
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA
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Abstract

This thesis’ work is focused on object counting in fluorescent microscopy
images. In these pictures, neuronal cell activity is detected to study the
mechanisms underlying torpor. To prove the relevance of this biological
effect is essential to quantify the number of activated neurons in localized
slices of mouse and mice brains represented in the images analyzed in this
work. Usually, this amount of cells is provided by human operators through
manual annotation. This task is very time-consuming delaying the outcome
of the experiments and wasting the researcher’s time. Moreover, the fatigue
and the subjectivity of the annotators can introduce bias in the count value
affecting also the experimental evidence. For these reasons, we investigate a
deep-learning-based procedure to automatize this task.

Specifically, we based our work on two of the main convolutional-neural-
network (CNNs) state-of-the-art architectures: UNet and ResUnet family
model. While different approaches exist to face the counting task, we resort
to the counting-by-segmentation strategy to provide also a justification of the
objects considered during the counting process. The supervised ground-truth
labels used under this framework are binary masks in which the coordinate
corresponding to the cell’s object’s location are represented by white pixels
while the surrounding background is black. However, these target masks are
time-expensive to produce and often impractical to generate. So, together
with the supervised case, we also explore a weakly-supervised learning strat-
egy exploiting only dot annotations. This latter kind of label is represented
by a set of coordinates that represent a point (usually near the center) of the
objects to detect. We illustrate two viable options to generate the pseudo-
labels used for the model training depending on the dataset objects’ features.

Sometimes, not only the annotation process can prevent the model train-
ing but the same data availability may represent a bottleneck. So, exploiting
the two datasets used in this work, we quantify the advantages in terms of
data reduction and counting performance boost obtainable with a transfer-
learning approach and, specifically, a fine-tuning procedure. With the spirit
of open science in mind, we released the dataset used for the supervised use
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case and all the pre-training models. Moreover, the last part of the work is
dedicated to the design of a web application used to share both the counting
process pipeline developed in this work and the models pre-trained on the
dataset analyzed in this work.
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Chapter 1

Introduction

Deep learning is one of the most fruitful branches of the AI world and pro-

vides an appealing set of tools to automatize tasks like the object counting

considered in this thesis. Among these algorithms we largely take advantage

of state-of-the-art convolutional-neural networks (CNNs) (Jimenez-del Toro

et al. [2017], Greenspan et al. [2016]). Specifically, our work strongly relies on

the well-known UNet architecture described the first time in the work Ron-

neberger et al. [2015] to address a segmentation problem on images coming

from the biological research domain.

Starting from this architecture we developed a model that quantifies the

activity of neuronal cells in microscopy fluorescent images. These pictures are

acquired during the investigation of the torpor onset mechanism concerning

small-size mammals like mice and rats. The scope is to capture the network

of neuron communication that is specifically activated during this particular

metabolic state. We address this task following the counting-by-segmentation

approach, that is, we first localize the objects during the segmentation step,

and then we count them. This approach requires, under a supervised learning

frame, the availability of binary ground-truth masks. The first part of this

work is focused on the best-case scenario of binary mask availability that

largely facilitates the training of our deep learning model. However, ground-

truth masks are quite labor-intensive to obtain and require great time and

effort. In many cases, we may have a problem getting such labels jeopardizing

CHAPTER 1. INTRODUCTION 1



the training of a deep learning model. To lose this constraint we explored

a strategy to face the same counting-by-segmentation relying only on dot

annotations that are a kind of labels significantly easier to obtain. This case

is reported as a case of weak supervision and is the bulk of the second part

of this work.

To present these results we worked on two distinct datasets that focus

on different genes expression involving the torpor onset: the CTb and c-Fos

genes. A further step we want to take during this thesis is to understand how

to reduce the number of images needed for the model training by exploiting

transfer learning techniques and, specifically, a fine-tuning procedure. We

quantify this amount by comparing models trained from scratch with models

fine-tuned on the target domain varying the number of images and evaluating

their detection scores. All these efforts are thought to be a solid step toward

the sharing of data and knowledge to foster research in this field. For this

reason, we published the supervised dataset (Fluorescent Neuronal Cells)

and the pre-trained models (cell counting yellow repository). Moreover, a

web application is designed to make available the entire cell counting pipeline

tool. Users from all over the world could potentially interact with the pre-

trained model via a graphical interface to make inferences on their custom

dataset.

Structure of the thesis

After an introduction to the computer vision discipline and the convolutional

neural network architectures largely used in this work, we briefly describe the

differences between the main learning paradigms, focusing on the supervised,

weakly supervised, and transfer learning approaches. Then we present the

main topic of the thesis concerning object counting in the fluorescent mi-

croscopy domain. The remaining chapters are structured accordingly:

Chapter 2 present the counting-by-segmentation approach under the su-

pervised learning framiework. This chapter essentially reports the work de-

scribed in Morelli et al. [2021b]. Chapter 3 reports the novel approach devel-

oped during this thesis to address the counting-by-segmentation task without

2 CHAPTER 1. INTRODUCTION
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1.1. COMPUTER VISION AND DEEP LEARNING

relying on the ground-truth masks but only using dot annotations. We re-

port two different approaches tailored to two distinct datasets with their

peculiar characteristics. Chapter 4 is focused on the transfer learning ap-

proach used to transfer feature knowledge from a source to a target domain.

We extensively compared scratch models with fine-tuned models to quantify

the performance boost by varying the number of images available from the

target domain. We aim to highlight this method’s benefit in the data scarcity

context. Finally, Chapter 5 presents a web-app development aimed to share

such trained models, fostering research in the biomedical imaging field.

1.1 Computer vision and deep learning

Computer vision is a field of artificial intelligence that focuses on enabling

algorithms to interpret and comprehend visual data from the world around

them. Typical tasks are, for example, the objects’ recognition and identi-

fication from images and videos. Deep learning algorithms are even more

preferred for digital image processing over standard processing techniques.

In the following we describe the fundamentals of digital image processing and

the use of deep learning algorithms in the field.

Digital images

A digital image can be defined as a matrix of values in which each element,

the pixel, represents intensity within a range of discrete values. For example,

in the simplest case, a two-dimensional matrix gives the representation of a

grayscale scene in which the pixel values range from a minimum, black, and

a maximum value, white. In a more realistic case, modern digital cameras

store three different channels (RGB) representing the frequencies of the elec-

tromagnetic spectrum of red, green, and blue colors. The image is then the

superposition of these three channels. These two examples do not exhaust

the set of all possible digital image types, which depend essentially on the

electromagnetic bands stored in the different channels of an image. One of

the extreme cases is represented by hyper− spectral images containing up
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to several hundred bands and ranging from 200nm up to 2500nm. Even

when the physical process underlying the creation of an image becomes more

complex, as in the case of x-ray radiographs, it is always possible to obtain

a digital image through discretization into a matrix of values. Digitaliza-

tion brings the great advantage to process this data automatically through

standard image processing methods or machine learning algorithms.

Image processing

Digital images can be represented in two different domains:

• spatial domain;

• frequency domain.

To understand how simple processing works, it is useful first to dwell on

spatial representation. As anticipated earlier, representation in the spatial

domain involves discretization into a matrix in which pixels represent its in-

tensity point by point. From these matrices, by operating certain operations

it is possible to process the image to correct its appearance by removing

some noise or to extract certain features of interest. These operations take

place using filters that are 2 or 3-dimensional matrix with a typical spatial

size of 3x3 or 5x5. The mathematical operation underlying these processes

is convolution, the analytical form of which is given below:

(f ∗ g)[n1, n2] =

M1∑
m1=0

M2∑
m2=0

f [m1,m2] · g[n1 −m1, n2 −m2] (1.1)

Where, f and g are respectively the image and the kernel used in the

convolution operation, n1 and n2 are the indices of the output image and m1

and m2 are the indices of the input image. The result of the convolution is a

new image with a different appearance. We can have an image filtered from

the noise or with some enhanced details like for example the horizontal or

vertical lines. By composing different filters, it is then possible to emphasize
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the structure of specific objects composed by such elementary features. Image

detection is the result of a concatenation of filters applied to highlight a

specific target object. Another relevant task usually performed on digital

images is object segmentation. This operation consists of producing a binary

image where the pixels belonging to the object to detect are white producing

an entirely connected boolean structure. The rest of the image is completely

black and represents the background.

Deep learning

Computer vision is one of the fields in which neural networks have seen the

most successful applications. In this case, the most widely used architec-

tures are the convolutional networks largely inspired by the workings of the

visual cortex. The name convolutional networks come from the first network

described in Yann LeCun’s LeCun et al. [1995] paper. These architectures

operate using convolution operations to extract features (characteristic ele-

ments) as described above. These filters, also known as kernel, slide pixel by

pixel on the input image performing convolution operations. The resulting

images provide many different representations of the input image which help

the model to accomplish a specific task, like object detection or segmentation

for example.

One of the first relevant architectures is LeNet− 5 LeCun et al. [2015],

opening the way to new and more powerful architectures. The structure of

LeNet − 5 is very simple and includes two convolutional layers followed by

two pooling layers. These last layers are used to reduce the resolution of the

images to encode a smaller representation of the image and save computa-

tional resources. Finally, two fully connected layers process the convolution

results and output the images’ class prediction.

Initially, these networks were widely used for digit classification on datasets

such as MNIST that are frequently used to benchmark new competing ar-

chitectures. Another public dataset used for the same scope is ImageNet.

This dataset collects different categories of commonly used objects with their

relative label, i.e., the response we want the network to give us whenever
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it processes that specific image. Starting in 2010, from year to year, new

architectures have followed as winners in competitions based on the classifi-

cation of these images achieving increasing accuracy. For example, AlexNet

Krizhevsky et al. [2012], is the first CNN to win this competition inaugurat-

ing the era of CNNs. However, between the first network described, LeNet-5,

and the AlexNet there is a significant increment of the parameters: from 60

thousand to 60 million. This huge number of parameters, proportional to

the number of kernels of the network, allows a better description of the

data. Such huge models represent usually the backbone adopted to define

new architectures. A famous example is VGGNet Simonyan and Zisserman

[2015] that counts 11 different layers with an increasing number of filters.

An excessive number of parameters can cause many problems, from train-

ing difficulties to the risk to overfit the dataset. So GoogLeNet Szegedy

et al. [2015], start to decrease the number of parameters excluding the ex-

pensive fully-connected without to be even deeper of its predecessor. This

architecture also introduces a novel inception module which enables making

convolutions operations parallelly. The result is a more computationally effi-

cient network with higher accuracy on ImageNet than its precursors. Another

breakthrough work is related to the introduction of the ResNet architecture

He et al. [2016] that includes an innovative element: the residual block.

This unit allows the result of a previous convolutional block to be summed

with the result of the next one ensuring better convergence due to better

gradient propagation through the convolutional layers.

A turning point in the world of computer vision is also marked by the

introduction of the UNet model Ronneberger et al. [2015], which takes its

name from its peculiar structure shown in figure 1.1 . In fact, in contrast to

previous models, the convolutional and pooling layers alternate forming two

paths: towards the first one the input image is gradually reduced in size and

while passing into the second one the processed image recovers its original

size. In the middle of the two branches, a bottleneck unit represents the

point of maximum compression of the image and forces the network to extract

only the relevant information from the scene. Such architecture, composed

of an encoder (compression path) and a decoder (reconstruction path) also
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shows great effectiveness in tasks such as segmentation.

Convolutional Neural Networks (CNNs), have demonstrated their ability

to outperform state-of-the-art techniques in a variety of computer vision ap-

plications. As a result, researchers in academia and industry have begun to

explore the use of CNNs in fields such as medical imaging and bioinformat-

ics, where the potential impact is significant. Successful examples range from

classification and detection of basically any kind of objects (Krizhevsky et al.

[2012], Redmon et al. [2016]) to generative models for image reconstruction

Cheng et al. [2018] and super-resolution Ledig et al. [2017]. CNN’s have been

used for tasks such as the identification and localization of tumors (Havaei

et al. [2017], Vandenberghe et al. [2017], Ciresan et al. [2012, 2013]), as well

as detection of other structures like lung nodules (Jiang et al. [2018], Meraj

et al. [2020], Su et al. [2021]), skin and breast cancer, diabetic foot Alzubaidi

et al. [2021], colon-rectal polyps Korbar et al. [2017] and more, showing

great potential in detecting and classifying biological features (Lundervold

and Lundervold [2019], Sahiner et al. [1996], Yadav and Jadhav [2019]).

1.2 Learning Paradigm

Data-driven models, like the architectures introduced in the previous section

(Section 1.1), are used for a large number of applications. However, each

algorithm needs a training phase before resolving a specific computer vision

task. There are several learning paradigms in machine learning, including:

• Supervised learning: In this paradigm, the model is trained on la-

beled data, where the correct output is provided for each input. The

model then makes predictions on new data based on what it has learned

from the training data.

• Unsupervised learning: In this paradigm, the model is not provided

with labeled data, and must find patterns and relationships in the input

data on its own. This can be used to discover hidden structures in the

data or to group similar data points.
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Figure 1.1: Unet architecture.. The architecture is composed by, and
encoding path, a bottleneck, and a decoding path used to recover the initial
input dimension.
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• Reinforcement learning: In this paradigm, the model learns to take

actions in an environment to maximize a reward. This can be used to

train agents to perform complex tasks, such as playing video games or

controlling robots.

• Semi-supervised learning: In this paradigm, the model is trained

on a combination of labeled and unlabeled data. This can be useful

when there is a lot of data available, but only a small portion of it is

labeled.

• Transfer learning: In this paradigm, a model that has been trained

on one task is used as the starting point for training on a related task.

This can save time and resources, and can often improve performance

on the new task.

Overall, the choice of learning paradigm depends on the specific problem

that the model is being trained to solve, and the availability of labeled and

unlabeled data. The list can be longer but most of the application is covered

by the first three cases. For the scope of the thesis, in the remaining part of

this section, we go deeper into the description of the supervised learning and

we introduce the weakly supervised learning which represents respectively the

framework of the use cases described in Chapter 2 and Chapter 3. Finally,

an introduction to the transfer learning approach is reported to facilitate the

introduction to the work presented in the Chapter 4.

Supevised learning

Supervised learning is a type of machine learning where the model is trained

on labeled data. This means that the input data is accompanied by the

correct output labels, so the model can learn to predict the correct output

given a new input. During training, the model tries to learn the relationship

between a (set of) response/target variable Y based on a set of predictors/in-

puts X. This relationship can be formalized as follows:

Y = f (X;θ) + ϵ (1.2)
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where θ is a parameter vector that defines the precise form of the function

f . In the case of tabular data, the X is a matrix in which the number of

columns is the predictor that defines each sample/ row of the matrix. If the

input is images, X is a tensor.

In practice, the model with randomly initialized weights starts by guessing

the association between some input data x and the corresponding response.

The difference between the predicted output and the corresponding label, y,

is quantified using a loss function. This is the objective function to minimize

thanks to the supervision given from the knowledge of the labels y. Then,

from the value of this function, the gradient is computed and backpropagated

to update the weights value of the model following the rule:

w = w − α ∗∆w (1.3)

where α is the learning rate and is a hyperparameter to set before the training

and ∆w is a vector that contains the weight updates of each weight coefficient.

The weights update is computed each time some inputs are provided to the

model. Exist different strategies to define the pace of this update. In batch

learning, the model is trained on the entire dataset at once, and the weights

are updated after each epoch (i.e., one pass through the entire dataset). In

online learning, the model is trained on individual examples one at a time,

and the weights are updated after each example. In the middle, there is

the mini batch training that consists in picking a predefined number of

samples before updating the weights. When all the samples are selected a

training epoch ends and the mini-batches are sampled again following the

same scheme as before.

The advantage of this approach is that the previous knowledge provided

by the labels is leveraged to supervise the training, helping the model learn

the right mapping between predictors and targets. For this reason, the SL

paradigm is widely used in practice and has a long list of successes for many

different learning tasks (e.g. spam filtering, fraud detection, image classifica-

tion, and stock price forecasting). However, most of the data in a real-world

scenario are produced without labels. This prevents the adoption of SL
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techniques to learn from such data unless undertaking a (probably costly)

labeling/annotation phase before their analysis.

Weakly supervised learning

The difference between weakly supervised learning and supervised learning

concern the kind of labels employed during the training. Instead of requiring

fully labeled training examples, weakly supervised learning techniques can

make use of partially labeled data or even just large amounts of unlabeled

data, combined with some form of weak supervision such as heuristics or

other forms of noisy labels. This type of supervision can be especially useful

in situations where it is difficult or expensive to obtain fully labeled training

data, enabling models to still learn useful patterns and make predictions

without the need for a large amount of human annotation. However, it is

important to note that the quality of the model’s predictions may be lower

than those produced by fully supervised learning methods due to the inherent

uncertainty in the weak labels.

Weak supervision can also be beneficial in cases where the desired output

is not well-defined or where there is significant variability in the data. For

example, in natural language processing tasks, it can be difficult to define a

precise set of rules for determining the meaning of a sentence. In such cases,

weak supervision can be used to extract useful information from the data

through the use of heuristics, even if the labels are not completely accurate.

Overall, weak supervision can be a useful tool for training machine learn-

ing models when expert-labeled data is scarce or when the task at hand is

too complex for manual labeling. For this reason, weakly supervised meth-

ods have been explored over the years. Standing to the definition of weakly

supervised learning, we can distinguish three typical situations Zhou [2018]:

• incomplete supervision: where only a subset of training data is given

with labels;

• inexact supervision: where the training data are given with only

coarse-grained labels;
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• inaccurate supervision: where the given labels are not always ground-

truth.

The use cases discussed in Chapter 3 concerns the second definition. In-

deed, given out segmentation task, we only have a dot annotation kind of

labels that we try to exploit to generate coarse-grained ground truth masks

for the segmentation problem.

Transfer Learning

As described in previous chapters, deep learning algorithms need a large

amount of labeled data proportional to the complexity of the model to train

effectively. In many research fields having a large-scale well-labeled dataset

is particularly expensive if not unfeasible. Transfer learning is an approach

that seeks to alleviate this problem by exploiting the information a model has

acquired by training on one dataset to solve a new task on a different dataset.

In fact, in common practice, it may happen to have at one’s disposal several

datasets inherent to the same domain but of which only a part of them is

largely labeled. In these cases it is possible, by transfer learning, to obtain

a model that by exploiting the information acquired from the supervised

datasets manages to perform a new task on a second dataset that would

otherwise be difficult to analyze.

This procedure may have positive effects, reducing the number of im-

ages required on the new dataset to get a better model, but only if there is

enough similarity between the source and target datasets. Otherwise, we can

also experience a negative effect, degrading the model performances. In fact,

transfer-learning acts like a weights initialization that can provide an advan-

tage during the optimization process. If the minimum relative to the source

task turns out to be farther than a random initialization of weights, however,

it becomes clear what has been said so far about the possible negative effect

of transfer learning.

When we talk about transfer learning we usually refer to a domain rather

than a dataset. A domain consists of two parts, the feature space X and the

associated marginal probability P (X) where X = x1, ...xn ϵ X. For a given
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Figure 1.2: Transfer learning. The knowledge acquired on the source
domain can benefit the learning of a new task on a target dataset.
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domain D, a task T consists of two parts, the label space Y and the function

f(.) that is learned via the pair (xi, yi) of feature vectors and labels yi with

xi ϵ X and yi ϵ Y . Now, we can state a definition of transfer learning. Given

a source domain Ds and a relative task Ts, transfer-learning is a procedure

whose aim is to ease the learning of a better function fT related to a target

task Tt on a target domain DT by using related information from Ds and Ts,

where DS ̸= DT or TS ̸= TT .

The first shallow categorization of transfer learning depends on the rela-

tion between the source and target domain. Reacalling that D = {X,P (X)},
if DS ̸= DT means that XS ̸= XT and/or P (x)S ̸= P (x)T . If XS ̸= XT we re-

fer to heterogeneous transfer-learning, otherwise, we fall in the homogeneous

transfer-learning case Weiss et al. [2016]. Instead, when P (x)S ̸= P (x)T , the

marginal distribution in the input space is different between the source and

domain and this is one of the cases in which the transfer-learning can have a

detrimental effect on the model training since the two datasets can present

very different samples.

Transfer-learning is also defined by the task T = {Y, f(.)} or equivalently

T = {Y, P (Y |X)} . Therefore we can have both YS ̸= YT or P (Ys|Xs) ̸=
P (Yt|Xt). In the first case, the label space, and so, the output of the task

change moving from source to target task. In the latter case, the occurrence

of the different classes is different.

For what concern the topic of this thesis we will focus on the case in which

DS ̸= DT but with TS = TT , that is, the framework of the case reported in

Chapter4. Also, concerning the same investigation, we will consider a tran-

sition between a supervised into a weakly-supervised domain that represents

a case, not yet documented to the best of our knowledge.

Approaches

We can define four categories of transfer learning that are widely recognized

by the research community Tan et al. [2018]:

• Instances-based deep transfer learning: reuse the instances from the

source domain by appropriate weighting;
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• Mapping-based deep transfer learning: learn a common feature space

with better similarity for the two domains;

• Network-based deep transfer learning: exploit a network pre-trained on

the source domain;

• Adversarial-based deep transfer learning: use adversarial training to

find features suitable for both domains.

The first approach consists of finding similar instances between the source

and target domain. These selected instances are weighted properly using a

similarity criterion and are then used for the training of the model. Some

algorithms like TrAdaBoost have been used (Yao and Doretto [2010],Huang

et al. [2012]) to filter out instances in source domains that are dissimilar to

the target domain. Other works like Xu et al. [2017] instead, have been

focused on learning the weight for the selected instances.

Mapping-based deep transfer learning is a different approach aimed to

learn a new data space where the instances coming from different sources

are transformed to get closer. After that, all the instances can be jointly

used to train the algorithm. One example of this approach is described in

Pan et al. [2010], where transfer component analysis (TCA) is introduced.

Other works compared the distribution of original data sources using a deep

neural network, by means of an adaptation layer and an additional domain

confusion loss. The aim is to learn a representation that is both semantically

meaningful and domain invariant Tzeng et al. [2014].

Probably, the most known approach is still network-based deep transfer

learning. This approach consists of a pre-trained stage during which the

model learns some general features that can be reused on a different domain.

Specifically, after the training on a source domain, a pre-defined set of layers

is copied into a new network and frozen. The remaining part of layers is left

free to train again on the new target samples. It is worth remembering that,

generally, lower-level layers learn a general representation of the inputs. A

clear example is the tendency of Gabor filters and color blobs to show up

in the first layer of neural networks trained on natural images. These filters
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are learned independently from the specific task. Indeed, these layers are

usually copied into a new model and frozen to avoid their re-train during

the fine-tuning stage. On the other hand, high-level layers learn task-specific

features and so they need to be retrained to move on to another task. Several

papers (Yosinski et al. [2014] Lee et al. [2022] Guo et al. [2019]) study the

concept of the layers transferability from one domain to another to optimize

the transfer-learning procedure. It is important to understand, for example,

task by task, which are the layers to be left frozen and which need to be

retrained. One of the main works in this sense is Yosinski et al. [2014] where

the authors quantify the transferability of features from each layer of a neural

network, which reveals their generality or specificity.

They also showed how transferability is negatively affected by two distinct

issues: optimization difficulties related to splitting networks in the middle

of fragilely co-adapted layers and the specialization of higher layer features

to the original task at the expense of performance on the target task. In

any case, they claim that also transferring features from a very distant task

can translate into a boost of performance and generalization showing that

these results still linger after substantial fine-tuning. Other works Lee et al.

[2022] investigate further which layers should be unfrozen during the fine-

tuning procedure focusing on the relation between the source and target

dataset. They tested their results across several public datasets showing

how, depending on the distribution shift, can be better to fine-tune a limited

and specific set of layers. In Guo et al. [2019] the authors push forward this

study by investigating instance by instance what layers should be unfrozen

during the training. They use an auxiliary network that defines for each

sample which block of layers of the main network to unfreeze.

Other aspects became relevant during the transfer learning. Usually,

weight decay is applied as a regularization term to bind the value of the

weight under a pre-defined value. Sometimes this approach can lead to a

poor optimization process that neglects the information acquired during the

first pre-training phase. In the work Li et al. [2020], it is shown how different

regularization terms like di starting-point L2 (SP − L2) exploit better the

weight initialization obtained after the pre-training stage. Indeed, usually,
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only the L2 parameter regularization, also known as weight decay, is used in

machine learning to restricts the capacity of the trained model by restraining

the effective size of the search space during optimization, implicitly driving

the parameters towards the origin. Introducing the starting point SP ob-

tained after a pre-training phase as the reference for parameter regularization

may help to achieve a better convergence.

The last category regards adversarial-based deep transfer learning. It is

the most recent approach but already shows some potential and is based

on the assumption that For effective transfer, a good representation should

be discriminative for the main learning task and indiscriminate between the

source domain and target domain Tan et al. [2018]. Adversarial-based deep

transfer learning accomplish with this task training a model to learn from

one or more source domains and generalize to a target domain. The idea is

to leverage the knowledge learned in the source domain(s) to improve the

performance of the model in the target domain. In this technique, the trans-

fer of knowledge from the source to the target domain is achieved through

adversarial training. Specifically, the model is trained using a combination of

two objectives: a classification objective and a domain-adversarial objective.

The classification objective is used to classify the input data into different

classes. The domain-adversarial objective is used to encourage the model to

learn domain-invariant features. This is achieved by training a domain dis-

criminator that tries to distinguish between the source and target domains,

while the feature extractor (i.e., the main model) is trained to confuse the

discriminator by producing features that are indistinguishable between the

domains. During training, the feature extractor and the domain discrimi-

nator are trained alternately to optimize their respective objectives until a

convergence criterion is met. Once the training is complete, the feature ex-

tractor can be used to extract useful features from the source domain that

can be transferred to the target domain. This process is depicted in fig. 1.3.

Practically, The adversarial layer aims to discriminate between the source of

the features extracted from the front layer of the network. If the adversar-

ial layer performs worse, it means that there is a small difference between

the features, and consequentially better transferability across the domain is
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Figure 1.3: Adversarial-based deep transfer learning. The adversarial
training promote to define a good shared representation between source and
target domain.

guaranteed.

1.3 Fluorescent microscopy

A fluorescence microscope is an optical microscope that uses fluorescence

instead of, or in addition to, scattering, reflection, and attenuation or ab-

sorption. Fluorescence is a luminescence phenomenon that occurs in some

molecules, denominated fluorophores that are able to emit light when they

are in electronically excited states. These molecules, absorbing light at a

specific wavelength, transit from the ground state energy to an excited one.

When it happens, the fluorophore becomes unstable and releases the ab-

sorbed energy by emitting light of a longer wavelength to get back to the

ground state. The difference between the exciting and emitted wavelengths,

known as the Stokes shift, is the critical property that makes fluorescence

so powerful. To visualize only fluorescent objects, all excitation light is fil-

tered out while the emitted fluorescence is allowed to be seen. Fluorophores

are molecules that are utilized for their fluorescent properties. When these

compounds absorb light energy, changes in the electronic, vibrational and

rotational states of the molecule can occur. Oftentimes, this absorption of
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energy causes an electron to move to a different orbital farther away from the

nucleus, transitioning to an excited state. Eventually, the absorbed energy is

released through vibrational relaxation and fluorescence emission, returning

the fluorophore to its low-energy ground state Sanderson et al. [2014].

Many works aimed to capture biological effects are based on this method.

The fluorophore is designed to couple with the molecular structure of the

tissues to monitor. Then, to asses, the evidence of an underlying biological

process, a quantification of the tissue activity should be assessed. At this

point became relevant to count how much fluorescence occurs in the several

areas under study (Hitrec et al. [2019], Hitrec et al. [2021] da Conceição et al.

[2020]). Many studies, for example, investigating the neuron’s communica-

tion network established during the torpor onset, rely on the counting of the

cells that activated during the transition to this particular metabolic state.

Indeed, these cells, stained with fluorophore became detectable thanks to the

light emission. Torpor is characterized by reduced body temperature and de-

pressed metabolism representing a defense weapon for some animals to face

hostile environmental conditions. A deeper understanding of the key factors

promoting the torpor condition may help to trigger its activation also on hu-

man patients. Indeed, coming to the human applications, it is thought that

this approach can bring many benefits when dealing with patients that need

invasive surgery Bouma et al. [2012] Bellamy et al. [1996]. Also, triggering

the torpor on humans could be a means to make feasible long interplane-

tary trips where the side effect of space travel can hazard the health of the

passengers (Cerri et al. [2016] Cerri et al. [2021]) especially concerning the

resistance to radiations (Puspitasari et al. [2021] Puspitasari et al. [2021]).

Experiments that use molecular fluorescence to study biological processes

often rely on semi-automatic techniques to acquire and process images cor-

rectly and to count interesting biological structures. These techniques in-

volve multiple steps such as area selection, white balance, calibration, and

color correction in order to identify structures of interest (Dentico et al.

[2009], Gillis et al. [2016], Luppi et al. [2019]). However, this process can

be time-consuming and tedious, leading to errors due to operator fatigue.

Additionally, it can be challenging to distinguish structures of interest from
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the background, leading to subjective and arguable counts. For this reason,

starting in the next section, we introduce the feasibility of a methodology

based on a deep learning algorithm. Specifically, we target a convolutional

neural network (CNN) as the key architecture to automate the counting of

objects of interest in molecular fluorescence images. This approach will fa-

cilitate and speed up future research in this field by saving time and human

effort, and by eliminating operator fatigue errors.

1.4 Counting objects

Counting objects in digital images is a common task with many real-world ap-

plications (Segui et al. [2015], Arteta et al. [2016], Paul Cohen et al. [2017],

Rahnemoonfar and Sheppard [2017]) and various methods have been pro-

posed to automate the process (Ciresan et al. [2013], Ciresan et al. [2012],

Lempitsky and Zisserman [2010], Kraus et al. [2016], Raza et al. [2017]

Faustino et al. [2009]). One of the approaches most frequently used for

the counting task is based on the counting-by-regression approach ([Hoek-

endijk et al., 2021], Xue et al. [2016] Hobley and Prisacariu [2022]). Under

this strategy, convolutional neural networks are trained to predict the cells’

number that is present inside pictures. For example, the authors of Xue

et al. [2016] cast the cell counting task as a regression problem using the

global cell count as the image label. They first split the images into different

patches and, after an augmentation process, a convolutional neural network

architecture is trained by means of a Euclidean loss function to regress the

correct number of cells. They also provide a density map but its low spatial

resolution doesn’t seem to provide a clear localization of the cells. Instead,

leveraging the attention mechanism, in the work Hobley and Prisacariu [2022]

is presented a method that learns to count referenceless exploiting only the

total amount of objects as supervision. They show that a general feature

space with a global context can enumerate instances in an image without a

prior on the object type present.

Sometimes we have some further information other than the simple amount

of objects in the images. For example, dot annotations are a type of label
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frequently used to localize the objects since they are less time-expensive to

obtain respect to the bounding box and especially respect to the pixel-level

annotation (segmentation masks). Precisely, these labels represent the co-

ordinates of a point (preferably the center) inside the object to localize.

Usually, in these cases, the target generation consists of placing a gaussian

probability kernel on top of each dot annotated point representing the center

of an object to detect. The regression, in this case, consists of predicting the

pixel-by-pixel probability to have an object center at that specific point He

et al. [2021].

Count-level annotations and dot annotations represent respectively a weak

and a full-supervised label when counting is the final scope of the work. Some-

times, to reduce the time spent on labeling, these two labels are used together

like in the work Lei et al. [2021] that describes a successful application of this

strategy. Counting-by-detection is another approach used to quantify the

number of interesting objects inside a picture. In this case, the method pro-

vides bounding-boxes labels to learn how to detect an object and one of the

most used architectures is certainly the YOLO one Redmon et al. [2015]. For

example in the work Alam and Islam [2019] the authors present a machine

learning approach for automatic identification and counting of three types of

blood cells using the ‘you only look once’ (YOLO) object detection and clas-

sification algorithm. To further refine the localization of the detected objects,

another approach may be pursued. Counting-by-segmentation improves the

model’s detection and localization capabilities by incorporating semantic la-

bels for each pixel in the ground-truth masks. This enhances the ability to

discern the precise boundaries of each object through pixel-wise classifica-

tion. The final count is determined by analyzing groups of connected pixels

([Hernández et al., 2018] Morelli et al. [2021b] Morelli et al. [2021a]). The

main step of this approach is represented by a segmentation step. Especially

for the biomedical domain, UNet Ronneberger et al. [2015] model represents

a pillar architecture for such a task and is frequently adopted to segment

nuclei, cells and other organs (Zeng et al. [2019], Hu et al. [2019], Weng et al.

[2019], Le’Clerc Arrastia et al. [2021]). Starting from the next chapter, we

describe the application of such an approach under two different supervision
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conditions. In chapter 2 we frame under a fully-supervised learning paradigm

while in chapter 3 we pursue the same approach but rely on dot-annotation

that represents only weak supervision concerning the segmentation output.
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Chapter 2

Supervised approach

2.1 Introduction

In this chapter, we undertake the cell counting problem in biological images

when ground truth segmentation masks are available. Among the avail-

able approaches illustrated in the introduction section 1.3, we pursue the

counting-by-segmentation one to favor a better localization of the stained

cells. Our work aims to facilitate and speed up the cell counting process by

developing a CNN that detects objects of interest without human interven-

tion. The use of a Deep Learning model would not only save time and effort

but would also eliminate operator fatigue errors and reduce the subjectivity

of borderline cases. We also define different experiment set-ups to analyze

the contribution of some specific training procedures introduced to get bet-

ter segmentation and detection metrics. Specifically, we introduced a novel

weighted map to penalize the error on the boundaries of the touching cells.

Moreover, we describe a strategy to oversample underrepresented artifacts

during the training. We evaluated the different architectures and training

designs through an ablation study.

We will start with a brief introduction of deep learning methods fre-

quently used for the segmentation task. Then the cTB dataset used for the

experiments is introduced. After that, we define the ablation studies scheme

and the model architectures compared. Finally, we discuss the implications

CHAPTER 2. SUPERVISED APPROACH 23



2.1. INTRODUCTION

of our work and outline possible directions for future research. All the results

provided in this chapter are built on the work Morelli et al. [2021a]. The code

used for these study is collected at the following link: (cell counting yellow

supervised and weakly supervised approach for CTb dataset)

2.1.1 Related works

One of the pillar works concerning the segmentation in biological images is

reported in the paper Ronneberger et al. [2015] which described a deep learn-

ing approach for cell segmentation. They proposed the U-Net architecture

characterized by the typical U shape consisting of an encoding and decoding

path respectively used to capture important features and to furnish a precise

localization. This architecture becomes a state-of-the-art solution and the

basic architecture for various applications.More recently, an extension of the

U-Net has been proposed introducing units named residual blocks He et al.

[2016] with short-range skip connections. This modification helps to prevent

the vanishing gradients (Clevert et al. [2015], Hochreiter [1998]; Guan et al.

[2020]; Cao et al. [2020]; Qamar et al. [2020]) effect that may occur when

too many layers are included in the architecture. Moreover, these blocks

also help to reach a minimum smoothly and in lesser time. Leveraging the

U-Net and its modifications, a lot of other works start to address the seg-

mentation task, especially in the biomedical field. In the work, Kolař́ık et al.

[2019] the authors described a fully automatic method for high-resolution

3D volumetric segmentation of medical image data introducing 3D Dense-

U-Net architecture that implements densely connected layers. Another work

Küstner et al. [2020] focused on the 3D segmentation aim of the quantification

and localization of different adipose tissue compartments from whole-body

MR images. A reliable automatic segmentation of adipose tissue into sub-

cutaneous and visceral adipose tissue is proposed using a 3D convolutional

neural network, the DCNet still inspired by the U-Net structure. Instead, in

the work Wang et al. [2022] the authors combine the novel attention mech-

anism Vaswani et al. [2017] mutated from the transformer architecture, to

improve the U-Net architecture and provide more accurate segmentation.
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Moving to the microscopy domain,Kraus et al. [2016] combined deep CNNs

with multiple instance learning to classify and segment microscopy images

using only whole image-level annotations. Vigueras-Guillén et al. [2022] use

a modification of U-Net, DenseUNets to provide the binary segmentation of

the corneal endothelial cells and estimate some relevant biological parame-

ters. Other methods based on the modification of ResUnet Jha et al. [2021]

proved to be effective in the detection of colorectal cancer and its precursors.

Here, improvement with respect to the previous version of their ResUnet++

Jha et al. [2019] is achieved by using conditional random field and test-time

augmentation.

2.1.2 Contributions

Our work focues on a supervised learning approach to count cells, specifi-

cally neurons, in fluorescence microscopy images providing a segmentation

map to show which cells contributed to the total counts. We test different

architectures and experiment designs through an ablation study and validate

the results by using both detection and counting task metrics. The model we

introduced, c-ResUnet, trained with the weighted maps results in the best

model metrics. Our contributions are mainly twofold:

• Introduction of c-ResUnet, a model specifically designed for counting

cells also when highly clustered.

• Description of a processing pipeline to segment and post-process the

results

• Introduction of novel weighted maps that penalize errors on cell bound-

aries promoting accurate segmentation

2.2 CTb Dataset

The Fluorescent Neuronal Cells dataset (Fluorescent Neuronal Cells) con-

sists of 283 high-resolution (1600 × 1200) images of mice brain slices, along

with their corresponding ground-truth labels. These images were obtained
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through fluorescence microscopy, using a monosynaptic retrograde tracer

(CTb) injected into specific brain structures to highlight only the neurons

whose signaling is linked across distinct brain areas. The resulting images

show neurons of varying sizes and shapes as yellowish spots with variable

brightness and saturation against a generally darker background 2.1. How-

ever, some images 2.1a exceed this rule and the background assumes val-

ues closer to those of the cells making the recognition task harder. Indeed,

despite efforts to standardize the acquisition process, these images present

several challenges for accurate detection due to their variability in brightness

and contrast, as well as the presence of clutter and overlapping cells. The

cells themselves may also exhibit varying levels of saturation due to natural

fluctuations in fluorescent emission properties, and their shape may change

significantly, making it difficult to distinguish them from the background.

In addition, artifacts and bright biological structures, such as neurons’ fila-

ments, may interfere with recognition, as well as non-marked cells that are

similar in appearance to the stained cells. These factors not only complicate

the training process but also make it difficult to evaluate the model as the

interpretation of such borderline cases becomes subjective.

(a) image (b) ground truth
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(c) image (d) ground truth

(e) image (f) ground truth

Figure 2.1: Sample data.

2.2.1 Ground-truth labels

Supervised ground-truth labels correspond to the output that we want the

model learns to reproduce during the training phase and to generalize on

unseen test data. For the segmentation task, the ground truth images corre-

spond to a set of binary masks labeled pixel-by-pixel into two distinct classes:

(1) the neuronal cells and (2) the surrounding background represented by bi-

ological tissue or cells excluded by the synaptic signaling process. Indeed,

the cells we want to recognize are only those that have undergone a specific

biological process during the experimental assessment and are generally visi-

ble thanks to higher pixel intensity values. However, we will see that in these

pictures sometimes some activated or stained cells may look very similar to
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the nonactivated ones. The degree of similarity sometimes is such that also

the most experienced annotators can be confused.

Obtaining these target masks can be time-consuming and required a lot

of human resources. To make the labeling process more efficient, we used an

automatic procedure that started with a large subset of 252 images. We first

clean these images from noise by applying gaussian blurring and then thresh-

olded using automatic histogram shape-based methods. From this operation,

we obtained images containing both good cell candidates and a significant

number of undesired objects like an artifact, non-activated cells, and other bi-

ological tissue whose pixel intensity get a value similar to those of the stained

cells. So, these images need to be reviewed by experts to eliminate these false

positives and irrelevant artifacts. Sometimes, further adjustments of the cell

boundaries were required mainly for two different reasons. First, the thresh-

olding procedure appeared to be inaccurate clustering into a unique object

with many distinct cells that are close together. In this case, the annota-

tors took care to separate the cells drawing black pixels line across the cells’

boundaries. The other reason regarded the inaccuracy of the thresholding

technique that often resulted in bigger cell shapes. In these cases, the object

masks included significant parts of the surrounding background biasing the

model. The remaining part of samples, nearly 30 pictures, were manually

segmented by domain experts, including those with unique features such as

artifacts, filaments, and crowded objects to ensure highly reliable masks for

challenging examples. While deep learning has gained a lot of popularity in

computer vision in recent years, a lack of annotated data can be a problem

when dealing with non-standard tasks or images. To overcome this problem,

one common approach is to fine-tune models pre-trained on large datasets of

natural images like ImageNet or COCO, using as few new labels as possible

for the specific task at hand. However, this strategy may have a negative

effect when the source dataset is significantly different from the target one

as describer in the section 1.2. By releasing our annotated dataset and pre-

trained model, we hope to advance the field of biomedical imaging through

the automation of manual operations and to promote research into new data

analysis techniques for microscopic fluorescence and similar domains. More-
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over, the next chapter of the thesis describes two possible approaches to deal

with weak annotations. Specifically, we will use dot annotation which la-

bels a way easier to obtain. The same problem, counting-by-segmentation,

is considered both on the same dataset and extended to another sample of

fluorescent neuronal cells characterized by a different variety of shapes and

sizes. Instead, concerning the fine-tuning procedure, another chapter 4 will

be focused on an extensive study to understand better the degree of attain-

ment between two models trained on the same domain but on a different

dataset.

2.2.2 Data description

In the following, we report the main of the cells represented inside the pic-

tures, but a more detailed data exploration on such a dataset is provided in

Clissa [2022]. From this latter work, we report a table summary in table 2.2

of the relevant cell features.

Figure 2.2: Distribution summary Clissa [2022]. Summary of the distri-
butions illustrated. For each distribution are reported the mean and standard
deviation; minimum, maximum and 10-th, 25-th, 50-th, 75-th and 90-th per-
centiles; the count of objects from which such measures are computed, i.e.
pixels, images, and cells..

From the table, we can remark on some interesting features like the mean

number of cells per image and their mean size reported in terms of areas and

feret diameter. The first characteristic is an index of the class representa-

tion that, in this case, is unbalanced in favor of the background class. The

CHAPTER 2. SUPERVISED APPROACH 29



2.2. CTB DATASET

second characteristic is useful information to optimize the post-processing

2.3.3 step helping to filter out the spurious objects from the segmentation

output. From these statistics, we can also observe the RGB distribution

that highly promotes the red and green intensity while the blue channel is

scarcely populated. This is an obvious consequence of the acquisition proce-

dure that is target a narrow wavelength range. However, to handle the color

representation we decided to leave the model to learn the most appropriate

transformation introducing an initial layer that maps the RGB image to a 1-

channel representation as described in the section 2.3.1. Another useful piece

of information regards the distribution of the pixels across the two classes

(neuronal cells and backgrounds) reported in Fig. 2.3 where we refer to the

pixels belonging to a neuronal cells as the signal pixels.

Figure 2.3: Distribution summary figure from Clissa [2022]. Summary
of the distributions of the signal pixels (pixels representing a neuronal cells)
with respect to the background pixels. For each distribution we reported the
mean and standard deviation; minimum, maximum and 10-th, 25-th, 50-th,
75-th and 90-th percentiles; the count of objects from which such measures
are computed, i.e. pixels, images, and cells..

By analyzing the number of pixels that belong to the background and the

signal, it becomes apparent that the two classes are heavily imbalanced (see
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the signal (%) and signal ratio columns in Fig. 2.2 for a numerical summary).

On the left of figure 2.3,it is shown a violin plot of the percentage of signal

pixels out of the total image pixels for the 283 images. This evidence is

remarked by the median value of 0.34% and a 90-th percentile of 1.07%.

This means that about 90% of the images contain less than 1% of pixels

that belong to the signal. From the right side of the same figure 2.3 we can

deduct that the background pixels are roughly 20 to 300 times the number

of signal pixels in 50% of the images but this is also due to the presence of

empty masks that cover more than 10% of the total masks. These findings

highlight the need for specialized training strategies to address this strong

class imbalance and enable the model to correctly classify image pixels. For

a more detailed dataset description please refer to Clissa [2022].

2.2.3 Challenges

As anticipated in the section 2.2, the image acquisition may present some

difficulties due to the fluorescence emission intrinsic properties resulting in

some traits that make the detection task harder. We already provide some ex-

amples of saturation shift that sometimes make the surrounding background

get intensities value similar to those of the cells to detect 2.1f. In this case,

the model should learn a set of features that don’t rely only on the pixel’s

intensity value but that should consider also other characteristics. Indeed,

this is what we expect a deep-learning model to do during the training phase.

However, the neuronal cells depicted in this dataset can assume a wide range

of shapes and dimensions challenging the model to adapt consequentially.

This feature is due to the acquisition procedure that reports a 2-D projec-

tion of 3-D biological tissues. Indeed, while some of the cells can be shot

lying on a plane parallel to the acquisition one looking like an elongated

neuronal shape, other neurons whose axis is oriented perpendicular to this

direction, will more likely appear as a circular bright point. In this regard,

sometimes the fluorophore trapped in a limited biological area can generate

emissions that look very similar in shape and pixel value intensity to these

smaller neurons. In Fig. 2.4 we report an example of these kinds of artifacts
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(points on the right side of the images) together with an extreme case of

artifact emission represented by the rectangular elongated shape. Another

source of noise derived from the biological filaments depicted in Fig. 2.3.1

that spread across the right side of the image. These structures may as-

sume shapes and intensity values pretty similar to the neurons making them

harder to discard by the model. In the same image, we can notice another

confounding structure represented by the elongated strip on the right side of

the picture. Lastly, we report a case where the cells tend to cluster together

hidden by a fluorophore agglomerate that encapsulates the cells into one big

blob. Here, the model needs a good strategy to learn how to divide these

distinct objects. In the method, we will describe the weighted maps we used

to enforce the cell separation operated by the model.

artifact
size: big

artifact
size: small

artifact
size: small

10 μm

Figure 2.4: Challenges and Artifacts figure from Clissa [2022]. Dot
shaped light emission looking like stained neurons and elongated rectangular
shape artifact.
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Figure 2.5: Challenges. Biological filaments and stripe.
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Figure 2.6: Challenges. a picture with several example of high density
clustered cells.

2.3 Methods

In this work, we aim to segment and count cells in images using a supervised

learning approach evaluating four different CNN architectures from the Unit

and ResUnet families. The raw output of the models is a probability heatmap

that, after a thresholding operation, reports the segmentation boundaries

of the detected objects. We apply a dedicated post-processing pipeline to

reduce the number of false negatives and false positives. An ablation study

is performed to evaluate the models and the impact of study design choices

used to limit the number of artifacts detected (false positive) and the number

of missed cells (false negative) when clustered together. We will begin with

the description of the model introduced in this work c-ResUnet and then will

describe the different design choices adopted for the training stage. Finally,

34 CHAPTER 2. SUPERVISED APPROACH



2.3. METHODS

we describe the post-processing pipeline and the evaluation methodology we

use to compare the competing architectures.

2.3.1 Model Architecture

This section introduces the architecture we propose to handle the cells semg-

nation and detection. This model combine the innovative features of two

pillars of the convolutional neural networks architecture that are the U-Net

and the ResUnet models.

C-ResUnet

The architecture proposed is largely inspired by the U-Net family. It fol-

lows the typical U shape developed to enable high-resolution segmentation

results. Also, during the design, we keep the long skip connection to combine

low-level features with the high-level ones associated with the deeper convo-

lutional layers. Instead, we replaced the conventional U-Net convolutional

block with the ResUnet one to enable a better gradient backpropagation.

Indeed, many works, established the efficacy of these blocks to face the van-

ishing gradient problems that affect the deeper architectures. However, many

versions of the ResUnet block exist and a choice is needed to accomplish the

most appropriate one. We opted for a sequence of BatchNorm-Activation-

ConvLayer repeated twice for each block that is reported on the right in Fig.

2.7 compared to the standard unit block (on the left). From this picture, we

can also notice the identity path needed to sum up the features maps obtained

as a result of the residual block and the features maps input of the block.

The resulting feature maps are then summed with the input of each block to

complete the identity block design typical of the ResUnet architecture.

We inserted into the overall architecture some minor modifications. Specif-

ically, we added an initial 1 × 1 convolution to simulate an RGB to 1-D space

conversion which is learned during training. The model should have a repre-

sentation that helps to address effectively the segmentation task. Moreover,

we inserted an additional residual block at the end of the encoding path

with 5 × 5 filters (instead of 3 × 3). These adjustments should provide
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Figure 2.7: Model architecture. Comparison between the UNet convo-
lutional block, on the left and the ResUnet one, on the right. The main
introduction is represented by the identity mapping path.

the model with a larger field of view, thus fostering a better comprehension

of the context surrounding the pixel to classify. This kind of information

can be beneficial, for example, when cells clump together and pixels on their

boundaries have to be segmented. Likewise, the analysis of some background

structures can be improved by looking at a broader context. The resulting

architecture is reported in Fig. 2.8 and it will be referred to as cell ResUnet

(c-ResUnet).

Ablation studies

In this work, we compare four network architectures. However, we asso-

ciate each model with an alternative training strategy relying on weighted

maps that penalize more the loss on the high-density cell areas where the

model may wrongly count multiple cells only once. To evaluate the impact

of this strategy, we selectively switch on its contribution during the learning

phase. Moreover, for the c-ResUnet model proposed here, we evaluate also a

pre-processing step concerning the augmentation procedure to increase the
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artifact recognition operated from the model (2.2.3. We consider these design

choices in the ablation study which results are reported in section 2.4

Artifacts oversampling

As noticed described in the section 2.2.3, there are biological structures or

artifacts depicted in the images that may cause the model to detect false

positives. These structures can be difficult to recognize because they resemble

cells in terms of saturation and brightness. Moreover, they are not well

represented in the data limiting their correct identification. To address this

issue, we increased the augmentation factor applied to these inputs in order

to improve the model’s learning. Specifically, we selected six crops that

represented these structures and used the augmentation pipeline described

in the Model training section to create 150 new images for each crop. It

is worth noticing that these procedures are supervised by the expert of the

domain since they only can confirm the ultimate nature of such components.

While for some biological elements, like the stripe in Fig. , can be easier to

guess if we are facing an artifact, in other cases, like the bright spots of the

same image became more difficult. So, after the selection of the crop we ask

for feedback to confirm the rightness of our choices.

Weighted maps

One of the main challenges when using the model for inference is accurately

segmenting cells that are crowded together. If the boundaries between cells

are not accurately identified, the model may connect separate objects, re-

sulting in multiple objects being treated as a single entity. This can neg-

atively impact model performance. To address this issue, we implemented

a weight map approach inspired by the work of Ronneberger et al. [2015].

This approach penalizes errors at the borders of touching cells, improving cell

separation. Our implementation involves computing the weights for each ob-

ject individually and combining them in an additive manner. This generates

weights that are higher at the borders of cells and decrease as we move away

from them. Specifically, for each cell included inside a segmentation mask,
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(a) filaments (b) strip

(c) filaments (d) strip

Figure 2.9: Crops used for the artifacts oversampling.
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we compute the distance of each image pixel to the closest pixel of that cell.

Then we apply a gaussian kernel on each image pixel using the distance of

the pixels as the exponent value. Sigma is set equal to the average cell radius.

We repeat this procedure for each binary object representing a cell inside the

ground truth. In the end, we sum up all the intermediate images we obtained

for each cell to get the final weighted mask. The resulting global weight map

has higher values where there is a higher density of cells (as shown in Fig.

2.11). The pseudocode for this weight map is provided in Fig 2.10 and an

example weight map is shown in 2.12.

Figure 2.10: Weighted Maps. Pseudocode for weighted maps

2.3.2 Training

All the competing architectures are trained on the same images and hyperpa-

rameters values which are reported in the following. For our experiment, we

selected a test set of 70 full-size images taking care to include at least a dozen

of significant examples. We inserted pictures representing high-density cells,

artifacts, and low background-cell contrast 2.2.3. We used the remaining

pictures to create training and validation sets. For these latter sets, we ex-

tracted 12 512x512 partially overlapping crops from each image for two main

reasons. The first motivation regards increasing the batch size providing ex-

amples coming from different pictures. With full-size pictures, only a few

samples fit the ram before incoming into a memory issue. Smaller crops in-
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Figure 2.11: Weighted Maps. For each cell, are reported the weights
generated as a function of the distance from their borders. The above solid
green line represent the total amount obtained by adding individual cells’
contributions

Figure 2.12: Weighted Maps. On the left, the mask of a crop representing
a crowded area. On the right, the relative weighted maps
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stead, help to combine different samples and provide more meaningful train-

ing batches. Another reason is related to the augmentation strategy. Indeed,

in this way, we can select only a small crop representing the artifact we want

to oversample without the need to augment an entire image. After the split

and crop operation, we apply an augmentation pipeline performing various

transformations, such as rotations, Gaussian noise, brightness adjustments,

and elastic deformations. This latter transformation is used to augment the

shape and size variability but it requires to be used cautiously since extreme

parameter setting can provide cell samples resembling artifacts biasing the

model. However, for manually segmented crops, we used an augmentation

factor of 10 and 4 for all other images. When artifacts oversampling is ap-

plied, 2.3.1, the crops representing the challenging traits are augmented with

a factor equal to 100. This resulted in a total of nearly 16,000 images, with

70% used for training and 30% for validation. To ensure a fair comparison,

all of the competing models were trained from scratch under the same con-

ditions. The Adam optimizer was used with an initial learning rate of 0.006,

scheduling a decrease by 30% of its value each time the validation loss did

not improve for five consecutive epochs. A weighted binary cross-entropy loss

was employed to handle the imbalance between the two classes, with weights

of 1 and 1.5 for cells and background, respectively. Also, for the experiment

performed with weighted maps, the map of class weight is multiplied by the

weighted map. The early stopping patience is set at a value of 20. Finally,

the model relative to the best validation performance was considered for the

successive evaluation.

2.3.3 Post-processing

We recall here that the final output of the model is a probability map

(heatmap) whose pixels value represents the probability to belong to a cell

(Fig. 2.13a). By thresholding operation we then a binary mask, in which

groups of white connected pixels represent detected cells. However, these im-

ages can present some spurious little connected components that contribute

as noise on the final count evaluation. Indeed, during the inference, the model
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can be fooled by small sizes artifacts (Fig. 2.4) detecting them as cells. More-

over, some cells can be detected only partially, so that in the heatmap they

look like halved discontinuous cells. We define a post-processing pipeline

to remove these undesired effects and to promote a better count evaluation.

Precisely, leveraging the cell shape information (2.2.2, the post-processing

provides the first removal of small objects that, by size analysis, have a low

likelihood to be fully detected cells. Then, a step to fill the holes inside the

detected object is performed to avoid further cell fragmentation during the

next step of post-processing. Indeed, the last phase of this processing chain

provides the application of the watershed algorithm that is used to detach

connected objects. If wrongly parametrized or if the cells contain large holes

inside, this algorithm tends to produce over-fragmentation resulting in new

undesired objects. An example of the application of this pipeline is reported

in Fig. 2.13. In 2.13a we observe the heatmap outcome for the corresponding

input image. In the bottom part of the figure 2.13b, we evaluate the effect

of the post-processing. We can observe the removal of the small spurious

object, the filling of holes, and the final separation effect obtained by using

the watershed algorithm. It is worth remembering that the parameters used

for the post-processing are customized for this dataset. The morphological

cells’ information can provide some useful hints but the ultimate test is the

visual inspection. For such reason, we promote the development of a web

app that, other than the model inference, provides an intermediate step to

set the parameters suitable for a specific dataset. Through an interface, it is

possible to evaluate in real-time the effect of parameters fine-tuning applied

in multiple images.

2.3.4 Model evaluation

The Unet, small Unet, ResUnet, and c-ResUnet architectures, together with

the artifacts oversampling and the weight maps design choices, were evaluated

in terms of both detection and counting performance. Indeed, despite the

detection concerns mainly the segmentation performance, we are not inter-

ested in quantifying as much as a model is accurate to draw accurate shapes.
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(a) On the left, groud-truth. On the right, heatmap

(b) On the left, thresholded prediction. On the right, post-processed prediction

Figure 2.13: Post-processing pipeline. Upper-row pictures, the input
image with ground-truth cells’ shape overlapped (left) and the model’s raw
output (right); bottom row (figure from Clissa [2022]). The predicted mask
after thresholding (left) and the predicted mask after post-processing (right)
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The segmentation is only a mean to our ultimate task which is counting.

Nevertheless, it is worth remembering that to enforce the correct number

estimation, we need accurate segmentation at least in the crowded area, jus-

tifying the adoption of the weighted maps. Concerning the counting task

we used the Mean Absolute Error (MAE), Median Absolute Error (MedAE),

and Mean Percentage Error (MPE) to test the model performance. Precisely,

letting npred to be the number of the object predicted by the model for the

i-th image and ntrue the actual number, then, the absolute error (AE) and

percentage error (PE) are calculated as follows:

AE = |ntrue − npred|; (2.1)

PE =
ntrue − npred

ntrue

. (2.2)

The counting metrics are then the mean and median of the AE and PE

just defined. To evaluate the detection ability of the models, instead, we rely

on the accuracy, precision, recall, and F1 score whose definition follows here:

accuracy =
TP

TP + FP + FN
=

1

1 + 1
TP

(FP + FN)
; (2.3)

precision =
TP

TP + FP
; (2.4)

recall =
TP

TP + FN
; (2.5)

F1score =
2 · precision · recall
precision + recall

=
2 · TP

2 · TP + FP + FN
=

1

1 + 1
2TP

(FP + FN)
.

(2.6)

where TP, FP, and FN indicates true positive (cells correctly detected),

false positives (cells erroneously detected), and false negatives (cells erro-

neously missed), respectively. It is worth observing that in the accuracy

term, we do not have true negatives since the prediction of our model is at

the object level, so there are no non-cell objects predicted by the model.

However, to quantify the right number of such quantities, we designed an
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algorithm able to match the true positives and quantify the number of false

negatives and false positives. This algorithm compares each target cell to

all objects in the corresponding predicted mask and associates it with the

closest match. If the distance between the centroids of these two elements

is less than a fixed threshold (60 pixels, corresponding to the average cell

diameter), the predicted element is considered a true positive; otherwise, it

is classified as a false negative. Elements that are detected but not associated

with any target are considered false positives.

Threshold optimization

The optimal cutoff for binarization was based on the detection performance.

Indeed, also if the ultimate goal is to accurately count the number of cells,

the focus on detection performance helps to ensure accurate recognition and

avoid balancing false positives and false negatives in a way that could affect

the count. Moreover, the F1 score is specifically indicated for a heavily unbal-

anced problem so we select this metric for our evaluation. Before evaluating

the model performance on the test set, we need to select the threshold to

binarize the heatmap produced by the models. To find this optimal value,

we compute the F1 score using all the training and validation images and

varying every time the binarization threshold within a range going from 0.5

to 1. Figure 2.14 shows the optimization results for each model. On the

left, we can see how each model’s performance varies in the validation set

as a function of the cutoff for binarization. Even though lower thresholds

work best for all models, the F1 curves are rather flat after their peaks.

Thus, increasing the cutoff allows focusing only on predictions whereby the

model is very confident, with just a slight loss in overall performance. Also,

good practices in natural science applications suggest being conservative with

counts and only considering stained cells. For these reasons, we resorted to

the Kneedle method for the selection of the optimal threshold. An example

of that choice in the case of c-ResUnet is reported in Fig. 2.14 on the right

plot.

The resulting threshold was then used to evaluate the model’s perfor-
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Figure 2.14: Threshold optimization. On the left, the F1 score is com-
puted on validation images as a function of the cutoff for thresholding. On
the right, the test F1 score of the c-ResUnet model is used to illustrate the
selection of the best threshold for binarization according to the argmax (blue)
and kneedle (red) methods.

mance on the test set. Full-size images, rather than crops, were used to

better simulate the model’s operational condition in a real-world scenario.

2.4 Results

After training, the four neural network architectures were compared in two

different scenarios: using all design elements or using only artifacts over-

sampling (no WM). The c-ResUnet is further investigate adding the case in

which no artifacts oversamplig is provided (no AO) but keeping the weighted

maps design. The test set consisted of 70 full-size images, and the model’s

performance was evaluated in terms of both detection and counting ability.

The results of this comparison are provided in Table 2.1.
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Model Threshold F1 Accuracy Precision Recall R2 MAE MedAE MPE (%)

c-ResUnet 0.875 0.8149 0.6877 0.9081 0.7391 0.8215 3.0857 1.0 -5.13

c-ResUnet (no AO) 0.875 0.8047 0.6732 0.9019 0.7264 0.8077 3.0857 1.5 -6.24

c-ResUnet (no WM) 0.875 0.7613 0.6147 0.9418 0.6389 0.7048 3.6857 1.0 -19.14

ResUnet 0.850 0.7855 0.6468 0.8865 0.7052 0.7831 3.3286 1.0 -4.84

ResUnet (no WM) 0.850 0.7513 0.6016 0.9387 0.6262 0.6955 4.0571 2.0 -24.12

Unet 0.875 0.7724 0.6291 0.9117 0.6700 0.7560 3.5143 1.5 -14.36

Unet (no WM) 0.850 0.7886 0.6510 0.8989 0.7024 0.8069 3.1571 2.0 -9.23

small Unet 0.875 0.7563 0.6081 0.9264 0.6389 0.7682 3.5714 2.0 -21.37

small Unet (no WM) 0.825 0.6697 0.5034 0.9483 0.5176 0.5723 4.7714 2.0 -32.01

Table 2.1: Performance metrics. Test set performance using the optimal
kneed threshold. Both detection (first four columns) and the counting (latter
three columsn) evaluation are reported.

2.4.1 Performance

Based on the F1 score and MAE, the c-ResUnet architecture outperforms the

other models by a consistent margin. The best ResUnet model stays three

F1 percentage points behind the best c-ResUnet results associated with the

weighted-maps adoption. The best Unet design configuration also is signif-

icantly behind the c-ResUnet despite having significantly more parameters

(nearly 14 million compared to 1.7). Moreover, the ResUnet model family

outperforms the smaller Unet model, which has a similar number of param-

eters (876,000). The c-ResUnet model performs well also according to the

other evaluation metrics. The only result that reflects a countertrend result

concerns the precision associated with the Unet models that are higher than

the c-ResUnet one. This may be due to a tendency towards overdetection

in the Unet models that is explained by its optimal lower threshold value.

This situation allows a higher number of cells to be detected at the expense

of the recall value that drops below nearly 0.52. It is worth noting that the

use of the optimal threshold determined by the Kneedle method results in

high cutoffs and only includes detections with high confidence leading to an

increase in false negatives. As a result, the accuracy suffers, as the impact of

false negatives is twice as much as it is in the F1 score. Overall, the model

provides reliable predictions and satisfies the design requirement of being

conservative with cell counts, as indicated by the negative values of MPE in
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all experimental conditions.

2.4.2 Design evaluation

In this section, we focus on the evaluation of the two different experimental

designs. After the first training round including the weighted maps in the loss

term, we repeat the experiment for all the models under the same condition

but switching off this loss factor. For the c-ResUnet, we also test the artifact

oversampling strategy effect.

From 2.1 it seems clear that the weighted maps sort out a positive effect

since all the models achieve better results both in terms of detection and

counting performance with the only exception of the Unet model in its heav-

ier version (17 million of parameters). We design these penalization maps

to enforce the separation between touching boundaries helping the model to

segment better the high-density cell areas. To visualize such kind of effect we

report a comparison 2.15 between the heatmaps produced by the c-ResUnet

trained with and without the weighted map. We can notice clear improve-

ments in the boundaries definition when the model is trained using such maps

that definitively help to separate better the touching objects.

Figure 2.15: Weighted Maps effect. Predicted heatmaps obtained with
c-ResUnet (top row) and c-ResUnet (no WM).
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2.4.3 Results visualization

The visual inspection can help to define some qualitative aspects of the in-

ference phase. Using the bounding boxes visualization we can remark on

some model behaviors. We start with a picture that shows the tendency

of c-ResUnet to be sometimes too conservative missing a significant number

of cells. However, from the same picture, we can note that false negatives

often look very similar to the other cells lying in the background that were

discarded also by the human operators. It is difficult to judge these border-

line cases and so we cannot make a definitive statement on the quality of this

model decision. Moreover, in other cases, like in Fig. 2.16 we can observe the

opposite tendency that overall balances with the previous behavior. More-

over, the false positives reported in this figure this time strongly resemble the

actual stained cells present in the same picture. Again, it is difficult to judge

which from the human operator and the model makes the wrong decision.

Last, in the Fig. 2.16 we observe these two opposite tendencies balanced in

the same images, as a result, the predicted count is close to the actual one.

2.5 Final remarks

The proposed approach, which uses Deep Learning techniques to automate

the process of counting cells in fluorescent microscopy images, proved to be

successful in our study. Of the four CNN architectures we evaluated, the

cell ResUnet (c-ResUnet) was found to be the most effective. Despite hav-

ing seven times fewer parameters than the original ResUnet, the c-ResUnet

model performed better due to the inclusion of a learned colorspace trans-

formation and a bottleneck with two blocks including 5 x 5 filters used to

enlarge the field-of-view. In our ablation studies, we found that a weight

map penalizing the errors on cell boundaries and crowded areas contributed

to improved performance. The performance boost is due to the regularization

factor effect in the loss term and the better cell separation learned from the

model that implies better detection, avoiding to count multiple clustered cells

once. We don’t expect the artifact oversampling to result in a higher metric
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Figure 2.16: Model Predicion. Bounding boxes visualization of a picture
where c-ResUnet produce a significative number of false positive.
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Figure 2.16: Model Predicion. Bounding boxes visualization of a picture
where c-ResUnet produce a significative number of false negative.
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Figure 2.16: Model Predicion. Bounding boxes visualization of a picture
where c-ResUnet balances its tendency to produce a false positive and false
negative. As a result, the predicted count is close to the actual one.
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score since it is only a tool to better recognize the artifacts. However, if the

artifacts are already well represented, the model should learn to recognize

them so making the artifact oversampling unnecessary. On the other hand,

if they are underrepresented, this strategy can be useful, but, given the low

number of these examples in the dataset, clear evidence in the metrics may

not subsist. In terms of overall performance, our model had a mean absolute

error of 3.0857 and a negative mean percentage error of -0.0513. The F1

score of 0.8149 indicated that the model was able to accurately detect cells,

rather than achieving good counts through a balance of false positives and

false negatives. Experts who visually inspected the predictions found that

even the erroneous detections were reasonable and subject to subjective in-

terpretation. We hope that by sharing the c-ResUnet model and annotated

data, we can encourage further research and applications in this field and

related areas, and bring significant advantages in terms of speed and reduced

operator bias to experiments involving microscopic fluorescence.

2.6 Future works

The field of cell counting has been rapidly growing in recent years as algo-

rithms have become more accurate and efficient, allowing researchers to focus

more on the relevant aspects of their research. However, there are a few key

challenges that need to be addressed to fully mature this methodology. The

first challenge is the demand for supervised data. The process of producing

sufficient ground truth segmentation masks can be quite time-consuming and

may even be prohibitive in some cases. To address this issue, researchers are

exploring self-supervised and semi-supervised methods that do not require

as much labeled data, particularly in the field of segmentation. Additionally,

methods that use labels that are not directly related to the segmentation

output but are still useful for counting (weakly-supervision) could also be

investigated. The other key challenge is the reliability and explainability of

predictions. Deep learning models still struggle to provide clear explanations

for their decision-making processes, which is a critical requirement in the

biological field. Improving explainability would not only increase the perfor-
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mance of these models but also justify their decisions, making them more

trustworthy. Finally, due to the unbalanced problem, we aim to address this

issue by resorting to an oversampling strategy or the adoption of a different

loss, like the focal loss one.
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Chapter 3

Weakly supervised approach

3.1 Introduction

Weakly supervised methods are a set of models that try to learn with weak su-

pervision. In the case of semantic segmentation, this means that we can’t rely

on pixel-wise ground truth. Again, we restort the counting-by-segmentaion

approach to localize the cells taken into account during the counting also in

this case. Several approaches can be tried depending on the available labels

to accomplish with the segmentation task and some of these are described in

the following paragraphs.

Image-level caption

Image-level labels identify the categories of the objects present in a scene.

They don’t provide full supervision for the segmentation purpose but can

be exploited to generate pseudo-labels. The first step is to train a model to

associate the images with the correct labels, that is, to accomplish a classi-

fication task. During the training the model focus on the relevant areas of

the scene that helps the network to understand the classification problems.

These areas generally correspond to the ones in which the objects relative

relative to the correct label are included. After that, it is possible to pro-

duce a sort of activation maps (class activation maps - CAM) that highlight

these areas. By weighting the feature map of the last convolutional layer
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of a CNN and upsampling the weighted map to the image size, the authors

can begin to localize which areas of an image correspond to different classes.

This is possible by introducing a global pool averaging layer to the classifi-

cation network and examining the activations of the final convolutional layer

in the classification CNN. From this heatmap, it is possible to produce a

segmentation mask by thresholding. The outcome is a pseudo-label for the

segmentation task. These images usually are not so accurate so some other

steps to refine them are necessary. To enhance the generated mask segmenta-

tion, different methods have been proposed. Kolesnikov and Lampert [2016]

Introduce three different loss functions to enforce the network to expand or

constrain the boundary of the objects leveraging the color and the spatial

structure of the images. Another frequently used method is known as CRF

which instead exploits the local information and global context to produce a

better localization of the objects Oh et al. [2017] Xu et al. [2021].

Bounding-box

Bounding boxes provide information about the objects localization. The

idea is to use this information to localize the foreground extraction from

within these coordinates. For example Rother et al. [2004] used an optimized

version of graph-cut algorithm that use texture (colour) information, and

edge (contrast) information, to segment the object of interest. Also, the

same CRF algorithm can be use jointly with an expectation maximization

(EM) algorithm to generate enhanced pseudo masks Papandreou et al. [2015]

In constradt to the classical methods, the autorh of Dai et al. [2015] pro-

moted the combination of region proposal algorithm and convolutional neural

network training. These two steps alternate to gradually recover segmenta-

tion masks for improving the networks, and vise versa requiring only easily

obtained bounding box annotations. On the same vein, in Lee et al. [2021]

is developed a new effective way for the region-proposal step introducing a

bounding-box attribution map (BBAM), which identifies the target object

in its bounding box.
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Dot annotations

Several works exploit point annotations and this is because it offers several

advantages Papadopoulos et al. [2017a]

• is substantially faster than drawing bounding boxes;

• It requires little instructions or annotator training com- pared to draw-

ing;

• It requires no specialized hardware

Recalling the CAM method described above, a further development con-

sists of using also the dot annotation to make a point-class-activation-maps

McEver and Manjunath [2020]. Indeed, other than the classic map activation

related to the classification problems, point supervision is included in a sec-

ond loss term. This work promotes a better localization of the class activation

maps. Then a further CNN refine the pseudo-labels obtained propagating

the affinity between neighboring pixels. After this further step, a CNN can

be trained in a fully supervised manner exploiting the ground-truth labels

generated in this way.

Another interesting work Bearman et al. [2016] promotes the joint use of

one-click supervision with the objectiveness concept, that is, the probability

that a pixel belongs to an object. In this way, the lack of knowledge doesn’t

cover by a point annotation, that is, the extent of the object is alleviated by

introducing this prior directly in the loss term.

Another concept introduced is that of extreme point Papadopoulos et al.

[2017b]. Differently from a bounding box approach, the annotator is asked

to click on four physical points on the object: the top, bottom, left- and

right-most points. From these four points is still possible to get a bounding

box and at the same time, to know the extent of the object inside it. So,

more information is retrieved in less time to produce better results. This

approach so can be used both for object detection and segmentation. Indeed,

a gaussian is placed on top of these points and the resulting image is added

to the RGB input picture. From this image, the network learns to segment

the object inside the four extreme points.
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Our work is based on the dot-annotations availability. In the following

sections, we first introduce one of the two datasets used for this study, while

the other is the same already considerede on the previous chapter. Then, we

articulate two different procedure to produce pseudo-labels enabling the seg-

mentation approach. Indeed, our approach is still based on the counting-by-

segmentation approach to provide a precise localization of the object counted

also if not interested to provid a fine object segmentation. For the training

of the model and the successive evaluation we resume the same methodology

exposed during the supervised case analysis. Result and conclusion remark

the validity of the described approaches.

3.1.1 Related works

The term weak supervision related to the segmentation task includes several

labels kind as bounding boxes, dot annotations, scribble, and image-level

caption. Many works address the usage of these labels to perform such a

task in different research domains using only this limited information. With

respect to the cell counting tasks, some labels are more suitable than others.

For example, drawing bounding boxes around highly packed cells is not easy

with the chance to pack multiple cells or to include a relevant portion of

the surrounding background inside the same box. This is especially true

when the cells have an extremely variable and elongated shape like those

depicted inside the fluorescent neuronal cells dataset. In some cases, this is

still a feasible option to save labeling time as demonstrated in Khalid et al.

[2022]. In this paper, the authors promote a method base on a multi-step

annotation process. During the first step, the annotators draw the bounding

boxes around the cells. Then, some points are sampled from these boxes and

the human annotators select which of those points are cells or backgrounds.

Other methods Zhou et al. [2018] Li et al. [2018] Faster [2015] are successfully

applied but only in well-defined conditions: the objects don’t touch each

other and don’t have complex rigid structures and, usually, this is not the

case for the neuronal cells.

On the other hand, point annotations represent a good choice in terms
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of preserving information and saving annotation effort. Several works focus

specifically on the dot annotation Nishimura et al. [2019] Qu et al. [2020]

Khalid et al. [2022] trying to design a general framework to apply across

different datasets going from histopathology to microscopy images. In Qu

et al. [2020] a pipeline is developed to gradually refine the segmentation re-

sult of a CNN trained on partial dot annotations. The first step provides a

detector whose aim is to find the center of the cells in the images. In these

pictures, only a part of the cells is annotated. On top of each cell is placed

a gaussian probability distribution. While the pixels under this distribution

belong to the cell, the others immediately outside are labeled as background.

The remaining pixels are excluded from the training. After the first round of

training, based on the output of the detector, the authors select more back-

ground examples. The masks are so refined step-by-step to provide even more

accurate segmentation masks. After these training steps, the Voronoi graph

and k-mean clustering are used to separate the touching cells. A new model

is then trained from scratch on the resulting masks. A different approach

is described in Nishimura et al. [2019]. Here, the dot annotation is used to

build a cell centroid likelihood map similar to the work described before Qu

et al. [2020]. The detector learns to localize the center of the cell first, then,

a backpropagation path is applied to localize the pixels around the center

associated with the detection of the cell. Graph-cut iterative procedure is

used to refine the segmentation results. Instead, in the work Khalid et al.

[2022] an approach using a mix of dot annotations and bounding boxes is

described. Here, through a region-proposal method, detection and segmen-

tation of the cells are accomplished jointly. Also, Chamanzar and Nie [2020]

develop an algorithm to perform both single-cell detection and segmentation

using only point labels. This is achieved through the combination of different

task-orientated point-label encoding methods and a multi-task scheduler for

training.
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3.1.2 Contribution

This work describes two different approaches to dealing with point annota-

tions for to perform count-by-segmentation task. Since the segmentation is a

means to provide the localization of the cells included into the counting pro-

cess, to evaluate these methods we use metrics concerning counting/detection

performance. Our contribution is twofold:

• We provide a method for fast and easy training suitable when the cells

have a regular and homogeneous shape

• We furthet develop this method to perform the detection-by-segmentation

task also when the shape of the cells are more complex presenting a

large variety of shapes and sizes.

In both cases the contribution is focused on the binary masks generation

used for the model training. in the former method we levereage on the

features map obtained from an autoconder trained on a recontruction pretex-

task. Then, we apply the weakly dot annotations information to refine the

previous results and remove the undesidered objects. Where possible we

compare the weakly trained model with its supervised couterpart to validate

the method proposed. The code used for both the use case presented in this

chapeter are reported to the following links:

• CTb dataset: (cell counting yellow supervised and weakly supervised

approach for CTb dataset)

• c-Fos dataset: (weakly supervised cell segmentation c-Fos dataset)

3.2 c-FOS Dataset

The dataset is composed of 251 images with a resolution of 1200x1600. The

pictures are acquired using a similar methodology exposed in the previous

chapter but exploiting a different fluorochrome emission. Indeed, the mi-

croscopy configuration adopted exploits absorption (excitation) of a wider
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emission wavelength range, going from 495 to 570 nanometers. As a result,

the images have a greenish appearance in contrast with the yellowish col-

oration of the fluorescent cells dataset. To acquire these images, the same

monosynaptic retrograde tracer (b-subunit of Cholera Toxin, CTb) is in-

jected into the raphe pallidum which is thought to be involved in the regula-

tion of the torpor onset. Also, the brain regions involved in the experiment

are the same, involving the dorsomedial hypothalamic nucleus (DM), the

lateral hypothalamic area (LH), and the ventrolateral part of the periaque-

ductal gray matter (VLPAG). From this area, the activity of the neurons

is observed through tracer signals to understand the functional connections

between brain regions Hitrec et al. [2019]. After some time, about a week,

the brain is cut into slices and analyzed using the fluorescence microscope.

3.2.1 Data description

c-fos

The appearence of the images is drastically different from the images be-

longing to the yellow dataset altought deriving from the same experiment.

Firstly, the hue is higly shifted on the green channel how it is visibile from

figures 3.1. The stained cells look like bright circular shape surrounded by

homogeneus greenish biological tissue. In figure is reported a zoom detail

highlighint such a stained cells 3.2 with bounding boxes to help their vi-

sualization. To summarize, the most relevant characteristcs of this dataset

are:

• High resolution images: 1200x1600 pixels

• High value on green channel both for background and cells pixels

• Low contrast between the background the the cells

• Reduced impact of artifacts respect to the fluocells dataset

• Quite homogeneus size and shape
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cTB

A description of this dataset is remainded to the previous part. Here we only

summarize the relevant features in comparison with the c-fos dataset.

• High resolution images: 1200x1600 pixels

• High value on green and red channel

• Considerable contrast between the background and the cells in most

part of the images

• Presence of characteristic artifacts

• Large variability in size and shape

Figure 3.1: Sample data. Raw image. Some peculiar samples. In the top
left corner a typical sample image. On the top right an image with an artifact
related to the fluorescence emission process: the green light agglomerate is
not a stained cell to count. In the left bottom corner, image with stripe.
The small bright spots can fool the model during the count. On the bottom
right, an example of image with darker background.
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Figure 3.2: Stained cells. The cells appear like circular bright spots. In this
picture some examples are highlighted under the white bounding boxes.

3.2.2 Challenges

In this section, we describe the critical traits of the images that mainly in-

fluence the counting task process. Indeed, similarly to the yellow fluorescent

cells, some peculiar aspects of the images can fool the network during the

training phase affecting its resulting generalization performance.

Altought the impact of these traits is reduced considering the yellow

dataset, there are still some critical aspects that are worth highlighting. One

first salient feature is the reduced contrast between the background and the

cells that makes the detection task harder (Fig. 3.3). Indeed, the activated

cells usually appear as distinct green bright circular spots but sometimes

they are almost indistinguishible from the sourrounding background. This

circumnstance happens when the cells are out of the microscope focus and,

also if stained, they show a very weak intensity. In figure 3.4 we provide a

zoom detail togheter with bounding boxes to help the visualization of such

kind of cells distinguishing between in-focus and out-of-focus cells. This
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situation complicates the annotator works that can be fooled and make wrong

assumption annotating also fake objects (see section 3.3.1).

Another trait that sometimes generate confusion arise from some small

bright spots localized in some specific area of the brain tissue. An example

of these fake activated cells is depicted in 3.5 around the edge close to the

black background area. The bright spots localized in these areas look like

the other stained cells but they don’t provide any hint about the practical

biological aspects and they are not to be confused with the actual activated

cells. Luckily, these spots, appear in some specific areas of the biological

tissue surrounded by completely black areas 3.5. This peculiar feature is an

hint that the model can use to avoid counting them. Lastly, a remark on

some artifacts that appear as a side-effect of the fluorescence process and

also can be recognized as the other stained cells 3.5.

Figure 3.3: Sample data. Low contrast image. Here the difference in
intensity between some stained cells and the backround is very limited.
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Figure 3.4: Stained cells. The cells usually appear like circular bright spots
but some of them have a very weak intensity. In this picture in focus cells
and out of focus cells are surrounded respectively by withe boxes and a red
boxes.

Figure 3.5: Sample data. Some challenging traits. On the left an artifact
example. The big bright spot look like an agglomerate of cells. On the right,
a strip with a large number of bright spot. These elements also if look similar
to the cells are not relevant to the analysis.

CHAPTER 3. WEAKLY SUPERVISED APPROACH 67



3.2. C-FOS DATASET

3.2.3 Dot annotations

The dot annotations represent a set of coordinates that identify the cells acti-

vated during the onset of the torpor mechanism Hitrec et al. [2021] Cerri et al.

[2021] Tinganelli et al. [2019] Dentico et al. [2009]. Like in the yellow dataset

case, the cell activation is traceable to the intensity level of the fluorochrome

emission that makes some cells look more stained than others. While the

c-Fos images are provided directly with dot annotations, the CTb pictures

have their ground-truth mask associated. So, to achieve the dot annotations,

we recover the center point of each segmented object represented inside each

ground-truth image. Then, the dot annotations are the information used for

both the pseudo label generation methods used in the next section (3.3.1).

c-Fos

The dot annotations provided report only the spatial coordinates of the cen-

ters of the cells which undergone activation during the experiments. However,

also if less stressful with respect to drawing a binary mask around each cell,

also this annotation task can be affected by a different source of errors:

• Fatigue of the Operators

• Subjectivity of the operators’ choices

• Low accuracy in the coordinates identification

The first two sources of errors can imply a wrong count result and, conse-

quentially, an incorrect evaluation of experimental evidence. The third source

of uncertainties refers to the selection of a point outside the cell area. This

error has no consequences for the counting task but can affect the pseudo-

labels generation 3.3.1 since the boolean mask is placed on the wrong picture

points. To avoid such a bias affecting the model during the training it is

better to define a strategy to adjust these coordinates. However, by a visual

inspection, the number of such cases is not relevant and we decide to the left

to the model to handle this source of uncertainties.
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cTB

The cTB or fluorescent neuronal cells dataset is described already in the first

part of the thesis (Chapter 2.2) where we remind for a detailed explanation of

the original ground truth provided. We only recall that those binary masks

are carried out using both a semi-automatic and a manual labor-intensive

approach. So, the dot annotations we recover from these target masks are

considered quite reliable since provided by domain experts that image-by-

image regard all the cells candidate excluding those wrongly annotated during

a first semi-automatic round. On the other hand, the hand-labeled process

also represents a task during which the annotator stays constantly focused,

thus limiting the propensity to click also on the false positive objects like

happened for some of the cFos images.

3.3 Methods

3.3.1 Pseudo labels

We recall that the cells represented in these two datasets have significant

dissimilarities, from the color to the shape. The c-Fos pictures depict cells

characterized by a quite homogenous shape Section 3.2.1 resembling a circu-

lar structure. On the other side, the cells depicted in the CTb dataset show

a large variety of shapes and dimensions. From these observations, we decide

to pursue two different approaches during the pseudo-labels generation pro-

cess, one addressing the c-Fos simplified case, and the other facing a more

general and complex situation. In the former case, we have a fast and easy

approach while in the latter we resume a pretext task as a preliminary step

of the pseudo-labels generation. The pseudo-labels generation represents the

critical part of the methodology described in the following. The remaining

part of the processing pipeline largely resumes the methodology exposed in

the previous chapter (Chapter 2)
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C-fos

The first step of pseudo-labels generation is the shape and dimension defini-

tion of the boolean structure to place on top of the dot annotations. After a

visual analysis, we use a circular shape with a radius of 12 pixels. With such

a structure, we assess that most of the pixels marked as cells are contained

inside the cell boundaries. The steps of mask generation consist first of the

creation of a completely black image (target). Then, the pre-defined boolean

structure is placed on top of each cell’s annotation. Some example results

are reported in fig 3.6b.

Challenges

After the mask generation, an assessment of the goodness of the mask was

qualitatively performed by visual analysis. From this observation we noticed,

supported by the domain expert, some labels inconsistency. Especially, the

following problems were detected:

1. Artifacts labeled as cells

2. Wrong annotations

An example of the first issue is provided in figure 3.7 where each cell is

overlapped with the contour of the corresponding boolean structure inside

the pseudo-labels. From the overlap of the dot annotated red circles, we can

observe two things. First, some annotations are slightly far away from the

cells. Second, a bigger blob on the bottom of the images is wrongly labeled

as a cell. Also if the impact of such an error is reduced, this figure resalts

how human error can easily affect the counting task. Deserve more attention

to the second type of error from the above list whose examples are reported

in figure 3.8. This misjudgment can occur because of the subjectivity or the

fatigue of the annotator that selects, wrongly, fake cells. For example, in left

picture of thi figure, fake cells are selected from the strip on the side of the

image. The red overlapping circles are enlarged to enable better visualization

of the underlying cells. Also, in figure (3.9), the operator selected some cells
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whose fluorescence intensity is very low and that from a posteriori analysis

were defined as no-activated cells. These images report the examples already

analyzed in figure 3.4 concerning the in-focus and out-of-focus cells. These

latter objects, also characterized by weak fluorescence, can be considered as

activated cells. However, we include these images for the model train to test

the model robustness in a real-case scenario.
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(a) image (b) generated mask

(c) image (d) generated mask

(e) image (f) generated mask

Figure 3.6: Sample data.
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Figure 3.7: Big spot on the bottom of the image is wrongly annotated.
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Figure 3.8: Groud-truth overlap. Wrongly annotated data. On the left
side of the image over the edge some points are wrongly annotated. The
circles size are exhagerrated to enable a better visualization of the underlying
cells.

74 CHAPTER 3. WEAKLY SUPERVISED APPROACH



3.3. METHODS

Figure 3.9: Wrog annotated cells.The operator wrongly annotated some
very low intensity spots hinghighted with purple boxes in the image. For
comparison are reported also in-focuse cells and out-of-focus cells.

CTb

Fluorescent microscopy images can depict many biological structures, and

the cells shown in these images can have different characteristics depending

on the experimental conditions and the biological process being studied. The

c-fos dataset analyzed nuclei of neuronal cells that are relatively uniform in

shape and size, while the cTB dataset required a more robust method for

generating pseudo-labels due to the varied shapes of the cells being detected.

The method involves several steps. First, we train an autoencoder on a

pretext task like image reconstruction. Then, we use the features maps of

the trained autoencoder to obtain a raw segmentation mask, based on the

assumption that a few of the features maps can roughly separate cell objects

from the background. A threshold is applied to create raw binary pseudo-

labels. However, these images contained many artifacts and false positives, so

we used dot annotations that only mark actual cells to clean the images. We
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created an auxiliary mask with a circular boolean shape centered on each dot

annotation and then multiplied the first raw image with the boolean mask to

keep only objects that intersected at least partially with the boolean objects

of the auxiliary mask. This gave us clean pseudo-labels. The steps can be

summarized as follows:

1. Training of the convolutional autoencoder on the reconstruction image

pretext-task

2. Selection of a discriminative feature map

3. Application of all model filters until the convolutional layer selected to

the previous selection

4. Normalization and thresholding of the output obtained at step 3

5. Generation of a boolean mask

6. Multiplication of the raw mask obtained at step 4 and boolean mask

created at step 5

The most critical step is the selection of the feature maps to discrimi-

nate between background and cells that, so far, remain a step to be defined

manually.

Image reconstruction task

The first phase to consider is training a convolutional autoencoder for image

reconstruction. The architecture is similar to the c-ResUnet, but the last

layer is replaced with a 3-channel layer to enable RGB image reconstruction.

We assume that the network, by learning how to reconstruct images from

the dataset, will define a set of filters that can highlight certain character-

istics of the cells against the background pixels. Alternatively, a standard

thresholding technique could be used instead of deep learning training in

this phase, but these techniques require manual tuning of many parameters

and mainly use pixel intensity as a feature to discriminate signals from the

76 CHAPTER 3. WEAKLY SUPERVISED APPROACH



3.3. METHODS

background, while a set of features could be more powerful by also capturing

other discriminative features. Another method worth exploring is training a

regression network that aims to infer the total number of cells. Such a net-

work would promote a set of features to enhance the appearance of cells in

the images. However, we chose the easier approach of delivering raw pseudo-

labels through autoencoder training. For the reconstruction task we analyzed

the same images used for the segmentation problem, but this time we ignored

the ground truth labels. We trained the model until early stopping occurred

after around 60 epochs. However, highly accurate network training is not

necessary for this phase because the model usually learns the required set of

filters after a few epochs. The model’s architecture starts with a block con-

taining two convolutional layers with 16 filters, which sequentially increases

until the bottleneck. It then decreases again through the decoding path,

ending with the last layer having only 3 channels, which are necessary to

reconstruct the original RGB image.

Discriminative features map

To visualize the feature maps we pass an input image through all the convo-

lutional filters of the model. Each block gives a different number of feature

maps that we sum up to get a unique grayscale image that we define as

agglomerate feature map or a-fm. The total number of these grayscale ag-

glomerate filters is 18 all reported from figure 3.11 to 3.15.

To define which a-FM to select, we take a look at the images produced

passing an input image 3.10 through the model. Some of these filters enhance

the difference between the background value and the cells. Using a false color

map we can analyze which of these filters is the most suitable for our purpose.

For example, the filters relative to the 15-th convolutional layer seem to

accomplish better this scope as visible from the bottom right of figure 3.14.

In figure 3.16a the same filter is reported after a normalization. After this

visual analysis, we select this a-FM and apply it to all the training-validation

sets of images.

After that, we apply thresholding to get a binary mask. First, we need
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to define an appropriate value to apply to all the a-FM. For this reason, we

design a threshold sweep evaluating the resulting F1 score. Since the output

of the model is not a probability map, the threshold value corresponds to a

variable level of the intensity percentile. Ten values starting from 90 − th

to the 99 − th are tested. To evaluate the F1 score, the same algorithm

described in 2.3.4 is used. Each predicted cell’s center is associated with the

closest ground-truth dot-annotation. If the coordinates are close within a

pre-fixed distance (1.5 the diameter of the mean cell), a true positive match

occurs. Finally, we select the 99-percentile intensity value as the best value.

An example of the resulting pseudo-labels is reported in Fig. 3.16b together

with a comparison with the actual ground truth. These pseudo-labels do

not contain yet the weak supervision provided by the dot annotation thatis

included with the step described in the folowing section.

Weak supervision

Now is the moment to leverage the weak supervision by using the dot anno-

tation. We know that these points correspond to the actual cells that have

to be counted. To use this information we prepare some pictures with a

boolean circular structure similar to what we saw for the c-Fos dataset. We

want to use these images as a boolean mask to define which object from the

raw pseudo labels should be kept in the final pseudo-labels. So we multiply

the raw pseudo labels with the corresponding dot-annotated image. If the

cell from the raw output corresponds to a center in the boolean mask, then

the cells are promoted into the final ground-truth mask. These steps are

repeated for each image present in the raw pseudo labels. The final image

is a ground truth cleaned from spurious objects. An example of these steps

application is reported in figure 3.17. On the left we have the raw binary

mask, in the center the resulting image after the cleaning process, on the

right the actual ground truth is reported for a comparison with our pseudo-

label. Some other examples results are reported from figure 3.18a to figure

to3.18e. From this comparison, we observe that the size of the cells inside

the pseudo-labels is systematically smaller than the ground-truth counter-

78 CHAPTER 3. WEAKLY SUPERVISED APPROACH



3.3. METHODS

parts. We should ignore these observations simulating a real case where the

ground truth is not available and so we don’t perform further adjustments

or post-processing. Remarkably, we observe that only a little fraction of the

actual cells are not replicated in the pseudo-labels. Moreover, most parts of

the objects keep separated also inside the pseudo-labels without observing

the generation of white clustered blobs that would invalidate the training

process. Aside from this, we remind that the pseudo-labels can have to the

utmost the same objects as the pseudo-labels since the weak supervision ex-

clude the other irrelevant object. In the future work section 3.7 we propose

some alternatives to the current strategy to reduce this bias.

Figure 3.10: Input image used to visualize the agglomerate features maps of
the autoencoder corresponding to each convolutional layer.
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Figure 3.11: Agglomerate features maps from the first to the fourth convo-
lutional layers
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Figure 3.12: Agglomerate features maps from the fourth to the eighth con-
volutional layers
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Figure 3.13: Agglomerate features maps from the eighth to the twelveth
convolutional layers

82 CHAPTER 3. WEAKLY SUPERVISED APPROACH



3.3. METHODS

Figure 3.14: Agglomerate features maps from the twelveth to the sixteenth
convolutional layers

Figure 3.15: Agglomerate features maps from the sixteenth to eighteenth
convolutional layers
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(a) Feature map obtained from the selected set of filters added togheter to form a
one-channel image.

(b) Left. Pseudo-labels obtained with thresholding. On the right the relative
ground-truth

Figure 3.16: Selection of feature maps used to generate the pseudo-labels.
Top raw. On the left, the original feature map value Right, the same feature
map is normalized between 0 and 1. On bottom raw. Left, Binary mask
obtained tresholding with the ninty-nine percentile value of the feature map
value. The same value relative to each image is applied for the raw pseudo-
labels generation process. Right, ground truth mask.
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Figure 3.17: From the left. First pseudo-labels obtained with autoencoder
feature map and thresholding. Center, application of weakly-supervised dot-
annotation filtering. Right, corresponding ground-truth label.

(a) pseudo-label (b) ground-truth

(c) pseudo-label (d) ground-truth
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(e) pseudo-label (f) ground-truth

Figure 3.18: Comparison between pseudo-labels generated after the entire
process and the corresponding hand-crafted ground-truth. The generation
of pseudo labels consist in two main steps: Application of autoencoder filter
to get discriminative feature map, and filtering using the weakly-supervised
dot-annotation.

3.3.2 Model architecture

C-ResUnet is selected to be trained on both the dataset: cTB and c-Fos.

This model is the outcame of ablation study performed on the yellow (cTB)

dataset with a fully supervision on the ground-truth masks 2.3.1. For any

details on the model architecture we remaind to the specific section of this

thesis

3.3.3 Training

In the following, we will refer to c-ResUnet-y and c-ResUnet-g to the

models trained respectively on the c-TB and c-fos datasets.

c-ResUnet-y

We distinguish three different learning procedures for the c-ResUnet-y family

• c-ResUnet-y - supervised mask generation. The ground truth is pro-

duced both by hand from domain experts and using a semi-automatic

thresholding technique.
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• c-ResUnet-y-u - unsupervised mask generation. The binary masks

are generated using the convolutional autoencoder’s feature map with-

out using dot-annotation filtering.

• c-ResUnet-y-ws - weakly-supervised masks generation. The unsu-

pervised masks are corrected using dot-annotation information.

We apply for each model the same dataset split. From the initial 283 im-

ages we first selected randomly 70 pictures for the test set while we further

split the remaining part following the standard 70 : 30 proportion, respec-

tively for the train and validation set. During the split, we used the same

seed to assess the replicability of the experiment and promote a fair compar-

ison among all the competing methodologies. After this stage, we cropped

each image into 12 partially overlapping (120 pixels on the width dimension)

patch of size 512×512. We generate weighted maps using the same procedure

described in the section 2.3.1 to penalize the loss of the pixels surrounding

the higher density cells area. Then, an augmentation was applied to increase

the number of examples with the same criterion exposed in the first part of

this thesis. The augmentation performs both standard transformations like

rotation, flip, blurring, and shift of hue, saturation, and value, and also elas-

tic deformation to get a wider variety of cell shapes. For the images whose

ground truth was generated by hand, the augmentation factor increase from

5 to 10 to provide more accurate examples to the model. For the same reason,

for a subset of patches depicting relevant artifacts, the factor was increased to

100. After the augmentation process, we end up with nearly 16000 cropped

images. We also set each model to the values of the same hyperparameters.

We used a batch size of 8 together with an early-stopping patience of 5 and

a learning rate of 0.0001. We use a learning rate scheduler to decrease the

learning rate value to the 80% of its previous value each time the model does

not improve for more than three consecutive epochs. Concerning the loss, we

combine a weighted binary cross-entropy loss with the weighted maps setting

the class weights to 1.5 and 1 for cells and background, respectively.

It is worth observing that the training, also for the supervised method,

is performed again from scratch without reusing the results obtained in the
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first part of this work. The main reason is that we want to retrain all the

architecture from scratch using the same seed for the train and validation

splits. However, since we start from different ground-truth labels, we have

to take again the augmentation process for each method introducing a non-

reproducible pattern. The code used for the training and subsequent eval-

uation is written using Pytorch (cell counting yellow Pytorch) rather than

Keras (cell counting yellow repository) which was used for the first version

of the fluorescent cell supervised training.

c-ResUnet-g

The c-Fos dataset consists of 251 images whose 39 are included in the test

set. This time we train only a model, c-ResUnet-g, to test the validity

of the weakly-supervised approach. In this case, we use a train-validation

split following respectively a 85 : 15 division. We cropped the images into 12

partially overlapping patches also in this case but we did not use weighted

maps because of the lower density of the cells. The augmentation pipeline is

the same used for the cTB dataset except for the elastic deformation that can

generate cells examples different from the actual ones, since, in this case, the

cells are characterized by a quite regular shape. Moreover, the augmentation

factor is set equal to 2 but with some variation depending on the crop features

to augment. To promote more significative samples, the split factor decreases

to one if in the patch there are no cells while it increases to 4 if there are more

than 5 cells. This strategy acts similarly to an oversampling used to alleviate

the unbalanced problem between cells and background pixels. Finally, we

ended up with nearly 9000 images for the training and validation phases.

Once the splits are generated we started the training using a batch size of 8,

an early-stopping patience of 5, and a learning rate of 0.001. This last value

was handled during the training using a scheduler that decreases its value

to the 80% of the previous value, each time the model does not improve for

more than five consecutive epochs. We adopt also in this case weighted binary

cross-entropy loss with weights equal to 1.5 and 1 for cells and background,

respectively.
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Parameters CTb c-Fos
remove obj. size 200 4
holes size 600 6
max distance 30 3
foot 40 4

Table 3.1: Post processing parameters.

3.3.4 Post-processing

The post-processing pipeline follows the same steps described in the first part

of the thesis. Since the cells represented in the two datasets have different

sizes, a little fine-tuning of the parameters is required to get a clean result.

We remind that the outcome of the model consists of a probability map of the

same size as the original input, whereby each pixel value can be interpreted

as the probability of belonging to a cell. Using a threshold it is possible

to get a binary mask. This segmentation mask represents all the objects

detected as cells. However, some spurious objects can pop up and affect

the counting. The post-processing step address removing these small objects

or filling holes within the cells detected. Anyway, depending on the size of

the cells, the parameters used to process these results can change. In the

following, we summarize the parameters used for the two different datasets.

The first two parameters are strictly related to the cell’s size and regard

the area of the object to remove and the area of the holes to fill. The last

two parameters, instead, affect the watershed algorithm Soille and Ansoult

[1990] that acts to separate the touching cells. It is worth observing how

drastically changed depending on the size of the cells to detect. For these

parameters, it is useful to have at least some shallow knowledge about the

cells’ dimensions. These parameters can also strongly affect the results and

so accurate tuning is recommended. To make this step easier to handle and

to get fast feedback with respect to the parameters sweep, we developed a

web app that enables a qualitative and quantitative inspection of the results.

We used this interface to test some parameters combination and get the

parameters that work better. We will described in detail the web-app features

and their scope in the last part of this thesis (5.2.3)
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3.3.5 Evaluation

To validate the weakly-supervised methods presented here, we used the same

metrics already seen for the c-ResUnet evaluation concerning the detection

and counting task problems.

To better understand the validity of the proposed method we compare it

with other training procedures. In the first place, we retrain the model in a

supervised manner using the ground truth describe in the 2.2.1. We use the

supervised models’ performance as the benchmark. On the other hand, we

also set as a baseline the model trained on the masks generated using only

the autoencoder features map without the intervention of weak supervision.

We refer to such a model as the c-ResUnet-y-u where u stays unsupervised

also it could be also intended as a self-supervised learning.

For the c-fos dataset, we only evaluate the model trained following the

weakly-supervised approach. To define the best model we use the F 1 score

relative to the test set. This value is computed with the same algorithm

described in the chapter (REF). The only difference is the distance used to

define a true positive match between the predicted mask and the ground

truth. Indeed, for the c-Fos, these distance decrease in absolute value but is

still equal to 1.5 times the mean cell radius associated with that dataset.

Threshold optimization

Before getting the F1 on the test dataset,it is needed to find the best threshold

to use during the binarization of the heatmaps. To do that, we proceed with

threshold optimization upon the train and validation images. We investigate

different threshold values ranging from 0.30 to 0.90. Within this interval falls

the optimal threshold relative to the maximum value of the F1 score. Once

this value is found, it is used for the test set evaluation.

In the following, we report the curves in Fig. 3.19 representing the F1

scores of all the trained models. For the fluorescent-cells dataset , we test

three different learning approaches while for the c-fos we only have one avail-

able approach. Anyway, from these curves we can observe the dependence

of the F1 score from the threshold. These lines look quite smooth demon-
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strating the robustness of the results. Indeed, these trends show that the

results are not drastically affected by the threshold selection within a quite

wide range.

Looking at the result relative to the yellow fluorescent cells (Fig. 3.19

on the left), as expected, the supervised method outperforms the other ap-

proaches but the distance with respect to the weakly-supervised learning

method is limited to a few percentage points. This is quite surprising think-

ing that, among the supervised dataset, we have 31 images accurately selected

and segmented by human annotators that required great time and effort. For

the c-Fos dataset, we have only the curve relative to the model trained with

the weakly-supervised approach. The same observation regarding the ro-

bustness of the result applies here, but the F1 score result is a bit lower with

respect to the previous case. Anyway, from these curves we get the optimal

threshold to asses the model’s performances on the test set.

Figure 3.19: Threshold optimization. Threshold optimization. Re-
sults relative to c-ResUnet-y-s, c-ResUnet-y-ws and c-ResUnet-y-u on the
left and to c-ResUnet-g on the right

3.4 Results

The test sets are composed of 39 and 70 images respectively for the CTb

and c-Fos datasets. The images are provided full-size to simulate closer a

real-case scenario where the images don’t need to be cropped to optimize the

training process. To compute the f1 all the images of the test set are used. 3.2
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reports the performances in terms of both detection and counting ability for

the three different models trained with different ground-truth labels. Instead,

3.3 regard the performance metric of the model trained on the green dataset

using the weakly supervised approach.

From 3.2 we confirm the superiority of the supervised approach accord-

ingly to what we already saw during the threshold optimization. Also, the

small distance in terms of both detection and counting performance between

the weakly supervised and the supervised methods is replicated on the test set

proving the validity of the method developed in this work. To remark on the

impact of the weak supervision we can observe the performance score of the

c-ResUnet-y-u and the c-ResUnet-y-us whit this latter model outperforming

the former by a large margin. We still remember that the difference between

these two approaches resides in the dot-annotations information that is used

to remove fake objects from the pseudo-labels obtained from the convolu-

tional autoencoder 3.3.1. We keep in mind that the three architectures are

completely equivalent in terms of the number of parameters and the number

of images (nearly 16000) used for the training.

Moving to the results relative to the green dataset, looking at the table

3.3, we observe a little decrease in performances with respect to the yel-

low dataset. From the quantitative scores indeed, we observe a satisfactory

detection performance (f1 score) but a limited counting performance. The

MAE and MedAE remark some significant disagreements with the count ob-

tained manually. This is also related to the mean value of cells per image

which increases respect for the fluorescent cells dataset. However, we al-

ready highlighted that the subjectivity issue for the c-Fos dataset has a big

impact (see section 3.3.1) playing a crucial role in the final metric evalua-

tion. Although this evidence, the visual inspection of the results, assisted by

a domain expert, confirms the goodness of the results. A way to alleviate

these annotations issues would promote an approach performing a mean of

different annotator evaluations.
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Model Threshold F1 Accuracy Precision Recall MAE MedAE

c-ResUnet-y-s 0.5 0.84 0.72 0.85 0.82 2.4 1.0
c-ResUnet-y-ws 0.43 0.82 0.70 0.83 0.81 2.7 1.5
c-ResUnet-y-u 0.5 0.64 0.47 0.53 0.80 7.4 5.5

Table 3.2: Performance metrics. Test set performance using the optimal
threshold. The first four columns report the detection metrics, while the
latter ones evaluate counting performance.

Model Threshold F1 Accuracy Precision Recall MAE MedAE

c-ResUnet-g-ws 0.5 0.80 0.66 0.73 0.86 11 8

Table 3.3: Performance metrics. Test set performance using the optimal
threshold. The first four columns report the detection metrics, while the
latter ones evaluate counting performance.

3.5 Results visualization

From the visual inspection of the results, we can make some observations. We

start considering the problem from a counting task/object detection point of

view using bounding boxes to highlight the number of true positives, false

positives, and false negatives. We resort to the same methodology exposed

in the first part of the work. For each object in the output image provided by

the model, we search for the corresponding closest object to the ground truth.

If the distance between the center of these two objects is lesser than 1.5 times

the medium radius of the fluorescent neuronal cells, a true positive is counted

and a green bounding box is displayed in the output image around the shape

of the segmented object. Red and blue boxes are drawn respectively for false

positive and false negative objects. We report only the significant images

useful for a critical evaluation of the results. In Fig. 3.20, for example, we

observe a case where many false positives are detected. However, these fake

detected objects are very similar to the actual ones and sometimes look in-

distinguishable also for a human operator. In Fig. 3.20 instead, we report

an opposite example where the c-ResUnet-y-ws is more conservative with re-

spect to the operator who annotated the image, and many false negatives are

reported. Considering again the metric score (3.2) the overall tendency is to
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be more conservative. This is remarked by the recall value that is lower than

the precision both for the supervised and the weakly-supervised model also

if, for this latter model, the difference is very small. However, in most cases,

these two trends tend to balance how visible in the image 3.20. As a result,

the predicted count approach the target one also is attributed to different

objects with respect to those considered by the operator. We also report the

raw output 3.24 of the model that consists of a heatmap whose pixel values

are related to the probability to belong to a cell or not. From this picture,

we can verify the capability of the model to keep the touching cell separated.

This outcome is also an effect of the weighted maps used during the training

as demonstrated in the first part of this work. Moreover, from the same

image, we can observe that the segmentation heatmap of the model results

in shapes that look very similar to the ground-truth one. We remind that

for these images we have the ground-truth label but we didn’t use it during

the training. Also, a comparison between the heatmpas produced from the

c-ResUnet-y-ws and c-ResUnet-y-s model is reported in 3.22. Although the

latter model is trained on a conspicuous part of a handcrafted segmentation

mask, the maps look very similar. An effect that we can ascertain is the

smaller size of the object produced by the weakly supervised model but this

is expected since the pseudo-labels objects are smaller than the ground-truth

counterparts like visible in the Fig. 3.18. This effect is related to the mask

generation and the high threshold we use to produce the pseudo labels. How-

ever, the counting performance is not drastically affected by this situation

also if it may require further fine-tuning of the post-processing parameters.

In the same way, we approach the analysis coming from the c-ResUnet-g

trained in a weakly-supervised manner. Starting from the bounding boxes

result, we report similar situations to those found for the the c-ResUnet-

y-ws model. First a case with a significant number of false positives and

then an opposite example with a larger number of false negatives. Last a

case where these terms are balanced. This time, the tendency is opposed

with respect to the c-ResUnet-y models since the recall is greater than the

precision value 3.3 indicating a tendency to output more false positives than

false negatives. In other words, the model is lesser conservative than the
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human annotator. Following the same observation valid for the fluorescent

dataset, also here the true positive can easily be confused with a true object

and vice-versa. Indeed, this disagreement is more related to the noisy dot

annotation provided to the model. Last, 3.24 some heatmaps are reported

together with the images overlapped by the ground-truth labels. The white

circle only indicates the mask we used for the train but, in this case, doesn’t

represent the accurate hand-labeled segmentation masks. From this image,

however, we see that the shape produced by the model are not simple circles

but seems to resemble the actual shapes of the cells. We also take these two

images to remark on the low reliability of some masks. Indeed, in the first

image, we have dot-annotation still on the edge on the left side of the images

but from a posterior assessment, we know that is a mistake made by the

operator. However, during the performance evaluation, this not-error are

attributed as mistakes of the model. The second image, instead, reports an

example of misalignment between the coordinates of the dot annotation and

those of the actual cells.
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Figure 3.20: Results on test images (1). In this picture, we can observe
a relevant number of false positives.
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Figure 3.20: Results on test images (2). In this picture, we can observe
a relevant number of false positives.
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Figure 3.20: Results on test images (3). In this picture the number of
false positives and false negatives it balanced. As a result, the predicted
number is close to the target one.
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Figure 3.21: Heatmap. On the left, the image with overlapping cells’ bound-
aries. On the right the corresponding heatmap produced by the model. The
touching cells are well-separated resulting as distinct objects.

Figure 3.22: Heatmap comparison. On the left, the image with over-
lapping ground-truth cells boundaries. On the center and on the right re-
spectively the hetmap produced by the supervised and weakly supervised
c-ResUnet. The size of the cells detected from the c-ResUnet-y-ws look
smaller than those identified by the c-ResUnet-y. This effect is related to the
pseudo-labels generated that tend to represent a limited inner area of the
neurons.
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Figure 3.23: Results on test images (1). In this picture, we can observe
a relevant number of false positives.
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Figure 3.23: Results on test images (2). In this picture, we can observe
a relevant number of false negatives.
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Figure 3.23: Results on test images (3). In this picture the number of
false positives and false negatives it balanced. As a result, the predicted
number is close to the target one.
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Figure 3.24: Segmentation Results. On the left, the input image with
overlapping pseudo-labels. On the right, the heatmap produced by the mod-
els. From the heatmap we can notice that the shapes segmented by the
model resamble the actual cells appearence also if the ground-truth labels
are circular boolean structures.

3.6 Final Remarks

In this part of the work, we tackled the absence of supervised ground-truth

segmentation masks that usually occur in the microscopy domain. We try to

develop an easy approach to address the count-by-segmentation task when

dot annotations are available. We distinguish two use cases. The first is rela-

tive to a simplified scenario where the instances to detect have homogeneous

sizes and shapes and can be approximatively fitted by a geometrical struc-

ture like a circle. In this case, we generated some pseudo-labels by placing

a boolean circle mask on the center of the dot annotations and using these

masks to train the model in a supervised manner. This method represents a

very easy and fast approach but is constrained by the shape of the detected

object. The results relative to the model trained in such a way demonstrate

the validity of the methods also if the counting task metrics are still limited.
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The main reason is attributed to the noisy dot annotations provided by dif-

ferent human annotators with different degrees of expertise. Indeed, from a

posteriori visual inspection, the most experienced annotators confirmed the

goodness of the results provided by the models.

The second use case, relative to the fluorescent cells dataset, pointed out

a more general use case. The instances to detect reflect a large variety of sizes

and shapes preventing the application of the method developed for the c-Fos

pictures and requiring a different pseudo-labels generation strategy. Leverag-

ing an image reconstruction pretext task and the dot-annotation information

we provide a viable method. By combining autoencoder features maps and

the coordinates of the objects to detect represented by the dot-annotations,

we end up with a set of pseudo-labels used to train the c-ResUnet model.

The performance comparison between the model trained in such a manner

and the supervised one demonstrates the validity of the described method.

We found only a small margin between the counting and detection metrics

score reached by the the two different approach.

In conclusion, the proposed approaches proved to be solid candidates

to provide count-by-segmentation problem when only dot annotations are

avaiable. We suggest addressing the problem following the first method when

the shape fof the objects to detect fulfilled the required constraint. However,

the second approach provided is more general and can be applied also in the

case of more involved cell shapes but requires more step to be performed.

3.7 Future works

One of the critical points of the work is the generation of pseudo-labels. Here

we exploit the features maps of an autoencoder trained on a reconstruction

task. After that, the selection of one set of agglomerate feature maps is

needed to produce a first round of raw pseudo-labels. However, this step is

subject to a certain degree of arbitrariness and a wrong choice can imply a

bad quality mask generation. This manual selection could be replaced by

an automatic procedure exploiting the histogram value of the features map

generated by the autoencoder. Through these values should be possible to
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understand which convolutional layers developed filters that better separate

the background from the foreground objects’ histogram peaks.

However, the real step forward in this sense would be the a-priori def-

inition of which model’s layer should be specialized to learn such kinds of

discriminative filters. In this case, no one should make any decision in this

regard and select directly that specific set of features. A good candidate

would be the last layer of a model trained on a different pretext task. In re-

cent years the self-supervised-learning research field is focused on such types

of tasks to generate usefull pseudo-labels. For example, in place of the au-

toencoder, a regression network trained to detect only the center of the cells

or to infer the number of cells inside a picture could be a better choice. A

comparison between this alternative strategy to optimize and automatize all

the training would be a definitive step forward in this research domain.

Attaining to the work described here we saw that the pseudo-labels gen-

erated always have a smaller, and in the best case the same, number of cells

with respect to the dot annotations. To adress this bias we think about a

possible strategy. For example, for a fraction of the images we can preserve

a little percentage of spurious objects and/or remove some objects also if

validated from the weak supervision. This strategy is based on the assump-

tion that also in the supervised ground truth, we can observe some wrong

labels. Moreover, by repeating the pseudo-labels generation we can achieve

many different datasets to perform a model ensembling that resembles the

presence of several human annotators.
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Chapter 4

Transfer Learning

In this chapter, we adopt a transfer learning approach using as the source

and target domain respectively the cTB and the c-Fos datasets. During

the procedure, we investigate relevant aspects like the optimal pre-training

epochs or which groups of layers are best to unfreeze. Then, we systematically

investigate the relationship between the performance score and the number

of images available in the target domain. We lead this study by comparing

the metrics of scratches and fine-tuned model families. The code used to

replicate these experiments is collected in the following repository (transfer

learning from CTb to c-Fos dataset)

4.1 Introduction

Data availability is a major constraint for that concerns model training.

Scarcity of data, and, especially of annotated data, may prevent the ap-

plication of a data-driven model. However, to alleviate this problem usually

transfer learning approach can be used Pan and Yang [2010], Tan et al.

[2018]. However, transfer learning can have also a negative effect when the

corresponding domains present features that are too far apart Weiss et al.

[2016]. Nevertheless, when the positive effect is achieved the model perfor-

mance increases.

In our case, the datasets considered belong to the same fluorescent mi-
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croscopy domain but represent quite different neuronal cells. Indeed, a model

trained on one of these two datasets systematically fails to recognize the cells

of the other. However, in this chapter, we want to analyze if some informa-

tion transferability is possible Yosinski et al. [2014]. To prove that, we exten-

sively compared pre-trained models after a fine-tuning procedure with models

trained from scratch only on the target domain. We respectively set the cTB

and the c-Fos datasets as the source and the target datasets. It is worth

noting that while on the target domain, we only have dot label annotations

for the source dataset we also have the supervised binary masks. Although

several definitions exist to identify the different degrees of knowledge moving

from a domain to another Pan and Yang [2010] Tan et al. [2018], the case

concerning a switch from supervised to weakly supervised is not documented

yet to the best of our knowledge.

We started investigating the optimal number of pre-trained epochs and

which layers are better left free to be trained (unfreeze layers) during the fine-

tuned procedure. This latter topic has already been explored for many prob-

lems like image classification Lee et al. [2022] Guo et al. [2019] and here we

want to contribute to what concern the counting-by-segmentation task. Once

we fulfilled these questions, we systematically compared fine-tuned models

with models trained from scratch varying the number of images available

from the target domain. Indeed, we want to remark on the fine-tuning ben-

efits, especially in a situation of scarce data availability. We assume that, if

the target domain has enough data, the advantages related to a fine-tuning

procedure can be swept away since the information is already contained in

this latter dataset. So, we quantify the amount of data needed in the two

cases (scratch versus fine-tuning) to reach a given score.

4.2 Dataset

We used the dataset already introduced in the previous chapter. Specifically,

we use as a source and target dataset those presented respectively in 2.2 and

3.2, so we refer to these sections for a detailed description.
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4.3 Methods

We present the ablation study performed to achieve a better pre-trained

model architecture in terms of two key aspects:

• Number of epochs for the pre-training stage;

• Selection of layers to unfreeze during the fine-tuning

The architecture used for these experiments is the c-ResUnet described

in the section 2.3.1. We trained such a model with the same number of

parameters used in the previous chapters (see chapters 2 and 3). Once the

model is pre-trained on the cTB dataset, it has been fine-tuned on the target

c-Fos dataset following different strategies illustrated in the next ablation

studies (see section 4.3.1).

4.3.1 Ablation studies

Optimal pre-trained epochs

The ablation studies are aimed to investigate two different aspects. The first

one is related to the number of epochs used to pre-train the c-ResUnet on the

cTB dataset. The scope is to understand if a model trained until it reaches

the convergence for the source task is better than a model that only starts

to acquire information about the source dataset. The outcomes are to be

considered valid only for this particular application. To do that, we saved

the c-ResUnet model trained on the yellow dataset, c-ResUnet-y, not only

at the end of the training but also at the intermediate steps. We took three

different models:

• An early stage pre-trained model: c-ResUnet-y-1-g;

• An intermediate stage pre-trained model: c-ResUnet-y-5-g;

• A fully pre-trained model: c-ResUnet-y-12-g

CHAPTER 4. TRANSFER LEARNING 109



4.3. METHODS

Here, the number used at the end of the names represented the number of

epochs spent since the training started while the letter y and g represent the

transfer learning direction: from yellow dataset pre-training to green dataset

fine-tuning. The first model is stored after the first very epoch. The second

is relative to an improvement on the validation loss that happened at the

fifth epoch and the last is saved as the last improvement occurred before

early-stopping finished the train.

Unfreezed layers

The second aspect concern the layers we want to unfreeze during the fine-

tuning phase. Usually, for the classification task, the only very last layer

is replaced to accommodate a new fully-connected layer able to classify dif-

ferent classes concerning the source domain. The segmentation aim is more

frequently used to unfreeze the decoder path of the network since the encode

is deputed to learn low-level features that are, usually, transferable moving

from one domain to another. Together with this combination, we also test

the other two configurations consisting of a network fully unfreezed and a

network with only the last layer unfreezed. However, inspired by recent work

Lee et al. [2022], we also test other configurations. Specifically, we jointly

unfreezed one or more blocks linked by a long-skip connection. The three

architectures added to these experiments are reported in Fig. 4.1. Overall

we tested several combinations whose names are summarized here and resort

for results reported in the next section (4.4).

• encoder: encoder path and bottleneck are unfreezed;

• decoder: decoder path and bottleneck are unfreezed;

• 1-last-layer: first convolutional-block and the corresponding long-

range connections up-convolutional block are unfrozen (first architec-

ture on Fig. 4.1);

• 1-bottle-last-layer: as the previous but adding the bottleneck to the

unfreezed blocks (second architecture on Fig. 4.1);
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• 1-2-bottle-lat-layer: as the previous but adding the second convolutional-

block and the corresponding long-range connections up-convolutional

to the unfreezed blocks (third architecture on Fig. 4.1).

• full: all the layers are unfreezed.

Figure 4.1: Fine-tuning. Fine-tuned architecture. Shaded areas indicate
the layers freezed during the fine-tuning.

Resampling method

After the selection of the best architecture in terms of the number of pre-

training epochs and layers trainability, further investigations are performed

to directly compare fine-tuned with scratch models. We carried out these

experiments by varying the number of target dataset pictures used. From

the total of 240 images, we randomly sampled several times a different subset

of n on images. Specifically, for each pre-fixed number n, we sampled four

different samples to simulate several scenarios and to test the robustness

of the algorithms to the data fluctuations. Indeed, we saw from 3.2 that

several images can be noisy annotated, generating some issues for the model

training. We want to asses if one of the competing strategy models can

handle differently these hard-learning situations. We select 7 differentn for a

total of 46 subsets. We extracted only three subsets for the 150-image case
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since with this amount of images the subset starts to share the major part

of the images and the training requires a large quantity of time. Indeed, the

subsamples are only partially disjointed since the sampling is random. So,

increasing the number of n also rise the likelihood to have many common

images between the different samples. Contrary, for low n we are confident

to have quite different subsets. It is worth reminding that the resampling act

on the pictures is already cropped. So, when an image is extracted among the

240 available, actually all the related crops together with their augmented

version are used to form the subset.

4.3.2 Training

For the pre-training part, we first train the c-ResUnet on the cTB dataset

saving the checkpoints at different epochs: the first, the fifth, and the twelfth

being also the last time the model improved its validation loss. Being a

training from scratch, we used the same hyperparameters training selected

in the 2.3.2. We started from the same pictures of the supervised case, but

we make the augmentation again using the artifacts oversampling strategy

and obtaining nearly 16000 cropped pictures. For the fine-tuning phase, we

trained the models on the c-Fos dataset. For the first two ablation studies

4.3.1, we selected the same images used for the weakly supervised training

3.3.3 using all the pictures available, nearly 9000. Contrary to the scratch

case, for the fine-tuning purpose, we switched the learning rate from 0.001

to 0.0001. The first round of fine-tuning defined the optimal number of pre-

training epochs.

Then, using the best pre-trained architecture defined in the previous

steps, we performed another round of fine-tuning to select which layers to

unfreeze moving from the source to the target dataset. Also in this case, we

use all the images available (nearly 9000) and a learning rate of 0.0001. The

other hyperparameters keep the same as that exposed in 3.3.3. The study

consists of training both scratch models from scratch and pre-trained ones on

each of the subsets defined following the procedure described in the previous

section 4.3.1. The only difference is the learning rate that for the scratch
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case is 0.001 and for the fine-tuned model is 0.0001. For the model trained

from scratch, we also tried to use the same learning rate of the fine-tuning

case but obtained worsen results, so we decided to use 0.001.

4.3.3 Post-processing

We applied the post-processing using the same parameters used for the c-Fos

dataset (see table 3.1 in section 3.3.4).

4.3.4 Model evaluation

For the evaluation purpose, we resume the same methodology exposed in

chapter 3.3.5. For each model, we first find the optimal threshold value, and

then we used this parameter to get the metric scores also on the test set.

The only difference is that for the model trained on the resampled subsets,

the train and validation sets are smaller than the full pictures dataset, while

the test set keeps the same being the model evaluated on all the images

available. In the next section we illustrated the result obtained for each

round of experimentation.

4.4 Results

Here, we analyze the results of each study performed, which are aimed to

obtain the following answers:

• Best pre-training epochs number;

• Wich layers to train during the fine-tuning procedure;

• Quantification of detection performance boost under the transfer-learning

approach.

We first evaluated the outcomes related to the first two points. This

evidence defines the model that is later used for the comparison between the

from-scratch and fine-tuning approaches. This last comparison is the bulk of

this chapter and is analyzed in the last results section.

CHAPTER 4. TRANSFER LEARNING 113



4.4. RESULTS

4.4.1 Design evaluation

Pre-training epoch number

The results reported here concern the comparison of three pre-trained ar-

chitectures which undergone a different number of pre-training epochs. We

used the nomenclature introduced in the section 4.3.1 to refer to these three

different models. To give more consistency to the results, we don’t limit the

comparison concerning the fine-tuning of all the architecture layers, but we

also compare the results obtaining unfreezing only the decoder part (bottle-

neck included). After the first round, we decided to further investigate only

the 5 and 12 epochs model since the 1-epoch model demonstrated to stay

significantly behind in terms of performance. From the table 4.2 we observe

a clear trend that identifies the network trained until the end (12-epochs

model) as the best one. So we decide to select the 12-epochs pre-trained

models to proceed with further investigations (4.4.1, 4.4.3).

Unfreeze part c-ResUnet-y-1-g F1 c-ResUnet-y-5-g F1 c-ResUnet-y-12-g F1

decoder 0.766 0.790 0.801
full Na 0.779 0.796

Table 4.1: F1 score results. Results for different training stages. Each
model underwent a distinct number of pre-training epochs.

Unfreezed layers

These successive rounds of experiments aimed to discover which unfreezing

layers strategy performs better. We tested different fine-tuning combinations

4.3.1 reporting the results here. This ranking is led by the decoder and the

full unfreeze architectures that reach the same performance. However, we

decide to pick the former architecture since it requires unfreezing a smaller

number of parameters to proceed with the final investigation reported in the

next section (4.4.3).
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Model name F1 score

encoder 0.732
decoder 0.801
1-last-layer 0.537
1-bottle-last-layer 0.782
1-2-bottle-last-layer 0.779
full 0.796

Table 4.2: F1 score results. Results from different unfreezing layers strat-
egy.

No. images Mean (Median) ± std F1 Fine Tuned Mean (Median) F1 ± std Scratch

10 0.74 (0.74)± 0.02 0.66 (0.68) ± 0.04
20 0.76 (0.75)± 0.007 0.68 (0.68) ± 0.019
30 0.76 (0.76)± 0.017 0.73 (0.73)± 0.014
40 0.78 (0.78)± 0.010 0.72 (0.72)± 0.02
70 0.78 (0.78)± 0.012 0.76 (0.76) ± 0.007
100 0.77 (0.77)± 0.02 0.71 (0.73)± 0.07
150 0.79 (0.79)± 0.005 0.78 (0.78)± 0.003

Table 4.3: Performance metrics. The test set performance using the
optimal threshold. We report the comparison between the fine-tuned models
and the model trained from scratch. Mean, Median values are reported with
the standard deviation uncertainty interval.

4.4.2 Fine-tuning

Here we analyze the results of the fine-tuned models and the models trained

from scratch. These models are trained on the subsets of images resampled

from the starting dataset following the strategy illustrated in 4.3.1. The re-

sults are reported in table 4.3 in terms of mean and median F1 score together

with the number of images included in the training subset.

4.4.3 Performance

The results reported in table 4.3 show a clear superiority of the fine-tuned

models that stand constantly above the models trained from scratch. This

evidence lingers until a sufficient number of images are used allowing all the

models to reach a performance plateau (150-image results). There are several
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aspects that it is worth highlighting. First, we note that the gap between

the two classes of models is larger when only a few percentages of images

are included in the training. Under this few-shot regime, the scratch models

struggle to be competitive reaching a quite poor F1 score while the fine-tune

models, already with only 10 images, reach a competitive mean score value.

These latter models, indeed, start to approach the best scratch performances

obtained in the previous chapter 3.4 using all the 240 images, already with

40 images that are six times lesser than the entire dataset size. With the

same amount of images, scratch models stay around an F1 score of 0.72 which

is still lower than the lowest fine-tuned model score results reached with 10

images (0.74). These gaps are drastically reduced to around 70 images when

the performances start to approach their plateau. Comparing these results

with the previous chapter we also observe that to reach the same results

we only take 150 images instead of the 240 images representing the full-

size dataset. This means that the information contained inside the images

became redundant after this amount of pictures. Moreover, applying a fine-

tuning procedure, we halved this number of images using only 70 instead of

150 images to reach the best F1 score. Indeed, two of the fine-tuned model

trained with 70-images subsets reaches the limit of 0.79

No. images Mean F1 Fine Tuned

subset 1 0.79
subset 2 0.79
subset 3 0.78
subset 4 0.76

Table 4.4: 70 Subset results. A focus on the results relative to the four 70
subsets.

However, around 100 images a countertrend result appears. Indeed, for

this amount of images, we expect the fine-tuned models definitively approach

the maximum performance value attested between 0.79 and 0.80. Instead,

a slight drop in the results sweeps the score to one point behind the pre-

vious step (70 images). This evidence is even more visible for the scratch

models that collect mean results of 0.71, lower than the 30 image results.
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Perhaps, among the subsets resampled with 100 images, one or more collec-

tions are introducing noisy annotated examples like those remarked in the

section 3.3.1. These subsets lead to poor model training and so to a lower

score. We report the median value to highlight this evidence but, with only 4

measures, this metric gives the third-best result and so is not so helpful. So,

to investigate better this point, we report in table 4.5 the results of every sin-

gle model trained on the distinct subsets comparing scratch and fine-tuning

results. There are two main aspects to highlight. The first is related to the

fine-tuned class that, in one of the subset, reach the best metric value of

0.80. The second concerns the scratch class, which exhibits a sharp drop in

the performance in the correspondence of the third subset. From this lat-

ter observation, we can state that the scratch models are more sensitive to

the noise included in the dataset which may significantly affect the training

stage.

To give more evidence to this latter observation, we can also take a look at

the standard deviation values that are generally higher for the scratch model

family indicating larger results fluctuations. Indeed, for the 100-image case,

the standard deviation is more than three times larger than the fine-tuned

counterpart. On the other side, with only 4 measures, we take cautiously

these results that, however still represent a useful insight for the practical

aspects where we usually deal only with subsamples of the entire dataset.

From these last results, we can assess that this subset selection can impact

drastically a model trained from scratch. Another remark concern the dis-

crepancy of the results between the subset resampled. Indeed, we should

expect that the subset that induces a poor test performance for one class of

model should negatively affect also the other class but the results depict a

different situation.

To focus further on the variability issue, we report also a set of violin

plots that better remark the variability related to the subset resampling. In

the first plot (Fig. 4.2) the F1 score results for each model are reported. As

already highlighted, the fine-tuned models class is above the scratch coun-

terpart but this gap progressively reduces increasing the number of images

and it vanishes at the last collected point (150-images case). From these
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Subset Number Mean F1 Fine Tuned Mean F1 Scratch

subset 1 0.77 0.78
subset 2 0.80 0.74
subset 3 0.78 0.60
subset 4 0.74 0.73

Table 4.5: 100 Subset results. A focus on the results relative to the four
100 subsets.

plots we also observe the degree of dispersion that imply a more stretched

distribution, confirming a greater variability results for the scratch class. A

one-to-one comparison is reported in figure 4.3. Here, together with the me-

dian value, the mean is also represented as a red spot overlapping the violin

plot.
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Figure 4.2: Violin plots comparison.The F1 score for fine-tuned and
scratch models. When a little fraction of images is available, fine-tuned
models perform significantly better. Also, the score distribution of fine-tuned
models is narrower than the scratch ones being more robust concerning the
dataset fluctuations.
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Figure 4.3: Violin plots comparison.The F1 score is reported both for
the fine-tuned and scratch-trained models varying the number of images.
The red spot identifies the mean value that overlaps the median value if the
distribution is symmetric. The orange plots (training from scratch) are often
asymmetric due to the higher results variance.
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Figure 4.3: Violin plots comparison.The F1 score is reported both for
the fine-tuned and scratch-trained models varying the number of images.
The red spot identifies the mean value that overlaps the median value if the
distribution is symmetric. The orange plots (training from scratch) are often
asymmetric due to the higher results variance.
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4.5 Final Remarks

In this chapter, we applied a transfer learning procedure between two datasets

belonging to the same fluorescent microscopy domain. We set as source

and target datasets respectively the cTB and the c-Fos datasets. First, we

quantify the optimal number of pre-trained epochs that, in this specific use

case, is equal to the maximum value reached at the model pre-training end.

This result stands for both the architectures tested that differ one from the

other for the entity of the layers unfreezed during the fine-tuning phase.

Then, we evaluate different fine-tuning strategies consisting of unfreezing

distinct groups of layers in distinct training trials. From these experiments,

we observed that it is preferable to unfreeze only the decoder path (including

the bottleneck) during the fine-tuning stage.

Once we acquired this knowledge, we moved to compare systematically

model trained from scratch and fine-tuned models in the function of the num-

ber of images available from the target dataset. For each number of selected

images, we resampled four distinct subsets and trained the model on each

of these subsamples. From these investigations, we observe that, especially

under the few-shot regime, the fine-tuning procedure shows a significant per-

formance boost. This gap gradually reduces increasing the number of images

used, since the performance difference between these two model families goes

from 8 points to 2 points in terms of F1 score moving from the 10-images

subset to the 70-images one. The gap definitively vanishes above 150 images.

Comparing these results with the previous chapter we also observe that to

reach the same results we only take 150 images instead of the 240 represent-

ing the full-size dataset. This means that the information contained inside

the images became redundant after this number of pictures. Moreover, ap-

plying a fine-tuning procedure, we halved this number of images using only

70 images instead of 150 to reach the best F1 score. Another relevant result

is the robustness shown by the fine-tuned model concerning the fluctuations

of the training dataset. While a model trained from scratch may be signifi-

cantly affected by an unlucky subset, the fine-tuned face better this negative

circumstance.
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Model deployment

5.1 Introduction

Deploying a deep learning model through a web application is a powerful way

to make the model accessible and interactive for a wide range of users. Addi-

tionally, web applications provide for interactive interfaces that can display

output and receive input from users, making it easier to demonstrate the

capabilities of the model and receive feedback. To capitalize on the work de-

scribed in the previous chapter, we dedicated the last part of this dissertation

to a web app deployment. We aim to share our counting processing pipeline

with the pre-trained models on both the datasets analysed: CTb and c-Fos.

This introductory work is to mean as the basis of a future development that

integrates the tool inside the cloud environment. So far, we build a demon-

strator running via the web but not yet exposed via public IP address. We

show what is already implemented and what we aim to implement for future

work. All the code used for the implementation is reported at the following

link: cell counting web app

5.2 Web-app

In the following section, we illustrate the web application functionalities to-

gether with some of the implementation details. The code is public and
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available together with the pre-trained models at the link (cell counting app

repository)

5.2.1 Web-app features

Functional requirements

In this section, are described the main functional and non-functional re-

quirements of the web application. The application is designed to provide

the following functionalities that represent the pre-processing, inference and

post-processing steps already implemented in the previous part of this work

to analyze the model performance:

• Uploading of one or more biological images at times

• Images normalization step

• Cell counting inference:

– Heatmaps prediction

– Output binarization by thresholding

– Post-processing step

– Neuronal cells counting image by image

All these steps are wrapped into a web-application dedicated to the anal-

ysis of fluorescent images. The expected end-user are all the researchers with

little or no experience in the deep learning field that can easily upload their

images to the application to run a counting retrieval of the neuronal cells

contained in their custom data set. At this time, to test this application it

is required to clone the repository and run the application as a local web

service. In the next development, the cloud environment will be tested to

expose the model via a public IP
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Non-functional requirements

The non-functional requirements are listed in the following while other fea-

tures to implement are reported as future step developments.

• Reachable on a local server

• Containerized environment

• Fast and easy deployment

• Responsive and easy to use

The next steps will be focused on the following steps:

• The application should be expose via public address on a cloud envi-

ronment

• The application should be Managed via containers orchestrate such

docker swarm or kubernetes.

• The application should be responsive and easy to use

• The application should be secure and protect user data

• The application should be able to handle multiple users simultaneously

5.2.2 Workflow

We designed the web application to perform three main steps throughout

the interaction with a graphical interface. The end user can essentially pro-

vide the images for the analysis, load the pre-training model, set the post-

processing parameters, and get the counting results. The entire workflow is

reported in Fig. 5.0.
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Figure 5.0: Web app scheme. After the images loading, the user get the
preliminary results. A post-processing step che be performed after a real-
time visual evaluation of the processing effects. Once defined, the visual
(bounding-box) and counting results for each image are collected and send
to the end-user.

Step-by-step demo

Going through each step, the first interaction provides the loading of the

images as described in Fig. 5.1. The user can select one or multiple files.

The files are then visualized on the app interface. It is possible to visualize

also only a part of these images by selecting the number on the left side of

the layout (items to display box). After that, using the box select the model

to load we are going to load the pre-trained model to make the inference. At

the current state, we have both the best model pre-trained on the yellow and

green datasets (c-ResUnet-y and c-ResUnet-g).

Once we select the model, pressing the make prediction button (Fig. 5.1)

the prediction stage starts. Each image is analyzed and the binary mask

results are displayed (on the right of Fig. 5.2) along with a bounding box

prediction (on the left of Fig. 5.2). However, as described in the previous
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chapters, the threshold value used for binarization can affect the counting

process. It is possible to change this parameter using the slide bar confidence

threshold (Fig. 5.2) in real-time making a recomputation of the results. How-

ever, the prediction results (heatmaps) are already cached and only the last

step of binarization is performed to save time and computational resources.

Then, in the last step, the user can apply a post-processing operation

that resembles the same pipeline described in the previous chapters. In this

case, we can observe from Fig. 5.3 how this processing can drastically affect

the results and the importance to set appropriate values. Thanks to the

user interface we can immediately visualize the results modifications due to a

change in the parameter’s values. From these feedbacks we can operate a fast

fine-tuning procedure to get the optimal post-processing values. We suggest

operating these first post-processing fine-tune on a subset of the images to

speed up the operations. After this preliminary analysis, it is possible to load

all the dataset to analyze and get a report that associate with each image

the relative count.

Figure 5.1: Image loading. The user can load one or multiple images.

CHAPTER 5. MODEL DEPLOYMENT 127



5.2. WEB-APP

Figure 5.2: Prediction. Model inference. On the left the bounding box
visualization. On the right the binary segmentation mask.

Figure 5.3: Post-processing. On the left, the images without post-
processing. On the right the images after post-processing operation.
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5.2.3 Implementation

We investigated some alternative among the libraries frequently used to de-

velop web-application:

• Flask: a lightweight web framework that is easy to use and allows for

the development of small to medium-sized web applications.

• Django: a high-level web framework that is powerful and flexible, and

is well-suited for the development of large, complex web applications.

• Pyramid: a web framework that is similar to Flask and Django and is

often used for large, complex web applications.

• FastAPI: a modern, fast, web framework for building APIs with Python

3.6+ based on standard Python type hints.

• Tornado: a web framework and asynchronous networking library, which

can handle large numbers of simultaneous connections.

• CherryPy: a minimalistic web framework that is easy to use and allows

for the development of small to medium-sized web applications.

• Streamlit is a popular open-source library that is specifically designed

for creating interactive web-based applications for machine learning

and data science. It’s easy to use and allows developers to build web

applications quickly without the need for any JavaScript or HTML/CSS

knowledge. It’s a great tool for data visualization, exploratory data

analysis, and building simple machine learning models without the need

for a web developer.

Finally, we opt for Streamlit which is a relatively new library but it’s

gaining popularity fast. Its ease of use makes it a good fit for our proof-of-

concept. To promote the usability of the application, we provide in the code

repository the instruction to deploy it using container technology. For this

purpose, we use a Docker container that relies on the Dockerfile recipe for the

automatization of the build and start-up of the web application container.
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The power of the container is especially related to the increased reproducibil-

ity across different platforms that include also the cloud environment.

5.2.4 Model deployment phases

Deploying a deep learning model involves several steps. The first step regards

the training of the model. This process involves choosing an appropriate

algorithm, determining the parameters, and exposing it to pre-processed and

cleansed data. For this step, we exploit the model trained in the previous

chapters.

After training and validation, we need to integrate the model into a pro-

cess that is our counting pipeline and make this service available to the end

user. This can include, for example, making it accessible from an end user’s

laptop using an API or integrating it into software currently being used by

the end user. Indeed, there exist different approach to make the model and

the processing pipeline available:

• Web Application: deploying a deep learning model as a web applica-

tion allows for easy access and interaction with the model, and can be

integrated with other systems and services;

• Mobile Application: deep learning models can also be deployed as mo-

bile applications, allowing users to access the model from their mobile

devices;

• Cloud Services: Cloud services like AWS, Google Cloud, and Microsoft

Azure provide tools and infrastructure for deploying deep learning mod-

els in the cloud. This is a popular option because it allows for easy

scaling and management of the model;

• On-Premises: The model can be deployed on-premises, meaning it runs

on a server or computers within the organization’s own facilities, this

can be useful for organizations that have sensitive data and have strict

security requirements.
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• Edge devices: deep learning models can be deployed on edge devices,

such as IoT devices and embedded systems, which are devices that are

located at the edge of the network, closest to the source of data, this

allows for real-time processing and low-latency.

• API: A deep learning model can be deployed as an API (Application

Programming Interface) which allows other applications to access the

model’s functionality through a simple interface.

For this proof-of-concept, we target the implementation of a front-end

deep-learning web application. We developed such a tool that utilizes deep

learning models on the front-end, or client side, meaning that the deep learn-

ing models and computations are performed within the user’s web browser,

rather than on a remote server. This approach allows for faster and more

responsive user experiences, as the model does not have to communicate

with a remote server to make predictions but is constrained by the end-user

computation hardware.

Nevertheless, it’s worth remembering that web-app deployment in a cloud

environment is always possible. To implement this step is essentially required

to have a public IP available to make the application service public reachable.

However, we don’t address this task in this work but we facilitate this future

step in developing the web app using container technology such as Docker.

Indeed, in this manner, the web app may potentially be shipped across the

different platforms for the deployment step, including cloud infrastructure.

Then, to optimize the orchestration of the application, the docker-swarm

utility may be used to make the application compliant with the user-request

demand. Also, this latter scope is included as a future-work development.

5.3 Final remarks

We developed a proof-of-concept web application to serve the pre-trained

models trained during the investigations described in this thesis work. We

decided to deploy a model accessible from the client’s side web browser to

design a proof-of-concept demonostrator. The next step not addressed in
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this thesis, will be aimed to deploy the application on the cloud environment

exploiting the container technology. From the functionalities point of view,

the next step aims to enable the training and transfer learning funcionalities.

For the former option, the user is allowed to load its own dataset and start

training on those images. For the latter scope, we target to allow for a

fine-tuning on custom dataset provided by the users starting from a pre-

trained model. Moreover, dataset management system should be provided

with systematic cleaning and storing procedures. All these steps will be faced

in the next steps of the web app development.
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Chapter 6

Conclusion

In this thesis, we developed a pipeline for cell counting in fluorescent mi-

croscopy images. We followed the counting-by-segmentation approach that

requires ground-truth segmentation masks under the supervised learning

framework. We combined the main features of two state-of-the-art archi-

tectures, UNet and ResUnet, to train a model with improved counting per-

formances. We improved the segmentation output on the high-density cell

area increasing the field of view of the model. We also designed a novel

weighted maps generation strategy to penalize the loss as a function of the

cell’s crowding. These modifications prove their effectiveness through abla-

tion studies. Then, we framed out the counting-by-segmentation problem

under a weakly-supervised learning approach. We provided two distinct use

cases adapting the pseudo-labels generation to the dataset characteristics.

We compared supervised and weakly-supervised performances on the fluo-

rescent neuronal cells dataset obtaining similar results and validating the

weakly-supervised approach. Finally, we investigated the transfer learning

approach exploiting the two datasets and showing the efficacy of fine-tuning

method to improve significantly the model performances under a few-shot

learning regime. In the end, we provided an example of a web app deployed

to share the pre-training model and the entire counting processing pipeline.
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