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Abstract 

A three-dimensional Direct Finite Element procedure is here presented which takes into 

account most of the factors affecting the interaction problem of the dam-water-foundation 

system, whilst keeping the computational cost at a reasonable level by introducing some 

simplified hypotheses. A truncated domain is defined, and the dynamic behaviour of the 

system is treated as a wave-scattering problem where the presence of the dam perturbs an 

original free-field system. The rock foundation truncated boundaries are enclosed by a set 

of free-field one-dimensional and two-dimensional systems which transmit the effective 

forces to the main model and apply adsorbing viscous boundaries to ensure radiation 

damping. The water domain is treated as an added mass moving with the dam. A strategy 

is proposed to keep the viscous dampers at the boundaries unloaded during the initial phases 

of analysis, when the static loads are initialised, and thus avoid spurious displacements. A 

focus is given to the nonlinear behaviour of the rock foundation, with concentrated 

plasticity along the natural discontinuities of the rock mass, immersed in an otherwise linear 

elastic medium with Rayleigh damping. The entire procedure is implemented in the 

commercial software Abaqus®, whose base code is enriched with specific user subroutines 

when needed. All the extra coding is attached to the Thesis and tested against analytical 

results and simple examples. Possible rock wedge instabilities induced by intense ground 

motion, which are not easily investigated within a comprehensive model of the dam-water-

foundation system, are treated separately with a simplified decoupled dynamic approach 

derived from the classical Newmark method, integrated with FE calculation of dam thrust 

on the wedges during the earthquake. Both the described approaches are applied to the case 

study of the Ridracoli arch-gravity dam (Italy) in order to investigate its seismic response 

to the Maximum Credible Earthquake (MCE) in a full reservoir condition.  

Key words: Ridracoli Dam, dynamic analysis, dam-water-foundation interaction, free-

field boundaries, Abaqus, user subroutines, rock wedge stability, Newmark method 
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1.  Introduction 

1.1  Problem statement and motivations 

For the Italian code specific for dams and barrages, “Norme tecniche per la progettazione 

e la costruzione degli sbarramenti di ritenuta (dighe e traverse)” (NTD, 2014), a “large 

dam” is defined as a barrier which is either higher than 15 m or impounds a water volume 

larger than 1.000.000 m3 (NTD, 2014). At present, there are 531 dams classified as large 

in the Italian territory, with an average age of about 64 years (CNIT, 2019), higher than the 

so called “alert” age of 50 years. Moreover, a significative portion of these structure are 

built in seismic areas. In the NTD code a distinction is made between existing dams and 

new structures. A whole section is dedicated to the dams whose construction works were 

terminated before 2014, year of publication of the code. In these cases, an evaluation of the 

overall safety of all existing dams is prescribed under the control of a surveillance authority. 

The importance of an adequate geological and geotechnical characterization, also in the 

context of the evaluation of the seismic response of the dam, is expressly stated. 

Romagna Acque – Società delle Acque S.p.A., as the founder of the present PhD work and 

managing body of Ridracoli large concrete arch-gravity dam, expressed interest in 

deepening the comprehension of the rock mass behaviour underlying the dam under severe 

seismic conditions. In particular, it was required to include in an existing Finite Element 

model of the dam, realised with the commercial code Abaqus® as part of a previous PhD 

work (Buffi, 2018), the possible non-linear behaviour in correspondence of known rock-

mass discontinuities which outcrop at the level of dam base and are characterised by a 

considerable extension (i.e., a fault and some specific bedding planes). The use of the code 

Abaqus® was strongly recommended because of the compatibility with the model in Buffi 

(2018). The main focus in Buffi (2018) work was given to the structural aspects, with the 

underlying rock mass considered as monolithic, linear elastic and fixed at the base and at 

the side boundaries. On the contrary the dam was realistically represented with single 

blocks and joints geometrically reconstructed from a UAV dense point cloud. The water 

mass was modelled with the help of solid acoustic elements and the radiation damping at 

water boundary was included by means of non-reflecting surfaces. The static and dynamic 

behaviour of the dam was investigated, giving a particular attention to the modal analysis 

of the system and the verification of natural frequencies against experimental values.  

As far as it can be ascertained, none of existing large concrete dams with full reservoir has 

experienced an extremely intense ground shaking, comparable to the Maximum Credible 

Earthquake (MCE). At least two gravity dams, however, were subjected to quite intense 

ground shaking when the reservoir level was close to the maximum, namely Koyna Dam 

(India) and Hsinfengkiang Dam (China) during 1967 and 1962 earthquakes, respectively. 

Both dams exhibited a significative cracking pattern in the upper part at the end of the 

shaking which, however, did not cause an outflow of the impounded water. Other few dams 
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have withstood very intense ground shaking with little or no damage such as in the case of 

the 42-m-high Lower Crystal Springs Dam (USA), because of their extremely prudential 

design strategies (Chopra, 2020). 

In the chapter dedicated to arch dams of the American Federal Energy Regulatory 

Commition guidelines (FERC, 2018) a list of intense seismic events occurred in the vicinity 

of concrete arch dams is presented. In general, this typology of construction exhibits an 

excellent level of performance with respect to earthquake motion and no failure has ever 

been recorded. The statistic validity of this assumption however is strongly affected by the 

low number of major earthquakes occurred at arch dam locations. Among 43 arch dams 

which have experienced significant earthquake excitation, only 4 were subjected to a 

seismic event comparable to the MCE and close to the dam site (but with a water level 

considerably lower than the maximum regulation level). They were Pacoima, Lower 

Crystal Springs, and Gibraltar dams in the United States, and Ambiesta Dam in Italy. 

Among these only Pacoima Dam (113-m-high) suffered damage during two seismic events 

(1971 and 1993). The dam survived both earthquakes, despite showing some cracking near 

the left abutment and some unrecoverable slips and opening along the contraction joints, 

mostly at the crest level. Two rock wedges were observed forming on the left abutment and 

were suspected to drive the irreversible deformations of the dam body. One of wedge 

slipped of about 9 cm after 1993 earthquake (FERC, 2018). 

It is clear from the preceding case history that, although being less susceptible than gravity 

structure, also arch dams can experience a significative level of damage due to intense 

ground shaking. From the Pacoima Dam experience it is also clear that one of the most 

concerning damage mode is related to the stability of rock wedges possibly present at the 

level of the abutment rock mass, which my act as a trigger for joint opening and cracking 

in the structure. The ability to accurately simulate the effects of the MCE by means of 

numerical models which can adequately take into account the complexity of the problem is 

essential in order to assess the safety of existing concrete structures like Ridracoli Dam. 

However, the prediction of performance during earthquakes is challenging and affected by 

numerous uncertainties. The main factors that should be included in a numerical analysis 

are (Chopra, 2020): 

− complicated shapes dictated by the topography of the site; 

− interaction of the motions of the dam with the impounded water and the foundation 

rock (important aspects to consider are the mass, the stiffness, the material damping 

and the radiation damping of the foundation, as well as the earthquake-induced 

hydrodynamic pressures); 

− opening or slip in contraction joints (inside the structure), lift joints (at dam-

foundation interface) and along natural discontinuities of the rock mass; all these 

phenomena are highly non-linear;  

− topographic site effects on the seismic signal. 

After introducing the Ridracoli Dam case study in the remaining part of Chapter 1. A 

performance-based displacement approach for the analysis of rock wedges on arch-dam 
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abutments in seismic conditions is presented in Chapter 2, applying a three-dimensional 

version of Newmark method (Newmark, 1965) to two wedges on the right abutment of 

Ridracoli Dam. In Chapter 3 a Direct Finite-Element procedure to evaluate the seismic 

response of a dam–water–foundation systems subjected to ground shaking is described, 

considering all the factors in the bullet list. Chapter 4 is dedicated to the application of the 

Direct FE procedure to the Ridracoli Dam case study: the building of the model from 

available date sources is described together with the numerical strategies to deal with the 

structure, the impounded water and the rock mass. A conclusive final chapter is then 

provided which summarises the main results obtained in Chapter 2 and Chapter 4. 

 

1.2  Ridracoli Dam 

Ridracoli Dam is a concrete arch-gravity dam across the upper valley of the Bidente River, 

in the municipality of Bagno di Romagna (FC), Italy (Figures 1.1 and 1.2). Since the early 

sixties the valley had been investigated for its potential to support a dam that would had 

supply drinking water, control floods, and, only secondarily, produce hydroelectric power 

(RA, 2001). The location of the valley, not far from the Appenine ridge, in an unpopulated 

wooded area, made it particularly propitious for storing and intaking water, owing to the 

high quality of the water and the low erosion rate. A positive decision was made in 1974; 

the winning bid to build the dam was submitted by a consortium named Coridra General 

Contractor, which began construction work in spring 1975 (RA, 2001). The dam was 

completed in seven years by spring 1982 and entered the commissioning phase, with the 

first reservoir filling in 1986 (Buffi, 2018). It was dedicated as the main feature of Romagna 

Aqueduct in 1988, in the presence of Giovanni Spadolini (then-president of Italian Senate). 

It has been completely operational since 1995 (RA, 2022). In the Italian context, Ridracoli 

Dam is one of the youngest large dams. 

The storage reservoir is managed by Romagna Acque – Società delle Fonti S.p.A. and 

serves to supply drinking water to around 50 communities in Forlì-Cesena, Rimini and 

Ravenna Provinces, including the microstate of San Marino. Enel Green Power S.p.A. has 

been granted a 50-years concession of a hydroelectric power plant which exploits a 250-m 

head from the dam to the bottom of the valley downstream (near the village of Santa Sofia, 

in province of Forlì-Cesena) (RA, 2022).  

Ridracoli dam general data are (Oberti et al., 1986): 

− maximum height       103.50 m 

− maximum water level       557.30 m a. s. l. 

− reservoir storage capacity      30 Mm3 

− power generation (2021) (RA, 2022)    31.8 GWh 
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Figure 1.1. Aerial view of Ridracoli Dam during construction work 

(courtesy of Romagna Acque – Società delle Fonti S.p.A.) 

 

 

Figure 1.2. View of Ridracoli Dam in 1982, at the end of construction 

works (courtesy of Romagna Acque – Società delle Fonti S.p.A.) 
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1.2.1  Structure 

The dam body consists in a double-curvature arch structure, nearly symmetrical with 

respect to the main section, resting on a foundation pulvinus that runs along the excavation 

profile with varying thickness, and extends to the crowning with a minimum width of 10 

meters (RA, 2001).  

The structure is radially divided into 27 blocks separated by 26 joints consisting of nearly 

vertical surfaces (RA, 2001), which in their lower section are curved so that the angle of 

incidence with the upper surface of the pulvinus is approximately right. This surface, which 

constitutes the peripheral joint, is sole-shaped in correspondence of the main section, but it 

gradually changes into a cradle-shaped outline while proceeding toward the abutments to 

better support the thrust of the arches. 

Both within the pulvinus and within the body of the dam, inspection tunnels are arranged 

to allow all waterproofing and consolidation works and to ensure the complete drainage of 

seepage water, which can then be measured and discharged downstream of the dam. Some 

of these tunnels further extend into the rock mass of both abutments at different elevations. 

A grout curtain extends from these tunnels down to a minimum depth of 75 m below the 

pulvinus base level, upstream dipping with an inclination of 30 - 35°. It covers the entire 

longitudinal development of the dam and further extends in the rock mass at both sides 

where it reaches a depth of 200 m (Oberti et al., 1986). 

The entire structure was built using specially designed mixture of sand and crushed stone 

with a maximum grain size of 120 mm, bonded with pozzolanic cement type 325 with low 

heat development. Although it is an unreinforced concrete work, improved adhesion steel 

bars were used extensively to minimize the shrinkage phenomenon (RA, 2001). 

The spillway crest is of the ogee type. It is 119 m long and divided into 8 openings of 14 

m each. At toe of the dam there is a stilling basin trapezoidal-shaped in plan, with a 

maximum width of about 120 m and a minimum one of 60 m corresponding to an end-sill 

with a 14 m wide spillway (RA, 2001). 

Ridracoli dam structural data are (Oberti et al., 1986): 

− crest elevation       561.00 m a. s. l. 

− minimum pulvinus base elevation     457.50 m a. s. l. 

− longitudinal development of the crest    432.00 m 

− chord of the crest arc       341.45 m  

− volume of the dam       590 000 m3 

− thickness of the main section at different elevations: 

crest level (561.00 m a. s. l.)    6.62 m 

structure base level (475 m a. s. l.)   25.18 m 

pulvinus base level (460 m a. s. l.)    36.46 m 
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1.2.2  Geology 

The area under study consists of Miocene rocks of the Marly-Arenaceous Formation 

(FMA). In particular, the Premilcuore Member (FMA3) and the Galeata Member (FMA4) 

outcrops at the bottom of the lake, while the structure is founded on the Premilcuore 

Member only (RER, 2022). A geological map of the area is extracted from regional online 

database (RER, 2022) and shown in Figure 1.3. 

 

 

Figure 1.3. Geologic map Ridracoli area, scale 1:10 000 (RER, 2022): (in light-blue) 

Marly Arenaceous Formation – Galeata Member; (in light-brown) Marly 

Arenaceous Formation – Premilcuore Member. Contessa. 
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The Marly-Arenaceous Formation is an example of a turbiditic deposit formed in a foreland 

basin; turbiditic sequences are alternated with hemipelagic sediments. It therefore consists 

in alternating strata of sandstones, siltstones and marls. Each sequence has a thickness 

varying from a few centimetres to over 7 m. The sandstones are graded, generally medium 

to very fine, with sedimentary structures (flute and groove-casts at the base, plane-parallel 

lamination in the lower part, ripples and convolute lamination in the upper part); layers 

range from very thick to medium, sometimes thin, with generally tabular geometry. The 

drag marks at the base indicate predominant turbiditic contributions from WNW/NW and 

subordinately from ESE/SE. At the roof of arenitic levels the pelites are grey and laminated; 

in less arenaceous successions, above the laminated pelites, in direct contact with the 

overlying arenites, silty, light grey, compact marls are frequently observed (RER, 2022). 

In the Premilcuore Member the pelite-sandstone ratio is 2>A/P>1/2. Sandstones are mainly 

thick and very thick beds with uniform-tabular geometry, the upper limit is sometimes 

placed at the Contessa key bed (RER, 2022). 

The Contessa key bed is a graded megastratum where the arenite, with generally medium-

fine to very fine grain size, is rich in limestone fragments. The lithic arenite part varies in 

thickness from 2.8 to more than 5 meters while the pelite part varies from 5 to 8 meters; 

the A/P ratio is fairly constant and always less than 1 (RER, 2022). 

In the Galeata Member the pelite-sandstone ratio is 1/2>A/P>1/3. The arenite is generally 

in thin to thick beds with tabular geometry. Several key beds with predominantly calcareous 

composition and SE provenance have been mapped in this Member (i.e. Contessa) (RER, 

2022).  

Overall, in the reservoir area the percentage of the marly fraction is equal to that of the 

arenaceous fraction, and the formation can be considered as homogeneous. The average 

thickness of the sandstone beds is about 1.00 m, with infrequent maxima of 3.00 m. Marl 

layers are on average thinner, and the maxima do not usually exceed 2.00 m. The percentage 

of marl varies within the succession affecting the dam basement from a minimum of 48.5% 

to a maximum of 64%, with average value of 56.3% (Alpina, 1974). Limiting the analysis 

to the portion of the stratigraphic sequence directly affected by the dam, the mean spacing 

between bedding planes is about 0.48 cm (Alpina, 1976). 

On a tectonic point of view, the whole regional setting is the expression of a general 

compression from SW to NE. In the mountainous area under study this trend resulted in 

vast zones elongated in the NE-SW direction, from 3 to 6 km wide and separated by 

subparallel, SW-dipping reverse faults (Alpina, 1974). Ridracoli zone exhibits monoclinal 

strata dipping on average 25-35° to the SW. These structures are affected by disjunctive 

high-angle faults arranged with an “Antiapennine” direction. One of these faults, the 

Bidente Fault (F), affects the imposing area of the dam on the left abutment and causes a 

mismatch of the stratigraphic sequence: the fault is oriented 140°/70°-90° with a normal 

slip, which going from north to south, varies from 18 m downstream of the dam to 41 m at 
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the dam base. It is formed by a shear band, approximately 1.5 m thick, with a core zone of 

0.5 m where the rock mass is reduced to a breccia (Alpina, 1974). 

The local jointing pattern shows three main discontinuity sets (Figure 1.4), namely, the 

bedding planes (ST, average orientation 218°/27°), dipping upstreamward relative to the 

dam, and two set of subvertical joints, approximately directed parallel (KKD) and 

perpendicular (KKI) to the bedding direction. These subvertical joints have openings of 1 

to 3 mm, filled with calcite and at times with clay only in the most decompressed and 

surface areas (Oberti et al., 1986). The orientation of the main discontinuity sets with 

respect to the dam structure is schematically depicted in Figure 1.5. 

In few cases, four in total, at sandstone-marl bed contacts a centimetre-thick laminated marl 

interbedding can be detected. Their traces on the right abutment of the dam are shown in 

Figure 1.6.  It is formed mostly by overlapping sheets of fibrous calcite which sandwich 

thin layers of clay. Clear displacement marks are present. On the basis of this evidence, 

Lembo Fazio et al. (1990) hypothesised that these laminated marl layers are shear veins of 

tectonic origin formed by a crack-seal mechanism with a relatively large shear 

displacement.  

 

Figure 1.4. Stereographic projection of the mean planes of the main 

discontinuity sets (SST, KKI, KKD) and single structures (F) affecting 

Ridracoli site (modified from Oberti et al., 1986) 
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Figure 1.5. Structural scheme of the rock foundation (modified from Oberti et al., 1986) 

 

 

Figure 1.6. Laminated marl layers on the right abutment. 
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In a final note included in the design project of the dam (Alpina, 1981) the authors observed 

that at least two other laminated layers interest the rock foundation of the left abutment 

below the so-called “third laminated layer”, and some minor diaclase associated with 

Bidente fault are present on both abutments. Their modest extension, however, was 

considered as a valid reason to not include their representation in the dam-foundation-water 

system here developed.   

As stated in the Geomechanical Report included in the final project of the dam (Alpina, 

1976), the persistence of ST set (i.e., the bedding planes) is considered as infinite with 

respect to the characteristic length of the problem (i.e., about 80 m). In general, the 

disturbance which the rock mass withstood in his relatively young geological history is 

low; it can be assumed that the marl layers deformed in a ductile fashion whereas sandstone 

fractured. 

KKI/D are orthogonal joint sets exclusively affecting the sandstone layers that are the most 

brittle facies of the rock formation. Since they were originated by tension stresses, their 

joint walls are rough or little wavy. The mean opening for both sets is in the interval 1-3 

mm, with frequent calcite veins. A mean spacing of about 1.80 m and 1.60 m characterise 

respectively the KKI and KKD joints. A clear dependency of the spacing on the thickness 

of the sandstone layer is observed: the thicker the layer the larger the spacing. In the marly 

component minor, less distinguishable and more dispersed joint sets can be found, which 

tend to generate conchoidal fractures at failure. Therefore, persistence of KKI/D joints 

cannot be extended beyond the boundaries of single sandstones layers, while the alternated 

marly layers can be considered as rock bridges with degraded shear and tensile strength, as 

schematically depicted in Figure 1.7.  

 

 

Figure 1.7. Detailed structural scheme of the rock formation with orthogonal joint sets 

KKI and KKD and their typical pattern; joints are limited to the sandstone facies; the 

relative spacing proportions are maintained. 
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Within every single sandstone layer, adopting a persistence parameter, K, expressed as the 

percent ratio between the “discontinuous area” and the total area of the plane (Einstein et 

al., 1983), KKI joints present a persistence of K = 14%, while KKD joints of K = 25%. At 

Ridracoli site KKI and KKD joint terminations are frequently of d-r, r-d or d-d type (Figure 

1.7), where r denotes a termination against intact rock and d a termination against another 

discontinuity. Since they are orthogonal and the spacing is small if compared to the scale 

of the problem, it can be supposed that a failure surface could develop simultaneously 

involving both sets. A K = 100% would be appropriate in this case for a single sandstone 

layer, while a K = 45% should be assumed when the whole sequence is considered, 

corresponding to the sandstone percentage. The possible developing of a failure surface is 

depicted in the scheme of Figure 1.7, with a stepped failure surface involving both KKI 

and KKD joints in the sandstone layers and a new-developed fracture cutting across the 

marl layers.  

A sliding event of modest extension along a weak bedding plane occurred in the past during 

the construction work, as reported in Bavestrello (1983) and in Figure 1.8. The sliding 

mass consisted of a single sandstone layer laterally delimited by a plane oriented as KKI 

joints. The event was facilitated by the presence of a sub-horizontal diaclasis, which 

interrupted the continuity of the strata. 

 

 

Figure 1.8. Slid sandstone block at Ridracoli during construction works (November 

1977): a) photographic documentation (courtesy of F. Bavestrello Engr.); b) pictorial 

scheme of the sliding event (modified from Bavestrello (1983)). 
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1.2.3  Geotechnical characterization 

A wide investigation was carried out to determine the mechanical characteristics of the 

different lithotypes, particularly of the marl and siltstone materials. Over 200 undisturbed 

samples were cored from the foundation area.  

Uniaxial and triaxial compressive tests were performed mainly on marl and siltstone 

specimens to study the deformability and strength characteristics of these lithotypes 

(generally weaker than sandstones) as a function of the relative angle between the specimen 

axis and the bedding planes. For this purpose, samples were cored with three different 

inclinations 0° - 30° - 45°. The results of tests carried out with the confining pressures of 0 

- 2.5 - 5.0 - 10 - 15 MPa showed a marked fall in the strength with increasing angles. Such 

a decrease is more evident for low values of the confining pressure. Regardless of specimen 

orientations, a mean value of uniaxial shear strength of 46.5 MPa was found, limited to 

siltstones and marls. Additional uniaxial compression tests were carried out in order to 

determine the strength characteristics of marl after 20 loading cycles (between 0 and 6 

MPa) and after 10 wetting-drying cycles. It was observed that these severe testing 

conditions determine only a slight decrease of uniaxial strength (less than 20%) (Oberti et 

al., 1986). Concerning the sandstone lithotype, a mean uniaxial shear strength of 55 MPa 

(with maximum values above 100 MPa) was obtained from specimens sampled during the 

excavation of the diversion tunnel (Grandori et al., 1990). 

During the construction phase, several in situ tests, including hydraulic chamber tests and 

plate loading tests, were performed in order to assess the stiffness characteristics of the rock 

mass under operational conditions, i.e., for the normal stress interval predicted at the rock-

concrete interface (2–4 MPa) (Oberti et al., 1986). Special attention was given to the 

anisotropy of the rock mass owing to its stratified structure. The elastic and deformability 

moduli measured in directions respectively parallel and perpendicularly to the bedding 

planes are summarized in Table 1.1. The results, rather dispersed, suggest a mild 

anisotropy, with slightly larger stiffness in the direction parallel to the bedding. Some flat 

jack tests were performed to determine the rheological properties, particularly of the marly 

lithotype, by means of long-term loading tests under a sustained pressure of 10 MPa (about 

3 times the maximum normal stress induced by the dam). Under these very conservative 

testing conditions the creep deformation measured after 50 days was about the 60 – 70% 

of the instantaneous one (Oberti et al., 1986). 

Several Lugeon permeability tests allowed to define a mean permeability coefficient in the 

interval 1·10-7 – 4 ·10-7, decreasing with depth (Oberti et al., 1986). The foundation rock 

mass may be considered, as a whole, to be slightly permeable, with seepage limited to joints 

affecting the sandstone lithotype.  
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Table 1.1. Reversible (elastic) mean modulus, Ee, obtained from in situ tests 

(Oberti et al., 1986). 

 Ee // (MPa) Ee ⟂ (MPa) 

Hydraulic chamber test 18.0 16.0 

Plate loading test 24.0 18.0 

 

Within the exploration tunnels bored during the construction work, 6 direct shear tests were 

performed on specially prepared blocks, including 3 on joints consisting of laminated marl 

with local levels of recrystallization calcite, 2 on sandstone/marl contacts and 1 on intact 

marl block. At the ground surface 7 additional shear tests were carried out on one of the 

four detected laminated marl joints (Lembo Fazio et a., 1990; Alpina, 1976). All direct 

shear tests data points in terms of peak and residual τ - σn couples are plotted in Figure 1.9.  

A marked difference in the friction angle can be observed between common sandstone/marl 

contacts and laminated marl joints, from over 30° to about 13° (Lembo Fazio et al., 1990). 

The cohesion is very variable also depending on different test equipment: a relatively high 

value (cˈ = 200 kPa) can be obtained for laminated marl layers interpolating only surface-

test data points (Oberti et al., 1986), while a near-zero value was obtained for the same 

layer in an exploratory tunnel (with a less precise equipment) (Lembo Fazio et al., 1990).  

 

 

Figure 1.9. Direct shear tests results in terms of τ - σn pairs 
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The relatively high value of cohesion for very low stress levels can be explained by the 

presence of recrystallization calcite platelets between the thin clay layers forming the 

sheared bedding joints. 

Stress-displacement curves in the normal and tangential directions denote an elastoplastic 

behaviour with negligible brittleness and dilatancy. Shear and normal stiffness moduli of 

about 2 MPa/mm and 2.5 MPa/mm respectively can be considered as representative of the 

laminated joints in the test stress interval (0-6 MPa) (Lembo Fazio et al., 1990). 

Cross-hole tests performed at the design stage in 20 vertical boreholes, along the curved 

axis of the dam, gave P-waves velocities generally higher than 4000 m/s (Alpina, 1976). 

The highest velocities, up to 5000 m/s, were measured in the bottom part of the valley. The 

right abutment resulted slightly stiffer than the left, possibly for the presence of the fault. 

The effect of construction work was investigated repeating the measurement in the same 

boreholes, before and after the casting of the dam and the grouting of the curtain. An overall 

increase in stiffness was detected (Oberti et al., 1986).   

On May 9, 2020 a down-hole test was performed (SolGeo, 2020) in a new borehole 40-m 

deep and vertically oriented, located on the right abutment. Results of this test are plotted 

in Figure 1.10 and confirm previous findings. Apart from the first loosened 10 meters, 

wave velocities are almost constant with depth, oscillating around 2000 m/s and 4000 m/s, 

for shear and compressive waves respectively. 

 

1.2.4  Seismicity 

The seismic hazard model MPS04 (Stucchi et al., 2011), referred to by the Italian technical 

regulations (NTC, 2018), is based on the seismogenetic zonation (ZS9) of the entire 

national territory first published in 2004 (Meletti et al., 2006). 

Ridracoli area was the subject of a specific seismotectonic study performed by the Italian 

National Institute of Oceanography and Applied Geophysics (OGS, 2014). The study is 

based on a different zonation, especially regarding the definition of homogeneous 

seismogenetic zones in northern Apennine territory, between Emilia-Romagna and 

Tuscany.  

In particular, Ridracoli site is affected by the so-called "zone 531 – Appennino 

Romangnolo" which is characterized by frequent earthquakes, even of high intensity, with 

evidence of predominantly (OGS, 2014): 

− compressional and transcurrent motion: along 10°-30° south-dipping planes, with 

hypocentral depths between 10 and 20 km; 

− extensional motion: along approximately NW/SE-dipping planes, with shallow 

hypocentral depths (< 10 km).  

The maximum expected magnitude is about 6 (OGS, 2014). 
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Figure 1.10. VS and VP profile with depth from 2020 Down-hole test 

(SolGeo, 2020) 

 

Estimated PGA values are given in Table 1.2. They are calculated for reference periods 

(TR) of 101, 475 and 1950 years. The same table also shows the values obtained adopting 

the MPS04 model for a reference period of 1950 years.  

 

Table 1.2. PGA values for Ridracoli site, type A (rock) soil and different TR. 

 OGS (2014) MPS04 

TR (years) 101 475 1950 1950 

PGA (g) 0.156 0.281 0.449 0.316 
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The uniform hazard response spectra in horizontal and vertical directions derived in the 

OGS study (2014) for a reference period of 1950 years are plotted in Figure 1.11. A 

comparison is made with the design spectra obtained with Spectra-NTCver1.0.3, which is 

based on MPS04 model. 

 

 

Figure 1.11. Horizontal and vertical UHS for Ridracoli site and type-A soil 

 

1.2.5  Monitoring system  

Ridracoli Dam is provided with a comprehensive monitoring network which controls every 

aspect of its operational life.  

The dam structure and the rock foundation underneath are equipped with a great number of 

instruments, mainly grouped in five vertical sections: the main section, two far lateral and 

two intermediate lateral sections. The main ones are depicted in Figure 1.12. 

In the main section, the horizontal displacements are controlled with one direct pendulum 

fixed just below spillway level (PD/1-2) and two inverted pendulums fixed at depth of 50 

m and 25 m below the foundations level (PR/1-2/1 and PR/1-2/2 respectively). In the same 

section three multi-point borehole extensometers are also installed, inclined to the vertical 
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of +45°, -5° and -27°, respectively, where a positive angle indicates a borehole axis pointing 

upstream (ITCOLD, 1988).  

The two far lateral sections are equipped with a direct pendulum (PD/20-22 and PD/19-21 

for the right- and the left-side section, respectively) and a single inverted pendulum (PR/20-

22 and PR/19-21 for the right- and the left-side section, respectively), completely 

embedded in the rock foundation, and two borehole extensometers. The extensometers are 

of the same length of those of the main section, but the inclinations are different, +45° and 

-45°, and are read at the same depth of the inverted pendulum (ITCOLD, 1988).  

The intermediate sections have the same disposition of three extensometers as the main 

section, but without pendulums (ITCOLD, 1988). 

Within the structure, a seismic surveillance system is installed. It is composed of 4 triaxial 

accelerometers (A, B, C and D), 6 electrical extensometers and 2 pressure switch (ITCOLD, 

1988). 

Accelerometer A is embedded in a borehole, 40 m below the base level of the pulvinus, in 

vertical correspondence to the main section of the dam. Along the same vertical, 

accelerometers D and C are placed in the pulvinus and below the spillway level, 

respectively. Finally, sensor B records ground motion of left abutment, just below the crest 

level. 

 

Figure 1.12. Main instruments for the control of displacements and accelerations of 

Ridracoli Dam monitoring system, and their relative position and orientation with respect to 

the main geological features (bedding planes and fault). 
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The strongest seismic event ever recorded by the 4 accelerometers took place on January 

26, 2003. The epicentral distance of the earthquake was about 10 km, with a local 

magnitude estimated in 4.3 (Buffi, 2018). The structure did not suffer any damage. The 

recordings of this event are attached in Appendix A. 

Other installed instruments include (ITCOLD, 1988): 

− 3 pendulums in rock to control abutment movements, 

− 6 levelling networks at different elevations outside and inside (tunnels) the 

structure, 

− a trigonometric levelling network, 

− long base extensometers in the abutments, 

− piezometers in the foundation and in the abutments, 

− axial extensometers and dilatometers at joint locations in the dam body to monitor 

their opening, 

− extensometers and dilatometers across the fault, 

− load cells and electric extensometer to monitor tensions and deformations in the 

dam body, 

− thermometers at different elevations in the dam body and immersed in the reservoir 

water, 

− measuring spillways, 

− a complete weather station, 

− a network of 5 seismometers for the microseismic surveillance of the reservoir. 
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2.  Seismic analysis of rock wedges at the abutments 

2.1 Introduction 

One of the most important issues in a seismic response analysis of an arch dam from a 

geotechnical point of view relies on the assessment of the stability of rock wedges present 

at the level of the foundation rock mass, and, in particular, at the level of the abutments. It 

is possible, although not straightforward, to include these known rock wedges (i.e., the 

single discontinuities that isolate them from the rest of the rock mass) in a complete 

numerical model of the dam-water-foundation system (see Chapter 3). A completely 

numerical approach via explicit FEM was presented by the U.S. Regulatory Commission 

(Mills-Bria et al., 2008). A similar inclusive strategy, despite being desirable, is not always 

easy to implement. In fact, a need to simplify local features arises when dealing with large 

complex models. As an example, a small change in the geometry of the abutments in order 

to smoothen the flanks of the valley may largely affect shapes and volumes of possible 

wedges which are present at those locations. Similar considerations can be made for the 

definition of seepage conditions, local consolidation works, or interaction properties 

between adjacent rock volumes. Despite being essential for analysing the dynamic 

behaviour of a single wedge, these aspects may be cumbersome to implement in a dam-

water-foundation model at a reservoir scale. Moreover, the level of detail needed for 

including rock wedges may greatly increase the computational effort. 

A simpler approach to investigate the seismic behaviour of single rock wedges under 

seismic excitation consists in directly integrating their relative displacement in the time 

domain under proper boundary conditions. Verrucci et al. (2018) developed a method that 

consider all the three acceleration components independently applied to the rock mass. 

Possible changes in the kinematics of the motion can also be followed during the seismic 

event: the sliding on either one or two planar discontinuities, the complete detachment and 

subsequent recovering of contacts.  It is an evolution of the original 2D rigid-block method 

named after Newmark (1965), adapted to consider the 3D nature of the wedge stability 

problem, and allows for a performed-based assessment of dam abutment behaviour during 

seismic events. A similar approach has been recently implemented by Mostafai and 

Behnamfar (2021). 

This chapter focuses on the extension of the Newmark displacement method to the analysis 

of 3D sliding rock wedges at arch-dam abutments. Part of the material included in this 

Chapter 2 has already been included in Lusini et al. (2023), currently under review. The 

major difficulty for applying the method to dam abutment stability, which in contrast is 

well established for the back analysis of seismic-induced rockslides, relies on the need to 

include the effects of the dam-wedge interaction, owing to the large variability of the forces 

transmitted during the earthquake. The method is then applied to Ridracoli case study. 
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2.2 3D Newmark method  

The 3D Newmark method developed by Verrucci et al. (2018) considers rock wedges as 

rigid and initially in contact with the underlying rock mass through three planar 

discontinuities forming a niche. Non-inertial actions include self-weight, normal and 

tangential reactions along the contact surfaces, uplift forces due to water pressure and 

possible reinforcement measures such as prestressed bar or anchors systems. The dynamic 

equilibrium is invariably applied to the rock wedge and, in particular, the inertial force with 

all its three spatial components is considered as a further body force acting on the wedge. 

A relative motion of the wedge with respect to the rock mass arises when the shear strength 

on the contact planes is exceeded; no tensile strength is considered. Only a translational 

motion is admissible, while rotations are neglected. This assumption makes the method 

more suitable for not very slender blocks, whose motion is less influenced by the resultant 

moment of the applied forces. When the relative motion ceases, the wedge returns to be 

tight to the rock mass at its updated position as long as the shear strength is not exceeded 

again. In this method endless contact planes are considered and therefore an ex post 

verification should be carried out in order to check whether the final calculated 

displacement is consistent to the actual niche extension and other possible mechanisms are 

avoided. 

The input data include the three components of the accelerograms, the mass of the wedge, 

the orientation of the planes forming the niche, the sides of the half-spaces occupied by the 

block (i.e. the inward normal of the wedge faces), the shear strength of each plane according 

to a Mohr-Coulomb criterion and, if any, the external forces applied to the wedge. If a 

cohesive contribution is considered, the surface areas of the contact planes are also needed. 

The effective removability of the wedge, as defined in Goodman and Shi (1985), should be 

preliminary assessed.  

After an initial calculation of the required vector entities that describe the geometrical 

condition, the method is implemented through a finite difference explicit integration in the 

time domain. For each time step the following phases are required: (a) identification of the 

current constraint configuration (active contacts on the discontinuity planes); (b) 

calculation of the resultant force (i.e. the resultant of static and dynamic external forces in 

addition to gravitational and inertial forces); (c) identification of the current mechanism 

among sliding on either one or two planes, complete detachment and impossibility of 

relative motion; (d) calculation of the block acceleration relative to the rock mass and (e) 

integration of the relative velocity and displacement. 

The recovery of a plane contact that was previously lost is treated through a simplified 

assumption with respect to the impact phenomenon: the normal and tangential velocity 

components are respectively nulled and preserved. In a restitution coefficient logic this 

corresponds to consider a normal coefficient KN equal to 0 and a tangential coefficient KT 

equal to 1. Additional details on the integration method are given in Lusini et. al. (2023). 
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2.3 Wedges and loads 

Concerning arch dam abutments, a classical assumption after Londe (1973) is to consider 

three planar discontinuities separating the wedge from the rest of the rock mass. The U.S. 

Federal Energy Regulatory Commission (FERC, 2018) guidelines suggest that two of these 

planes consist of planes of weakness (joints) of the rock mass while the third one is a release 

vertical plane in correspondence of the dam upstream face (Figure 2.1). The release plane 

is not an actual joint and should only behave as a detachment surface, due to the negligible 

tensile strength of the rock mass; therefore, a check should be introduced in order to ensure 

the proper mechanism with respect to the release plane and to avoid possible sliding on it 

before the occurrence of the first detachment.  

  

 

Figure 2.1. Definition of wedges on a generic arch-dam abutment. 

 

2.3.1 Shear strength along discontinuity planes 

Analyses are usually carried out using simple constitutive laws to model the shear strength 

of the discontinuities which separate the wedge from the rest of the rock mass, such as the 

classical Mohr-Coulomb strength criterion or the non-linear Barton criterion. In lack of a 

sufficient number of in situ shear tests, as is often the case, a Barton law based on easily 

ascertainable parameters (JRC, JCS, φ'b) can be estimated and then linearised in the 

pressure range of interest in order to obtain the two parameters of a Mohr-Coulomb strength 

criterion: the equivalent cohesion (cˈ) and friction angle (φ'). Although less refined, the 
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Mohr-Coulomb strength criterion is independent from the actual stress distribution along 

the discontinuity plane, making it more suitable for an approach that considers the 

equilibrium of the resultant forces rather than the real stress distribution. A distinction 

should be made between peak and residual strength parameters of the discontinuity. In a 

step-by-step dynamic analysis, the progressive transition from peak to residual parameters 

could be considered, especially in terms of cohesion, which is typically the parameter most 

affected by the strength reduction.  

 

2.3.2 Seismic input selection 

The seismic input should be selected on the basis of a spectrum compatibility analysis. 

Starting from a target elastic spectrum derived from a seismotectonic analysis of the site, 

an interval of periods for the spectrum-compatibility can be determined as suggested by 

Chopra (2020) for arch dams as 0.25 T1 < T < 2.5 T1, where T1 is the fundamental period 

of the dam that can be obtained from vibrodyne tests, actual recorded seismic responses or 

modal numerical analyses. In a range of periods determined in this way, the forces 

transmitted by the dam are expected to experience large variations compared to those 

computed considering a pseudo-static approach, because the vibration modes of the 

structure are excited. For the wedge stability analyses, however, it could be useful to also 

consider the periods for which the condition T < 0.25 T1 holds, considering the main period 

of the rock slope itself, that is more rigid than the structure. Accordingly, it is reasonable 

to extend the spectrum compatibility from a near-zero multiplier up to 2.5 times the 

fundamental period of the structure. 

For geotechnical applications it is usually recommended to avoid the use of artificial 

accelerograms (NTC, 2018). International strong motion databases are typically searched 

to find earthquake recordings compatible with the site-specific target spectrum and sharing 

similar characteristics (such as focal mechanisms, MW, PGA, epicentral distance, VS,30 

etc...). In addition, it should be avoided an excessive scaling of the effective signals to 

enforce a compatibility. A possible strategy consists in selecting a certain number of real 

strong motion recordings which singularly matches the compatibility with the target elastic 

spectrum at least in a portion of the interval of periods considered. The envelope of the 

maximum spectral ordinates of selected accelerograms must well approximate the target 

spectrum by falling within a band of tolerance. 

In the Italian building code (NTC, 2018) a minimum number of seven recording is 

suggested. The spectrum compatibility, however, is only checked for the mean spectral 

value of the seven selected ground motions. In the Italian guidelines for the seismic analysis 

of large dams (Lanzi and Paoliani, 2018) a number of 3 accelerogram is allowed for 

concrete dams, but the spectrum compatibility is assessed for each recording separately 

  



Chapter 2 – Seismic analysis of rock wedges at the abutments 

 

 

25 

 

2.3.3 Dam thrust 

An important task of the abutment stability analysis is the proper definition of the forces 

transmitted by the dam. The analytical approaches, as the Trial Load method (Howell and 

Jaquith, 1929) and the Tölke method (Tölke, 1938), were found overestimating the 

effective forces transmitted to the abutments in Ridracoli case. Nowadays, static finite-

element models of dams are in the daily engineering practice. Therefore, the structural loads 

on the faces of the analysed wedge can be determined from either the nodal point reaction 

forces or the contact stresses extracted from these numerical models. In the latter case, the 

output stresses (in terms of cartesian components or principal stresses) should be projected 

into one normal and two shear stress components in the local reference system of the 

contact surface to apply the proposed method. Because rock masses are often incapable of 

sustaining tension, it is prudent to null any tensile normal stress (Goodman and Powell, 

2003). 

The calculation of dynamic forces exerted by an arch dam on a generic wedge in dynamic 

conditions is not an easy task, currently impossible with analytical tools, because they 

depend on the inertial characteristics of the dam, the foundation and the impounded water 

and on their mutual interactions. A fixed-base dynamic FE analysis of the dam may be 

sufficient for the level of detail required in this kind of analysis, especially when 

considering the uncertainties behind the definition of other forces. 

Further details on analytical and numerical methods for arch-dam static and dynamic 

analysis are given in Chapter 3. 

 

2.3.4 Uplift forces 

Following the scheme proposed by Goodman and Powell (2003) and the suggestions of 

FERC guidelines, a hydrostatic distribution of the pore pressure, referring to the maximum 

regulation level of the reservoir, can be applied to the discontinuity edges that outcrop 

upstream of the dam, below the water level, or located in the rock mass just beneath the 

dam. A linear reduction is assumed on the discontinuities planes until a null pressure is 

reached at the edges that outcrop on the rock mass surface downstream of the dam (Figure 

2.2). This corresponds to underestimate the decrease in pore pressures due to the presence 

of a grout curtain and a drain system, on the safe side. As long as displacements and 

openings of joints during the seismic action are sufficiently small it is reasonable to neglect 

the dynamic variation of pore pressure during the earthquake. 
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Figure 2.2. Uplift forces on wedge lower faces (modified 

from Goodman & Powell, 2003). 

 

2.4 Ridracoli Dam: wedges and loads 

For its orientation and geomorphology, the right abutment of Ridracoli dam presents the 

most critical stability conditions (Bavestrello, 1983). As outlined in Chapter 1 the 

foundation rock mass is characterized by a typical cubic joint system, generated by the sets 

ST (corresponding to the bedding planes), KKI (lined with the strata dip direction) and 

KKD (lined with the strike of the strata). Among bedding planes, the most concerning 

strength parameters can be found along 4 sheared marl strata (variable cˈ 0-200 kPa and φ' 

= 13°), while all the other stratigraphic contacts show quite higher friction angles and 

variable cohesions.  

Therefore, it is assumed that any possible collapse mechanism should necessarily involve 

one of the laminated marl layers. Only two of them emerge on the flank of the right 

abutment and are used for defining two possible unstable wedges. The other boundaries of 

the wedges are the vertical plane of potential detachment beneath the upstream face (where 

a subvertical grout curtain interrupts the rock mass continuity) and a supposed wide-

extended joint of the KKI set, located as to maximize the thrust of the dam. The 

stereographic projection of the defining planes are plotted in Figure 2.3. The dimensions 

of the wedges are listed in Table 2.1. Since the two laminated interbedding planes are quite 

close one another, the upper wedge (W1) is a smaller portion of the other one (W2)  

(Figure 2.4). 
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Figure 2.3. Stereographic projection of the planes defining the wedges and the right 

abutment slope. 

 

A first attempt to assess the stability of the two wedges, with the aim of revaluating the 

stability condition of the right abutment in seismic conditions, was presented in Lusini et 

al. (2022) using a limit equilibrium approach. The results were not completely satisfactory, 

since a safety factor less than 1 was obtained for the most critical directions of the pseudo-

static force and for a no-cohesion hypothesis along the discontinuities (i.e., the same 

approach followed in the design project of the dam, on the safe side), in agreement with the 

assumptions made at the detailed project stage, both for wedge W1 and W2. A comparison 

with the results of the analyses described in this paper will be presented in the Section 

Result and discussion. 

 

Table 2.1. Size of the wedges defined for the seismic analysis of the right abutment. 

wedge volume (m3) ST face area (m2) KKI face area (m2) 

W1 49532 4602 1654 

W2 83504 6340 2346 
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Figure 2.4. Definition of wedges: a) W1 and b) W2 on Ridracoli dam right abutment. 

 

 

2.4.1 Ridracoli Dam: shear strength along discontinuity planes 

For the laminated marl layers the experimental value of the friction angle is adopted (13°), 

as measured through the in-situ shear tests, while a mean cohesion of 50 kPa, equal to 1/4 

of the measured value at ground surface (200 kPa) but larger than the value obtained for 

the same laminated layer in exploratory tunnels (near-zero), can be considered as 

representative, also after scale-effect considerations. For the other two joint surfaces, in 

lack of experimental data, a typical value of friction angle for the joint walls of that rock 

formation is assigned, equal to 36°. A cohesion of 50 kPa is finally adopted also for these 

surfaces, owing to the certain presence of rock bridges. All the planes have no tensile 

strength. However, several authors conducted their analyses with a no-cohesion hypothesis 

on each discontinuity owing to the difficult to determine its effective value at true scale 

(Londe, 1969; Goodman and Powell, 2003). Other analyses are then performed in order to 

investigate the influence of the cohesive component considering: a no-cohesion hypothesis 

(borrowed from the design project), a ductile behaviour (the nominal cohesion of 50 kPa is 

maintained for the whole analysis), a ‘brittle’ rupture (cohesion suddenly drops to zero as 

soon as the block starts to move), and two different linear decay laws for which the cohesion 

is annulled after a threshold of the displacement magnitude of 0.001 m and 0.01 m is 

reached, respectively. 
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2.4.2  Ridracoli Dam: seismic input selection 

From a site-specific seismotectonic study (OGS, 2014) the uniform hazard response spectra 

(UHRS) are available in the horizontal and vertical directions for various return periods 

(TR) and for a critical damping ratio of 5%. A TR = 1950 years is considered, which 

corresponds to the return period of an earthquake associated to the ultimate limit state as 

defined in the Italian Building Technical Code (NTC, 2018) and Italian Dam Code (NTD, 

2014). Recorded seismic events are chosen from PEER (Pacific Eartquake Engineering 

Research Center) NGA-West2 database (Ancheta et al., 2013) and Rexel software 

(Iervolino et al., 2010) ESM (European Strong Motion) databases. The selected signals 

share the same soil type and show Moment Magnitude (MW) and Peak Ground 

Acceleration (PGA) not far from the expected seismic action in the Ridracoli area (Table 

2.2): the horizontal scale factors (SF) to reach the horizontal expected PGA are kept in the 

range 1 < SF < 2. The events exhibit a certain variability in terms of Arias intensity (IA), 

significant duration (TD) and mean period (TM) to cover a large range of possible events. 

For each event two accelerograms are tested for the spectrum compatibility with the UHRS, 

namely the horizontal one (i.e. the square root sum of squares of the recorded North and 

East components), and the vertical one. In order to account for the composition of the two 

horizontal spectra, the target UHRS is multiplied times 1.414. The range of compatibility, 

according to the interval discussed in the previous section, extends from 0.04 s to 0.72 s, 

the main period of the dam being about 0.36 s (Buffi, 2017). 

 

Table 2.2. Seismic characteristics of the selected records in the three direction N = North,  

E = East and U = Up. 

Earthquake 
 Coalinga (1983) Umbria-Marche (1997) L’Aquila (2009) 

Seismic Database 
 PEER - NGA-West2 REXEL - ESM PEER - NGA-West2 

Arias intensity (m/s) 

N 0.5592 0.2836 0.6487 

E 0.8445 0.4502 0.8067 

U 0.2390 0.2026 0.3332 

significative duration (s) 

N 8.5110 2.9690 3.4830 

E 6.2035 1.8620 2.3715 

U 11.5775 3.5820 6.5830 

mean period (s) 

N 0.2964 0.1295 0.1923 

E 0.2656 0.1794 0.2355 

U 0.2949 0.1571 0.2342 
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Spectrum compatibility is first assessed in the horizontal direction (Figure 2.5) checking 

whether the three scaled SRSS spectra fall below the target spectrum plus a 30% increase 

in the entire interval, and at least one of them for every period of the interval also fall above 

the target spectrum minus a 10% decrease. Less stringent conditions are fixed for the 

vertical component Up-Down (U-D), which is scaled independently (Figure 2.6). For every 

period of interest at least one of the three vertical spectra must fall below the target spectrum 

plus a 30% increase, and one of them above the target spectrum minus a 10%. However, 

these limits are not strictly satisfied in the interval 0.6 s < T < 0.72 s. Vertical scale factors 

reach a maximum value of 3.5.  

The baseline correction is applied to all acceleration time histories before using them for 

the numerical analyses. When utilised as input for the 3D displacement method to calculate 

the block inertial forces they are also corrected for the topographic amplification factor  

ST = 1.4. This correction is not adopted when the accelerograms are used for the seismic 

excitation of the FE model to obtain the dam thrust on the abutment, as described in the 

next section. The horizontal seismic components, N-S and E-W, extracted from seismic 

databases are applied in the downstream-upstream and the right-left cross directions of the 

valley, respectively, in the local reference system of the dam, which results as rotated of 

28° clockwise with respect to the cartographic one.  

 

 

Figure 2.5. UHRS in horizontal direction (composition N-E) and SRSS of compatible 

earthquake records selected for the analyses. The greeb band indicates the interval of 

periods considered and the red one the tolerance range around the Target Spectrum. 
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Figure 2.6. UHRS in vertical direction and vertical spectra of compatible 

earthquake records selected for the analyses. The green band indicates the interval 

of periods considered and the red one the tolerance around the Target Spectrum. 

 

2.4.3 Ridracoli Dam: dam thrust 

The analyses presented in this paper are performed using three different schemes for the 

interaction forces between the dam and the rock block on the abutment: (a) only static 

forces calculated through the analytic method that was adopted for the original design 

project of the dam; (b) static forces calculated from the analytic method and a dynamic 

force surplus from a FE model, (c) both static and dynamic forces calculated through a FE 

model.  

For the design of Ridracoli Dam an evolution of the Tölke method, proposed by 

Swaminathan (1960) to take into account the foundation deformability, was adopted, 

consisting in applying the Vogt (1925) solutions for rigid foundations on an elastic half-

space as boundary conditions both for cantilever and arch elements (see Chapter 3). 

The FE static analysis is conducted in the implicit FE Abaqus® environment, simulating 

the elastic behaviour of both the dam and the underlying rock mass with a model slightly 

modified from that presented in Buffi (2017). The dynamic FE model corresponds to the 

core (the dam body) of the static model, fixed at the base and equipped with Westergaard 

added masses (Westergaard, 1933) to simulate the inertial effects of the impounded water. 

The dynamic analyses are conducted under the assumption of a monolithic elastic 
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behaviour of the concrete structure and a critical damping ratio of 5%. Both static and 

dynamic FE models are reported in Figure 2.7. 

First the static thrust transmitted by the dam to each wedge is calculated (Table 2.3): when 

the analytical method is considered the thrust values are extracted from tabular results of 

the design project (Alpina, 1976), while when the FE model is used the thrust values are 

extracted from Abaqus® output database as nodal quantities, the resulting force (F) is 

calculated vectorially summing the nodal contact forces and nodal reaction forces for the 

static and dynamic model, respectively. It has three components in the three directions of 

the local coordinate system of the dam. The dynamic surplus time history of the thrust is 

then summed ex-post to the static thrust of the dam-foundation model (case c) (Figure 2.8) 

or to the analytic static thrust (case b), holding the superimposition of effects for elastic 

media.  

 

 

Figure 2.7. FE model of the dam and underlying rock mass for static elastic analysis 

(a), and mesh of the fixed-base dynamic model (b). 
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Figure 2.8. The dynamic oscillations of the dam thrust in the three orthogonal components 

(Down, East, North) and for the three selected earthquake under the (c) approach for the 

definition of the thrust. 
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Table 2.3. Static dam thrust on the wedges. 

 
Thrust components from the 

analytical method (MN) 

Thrust components from the 

complete FEM (MN) 

wedge North East Up North East Up 

W1 641.87 1167.61 -365.07 174.77 632.76 -51.33 

W2 758.46 1357.47 -484.32 214.43 705.73 -149.19 

 

 

2.4.4 Ridracoli Dam: uplift forces 

Water pressures on the discontinuity planes are calculated with a reference water level 

equal to the maximum regulation level of the dam (560 m a.s.l.). The maximum pressure 

(for wedge W2) is the hydrostatic pressure at the lowest point of the face corresponding to 

the release plane (umax = 602.1 kPa). The scheme of uplift forces and pressures, following 

the framework of Goodman and Powell (2003), is shown in Figure 2.9 for the wedge W2. 

The resultant uplift water forces are reported in Table 2.4.   

 

 

Figure 2.9. Hydraulic conditions for W2: vertical sections Ω1 and Ω2 help visualizing 

water pressures in 2D (in light-blue). 
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2.4.5 Ridracoli Dam: other forces 

An overall force on the right abutment of about 965 MN is exerted by 543 rock anchors, 

with working tensions of 1475 kN or 1770 kN and an average length of 37 m, so that the 

anchoring zone is all below the second laminated layer (Bavestrello, 1983). A recent 

measure of the residual tension of the anchors showed a loss of about 50% with respect to 

the initial value applied during the construction. Such a reduction of the anchor forces is 

not considered in the analyses on the safe side. This apparent contradiction is further 

explained in Lusini et al. (2022): the anchor forces, in fact, are inclined with respect to the 

intersection of ST and KKI planes (ISK) in such a way that the tangential component is 

directed downstream, tending to lift the wedge and pushing it away from the dam. This 

arrangement was the most efficient for the consolidation of the abutment during the 

excavation work preliminary to the dam construction (Bavestrello, 1983). The resultant 

anchor forces, together with other structural weights, are reported in Table 2.4.  

  

Table 2.4. Uplift water forces and other static forces applied on the wedges. 

Wedge Load type 
Force (MN) 

North East Up 

W1 

Uplift water forces -36.56 -197.50 376.21 

Anchor forces 79.17 295.46 -142.63 

Structural weights 0 0 -140.00 

W2 

Uplift water forces 293.66 -190.91 54.13 

Anchor forces 107.74 402.08 -194.11 

Structural weights 0 0 -140.00 

 

 

2.5 Ridracoli Dam: results and discussion 

All the results in terms of cumulated displacements for wedges W1 and W2 are summarised 

in Table 2.5 and Table 2.6, respectively. For both wedges the kinematics activated during 

the application of the acceleration time histories of the three earthquakes are always limited 

to two cases, i.e. sliding along the intersection line ISK between planes ST and KKI, ISK, 

and sliding on the ST plane only. To estimate the entity of the total sliding developed along 

the niche surfaces, in addition to the magnitude of the residual relative displacement (|dr|res) 
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also the maximum magnitude of the displacement reached during the seismic excitation 

(|dr|max) and the total path length (ℓ) covered along the curvilinear trajectory are reported in 

the tables, being |dr|  |dr|max  ℓ. 

 

Table 2.5. Displacements calculated for wedge W1 under all the considered combination 

of assumptions. Seismic input: C = Coalinga (1983); UM = Umbria-Marche (1997);  

A = L’Aquila (2009). Empty values of |dr|max mean that |dr|res = |dr|max. 

 (a) (b) (c) 

static interaction: analytic method analytic method FE method 

dynamic interaction: none FE method FE method 

cohesion seismic |dr|res |dr|max ℓ |dr|res |dr|max ℓ |dr|res |dr|max ℓ 

hypotheses input (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

c' = 0 

C 12.6 - 13.6 16.7 - 18.7 0.1 5.9 15.1 

UM 55.5 - 56.0 55.6 - 56.1 9.4 - 10.8 

A 8.2 - 8.6 10.4 - 11.2 0.1 0.4 1.1 

c' = 50 kPa, 

(brittle 

behaviour) 

C 11.5 - 12.2 15.6 - 17.2 0.1 4.6 10.2 

UM 52.6 - 53.0 52.7 - 53.1 8.5 - 9.8 

A 5.2 - 5.2 8.2 - 8.3 0.0 - 0.0 

linear 

decreasing 

cohesion 

(0-0.001m) 

C 7.2 - 7.5 11.1 - 11.9 0.2 1.4 3.5 

UM 42.9 - 43.3 43.0 - 43.4 4.9 - 5.8 

A 0.2 - 0.2 2.0 - 2.0 0.0 - 0.0 

linear 

decreasing 

cohesion 

(0-0.01m) 

C 2.3 - 2.5 3.8 - 4.4 0.2 0.5 1.5 

UM 29.2 - 29.6 29.3 - 29.6 1.7 - 2.4 

A 0.1 - 0.1 0.3 - 0.3 0.0 - 0.0 

c' = 50 kPa 

(ductile 

behaviour) 

C 2.0 - 2.3 3.1 - 3.8 0.1 0.5 1.5 

UM 12.0 - 12.3 12.1 - 12.4 1.5 - 2.1 

A 0.1 - 0.1 0.3 - 0.3 0.0 - 0.0 
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Table 2.6. Displacements calculated for wedge W2 under all the considered 

combination of assumptions. Seismic input: C = Coalinga (1983); UM = Umbria-

Marche (1997); A = l’Aquila (2009). Empty values of |dr|max mean that |dr|res = |dr|max. 

 (a) (b) (c) 

static interaction: analytic method analytic method FE method 

dynamic interaction: none FE method FE method 

cohesion seismic |dr|res |dr|max   ℓ |dr|res |dr|max ℓ |dr|res |dr|max   ℓ 

hypotheses input (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

c' = 0 

C 6.2 7.5 14.4 9.2 - 19.5 22.3 - 43.8 

UM 33.0 - 34.9 33.0 - 34.9 2.9 6.7 27.0 

A 2.8 - 5.3 4.0 - 7.5 2.1 7.1 21.6 

c' = 50 kPa, 

(brittle 

behaviour) 

C 5.5 6.8 12.9 8.3 8.7 17.9 20.9 - 42.4 

UM 31.3 - 33.0 31.1 - 33.1 0.1 6.2 24.5 

A 2.3 - 2.3 3.2 - 5.6 0.5 5.5 18.3 

linear 

decreasing 

cohesion  

(0-0.001m) 

C 3.5 4.3 8.0 5.1 6.2 11.9 15.5 - 36.2 

UM 24.7 - 26.4 24.7 - 26.4 0.1 4.6 19.7 

A 0.1 - 0.1 0.2 - 0.3 0.4 3.1 10.2 

linear 

decreasing 

cohesion 

(0-0.01m) 

C 1.4 2.4 4.3 2.4 3.8 7.3 12.9 - 28.7 

UM 18.2 - 19.8 18.2 - 19.8 0.1 2.4 11.7 

A 0.0 - 0.0 0.1 - 0.1 1.4 - 2.3 

c' = 50 kPa 

(ductile 

behaviour) 

C 1.3 2.2 3.9 1.9 3.5 6.2 6.0 8.2 16.3 

UM 9.1 - 10.2 9.1 - 10.3 0.9 2.3 7.0 

A 0.0 - 0.0 0.1 - 0.1 1.3 - 2.0 
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The maximum values of |dr|res (in bold in Tables 2.5 and 2.6) are obtained for the Umbria-

Marche (1997) seismic input and the zero-cohesion hypothesis, using the so called ‘hybrid’ 

approach for the definition of dam thrust (c method). They are equal to 56 mm and 33 mm 

for W1 and W2 respectively. In general, when excited with L’Aquila input, the wedges 

tend to remain locked in the niche for most of the cases considered. Sometimes the 

maximum reached level of displacement |dr|max and the path length ℓ significantly differ 

from the final |dr|res, thus meaning that the wedges complete a nearly closed loop or a path 

with a significant retrogressive phase. This happens in many cases for W2, while only using 

the (c) method for W1. In some cases, the difference rises up to more than an order of 

magnitude. 

Further details of the influence of different hypotheses on dam thrust and cohesion 

contribution are given in the following. 

 

2.5.1 Ridracoli Dam: influence of the interaction forces  

For comparing the influence of the different approaches used to define the dam-wedge 

interaction forces a condition with a null cohesion along the discontinuities is considered 

(Figure 2.10). In case of W1, the accumulated displacements are always less than 60 mm, 

with a moderate variability between the three earthquakes. The largest values are obtained 

with the Umbria-Marche (1997) signal (|dr| = 56 mm), which has the highest spectral 

ordinates for the lowest periods, despite having the lowest energy content. Coalinga (1983) 

earthquake follows, with maximum displacements in the order of 16 mm. Finally, the 

L'Aquila (2009) earthquake induces about 10 mm of displacements. When the fully 

numerical thrust estimation ((c) method) is applied, the magnitude of the static dam thrust 

is much smaller for all the considered earthquakes and, consequently, the related 

displacements are from one to two orders of magnitude smaller than those computed with 

(a) and (b) methods, which include the analytical static solution. Also, the activated 

kinematics is different, depending on the orientation of the resultant force: there is a 

prevalent sliding on the ST plane for (c), while a sliding on the intersection line ISK is 

produced in cases (a) and (b). 
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Figure 2.10. Displacement cumulation in the time domain when a c' = 0 (‘no 

cohesion’) condition is applied on wedge contact faces. 

 

For wedge W2 the general trend is similar to W1, with slightly smaller displacements (the 

maximum is less than 33 mm). Nevertheless, the fully numerical thrust estimation ((c) 

method) causes for all the input signals maximum displacements quite similar to those 

calculated with (a) and (b) methods. This change of susceptibility of the wedge in the case 

of the UM input may be due to the prevalent direction of the total forces applied to the 

wedges, related to the wedge-dam relative position: those acting on W2 induce a sliding on 

the ST plane, with a significant downward component, while W1 is induced to move 

upward on the same plane. Therefore, the seismic performance can significantly differ.  

In both cases the wedges tend to stop when one of the contacts lost during the excitation is 

regained, i.e., the KKI plane or the release plane. This same difference in the behaviour 

between W1 and W2 is not observed when the analytical static thrust is considered, as the 

wedges move upward without reversal and always stop along or close to the intersection 
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line ISK. To better focus on this aspect, the most typical trajectories of the wedges observed 

under the hypotheses (b) and (c) are reported in Figures 2.11 and 2.12, for wedges W1 and 

W2 respectively. Hypothesis (a) shows the same tendency to hypothesis (b), with slightly 

smaller displacements, and therefore is disregarded. These results confirm that, although 

the irreversible displacements develop in seismic condition, the static part of the dam thrust, 

in term of both magnitude and orientation, is always one of the most critical factors 

influencing the final amount of the displacements. Due to the complexity of the three-

dimensional conditions, this effect cannot be summarised by an explicit critical acceleration 

such as the one that can be estimated in the 1D/2D Newmark analyses. 

 

 

Figure 2.11. Trajectories and time histories of displacement and velocity magnitude of 

wedge W1 under the UM earthquake and considering a c' = 0 condition for the cohesion 

of wedge contact faces. 
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Figure 2.12. Trajectories and time histories of displacement and velocity magnitude of 

wedge W2 under the UM earthquake and considering a c' = 0 condition for the cohesion 

of wedge contact faces. 

 

2.5.2 Ridracoli Dam: influence of cohesion  

Different hypotheses on the initial cohesion and on the transition to residual conditions 

clearly affect the final calculated displacement |dr|res. First, for the sake of comparison, the 

same conditions graphically depicted in Figure 2.10 are plotted again under the assumption 

of ‘ductile’ behaviour (c' = 50 kPa) in Figure 2.13. The ‘ductile’ case curves follow 

comparable trends with respect to the ‘null cohesion’ case (Figure 2.10). In general, 

smaller displacements are cumulated, as expected.  
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Figure 2.13. Displacement cumulation in the time domain when a c' = 50 kPa 

condition is applied on wedge contact faces. 

 

If the only combination of analytic and numerical dam thrust estimation (b) and the 

Umbria-Marche (1997) input is considered, which always generates the largest 

displacements, the effect of different cohesion hypotheses along the wedge faces can be 

visualised in Figure 2.14. Between the two limit conditions (c' = 0 kPa and c' = 50 kPa), a 

range of intermediate level of residual displacement (|dr|res) is obtained. The ‘brittle’ 

hypothesis case is practically coincident to the no-cohesion one. The two linear decay 

hypotheses, assuming zero cohesion at displacement thresholds of 0.001 m and 0.01 m, 

respectively, roughly correspond to 1/2 and 2/3 of the no-cohesion case displacements and 

to 2 and 3 times the ‘ductile’ case displacements. 
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Figure 2.14. Influence of cohesion hypotheses on the wedge contact faces on the 

cumulated displacement calculated via Newmark integration; only Umbria-Marche (1997) 

earthquake and (c) approach for calculating dam thrusts is considered (FEM + FEM). 

 

2.5.3 Comparison with limit equilibrium analyses 

Lusini et al. (2022) analysed the seismic stability of the two wedges by adopting the limit 

equilibrium approach. A complete rotation was applied to the horizontal component of the 

pseudo-static seismic action calculated following the Italian Building Code (NTC, 2018). 

In particular, the horizontal seismic coefficient, kH, was considered as equal to 0.24 and the 

vertical seismic coefficient, kV, was taken as half of it. This derives from applying a 

reduction coefficient of 0.38 (from tabular values in NTC, 2018) to the maximum expected 

acceleration. Rampello et al. (2010) emphasise that this value pertains a displacement 

performance larger than 5 cm, for a lower threshold a higher coefficient can be more 

suitable.  The thrust of the dam in static conditions was derived using the analytical method 

((a) method), while the dynamic effect of the interaction was neglected. For Wedge 1 the 

factor of safety SF was lower than 1 for a horizontal seismic action with an azimuth in the 

-60° – 60° range and under the no-cohesion hypothesis (the range reduced to the azimuth 

range -30° – 40° for Wedge 2). SF was higher than 1 for every possible direction of the 

pseudo-static force when a c' = 50 kPa was considered on wedge faces. The results are 

compared in Figure 2.15 with the residual displacements calculated through the 3D 

Newmark method. For the sake of comparability, the Newmark approach is here slightly 

modified: in addition to the vertical component only one of the two horizontal components 

of the earthquake is applied, i.e. the one with the highest energy content. The most severe 

performance and the minimum SF are obtained for approximately the same orientation of 

the horizontal seismic action (approximately North). For both type of analyses W1 is less 

stable (i.e. prone to higher irreversible seismic displacements) than W2.  
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Figure 2.15. Influence of the azimuth of the seismic horizontal input: factor of safety (on 

the radial axis) calculated by the LEM pseudo-static analyses (left) and left). Right: 

cumulated displacements calculated via Newmark integration (right). 
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3.  Analysis of dam-water-foundation interaction 

3.1 Introduction 

In both static and dynamic conditions, the interaction of a dam with its rock-foundation plays a key 

role in order to obtain reliable results from a stress-strain analysis. The first analytical methods 

developed to conduct elastic static analyses of arch (or arch-gravity) dams, however, did not include 

the deformability of the rock foundation, considering the dam as fixed at the base (Ritter, 1931). 

Further developments of these methods, such as the advanced versions of the Trial Load Method 

(1938), tried to model these aspects by imposing elastic springs at the base of structural elements in 

which the dam body is ideally subdivided. These approaches may be effective to model the base 

deformability on the structural side but gives no information about the actual distribution of stresses 

in the foundation. 

With the advent of numerical methods in the second half the twentieth century, such as the Finite 

Element Method (FEM), and efficient computers that can implement them, the dam-foundation 

interaction in static conditions ceased to represent a problem. The dam body and the portion of the 

foundation influenced by its presence may be modelled together and discretized in an arbitrary 

number of smaller elements; higher order differential equations needed for solving analytical 

methods can be substituted by simple (even if very large) systems of linear equations. 

Numerical models offer also the possibility to conduct dynamic analyses of the dam-foundation 

system, that have long been impossible via analytical approaches. A practical way to do this in a 

Finite Element (FE) environment consists in solving the governing equations of the entire model in 

the time domain, with the so-called Direct Method, as opposed to the Substructure Method that 

operates in the frequency domain. Such analyses, however, are often conducted in commercial 

softwares with some major simplifications which substantially alter the real problem in order to 

reduce to a minimum the computational cost, as stated in Løkke and Chopra (2019).  

For many years, the dam engineering profession has used FE models that include a limited extent of 

foundation rock, assumed as massless, and approximate hydrodynamic effects by an added mass of 

water moving with the dam. The design ground motion is applied at the bottom fixed boundary of 

the foundation domain without any modification. 

In contrast, realistic modelling of dam–water–foundation systems require a FE model that includes 

a truncated fluid and foundation domains with wave-absorbing boundaries (Wolf 1988) to simulate 

the semi-infinite size of these domains. The seismic input should be specified by effective 

earthquake forces applied directly to these boundaries (Wolf 1988; Zienkiewicz et al. 1989), or 

alternatively, in a single layer of elements interior of the boundaries (Bielak et al. 2003; Bielak and 

Christiano 1984). Utilizing the latter approach, Basu (2004) developed an advanced analysis 

procedure using Perfectly Matched Layer (PML) boundaries (Basu and Chopra 2004) and the 

Effective Seismic Input method (ESI) (Bielak and Christiano 1984) to specify effective earthquake 

forces. However, ESI and PML methodologies require modification of the FE source code, and the 

procedure is currently only available in LS-DYNA (Chopra, 2020). Simple viscous damper 
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absorbing boundaries (Lysmer and Kuhlemeyer, 1969) may substitute these complex solutions at 

cost of a larger extension of the rock foundation domain. 

Discontinuities in the rock mass are the primary source of non-linearities within the rock foundation 

domain. Their dynamic behaviour has been studied thoroughly in a discrete element (DE) 

environment (Lemos, 1999, 2008, 2021), while it has been less investigated by authors working 

with FE. Some attempts were made by Pan et al. (2015), and Mahmoudi et al. (2016). The first 

modelled the single features, such as faults, as a weaker and more densely meshed part of an 

elastoplastic continuum (a Drucker Prager criterion was assumed); the second used contact elements 

with an elastoplastic Mohr-Coulomb criterion only active in the compressive stress states. 

The objective here is to derive a methodology in the context of a Direct FEM approach that can be 

implemented in the commercial code Abaqus/Standard® with limited modification of the source 

code. Abaqus was chosen among FE software upon request of Romagna Acque – Società delle 

Fonti S.p.A., owner of the dam and founder of the PhD project, owing to the presence of a previous 

model of the dam there implemented (Buffi, 2018). After presenting the analytical method used for 

designing Ridracoli Dam in the seventies, the static and dynamic formulation of the Finite Element 

method are recalled and applied at the dam-water-foundation system. The resulting method is a 

simplified version of the Direct FE method presented by Løkke and Chopra (2018), which includes: 

− viscous-damper adsorbing boundaries at the truncated rock foundation domain, 

− effective forces calculated in a free-field state and applied at the truncated rock foundation 

boundary, 

− an added mass approach to model the hydrodynamic forces acting on the upstream face of 

the dam (thus neglecting the water-rock foundation interaction), 

− a strategy to initialize static stresses only in the inner portion of the model where non-

linearities are concentrated, 

− non-linearities concentrated along discontinuities of the rock mass (nonlinearities in the dam 

body and at dam-foundation rock interface are neglected). 

 

3.2 Analytical methods 

The first analytical results were obtained in the 1920-1930 decade, thanks to the studies carried out 

by Guidi (1928) and Ritter (1931), which employed the complete theory of the circular fixed arch. 

This approach is generally referred to as the "independent arches" method and can be effective for a 

first estimation of tension-deformative response of arch dams in case of a very thin vertical section 

(arch effect clearly prevailing on the cantilever one). The virtual arches in which the dam is 

subdivided cannot transfer any internal stress one another. An important step toward the solution of 

the problem of an arch dam with a generic shape was made with the development of the Trial Load 

method, initially issued in U.S.A. by members of the Bourou of Reclamation (Howell and Jaquith, 

1929), and then further developed after being applied in the dimensioning of the Hoover dam 

(USBR, 1938). At the same time in Europe an easier but less precise method was developed by 

Tölke (1938), based on the assumption of arch-dams as simple or double curvature plates. In both 

methods arch dams are assumed as composed of two systems of structural members: horizontal arch 

units and vertical cantilever units (Figure 3.1).  



Chapter 3 – Analysis of dam-water-foundation interaction 

 

51 

 

   

Figure 3.1. a) arch, and b) cantilever elements of an arch-gravity dam (mod. from Ghaanat, 1993). 

 

Each system occupies the entire body of the dam, and the loading is assumed to be divided between 

the two systems in such a way that the resulting arch and cantilever deflections for any point in the 

dam were equal. The most complete version of these methods has been used for a long time in 

dimensioning arch dams all around the world. By including a simplified spring bed approach (Vogt, 

1925), they are also able to simulate the dam-foundation interaction in static conditions and the 

dam-water-foundation interaction in pseudostatic conditions but cannot be extended to the solution 

of dynamic problems. 

 

3.2.1 Tölke method 

In its simplest form the Tölke method (1938) enforces compatibility of radial deflections between a 

discrete number of horizontal arches and a single cantilever, the crown cantilever (i.e., the main 

section cantilever). An assumption is made on the static behaviour of arch elements under a 

distributed load uniformly applied at the extrados of the arch. This requirement is generally fulfilled 

since the main static loads that affect a dam (i.e., hydrostatic pressures and thermal forces due to 

restraint) can be approximated as constant on arch extrados if the thickness of the arch is 

sufficiently small.  

Under the hypothesis of a linear elastic material for a monolithic arch gravity dam, the arch element 

is confused with a thin cylinder of the same dimension (i.e., same thickness, intrados, and extrados 

radii). The portion of external pressure applied on the extrados (e.g., due to hydrostatic pressure) 

that is carried by the arch, pa, is given by the following: 

 

pa =
8

15
 
E w s

re r 
           (3.1)  

 

where E is elastic modulus of concrete, w is the radial deflection at crown, s is the thickness of the 

arch (in horizontal direction), re is the extrados radius, r is the mean radius and 8/15 is a correction 

coefficient suggested by the author (Swaminathan, 1960) that is optimal for arches subtended by a 

120° angle. The normal force can then be calculated as: 
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N = pa r =
8

15
 
E w s

 re 

         (3.2a) 

N = F′ E w          (3.2b) 

 

The equilibrium equation for an element of the crown cantilever (Figure 3.2) can then be written as 

a function of the radial deflections w and its spatial derivate in a local reference system with the 

axis, l, directed downward and the origin at the crest level: 

 

 re p = N +
dT

dZ
r         (3.3)  

 

In a linear elastic thin shell, the bending moment, M, and the shear, T, are linked to the deflections 

as follows: 

 

M = EJ
d2w

dl2
=

E s3

12(1−υ2)

d2w

dl2
        (3.4a) 

T =
dM

dl
           (3.4b) 

 

where ν is the Poisson coefficient. Substituting for M in Equation 3.4a and then for T in Equation 

3.3, and dividing both sides by r, the following fourth order differential equation is derived: 

 

 re p

r
=

N

r
+

E

12(1−υ2)
 
d2

dl2
((ΔL)3 d2w

dl2
)       (3.5)  

 

 

Figure 3.2. Cantilever element force diagram and pictorial view in the Tölke method (modified 

from Buffi, 2018; and USBR, 1977). 
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The second derivate of the product at the right-hand side of Equation 3.5 can be developed to 

obtain: 

 

w′′′′ +
6

s
 w′′′ s′ + 3w′′ (

1

s
s′′ +

2

s2
(s′)2) +

12(1−υ2)

r s3 F′ w −
12(1−υ2) re p

E r s3 = 0 (3.6) 

 

where w',…, w'''' and s', s'' are the spatial derivates along l-coordinate in compact notation. 

Equation 3.6 may be conveniently solved by applying a finite differences scheme, dividing the 

cantilever in a discrete number of equally spaced nodes (and thus considering only a discrete 

number of arches passing through those nodes). Boundary conditions at the two ends of the 

cantilever can be written as: 

 

w′′′(l = 0) = 0         (3.7a)

 w′′(l = 0) = 0         (3.7b) 

 

for the free top end (M = 0 and T = 0); and for the fixed base under the original Tölke hypothesis of 

rigid foundation: 

 

w (l = L) = 0          (3.8a) 

w′(l = L) = 0          (3.8b) 

 

where L is the total height of the crown cantilever, with the origin at crest level, Swaminathan 

(1960) proposed to include the elastic deformation of the rock foundation at the base of both arches 

and cantilever. The bottom-end boundary conditions for the crown cantilever become:  

 

w (l = L) = μ2 M + λ T        (3.9a) 

w′(l = L) = (μ M + μ2 T) L        (3.9b) 

 

where λ, μ and μ2 are elastic coefficients of the Vogt theory (Vogt, 1925), which models the elastic 

deformation of the rock foundation as independent distributed springs. The hyperstatic arch 

elements are solved as in the Trial Load method (1938), based on the Vogt theory. The normal force 

can still be expressed as in Equation 3.2b. In case of an elastic foundation the solution is obtained 

after some iterations, starting with trial values of M and T at the base. They can be initially assumed 

as equal to those obtain for a rigid foundation. 
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3.2.2  The Trial Load method 

The Trial Load method (Howell and Jaquith, 1929; USBR, 1938) takes its name from the self-

balancing trail loads which are imposed to arch and cantilever elements in order to obtain equal 

displacements and rotations at cross points. These loads produce a redistribution of external loads 

dividing them between arch and cantilever elements, without altering the total load applied to the 

dam. The procedure is iterative and trial loads are updated at each iteration until convergence is 

achieved. The convergence rate is usually high. The analyses may be performed with varying 

degrees of accuracy depending on the number of degrees of freedom which are requested to be 

compatible between arch and cantilever elements. Progressing from the simplest to the most 

comprehensive, they include (Ghanaat, 1993): crown-cantilever analysis, radial deflection analysis 

and complete adjustment analyses. 

In general, the agreement between the arch and cantilever should be enforced for all degrees of 

freedom (i.e. 3 translational DOFs and 3 rotational DOFs), and this is required in a complete 

adjustment analysis. On the contrary, the first two types of analysis only consider the compatibility 

of radial deflections (in a cylindrical coordinate system), while all other DOFs are not checked. In a 

radial defection analysis radial deflections crown and quarter-points of the arches are brought into 

agreement with corresponding cantilever elements, in a crown-cantilever analysis, only the crown 

cantilever is considered.  

The mechanism of load transfer is briefly explained in the case of radial displacements (which are 

the only needed adjustment in crown-cantilever and radial deflection analyses). Similar 

considerations can be extended to tangential displacements and twist in a complete adjustment 

analysis. The external load is initially applied to the arch element. In order to transfer a portion of 

the load to the cantilever element a set of trail loads as those represented in Figure 3.3 is applied, 

with forces TA and TC in equilibrium in radial direction and moments MA and MC added to ensure 

equilibrium against ration. TC and MC are applied for transmitting a portion of external load to the 

cantilever element, while TA and MA are applied to the arch element in order to reduce the effect of 

external load. Arches and cantilevers are solved separately, and the procedure is repeated until the 

same radial deflection is achieved at each intersection. 

 

 

Figure 3.3. Self-balancing trial loads for radial adjustment (modified from Ghanaat, 1993). 
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3.3 Finite Element method 

The stresses in a dam-water-foundation system are computed more accurately using the Finite 

Element Method (FEM) (Zienkiewicz, 1971; Bathe and Wilson, 1976; Ghanaat, 1993). On the 

opposite of analytical methods, the continuum domain which idealise the dam structure is 

discretized into arbitrary small elements interconnected at a finite number of points called nodes.  

The subdivision of a whole domain into simpler parts has several advantages (Reddy, 2006), i.e.: 

− accurate representation of complex geometry, 

− inclusion of dissimilar material properties, 

− easy representation of the total solution, 

− capture of local effects. 

The Finite Element Method is a variational method of the Galerkin family, usually applied for the 

solution of partial differential equations, under known boundary conditions. It approximates the 

unknown fields as continuous piecewise-defined functions of a discrete number of nodal quantities.  

As a system of partial differential equations, the governing equations of continuum mechanics can 

be solved with the FEM. In the displacements-based approach nodal displacements are the system 

primary unknowns. They are obtained from the solution of equilibrium equations for the entire 

system, assembled by combining the stiffness matrices and the load vectors of the individual 

elements. The stresses are then obtained from the computed displacements using the stress-

displacement relationship for each finite element. For this reason, the resulting stresses are 

relatively less precise than resulting displacements which are directly obtained by solving the 

system of equations. The solution, in general, overestimate the actual stiffness of the system and 

thus underestimate the effective displacements. A better convergence to the exact solution can be 

achieved by reducing the size of finite elements or increasing the order of the elements, at the cost 

of higher computational costs.  

Finite Element formulation of the continuum equations in static and dynamic conditions are given 

in the following. The specific reference for the notation of generic FE static and dynamic 

formulations is Brinkgreve et al. (2022), while for the dam-water-foundation system in dynamic 

conditions is Løkke and Chopra (2019). 

 

3.3.1 Static Formulation 

In static conditions the system of equilibrium equations of an infinitesimal cubic element isolated 

from a continuum solid body can be written in compact and expanded matrix notation as: 

 

𝐃Ts + f = [

∂x 0 0
0 ∂y 0

0 0 ∂z

0 ∂z ∂y

∂z 0 ∂x

∂y ∂x 0
] ∙

[
 
 
 
 
 
σ1

σ2

σ3
τ23

τ13

τ12]
 
 
 
 
 

+ [

f1
f2
f3

] = 0    (3.10) 
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where f is the vector of body forces, s is the vector form of Cauchy stress tensor and D denotes a 

differential operator. 

Defined e and u as the strain vector and the displacement vector, respectively (Timoshenko and 

Goodier, 1970): 

 

e =

[
 
 
 
 
 
ε1

ε1

ε1
γ23

γ13

γ12]
 
 
 
 
 

    u = [

u1

u2

u3

]        (3.11) 

 

the compatibility relation which links strains and displacements can be expressed as: 

 

e = 𝐃u          (3.12) 

 

Finally, the constitutive law that links increments of deformation and increments of stress reads: 

 

∆si = 𝐄𝐢∆ei          (3.13) 

 

where E is the matrix form of a generic constitutive law and Δsi and Δei are the variation of stress 

and strain respectively at the i-th increment of an incremental procedure. The stress at the end of the 

increment can then be written as the summation of the stress at the previous increment si-1 and the 

stress increment Δsi itself: 

 

si
 
= s 

i−1 + ∆s 
i         (3.14) 

 

or, omitting the superscripts and substituting the stresses at the previous increment with the notation 

š, as: 

 

s 
 
= š 

 + ∆s 
           (3.15) 

 

The system in Equation 3.10 is the strong form of equilibrium. In order to apply a finite element 

approximation, it is conveniently rewritten in a weak form multiplying the left-hand side by a 

generic test function, δũ, and integrating over the domain. In a three-dimensional problem the 

domain corresponds to the volume of the solid body. It reads: 
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∫δũT(𝐃Ts + f) = 0         (3.16) 

 

This weak form can be interpreted as the well-known principle of virtual work and δũ can be seen 

as virtual increments of displacement kinematically admissible and derivable as needed. Splitting 

the integral in Equation 3.16 in two contribution and moving the body force part to the right-hand 

side leads to:   

 

∫δũT𝐃Ts = −∫δũTf         (3.17) 

 

The left-hand side of Equation 3.17 can be furtherly manipulated by applying the rule of 

integration by parts, the Gauss-Green theorem and the properties of transpose operators, yielding to: 

 

∫(𝐃 δũ)
T 

s = ∮ δũT𝐍Ts − ∫(𝐃δũ)
T
s      (3.18) 

 

where the first integral at the right-hand side is defined over the closed boundary of the solid body 

(i.e. the bidimensional outer surface) and N is a matrix which contains the components of the local 

normal unit vector to the surface, and can be expressed in expanded notation as: 

 

𝐍 =

[
 
 
 
 
 
n1 0 0
0 n2 0
0 0 n3

0 n3 n2

n3 0 n1

n2 n1 0 ]
 
 
 
 
 

        n = [

n1

n2

n3

]       (3.19) 

 

Applying Equations 3.19 to the left-hand-sided product into brackets and recognizing that the 

matrix product of the transpose of N and s corresponds to the tractions acting on the local tangent 

plane to the surface, Equation 3.18. can be reformulated as: 

 

∫δẽ s = ∮ δũTt         (3.20) 

 

where δẽ is the vector of virtual strains and t the vector of tractions on the boundary. 

In conclusion, the principle of virtual works reads: 

 

∫δẽ s = ∫ δũTf + ∮ δũTt        (3.21) 
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Equation 3.21, considering the incremental formulation in Equation 3.15, can be conveniently 

rearranged in: 

 

∫δẽ ∆s = −∫δẽ s̆ + ∫δũTf + ∮ δũTt      (3.22) 

 

In the displacement-based finite element method, displacements are interpolated by polynomial 

over the single elements, via the so-called shape functions, which carry the dependency on the 

position vector, x. They have unit value in correspondence of a certain degree of freedom of the 

element (DOF), while they are null for every other DOF. In a three-dimensional problem each node 

has three DOFs corresponding to the three components of nodal displacements. In matrix notation 

this can be written as: 

 

u(x) = S1
(e)

(x) q 1
(e)

+ ⋯+ Si
(e)

(x) q i
(e)

+ ⋯+ Sn
(e)

(x) q n
(e)

= 𝐒(e)(x)  q(e) (3.23) 

 

where qi
(e) is the i-th DOF of the element, Si

(e) is the i-th coloumn of the element shape function 

matrix S(e) and n is the number of DOFs in the element.  

Passing from the single element to the whole domain, element shape functions must be assembled 

in global shape functions which are piecewise polynomial and can be derived enforcing 

compatibility of displacement components at shared nodes. The final system of equation that 

represents the displacement field in the whole domain as function of nodal displacements can be 

analogously written as: 

 

u(X) = S1
 (X) q1

 + ⋯+ Si
 (X) qi

 + ⋯+ Sn
 (X) qN

 = 𝐒 
 (X) q 

    (3.24) 

 

where S and q are global shape function matrix and nodal displacement vector, respectively, and N 

is the number of DOFs of the whole domain.  

Let displacements and strains be written as a function of nodal displacements. The dependency on 

the position is omitted hereafter for sake of conciseness. 

 

u = 𝐒 q          (3.25a) 

e = 𝐃 u = 𝐃 𝐒 q = 𝐁 q        (3.25b) 

 

where B is the matrix product of the differential operator D and the shape function matrix S. 

https://context.reverso.net/traduzione/inglese-italiano/analogously
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The principle of virtual works can be finally specialized to the case of FEM combining Equations 

3.22 and 3.13 substituting displacements and strains (actual and virtual) with their FE 

approximation (Equations 3.25). 

 

∫ (𝐁 δq̃)
T

𝐄 𝐃 𝐒 ∆q = −∫(𝐁 δq̃)
T

s̆  
 + ∫ (𝐒 δq̃)

T

f  +  ∮ (𝐒 δq̃)
T

t  (3.26) 

 

The vector of virtual nodal displacements (δq̃) multiplies every integrand function and is 

independent from the position. Therefore, in may be taken out of integral, 

 

δq̃ ∫𝐁T 𝐄 𝐃 𝐒 ∆q = −δq̃ ∫𝐁T s̅  +  δq̃ ∫ 𝐒T f  +  δq̃ ∮ 𝐒T t    (3.27) 

 

and cancelled, in order to obtain the final form of the system of equations: 

 

∫𝐁T 𝐄 𝐁 ∆q = −∫𝐁T s̅  +  ∫ 𝐒T f +  ∮ 𝐒T t      (3.28) 

 

The integral of the matrix product at the left-hand side is generally referred to as the stiffness 

matrix, K, and multiplies the variation of nodal displacements (Δq) at the i-th increment, which is 

independent on the position and goes out of the integral. The adding terms at the right-hand side 

form the global residual vector, R, of the system of equations and is composed of the summation of 

internal (from previous iteration) and external forces applied to the body. 

 

𝐊 = ∫𝐁T 𝐄  𝐁                    (3.29a) 

R = (∫𝐒Tf + ∮ 𝐒Tt) − ∫𝐁T s̅       (3.29b) 

 

Substituting for K and R in Equation 3.28 a compact notation of the solving system of equations is 

obtained, that will be numerically integrated in a Finite Element code at every increment, i. 

 

𝐊𝐢  ∆qi = R  i          (3.30) 

 

In the special case of a linear elastic constitutive the Hooke law holds (Ghaanat, 1993):  

 

s = 𝐄 e          (3.31) 
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with matrix E independent on increment i. With an analogous procedure, and substituting Equation 

3.13 with Equation 3.31 the governing system of equations is expressed as: 

  

𝐊 q = R          (3.32) 

 

and can be solved without iterating. 

 

3.3.2 Isoparametric elements 

Discretization of dam-foundation models is generally carried out by means of isoparametric finite 

elements, which are not restricted to regular element shapes, but may tolerate a certain degree of 

distortion to adapt to actual geometries. Their most promising feature consists in the use of the same 

interpolation functions to describe both the unknown field variable (i.e., the displacements) and the 

geometry of the elements. As a consequence, the shape functions Sij (comprised in S matrix) are 

written in a ξ-η-ζ-coordinate system of a parent domain where a regular finite element is defined 

and are used for mapping it into the effective distorted finite element defined in the global domain 

with the usual X-Y-Z-coordinate system. 

The aspects that characterize a finite element are (Smith, 2009):  

− the family,  

− the DOFs,  

− the number of nodes,  

− the formulation, 

− the integration. 

A reference is made to the family of three-dimensional continuum finite elements, which are 

generally used to describe complex geometries which cannot be idealized as bidimensional or one-

dimensional elements. The elements of a family can have different shapes (e.g., hexahedron, wedge, 

tetrahedron, etc…) and a different number of nodes. The DOFs are the unknowns of the system of 

solving equations. In a pure mechanical simulation of solid volumes, degrees of freedom 

correspond to nodal translations. Given a shape of the finite element, the interpolation order 

depends on the number of nodes of the element. Elements with nodes only at their corners employ 

first-order interpolation of displacements and are called linear elements (e.g., 8-node hexahedron, 6-

node wedge, 4-node tetrahedron, etc…), elements with mid-edge nodes, in addition to those at the 

corners, allow for a second-order interpolation and are called quadratic elements (e.g., 20-node 

hexahedron, 15-node wedge, 10-node tetrahedron, etc…). Typical three-dimensional isoparametric 

elements in their parent domain are depicted in Figure 3.4.  

The formulation of an element depends on whether a Lagrangian or Eulerian description is 

supported. In solid continuum mechanics, a Lagrangian description is generally adopted, with finite 

elements following the deformation of the solid body.  
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Figure 3.4. Typical three-dimensional isoparametric elements (from Vedvik, 2021). 

 

Finally, the integration accounts for to the numerical technique used for integrating over the volume 

of each element (e.g., for calculating the elements of the stiffness matrix K). The most commonly 

used is the Gaussian quadrature, which approximates the exact integral as a weighted summation of 

the integrand function evaluated at a discrete number of inner points called Gauss points. 

 

3.3.3 Dynamic Formulation 

In dynamic conditions, holding the principle of D’Alembert, the system of equilibrium equations 

changes as follow: 

 

𝐃Ts(t) = ρ(X) 𝐈 ü(t) − f(t)        (3.33) 

 

where ρ is the mass density dependent on the position X, I is the identity matrix, and their product 

by nodal accelerations, ü, represents the inertial forces. All vectors depend on time, t. 

Moreover, if a viscus damping is associated with the system, the balance of forces reads: 

 

𝐃Ts(t) = ρ(X) 𝐈 ü(t) + 𝐜 u̇(t) − f(t)       (3.34) 

 

where c is the matrix of damping coefficients which multiplies the velocities. 

Applying the standard procedure for derivation of the virtual work principle as described in the 

Section 3.3.1 and considering geometric relationships between displacements and strains, 

constitutive equations, and initial conditions, the variational formulation of the FEM results in a 
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system of the second order. For sake of simplicity, it is written for an elastic material, but it 

supports an incremental formulation as seen for the static problem: 

 

𝐌 q̈(t) + 𝐂 q̇(t) + 𝐊 q(t) = R(t)       (3.35) 

 

where M and C are the mass and material damping matrices, respectively. A mass matrix defined 

this way is called consistent. 

 

𝐌 = ρ(X)∫ 𝐒T𝐈 𝐒              𝐂 = ∫𝐒T𝐜 𝐒      (3.36) 

 

Viscous damping is, in effect, a fictitious device, since material damping is caused by friction 

(which develops heat) or by irreversible deformations at constant stress level (i.e., plasticity or 

viscosity). However, damping can still be easily taken into account using the matrix C. To 

determine the damping matrix, extra parameters are required, which are difficult to calibrate. In 

finite element formulations, C is often formulated as a function of the mass and stiffness matrices 

(Rayleigh damping) (Zienkiewicz and Taylor, 1991; Hughes, 1987) as: 

 

𝐂 = αR 𝐌 + βR 𝐊         (3.37) 

 

with Rayleigh coefficients, αR and βR. 

This strategy is very attractive because it allows to express Equation 3.35 in terms of only M and 

K. Unfortunately, a dependency on the frequency arises, which prevents from defining a single 

damping coefficient, ζ, for all periods. Coefficients αR and βR should be chosen carefully to ensure 

an adequate damping coefficient in the interval of periods of interest (Figure 3.5). 

 

 

Figure 3.5. Dependency of the damping coefficient ζ on the frequency of the signal when assuming 

a Rayleigh damping:  ζ  is correctly represented only for two frequencies while it is overestimated 

or underestimated elsewhere (modified from Buffi, 2018). 
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3.3.4 Dam-water-foundation interaction as a scattering problem 

During a seismic excitation a dam interact with its foundation rock and with the water stored in its 

reservoir. The problem is theoretically semi-unbounded since the rock-foundation extends till and 

beyond the hypocentre of the earthquake. To reduce the computational effort to a reasonable 

amount a model can be defined with a truncated domain and adsorbing boundaries that avoid the 

reflection of seismic waves and thus allow for radiation damping of the system. Løkke and Chopra 

(2019) developed a Direct FEM method that includes a finite element discretization of the fluid 

domain with acoustic elements and solve the dynamic problem in the time domain. Herein a 

simplified approach specific for dams is followed: the water domain corresponding to the reservoir 

is treated as a hydrodynamic load acting on the upstream face of the dam, by appending an added 

mass of water to it, which contributes to the total inertia of the system. The interaction of the water 

body with the rock foundation is neglected. 

The governing equations of the dynamic problem can be specialized for this special case as follow: 

 

𝐌 q̈t(t) + 𝐂 q̇t(t) + 𝐊 qt(t) = Rh
t (t) + R  f

t (t) + R 
st(t)    (3.38) 

 

where Rst are the static reaction forces on the foundation-rock bottom and lateral boundaries, Rt
f are 

the dynamic forces transmitted by the adsorbing boundaries to the model and Rt
h are the 

hydrodynamic forces. The dependency on time will be omitted hereafter. 

This interaction problem may be interpreted as a scattering problem, in which the presence of the 

dam perturbs a free-field state of the system. The free-field state corresponds to the seismic 

response of an auxiliary foundation rock system which is fictitious at present and can be interpreted 

as the real domain before the dam construction has started. It consists of two subdomains (Figure 

3.6a):  

− Ω0 denotes the foundation region with an irregular valley interior to the future absorbing 

boundary (Γf),  

− Ωf
+ is the semi-unbounded, regular foundation region exterior to Γf. The displacement field 

in this auxiliary foundation rock system is defined as r0.  

The dam–foundation system representing the current state is also separated into two subdomains 

(Figure 3.6b): 

− Ω denotes the dam and foundation region interior of the absorbing boundary (Γf),  

− Ωf
+ is the semi-unbounded external region, identical to that defined for the free-field system. 

Following the approach first proposed by Herrera and Bielak (1977), the displacement field in the 

dam–foundation rock system is defined by the variables: 

− rt, total displacement field in the interior region Ω0, 

− rt – r0, scattered motion field in the exterior region Ωf
+. 

This substitution of variables allows to reformulate adsorbing boundary forces, Rt
f, as function of 

free-field displacements r0. 
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Figure 3.6. a) subdomains in the free-field state; b) subdomains in the main model. 

 

 

3.3.5 Boundary conditions 

One simple and efficient way to allow the radiation damping at the boundaries consists in placing a 

set of continuously distributed viscous dampers. The radiation damping is correctly modelled only 

in case of waves impinging normally to the boundary, but the error can be acceptable when the 

truncated domain is sufficiently large. 

The radiation condition is granted if the following conditions (Lysmer and Kuhlemeyer, 1969) hold: 

 

σ + ρf 
Vp u̇ = 0         (3.39a) 

τi + ρf 
Vs w ̇ i = 0         (3.39b) 

 

where ρf is the foundation rock mass density; VP and VS are primary and secondary waves 

velocities of the foundation rock; σ and τi are the normal and tangential stress component in the 

tangential plane to Γf ; u and wi are the normal and tangential displacement components to Γf and 

are here present with their first time derivate (i.e., the velocity); in 3D problems i = 1, 2. 

The viscous boundary simulates the external domain that has been truncated. The motion there is 

defined by the scattered motion, rt – r0. 

  

u = ut − u0          (3.40a) 

wi 
= wti  

− w0i
         (3.40b) 

 

where subscripts t and 0 stand for total and free field, respectively. 

Because the foundation rock is assumed to be linear the following holds: 
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σ = σt − σ0          (3.41a) 

τi 
= τti  

− τ0i
         (3.41b) 

 

Substituting for total displacements in Equations 3.40 and 3.41 in Equations 3.39, and 

reformulating in a Finite Element notation (i.e., as function of nodal velocities) yields to: 

 

Rf
t = R  f

0 − 𝐂f (q̇ f − q̇ f
0)        (3.42) 

 

where Cf is a damping coefficient matrix with non-null entries only in correspondence of nodes 

belonging to Γf. In a discretized domain dampers are not uniformly distributed but applied at 

boundary nodes, damping coefficients are therefore function of the node density at the boundary, or, 

in other words, of their influence area (A). The non-null entries of matrix Cf are given in the form: 

 

cp = A ρf 
Vp          (3.43a) 

cs = A ρf 
Vs          (3.43b) 

 

Substituting for Rt
f in Equation 3.38 the governing equations become: 

 

𝐌 q̈t + (𝐂 + 𝐂f)q̇
t + 𝐊 qt = Rh

t + R 
st + P f

0      (3.44) 

 

where: 

P f
0 = R f

0 + 𝐂f q̇f
0         (3.45) 

  

This formulation applies directly to the side boundaries. Since the input motion is applied 

uniformely to the bottom boundary as upward propagating P and S waves, Equation 3.45 can be 

further specialized for this boundary.  

Because the free-field foundation–rock system is assumed to be linear and homogenous, the 

following expression can be derived as first obtained by Joyner and Chen (1975) 

 

σ0 + ρf 
Vp(2u̇UP

0 − u̇0) = 0        (3.46a) 

τi
0 + ρf 

Vs(2ẇUP
0

i
− ẇi

0 
) = 0       (3.46b) 

 

where uUP and wUP,i are displacements due to upward propagating P and S waves. 
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Equations 3.46 can be expressed in finite element notation, with corresponding P0
f defined as in 

Equation 3.45. 

 

R f
0 = 𝐂f  (2q̇UP

0 − q̇f
0 
)         (3.47a) 

P f
0 = 2 𝐂f q̇UP

0           (3.47b) 

 

and so, the system of governing equations become: 

 

𝐌 q̈t + (𝐂 + 𝐂f)q̇
t + 𝐊 qt = Rh

t + R  
st + 2 𝐂f q̇UP

0      (3.48) 

 

3.3.6 Free-field effective forces 

The free-field motion to be applied at side and bottom viscous boundaries of the truncated domain 

is the local seismic response of the original valley without the dam. In a three-dimensional problem 

the semi-unbounded domain is truncated by vertical parallel planes in two orthogonal plane 

directions so that two sides are parallel to the valley in which the dam is located, and the remaining 

two planes cross the valley perpendicularly, downstream and upstream of the structure. The bottom 

boundary is a horizontal plane at a certain depth. A horizontal section of the model has a rectangular 

shape. The geometry of the three-dimensional problem is schematically depicted in Figure 3.7a. 

Since only the motion at the boundaries of this free-field auxiliary model is of interest for the 

dynamic analysis of the main model, the effective forces can be approximately calculated as the 

free-field response of eight auxiliary system (Figure 3.7b): 

− 4 one-dimensional columns, 

− 4 two-dimensional sections. 

It corresponds to consider the motion in each of the four 2D systems as independent on that of other 

2D systems. This approximation is particularly valid if the valley has a very regular canyon-like 

shape and are identical to the exact solution in case of a square box. The meshes of auxiliary 

systems should match exactly the boundary mesh of the main model. 

The procedure starts with the definition of an input motion at the base. The simplest assumption, 

often used for site response analyses and soil–structure interaction analyses, is vertically 

propagating SH-waves and P-waves (Schnabel et al., 1972; Wolf, 1985). This is clearly a major 

simplification of the actual seismic wave field but is often justified on the basis that most sites are 

located relatively far away from the earthquake source, and that the gradual softening of rock and 

soil towards the Earth's surface leads to diffraction of seismic waves towards vertical incidence 

(Kramer, 1996). The input motion can be selected from actual recordings on the basis of a good 

matching with the Uniform Hazard Spectrum (UHS) determined by probabilistic seismic hazard 

analysis (McGuire, 2004) (see Sections 2.3.2 and 2.4.2). 



Chapter 3 – Analysis of dam-water-foundation interaction 

 

67 

 

Each component of the input motion is then applied from Equation 3.47b at the base of the four 

angular columns separately, in that direction a viscous damper is placed, while the other two 

directions are fixed. Once calculated and stored the effective seismic force at the nodes along the 

height of the column, the input motion is applied at the base of 2D systems with Equation 3.47b. 

Each system is fixed at the two sides, simulating an infinite extension, while viscous dampers are 

applied at the base and at the boundaries shared with 1D-columns. Effective forces calculated for 

1D columns are applied at shared boundaries by means of Equation 3.45. Nodal values of effective 

seismic forces, Rt
f, and nodal velocities from 2D systems are calculated and stored, to be applied on 

the corresponding nodes of the main model with Equation 3.45. 

 

 

Figure 3.7. a) truncation of the semi-unbounded three-dimensional problem; b) one-dimensional 

and two-dimensional free-field systems at foundation rock lateral boundaries (modified from Løkke 

and Chopra, 2019).  

 

The auxiliary analyses can be performed separately, with a high amount of data to be stored and 

transferred, or it can be run in parallel within the Finite Element code. 

In the commercial code Abaqus/Standard this last can be done by implementing a special purpose 

user-defined finite element. Nielsen (2014) developed a free-field family of finite elements for two-

dimensional and three-dimensional analyses. 

The system matrices (i.e., K, C and M) can be written for the free-field elements in the form: 

 

𝐀 = [
𝐀ff 𝐀fm

𝐀mf 𝐀mm
]         (3.49) 

 

where A is the generic system matrix, Aff rapresents the properties of the free-field, Amm the free-

field element contribution to the main model and Amf and Afm the coupling between the two 

systems. The free-field system is not influenced by the main model, as a consequence Afm = 0, 

whereas Amf is in general non-null. This leads to unsymmetric system matrices. 

The free-field element does not contribute to any mass of the main model, so Mmf = Mmm = 0. Mff 

can be either lumped or consistent.  
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The stiffness matrix of the free-field, Kff, is given by Equation 3.29b; the free-field element does 

not contribute to the stiffness of the main model, so Kmm = 0.  

At the contact face, the free-field element exerts a surface traction on the main model corresponding 

to the enforcing of plain strain conditions in the form: 

 

tPS = ∫ 𝐒𝐓𝐄′𝐁 qff
 

ΔΓf
          (3.50) 

 

where ta is the vector of nodal tractions, S is the shape function matrix, E' is an elastic material 

matrix, B is obtained as the product of the differential operator D and the shape function matrix S, 

and qff is the vector of nodal free-field displacements. ΔΓf is the element portion of the truncated 

foundation boundary Γf. The coupling element of the stiffness matrix, Kmf, can be calculated as: 

 

𝐊mf = −∫ 𝐒𝐓𝐄′𝐁 
 

ΔΓf
         (3.51) 

 

Th free-field portion of the damping matrix, Cff, may be calculated under the assumptions of a 

Raileigh damping with Equation 3.37. The other two non-null submatrices, Cmf and Cmm, are used 

to apply a viscous boundary condition to the vertical faces of the model. 

At the contact face, the free-field element exerts a surface traction on the main model corresponding 

to the radiation damping conditions in the form: 

 

tVB = ρ∫ 𝐒𝐓𝐇 𝐒 (q̇ff − q̇mm)
 

ΔΓf
       (3.52) 

 

where H is diagonal matrix containing the waves velocities (VP and VS), while qff and qmm are nodal 

velocities. The remaining submatrices of the damping matrix can be calculated as: 

 

𝐂mm = −𝐂mf = ρ∫ 𝐒𝐓𝐇 𝐒 
 

ΔΓf
        (3.53) 

 

3.3.7. Hydrodynamic forces 

Hydrodynamic pressures in a dam-water system can be included in a finite element analysis using 

the added mass concept. It allows to investigate the dynamical response of the structure without 

explicitly modelling the fluid motion and consequently reducing the modelling efforts. The added 

mass approach was first derived analytically by Westergaard (1933) for the simple case of a rigid 

dam with a vertical upstream face subjected to a horizontal harmonic ground motion, and then 

extended by Kuo (1982) to inclined faces. The fluid is considered as an incompressible acoustic 

medium. Under these assumptions the hydrodynamic forces applied on the dam face correspond to 
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the normal pressure exerted by a mass of water adjacent to the dam, and are function of the global 

vertical coordinate (Z), and the time (t): 

 

p (Z, t) = ρw  b(Z)  ün(Z, t)        (3.54) 

 

where ρw is water density, ü is the vector of normal accelerations to the upstream face and b is 

defined as: 

 

  𝑏(𝑍) =
7

8
√(𝐻 − ℎ)(𝐻 − 𝑍)        (3.55) 

 

where H and h are the elevation of the water level in the reservoir and of the base level of the 

upstream face, respectively. A bidimensional scheme of the Westergaard method is given in Figure 

3.8. 

Zangar (1952) extended Westergaard work by considering the sloping upstream face of a dam. He 

derived experimentally an equation for the pressure distribution over the height of the dam for 

different inclinations of the dam. Based on the assumptions of water incompressibility and rigid 

structure, the expression for the hydrodynamic pressure distribution is given as: 

 

b(Z) = (H − h) 
cm

2
 [

H−Z

H−h
(2 −

H−Z

H−h
) + √

H−Z

H−h
(2 −

H−Z

H−h
)]     (3.56) 

 

where cm is a coefficient that accounts for dam face sloping, calculated as function of the sloping 

angle θ on the horizontal measured in degrees, with the following empirical relation: 

 

cm = −0.0073θ + 0.7412        (3.57) 

 

In the finite element notation, the added mass is generally described as a matrix which models the 

interaction between water pressure and the structure (Brinkgreve et al., 2022). Recognizing that the 

upstream face is part of the external boundary of the system, the following holds for the vector of 

hydrodynamic forces, Rt
h: 

 

Rh
t = ∫  𝐒Tt 

 

Γh
= ∫ ρw b(Z) 𝐒Tün

  
 

Γh
        (3.58) 

 

where S is matrix of the shape functions already defined, hydrodynamic pressures are traction, t, on 

the boundary.  
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Figure 3.8. Westergaard added mass concept (modified from Buffi, 2018). 

 

In a FEM notation the vector of normal accelerations to the upstream face should be expressed as a 

function of nodal quantities. The following relation can be derived: 

 

ün
 =  𝐓T 𝐓 𝐒  q̈ 

t         (3.59) 

 

where q is the vector of nodal displacements and here appears with its second derivate (i.e., nodal 

accelerations), and matrix T is derived form a complete three-dimensional rotation matrix by 

cancelling the second and the third columns as follows: 

 

𝐓 = [

cos α cos β 0 0
sin α cos β 0 0

− sin β 0 0
]        (3.60) 

 

where α and β are angles of rotation about the global X and Y axes (counter clockwise positive). 

The resulting equation for Rt
h can be written as: 

 

Rh
t = ∫ ρw b(Z) 𝐒T 𝐓T 𝐓 𝐒  q̈ 

t 
 

Γh
= −𝐌a q̈ 

t       (3.61) 

 

where Ma is a consistent added-mass matrix with non-null elements only in correspondence of 

upstream face nodes. 

Substituting for Rt
h in Equation 3.44 the following final form of the governing equations is 

obtained: 

 

(𝐌 + 𝐌a)q̈
t + (𝐂 + 𝐂f)∆q̇t + 𝐊 qt = R 

st + P f
0     (3.62) 

 



Chapter 3 – Analysis of dam-water-foundation interaction 

 

71 

 

3.3.8 Integration in time  

For solving the governing equation of dynamic problems in the time domain an explicit or an 

implicit integration scheme may be adopted. Explicit methods calculate the state of a system at a 

current time increment (Δt) from the state of the system an earlier time; while implicit methods 

combine both the previous and current states to find a solution for the current increment. While the 

explicit algorithm is simpler to formulate, it is strongly dependent on the chosen time step and can 

diverge from the solution if it becomes too large. The implicit algorithm is more stable and robust, 

at the cost of an additional computational cost (Sluys, 1992). An implicit time stepping method was 

developed by Newmark (1959). It is based on the following equations that link displacements, 

velocities and accelerations at current time (t+Δt) to those at the previous time increment (t): 

 

ut+Δt = ut + u̇t Δt + [(
1

2
− αN) üt + αN üt+Δt]  Δt2     (3.63a) 

u̇t+Δt = u̇t + [(1 − βN)üt + βN üt+Δt] Δt       (3.63b) 

 

where αN and βN are Newmark coefficients. Depending on the choice of these parameters the 

Newmark method takes different names. With the following combination of coefficients: 

 

αN =
1

2
            βN =

1

4
         (3.64) 

 

the algorithm is called trapezoidal rule and is unconditionally stable (i.e., for every time step). 

Rearranging Equations 3.61 in a more compact form by incorporating Newmark coefficients and 

time increments (Δt) in constant (for the current step) coefficients (c0, …, c5) the following can be 

written for accelerations, velocities, and displacements as: 

 

 üt+Δt = c0(u
t+Δt − ut) − c2 u̇

t − c3  ü
t      (3.65a) 

u̇t+Δt = c1(u
t+Δt − ut) − c4 u̇

t − c5  ü
t      (3.65b) 

ut+Δt = ut + (ut+Δt − ut)        (3.65c) 

 

Substituting for these quantities in in Equation 3.35 everything is function of usual matrices M, C 

and K and constant coefficients ci and can be solved with the same strategies adopted for the static 

case: 

 

(c0 𝐌 + c1 𝐂 + 𝐊) (qt+Δt − qt) = R(t) + 𝐌(c2 q̇
t + c3  q̈

t) + 𝐌(c4 q̇
t + c5  q̈

t) (3.66) 
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3.3.9 Discontinuities  

In commercial software automated mesh algorithms not always succeed in discretising the domain 

directly. Therefore, it can be convenient to subdivide complex geometries into smaller parts 

connected at shared surfaces. These discontinuities may be fictitious or correspond to actual 

discontinuities in a continuum (i.e., rock mass joints), to thins layers that cannot be adequately 

represented by solid finite elements (i.e., aperture fillings), or to material discontinuities between 

different bodies in contact (i.e., dam-foundation interface). Regardless of their typology, they allow 

for separately meshing different parts without an exact matching of nodes at the contact surfaces. 

They can be particularly useful to abruptly change mesh density. In the following a reference is 

made to the Finite Element code Abaqus/Standard (Smith, 2009).  

For each discontinuity, a “master” and a “slave” role to the two surfaces that are (or will likely be) 

in contact during the analysis should be assigned. For a surface that is initially in contact, if no 

relative motion is allowed along the discontinuity, regardless of the stress level, a tie constraint may 

be enforced, which supresses the DOFs of the slave surface by imposing equal displacements at the 

two sides.  

If the behaviour of the discontinuity, as it happens in realty, depends on the stresses developed on 

the contact surfaces, an interaction may be enforced. This feature is particularly appropriate for 

modelling a plastic behaviour that is limited to specific interfaces of an otherwise elastic domain.  

For modelling this behaviour, other than surface roles, a contact discretization (i.e., node-to-surface 

or surface-to-surface discretization) and a tracking approach (i.e., finite sliding or small sliding 

formulation) should be chosen as well.  

Abaqus/Standard offers two contact discretization options: a “node-to-surface” discretization and a 

“surface-to-surface” discretization. In a “node-to-surface” discretization each “slave” node on one 

side of a contact interface effectively interacts with its projection on the “master” surface on the 

opposite side of the contact interface. Thus, each contact condition involves a single slave node and 

a group of nearby master nodes from which values are interpolated to the projection point. The 

surface-to-surface formulation enforces contact conditions in an average sense over regions nearby 

slave nodes rather than only at individual slave nodes, thus resulting in smoothened contact 

pressures. The averaging regions are approximately centred on slave nodes, so each contact 

constraint will predominantly consider one slave node but will also consider adjacent slave nodes. 

In Abaqus/Standard there are two tracking approaches to account for the relative motion of 

interacting surfaces in mechanical contact simulations, i.e. a “finite-sliding” formulation and a 

“small-sliding” formulation. The first case is more adequate for simulations that involve arbitrary 

large relative motion between parts in contact, contact conditions are updated during the analysis 

depending on the current relative position. In the second case a relatively little sliding of one 

surface along the other is assumed and therefore nodes involved in a single contact condition don’t 

change throughout the analysis.  

An interaction property enforces contact between approaching surfaces depending on a normal 

behaviour. As an example, in the linear “penalty” contact method the contact force, applied with 

opposite sign on both contacting surfaces, is proportional to the penetration distance (i.e., a small 

elastic penetration takes place).  
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KN =
σn

γn
          (3.67) 

 

where KN is the normal stiffness modulus σn is the developed stress level and γn is the penetration in 

normal direction. 

A tangential behaviour can be defined when the surfaces are in contact, varying from free sliding to 

perfectly sticking. Among a variety of tangential behaviours, the classical elastoplastic Mohr-

Coulomb criterion can be applied. In this case the surfaces in contact can sustain tangential stresses 

up to a plastic threshold. Elastic recoverable slip developed within this limit is linearly proportional 

to the applied stress: 

  

Δτi = KS Δγi          (3.68) 

 

where Δτi is the increment of shear stress, KS is the shear stiffness modulus and Δγi is the increment 

of slip along the two in-plane local directions (i = 1, 2). 

When the threshold is reached no more stresses can build up and surfaces will freely slip on each 

other. For three-dimensional problems the Mohr-Coulomb criterion can be written as: 

 

τcr = τeq = √τ1
2 + τ2

2 = (tanφ′) σn + c′      (3.69) 

 

where τcr is the plastic limit of the shear stress, τeq is the composition of shear stresses, φ' and c' are 

the friction angle and the cohesion available along the discontinuity, and σn is the current normal 

stress level. 

If a discontinuity is submerged and water can flow inside the aperture the Mohr-Coulomb criterion 

should be written in terms of effective stresses (σn'): 

 

τeq = tanφ′ σn
′ + c = tanφ′ (σn − u) + c′      (3.70) 

 

where u denotes the water pore pressure acting on the two sides of the discontinuity. 

In a penalty approach KS is not constant but depends on a slip threshold (γcr) and on the current 

critical shear stress (τcr), as follows: 

 

KS =
τcr

γcr
          (3.71) 
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If an elastic cohesive behaviour is defined along contact surfaces and chosen stiffness coefficients 

are considerably higher than those of neighbouring materials, the two side of the discontinuity will 

be permanently sticked together during the analysis, limiting to an elastic minimum the relative 

motion. A cohesive law can be written as: 

 

[

Δσn 

Δτ1 

Δτ2 

] = [

KN 0 0
0 KS 0
0 0 KS

] [

Δγn 

Δγ1 

Δγ2 

]       (3.72) 

 

Since in Abaqus/Standard interactions are a Step dependent features, a cohesive interaction can be 

activated at an arbitrary moment of the analysis (e.g., at the end of the static step/steps), linking 

from then on surfaces that were independent. This capability can be used to reduce the domain 

where initial static stresses apply to the zone of the model where plasticity is considered. The 

phases of this process can be summarized as follows: 

a) to conduct the static analysis in a truncated domain applying static boundaries conditions 

(e.g., fixing all base displacements and horizontal displacements at side boundaries); 

b) to extract reaction forces along “static” boundary from results and apply them at boundary 

nodes; 

c) to deactivate static boundary conditions: no deformation should occur; 

d) to activate cohesive interaction properties that “glue” together the inner model to the outer 

unloaded model; 

e) to perform a dynamic step of analysis of the entire domain with absorbing boundaries. 

The same phases are depicted in Figure 3.9 for a better understanding. 

 

 

Figure 3.9. Phases a) … e) of a complete (static+dynamic) analysis of a dam-water-foundation 

system, with delayed activation of a cohesive interaction at the beginning of the dynamic phase. 
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4.  Case study: Ridracoli Dam FE model and numerical analyses 

4.1 Introduction 

The Direct FE procedure described in Chapter 3 is here applied to the case study of 

Ridracoli Dam. This structure was the object of a previous PhD project (Buffi, 2018), as 

mentioned in Chapter 1.  

This chapter can be ideally subdivided in two parts, namely the description of the finite 

element model and the numerical analyses. The model is first introduced, starting from the 

geometrical data. The whole domain is subdivided in smaller parts with homogenous 

characteristics in a CAD environment. The mesh, the materials, the applied loads, the 

boundary conditions chosen for Ridracoli case are then described in detail. An important 

space is given to the strategies adopted for representing the dynamic interaction of the 

reservoir and the foundation rock mass with the dam structure. Coding work, in particular, 

is thoroughly described. The second part of the chapter covers two main topics, the testing 

of the user-subroutines written to integrate Abaqus® native capabilities, and the results of 

the dynamic analyses of Ridracoli Dam. 

 

4.2 Geometrical model 

The geometrical model of the dam is the result of the composition of different data. The 

aim is to obtain a model which is at the same time representative of the effective shape of 

the dam and the valley, and simple enough to be easily edited in a CAD environment and 

correctly read by Abaqus/CAE® importer. The different origins of the data and the editing 

process to obtain the final model are summarised in the following. 

 

4.2.1 Origin of the data 

The general overview of the area is provided by the Digital Elevation Model (DEM) 

TINITALY/01 (Tarquini et al., 2012). The spatial reference system is WGS84/UTM32 and 

the spatial resolution is 10 m (Figure 4.1). The DEM is quite imprecise in the vicinity of 

the dam, owing to the presence of the structure which shades the ground surface, and does 

not contain information about the actual shape of the submerged part of the valley, owing 

to the presence of the water. 

In order to integrate these pieces of information, other sources of geometric data are needed. 

The submerged bottom surface of the reservoir is derived from the contour lines of a 

bathymetry provided by the owner of the dam and referenced to the Gauss-Boaga 
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cartographic system (Figure 4.2). Similarly, contour lines in Gauss-Boaga cartographic 

coordinate system are extracted from a dense point cloud of the dam area realized on the 

basis of a UAV (Unmanned Aerial Vehicle) survey (Buffi, 2017).  

The solid bodies corresponding to the pulvinus, the stilling basin and the weight blocks 

(placed at the level of the abutments in order to compensate the weight loss due to 

excavations during the construction work) are derived and simplified from the 

corresponding solids in Buffi (2018), available in the local reference system of the dam. 

These latter were originally obtained from the aforementioned point cloud, integrated with 

technical drawings on the blind sides (i.e., the submerged portions of the dam and the 

interfaces with the rock foundation). The simplification is made here in a CAD environment 

with the software Autocad® and mainly consists in a reduction of the number of facets 

(Figure 4.3). 

The dam body geometry is derived from the input data of arches elements for the analytical 

analysis of the dam. They mainly consist in central angles and extrados and intrados radii 

of a selection of horizontal arches at different elevations. A control is preliminarily made 

on the reliability of these data by overlapping the dam solid obtained in this way with the 

one used by Buffi (2018). The bottom boundary is obtained by subtracting the pulvinus 

from the dam body solid with Autocad®. A good agreement is found, although the 

simplified model is monolithic (not subdivided in blocks) and lacks local features such as 

spillways (Figure 4.4). 

 

Figure 4.1. TINITALY/01 DEM of Ridracoli area (Tarquini et al., 2012). 



Chapter 4 – Case study: Ridracoli Dam FE model and numerical analyses 

 

 

81 

 

 

Figure 4.2. Bathymetry of Ridracoli lake in the vicinity of the dam. 

 

 

 

Figure 4.3. a) original geometrical model of the pulvinus from Buffi (2018); b) simplified 

geometry. 
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Figure 4.4. a) original geometrical model of the dam body from Buffi (2018); b) 

simplified geometry. 

 

4.2.2 Merging of the data 

As a first step, the free-field model is assembled, without any structural solid bodies. All 

the data sets are homogenized to punctual format and aligned to the common 

WGS84/UTM32 reference system by means of a geographic information system. Every 

cluster of georeferenced points, however, has a different density, and some discrepancies 

could be observed in the overlap areas. 

A choice is made to reduce the point density to the 10x10 grid of the DEM. Falcone et al. 

(2022) noted, in fact, that for high wave velocities (> 1000 m/s) the Local Seismic Response 

is, in practise, insensible to the level of detail of the topographic surface. The reduction is 

made by means of a specially designed Matlab® code written by the author and given in 

Appendix B. The simple implemented algorithm is specific for a point cloud extracted 

from contour lines. A regular grid (in this case the 10x10 DEM grid) is preliminary 

overlapped to the contour lines, and all the points of the grid which are external to the 

contour line area are deleted. The two set of points, contour points and grid points 

respectively, are imported in Matlab® separately. An infinite vertical cylinder is centred 

on each grid point with a trial radius sufficiently small (i.e., comparable to the minimum 

planimetric distance between two contour lines), the radius being progressively increased 

with a fixed increment until contour points with two different elevations are found inside 
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the cylinder. The elevation of the grid point is updated with a weighted mean of the 

elevations of the inner points (the weights are the planimetric distances from the grid point). 

The updated grid is checked to verify that points from different sources integrate smoothly, 

and manually adjusted when needed. It is then imported in Rhinoceros® and an 

interpolating surface is created with the patch command. 

Once the free-field surface is defined, also structural solid bodies are imported in Autocad® 

and aligned to the WGS84/UTM32 reference system exploiting specific common points 

(i.e., corner points of weight blocks, known in both reference systems). If the intersection 

of the free-field surface with solid bodies is not precise, the point grid is resumed and 

locally adjusted by manually updating the vertical coordinates of the grid points near and 

across the structural elements. The final version of the free-field surface interpolated in 

Rhinoceros® is reimported in Autocad® and used to cut a cuboid oriented along the 

geographic coordinates with the dimensions 1000x1000x1000 m, approximately centred at 

the dam and with an absolute base elevation of 200 m a.s.l.. The lower parted is kept while 

the upper is discarded. The structural solids are finally subtracted from the rock foundation 

solid with Boolean operations. A particular attention is given to the correct definition of 

the lower interfaces of weight blocks which, differently from the pulvinus and the stilling 

basin, are not embedded in the underlying rock mass. 

The resulting monolithic model of the foundation rock has a rectangular base and vertical 

side boundaries in order to be used for a dynamic analysis with free-field boundaries. Each 

side face is oriented toward a cardinal point. The side length is equal to 10 times the dam 

height. 

 

4.2.3 Cut of the model 

The final model is obtained within Autocad® introducing discontinuities in the rock 

foundation by means of cutting tools. 

The following procedure is followed: 

− the rock foundation solid is subdivided in an external and an internal part: the 

internal part (plane dimensions: 500x500 m) is surrounded by the external one; 

− the external part is furtherly divided in two concentric subparts, the innermost has 

a thickness of only 10 m, and envelopes the inner part in order to regularise the 

contact with the outermost part; 

− the internal part is furtherly subdivided in three subparts by two parallel faces which 

define the Bidente Fault: the exact position of the fault with respect to the structure 

is derived from geological maps of the design project (Alpina, 1974), while the 

orientation of the planes and the thickness of the layer are extracted from geological 

studies (see Section 1.2.2); 

− the fault layer is furtherly split in two halves by a mean plane (Figure 4.5); 
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− the two remaining subparts in which the fault divides the internal part are furtherly 

cut by means of three bedding planes corresponding to the laminated layers: since 

the fault causes a normal slip of about 40 metres at dam location, the cutting planes 

are different on the two sides (see Section 1.2.2). 

All different parts are saved as ACIS files (.sat) in Rhinoceros® in order to be imported in 

the Abaqus/CAE® environment. The resulting geometrical model is shown in Figure 4.6. 

 

 

Figure 4.5. a) plane view of the fault in the geometrical mode with indicated 

section A-A'; b) section A-A', normal to the fault, with the two parts in which 

it is subdivided; c) photographic view of the actual fault (Romagna Acque – 

Società delle Fonti S.p.A.). 
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Figure 4.6. a) exploded view of the geometrical model with all the parts deriving from 

the cutting; b) complete model. 
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4.3 Abaqus FE model 

An Abaqus/Standard® model is created in the Abaqus/CAE® environment. All the parts 

are imported from ACIS files (.sat). The validity of the geometry is automatically checked 

by the software and, if the imported solid results as invalid, a number of repairing tools is 

suggested. 

For the parts of Ridracoli Dam model the following tools are used (Smith, 2009): 

− Geometry Edit, 

− Virtual Topology, 

− Partition Tools. 

A significative pre-processing work is done with Autocad® to reduce to a minimum the 

need for repairing. All the editing to the geometry, in fact, cannot be easily exported outside 

Abaqus®. Each part is separately meshed. In general, the element size ranges from a 

maximum side length of 20 m to a minimum of 1.5 m. A regular loose mesh is adopted for 

the outermost external part of the rock foundation. The innermost external part is more 

densely meshed in order to match the size of internal part elements (side length of about 15 

m). At the contact with the pulvinus and the ancillary concrete structures the size furtherly 

reduce to about 5-m-sided elements. Linearly distributed Edge Seeds are used for a smooth 

reduction of mesh size while approximating the centre of the model, where the dam is 

placed. Structural parts have a quite dense mesh with element sides ranging from 5 to 2 

meters. Other parts densely meshed are the two fault sides with less than 1-m-sided 

elements in the tinier details. 

 

4.3.1 Concrete structures  

Eigth-noded hexaedral elements (C3D8 in Abaqus® terminology) are used to discretize the 

dam body (i.e., the part of the dam resting on the pulvinus). Four-noded tetrahedral 

elements (C3D4) are used to discretize the remaining concrete structures: the pulvinus and 

the ancillary works such as weight blocks and stilling basin. All the concrete structures are 

assigned a linear elastic material behaviour with Rayleigh damping. A set of Rayleigh 

coefficients is chosen corresponding to a reference damping coefficient (ζ) of 2%. The first 

two natural frequencies of the dam observed by Buffi (2018) are chosen as anchor points 

(i.e., frequencies for which Rayleigh damping coincides with the mean damping 

coefficient) for the estimation of αR and βR. The dynamic elastic modulus and the Poisson 

coefficient are the same used in Buffi (2018): they are based on experimental tests on the 

dam concrete, increased for taking into account the surplus of stiffness under dynamic 

loading. A mass density of 2470 kg/m3 is considered as representative of the concrete 

structures. Mesh and material data are listed in Table 4.1 and 4.2, respectively. The 

structural meshes are visible in Figure 4.7a. 
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4.3.2 Rock mass 

The external parts of the rock mass have a relatively simple geometry with plane lateral 

and bottom sides, and squared edges. The upper surface is a single analytic surface and is 

easily treated by the advanced meshing algorithms of Abaqus/CAE®. Each part is furtherly 

partitioned in order to obtain smaller regions where Abaqus® can apply a structured 

hexahedral mesh. On the contrary, the internal parts of the rock mass exhibit in general a 

very complex geometry due to the presence of the footprints of structural parts and the 

variably oriented cutting planes representing discontinuities. Therefore, they are not good 

candidates for structured meshing with hexahedral finite elements. Free meshing algorithm 

with tetrahedral elements is applied, instead. All rock foundation parts are modelled with 

low order finite elements (i.e., C3D4 or C3D8 elements with only corner nodes). For the 

outermost external part this choice is forced because of the compatibility requirement with 

the free-field elements that will be described in Section 4.4.1. 

The rock mass is considered as linear elastic and Rayleigh coefficients corresponding to a 

reference damping coefficient (ζ) of 3% are adopted. Since no rigid bedrock is considered 

and the elastic material is imagined infinitely extending in vertical direction without any 

increase in stiffness, the signal inputted at the base is not amplificated for any frequency 

and, therefore, the choice of anchor points for αR and βR is quite arbitrary, the same as in 

Buffi (2018) is made where, on the contrary, a perfectly rigid bedrock at the base was 

defined. The dynamic elastic modulus and the Poisson coefficient are directly derived from 

sonic testing of the rock mass (see Section 1.2.3). A mass density of 2650 kg/m3 is 

considered as representative of the rock formation. All parts are assigned the same material 

properties, which are listed in Table 4.2, while mesh characteristics are summarized in 

Table 4.1. The rock foundation meshes are visible in Figure 4.7b and 4.7c. 

 

4.3.3 Fault 

The modelled fault corresponds to the whole sheared zone at the contact between the two 

sides. It is composed of two solid layers with a thickness of 0.75 m each, and an interaction 

at the shared faces of the mid-plane. The two parts are discretized in tetrahedral elements 

with a free mesh algorithm, and a relatively high mesh density to avoid the possible 

distortion of finite elements due to the small thickness of the layer. Owing to the expected 

high deformability of the layer, quadratic finite elements (C3D10) are chosen, with mid-

edge nodes in addition to corner nodes. The solid volumes accounts for the deformability 

of the fault and are therefore assigned, in lack of real data, with a reduced elastic modulus 

with respect to the rock mass (1/10) and a higher reference damping coefficient (5%). The 

fault behaviour in the normal direction is linear elastic. In the tangential direction the total 

behaviour is the composition of the elastic deformation of the solid layers and the elasto-

plastic behaviour at the interface.  
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A user interaction property is defined to model the latter, further details are given in Section 

4.4.3. Mesh and material data are listed in Table 4.1 and 4.2, respectively. 

Table 4.1. Mesh data of the solid parts of Ridracoli Dam model. 

Part Description 
Mesh elements 

type number 

EXT-1 outermost external part C3D8 38799 

EXT-2 innermost external part C3D8 9776 

INT-R-1 lowest internal part on the right side C3D4 61691 

INT-R-2 second internal part from the bottom on the right side C3D4 17470 

INT-R-3 third internal part from the bottom on the right side C3D4 21257 

INT-R-4 uppermost internal part on the right side C3D4 39182 

INT-L-1 lowest internal part on the left side C3D4 25195 

INT-L-2 second internal part from the bottom on the left side C3D4 3028 

INT-L-3 third internal part from the bottom on the left side C3D4 3002 

INT-L-4 uppermost internal part on the left side C3D4 7678 

F-R right side of the fault C3D10 28773 

F-L left side of the fault C3D10 27068 

WB-R weight blocks on right side C3D4 8367 

WB-L weight block on the left side C3D4 6624 

SB stilling basin C3D4 10295 

PULV pulvinus  C3D4 21308 

DB dam body C3D8 35856 

 

Table 4.2. Material properties assigned to Ridracoli Dam solid parts. 

Parts 

Mass 

density 

Linear elastic 

properties 
Damping coefficients 

ρ (kg/m3) E (GPa) ν (-) ζ (%) αR (-) βR (-) 

EXT- INT 2650 27.8 0.37 3 0.107 0.0084 

F 2600 2.78 0.30 5 0.178 0.014 

WB-SB-PULV-DB 2470 39.8 0.19 2 0.082 0.0046 
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Figure 4.7. Mesh of the model: a) dam and ancillary works (DB-WB-SB-

PULV); b) internal parts (INT-F)); c) external parts (EXT) 
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4.3.4 Discontinuities 

The shared surfaces between parts in contact are treated with either Tie Constraints or 

Interactions (Smith, 2009). Details on the formulations of these features are described in 

Section 3.3.9.  

Tie Constraints are used for the interfaces between two structural parts, or a structural part 

and its rock foundation, since no relative motion is expected at these contacts due to the 

embedding. They are also used to stick together the external and the internal parts of the 

rock foundation domain.  

Interactions are defined in correspondence of real discontinuities of the rock mass (i.e., the 

3 laminated layers and the fault), and at the interface between the two external parts. In the 

first case the interface behaviour is described with an “hard” contact penalty method in the 

normal direction (Equation 3.67) and with a user-defined subroutine in the tangential 

direction, which implements a Mohr-Coulomb friction criterion (Equations 3.70 and 3.71, 

details about the subroutine are given in the Section 4.4.3, together with the elastic and 

plastic properties of all interactions used for Ridracoli Dam). In the second case, a cohesive 

behaviour is assigned to the interface, with high moduli in normal and tangential directions 

(Equation 3.72) in order to simulate a perfect sticking between surfaces once in contact. 

Since tie constraints cannot be activated in a particular step but are active during the entire 

simulation, they are not an adequate solution to connect the two external parts, which are 

originally disconnected, only at some point during the analyses.  

 

4.3.5 Boundary conditions 

Different boundary conditions (BCs) are defined for static and dynamic phases. The static 

BCs (base fixed and side boundaries horizontally constrained) are applied to EXT-2 instead 

of EXT-1 (see Table 4.1 for symbols), in order to reduce the portion of the model affected 

by static loads to the only parts for which a non-elastic behaviour is admitted in the vicinity 

of the dam (due to the presence of natural discontinuities). In this phase EXT-1 is 

disconnected from EXT-2 since the corresponding interaction is inactive. As a 

consequence, EXT-1 results as unloaded throughout the static phases and does not transmit 

anything to its free-field boundaries. The “static” fixities are released at the end of the static 

phase and substituted with corresponding nodal forces (extracted from the output database) 

before sticking together the disconnected portions (EXT-1 and EXT-2) with the cohesive 

interaction described above (see Section 4.3.4). 

The outermost external part has free-field elements attached to its side boundaries which 

simultaneously apply viscous boundaries and free-field equivalent seismic forces. At the 

bottom boundary the same role is played by a bed of discrete dashpots. The seismic input, 

in the form of an upward propagating combination of P-waves and SH-waves, is applied at 
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this boundary as effective seismic forces. Although being active throughout the analyses, 

these viscous boundaries are in practice inactive during the static phases due to the 

disconnection of the outermost external part from the rest of the model. The main 

characteristics of the BCs used in the Ridracoli Dam model are listed in Table 4.3. 

 

Table 4.3. Boundary conditions of Ridracoli Dam model. 

Part BC description 
Activity flag 

Static steps Dynamic steps 

EXT-1 
Viscous adsorbing boundary at the bottom 

boundary (dashpots) 
✓ ✓ 

EXT-1 
Viscous adsorbing side boundaries  

(free-field elements) 
✓ ✓ 

EXT-2 
all components of displacement fixed at 

the bottom boundary 
✓ ✖ 

EXT-2 
horizontal components of displacements 

fixed at the side boundaries 
✓ ✖ 

 

 

4.3.6 Dashpot elements 

In Abaqus/Standard® a special purpose fine element is available for modelling a viscous 

damper between a mesh node and a fixed support (Smith, 2009). It is called DASHPOT1 

to distinguish it from a viscous damper between two mesh nodes (DASHPOT2). Each 

dashpot element enforces a viscous damping condition for a single DOF; therefore, three 

of them are needed for each node of the bottom boundary, one vertical and two horizontals. 

The damping coefficient is calculated with Equations 3.43: the mass density (ρ) and the 

wave velocity (Vp or Vs depending on the DOF, vertical or horizontal respectively) are 

taken from the elastic properties in Table 4.2 (EXT-INT), the influence area (A) is derived 

from graphical consideration as explained in Figure 4.8. The finite elements at the bottom 

boundary have a regular mesh with square faces of 20x20 m. The influence area is equal to 

400 m2 for all the nodes, with the exception of edge nodes (A = 200m2) and corner nodes 

(A = 100m2). 

Dashpot elements are applied also at the base of free-field elements; details on the 

calculation of influence areas in that case are given in Section 4.4.1. 
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4.3.7 Loads 

Static loads applied to the dam and the rock foundation include gravity loads and 

hydrostatic pressures due to impounded water. They are activated during the static phases 

in the whole model with the exception of the disconnected outermost external parts, and 

remain active throughout the analyses. The reference zero-pressure elevation for the 

hydrostatic load is set equal the maximum water level (557.3 m a.s.l.). Hydrostatic pressure 

at a given node below that elevation is linear function of the hight of the column of water 

above it. When the static BCs are realised at the end of static phases, the corresponding 

reaction forces extracted from the output database are applied to the previously fixed nodes 

of EXT-2 in order to ensure the equilibrium. They can be thus considered as additional 

static loads.  

Dynamic loads include the effective seismic forces at the absorbing boundaries and 

hydrodynamic forces at the upstream face of the dam body. Only the effective seismic 

forces at the bottom boundary are applied in form of loads, calculated as in Equation 3.47b 

considering the mass density and the elastic properties in Table 4.2 (EXT-INT), and the 

influence areas in Figure 4.8. The other dynamic forces are defined within user 

subroutines, as explained in the following Section 4.4. In Abaqus® terminology both 

gravity (GRAV) and hydrostatic pressures (HP) are sub-options of the keyword *DLOAD 

(distributed loads), while the static reaction forces and the effective seismic forces are 

defined as concentrated loads (*CLOAD) (Smith, 2009).  

 

 

Figure 4.8. a) nodal dashpots at the bottom boundary of the outermost external part (EXT-

1); (b) definition of influence areas for inner (in blue), edge (in purple), and corner (in blue) 

nodes of the base; c) scheme of vertical and horizontal dashpots. 
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4.4 Abaqus® user subroutines 

At the end of the procedure described so far, an input file may be generated within the 

Abaqus/CAE® environment. This input file should be open in a text editor in order to 

manually add those features which are not built-in and are defined in user subroutines 

written in Fortran® language. Three user-subroutines are called in Ridracoli Dam analyses, 

namely two user-defined finite elements (UEL in Abaqus® terminology) and a user-

defined frictional interaction property (FRIC in Abaqus® terminology): 

− ffuel3: a UEL subroutine written by Nielsen (2014) to implement free field lateral 

boundaries, 

− amass1: a UEL subroutine written by the author to implement Westergaard and 

Zangar formulation of added masses, 

− fric1: a FRIC subroutine written by the author to implement a Mohr-Coulomb 

friction behaviour in effective stress with two parameters (tanφ' e c'). 

The Fortran® code in free format of amass1.for is listed in Appendix C, while the free 

format Fortran® code of fric1.for is listed in Appendix D. 

 

4.4.1 Free field elements: use of ffuel3 subroutine 

Some Finite Element codes specific for geotechnical applications (e.g., Plaxis®) have free-

field elements available in their libraries. This is not the case for Abaqus®, which does not 

enlist free-field elements as native and privileges the infinite elements approach to deal 

with unbounded problems and non-reflecting boundaries. The general-purpose Finite 

Element code, however, allows for a high degree of customization by means of the 

powerful UEL utility. A free-field user element is therefore available, developed by Nielsen 

(2014) for both two-dimensional and three-dimensional analyses.  

In three-dimensional problems the free-field elements implemented in ffuel3 are only 

compatible with 8-noded hexahedral elements at the lateral boundaries of the truncated 

semi unbounded domain. Two element types, U2 and U3, are defined corresponding to the 

1D corner columns and the 2D plane sections described in Section 3.3.6, respectively. The 

theoretical equations governing the free-field elements are given in Equations 3.49 to 

3.53). For Ridracoli Dam 72 U2 elements and 3672 U3 elements are used. 

With the help of the Fortran program ffmesh.f90, which is written by Nielsen (2014) and 

is distributed together with ffuels3, a new set of nodes are defined in front of boundary 

nodes, with an offset, wff, that may be freely chosen by the user as long as an algorithm for 

unsymmetric matrices is requested (UNSYMM = YES option).  New nodes are aligned to 

existing nodes in order to have non-distorted hexahedral free-field elements. The offset wff 

is taken as equal to 1 m in the Ridracoli Dam model. 



Chapter 4 – Case study: Ridracoli Dam FE model and numerical analyses 

 

 

94 

 

Besides wff, the properties to be assigned to free-field elements are the same defined for the 

foundation rock (i.e., mass density, ρ; elastic coefficients, E and ν; and damping 

coefficients, αR and βR). The values assigned to free-field elements are identical to those 

assigned to EXT-INT parts and listed in Table 4.2. 

At the base of free-field elements both dashpot elements and equivalent seismic forces must 

be applied as mentioned in Sections 4.3.6 and 4.3.7. The same considerations as for the 

nodes of the main model applies; the only difference is in the definition of influence areas. 

Following the suggestion in Nielsen (2014) the influence area of 1D corner columns is wff
2, 

while that of 2D plane sections is given by: 

𝐴 = 𝑤𝑓𝑓  
∑ 𝑙𝑖

(𝑒)𝑛
𝑖=1

2
        (4.1) 

 

where li
(e) is the side length of the i-th free-field element sharing that node and n is the 

number of these elements. With reference to Figure 4.9 and considering a constant side-

length of 20 m, node A has an influence area of 1m2, node B of 10 m2 and node C of 20 

m2, respectively. 

In two-dimensional problems, used in Section 4.5.1 (in addition to 3D analyses) to test the 

reliability of ffuel3, the free-field elements implemented in ffuel3 are only compatible with 

4-noded bilinear plane strain elements (CPE4). The corner columns at the two lateral sides 

are discretized with U1 elements. The offset wff is the distance of the corner free-field 

column from the main model and corresponds to the influence area to be assigned to 

dashpots at the base. 

 

 

Figure 4.9. Influence area of free-field element base dashpots. 
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4.4.2 Added masses elements: implementation of amass1 subroutine 

In order to satisfy the Abaqus® requirement of a single user subroutine of the same type 

(e.g, two UEL subroutine cannot be assigned to the same Abaqus® job at once), the 

amass1.for subroutine is written as a suboption of ffuel3.for. The added mass user element 

here defined is therefore called U23 to distinguish it from the free-field elements previously 

described (U1, U2, U3) and the infinite elements defined by Nielsen (U11, U12, U13), not 

used in Ridracoli Dam analyses. The 2 in U23 indicates the typology (0 = free-field, 1 = 

infinite, 2 = added masses) and the 3 indicates the dimension (1 = 1D FE in a 2D analysis, 

2 = 1D FE in a 3D analysis, 3 = 2D FE in a 3D analysis). In the Ridracoli Dam case 5976 

U23 elements are used. 

It is derived from subroutine addedmass_uel.f, distributed as part of Abaqus® 

documentation (Abaqus, 2009) for the analysis of two-dimensional dams. Moreover, the 

Abaqus® subroutine suffers the original limitation of Westergaard method (i.e., a vertical 

upstream face of the dam). 

The simple code in addedmass_uel.for is therefore adapted to three-dimensional problems 

and variable-orientated upstream faces. An isoparametric 4-noded linear shell element is 

defined in amass1 with the following properties: 

− no stiffness, 

− no damping, 

− a mass matrix, Ma, given by Equation 3.61, and only active in dynamic steps of 

analysis.  

Details of the formulation of Westergaard and Zangar theories and the corresponding 

equation written in a Finite Element notation are given in Section 3.3.7. For the definition 

of the new added-mass elements in the model the same nodes of the dam face are used. 

This is the main reason for the choice of using C3D8 elements for the dam body, whose 

faces are described with the same shape function of amass1 elements. 

The ξ-η-ζ-coordinate of the nodes of the isoparametric added mass element in the parent 

domain are: 

 

node 1:  ξ = −1 η = −1 ζ = −1   (4.2a) 

node 2:  ξ = 1  η = −1 ζ = −1   (4.2b) 

node 3:  ξ = 1  η = 1  ζ = −1   (4.2c) 

node 4:  ξ = −1 η = 1  ζ = −1   (4.2d) 

 

A pictorial view of the isoparametric added-mass shell element attached to the face of a 

hexahedral C3D8 elements is given in Figure 4.10. 
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Figure 4.10. Definition of the user isoparametric added-mass element attached to the face 

of C3D8 dam-body elements, in the parent and the global domains. 

 

The shape functions in the ξ-η-ζ-coordinate system are given by the following: 

 

S1
(e)

= ((1 − ξ)(1 − η)(1 − ζ))/8      (4.3a)  

S2
(e)

= ((1 + ξ)(1 − η)(1 − ζ))/8      (4.3b) 

S3
(e)

= ((1 + ξ)(1 + η)(1 − ζ))/8      (4.3c) 

S4
(e)

= ((1 − ξ)(1 + η)(1 − ζ))/8      (4.3d) 

 

The element properties to be given in input are: 

− reservoir maximum depth (approximately 100 m for Ridracoli Dam), 

− water level in the reservoir (557.3 m a.s.l. for Ridracoli Dam, since the main model 

has an upward-directed Z-axis corresponding to the absolute elevation above sea 

level), 

− water density (usually assumed equal to 1000 kg/m3), 

− Zangar cm coefficient (cm = 0.69, see Equation 4.4 and Figure 4.11); 

− element dimension (always equal to 2 for shell elements), 

− number of integration points (1 or 4), 

− added mass typology (1 = generalized Westergaard, 2 = Zangar). 

The Zangar formulation is used in Ridracoli Dam analyses. The mass matrix in the original 

code was lumped with non-null terms for the DOFs corresponding to horizontal nodal 

displacements only. The mass matrix in amass1.for is always consistent. The single entries 

of the mass matrix are numerically integrated over each element with a Gauss quadrature 

technique. As already mentioned, it is possible to choose between two options depending 

on the number of Gauss points in the element (i.e., 1 or 4 Gauss points per element). The 

4-points option is adopted in the analyses, owing to its capability to consider a non-uniform 

distribution of the added mass density over the single finite element. 
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The Zangar cm coefficient for Ridracoli Dam is calculated as suggested in the Italian code 

for dams and barriers (NTD, 2014). The main section of the dam is schematised in Figure 

4.11. The submersed part of the upstream face of the dam is divided into 9 segments from 

the bottom up with a constant elevation difference of 10 m (with the exception of the last 

segment that terminates at the water level, 557.3 m a.s.l.). The characteristic cm for the 

definition of hydrodynamic pressures can be derived with the following weighted mean: 

 

cm = (∑ (90 − αi) ΔLi
9
i=1 )/(∑  ΔLi

9
i=1 )     (4.4) 

 

 

 

Figure 4.11. Main section of Ridracoli Dam used for 

calculating Zangar cm coefficient.  
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4.4.3 Mohr-Coulomb interactions: Implementation of fric1 subroutine 

A FRIC user subroutine in Abaqus/Standard® defines the tangential behaviour of an 

interaction properties between two surfaces in contact. In Ridracoli Dam analyses the 

subroutine fric1 is used to model the interaction between solid bodies along the natural 

discontinuities of the rock mass (i.e. the laminated layers and the mid-plane of the fault 

described in Sections 1.2.2 and 1.2.3). It is supposed that all the plasticity of the rock mass 

is concentrated along these discontinuities of an otherwise homogeneous elastic domain. 

The user subroutine fric1 is derived from subroutines technote_fric_coulomb_3.for (2D) 

and technote_fric_coulomb_4.for (3D) (HKS-Inc., 2001a; 2001b). These two subroutines 

suffer the original limitation of the native Mohr Coulomb criterion implemented in 

Abaqus/Standard®: 

− no cohesion, 

− definition in terms of total stresses. 

To overcome these limitations, in fric1 the Mohr-Coulomb criterion is modified as in 

Equation 3.70. Moreover, the frictional behaviour is suddenly shifted to a free-sliding 

condition whenever the normal effective stress become non-positive. 

The shear strength parameters (c' and tanφ') are given in input, together with a threshold 

for elastic slips (γcr), and the water level (Hw) needed to calculate hydrostatic pore pressure 

under the hypothesis of a linear distribution with depth. The subroutine cannot consider 

neither the hydrodynamic oscillations of pore pressures during a seismic event, nor a 

possible pore pressure building-up during the shaking.  The elastic slip threshold (γcr) is not 

given in input directly, but as a percent, γ%, of the characteristic length (lch) of element faces 

on the surfaces defining a contact. The following relation holds: 

 

γcr = γ%  lch         (4.5) 

 

The subroutine is applied both for the laminated layers and the fault. In the first case dry 

conditions are enforced by setting a hydrostatic level lower than the minimum elevation of 

the surfaces in contact. This choice is motivated by a consideration on the initial closure 

and cementation of the laminated layers. The mid-plane of the fault, on the other hand, is 

considered as submerged. The plane is subdivided in four sectors with a common centre at 

the upstream edge of the pulvinus base (Figure 4.12a), aiming to roughly reproduce the 

filtration path around the grout curtain. Starting from the upstream sector, the hydrostatic 

level corresponding to the water level in the reservoir (557.3 m a.s.l.) is linearly reduced to 

match the water table level downstream of the dam (450.0 m a.s.l.). The mesh of the left-

sided part of the fault (F-L) is given in Figure 4.12b for completeness. 
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In lack of experimental data, Mohr-Coulomb coefficients for the fault are assigned on the 

basis of the lithology of the core part, which has been classified as a breccia (see Section 

1.2.2). A friction angle of 35° and a low cohesion (c' = 1.0 kPa) are chosen. 

All the interaction used for Ridracoli Dam simulation are summarised in Table 4.4. The 

elastic and plastic properties of all the interactions used for Ridracoli Dam simulations are 

listed in Table 4.5. 

 

 

Figure 4.12. a) contact surface of the left-sided half of the fault divided in uniform 

sectors (A – D) with different reference water levels (linearly decreasing from left 

to right); b) mesh of the face. 

 



Chapter 4 – Case study: Ridracoli Dam FE model and numerical analyses 

 

 

100 

 

Table 4.4. Interactions of Ridracoli Dam model. 

Parts in contact 
Normal behaviour Tangential behaviour 

“Hard” Cohesive Mohr-Coulomb Cohesive 

EXT-1/ EXT-2 ✖ ✓ ✖ ✓ 

INT-R-1/ INT-R-2  

(III laminated layer) 
✓ ✖ ✓ ✖ 

INT-R-2/ INT-R-3 

(II laminated layer) 
✓ ✖ ✓ ✖ 

INT-R-3/ INT-R-4 

(I laminated layer) 
✓ ✖ ✓ ✖ 

INT-L-1/ INT-L-2 

(III laminated layer) 
✓ ✖ ✓ ✖ 

INT-L-2/ INT-L-3 

(II laminated layer) 
✓ ✖ ✓ ✖ 

INT-L-3/ INT-L-4 

(I laminated layer) 
✓ ✖ ✓ ✖ 

F-R/F-L ✓ ✖ ✓ ✖ 

 

 

Table 4.5. Intersections properties assigned to Ridracoli Dam interactions. 

Interaction behaviour “Hard” Mohr Coulomb Cohesive 

Parts in contact 
KN γ% tanφ' c' Hw KN KS 

(GN/m) (%) (-) (kPa) (m) (GN/m) (GN/m) 

EXT/EXT - - - - - 1000.0 1000.0 

INT/ INT 1000.0 0.01 0.23 20.0 0 - - 

F/ F sector A 1000.0 0.01 0.70 1.0 557.3 - - 

F/ F sector B 1000.0 0.01 0.70 1.0 520.0 - - 

F/ F sector C 1000.0 0.01 0.70 1.0 485.0 - - 

F/ F sector D 1000.0 0.01 0.70 1.0 450.0 - - 
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4.5 Numerical analyses 

The capability of user-defined subroutines to reproduce simple benchmark examples is 

tested at first. The three different subroutines are tested separately. For ffuel3 a comparison 

with other software which implement the same strategy is given, while other subroutines 

are tested against simple analytical results. 

The numerical results of the analysis of the complete dam-water-foundation system 

subjected to the Coalinga (1983) earthquake are provided. The selected earthquake well 

approximate the Maximum Credible Earthquake (MCE), as stated in Section 2.4.2, and 

obeys to strict spectrum-compatibility requirements. The displacements at several nodes at 

the level of the crest are primarily examined in order to detect the natural periods of the 

system and examine the structural behaviour. The influence of the impounded water and 

the rock foundation on the overall response of the system are then pointed out. A 

comparison is made with literature results (Buffi, 2018) and fixed base analyses of the dam 

at different filling conditions of the reservoir. The plastic behaviour along natural 

discontinuities of the rock mass are finally analysed in terms of unrecoverable slip at the 

end of the analysis. 

 

4.5.1 Testing of ffuel3 

In this section several examples are documented to validate the accuracy of the direct FE 

method theoretically developed in Chapter 3 and implemented in the FE program 

Abaqus/Standard® with the help of subroutine ffuel3 (Section 4.4.1). The ability of the 

method to reproduce free-field motions at the surface of a flat foundation box subjected to 

upward-propagating shear waves (SH) is verified. In this special case, the three-

dimensional seismic response exactly corresponds to that of a 1D column of soil. 

One-dimensional site response analyses (SRA) can be performed with a variety of methods. 

A linear visco-elastic material is assumed for the soil with material properties listed in 

Table 4.6. An SRA in the frequency domain is performed with the academic Matlab®-

based software MARTA (Callisto, 2020) and the results are compared with those obtained 

with Abaqus/Standard® and with the geotechnics-oriented FE software Plaxis2D® and 

Plaxis3D® (Brinkgreve et al., 2022) for a variety of geometries and strategies (Figure 4.13; 

Table 4.7 and 4.8).  

 

Table 4.6. Material properties assigned in the ffuel3 test problem. 

Mass density Linear elastic properties Damping coefficients 

ρ (kg/m3) E (GPa) ν (-) αR (-) βR (-) 

2038.7 0.48 0.33 1.257 0.002829 
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The test problem is similar to that described in Plaxis® verification manual (Brinkgreve 

et al., 2022). Both 2D (plain-strain) and 3D analyses are conducted. In 2D conditions a 

“columnar” geometry (2x50 m) and a square geometry (50x50 m) are compared. In 3D 

conditions a cubic flat box (50x50x50 m) is employed (Figure 4.13). In order to test the 

effect of an extremely rigid cohesive interaction on the dynamic response (by analogy 

with the strategy adopted for Ridracoli Dam, see Section 4.3.4) a further cube is prepared, 

with a 30x30x30 internal cubic slot. The internal cube is in contact with the external part 

on 5 sides through the cohesive interaction. A single elastic layer is considered for sake of 

simplicity. 

The natural periods of the soil column can be easily calculated with Equation 4.5. 

 

TN =
4 H

n VS 
         (4.5) 

 

where H is the thickness of the layer (i.e. H = 50 m), Vs is the shear wave velocity of the 

elastic material (i.e. Vs = 300 m/s) and n is the progressive number of natural periods. The 

Rayleigh coefficients, αR and βR, exactly correspond to a damping coefficient (ξ) of 8% for 

the first two natural periods of the deposit (T1 = 0.66 s and T2 = 0.133 s). A damping 

coefficient equal to 8% constant with frequencies is entered in MARTA. 

The choice to use Plaxis® is due to its native free-field and compliant base elements, which 

are easily added to the lateral and bottom boundaries through the program user interface. 

The free-field elements in Plaxis® are analogous to those in ffuel3, while the compliant-

base elements correspond to the combination of discrete dashpots and point loads 

implemented in Abaqus/Standard® to account for the deformability of the bedrock, and 

described in detail in Section 4.3.6 and 4.3.7. 

Because of the mesh limitations in ffuel3 (Nielsen, 2014) and in Plaxis® (i.e., the limited 

library of available elements), the chosen finite elements are different in the two tested FE 

environments. Triangle/tetrahedral elements of high order are used in Plaxis® (i.e. 15-

node-TRI and 10-node-TET), while usual CPE4/C3D8 elements are selected in 

Abaqus/Standard®. All the meshed models are shown in Figure 4.13. 

Apart from “free-field” boundaries, another boundary strategy typically adopted for 1D 

analyses is applied for comparison. It is usually referred to as tied-DOFs (TDOF) and 

consists in constraining the motion of each node on the right boundary to be equal to the 

motion of the corresponding node on the left boundary. 

The seismic input is invariably applied at the base of the model. Two limit conditions are 

considered: 

− a perfectly rigid bedrock, labelled from here after as “bedrock” (Table 4.7), 

− a bedrock layer with the same elastic properties of the soil in the model, labelled 

from here after as “outcrop” (Table 4.8). 
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In the first case, the “compliant-base” strategy is unnecessary and the seismic input may be 

applied as an acceleration time history directly to the nodes at the base of the main model 

(and at the base of free field columns and plane sections). Dashpots are replaced by fixities 

in the non-excited directions (i.e., the vertical direction in 2D models, the vertical and one 

of the horizontals in 3D models). The horizontal seismic input used in the test models is 

taken from Plaxis® tutorials (Brinkgreve et al., 2022) and plotted in Figure 4.14. It 

corresponds to the unscaled North component of the Upland Earthquake (1990), and has a 

local magnitude of 5.4 and a duration of 23.44 s. 

 

 

Figure 4.13. a) 2D and 3D ffuel3 test models used in Plaxis®; b) 2D and 3D ffuel3 test 

models used in Abaqus®. 
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Table 4.7. Meshes and geometries used with seismic input defined at bedrock. 

 Software Test analysis Geometry type number 

B
ed

ro
ck

 

Marta MARTA-B 50 - - 

Plaxis2D® 

PL-1-TDOF-B 2x50 15-node-TRI 132 

PL-2-TDOF-B 50x50 15-node-TRI 3300 

PL-1-FF-B 2x50 15-node-TRI 132 

PL-2-FF-B 50x50 15-node-TRI 3300 

Plaxis3D® PL-3-FF-B 50x50x50 10-node-TET 20461 

Abaqus/ 

Standard® 

AB-2-TDOF-B 50x50 CPE4 625 

AB-2-FF-B 50x50 CPE4 625 

AB-3-a-FF-B 50x50x50 C3D8 15625 

 

Table 4.8. Meshes and geometries used with seismic input defined at outcrop (i.e., 

considering a deformable bedrock). 

 Software Test analysis Geometry Element type 
Element 

number 

O
u
tc

ro
p

 Marta MARTA-O 50 - - 

Plaxis3D® PL-3-FF-O 50x50x50 10-node-TET 20461 

Abaqus/ 

Standard® 

AB-3-a-FF-O 50x50x50 C3D8 15625 

 AB-3-b-FF-B 
50x50x50 

(30x30x30) 
C3D8 

15625 

(3375) 

  

 

 

Figure 4.14. Seismic input (North component) from Upland Earthquake (1990). 
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The results are given in terms of ground-surface spectral accelerations (Sa) for a damping 

coefficient of the single degree of freedom system of 5%, in Figure 4.15 and Figure 4.16 

for a seismic input defined at bedrock or at outcrop, respectively.  

 

 

Figure 4.15. Spectral accelerations evaluated in correspondence to the mid-point of the 

ground surface in the different ffuel3 test models for a seismic input applied at bedrock. 

 

 

Figure 4.16. Spectral accelerations evaluated in correspondence to the mid-point of the 

ground surface in the different ffuel3 test models for a seismic input applied at outcrop 

(i.e., considering a deformable bedrock). 
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All results refer to a mid-point of the ground surface. A satisfactory match with MARTA 

solution can be observed for all tested FE models. A near perfect match is found around 

the anchor frequencies of Rayleigh damping (T1 = 0.66 s and T2 = 0.133 s) for 2D models. 

Some inaccuracies arise when model width is increased without tying lateral-boundary 

DOFs (e.g., PL-2-FF-B). Three-dimensional models, owing to a relatively coarser mesh, 

are in less agreement with the reference solution obtained with MARTA. Plaxis® is more 

accurate than Abaqus® when the seismic input is directly applied at the base (i.e., bedrock 

hypothesis), while Abaqus® is slightly more accurate than Plaxis® when a deformable 

bedrock is assumed (i.e., outcrop hypothesis). No difference is observed between the single 

cube (AB-3-a) and the cube with the slot (AB-3-b), proving the effectiveness of the 

cohesive interaction in connecting different parts. The free-field strategy implemented in 

Abaqus® demonstrates to correctly reproduce free-field conditions for this simple 1D 

system to within FE discretization error. 

 

4.5.2 Testing of amass1 

The user-subroutine amass1 is tested at the level of the single finite element. For this 

purpose a test program is written in Fortran (amasstest.f90), and attached in Appendix E. 

It has been used to calculate the hydrodynamic nodal forces, corresponding to the 

distributed pressure over the element face (see Equation 3.5.4), for a variety of nodal 

coordinates of the element, user-properties (i.e., water level, height of the immersed part of 

the dam, number of integration points, type of formulation), and acceleration distribution 

(i.e., constant and linear distribution). The same results can be manually calculated for a 

comparison and are in perfect agreement for all testing input. The combination of input 

parameters and output results in the attached version of the program are summarised in 

Table 4.9, while the test conditions are shown in Figure 4.17. 

Table 4.9. Input parameters (see Section 4.4.2) and output results of amasstest.f90. 

amass1 user parameters 

[H-h] (m) H (m) ρ (Kg/m3) cm (-) dim. (-) int. pt. (-) type (-) 

10 10 1000 0.69 2 1 1 

 Element DOFs 

Element 

coordinates 

(m) 

-1 -1 2 1 -1 0 1 1 0 -1 1 2 

Accelerations 

(m/s2) 
10 0 0 10 0 0 10 0 0 10 0 0 

Hydrodynamic 

forces (kN) 
58.7 58.7 0 58.7 58.7 0 58.7 58.7 0 58.7 58.7 0 
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Figure 4.17. Scheme of the test problem in amasstest.f90 

 

Further testing of amass1 capabilities is given in Appendix F, where the new developed 

subroutine is compared with the Abaqus® freely distributed addedmass_uel.f for the 2D 

FE solution of Koyna Dam from Abaqus Example Problem Manual (Abaqus, 2009). 

 

4.5.3 Testing of fric1 

The user-subroutine fric1 is tested in static conditions. A model composed of two cubes 

one on top of the other (50x50x50m each) is prepared in the Abaqus/CAE® environment; 

an interaction is inserted between the two cubes with tangential properties defined in the 

user-subroutine fric1. The reference value of the water table is placed at an elevation of 100 

m above the base of the lower cube, while the a friction angle of 30° and a cohesion of 100 

kPa. Elastic normal modulus of the interface is taken as equal to 1000 GN/m, while the 

elasticity threshold in tangential direction is given by a γ% value of 0.01%. The lower cube 

is constrained with rigid links and is therefore undeformable, while the upper cube is linear 

elastic with a mass density of 3000 kg/m3, a Young modulus of 1.0 GPa and a Poisson 

coefficient of 0.33. 

The scheme of the test problem and the Abaqus® results are shown in Figure 4.18. 
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Figure 4.18. a) scheme of fric1 test problem with applied loads and boundary 

conditions; b) results of Abaqus® simulation in terms of x-displacements at rupture. 

 

The analysis is subdivided into two static steps: i) gravity loading, ii) lateral pushing. In the 

first step the gravity is applied to the upper cube which enters in contact with the lower 

rigid cube and deforms; in the second step the upper cube is pushed with a uniformly 

distributed normal pressure on one of its lateral sides, corresponding to a total horizontal 

force of 4.0 GN. The analysis interrupts after reaching a value of 1731.6 MN, while the 

manually calculated value under the hypothesis of unform distribution of pressures at the 

interface is equal to 1666.0 MN. The two values are in good agreement, the small difference 

being due to the deformability of the upper cube and consequent redistribution of normal 

pressure. 

 

4.5.4 Choice of the seismic input 

The dynamic analyses of Ridracoli Dam are conducted for the maximum credible 

earthquake (MCE) with a reference period of 1950 years. A concurrent hydraulic condition 

corresponding to the maximum water level (557.3 m s.l.m.) is considered. 

The seismic input in three normal directions (North-East-Up) is selected from repositories 

of recordings of real earthquake events on the basis of a spectrum-compatibility in an 

interval of periods of interest. A detailed description of the adopted procedure is given in 

Section 2.4.2. Among the three signals selected in that context, the recording of Coalinga 

(1983) earthquake is the most compatible with the Uniform Hazard Response Spectrum 

(UHRS) estimated for Ridracoli (OGS, 2014). Moreover, the original signal is only slightly 

modified with a scale factor almost coincident with 1 in the horizontal direction 
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(composition of North and East components), and equal to 1.15 in the vertical direction. 

The Peak Ground Acceleration (PGA) in horizontal direction is equal to 0.63 m/s2, perfectly 

matching the expected PGA at Ridracoli site. The PGA in the vertical direction slightly 

underestimate the expected value (with values of 0.22 m/s2 and 0.34 m/s2, respectively). 

The scaled acceleration time histories (in three directions: North-East-Up) of Coalinga 

(1983) earthquake are plotted in Figure 4.19. 

 

 

Figure 4.19. Three components of input motion from Coalinga (1983) recording: a) east 

component, b) north component, c) up component. 
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4.5.5 Preliminary static analysis 

Before performing the dynamic analysis of the dam-water-foundation system of Ridracoli 

Dam, a preliminary initialisation of static stresses is needed. This static phase would not be 

necessary if the material behaviour of the whole system were assumed as linear elastic, 

because of the superposition principle. In Ridracoli FE model, though, a plastic behaviour 

of the rock mass is simulated, even if only along few known weak planes (i.e., laminated 

layers and fault). It is therefore necessary to include a strategy to initialise the static state 

of stress, at least in the portion of model affected by discontinuities. 

A choice is made to disconnect the outermost external part (EXT-1, see Section 4.3.2), 

where free-field boundaries are applied, form the rest of the model. Static boundaries 

conditions are then imposed at the new boundaries of the reduced domain (see Section 

4.3.5). Since the geometry is too complex for directly applying a known and equilibrated 

initial stress field, a static analysis phase is added with a constant gravity field applied (g = 

9.81 m/s2) to this reduced part of the domain. This portion of the model deforms under the 

self-weight; these displacements have no physical meaning since, in reality, the gravity was 

always present during the formation of the rock mass and the casting of the concrete. A 

strategy to reset these displacements to zero is described in the following. 

Before resetting displacements, anyway, another static phase is calculated, this time adding 

the hydrostatic pressure exerted by the impounded water on the upstream face of the dam 

and on the submerged ground surface of the valley. These displacements are real, since 

they develop every time the water level in the reservoir varies. Under the hypothesis that 

the earthquake takes place when the reservoir is full, however, the zero-displacement 

condition is assumed to be coincident with that deformed state (and not with the empty 

condition). Also this portion of displacement is zeroed before proceeding to the dynamic 

phase. 

To achieve this aim, the stress field in output of the static analysis is stored and re-applied 

in a static phase of a new identical model, with the same gravity and hydrostatic loads 

simultaneously activated. The resulting deformed mesh shows a negligible level of 

displacements in the reduced domain (and null outside), while stresses are correctly 

initialised along rock mass discontinuities. 

The next step consists in reconnecting EXT-1 to the rest of the model. First of all, the static 

reaction forces at the lateral and bottom boundaries of the reduced domain are extracted 

from the output file with partial results, and applied to the still-constrained boundary nodes. 

They are needed to not perturb the stress balance once the static boundary conditions are 

deactivated in a subsequent (and last) static step of analysis. The cohesive interaction 

defined between EXT-2 and EXT-1 is concurrently activated in order to glue together the 

two disconnected portion of the model in the dynamic phase. 

A schematic view of this process is given in Table 4.10 
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Table 4.10. Scheme of static phases propaedeutic to dynamic analyses. 

Analysis Step Description 

S1 

G 

typology: linear static analysis 

loads: gravity 

initial fields: none 

BCs (EXT-1): free-field elements (lateral), dashpots (base) 

BCs (EXT-2): fixed base, horizontally fixed lateral boundaries  

H 

typology: linear static analysis 

loads: gravity, hydrostatic pressure 

initial fields: none 

BCs (EXT-1): free-field elements (lateral), dashpots (base) 

BCs (EXT-2): fixed base, horizontally fixed lateral boundaries  

S2 

GH 

typology: linear static analysis 

loads: gravity, hydrostatic pressure 

initial fields: stresses from S1-Hydro 

BCs (EXT-1): free-field elements (lateral), dashpots (base) 

BCs (EXT-2): fixed base, horizontally fixed lateral boundaries  

RF 

typology: linear static analysis 

loads: gravity, hydrostatic pressure, reaction forces on EXT-2 

boundary from S2-Grav+Hydro 

initial fields: stresses from S1-Hydro 

BCs (EXT-1): free-field elements (lateral), dashpots (base) 

BCs (EXT-2): fixed base, horizontally fixed lateral boundaries  

I 

typology: linear static analysis 

loads: gravity, hydrostatic pressure, reaction forces on EXT-2 

boundary from S2-Grav+Hydro 

initial fields: stresses from S1-Hydro 

BCs (EXT-1): free-field elements (lateral), dashpots (base) 

BCs (EXT-2): none (cohesive interaction activated) 

 

 

 

  



Chapter 4 – Case study: Ridracoli Dam FE model and numerical analyses 

 

 

112 

 

4.5.6 Dynamic analysis with MCE 

After the static phases described in Section 4.5.3 a dynamic phase is defined. The input 

motion from Coalinga (1983) recording is applied at the base of the main model and at the 

base of the free-field 1D and 2D systems in form of point loads, as extensively explained 

in Section 4.3.7 and 4.4.1. As outlined in Section 3.3.5, these concentrated forces are 

proportional to the velocities of the upward propagating seismic wave (Equation 3.47b). 

Considering the free-field motion at depth as not influenced by the irregular topography, 

these velocities can be calculated as half the outcrop motion velocities of the selected 

earthquake. They may be simply derived from acceleration time series by numerically 

integrating in the time domain with the trapezoidal rule. The trapezoidal approximation is 

applied in each subinterval of acquisition with a duration Δt = 0.005 s.  

The East component of Coalinga earthquake, being the most intense, is applied in the 

stream direction of the valley (which in Ridracoli case coincide with geographic North). 

North component is consequently applied in the cross-stream direction (coincident with 

geographic West at Ridracoli site), while the vertical is applied as it was recorded: with 

positive values directed upward. The stream and cross-stream directions of the valley do 

not coincide with the local xDAM-yDAM-axes of the dam, because the arch-gravity structure 

intercepts not only Bidente river but also one of its left tributaries, which joins the main 

course of the river immediately upward of the dam. As a consequence, the dam does not 

cross the valley perpendicularly, but it is clockwise rotated of 28.65° (Figure 4.20). 

 

 

Figure 4.20. Global (in black) and dam local (in white) reference systems at Ridracoli. 
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4.5.7 Overall behaviour 

The behaviour of the dam under the MCE is compared to its response when the seismic 

input is applied directly at the base of the pulvinus. Three analyses are performed: 

− 2 fixed base analysis of the dam with an empty and full reservoir, respectively; 

− 1 complete analysis of the dam-water-foundation interaction with a full reservoir 

(the analysis lasted 11 days with 6 processors in parallel on a personal i7 laptop). 

As already motioned in Section 4.3.1 a pair of Rayleigh coefficients is assigned to the dam 

structure corresponding to a reference damping of 2%. Løkke and Chopra (2019) suggest 

using a value in the interval 1-2%. The damping coefficient assumed for the rock mass, ζ 

= 3%, is in the interval of experimental values shown in Figure 4.21. 

 

 

Figure 4.21. Damping at 32 concrete dams measured during vibrodyne tests or 

estimated from ambient vibration measurements (from Løkke and Chopra, 2019). 

 

The acceleration time histories at the crest mid-point of the main section are extracted from 

the output database for all the analyses. The elastic spectrum in terms of accelerations is 

calculated considering a 5% damping. A shift of the peaks toward the longer periods is 

observed passing from empty conditions to full reservoir conditions; a further shift is 

observed when passing from fixed-base analyses to the complete analysis of the dam-water-

foundation system. At the same time, the peak height progressively reduces. In fixed-base 

analyses the rock mass is considered as perfectly rigid and the seismic motion is 

contemporary applied along the entire extension of the dam-foundation interface, 

neglecting topographic effects due to the shape of the valley on the arriving signal (Figure 

4.22). These over simplified hypotheses do not allow to properly represent the radiation 
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damping, nor the effects of foundation deformability, leading to an unrealistic 

superimposition of first arrival and reflected waves. On the contrary, the complete analysis 

may account for all the aforementioned phenomena. The representation of hydrodynamic 

effects by means of the added mass technique, the mesh density and the material properties 

are identical for fixed-base and complete analyses; this allows to clearly separate the effects 

on the natural frequencies of impounded water and foundation rock, respectively. 

Two are the effects of considering the hydrodynamic forces, i.e., to slightly reduce the 

intensity of the seismic response and to shift peaks of spectral accelerations toward longer 

periods. Similarly, a further shift in peaks is observed when the rock foundation is included. 

Moreover, longer natural periods become predominant in the overall response. The most 

visible effect of including the rock foundation in the model, however, is a considerable 

reduction of the spectral ordinates. Two peaks can be clearly identified: the first for T = 

0.21 s, corresponding to the maximum frequency content of the selected earthquake 

recording, and the second for T = 0.34 s, arguably coincident with the first natural period 

of the system. This last peak decreases of 30-40% in all directions when rock foundation 

deformability and radiation damping are considered. The one corresponding to the 

maximum frequency content of Coalinga earthquake (T = 0.21 s) is even more attenuated. 

The first natural period was found to correspond to T1 = 0.3 s in empty conditions by Buffi 

(2018) (value confirmed by the fixed base empty analysis in the current work). The 

combined effect of including the interactions with water and rock foundation reduces the 

stiffness of the system, extending periods of vibration. Experimental values of natural 

periods extracted from vibrodyne tests conducted in 1987 (at the end of construction work) 

and from environmental vibration under past seismic events (e.g., the 2003 earthquake 

attached in Appendix A) indicate a first natural period of about 0.35 s in near-full reservoir 

conditions (Buffi, 2018). The same value was confirmed by Buffi (2018) model. 

The reduction in the intensity of the structural response is associated to an increase in the 

magnitude of displacements. Total displacement time histories at some significative 

positions are also extracted from output databases. Starting from these values, relative 

displacements with respect to a node at the base of the dam are calculated in the East, North 

and upward vertical geographic directions, and plotted in Figure 4.23, limited to the mid-

point of the main section at crest level. Maximum positive displacements in the North 

direction remain below a threshold of 4 cm (with an oscillation amplitude of about 8 cm). 

These values fall within the limits of the seasonal oscillations due to reservoir filling 

condition and temperature variations over the year (Lusini et al., 2021). The envelope of 

maximum displacements along the crest of the dam is provided in Figure 4.24. Also the 

envelopes along the local y-axis of the dam (yDAM), corresponding to the “stream” direction, 

are plotted, since they exhibit the maximum/minimum values of displacements (but still 

around ±4 cm), and compared with the corresponding results from the fixed base analysis, 

which are significantly larger (about ±6 cm in the main section). The entire Ridracoli 

monitoring system refers to this local xDAM-yDAM-coordinates (i.e., cross-stream – stream 

directions). 
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Figure 4.22.  Spectral accelerations in a) East, b) North and c) Up directions for the 

three considered cases: fixed base analysis in empty and full reservoir conditions, and 

complete analysis of the dam-water-foundation model with full reservoir. 
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Figure 4.23. Displacement time histories at the crest mid-point of the main section in a) 

East, b) North and c) vertical (Up) directions for the fixed-base model and the complete 

system model. 
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Figure 4.24. Maximum and minimum relative displacements at the crest level for the 

complete system model. The displacement components are given in the three geographic 

coordinates (East-North-Up) and in the local yDAM direction (see Figure 4.20), in this 

latter case both for the complete system model and the fixed base model. 

 

 4.5.8 Plastic behaviour along discontinuities 

Because of the elastic behaviour assumed for the rock mass, the main effect of the modelled 

discontinuities (i.e., the fault and the three laminated layers) is to limit the entity of 

transmitted shear stresses between the two sides of the discontinuity to a plastic threshold. 

The developed plastic slips (relative displacement at the two contact sides) at the end of the 

analysis, on the contrary, are not completely reliable, since the laminated layers and the 

fault do not isolate any rock wedge kinematically allowed to move. This aspect is better 
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explained by the scheme in Figure 4.25. The interactions are schematised as a series of 

plastic sliders connected one another and to the fixed ends by elastic springs:  

a) the system is initially equilibrated.  

b) a frame is captured during a dynamic analysis: some plasticity developed in 

correspondence of the two central sliders, 

c) at the end of the dynamic excitation the temporary state of stress which caused the 

sliding does not exist anymore and the elastic springs force the system to return to 

its initial configuration. 

 

Figure 4.25. Scheme of the plastic behaviour along modelled discontinuities: a) initial 

conditions, b) plastic sliding under dynamic excitation, c) recover of initial conditions at 

the end of the earthquake. 

 

For capturing large unrecoverable displacements, it would be necessary to add other minor 

discontinuities which cross the main four or to assign a diffused plastic behaviour to the 

rock mass elements. The larger slips (Figure 4.26), with a maximum of about 3 mm, 

develop along the fault below the bottom of the lake in a near-vertical direction (Figure 

4.26b): the right side of the fault tends to move down relatively to the left side. They are 

limited to the sector (Sector A in Figure 4.12) where the hydrostatic water head is higher; 

and do not extend to touch the base of the dam. 
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Figure 4.26. a) initial slips in horizontal direction at the beginning of the dynamic phase; 

b) residual horizontal slips along the fault during the complete analysis of the dam-water-

foundation system (slips are plastic above a threshold of about 3 mm). 

 

Figure 4.27. a) initial slips in vertical direction at the beginning of the dynamic phase; 

b) residual vertical slips along the fault during the complete analysis of the dam-water-

foundation system. 
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The laminated layers, which are considered as dry owing to the initial cementation of the 

bedding planes, does not undergo any unrecoverable slip during the seismic excitation. In 

fact, the maximum slips are below the plastic threshold and therefore the interface 

behaviour remains elastic during the entire analysis. This aspect is clear when looking at 

the slip contours in the pre- and post-earthquake conditions for the first laminated layer 

(Figures 4.28), which are basically the same minus residual elastic oscillations. The same 

behaviour is observed in correspondence of the other two modelled laminated layers. 

The non-zero cohesion assigned to the laminated layer (c' = 20 kPa), aims to account also 

for some consolidation work conducted in the rock mass surrounding the dam, in particular 

a system of rock anchors distributed along the two abutments (Bavestrello, 1983) and the 

grout curtain injections below the pulvinus (Oberti et al., 1986). To neglect it and 

implement a merely frictional interaction, therefore, would have been extremely on the safe 

side, leading to unrealistic results.  

 

 

Figure 4.28. Initial (t=0s) and residual final (t=15s) slips along the first laminated layer: 

a) in the local 1 direction (corresponding to geographic East); b) in the local 2 direction 

(corresponding to geographic North).  
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5.  Conclusions 

The present PhD Thesis describes the development of a Direct Finite Element approach to 

analyse the seismic response of an arch gravity dam with its foundation rock mass. The 

theoretical framework is applied to the case study of the arch-gravity dam of Ridracoli 

(Italy), using the Finite Element (FE) code Abaqus®. In order to obtain reliable results, the 

following aspects are investigated: 

− the dam-foundation rock interaction via solid finite-elements and visco-elastic 

materials (Rayleigh formulation), 

− the interaction of the dam with the impounded water of the reservoir via an added 

mass approach (Zangar formulation), 

− the radiation damping at the fictitious boundaries of the truncated foundation rock 

domain via free field elements on the side boundaries and discrete viscous dampers 

at the bottom boundary, 

− the possibility of maintaining the free-field elements and the viscous dampers as 

unloaded during the preliminary static phases of analysis, avoiding spurious 

displacements when switching from the static to the dynamic boundary conditions, 

− the inclusion of a source of plasticity concentrated along natural discontinuities of 

the rock mass (i.e., a fault and three weak bedding planes). 

In addition, the dynamic behaviour of possible rock wedges forming at the level of the 

abutments, which would be difficult to be correctly estimated via FE, is analysed by means 

of a modified three-dimensional Newmark (1965) approach. The original method 

developed by Verrucci et al. (2018) for generic rock wedges subjected to a seismic 

excitation has been adapted to the special case of arch dams for which the necessity to 

estimate the dynamic variability of the thrust exerted by the dam arises. Various 

possibilities are investigated and compared, from the simple use of the static thrust to a 

more accurate estimation of thrust time history by an auxiliary fixed-base FE model of the 

dam. 

The possibility to extend the capability of a general-purpose Finite Element code like 

Abaqus® by means of user-subroutines to deal with complex interaction problems is 

shown. All developed user-subroutines are made available. A shell 4-noded isoparametric 

user element is developed to deal with hydrodynamic interaction in the framework of the 

added mass approach. It supports both general Westergaard (1933) and Zangar (1952) 

formulations and can be used in combination with hexahedral 8-noded elements in three-

dimensional problems for immersed faces generally oriented in the space.  

A second Abaqus® user-subroutine is provided which implements a Mohr-Coulomb 

friction law: differently from the native interaction property this version allows for the 
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definition of a cohesion, in addition to the pure friction, and accounts for the dependency 

of the shear strength on the effective normal stresses, when the interface is immersed. The 

water pressure is defined considering hydrostatic conditions. 

The two user subroutines are used to model the Ridracoli dam-water-foundation system, 

together with a free-field user element written by Nielsen (2014). The capability of a 

combination of free-field elements on side boundaries and viscous dampers at the base is 

preliminary tested. A good agreement is found between Abaqus results with the free-field 

user element and the same problem analysed with other software (Plaxis®) and other 

strategies (one-dimensional analysis in the frequency domain). 

Concerning the Ridracoli Dam case study the following remarks can be drawn: 

i. the limited capabilities of the CAD (Computer-Aided Design) modulus which is 

usually included in commercial FE software are one of the more frustrating 

drawbacks that an engineer faces when first approaching the numerical modelling 

of complex geometries. A procedure is presented and applied to the case study to 

integrate geometric data from multiple sources, in various formats and characterised 

by a different level of detail: the resulting geometric model presents simple shapes 

that are easily treated by any CAD modulus. The topographic surface, for which a 

lower level of detail is required, is merged in a single NURBS (Non Uniform 

Rational Basis-Splines) surface which interpolates a regular 2.5D grid of points. 

The structural solids are greatly simplified (replacing the original faceted 

geometries with smooth curved faces) and used to cut the terrain model with 

Boolean operations, thus avoiding the risk of generating invalid geometries; 

ii. a strategy is applied in Abaqus® to subdivide the terrain model in smaller parts 

(which are meshed separately, allowing for sudden transitions in mesh density and 

element type) and to stick them together with Tie Constraints and Cohesive 

Interaction: the first are used to connect those parts which remain jointed throughout 

the analysis, the second are successfully used to reconnect two parts which were 

originally disconnected. The last option is used to maintain unloaded the outermost 

part of the foundation rock (which includes free-field elements and viscous 

dampers) for all the phases which precede the dynamic step of analysis; 

iii. the described Direct FEM procedure has been successfully applied to the case study 

for modelling the dynamic behaviour of Ridracoli Dam under the MCE (Maximum 

Credible Earthquake). The comparison with a simple fixed-base model shows the 

capability of the adopted adsorbing boundaries to avoid wave reflection inside the 

model: 

− the structural response at crest level shows a clear attenuation with respect 

to fixed-base results, with maximum displacements in the stream direction 

never exceeding 5 cm (with a double amplitude of less than 10 cm), and thus 

remaining within the limits of the seasonal variability; 
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− considering rock mass deformability and damping causes an extension of 

the first natural period of the dam in full reservoir conditions. Its value is 

found matching the experimental results; 

iv. the strategy adopted to describe the plastic behaviour along the natural 

discontinuities allows to exclude the plasticisation of weak bedding planes (i.e., 

laminated layers) at a great scale, small, localised slips may possibly develop but 

cannot be detected with the current model; 

v. a plastic behaviour is observed for the fault beneath the bottom of the reservoir; 

however, the entity of the developed relative displacements (less than 1 cm) is 

modest and the plasticised zone does not interest the rock mass in contact with the 

pulvinus of the dam; 

vi. in order to evaluate possible local plastic slips along laminated layers at the level of 

the right abutment (which appears to be the most exposed to this risk) the seismic 

performance of two rock wedges is studied with the modified 3D Newmark 

approach:  earthquake-related displacements never exceed 6 cm (wedge W1 under 

Umbria-Marche earthquake). These results are obtained under very conservative 

hypotheses: zero cohesion on the discontinuities, uplift forces referring to the 

maximum regulation level and with simplified water pressure distribution and grout 

curtain attenuation effects, static thrust forces calculated via a conservative 

analytical approach and considered as independent from wedge movements, and a 

1.4 amplification coefficient considered for topographic effects (i.e. corresponding 

to a bidimensional crest). Based on experience on similar dams, this level of 

displacement could be tolerated by the manufact, without collapse. With respect to 

the classic limit equilibrium method (Londe, 1973), which tends to be 

overconservative, the developed displacement-based approach is able to offer a 

more accurate and reliable insight into the seismic performance of the system.   

Other spectrum-compatible earthquake recordings (like those used in Chapter 2 for the 

displacement analysis of rock wedges) will be applied to the dam-water-foundation system 

of Ridracoli for different reservoir filling conditions. The model will also be tested against 

past events occurred in the vicinity of the dam (and therefore recorded by the network of 

accelerometers of the monitoring system). 

In order to better represent all plasticity sources in the rock mass a ubiquitous joint model, 

like Abaqus® Jointed Material Model or Plaxis® Jointed Rock Model, may be applied to 

the inner rock-mass parts of the model, where non-linearities are accounted for.  

The developed model is perfectly compatible with a previous developed structural model 

of the dam (Buffi, 2018), which explicitly considers the subdivision of the dam body in 

blocks and contraction joints. The longer-term objective is to completely integrate the two 

separate models in order to provide Romagna Acque – Società delle Fonti S.p.A. with a 

comprehensive tool to be used for the control of dam behaviour both in static conditions 

and after seismic events, to possibly immediately recognise early signs of an anomalous 

behaviour. 
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Appendix A 

Three-directional acceleration time-history records at stations A, B, C, D in the local 

reference system of the dam (see Figure 4.20). 
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Appendix B 

Matlab® program for transforming a contour-line based point cloud into a 2.5D grid of 

equally spaced points with associated an elevation value. 

 
% program written by Edoardo Lusini(2022) Version 1.0 
clc; clear; close all; 

passo = 0.1  

% import the DEM grid and the point cloud from contour lines (or point 

cloud) 

filename = 'countourlines.txt'; % import from .txt file 

PC = importdata(filename); % import as structure data 

PC = getfield( PC , 'data' ); % extract data in matrix format 

filename = 'grid.txt';  

grid = importdata(filename);  

grid = getfield( PC , 'data' );  

%% from contour lines to grid of equally spaced points 

Z_updated = grid;  

for j = 1:size(grid,1)  

    r_value = grid(j,:); 

    count = 0; 

    Z = 0;  

    Z_length = Z;  

    D = 0;  

    while ((Z*Z')/length(Z))^(1/2)==Z(1)  

        count = count+1;  

        R = count*passo;  

        Z = 0; 

        Z_length = Z; 

        D = 0; 

        for i = 1:size(PC,1)  

            if (PC(i,1)-r_value(1,1))^2+(PC(i,2)-r_value(1,2))^2 <= R^2  

                Z_length = Z_length+1; 

                Z(Z_length) = PC(i,3);   

                D(Z_length) = ((PC(i,1)-r_value(1,1))^2+(PC(i,2)-

r_value(1,2))^2)^(1/2);  

            end 

        end 

    end 

    for k = 1:length(D) 

        if D(k) == 0 

            D(k) = passo/1000;   

        end 

    end 

    Z_updated(j,3) = (Z*(1./D)')/sum(1./D);  

end 

scatter3(Z_updated(:,1),Z_updated(:,2),Z_updated(:,3)) 

hold off 

%% write the new DEM in a .txt file 

filename = 'DEM10x10.txt'; 

PD10 = importdata(filename); 

PD10 = getfield( PD10 , 'data' );  

for i = 1:size(grid,1) 
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    for j = 1:size(PD10,1) 

        if grid(i,1)==PD10(j,1) && grid(i,2)==PD10(j,2) 

            PD10(j,:) = Z_updated(i,:); 

        end 

    end 

end 

%% write the new DEM in a .scr format (importable in Autocad) 

output_file = 'new_points.scr'; 

fileID = fopen(output_file,'w'); 

fprintf(fileID,'%16s\n','_MULTIPLE _POINT'); 

for j = 1:size(PD10,1) 

    fprintf(fileID,'%.0f',PD10(j,1)); 

    fprintf(fileID,'%1s',','); 

    fprintf(fileID,'%.0f',PD10(j,2)); 

    fprintf(fileID,'%1s',','); 

    fprintf(fileID,'%.4f\n',PD10(j,3)); 

end 

fclose(fileID);         
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Appendix C 

Abaqus® user-subroutine amass1 

 

! ADDED MASS USER ELEMENT (amass_1) for Abaqus/Standard 

! Written by Edoardo Lusini 

! Version 1 

! 2022 

 

! user element to model the hydrodynamic  

! pressure of reservoir on dam using  

! added mass technique.  

 

! properties: 

!     props(1) = depth of reservoir 

!     props(2) = y(2D) or z(3D) coordinate of water level 

!     props(3) = density of water 

!     props(4) = Zangar cm coefficient 

!     jprops(1) = dimension of the element (1 or 2) 

!     jprops(2) = integration points 

!     jprops(3) =type of added mass formulation (1=Westergaard,2=Zangar) 

 

 

! Element type: 

! U23 : 3D Added mass shell  (nnode=4, nprops=4, njprops=3, mcrd=3, 

ndofel=12, nsvars=1) 

 

!DEC$ ATTRIBUTES ALIAS:"uel"::UEL 

 

subroutine uel(rhs,amatrx,svars,energy,ndofel,nrhs,nsvars,& 

   

 props,nprops,coords,mcrd,nnode,u,du,v,a,jtype,time,& 

   

 dtime,kstep,kinc,jelem,params,ndload,jdltyp,adlmag,& 

   

 predef,npredf,lflags,mlvarx,ddlmag,mdload,pnewdt,& 

    jprops,njprop,period) 

 

 include 'ABA_PARAM.INC' 

 

 integer, intent(in) :: mlvarx, ndofel, nrhs, nprops, nnode, nsvars 

 integer, intent(in) :: njprop, mcrd, jtype, kstep, kinc, jelem  

      integer, intent(in) :: ndload 

 integer, intent(in) :: mdload, npredf 

 integer, dimension(*), intent(in) :: lflags, jprops 

 integer, dimension(mdload,*), intent(in) :: jdltyp 

 real(8), intent(in) :: period, dtime 

 real(8), dimension(2), intent(in) :: time 

 real(8), dimension(nprops), intent(in) :: props 

 real(8), dimension(*), intent(in) :: params 

 real(8), dimension(2,npredf,nnode), intent(in) :: predef 

 real(8), dimension(mdload,*), intent(in) :: ddlmag, adlmag 

 real(8), dimension(ndofel), intent(in) :: u, v, a 
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 real(8), dimension(mlvarx,*), intent(in) :: du 

 real(8), dimension(mcrd,nnode), intent(in) :: coords 

 real(8), intent(inout) :: pnewdt 

 real(8), dimension(8), intent(inout) :: energy 

 real(8), dimension(nsvars), intent(inout) :: svars 

 real(8), dimension(mlvarx,nrhs), intent(out) :: rhs 

 real(8), dimension(ndofel,ndofel), intent(out) :: amatrx 

 

 ! Variables defined in amass1 

 integer :: i, j, ij, k, kintk, eldim, nintp, amtype  

 real(8) :: tmp, fi, teta, g, h, f, gval, dadu, beta 

 real(8) :: reservoir_depth, water_level, water_density 

 real(8), dimension(4) :: ds, rhob, wght 

 real(8), dimension(mcrd) :: bvec, cvec, nvec 

 real(8), dimension(nnode) :: shapef 

 real(8), dimension(ndofel) :: en 

 real(8), dimension(2,mcrd) :: amat 

 real(8), dimension(mcrd,nnode) :: isocoord 

 real(8), dimension(mcrd,mcrd) :: rot 

 real(8), dimension(mcrd,nnode) :: dshape 

 real(8), dimension(mcrd,ndofel) :: mshape 

 real(8), dimension(ndofel,mcrd) :: m, mm 

 real(8), dimension(ndofel,ndofel) :: massmat, mmm 

 

 ! Parameters used in amass_1 

 real(8), parameter :: zero = 0.D0 

 real(8), parameter :: half = 0.5D0 

 real(8), parameter :: dmone = -1.0D0         

 real(8), parameter :: one = 1.0D0 

 real(8), parameter :: seven = 7.0D0 

 real(8), parameter :: eight = 8.0D0 

 real(8), parameter :: four = 4.0D0 

 real(8), parameter :: gauss = 0.577350269D0 

 real(8), parameter :: pi = 4.D0*datan(1.D0) 

 real(8), parameter :: twopi = 8.D0*datan(1.D0)  

 

 ! EXECUTABLE SECTION   

 

  reservoir_depth = props(1) 

  water_level = props(2) 

  water_density  = props(3) 

            cm = props(4) 

  eldim = jprops(1) 

  nintp = jprops(2) 

  amtype = jprops(3) 

 

  if (nintp .eq. 1) then 

   gval = zero 

  elseif (nintp .eq. 4) then 

   gval = gauss 

  endif 

 

  isocoord(1,1) = dmone 

  isocoord(1,2) = one 

  isocoord(1,3) = one 

  isocoord(1,4) = dmone 

  isocoord(2,1) = dmone 
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  isocoord(2,2) = dmone 

  isocoord(2,3) = one 

  isocoord(2,4) = one 

  isocoord(3,1) = dmone 

  isocoord(3,2) = dmone 

  isocoord(3,3) = dmone 

  isocoord(3,4) = dmone 

 

  wght(1) = one 

  wght(2) = one 

  wght(3) = one 

  wght(4) = one 

 

  if (nintp .eq. 1) then 

   wght(1) = four 

  elseif (nintp .eq. 4) then 

   wght(1) = one 

  endif 

 

  do j = 1, ndofel                       

   do i = 1, ndofel  

    massmat(i,j) = zero 

   enddo 

  enddo   

  do kintk =1, nintp 

   ! shape functions 

   ! determine (g,h) 

   g = isocoord(1,kintk)*gval 

   h = isocoord(2,kintk)*gval 

   f = isocoord(3,kintk) 

   ! shape functions 

   shapef(1) = (one - g)*(one - h)*(one-f)/eight; 

   shapef(2) = (one + g)*(one - h)*(one-f)/eight; 

   shapef(3) = (one + g)*(one + h)*(one-f)/eight; 

   shapef(4) = (one - g)*(one + h)*(one-f)/eight; 

   ! derivative d(Ni)/d(g) 

   dshape(1,1) = -(one - h)*(one-f)/eight; 

   dshape(1,2) =  (one - h)*(one-f)/eight; 

   dshape(1,3) =  (one + h)*(one-f)/eight; 

   dshape(1,4) = -(one + h)*(one-f)/eight; 

   ! derivative d(Ni)/d(h) 

   dshape(2,1) = -(one - g)*(one-f)/eight; 

   dshape(2,2) = -(one + g)*(one-f)/eight; 

   dshape(2,3) =  (one + g)*(one-f)/eight; 

   dshape(2,4) =  (one - g)*(one-f)/eight;    

   ! assemble shape matrix mshape     

   do j = 1, ndofel                       

    do i = 1, mcrd  

     mshape(i,j) = zero 

    enddo 

   enddo      

   do j = 1, nnode 

    do i = 1, mcrd 

     ij = mcrd*(j-1)+i 

     mshape(i,ij) = shapef(j) 

    enddo 

   enddo 

    

   ! print *, 'mshape(1,1) = ',mshape(1,1)   ! Debug 
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   ! print *, 'mshape(2,5) = ',mshape(2,5)   ! Debug 

   ! print *, 'mshape(3,9) = ',mshape(3,9)   ! Debug 

    

    

! sides of the infinite area (amat)  

   do j = 1, mcrd 

    do i = 1, eldim 

     tmp = zero 

     do k= 1, nnode 

      tmp = tmp + dshape(i,k)*coords(j,k) 

     enddo 

     amat(i,j) = tmp 

    enddo 

   enddo 

 

   ! global coordinate of integration point (bvec) 

   do i= 1, mcrd 

    tmp = zero 

    do k= 1, nnode 

     tmp = tmp + shapef(k) * coords(i,k) 

    enddo 

    bvec(i) = tmp 

   enddo 

 

   ! vector product of side vectors (normal vector) 

   cvec(1) = amat(1,2)*amat(2,3) - amat(1,3)*amat(2,2) 

   cvec(2) = amat(1,3)*amat(2,1) - amat(1,1)*amat(2,3) 

   cvec(3) = amat(1,1)*amat(2,2) - amat(1,2)*amat(2,1) 

   ! normal unit vector and infinite area 

   tmp = zero 

   do i = 1, mcrd 

    tmp = tmp + cvec(i)*cvec(i) 

   enddo  

   tmp = sqrt(tmp)    

   do i = 1, mcrd 

    nvec(i) = cvec(i)/tmp 

   enddo       

   ds(kintk) = tmp 

 

   ! print *, 'ds = ', ds(kintk)   ! Debug 

 

    

   if (bvec(3).gt.water_level) then 

                     rhob (kintk) = zero 

               else  

                  if (amtype .eq. 1) then 

                        ! Westergaard original formulation 

     tmp = reservoir_depth*(water_level-bvec(3)) 

     rhob(kintk)=water_density*seven/eight*sqrt(tmp) 

                  else 

                        ! Zangar formulation 

                        tmp = (water_level-bvec(3))/reservoir_depth 

                        tmp = tmp*(2-tmp) 

                        rhob (kintk) = water_density*reservoir_depth* &    

                                       (cm/2)*(tmp+sqrt(tmp)) 

       endif 

               endif 

    

   ! print *, 'rhob = ', rhob(kintk)   ! Debug 
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   ! partial 3D rotation matrix 

 

   if (nvec(1).ge.zero .and. nvec(2).ge.zero) then 

    tmp = zero 

   elseif (nvec(1).ge.zero .and. nvec(2).lt.zero) then 

    tmp = twopi 

   else 

    tmp = pi 

   endif 

 

                 if (nvec(1).eq.zero .and. nvec(2).eq.zero) then 

      fi = zero 

      teta = -(pi/2)*nvec(3)/abs(nvec(3)) 

                 elseif (nvec(1).eq.zero .and. nvec(2).ne.zero) then 

                     fi = zero 

      teta = -atan(nvec(3)/sqrt(nvec(1)**2 + nvec(2)**2)) 

                 else 

      fi = atan(nvec(2)/nvec(1))-tmp 

      teta = -atan(nvec(3)/sqrt(nvec(1)**2 + nvec(2)**2)) 

                 endif 

 

   do j = 1, mcrd                       

    do i = 1, mcrd 

     rot(i,j) = zero 

    enddo 

   enddo     

   rot(1,1) = cos(fi)*cos(teta) 

   rot(2,1) = sin(fi)*cos(teta) 

   rot(3,1) = -sin(teta) 

    

   ! print *, 'rot(2,1) = ', rot(2,1)  ! Debug 

 

   ! mshape'*rot 

   do j = 1, mcrd 

    do i = 1, ndofel 

     tmp = zero 

     do k = 1, mcrd 

      tmp = tmp + mshape(k,i) * rot(k,j) 

     enddo 

     m(i,j) = tmp 

    enddo 

   enddo  

 

   ! m*rot' 

   do j = 1, mcrd 

    do i = 1, ndofel 

     tmp = zero 

     do k = 1, mcrd 

      tmp = tmp + m(i,k) * rot(j,k) 

     enddo 

     mm(i,j) = tmp 

    enddo 

   enddo 

    

   ! mm*mshape 

   do j = 1, ndofel 

    do i = 1, ndofel 

     tmp = zero  

     do k= 1, mcrd 
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      tmp = tmp + mm(i,k) * mshape(k,j) 

     enddo 

     mmm(i,j) = tmp 

    enddo 

   enddo  

   

    

! mass matrix calculation 

   do j = 1, ndofel                       

    do i = 1, ndofel 

massmat(i,j) = massmat(i,j) + & 

mmm(i,j)*wght(kintk)*ds(kintk)*rhob(kintk) 

    enddo 

   enddo 

  enddo 

   

  ! print *, 'massmat(1,1) = ', massmat(1,1)   !Debug 

 

 

  ! initialize rhs and amatrix with zeros  

  do i = 1, ndofel                       

   do j = 1, nrhs 

    rhs(i,j) = zero 

   enddo 

   do k = 1, ndofel 

    amatrx(k,i) = zero 

   enddo 

  enddo 

  ! assign zeros to svars (nvars = 1) 

  do i = 1, nsvars 

   svars(i) = zero 

  enddo 

  ! choice of type of analysis 

  if (lflags(3).eq.1) then 

   ! normal incrementation 

   if (lflags(1).eq.11.or.lflags(1).eq.12) then 

   ! *dynamic 

    beta  = params(2) 

    dadu = one/(beta*dtime**2)   

    do j = 1, ndofel                       

     do i = 1, ndofel 

      amatrx(i,j) = massmat(i,j) * dadu 

     enddo 

    enddo  

    do i = 1, ndofel 

     tmp = zero     

     do k = 1, ndofel 

      tmp = tmp + massmat(i,k) * a(k) 

     enddo 

     rhs(i,1) = rhs(i,1) - tmp 

    enddo  

    do i = 1, ndofel 

     tmp = zero     

     do k = 1, ndofel 

      tmp = tmp + massmat(i,k) * v(k) 

     enddo 

     en(i) = tmp 

    enddo 

    tmp = zero 
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    do i = 1, ndofel 

     tmp = tmp + v(i)*en(i) 

    enddo     

    energy(1)= half*tmp 

   endif 

   

elseif (lflags(3).eq.4) then 

   ! mass matrix 

   do j = 1, ndofel                       

    do i = 1, ndofel 

     amatrx(i,j) = massmat(i,j) 

    enddo 

   enddo  

  elseif (lflags(3).eq.5) then 

   ! half-step residual calculation 

   do i = 1, ndofel 

    tmp = zero     

    do k = 1, ndofel 

     tmp = tmp + massmat(i,k) * a(k) 

    enddo 

    rhs(i,1) = rhs(i,1) - tmp 

   enddo           

  elseif (lflags(3).eq.6) then 

   ! initial acceleration calculation 

   do j = 1, ndofel                       

    do i = 1, ndofel 

     amatrx(i,j) = massmat(i,j) 

    enddo 

   enddo  

   do i = 1, ndofel 

    tmp = zero     

    do k = 1, ndofel 

     tmp = tmp + massmat(i,k)*v(k) 

    enddo 

    en(i) = tmp 

   enddo 

   tmp = zero 

   do i = 1, ndofel 

    tmp = tmp + v(i)*en(i) 

   enddo     

   energy(1)= half*tmp 

  endif 

    

 end subroutine uel 
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Appendix D 

Abaqus® user-subroutine fric1 

 

! FRICTION PROPERTY (fric1) for Abaqus/Standard 

! Written by Edoardo Lusini 

! Version 1 

! 2022 

 

!DEC$ ATTRIBUTES ALIAS:"fric"::FRIC 

 

      subroutine fric(lm,tau,ddtddg,ddtddp,dslip,sed,sfd,& 

          ddtddt,pnewdt,statev,dgam,taulm,press,dpress,ddpddh,& 

          slip,kstep,kinc,time,dtime,noel,ciname,slname,& 

          msname,coords,rcoord,drot,temp,& 

          predef,nfdir,mcrd,npred,nstatv,chrlngth,props,nprops) 

                     

 include 'ABA_PARAM.INC' 

                     

      character (len=80), intent(in) :: ciname,slname,msname 

      integer, intent(inout) :: lm 

 integer, intent(in) :: nprops,nstatv,npred,mcrd,nfdir,kstep,kinc 

 integer, intent(in) :: noel 

 real(8), intent(in) :: chrlngth,press,dpress,ddpddh,dtime 

      real(8), intent(inout) :: sed,pnewdt 

      real(8), intent(out) :: sfd 

      real(8), dimension(2), intent(in) :: time,temp 

      real(8), dimension(2,2), intent(in) :: drot 

      real(8), dimension(2,*), intent(in) :: predef 

      real(8), dimension(*), intent(inout) :: statev 

      real(8), dimension(nprops), intent(in) :: props 

      real(8), dimension(mcrd), intent(in) :: coords,rcoord 

 real(8), dimension(nfdir), intent(in) :: dgam,taulm,slip 

 real(8), dimension(nfdir), intent(inout) :: tau,dslip 

 real(8), dimension(nfdir), intent(out) :: ddtddp 

 real(8), dimension(nfdir,2), intent(out) :: ddtddt 

 real(8), dimension(nfdir,nfdir), intent(out) :: ddtddg 

                   

      real(8) :: xmu,xc,gammaw,gcrit,stiff,taucrit,gcritp,dynt,hew 

      real(8) :: upress,epress,taueqv,gameqv,dgsleq,tmp,tmp1 

      real(8), dimension(2) :: gamma 

 

      real(8), parameter :: zero = 0.0d0 

      real(8), parameter :: one = 1.0d0 

      real(8), parameter :: two = 2.0d0   

      real(8), parameter :: asmall = 1.0d-27              

      real(8), parameter :: precis=1.d-14                       

      real(8), parameter :: xks=1.d6                    

      real(8), parameter :: row=1.0d3                     

      real(8), parameter :: grav=9.81d0                           

       

 

    ! print *, 'nstatv = ',nstatv 

    ! print *, 'nprops = ',nprops 
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    ! print *, 'ciname = ',ciname 

    ! print *, 'props1 = ',props(1) 

    ! print *, 'coords1 = ',coords(1) 

    ! print *, 'coords2 = ',coords(2)     

    ! print *, 'coords3 = ',coords(3) 

 

!                     

!     IMPLEMENTATION OF 3-D COULOMB FRICTION IN TERMS OF EFFECTIVE 

STRESSES USING PENALTY METHOD 

!      

!     VARIABLES USED: 

!        XMU = COEFFICIENT OF FRICTION 

!        XC = COHESION 

!        GAMMAW = WATER SPECIFIC 

!        GCRIT = CRITICAL ELASTIC SLIP 

!        STIFF = ARTIFICIAL STIFFNESS 

!        GAMMA(1:2) = TOTAL SLIP 

!        STATEV(1:2) = ELASTIC SLIP 

!        STATEV(3) = PREVIUS DPRESS 

!        TAUCRIT = CRITICAL FRICTIONAL STRESS 

!                                      

 XMU = PROPS(1) 

      XC = PROPS(2) 

 HEW  = PROPS(3) 

      DYNT = PROPS(4) 

      GCRITP = PROPS(5) 

! 

 IF (COORDS(3).LE.HEW) THEN 

         GAMMAW = ROW*GRAV 

 ELSE 

    GAMMAW = ZERO 

 END IF 

      GAMMAW = ROW*GRAV 

      UPRESS  = GAMMAW*(HEW-COORDS(3)) 

! 

 EPRESS  = PRESS-UPRESS 

! 

      IF (LM.EQ.2) THEN 

!                        

!      GAP IS OPENED AT START OF THE CURRENT INCREMENT 

!                       

         IF (XMU.LE.PRECIS) RETURN  

      END IF 

      LM    = 0 

      GCRIT = GCRITP*CHRLNGTH 

!                     

!                    CHECK IF PRESSURE IS NON-POSITIVE 

!                     

      IF (EPRESS.LE.ZERO) THEN 

         LM = 2  

         RETURN 

      ELSE 

!                        

!                       COMPUTE FOR CRITICAL STRESS 

!                       AND ARTIFICIAL STIFFNESS 

!                        

         TAUCRIT = XMU*EPRESS+XC 

         STIFF   = TAUCRIT/GCRIT 

      ENDIF 
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!                     

!                    COMPUTE FOR THE TOTAL SLIP, 

!                    FRICTIONAL SHEAR STRESS, 

!                    AND THE EQUIVALENT SHEAR STRESS 

!                     

      GAMMA(1) = STATEV(1) + DGAM(1) 

      GAMMA(2) = STATEV(2) + DGAM(2) 

      TAU(1) = STIFF*GAMMA(1) 

      TAU(2) = STIFF*GAMMA(2) 

      TAUEQV = SQRT(TAU(1)**2 + TAU(2)**2) 

!                     

!                    CHECK IF THE FRICTIONAL STRESS 

!                    EXCEEDS THE CRITICAL STRESS 

!                     

      IF (TAUEQV.LT.TAUCRIT) THEN 

!                        

!                       BEHAVIOR REMAINS ELASTIC 

!                        

         STATEV(1)   = GAMMA(1) 

         STATEV(2)   = GAMMA(2) 

         DDTDDG(1,1) = STIFF 

         DDTDDG(1,2) = ZERO 

         DDTDDG(2,1) = ZERO 

         DDTDDG(2,2) = STIFF 

         DDTDDP(1)   = XMU*GAMMA(1)/GCRIT 

         DDTDDP(2)   = XMU*GAMMA(1)/GCRIT 

         DSLIP(1)    = ZERO 

         DSLIP(2)    = ZERO 

      ELSE 

!                        

!                       BEHAVIOR IS PLASTIC 

!                        

         GAMEQV = SQRT(GAMMA(1)**2 + GAMMA(2)**2) 

         TAU(1) = GAMMA(1)*TAUCRIT/GAMEQV 

         TAU(2) = GAMMA(2)*TAUCRIT/GAMEQV 

         DDTDDG(1,1) = TAUCRIT/GAMEQV*(1-(GAMMA(1)/GAMEQV)**2) 

         DDTDDG(1,2) = -

TAUCRIT/GAMEQV*(GAMMA(1)/GAMEQV)*(GAMMA(2)/GAMEQV) 

         DDTDDG(2,1) = DDTDDG(1,2) 

         DDTDDG(2,2) = TAUCRIT/GAMEQV*(1-(GAMMA(2)/GAMEQV)**2) 

         DDTDDP(1)   = XMU*GAMMA(1)/GAMEQV 

         DDTDDP(2)   = XMU*GAMMA(1)/GAMEQV 

!                        

!                       COMPUTATION OF THE ELASTIC 

!                       AND PLASTIC SLIP 

!                        

         STATEV(1)   = GAMMA(1)*GCRIT/GAMEQV 

         STATEV(2)   = GAMMA(2)*GCRIT/GAMEQV 

         DGSLEQ      = GAMEQV - GCRIT 

         DSLIP(1) = GAMMA(1)*DGSLEQ/GAMEQV 

         DSLIP(2) = GAMMA(2)*DGSLEQ/GAMEQV 

      ENDIF 

      RETURN 

      END SUBROUTINE FRIC 
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Appendix E 

Fortran® program addedmasstest.f90 written for testing amass1 

 

 

program addedmasstest 

 

 implicit none 

  

      integer :: i, k 

 integer :: pmlvarx, pndofel, pnrhs, pnprops, pnnode, pnsvars 

 integer :: pnjprop, pmcrd, pjtype 

 integer, dimension(3) :: plflags, pjprops 

 real(8) :: pdtime, ptmp 

 real(8), dimension(4) :: pprops 

 real(8), dimension(2) :: pparams 

 real(8), dimension(12) :: pv, pa 

 real(8), dimension(3,4) :: pcoords 

 real(8), dimension(8) :: penergy 

 real(8) :: psvars 

 real(8), dimension(12,1) :: prhs, pforce 

 real(8), dimension(12,12) :: pamatrx 

 

 ! Initialise integers 

 pmlvarx = 12 

 pndofel = 12 

 pnrhs = 1 

 pnprops = 4 

 pnnode = 4 

 pnsvars = 1 

 pnjprop = 3 

 pmcrd = 3 

 pjtype = 23 

 plflags(1) = 11 

 plflags(2) = 0 

 plflags(3) = 4 

 pjprops(1) = 2 

 pjprops(2) = 1 

 pjprops(3) = 1 

  

 ! Initialise real 

 pdtime = 0.005D0 

 pprops(1) = 10D0 

 pprops(2) = 10D0 

 pprops(3) = 1000D0 

     pprops(4) = 0.69D0  

 pparams(1) = 0D0 

 pparams(2) = 0.25D0 

 psvars = 0D0 

 do i=1,pndofel 

  pv(i) = 0D0 

  pa(i) = 0D0 

 enddo 

 pa(1) = 10D0 
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 pa(4) = 10D0 

 pa(7) = 10D0 

 pa(10) = 10D0 

 pv(1) = 10D0 

 pv(2) = 10D0 

 do i=1,8 

  penergy(i) = 0D0 

 enddo 

 pcoords(1,1) = -1.D0 

 pcoords(1,2) = 1.D0 

 pcoords(1,3) = 1.D0 

 pcoords(1,4) = -1.D0 

 pcoords(2,1) = -1.D0 

 pcoords(2,2) = -1.D0 

 pcoords(2,3) = 1.D0 

 pcoords(2,4) = 1.D0 

 pcoords(3,1) = 2.D0 

 pcoords(3,2) = 0.D0 

 pcoords(3,3) = 0.D0 

 pcoords(3,4) = 2.D0 

  

 call uel(prhs,pamatrx,psvars,penergy,pndofel,pnrhs,pnsvars,& 

   pprops,pnprops,pcoords,pmcrd,pnnode,pv,pa,pjtype,& 

   pdtime,pparams,plflags,pmlvarx,pjprops,pnjprop) 

  

      do i = 1, pndofel 

            ptmp = 0.D0    

  do k = 1, pndofel 

   ptmp = ptmp + pamatrx(i,k) * pa(k) 

  enddo 

            pforce(i,1) = ptmp 

 enddo  

 

 ! print *, 'energy(1) = ', penergy(1) 

 ! print *, 'rhs(2,1) = ', prhs(2,1) 

 ! print *, 'rhs(12,1) = ', prhs(12,1) 

 ! print *, 'M(12,1) = ', pamatrx(12,1) 

 ! print *, 'M(3,3) = ', pamatrx(3,3) 

 ! print *, 'M(12,12) = ', pamatrx(12,12) 

      print *, 'force(1,1) = ', pforce(1,1) 

      print *, 'force(2,1) = ', pforce(2,1) 

      print *, 'force(3,1) = ', pforce(3,1) 

      print *, 'force(4,1) = ', pforce(4,1) 

      print *, 'force(5,1) = ', pforce(5,1) 

      print *, 'force(6,1) = ', pforce(6,1) 

      print *, 'force(7,1) = ', pforce(7,1) 

      print *, 'force(8,1) = ', pforce(8,1) 

      print *, 'force(9,1) = ', pforce(9,1) 

      print *, 'force(10,1) = ', pforce(10,1) 

      print *, 'force(11,1) = ', pforce(11,1) 

      print *, 'force(12,1) = ', pforce(12,1) 

 

end program addedmasstest 
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subroutine uel(rhs,amatrx,svars,energy,ndofel,nrhs,nsvars,& 

    props,nprops,coords,mcrd,nnode,v,a,jtype,& 

    dtime,params,lflags,mlvarx,jprops,njprop) 

 

 integer, intent(in) :: mlvarx, ndofel, nrhs, nprops, nnode, nsvars 

 integer, intent(in) :: njprop, mcrd, jtype 

 integer, dimension(*), intent(in) :: lflags, jprops 

 real(8), intent(in) :: dtime 

 real(8), dimension(nprops), intent(in) :: props 

 real(8), dimension(*), intent(in) :: params 

 real(8), dimension(ndofel), intent(in) :: v, a 

 real(8), dimension(mcrd,nnode), intent(in) :: coords 

 real(8), dimension(8), intent(inout) :: energy 

 real(8), dimension(nsvars), intent(inout) :: svars 

 real(8), dimension(mlvarx,nrhs), intent(out) :: rhs 

 real(8), dimension(ndofel,ndofel), intent(out) :: amatrx 

 

 ! Variables used in amass1 

 integer :: i, j, ij, k, kintk, eldim, nintp, amtype  

 real(8) :: tmp, fi, teta, g, h, f, gval, dadu, beta 

 real(8) :: reservoir_depth, water_level, water_density 

 real(8), dimension(4) :: ds, rhob, wght 

 real(8), dimension(mcrd) :: bvec, cvec, nvec 

 real(8), dimension(nnode) :: shapef 

 real(8), dimension(ndofel) :: en 

 real(8), dimension(2,mcrd) :: amat 

 real(8), dimension(mcrd,nnode) :: isocoord 

 real(8), dimension(mcrd,mcrd) :: rot 

 real(8), dimension(mcrd,nnode) :: dshape 

 real(8), dimension(mcrd,ndofel) :: mshape 

 real(8), dimension(ndofel,mcrd) :: m, mm 

 real(8), dimension(ndofel,ndofel) :: massmat, mmm 

 

 ! Parameters defined in amass1 

 real(8), parameter :: zero = 0.D0 

 real(8), parameter :: half = 0.5D0 

 real(8), parameter :: dmone = -1.0D0         

 real(8), parameter :: one = 1.0D0 

 real(8), parameter :: four = 4.0D0 

 real(8), parameter :: seven = 7.0D0 

 real(8), parameter :: eight = 8.0D0 

 real(8), parameter :: gauss = 0.577350269D0 

 real(8), parameter :: pi = 4.D0*datan(1.D0) 

 real(8), parameter :: twopi = 8.D0*datan(1.D0)       

     

  

! EXECUTABLE SECTION   

      ! condition for entering added mass partition in the complete    

      ! subroutine ffuel3_amass_1 

 if (jtype .eq. 23) then  

 

 ! user element to model the hydrodynamic  

 ! pressure of reservoir on dam using  

 ! added mass technique.  

 

 ! properties: 

 !     props(1) = depth of reservoir 

 !     props(2) = y(2D) or z(3D) coordinate of water level 

 !     props(3) = density of water 
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      !     props(4) = Zangar cm coefficient 

 !     jprops(1) = dimension of the element (1 or 2) 

 !     jprops(2) = integration points 

 !     jprops(3) = type of added mass formulation (1 = Westergaard, 

      !                 2 = Zangar) 

      

 

  reservoir_depth = props(1) 

  water_level = props(2) 

  water_density  = props(3) 

            cm = props(4) 

  eldim = jprops(1) 

  nintp = jprops(2) 

  amtype = jprops(3) 

 

  if (nintp .eq. 1) then 

   gval = zero 

  elseif (nintp .eq. 4) then 

   gval = gauss 

  endif 

 

  isocoord(1,1) = dmone 

  isocoord(1,2) = one 

  isocoord(1,3) = one 

  isocoord(1,4) = dmone 

  isocoord(2,1) = dmone 

  isocoord(2,2) = dmone 

  isocoord(2,3) = one 

  isocoord(2,4) = one 

  isocoord(3,1) = dmone 

  isocoord(3,2) = dmone 

  isocoord(3,3) = dmone 

  isocoord(3,4) = dmone 

 

  wght(1) = one 

  wght(2) = one 

  wght(3) = one 

  wght(4) = one 

   

  if (nintp .eq. 1) then 

   wght(1) = four 

  elseif (nintp .eq. 4) then 

   wght(1) = one 

  endif 

 

  do j = 1, ndofel                       

   do i = 1, ndofel  

    massmat(i,j) = zero 

   enddo 

  enddo   

  do kintk =1, nintp 

   ! shape functions 

   ! determine (g,h) 

   g = isocoord(1,kintk)*gval 

   h = isocoord(2,kintk)*gval 

   f = isocoord(3,kintk) 

   ! shape functions 

   shapef(1) = (one - g)*(one - h)*(one-f)/eight; 

   shapef(2) = (one + g)*(one - h)*(one-f)/eight; 
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   shapef(3) = (one + g)*(one + h)*(one-f)/eight; 

   shapef(4) = (one - g)*(one + h)*(one-f)/eight; 

   ! derivative d(Ni)/d(g) 

   dshape(1,1) = -(one - h)*(one-f)/eight; 

   dshape(1,2) =  (one - h)*(one-f)/eight; 

   dshape(1,3) =  (one + h)*(one-f)/eight; 

   dshape(1,4) = -(one + h)*(one-f)/eight; 

   ! derivative d(Ni)/d(h) 

   dshape(2,1) = -(one - g)*(one-f)/eight; 

   dshape(2,2) = -(one + g)*(one-f)/eight; 

   dshape(2,3) =  (one + g)*(one-f)/eight; 

   dshape(2,4) =  (one - g)*(one-f)/eight;    

   ! assemble shape matrix mshape     

   do j = 1, ndofel                       

    do i = 1, mcrd  

     mshape(i,j) = zero 

    enddo 

   enddo      

   do j = 1, nnode 

    do i = 1, mcrd 

     ij = mcrd*(j-1)+i 

     mshape(i,ij) = shapef(j) 

    enddo 

   enddo 

    

   ! print *, 'mshape(1,1) = ',mshape(1,1)   ! Debug 

   ! print *, 'mshape(2,5) = ',mshape(2,5)   ! Debug 

   ! print *, 'mshape(3,9) = ',mshape(3,9)   ! Debug 

    

   ! sides of the infinite area (amat)  

   do j = 1, mcrd 

    do i = 1, eldim 

     tmp = zero 

     do k= 1, nnode 

      tmp = tmp + dshape(i,k)*coords(j,k) 

     enddo 

     amat(i,j) = tmp 

    enddo 

   enddo 

 

   ! global coordinate of integration point (bvec) 

   do i= 1, mcrd 

    tmp = zero 

    do k= 1, nnode 

     tmp = tmp + shapef(k) * coords(i,k) 

    enddo 

    bvec(i) = tmp 

   enddo 

 

   ! vector product of side vectors (normal vector) 

   cvec(1) = amat(1,2)* amat(2,3) - amat(1,3) * amat(2,2) 

   cvec(2) = amat(1,3)* amat(2,1) - amat(1,1) * amat(2,3) 

   cvec(3) = amat(1,1)* amat(2,2) - amat(1,2) * amat(2,1) 

   ! normal unit vector and infinite area 

   tmp = zero 

   do i = 1, mcrd 

    tmp = tmp + cvec(i)*cvec(i) 

   enddo  

   tmp = sqrt(tmp)    
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   do i = 1, mcrd 

    nvec(i) = cvec(i)/tmp 

   enddo       

   ds(kintk) = tmp 

 

   ! print *, 'ds = ', ds(kintk)   ! Debug 

 

    

   if (bvec(3).gt.water_level) then 

                     rhob (kintk) = zero 

                  else 

      if (amtype .eq. 1) then 

                        ! Westergaard original formulation 

    tmp = reservoir_depth*(water_level-bvec(3)) 

    rhob(kintk)=water_density*seven/eight*sqrt(tmp) 

                  else 

                        ! Zangar formulation 

                        tmp = (water_level-bvec(3))/reservoir_depth 

                        tmp = tmp*(2-tmp) 

                        rhob (kintk) = water_density*reservoir_depth* & 

(cm/2)*(tmp+sqrt(tmp))     

                  endif 

              endif 

    

   ! print *, 'rhob = ', rhob(kintk)   ! Debug 

    

   ! partial 3D rotation matrix 

 

   if (nvec(1).ge.zero .and. nvec(2).ge.zero) then 

    tmp = zero 

   elseif (nvec(1).ge.zero .and. nvec(2).lt.zero) then 

    tmp = twopi 

   else 

    tmp = pi 

   endif 

 

                 if (nvec(1).eq.zero .and. nvec(2).eq.zero) then 

      fi = zero 

      teta = -(pi/2)*nvec(3)/abs(nvec(3)) 

                 elseif (nvec(1).eq.zero .and. nvec(2).ne.zero) then 

                     fi = zero 

      teta = -atan(nvec(3)/sqrt(nvec(1)**2 + nvec(2)**2)) 

                 else 

      fi = atan(nvec(2)/nvec(1))-tmp 

      teta = -atan(nvec(3)/sqrt(nvec(1)**2 + nvec(2)**2)) 

                 endif 

 

   do j = 1, mcrd                       

    do i = 1, mcrd 

     rot(i,j) = zero 

    enddo 

   enddo     

   rot(1,1) = cos(fi)*cos(teta) 

   rot(2,1) = sin(fi)*cos(teta) 

   rot(3,1) = -sin(teta) 

    

   ! print *, 'rot(2,1) = ', rot(2,1)  ! Debug 

 

   ! mshape'*rot 
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   do j = 1, mcrd 

    do i = 1, ndofel 

     tmp = zero 

     do k = 1, mcrd 

      tmp = tmp + mshape(k,i) * rot(k,j) 

     enddo 

     m(i,j) = tmp 

    enddo 

   enddo  

 

   ! m*rot' 

   do j = 1, mcrd 

    do i = 1, ndofel 

     tmp = zero 

     do k = 1, mcrd 

      tmp = tmp + m(i,k) * rot(j,k) 

     enddo 

     mm(i,j) = tmp 

    enddo 

   enddo 

    

   ! mm*mshape 

   do j = 1, ndofel 

    do i = 1, ndofel 

     tmp = zero  

     do k= 1, mcrd 

      tmp = tmp + mm(i,k) * mshape(k,j) 

     enddo 

     mmm(i,j) = tmp 

    enddo 

   enddo  

   

   ! mass matrix calculation 

   do j = 1, ndofel                       

    do i = 1, ndofel 

     massmat(i,j) = massmat(i,j) + & 

mmm(i,j)*wght(kintk)*ds(kintk)*rhob(kintk) 

    enddo 

   enddo 

  enddo 

   

  print *, 'massmat(1,1) = ', massmat(1,1)   ! Debug 

 

  ! initialize rhs and amatrix with zeros  

  do i = 1, ndofel                       

   do j = 1, nrhs 

    rhs(i,j) = zero 

   enddo 

   do k = 1, ndofel 

    amatrx(k,i) = zero 

   enddo 

  enddo 

  ! assign zeros to svars (nvars = 1) 

  do i = 1, nsvars 

   svars(i) = zero 

  enddo 

  ! choice of type of analysis 

  if (lflags(3).eq.1) then 

   ! normal incrementation 
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   if (lflags(1).eq.11.or.lflags(1).eq.12) then 

   ! *dynamic 

    beta  = params(2) 

    dadu = one/(beta*dtime**2)   

    do j = 1, ndofel                       

     do i = 1, ndofel 

      amatrx(i,j) = massmat(i,j) * dadu 

     enddo 

    enddo  

    do i = 1, ndofel 

     tmp = zero     

     do k = 1, ndofel 

      tmp = tmp + massmat(i,k) * a(k) 

     enddo 

     rhs(i,1) = rhs(i,1) - tmp 

    enddo  

    do i = 1, ndofel 

     tmp = zero     

     do k = 1, ndofel 

      tmp = tmp + massmat(i,k) * v(k) 

     enddo 

     en(i) = tmp 

    enddo 

    tmp = zero 

    do i = 1, ndofel 

     tmp = tmp + v(i)*en(i) 

    enddo     

    energy(1)= half*tmp 

   endif 

  elseif (lflags(3).eq.4) then 

   ! mass matrix 

   do j = 1, ndofel                       

    do i = 1, ndofel 

     amatrx(i,j) = massmat(i,j) 

    enddo 

   enddo  

  elseif (lflags(3).eq.5) then 

   ! half-step residual calculation 

   do i = 1, ndofel 

    tmp = zero     

    do k = 1, ndofel 

     tmp = tmp + massmat(i,k) * a(k) 

    enddo 

    rhs(i,1) = rhs(i,1) - tmp 

   enddo           

  elseif (lflags(3).eq.6) then 

   ! initial acceleration calculation 

   do j = 1, ndofel                       

    do i = 1, ndofel 

     amatrx(i,j) = massmat(i,j) 

    enddo 

   enddo  

   do i = 1, ndofel 

    tmp = zero     

    do k = 1, ndofel 

     tmp = tmp + massmat(i,k)*v(k) 

    enddo 

    en(i) = tmp 

   enddo 
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   tmp = zero 

   do i = 1, ndofel 

    tmp = tmp + v(i)*en(i) 

   enddo     

   energy(1)= half*tmp 

  endif 

 endif 

end subroutine uel 
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Appendix F 

The testing problem is modified from the Abaqus® online Example Problem Manual 

referenced in Chapter 4. A simple 2D user subroutine implementing an added mass finite 

element, addedmass_uel.f, is made available for download together with the input file of 

the example problem. The case study of Koyna dam is considered, which was subjected to 

an earthquake of magnitude 6.5 on the Richter scale on December 11, 1967. While in the 

original version, that can be found in the online manual, the application of the Abaqus® 

concrete damaged plasticity material model is included, in the testing problem here 

presented a simple linear elastic material with viscous damping is preferred for sake of 

simplicity (with Rayleigh coefficients borrowed from Ridracoli Dam values). All material 

parameters are given in Table F.1. 

Table F.1. Material properties assigned to the Koyna Dam monolith. 

 
Mass density Linear elastic properties Damping coefficients 

ρ (kg/m3) E (GPa) ν (-) αR (-) βR (-) 

Koyna Dam 2643 31.027 0.15 0.082 0.0046 

 

The geometry of a typical non-overflow monolith of the Koyna dam is illustrated in Figure 

F.1. The monolith is 103 m high and 70 m wide at its base. With the usual notation, the 

depth of the reservoir at the time of the earthquake is H-h = 91.75 m. In the Example 

Problems Manual, a two-dimensional analysis of the non-overflow monolith assuming 

plane stress conditions is presented. The finite element mesh used for the analysis is shown 

in Figure F.2a, consisting of 760 first order, reduced-integration, plane stress elements 

(CPS4R). The same plane stress conditions are simulated in a three-dimensional model in 

order to verify the capability of the new developed amass.f subroutine to reproduce this 

simple test problem.  A solid dam monolith of unit thickness, unconstrained at the lateral 

faces, is considered. Its finite element mesh is shown in Figure F.2b, consisting of 825 first 

order, reduced-integration, 8-node brick elements (C3D8R).  

The upstream wall of the monolith is assumed to be straight and vertical. In this special 

configuration the added mass contribution to the inertia of the wall calculated inside 

addedmass_uel exactly matches the formulation implemented in amass1 when a 

Westergaard distribution of hydrodynamic pressures is assumed. 

The transverse and vertical components of the ground accelerations recorded during the 

Koyna earthquake are shown in Figure F.3 and applied to the base of the monolith 

considered as fixed. Differently from the Example Problem, no static steps are considered 

before the dynamic analysis. 
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Figure F.1. Geometry of the testing problem (Koyna Dam). 

 

 

Figure F.2. a) Mesh of the original 2D Example Problem Geometry; b) Mesh of the 

3D problem which implements amass1 subroutine. 
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Figure F.3. Koyna earthquake: (a) transverse and (b) vertical ground accelerations. 

 

As visible in Figure F.2, the green crosses representing added-mass nodes stop at the 

considered water level (i.e., H-h = 91.75 m) in the 2D model, while they reach the crest 

level of the dam in the 3D model. This apparent contradiction does not affect the results of 

the analyses since, differently from the original addedmass_uel, the hydrodynamic 

pressures are automatically set to zero within amass1.f for each node that is located above 

the reference water level of the reservoir. The amass1 properties are selected as summarised 

in Table F.2. 

Table F.2. Input parameters for amass1. 

amass1 user parameters 

[H-h] (m) H (m) ρ (Kg/m3) cm (-) dim. (-) int. pt. (-) type (-) 

91.75 91.75 1000 1.0 2 1 1 
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In order to compare the results of the 2D and 3D analyses, the same results, in terms of 

acceleration time series, are extracted for the control point C, located on the upper 

downstream corner/edge of the dam (see Figure F.1). Both accelerograms in horizontal 

and vertical directions for 2D and 3D analyses are plotted together in Figure F.4.  

A perfect match is observed between the curves, which confirms the reliability of the new 

implemented subroutine, at least in this simple configuration. 

 

 

 

Figure F.4. Results of the test problem in terms of a) horizontal and b) vertical 

acceleration on the control point C. 
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