). 

Researchers investigated a wide range of agricultural activities, in order to find possible 

inefficiencies and provide possible solutions to increase the field capacity. Most of these 

investigations are related to tillage and crop protection activities and only a few have 

investigated harvesting activities. However, most of these analyses were performed in 

constrained conditions which do not completely represent what happens in real working 

environment because if operators know that they are involved into a research activity, they 

may change their behaviour influencing the results. In this thesis, the activities carried out 

by combine harvesters operating in real-world conditions were monitored during an entire 

harvesting season, in order to investigate in which and how combine harvesters are 

effectively used on fields. In particular, this thesis reports a methodology to: 

• Classification of the operational states;  

• Classification of fields and estimation of the field boundaries; 

• Estimation of the parameters that permit to evaluate combine performance and their 

comparison with the data reported in the literature. 
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1.2 Technological development in combine harvester and profit 

reduction in agricultural companies 

Since the development of the first combine, pulled by horses, equipped with a steam engine 

and requiring at least four operators, many technological developments had been made [2]. 

The first and most important development was mounting a combustion engine making them 

self-propelled; thus, they could simultaneously move and process crops. This improvement 

was achieved during a crucial historical moment, the Second Industrial Revolution (between 

XIX and XX century), in which industry become a leading sector in most developed 

economies. This growth of industry resulted in an increase in the industry’s workers' salaries 

that attracted people from rural areas to the cities, with a consequent workforce reduction in 

agriculture. Indeed, as reported by Federico and Malanima, in Italy as well as in most of the 

developed countries, since the end of the XX century the amount of agricultural workforce 

was reduced to 5% of the total [3]. In addition, for almost thirty years since the end of the 

Second Industrial Revolution, the world faced two world wars that created a reduction in 

food availability; however, at the end of this period, the world population grew rapidly as 

well as the food’s request. To support these two demands, agricultural manufacturers 

developed new agricultural machinery and implements, where the demanded workforce was 

reduced and at the same time field capacities and grains quality increased. In combine 

harvesters, the cutter bar width was increased together with the size of combines, engine 

thrust and tank capacity. This led to more powerful and heavier machines able to process a 

greater amount of grain. Then, combines were equipped with electrically controlled systems 

and this allowed engineers to access a wide range of information that furtherly increased the 

efficiency of combine harvesters. The electronics simplified the work of the operator and 

opened the possibility of mounting different kinds of sensors like moisture meters, and near-

infrared spectrometers (NIRs) and permitting to obtain real-time information about the 

combine’s performance, settings and grain quality.  

The application in agriculture of global navigation satellite systems (GNSSs) permitted to 

obtain the global position of a vehicle from a constellation of satellites and introduced the 

possibility of geo-referencing the beforementioned data and the development of automatic 

guidance systems [4]. In particular, the combination of information coming from yield 

monitors and GNSS receivers permitted to monitor the variability of crop yield in a field 

helping farmers in their site-specific crop management [5]. The aforementioned 

technological development in combine harvesters had, as a consequence, increased the 

purchase and service prices of these complex agricultural machinery [6]. Indeed, as reported 

by Mimra and Kavka [7], the purchasing price of combines increased by 24% from 2008-
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2015. But in modern combines, not only the purchasing price has been increased but also 

the repair and maintenance costs. Indeed, in modern combine harvesters, many components 

could fatally increase the probability of malfunctions or failures and can cause an increase 

of repair and maintenance costs. Indeed, as stated by Calcante et al. [8], the repair and 

maintenance costs generally represent 10 ÷ 15% of the total costs of combines, but these 

costs could increase with the age of the machinery. These cost items, together with fuel cost, 

represent, in economic terms, a variable cost and they change with the increase of the annual 

use. Other budget items that must be considered are the commodities prices, which belong 

to the cereal price and the fuel price. Indeed, the cereal price represents a source of revenue 

for farmers and agricultural managers, and a variation of this budget item can influence the 

profit; while the fuel price represents an expense item and can consequently increase the 

costs. These price variation of the commodities are related to a worldwide phenomenon 

known as globalisation. The globalisation of commodity’s market introduced the concept of 

uncertainty, because the pricing is no longer dependent to national factors but instead to 

global factors and those prices normally present monthly market fluctuations. Nowadays, 

farmers and agricultural managers struggle to make a profit at the end of the harvesting 

season due to the change of the above-mentioned budged items. This means that farmers and 

agricultural managers must reduce the costs. This goal can be achieved by increasing the 

annual utilization of the combine harvesters as reported by Mimra and Kavka in their study 

[7]. Moreover, nowadays technological development is not able to furtherly increase the 

efficiency of combines, due to tight international standards about the reduction of the 

emission of greenhouse gasses (GHGs) [9] and problems with soil compaction [10,11]. For 

these reasons, researchers started to investigate other possible ways to increase the 

combine’s efficiency and consequently the profit. Some researchers started to monitor the 

fleet focusing on the importance to optimise machinery size [12]. Specifically, the optimal 

machinery size is dependent on interactions between machinery and the biological and 

meteorological systems [12]. From those analyses, it was discovered that to increase 

productivity and reduce the costs of agricultural machinery, it is mandatory to plan and 

control the use of resources in arable farming. This is true, especially for large machinery, 

such as combine harvesters, in which it is important to maintain a high efficiency by limiting 

non-productive times which represents a higher proportional loss in potential machine 

production [13]. To reduce the amount of time spent on non-productive activities and 

increase efficiency is necessary to increase the management and planning capability of 

farmers and agricultural managers, this is possible thanks to fleet management tools. These 

instruments, developed for the transport business, have found an application also in 
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agriculture, to increase scheduling activities, operational efficiency and effectiveness [14]. 

Other researchers monitored how the operator’s skill can influence harvesting performance 

[15], while others monitored the machinery in it is entirety [16]. Each one of the proposed 

solutions can in a certain way increase the profit, but to provide to farmers and agricultural 

managers with the best solutions is mandatory to collect and store a wide range of 

information about the use of combine harvesters in real-world conditions. 

1.3 Literature review 

The possibility of a further increase efficiency of combine harvesters, and in general of 

agricultural machinery, attracted the attention of researchers since the advent of precise 

agriculture and international policies (2013-2020) about GHGs. In literature, there are many 

studies about different methodologies adopted for monitoring and analysing different 

farming activities. To obtain a complete picture of the harvesting activity performed by 

combines, it was decided to break this study down into three different steps: 

1. Identify a way to acquire a wide range of data from agricultural machinery and 

classified it into tasks. 

2. Identify the harvested field boundaries and obtain information about their parameters 

and characteristics. 

3. Obtain and analyse the operational performance of the combine harvesters during 

harvesting season. 

This choice was made because in this way it was possible to deeply understand each aspect 

of the harvesting activity and at the same time it permits to identify possible relations 

between each one of the three parts in which the activity was split. 

1.3.1 Data acquisition and automated task identification 

For accomplishing the before mentioned steps, data coming from real usages of combine 

harvesters must be properly collected. Thanks to technological development, nowadays this 

operation is easier to perform than in the past. Indeed, the development performed of a 

communication protocol called Control Area Network (CANBUS) by Bosch and it is 

adoption by agricultural machinery manufacturers [17] led many researchers to analyse 

CANBUS technologies [18,19]. CANBUS technology is based on a multiplex 

communication network where there are no master or slave devices in the system; indeed, 

the devices connected to the network can freely transmit messages, that contain information, 
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by using a unique message identifier (IDs). In the CANBUS network, communication occurs 

between the electronic control units (ECUs) displaced in different parts of the machinery as 

shown in Figure 1.1. The ECUs are microcontrollers that monitor, control and/or interface 

with some function of machines. The CANBUS network presents standard CAN messages 

but manufacturers can create proprietary CAN messages, to improve machinery 

management and performance by including more sensors [20]. 

 

Figure 1.1: Electric scheme of the CANBUS network 

The combination of CANBUS and GNSS receiver provided researchers with a wide range 

of information and opened the possibility to analyse and understand how agricultural 

machinery were used in their daily tasks without installing bulky and expensive sensors 

where their durability in field conditions cannot be guaranteed. 

In order to be able to identify the best methodology to acquire a wide range of data and to 

identify the tasks in which the combines are involved during harvesting season, several 

research about data acquisition and/or tasks analysis were investigated. For these reasons, 

the investigated studies are not referred exclusively to combine harvesters but also to other 

kinds of agricultural machines which embed CANBUS technology, such as agricultural 

tractors. Böttinger and Fliege monitored seven Claas Lexion 580 combines with a data 

logger for evaluating the working performance of cleaning units of combine harvesters on 

sloped fields and recorded operational parameters such as the ground speed, the inclination 

of the machine, the position, machine adjustments, grain loss and throughput [16]. The 

authors explained that the obtained data sets were checked for validity and uncertain data set 

were filtered out. From the analysis of these parameters, the authors were able to understand 

how the cleaning unit worked on hillside terrains. The proposed methodology showed how 

to automatically acquire a large amount of data from combine harvesters, but in this study, 

there was not reported any information related to the data logger chosen or the approach 
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used for the data analysis, and the authors considered only the evaluation of the cleaning 

system. Instead, Molari et al. in their research used a data logger developed by Vector 

Informatik GmbH, Stuttgart, DE (i.e., CANcaseXL log) where data were stored on a secure 

digital (SD) card. In this study, they monitored for an hour a tractor in three different tasks 

such as trailer transportation, cultivation and ploughing. The research aimed to identify 

which was the most used gear in each operation [18]. The proposed methodology showed a 

possible solution to record different signals from the CANBUS network about tractor usage. 

In a study performed by Salim et al., a John Deere 9430 was monitored to evaluate its 

performance through CANBUS data. The analysis was performed in a field that was divided 

into three blocks of 16 strips each, and CANBUS data were collected with a laptop connected 

to a CANBUS analyser developed by Vector (i.e., VN 1610). In this case, it was also created 

a backup data set by using a Vector GL1000 data logger and data were statistically analysed 

through SAS software (SAS Institute Inc., Cary, North Carolina 27513, USA). In this 

analysis, the researchers monitored the fuel rate, position, slip percentage and effective field 

capacity, the first two information were obtained by the CANBUS while the field capacity 

was indirectly obtained. But regarding the device's configuration, the proposed one results 

are too complex [21]. In all the before mentioned studies, the operator had to turn on and off 

the data recording process limiting the amount of recordable data and therefore the 

generalizations of the research results. Indeed, collecting data in the most realistic conditions 

is crucial to make the operator unaware of the recording process [22]. Molari et al. were the 

first to extensively record CANBUS data in the most realistic conditions and they adopted a 

stand-alone CANBUS data logger optimised by CNH Industrial and a dash-camera [23]. The 

data logger was able to automatically record all the CANBUS messages every time the 

tractor engine was turned on, while the camera recorded what happened during idle. The 

data analysis was carried out with MATLAB (MathWorks Inc., Natick, MA, USA) and to 

individuate the idling conditions they developed an algorithm that create a logical variable 

that was set to 1 anytime the tractor was in a standing position and the PTO was not engaged 

while was 0 otherwise. Even if this study helped to design an extensive data collection of 

CANBUS data, the analysis was mostly focused on the analysis of a specific operating state 

of the tractor (i.e., idling). The adoption of a camera that recorded what happened every time 

the vehicle was in idle condition could be a prosecution of the efficiency analysis in combine 

harvesters. Mattetti et al. in their analysis, proposed a solution to outline the mission profile 

of agricultural tractors by using CANBUS data analysis [19]. In this study, the data were 

acquired by using the same device adopted by Molari et al. [23], that has allowed to acquire 

the data for almost 107 days. While the data analysis was performed by using MATLAB and 
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an ad hoc algorithm that was able to identify all the operating activities, in which tractors 

are typically involved. The methodology proposed by Mattetti et al. presents all the 

characteristics required to perform an automated identification of the tasks in which 

combines were involved during harvesting season both for the chosen data logger and for 

the algorithm presented for the data analysis. 

1.3.2  Automated field boundaries identification 

As reported by Webster and Oliver, the earth's surface is heterogeneous, but it could change 

multiple times and create a sort of endless variety [24]. The point of view of these two 

researchers perfectly explains the concept at the basis of precision agriculture (PA) in which 

the parameters could change in space and time. The application of PA would have not been 

possible without the development of certain technologies such as computers, GNSS, 

geographic information systems (GIS), sensors and application control [25].  

Each year, the land cover and the boundaries of the field could changes accordingly with the 

planned crop rotation or due to the shifts in agricultural markets and policy initiatives [26]. 

So, if farmers or agricultural managers want to have access to agricultural funds or want to 

develop a historical database where stores all information about the monitored parameters 

for each field, the delineation of field boundaries is an operation that farmers and agricultural 

managers have to perform every year. In the early fleet management solutions developed by 

agricultural machinery manufacturers, the field boundary delineation had to be performed 

by the operator with a tractor equipped with a GNSS receiver. This operation was carried 

out by setting on the monitor the recording mode and running the tractor around the field 

boundaries. At the end of the process, the operator had to stop the acquisition, set a field 

name, and save the acquired information. This procedure is mandatory for using automatic 

guidance systems and it must be carried out any time there is a change in field boundaries. 

This leads to an unproductive use of tractors in a cropping cycle. Thanks to software 

developers and researchers, this operation is nowadays easier since it can be carried out with 

Farm Management Information Systems (FMISs) using satellite maps. Even if this avoids 

the unproductive use of machinery, the operation nowadays remains manual.  

For these reasons, researchers began to look for more efficient and less time-consuming 

solutions to automate the identification of field boundaries. The solutions found in literature 

can be divided into two groups in function of the data source used: based on the satellite 

images and on machinery trajectory measured with GNSS receivers.  

By starting from the solutions that permit the use of satellite imagery or that come from 

unmanned aerial vehicles, one of the proposed ideas was based on the use of a multi-stage 
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approach for segmenting field objects. This approach, proposed by Marvaniya et al, was 

developed with the purpose to automatically identify the field boundaries of small fields 

which was not investigated before. The authors identified croplands by adopting a reversed 

method, in which were excluded non-agricultural lands (forests, villages, grassland) [27]. 

This goal was achieved by applying to the acquired aerial imagery the global land cover 

mask provided by Buchhorn et al. [28]. After this first stage, contour detection was 

performed, only on the regions identified as croplands, by applying the Holistically-Nested 

Edge Detection (HED) technique. This technique consists in edge detection where, a sort of 

clean-up of the output data was performed by applying image operations such as erosion, 

dilation, and explicit edge thinning. This operation resulted mandatory because the algorithm 

can misclassify polygons, for the following reasons: 

• Areas without crop fields or with small isolated buildings, built up or non-crops 

areas inside an area considered as croplands. 

• Polygons can be formed by multiple fields. 

• A single field can be split into multiple polygons and identified as multiple fields. 

To reduce the risk of misclassification, the authors applied a methodology based on a 

heuristics method based on a deep knowledge of the field characteristics such as the 

convexity, size and aspect ratio. The authors meant aspect ratio a ratio between the average 

width and perimeter of the polygons. This correction of the data was performed by setting 

different threshold values related to: 

• A minimum area and perimeter, in which all the fields with those parameters lower 

than a threshold value were excluded. 

• A minimum value of convexity of the fields, where the fields excluded from the 

analysis do not have a ratio of the area of the convex hull drawn around the identified 

polygon to the area of the polygon itself were not too large. 

• A minimum ratio between the area and the perimeter of the field, in which the fields 

that pass the previous two thresholds need to present a threshold ratio between area 

and perimeter. 

• A minimum aspect ratio of the polygons, in which the identified polygons that have 

passed the previous three tests were excluded whenever the aspect ratios of the 

polygons were below the set threshold value. 

Once obtained this first polygon’s classification, the attention of the authors shifted to verify 

if the identified polygons were composed of a single polygon or by a group of polygons. To 

obtain this information, the authors checked the absence of the polygon’s boundary of cut 
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points; Marvaniya et al considered as cut points all the lines along which large polygons can 

be split. In order to be able to identify the field boundaries in each situation, the authors at 

the end of the previous steps, performed on each identified polygons a second-level 

“localized” contour detection. To be able to perform this analysis the authors adopted the 

Canny edge detector methodology[29], in which were checked the pixels present in the 

image. This analysis was performed by applying a Gaussian filter to remove the noise, 

individuate the maximum intensity gradients for the image, and compare the gradient 

intensity with the gradient direction of each pixel in order to be able to identify if the pixel 

analysed is linked to the one that follows. If this relation is true, then those two pixels could 

be considered as edges. To reduce even more misclassification two threshold gradient values 

were set named as low and high threshold; thus, pixels were classified into three groups: 

• Strong: any time the gradient value of the pixel is higher than the high threshold. 

• Weak: any time the gradient value of the pixel is between the low and high 

thresholds. 

• Suppressed: any time the gradient value of the pixel is lower than the low threshold. 

In the end, to be sure to have recognised only agricultural fields and exclude residual portions 

of buildings or natural vegetation sited inside agricultural regions, the authors performed a 

training phase of the algorithm, in which they created a data set containing information about 

the spectral and shape features of agricultural and non-agricultural fields [27]. The solution 

proposed by Marvaniya et al. revealed that the adoption of a multi-stage approach helped to 

perform an automated field boundaries identification, and it could be performed also for 

small fields. In addition, deep learning approach normally requires a wide number of images 

(10,000 to 50,000) for the training phase, but in the proposed methodology this number can 

be reduced to 25. The methodology proposed by the authors can find an application in this 

analysis because it was able to identify both small and big field boundaries, the problem is 

only related to the required computing power by the proposed algorithm; for the above-

mentioned reason, this approach could not be considered. 

Garcia-Pedrero et al. proposed an approach based on deep learning [30]. In particular, they 

proposed the use of the Land Parcel Identification System (LPIS), a web portal developed 

for the European Community (EC), in which are reported all boundaries and areas of the 

parcel eligible for the payment of the Common Agricultural Policy (CAP). This portal, as 

reported by the authors, can provide a sort of cadastre of agricultural fields per each state 

member and the information within this platform are useful for studying and monitoring 

various aspect of agricultural activities [31]. This portal was usually kept updated in order 
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to reduce the risk of paying sanctions due to improper identification of agricultural lands. 

Authors stated that the updating procedure is laborious and prone to human error process 

[32] performed by photo-interpretation of high resolutions orthophotos [31]. In their 

analysis, Garcia-Pedrero et al. proposed a solution based on deep learning (DL) where 207 

raster tiles provided by the SIGPAC were considered. As reported by the authors, the 

SIGPAC is the Spanish name for the LPIS; for each of the raster tiles, it was available also 

the boundaries of agricultural parcels, water bodies, and cities. From the available data, the 

authors selected only the parcels corresponding to the following land cover classification: 

fruit trees, nuts, olive groves, orchards, arable lands, and vineyards. The information 

provided by this selection were used by authors as ground truth; in which the ground truth 

represents a data set that can be used for the training phase of the deep learning algorithm. 

To be able to automatically identify agricultural boundaries, the authors applied a U-Net 

methodology, based on a convolutional neural network model where for the training phase, 

they used the information provided by the LPIS. As stated by Garcia-Pedrero et al, the 

application of this methodology presented a problem, which turns out to be related to the 

computational requirements to perform the training phase. For this reason, the authors 

reduced the spatial resolution of the data set to 1.173 by 1.173 pixels by using the nearest 

neighbour algorithm and applied the same resolution also to the rasterized ground truth data 

set. To perform a good training phase and avoid over-fitting, the data set had a high 

variability and for this reason, the authors adopted a random Dihedral transformation. As 

stated by the authors, the adoption of a deep learning methodology allowed a very good 

performance of field boundaries identification from different images. The proposed 

methodology could not be used to perform an automated field boundaries identification if 

the kind of data used by the authors were not easily available and if there is not a required 

computational capacity. 

Another adopted solution consisted in the use of satellite images coming from the Sentinel-

2 satellite. These images present a medium spatial resolution but are freely available, with 

an open data policy [33–35]. Sentinel-2 images are usually used for crop classification 

because the images present good spectral information and medium spatial resolution, these 

features make these imageries suitable for agricultural field boundaries identification. In this 

research, performed by Masoud et al. [36], it was developed a multiple dilation fully 

convolutional network (MD-FCN) and a super-resolution semantic contour detection 

network (SCR-Net) to perform pixel-wise image analysis. As seen in other studies these 

deep-learning approaches were trained to extract semantic information from satellite images. 

In this analysis, the authors used Sentinel-2 and RapidEye images of Flevoland in The 



22 

 

Netherlands, and to perform the automated field boundaries identification, a basic 

registration crop parcel (BRP) dataset downloaded from a Dutch governmental open 

platform, that offers up-to-date geodata. As reported by the authors, the BRP dataset contains 

information about land use in the Netherlands and is divided into five attributes: arable land, 

grassland, wasteland, natural and other. Thanks to this dataset, Masoud et al. were able to 

define agricultural field (arable land and grassland), non-agricultural field (wasteland, 

natural and other) and agricultural field boundaries (AFB). For the authors, AFB was 

represented by the outer extent that defines the transition from one field to another or from 

a field to a non-agricultural field. At this point the authors identified, from the Sentinel-2 

dataset, 10 tiles with the same size as ground truth for the training and for the testing, the 

same thing was performed for the RapidEye dataset. As mentioned by the authors, the 

analysis was performed previously only on two tiles, this part was necessary to set filter size, 

patch size and the training samples, after on the entire dataset. When the AFB were identified 

from the dataset, the authors performed an accuracy assessment by using an F-score. As 

reported by the authors, the proposed methodologies worked properly for automated field 

boundaries identification both at local and national scales. The only limitation is represented 

by the accuracy of the dataset used for the training phase. A negative aspect of this 

methodology is its computational demand; indeed, Masoud et al. report that the training 

phase for MD-FCN and SCR-Net model from a tile of 800 x 800 pixels with a 10 m 

resolution requires roughly 2 and 4 hours [36]. The proposed methodology is surely 

interesting but hardly can find an application in the analysis, due to the fact that it requires a 

great computational demand. 

Another technique family is the identification of field boundaries using machinery trajectory 

when they operate on the field. The advantage of these technique families is that it does not 

require access to weather-dependent satellite imagery in the area and it requires a low 

computational capacity and a relatively low-cost instrumentation. These approaches permit 

obtaining information about the harvested fields in all weather conditions and all over the 

world as long as the machines work in an area and can be implemented easily on combine 

harvesters. Chen et al. [37] performed an analysis of a dataset acquired in China in 2019 

aiming to identify fields and road segments. To perform this analysis, the authors cleaned 

the data in order to avoid the influence of signal noise that may occur during data acquisition. 

To reach this goal, incorrect GNSS points were detected by using the maximum speed 

reached by the vehicle [38]. To each of the remaining points, the authors applied the nearest 

neighbour smoothing method which replaced the GNSS coordinates with the mean value of 

the geographical coordinates of its closest points [39,40]. The authors have also performed 
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filtering of duplicate points because whenever the combine was in a standing position 

generated duplicate points that needed to be excluded from the dataset, otherwise the 

algorithm individuates abnormal points density during the clustering phase. After 

performing the data cleaning the authors carried out the DBSCAN clustering, in which the 

clusters were defined on the basis of the density of the points and in particular field 

operations present high point densities due to the low ground speed of the combine while on 

road operations present low point densities due to the high ground speed of the combine. 

The DBSCAN algorithm [41] as reported by the authors, requires two input parameters: one 

is the neighbourhood radius and the other is the minimum number of points. The set of these 

two values should reflect the density difference between road points and field points. The 

adoption of a DBSCAN method to perform a clusterisation allowed a possible 

misclassification of the dataset points when the GNSS points density on the road is similar 

to the density on the field and vice versa. The first case occurs when the vehicle slows down 

or stops on the road, while the latter occurs when the GNSS signal was lost. So to reduce 

these misclassifications, Chen et al developed a direction-distribution-based inference which 

was based on the idea that the strips in the same field were parallel, with this assumption the 

authors developed two inference rules. For the former, in case the number of GNSS points 

is lower than a threshold value, the field cluster was considered a false field. For the latter, 

the methodology was different as well as the assumptions. Indeed, road segments are 

consecutive, so the algorithm performed three checks: 

• Speed check: if the segments are in a field their speed should be similar otherwise 

the segments are on the road. To perform this check the authors set a threshold value. 

• Direction check: if the segments are in a field their direction should be parallel 

otherwise the segments are on the road. To perform this check the authors set a 

threshold value. 

• Shared parallel zone check: if the number of parallel segments is greater than a 

threshold value the segments are in the same field. 

With these corrections, the accuracy of this approach is roughly 95% as stated by the authors. 

The solution can be suitable to perform the automated field boundary identification in this 

analysis because the method does not require a great computational capability and it can be 

easily applied to the created dataset to perform the field clusterisation. 

Another study investigated is based on a combined use of the DBSCAN algorithm and an 

object detection (OD) methodology. The latter consists of a methodology to perform object 

localization in a given image and determine to which category each object belongs. This 

solution, proposed by Zhang et al.[42], result as an improvement of the analysis performed 
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by Chen et al, in which the GNSS data were recorded during wheat or paddy harvesting. The 

procedure to perform the data cleaning and the clusterisation is the same as proposed by 

Chen et al [37] but instead of performing a Field2Road-Cluster and a Road2Field-Segment 

the authors in this case decided to adopt an object-detection-based-clustering. The authors 

investigated three different object-detection-based clustering, such as YOLO V4, Swin-

SMask R-CNN and Dynamic R-CNN, in this case, the approach results are quite different 

from the DBSCAN. Indeed, each trajectory of the dataset was converted into an image and 

split into two categories: training images and test images. Once the training step was 

completed, the authors started the clusterisation of the data in roads points and field points. 

After that, Zhang et al, used a Davies Bouldin index [43], this index analyse the efficiency 

of the clusterisation by using quantities and features intrinsic to the dataset. The authors 

stated that the proposed methodology was to identify the field and the road for the acquired 

dataset as long as is chosen the correct object detection model for the analysed dataset. The 

methodology proposed by Zhang et al, turns out to be easily applicable to different datasets 

and can be easily used in this analysis as first stage of identification of the worked fields. 

Another investigated solution by using the information provided by the GNSS receiver is 

based on a developed algorithm based on different assumptions in which, the most important 

among these is the fully-automaticity of the solution. The solution, proposed by Zhang et al 

[44], as said before use the GNSS data acquired during the harvesting seasons 2014 and 2016 

in Colorado, the authors mounted on each vehicle involved in harvesting, a Nexus 7 tablet 

running an Android app developed by them to record all the GNSS tracks. In this case, to 

start or stop the recording the operator had to press a button on the tablet’s screen. This 

approach was based on the development of an expert system to perform the in-field 

classification, an expert system is a particular kind of artificial intelligence that permits to 

the computer to simulate human decision-making [45]. In order to perform the autonomous 

in-field classification, the authors implemented two kinds of rules, in which the first was 

needed to perform the on-road task recognition while the other one was needed to perform 

the “road extension”, which means being able to classify all the GNSS points found on the 

same road can be classified surely as road. As reported by the authors, by setting these two 

rules, the expert system could classify most of the data as on-road points so the remaining 

points could be classified as in-field. The rules definition proposed by Zhang et al was based 

on two main rules, the first was that combine harvesters travels faster on the road than on 

the field due to the surface condition, so a speed rule could easily distinguish fields from the 

roads. The second rule was that roads are straight or shaped by straight segments, especially 

in areas with large fields and it was used for road extension. The authors explained that the 



25 

 

main rules that allowed correct classification of the GNSS points were related to the speed 

performance, the density of points and the quasi-collinear propagation. As reported by the 

authors, the expert system started the analysis to perform the points classification by 

checking the speed values and if these were higher or equal to the threshold value for the 

road identification, the algorithm classified the points as on the road. After the first 

recognition of the road path, the algorithm started a scan through the time to check for other 

points that could be classified as roads. The authors explained that if between two road 

segments, there was a subsequence of GNSS point with a lower speed compared to the 

previous and the following roads segments, the system automatically checked the duration 

of this subsequence and if the time span was smaller than the set one, those points were 

classified as points in which the combine’s temporary slowdowns on the road. As reported 

by the authors, those points represent temporary slowing-down moments which might have 

occurred due to stops due to the traffic lights or stop signs. After the identification of the 

road segments, the algorithm started a density test to find low-speed subsequences that are 

still unmarked, if the system find any subsequences, it considered the points as a new road 

and started the road propagation as before. As found by the authors, these identified 

subsequences not always are roads so to reduce misclassification problems a validity test 

was performed; the test developed by Zhang et al consists into a check if the sequences are 

surrounded by other unmarked points. The proposed algorithm at the end of the classification 

of the points on the road or field uses the α-shape function to perform the field boundary 

identification [46]. This function is required to define the value of the alpha radius, which 

represents the smallest radius that produces an alpha shape that encloses all points. The 

authors explain that to compute the correct alpha radius, they used the formula for the Radius 

of Circumcircle in which were used the header width and the distance between two 

consecutive GNSS points. To the calculated value, it was added twice the circular error 

probable (CEP) of GNSS receiver’s. As found by the authors, the α-shape function estimated 

field boundaries smaller than the real ones. To solve this problem, the authors applied an 

extension of the α-shape by half of the combine’s header width, these was possible by 

applying an improvement of the algorithm proposed by Layton [47]. The solution proposed 

by Zhang et al results easy to update in each agricultural vehicles, and the capability of the 

system to identify fields boundaries presented a high-rate success in addition, as reported by 

the authors this model could also detect boundaries of very irregular fields. 
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1.3.3 Evaluation of the performance of combine harvesters  

Evaluation of the performance of the machinery is the last phase in the planning and control 

cycle for a field operation and it consists in comparing the planned operation and the actually 

executed operation [48]. The importance of the performance evaluation is related to the fact 

that farmers, but also agricultural managers have to take select the machinery for performing 

a specific activity. Indeed, the effect of this decision can positively or negatively influence 

the revenue at the end of the growing season. Thus, knowing the efficiency of each 

machinery can increase the planning capability and consequently the business profit. In 

accordance with the above-mentioned statements, researchers tried to evaluate the 

performance of agricultural machinery with increasing accuracy and for this reason, the 

performance evaluation of different agricultural machinery can be calculated in many ways 

and each one of the adopted methodologies can be considered globally right. Because 

performance evaluation in agricultural machinery represents a hot topic, this investigation 

ranged not only on combine harvesters but has explored the topic more in general by 

considering also studies on tractors since they are by far the most used machine in 

agriculture, and therefore many studies are based on analyzing the performance of these 

machines.  

The first identified analysis was performed in 1995 by Hunt D. and Wilson D., where they 

discussed the performance evaluation of agricultural machinery in their book entitled Farm 

Power and Machinery Management [49]. The authors dedicated the entire first chapter to 

this topic and defined the concept of capacity for agricultural machinery. In particular, they 

pointed out that the capacity calculated for a tractor should be different than that of combine 

harvesters. This is true because, combine harvester capacity cannot be considered only as 

area per time, but due to the fact that this machinery processes a certain amount of material 

and separates desired material from undesired one. Moreover, this book reports the definition 

of theoretical and effective capacities. The former represents the capacity of the machine in 

the event that the machine operates continuously and always at the same header width, while 

the latter is the one that the machine reach in real-world conditions. The authors explained 

that the effective efficiency of agricultural machinery is a parameter that cannot increase 

proportionally with the width of the machinery or of the implement, but it is strictly related 

to the following parameters: machine manoeuvrability, field patterns, field shape, field size, 

crop and soil conditions. Moreover, for combine harvesters, also the yield must be 

considered since considering only field capacity is reductive Indeed, as stated by Hunt D. 

and Wilson D., to obtain an high-efficiency farmers and operators have to test and judge the 
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crop and the soil conditions as fast as possible, without reducing the quality of the performed 

operation.  

Another approach is that proposed by R. D. Grisso et al. [50] consisting in evaluating the 

field efficiency of planters and of combine harvesters. In particular, they calculated the field 

efficiency as the ratio between the theoretical time required to complete the operation and 

the measured time to complete the operation; Grisso et al have explained that the data about 

the theoretical time was obtained by finding the ratio between the field area and the 

theoretical field capacity, while field size was derived from crop yield and knowledge of 

average crop yield. As found by Hunt and Wilson also the analysis performed by Grisso et 

al showed that the field efficiency was related to the working speed and at the same time to 

the field shape. The authors also found out that the working speed at the field contour was 

lower at approximately 1.6 km h-1 than the speed on straight rows, and the delay on field 

edges was twice longer than those on straight rows but the time spent on edge and straight 

patterns was the same. In addition, the authors found that the field efficiency on the field 

edges decreases more during harvesting than during planting [50]. The analysis performed 

by Grisso et al showed that the evaluation of efficiency performance, especially during 

harvesting, is not easy to perform because it is related to several factors that are related to 

the characteristics of the harvested fields. Pitla et al.[51] monitored a four wheels drive 

tractor (4WD) and a mechanical front wheel tractor (MFWD) to determine the field 

efficiency of agricultural machinery. The 4WD performed fertilizing and cultivating 

activities while the MFWD was performing planting activity. In this study, the authors 

decided to monitor the signal with the information about the tractor fuel rate identified as 

Liquid Fuel Economy (LFE). This message contained the information about the fuel 

consumption and it could be used also to estimate the engine load. The authors calculated 

the field efficiencies by using the working period of the machine intended as the period in 

which the implement was working or engaging with the soil, and they considered the dwell 

period (DP) as the period in which the implement was not performing any useful work such 

as headland turn, refill, etc. The authors also showed a methodology to identify the working 

and the dwell period by identifying a threshold fuel rate (TFR). The identification of this 

parameter could be achieved by calculating the draft force and the specific fuel consumption 

with the methodology proposed by ASAE in their standard D497.7. In this standard, the draft 

force was obtained by considering the soil texture of the monitored fields, machine-specific 

parameters, the width of the implement and the tillage depth of the implement. Thanks to 

this equation the authors stated that the tractor was in a working condition whenever the 

engine load was the minimum required for the draft power of the implement. They also 
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showed a methodology to calculate the draft power of each implement by multiplying the 

operating speed with the draft force. Moreover, the authors calculated the specific fuel 

consumption and the obtained draft power was converted into the equivalent power take-off 

(PTO) power by using the tractive efficiency factor for the 4WD and the MFWD. As reported 

by the authors, the computed PTO power was then used to calculate the specific fuel rate 

that was used as TFR[51]. The authors showed that the field efficiency could be deducted 

by analysing and monitoring the fuel consumption and that it was easily influenced by the 

kind of operation performed by the machinery. The methodology proposed by Pitla et al. 

was suitable for computing the performance evaluation of tractors performance by 

monitoring the fuel consumption, and this approach can be surely adopted to monitor the 

combine harvester performance evaluation.  

Layton et al. proposed a methodology to evaluate the harvesting performance by monitoring 

multiple combine harvesters that have worked in the same field. Firstly, the authors 

identified each portion of the field harvested by each one of the combines and subsequently 

various metrics were computed for evaluating the combine efficiencies. One of the 

investigated metrics was the field efficiency and it was computed as the ratio between the 

harvested area and the travelled distance multiplied by the header width. The harvesting 

efficiency obtained in their analysis provided a logical matrix with values between 0 and 1 

that represent the average fullness of the combine’s header. The authors identified also the 

moments in which the combine’s header was empty such as during moving to reach the field 

edge to unload and this time can influence negatively the combine’s performance. So, the 

previous formula proposed by the authors should be changed in order to consider only the 

situation in which the combine’s header result totally full. The authors reported that with 

information about the grain flow and header position, it could be possible to estimate the 

harvesting performance more precisely. 

Another metric that was calculated by the authors, was called non-harvest percentage, which 

was computed as the percentage of the time in which the combine was on the field but not 

performing harvesting. The information provided by the non-harvest percentage result 

crucial in the analysis, because the evaluation of combines cannot be restrained to pure 

harvesting operations on fields but should also comprise non-harvesting operations. By 

performing a deeper analysis of the data, the authors found out that the header of the combine 

rarely reached the full condition of 100%, so the threshold value to consider the header full 

was lowered to 90%. With this new adjustment proposed by the authors, the efficiency 

analysis has taken into account only the amount of time in which the combine was 

performing harvest, and this metric was called adjusted full-harvest percentage [47]. The 
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proposed solution by Layton et al. introduced different metrics to evaluate the harvesting 

performance of combine harvesters based on what kind of inefficiencies, in a specific 

moment, the user wants to be addressed. This approach deeply evaluated the activities 

performed by combine harvesters during the on-field activities and identified all the 

parameters that could introduce inefficiencies, but the authors did not take into account the 

amount of crop harvested that in combine harvesters result an important parameter. 

Another approach studied to evaluate the performance of agricultural machinery was 

proposed by Zhou et al., in which the authors first broke down the on-field activity into two 

parts denoted as productive and unproductive. The authors considered productive only the 

harvesting activity, while considered un-productive the turning times, in-field preparations, 

adjustments, in-field transport time, unloading, etc. 

From the former, the authors extracted the coverage area, which they considered as the area 

in which the agricultural machinery performed the activity and split it into other two parts 

called headland and field body area. Inside these two sub-parts, the authors identified several 

headlands passes (H) and field-work tracks (T), so the authors were able to calculate the 

distance-based field efficiency. Zhou et al considered the distance-based field efficiency as 

a function of the field shape, the machinery features, the working width and the fieldwork 

pattern. The methodology proposed by the authors to compute the distance-based field 

efficiency is related to the ratio between the total effective length of the headland passes and 

of the tracks and the total length of continues passes [52]. The authors also performed an 

analysis to show the degree of dependence of the field efficiency on the operational features. 

The proposed methodology allowed the identification of a new index to monitor and evaluate 

the field efficiency of agricultural machinery, in which the index is strictly dependent to the 

field, machinery and operating features. As observed for the methodology proposed by 

Layton et al. this approach is able to identify the field efficiency of agricultural machinery, 

but the metrics presented by the author do not take into account the harvesting performance 

of combine harvesters.  
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Chapter 2 
 

 

2 Materials and Methods 
 

 

2.1 The proposed methodology 

The proposed methodology includes a mix of approaches investigated throughout three 

years. The decision to split the investigation into three parts was forced by the complexity 

of the harvesting activity, in which different entities were involved such as combine 

harvesters, fields and crops. For this reason, this chapter was divided into several parts; the 

first is dedicated to the description of the monitored combines; while the others are dedicated 

to explaining the adopted methodologies for data acquisition, tasks identification, field 

boundary identifications, and performance evaluation. 

2.1.1 The monitored combine harvesters 

For the monitoring of combine harvesters, an agricultural contractor was searched in 

Bologna’s Province. The choice of limiting the search to the Province of Bologna was related 

to the fact that the acquired data needed to be frequently and manually downloaded from 

data loggers and that eventual unexpected events should be easily dealt with. The selected 

agricultural contractor had the following characteristics: 

• managed more than 1000 ha leading to data with significant variability. 

• Owned combines equipped with a CANBUS network permitting ease of the 

acquisition of data for calculating combines’ performance. 

• Performed harvesting activities during the entire season (from June to October) and 

this requirement was necessary for acquiring data related to different crops. 

The selected agricultural contractor owned two New Holland CR 7.90 combine harvesters 

(CNH Industrial N.V., Amsterdam, NL) as shown in Figure 2.1. 
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Figure 2.1: Photo of one of the monitored combines before starting the workday 

 

The specifications of the combines are reported in Table 1, and they were equipped with 

sensors that simplify the operator tasks and at the same time could provide useful 

information thanks to their embedded sensors. The two combines were denoted as C1 and 

C2, respectively. This choice was made in order to monitor what occurs on a farm during an 

entire harvest season. 

Table 2.1: Specifications claimed by the manufacturer of the combine harvesters used in this analysis. 

Maximum engine power (kW) 338 

Engine displacement (cm3) 8700 

Number of cylinders (-) 4 

Engine emissions (-) 4B 

Weight (kg) 18000 

Cutting bar width (m) 7.62 

Reel diameter (m) 1.07 

 

  



32 

 

2.2 Data acquisition  

The data acquisition was performed during two harvesting seasons, in 2020 the dataloggers 

were mounted on the combines from 21/06/2020 till 31/10/2020, while in 2022 they were 

mounted from 21/06/2022 till 18/10/2022. The combines were monitored in this period 

because, in the area of Bologna, the harvesting of wheat and barley began in late June while 

the harvesting of soybean ended in late October. The dataloggers installed on the two 

combines were equipped with two CANBUS channels, compliant with the standards SAE 

J1939-14 [53] and SAE J1939-15 [54] permitting the acquisition of the signals coming from 

the CANBUS network. The datalogger embedded a GNSS receiver without differential 

correction and with a claimed CEP of 2.5 m which permitted to measure the combines’ 

positions and speeds. In order to simplify the operator’s activities during harvesting, the 

dataloggers were set up to automatically acquire all the CANBUS messages whenever the 

combine’s engine was turned on. The data acquired were internally converted into ASCII 

format and temporarily stored in the datalogger’s memory. Approximately every month, the 

data were manually downloaded and uploaded on a Network Attached Storage (NAS) for 

the following reasons: 

• Create a backup of the acquired data. 

• Create a historical database in which to store all acquired data sets for future 

analysis.  

From all the acquired signals, it was selected only those which permitted the extraction of 

the information necessary for improving combines’ management. In particular, the signals 

used to perform this analysis were reported below: 

• Engine Reference Torque: that reports the maximum torque that the engine could 

deliver and it is denoted as 𝑇𝑒𝑟 in the following.  

• Actual Engine Percent Torque: that is the calculated output torque of the engine as 

inner torque, as a percent of 𝑇𝑒𝑟 and it is denoted as 𝑇𝑎𝑒 in the following.  

• Nominal Friction-Percent Torque: that reports the frictional and thermodynamic loss 

of the engine itself, pumping torque loss and the losses of fuel, oil and cooling pumps 

as a percent of 𝑇𝑒𝑟, and it is denoted as 𝑇𝑛𝑓 in the following.  

• Engine Speed: that reports the revolution speed of the engine crankshaft, and it is 

denoted as 𝑛𝑒. The sensor to monitor 𝑛𝑒 is located on the crankshaft and it provides 

to the ECU the position of the pistons inside the bore. With this information, the ECU 

can control the fuel injection and start the sparks ignition events at the right moment; 

The sensor normally adopted is based on the “Hall effect”. In particular, the sensors 
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can read a trigger wheel made from a ferrous metal, in the wheel there are one or 

more missing teeth and every time the tooth passes in front of the sensors will change 

the signal sent to the ECU (Figure 2.2).  

 

Figure 2.2: Operating scheme of the engine speed sensor [55] 

 

This information in addition to the knowledge of the total number of teeth on the 

wheel can calculate the engine speed. These sensors are usually mounted very close 

to the crankshaft such as the crank pulley, the timing gear or on the flywheel. 

• Engine Fuel Rate: that reports the fuel consumption of the engine, and it is denoted 

as �̇�𝑟 in the following. The value of the engine fuel rate is an important parameter 

that helps farmers and agricultural managers in their management decision, but it 

could not be directly measured by a sensor. Indeed, it is indirectly calculated by the 

manufacturer from the “fuel mapping”. 

• Header Down: that reports the position of the combine header and it is a logical signal 

and is 0 when the header is up and 1 otherwise. It is denoted as 𝐻𝑑𝑑 in the following. 

The header or cutter bar of a combine harvester is composed of different parts 

depending on the kind of cutter bar, but each one has a sensor that monitors 

constantly the position respect to the soil. This sensor consists basically of a 

potentiometer, a system that with the rotation around an axis can change the 

resistance and consequently the voltage drop as shown in Figure 2.3. 
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Figure 2.3: Side view of the header snout with the sensor arm at a low operating setting [45] 

Under the header and in lateral position there were two arms, in which one end of 

the arm touch the ground whenever the header was in a down position while on the 

other end, the arm is connected to the potentiometer. 

• Crop Flow: that reports the flow of harvested crops per unit of time, and it is denoted 

as Ċ𝑓 in the following. The grain yield sensor is a sensor that could monitor the 

amount of grain that is collected in the combine, this is possible by measuring the 

amount of clean grain that enters the grain tank in a specified period of time (1 ÷ 3 

s). The two monitored combines embed a yield sensor that measures indirectly the 

flow from the impact force of the grain on a sensing plate. This sensor is composed 

of a jointed bar with a sensing plate at one end and a counterweight at the other end, 

in order to exclude the rubbing effect of the grain as reported in Figure 2.4. 

 

Figure 2.4: Graphic scheme of the grain yield sensor embedded in the monitored combines [1]. 
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• Unload Engine Auger: that reports the auger’s engine status, it was 0 when it was 

turned off and it was 1 otherwise. It is denoted as 𝑈𝐸𝐴 in the following. The sensor 

measures the state of the engine auger, consisting of an electro valve that activates a 

double-acting hydraulic piston that pushes a tension pulley and activates the engine. 

• Navigation-Based Vehicle Speed: reports the speed of the vehicle expressed in 

kilometres per hour, and it is denoted as V.  

• Compass Bearing: that reports the direction of the movement of the vehicle expressed 

in degree, and it is denoted as 𝛼𝐶𝐵. 

2.3 Data analysis 

In this section, it is reported in detail all the analyses performed on the acquired data. The 

chosen programming environment for developing the algorithm for the data analysis was 

MATLAB® (MathWorks Inc, Natick, Massachusetts, United States). The acquired dataset, 

to be processed was converted into a .MAT file by using an ad hoc MATLAB script. The 

MATLAB script required the dataset and the CAN (DBCs) databases. A DBC is an ASCII 

file required to perform a decoding of the raw CANBUS into physical values and for this 

study, the following DBCs were used: J1939 [54], ISO 11783 [56] and the DBC of the GNSS 

receiver. Firstly, from the analysis, acquisitions shorter than 20 seconds were excluded. This 

choice helped to exclude erroneous data where the combine was shortly turned on by 

mistake. Moreover, the data were cleaned, in order to exclude erroneous data occurring in 

cases where the GNSS receivers were unable to connect to the satellites, such as when the 

combines were located close or inside to sheds. This preliminary data cleaning was 

performed through a manual identification of the errors detected by plotting the values of 

the derivative of latitude, longitude and altitude. Values above a certain threshold (i.e. greater 

than 4 and equal to 0)were excluded from the analysis. Figure 2.5 shows the trends of latitude 

signals before cleaning (in blue) and after cleaning (in red) with the before mentioned 

approach. 
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Figure 2.5: Trend of the latitude signal acquired from the GNSS receiver (in blue) and trend of the latitude signal after 

the cleaning 

Then data were smoothed with a filter with the purpose to reduce the positioning error caused 

by the used GNSS receiver, which caused a jittering of the recorded track. This error was 

reduced by applying the MATLAB embedded function called “sgolayfilt”. This function 

performed a filtration of the dataset, as reported by Heiβ et al [57] in their analysis, by 

applying a Savitzky-Golay filter. Similarly to Heiβ et al, the polynomial order was set to one 

because it fitted the chronological order of the dataset, while it was determined that a frame 

length of 25 would provide a smoothing that adequately represented the combine's track. In 

Figure 2.6, it is shown in blue the trend of the latitude’s signal before the filtering, while in 

red was shown the trend of the latitude after the filtering.  
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Figure 2.6: Trend of the latitude signal not filtered after the adoption of the Savitzky-Golay filtering 
 

2.3.1 Automated task identification 

The approach to performing the automated task identification was similar in principle to that 

proposed by Mattetti et al [19] where two different kinds of classification of data samples 

were adopted. A first classification was performed based on the combine’s position and it 

was possible thanks to two shapefiles downloaded from the Geoportale of the Emilia 

Romagna’s Region [58] which contained documents, and make usable cartographic data and 

services of the Emilia Romagna Region. From these shapefiles, it was possible to extract 

different information useful to perform this analysis. In the first shapefile, there were all the 

polygons, classified on the basis of the land use, of the Bologna’s Province. While a third 

shapefile was created by using the QGIS platform (Open Source Geospatial Foundation 

Project, http://qgis.osgeo.org) a Geographical Information System and it contained. For the 

purpose of the analysis, only the polygons classified as agriculture (i.e., denoted as “AGR” 

in the attribute table) were selected. The second shapefile contained all the road segments of 

Emilia Romagna’s region, while the third contained information about the location of the 

http://qgis.osgeo.org/
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farm’s site. In order to limit memory usage, only the polygons enclosed in a bounding box 

of 60 km around the Bologna’s Province, coinciding with the farm site and on this bounding 

box were clipped the land use and the road shapefiles. Thanks to this geographical 

information and by using the MATLAB embedded function called “inpolygon” and by 

developing an ad hoc function,  the GNSS’s points classification was carried out. The first 

function permitted to classification of the position of each point inside or outside a polygon, 

while the latter was able to classify all the points if they are close to the road’s segments. 

Thanks to these functions, points were classified into one of the following categories (Figure 

2.7): 

• Road: every time the combine’s position was closer than 3 meters from any road 

stretch. This threshold was chosen based on the CEP of the GNSS receiver utilized 

in this study.  

• Field: every time the combine’s position was inside the boundary of any field plot. 

• Farm: every time the combine’s position was inside the boundary of any farm site. 

 

Figure 2.7: Automated identification of the GNSS points on the basis of the three identified combines positions on the 

road, at the field, and at the farm. 
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After that, data samples were classified into one of the possible tasks in which combines are 

usually involved. In particular, seven tasks were defined which were: idle at farm, idle at 

field, transport on road, transport on field, work, unload, unload and work. The logical rules 

of these tasks were reported in Table 2.2. Combining 𝐻𝑑𝑑, V and Cf with combine’s 

trajectory, the distance travelled during work (𝐷ℎ) and during other tasks (𝐷𝑛ℎ) were 

calculated. For fields operations, 𝐷ℎ and 𝐷𝑛ℎ represent respectively the length of the passes 

and of the headlands. These parameters depend on several operational parameters such as 

the length of the field, and the kind of headland performed by the operator [59]. During 

headland turns, the maximum distance travelled by the combines was equal to double the 

width of the header, which was 6.72 m. The algorithm started by calculating the series of 𝐷ℎ 

and 𝐷𝑛ℎ based on the position of the header. Then the headland duration ∆𝑡 was calculated 

as the time elapsed between the falling and the rising points of 𝐻𝑑𝑑 signal (Figure 2.8). 

 

Figure 2.8: Graphical representation of the chosen methodology to compute the headland turn duration 
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Table 2.2: Rules adopted for the identification of the operative states of combine harvesters 

Operating status 
Combine 

position 

Boolean 

operator 
Combines operating activity 

Idle at farm Farm AND 𝑉 = 0 𝑘𝑚 ℎ−1 

Idle at field Field AND 𝑉 = 0 𝑘𝑚 ℎ−1 

Transport on road Road AND 0<𝑉 𝑘𝑚 ℎ−1 𝑎𝑛𝑑 𝐶𝑓 = 0 𝑔 𝑠−1 

Transport on field Field AND 0<𝑉𝑘𝑚 ℎ−1 𝑎𝑛𝑑 𝐶𝑓 = 0 𝑔 𝑠−1 

Passes Field AND 
𝑉≤7 𝑘𝑚 ℎ−1  𝑎𝑛𝑑 𝐶𝑓 > 0 𝑔 𝑠−1 𝑎𝑛𝑑 

𝐻𝑑𝑟𝐷𝑛=1 

Headlands turn Field AND 
𝑉≤7 𝑘𝑚 ℎ−1 𝑎𝑛𝑑  𝐶𝑓 =

0 𝑔 𝑠−1 𝑎𝑛𝑑 𝐻𝑑𝑟𝐷𝑛=0 

Unload Field AND 𝑉 = 0 𝑘𝑚 ℎ−1 𝑎𝑛𝑑 𝑈𝐸𝐴=1 and 𝐻𝑑𝑟𝐷𝑛=0 

Unload and Work Field AND 
𝑉≤7 𝑘𝑚 ℎ−1 𝑎𝑛𝑑 𝐶𝑓 > 0 𝑔 𝑠−1 𝑎𝑛𝑑 

𝐻𝑑𝑟𝐷𝑛=1 and 𝑈𝐸𝐴=1 

 

The thresholds shown in Table 2.2 were chosen because of in-depth knowledge of the 

combine components involved in the different tasks. For example, the speed thresholds were 

identified by starting to consider the simplest activities and those that were going to involve 

the fewest components. Next, the range of variation for the signals from the different 

components was identified (e.g., the activation of a component such as 𝑈𝐸𝐴 varies between 

0 and 1). By combining the data that comes from the different components with the time 

course of speed and position, it was possible to determine the rules that identify the different 

activities performed by the combine. 

Moreover, as stated by Zhang et al. [44] in their analysis, combine harvesters are faster on 

the road rather than on fields. This assumption can be easily explained because the surface 

of the road is normally smoother than that of a field. The lowest limit of the threshold value 

was determined by performing a search on the entire dataset of the lowest speed value 

reached by the combines during performing the transport condition as shown in Figure 2.9.  

A quite different approach was adopted to set the speed threshold value of the work condition 

and unload and work condition; in these cases, the speed could change from field to field for 

different reasons such as yields of crops, kinds of harvested crops, eventual presence of 

obstacles (e.g., trees, high voltage pylons, etc) and the shape of the field. For this reason, it 

was investigated all the speed values when the combines were on field and where the speed 
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was close to 1 km h-1 the values of longitude and latitude were investigated on the map to 

evaluate the presence of obstacles. 

The definition of these rules allows the algorithm to be able to classify all the data, the GNSS 

points (Figure 2.10) and the combine’s engine performance (Figure 2.11a and 2.11b) in one 

of the above-mentioned tasks.  

 

 

Figure 2.9: Classification of the acquired dataset based on the seven identified tasks 
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(a) Classification in tasks of the power’s 

trend 
(b) Classification in tasks of the speed 

trend 
Figure 2.10: Classification of the power and the speed signals based on the seven identified tasks 

2.3.2 Automated field boundaries identification 

After having classified the recorded GNSS samples into tasks, those classified as to the 

passes task were chosen. Thus, this information permitted to identify the shape of fields. 

Several approaches for the automatic field boundaries identification of the harvested fields 

were identified in the literature, but those that proved to provide the best results were based 

on the DBSCAN algorithm [42]. Before starting from the clusterisation, it was mandatory to 

individuate the position of the left and right outermost points of the combine’s header in a 

pass in order to compute the corrected value of the harvested area. The calculation of the 

coordinates of the right and left outermost points of the combine’s header could not be 

performed with the coordinates of the GNSS points expressed in Geographical coordinates. 

For this reason, was applied the MATLAB embedded function called “latlon2local” to 

convert the point location expressed in latitude, longitude and altitude from Geographical 

coordinates to Cartesian coordinates expressed as 𝑥𝐸𝑎𝑠𝑡, 𝑦𝑁𝑜𝑟𝑡ℎ and 𝑧𝑈𝑝. In order to be able 

to perform this conversion the function required to set the origin of the coordinates; in this 

analysis it was chosen as origin the coordinates of the farm site. 

Considering that the GNSS receiver was placed in the middle of the cabin, with the 

combine’s position, the combine heading angle, and the header width, the left and right 

outermost points of the header were calculated using Eqs. 2.6, 2.7, 2.8, 2.9. In those 

equations, 𝑥𝑎 , 𝑦𝑎, 𝑥𝑏 , 𝑦𝑏 represent the coordinates of the right and left outermost points of 

the combine’s header, 𝑥𝐸𝑎𝑠𝑡 , 𝑦𝑁𝑜𝑟𝑡ℎ represent the recorded coordinates of combines through 

the GNSS receiver, 𝑊 represents the header width and 𝛼𝐶𝐵 the heading angle calculated by 

the compass bearing of the GNSS receiver. In particular, it represents the angle between the 

theoretical straight direction and the real direction of the combine as shown in Figure 2.12. 
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𝑥𝑎 = 𝑥𝐸𝑎𝑠𝑡 −
𝑊

2
∗ sin(𝛼𝐶𝐵) 

(2.1) 

  

𝑦𝑎 = 𝑦𝑁𝑜𝑟𝑡ℎ +  
𝑊

2
∗ cos(𝛼𝐶𝐵)  

(2.2) 

  

𝑥𝑏 = 𝑥𝐸𝑎𝑠𝑡 +
𝑊

2
∗ sin(𝛼𝐶𝐵)  

(2.3) 

  

𝑦𝑏 = 𝑦𝑁𝑜𝑟𝑡ℎ −  
𝑊

2
∗ cos(𝛼𝐶𝐵)  

(2.4) 

  

   

Figure 2.11: Identification of the combine’s position and the edge’s header position. In blue were reported the 

header’s points, in red the combine’s position provided by the GNSS receiver 

Once the conversion was performed, it was created a unique array that contained all the 

coordinates header’s points and by using a MATLAB function called “DBSCAN” and it was 

able to obtain one cluster for each identified field as shown in Figure 2.13.  
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Figure 2.12: Field identification by using the MATLAB “DBSCAN” function 
 

This function was able to perform the cluster identification process and required three inputs, 

the first is the dataset, the second is the threshold radius to perform a neighbourhood search 

and it is called epsilon and the latter is the minimum number of points required to identify a 

core point inside the cluster and it is called minpts. To perform this analysis epsilon was set 

to 19 and the minpts to 9. The value of epsilon was set by evaluating the size of the smallest 

field in the shapefile reporting the boundaries of fields. The minimum detected width was 

38 m while the length was 119 m. While the choice of the value of the minpts was determined 

iteratively by choosing the value that allowed the best field identification. Indeed, a lower 

value of minpts did not allow the correct field identification because created several small 

core points, while a higher value was not able to identify any field. 

Once the clustering was done, to evaluate the performance of the algorithm, a shapefile was 

created using QGIS, in which all the polygons of the collected fields were reported while 

information about the areas and perimeters of each collected field was stored in the shapefile 

attribute table. This shapefile was used to perform a comparison visual comparison between 



45 

 

the fields identified manually in the created shapefile and the fields identified automatically 

by the algorithm. 

By using the MATLAB built-in function named alphaShape, it was created a bounding area 

that enveloped a set of 2D points and the field boundary of each clustered field was extracted. 

The choice fell on this function because it outperforms MATLAB's built-in function called 

“boundary” in fields equivalent to non-simply connected spaces (such as in areas containing 

non-harvesting portions due to obstacles) (Figure 2.13a and Figure 2.13b). This permitted to 

obtain a more realistic value of harvested area and field capacity of each field as shown in 

Figure 2.14. 

 

(a) Identification of the field’s boundaries by 

adopting the function “boundary” 

(b) Identification of the field’s boundaries by 

adopting the function “alphaShape” 

Figure 2.13: Comparison between the adoption of the MATLAB fuction "boundary" and the function "alphashape" for 

the identification of the field's boundaries 
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Figure 2.14: Field boundaries identification performed by using the MATLAB function “alphashape" 

2.3.3 Combine harvester performance evaluation 

Thanks to the information obtained by the algorithms presented in section 2.3.1 and 2.3.2, 

information about the performance of the two combine harvesters were calculated. In 

particular, by combining the data obtained from the automated task identification and the 

data about the field boundaries with the signals that were acquired directly from the 

CANBUS network of the combines, several performance metrics were calculated for each 

identified field. With the signals coming from the CANBUS network, the engine power 

(𝑃𝑒𝑛𝑔), the crop yield (𝐶𝑌𝑖𝑒𝑙𝑑), and the fuel consumption (𝐹𝑐𝑜𝑛𝑠) were calculated. These were 

calculated with Eq. 2.5, 2.6, and 2.7. 

 

𝑃𝑒𝑛𝑔 = (𝑇𝑎𝑒 −  𝑇𝑛𝑓)/100 × (𝑇𝑒𝑟 ∗ 𝑛𝑒 ∗
2𝜋

60
) (2.5) 
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𝐶𝑌𝑖𝑒𝑙𝑑 = ∫ Ċ𝑓

𝑡2

𝑡1

𝑑𝑦 (2.6) 

  

𝐹𝑐𝑜𝑛𝑠 = ∫ �̇�𝑟

𝑡2

𝑡1

 𝑑𝑡 
(2.7) 

 

To perform an analysis of the combine’s performance, in each one of the harvested fields 

and to evaluate how these performances were influenced by the field shape complexity, the 

area-perimeter ratio 𝜑𝑠𝑟 was calculated as the ratio between the field area and the field 

perimeter squared as reported in Eq. 2.8 [60].  

 

𝜑𝑠𝑟 =
𝐴𝑖

𝑃𝑖
2 

(2.8) 

 

Other parameters that needed to be considered in order to perform an analysis of the 

combines performance are the duration noted as 𝑡𝑖, the field capacity noted as 𝑓𝑐𝑖, the crop 

yield and the fuel consumption per hectare noted respectively as 𝐶𝑌𝐻 and 𝐹𝑐𝑜𝑛𝑠𝐻, the mean 

power and mean speed noted respectively as �̇�𝑒𝑛𝑔 and �̇�. The computing of these parameters 

was reported in Eqs. 2.9, 2.10, 2.11, 2.12, 2.13, 2.14 

 

𝑡𝑖 = 𝑡2𝑖 − 𝑡1𝑖 (2.9) 

 

𝐹𝑐𝑖 =
𝐴𝑖

𝑡𝑖
 (2.10) 

 

𝐶𝑌𝐻𝑖 =
∫ �̇�𝑓𝑖

𝑡1

𝑡2
𝑑𝑡

𝐴𝑖
 (2.11) 

 

𝐹𝑐𝑜𝑛𝑠𝐻𝑖 =  
∫ �̇�𝑟𝑖

𝑡1

𝑡2
𝑑𝑡

𝐴𝑖
 (2.12) 

 

�̅�𝑒𝑛𝑔𝑖 =
∑ �̇�𝑒𝑛𝑔𝑖

∆𝑡𝑖
 (2.13) 
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�̅�𝑖 =  
∑ 𝑉𝑖

∆𝑡𝑖
 (2.14) 

 

In the presented formulas, the parameters 𝑖 and 𝑗 represent respectively the number of the 

identified field and the kind of task performed. Through the comparison between the 

parameters obtained from the monitored combines with the parameters reported in the 

literature it was able to monitor the performance of the two monitored vehicles. 
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Chapter 3 

 

3 Results and Discussions 
 

Organisational remarks 

The Results and Discussion chapter is organised as follows: 

• Automated task identification reports the ability of the algorithm to classify the 

acquired signals into tasks. 

• Automated field boundaries identification reports the results of the boundaries of 

harvested fields and information and the calculation of their perimeters and areas. 

• Combine harvester performance evaluation reporting the calculated the combine 

harvesters metrics and their analysis in order to describe how combines were used 

during harvesting season. 

3.1 Automated tasks identification 

The proposed algorithm was tested and validated by using the data acquired during the 

harvesting seasons of 2020 and 2022. In 2020, both combines worked for 51 days 

(respectively 12 and 39 days) this lower worked time measured for C1, it was related to a 

mechanical failure on the combine that stop it for maintenance; while in 2022, they worked 

for 62 days (respectively 40 and 22 days). In 2020, 304 hours were collected; while in 2022, 

353 hours were collected. C1 and C2 combines worked for 92 and 211 hours in 2020; 

respectively; while they worked for 135 and 218 hours, respectively in 2022. The working 

time accumulated by the two combines in 2022 increased by 21% with respect to that of 

2020. This increase is mostly caused by combine C1 where its working time increased by 

45% between 2020 and 2022. This increase of the time usage is related to a consequent 

increase of the harvested fields from 2020 to 2022; indeed, the combines harvested in 2020 

and 2022, 54 and 94 fields, respectively. As shown in Figure 3.1a and Figure 3.1b, the 

classification’s algorithm identified eight different tasks in which, combine harvesters were 

usually involved during harvesting season. The unload and work tasks were intentionally 

omitted because their contribution was lower than 1%. As shown in Figure 3.1, both C1 and 

C2 spent most of their time in harvesting which in the graph is reported as on work. Indeed, 

C1 spent almost 68% and C2 62% of their time performing the on passes task, respectively. 
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These obtained values are comprised in the range of 60-70% as reported by Savickas et al. 

[61] .  

  

(a) Time contribution of each task on the entire C1 

activity 

(b) Time contribution of each task on the entire C2 

activity 

Figure 3.1: Time contribution of each task on the entire combines activity  

The time contribution by the two combines in idle conditions was reduced; indeed, in 2020, 

C1 and C2 were run on idle for 14% and 15%, respectively; while, in 2022, they were run 

on idle for 10% and 13%, respectively. The time contribution of idle at field results greater 

than idle at farm because the number of idling stops at field (with a mean duration of 101s) 

are more frequent than those at farm (with a mean duration of 81s), because the idle at field 

is related to driver’s turnover, attached/detached of the cutting bar, fix failures, refuel as 

reported by Hunt and Wilson [49]. The time contribution of the transport tasks (both on field 

and on road) are quite similar for the two combines, this can be explained by the fact that the 

transport at field includes all the moving activities such as the travel to reach the unloading 

site and back or the movement between the fields as shown in Figure 3.2. The time 

contribution of the headland turns was around 10% of the entire working time for both the 

combines. The headland turn contribution of the monitored combines was lower than the 

one reported by Doungpueng et al. [62], this is related to the fact that the mean area of the 

harvested fields reported by Doungpueng was around 0.5 ÷ 0.8ha, while the recorded mean 

field area for C1 and C2 were  4.42 and 8.42ha respectively.  
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Figure 3.2: Classification of the dataset points on the basis of the identified tasks. 
 

The two combines accumulated 915,570 headland turns and the empirical cumulative 

distribution of headland duration is reported in Figure 3.3. This parameter ranges from 2 up 

to 283 seconds and it is strictly correlated to the headland patterns. The 50% of the headlands 

turn ranged between 2 and 20 seconds, this is probably related to the fact that most of the 

headland turns are performed in continuous, which means without having to manoeuvre. 

Headland turns comprised between 20 and 40 seconds are not infrequent, and they accounted 

for almost 20% of the headlands. Headland turns longer than 40 seconds are not infrequent; 

indeed, they are accounted for less than 7% of all headlands; these are probably related to a 

particular field’s characteristics such as the presence of obstacles, or a particular field shape. 

These situations as reported by Bochtis et al.[63] and can influence in a certain way the 

performance of the entire harvesting activity because, in these circumstances, operators have 

to reduce the vehicle speed and perform different manoeuvres in order to be able to cover 

the field area. 
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Figure 3.3: Empirical cumulative probability of the headland turns duration. 

The daily usage of the combines ranges from less than 20 to up to 946 minutes; in 50% of 

the worked days, the combines were used for more than 350 minutes as reported in Figure 

3.4. 

The performance of the algorithm to perform the automated tasks identification were tested 

manually and visually by adding to the plot obtained after performing the automated task 

identification, the shapefile of the Bologna’s Province roads. As shown in Figures 3.5 and 

3.6, all the points were classified in one of the possible defined tasks; in particular, it was 

able to take a look at the perfect transitions between the transport on road and the transport 

on field and how smoothly the combine trajectory follows the roadway of the shapefile as 

shown in Figure 3.5 (a) and Figure 3.5 (b). 
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Figure 3.4: Empirical cumulative probability of the daily usage of the combine harvester 

The algorithm was able to correctly classify all the points into the seven identified tasks, but 

not in all conditions. Indeed, in Figure 3.5a and Figure 3.6a were shown fields with particular 

shapes that in a certain way can lead to a difficult identification of the tasks, as well as shown 

in Figure 3.5b and Figure 3.6b which were considered isolated fields close to the roads. For 

example, in Figure 3.7, the algorithm classified the points as transport on field instead than 

transport on road. This occurs whenever the GNSS points were located inside the boundaries 

of the polygons of the land use shapefile. A few misclassifications of the transport on road 

occurred, and this happened whenever the speed of the combines was close to 0 km h-1 and 

the on-road points were classified inside the boundaries of the polygons of the land use 

shapefile used to perform the on-field classification as shown in Figure 3.8. In this case, the 

algorithm considers the above-mentioned points as idle on field. The same kind of 

misclassification occurred also for the classification of the transport on field as shown in 

Figure 3.8 (a) and (b). A probable misclassification sometimes occurred also during the on 

headland turn tasks, as shown in Figure 3.9 (a) and (b) in the black circle, because in this 

case the headland turn lasted more than 20 seconds and included some on work points. In 
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these cases, it was performed a visual inspection by using satellite images of the fields in 

which these errors occurred, but as shown in Figure 3.10a and Figure 3.10b, the fields did 

not present any particular characteristics that justified the identified manoeuvres. The reason 

for this misclassification could be probably related to the methodology adopted to identify 

the on headland turn’s task because were considered only the two states identified by the 

sensors while probably there could be also intermediate states. 

 

  

(a) Automated task identification in fields with 

particular shapes 

(b) Automated task identification in isolated fields 

close to the road 

Figure 3.5: Classification of the points of the dataset in the identified tasks 

 

  

(a) Automated task identification in fields with 

particular shapes 

(b) Automated task identification in isolated fields 

close to the road 

Figure 3.6: Classification of the points of the dataset in the identified tasks 
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Figure 3.7: Examples of problems encountered after the tasks classification 

. 

 
Figure 3.8: Examples of problems encountered after the tasks classification 
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(a) The particular headland turns were highlighted 

in orange 
(b) The particular headland turns were highlighted 

in orange 
Figure 3.9:Identification of particular headland turn 

  
(a) Satellite image of the investigated field with a 

particular headland turn 

(b) Satellite image of the investigated field with a 

particular headland turn 

Figure 3.10: Satellite images for checking the reasons for the headland turn misclassification, in orange highlighted the 

headland turns while in blue the combine’s passes 

3.2 Automated fields boundaries identification 

As shown in Figure 3.11, a first analysis of the results of the algorithm showed that the field 

clustering algorithm permitted correctly identifying most of the harvested fields but to 

perform a more precise performance evaluation, a visual and manual validation was carried 

out. For this reason, the obtained automatically identified field boundaries were checked 

with those manually created with QGIS. The comparison between the two, permitted it to 

spot possible misclassifications. As shown in Figure 3.12, Figure 3.13, Figure 3.14, and 

Figure 3.15, Figure 3.16 and Figure 3.17, there were reported different and particular cases 
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in which the automated field boundaries identification was tested. In Figures 3.12 and 3.15 

there were tested fields with a simple shape and orthogonal field boundaries, in which the 

identified boundaries were similar to the boundaries identified manually. In Figures 3.13, 

Figure 3.14 and Figure 3.16 there were tested fields with particular shapes and a hole inside, 

in these cases the identified boundaries were in few parts not following the manually 

identified boundaries. Figure 3.17 it was tested the capability of the algorithm to identify a 

group of fields close one to the others, the distance between the field was very small and the 

algorithm was not able to correctly identify the boundaries of the field. Figure 3.17 presents 

fields with particular shapes in which the field boundaries were irregular and the fields were 

not convex, in this case, the algorithm was able to correctly identify only one of the three 

fields. This misclassification problem could be probably related to a limit of the DBSCAN 

solution. Indeed, in fields that presented within them a certain reduction of the GNSS points 

density, the algorithm identified these areas as the edge of the fields and clustered them as 

different fields. 

One can note that in the case of fields with a distance among the headlands lower than 6 m 

the misclassification occurred as shown in Figure 3.20.  

 

Figure 3.11: Field identification performed by the algorithm, the GNSS points of the combine harvester were clustered 

by using the “DBSCAN” function 
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Figure 3.12: Visual check of the capability of the algorithm to automatically identify the field boundaries in isolated 

fields  

 

Figure 3.13: Visual check of the capability of the algorithm to automatically identify the field boundaries in fields 

isolated with a particular shape 
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Figure 3.14: Visual check of the capability of the algorithm to automatically identify the field boundaries in fields with 

particular shapes and holes inside. 

 

Figure 3.15: Visual check of the capability of the algorithm to automatically identify the field boundaries in fields with 

long distances between the headlands 
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Figure 3.16: Visually check the capability of the algorithm to automatically identify the field boundaries in fields with 

different shape 

 

  

Figure 3.17: Visually check the capability of the algorithm to automatically identify the field boundaries in fields with 

different distance 

In Figure 3.18 there were reported two fields very close one to the other, in which the 

harvesting pattern in the two fields were orthogonal. In this case, the algorithm was not able 
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to correctly identify the field boundaries. The field shown in Figure 3.19 presents a very 

particular shape and a low harvesting pattern. As a low harvesting pattern, it was considered 

the presence of a great number of parts inside the field in which the combines had not 

performed harvesting.  In this case, the algorithm was able to correctly identify the field 

boundaries. Figure 3.20 were shown two fields in which in the first the distance between the 

headlands was lower than 6m and in the latter, the distance was greater than 6m. In the first 

case, the algorithm was not able to correctly identify the boundaries of the two fields while 

in the latter th automated identification worked properly. 

 

Figure 3.18: Visually check of the capability of the algorithm to automatically identify the field boundaries in fields very 

close to each other 
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Figure 3.19: Visually check the capability of the algorithm to automatically identify the field boundaries of fields with 

particular shapes 

 

  

(a) Headland distance lower than 6 m (b) Headland distance higher than 6m 

Figure 3.20: Identification of the threshold headland distance that introduces misclassification 

However, the algorithm identified the field’s boundaries of 39 harvested fields instead of 54 

fields harvested in 2020; while in 2022 the identified field’s boundaries were 72 instead of 

96 harvested fields. In addition, the identified field boundaries follow strictly, in most cases, 

the line of the real field boundaries as shown in Figure 3.12 and Figure 3.15.  
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3.3 Combine harvesters performance evaluation 

During harvesting season 2020, the combines have harvested a total of 54 fields and over an 

area of 461 ha as shown in Figure 3.20, while during 2022 the combines have harvested a 

total of 96 fields and over an area of 420 ha as shown in Figure 3.21. In 2020, C1 and C2 

harvested 184 and 277 ha, respectively; while, in 2022, C1 and C2 harvested 200 and 219 

ha, respectively (Table 3.1). 

 
Figure 3.21: Fields harvested by each one of the combines in 2020 

 
Figure 3.22: Fields harvested by each one of the combines in 2022 
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The increase in the number of harvested fields in 2022 compared to the number of fields 

harvested in 2020 is related to the fact that as discovered during the development of the 

shapefile in which field boundaries were manually reported, the mean field area in 2020 and 

2022 were 5.23 and 3.78 ha respectively. This implies a mean area reduction of almost 28%.  

Table 3.1: Summary table of the data obtained by the performed analysis for the harvesting seasons 2020 and 2022 

 C1 C2 

Passes (%) 68.00 % 62.00 % 

Headland turn (%) 13.00 % 10.00 % 

Idle at field (%) 10.00 % 13.00 % 

Idle at farm (%) 0.92 % 2.00 % 

Transport at road (%) 4.00 % 5.00 % 

Transport at field (%) 3.00 % 5.00 % 

Unload (%) <1.00 % 2.00 % 

Harvested area (ha) 384.17 498.69 

Total fuel consumption (L) 9,871.20 11,011.90 

Fuel consumption on road (%) 5.50 % 6.00 % 

Fuel consumption on field (%) 94.50 % 94.00 % 

In Table 3.1, C1 and C2 present similar values of field annual working time, which comprise 

passes and headland turn, high effective working time that comprises only the passes and 

lower harvested area than the data presented in another study [64]. The lower value of the 

harvested area is probably related to the unique orographic characteristics of the Italian 

peninsula. Indeed, Italy presents a limited amount of arable land, 41% of the entire Italian 

surface [65], and this amount results fragmented in small fields due to the historical and land 

use planning policies such as sharecropping and the creation of the cadastre. In addition, in 

each Italian province, there are several agricultural contractors that share out the managed 

arable land. This implies that the annual harvested area performed by the monitored 

combines results lower than the area reported by Olt et al [64]. The data of the fuel 

consumption result similar to that presented by Olt et al. [64] for C1 while resulted higher in 

C2; by considering the fuel consumption on road operations, the values result higher, while 

the fuel consumption on field resulted lower than the values presented in the literature [64]. 

The fuel consumption on road result higher due to the distance between the farm site and the 

harvested fields, indeed they were spread over an area of almost 445 km2 around the farm 

site. This certainly determined the increase of the fuel consumption on road and the reduction 
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of the fuel consumption on field of the monitored combines. The measured parameters for 

the monitored combines resulted lower than in most of the computed values reported in 

Table 3.2. 

Table 3.2: Agro-technical characteristics of the monitored combines 

 C1 C2 

Harvested weight performance (t h-1) 11.35 (5.87) 8.87 (2.90) 

Harvesting performance (t ha-1) 7.14 (3.26) 5.72 (1.72 

Total harvested crops (t) 2,744.36 (47.51) 2,852.86 (52.12) 

Field capacity (ha h-1) 1.59 (0.48) 1.90 (0.16) 

Total fuel consumption per hour (L h-1) 40.82 (2.33) 41.88 (3.02) 

Fuel consumption per area (L ha-1) 25.69 (5.41) 22.08 (2.98) 

Fuel consumption per total harvested 

crops (L t-1) 
3.60 (1.07) 3.86 (0.54) 

These values can be probably related to the yield of the harvested crops and to the field’s 

shape as reported by Bochtis et al [63]. By comparing the field capacity of the monitored 

combines it was found that the values were similar to the value reported by Latterini et al. 

[66]. Instead, the values of the fuel consumption resulted higher than the values reported by 

Olt et al. [64], this is probably related as above mentioned to the field’s shape that determines 

an increase of the time in harvesting and consequently an increase of the fuel consumption. 

As noted in Table 3.3 and also in Table 3.4, there were considered the mean power and speed 

values for each task. The value of the speed for the idles and unload task was intentionally 

omitted due to the fact that one of the rules for the identification of these tasks was that 

combines had to be standstill. 

By considering Table 3.3 the lowest �̅�𝑒𝑛𝑔values were found during idling conditions, at farm 

and at field, the values recorded during the transport tasks were lower than 100 kW and this 

value is lower than that occurring at on passes and unloading activities. This can be related 

to the fact that the power required was used only for moving the machines. For on passes 

and unload tasks, the power was required to activate other combine components such as the 

cutting bar, threshing system, and cleaning system during harvesting. On the other hand, 

during unloading was mandatory to activate the unloading system, composed of an auger. 

During the transport on road, �̅� resulted higher than that during transport on field, this 

relation between the different speeds on road and on field was explained also by Zhang et al 

[44]. Speed lower than 4 km h-1 during on work task was related to the crop yield and to the 

field’s shape as reported by Bochtis et al [63] and as found out by the presence of obstacles 

on field as shown in Figure 3.22 that require a temporary speed slowing down. 
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Table 3.3: Power demands per each task 

�̅�𝑒𝑛𝑔 [𝑘𝑊] C1 C2 

Idle at farm 13.04 (12.20) 13.94 (10.78) 

Idle at field 12.80 (8.89) 13.64 (9.71) 

Transport on road 84.37 (50.77) 95.88 (50.65) 

Transport on field 91.73 (64.89) 94.30 (54.80) 

On work 168.08 (35.84) 168.74 (38.26) 

Unload 114.06 (37.79) 108.14 (33.87) 

Total 134.34 (70.76) 130.80 (68.61) 

 

Table 3.4: Mean speed detected per each task 

�̅� [𝑘𝑚 ℎ−1] C1 C2 

Transport on road 25.78 (12.26) 27.79 (11.33) 

Transport on field 7.73 (5.46) 6.95 (5.17) 

On work 3.91 (2.18) 3.96 (1.95) 

Total 4.69 (6.52) 4.87 (7.04) 

 

Figure 3.23: Visual identification of obstacles on field that could reduce the speed during on work task. (a) the presence 

of old rural buildings, (b) wooded strips, (c) Power lines 

The Spearman correlation matrix was obtained with the measured data from the combines 

performance and the harvested fields. Figure 3.23, shown a negative and positive strong 

correlation between the parameters referred to the field characteristics such as A, P and Fsr. 
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𝐴 1.00         

𝑃 0.91 1.00        

𝐹𝑠𝑟 -0.89 -0.67 1.00       

𝑡 0.98 0.89 -0.89 1.00      

𝐹𝑐 0.52 0.51 -0.43 0.40 1.00     

𝐹𝑐𝑜𝑛𝑠𝐻 0.96 0.87 -0.86 0.97 0.38 1.00    

𝐶𝑌𝐻 -0.10 -0.11 0.09 -0.07 -0.25 0.08 1.00   

�̅� 0.23 0.22 -0.19 0.22 0.08 0.21 -0.03 1.00  

�̅�𝑒𝑛𝑔 -0.24 -0.23 0.21 -0.25 -0.11 -0.04 0.73 -0.15 1.00 

 𝐴 𝑃 𝐹𝑠𝑟 𝑡 𝐹𝑐 𝐹𝑐𝑜𝑛𝑠𝐻 𝐶𝑌𝐻 �̅� �̅�𝑒𝑛𝑔 

 

Figure 3.24:Results of Spearman’s correlation matrix. High positive correlations are highlighted in dark green, and high 

negative correlations are in dark red 

While the parameters that considered the combine’s performance (i.e. 𝐹𝑐, 𝐶𝑌𝐻, 𝐹𝑐𝑜𝑛𝑠𝐻, �̅�𝑒𝑛𝑔 

and �̅�) and present positive and negative weak correlations with the field’s characteristics, 

except the �̅�𝑒𝑛𝑔 that presented a strong positive correlation with the 𝐶𝑌𝐻. This is probably 

related to the fact that as reported by Bochtis et al. [63], the characteristics of the crops such 

as the crop density or the obtained yield could influence the operational parameters of the 

agricultural machinery. Indeed, the engine power during on work is influenced by crop 

density since there is a greater amount of crop that must be threshed and cleaned. 
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Chapter 4 

 

4 Conclusions 

The main goal of this study was to investigate in which and how many activities the 

combined harvesters were involved, as well as how much time they spent in each activity. 

Thus, two combine harvesters were monitored for two years in real-world conditions. In 

addition, it was developed a methodology to perform an automated identification of field 

boundaries and a performance evaluation for each single field. The proposed methodology 

was able to identify all the tasks in which the combines were involved, during harvesting 

season, and the observed values are similar to the values presented in the literature. In 

addition, the algorithm was able to correctly identify most of the harvested fields. The 

adoption of the DBSCAN and of the alphashape to perform the automated field boundaries 

identification was helpful to obtain information about the characteristics of the harvested 

fields. However, in fields with irregular boundaries, the algorithm struggled to identify the 

right boundaries. Moreover, the clustering algorithm struggles in discerning fields that are 

very close to each other. It was also observed a certain difficulty to compare the data for the 

monitored combines with data present in the literature. Indeed, the values observed for the 

monitored combines result lower, in particular the values of the total working time and of 

the total harvested area. Those problems could be related to the Italian agricultural situation, 

which results quite different than that of other countries, due to the fact that the arable land 

represents only 41% of the whole territory. 

By considering the performance parameters observed for the two monitored combines also 

in this situation the values resulted lower than the values found in the literature. This is 

probably related to the different characteristics of the harvested fields such as the parameters 

of the fields shape ratio resulted quite differently, sometimes the presence of different kinds 

of obstacles that required a certain skill from the operators to reduce the number of slowing 

down during harvesting that otherwise inevitably reduced the harvesting performance. 

In literature, similar analyses were performed abroad, but in Italy, this kind of analysis was 

performed only on tractors. This could be related to the fact that tractors were used for longer 

times during growing seasons than combine harvesters that can be used only to perform a 

particular operation. Indeed, in order to be able to increase the efficiency of the whole 
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agricultural system is mandatory primarily for manufacturers, but also for farmers and 

agricultural contractors, to increase the efficiency of the different subsystems related to the 

crops growing. Nowadays Italian farmers were facing an important transition from the old 

way of doing agriculture to the smart agriculture. The Italian Ministry of Agriculture thanks 

to the tax credit manoeuvre, called "Agricoltura 4.0”, opens the possibility to renew 

agricultural fleets and adopt digital solutions for farmers and agricultural contractors.  

The change of the old agricultural fleets with the new ones could allow obtaining more data 

from agricultural machinery and can increase the adoption of the proposed methodology. 

Thanks to the information obtained by the model it is also possible to cover a large part of 

the data required by national governmental organisations, or it can be delivered to 

agronomists or clients who managing the farm in order to provide them a whole picture of 

the farm situation. The proposed methodology opens up further development of the 

developed algorithm, in particular on the automated field boundaries identification that 

needs to be more adherent to the Italian situation. 
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