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A B S T R A C T

Context. The Cherenkov Telescope Array (CTA) will be the next-generation ground-
based observatory to study the universe in the very-high-energy domain. It will
bring advancements to gamma-ray astronomy by deploying over sixty highly sen-
sitive Cherenkov telescopes, with a sensitivity improvement of one order of mag-
nitude compared to current Imaging Atmospheric Cherenkov Telescopes (IACTs).
The observatory will rely on a Science Alert Generation (SAG) system to analyze
the real-time data from the telescopes and generate science alerts. The SAG sys-
tem will play a crucial role in the search and follow-up of transients from external
alerts, enabling multi-wavelength and multi-messenger collaborations. The obser-
vatory will operate arrays on sites in both hemispheres to provide full sky coverage.
It will maximize the potential for the detection of the rarest phenomena, such as
gamma-ray bursts (GRBs), which are the science case for this study.
Aims. The thesis aims to investigate the usage of anomaly detection for real-time
gamma-ray analysis. A deep learning-based technique has been developed to pur-
sue this goal.
Results. This study presents an anomaly detection method based on deep learning
for detecting gamma-ray burst events in real-time. The performance of the pro-
posed method is evaluated and compared against the Li&Ma standard technique
in two use cases of serendipitous discoveries and follow-up observations, using short
exposure times. The method shows promising results in detecting GRBs and is flex-
ible enough to allow real-time search for transient events on multiple time scales.
The method does not assume background nor source models and doe not require
a minimum number of photon counts to perform analysis, making it well-suited
for real-time analysis.
Conclusions. Future improvements involve further tests, relaxing some of the as-
sumptions made in this study as well as post-trials correction of the detection sig-
nificance. Moreover, the ability to detect other transient classes in different scenar-
ios must be investigated for completeness. The system can be integrated within the
SAG system of CTA and deployed on the onsite computing clusters. This would
provide valuable insights into the method’s performance in a real-world setting
and be another valuable tool for discovering new transient events in real-time.
Overall, this study makes a significant contribution to the field of astrophysics by
demonstrating the effectiveness of deep learning-based anomaly detection tech-
niques for real-time source detection in gamma-ray astronomy.
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S O M M A R I O

Contesto. Il Cherenkov Telescope Array (CTA) sarà l’osservatorio terrestre di
prossima generazione per lo studio dell’universo nel dominio delle altissime en-
ergie. Sarà composto da più di sessanta telescopi Cherenkov di nuova gener-
azione che migliorano la sensibilità di un ordine di grandezza rispetto agli attuali
Imaging Atmospheric Cherenkov Telescopes (IACT), portando grandi contributi
all’astrofisica delle alte energie. L’osservatorio sfrutterà il sistema software di Sci-
ence Alert Generation (SAG) per l’analisi in tempo reale dei dati osservativi e per
generare automaticamente allerte scientifiche. Il sistema SAG svolgerà un ruolo
da protagonista nella ricerca e nel follow-up di fenomeni transienti a seguito di
allerte esterne, consentendo collaborazioni multi-wavelength e multi-messenger.
L’osservatorio comprenderà due array di telescopi su due siti in entrambi gli emis-
feri per fornire la piena copertura del cielo, massimizzando la capacità di rilevare i
fenomeni più rari, come i lampi di raggi gamma (GRBs), che sono il caso scientifico
di questo studio.
Obiettivi. Lo scopo di questo studio è indagare l’utilizzo della tecnica di anomaly
detection per l’analisi in tempo reale dei dati gamma. È stata quindi sviluppata
una tecnica basata sul deep learning per perseguire questo obiettivo.
Risultati. Questo studio presenta una tecnica di anomaly detection basata sul deep
learning per la rilevazione in tempo reale di GRBs. Le prestazioni della tecnica pro-
posta sono valutate e confrontate con la tecnica standard di Li&Ma, nei due casi
d’uso scientifici di serendipitous discoveries e follow-up observations, considerando
brevi tempi di esposizione. La tecnica proposta mostra risultati promettenti e è
abbastanza flessibile da consentire la ricerca di eventi transienti su più tempi scala.
Non necessita di fare ipotesi sui modelli del background e della sorgente e non
richiede un numero minimo di conteggi di fotoni per eseguire l’analisi, renden-
dola adatta per l’analisi in tempo reale.
Conclusioni. Miglioramenti futuri includono ulteriori test, accantonando alcune
delle ipotesi semplificative assunte in questo studio, così come la correzione post-
trial della significatività di rilevazione. Inoltre, dovrà essere testata la capacità di
rilevare altre classi di transienti oltre ai GRBs. L’integrazione all’interno del sistema
SAG e la messa in produzione nei centri di calcolo onsite, fornirebbe preziose infor-
mazioni sulle prestazioni del metodo con dati non simulati. Nel complesso, questo
studio fornisce un contributo significativo al campo dell’astrofisica delle alte en-
ergie e dimostra l’efficacia della tecnica di anomaly detection per la rilevazione in
tempo reale di fenomeni transienti.
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T H E S I S O U T L I N E

This Ph.D. thesis investigates deep learning-based anomaly detection for real-time
gamma-ray analysis in the astrophysics domain. A method was developed to de-
tect gamma-ray burst events in real-time and was evaluated against the Li&Ma
standard technique. The proposed method shows promising results in detecting
gamma-ray bursts. It is flexible enough for real-time search on multiple time scales.
Hence it has the potential to be integrated within the Science Alert Generation sys-
tem of the Cherenkov Telescope Array, the next-generation observatory for observ-
ing the universe in the very-high-energy domain. This study provides valuable in-
sights into the effectiveness of deep learning-based anomaly detection techniques
for real-time gamma-ray analysis and significantly contributes to this field.

0.1 contributions

Our key contributions include the following:

1. An anomaly detection method has been developed to perform real-time
source detection of gamma-ray transients.

2. This work contributed to developing the Science Alert Generation system in
the context of the Array Control and Data Acquisition control software of the
Cherenkov Telescope Array Observatory (CTAO).

0.2 outline

The remainder of this thesis is organized as follows:

Chapter 1 gives the reader the required background to understand the context
of this work. Section 1.1 discusses gamma-ray astronomy and ground-based
gamma-ray imaging with Cherenkov telescopes. Section 1.2 introduces the
CTAO, its science goals, its telescope array, and its associated computing
and software systems, including the Science Alert Generation system. Finally,
it explores the scientific use cases of serendipitous discoveries and follow-
up observations linked to the real-time detection of transient events. Sec-
tion 1.3 covers gamma-ray data analysis techniques, including the full field
of view maximum likelihood and the aperture photometry. It also describes
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0.2 outline 2

the Li&Ma significance estimation method in the context of a reflected re-
gions background estimation algorithm. Finally, Section 1.4 covers the study
of gamma-ray bursts, the transient phenomena this work is focused on.

Chapter 2 introduces the concept of anomaly detection for time series analysis,
discussing the major existing contributions to the field. Section 2.1 introduces
the definition and properties of time series data and the concept of anomaly.
It discusses several techniques from the scientific literature, classifying them
using a taxonomy. Section 2.2 focuses on anomaly detection techniques based
on deep learning. The method developed in this work belongs to this cate-
gory. Section 2.3 lists several contributions made within the astrophysics do-
main, proving that these techniques are becoming increasingly popular for
analyzing astrophysical data.

Chapter 3 presents the proposed method to address the real-time source detection
problem introduced in Section 1.2.4. It is organized as follows: Section 3.1
describes the proposed anomaly detection technique. It presents the data
pipeline that has been developed to generate input data, the deep learning
architectures that have been investigated, and the training process. The eval-
uation of the models will be addressed in Section 4.1. Section 3.2 describes
the p-value analysis to associate each classification with a Gaussian statisti-
cal significance of positive detection. Section 3.3 and Section 3.4 explain how
the overall system works, from configuration to inference. Section 3.5 investi-
gates several problems that can arise during the telescope observations and
how those problems can affect the proposed system.

Chapter 4 presents the results of the p-value analyses and performance bench-
marks. Section 4.1 reintroduces the scientific use cases and the assumptions
made in these scenarios. It then describes the test set generation process. Sec-
tion 4.2 presents the results of the p-value analysis. Section 4.3 shows a com-
parison between the two investigated autoencoder architectures. Section 4.4
outlines the performances of the proposed anomaly detection method against
the Li&Ma standard technique. The key performance indicators used for the
comparison are introduced. The results for both use cases of serendipitous
discoveries and follow-up observations are presented in the short-term and
very short-term scenarios.

Chapter 5 summarizes the key outcomes from this study to reach final conclu-
sions. It also highlights potential improvement areas, including further test-
ing and feature developments. Lastly, the future outlook for this research will
be discussed at the conclusion of the chapter.



1
G A M M A - R AY A S T R O N O M Y A N D T H E
C H E R E N K O V T E L E S C O P E A R R AY
O B S E RVAT O RY

This introductory chapter gives the reader the required background to
understand the context of this work. It is organized as follows: Section 1.1
discusses gamma-ray astronomy and ground-based gamma-ray imaging
with Cherenkov telescopes. Section 1.2 introduces the Cherenkov Telescope
Array Observatory (CTAO), the science goals, an overview of the telescope
array, and its associated computing and software systems, including the
Science Alert Generation System. Finally, it explores the scientific use cases of
serendipitous discoveries and follow-up observations linked to the real-time
detection of transient events. Section 1.3 covers gamma-ray data analysis tech-
niques, including the full field of view maximum likelihood and the aperture
photometry. It also describes the Li&Ma significance estimation method in
the context of a reflected regions background estimation algorithm. Finally,
Section 1.4 covers the study of gamma-ray bursts, the transient phenomena
this work is focused on.

1.1 gamma-ray astronomy

Gamma-ray astronomy studies the most energetic electromagnetic radiation in
the universe, with energies ranging from a few hundred KeV to several PeV. The
gamma photons are produced by some of the universe’s most extreme and violent
processes, including supernovae, black holes, and neutron stars [FM95]. There-
fore, the study of gamma rays provides a unique window into the physics of
these extreme environments. Two main components dominate the gamma-ray sky:
known sources and the diffuse gamma-ray background emission [Ack+15]. Known
sources are objects identified and studied in detail, such as active galactic nuclei
(AGN), pulsars, and supernovae. These sources are relatively bright and can be
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easily detected by gamma-ray telescopes [Abd+10]. On the other hand, the dif-
fuse gamma-ray background is a faint and diffuse emission present throughout
the entire gamma-ray sky [Ack+15]. This background emission is thought to be
produced by the collective emission of many faint sources that are too faint to
be detected individually [Abd+10]. It is also thought to be produced by the inter-
action of cosmic rays with the interstellar medium and by the decay of radioac-
tive isotopes. Cosmic rays are another type of high-energy radiation. They are
produced by accelerating charged particles, such as electrons or protons, to very
high energies through various processes, including the collapse of massive stars,
the acceleration of particles in magnetic fields, and the collision of particles in
high-energy environments [Bul+19]. One of the main challenges in studying the
gamma-ray sky is the difficulty separating known sources’ contribution from the
diffuse background emission [Ack+15]. This is because the background emission is
much brighter than the individual sources, making it difficult to study them in de-
tail [Abd+10]. In addition, gamma-ray is background dominated since, among the
detected events, hadrons are 1 thousand times more frequent than gamma photons.
The study of gamma rays has a long history, dating back to the discovery of cosmic
rays by Victor Hess in 1912. However, it was not until the development of space-
based instruments in the 1960s and 1970s that gamma-ray astronomy became a
mainstream field of study. One of the first satellite missions to significantly con-
tribute to the field was the Gamma Ray Observatory (GRO), launched by NASA
in 1991. GRO used instruments to detect and measure gamma rays from various
sources, including the Crab Nebula, the Cygnus X-1 binary system, and the Galac-
tic Center [Mat+96]. In the decades since the launch of GRO, advances in detector
technology and instrumentation have allowed for the development of increasingly
sensitive gamma-ray telescopes. The Swift Gamma-Ray Burst Mission, launched
by NASA in 2004, is specifically designed to detect and study gamma-ray bursts
[Geh+04]. The AGILE satellite, launched by the Italian Space Agency in 2007, is
equipped with a gamma-ray imager instrument called GRID. AGILE has made
several important contributions to gamma-ray astronomy, including detecting the
gamma-ray emissions from the Milky Way’s central region and detecting a class of
gamma-ray sources called microquasars [Tav+09]. The Fermi Gamma-ray Space Tele-
scope was launched by NASA in 2008 and has discovered many new gamma-ray
sources, including active galactic nuclei, pulsars, and gamma-ray bursts [Abd+10].
Ground-based telescopes provide an alternative approach to studying the high-
energy gamma-ray spectrum, complementing the data obtained by satellite-based
detectors. Space telescopes have been developed because gamma-ray radiation is
opaque to the Earth’s atmosphere. However, space satellites can capture gamma
rays up to a certain energy. For gamma rays with higher energies, the dimensions
and density of the detector make it infeasible to launch them into orbit. In order to
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capture the most energetic gamma rays, ground-based telescopes use the earth’s
atmosphere as a detector. These telescopes, such as the Cherenkov Telescope Ar-
ray (CTA), are designed to detect the secondary products of gamma rays as they
interact with the atmosphere. The most common secondary product detected is
Cherenkov radiation, but other products, such as muons, can also be observed.
The atmospheric Cherenkov technique is one way to detect gamma-ray radiation
that ground-based gamma-ray telescopes can use. It works by detecting the faint
flashes of blue light created when high-energy gamma rays collide with the up-
per atmosphere. The first generation of atmospheric Cherenkov telescopes (IACTs)
was the Whipple 10m telescope, the HEGRA array, and the CAT telescope. These
telescopes were followed by the current generation of IACTs, including the High
Energy Stereoscopic System (H.E.S.S.) [Ste00], the Major Atmospheric Gamma
Imaging Cherenkov (MAGIC) telescopes [PM99], and the Very Energetic Radia-
tion Imaging Telescope Array System (VERITAS) [Wee+02]. The CTA observatory
currently under construction is the next generation of ground-based gamma-ray
telescopes. CTA will consist of two arrays of telescopes, one in the northern and
one in the southern hemispheres, with more than 60 telescopes. This array will
have a large field of view (FOV) and a sensitivity that is an order of magnitude
better than current IACTs, making it possible to study gamma-ray sources with
unprecedented precision. Section 1.2.2 will provide more details on the telescope
array configurations.

1.1.1 Ground-Based Gamma-Ray Imaging with Cherenkov Telescopes

Cherenkov telescopes are designed to detect gamma-ray photons by observing
the Cherenkov radiation produced when high-energy particles pass through the
Earth’s atmosphere. High energy particles interact with Earth’s atmosphere, pro-
ducing subatomic particles and radiation cascades. These cascades are also known
as air or particle showers. The particles in these showers can travel faster than light
in the air, which creates a flash of blue and ultra-violet light (Cherenkov effect),
similar to how a sonic boom is created by an aircraft exceeding the speed of sound.
While the light is spread over a large area, the cascade only lasts a few billionths of
a second [Ong09]. The telescopes’ mirrors reflect the Cherenkov radiation, and the
camera, typically composed of photomultiplier tubes or charged coupled devices,
captures the signal. The shower produced by a gamma photon projects an approxi-
mately elliptical shape on the camera, which is analyzed to reconstruct the primary
gamma ray’s origin, energy, and direction. This process is shown in Figure 1.1.

Electromagnetic showers, like those initiated by gamma rays, are different from
hadronic showers initiated by cosmic rays (protons and nuclei) that have larger
structures and can therefore be distinguished. The air showers initiated by electron-
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Figure 1.1: Image explaining how Cherenkov Telescopes detect Cherenkov light
produced by a primary gamma-ray interacting with the Earth’s atmo-
sphere. Credits to [Con23a].

s/positrons constitute an irreducible isotropic background for the telescopes. The
efficiency in discriminating between hadronic and gamma-ray showers is one pa-
rameter, among many others, that defines the telescope’s sensitivity [Tam20]. The
flux quantity (ph ∗ cm−2 ∗ s−1) describes how much light a source emits per unit of
time and surface, and sensitivity is the minimum flux value detectable with a confi-
dence level of 5σ. It depends on several parameters, such as the analysis algorithm,
the observing conditions, the instrument response function, and the sub-array con-
figuration. After the raw data is collected, an image-cleaning process occurs to
reconstruct the shower information needed to perform the parametrization of the
shower itself. A. M. Hillas introduced the fundamental image parameters in 1985
when a single telescope configuration was still used [Hil85]. These parameters are:

• Size: total number of photoelectrons in the shower image. It is proportional
to the energy of the incoming primary gamma-ray or particle;

• Length: is half of the major axis of the shower image;

• Width: is half of the minor axis of the shower image;

• Frac: measures the general concentration of light;
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• Miss: is the perpendicular distance of the center of the field (where the source
is supposed to be in a single telescope configuration and pointing in the center
of the field of view) from the image axis;

• Azimuthal-Width: is the image width relative to a new axis which joins the
center of the field to the centroid of the image;

• Distance: is the distance of the brightest point from the center of the field.

These parameters allow for evaluating the obtained Cherenkov images and achiev-
ing good gamma-ray/hadron separation. New parameters are used to track the
source position when the source is not in the camera center (see Section 1.3.2.2):

• Alpha: is the angle between the major axis of the ellipse and the direction of
the source position from the center of gravity of the image;

• Dist: is the distance of the center of gravity of the image from the source
position.

Figure 1.2: Parametrization of a shower image through Hillas parameters.

Figure 1.2 shows the Hillas parametrization of a shower image. As we will see in
Section 1.2.2, the CTA Observatory will use an array of Cherenkov telescopes to
observe individual showers to reconstruct the three-dimensional origin of gamma-
ray showers. This technique, known as stereoscopic reconstruction, allows more
effective reconstruction and discrimination of gamma-ray showers from hadronic
showers produced by isotropic cosmic rays. The stereo reconstruction increases the
background suppression efficiency by about 100 times, improves the angular reso-
lution, and enables morphological studies of extended gamma-ray sources [Spu18].
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These observations are analyzed using reconstruction algorithms based on Hillas’
parameters and implemented using statistical techniques like the Random Forest
regression method [Aa08]. After the data is reconstructed, it is collected in the form
of a photons list, i.e., a collection of individual gamma-ray photons along with the
detection time, reconstructed direction, and reconstructed energy.

1.2 the cherenkov telescope array observatory

The CTA Observatory is a next-generation ground-based gamma-ray observatory
currently under development. CTA is a collaboration of over 1200 scientists from 32
countries and is expected to be the most sensitive and highest-resolution gamma-
ray observatory ever built [Sci].

1.2.1 Science goals

CTA will address a wide range of major questions in and beyond astrophysics. The
Core Programme [Sci] provides a comprehensive discussion. In brief, the science
goals can be grouped into three broad themes.

The first theme is understanding the origin and role of relativistic cosmic parti-
cles. Relativistic particles play a significant role in many astrophysical systems,
from pulsars and supernova remnants to active galactic nuclei and clusters of
galaxies. However, the relationship between these particles, the turbulent motions
of gas, and magnetic fields within our own galaxy and their overall impact on
star formation and galaxy evolution is not well understood. CTA will provide
the first high-resolution measurements of cosmic-ray protons and nuclei in astro-
physical systems, giving insight into the processes of acceleration, transport, and
feedback mechanisms. Historically, non-thermal effects in astrophysical systems
haven’t been taken into account or approximated due to a lack of data. The in-
sights from CTA will significantly contribute to our understanding of galaxy and
cluster evolution in the era of precision astrophysics. The main goal of gamma-ray
astrophysics has been to identify where particle acceleration occurs and determine
the main contributors to locally measured cosmic rays, mostly protons and nuclei.
Progress has been made in the last decade. Still, key questions remain unanswered,
such as whether supernova remnants are the only major contributors to Galactic
cosmic rays and the sources of high-energy cosmic electrons and ultra-high-energy
cosmic rays. The question of how and where particles are accelerated in the uni-
verse is also important, as well as the role these particles play in the evolution of
their host objects and how they are transported to large distances.

The second theme is about probing extreme environments. The acceleration of
particles to extremely high energies is often linked to extreme environments, such
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as those found near neutron stars and black holes or in relativistic outflows or ex-
plosions. Very high-energy (VHE) emissions from these accelerated particles can
probe these environments, providing access to time and distance scales that are not
accessible through other wavebands. VHE emission also often escapes from sys-
tems where UV and X-ray emission is absorbed, offering information independent
of assumptions about magnetic field strengths. Furthermore, VHE photons from
distant objects can probe the intervening space. CTA will allow us to measure the
redshift evolution of the UV-IR background and, thus, the star-formation history
of the universe and probe magnetic fields in cosmic voids at levels many orders
of magnitude below the reach of any other technique. CTA will also determine if
VHE photons heat the gas in these under-dense regions, potentially suppressing
the formation of dwarf satellite galaxies.

The third theme is exploring frontiers in physics. CTA has the potential to make
significant discoveries in the field of fundamental physics. CTA will reach the ex-
pected thermal relic cross-section for self-annihilating dark matter for a wide range
of dark matter masses, including those inaccessible to the Large Hadron Collider.
The long travel times of gamma rays from extra-galactic sources, combined with
their short wavelength, make them a sensitive probe for energy-dependent vari-
ations of the speed of light due to quantum-gravity-induced fluctuations of the
metric. CTA will be sensitive to these effects on the expected characteristic scale,
the Planck scale. Gamma rays may also couple with other light particles, such
as axion-like particles (ALPs), under the influence of intergalactic magnetic fields.
This effectively makes the universe more transparent to gamma rays and intro-
duces a spectral modulation. Each of these effects would represent a major dis-
covery and justify the effort of constructing and operating CTA. CTA’s increased
sensitivity and energy coverage bring these effects within reach and could allow
for further discoveries in fundamental physics.

1.2.2 The telescope array

Cherenkov telescopes can be disposed to form a detector array. The array captures
the elusive cascades of gamma-ray photons produced when high-energy gamma
rays hit the Earth’s atmosphere. These cascades are incredibly rare, with only one
gamma-ray photon per square meter per year from a bright source or one per
square meter per century from a faint source. CTA will use more than 60 telescopes
distributed between two array sites in the northern and southern hemispheres to
improve the chances of capturing these elusive signals. The northern hemisphere
array will have a more limited size and focus on the low and mid-energy range
of CTA, between 20 GeV and 5 TeV. Meanwhile, the southern hemisphere array,
which has a prime view of the rich central region of our galaxy, will cover the
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mid- to the high-energy range of CTA, spanning gamma-ray energies from 150
GeV to 300 TeV [Ach+19]. Figure 1.3 shows the sensitivity of the northern and
southern telescope arrays compared to other instruments. To cover the full CTA

Figure 1.3: The sensitivity of the CTA Northern and Southern arrays compared to
other instruments. Credits to [OC21]

energy range, three classes of telescopes are required: Small-Sized Telescope (SST),
Medium-Sized Telescope (MST), and Large-Sized Telescope (LST). The SSTs are
the most sensitive to high-energy gamma rays and are, therefore, more suitable
for the southern site’s detection of higher-energy gamma rays. In the southern
hemisphere, the galactic center has unobstructed visibility, a rich source of various
types of emission. As a result, detecting low-energy gamma rays in this region is
particularly challenging due to the high signal-to-noise ratio and the contribution
of the diffuse background from the interstellar gas.

Scientists have conducted various simulations to determine the best configu-
rations of arrays to maximize performance, including sub-array configurations.
These configurations (shown in Figure 1.4 and Figure 1.5) could allow for par-
allel and independent observations, resulting in optimized observation time and a
more specific focus on science [Ach+19]. The Alpha Configuration is the approved
layout of the telescope arrays in both the northern and southern hemispheres. This
configuration includes 13 telescopes, 4 LSTs, and 9 MSTs, distributed over an area
of about 0.5km2 in the CTA Northern Array and 51 telescopes over a 3km2 area,
consisting of 14 MSTs and 37 SSTs, in the CTA Southern Array. The collabora-
tion between the northern and southern hemispheres will allow CTA to expand
its reach and study the universe more comprehensively [Ach+19]. The northern
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Figure 1.4: Layout of the CTA Northern array on La Palma (Spain), including the
elements defined in the Alpha Configuration. Credits to [OC21]

hemisphere array will be located at the existing Instituto de Astrofisica de Canarias’
(IAC’s) Observatorio del Roque de Los Muchachos on the island of La Palma in
the Canary Islands. This site already hosts an operating gamma-ray observatory,
the Major Atmospheric Gamma Ray Imaging Cherenkov (MAGIC) telescopes, and
various optical telescopes of various sizes. The Southern Hemisphere Array will be
located in the Atacama Desert in Chile, near the European Southern Observatory’s
(ESO’s) existing Paranal Observatory.

In 2022 the European Union’s National Recovery and Resilience Plan (PNRR)
was released following the COVID-19 pandemic. The Italian National Institute for
Astrophysics (INAF), in collaboration with the Italian National Institute for Nu-
clear Physics (INFN) and in partnership with CTAO, submitted the CTA+ Project
to Italy’s Ministry for University and Research. The project was awarded 70 mil-
lion euros after a competitive review by international referees and was announced
in June 2022. The program includes Work Packages (WP) to aid in implement-
ing CTAO as part of Italy’s participation in the CTAO ERIC. The WP focuses on
upgrading the CTAO Southern Array in Chile and includes two new Large-Sized
Telescopes (LSTs), electromechanical structures for five new Small-Sized Telescopes
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Figure 1.5: Layout of the CTA Southern array in the Atacama Desert (Chile), ac-
cording to the Alpha Configuration. Credits to [OC21]

(SSTs), improvements for transient source science, and R&D on new detectors for
Cherenkov telescopes [Con23a].

1.2.2.1 Large-Sized Telescopes (LST)

This section describes the Large-Sized Telescope (LST) ([Bar20], [Con23b], and
[Con23a]). The LST project is a collaboration involving over 100 scientists from 10
countries, including Brazil, Croatia, France, Germany, India, Italy, Japan, Poland,
Spain, and Sweden. The LST is an alt-azimuth telescope that uses a reflective sur-
face of 400 square meters designed to capture images of low-energy gamma rays,
which produce a small amount of Cherenkov light. The LST uses a large mirror
with a 23m diameter parabolic reflective surface supported by a tubular structure
of reinforced carbon fiber and steel tubes (Figure 1.6). The LST mirror collects and
focuses the Cherenkov light into the camera, comprising photomultiplier tubes that
convert the light into electrical signals that dedicated electronics can process. The
camera shares many elements with the NectarCAM for the MSTs. It has a total field
of view of about 4.3 degrees and is designed to be compact and lightweight while
providing optimal performance at low energies. Each pixel incorporates a photo-
sensor and the corresponding readout electronics. These electronics are based on
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Figure 1.6: The LST Prototype, LST-1, on the CTA-North site in La Palma.
Credits to https://www.flickr.com/photos/cta_observatory/albums/
72157671493684827

the Domino Ring Sampler Version 4 (DRS4) chip, developed at the Paul Scherrer
Institute in Switzerland and currently used by several experiments, including the
MAGIC Cherenkov telescopes. The camera trigger strategy is based on the shower
topology and the temporal evolution of the Cherenkov signal produced in the
camera.

Although the LST is 45 meters tall and weighs around 100 tonnes, it is de-
signed to be extremely nimble and able to re-position within 20 seconds. This re-
positioning speed and low energy threshold are critical for CTA studies of galactic
transients, high red-shift active galactic nuclei, and gamma-ray bursts. The LSTs
will also expand the science reach to cosmological distances and fainter sources
with soft energy spectra. Four LSTs will be placed at the center of the northern
hemisphere array to detect high-energy photons between 20 and 150 GeV. The
LSTs also have a very good sensitivity to energies of a few TeV, which is, however,
more efficiently covered by Medium-Sized Telescopes (MSTs).

The LST prototype, LST-1, was completed in October 2018 in La Palma, Canary
Islands, Spain, on the site of the Observatorio del Roque de Los Muchachos. The
prototype is foreseen to become the first LST telescope of CTA and, in fact, the first
telescope on a CTA site to be operated by the observatory. It will need to undergo
a critical design review to verify that the design complies with CTA science goals,
operational needs, safety standards, etc., before CTA formally accepts it. On Octo-
ber 10th, 2018, over 200 guests from around the world gathered to celebrate the

https://www.flickr.com/photos/cta_observatory/albums/72157671493684827
https://www.flickr.com/photos/cta_observatory/albums/72157671493684827
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Figure 1.7: The MST design explores two different concepts. On the one hand, in-
spired by HESS and VERITAS current observatories, a 12 meters diam-
eter modified Davis–Cotton (DC-MST) optical layout and a PMT cam-
era. On the other, a novel 10 meters diameter Schwarzschild–Couder
(SC-MST) optics incorporating a novel Silicon Photo-Multiplier (SiPM)
camera. Credits to [Bar20].

inauguration of the prototype Large-Sized Telescope (LST-1). On December 14th,
2018, the LST-1 prototype recorded its first Cherenkov light. On November 23rd,
2019, LST-1 successfully detected its first gamma-ray signal when pointing to the
Crab Nebula. Between January and February 2020, the LST-1 prototype observed
the Crab Pulsar, a neutron star at the center of the Crab Nebula. These observations
were used to verify the telescope’s performance and capabilities.

1.2.2.2 Medium-Sized Telescopes (MST)

This section describes the Medium-Sized Telescope (MST), referring [Bar20] and
[Con23b]. The Medium-Sized Telescope (MST) is developed by an international
team of institutes and universities from Austria, Germany, France, Brazil, Poland,
Spain, Switzerland, and Italy. This telescope is considered the workhorse of the
CTA, with sensitivity in the core energy range of CTA, from about 150 GeV to 5
TeV. The CTA plans to include 23 MSTs, with 14 in the southern and 9 in the north-
ern hemispheres. The MST mirror will be about 12 meters in diameter and have
two camera designs using photomultiplier tubes (PMTs). The MST is a modified
Davies-Cotton telescope with a reflector diameter of 12 meters on a polar mount
and a focal length of 16 meters. To create a uniform reflector, the MST will have
up to 90 hexagonal-shaped mirrors aligned with an active mirror control assem-
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Figure 1.8: The ASTRI telescope prototype, a novel dual-mirror Schwarzschild-
Couder telescope design proposed for the CTA. Credits to [Con23a]

bly. The MST cameras will have a large field of view of about 8 degrees, making
it easier to observe gamma-ray sources that may be concentrated in one area of
the sky or widely spread apart. Two camera concepts are in development for the
MST: NectarCAM and FlashCAM. NectarCAM uses the ‘Nectar’ analog pipeline
ASIC for signal capture with GSample/s sampling rate and shares many design
features/components with the LST camera. NectarCAM is composed of 265 in-
dividual and easily removable modules. FlashCAM design follows a horizontal
architecture with the photon detector plane (PDP), the readout electronics (ROS),
and the data acquisition system (DAQ) as key building blocks. The PDP contains
photomultiplier tubes (PMTs) arranged in a hexagonal structure. An MST proto-
type was deployed in Berlin in 2012 and is currently undergoing performance
testing. The main purpose of the prototype is to validate the design of the individ-
ual components, test the interfaces between the mating assemblies, and define the
assembly process of the product. The prototype has a fully functional drive sys-
tem, cameras for pointing and tracking, sensors designed to record the behavior
response of the structure and drive system, and a weather station. The prototype is
a fully-functioning telescope but doesn’t include the entire camera assembly and
its readout. Camera demonstrators were built, tested, and validated in parallel by
the two camera sub-projects.
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1.2.2.3 Small-Sized Telescopes (SST)

This section describes the Small-Sized Telescope (SST) referring [Tag+22] and
[Con23b]. The Small-Sized Telescopes will make up the largest number of tele-
scopes in the CTA, with 37 planned to be spread out over several square kilo-
meters in the southern hemisphere array only. This is because very high-energy
gamma-ray showers produce a large amount of Cherenkov light over a large area.
The SST’s smaller mirror is sensitive to the highest energy gamma rays (between
a few TeV and 300 TeV). The SSTs wide coverage and high sensitivity improve
CTA’s chances of detecting the highest energy gamma rays. Three different SST
implementations were proposed for the final SST design: ASTRI-Horn, GCT, and
SST-1M. In 2018, a harmonization process was initiated. In June 2019, the council
accepted the CTA Management proposal, stating that the CTA-SST design should
be based on the ASTRI/CHEC design, taking into account the experience gained from all
designs. The SST design is a dual-mirror Schwarzschild-Couder aplanatic configu-
ration, and thanks to its small plate scale, it uses a novel compact camera based
on SiPM sensors. The 4.3m diameter primary mirror is segmented into hexago-
nal facets, and the 1.8m secondary mirror is monolithic. The SST’s camera, also
known as the CHEC camera, uses custom peak-hold application-specific integrated
circuits (ASICs) for signal capture. The dual-mirror design allows for the same an-
gular resolution and collecting area across a wide field of view with a short focal
length. The camera comprises 2048 silicon photo-multiplier pixels forming approx-
imately a 9x9 degrees field of view. The CHEC is unique as an SST dual-mirror
camera in its ability to capture Cherenkov light not as fixed images but as movies
consisting of hundreds of frames, each lasting one billionth of a second. The SST
collaboration benefits from the research and development work previously car-
ried out within the ASTRI, CHEC, and GCT projects to develop end-to-end SST
dual-mirror telescopes. The ASTRI project is led by the Italian National Institute
of Astrophysics (INAF) with the collaboration of several Italian universities, the
Italian National Institute of Nuclear Physics (INFN), Universidade de São Paulo
in Brazil, and North-West University in South Africa. The ASTRI project designed
and installed an end-to-end dual-mirror prototype of the CTA small-size telescope
(SST) on Mt. Etna (Sicily) and will install a dual-mirror SST mini-array composed
of nine units at the CTA Southern site. The ASTRI mini-array will extend the cur-
rent IACTs sensitivity well above a few tens of TeV [Ver16]. The CHEC project, led
by MPIK, is an international collaboration between the University of Adelaide, the
University of Amsterdam, DESY Zeuthen, Durham University, the Erlangen Cen-
tre for Astroparticle Physics (ECAP), the University of Leicester, the University of
Liverpool, Nagoya University, and the University of Oxford. The Observatoire de
Paris-Meudon carries out the GCT telescope project.
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1.2.3 Computing and software

The CTA Computing Department faces the challenge of designing and implement-
ing a system that supports all aspects of the CTA Observatory, from accepting ob-
servation proposals to scheduling observations, controlling the telescopes, process-
ing and archiving data, and making it accessible to the public using open standards
and FAIR (findability, accessibility, interoperability, and reusability) principles. The
department is responsible for all stages of development, from architectural design
to construction, validation, deployment, and maintenance. The Observatory’s tech-
nical challenges and long lifetime will require new techniques and technologies to
meet scientific demands. Even when built, maintaining the software and hardware
systems for the 30-year lifespan of the observatory and the science data archive for
an additional 10 years will not be a simple task. Therefore, software systems engi-
neering is just as crucial as the code itself [Oa17]. In addition, the CTA array sites
will generate a vast amount of data from the telescopes in hundreds of petabytes
annually. This data will then be compressed and reduced to a few petabytes per
year before being transferred to off-site data centers for processing and storage. Ad-
ditionally, tens of petabytes of simulated data will also be generated and processed.
The software systems that will satisfy all the CTA requirements are shown in Fig-

Figure 1.9: The diagram below provides a general overview of how the software
systems interact with the main processes involved in the science opera-
tions of the observatory, including the submission, execution, and return
of processed data related to a scientific proposal. Credits to [Con23b].
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ure 1.9: the Array Control and Data Acquisition System (ACADA), the Data Pro-
cessing and Preservation System (DPPS), the Science User Support System (SUSS),
and the Science Operations Support System (SOSS) [Con23b]. The ACADA (Ac-
quisition and Control and Data Analysis) system manages the supervision and
control of telescopes and calibration instruments at both CTA array sites, including
the efficient execution of scheduled and dynamically triggered observations. It also
manages raw data acquisition and compression and generates automatic science
alerts. The ACADA provides a user interface for site operators and astronomers
[Oa17]. It’s composed of several subsystems such as the Resource Manager and
Central Control systems [Ma19], the Human Machine Interface system [Sad+17],
the Short-Term Scheduler system [Ca14], and the Science Alert Generation system
[Ba14]. The latter allows the observatory to reconstruct and analyze the data, detect
sources, and issue candidate science alerts in real-time. The DPPS (Data Processing
and Preservation System) is responsible for transforming the raw data products
generated by ACADA into low-level science data products suitable for analysis,
which are then delivered to the SUSS (Science User Support System) for dissem-
ination. The DPPS ensures that all data products are preserved and replicated in
at least two off-site data centers, have traceable and reproducible provenance, and
are of the highest scientific quality. It also provides continuous monitoring and
quality reporting for its sub-systems and produces high-level science quality met-
rics and reports related to the provided services. The DPPS is implemented as a
distributed system, deployed as a set of Data Processing and Preservation Nodes,
running at the CTA-North and CTA-South data centers, on three CTA off-site data
centers, and at the SDMC Data Center [Con23a]. The SUSS manages the software
system for high-level science operations workflows, from proposals to data deliv-
ery and user support. It is the main access point for exchanging science-related
products with science users. It provides software for observation planning, the
automatic generation and verification of high-level science data products, the Sci-
ence Archive, Science Analysis Tools, and Science Portal, which provides access to
software applications, services, data, and software products [Oa17]. The SOSS (Sci-
ence Operations Support System) is a collection of software tools that support the
systems involved in science operations workflows, such as ACADA, DPPS, and
SUSS [Con23a]. The respective systems can access and share science operations-
related information and configurations. It includes the means to track the state of
proposals and observations throughout their life cycle and the state of the CTA Ob-
servatory throughout the science operations workflow and science performance.
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1.2.4 The Science Alert Generation System

As described in [Bul+15] and [Bul+21], the Science Alert Generation system will
perform real-time scientific analysis to issue science alerts. A science alert is a noti-
fication within the astrophysics community to share information about a transient
phenomenon (such as an AGN’s gamma-ray flare, gamma-ray bursts, gravitational
waves, or galactic transients) that has been observed. Sharing this information
through specialized communication networks allows coordination among differ-
ent observatories to enable multi-wavelength and multi-messenger analysis. Those
are rapidly developing fields that study celestial objects and phenomena using a
wide range of electromagnetic and non-electromagnetic signals. This includes ev-
erything from radio waves and visible light to gamma rays, gravitational waves,
and particles, such as cosmic rays and neutrinos. One of the key advantages of
multi-wavelength and multi-messenger astronomy is that it allows astronomers to
study the universe from a more comprehensive perspective. By combining data
from different wavelengths and messengers, astronomers can better understand
the physical processes in the universe. One of the most significant developments
in multi-wavelength and multi-messenger astronomy has been detecting gravita-
tional waves, ripples in space-time predicted by Einstein’s theory of general relativ-
ity. The acceleration of massive objects, such as the merging of binary black holes
or neutron stars, produces these waves. The first gravitational wave detection was
made in 2015 by the Laser Interferometer Gravitational-Wave Observatory (LIGO)
[Abb+16b]. Since then, several other gravitational wave detections have been made,
opening up a new window onto the universe [Abb+16a]. The Science Alert Gen-
eration system will have a key role in the GW follow-up program [SA+19]. An-
other important aspect of multi-wavelength and multi-messenger astronomy is the
study of transient phenomena, such as supernovae, gamma-ray bursts, and fast
radio bursts. These events are often brief and elusive and can be studied more
effectively by combining data from multiple telescopes and instruments. For exam-
ple, the combination of data from X-ray, optical, and radio telescopes has allowed
for the study of the afterglows of gamma-ray bursts (GRBs), which are thought to
be the result of the collapse of massive stars or the merging of binary neutron stars
[FM95]. To achieve collaboration between observatories, the transient phenomena
must be observed in real-time on a short timescale. Furthermore, suppose an ex-
ternal observatory identifies a transient. In that case, it is essential to react quickly,
change the pointing of the telescopes, and analyze the data in an automated and
fast way to confirm the transient event and to conduct follow-up observations
[Bul+21].
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1.2.4.1 Requirements

Technical challenges, such as limited network bandwidth at the observatory sites
and a high expected data rate, make it difficult to perform real-time analysis off-
site. As a result, an on-site analysis pipeline is necessary to access raw data, per-
form calibration, and produce scientific results [Bul+15]. The real-time analysis
must meet challenging requirements to process the large amount of data produced
by CTA in real-time. The Science Alert Generation system must be able to generate
candidate science alerts within 20 seconds from the last acquired event, with a max-
imum telescope positioning time of 90 seconds in response to external or internal
triggers. These candidate science alerts will be sent to the Transients Handler sys-
tem, which will evaluate the results of the SAG to generate the final science alert to
the community within 5 seconds of receiving it. If we also consider the 5 seconds
required to acquire data, CTA will be capable of issuing science alerts with a max-
imum latency of 30 seconds [Bul+21]. Furthermore, the SAG system must be avail-
able during observations for at least 95% of the time to enable real-time follow-up
of external alerts and internal alerts triggering serendipitous discoveries. This will
require re-scheduling observations to follow up the phenomena in real-time and
maximize the coordinated outcome of the facilities’ network [DP+20]. According
to the CTA design requirements, the real-time search for transient events should
be performed on multiple time scales (from minutes to hours) with a sensitivity
not worse than two times the nominal CTA sensitivity. [Fio+15] performed a pre-
liminary evaluation of the real-time analysis sensitivity as a function of the CTA
high-level technical performance (e.g., effective area, point spread function) and
the observing time.

1.2.4.2 Structure

The SAG system, shown in Figure 1.10, analyzes the real-time raw data captured by
the telescopes’ cameras to detect gamma-ray events, managing trigger rates of tens
of kHz. It is a distributed system, and it consists of four main software packages
written in different programming languages:

• SAG-RECO: Image Parameter Extractor and Low-Level Reconstruction Pipeline.

• SAG-DQ: Online Data Quality Software.

• SAG-SCI: High-Level Analysis Pipeline.

• SAG-SUP: SAG Pipeline Sub-array Supervisor and SAG Supervisor.

The SAG-RECO software package includes the Image Parameter Extractor and the
Low-Level Reconstruction Pipeline. It processes the data stream from the telescopes’
cameras, producing photon lists data with a maximum latency of 15 seconds. This
software package is developed in C++ and exploits high-performance computing
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Figure 1.10: Context diagram for the SAG system. The SAG system is a distributed
software package that analyzes raw data captured by telescopes’ cam-
eras to detect gamma-ray events in real-time. It consists of four main
software packages written in different programming languages, which
process the data stream, assess data quality, simplify the development
of real-time scientific analysis pipelines, and supervise the operations
of the analysis pipelines. The SAG-RECO package (Image Parameter
Extractor and Low-Level Reconstruction Pipeline) is developed in C++,
and the SAG-DQ (Online Data Quality Software) and SAG-SCI (High-
Level Analysis Pipeline) packages are developed in Python. The SAG-
SUP package (SAG Pipeline Sub-array Supervisor and SAG Supervisor) is
implemented in Java using the Alma Common Software framework.
Credits to [Bul+22].
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techniques through an efficient data format generator, low-level optimization of
CPU pipeline usage and vectorization of existing algorithms, and a fast integer
compression algorithm [Aub18]. The SAG-DQ software package performs online
data quality analysis to assess any degradation of the observing condition (due
to hardware, software, or environmental problems). Two Python libraries have
been developed to meet the data quality analysis requirements. The first pack-
age implements the core logic of data quality analysis, while the second manages
the parallel execution of multiple data quality analysis pipelines. Both libraries
have been developed by the author of this thesis [Bar+22]. The SAG-SCI software
package implements a Python framework designed to simplify the development
of real-time scientific analysis pipelines. This framework enables developers and
researchers to focus on the scientific aspects of the pipelines, integrate existing sci-
ence tools, and provide a common pipeline architecture with automation. It can
also be easily configured with new or existing science tools. The scientific analyses
are performed in parallel and can be prioritized, producing quick-look results and
science-alert candidates [Par+22]. Finally, the SAG-SUP software package super-
vises the operations of the SAG-RECO, SAG-DQ, and SAG-SCI analysis pipelines,
and it interfaces with the rest of the ACADA system. The SAG Pipeline Sub-Array
Supervisor supervises the operation of the low-level, data quality, and high-level
scientific analysis pipelines associated with an observation schedule. The SAG Su-
pervisor manages the generation of scientific monitoring results and provides input
to the ACADA Reporting Subsystem for generating reports. These two components
are implemented in Java using the Alma Common Software framework [Chi+01].
The ALMA Common Software (ACS) has been developed to control the Atacama
Large Millimeter Array (ALMA) observatory operations in the Chilean Atacama
desert at a height of more than 5000 meters above sea level. Distributed Objects
(DOs) serve as the core of ACS, an object model of controlled devices implemented
as CORBA network objects. Each ACADA subsystem implements DOs that allow
method-call interaction between object-oriented software distributed on different
nodes. ACS allows the implementation of DOs using three different programming
languages: C++, Python, and Java. The SAG Pipeline Sub-Array Supervisor ACS com-
ponent has been implemented in Java, and it is, in turn, supervised by the Array
Supervisor ACS component of the Central Control system. The observation schedule
of the array is set by the human operator, which uses the graphic user interface
provided by the Human-Machine Interface system. The observation schedule is en-
coded in a scheduling block object interchanged by the ACADA systems. In partic-
ular, the Central Control system reads the observation metadata and instantiates
the resources needed to execute the observation, given the target and the telescope
array configuration. Among them, the CC creates the Science Alert Generation
(SAG) subsystem component to handle the real-time analysis pipelines, and it’s
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configured with the scheduling block. The SAG system relies on the Slurm Work-
load Manager software to supervise the analysis pipelines. The author of this thesis
is the lead developer of the SAG-SUP software package.

1.2.5 The scientific use cases

The growing interest in multi-messenger and multi-wavelength astronomy has
greatly enhanced the search for transients. As stated in Section 1.2.1, the KSP for
transients plans to invest significant observation time per year (Figure 1.11). The
main source classes targeted by this KSP are Gamma-Ray Bursts (GRBs), Galac-
tic transients, X-ray, optical, and radio transients, High-energy neutrino transients,
GW transients, and serendipitous VHE transients [Sci]. GRBs are expected to be a
major component of this KSP and will be detected based on external alerts (covered
in Section 1.2.5.2), but with the possibility of serendipitous discoveries (covered in
Section 1.2.5.1).

Figure 1.11: Maximum observation times required for follow-up targets in the Tran-
sient KSP, taken from. Credits to [DP+20]

1.2.5.1 Serendipitous discoveries

Serendipitous discoveries are unexpected findings made while studying a specific
target or phenomenon. This can occur because the telescope’s field of view is wider
than the region of interest used to observe a particular source, which allows for
simultaneously detecting signals from multiple sources. However, the likelihood of
a serendipitous GRB event appearing in the field of view during an observation is
minimal. The probability of making serendipitous discoveries will be heightened
during the survey phases of CTA as larger areas of the sky will be systematically
observed. The event must be detected as soon as possible to broadcast a science
alert to other observatories to follow the same event and enable multi-wavelength
and multi-messenger analysis [Bul+15].
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1.2.5.2 Follow-up observation triggered by an external science alert

Follow-up observations refer to observing a specific target in more detail after an
initial discovery or detection. The follow-up observations can be triggered by a
science alert, which is a notification that alerts researchers and facilities of an in-
teresting or unusual event happening. Follow-up observations can be conducted
using various instruments and techniques. They are typically performed to study
a target in more detail, confirm an initial discovery, and gather additional infor-
mation about its properties [Sci]. When a science alert is received, the observatory
will interrupt the current observation and point to a new sky region to detect the
new source in the shortest possible time. If the error on the source’s position is
bigger than the field of view of the telescopes, multiple follow-up observations
with a tiling strategy [Bul+15] are required to cover the whole localization region.
Still, the latter scenario will not be covered in this work. In addition, the event’s
evolution cannot be observed from the beginning due to the delay between detect-
ing the source that triggered the science alert, the time to receive it, and the time
the telescopes took to change their pointing to the new sky region.

1.3 analysis of gamma-ray data

As outlined in Section 1.1.1, when a high-energy photon from a gamma-ray source
collides with the Earth’s atmosphere, it produces an electromagnetic shower that
results in Cherenkov emission, which is then observed with an optical telescope
on the ground. The light from the shower triggers the telescope, and the incoming
signals are processed and classified to reconstruct the primary event’s energy and
arrival direction. However, observations are heavily affected by background events
caused mainly by cosmic hadrons, and a significant effort is required to differen-
tiate between electromagnetic events and background noise. The reconstruction
outcome is a photon list, a collection of individual photons, their arrival time,
reconstructed direction, and reconstructed energy. The high-level gamma-ray anal-
ysis starts at this stage to generate skymaps, spectra, and light curves and finally
perform detections. This section will discuss the Aperture Photometry and Full-
FOV Maximum Likelihood and techniques. The Li&Ma significance estimation
method is also described in the context of a reflected regions background estimation
algorithm. Their usage in the real-time scenario has been investigated by [Tam20],
[DP+20], and [DP+21].
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1.3.1 The calibration database and the Instrument Response Functions

The calibration database contains instrument response functions that are manda-
tory to perform simulation and analysis of CTA data. The instrument response
function (IRF) R(p′, E′, t′|p, E, t) describes the transformation from the physical
properties of a photon (sky direction p, energy E, and time t) to the measured
characteristics of an event p′, E′, t′ (the instrument response function is given in
units of cm2sr−1s−1MeV−1) [Kno+16]. The IRF can be factorized in effective area
Ae f f (p, E, t) in units of cm2, point-spread function PSF(p|p, E, t), and energy disper-
sion Edisp(E′|p, E, t). Furthermore, every IRF considers the background rates as they
vary with energy and location within the field of view. The background rate mostly
comprises cosmic-ray hadrons and electrons that pass the gamma-ray selection cri-
teria (cuts) [DP+20]. The instrument’s response is applied to the ideal simulation
model during a simulation to obtain the data as the telescope saw it. Instead, the
telescope observation data must be restored during the analysis to obtain the real
quantities, considering the IRF.

1.3.2 Aperture photometry

Aperture photometry measures the light that falls inside a circular or annular re-
gion of some fixed size (aperture) around the object of interest (called the on-region).
It then subtracts the contribution of any residual cosmic-ray background or noise
sources that may be present in the surrounding area taken from one or more off-
regions. This subtraction is designed to remove the contribution of any light or
noise not directly associated with the object of interest, thus providing a more ac-
curate measurement of its true brightness. To minimize the impact of background
contamination and nearby sources on the data analysis, carefully select the regions
used for the on-region and off-region. Ideally, the on-region should be chosen
to contain the point spread function of the instrument at the given energy range,
while the off-region should be of equal size and chosen to minimize the contamina-
tion of background or nearby sources. This ensures that the counts in the on-region
are not underestimated or overestimated, providing a more accurate measurement
of the gamma-ray source of interest. Still, it is also important to ensure that the
background regions share similar characteristics with the source, including the
instrument response function in that region. To determine the number of excess
photons from the source, the normalized number of off-region events is subtracted
from the on-region data. If the on-region and off-region share the same size, offset,
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and exposure time, the probable number of photons contributed by the source is
calculated using the following formula:

NS = Non − α ∗ No f f

where Non is the counts in the source region, No f f is the counts in the background
regions, and α is a background scale factor. To obtain valid background statistics,
it is usually necessary to take multiple observations, which introduces additional
scaling factors to consider. These factors include the effective areas, exposure, and
region size between the on and off observations. With the counts in the on and off
regions and the excess counts, it is possible to estimate the detection significance
and the source flux simply and quickly without modeling [Tam20]. A light curve
can be constructed by aligning multiple flux estimates, one for each temporal bin.

1.3.2.1 Li&Ma

Li&Ma is a statistical method used to calculate the significance of a gamma-ray
signal, and it is based on the aperture photometry analysis. It can detect weak
signals in background noise and is considered a standard technique in gamma-ray
astronomy. The Li&Ma technique estimates the significance level with the likeli-
hood ratio method, using the Non and No f f photon counts. The null hypothesis
has signal NS = 0. It is based on the Poisson statistics to develop the likelihood
ratio λ calculations. Wilks’s theorem [Wil38] provides an analytical expression for
the likelihood ratio that is asymptotically exact. The theorem demonstrates that the
−2 times the natural logarithm of the likelihood ratio λ follows a χ2 distribution
when the null hypothesis is true. Finally, the formula to estimate the significance
is given by the equation 17 from [LM83]:

S =
√

2
{

Non ln
[

1 + α

α

(
Non

Non + No f f

)]
+ No f f ln

[
(1+ α)

(
No f f

Non + No f f

)]} 1
2

(1.1)

This technique has two main limitations:

1 For Wilks’ theorem to hold, the statistical bins of the analysis must be inde-
pendent.

2 The Li&Ma article [LM83] proves the significance equation can be applied
only with a minimum number of counts: non ≥ 10 and no f f ≥ 10.

1.3.2.2 Background estimation

Ground-based very-high-energy gamma-ray telescopes boast impressive sensitiv-
ity, but to fully realize their potential, they must address a major source of system-
atic error: background subtraction. Estimating background is crucial in analyzing
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gamma-ray data using imaging atmospheric Cherenkov techniques. The aperture
photometry analysis counts photons in the on-source region and subtracts an es-
timated background. Various techniques can be employed to estimate the back-
ground of an observation, each with its advantages and disadvantages. The choice
of which method to use depends on the specific data analysis requirements and
the observation characteristics [BFH07].

One approach is the reflected-region background model, shown in Figure 1.12.
The source isn’t at the center of the field of view but is displaced with an offset
relative to the pointing direction of the telescope. The simplest reflection estima-
tion uses a single off-region in the opposite direction relative to the center of the
field, with the exact shape of the on-source region. To improve statistics in back-
ground measurements, the method can be expanded by utilizing multiple back-
ground regions equidistant from the telescope pointing direction. The sum of the
event counts No f f from these off regions is used to estimate the background of the
on-region, scaled by the number of off regions. The reflected-regions background
model relies solely on the assumption of radial symmetry of the detector’s re-
sponse. The acceptance function measures a detector’s sensitivity to gamma rays
as a function of the direction and energy of the incoming gamma ray. Under the as-
sumption of the radial symmetry of the detector’s response, the scaling coefficient
α is defined as:

α =
1

No f f

where No f f is the number of off-regions. However, this approach requires a suitable
observation strategy. It cannot be applied if the observation positions are within
an extended source region or if there are too many other gamma-ray sources in the
field of view. In such cases, one might end up in a situation where it is impossible
to define a reflected background region without overlap with a known source
region, or, in the case of close-by sources just below the detection limit, one might
obtain a gamma-ray contaminated background estimate.

1.3.3 Full Field of View Maximum Likelihood

The likelihood function is a mathematical tool that assesses the agreement between
a set of observed data and a given statistical hypothesis or model. Specifically, it
quantifies the probability of obtaining the observed data given that the hypothesis
is true. The maximum likelihood estimation method can be applied to determine
the values of a model’s parameters that maximize the likelihood. Cash introduced
the likelihood ratio for parameter estimation in high-energy astronomy in the late
1970s [Cas79]. The Full-FoV Maximum Likelihood analysis is a useful technique
for detecting gamma-ray sources. It involves defining a background model that
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Figure 1.12: Count map of gamma-ray-like events with a reflected region back-
ground model.

predicts the expected gamma-ray count rate in the field of view in the absence of
sources. This model can be based on the count rate measured in a nearby region
or a more sophisticated model that takes into account the telescope’s point spread
function and other factors. A source model is then defined, describing the gamma-
ray emitting region’s spectral and spatial characteristics. The spectral model char-
acterizes the energy distribution of the emitted photons, while the spatial model
accounts for the distribution of the gamma-ray source in the sky. The point spread
function is used as the spatial model for point sources, and it describes how the
gamma-ray photons from a point source are spread across the instrument. The
background and source models determine the expected gamma-ray count rate
from a source [DP+20]. However, this analysis has two primary limitations:
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1 Assumptions: it depends on the accuracy of the background and source mod-
els, which can restrict its ability to detect sources that do not conform to these
models, particularly under degraded conditions in real-time pipelines.

2 Computational cost: the analysis can be computationally expensive, especially
for large fields of view or multiple source searches.

1.4 gamma ray bursts

The source detection method described in this thesis has been applied to gamma-
ray burst detection. GRBs are among the most intense and energetic transients
known to astronomers. They emit a vast amount of energy in a few seconds, equiv-
alent to that emitted by a star like our Sun in its entire lifetime. Their origins have
puzzled scientists since they were first serendipitously detected in the late 1960s
by the Vela Satellite Network. Initially, it was believed that GRBs have a galactic
origin, but in the early 1990s, it was realized that they are isotropically distributed
and have a cosmological origin [MP92], [Mee+92]. Figure 1.13 shows the distribu-
tion of GRBs in the sky as Fermi Gamma-ray Space Telescope observed in the first
six years of operations. Since the 1990s, GRBs have been the subject of intensive
study, particularly after the Burst and Transient Source Experiment (BATSE) on
board the Compton Gamma Ray Observatory began operations. The fluence, or
energy per unit area, of a single GRB event, ranges from 10−7 to 10−5erg/cm2, and
the isotropic energy, or the energy emitted in all directions, ranges from about
1048 to 1055erg. This makes GRBs the most energetic event known to humankind
[KZ15]. The nature of GRBs is still not fully understood, despite many years of re-
search. The fireball model (represented in Figure 1.14) is one historical model that
explains the mechanism of GRBs. It proposes that they are produced by highly rel-
ativistic and collimated jets and it explains the prompt emission generation by the
interaction of blobs in the jets. In contrast, the interaction of the jet with ambient
material produces the multiwavelength afterglow [BG11]. GRBs are traditionally
grouped into long (LGRBs) and short (SGRBs), depending on whether the burst
lasts more or less than 2 seconds. In 1997, scientists discovered that long GRBs oc-
cur in star-forming regions. This led Paczynski to propose that core-collapse events
cause LGRBs [Pac98]. Around the same time, MacFadyen and Woosley proposed
the collapsar model, which states that a GRB is produced by a jet that emerges
from the center of a collapsing star and penetrates the stellar envelope [MW99].
However, it wasn’t until the discovery of SN2003dh in association with GRB030329
that the link between GRBs and supernovae was confirmed [Hjo+03]. Since then,
several other GRB-SN associations have been discovered, further solidifying the
collapsar model as the explanation for LGRBs [BNP+12]. SGRBs are thought to
be the result of compact binary mergers with at least one neutron star, such as a
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Figure 1.13: The distribution of GRBs in the sky as observed by Fermi Gamma-ray
Space Telescope in the first six years of operations shows that they are
isotropically distributed and independent of their brightness, duration,
spectrum, or any other characteristic. Credits to [Mye23].

black hole and a neutron star (BH-NS), or two neutron stars (NS-NS) [CP95], or
two black holes (BH-BH) [PLG16]. For this reason, they are also associated with
gravitational wave (GW) counterparts [Abb+17]. The advanced Laser Interferom-
eter Gravitational-Wave Observatory (LIGO) has detected several GWs, including
GW150914, GW151226, GW170104, and GW170817. The observation of the associ-
ation of GW170817 and GRB170817A [Abb+17] confirms the NS-NS merger as a
progenitor of SGRBs.
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Figure 1.14: Sketch showing on the left the progenitor models for short and long
GRBs and on the right the different phases involved in the fireball
model. The internal shocks produce the gamma-ray prompt emission,
and external shock with the interstellar medium, or the star wind is
responsible for the afterglow phase observed in radio, optical, X-rays,
and gamma-rays. Credits to [Gom12].

1.5 summary

The introductory chapter provided the reader with the required background to
understand the context of the work. It discussed gamma-ray astronomy and
ground-based gamma-ray imaging with Cherenkov telescopes. The Cherenkov
Telescope Array Observatory (CTAO) was introduced, including its science goals,
an overview of the telescope array, and its associated computing and software sys-
tems, including the Science Alert Generation System, and exploring the scientific
use cases of serendipitous discoveries and follow-up observations for real-time
detection of transient events. The chapter also covered gamma-ray data analysis
techniques, including the full field of view maximum likelihood and aperture pho-
tometry and the Li&Ma significance estimation method. Finally, it covered the
study of gamma-ray bursts, the transient event the work was focused on.



2
A N O M A LY D E T E C T I O N F O R T I M E S E R I E S
D ATA

This chapter introduces the concept of anomaly detection for time series anal-
ysis, discussing the major existing contributions to the field. It is organized
as follows: Section 2.1 introduces the definition and properties of time series
data and the concept of anomaly. It discusses several techniques from the
scientific literature, classifying them using a taxonomy. Section 2.2 focuses
on anomaly detection techniques based on deep learning. The method
developed in this work belongs to this category. Section 2.3 lists several
contributions made within the astrophysics domain, proving that these
techniques are becoming increasingly popular for analyzing astrophysical
data.

2.1 anomaly detection for time series analysis

Anomaly detection involves the identification of patterns or events in data that are
unusual or unexpected compared to a baseline or normal behavior [CBK09]. Vari-
ous factors, such as errors in data collection, rare events, or the influence of external
factors, can cause these anomalies. This chapter will discuss anomaly detection in
the context of time series data. A time series is generally considered a collection of
observations indexed in time order, defined by the following properties:

• Temporality (or temporal correlation): if each data point in the series depends
on its past values.

• Dimensionality: the number of individual data attributes captured in each ob-
servation. In the case of univariate time series, each observation is defined by
one data attribute. In contrast, multiple attributes define the observations that
compose a multivariate time series. In the latter case, both the temporal de-
pendence and the correlations between data attributes should be considered
during the analysis. Below are the mathematical definitions of univariate and

32
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multivariate time series, assuming that the observations composing a time se-
ries have the same temporal granularity.

Definition 2.1.1. [Univariate time series] A univariate time series X = {xt}t∈T is
an ordered set of real-valued observations, where each observation is recorded
at a specific time t ∈ T ⊆ Z+.

Definition 2.1.2. [Multivariate time series] A multivariate time series X =

{xt}t∈T is an ordered set of real-valued observations, where each observation
is recorded at a specific time t ∈ T ⊆ Z+ and consists of k real-valued obser-
vations, xt = (x1t, .., xkt).

Since a time series a can be arbitrarily long, it’s often useful to consider subse-
quences defined as follow:

Definition 2.1.3 (Subsequence). S = {xp, xp+1, .., xp+n−1} is a subsequence of
length n ≤ |T| of a multivariate time series X, for p, t ∈ T and p ≤ |T| − n + 1.

• Stationarity: a time series is said to be stationary if its statistical properties do
not change over time.

Definition 2.1.4 (Strongly stationary). For any τ ∈ N, a continuous stochastic
process x = {xt}t∈T⊂Z+ is strongly stationary if following condition is satis-
fied:

Fx(x1+τ, ..., xt+τ) = Fx(x1, ..., xt)

where Fx denotes the joint distribution function [Cho+21].

Many real-world environments experience changes in their underlying statis-
tical data distribution over time, a phenomenon commonly referred to as con-
cept drift [WK94]. This can be a significant issue as it can negatively impact the
performance of models trained on historical data [PY10]. For example, seasonal-
ity is a periodic fluctuation over a limited time scale (e.g., power consumption
is high during the day and low during the night, and online sales increase
rapidly over the Black Friday weekend and then decrease again). In addition,
change points are time instants after which the underlying statistical distribu-
tion of a stream changes, for example, when the operations of a machine are
stopped and restarted with a different setting. As we will see in the follow-
ing sections, the scientific literature contains anomaly detection techniques
designed to work exclusively with stationary or non-stationary time series, as
well as techniques developed for the stationary case and then adapted for the
non-stationary setting.

• Noise: since it is a common issue in real-world systems, [Tan+18] adds this
property to time series data. The noise is defined as any unwanted sig-
nal changes during capture, storage, transmission, processing, or conversion.
While minor fluctuations in sensors sensitivity can often cause noise and have
little impact on the overall data structure, it can make it difficult to distinguish
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between noise and actual anomalies in a noisy system. This can greatly impact
the performance of detection models [TC02].

Before introducing the taxonomy of the anomaly detection techniques for time
series data, the definition of anomaly (or outlier) must be given. Hawkins [Haw80]
has provided a widely used definition:

"An observation which deviates so much from other observations as to
arouse suspicions that it was generated by a different mechanism"

Outliers in time series can have different meanings depending on the context
[BG+20]. According to Aggarwal [Agg16], they can be seen as noise, erroneous,
or unwanted data that are not interesting to the analyst. In these cases, it is best
to delete or correct them to improve the data quality. However, in recent years,
researchers have increasingly focused on detecting and analyzing unusual but in-
teresting (for a specific domain) phenomena, such as the case of fraud detection.
These outliers are often referred to as anomalies. This chapter will refer to this
meaning and the term anomaly will be used from now on.

The scientific literature proposes numerous anomaly detection techniques ap-
plied to time series analysis [CBK09], [BG+20], [Cho+21], [Gar+21]. In [BG+20]
review paper, the anomaly detection techniques are grouped along three axes. The
first axis refers to the capability of analyzing univariate or multivariate time series.
The second axis refers to the type of anomaly to be detected. Anomalies in time
series data can take several forms. A point anomaly is an unusual data point in
a specific instant compared to other values in the series (global) or neighboring
points (local). These anomalies can occur in one variable (O1, O2 in Figure 2.1, left
panel) or multiple variables (O1, O2, O3 in Figure 2.1, right panel). Another type
of anomaly is called subsequence, which refers to consecutive points in time that
exhibit unusual behavior together, even if each point is not necessarily an anomaly.
These can also be global or local and affect one variable (O1, O2 in Figure 2.2,
left panel and O3 in Figure 2.2, right panel) or multiple variables (O1 in Figure 2.2,
right panel). Finally, the entire time series can be considered anomalous when mul-
tiple variables are involved (Variable 4 in Figure 2.3). Although these definitions of
anomalies are general and usable in different real-life scenarios, the classification
of what is considered abnormal varies based on one’s perspective of what is con-
sidered normal. Hence they may be further subdivided into more specific groups
[Cho+21], [Tan+18].

The third dimension of the taxonomy examines the type of detection method
used. A univariate detection method only examines one variable over time, while a
multivariate method can analyze multiple variables simultaneously. It’s worth not-
ing that even though the input data may be a multivariate time series, a univariate
detection method can still be employed by analyzing each variable individually,
disregarding any potential dependencies between them. However, a multivariate
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Figure 2.1: Point anomalies in time series data. Left panel: univariate time series.
Right panel: multivariate time series. Credits to [BG+20].

Figure 2.2: Subsequence anomalies in time series data. Left panel: univariate time
series. Right panel: multivariate time series. Credits to [BG+20].

technique cannot be utilized with univariate time series data. Therefore, this di-
mension only applies to multivariate time series data.

The three dimensions described above are the highest-level categories of the pro-
posed taxonomy. The authors of [BG+20] further develop the proposed taxonomy
tree. In contrast, in [Cho+21], the anomaly detection techniques are divided into
two main groups: traditional approaches and deep learning based. The following sec-
tions will continue to describe the taxonomy proposed in [BG+20] and then focus
on deep learning-based methods mentioned in [Cho+21].

2.1.1 Anomaly detection techniques for point anomalies in the univariate domain

The set of anomaly detection techniques that can detect point anomalies is further
divided by [BG+20], taking into account the following aspects:

• The technique exploits the temporality of the data: some techniques take into
account the temporal ordering of observations, and others completely disre-
gard this information. The latter will produce the same results even when the
observations are shuffled.
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Figure 2.3: Anomalous time series (Variable 4) in a multivariate time series. Credits
to [BG+20].

• The technique can be applied in a streaming context: some techniques can
identify outliers in real-time, as soon as new data points arrive, without need-
ing to wait for further data. Among these methods, some maintain a constant
model throughout the stream. In contrast, others adapt and update their detec-
tion models with new information, either by completely retraining the model
or through incremental learning. Techniques that cannot make instant deci-
sions on new data points are considered unsuitable for streaming time series
analysis.

• The nature of the technique: model-based techniques rely on fitting a model;
density-based techniques use the concept of neighborhood; histogramming tech-
niques compute a histogram representation of the data.

The next sections will describe further the last point of the previous listing.

2.1.1.1 Model-based techniques

The model-based techniques are the most commonly used approach in literature
and rely on fitting a model to estimate the expected value of a data point [BG+20].
The data point is considered an anomaly if:

Definition 2.1.5. |xt − x̂t| > τ, where xt is the observed data point and x̂t is its
expected value and τ is a threshold.

The expected value, x̂t, represents the typical or normal value of a data point
in the time series, and the threshold τ represents the level of deviation from this
normal value considered abnormal or significant. As we will see later in this chap-
ter, [Cho+21] generalizes this concept with the definition of the anomaly score, a
numerical value that indicates the likelihood of a data sample being anomalous
that replaces the term |xt − x̂t| in 2.1.5. Despite calculating the expected value x̂t or
the anomaly score and threshold τ differently, these techniques involve explicitly
or implicitly fitting a model. Model-based techniques are divided into estimation
(shown in Figure 2.4, left panel) and prediction techniques (shown in Figure 2.4,
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Figure 2.4: Example of estimation (left panel) and prediction (right panel) models-
based approach for a multivariate time series. Consider only one vari-
able for the univariate scenario. Credits to [BG+20].

right panel). Estimation techniques use {xt−k1 , ..., xt, ..., xt+k2} to compute x̂t, while
in prediction techniques, x̂t is computed using only previous observations. The
main practical difference between the two is that prediction techniques can be ap-
plied in the streaming scenario as they can immediately identify whether a new
data point is an outlier as soon as it arrives. In contrast, estimation techniques can
only do so if only the current point xt is used to compute the expected value along
with some preceding points.

2.1.1.2 Density-based techniques

The basic idea behind this method is that normal data points will be closely packed
together, forming dense clusters. Anomalous data points, on the other hand, will
be located in areas of the data where there are few other data points, resulting in a
lower density of data in that region. The density-based approach relies on computing
the density of data points in different regions of the data and identifying any
regions with a lower density than the surrounding areas, flagging them as potential
anomalies. This approach can be applied to data of any dimensionality and does
not rely on prior knowledge of the normal behavior of the data [BG+20].

2.1.1.3 Histogramming techniques

The method in question is centered around identifying points in a time series
that, when removed, result in a histogram representation with less error than the
original, even when the number of buckets is decreased to allow for the storage of
these points separately (Figure 2.5). This approach aims to detect the points in the
time series that deviate from the expected behavior, and removing them allows for
a more accurate representation of the data [BG+20].
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Figure 2.5: Example of the histogramming technique for univariate time series. The
points {O1, O2} are anomalous. Credits to [BG+20].

2.1.1.4 Parametric vs non-parametric techniques

In [BG+20], the authors further develop the taxonomy tree considering the para-
metric and non-parametric nature of the techniques. Parametric techniques assume
that the underlying distribution of the data belongs to a specific family of distribu-
tions and estimate a fixed number of parameters from the data. On the other hand,
non-parametric methods do not make any assumptions about the underlying dis-
tribution and instead determine the model or family of distributions from the data
with a flexible number of parameters. Additionally, semi-parametric methods com-
bine elements of both parametric and non-parametric approaches.

2.1.2 Anomaly detection techniques for point anomalies in the multivariate domain

Multiple variables may be correlated when the input data comprises multivariate
time series. Unlike the case of univariate time series, the detection method used
for identifying point outliers in multivariate time series should consider multiple
variables at once. Furthermore, an outlier in a multivariate time series can impact
one or multiple variables simultaneously. The set of anomaly detection techniques
that can detect point anomalies in the multivariate domain is further divided by
[BG+20] into two groups: univariate and multivariate analyses: univariate analyses
do not consider dependencies that may exist between the variables, while multi-
variate analyses can explore any correlation between the variables to find casual
relationships. Regarding the first case, the techniques described in Section 2.1.1 can
be applied. To overcome the loss of information that occurs when the correlation
dependencies between the variables are not considered, dimensionality reduction
steps, such as PCA, can be used to find a new set of uncorrelated variables where
univariate techniques can be applied. Model-based techniques (prediction and es-
timation models) and histogramming techniques can be extended to conduct mul-
tivariate analysis. Another model-based technique not cited by [BG+20] but used
in the literature (see Section 2.3) is iForest, from [LTZ08], which is fundamentally
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different from existing approaches as it explicitly isolates anomalies instead of con-
structing a profile of normal instances. iForest uses sub-sampling and has a linear
time complexity with low constant and memory requirements. It works well, es-
pecially in large data sets and high-dimensional problems with many irrelevant
attributes.

2.1.2.1 Dissimilarity techniques

The category of dissimilarity-based techniques is introduced by [BG+20]. These
methods involve calculating the difference between multiple points or their rep-
resentations without a model to be fitted. Given a threshold value, if the dissimi-
larity between a point and its expected value exceeds that threshold, the point is
considered an outlier.

Definition 2.1.6. s(xt, x̂t) > τ, where xt is the k-dimensional data point, x̂t is its
expected value and s measures the dissimilarity between two multivariate points.

These techniques typically do not use raw data but instead employ different
representation methods, such as graphs or vectors, and the definition of the dis-
similarity function s changes accordingly.

2.1.3 Anomaly detection techniques for subsequence anomalies in the univariate domain

Subsequence anomalies are the second type of anomaly defined by [CBK09]. The
objective is to spot a sequence of consecutive points that deviate from normal
behavior. In this case, we need to take into account additional aspects.

• Unlike point anomalies, subsequences consist of multiple points, introducing a
new analysis constraint, i.e., the capability to analyze subsequences of varying
lengths simultaneously or rely on fixed-length subsequences. In the latter case,
a sliding window over the time series can be used to obtain them. It’s also
worth noting that the number of subsequences the method will consider and
analyze is dependent on the chosen length (i.e., the shorter the length, the
higher the number of subsequences).

• Another aspect that subsequence anomaly detection methods must consider
is the representation of the data. Since comparing subsequences is more chal-
lenging and costly than comparing individual points, many techniques use
a representation of the subsequences instead of the raw values, such as the
discretization method, as shown in [CBK12].

• In addition, the subsequence anomalies can be periodic, making their detection
more challenging. Periodic subsequence anomalies are unusual sequences that
repeat over time.
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Figure 2.6: Example of different references of normality used by dissimilarity-based
approaches. The panel on the left shows the same time series. The panel
in the middle shows an external time series. The panel on the right
shows a previous subsequence. Credits to [BG+20].

• Furthermore, instead of point anomaly detection, where some methods do not
consider temporal dependencies, subsequences inherently consider temporal-
ity.

• Finally, when analyzing subsequence anomalies in a streaming context, several
approaches can be considered: a single data point arrives, and a classification
is made for a subsequence containing this new point; a subsequence arrives,
and it’s classified; a batch of data arrives, and a subsequence anomaly is found
within it.

In this scenario, the anomaly detection techniques belong to the following groups:
discord detection techniques compare each subsequence to all others using the Eu-
clidean distance and require the user to specify the subsequence length. These
methods are limited because they cannot specify whether the identified subse-
quences are anomalies. The dissimilarity-based techniques in the multivariate sce-
nario use a reference of normality to decide whether or not a subsequence is an
anomaly based on their direct comparison. This can be defined as:

Definition 2.1.7. s(S, Ŝ) > τ, where S is the subsequence being analyzed or its
representation, Ŝ is the expected value of S obtained based on the reference of
normality, and s measures the dissimilarity between two subsequences.

Figure 2.6 shows some examples of different references of normality (Ŝ in 2.1.7).
The subsequence under analysis (S in 2.1.7) and the references are then clustered,
and the centroids or center of the cluster to which the S belongs are computed to
identify anomalies (as shown in Figure 2.7). The dissimilarity-based techniques in
the multivariate scenario differ from those introduced in Section 2.1.2.1 because
of the representations used to describe subsequences (graphs and vectors against
clustered representations). The prediction model-based techniques in the multivari-
ate scenario build a regression model using past data to predict up to n points
into the future. Then, anomalies are detected by calculating the distance from the
predicted subsequences to the actual ones. If the distance exceeds a threshold τ the
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Figure 2.7: Clustering of the subsequences in a univariate time series. Cluster cen-
troids are highlighted, and C1 and C2 clusters contain subsequence out-
liers. Credits to [BG+20].

subsequence is classified as an anomaly. The frequency-based techniques compare
subsequences to a reference to normality, as done by Figure 2.6. A subsequence S
is an outlier if its frequency is lower than the expected one:

Definition 2.1.8. | f (S)− f̂ (S)| > τ, where f (S) is the frequency of occurrence of
S, f̂ (S) its expected frequency, and τ a predefined threshold.

Finally, the last group of multivariate subsequence anomaly detection techniques
is based on information theory, similar to the frequency-based methods. The main
idea is to find patterns in data that happen less often but still happen regularly
with respect to a reference to normality. Patterns that happen less often are more
surprising and carry more information. This can be achieved by looking at how
often the symbols in a pattern appeared in the series and how often the pattern
appeared overall.

2.1.4 Anomaly detection techniques for subsequence anomalies in the multivariate do-
main

The techniques mentioned by [BG+20] in this scenario share similar concepts with
the technique to detect subsequence anomalies in the univariate domain, as they
are simply an advanced version of simpler techniques that have already been dis-
cussed earlier. In particular, model-based techniques, both prediction and estimation
models, performs the best in this scenario, especially if based on deep learning. The
following section will focus on this group of techniques.

2.2 anomaly detection with deep learning

To understand why deep learning in unsupervised settings has a critical role in the
anomaly detection context, we have two consider two main challenges, described
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in [Cho+21]. The first is the rarity of the anomalies. This scarcity makes it time-
consuming and resource-intensive to gather enough data for supervised data sets.
Additionally, when labeled data is obtained, the imbalance between normal and
abnormal data can negatively impact the training of models. In addition, for most
real-life use cases, it is not guaranteed to be able to generate a supervised data set
fully representative of the anomalous class. Another challenge regards the com-
plexity of the data. Univariate time-series analysis is still relevant in applications
that require minimal computation, such as edge computing. However, as automa-
tion and control systems become more complex, it becomes impractical to monitor
individual univariate data streams separately. With many dimensions, traditional
approaches often experience a decline in performance due to the curse of dimen-
sionality. But, as already discussed, correlations between variables that cannot be
inferred through univariate time-series analysis can also indicate anomalies.

2.2.1 Deep learning architectures for anomaly detection in multivariate time series

The past behavior of a sequence holds valuable information that can indicate po-
tential changes in the future, and deep learning architecture can natively model the
temporal context of the data. A popular method is using a Recurrent Neural Net-
works (RNN) model and its variants, such as Long Short-Term Memory (LSTM)
[HS97] and Gated Recurrent Unit (GRU [Chu+14]. Those architectures address
the vanishing or exploding gradient problem, which occurs when the gradient
becomes too small or too large as the network becomes deeper. Through several
gates, they can learn long-term dependencies by deciding which previous states
keep or discard at each time step. Another approach is based on a dilated RNN
model [Cha+17], which extracts multi-scale features and models long-term depen-
dencies using a skip connection between hidden states. While Recurrent Neural
Networks models are commonly used for analyzing time series data, some stud-
ies have found that Convolutional Neural Networks (CNNs) models can perform
better in certain scenarios that involve short-term data [Cho+21]. CNNs utilize
multiple layers of convolutions, which allow them to learn increasingly complex
features as they progress through the layers. Additionally, pooling layers introduce
non-linearity to the CNNs, allowing them to capture complex patterns [AMAZ17].
However, a drawback of using CNNs is that it can be challenging to understand
patterns that occur over a prolonged period. To address this issue, Temporal Convo-
lutional Networks (TCN) have been proposed by [Lea+16]. TCN has three distinct
characteristics; it uses causal convolutions, meaning that future information is not
considered when analyzing past data. It can handle input sequences of any length,
similar to RNNs. Furthermore, it can look far into the past using deep networks
and dilated convolutions to make predictions. A hybrid architecture, called Con-
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Figure 2.8: Examples of the anomaly criteria: (a) a reconstruction error; (b) a pre-
diction error; and (c) a dissimilarity. Credits to [Cho+21].

vLSTM, has been introduced by [Shi+15] to address the spatiotemporal sequence-
forecasting problem, i.e., when there’s the need to consider the spatial information
and temporal dependencies simultaneously. The spatial information is introduced
when a multivariate time series is represented as a 2D covariance matrix. Those
matrices are stacked when the time series is monitored with a sliding window, as
explained in [Cho+21]. Recent architectures based on the attention layers [Vas+17],
such as Transformers and Bidirectional Encoder Representations from Transformer
(BERT) [Dev+18], have been widely used in the field of natural language processing
and have recently been applied to the time-series anomaly detection domain due to
their ability to handle long-range dependencies effectively. Hierarchical Temporal
Memory (HTM) [Haw+16] is a relatively new approach to deep learning architec-
ture and is still being actively researched. HTM has a biologically-inspired design,
based on the neocortex’s structure and function, which is the part of the brain re-
sponsible for sensory perception, cognition, and decision-making. HTM comprises
a hierarchy of layers containing cells organized into columns. The cells in each
column are jointly connected and connected to the cells in adjacent columns. The
input and the previous states of the connected cells activate the columns. This al-
lows the algorithm to learn and recognize spatial and temporal patterns, making
it useful for various applications, including anomaly detection. In addition, one
of the key advantages of HTM is its ability to learn and adapt to changing data
patterns, making it useful for real-time applications.

2.2.1.1 Anomaly criteria

The anomaly detection techniques based on deep learning are subdivided into
three main categories by [Cho+21], with respect to the criteria they use to define
anomalies. They also belong to the model-based category introduced by [BG+20].
As outlined in Section 2.1.1.1, a model-based technique relies on fitting a model.
A loss function must be defined and minimized in this case since backpropaga-
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tion is used as the learning algorithm. Once the model is trained and the data
representation is learned, it is applied to production data to perform inference.
The model’s output is used to compute an anomaly score, i.e., a numerical value
that indicates the likelihood of a data sample being anomalous. If the indicator
it’s greater than a threshold τ, the sample is classified as anomalous. The strate-
gies to compute the anomaly score can be divided into three types: the first is
called recostruction error, and it’s a generalization of the estimation-based method
described in Section 2.1.1.1. This anomaly score is commonly used by AE, VAE,
GAN, and Transformers. They reconstruct or generate data analogous to the input
data and compute the residual between the input and generated data, as shown in
Figure 2.8, panel (a). Prediction techniques compute x̂t using only previous obser-
vations. Obtaining anomaly scores involves assigning a binary label according to
the chance of the data point being deemed normal, as outlined in [116], [119]. The
discrepancy between the predicted and actual labels demonstrates the prediction
error. This method can not always be applied since labels are insufficient in many
real-world scenarios. Another method to obtain anomaly scores from prediction
models is very similar to 2.1.6: the model forecasts the predicted value for future
time steps and the anomaly score is computed as the difference between the ex-
pected value and the actual data. The latter strategy is shown in Figure 2.8, panel
(b). Finally, the third category contains dissimilarity-based methods that extract fea-
tures from the input data, create clusters, and assess the distance between from the
cluster of previous data. This dissimilarity-based method evaluates the similarity
through different measures, including the Euclidean distance, Minkowski distance,
cosine similarity, and Mahalanobis distance. [Cho+21] contains several references
to techniques that implement the abovementioned anomaly criteria.

2.3 anomaly detection in astrophysics

As automation and technological advancements spread across industries, many
systems produce vast amounts of high-dimensional data. As shown by [CBK09],
[BG+20], [Cho+21], and [Gar+21] review papers, anomaly detection techniques are
being used in a wide range of contexts, such as identifying fraud in financial trans-
actions, detecting defects in manufacturing processes, identifying cyber attacks in
network security, and detecting diseases in medical imaging. These techniques are
particularly useful in high-dimensional data sets where manual inspection is in-
feasible and when labeled data is unavailable. However, most implementations are
highly specific to the individual use case and thus require domain knowledge for
appropriate deployment [Cho+21].

The astrophysics domain has the same characteristics: a massive amount of high-
dimensional data is being produced, and generating fully-representative super-
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vised data sets is not always feasible due to limited computational resources but
also the difficulties in considering all possible sources of systematics, including
glitches [Sad20], and all possible anomalies, that may be unknown.

Several anomaly detection techniques are used in different astrophysics do-
mains, from traditional methods such as PCA or Isolation Forest to deep learning-
based methods. In [Pru+19], the Open Supernova Catalog (OSC) photometric data
is analyzed with dimensionality reduction, and anomalies are detected with the
isolation forest algorithm. The latter technique is also the backbone of Astrono-
maly [Web+20], [LB21], a general anomaly detection framework with a novel active
learning approach designed to provide personalized recommendations for astro-
nomical data, including images, light curves, and spectra. An anomaly detection
algorithm based on an unsupervised Random Forest is proposed by [BP17], which
is tested on more than two million galaxy spectra from the Sloan Digital Sky Sur-
vey. Furthermore, techniques based on clustering are proposed in the literature
[VBK19], [GW19]. In [Doo+21], the performance of six unsupervised outlier detec-
tion methods, including the Local Outlier Factor, Isolation Forest, k-means clus-
tering, and a convolutional autoencoder, are being compared for the analysis of
images from the Sloan Digital Sky Survey. Deep learning-based techniques are
also being used: [IY19] proposes an anomaly detection technique based on a varia-
tional auto-encoder for high-resolution X-ray spectroscopy, [Mar+20] explores the
use of deep generative networks for detecting outliers in astronomical imaging
data sets, [ZZ18] and [Sad20] use Long Short-term Memory (LSTM). In particu-
lar, [Sad20] proposes a new data-driven discovery framework developed to de-
tect and characterize explosive astrophysical transients using multiple messengers
such as neutrinos, optical supernovae, and γ-rays. Within the gravitational waves
domain, [MPP21] uses semi-supervised outlier detection algorithms to search for
unmodelled gravitational wave (GW) signals. Finally, [Par+23] represents a novel
application of anomaly detection in the gamma-ray analysis domain. It employs
an anomaly detection technique to detect gamma-ray bursts (GRBs). The model is
based on a CNN autoencoder architecture, trained in an unsupervised manner on
multivariate time series data extracted from the AGILE space satellite anticoinci-
dence system.

2.4 summary

In this chapter, we introduced the concept of anomaly detection for time series
analysis and discussed existing contributions in the field. The definition and prop-
erties of time series data and the concept of anomaly were introduced, followed
by a classification of existing techniques using a taxonomy. The focus shifted to
anomaly detection techniques based on deep learning, the category to which the
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proposed method belongs. Lastly, several contributions made in the astrophysics
field were listed, showing the growing popularity of these techniques for analyzing
astrophysical data.



3
A N O M A LY D E T E C T I O N M E T H O D T O
P E R F O R M S O U R C E D E T E C T I O N

This chapter presents the proposed method to address the real-time source
detection problem introduced in Section 1.2.4. It is organized as follows:
Section 3.1 describes the proposed anomaly detection technique. It presents
the data pipeline that has been developed to generate input data, the deep
learning architectures that have been investigated, and the training process.
The evaluation of the models will be addressed in Section 4.1. Section 3.2 will
describe the p-value analysis to associate each positive classification with a
Gaussian statistical significance. Section 3.3 and Section 3.4 explain how the
overall system works, from configuration to inference. Section 3.5 investigates
several problems that can arise during the observatory’s operations and how
those problems can affect the proposed system.

3.1 the proposed anomaly detection method

This section will describe the proposed anomaly detection technique. As explained
in Section 2.1, the goal of anomaly detection is the identification of rare items,
events, or observations which deviate significantly from the majority of the data
and do not conform to a well-defined notion of normal behavior. This work applies
anomaly detection analysis to light curves in the gamma-ray energy spectrum. The
y-axis represents the flux quantity, describing how much light a source emits per
unit of time and surface. The goal is to identify high-energy phenomena called
Gamma-Ray Bursts (GRBs), described in Section 1.4. This problem is called source
detection. It will be framed into the two use cases of serendipitous discoveries (Sec-
tion 1.2.5.1) and follow-up observations (Section 1.2.5.2) that require real-time data
analysis. The problem can be addressed using an anomaly detection approach con-
sidering the normal data as the signal coming from a sky region where no sources
are present except the background. In contrast, anomalous data is the signal from a
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sky region where an astrophysical source is present (along with the background).
The proposed method belongs to the model-based family of techniques to detect
multivariate sub-sequence anomalies described in Section 2.1.4. It is based on an
autoencoder that learns the time series behavior of normal samples. It thereafter
uses reconstruction error as anomaly criteria (Section 2.2.1.1) to detect anomalies.
Consider a time series X = {x1, x2, ..., xL} of length L, where each point xi ∈ R3 is
a 3-dimensional vector of flux values. As we will see in Section 3.1.1, the vector of
flux values is composed of logarithmically spaced energy bins between 0.04 and
1 TeV. We will consider the scenario where multiple time series are obtained by
taking a window of length L over a larger time series. The value of L determines
how much signal the autoencoder will use to perform the reconstruction, and it
has been set to 5. The autoencoder will be trained on normal samples to minimize
the reconstruction error of the decoding step. During the training, the network will
learn the model of the background. Once fitted, the model encodes and decodes
data samples and outputs an anomaly score. GRBs are then detected as noteworthy
deviations from this indicator with respect to the anomaly score of the normal sam-
ples. The anomaly score is computed with a weighted mean-squared error to give
more importance to prediction errors in the lower energy ranges that contain most
of the signal. This is intrinsically due to the source’s spectrum, which emits more
in the low range of energies. Finally, a sample is classified as an anomaly if the
anomaly score is greater than a certain threshold τ. To determine the significance
of a GRB detection, the anomaly score is mapped to a p-value through a statistical
analysis described in Section 3.2.

3.1.1 The data pipeline

This section will describe the input data and the data pipeline that produces it.
As described in Section 1.3.2, the flux of the electromagnetic radiation emitted by
a gamma-ray source can be computed starting from the counts in the on and off
regions and the excess counts. The flux measurements can derive a source’s spec-
trum and light curve. The spectrum of a gamma-ray source is a plot of the flux
as a function of energy. By measuring the spectrum, astronomers can determine
the distribution of energies of the photons emitted by the source and learn about
the physical processes responsible for their production. On the other hand, a light
curve is a plot of the flux as a function of time. It provides information about
how the intensity of the radiation changes over time. The data pipeline developed
in this work generates multivariate time series representing light curves for three
different energy ranges. The final step of the data pipeline extracts multiple sub-
sequences by sliding a window over the light curves. A semi-supervised data set
of background-only samples is generated at the end of the data pipeline. In partic-
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ular, several multivariate sub-sequences over three channels are extracted for each
photon list. Each sub-sequence point is a flux measurement aggregating one or
more seconds of the original photon list. Figure 3.7 shows some generated sam-
ples (in blue). The following sections will explain in detail the components of the
data pipeline.

3.1.1.1 The photons list simulator module

The data that is needed for the photometry analysis is produced with simulations.
This module aims to simulate the data acquisition of a particular sub-array config-
uration of CTA, considering its instrument response function (IRF), as described
in Section 1.3.1. The output of a simulation is a photon list. A photon list con-
tains the high-energy photons detected by the telescope sub-array. It records the
detection timestamp for each photon, their reconstructed energy, and the direction
of arrival with their corresponding errors. Monte Carlo simulation techniques are
commonly used to generate photon lists, allowing for incorporating various phys-
ical processes. The simulator described in [DP22] has been adopted. This Python
package adopts the ctools open-source software used for the scientific analysis of
data from imaging atmospheric Cherenkov telescopes (IACTs), developed in the
framework of CTA [Kno+16]. It has been validated on simulated and real data
from H.E.S.S., and Fermi [Kno+19]. Simulations performed with [DP22] can be
configured using the following parameters:

• number of simulations (trials): this parameter determines the number of statis-
tically independent realizations under the same conditions. The only difference
between the trials is the seed, making the trials statistically independent.

• simulation duration (tobs): this parameter determines the duration of the ob-
servation in seconds.

• minimum energy, maximum energy, and region-of-interest’s size (emin, emax,
roi): these parameters constrain the output of the simulation. The gamma-ray
photon will have energy in the range [EMIN, EMAX] (expressed in TeV), and
their direction of arrival will be inside the region of interest (ROI), a circular
region inside the field-of-view, whose radius is expressed in degrees.

• simulation type (simtype): this parameter is used to decide which models the
simulation will consider: only the background model is used in a background-
only simulation. In a GRB simulation, only the GRB models are considered
(check the next bullet point). In addition, the results of background and GRB
simulations can be merged to generate a photon list containing both.

• GRB template (runid): this parameter is needed to simulate a GRB event. As
outlined in Section 1.4, the GRBs events are different in duration and lumi-
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nosity, and the template is a model of the evolutionary process of the event.
It is a 3-dimensional grid of fluxes, 70 temporal, and 40 energy bins. Hence,
the template defines 70 light curves for each energy bin, and for each light
curve, it defines 40 spectra. The simulation will integrate the light curve and
the spectra within a time-energy interval in the 2D space of a sky map consider-
ing the XML spatial model (RA, DEC) of the point-like source. The templates
used in this work are taken from the POSyTIVE catalog [Ber+19]. The mock
GRB population used by POSyTIVE is calibrated using a 40-year data set of
multi-wavelength GRB observations.

• GRB start (onset): the delay in seconds between the start of the observation
and the start of the GRB event.

• GRB displacement from on-axis (offset): this parameter is the offset (in degrees)
added to the on-axis pointing that represents the position of the simulated
source. The value of this parameter is considered fixed and equal to 0.5° for all
simulations.

• Instrument response function (IRF): different types of telescopes and array con-
figurations have different IRFs. Only one IRF has been used to run all simula-
tions, i.e., North_z40_5h_LST, which models the response of a sub-array com-
posed of 4 LST-1 telescopes located in the northern hemisphere site, observing
for 5 hours at 40◦ zenith angle. This IRF has been chosen to model extra-galactic
observations. Simulated galactic plane observations would require both the dif-
fuse emission and known source models that are not available at the time of
writing. Only one IRF has been considered because the GRBs catalog doesn’t
contain the trigger times, i.e., the timestamp associated with the start of the GRB
events. Without this temporal reference is not possible to infer the position of
the GRBs. Hence, they are all simulated in the same sky region. A single IRF
is sufficient because only one background level is considered, observing at 40°
zenith angle, an intermediate case between the zenith and the horizon.

• Calibration database (caldb): this database contains CTA’s instrument response
functions (IRFs), described in Section 1.3.1. The calibration database used in
this work is tagged by version prod5 v0.1 [OC21].

The extra-galactic background light (EBL) must be considered to simulate GRB
events. This is the integrated intensity of all the light emitted throughout the uni-
verse’s history across the electromagnetic spectrum [Coo16]. If the involved photon
energies are above the threshold for electron-positron pair creation, very high en-
ergy gamma-rays (E > 100GeV) are absorbed from the EBL through interaction
with low-energy photons [Maz+13]. The simulator [DP22] accounts for the EBL
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absorption, extracting the power law spectral models from the templates and mod-
ifying them by applying an exponential cutoff with a predefined absorption level
[Gil+12]. Finally, it generates new light curves considering the new absorbed spec-
tral models. The output of the simulations is a set of photon lists in Flexible Image
Transport System (FITS) format, the standard data format used in astronomy. It is
used for transporting, analyzing, and archival storing scientific data sets, support-
ing multi-dimensional arrays. A FITS file contains one or more tables with rows
and columns of information and a header containing metadata [Cen21]. A photon
list contains all the detected photons, described by the detection timestamp, their
reconstructed energy, and the direction of arrival. It is important to highlight that
although the photon list generation is the most resources intensive process in this
work, it can be executed only once for each IRF. Several photometry analyses with
different integration times can be performed from this data set.

3.1.1.2 Photometry module

The photometry module takes as input the photon lists generated by the simu-
lator, along with several other parameters. It integrates the gamma-ray photons
along three dimensions: space, time, and energy. It generates a multivariate time
series of flux values for each photon list given as input. This software module
has been built on the work of [Tam20], wrapping the region counting routine and
the effective area computation. The rest of this software module has been devel-
oped to optimize the computations’ speed as much as possible. The public API
is represented by the OnlinePhotometry class, which accepts the parameters used
in the simulation process and the configuration parameters described as follows:
the integration time (itime) defines the size of the temporal bins used for the time
integration of the photon list. For example, with 500 seconds of observation time
and an integration time of 5 seconds, we obtain 500/5 = 100 points representing
a time series of photon counts. The number of energy bins is used to compute the
energy bins, logarithmically spaced between tmin = 0.04TeV and tmax = 1TeV.
Considering more than one energy bin, the integration process will output a mul-
tivariate time series of photon counts, dividing the photon counts in each energy
bin. In the latter example, the output data shape would equal (100, 3). Finally, the
sub-window size (sws) parameter truncates the time series to have sws points. In the
latter example, the output shape would be (0 : sws, 3). After defining the tempo-
ral end energy integration parameters, the spatial dimension must also be defined.
As outlined in Section 1.3.2, the spatial region is a circular sky region defined by
a center in sky coordinates and a radius expressed in degrees. Only the photons
whose arrival direction falls into the circular region are counted. The circle’s cen-
ter is defined by adding an offset in degrees from the pointing. The pointing is
read from the header of the FITS file. At the same time, the center of the region
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is computed automatically with a predefined offset added to the on-axis point-
ing direction. This is accomplished by providing the parameters regions_radius and
max_offset to the integrate method. To avoid underestimating or overestimating the
photon counts, the value of the regions_radius should be equal to the instrument’s
point spread function (PSF). Still, since the PSF size depends on the energy range,
three different region sizes would have been considered. To avoid this complexity,
we assumed a fixed value of 0.2°, also because the core of the photometry tool
[Tam20] corrects the photon count by a scaling factor proportional to the PSF size.
The last step is to transform the time series of photon counts into flux values. The
flux (Φ) in ph cm−2 s−1 is defined by

Φ(E) =
dF
dE

(E) =
dNγ

dE dAe f f dte f f

where dNγ is the number of excess events in dE energy, Ae f f is the effective area
in the chosen source region and te f f is the effective observation time. The effective
area Ae f f (θ, Eγ) is the geometric area where photons are collected, multiplied by an
efficiency term that depends on the energy of the incoming photons and its angular
distance θ from the optimal on-axis pointing direction. The CTA observatory has a
higher effective area in the high-energy range but degrades slowly with respect to
the pointing-source angle [Tam20]. Since the Φ(E) formula normalizes the photon
counts for the effective area, taking into account the degradation of the IRF, which
increases while moving away from the telescope’s pointing, it’s possible to extract
the photon counts from multiple regions with different offsets from the optimal
on-axis pointing direction. Extracting flux measurements from multiple regions in
the sky simultaneously significantly boosts the data generation rate and the field-
of-view coverage. The OnlinePhotometry class uses the RegionsConfig class, which
responsibilities are the computation of the regions’ position and their effective area.
As stated at the beginning of this section, this software module has been developed
to optimize the computations’ speed as much as possible. The effective area must
be computed for each region and each energy bin. However, if multiple photon lists
have been simulated using the same IRF, the effective area can be computed only
once for the first photon list and reused. OnlinePhotometry has a preconfigure_regions
method that performs this computation. If this method is not called, the integrate
method will compute the effective area for each photon list.

Another optimization trick is considering a ring of regions, i.e., all regions with
the same distance from the on-axis pointing. The effective area computation for
this group of regions can be done only once since the θ angle does not change. Fig-
ure 3.1 shows an example of multiple ring regions produced by the RegionsConfig
class. The white region is centered on the source.
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Figure 3.1: An example of the ring regions produced by the RegionsConfig class. The
white region is centered on the source.

To conclude this section, Figure 6.25 and Figure 6.29 show two examples of the
generated time series in the short-exposure scenario (integration time = 5 seconds).
The first GRB has a flux greater than the background level, while the second is
more difficult to detect. Appendix 6.1 shows more simulated trials.

3.1.1.3 Time series extractor module

The last step of the data generation pipeline is to apply a time series extractor
module to extract sub-sequences from the time series generated by the previous
step. A sub-window of length sws slides over the original time series with a specific
stride, i.e., the distance the sub-window moves at each step. The number of sub-
sequences the method will extract is dependent on the chosen length (i.e., the
shorter the length, the higher the number of sub-sequences) and the chosen stride
(i.e., the shorter the stride, the higher the number of sub-sequences). To generate
the train set the value of the stride can be arbitrary since the training is performed
offline. In Section 3.2 we will require our samples to be statistically independent,
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Figure 3.2: A strong GRB, simulated from template run0231_ID000152, in the short-
exposure scenario (integration time = 5 seconds).

meaning no overlapping among the sub-sequences. This can be accomplished by
setting the value of the stride equal to the sws. In contrast, during inference, we
will need to increase the sample rate generation to increase the inference rate, so a
stride equal to one is preferred.

As stated before, a semi-supervised data set of background-only samples is gen-
erated at the end of the data pipeline. In particular, for each photon list, several
multivariate sub-sequences of length sws, over three channels, are computed. Each
sub-sequence point is a flux measurement aggregating itime seconds of the original
photon list.

3.1.2 Autoencoder architectures

As outlined in Section 3.1, the proposed method belongs to the model-based family
of techniques to detect multivariate sub-sequence anomalies. It is based on an au-
toencoder that learns the time series behavior of normal samples. It thereafter uses
reconstruction error as anomaly criteria to detect anomalies. The architecture of an
autoencoder can exploit different types of layers. A convolutional autoencoder typ-
ically consists of multiple layers of convolutional and pooling operations. It allows
the network to learn spatial hierarchies of features. On the other hand, an autoen-
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Figure 3.3: A GRB with low intensity with respect to the background level, simu-
lated from template run0170_ID000418, in the short-exposure scenario
(integration time = 5 seconds).

coder implemented with recurrent layers is designed to process data sequences,
such as text or time series. The autoencoder can learn temporal dependencies and
patterns in sequential data with recurrent layers. As mentioned in Section 2.2, more
complex and hybrid architectures have been developed, such as Temporal Convolu-
tional Networks to make convolutional layers understand patterns that occur over
a prolonged period [Lea+16], ConvLSTM to address the spatiotemporal sequence-
forecasting problem [Shi+15] and transformer (BERT), that implements the current
state-of-the-art architectures [Dev+18]. In this work, two types of autoencoder ar-
chitectures have been investigated, based on convolutional and recurrent layers,
resulting in different performance outcomes, both in terms of false positives mini-
mization and training requirements. The architecture has been kept small, with no
more than four layers and a few thousand learnable parameters. Since the input
data has a low dimensionality, too much complex architecture will be able to mem-
orize and overfit the training data. For the same reason, dropout layers are applied
in each model architecture. The dropout layer randomly sets input units to 0 with a
certain frequency (20% in this case) at each step during training time, which helps
prevent overfitting. More complex architectures have not been considered because
of the low dimensionality of the input, in terms of time series length and channels.
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3.1.3 Autoencoder training

As stated in Section 2.1, the autoencoder is trained in a semi-supervised setting to
learn the time series behavior of normal samples. A semi-supervised background-
only time series data set has been generated using the data processing pipeline
described in Section 3.1.1. According to the Science Alert Generation (SAG) design
requirements (Section 1.2.4.1), the real-time search for transient events should be
performed on multiple time scales. The integration time setting is used to vary the
time scale, integrating the photon counts in tighter or wider time bins. In [Tam20],
and [DP+21], the authors explore the Li&Ma and Full-FoV Maximum Likelihood
capabilities in the short exposure scenario, using very short integration times. The
proposed technique is tested under the same extreme setting. In particular, two
training data sets have been used, with integration times equal to 5 seconds and 1
second. I will refer to the first data set as short-exposure analysis and to the second as
very short-exposure analysis. As mentioned in Section 3.1.1.2, the photon lists can be
generated and written to the file system as FITS file only once (unless we want to
change the simulation parameters, such as the IRF). Then, using the OnlinePhotome-
try class introduced in Section 3.1.1.2, several multivariate time series data sets can
be generated. A DataManager class has been developed to manage the data used
for the autoencoder training and testing. It wraps the OnlinePhotometry class to gen-
erate the multivariate time series of flux values, extracting the photon counts from
multiple regions and applying normalization. This class implements a caching fea-
ture to avoid repeating the previous computation multiple times. Finally, it exposes
a get_train_set method to apply all the required data pre-processing to generate
training data. In particular, the first step is to extract sub-sequences from the time
series. The stride value is equal to 5 to obtain sub-sequences that do not overlap,
but shorter strides could be used. The sub-sequences samples are then split into
train and validation sets. A MinMax scaler is fitted on the train set and applied
to it, scaling the samples to the [0, 1] interval with the formula x−min(x)

max(x)−min(x) . Ta-
ble 3.1 summarizes the simulation parameters to generate the FITS data set, and
Table 3.2 summarizes the parameters to generate the train set. The resulting sam-
ples in the short-exposure and very short-exposure settings are, respectively, 48960
for training, 12240 for validation, 68000 for training, and 17000 for validation.

The autoencoders have been trained with the Adam optimization [KB14] and a
learning rate of 0.0001. A 20% dropout is applied after each layer. As shown by
Table 3.2, 80% of the samples are used for training, while the remaining 20% is set
aside for validation. As mentioned, the inputs are scaled to the [0, 1] interval. The
batch size has been set to 32 samples. The autoencoder loss (or anomaly score) is a
weighted mean squared error (MSE), defined as the following:
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Simulation parameters

trials 10
simtype bkg
runid run0406_ID000126
scalefluxfactor 1.0
caldb prod5-v0.1
emin 0.04
emax 1
irf North_z40_5h_LST
offset 0.5°
roi 2.5°
tobs 18000

Table 3.1: The parameters used to customize the photon lists simulation for the
train set generation.

Train test (short-exposure)

integration_time 5
number_of_energy_bins 3
normalize True
sub_window_size 5
stride 5
validation_split 80%
Train samples 48960
Validation samples 12240

Train test (very short-exposure)

integration_time 1
number_of_energy_bins 3
normalize True
sub_window_size 5
stride 5
validation_split 80%
Train samples 68000
Validation samples 17000

Table 3.2: The parameters used to configure the DataManager class to extract sub-
sequences with photometry to generate the training set. The left panel
shows the parameters of the short-exposure scenario, while the right
panel shows the parameters of the very short-exposure scenario.
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Definition 3.1.1. [Weighted MSE] WMSE = 1
2D ∑D

i=1 w(xi − yi)
2 where w =

[ 1
2 , 1

3 , 1
6 ] and D is equal to the number of points.

The reason behind this choice is to give more importance to prediction errors in
the lower energy ranges that contain most of the signal. An early stopping strategy
was considered during training, but the validation loss was already flat after five
epochs for all models. Hence, the models’ weights have been written on disk after
five epochs of training. Figure 3.4 shows the training and validation losses for the
autoencoder model with recurrent layers trained in the short-exposure scenario.
More results can be found in Appendix 7.

Figure 3.4: An example of train loss and validation loss for the autoencoder model
with recurrent layers in the short-exposure scenario (integration time =
5 seconds).

3.2 p-value analysis

As outlined in Section 1.2.4.1, the Science Alert Generation (SAG) system must be
able to generate candidate science alerts, meaning that the positive classification
produced by the proposed system must be associated with a Gaussian σ level of
statistical significance. A statistical pipeline based on hypothesis testing has been
developed to achieve that. This analysis is used to obtain the threshold τ to classify
the samples as anomalies with a certain σ level ([Par+21]) or, on the contrary, to
associate each anomaly score with a statistical confidence level (of a positive classi-
fication). In hypothesis testing, the initial assumption is that there is no correlation
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Figure 3.5: A one-tailed test, showing the p-value as the size of one tail. Credits to
https://en.wikipedia.org/wiki/One-_and_two-tailed_tests

between the predictor and outcome variables in the population. Through statisti-
cal tests utilizing collected data, a determination is made as to whether there is
enough evidence to reject the null hypothesis in favor of the alternative hypothesis.
A two-tailed hypothesis test is designed to show whether the measure is signifi-
cantly greater or less than a population’s mean. The two-tailed test gets its name
from testing the area under both tails (sides) of a normal distribution. On the other
hand, a one-tailed hypothesis test is set up to show that the measure would be
higher or lower than the population average. Figure 3.5 illustrates a one-tailed test,
showing the p-value as the size of one tail. The level of statistical significance, rep-
resented by p-values, serves as the benchmark for these tests. The p-value is the
likelihood of obtaining the study results by chance if the null hypothesis is true.

Definition 3.2.1. The p-value is the inverse of the cumulative distribution function
of the test statistic. it defines the probability of accepting the alternate hypothesis
with a given level of statistical confidence where in fact the null hypothesis is true:

p(ts ≥ h) =
∫ ∞

h
ϕ(x) dx

where ts is the test statistic of the experiment, ϕ is the distribution of the test
statistic of the observed experiments, and h is a threshold.

In other words, the p-value is the likelihood of committing a type I error (false-
positive) if one rejects a null hypothesis that is actually true. On the contrary, a type
II error (false-negative) occurs if one fails to reject a null hypothesis that is actually
false. The null hypothesis is rejected in favor of the alternative hypothesis if the
p-value is less than the established level of statistical significance. For example, we
can reject the null hypothesis if the p-value is less than 3x10−7, meaning > 5σ

confidence in the alternative hypothesis. Results with p-values lower than 3x10−7

can still be false positives every once in 3x107 measures (± statistical fluctuations).
A metric that considers the number of false positives (or false alarms) per the total
number of times the event didn’t happen is called false alarm rate (FAR). A false

https://en.wikipedia.org/wiki/One-_and_two-tailed_tests


3.2 p-value analysis 60

alarm rate is also known as the probability of false detection. To not be confused
with the false alarm ratio (also abbreviated as FAR), which is the number of false
alarms per the total number of alarms. Regarding hypothesis testing, if P is the
probability of committing a type I error (rejecting the null hypothesis when it is
actually true) and Q is the probability of making a type II error (failing to reject the
null hypothesis when it is actually false), in this study, we prioritize minimizing
Q over P to minimize the false positive rate and prevent the system from issuing
false science alerts to the scientific community.

The null hypothesis in this context is represented by the absence of the GRB
event in the data. The anomaly score is the test statistic considered in the p-value
analysis. To evaluate the p-values, a data set composed of background-only data
samples is fed to the autoencoder, and the distribution ϕ of the corresponding
anomaly scores is computed. Then, the inverse of the cumulative distribution func-
tion is evaluated, obtaining a mapping between the test statistics and the p-values.
As stated before, a p-value defines the probability of obtaining statistical confi-
dence greater or equal to a threshold h when the null hypothesis is true.

To reach the desired 5σ level, about 1e8 trials must be simulated and transformed
into sub-sequences fed to the autoencoder to obtain the anomaly scores. The same
simulation settings are used to generate the training test for the autoencoder mod-
els. Hence, more details about the data set generation for the p-value analysis will
be provided in Section 3.1.3. There’re only two differences concerning the simula-
tion parameters used to generate the training set: the observation time is limited
to 100 seconds, and the number of simulated trials is 1e8. This process is very com-
puting intensive and has to be repeated several times each time a new model is
deployed in production. Since a huge number of trials must be simulated to reach
the desired 5σ level, the simulation script provided by [DP22] has been improved
and optimized. As outlined in Section 3.1.1.1, starting from this data set, it is pos-
sible to perform different photometry analyses and extract sub-sequences with dif-
ferent lengths. For this reason, a script exploiting batch parallelization with Slurm
has been developed to load a trained autoencoder, apply the photometry analy-
sis, generate the sub-sequences, and perform inferences. In particular, each Slurm
job takes a batch of photon lists, integrates the photon counts, computes the flux,
extracts the time series, scales the data, and performs inference, measuring the
anomaly score. To guarantee the statistical independence of these measures, from
each photon list, only one sub-sequence is generated and given to the autoencoder.
This is why the observation time was limited to 100 seconds. The time took to
process 1e7 trials (about 3.5TB of data), using 100 jobs on 60 Intel(R) Xeon(R) Gold
6240 CPU cores, was about 48 hours. A computational bottleneck was found due
to the network filesystem that limited the data transfer from a SATA hard drive.



3.3 system configuration 61

To find the corresponding p-value for a given sigma level, we first defined the
two-tailed probability corresponding to the sigma level of choice. For example, if
sigma = 3, the corresponding two-tailed probability is p = 99.73%. The survival
function gives the p-value: (1− p) = 0.0027. This p-value describes the probability
of having a measure outside the ±3σ. Since this use case is constructed on half of
a symmetrical distribution, the one-tailed p-value of that probability must be com-
puted. Hence, the previous p-value must be halved, obtaining (1− p)/2 = 0.00135.
The p-value is then mapped to a threshold value. On the contrary, if we want
to know the sigma level of a particular threshold, we take the corresponding p-
value and find the inverse cumulative distribution function relative to that p-value.
Again, since the normal distribution is symmetrical, the absolute value is the num-
ber of standard deviations rather than ±nσ. If the threshold value is absent in the
table, it can be interpolated within the closest two values to find the corresponding
p-values interpolation.

3.3 system configuration

Figure 3.6 shows the interactions of a subset of the software components configur-
ing the system from the observation metadata. A configuration phase starts when
the system receives a new scheduling block (which contains the observation target
and metadata). The system automatically caches any trained model to be reused
with the same settings. In particular, each model is associated with a particular IRF,
which in turn is chosen by considering the following observation metadata:

• the pointing (to define the zenith)

• the observing conditions (e.g., the night sky background)

• the observation duration

Each model is also associated with the shape of the data it was trained with:

• the integration time;

• the length of the single subsequence.

These two parameters are chosen according to the particular physical process we
want to detect, but in principle, an ensemble of models trained in different set-
tings can perform multiple predictions. The system will start the training using
simulated data if no trained models are available. When the telescope array data-
taking starts, a blind-search analysis is applied in the whole field of view to local-
ize candidate sources. The tool will determine the aperture photometry on-region,
and starting from it, the off-regions are computed (which number depends on the
number of rings to use). The aperture photometry regions will be given to the Data
Engine module, completing the system configuration.
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Figure 3.6: A diagram showing the interaction of a subset of the software compo-
nents developed in this work, highlighting the initial phase that allows
configuring the system from the observation metadata.

3.4 inference

Firstly, a bootstrap time is required to obtain the sequence’s initial sample, con-
sisting of sws points collected over a fixed integration time T. The time needed to
acquire the first sample is determined by multiplying the number of points sws
by the integration time T. As time progresses, subsequent samples are obtained by
waiting for T seconds and allowing the sequence to slide, effectively discarding the
oldest point and incorporating the newest one. Once a new sample is obtained, it
is fed into an autoencoder, which reconstructs the sequence using its learned rep-
resentations. The reconstructed samples are then evaluated using an anomaly scor-
ing mechanism, which computes the weighted mean squared error (MSE) defined
by 3.1.1. The resulting anomaly score is then compared with a pre-defined clas-
sification threshold computed with the p-value analysis (described in Section 3.2)
to determine whether the sample is normal or anomalous. Figure 3.7 shows the
inference process. Each column is a different sub-sequence sample obtained with
a stride equal to 1. Each row represents the energetic bin. The autoencoder recon-
structions are the red lines, while in blue are the original samples. Each subplot
reports the MSE for each energy bin, and on top of the subplots of the first row,
we have the anomaly score (MSE weighted for each energy bin). Each column re-
ports the label of the correct or wrong classification (made using a classification
threshold that corresponds to 5σ).
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Figure 3.7: Each plot is a sample the autoencoder reconstructs. The red series are
the autoencoder’s reconstructions, while the original samples have a
blue color. Each column holds a different sub-sequence sample obtained
with a stride equal to 1. Each row represents the energetic bin. Each
subplot reports the MSE for each energy bin, and on top of the subplots
of the first row, we have the anomaly score (MSE weighted for each
energy bin 3.1.1). Each column reports the label of the correct or wrong
classification (made using a classification threshold that corresponds to
5σ).

The anomaly scores obtained in each temporal bin can be translated to the cor-
responding σ levels of significance and plotted. Figure 3.8 shows how the signif-
icance varies during a light curve analysis. The x-axis holds the temporal bins
of the analysis (a temporal bin corresponds to one column of Figure 3.7). In this
particular example, we can see that both anomaly detection and Li&Ma manage to
perform a detection (reaching the 5σ statistical significance). However, the anomaly
detection reaches the 5σ level before Li&Ma, obtaining a faster detection.
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Figure 3.8: The significance variability of both the anomaly detection and
Li&Ma analyses applied to a simulated light curve from template
run0231_ID000152.

3.5 non-stationary settings

During inference, the model will process the real-time data generated by the tele-
scopes during an observation. As explained in Section 2.1, the stationarity prop-
erty of the stochastic process that generates the data can be invalidated by concept
drifts. This can be a significant issue as it can negatively impact the performance of
a machine learning model trained under a certain statistical distribution of input
data. Neural networks are particularly vulnerable to concept drift, as they rely on
the assumption that the data distribution remains constant during training and
inference. In the presence of a concept drift, the model makes predictions based
on outdated information, leading to decreased accuracy. In this context serval con-
cept drifts can happen: when the telescopes repoint to a sky region with a different
background (change point), weather changes can degrade the instrument response
function, and hardware or software malfunctions can arise.

One approach is to update the model with the current samples. Online learn-
ing is a type of machine learning that allows for the analysis and modeling in a
streaming fashion, as opposed to batch processing. Without any explicit change
detection mechanism, online learning systems can adapt to evolving data. The ad-
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vantage of explicit change detection is providing information about the dynamics
of the process generating data. However, as time passes, the newly arrived data
tend to erase the prior patterns. Learning is inevitably connected with forgetting
in models such as artificial neural networks. The ability to continuously learn from
a stream of examples while preserving previously learned knowledge is known as
the stability plasticity dilemma [CG93]. It is a dilemma because there needs to be a
balance between being stable to handle noise and being able to learn new patterns.
Some artificial neural networks completely forget past patterns when exposed to
new patterns. This phenomenon is known as catastrophic forgetting [Par+19]. A
simpler approach is continuously monitoring the model’s performance and detect-
ing when a drift has occurred, using techniques such as drift detection methods
(DDMs). DDMs can be classified into two categories: instance-based DDMs and
feature-based DDMs. Instance-based DDMs monitor the model’s error rate on a
sliding window of the most recent instances, while feature-based DDMs monitor
the distribution of the input features [Gem+20].

In the context of this study, we do not take into account this issue since we rely
on the assumption that some software components within the Array Control and
Data Acquisition System (ACADA), such as the Data Quality system [Bar+22] and
the Monitoring system, will communicate to the Science Alert Generation (SAG)
any updates regarding hardware failures, changing in the weather conditions and
telescopes repointing to different sky regions.

3.6 system design

3.6.0.1 Technical requirements and problem analysis

Beyond the requirements of the SAG system, outlined in Section 1.2.4.1, the pro-
posed system must also satisfy the following technical requirements:

• The system must be controlled by the Science Alert Generation (SAG) subsys-
tem of ACADA;

• the system must configure itself using the observation metadata;

• the system must be capable of obtaining the real-time photons list data re-
quired for the analysis, and it must provide a real-time data stream to the
machine learning models to perform inference;

• the system must provide the operator with the results of the analysis in real-
time.

As shown in Figure 1.10, the SAG subsystem of ACADA consists of several
components responsible for different use cases. The SAG-SCI software package
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supervises the operations of the high-level analysis pipelines. The RTApipe frame-
work [Par+22] was designed to simplify the development of real-time scientific
analysis pipelines, providing developers with an easy way to integrate new science
tools. Hence, integrating the proposed system inside the control flow of ACADA
can be addressed by adding it to the set of available science tools in the RTAPipe
framework. The second requirement imposes that the scheduling block data must
be provided to the system. As outlined in Section 1.2.4, the scheduling block ob-
ject is interchanged by the ACADA systems and reaches the SAG system. Hence,
the RTAPipe framework can access the observation metadata and start the pro-
posed system with the information it needs to auto-configure itself. To satisfy the
third requirement, the system must have access to the input data: the photons
list data is produced by the analysis pipeline supervised by the SAG-RECO pack-
age. These pipelines apply a Random Forest model to discriminate which detected
events have been produced by gamma photons and to reconstruct their energy
and arrival direction. The output is then written on file in HDF5 format [The00]
in the file system location defined by the SAG Pipeline Sub-Array Supervisor Alma
Common Software component of the SAG-SUP software package. Finally, the last
requirement can be fulfilled by exploiting the RTAPipe framework that provides a
database interface to store the analysis result.

3.7 summary

The previous chapter proposed a method to address the real-time source detection
problem. The contribution described the anomaly detection technique, including
the data pipeline for input generation, the investigated deep learning architectures,
and the training process. The evaluation of the models was addressed in the ex-
periment setup section. The p-value analysis was described to associate positive
classifications with Gaussian statistical significance. The potential problems of non-
stationary settings during telescope observations and their impact on the proposed
system were investigated.
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R E S U LT S

This chapter presents the results of the p-value analyses and performance
benchmarks. It is organized as follows: Section 4.1 reintroduces the scientific
use cases and the assumptions made in these scenarios and then describes
the test set generation process. Section 4.2 presents the results of the p-value
analysis. Section 4.3 shows a comparison between the two investigated
autoencoder architectures. Section 4.4 outlines the performances of the
proposed anomaly detection method against the Li&Ma standard technique.
The key performance indicators used for the comparison are introduced.
The results for both use cases of serendipitous discoveries and follow-up
observations are presented in the short-exposure and very short-exposure
scenarios.

4.1 experiments setup

This chapter presents the results of a study aimed at developing an anomaly detec-
tion technique for addressing the real-time source detection problem in the context
of the Cherenkov Telescope Array Observatory (CTAO). As outlined in Section 3.1,
the proposed anomaly detection technique is based on an autoencoder model. Two
autoencoder architectures based on convolutional and recurrent layers have been
investigated. The comparison of their performances evaluated with standard ma-
chine learning metrics will be presented in this chapter. A p-value statistical anal-
ysis was performed to determine the classification thresholds the models can use
to associate 5σ statistical significances to positive detections. This chapter will also
present the results of these analyses. This chapter focuses on verifying if the pro-
posed technique overcomes the limitations of the standard analyses presented in
Section 1.3.2.1 and Section 1.3.3 obtains better performances in practice. Key per-
formance indicators (KPIs) have been defined in the context of two scientific use
cases: serendipitous discovery and follow-up observations, introduced in Section 1.2.5.
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The results have been compared against the performances of the Li&Ma analysis
technique. The KPIs were first evaluated in the short-exposure scenario, using an
integration time of 5 seconds, meaning that each sub-sequence point aggregates
5 seconds of data. Furthermore, the same evaluations were repeated in the very
short-exposure scenario, using an integration time of 1 second. The next section
will re-introduce the scientific use cases of serendipitous discovery and follow-up
observations, highlighting the assumptions and the experiments’ setup.

4.1.1 Scientific use cases and assumptions

The serendipitous discoveries use case applies in the scenario where the telescopes
observe a certain sky region and an unexpected event is seen in the field of view.
This kind of discovery is possible even though the probability of a serendipitous
GRB event appearing in the field of view during an observation is very low. In-
deed, telescopes can systematically observe large sky regions, for example, during
surveys, increasing the probability of serendipitous discoveries. Such events are sci-
entifically crucial because the overall evolution of the GRB event can be observed
from the beginning. To maximize the scientific return, detecting the serendipitous
source should be addressed as soon as possible to let other observatories acknowl-
edge the discovery through a science alert broadcasted to the scientific community.
By doing so, the same events can be studied with other instruments, exploring
different wavelengths or messengers. As explained in Section 1.3.2, the aperture
photometry method defines an aperture, a closed region centered on the source, to
count the on-source photons. The issue is that we don’t know in which region the
GRB event will appear. One way to address the problem is to use several regions,
as shown by Figure 3.1. The problem with this approach is the significant increase
in the number of analysis trials, which must be considered as a post-trials proba-
bility. In the context of this work, it is assumed a blind-search analysis is applied in
the whole field of view to localize candidate sources in the least possible amount
of time. CTools provide one example of blind-search implementation [Kno+16], ex-
ecuting a peak-detection algorithm on smoothed count maps with a localization
acceptance threshold above a given significance. It is assumed that the blind-search
analysis will always find the region with the GRB event in its center for each event
considered in the performance analysis. It is also assumed that blind search will
always take a fixed time of 10 seconds to find the region.

The observatory must not only be the sender of scientific alerts but also be capa-
ble of receiving and reacting to external ones. The follow-up observation use case
models the scenario in which the observatory receives a science alert and changes
the pointing of its telescope to a new sky region to detect the event. Several consid-
erations should be made. The time from the event’s start and the taking of the first
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photon counts are variable. It depends on two factors: the time to receive the sci-
entific alert and the time the telescopes take to change the pointing. This delay has
been considered with four values: 25, 50, 75, and 100 seconds. After this delay, the
analysis techniques can perform classifications once the required data is obtained.
Unlike the serendipitous discovery scenario, the evolution of the GRB event cannot
be observed from the beginning. The luminosity of a GRB event tends to decrease
over time, increasing the difficulty of detection. Another factor to consider is the
localization error on the position of the source provided by the received scientific
alert. This error can be smaller than the field of view or much larger, as in the case
of a gravitational-wave alert. The latter case would require multiple observations
performed with a tiling strategy [SA+19], but this is outside this work’s scope. If
multiple aperture photometry regions must cover the localization error within the
field of view, the blind-search approach used in the serendipitous scenario will
also be considered here.

4.1.2 Test set generation

The test set used for the performance evaluation of the proposed anomaly de-
tection method is a supervised data set containing two classes of samples. The
first class of samples has been generated considering the background model in
the simulations. The second class of samples has been generated considering the
background and source models in the simulations. The Gamma-Ray Bursts (GRBs)
simulation templates were taken from the POSyTIVE catalog [Ber+19]. The mock
GRB population used by POSyTIVE is calibrated using a 40-year data set of multi-
wavelength GRB observations, providing about 20 thousand GRB templates of
known events. As stated in Section 1.4, GRBs are characterized by several key
properties, including duration and peak flux. The latter measures the maximum
energy level emitted by the event. It is usually measured in units of erg/s/cm2

and is one of the most important parameters for characterizing the luminosity of a
GRB. GRBs can have a wide range of peak fluxes, from as low as 10−9erg/s/cm2

to as high as 10−5erg/s/cm2, depending on the distance and their intrinsic proper-
ties. If the luminosity is too low, the GRB event will be indistinguishable from the
background noise. For this reason and computational resource limitations, only a
subset of the catalog has been simulated. The mean of the background level has
been considered a threshold to limit the number of simulations. The test set has
been generated simulating all the templates whose peak flux is greater or equal
to the background level mean minus 1σ to account for the background fluctua-
tions. Figure 4.1 shows the distribution of the peak flux of each GRB template
and highlights the selected set. As explained in Section 3.1.1.1, the simulation tool
generates a photons list, i.e., a list of photons whose energy and arrival direction
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are reconstructed. Only the GRB afterglow model has been simulated since the
prompt models were not available at the time of writing. The simulation tool has
been used to generate one simulated trial for each selected template. The resulting
test set contains 419 trials with a peak flux in the interval [2.6785e−10, 1.1688e−04].
The simulation time is limited to 500 seconds because we want to detect the event

Figure 4.1: The distribution of the peak flux for each GRB template. The num-
ber of selected templates is 419, and their peak fluxes are within the
[2.6785e−10, 1.1688e−04]. range.

as soon as possible. The trigger time that defines the start of the GRB event is fixed
and equal to 250 seconds. The instrument response function (IRF) models the re-
sponse of a sub-array configuration of 4 LST-1 telescopes located in the northern
hemisphere site, observing for 5 hours at 40◦ zenith angle (the same IRF used
for generating the training set). As described in Section 3.1.1.2, the photons lists
must be integrated in space, time, and energy to generate the multi-variate time
series of flux measurements. The integration time is set to 5 seconds to evaluate
the performances of the techniques in the short-exposure scenario and 1 second
for the very short-exposure scenario. The integration process generates time se-
ries of 100 (short-exposure scenario) and 500 (very short-exposure scenario) flux
measurements. Finally, as described in Section 3.1.1.3, the time series extractor
module extracts sub-sequences from the generated time series. The length of the
sub-sequences is fixed and set to 5 points, the same setting used to generate the
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Simulation parameters

trials 1
simtype grb
runid [List of GRB templates]
scalefluxfactor 1.0
caldb prod5-v0.1
emin 0.04
emax 1
irf North_z40_5h_LST
offset 0.5°
roi 2.5°
tobs 500

Table 4.1: The parameters used to customize the photon lists simulation for the
test set generation. The list of templates (runid) has been omitted due to
limited space.

Test test (short-exposure)

integration_time 5
number_of_energy_bins 3
normalize True
sub_window_size 5
stride 1
Normal samples 40224
Anomalous samples 20531

Test test (very short-exposure)

integration_time 1
number_of_energy_bins 3
normalize True
sub_window_size 5
stride 1
Normal samples 207824
Anomalous samples 104331

Table 4.2: The parameters used to configure the DataManager class to extract sub-
sequences with photometry and to generate the test set. The left panel
shows the parameters of the short-exposure scenario, while the right
panel shows the parameters of the very short-exposure scenario.

data to train the auto-encoder. The stride parameter is set to 1 because the anomaly
detection technique can use overlapping temporal bins, drastically reducing the
time the model waits for data during the online inference. In contrast, the Li&Ma
technique must use temporal bins that are statistically independent. Finally, each
sub-sequence is associated with a label. A sub-sequence is labeled as anomalous if
at least one of its points exceeds the trigger time threshold that defines the start of
the GRB event. For the short-exposure scenario (integration time = 5 seconds), the
number of generated test samples is 40224, of which 20531 are labeled anomalous.
For the very short-exposure scenario (integration time = 1 second), the number of
test samples is 207824, of which 104331 are labeled anomalous. These configuration
parameters are reported in Table 4.1 and Table 4.2.
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4.2 p-value analysis results

As outlined in Section 3.2, the p-value analysis is used to obtain the threshold τ

to classify the samples as anomalies with a certain σ level or, on the contrary, to
associate with each anomaly score a statistical confidence level (of a positive clas-
sification). Four p-value analyses have been performed, one for each autoencoder
model (convolutional and recurrent) in the short-exposure and very short-exposure
settings. The models performed inferences on 1e8 background-only samples, and
the distributions of the anomaly score (weighted mean squared error) have been
computed. Then, the inverse cumulative of the distribution function was evaluated,
and the mapping between the y-axis (p-values) and the x-axis (anomaly scores) was
written on disk.

Figure 4.2: TS distribution and p-values for the autoencoder model with recurrent
layers in the short-exposure scenario (integration time = 5 seconds).

Figure 4.2 shows the p-value analysis results for the autoencoder model with
recurrent layers in the short-exposure scenario. The left panel shows the test statis-
tic distribution, and the right panel shows the corresponding p-values. Table 4.3
shows the actual values of the anomaly score - sigma level mapping. The number
of rows of the table was limited to only certain levels of sigma. Chapter 8 lists the
p-value analysis results for each model and analysis setting.
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p-values

Threshold p-value ± error Sigma

0.003171 1.283972e-01 1.201785e-04 1.134
0.003751 6.115264e-02 8.293861e-05 1.545
0.004476 2.277199e-02 5.061155e-05 2.000
0.005492 5.323285e-03 2.447028e-05 2.554
0.006507 1.228234e-03 1.175411e-05 3.029
0.007667 2.312711e-04 5.100465e-06 3.502
0.009118 3.149606e-05 1.882250e-06 4.001
0.010859 3.262092e-06 6.057553e-07 4.509
0.013760 4.499438e-07 2.249719e-07 4.912
0.013905 2.249719e-07 1.590791e-07 5.047

Table 4.3: An example of p-value analysis for the autoencoder model with recur-
rent layers in the short-exposure scenario (integration time = 5 seconds).
The table shows a subset of all the rows. Only the threshold values corre-
sponding to predefined sigma levels are shown.

4.3 comparison of the autoencoder architectures

As described in Section Section 3.1, the proposed anomaly detection technique
utilizes an autoencoder model. Both convolutional and recurrent layer-based archi-
tectures for autoencoders have been examined. The chapter will compare their per-
formances using standard machine learning metrics. The accuracy, precision, recall,
and false positive rate metrics express the percentage of the time series correctly
classified, what proportion of positive identifications was correct, what proportion
of actual positives was identified correctly, and what proportion of the actual neg-
ative events were wrongly categorized as positive. While precision measures the
probability of a sample classified as positive to be an actual positive sample, the
false positive rate measures the ratio of false positives within the negative sam-
ples. The accuracy, precision, and recall values computed with different thresholds
can help understand the evolution of trade-offs between the number of false pos-
itive and false negative classifications. Figure 4.3 shows the autoencoder model’s
accuracy, precision, and recall curves with recurrent layers in the short-exposure
settings (integration time = 5). Table 4.4 and Table 4.5 show the actual values of
accuracy, precision, recall, and false positive rate computed using the 5σ threshold,
for both architectures and short-exposure settings. The autoencoder with recurrent
layers obtained better accuracy and recall in both scenarios. At the same time, the
autoencoder with convolutional layers is less precise but has a better false positive
rate. Appendix 7 presents the same metrics for each model and analysis setting.
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Figure 4.3: Accuracy, precision, and recall curves for the autoencoder model with
recurrent layers in the short-exposure settings (integration time = 5).

Model Accuracy Precision Recall False Positive Rate

RNN 61.81% 99.83% 25.22% 0.17%
CNN 59.96% 99.86% 21.58% 0.13%

Table 4.4: Standard metrics in the short-exposure settings (integration time = 5),
using the 5σ threshold. The number of test samples is 40224, of which
20531 are anomalous.

Model Accuracy Precision Recall False Positive Rate

RNN 57.05% 99.97% 14.46% 0.033%
CNN 55.58% 99.98% 11.52% 0.016%

Table 4.5: Standard metrics in the very short-exposure settings (integration time =
1), using the 5σ threshold. The number of test samples is 207824, of which
104331 are anomalous.

4.4 evaluation of the proposed technique against li&ma

The performances of the proposed anomaly detection method have been evalu-
ated against Li&Ma, the standard technique used to address the source detection
problem in the ground-based gamma-ray astronomy field.
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4.4.1 Key performance indicators

The first key performance indicator is the cumulative number of 5σ detections.
This metric evaluates the robustness of the techniques. As outlined in Section 4.1.2,
the data set for testing is composed of 419 simulated GRB events. The number
of 5σ detections is evaluated for each time bin whose time span depends on the
integration time and the length of the sub-sequences. This number is cumulated
for the following time bins.

For the reasons stated in the previous section, evaluating how fast the technique
is to issue 5σ detections is crucial. Hence the second key performance indicator
represents the average time to perform detections. This metric is called Detection
Delay (DD) and is evaluated as follows. For each time bin, the number of seconds
between the start of the GRB event (tgrb = 250s) and the detection time is computed.
This delay (dtb) is the same for each detection performed in the same time bin. For
example, if the autoencoder model performs a detection in time bin [230 − 255],
the delay (d[230−255]) is equal to 5 seconds (255 − 250). The delay is computed for
each time bin. Then, a weighted average is evaluated, considering the number
of the detections in common to the two techniques within the time bins, from
[245 − 250] to tbmax. Considering the short-exposure scenario, the detection delay
(DD) is defined as:

DD =
1

tcd

tbmax

∑
tb=[245−250]

wtb ∗ dtb

Where tcd is the total number of detections in common to the two methods, wtb

represents the number of detections made in a particular time bin, and di is the
delay expressed as the difference between tb and the time bin of the start of the
GRB event (tgrb = 250s).

4.4.2 Serendipitous discovery results

In the serendipitous discovery scenario, while the telescopes observe a particu-
lar target, an unexpected event appears in the field of view. The issue is that we
don’t know in which region the GRB event will appear. This study assumes a
blind-search analysis applied to the whole field of view to determine the aperture
photometry regions. In particular, it is assumed that the blind-search analysis will
always find the region that contains the GRB event in its center and will take a
fixed time of 10 seconds to complete.
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4.4.2.1 Short-exposure scenario

Figure 4.4 shows the cumulative number of detections performed by the anomaly
detection and Li&Ma techniques for each temporal bin in the short-exposure sce-
nario (integration time = 5 seconds). The x-axis holds each temporal bin. The y-
axis holds the cumulative number of detections among all the GRB events. The
vertical dashed line corresponds to the start of the GRB event. The grey area rep-
resents the application of the blind-search algorithm, so even if the series starts
at bin [225 − 250], only the points outside the grey area must be considered. The

Figure 4.4: The cumulative number of detections of anomaly detection and
Li&Ma techniques for each temporal bin in the short-exposure sce-
nario (integration time = 5 seconds). The x-axis holds each temporal
bin. The y-axis holds the cumulative number of detections among all
the GRB events. The vertical dashed line corresponds to the start of
the GRB event. The grey area represents the application of the blind-
search algorithm.

figure shows the robustness of the Li&Ma technique, detecting at the end of the
observation more GRBs than the anomaly detection technique. However, we are
interested in the first part of the observation since detections must be performed
as soon as possible. The anomaly detection technique can be applied after every
T = 5 seconds of new data. In contrast, Li&Ma is limited by statistical indepen-
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dence assumption and can be applied only for temporal bins that do not overlap.
To quantify how fast the anomaly detection technique is to perform detections
concerning Li&Ma, Table 4.6 shows the DD metric. The first temporal bin consid-
ered in the table starts when the blind-search algorithm ends. The next temporal
bins are the ones in which Li&Ma was applied. Table 4.6 proves the ability of the
anomaly detection technique to perform faster detections with respect to Li&Ma.

Detection delay (common detections)

Temporal bins CNN RNN Li&Ma

250-275 6.86 ±5.41 6.37 ±5.57 15.00 ±0
275-300 10.78 ±9.25 12.04 ±11.56 21.28 ±10.87
300-325 14.28 ±13.69 15.98 ±15.58 24.87 ±14.6
325-350 17.02 ±17.31 18.87 ±18.75 27.64 ±17.9
350-375 18.98 ±19.88 21.31 ±21.79 29.59 ±20.25

Table 4.6: Detection delay (in seconds) for serendipitous discoveries in the short-
exposure scenario (integration time = 5 seconds) with common detec-
tions.

4.4.2.2 Very short-exposure scenario

The same metrics are evaluated again in the very short-exposure scenario, with an
integration time equal to 1 second. In this scenario, the number of photon counts is
further reduced, often exceeding the lower bounds of the Li&Ma technique (equal
to 10 photon counts from the on and off regions), limiting its applicability. In
contrast, it reduces from 5 to 1 second the time the anomaly detection technique
needs to wait for new data since a new flux data measurement is available each
second, and a new sub-sequence is ready for analysis. This time is also reduced
for Li&Ma, from 25 to 5 seconds. Figure 4.5 shows that the number of detections
performed by the anomaly detection technique with recurrent layers is always
greater than Li&Ma’s, proving greater robustness in this extreme scenario. As said
before, the Li&Ma is not always applicable due to its limitation of requiring at
least ten photon counts. The reduced number of photon counts also negatively
affects the performance of the anomaly detection technique. It’s also worth noticing
that the anomaly detection technique with convolutional layers performs better
with respect to Li&Ma from the beginning of the observation until the [295 − 300]
temporal bin. Concerning the detection delay, Table 4.6 and Table 4.7 show that
the anomaly detection technique is faster with respect to Li&Ma, also in the very
short-exposure scenario.
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Figure 4.5: The cumulative number of detections of anomaly detection and
Li&Ma techniques for each temporal bin in the very short-exposure
scenario (integration time = 1 second). The x-axis holds each temporal
bin. The y-axis holds the cumulative number of detections among all
the GRB events. The vertical dashed line corresponds to the start of
the GRB event. The grey area represents the application of the blind-
search algorithm.

Detection delay (common detections)

Temporal bins RNN CNN Li&Ma

280-285 10.11 ±7.46 11.04 ±7.54 11.57 ±8.46
305-310 13.77 ±11.69 13.86 ±9.86 17.01 ±13.86
330-335 15.39 ±13.56 15.93 ±12.46 19.8 ±16.39
355-360 17.24 ±16.41 17.14 ±13.95 22.31 ±19.48
380-385 18.95 ±19.27 18.65 ±17.28 24.35 ±22.23

Table 4.7: Detection delay (in seconds) for serendipitous discoveries in the very
short-exposure scenario (integration time = 1 second) with common de-
tections.



4.4 evaluation of the proposed technique against li&ma 79

4.4.3 Follow-up observation results

In the follow-up observation scenario, the observatory receives a scientific alert
and adjusts the pointing of its telescope to a new sky region to detect the event.
This study considers the variable delay between the event’s start and the taking of
the first photon counts, which depends on the time to receive the scientific alert
and the time the telescopes take to change the pointing. Four delay values are
considered (25, 50, 75, and 100 seconds). As discussed in Section 4.1.1, a blind-
search algorithm is assumed to start at soon as the telescopes take data. As in the
serendipitous discovery scenario, the blind-search algorithm is always assumed to
find the right region in a fixed time of 10 seconds. The cumulative detection plot is
repeated four times for each delay value in different sub-plots. Each subplot shows
a vertical line representing the follow-up observation’s start. The next vertical line
represents the time the techniques must wait to gather enough data to make the
first inference.

4.4.3.1 Short-exposure scenario

Due to the delay that postpones the observation, the evolution of the GRB event
cannot be observed from the beginning. The luminosity of a GRB event tends to
decrease over time, increasing the difficulty of detection. Figure 4.6 shows the su-
periority of the Li&Ma technique in the short-exposure scenario. The cumulative
number of detections is greater for Li&Ma for every temporal bin, and as a conse-
quence, its detection delay, shown in Table 4.8, is also better.

Detection delay (common detection)

Temporal bins RNN CNN Li&Ma

275-300 25 ±0 25 ±0 25 ±0
300-325 35.94 ±7.79 33.54 ±9.26 28.68 ±8.89
325-350 41.5 ±13.5 38.37 ±13.59 32.01 ±13.83
350-375 45 ±17.08 43.04 ±18.42 34.32 ±16.95
375-400 48.71 ±21.82 48.25 ±24.32 36.71 ±20.75

Table 4.8: Detection delay (in seconds) for follow-up observations in the short-
exposure scenario (integration time = 5 seconds) for common detection.
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Figure 4.6: The cumulative number of detections of anomaly detection and Li&Ma tech-
niques for each temporal bin in the short-exposure scenario (integration time
= 5 seconds). The x-axis holds each temporal bin. The y-axis holds the cumula-
tive number of detections among all the GRB events. The vertical dashed line
corresponds to the start of the GRB event.

4.4.3.2 Very short-exposure scenario

The same metrics were evaluated in a short-exposure scenario with 1 second of
integration time. The same considerations for the serendipitous discovery use case
can be made here: the short exposure leads to fewer photon counts and faster data
availability. The reduced photon counts negatively affect the performance of the
anomaly detection and Li&Ma techniques. The anomaly detection technique based
on the autoencoder with recurrent layers showed greater robustness than Li&Ma
and was faster in detecting anomalies. Figure 4.7 shows the cumulative number of
detections. Also, in this case, the anomaly detection technique with convolutional
layers performs better with respect to Li&Ma from the beginning of the observation
until the 295− 300 temporal bin. The detection delay, shown in Table 4.9, is always
lower for anomaly detection with recurrent and convolutional layers, despite the
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moment the Li&Ma starts to perform better than the CNN model from bin 295 −
300.

Figure 4.7: The cumulative number of detections of anomaly detection and Li&Ma tech-
niques for each temporal bin in the very short-exposure scenario (integration
time = 1 second). The x-axis holds each temporal bin. The y-axis holds the cu-
mulative number of detections among all the GRB events. The vertical dashed
line corresponds to the start of the GRB event.

Detection delay (common detection)

Temporal bins RNN CNN Li&Ma

260-265 5 ±0 5 ±0 5 ±0
290-295 15.78 ±7.71 16.74 ±6.82 14.65 ±7.82
315-320 18.74 ±11.07 19.13 ±11.26 19.62 ±12.74
340-345 20.46 ±13.2 20.31 ±13.14 22.49 ±15.72
365-370 22.86 ±16.96 20.82 ±13.83 24.78 ±18.48

Table 4.9: Detection delay (in seconds) for follow-up observations in very the short-
exposure scenario (integration time = 1 second) for common detections.
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4.5 summary

This chapter presented the results of p-value analyses and performance bench-
marks. It reintroduced the scientific use cases and the assumptions made in these
scenarios and described the process of test set generation. The results of the p-
value analysis were shown, followed by a comparison between the two investi-
gated autoencoder architectures. The performance of the proposed anomaly detec-
tion was compared against Li&Ma, using key performance indicators, with results
presented for both serendipitous discoveries and follow-up observation scenarios
in the short-exposure and very short-exposure.



5
C O N C L U S I O N S

This chapter summarizes the key outcomes from my study to reach final
conclusions. It also highlights potential improvement areas, including further
testing and feature developments. Lastly, the future outlook for this research
will be discussed at the end of this chapter.

5.1 results and contributions

The following summary will show the main results and contributions to conclude
the dissertation.

• Chapter 3 addressed the problem of real-time source detection in gamma-ray
astronomy using anomaly detection. I developed a deep learning-based method
for detecting anomalous time series data from the Cherenkov Telescope Array
observations to achieve this goal. Efficient data processing pipelines have also
been developed to produce (simulated) data sets, utility scripts, and notebooks.
The source code can be found in [L.23].

• A statistical analysis pipeline to associate the predictions of the deep learning
models with a statistical Gaussian σ − level has been developed. Results are
shown in Section 4.2. Since this analysis requires a large sample of simulation
data, the code has been developed to be as efficient as possible.

• Chapter 4 evaluates the performance of the proposed anomaly detection method
in the Gamma-Ray Bursts (GRBs) detection scenario for the Cherenkov Telescope
Array. The method is compared against the Li&Ma technique in two scenarios of
serendipitous discoveries and follow-up observations in two settings with short
exposure times (5 sec and 1 sec). The assumption of a blind-search analysis to
localize candidate sources in a fixed time of 10 seconds has been made. In the
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short exposure time of 5 seconds scenario, the Li&Ma technique proves greater
robustness, detecting most GRBs as shown in Figure 4.4 and Figure 4.6. However,
in the serendipitous discovery scenario, the anomaly detection method proves,
on average, faster in detecting GRBs compared to Li&Ma, as shown by detection
delay metrics in Table 4.6. With a very short exposure time of 1 second, both
techniques face limitations with reduced photon counts. However, the anomaly
detection method with recurrent layers is more robust overall than Li&Ma and
still performs faster detections on average, as shown by Figure 4.5 and Table 4.7.

• The method does not rely on the assumptions that the background and source
models accurately represent the data. This would limit its ability to detect
sources that do not conform to these models, especially challenging in the real-
time context in which pipelines perform under degraded conditions. The au-
toencoder’s inference is fast and well-suited for real-time analysis. Finally, the
proposed method is not limited by the statistical independence requirement of
the analysis bins nor by a minimum number of photon counts to perform analy-
sis. For these reasons, the proposed method overcomes the limitation of the Full
Field of View Maximum Likelihood and Li&Ma techniques.

• The nature of the proposed method is flexible enough to allow different analysis
settings, with different exposure times and temporal bin time spans, to allow
real-time search for transient events on multiple time scales.

• This study significantly contributes to astrophysics by demonstrating the ef-
fectiveness of deep learning-based anomaly detection techniques for real-time
source detection in gamma-ray astronomy.

5.2 outlook and future work

The proposed method has shown promising results, but there is room for improve-
ment. Additional implementation and examination could enhance the understand-
ing of the estimated performances and refine the method.

• The method should be extensively tested, relaxing the assumptions made. Con-
cerning the blind-search analysis, we can detect multiple candidates’ regions of
interest at different times with different significance levels in the real-world sce-
nario. The time delays in the context of the follow-up observation use case have
been assumed fixed. A more in-depth study with a randomized time delay (or
something more similar to the current typical GW alert latency) would improve
the estimate of the method’s performance.

• Another future improvement is to evaluate the visibility of the GRB events. In
this study, the information on the spatial localization of the events was not possi-
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ble to infer since the trigger times, i.e., the timestamps associated with the start
of each GRB event, were not available. Hence, the same sky coordinates have
been considered for each GRB simulation. Consequently, a single instrument
response function was sufficient because only one background level was con-
sidered. Access to the trigger times would allow visibility studies and require
different IRFs, introducing changes in the observing condition.

• It is important to evaluate the post-trial probability to provide a more robust
estimate of the method’s performance.

• It is crucial to test the method on real data and address the non-stationary set-
tings of online observations.

• Testing the proposed method on multiple time scales with more transient phe-
nomena other than GRBs would further demonstrate the versatility and effec-
tiveness of the method.

• The system can be integrated within the Science Alert Generation system and de-
ployed on the onsite computing cluster at La Palma. This would provide valuable
insights into the method’s performance in a real-world setting and be another
valuable tool for discovering new transient events in real time.
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A P P E N D I X A

6.1 detections

This chapter shows several examples of time series generated from the photon
lists simulations of different GRB templates in the short-exposure and very short-
exposure scenarios. The corresponding significance variability plots are shown for
each simulated trial. The following analysis results have been selected from the 419
trials that defined the test set. They have been divided into four groups, extracting
four representatives for each group:

• The first category shows some examples in which the anomaly detec-
tion analysis performs a 5σ detection, while the Li&Ma technique couldn’t.
The trials under consideration have been simulated from the following
templates: ”run0050_ID000319”, ”run0276_ID000042”, ”run0481_ID000069”,
”run0522_ID000294”.

• The second category shows some examples in which the anomaly detection
analysis agrees well with the Li&Ma technique. The trials under considera-
tion have been simulated from the following templates: ”run0266_ID000397”,
”run0051_ID000166”, ”run0231_ID000152”, ”run0170_ID000418”.

• The third category shows some examples in which the anomaly detec-
tion analysis performs worst than the Li&Ma technique and cannot man-
age to perform detection. The trials under consideration have been simu-
lated from the following templates: ”run0352_ID000076”, ”run0421_ID000208”,
”run0428_ID000157”, ”run0615_ID000245”.

• The fourth category shows some examples of the analysis of very strong
GRBs. The trials under consideration have been simulated from the following
templates: ”run0535_ID000181”, ”run0222_ID000318”, ”run0340_ID000060”,
”run0453_ID000359”.
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Figure 6.1: A GRB simulated trials in the short-exposure scenario (integration time
= 5 seconds).

Figure 6.2: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the short-exposure scenario (integration time = 5 seconds).
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Figure 6.3: A GRB simulated trials in the very short-exposure scenario (integration
time = 1 second).

Figure 6.4: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the very short-exposure scenario (integration time = 1 second).
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Figure 6.5: A GRB simulated trials in the short-exposure scenario (integration time
= 5 seconds).

Figure 6.6: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the short-exposure scenario (integration time = 5 seconds).
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Figure 6.7: A GRB simulated trials in the very short-exposure scenario (integration
time = 1 second).

Figure 6.8: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the very short-exposure scenario (integration time = 1 second).
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Figure 6.9: A GRB simulated trials in the short-exposure scenario (integration time
= 5 seconds).

Figure 6.10: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the short-exposure scenario (integration time = 5 seconds).
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Figure 6.11: A GRB simulated trials in the very short-exposure scenario (integration
time = 1 second).

Figure 6.12: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the very short-exposure scenario (integration time = 1 second).



6.1 detections 93

Figure 6.13: A GRB simulated trials in the short-exposure scenario (integration time
= 5 seconds).

Figure 6.14: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the short-exposure scenario (integration time = 5 seconds).
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Figure 6.15: A GRB simulated trials in the very short-exposure scenario (integration
time = 1 second).

Figure 6.16: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the very short-exposure scenario (integration time = 1 second).
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Figure 6.17: A GRB simulated trials in the short-exposure scenario (integration time
= 5 seconds).

Figure 6.18: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the short-exposure scenario (integration time = 5 seconds).
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Figure 6.19: A GRB simulated trials in the very short-exposure scenario (integration
time = 1 second).

Figure 6.20: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the very short-exposure scenario (integration time = 1 second).
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Figure 6.21: A GRB simulated trials in the short-exposure scenario (integration time
= 5 seconds).

Figure 6.22: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the short-exposure scenario (integration time = 5 seconds).
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Figure 6.23: A GRB simulated trials in the very short-exposure scenario (integration
time = 1 second).

Figure 6.24: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the very short-exposure scenario (integration time = 1 second).
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Figure 6.25: A GRB simulated trials in the short-exposure scenario (integration time
= 5 seconds).

Figure 6.26: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the short-exposure scenario (integration time = 5 seconds).
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Figure 6.27: A GRB simulated trials in the very short-exposure scenario (integration
time = 1 second).

Figure 6.28: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the very short-exposure scenario (integration time = 1 second).
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Figure 6.29: A GRB simulated trials in the short-exposure scenario (integration time
= 5 seconds).

Figure 6.30: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the short-exposure scenario (integration time = 5 seconds).
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Figure 6.31: A GRB simulated trials in the very short-exposure scenario (integration
time = 1 second).

Figure 6.32: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the very short-exposure scenario (integration time = 1 second).
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Figure 6.33: A GRB simulated trials in the short-exposure scenario (integration time
= 5 seconds).

Figure 6.34: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the short-exposure scenario (integration time = 5 seconds).
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Figure 6.35: A GRB simulated trials in the very short-exposure scenario (integration
time = 1 second).

Figure 6.36: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the very short-exposure scenario (integration time = 1 second).
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Figure 6.37: A GRB simulated trials in the short-exposure scenario (integration time
= 5 seconds).

Figure 6.38: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the short-exposure scenario (integration time = 5 seconds).
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Figure 6.39: A GRB simulated trials in the very short-exposure scenario (integration
time = 1 second).

Figure 6.40: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the very short-exposure scenario (integration time = 1 second).
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Figure 6.41: A GRB simulated trials in the short-exposure scenario (integration time
= 5 seconds).

Figure 6.42: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the short-exposure scenario (integration time = 5 seconds).
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Figure 6.43: A GRB simulated trials in the very short-exposure scenario (integration
time = 1 second).

Figure 6.44: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the very short-exposure scenario (integration time = 1 second).
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Figure 6.45: A GRB simulated trials in the short-exposure scenario (integration time
= 5 seconds).

Figure 6.46: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the short-exposure scenario (integration time = 5 seconds).
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Figure 6.47: A GRB simulated trials in the very short-exposure scenario (integration
time = 1 second).

Figure 6.48: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the very short-exposure scenario (integration time = 1 second).
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Figure 6.49: A GRB simulated trials in the short-exposure scenario (integration time
= 5 seconds).

Figure 6.50: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the short-exposure scenario (integration time = 5 seconds).
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Figure 6.51: A GRB simulated trials in the very short-exposure scenario (integration
time = 1 second).

Figure 6.52: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the very short-exposure scenario (integration time = 1 second).
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Figure 6.53: A GRB simulated trials in the short-exposure scenario (integration time
= 5 seconds).

Figure 6.54: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the short-exposure scenario (integration time = 5 seconds).
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Figure 6.55: A GRB simulated trials in the very short-exposure scenario (integration
time = 1 second).

Figure 6.56: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the very short-exposure scenario (integration time = 1 second).
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Figure 6.57: A GRB simulated trials in the short-exposure scenario (integration time
= 5 seconds).

Figure 6.58: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the short-exposure scenario (integration time = 5 seconds).
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Figure 6.59: A GRB simulated trials in the very short-exposure scenario (integration
time = 1 second).

Figure 6.60: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the very short-exposure scenario (integration time = 1 second).
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Figure 6.61: A GRB simulated trials in the short-exposure scenario (integration time
= 5 seconds).

Figure 6.62: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the short-exposure scenario (integration time = 5 seconds).



6.1 detections 118

Figure 6.63: A GRB simulated trials in the very short-exposure scenario (integration
time = 1 second).

Figure 6.64: The significance variability plot shows the analysis result (sigma) of the
RNN and CNN-based autoencoders and Li&Ma on the simulated trial
in the very short-exposure scenario (integration time = 1 second).
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7.1 training and inference (reconstructions and classifica-
tions)

7.1.1 Losses during training

Figures 7.1, 7.2, 7.3, and 7.4, show the evolution of the loss during training, for the
RNN and CNN autoencoders, in both short-term and very short-term scenarios.
The models were trained for five epochs.

Figure 7.1: The training and validation losses during the training of the autoen-
coder with recurrent layers, in the short-exposure scenario (integration
time = 5 seconds).
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Figure 7.2: The training and validation losses during the training of the autoen-
coder with convolutional layers, in the short-exposure scenario (integra-
tion time = 5 seconds).

Figure 7.3: The training and validation losses during the training of the autoen-
coder with recurrent layers, in the very short-exposure scenario (inte-
gration time = 1 second).
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Figure 7.4: The training and validation losses during the training of the autoen-
coder with convolutional layers, in the very short-exposure scenario (in-
tegration time = 1 second).
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7.1.2 Performance metrics for classification

Figures 7.5, 7.6, 7.7, and, 7.8 show how the accuracy, precision, and recall metrics
vary as a function of the classification threshold, for the RNN and CNN autoen-
coders, in both short-term and very short-term scenarios. The classification thresh-
old values correspond to discrete σ levels up to 5.

Figure 7.5: Accuracy, precision, and recall, as a function of the classification thresh-
old for the RNN autoencoder in the short-term exposure scenario (inte-
gration time = 5 seconds).
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Figure 7.6: Accuracy, precision, and recall, as a function of the classification thresh-
old for the CNN autoencoder in the short-term exposure scenario (inte-
gration time = 5 seconds).

Figure 7.7: Accuracy, precision, and recall, as a function of the classification thresh-
old for the RNN autoencoder in the very short-term exposure scenario
(integration time = 1 second).
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Figure 7.8: Accuracy, precision, and recall, as a function of the classification thresh-
old for the CNN autoencoder in the very short-term exposure scenario
(integration time = 1 second).
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7.1.3 Reconstructions and inferences

The following plots show several reconstructions and classifications the autoen-
coder model with recurrent layers performs in the short-exposure scenario (inte-
gration time = 5 seconds). Four trials have been selected from the previous chapter:
6.1, 6.25, 6.37, 6.33.

Figure 7.9: The reconstructions performed by the autoencoder with recurrent layers
for five sub-sequences extracted from the time series using a sliding
window with stride=1, in the short-exposure scenario (integration time
= 5 seconds).
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Figure 7.10: The reconstructions performed by the autoencoder with recurrent lay-
ers for five sub-sequences extracted from the time series using a sliding
window with stride=1, in the short-exposure scenario (integration time
= 5 seconds).
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Figure 7.11: The reconstructions performed by the autoencoder with recurrent lay-
ers for five sub-sequences extracted from the time series using a sliding
window with stride=1, in the short-exposure scenario (integration time
= 5 seconds).
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Figure 7.12: The reconstructions performed by the autoencoder with recurrent lay-
ers for five sub-sequences extracted from the time series using a sliding
window with stride=1, in the short-exposure scenario (integration time
= 5 seconds).
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Figure 7.13: The reconstructions performed by the autoencoder with recurrent lay-
ers for five sub-sequences extracted from the time series using a sliding
window with stride=1, in the short-exposure scenario (integration time
= 5 seconds).
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Figure 7.14: The reconstructions performed by the autoencoder with recurrent lay-
ers for five sub-sequences extracted from the time series using a sliding
window with stride=1, in the short-exposure scenario (integration time
= 5 seconds).
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Figure 7.15: The reconstructions performed by the autoencoder with recurrent lay-
ers for five sub-sequences extracted from the time series using a sliding
window with stride=1, in the short-exposure scenario (integration time
= 5 seconds).
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Figure 7.16: The reconstructions performed by the autoencoder with recurrent lay-
ers for five sub-sequences extracted from the time series using a sliding
window with stride=1, in the short-exposure scenario (integration time
= 5 seconds).



7.1 training and inference (reconstructions and classifications) 133

Figure 7.17: The reconstructions performed by the autoencoder with recurrent lay-
ers for five sub-sequences extracted from the time series using a sliding
window with stride=1, in the short-exposure scenario (integration time
= 5 seconds).
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Figure 7.18: The reconstructions performed by the autoencoder with recurrent lay-
ers for five sub-sequences extracted from the time series using a sliding
window with stride=1, in the short-exposure scenario (integration time
= 5 seconds).
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Figure 7.19: The reconstructions performed by the autoencoder with recurrent lay-
ers for five sub-sequences extracted from the time series using a sliding
window with stride=1, in the short-exposure scenario (integration time
= 5 seconds).
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Figure 7.20: The reconstructions performed by the autoencoder with recurrent lay-
ers for five sub-sequences extracted from the time series using a sliding
window with stride=1, in the short-exposure scenario (integration time
= 5 seconds).
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8.1 p-value analysis

Figures 8.1, 8.2, 8.3, and 8.4, show the results of the p-value analyses, one for each
autoencoder model (convolutional and recurrent) in the short-term and very short-
term settings.
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Figure 8.1: TS distribution and p-values for the autoencoder model with recurrent
layers in the short-term scenario (integration time = 5 seconds).

p-values

Threshold p-value ± error Sigma

11 0.000227 1.47e-01 1.25e-04 1.073
0.000279 6.82e-02 8.69e-05 1.491
0.000357 2.25e-02 4.99e-05 2.005
0.000462 5.98e-03 2.58e-05 2.514
0.000592 1.32e-03 1.21e-05 3.006
0.000749 2.50e-04 5.27e-06 3.480
0.001009 3.08e-05 1.85e-06 4.007
0.001296 3.22e-06 5.98e-07 4.511
0.002078 2.22e-07 1.57e-07 5.049

Table 8.1: An example of p-value analysis for the autoencoder model with recurrent
layers in the short-term scenario (integration time = 5 seconds). The table
shows a subset of all the rows. Only the threshold values corresponding
to predefined sigma levels are shown.
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Figure 8.2: TS distribution and p-values for the autoencoder model with convolu-
tional layers in the short-term scenario (integration time = 5 seconds).

p-values

Threshold p-value ± error Sigma

0.003171 1.28e-01 1.2e-04 1.134
0.003751 6.11e-02 8.29e-05 1.545
0.004476 2.28e-02 5.06e-05 2.000
0.005492 5.32e-03 2.45e-05 2.554
0.006507 1.23e-03 1.17e-05 3.029
0.007667 2.31e-04 5.10e-06 3.502
0.009118 3.15e-05 1.88e-06 4.001
0.010859 3.26e-06 6.06e-07 4.509
0.013905 2.25e-07 1.59e-07 5.047

Table 8.2: An example of p-value analysis for the autoencoder model with convo-
lutional layers in the short-term scenario (integration time = 5 seconds).
The table shows a subset of all the rows. Only the threshold values corre-
sponding to predefined sigma levels are shown.
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Figure 8.3: TS distribution and p-values for the autoencoder model with recurrent
layers in the very short-term scenario (integration time = 1 second).

p-values

Threshold p-value ± error Sigma

0.000201 1.34e-01 1.24e-04 1.108
0.000261 5.84e-02 8.22e-05 1.568
0.000322 2.37e-02 5.24e-05 1.983
0.000443 6.27e-03 2.69e-05 2.497
0.000806 1.32e-03 1.24e-05 3.006
0.001018 2.31e-04 5.17e-06 3.502
0.001260 3.02e-05 1.87e-06 4.011
0.002168 3.37e-06 6.23e-07 4.503
0.002623 2.31e-07 1.64e-07 5.041

Table 8.3: An example of p-value analysis for the autoencoder model with recur-
rent layers in the very short-term scenario (integration time = 1 second).
The table shows a subset of all the rows. Only the threshold values corre-
sponding to predefined sigma levels are shown.
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Figure 8.4: TS distribution and p-values for the autoencoder model with convo-
lutional layers in the very short-term scenario (integration time = 1
second).

p-values

Threshold p-value ± error Sigma

0.002693 1.02e-01 1.07e-04 1.268
0.003101 6.95e-02 8.79e-05 1.479
0.004732 1.85e-02 4.53e-05 2.087
0.006363 5.94e-03 2.57e-05 2.516
0.009218 1.25e-03 1.18e-05 3.023
0.013295 2.11e-04 4.89e-06 3.525
0.018597 2.96e-05 1.81e-06 4.015
0.025529 2.78e-06 5.55e-07 4.543
0.031646 2.22e-07 1.57e-07 5.049

Table 8.4: An example of p-value analysis for the autoencoder model with convolu-
tional layers in the very short-term scenario (integration time = 1 second).
The table shows a subset of all the rows. Only the threshold values corre-
sponding to predefined sigma levels are shown.
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