
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN

DATA SCIENCE AND COMPUTATION

Ciclo 34

Settore Concorsuale: 09/H1 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI

Settore Scientifico Disciplinare: ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE
INFORMAZIONI

MEANINGFUL INSIGHTS: EXPLAINABILITY TECHNIQUES FOR BLACK-BOX
MODELS ON TABULAR DATA

Presentata da: Giorgio Visani

Supervisore

Federico Chesani

Esame finale anno 2023

Coordinatore Dottorato

Daniele Bonacorsi

Co-supervisore

Marco Roccetti

Alma Mater Studiorum - University of Bologna

Department of Computer Science

Ph.D. Thesis
January 31st, 2023

Meaningful Insights: Explainability Tech-
niques for Black-box Models on Tabular Data

Giorgio Visani

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy (Computer Sciences)

Advisors:

Prof. Federico Chesani
Department of Computer Science, University of Bologna

Dr. Enrico Bagli
Crif S.p.A.

ii

Abstract

Artificial Intelligence (AI) and Machine Learning (ML) are novel data analysis techniques
providing very accurate prediction results. They are widely adopted in a variety of indus-
tries to improve efficiency and decision-making, but they are also being used to develop
intelligent systems. Their success grounds upon complex and non-linear mathematical
models, whose decisions and rationale are usually difficult to comprehend for human users
to the point of being dubbed as black-boxes. This is particularly relevant in sensitive and
highly regulated domains.
To mitigate and possibly solve this issue, the Explainable AI (XAI) field became promi-
nent in recent years. XAI consists of models and techniques to enable understanding of
the intricated patterns discovered by black-box models.

In this thesis, we consider model-agnostic XAI techniques, which can be applied to Tabular
data, with a particular focus on the Credit Scoring domain. Special attention is dedicated
to the LIME framework, for which we propose several modifications to the vanilla algo-
rithm, in particular: a pair of complementary Stability Indices that accurately measure
LIME stability, and the OptiLIME policy which helps the practitioner to find the proper
balance among the explanations’ stability and reliability. We subsequently put forward
GLEAMS a model-agnostic surrogate interpretable model which requires to be trained
only once, while providing both Local and Global explanations of the black-box model.
It is capable of producing feature attributions and what-if scenarios, from both a dataset
and model perspective. Eventually, we argue that synthetic data are an emerging trend
in AI, being more and more used to train complex models instead of original data. To be
able to explain the outcomes of such models, we must guarantee that synthetic data are
reliable enough to be able to translate their explanations to real-world individuals. To
this end we propose DAISYnt, a suite of tests to measure synthetic tabular data quality
and privacy.

iii

Acknowledgments

To Federico and Enrico, which constantly supported, encouraged and cheered me up dur-
ing the ups and downs of this journey, I couldn’t ask for better guidance. To Clara and
Gianluca which supervised me abroad, making me feel welcome and reminding me of our
roots. To Sara, which helped me out with my burocracy struggles.

To the big University family with which we shared so many things. Fabri and Fede, I had
you by my side from the beginning, Matti and Fede joined the team one year later but
proved to be solid additions, the old top blokes Anto, Andrea and Andrea always ready to
share tips during the day as well as spirits at night. To Giacomo and Robert, sharing the
office together and putting up with me even when I proved to be stubborn. To Adrian,
Elias and Gio my Bruxelles’ buddys, as well as to the Sydney mates that I’m getting to
know at the time of writing.

To my addictive Bologna’s friends, thanks for your classy and finest sense of humor which
makes me eagerly wait for our weekly reunion.

To my good ol’ friends, everytime I’m heading back home our shared memories fill my
mind. High school times shine as if it was yesterday, no more than our recent European
Parliament expedition to stand out and make our (loud) voices heard.

To my family that always supported me with love and sweetness, Mom and Dad I hope
I’ll live up to be a brilliant parent as you, when my time comes. Marco and Alice, they
say big brothers should lead by example but you gave me more love than I did. I’m lucky
to have you as siblings and I’m proud of your milestones as if they were mine, keep up
the good work!

It takes patience to read through it all, but even more patience to keep it up whenever
I’m far away. Dulcis in fundo, Vale your are indeed the sweetest and most important
person in my life. You always standed by my side as my best friend, my confidant, my
new family. I won’t let you down Meow.

iv

Contents

1 Introduction 1

2 Prediction Models 7
2.1 Prediction Models in general . 7
2.2 Classical Statistical Models . 8
2.3 Machine Learning . 10
2.4 Generative Models . 17

3 Datasets 23
3.1 Crif Credit Scoring dataset . 23
3.2 NHANES Dataset . 24
3.3 Real-World UCI Datasets . 25
3.4 Toy Datasets . 26

3.4.1 Credit Scoring Toy Dataset . 26
3.4.2 Synthetic one-dimensional Dataset 26

4 Explanations 29
4.1 Feature Importance Techniques . 32
4.2 Surrogate Models . 42
4.3 Evaluation of Explainability methods . 48

5 LIME in Detail 51
5.1 Generation Step . 51
5.2 Weighting Step . 55
5.3 Feature Selection . 55
5.4 Local Model Step . 56
5.5 LIME Issues . 57
5.6 Improvements over vanilla LIME . 59

6 LIME Stability Indices 61
6.1 Variables Stability Index: VSI . 62
6.2 Coefficients Stability Index: CSI . 63

6.3 Interpretation of the indices . 66
6.4 Practical Application on Credit Risk Data 66
6.5 Extensive experiments on Stability Indices 69

7 LIME: select the local nieghborhood size 77
7.1 Stability & Adherence Trade-off . 78
7.2 OptiLIME . 79
7.3 OptiLIME Application to Real-World Datasets 80

8 Bridging the Gap between Local and Global Explanations 85
8.1 GLEAMS . 86

8.1.1 Measurement points . 87
8.1.2 Splitting criterion . 88
8.1.3 Global surrogate model . 91
8.1.4 GLEAMS Explanations . 92

8.2 Experiments . 94
8.2.1 Toy data . 95
8.2.2 Real data . 95

9 Explainability for Synthetic Data 99
9.1 General Comparison Tests . 101

9.1.1 Pairwise Correlation . 101
9.1.2 Predictive Power comparison . 102

9.2 Distributions Comparison Tests . 102
9.2.1 Univariate Distributions . 102
9.2.2 Multivariate Distributions . 105
9.2.3 Discriminator Model . 106

9.3 Data Utility Tests . 106
9.3.1 Aggregate Prediction Comparison 106
9.3.2 Single Prediction Comparison . 106
9.3.3 Compare model internals . 107

9.4 Privacy Tests . 108
9.4.1 Singling Out Tests . 108
9.4.2 Linkability Tests . 109
9.4.3 Inference Risk test . 110

9.5 Applications . 110

10 Conclusions 113

vi

1

Chapter 1
Introduction

Being able to predict the future has long been regarded as the “holy grail” of human
society. The idea of using past experience as a key to inferring future behaviour dates
back an immemorable time. Among others to recognize that, Confucius over 2500 years
ago stated “Study the past if you would define the future”.
Nonetheless, only in relatively recent times this concept has been formalized mathemat-
ically into the prediction models field. First examples date back to the end of the 19th
century, when Sir Francis Galton and subsequently Karl Pearson, developed Linear Re-
gression for the first time. Since then, a variety of mathematical structures were put
forward to model different phenomena. At the same rate, better computational tools
allowed for more demanding calculations, up to the present date in which computational
power at disposal is believed to increase exponentially over the years.

These factors created fertile ground for the Machine Learning (ML) field, which includes
algorithms analyzing patterns and structures in data to enable learning, reasoning, and
decision-making without human interaction required. ML became soon pervasive and
widespread across multiple domains, making it one of the pillars of the present intercon-
nected society. At the same time, the complexity of the ML prediction models constantly
increased, until the trend was widely recognized and the term “black-box” model, i.e.
prediction model with highly complicated model internals, was coined. The program-
matic steps of a black-box model are usually known, but it is difficult to grasp how the
mathematical function obtains certain prediction values. Such peculiarity is due to ex-
tremely complicated functions employed, iterative algorithms continuously refining the
function and preventing human beings from staying on par with the modifications, or a
combination of the two.

Legal Requirements

However, the new paradigm needs necessarily to leverage sensitive information, as required
by novel regulations. In the European Union, the General Data Protection Regulation
(GDPR) [57] was enforced in 2018, introducing the concept of the “Right to an Explana-
tion”, i.e. each individual affected by an Algorithm’s decisions has the right to know the
model’s rationale in predicting the specific pattern. In 2019 the High-Level Expert Group

2

on Artificial Intelligence (AI) presented the ”Ethical Guidelines for trustworthy AI” [55],
containing the three pillars of AI trustworthiness, i.e. being lawful, ethical and robust,
along with 7 key requirements that AI systems should meet. Eventually, in 2021 the
European Parliament drafted the first proposal for the Artificial Intelligence Act (AIA)
[26], regarded as the first law on AI by a regulator anywhere. Even if the “Old World”
has been very active in the regulatory aspect of AI, other major countries put forward
similar requirements. With no intention of being exhaustive, we remind only the U.S.
FERPA [33] and HIPAA [17], educational and medical data regulations respectively.

Even if quite compelling, compliance with existing regulations is only one of the drivers
behind Explainability. In fact, Interpretability can help with other relevant ML is-
sues, such as: i) the ability to debug unexpected behaviours of the models, as well as ii)
to grasp the true relationship among the collected data. The former bears importance
from a practitioner’s point of view, for understanding how one can improve the model.
The latter is of particular interest in the hard sciences, where mathematical models are
employed to shape a given physical, medical or financial phenomenon. Insights on the
true Data Generating Process (DGP) are hence essential. All such tasks cannot be easily
carried out, relying just on powerful black-box prediction models.

Crif

The effort produced in this thesis represents 4 years of research carried out in joint col-
laboration between the University of Bologna and Crif S.p.A. -from now on just Crif -, a
global company headquartered in Bologna. Crif’s core business is Credit Scoring, namely
the evaluation of the probability that a debtor will not repay the due amount. However,
Crif is specialized in business information, credit solutions and outsourcing and processing
services as well. In fact, Crif is fully committed to providing help and support to any
legal financial institution, by means of advanced data analysis.
Its expertise in Credit Scoring dates back to the 80s, making the company one of the
leaders in the Italian credit bureau market as well as an important benchmark worldwide.
Nowadays, one of Crif’s endeavours is the adoption of advanced analytics for Credit Scor-
ing.

Statistical approaches have been successfully exploited in Credit Risk since long, becoming
the gold standard. However recently, also machine and deep learning techniques have been
applied to the task, showing an important increase in prediction quality and performance.
Albeit the improved ML performances, Credit Scoring is a highly regulated domain, in
which a single decision can have significant impacts on people’s lives. The European
Banking Authority (EBA) redacted a specific Report [23] on best practices to use
Artificial Intelligence in Credit Scoring. Also the Artificial Intelligence Act takes a stance
on Credit Scoring, classifying it as an AI high-risk application. This still allows for AI to
be used in this business, but the process should comply with a copious list of requirements
and best practices, prominent among them is the ability to provide explanations for the
decisions taken.

3

Tabular Data

The vast majority of Banking data is in Tabular form and relatively low-dimensional, i.e.
they usually contain a few dozen features while some datasets may include up to 100 or
200 variables.

Tabular Data are data which can be represented in a table: each row stands for a specific
observation, while each column contains information on a given variable. We will refer
to the generic i-th unit -row - of the dataset as x(i) , while the j-th column of the same
generic unit will be addressed as x

(i)
j . The j-th column vector containing values of a spe-

cific variable is labelled Xj , while the entire dataset is addressed as X. In Tabular Data
the variables are usually meaningful on their own: the variables Income, Loan Intent
or Own House in Table 1.1 represent specific traits of the individuals and are quite in-
formative for an end user. This property enables explanations based on the input features
directly. However, considering different data sources, it is not always true that original
variables are meaningful. As an example, an Image is usually stored as a 3-dimensional
tensor, where each entry corresponds to the intensity of the colour of a single pixel. In
this case, the information of the intensity colour of a specific pixel is generally difficult to
relate to any insight about the image itself -except for trivial cases-.

Age Income Own House Loan Intent Loan Amount Loan/Income Ratio Default

22 59000 Rent Personal 35000 0.59 Yes

21 9600 Own Education 1000 0.10 No

25 9600 Mortgage Medical 5500 0.57 No

23 65500 Rent Medical 35000 0.53 No

Table 1.1: Toy Credit Scoring Dataset, described in detail in Chapter 3.4.1

Information contained in tabular variables can be of two different types: categorical or
numerical. Referring to Table 1.1, the variable Income is numerical, i.e. it assumes values
in a subset of the real line R. Examples of categorical variables are instead Loan Intent
andDefault, whose domain is represented by a set of different choices or categories -which
in turn might be represented as integer numbers-. In particular, in the case of Default, the
categories are only 2 and the variable is also called dummy, flag or binary variable. The
first step of any prediction model is to transform categorical variables into numerical ones.
This step is usually not incorporated in the Machine Learning model itself -apart for few

recent models, like the Transformers language models [111]-, but the choice on the categorical
encoding algorithm to use is left to the practitioner.
Such a compact representation in table form allows for simple storage of Tabular datasets.

Contributions

The scope of this thesis is restricted to post-hoc Explainability techniques, applied to
Tabular Data.

4

By post-hoc, we mean explanations that can be applied separately from the training
procedure of the models -explained in greater detail in Chapter 4-. In particular, they can
be used on already trained models, making post-hoc explanations especially suitable in
business processes where a prediction model has been already deployed in a production
environment. With the same goal, we will mostly consider only model-agnostic frame-
works, namely techniques able to explain any kind of prediction model. Such techniques
may enable out-of-the-box explainability and possibly law compliance for any company’s
prediction model. Regarding the restriction to the Tabular data domain, such choice has
been made to readily employ the techniques on Credit Scoring data. Nonetheless, all the
work presented here is not limited to a specific business field, on the contrary it is general
and valid for any database respecting the above-mentioned requirements.

The main contributions of this thesis entail:

A thorough and in-depth analysis of the vanilla LIME explainability framework [93],
in particular showing its application to the Credit Scoring domain and highlighting its
caveats and specific situations in which LIME is bound to fail. We focus on the stability
of the explanations, i.e. namely repeated applications of the method under the same
conditions may obtain very different results. In order to help the practitioner to spot
instability, we devise a pair of complementary stability indices tailored specifically on
LIME. We also tackle the problem of jointly optimizing the stability and the adherence
-fidelity of the explanations towards the black-box model- of LIME explanations. The result
is the OptiLIME policy, which automatically selects the best kernel width -main LIME

hyper-parameter-, to achieve the goal put forward. This line of work specifically related to
the LIME technique is described in:

LIME applied to Credit Scoring Giorgio Visani, Federico Chesani, Enrico Bagli, Da-
vide Capuzzo and Alessandro Poluzzi. Explanations of Machine Learning predic-
tions: a mandatory step for its application to Operational Processes, 16th Credit
Scoring and Credit Control Conference (CRC) August 28-30, 2019, Edinburgh, UK

LIME Stability Indices Giorgio Visani, Enrico Bagli, Federico Chesani, Alessandro
Poluzzi and Davide Capuzzo. Statistical stability indices for LIME: obtaining reli-
able explanations for Machine Learning models, Journal of the Operational Research
Society, Vol. 73.1 Pag. 91-101, 2022. Taylor & Francis Publishing.

OptiLIME Giorgio Visani, Enrico Bagli, Federico Chesani. Optilime: Optimized lime
explanations for diagnostic computer algorithms, Proceedings of the CIKM 2020
Workshops, October 19-20, 2020, Galway, Ireland. Vol 2699

Subsequently, we introduce GLEAMS (Global and Local ExplAnations through Model
Space partitioning), which aims at bridging the gap between local and global explanation
frameworks -the two frameworks are described in Chapter 4-. GLEAMS retains the best of

5

both worlds, allowing for precise and accurate local explanations while also giving insights
about the entire variable space. GLEAMS is described in

GLEAMS Giorgio Visani, Damien Garreau, Vincenzo Maria Stanzione. GLEAMS:
Bridging the Gap Between Local and Global Explanations, 2022, currently under
review.

Eventually, we argue that Synthetic Data is a prominent trend in recent Machine Learning
and more and more analytic companies train complex models on such generated instances.
To allow explainability in this setup, we need to guarantee the Synthetic Data quality
from different viewpoints. For this reason, we put forward a taxonomy of the relevant
concepts, along with an array of tests to quantify such concepts on a given synthetic
dataset. The tests are collected in DAISYnt, a dedicated test suite disclosed in

DAISYnt Giorgio Visani, Giacomo Graffi, Mattia Alfero, Enrico Bagli, Davide Capuzzo
and, Federico Chesani. Enabling Synthetic Data adoption in regulated domains,
Proceedings of the DSAA 2022 Application Track, October 13-16, 2022, Online.

The rest of the thesis is as follows: in Chapter 2 we introduce prediction models, distin-
guishing between Statistical and Machine Learning models. In Chapter 4 we provide an
extensive review of the literature on post-hoc,model-agnostic explanations; in Chap-
ter 5 we thoroughly describe the LIME technique and its weakpoints; in Chapter 6 we
introduce a pair of stability indices specifically tailored on LIME; while in Chapter 7 we
discuss how to fine-tune LIME main hyper-parameter using the OptiLIME policy. Chap-
ter 8 is dedicated to the GLEAMS method, combining local and global explanations in a
unified framework; in Chapter 9 we put forward DAISYnt, a suite of tests to assess the
quality of synthetic data. Chapter 10 conclude the dissertation, with a brief summary
and discussion.

6

7

Chapter 2
Prediction Models

Since the Interpretability problem is inherent to the complex prediction models, we
will start the journey into Explainability by understanding how some prediction models
are considered explainable by default, while others suffer from lack of clarity -to the point

of being called black-box -. In particular, we consider the Parametric Statistical Models as
opposed to the class of Machine Learning models. We argue that constraints on the learnt
geometrical surface help the Parametric models achieve explainability through relatively
simple mathematical formulas. Machine Learning models, instead, usually produce quite
flexible but not easily understandable surfaces, due to too complex or even not speci-
fied mathematical formulations of the surface. A notable exception is the Decision Tree
Model, which even if non-parametric and flexible, benefits from the fact that iterative
splits can be seen both as a piecewise constant function in the geometrical space or as a
set of rules. The latter provides a way of interpreting the model behaviour, as already
well-explored into the symbolic and logic community inside the Artificial Intelligence field.

The Chapter is structured as follows: in 2.1 a general introduction on the Prediction
Models and how it is always possible to represent a model on Tabular Data as a surface in
the geometrical space of the variables, Chapter 2.2 concerns with Statistical Parametric
Models, considered explainable by default, Chapter 2.3 contains some of the most well-
known Non-Parametric Machine Learning models

2.1.0. Prediction Models in general

Prediction models are mathematical functions defining the relationship between values of
some auxiliary variables X, also called regressors or independent variables, and the values
of a target variable Y , i.e. the event or quantity of interest. Depending on the Y domain,
a continuous target variable yields Regression models, while a categorical one requires
Classification models -Binary or Multi-class Classification models, based on the number of Y

categories-.

More formally, a prediction model is a multivariate function f : X → Y , where X ∈
Rd+1,Y ∈ R are the subspaces where the X, Y random variables respectively live, d is the
number of independent variables. Interestingly, the X subspace has dimension d + 1 to

8

allow f to model a constant term different from 0.
In statistics, data are assumed to be generated from a Data Generating Process (DGP)
combined with a source of white noise, so that the standard formulation of the problem is
Y = DGP (X) + E , where E ∼ N(0, σ2). Any prediction model f strives to approximate
the DGP, i.e. the underlying unknown distribution which generated the data. In par-
ticular, standard models approximate the conditional expectation of the target variable
E[Y |X] in Regression settings -continuous Y - or the conditional probability of a specific
class P[Y = j|X] in Classification -categorical Y -.

Most of the models refine their predictions using optimization algorithms and this may
lead to overfitting, i.e. to learn specific patterns of the given dataset, which are not a
general characteristic of the DGP. To avoid overfitting, it is usual practice to divide the
data into train and test set, respectively called Dtrain, Dtest from now on. The model is
trained on the Dtrain dataset, but the final performance results are displayed on Dtest. A
high discrepancy among performance on Dtrain and Dtest is a clear sign of overfitting.
Moreover, complex models usually have hyper-parameters governing the training phase.
These parameters require tuning, which may again be a source of overfitting. For this
reason, such models require an additional splitting to produce the validation dataset Dval

which is only used to choose the best hyper-parameter set.

2.2.0. Classical Statistical Models

The classical methodology is based on a variety of techniques stemming from the statistics
field, the most popular ones are Linear, Logistic and Probit models.

Linear Regression

Linear Regression generates the f function as a linear hyperplane:

E[Y |X] = XTβ

where β is the coefficient vector parametrizing each X variable.

Linear Regression is generally used in Regression settings, where Y = R -unrestricted f

codomain-. It might be employed even in classification settings, but this time Y represents
a conditional probability in [0, 1] while Linear Regression has no restriction on the outputs,
i.e. it can produce values outside the required interval. A simple way to solve this issue
is to clip extreme values to the closest valid probability value.
Linear Regression’s main strength is the ease of estimation and explanation, although the
linearity is a too strict assumption in many cases.

Logistic and Probit Regression

On the other hand, Logistic and Probit models are mainly used for Classification purposes,
thanks to the transformation applied to Y to transform it into a new variable spanning
over the entire real line R. -In the more general setting of Generalized Linear Models (GLM)

this transformation is called link function-.

9

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

Figure 2.1: Linear Regression Surface obtained on the Toy Credit Scoring Dataset (Chap-

ter 3.4.1). The model is trained to predict the Default Probability using Age and

Lenght of Employment

The transformation is a bijective function, meaning that it is always possible to convert
each value of the new variable back into the probability value that generated it.

Pr(Y = 1|X) =


exp(XTβ(1))

1 + exp(XTβ(1))
Logistic Model (2.1)

Φ(XTβ(2)) Probit Model (2.2)

β(1), β(2) are the parameters respectively of the Logistic and Probit Models.
Φ(·) is the Cumulative Distribution Function of a standard Gaussian N (0, 1). In this
formulation, we highlight the inverse transformation, mapping the XTβ matrix into the
[0, 1] interval.

Both Logistic and Probit have the additional advantage of modelling the relation in a non-
linear way. This is a dramatic increase in representation capability, even if such curvy
surfaces are bound to be monotonically increasing or decreasing (as shown in Figure 2.2).

An additional perk of Logistic Regression, when compared to Probit, is its interpretabil-
ity of results: the parameters derived from the best curve’s estimation, can be regarded

10

Figure 2.2: Shape of Logistic, Probit and Linear functions, associated with different

parametrization. In this easy setup, the Probability of Default (PD) is modelled against

a single independent variable X.

as odds ratio, i.e. the ratio between the probability of default and non-default, namely
P (Y=1|X=x)
P (Y=0|X=x)

.

Starting from the mean value of one specific independent variable, the increase of 1 unit
brings an increase in the odds ratio that is equal to the exponentiated parameter. The
relation is valid when the other regressors’ values are fixed to their mean.
This benefit is due to the particular transformation employed by the model, which pre-
serves the chance of interpreting the results.

2.3.0. Machine Learning

The classical definition of Machine Learning dates back to 1997 on behalf of Tom Mitchell
[81]:

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance at tasks in T,
as measured by P, improves with experience E.

By this train of thought, almost any kind of prediction algorithm may fall into the class of
Machine Learning models. Consider Logistic Regression, the parameter tuning phase is
done through an iterative algorithm, usually Newton-Raphson, which improves the esti-
mated model’s performance at each iteration, measured by the increase in the Likelihood
value.

Because of the extent of such a general framework, in this dissertation we consider only
non-parametric Machine Learning models. They estimate the relationship between the
target variable and the predictor variables, without constraining the surface to have a pre-
cise functional form. This peculiarity allows to model non-linear relations of any possible
shape, making the technique more flexible compared to classical parametric methods.
Machine Learning models of this kind usually outperform classical methods in non-linear
settings and achieve the same results when the nature of true relations is simply linear.

11

0.15

0.16

0.17

0.18

0.19

0.2

0.21

Figure 2.3: Logistic Regression Surface obtained on the Toy Credit Scoring Dataset (Chap-

ter 3.4.1). The Logistic Function behaves very similar to Linear Regression -monotonicity

is probably too strict assumption in this case-

Hereafter, a brief and non-exhaustive list of some of the most well-known Machine Learn-
ing models:

Neural Networks

The neural network is a Machine Learning model, inspired by the human brain struc-
ture. The model’s building block is the Perceptron [95], which consists of a mathematical
function taking a vector of inputs x(i) , i.e. a specific Dtrain unit’s values, computing their
weighted sum and transforming them through an activation function act to obtain a single
output y(i):

y(i) = act

(∑
j

wjx
(i)
j

)
where wj is the weight assigned to the j-th element of the input vector, while act is the
chosen activation function.
The Neural Network (NN) model exploits a high number of perceptrons to create an
interconnected network (Figure 2.4), typically structured in an input layer -the original

dataset variables Xj -, one or more hidden layers, and an output layer -the final prediction

value-. Hidden layers are similar to the input layer, but the input to each neuron is the

12

output of the previous layer.

Figure 2.4: Basic Structure of a Multi Layer Perceptron (MLP) Neural Network

There exist many different Neural Network models, mainly differing in their architecture,
depending on which layers are employed and how they are combined to achieve the pre-
diction. State-of-the-art NN are Multi Layer Perceptrons (MLP), Convolutional Neural
Networks (CNN), Long Short Term Memory (LSTM) and many others. However, we are
going to focus on MLP models which are readily applicable to tabular data domains.
The activation function plays an important role in the NN framework, being responsible
for modelling the non-linearity of the resulting prediction surface. Many different choices
are available, with ReLU, Sigmoid, and Tanh being the best well-known ones.
In particular, the Sigmoid, or Logistic function, is defined as act(x) = 1

1+e−x and allows
to model a monotonic non-linear function in the interval [0, 1]. The ReLU (Rectified Lin-
ear Unit) function is defined as act(x) = max(0, x) and produces a piecewise linear curve.
Eventually, the Tanh (hyperbolic tangent) has formula act(x) = ex−e−x

ex+e−x and produces
a curve similar to the sigmoid function, but mapping input values to the range [−1, 1].
Each neuron contributes to the non-linearity of the network, by combining the relatively
simple functions in a complex highly non-linear surface. In particular, using Sigmoid or
Tanh activations we achieve smooth surfaces (Figure 2.5), while ReLU yields discontinu-
ous surfaces. The Neural Network framework has the potential to perfectly approximate
any unknown mathematical function, under mild conditions [59].

The most common algorithm to train a neural network is called backpropagation, which
adjusts the weights wj of the connections between neurons. Backpropagation consists in
computing the NN prediction error for each x(i) unit and differentiating it with respect to
the network’s weights of each layer. This is done using the Chain rule, which allows us to
propagate the error’s gradients to the previous layers. The weights are updated according
to the computed gradients, iteratively, until a stopping criterion is met. Given the signif-
icant approximation capabilities, Neural Networks are prone to overfitting. Therefore, a
validation set is useful to stop the procedure before learning too specific patterns.

The huge number of nonlinear perceptrons combined together yields very complex models,
which possibly count millions of parameters. The mathematical formulation of the surface
is hence too complex to be considered interpretable.

13

0.1

0.12

0.14

0.16

0.18

0.2

Figure 2.5: Neural Network Surface obtained by an MLP model equipped with Sigmoid

activation function. The model has been trained on the Toy Credit Scoring Dataset

(Chapter 3.4.1)

Decision Trees

Decision Trees are generally considered one of the simplest Machine Learning models, and
interpretable models themselves.
The decision function is iteratively built, by choosing a single variable Xj and a split
point xj , which yields two mutually exclusive and complementary partitions of X . The
best split is chosen by inspecting any possible split-point on any independent variable and
comparing the related Splitting Criterion values. There exist many different choices for
the splitting criterion, among them Variance Reduction is useful for regression problems;
while Information Gain, Gini or the Chi-Square p-value are valid choices when it comes to
classification [49]. From a geometric point of view, the Tree divides X in hyper-rectangles
by means of splits parallel to the coordinate axes -independent variables-. In the two gen-
erated partitions, the process is repeated until a stopping criterion is met. On the final
partitions R1, . . . , Rk, the Decision Tree computes the average Y value and assigns it to
each unit in the specific region.

The f model surface is a piecewise constant function, with discontinuities in correspon-
dence with each split-point that prevent the existence of the gradient. Although the
structure of the Tree itself can be seen as a set of decision rules, in fact each path con-

14

necting the root node with a specific leaf is fully described by each intermediate split
and associated rule -whether the unit value is higher or lower than xj -. The Tree predicts
a new unit x(i) by determining its corresponding partition Ri using the appropriate rule.
This rule is regarded as the explanation for the unit x(i) since it is clear and human-
understandable, namely it consists of a set of conditions the unit x(i) must abide to get
that specific prediction.

Figure 2.6: The Decision Tree model can be seen as consecutive splits starting from the

root node to the leaves (left), or as a set of decision rules (right).

Courtesy of [27]

Decision Trees can obtain high accuracy at the cost of pronounced overfitting when the
Tree is very deep. On the contrary, a shallow Tree is usually not overfitted but also not as
precise in prediction. To leverage this trade-off, ensemble models -aggregations of several

models together-, based on vanilla Decision Trees have been proposed. In particular, Ran-
dom Forest and Gradient Boosting achieve very good predictive results and consistently
outperform standard deep neural models on tabular-style datasets where features are in-
dividually meaningful and do not have strong multi-scale temporal or spatial structures
[41]. On the other hand, deep learning models are more appropriate in fields like image
recognition, speech recognition, and natural language processing.
A balance of computational efficiency, ease of use, and high accuracy have made tree-based
models one of the most popular non-linear model types.

Random Forests

Random Forest models overcome the Decision Tree trade-off between overfitting and ac-
curacy. They do so by creating a huge number of Dtrain bootstrap replicas, i.e. datasets
of the same Dtrain size composed of Dtrain units sampled at random with repetition. On
average these datasets contain only about 67% of the original units, while some of them
are duplicated and others are not included. On each bootstrap replica, a full-grown Deci-
sion Tree is trained and the predictions of each model are averaged together. In addition,
Random Forest consider only a handful of variables as candidates for the split, at each
Tree iteration.

15

0

0.2

0.4

0.6

0.8

1

Figure 2.7: Decision Tree model surface obtained on the Toy Credit Scoring Dataset

(Chapter 3.4.1). We notice the piecewise constant f generated over X by a Decision Tree

model.

From a mathematical point of view, the main idea of the procedure is to reduce the
Variance of the resulting f function -namely reducing the overfitting- while retaining the
high accuracy of full-grown trees. In fact, the variance is defined as:

VAR(f(x)) =
1

k
s+

k − 1

k
c

where k is the number of Trees included in the ensemble, s is the variance of the prediction
errors made by the single Trees and c is the average correlation of different Tree errors.
The mechanism of aggregating different models trained on generated bootstrap replicas
of the data is called Bagging (Bootstrap Aggregating), It works on the first term of the
formula, reducing the variance by increasing the number k of Trees concurring to the
prediction. The Random Forest technique consists of Baggging with the additional ran-
domization of the splitting variable. It targets also the second term, creating more diverse
Trees -because of the restrictions on the splitting variables- and achieving more uncorrelated
Tree errors. In general, it is safe to say that Bagging and Random Forest models are
always beneficial, while in the worst-case scenario they leave the Variance of the original
Tree untouched. But it is very often the case that they improve the base Tree model
accuracy by a healthy amount.

16

Figure 2.8: Random Forest Structure

From a geometric point of view, the combination of piecewise constant functions produces
yet another piecewise constant model, although its complexity is much higher and it
displays increased flexibility and robustness -less overfitting- than the vanilla Tree model.

Gradient Boosting

Gradient Boosting Models rely on the idea of creating many simple and weak models,
also called learners, sequentially added into an Ensemble Model. Shallow Tree models
are one of the most popular choices for weak learners. Each Tree is grown on the same
Dtrain dataset, but each unit is assigned a different weight at every iteration. The weight
is based on the prediction error of the ensemble model built so far. Thereby, units which
are already predicted well are given low weights, whereas individuals presenting imprecise
or wrong predictions will benefit from higher weights. This allows the following trees to
focus more on the hard-to-predict individuals.

On one hand, this approach allows to create an ensemble model, able to predict well also
complex and highly non-linear parts of the regressors’ hyperspace X . On the other hand,
the ensemble is prone to overfitting and a Dval validation dataset is required to check the
generalization performance.

Weak Learners are simple models achieving modest performance (usually their accuracy
is just above chance), such as Single Decision Trees with very few branches. They are
employed in boosting procedure, instead of strong learners, because this helps the algo-
rithm to learn “slowly”: small performance improvements are made per each shallow Tree
added to the ensemble. Slow convergence towards the best f function allows stopping the

17

0

0.2

0.4

0.6

0.8

Figure 2.9: Random Forest surface obtained on the Toy Credit Scoring Dataset (Chapter

3.4.1). We notice that the Random Forest surface is more balanced and contains smaller

bumps (less f Variance) than Decision Tree model in Figure 2.7

procedure before incurring overfitting. It increases the final model robustness and helps
also to keep f simple, e.g. when Decision Trees with just one split are employed, namely
stumps, the Boosting final model can be regarded as an additive model [61].
The best single tree at each step is selected minimizing the loss function using gradient
descent, hence the name Gradient Boosting. The framework steps are detailed in Figure
2.11.

2.4.0. Generative Models

According to a Gartner study [13], 60% of all data used in the development of AI will be
synthetic rather than real by 2024. Such prediction perfectly highlights the exponential
usage of Generative models to produce Synthetic data, as well as its huge potential. It is
therefore important to have a good understanding of the techniques, to be able to analyze
their behaviour and the implications related to current regulations, especially in relation
to the Explainability quest.

Generative models learn an approximation of the joint distribution, D(X, Y), instead of
learning the conditional distribution D(Y |X) [87]. Having access to a good approxima-

18

0.4

0.45

0.5

0.55

Figure 2.10: Gradient Boosting surface obtained on the Toy Credit Scoring Dataset

(Chapter 3.4.1). The surface is usually smoother than Random Forest, maintaining in-

creased robustness and accuracy than vanilla Decision Trees

tion of the joint distribution, it is possible to generate new data maintaining the same
statistical properties of the original one, i.e. Synthetic Data.

The first attempt to build a generative model dates back to Donald Rubin in 1993, which
proposed multiple imputation to generate synthetic observations of the US Census Bureau
[97].
Since then, many different generative model frameworks have been proposed, with Vari-
ational Autoencoders (VAE) and Generative Adversarial Networks (GANs) being recog-
nized as state-of-the-art.

Generative Adversarial Networks (GANs)

Adversarial Learning is a framework composed of two separate models, the Generator
G and the discriminator D. Both are mathematical functions: G : Z → X converts
randomly generated observations over Z in observations belonging to the same euclidean
space of the training data, i.e. X . On the other hand, D : X → [0, 1] computes the
probability that an element in the X space is a real Dtrain unit (opposed to being fake,

19

Figure 2.11: Gradient Boosting Tree Model construction.

T (X,Θk) is the best Tree built at step k, its parameters Θk are chosen to minimize the

Loss Function between the target variable Y and the Boosted Model of the previous step.

The Tree is added to the Boosted Ensemble weighted by the βk parameter.

created by the G function). Specifically, the model focuses on the value function:

V = Ex∼Dtrain
[logD(x)] + Ez∼pz [log(1−D(G(z)))]

D objective is to maximize V , while G aims at minimizing maxD V , hence the GAN loss
function corresponds to:

min
G

max
D

V (D,G)

In GANs [35], both G,D are modelled as Neural Networks, specifically as MLP. This is not
the only possible choice, but it is a convenient one since allows iterative training of both
models at the same time, by updating the parameters according to the error gradients
through backpropagation.
Even if it is relatively easy to compute and update parameters according to the gradients,
we have to solve a minimax optimization and mathematical tools for this task are still
considered immature. Block Coordinate Descent is usually employed in order to train
GANs. It trains iteratively one model at a time alternating between D and G, helping
both models to improve performances by challenging themselves to higher goals, step by
step. Although, it is still quite complex to train GAN models and often the training phase
might get stuck into issues such as: vanishing gradients (which prevent G performance
improvement), model collapse (when G learns only very specific paths to fool D and the
resulting generated observations are very similar) and few more.
Nonetheless, extraordinary results have been obtained through GANs, outperforming
Variational AutoEncoders especially in structured data domains such as Text, Images

20

Figure 2.12: Generator G is trained to map a noise sample Z to synthetic data X ′.

Discriminator D is trained to distinguish real data X from synthetic samples

and Videos. Examples of successful applications are: GANs able to create artworks [31]
or images and videos so vivid to be confused with real ones (Figure 2.13).

Figure 2.13: Non-real images generated by GANs in [11], also called DeepFakes

Variational AutoEncoders

Autoencoders [70] are a specific neural network architecture, with input and output layers
of the same size. The model is trained using the Reconstruction Loss, i.e. minimizing the
difference between input and output. The main goal is to obtain a Dtrain representation
in a (usually compressed) latent space Z, represented by the middle layer of the network.
The Encoder, i.e. the left side of the network, encloses the function h : X → Z which
transforms the data into their dual representation in the latent space. The Decoder, right
side of the network, encodes the inverse transformation function h−1 : Z → X .

Figure 2.14: AutoEncoder structure

In order to generate data, we sample points on Z and use the Decoder h−1 to obtain
Synthetic Data Dsynth living in X . In AutoEncoders, in fact, the Decoder h−1 is regarded
as the actual generative model. Unfortunately, we have no clue on the best strategy to
sample from Z -we did not force any specific distribution on Z during the training phase-. It

21

is hence hard to ensure that the generated points are meaningful.

To the rescue, it comes the Variational AutoEncoder [68] technique, which works on
the posterior distribution of the latent space pz|x. Given an x point and knowing the
posterior pz|x, we could generate synthetic points similar to x, by sampling z values from
the more likely regions of pz|x -the h−1(z) points should highly resemble the original x points-.
Since computing pz|x is hard, VAE resort to Variational Inference approximating pz|x with
a convenient distribution qz|x. The goal is to minimize the difference between the p, q
conditional distributions, by minimizing their Kullback-Leibler divergence [71]. It can be
proved that minimizing the KL divergence among p, q is equivalent to maximising the
Evidence Lower Bound (ELBO) L, such as

min
q,z

KL(qz|x∥pz|x) ≡ max
q,z

Eq[log px|z]−KL(qz|x∥pz)

where L = Eq[log px|z] − KL(qz|x∥pz) is composed of two very different quantities: the
expected log-likelihood of x given z, which relates to the Reconstruction Loss -the higher,

the better the reconstruction of h−1(h(z))- and the KL divergence between the approximate
posterior qz|x and a prior pz which is usually the standard Gaussian NZ(0, I). The latter
term ensures to obtain well-behaved distribution of the transformed training data h(x)
into the latent space Z.

Figure 2.15: Variational AutoEncoders represent each variable of the latent space with a

distribution tending to a standard Gaussian. Courtesy of Jeremy Jordan

The two goals are contrasting each other, and the best generative solutions are obtained
by finding the proper balance with the help of a tunable hyper-parameter β controlling
the trade-off:

L = Eqz|x [log px|z]− βKL(qz|x∥pz)

Eventually, the reparametrization trick allows us to train the VAE network through back-
propagation even if it involves a sampling procedure. In fact, we generate synthetic data
sampling from N (0, 1), then we scale the points into qz|x domain by adding µ and multi-
plying by σ. Decoupling the sampling step and the usage of the parameters allows us to
backpropagate the loss error through the network.

https://www.jeremyjordan.me/variational-autoencoders/

22

23

Chapter 3
Datasets

We are going to introduce the datasets, along with specific Machine Learning models
trained on them. The dataset, model pairs are used throughout this thesis to demonstrate
some of the claimed and already known results about Explanation methods, as well as to
test performances and quality of specific Explanation frameworks.

3.1.0. Crif Credit Scoring dataset

The dataset presented here comes from a real-life loan application process, obtained by
pooling several anonymised statistical samples from different Italian financial institu-
tions. It contains several demographic, economic and financial variables used as predic-
tors, whereas the target variable consists of the default of the borrower person. However,
payment history changes case-to-case and we must come up with a default definition. We
consider “bad payers” as: users with 90 or more days past due for at least one payment
towards the bank, or individuals with at least one shift from a past due to an actual loss in
the last 12 months. We deal with a classification problem, where individuals are grouped
into two classes: class 1 if the default occurred (bad payer definition), 0 otherwise. Since
only two values are allowed, the variable is said to be binary. Prediction Models estimate
the Probability of Default (from now on PD), which assumes any continuous value in the
range [0, 1].
The dataset composition is shown in Table ??.

We split randomly the dataset into two non-overlapping samples: Dtrain, consisting of
70% of the entire dataset, is employed to tune the algorithm; whereas Dtest, composed of
the remaining 30% of the observations, is useful for checking the algorithm’s performances
on new data.
The first step has been to select the most important 20 features, by screening variables
out based on high correlation and testing that the model performance didn’t significantly
decrease without the irrelevant variables. This is done for two reasons: (i) classical
models are not performing well in high dimensional settings and (ii) LIME applied to
high dimensional Machine Learning models would cause the method to fail. Subsequently,
we apply tree-based Machine Learning models, specifically Gradient Boosting Trees (see
Chapter 2.3). They retain the enhanced predictive power of Machine Learning models,

24

Table 3.1: NHANES Dataset Composition.

dataset dimension %Bad

Train set 39.418 2,9%

Test set 16.893 3,1%

Total 56.311 3%

while having the additional advantage of requiring almost no pre-processing, at the same
time they cope with outliers and extreme values easily. For a comparison of performances
and potential between Logistic Regression -gold standard in Credit Scoring- and Gradient
Boosting Trees, we refer the reader to Visani et al. [117].
Gradient Boosting’s hyperparameters have been tuned by means of grid search and 10-fold
cross-validation on the training set.

3.2.0. NHANES Dataset

We introduce another real-world dataset coming from the medical domain. In Medicine,
diagnostic computer algorithms providing accurate predictions have countless benefits,
notably they may help save lives as well as reduce medical costs. However, precisely be-
cause of the importance of these matters, the rationale of the decisions must be clear and
understandable.

The dataset is usually referred to as NHANES I and was originally described in [19]. It
has been employed for medical research [24],[74] as well as a benchmark to test explana-
tion methods [79].
We use a reformatted version, released at http://github.com/suinleelab/treexplainer-
study. It contains 79 features, based on clinical measurements of 14,407 individuals.
The aim is to model the risk of death over twenty years of follow-up.

The data have been divided into a 64/16/20 split for train/validation/test following Lund-
berg et al. [79] prescriptions (Table 3.2 for details). The features have been mean-imputed
and standardized based on statistics computed on the training set. A Survival Gradi-
ent Boosting model has been trained, using the XGBoost framework [16]. Its hyper-
parameters have been optimized by coordinate descent, using the C-statistic [50] on the
validation set as the figure of merit, obtaining a sound 0.82 out of 1 for the final model.
The model prediction consists of the hazard ratio for each individual: higher prediction
means the individual is likely to be alive for a shorter period of time. Therefore, positive
variables coefficients define risk factors, whereas protective factors have negative values.

The dataset is used throughout the thesis to demonstrate how the techniques hereby pre-
sented are widely applicable to other Tabular domains. NHANES is mainly employed to
explain how LIME prediction can come in handy (Chapter 4.2) and to show an OptiLIME
application in Chapter 7.3.

https://github.com/suinleelab/treeexplainer-study
https://github.com/suinleelab/treeexplainer-study

25

Table 3.2: NHANES Dataset Composition

dataset dimension

Train set 9.221

Validation set 2.305

Test set 2.881

Total 14.407

3.3.0. Real-World UCI Datasets

To test different methods and techniques, we exploit real-world datasets freely available
from the UCI repository. We use three different datasets, whose properties are summa-
rized in Table 3.3. We considered datasets with continuous features, in order to simplify
the adoption of different ML models and explanation techniques, and with increasing
dimensionality to be able to appreciate differences in performance due to the number of
features involved. The Wine dataset1 [18] contains physical measurements for differ-
ent wines. The task is quality prediction, which we consider as a regression task. The
House sell dataset2 contains house sell prices and other information related to the sale
in King county (Seattle greater area). Here the task is price prediction. The Parkinson
telemonitoring dataset3 [112] contains data from patients with early-stage Parkinson’s
disease. The goal here is to predict a symptom score on a normalized scale.

These real-world datasets are mainly used to prove the soundness of LIME Stability
Indices in Chapter 6 as well as to quantitatively compare different explanation methods
on both local and global explanations in Chapter 8.1.4.

Table 3.3: Datasets description.

dataset dimension ntrain ntest

wine 12 4,163 735

house 19 18,371 3,242

Parkinson 26 4,993 882

On each of these datasets, we apply three different models, trained similarly across all
datasets. The first is an XGBoost model [16]. XGBoost iteratively aggregates base
regressors greedily minimizing a proxy loss. Following Friedman [28] prescriptions, we
employ simple CART trees with maximum depth 2 as base regressors, learning rate of 0.05,
and early stopping rounds set to 100. The second is a multi-layer perceptron (MLP),
composed of two hidden dense layers of 264 neurons each, trained by adaptive stochastic

1available at https://archive.ics.uci.edu/ml/datasets/wine+quality
2available at https://www.openml.org/search?type=data&status=active&id=42092
3available at https://archive.ics.uci.edu/ml/datasets/parkinsons+telemonitoring

https://archive.ics.uci.edu/ml/datasets/wine+quality
https://www.openml.org/search?type=data&status=active&id=42092
https://archive.ics.uci.edu/ml/datasets/parkinsons+telemonitoring

26

gradient descent [67, ADAM] and early stopping on a hold-out validation set. Both
these models achieve state-of-the-art accuracy in many settings and are not inherently
interpretable. The thrid model is a vanilla Linear Regression trained using the scikit-
learn implementation [90]. No regularization has been applied and default parameters
have been used. The training is done by Gradient Descent.

3.4.0. Toy Datasets

3.4.1.0. Credit Scoring Toy Dataset

The dataset [113] comes from the Kaggle Repository. It describes a Loan application
process and contains information regarding the applicants, such as Age, Annual Income,
Home ownership, Employment length, etc.
After removing missing values and outliers, the dataset counts 28.621 individuals and 12
recorded variables.

Throughout the thesis, the dataset is mainly used to produce insights on Machine Learn-
ing models and Explanation techniques, applied to the Credit Scoring field. It acts as
a replacement for the real-world Credit Scoring dataset of Chapter 3.1, which is Crif
proprietary, hence it was not possible to use it for all kinds of analyses, due to privacy
obligations towards customers.

A small snapshot of the dataset has been already introduced in Table 1.1.

3.4.2.0. Synthetic one-dimensional Dataset

In order to provide a better understanding of the inner working of the LIME algorithm
and the proposed modifications, we introduce a very simple univariate dataset, generated
from the following Data Generating Process:

Y = sin(X) ∗X + 10

100 distinct points have been generated uniformly in the X range [0, 10] and only 20 of
them were kept, at random. In Figure 3.1, the blue line represents the True DGP function,
whereas the green one is its best approximation using a Polynomial Regression of degree
5 on the generated dataset (blue points). In the following we will regard the Polynomial
as the ML function f , we will not make use of the True DGP function (blue line) which
is usually not available in practical data mining scenarios. The red dot is the reference
point in which we are going to evaluate local explanations. The dataset is intentionally
one-dimensional, so that the geometrical ideas about LIME may be well represented in a
2d plot.

27

Figure 3.1: Toy Dataset

28

29

Chapter 4
Explanations

Recalling Hall and Gill [46], Interpretability can be regarded as “the ability to explain
or to present the results [of a prediction system], in understandable terms, to a human”.
The concept human-understandable is an inherently subjective matter which is hard
to quantify. However, even if we have no rigorous way to compute interpretability, it
is clear that the complexity of some prediction frameworks goes beyond average human
comprehension, requiring tools to understand their behaviour. We call Explanation any
generic tool of this sort.

Rigorously defining an Explanation is equally hard, since it is a direct consequence of
the Interpretability concept. Quite a few proposals have been laid out in recent years
[66, 94, 105], but no consensus has yet been reached on the formal definition. Turning
to the various frameworks recently proposed, we recognize that an Explanation can be
conveyed by means of text, visual or numerical outputs, or a mix of them. They can be
general tools or tailored to specific users and applications [96]. The whole collection of
methods and techniques is usually referred to as the Explainable Artificial Intelligence
(XAI) field.

XAI approaches can be grouped based on different criteria such as i) Model agnostic or
model specific ii) Local or global iii) Intrinsic or post-hoc iv) True to the black-box Model
or True to the Data [82, 44, 15].

Intrisic vs Post-hoc

Intrinsic interpretability refers to prediction models with a relatively simple structure,
entitling them to be considered explainable by default. It is usually achieved by restrict-
ing the complexity of the model surface, as in the Parametric models approach.

On the other hand, Post-hoc explanations aim to explain the model’s predictions retroac-
tively. They can be seen as a separate additional layer which can be applied at any time
after training. Post-hoc methods can also be applied to intrinsically interpretable mod-
els.

30

Model-specific vs Model-agnostic

Model-specific interpretation tools are limited to specific model classes and they are
often based on the properties of the model, such as its architecture, the training data
and algorithm used, as well as its underlying assumptions and biases. By definition,
interpreting intrinsically interpretable models is always model-specific, for example in-
terpreting the regression weights in a linear model. Similarly, tools that only work for
the interpretation of a given class of complex black-box models e.g. neural networks are
model-specific as well.

Model-agnostic tools are not specific to any particular model, and they aim to provide
explanations that apply to a wide range of prediction tools. As such, model-agnostic
techniques are applied after the model has been trained (in a post-hoc fashion). These
agnostic methods exploit the model f surface lying in the geometrical space X ,Y and
they provide insights on that. Since each prediction model generates the f surface, such
methods are generalizable to any class of ML and Statistical models. However, it is strictly
forbidden for them to use the model internals such as weights or structural information:
this would cause the explanation framework to rely on the programmatic characteristics
of a specific model class, hindering its ability to generalize to other classes.

Local vs Global

Recalling the notion of the model f surface, Local techniques focus on a (usually) small
subregion of X and provide insights on f , restricted to that sub-region. They generally
consider a specific input unit and define a neighbourhood around it. Few frameworks
clearly state the neighbourhood boundaries, while the majority of the techniques specify
them implicitly. As such, it is hard to know exactly where local explanations still provide
valid insights on f .

Global explanations, on the other hand, target the entire X space on which f lives.
Their goal is to provide insights related to the model as a whole. This task is clearly
harder than the Local setting one, since f can show a high degree of complexity on
X . It is instead reasonable to consider that local and small sub-regions of X limit f
complexity to a lower degree, making the local insights indeed easier to retrieve. At the
same time, Global explanations are highly desirable, since they provide a global and full
understanding of the black-box model. Local explanations may sometimes fall short of
generalization capabilities, making them not very suitable under current AI regulations.

True to the Model vs True to the Data

Chen et al. [15] put forward a very interesting point of view relative to whether explana-
tions should be True to the model or True to the data. Considering again the X
dataset geometric viewpoint as a cloud of dots in the X space (Chapter 2), the problem
can be related to different densities of the points of the dataset among different regions in
the data manifold. In particular, specific patterns in the data might cause some regions
to be empty. As an example, it is not possible for a 14 years old teenager to hold a valid
driving license, hence the region defined by “Age < 18” and “Holding Driving License

31

= True” would contain no dataset units. Highly correlated variables have an effect on
the data distribution over X as well: eg. it is very unlikely to find individuals very tall
(say 200 cm) but extremely light (50 kg). Hence, the specific region would have very low
density.

True to the model explanations aim at providing insights about the model surface,
considering each part of the X space as equally important (also regions of low or null
data density). The focus is on the f model surface and not on the available data.

On the other hand, the True to the Data approach proposes to provide weighted in-
sights on f , i.e. low density regions will be taken into account with a reduced emphasis,
based on their data distribution density.

Chen et al. [15] argue that no framework is clearly superior to the other, instead the choice
is application dependent. As an example, theTrue to the Model approach is desirable in
a Credit Scoring scenario, when explanations are used to suggest how rejected applicants
should modify their behaviour to receive a loan. The focus here is on the specific model
used by the bank and we are interested in each possible change, i.e. consider any region
even if it has low probability.
Consider now the goal to understand which genes’ expressions determine a particular
outcome (e.g., response to anti-cancer drugs), by measuring gene expression in a set of
patient samples and applying prediction models on this data [128]. The focus is now on
the patients and their response to drugs. We value a drug as more effective if its reaction
can be observed in a great number of patients, while effects on a very specific group
of patients only, with limited coverage in the clinical trial, are not highly interesting.
Low-represented regions do not bear high importance, hence the True to the Data
framework is preferable.
Usually, the True to the model approach is required when the model needs to be
compliant with legal requirements and regulations. In such situations, the model itself is
the focus and we want to ensure that it is trustworthy in any part of the manifold.

There is still no gold standard for explanation methods: each class presents pros and cons
and on top, each technique has its specific perks and downsides. In the following, we are
going to focus on Post-hoc model-agnostic explanations, specifically tailored for
Tabular Data. In general, model-agnostic methods for Tabular data rely on the geomet-
rical interpretation shared by any prediction model -Chapter 2-. It is possible to provide
both local and global insights on the multivariate shape of f , as well as to focus on the
data distribution or the surface of the f model itself. Therefore, the techniques explained
here belong to any combination of the Local/Global, True to Model/Data properties.

The remainder of the Chapter will present different techniques grouped according to two
different ways of producing explanations, i.e. Feature Attribution Techniques in Chapter
4.1 and Surrogate Models in Chapter 4.2. To conclude we also present different methods
to assess the quality and validity of the retrieved explanations, in Chapter 4.3.

32

4.1.0. Feature Importance Techniques

The first group of techniques share the concept of feature importance or attributions,
i.e. a single number summarizing the contribution of each feature. The attributions can
be used to rank the variables, which in turn may be beneficial to understand which vari-
ables are not used by the trained prediction model and can be safely excluded in a feature
selection step to reduce the model complexity. Hereafter, we introduce the Function
Decomposition framework, which provides an innovative viewpoint to analyze feature
attribution methods. Subsequently, we shed light on the state-of-the-art explanation
techniques belonging to this class.

Function Decomposition

Any multivariate function can be additively decomposed, without losing any information,
in main effect terms and interaction terms of any order (from 2 to d).

f(X) =f(X1, · · · , Xd) =

=f1 (X1) + · · ·+ fd (Xd) + f1,2 (X1, X2) + fd+2 (X1, X3) + · · ·
+ fd−1,d (Xd−1, Xd) + f1,2,3 (X1, X2, X3) + · · ·+ f1,··· ,d (X1, X2, · · · , Xd)

Each f· function encodes only the specific variables involved. Moreover, each interac-
tion term accounts only for the interaction of the variables of that specific order, eg.
f1,2,3 (X1, X2, X3) models only the three-way interaction of the variables, it does not com-
prehend any two-way interaction effect as f1,2 (X1, X2) or any higher order interaction
coded instead by f1,2,3,4 (X1, X2, X3, X4) for example. In a similar fashion, main effect
terms do not include any interaction effect.
Prediction models make no difference and the function decomposition applies to any of
them.

The Decomposition Rule states that for any function f there exists a suitable decom-
position, given by f1, · · · , f1,··· ,d. Although the fi decomposition functions are generally
unknown -apart for trivial situations, such as the linear regression framework in which f is

already in the decomposed form-. Usually, we don’t know the functional form of any main
effect or interaction in Machine Learning models. Just to give an example, an interaction
term f1,2(X1, X2) may be encoded by f1,2 = X1X2, f1,2 = log(X1)X2 or f1,2 = X1

X2
or

infinitely many other shapes.

In general, a function fj is 0 when the single variable (or the combination of variables) is
not needed to recover f . On the other hand, when fj presents non-zero values for at least
a compact interval of the Xj domain, we consider it meaningful in the f decomposition.
It is also possible for a variable Xj to have zero-valued main effect fj but meaningful
interactions with specific variables, eg. fj,i. This would mean that the variable has an
impact only when combined with specific Xj values.

We consider such a viewpoint, put forward by Friedman and Popescu [29], as extremely
useful to understand the different Explainability Methods based on Feature Attribution.

33

Drop-Column Importance

A popular approach is to exclude a certain feature, or group of features, from the model
and evaluate the loss incurred in terms of model goodness. Such value quantifies the
importance of the excluded feature: a high loss value underlines an important variable
for the prediction task.

There exist different ways for excluding the feature from the model f . The practitioner
can use the Drop-column feature Importance by simply removing the column related
to the specific feature j from the dataset, and retraining the model. She would obtain a
new different model f\j.
The expected value of the difference in prediction between f, f\j is computed on the data,
using the sample mean as approximation:

Impj =
1

n

n∑
i=1

(|f(x(i))− f\j(x(i))|)p (4.1)

where p is a constant chosen by the practitioner a priori and f\j represents the model
trained on the Dtrain data without the j-th variable. Another option is to use an ag-
gregate measure of performance as a proxy of Impj, based on the nature of f . Just to
give the flavour, few suitable aggregate metrics are: AUC (Area Under the ROC Curve),
Accuracy, F1 for classification models; MSE (Mean Squared Error), RMSE (Root Mean
Squared Error), MAE (Mean Absolute Error), MAD (Mean Absolute Deviation) for re-
gression models.

The Drop-column technique is highly computationally intensive since it requires train-
ing d different models (one per each variable). In addition, model f\j is generally different
from the marginalization of f over the j-th variable. In fact, re-running the optimization
algorithm on the modified Dtrain -without the j-th variable- is likely to retrieve a different
stationary point -local minimum- of the Loss Function, which corresponds to a different
model surface f ′ in Rd. All in all, this means that we are comparing performances of two
different models on the same Dtrain dataset, hence using a True to the data approach.

Permutation Importance

Permutation Importance is an alternative and less expensive way to compute attributions,
based on the idea that a feature is “unimportant” if shuffling its values leaves the model
error unchanged. It was first introduced by Breiman [9] specifically for the Random Forest
model and has been generalised to a model-agnostic framework, named LOCO [75].

The technique relies on randomly shuffling the j-th feature to obtain a new dataset D
(j)
train ,

and compute Eq. 4.1 or the difference of any aggregate performance measure among
f(Dtrain) and f(D

(j)
train).

The Permutation Importance algorithm is faster and is guaranteed to work on the
same original f . Although, permuting feature j breaks correlations and changes in-
teractions of any order among feature j and another feature or group of features. The
decrease in performance hence considers the full array of f· functions including the j-th

34

feature of the Function Decomposition, in particular any possible interaction of the feature
j with any other feature is fully included in Impj. Permutation Importance can over-
estimate attributions, by not taking into account that the interaction terms share their
importance among the different variables involved.

Both Permutation Importance and Drop-Column Importance are generally regarded as
global explanations, since the Impj quantity is computed as a difference of global perfor-
mance metrics (over the entire data domain). It is possible to use a local performance
metric, which takes into account the units included in a specific subset only, achieving local
explanations. To do so, it is however required some form of locality knowledge -boundaries
of the local neighbourhood must be set beforehand-, not provided by these methods.

Partial Dependence Plots (PDP)

The technique aims at isolating the effect of a specific variable -or group of variables-, to
understand how it impacts the model f . The core concept is substantially the opposite
of Permutation and Drop-Column Importance, but they share the same goal.

Consider splitting the X1, · · · , Xd variables in two subsets XS ,XC where the set S com-
prises the variables we are interested in -the ones we want to isolate-, C includes the other
variables. Friedman [28] proposes to marginalize the model f wrt the set XC :

f̂S (xS) = ExC
[f (xS, xC)] =

∫
XC

f (xS, xC) p (xC) dxC (4.2)

The function f̂S depends only on the variables XS . It tells us for a given value of features
S what the average f prediction is. PDP can be thought of as a way to simplify the
model, losing some detail but gaining many insights on how the chosen variables affect
the model.
In practical terms, we approximate the Expected Value of Eq. 4.2 with the sample mean
over Dtrain :

f̂S (xS) =
1

n

n∑
i=1

f̂
(
xS, x

(i)
C

)
(4.3)

Hence the quality of PDP explanations depends on the Dtrain quality -if some specific

patterns are missing in Dtrain , the PD function will be distorted as well-. To implement
marginalization in practice, we apply the steps detailed in Algorithm 1. Each loop iter-
ation computes one point of the f̂S (xS) function, which can be subsequently plotted for
each variable separately, as in Figure 4.1. High variance PD functions highlight important
variables, which have a strong impact on the average f prediction.

Partial Dependence Functions are quite intuitive but lack a numeric value to rank variables
in order of importance. Greenwell, Boehmke, and McCarthy [38] propose a straightfor-
ward extension to obtain PDP attribution scores, which consists in computing the stan-

35

Figure 4.1: PD Plots for single variables on the Toy Credit Scoring Dataset

dard deviation of the PD points:

ImpS =

√√√√√ 1

n− 1

n∑
i=1

f̂S (x(i)S

)2
− 1

n

(
n∑

i=1

f̂S

(
x
(i)
S

))2
 (4.4)

PDP has a computational cost of order O(dn2)), which makes it unfeasible for large
datasets. Some expedients to reduce it are: i) evaluate Ŷ on a selection of XC represen-
tative points only, ii) sample a reduced number of Dtrain points on which to compute PD,
ii) exploit specific structures of the ML models (eg. tree-based models) to speed-up Ŷ
computation.

Algorithm 1 Compute PD Function f̂S (xS)

1: for each observation x(i) ∈ Dtrain do

2: generate new D̂train dataset, with generic unit x̂(j) =
[
x
(i)
S , x

(j)
C

]
3: predict Ŷ = f(D̂train)
4: return Average of Ŷ

PDP also presents some flaws especially when it comes to correlated variables. In fact,
in Step 2 of Algorithm 1 combines any xC value contained in Dtrainwith x

(i)
S , generating

new points. However, there is no guarantee these points are likely to be observed in real
data -new points may lie in regions of low or no Dtrain density-.
Another drawback arises with heterogeneus effects, i.e. the same variable can have
inverse impact on different observations. Since PDP employs expectation over the entire
Dtrain , some heterogeneous effects may be averaged out and the practitioner will not no-
tice them in the aggregated f̂S function.

Eventually, considering the PDP formulation (Eq. 4.2) from the Function Decomposition
perspective, we notice that taking the Expected Value wrt XC transforms each f· not

36

depending on XS into a constant. On the other hand, any f· containing XS is not
averaged out and concurs to the f̂S (xS) shape. This includes the main effects fS and
all the possible interactions f·,S of any order. As an example, let’s consider PD(X1) and
PD(X2): f1,2 is fully included in both functions, instead of being distributed among the
two. This means that variables interacting with each other have an edge compared to
variables having main effects only. We also recognize that PDP is a global method, since
it estimates f̂S over the entire domain of the XS variables.

Individual Conditional Expectation

Individual Conditional Expectation (ICE), introduced by [34], aims to solve the hetero-
geneus effects problem of the PDP. In fact, ICE exploits the same calculations as PDP,
but instead of aggregating f predictions through an average, it records f̂(x(i)) separately

and generates distinct functions f̂
x
(i)
S

(
x
(i)
S

)
, one per each point in Dtrain . Displaying the

f̂
x
(i)
S

functions in a single plot, we can get an idea of possible heterogeneus effects which

are not averaged out in the ICE framework.

Figure 4.2: ICE plots of the individual effects of the X variables on the Probability of

Default, in the Toy Credit Dataset. Each trajectory highlights the PD of a specific unit,

changing only the value of the given Xj variable.

ICE comes with the same computational cost of PDP as well as the same drawbacks (apart
from the heterogeneous effects being addressed) and the same strongpoints. Notably, ICE
is still sensitive to variables’ correlation. Also, the intuition under the Function Decompo-
sition framework is the same. ICE’s main difference is the scope of the explanation: it can
be considered a local explanation since each function explain one single point in Dtrain .
At the same time, it takes into account the entire XS domain, which allows to inspect f
behaviour globally along the single XS axis. We can think of it as an explanation of a
single dataset unit along the global domain of a specific variable.

In conclusion, ICE is helpful to uncover heterogeneous effects, but can only be applied on
single variables -XS including only one variable-, otherwise the plots become too complex
to be useful -while PDP works smoothly with 2 variables at a time-.

37

Marginal plots

As already stated, the PDP biggest hurdle comes with correlated XS ,XC features, mainly
due to the fact that vanilla marginalization integrates wrt the density p(XC) which is
substantially different from the conditional density p(XC |XS = xS) in correlated environ-
ments.
Marginal Plots (M Plots) hence consider marginalization over the conditional density:

f̂xS ,M (xS) = EXC |XS
[f (XS, XC) |XS = xS]

=

∫
XC

f (xS, xC) p (xC |xS) dxC
(4.5)

Since we don’t know the p (xC |xS) distribution in practice, M Plots propose to use a grid
of bins over the XS domain -turquoise lines on X1 domain in Figure 4.3-. The idea is to
create equally spaced bins, to simulate a coarse conditioning on the XS (the narrower the
bins, the finer the conditioning). A fraction of the original data Dtrain,k is included in the
generic k bin, and we approximate the integral inside the bin using the same rationale
as PDP (Algorithm 1) on Dtrain,k datapoints. Repeating the procedure over all the K

bins gives us various evaluations of the f̂xS ,M (xS) function, which can be plotted in the
so called M Plot.

The major M Plot benefit is to be able to deal with correlated variables, generating
points consistent with the original joint distribution p(XS, XC). The method works for
uncorrelated variables as well, but the bin partitioning reduces the number of points
averaged at each step, hence reducing the accuracy of the final attribution values. It is
suggested to be used only when high correlations justify it. Moreover, the conditional
distribution approximation gets better with a high number of bins (because we have more
granularity in inspecting the f̂xS ,M (xS) function). At the same time, we must retain
a reasonable number of points in each bin to ensure the average is meaningful. It is
important to choose a good bin size to avoid any of the two abovementioned issues.
Another severe M Plots drawback is the difficult interpretation of the results: in fact, a
high variance M Plot function does not ensure that the XS variable is truly important.
In presence of a high correlation between XS and another Xj variable, the bins created
on XS are incidentally very similar to the ones we would create on Xj . Therefore, a high

f̂xS ,M (xS) variance might be caused by a strong impact of Xj on f while XS could have
just a negligible effect. An example, taken from the Credit Scoring domain, may help fix
the concept: “Consider to predict the Default Probability using, among other variables,
the Credit card Plafond and the amount of the highest monthly expense. Suppose
that the highest monthly expense has no effect on the predicted Default Probability, only
the Credit card Plafond has. The M-Plot would still show that the highest monthly
expense increases the Default Probability, since the Credit Card Plafond increases with
the monthly expenses.”

Accumulated Local Effect

Accumulated Local Effects (ALE) solve the M Plots issue of correct attributions of
strongly correlated variables, by computing the expectation of the f derivative wrt XS

38

Figure 4.3: X1 , X2 variables are strongly correlated: ρ = 0.8. We need to compute

f̂(x1 = 0.75). In this situation, the Marginal distribution (orange) does not represent the

true joint distribution p(X1, X2), while the Conditional distribution (red) inside the bin

[0.7, 0.8] is representative of Dtrain behaviour.

over the conditional distribution p(XC |XS = xS):

f̂S,ALE (xS) = EXS |XS=xxS

[
∂f (XS, XC)

∂XS

| XS = xS

]
(4.6)

Conceptually, ALE isolates the effect of XS by computing the gradient of f wrt XS .
The gradient is approximated locally (using the same bin strategy as M Plots), so the
derivative is taken with respect to the conditional distribution.

From an algorithmic point of view (see Algorithm 2), ALE splits the XS domain into
equally spaced bins and considers the left and right boundaries in each bin, xSl

,xSr re-

spectively. It generates a data pair
(
x̂
(i)
l , x̂

(i)
r

)
for each x(i) datapoint inside the bin. The

pair has XC values equal to the original x(i) , but the XS variable assumes value xSl
,xSr

for x̂
(i)
l , x̂

(i)
r respectively. Notice that x̂

(i)
l , x̂

(i)
r differ only in the xS value, hence a difference

in prediction between the two can only be imputed to the XS feature.
ALE computes Imp

(i)
S,k -difference in prediction- for each datapoint x(i) falling inside the k

bin, and averages them in ImpS,k, the XS feature attribution in the specific bin.

39

Algorithm 2 Compute ALE Plots f̂S,ale (xS)

1: Split the XS domain in equally spaced K bins,
2: for each bin k (recall data,left,right boundaries: Dtrain,k,xSl

,xSr do)
3: for each observation x(i) ∈ Dtrain,k do

4: create x̂
(i)
l =

[
xSl

;x
(i)
C

]
and x̂

(i)
r =

[
xSr ;x

(i)
C

]
5: compute Imp

(i)
S = f(x̂

(i)
r)− f(x̂(i)l)

Compute average ImpS,k =
1
nk

∑nk

i=1 Imp
(i)
S

6: store ImpS,k ∀k

In order to keep the same visual interpretation of PDP and M Plots, the average gradients
ImpS,k are cumulated in ALE plots. In this way, the plot shows the average f value for
each bin instead of the gradient -which would fluctuate around 0, given increasing/decreasing

prediction values imputable to XS-. The ALE cumulative behaviour helps understand the
impact of XS on f predictions directly.

ALE can also be computed for variable pairs, by conditioning on both of them. From a
geometric point of view, this corresponds to creating rectangular cells over the XS1 ,XS2

joint domain. Considering the Decomposition Rule, ALE two-dimensional Plots account
for both the main effects fXS1

, fXS2
and their interaction term fXS1

,XS2
.

Figure 4.4: ALE computes unit-specific local gradients as the difference in prediction of

the projections of the x(i) point on the grid boundaries, namely f(x̂
(i)
r) − f(x̂

(i)
l). The

average prediction difference is considered in each bin

40

ALE’s main advantage over PDP and M Plots consists of their unbiasedness in highly
correlated settings. At the same time, the binning strategy used to account for the
conditional distribution may require some tuning to find the best number of bins allowing
for both enough granularity and a reliable gradient estimate inside the bin. With small
Dtrain datasets, the technique may become unreliable.
ALE is faster than PDP, since it requires to compute O(dn) f predictions, precisely only
two points need to be predicted for any Dtrain point, for each variable. PDP instead
requires O(dn2) f predictions.
As far as single variable ALE Plots are straightforward to interpret, multi-dimensional
ALE Plots might be more complicated (since they do not separate main effects from
interaction effects).

SHAP

The SHAP technique builds on the Shapley Values proposed by Shapley [103] to fairly
divide payoffs between players in a coalition, in a cooperative game setting. The Shapley
value ϕi for a given player i is:

ϕi =
1

N !

∑
S⊆N\{i}

|S|!(|N | − |S| − 1)![ψ(S ∪ {i})− ψ(S)] (4.7)

where N is the total number of players, S is any subset of players that can cooperate to-
gether, ψ is the payoff function which computes the reward of a given coalition of players.
[ψ(S ∪ {i})− ψ(S)] is the marginal contribution of player i when added to the coalition
S.
We can read the formula as the average marginal contribution of player i, over all the
possible coalitions, starting from the empty coalition up to the grand coalition.

The Shapley Values are the only way to split the payoff of the grand coalition, respect-
ing the three following properties: i)Simmetry, i.e. two players contributing the same
amount in any coalition, should have the same reward, ii) Dummy Player, i.e. a player
whose marginal contribution to any coalition is the same he achieves alone, should have a
ψ as if he was playing alone, Additivity, i.e. Shapley values of two separate cooperative
games can be summed to obtain the total reward.

A feature attribution setup can be viewed as a cooperative game: variables in the model
cooperate to achieve a more accurate prediction. In particular, selecting a specific unit
x(i) , we are interested in fairly splitting the prediction value f(x(i)) between a baseline
-usually the average f(X) value in Dtrain - and the contribution of each feature.

The Shapley Values formula (Eq. 4.7) translated in a feature attribution scenario becomes:

Shapley
(
X

(i)
j

)
=
∑

S⊆F\j

|S|!|(F − S − 1)|!
|S|!

L
(
fS∪j

(
x
(i)
S ∪ x

(i)
j

)
− fS

(
x
(i)
S

))
(4.8)

where S is any subset of variables, F the entire set of variables, L is a given Loss func-
tion to be evaluated among two different f predictions. We are computing the Feature

41

Importance of the variable Xj for the unit x(i) .

Algorithm 3 Compute Shapley Values

Require: f : black-box model; D: dataset on which to compute attributions, whose
generic unit is x(z) ; L: loss function to compute the difference in prediction

1: for each variable Xj do
2: for each combination of variables S (not including Xj) do
3: for each observation x(i) ∈ Dtrain do

4: generate new D̂S dataset, with generic unit x̂(i) =
[
x
(i)
S , x

(z)
F\S∪j

]
5: generate new D̂S∪j dataset, with generic unit x̂(i) =

[
x
(i)
S∪j, x

(z)
F\S

]
6: predict ŶS = f(D̂S) and ŶS∪j = f(D̂S∪j)

7: Compute the average ∆
(S)
j = 1

n

∑n
z=1 L(ŷ

(z)
S , ŷ

(z)
S∪j)

8: return Compute weighted average Shapley(Xj) =
∑

S⊆F\j
|S|!|(F−S−1)|!

|S|! ∆
(S)
i

Shapley values choose a single point x(i) and compute the average contribution of any
group of variables using new fictitious points x̂(i) , created by assigning any possible value
to the variables XC not considered in the S coalition. This procedure is strongly reminis-
cent of the PDP marginalization, though applied on a single dataset unit. Shapley values
are hence affected by the main PDP drawback -creating irrealistic new points-, however
Shapley mitigates it by averaging the Xj contributions on any possible coalition.

Due to the combinatorial search in the variables’ coalitions, exact Shapley Values have
computational burden O(nd!), which means that the calculation becomes already unfea-
sible for arguably small d values (usually when d > 8).
Lundberg and Lee [78] propose an approximated solution through the KernelSHAP algo-

rithm. Notably, KernelSHAP computes ∆
(S)
j on a restricted number of variables’ combi-

nations (by default 2048). The combinations are chosen to maximize the relative weights
|S|!|(F−S−1)|!

|S|! , so as to obtain a more accurate approximation of the weighted average. To

compute each ∆
(S)
j , only 100 units x̂(z) are employed, chosen at random.

Thanks to these tricks, KernelSHAP computes the Shapley values approximation SHAP(Xj)
for a single datapoint x(i) , in a reasonable time. The SHAP values for the specific unit x(i)

are regarded as Local attributions. SHAP Global attributions are easily obtained
by averaging the Local SHAP values over the considered dataset, thanks to the additivity
property.

From a Decomposition Rule point of view, SHAP(Xj) contains the main effect fj as well
as a portion of importance of any interaction effect fj,·. The contributions of the inter-
actions are fairly split among the interacting variables, instead of being fully considered
in each feature attribution, as in PDP. Another desirable property is that Local SHAP
Values sum up to the unit prediction f(x(i)) -the baseline is required as well-.
However, even if KernelSHAP displays an enormous computation speed-up compared to
the original Shapley Values, the calculations are still quite slow. This makes KernelSHAP

42

useful to compute local SHAP Values, but usually not suited to achieve Global attribu-
tions. Moreover, it is important to remember that SHAP values approximate the original
Shapley Values, hence SHAP might contain some bias, especially when we sample a small
number of units to compute ∆

(S)
j or few variables’ combinations S.

A faster SHAP implementation, called TreeSHAP [77], is available only for Tree-based
models. It enables Global Attributions in reasonable time, exploiting the specific Tree
structure to compute Local SHAP values for the entire dataset in just one stroll down
the Tree. We consider it as one of the first frameworks to provide ML models insights on
localized regions of the model domain -valid for a specific individual-, and about the entire
ML model surface at the same time. Unfortunately, this desirable property is restricted
to Tree-based models only.

In general, feature attribution methods rely on a specific dataset to compute the impor-
tance of each variable, leading to the crucial question: which dataset to employ to produce
the explanations?
We usually dispose of both Dtrain and Dtest datasets when building a prediction model
and both of them could be used in the explanation quest. The golden rule of prediction
models is to split the database in an impartial way, obtaining Dtrain and Dtest datasets
belonging to the same data distribution, i.e. the DGP. When this is true, there should
be no difference in using one over the other. Although i) Dtest is usually smaller than
Dtrain, and ii) sometimes the ML model might be overfitted, i.e. it learnt subtle patterns
specific only to Dtrain. The first point is clearly in favour of using Dtrain, while the second
suggests using Dtest for explanation purposes. Moreover, if we require local explanations
for a Dtest (Dtrain) datapoint, it is necessary to use the dataset containing it, i.e. Dtest

(Dtrain). In conclusion, no answer can be given a priori on which dataset to use for feature
attribution explanations. Depending on the specifics of the problem at hand, we might
recognize that one of the issues above represents our situation, and we might opt to use
the best dataset in this case.

4.2.0. Surrogate Models

A surrogate model is an interpretable model trained to match the predictions of a black-
box model. The idea is not new, surrogate models have already been used in different
situations where the exact model is too expensive to query or too complex to be used di-
rectly. A classic example is Bayesian Optimization, where we strive to minimize a complex
function and we exploit a surrogate to evaluate its gradient and find the most promising
direction to explore.

In the explainability setting, the surrogate model consists of the explanation itself, hence
its only requirement is to be interpretable. As long as interpretability is preserved, the
surrogate model can be used for either feature attributions and what-if scenarios,
i.e. understand how a given modification of the input will affect the black-box model pre-

43

diction. This feature is specific to surrogate models, since they learn an gmathematical
function which emulates the ML f function. We can inspect the ghyper-surface to under-
stand f behaviour when changing some inputs. Inspecting the surrogate model is usually
faster and simpler than inspecting the ML model directly.

Although it is very important to build a reliable Surrogate Model, i.e. gshould be very
similar to f , otherwise any insight gained on gcould not be translated to f . One way to
measure how well the surrogate replicates the black-box model is the R-squared measure:

R2 = 1− SSE

SST
= 1−

∑n
i=1

(
g(x(i))− f(x(i))

)2∑n
i=1

(
f(x(i))− f(X)

)2
where f(X) represents the average of f predictions on Dtrain , while SSE and SST re-
spectively stand for Sum of Squared Errors and Sum of Squares Total.

Surrogate models can represent both global or local explanations, depending on the do-
main on which we train gto emulate f . Global Surrogates aim at approximating f on its
entire domain X , while Local Surrogates target a restricted region of the X domain and
provide explanations valid only in that range.

The idea of approximating globally a complex model such as a deep neural network by a
simpler surrogate model relying on a decision tree can be dated back at Craven and
Shavlik [20]. The proposed method, TREPAN, approximates the outputs of the network
on the training set by a decision tree, choosing the splits using the gain ratio criterion
[98]. More recently, inspired by Gibbons et al. [32], Zhou and Hooker [127] proposed to
use another split criterion, based upon an asymptotic expansion of the Gini criterion.
This approach is model-agnostic since it does not rely anymore on the neural network
structure, although it is still limited to the classification setting. However, since surrogate
models must be interpretable, they do not usually have the same expressivity as a com-
plex black-box model. Depending on the degree of accuracy requested for the Tree Global
Surrogate, the model is frequently either too simple and not really resembling f or too
complex, achieving a good f approximation but losing the interpretability requirement.

Concerning Local Surrogates instead, the approximation is usually more reliable since
they focus on a small region. Under the right circumstances, the interpretable model is
capable of faithfully approximating the black-box one. The Local Surrogate techniques
usually differ for: i) the choice of the local region, ii) the interpretable model to employ.
In the following, we describe some of the most well-known Local Surrogate explanation
frameworks.

LIME

LIME [93] provides a number of explainable models which closely resemble the original
model behaviour. Each model is specific for an input point x(i) : only in its neighbourhood
the explainable model’s predictions are guaranteed to be very close to the black-box ones.
This peculiarity places LIME among the Local Explainability tools. The technique can

44

be used on Images and Text Data, as well as on Tabular Data. Slight differences apply to
be able to use the same algorithm on different data sources. Although, given the purpose
of this thesis, we will focus on the Tabular domain only. LIME aims to approximate
the black-box model f with a simple function garound the point of interest x(ref) . gis
required to lie in the class of explainable models.

f : Rd → R, black-box model

g : Rp → R, explainable model

where d is the number of features employed by the black-box model, to make predictions
about the response variable. The explainable modelguses only p of the original d variables,
in order to reduce the complexity. Solving the following optimisation problem, we obtain
the function gmost similar to f in the neighbourhood of x(ref) .

argmin
g

L(f, g, πx) + Ω(g)

Ω(g) : complexity of g

L : loss function

πx : weight assigned according to x̂(i) proximity

To this end, LIME relies on generating new points x̂(i) on the entire feature space X ,
and computes the relative f(x̂(i)) ML predictions. In order to account for locality, LIME
assigns a specific weight πxi

at each x̂(i) point, based on its distance from x(ref) . The new

dataset
[
X̂, f(

ˆ̂
X)
]
is employed to train an explainable model in a weighted fashion.

Figure 4.5: Left Panel: LIME’s modus operandi: the goal is to approximate the tangent

to the ML model -in this case a classification model separating red and blue regions- in the

neighbourhood of the red x(ref) point [93]. Right Panel: LIME Algorithm Steps

By default, LIME uses a Linear model as explainable model, specifically Ridge Regression.
Such choice enables LIME to find an approximation of the tangent plane to the ML

45

surface, in the x(ref) point we want to explain. Retrieving the tangent analytically is an
unfeasible task, since we don’t have a parametric formulation of the function f , besides
the ML surface may have a huge number of discontinuity points preventing the existence
of a proper derivative and tangent. LIME overcomes this by using a Ridge Linear Model
to fit points on the ML surface, in the neighbourhood of the reference individual. In
Figure 4.5, the Left Panel provide a visual intuition of LIME approximation to the ML
tangent, while the Right Panel contains a schematic summarization of the algorithm’s
steps.

The explainable model is usually exploited to understand which variables are the most
important for the ML prediction of the specific x(ref) individual, i.e. the higher the co-
efficient, the bigger the variation in the value of the response variable when the feature
is changed. The sign of the coefficient tells us the direction of the variation, namely if
we will face a decrease or an increase in the output value. It is important to stress that
the LIME feature importance is valid only in the neighbourhood of the chosen individual,
hence units with quite different attributes may have significantly different attributions.
As an example, Figure 4.6 describes LIME feature importance for the Survival model
built on NHANES dataset (Chapter 3.2) on a specific Female person aged 49. The Age
coefficient shows us how ageing one year more, i.e. becoming 50, increases the death risk
by 0.79 base points. This value would be different for a Male person with different age
-elder people would present higher age-associated death risk, since it increases superlinearly with

age-.

Figure 4.6: LIME helps understand and rank the major death risk factors for the specific

individual of the NHANES dataset

Apart from feature importance, the LIME surrogate model can be also used to test what-if
scenarios, such as: “If I were to earn 500$ more a year, how many points would I gain on
my credit score? ” Also for what-if scenarios, we can only test local (small) changes with
respect to the original attributes of the chosen individual. Such a what-if tool is available
only for surrogate models. It is not valid for explanations based on feature attributions,
since they don’t rely on prediction models.

LORE

Guidotti et al. [45] propose the LOcal Rule-based Explanations (LORE) framework, which
consists of a tree local surrogate model, applicable to any ML model, but restricted to

46

the classification setting.
The concept is similar to LIME, but the interpretable surrogate and the generation step
are different. In fact, they propose to employ genetic algorithms to generate a dataset of
instances which are possibly very similar to our reference individual. At the same time,
LORE requires the new dataset to contain a balanced amount of positive and negative
examples x+, x−. The similarity of x+, x− towards x(ref) guarantees we are thoroughly
exploring the classification boundary around x(ref) , having examples on both sides of it.

The genetic algorithm allows us to keep the balance through the generations, while at
each new step increases the similarity of new units with the reference. Hence the gener-
ation phase produces points that are already local and do not need any weighting step:
each generated point x has the same importance πx in the training phase of the surrogate
model.
Compared to LIME, LORE requires more training time to allow the genetic algorithm
to run, but at the same time guarantees a good local coverage of the manifold around
the reference point. This makes LORE generation more efficient than the LIME one,
producing only relevant points for the explanation model training.

Figure 4.7: Comparison between uniformly random and genetically generated points, con-

sidering as reference the star point. Top Uniformly random (left) and genetic generation

(right). Bottom Density of random (left) and genetic (right) generation. Courtesy of

[45]

The explainable model itself is a Decision Tree instead of a model belonging to the Lin-
ear Regression family. The explanations would be in form of decision rules instead of
variables’ coefficients. As a byproduct of the surrogate decision tree, LORE provides also
counterfactual explanations, i.e. units possibly the most similar to the reference, but with
different class prediction. It does so by inspecting the trained Tree model and retrieving
the closest rule to the one explaining the reference individual. By means of this rule,
LORE creates the most similar unit to the reference, with a different prediction class, i.e.

47

the counterfactual.

ANCHORS

Ribeiro, Singh, and Guestrin [92] propose ANCHORS, a local explanation framework
grounded on the same algorithm as LIME and LORE. The idea is to exploit Decision
Rules, called Anchors. This means the framework approximates the f function using a
Decision Tree as in LORE. As its predecessor, ANCHORS can be employed in a classifi-
cation setting only.

The goal of the framework is to find local Anchors, which are possibly valid also on a
global scale. Although the most important requirement is to obtain a reliable rule, for this
reason the practitioner is required to set a minimum coverage level θ: the Anchors should
yield the same prediction as the f model on at least a θ-percentage of the units complying
with the rule. The framework hence minimizes the number of variables required to build
the Anchors, under the θ constraint.

Figure 4.8: It describes well the main differences of using a Linear model or a Decision

Tree as explainable models: the former gives an approximation of the f tangent describing

how we expect the prediction to change when moving on the variables space, the latter

instead finds a decision rule characterizing all the units belonging to the same patch as

the x(ref) reference unit. Courtesy of [92].

Implicitly, ANCHORS tries to fit the largest neighbourhood size around the x(ref) point,
guaranteeing to obtain an accurate explanation. In fact, considering fewer variables in
the final decision rule corresponds to having more directions along which to generate
the sample points, hence a larger neighbourhood. Differently from LIME and LORE,
the ANCHORS neighbourhood is global for certain variables -the ones not included in the

decision rule, since the explanation is valid all over their domain-, while restricted to local for
the features considered in the rule.
Hence, we consider it as yet another local method, but its local explanations strive to
be applicable as widely as possible. It can be considered an early attempt to push local
explanations to be more global.

48

4.3.0. Evaluation of Explainability methods

Evaluating interpretability methods is quite challenging: for a given machine learning
model, there is rarely a ground-truth available, telling us which features were used for a
given prediction.

Zhou et al. [126] outline two main evaluation methodologies: human-centered, and
functionality-grounded quantitative -note that the terminology was introduced by Doshi-

Velez and Kim [22]- evaluations. We focus on the latter, since human-centred evaluations
are hard to obtain and can be unreliable. Among functionality-grounded evaluations,
Zhou et al. [126] distinguish quite a number of ways to evaluate attribution-based expla-
nations:

Monotonicity

Monotonicity is defined as the correlation between the absolute value of the attributions
at a given point and the expected loss of the model restricted to the corresponding feature.
Intuitively, this takes high values if the model is very imprecise when it does not know
the feature at hand. This is Metric 2.3 in Nguyen and Mart́ınez [88]. Following their
notation, for point x(i) in the Dtrain dataset, we compute on the one hand a vector of
attributions α ∈ Rd and on the other hand a vector of expected loss e ∈ Rd. Monotonicity
is then defined as the Spearman rank correlation [107] between |α| and e. Formally, for
all j ∈ [d], ej is defined as

ej =

∫ bj

aj

ℓ(f(x(i)), fj(x))p(x)dx , (4.9)

where fj is the restriction of f to coordinate j -keeping all other coordinates equal to those

of x(i) -, p is a probability distribution on [aj, bj] -aj and bj represent the boundaries of X
along dimension j-, and ℓ is the squared loss. p is usually taken as the uniform distribution
U(C) on a compact set C.
Based on the choice of C it is possible to define: local monotonicity if we restrict C to a
local neighbourhood of the Xj feature space, or global monotonicity if we consider the
entire feature space [aj, bj]. The two Monotonicity metrics check how well the attributions
reflect the variations in prediction locally or on the whole input space along feature j.

Recall of Important Features

For certain models, we can actually be certain that some feature attributions should
be 0. This is the case, for instance, if we force our model f to use only a subset of the
features. As a measure of the quality of explanations, one can then compare the top
features selected by an attribution method to the set of true features, known a priori. Let
us call T the set of true features. For any given example x(i) , we can define T xi the set of
the top |T | features, ranked by |αj|. Originally proposed by Ribeiro, Singh, and Guestrin
[91], the recall of important features is then defined as

ρ(x(i)) :=
|T ∩ T xi |
|T |

. (4.10)

49

Intuitively, ρ(x(i)) is large -close to one- if the considered attribution method gives large
attributions to the true features.

Sensitivity

Two inputs x(i) ,x(j) with different predictions f(x(i)) ̸= f(x(j)) and differing only by the
value of a single feature Xj should receive a non-zero attribution αj for this feature. This
is called Sensitivity in Sundararajan, Taly, and Yan [109]. Depending on the distance
between the two Xj values on x(i) ,x(j) , we can define both local and global sensitivity
-the local version is described in Yeh et al. [119]-.

Alternatively, one can consider the converse notion, non-sensitivity Nguyen and Mart́ınez
[88, Metric 2.4]: considering the vector of attributions α and the vector of dummy variables
Irr indicating the irrelevant features of the black-box f model, we count the concordance
between αj = 0 =⇒ Irr = 1. In order to use this metric, the practitioner must know
which features are irrelevant to f a priori.

Effective Complexity

The Monotonicity and non-sensitivity metrics consider only individual feature attribu-
tions, while the effective complexity takes into account feature interactions.

The idea is to retrieve the minimal set of important features -ordered by the attribution

scores- such that the expected performance of the model restricted to non-important fea-
tures is less than a given threshold Nguyen and Mart́ınez [88, Metric 2.5]. Usually the
threshold is quite small, to ensure that the non-important features have a negligible effect
on f . Since the test is performed on groups of features together, their interactions are
accounted for.

The size of the important features set is the Effective Complexity of the explanations.
We aim for small values, i.e. simple and effective explanations. This metric evaluates
explanations on a global scale, considering the features’ effect on the entire model.

Remove and Retrain

The idea is very similar to Perturbation Importance: we consider replacing the most
important features, i.e. corresponding to highest attribution scores αj, by non-informative
values. They might as well be a permutation of the original values. The model f is
retrained and we compute the drop in performance.
The metric was originally proposed by Hooker et al. [58, ROAR], where it is shown
that many methods do not perform better than random. A big drawback is the high
computation cost, since we need to retrain the black-box f .

Selectivity

The basic idea is to evaluate how well global attributions rank the features in order of im-
portance. To do so, we remove one feature at a time -either replacing it with its permutation

50

or retraining the f model-, in order of importance given by the attributions, and compute
the drop in the model performance.
It is possible to compute the Area Under the ROC Curve (AUC) of the performance
results at each stage, obtaining a quantitative value. Montavon, Samek, and Müller [84]
gives credits to Bach et al. [3] and Samek et al. [99].

While the metric takes values in [0, 1], there is actually an upper bound on the maximum
value that can be achieved. The upper bound depends on f , i.e. black-boxes in which
some features have similar high importance have inherent Selectivity upper bound lower
than models with only one or few features highly relevant.

Mutual Information

Mutual Information MI measures the non-linear dependence between two variables.
Nguyen and Mart́ınez [88, Metric 2.1] describe how it can be used to assess the fidelity of
the explanations towards the f model, by computingMI(f(X), α), where α is the matrix
of feature attributions computed on a given dataset X for any point x(i) , while f(X)
is the vector of f predictions on X. The higher the dependence, the more reliable the
explanation method is in mimicking f .

51

Chapter 5
LIME in Detail

As explained above, Surrogate models provide the user with both feature attributions
and the possibility of running what-if scenarios. The two-fold usage makes the surro-
gate model class our preferred choice.
Although, we recognize that the current Global surrogate techniques are either too simple
and not really resembling f or too complex, hindering a clear and simple interpretation
of the model. On the contrary, Local surrogate models approximate only a small portion
of the f surface, making them simple yet possibly very close to f . Local surrogates have
already been successfully employed in many different contexts, such as on Intensive Care
data [65], cancer data [123],[86] or Credit Scoring domain [117].

In this chapter we are going to focus specifically on LIME, since it represents the first
algorithm proposed to build local surrogate models for explanation purposes. More recent
local surrogate techniques usually consist of a refined version of the vanilla LIME algo-
rithm, in which some steps are modified or improved. As such, LIME deserves specific
attention to understand the pros and cons related to each step of the algorithm.

5.1.0. Generation Step

LIME relies on generating new points instead of using the original dataset, to ensure good
coverage of the domain space X .

The original dataset is still employed to compute relevant statistics about the variables,
i.e. univariate means µj and variances σ2

j for each feature Xj . Although, sometimes
privacy and secrecy standards require to not disclose the original data. It can also be the
case that the practitioner has access to the trained ML model only, but no access to the
Dtrain data. Interestingly, LIME does not strictly require the original dataset as input, as
long as the quantities of interest are provided. Notice that this is not the case for most of

the feature attribution methods, which instead necessitate Dtrain -. LIME requires indeed very
little information about the original data, in an aggregated form only, making it suitable
for sensitive situations.

The new units x̂(i) are generated from a multivariate normal distribution Nd(µ,Σ),

52

where µ = [µ1, · · · , µd]
T , while Σ is the covariance matrix with generic diagonal ele-

ment σj,j = σ2
j , off-diagonal elements σz,j = 0 when z ̸= j. Given the above Σ matrix, the

LIME generation step assumes that the generic variables’ pair Xj ,Xz are independent.
Such assumption produces True to the Model explanations, since it generates x̂(i) units
also in low or null probability areas of X .
From a space exploration point of view, we consider the Normal distribution as probably
not the best choice, since it produces more samples in the central part of the data mani-
fold (around the µ vector), while it neglects the far-away regions. When x(ref) has values
quite different to µ the generation produces many x̂(i) sitting far-away from x(ref) , hence
not particularly useful.
An interesting alternative is to use a Multivariate Normal Distribution where the µ vector
corresponds to the x(ref) unit values, while Σ is the same as above. This induces a much
more specific generation around the reference point, although it might produce points
sitting out of the variables boundaries of the original dataset.

LIME generation phase is global, i.e. the n points x̂(i) are generated all over the X
domain. The weighting step subsequently takes care of enforcing locality by assigning a
different weight to each x̂(i) . In the generation step, we obtain an array of values X̂, with
univariate distributions similar to the original dataset, although we don’t have any clue
about the Y values corresponding to X̂. LIME computes the ŷ values as ML predictions
f(x̂), making the prediction function f a fundamental LIME input.

Notice that LIME properly handles both classification and regression models. In
the regression setting, for any input x̂(i) ∈ X , f(x̂(i)) is simply a real-valued quantity of
interest, whereas in the classification case f(x̂(i)) corresponds to the pseudo-probability of
x̂(i) falling into a given Y class, eg. f(x̂(i)) = P (ŷ(i) = 1|x̂(i)) if the class to be explained
is class 1. Using prediction probabilities makes the Ŷ data continuous (specifically in the
range [0, 1]), which allows LIME to train an explainable Linear Regression model on them.
This is a recurrent caveat in explanation methods, in order to extend the techniques to
both regression and classification models, without modifying the underlying explanation
algorithm.

After computing f predictions, the X̂ dataset undergoes a rescaling process: each Xj

feature is standardized by subtracting µj and dividing by σj. The response variable Ŷ is
left untouched. Standardization pushes each variable on the same scale (which is ap-
proximately [−5σj,+5σj] according to Chebishev inequality), which allows us to directly
compare feature attributions of the explainable model.

Why do we need the sampling step?

Zafar and Khan [120] propose to get rid of the sampling step, by using only the original
dataset points. The result is the Deterministic LIME (DLIME) approach. Their choice
basically converts the LIME framework in a True to the data approach, since the local
surrogate is computed exploiting points stemming from the true data distribution. Two
remarks to this method: i) it is mandatory to provide the original dataset to DLIME,
losing the privacy perks of the original LIME framework, ii) the original dataset does not

53

guarantee an appropriate coverage of the X space.
The latter point is especially relevant, since the local explanation framework requires to
consider small portions of X , which frequently do not contain enough training points to
build a reliable and significant local surrogate. This happens especially when we consider
points close to data manifold borders, as illustrated in Figure 5.1. In fact, considering a
small neighbourhood (dark green area) DLIME would fail since we do not have enough
points to train Linear Regression; a larger neighbourhood (light green) includes quite
distant points which prevent a good local approximation.

Figure 5.1: We consider the same Toy Dataset and Polynomial ML model in Chapter

3.4.2, expanding the X domain upwards. We illustrate how LIME explanations trained

only on Dtrain data can be very shaky in sparsely populated regions.

Through this visual and non-rigorous example, we want to highlight how the generation
step is extremely important to ensure good coverage of the f surface.

Global vs Local Generation

Why LIME generates points over the entire domain X instead of focusing on local gener-
ation in the x(ref) neighborhood?

The concept of local generation is appealing and brings various advantages, among others a
better exploitation of the generated points and a reduced bias risk in the local explainable
models caused by non-relevant units.
However, local generation requires to choose the neighbourhood size in which to produce
new points and there is still no consensus on how to select the best size. It is important
to remark that the proper size cannot be fixed a priori to a given range for each different
x(ref) point, in fact it is point dependent. Consider to rely on Linear Models as local LIME
surrogates, the neighbourhood should include all the quasi-linear area of the ML curve
around the reference point, therefore it depends on the local curvature of f(x). Hence,
different points have different proper sizes for the linear local region, as shown in Figure
5.2.
Local generation of the x̂(i) samples is considered an active research area, and few differ-
ent papers explored this concept.

54

Figure 5.2: The best neighbourhood size depends on the reference point and the curvature

of the ML function around it.

In particular LORE [45] (See Chapter 4.2) proposes a genetic algorithm guided genera-
tion to produce points close to x(ref) and at the same time interesting from a classification
point of view, i.e. on both sides of the decision boundary. LORE implicitly inspects
the decision boundary and provides points x̂(i) that are meaningful to describe it. Al-
though, it does not provide a clear formulation of the local neighbourhood, making it
difficult to understand how far we can push the what-if scenarios (we don’t exactly
know if a given change in variables’ values produces a what-if point still lying in the
x(ref) neighbourhood). It is important to remember that what-if scenarios are valid only
when the variables changes are included in the local neighbourhood. This is a major issue
of LIME as well.

Also Laugel et al. [73] consider the classification setting only, suggesting to grow hyper-
spheres of increasing l2 radius until the surface of the spheres touches the decision bound-
ary. This procedure guarantees to find the boundary point x(bound) closest to x(ref) . The
local generation is carried out by means of the hyper-spere of radius equal to the l2-
distance between x(bound) and x(ref) , sampling from a Uniform distribution in this region.
Thanks to the growing hyper-spheres, we know exactly the boundaries of the Local Sur-
rogate model. Although the radius choice as l2-distance between x(bound) and x(ref) seems
somewhat arbitrary, while we argue that the size of the neighbourhood should depend on
the degree of non-linearity that f exhibits in the local region -the aim should be to consider

a part of the space in which f can be considered almost linear -.
Moreover, both techniques rely on the decision boundary of classification models, pre-
venting them to be used in regression settings.

On the other hand, vanilla LIME employs global generation paired with a weighting step
to assign reduced importance to distant x̂(i) units. In the following, we detail how the
local weighting is carried out, along with its pros and cons.

55

5.2.0. Weighting Step

Locality is enforced through a kernel function, the default is the RBF Kernel (Formula
5.1). It is applied to each point x̂(i) generated in the sampling step, obtaining an individual
weight. The formulation provides smooth weights in the range [0, 1] and flexibility through
the kernel width parameter kw.

πxi
= exp

(
−||x

(i) − x(ref)||2

kw

)
(5.1)

The RBF flexibility makes it suitable to each situation, although it requires proper tuning:
setting a high kw value will result in considering a neighbourhood of large dimension,
shrinking kw we shrink the width of the neighbourhood.

Figure 5.3: LIME explanations for different kernel widths. Notice how too large kw distort

the local linear model -testified by the R2 measure as well-

In Figure 5.3, LIME generated points are displayed as green dots and the corresponding
LIME explanations (red lines) are shown. The points are scattered all over the ML
function, with size proportional to the πxi

weight assigned by the RBF kernel. Small
kernel widths assign significant weights only to the closest points, making the further
ones almost invisible. In this way, they do not contribute to the local linear model.
The concept of locality is crucial to LIME: a too large neighbourhood may cause the LIME
model not to be adherent to the ML function in the considered neighbourhood. This makes
the kernel width kw the most important parameter of the entire LIME framework.

5.3.0. Feature Selection

In order to obtain a human-understandable linear model it is mandatory to use only a
bunch of features: explanations including the whole set of features may turn out to be
messy and confusing. Therefore LIME performs also a feature selection step, to present
the user with the most important variables only.

Different choices are available: we can use feature selection techniques already built into
the model training, such as Lasso or Stepwise Regression, or we may train the linear
model on the entire set of features and keep only the ones with the highest coefficients.

56

In principle, highest coefficients should be preferred (because there is no noise in the
X̂ dataset), but using all the variables can cause collinearity issues in the LIME linear
model. In fact, linear models usually do not cope well with high-dimensional datasets,
since the design matrix might be ill-conditioned, causing unstable estimates of the best
linear model.
Lasso Regularization usually takes care of such situations, at the price of introducing a
small bias in the estimation. Throughout the entire thesis we employ Lasso regularization,
considering that its benefits firmly overcome the slight bias introduced.
In the Python LIME implementation, the number of variables to be retained, namely p,
is chosen by the practitioner.

5.4.0. Local Model Step

On the standardised p-dimensional dataset, LIME applies an explainable model. The
algorithm allows for any model to be used, although the default is Ridge Regression, i.e.
a Linear Regression combined with a penalty related to the ℓ2 norm of the coefficients
[56], used to prevent overfitting. The model training is done in a weighted fashion: each
generated point contributes to the model according to its weight πx.

Using Linear Models as local surrogates allows LIME to stick with the concept of approx-
imating the f tangent in the local neighbourhood around x(ref) . This viewpoint makes
LIME explanations quite intuitive and appealing.

About Ridge Regression

We now assume a linear DGP (recall the definition in Chapter 2.1) of the formDGP (X) =
α +

∑d
j=1 βjXj + E , containing some noise E .

Ridge Regression [56] is simply a linear model: E(Y) = α +
∑d

j=1 β̂jXj, which optimizes

the estimates β̂j to be similar to the real βj DGP coefficients. The optimization is usually
done through consecutive iterations using the Gradient Descent technique, but the model
can also be solved in closed form, i.e. the exact solution can be computed in a single step.
The main difference, compared to simple linear regression, is the penalty term used in the
β̂ estimation, which is proportional to the ℓ2 norm of the estimated coefficients β̂ and is
governed by the λ hyper-parameter:

β̂R =
(
X⊤X + λI

)−1
X⊤Y

where β̂R stands for the Ridge estimated coefficients vector.

This technique is useful when dealing with noisy datasets (where the stochastic compo-
nent E exhibits high variance σ2) [115]. In fact, the presence of strong noise makes various
sets of coefficients as viable solutions. Instead, tuning λ to its proper value allows Ridge
to retrieve a unique solution.

In the LIME setting, the ML function acts as the DGP, while the sampled x̂(i) points
are the reference dataset. Recalling that the ŷ(i) coordinate of each point is given by ML

57

prediction f(x̂(i)), it is guaranteed they lie exactly on the ML surface by construction.
Hence, no noise E is present in our X̂ dataset. For this reason, we argue that the Ridge
penalty is not needed, on the contrary it can be harmful and distort the right estimates
of the parameters, as shown in Figure 5.4.

Figure 5.4: In the Right Panel Ridge penalty λ = 1 (LIME default) is employed,

whereas in the Left Panel no penalty (λ = 0) is imposed. It is possible to see how

the estimation gets severely distorted by the penalty, proven also by the R2 values. This

happens especially for small kernel width values, since each unit has a very small weight

and the weighted residuals are almost irrelevant in the Ridge loss, which is dominated by

the penalty term. To minimize the penalty term the coefficients are shrunk towards 0.

We demonstrated above that Ridge Regression does not bring any estimate improvement
over simple Linear Regression in the LIME context, on the contrary, depending on how
small the neighbourhood size is, we may incur strong distortion and bias. Therefore,
we suggest applying the LIME framework using simple Linear Regression, without any
regularization term.

5.5.0. LIME Issues

We are going to mention some drawbacks and pitfalls LIME explanations might have,
depending on the datasets they were trained on, the number of variables or the choice of
hyper-parameters.

LIME fails in high-dimensional datasets

LIME is sensitive to the dataset dimensionality: when it is employed to interpret a Ma-
chine Learning model built using a huge number of variables, the local explanation is
unable to discriminate between relevant and irrelevant features.

58

This phenomenon is due to the weighting kernel. Generally speaking, it can be consid-
ered as a similarity (or distance) function, thus it inherits the drawbacks of this class.
As thoroughly described by Beyer et al. [5], in high dimensional datasets, chosen a fixed
point, the distance to its nearest data point approaches the distance to the farthest one,
as dimensionality increases. In simple words, with too many variables in the dataset, all
the x̂(i) points created in the generation phase have a similar distance from x(ref) and all
of them are quite far from it, because euclidean distance metrics get rapidly too large in
high-dimensional settings.
LIME applies the RBF kernel function to assign weights πxi

before variable reduction, in
fact we have no prior notion of important/unimportant variables -hence we cannot compute

RBF distance on the set of relevant variables only-. Therefore, the kernel function considers
all x̂(i) as quite far and approximately at the same distance from x(ref) . The explain-
able Linear model has almost no relevant points to rely on -all points have a small weight-
resulting in a loss of the locality concept and consequently in a bad performance of the
algorithm.

Such occurrence is shown in Figure 5.5: we used the Credit Scoring Dataset of Chapter 3.1
to train a Gradient Boosting model without any prior feature selection step, i.e. keeping
all the 100 different features. GBM performance did not suffer from high-dimensionality,
thanks to its ability to select relevant variables to be used at each step, although its LIME
explanations are highly sensitive to a huge amount of input variables. As consequence,
LIME has not been able to discriminate between important and irrelevant regressors. In
particular, many features exhibit low values and almost all of them are equally important.

Figure 5.5: LIME explanations are not informative when applied to Machine Learning

models with many input variables, in this case a Gradient Boosting model using 100

features, on the Credit Scoring Dataset of Chapter 3.1.

This weakness curbs LIME’s employment on black-box models handling high-dimensional
datasets. To date, it is a practitioner’s duty to ensure the dataset dimensionality is low

59

enough for LIME to work well. This usually requires feature selection, upstream of data
modelling.

LIME Stability issue

Consider choosing a specific individual and performing LIME on it, several times. Indeed,
it is desirable to obtain the same explanations from each call.
Every time LIME is employed, it generates new data points, which follow the same dis-
tribution (law) but are different among distinct applications. This is due to the random
nature of the sampling. Using different points it may happen to obtain divergent explain-
able models g, thus different explanations, for the chosen individual.
Based on this evidence, we define the concept of LIME stability: explanations derived
from repeated LIME calls, under the same conditions, are considered stable when sta-
tistically equal. In [2] the authors provide insight about LIME’s lack of robustness, a
similar notion to the above-mentioned stability. Analogous findings also in [36]. On a
more general perspective, [43] and [42]

Instability of the explanations is a major issue: obtaining substantially different LIME
coefficients at each call prevents a full comprehension of the ML model, since we do not
know which explanation to rely on. Moreover, instability is rarely taken into account in
business projects, quite the opposite practitioners are often not aware of such a drawback
and they rely on a single LIME call, considering the explanation as reliable without further
checks. Instability awareness and checks to ensure explanations stability is the only way
to provide useful and high quality explanations.

5.6.0. Improvements over vanilla LIME

Given the aforementioned issues intrinsic to the LIME method, a number of works ad-
dressed these concerns by proposing improved techniques. In general, the methods pre-
sented in the following share the main idea and programmatic step of the vanilla LIME
algorithm, but change some of the steps to obtain better explanations.

Shankaranarayana and Runje [102] propose to additionally train a Denoising Autoencoder
to reconstruct slightly corrupted training data -corruption made by means of adding white

Gaussian noise-. The Autoencoder is then employed to weight the x̂i instances generated
by LIME: instead of using RBF kernel distance on the original fatures, ALIME computes
weights on the Autoencoder latent space distances. Since the latent space dimensions are
user defined, the number of features on the latent space can be kept low to avoid the curse
of dimensionality when computing distances. ALIME allows to compute explanations on
high-dimensional models as well, as long as we can guarantee that the Autoencoder has
been properly trained.

Moreover, ALIME proposes to generate a unique sample X̂ of new datapoints, to be used
on each local LIME instance, weighting the datapoints differently based on the distance on

60

the given reference x(ref). Such approach indeed guarantees stability of the explanations,
but may compromise their fidelity if we cannot ensure that enough generated datapoints
are present in the x(ref) neighbourhood.

Bramhall et al. [8] suggest to use more complex approximations of the black-box model
instead of simple degree 1 polynomials, in particular they suggest to use polynomials of
degree 2 -quadratic functions-. On one hand, QLIME improves the degree of fidelity of
the explanation since the approximation is more flexible and capable of adapting more
on ML surfaces with non-linear curvature, on the other hand we loose the interpreta-
tion simplicity. Explanation coefficients are difficult to interpret in a what-if fashion:
compute expected output of simple input modifications by using quadratic form coeffi-
cients is somewhat involved. Hence, QLIME looses the surrogate models perks where its
coefficients can be used only as feature attributions.

Zhao et al. [125] propose to produce explanations as a weighted combination of prior
knowledge on the local β parameters of the Linear approximation and the β̂ coefficients
obtained from LIME, framing the problem as Bayesian Inference.

Regarding the prior knowledge, the authors propose different directions among which: i)
run LIME on similar instances as the reference datapoint and use the average β̂ coeffi-
cients, ii) initialize β as the attributions of different explanation methods -such as SHAP,

GradCAM etc.- on the same reference instance.

It is important to notice that prior knowledge of the β is assumed to be without uncer-
tainty, hence reducing the instability of BayLIME predictions. The real challenge in this
setup is to properly tune the weights given to the prior and LIME coefficients, governed
by the λ parameter.

The framework shows good results in terms of robustness and fidelity to the underlying
ML model behaviour, but may require a fair amount of computation. Moreover, other
explainability methods are not immune to instability, while BayLIME considers their
estimate as completely reliable when plugged in the weighted sum.

61

Chapter 6
LIME Stability Indices

Few papers already dealt with the instability issues described above, as their efforts can
be grouped into two different approaches: i) get rid of the sampling step, ii) evaluate the
post-hoc stability of the retrieved explanations.
The former idea is put forward by Zafar and Khan [120] (as already explained in Chapter
5.1), proposing to bypass the sampling step by using the training units only, and a com-
bination of Hierarchical Clustering and K-Nearest Neighbour techniques. Although this
method achieves stability, it may find a bad approximation of the ML function, in regions
with only few training points.

On the other hand, the concept of evaluating the stability of already trained explanations,
in a post-hoc fashion, has been tackled in different papers. The shared idea is to repeat
the LIME method at the same conditions, and test whether the results are equivalent.
From a theoretical point of view, Cosine Similarity could be an easy way to compare the
explanation vectors retrieved by repeated LIME calls. Unfortunately, Cosine Similarity
can be used only when vectors share the same coordinate system: LIME explanations
retrieve possibly different important variables, making them not directly comparable.
Among the various propositions on how to conduct the test, in [102] the authors compare
the standard deviations of the Ridge coefficients, whereas [83] examines the stability of
the feature selection step -whether the selected variables are the same-.

Although we consider recent work on the topic headed in the right direction, we feel more
work has to be done in order to provide solid grounds and mathematical rigour to the
metrics evaluating LIME stability.

For this reason, we frame LIME stability in a more rigorous way, to be subsequently able
to formulate a new proposal for post-hoc stability evaluation.
Recall that LIME builds a linear local surrogate model g, using only a handful of variables
p < d. Hence, g can be viewed as a mapping function between the set of variables and
the respective coefficients:

g : F → R (6.1)

where F is the set of variables, of cardinality d. p out of d features will be associated
with a value different from 0, the others d − p variables will have 0 coefficient, meaning

62

they are irrelevant to the model. The formulation g(feat) indicates the coefficient value
of the feature named feat, in the model g.

We perform m different calls to LIME on the model f and the individual xi, obtaining m
different explainable models g1...gm.

We want to: (i) check whether different g are composed of the same variables, (ii) com-
pare the coefficients of the same variable among g1...gm and test whether they can be
considered equal.

To this purpose, we devise two complementary indices: the Variables Stability Index
(VSI) and Coefficients Stability Index (CSI). The indices are designed for LIME frame-
works using Ridge Regression as local linear models, in order to broaden their possible
employment. In fact, simple Linear Regression can be considered as a special case of Ridge
Regression, obtained by setting λ = 0. Deriving VSI and CSI on the Ridge Regression
allows to use them on default LIME -unaware practitioners using vanilla implementation can

take advantage of the indices-, although we still recommend using simple Linear Regression
over Ridge Regression.

6.1.0. Variables Stability Index: VSI

The Variables Stability Index (VSI), whose steps are explained in Algorithm 4, addresses
the first point, namely it compares the variables composition of the g1...gm models.

We consider the set Cm
2 (g1...gm) of all possible combinations of the m explainable models,

two by two. The generic element of Cm
2 (g1...gm) is the pair (gα, gβ).

We define a measure of concordance among the two explainable models in each pair:

pair = (gα, gβ)

Fα = {feat ∈ F : gα(feat) ̸= 0}
Fβ = {feat ∈ F : gβ(feat) ̸= 0}
concordance(pair) = |Fα ∩ Fβ|

(6.2)

where Fα and Fβ represent respectively the variables used in the explainable models gα
and gβ. The concordance function returns an integer value, namely the cardinality of
the intersection between Fα and Fβ, ranging from 0 to p. It represents the number of
variables used by both gα and gβ.

We evaluate the concordance over all the pairs in Cm
2 (g1...gm) and we average them,

obtaining the VSI index, ranging from 0 to 1. We express the index as a percentage:
it now spans from 0 to 100, the more it approaches 100 the more the variables found in
different applications are the same.

63

Algorithm 4 Variables Stability Index (VSI)

Require: g1...gm
1: n = 0
2: for pairinCm

2 (g1...gm) do

3: n = n+ concordance(pair)
p

4: VSI = n

|Cm
2 (g1...gm)| return VSI

6.2.0. Coefficients Stability Index: CSI

The equality between coefficients of the different g1...gm models is now under investiga-
tion. In the following, we derive the statistical distribution of the coefficients and we rely
on it, to create confidence intervals and possibly statistical tests.

It is a well-known result [37], that under the classic assumptions of Linear Regression, the
coefficients are guaranteed to follow a Gaussian distribution. This is not sufficient, since
we deal with Weighted Ridge Regression.

In [114], the distribution of the Ridge Regression estimator is given by the formula:

β̂(λ) ∼ N
(
(XTX + λIp)

−1XTXβ, σ2(XTX + λIp)
−1XTX[(XTX + λIp)

−1]T
)

(6.3)

where X is the matrix of observations. In our setting, X is composed of the points ran-
domly sampled inside LIME. The matrix Ip stands for the identity matrix (dimensions
p×p). σ2 is the variance of the Ei random variables describing the errors per each sampled
point. Under the Regression assumptions the errors Ei are independent and identically
distributed (IID) following a Gaussian law: Ei ∼ N (0, σ2). λ stands for the Ridge regulari-
sation coefficient. The vector β represents the true values of the coefficients in population,
whereas β̂ consists of the estimates of the true values, using the X dataset.

In our setting, we may consider the β values as the unknown coefficients of the best linear
approximation of f in the neighbourhood of x(ref) . LIME aims to provide β̂ closest as
much as possible to the unknown β values.

Concerning Weighted Regression, it is usually estimated via Generalised Least Squares
(GLS) which guarantee the distribution of its estimators to be the following [62] :

β̂ ∼ N
(
(XTWX)−1XTWXβ, σ2(XTWX)−1

)
(6.4)

In the formula,W is the n×n diagonal matrix of weights per each unit. In our setting, the
W matrix is populated by the kernel weights calculated on the distance of each sampled
point from x(ref) .

It is important to recall that σ2 is an unknown value and we are requested to obtain an
unbiased estimator inferred from the data. Such estimator takes the form:

σ̂2 =
EWET

n− p

64

for the Weighted Regression, as stated in Johnston and DiNardo [62]. E stands for the
vector of the errors per each sampled point: E = (E1...En). As far as Ridge Regression is
concerned, the variance estimator remains unchanged from the Linear Regression’s one
[114].

Using the building blocks stated before, we derive the distribution of the Weighted Ridge
Regression estimator. Starting from the Ridge Regression law (Equation 6.3), we know
[6] that the Gaussian distribution is invariant whenever we employ a matrix of known
weights. This guarantee the Weighted Ridge law of the coefficients to be Gaussian. Its
distribution is :

β̂(λ) ∼ N
(
(XTWX + λIp)

−1XTWXβ,

σ2(XTWX + λIp)
−1XTWX[(XTWX + λIp)

−1]T
) (6.5)

We provide also the formula for the variance estimator of the Weighted Ridge Regression
1:

σ̂2 =
EWET

n− p
(6.6)

where n is the number of data points sampled inside LIME, p denotes the number of
variables considered in the explainable model.

Knowing the distribution of the coefficients, we might derive a test statistic to assess a
null hypothesis of equality. This comparison can be carried out also among coefficients
of two different regression models, as long as they were estimated on two independent
samples drawn from the same law, as derived by Brame et al. [7] for the coefficients of
two distinct Linear Regressions.

This assumption holds true in our experimental design, since the data are sampled from
the features’ distribution inferred from the original data. It means that the true generating
distribution ofX1..Xm, i.e. the datasets sampled in repeated LIME calls, is identical, while
the differences among them are attributable only to the sampling variance.
Unfortunately, the simplifications carried out in Brame et al. [7] and Greene [37] in order
to derive the t-test statistic, rely on the equality of the expected value of the two coef-
ficients taken into consideration. This is true in Linear Regression, but the framework
breaks down using a regularisation technique such as Ridge: the regulariser trades off the
unbiasedness of the estimator in exchange for a possibly strong reduction of the variance.

Since the estimator is not unbiased any more, the expected value is now depending on
the design matrix X. As stated before, different LIME calls give rise to different design
matrices, this implies the expected values of a specific variable, taken from two different

1In this formulation, we consider E , as the errors of the Linear Regression model. In other words, the
Weighted Ridge σ̂2 estimator is the same of Weighted Regression.
We may not use the errors of any Ridge model to calculate an unbiased estimator of the error variance
σ2, because the Ridge regularisation term decreases the variance. Using such errors would cause the
estimator to be biased towards 0.

65

explainable models gα and gβ, to be different: E[gα(feat) − gβ(feat)] ̸= 0. This result
causes the derivation of the t-test statistic to break down.

Testing the null hypothesis of equality has proven tricky and not easily solvable, hence we
rely on the Gaussian distribution of the coefficients to construct 95% confidence intervals.
To do that, we design the function ConfInt, taking as input a g’s coefficient and giving
back its confidence interval:

ConfInt(g(feat)) = [g(feat)− 1.96
√
Var(g(feat)) ,

g(feat) + 1.96
√
Var(g(feat))]

(6.7)

where Var(g(feat)) is calculated based on the distribution given in Equation 6.5.

We may consider the parameters to be different, within a 5% error rate, when the confi-
dence intervals are not overlapped at all. Instead, we consider them to be stable whenever
the confidence intervals overlap to some extent.

To this purpose, we devise the binary function overlap, which takes as input a generic
pair of confidence intervals CIpair = (CIα, CIβ) and returns either value 1 or 0, based on
the overlap presence.

overlap(CIpair) =

{
0 if CIα ∪ CIβ = ∅
1 otherwise

(6.8)

The comparison among confidence intervals is carried out separately for each variable.
Chosen a certain feature, we check through the g1...gm explainable models if the feature
is relevant (coefficient different from 0). Whenever this happens, we build the confidence
interval for the coefficient, using the function ConfInt, and we consider the set of all
confidence intervals, namelyM, for the chosen variable.

Algorithm 5 Coefficients Stability Index (CSI)

Require: g1...gm
1: for feat in F do
2: M = {}
3: for i in 1...m do
4: if gi(feat) ̸= 0 then
5: CI = ConfInt (gi(feat))
6: M =M∪ CI

7: n = 0
8: for CIpair in C

|M|
2 do

9: if overlap (CIpair) then
10: n++

11: Parfeat =
n∣∣∣C|M|
2

∣∣∣
12: CSI = mean(Par) return CSI

66

We create all the possible combinations of theM items, two by two. This results in the
set C

|M|
2 , whose generic element is CIpair = (CIα, CIβ). We calculate the overlap between

the two intervals, using the overlap function, for all the pairs in C
|M|
2 .

The outcome is a count variable, which we normalise by dividing by the cardinality of
the set C

|M|
2 . The value obtained ranges from 0 to 1 and it is called the Partial Index

(Par) for the variable considered. It represents a measure of concordance of the specific
variable’s coefficients among different LIME calls.
To achieve a general concordance metric, we average the Partial Indices of all the features
and obtain the Coefficients Stability Index (CSI), ranging from 0 to 1. Consider now the
index as a percentage, rescaling it from 0 to 100: the more CSI approaches 100, the more
LIME coefficients may be considered stable in the neighbourhood of the chosen individual.

CSI steps are detailed in Algorithm 5.

6.3.0. Interpretation of the indices

The previously defined indices constitute a useful tool for assessing LIME stability in
practical scenarios. By construction, VSI measures the concordance of the variables re-
trieved, whereas CSI tests the similarity among coefficients for the same variable, in
repeated LIME calls.

Both of them range from 0 to 100.
High VSI values guarantee the variables retrieved in different LIME are almost always
the same. On the contrary, low values testify explanations are not trustworthy: we may
retrieve completely different variables explaining the same Machine Learning decision,
according to different LIME calls.
As far as CSI is concerned, high values ensure LIME coefficient for each feature is reliable.
Low values, instead, induce the practitioner to be very cautious: given a feature, the first
LIME call will give back a certain value of the coefficient, but the one after is likely to
retrieve a different value. Since the coefficient represents the impact of the feature on the
Machine Learning decision, obtaining different values correspond to very different expla-
nations.

Each index has a proper meaning and checks for a particular stability instance. Achieving
high values for both of them ensures stability, however low values for only one metric are
still possible. Keeping the measurements separated allows for understanding which one
of the two complementary definitions of stability has been violated by the trained LIME
method.

6.4.0. Practical Application on Credit Risk Data

We demonstrate the valuable information that the statistical indices provide to the user,
by showing their results on the Credit Scoring dataset of Chapter 3.1.

67

We test LIME on several data points and we report LIME explanations for a “good”
user, which has been correctly predicted by the GBM model, in Table 6.1. Different
LIME settings are employed, to demonstrate how a wrong choice of parameters may yield
inconsistent explanations and how the indices are able to correctly spot the instability.
To calculate the indices, LIME is applied 10 times, however the available implementation2

allows to set the desired number of repetitions. Only the 7 most important features are
considered in the explanation.

On the left, consistent explanations are achieved, testified by high stability values, whereas
on the right a bad choice of the kernel width and the Ridge penalty values bring instability.

It is worth noticing LIME results for the stable explanation make sense from an economic
and financial standpoint: the key regressors are the Credit Bureau Score (CBS), namely a
comprehensive value developed using information provided by the Italian Credit Bureau,
and the number of months when unpaid instalments occurred, within the last year. The
user exhibits 0 months with unpaid instalments and falls inside a good class of CBS index.
Such circumstances are the major ones leading Gradient Boosting model to classify him
as a good payer.
On the contrary, the unstable LIME method produces different regression lines for each
call, making it very hard to trust them since for the same individual we end up with
totally different explanations.

On a 4 Intel-i7 CPUs 2.90GHz laptop, the indices took 10.23 and 11.54 seconds to be
calculated for the left and right settings of Table 6.1 respectively.

To sum up, we exploit the distribution of LIME local model coefficients, to build confi-
dence intervals for each coefficient. The CSI stability index evaluates whether the inter-
vals for the same variable among different LIME calls are similar. Meanwhile, we monitor
whether the variables returned by different LIME calls are the same. This is done using
another index: VSI. The two complementary indices both range from 0 to 100, where
higher values correspond to a higher degree of stability.
An application to Credit Scoring data testifies how the indices can be used out-of-the-box
on Tabular Data, although the stability framework can be applied also to images and text
data, as long as LIME local model is chosen to be in the class of Ridge Regression models.
In fact, the indices formulation relies on the Ridge model properties.

When used together, they provide useful insights to the practitioner about the consistency
of the trained LIME method: they help understand whether LIME is likely to modify its
output at the next call. We recommend always pairing LIME explanations with their
stability indices values to prove that the explanation is stable, whereas the instability is-
sue is rarely taken into account in business projects involving explainability. Even worse,
often practitioners are either not aware of such drawback and they rely on a single LIME
call, considering the explanation as reliable without further checks. In such cases, the

2https://github.com/giorgiovisani/LIME stability

https://github.com/giorgiovisani/LIME_stability

68

Table 6.1: LIME applied to Gradient Boosting model.

The sum of the bars’ values, along with the intercept, produces the Local Ridge model

prediction. The bars’ length highlight the specific contribution of each variable: the green

ones push the model towards ”good payer” prediction, whereas the red ones to ”bad

payer”.

Unit Number: 35 Unit Number: 35

Kernel Width: 3 Kernel Width: 1.3

Ridge Penalty: 1 Ridge Penalty: 0.001

VSI: 89.44% VSI: 14.17%

CSI: 92.7% CSI: 57.46%

69

instability issue is not spotted at all.

We consider the indices an important step, since it improves the trust in LIME as a
stable explanation method. However, such result just ensures LIME is concordant among
different applications: the model may still return explanations not really close to the
Machine Learning model.

6.5.0. Extensive experiments on Stability Indices

To demonstrate that CSI and VSI Stability Indices behave as expected, we employ them
on various combinations of open-source datasets, ML models and different LIME settings.
In particular, we consider the Wine, Houses and Parkinson datasets and train a Gradient
Boosting model (Xgboost), MultiLayer Perceptron with a single layer and Linear Regres-
sion. The stability indices have been recorded over 10 repetitions, requiring only the 5
most important variables in LIME explanations. The result is a condensed plot containing
essnetial information of the 10 runs: each barplot represents the average coefficient of the
specific variable over the 10 runs, while the black line records its standard deviation. Some
of the plots contain more than 5 variables, meaning that some of the repeated explana-
tions did not agree on the most important features -this is reflected as well in the VSI value-.

In the following Figures 6.1,6.2,6.3, the prediction of a specific unit from the Test set has
been explained, using LIME with two different kernel width values per each ML model
-remaining LIME parameters are kept as default-. We can appreciate how increasing the
kernel width brings improved stability in general, both in a CSI and VSI perspective. A
full discussion on the kernel width topic and how to set such hyper-parameter can be
found in Chapter 7.

The main goal of the simulation is to visually show how bigger differences in important
variables and related coefficients in repeated LIME explanations negatively affect the Sta-
bility Indices. Interesting to notice, also, that LIME hyper-parameters play an important
role in the stability of the explanations, the kernel width above all.

70

In the following Figures 6.4, 6.5, instead, we exploit the same condensed plot to show
how different units of the same dataset display substantially different LIME explanations
and related stability. Again, a thorough discussion on the topic can be found in Chapter
7, while we currently focus on assessing the Indices goodness in spotting instability: we
expect to witness lower CSI indices in correspondence of bigger standard deviations and
lower VSI indices when more than 5 different variables are deemed important in the LIME
repetitions.

71

Figure 6.1: Analysis of LIME Stability on unit 3 of the Test data for ML models trained

on the Wine dataset. Figures i) and ii) contain LIME coefficients for XGBoost model,

Figures iii) and iv) are LIME explanations of a Neural Network, Figures v) and vi) display

LIME coefficients on Linear Regression. Per each pair, LIME in the left-side picture has

kernel width= 0.6, the right-side one has kernel width= 0.8

72

Figure 6.2: Analysis of LIME Stability on unit 12 of the Test data for ML models trained

on the Houses dataset. Figures i) and ii) contain LIME coefficients for XGBoost model,

Figures iii) and iv) are LIME explanations of a Neural Network, Figures v) and vi) display

LIME coefficients on Linear Regression. Per each pair, LIME in the left-side picture has

kernel width= 0.6, the right-side one has kernel width= 0.8

73

Figure 6.3: Analysis of LIME Stability on unit 6 of the Test data for ML models trained

on the Parkinson dataset. Figures i) and ii) contain LIME coefficients for XGBoost model,

Figures iii) and iv) are LIME explanations of a Neural Network, Figures v) and vi) display

LIME coefficients on Linear Regression. Per each pair, LIME in the left-side picture has

kernel width= 0.6, the right-side one has kernel width= 0.8

74

Figure 6.4: Analysis of LIME Stability on unit 1 to 6 of the Test data for Neural

Network model trained on the Wine dataset. LIME explanations are carried out with

kernel width= 0.8

75

Figure 6.5: Analysis of LIME Stability on unit 1 to 6 of the Test data for XGBoost model

trained on the Houses dataset. LIME explanations are carried out with kernel width= 1.5

76

77

Chapter 7
LIME: select the local nieghborhood
size

As already explained in Chapter 5.2, the most important LIME hyper-parameter is the
kernel width. This parameter governs the size of the neighbourhood influencing the πxi

weights.

Recall that LIME weights are governed by Equation 5.1, which produces a kind of bell-
shaped (gaussian) function, centred at x(ref) . The weights πxi

are assigned based on the
ℓ2 distance of x̂(i) from x(ref) . If x̂(i) ≡ x(ref), then πxi

= 1, while increasing the distance
between the two points brings πxi

closer to 0. Points at the same distance share the same
weight.
The kernel width parameter, kw, controls the steepness of the bell-shaped function and
behaves exactly like the variance parameter for a Gaussian pdf: small kw means a steeper
curve and just a few points with significant weights πxi

, increasing kw decreases the steep-
ness of the weight function and extends the portion of x̂(i) points with relevant weights.

Despite its importance, vanilla LIME does not take care of kw fine-tuning, on the contrary
the method suggests a heuristic to set kw to a predefined value:

kw = 0.75
√
d

where d is the number of variables in the dataset.
Analyzing the heuristic, we notice that the kw value is the same for any x(i) to be ex-
plained, in fact it depends only on the dataset dimensionality. Although, as we stressed
in Chapter 5.2, kw should be fine-tuned on every single datapoint to be explained, since
it depends on the local non-linearity of f in the neighbourhood of x(ref) .

At the same time, we have previously noticed how certain LIME hyper-parameter sets
may yield unstable explanations. We want to achieve an explanation that is stable, but
at the same time adheres to the ML model, i.e. locally resembles the f function.
To evaluate the stability we rely on the CSI and VSI indices, while the adherence is as-
sessed using the R2 statistic, which measures the goodness of the linear approximation
through a set of points [37]. A high R2 value indicates that the surrogate model is a good

78

approximation of the complex model in the local region, while a low R2 value indicates
that the surrogate model may not accurately capture the behaviour of the complex model
in that region. All the figures of merit above span in the range [0, 1], where higher values
define respectively higher stability and adherence.

In the following, we explain how to balance the two most important properties of LIME
explanations, by means of an accurate choice of the kw parameter.

7.1.0. Stability & Adherence Trade-off

From the theory, we have few helpful results to understand how the kernel width influences
Stability and Adherence:

• Taylor Theorem [37] gives a polynomial approximation for any differentiable func-
tion, calculated in a given point. If we truncate the formula to the first degree
polynomial, we obtain a linear function, its approximation error depends on the
distance between the point in which the error is evaluated and the given point.
Thus, if we assume the ML function to be differentiable in the neighbourhood of
x(ref), the adherence of the linear model is expected to be inversely proportional
to the width of the neighbourhood, i.e. to the kernel width. This is true since
the approximation error depends on the distance from the two points, namely the
neighbourhood size.

• in Linear Regression, the standard deviation of the coefficients is inversely correlated
to the standard deviation of the X variables [37].
The stability of the explanations depends on the spread of the X variables in our
weighted dataset. We then expect the kernel width and Stability to be directly
proportional.

To illustrate the conjectures above, we run LIME for different kernel width values and
evaluate both R2 and CSI metrics (VSI is not considered in the Toy Dataset, since only
one variable is present). In Figure 7.1 the results of such an experiment, for the reference
unit, are shown.

Figure 7.1: Relationship among kernel width, R2 and CSI

Both the adherence and stability are noisy functions of the kernel width: they contain
some stochasticity, due to the different datasets generated by each LIME call. Despite

79

this, it is possible to detect a clear pattern: monotonically increasing for the CSI Index
and monotonically decreasing for the R2 statistic.
For numerical evidence of these properties, we fit the Logistic function [116], which re-
trieves the best monotonous approximation to a set of points. The goodness of the logistic
approximation is confirmed by a low value of the Mean Absolute Error (MAE).
To corroborate our assumption, the same process has been repeated on all the units of the
Toy Dataset, obtaining average MAE for the R2 approximation of 0.005 and for the CSI of
0.026. The logistic growth rate has also been inspected: R2 highest growth rate is -10.78
and CSI lowest growth rate is 7.20. These results ensure the monotonous relationships of
adherence and stability with the kernel width, respectively decreasing and increasing.

7.2.0. OptiLIME

Previously, we empirically showed that adherence and stability are monotonous noisy
functions of the kernel width: for increasing kernel width we observe, on average, decreas-
ing adherence and increasing stability.
Our proposition consists in a framework which enables the best choice for the trade-off
between stability and adherence to the explanations. OptiLIME sets a desired level of
adherence and finds the largest kernel width, matching the request. At the same time,
the best kernel width provides the highest stability value, constrained to the chosen level
of adherence. At the end of the day, OptiLIME consists of an automated way of finding
the best kernel width. Moreover, it empowers the practitioner to be in control of the
trade-off between the two most important properties of LIME Local Explanations.

To retrieve the best width, OptiLIME converts the decreasing R2 function into l(kw, R̃2),
by means of Formula 7.1:

l(kw, R̃2) =

{
R2(kw), if R2(kw) ≤ R̃2

2R̃2 −R2(kw) if R2(kw) > R̃2
(7.1)

where R̃2 is the requested adherence.
The function l(kw, R̃2) presents a global maximum in correspondence of R̃2, chosen by
the practitioner. We are particularly interested in the argmaxkw l(kw, R̃

2), namely the
best kernel width.
In order to solve the optimum problem, Bayesian Optimization is employed, since it is the
most suitable technique to find the global optimum of noisy functions [76]. The technique
relies on two parameters to be set beforehand: p, number of preliminary calls with ran-
dom kw values, m, number of iterations of the search refinement strategy. Increasing the
parameters ensures finding a better kernel width value, at the cost of longer computation
time.

In Figure 7.2, an application of OptiLIME to the reference unit of the Toy Dataset is
presented. R̃2 has been set to 0.9, p = 20 and m = 40. The points in the plot represent
the distinct evaluations performed by the Bayesian Search in order to find the optimum.
Comparing the plot with Figure 7.1, we observe the effect of Formula 7.1 on the left part of
the R2 and l(kw, R̃2) functions. In Figure 7.2 the search has converged to the maximum,

80

Figure 7.2: OptiLIME Search for the best kernel width

evaluating various points close to the best kernel width. At the same time, it is evident
the stochastic nature of the CSI function: the several CSI measurements, performed in
the proximity of 0.3 value of the kernel width, show a certain variation. Nonetheless, it
is possible to recall the increasing CSI trend.

7.3.0. OptiLIME Application to Real-World Datasets

NHANES Medical Data

We now test the OptiLIME framework on the NHANES medical dataset, described in
Chapter 3.2. Recall that model prediction consists of the hazard ratio for each individual:
higher prediction means the individual is likely to be alive for a shorter period of time.
Therefore, positive variables coefficients define risk factors, whereas protective factors
have negative values.

After the ML training phase, we want to achieve the optimal explanations of the XGBoost
model on specific units of the dataset. We do so using the OptiLIME framework on two
randomly chosen individuals and we visually show the results. In our simulation, we
consider 0.9 as a reasonable level of adherence. OptiLIME is employed to find the proper
kernel width to achieve R2 value close to 0.9 while maximizing stability indices for the
local explanation models.
We recall once again that Local linear surrogates (such as LIME and OptiLIME) have
similar model interpretation as Linear Regression models, but that is valid only for small
changes in the original variable values. This also means that the same variable may have
a different impact on two individuals if they live in two distant parts of the variables space
X . As an example, the Age variable has a different impact on the individuals in Figure
7.3: having 1 year more for Unit 100 (increasing from 65 to 66 years) will raise the death
risk of 3.56 base points, for Unit 7207 1 year of ageing (from 49 to 50) will increase the
risk of just 0.79. Another example is the impact of Sex, which is more pronounced in
elder people: being female is a protective factor for 1.49 points at age 49, at age 65 being
male has a much worse impact, as a risk factor for 3.04.

For Unit 100 in Figure 7.3a, the optimal kernel width is a bit higher compared with Unit

81

(a) Best LIME Explanation, Unit 100 (b) Best LIME Explanation, Unit 7207

Figure 7.3: NHANES individual Explanations using OptiLIME

7207 in Figure 7.3b. This is probably caused by the ML model having a higher degree of
non-linearity for the latter unit: to achieve the same adherence, we are forced to consider
a smaller portion of the ML model, hence a small neighbourhood. Smaller kernel width
implies also a reduced Stability, testified by small values of the VSI and CSI indices.
Whenever the practitioner desires more stable results, it is possible to re-run OptiLIME
with a less strict requirement for adherence. It is important to remark that low de-
grees of adherence will make the explanations increasingly more global: the linear surface
retrieved by LIME will consist of an average of many local non-linearities of the ML model.

The computation time largely depends on the Bayesian Search, controlled by the param-
eters p and m. In our setting, p = 10 and m = 30 produce good results for both the units
in Figure 7.3. On a 4 Intel-i7 CPUs 2.50GHz laptop, the OptiLIME evaluation for Unit
100 and Unit 7207 took respectively 123 and 147 seconds to compute. For faster, but less
accurate results, the Bayesian Search parameters can be reduced.

Credit-Scoring Data

We also apply the OptiLIME framework to obtain explanations of the Xgboost model
f trained on the Credit-Scoring dataset as described in 3.1. In particular, we compare
OptiLIME and LIME explanations in terms of stability and reliability and business mean-
ing, on two reference units: i) Unit 23 classified as “Good Payer” by f , and ii) Unit 1746
classified as “Bad Payer”.

Comparing Figures 7.4,7.5 we notice how LIME assigns the same kernel width to both
units, even if they are quite different individuals (they sit on very different regions of the
X manifold). Since LIME explanation considers a larger neighbourhood than OptiLIME,
it has a more global flavour approximating f on a larger region and averaging out various
non-linear regions. This results in a poor adherence of the LIME explanation to f on
the locality of the points, testified by a low value of R2, but at the same time it achieves
higher stability. OptiLIME instead, provides us with a predefined level of adherence (set
as R2 = 0.8).

82

(a) f prediction and salient features values (b) LIME and OptiLIME explanations

Figure 7.4: Individual Explanations using OptiLIME for unit 23 (Good Payer)

(a) f prediction and salient features values (b) LIME and OptiLIME explanations

Figure 7.5: Individual Explanations using OptiLIME for unit 1746 (Bad Payer)

To sum up, it is difficult to tune properly LIME’s main parameter: different values of the
kernel width provide substantially different explanations.
We notice how smaller kernel width values provide a more adherent LIME plane to the
ML surface, i.e. a more realistic local explanation. At the same time, training Linear
Regression models on small neighbourhoods cause higher model variance and instability,
by design. The trade-off between the adherence and stability properties is extremely valu-
able since it empowers the practitioner to choose the best kernel width consciously.

We exploit these findings in order to tackle LIME weak points. The result is the OptiLIME
framework, which achieves stability of the explanations and automatically finds the proper
kernel width value, according to the practitioner’s needs. The framework may serve as
an extremely useful tool: through OptiLIME, the practitioner knows how much he can
trust the explanations, based on their stability and adherence values. Nonetheless, we
acknowledge that the optimization framework may be improved to allow for a faster and

83

more precise optimum solution.

84

85

Chapter 8
Bridging the Gap between Local and
Global Explanations

Throughout this thesis, we made a clear distinction between local and global explanation
techniques and we pointed out the pros and cons of both methodologies. In general global
techniques are more desirable, since they would empower the practitioner with the un-
derstanding of the whole complex f model. Local explanations would be simply specific
use-cases of a reliable and clear global explanation. Unfortunately, existing global tech-
niques do not usually meet the quality standards being either too complex to understand
or too simple and not enough reliable.

Given the difficulty in overcoming the intrinsic trade-off between clarity and fidelity of
global explanations, the idea of combining the two frameworks in a single unified one has
recently become an interesting and new topic in the XAI field.
There are several benefits to combining local and global explanation methods:

1. Comprehensive understanding: Local explanation methods provide detailed infor-
mation about how a specific decision was made, while global explanation methods
provide an overview of the model’s behaviour as a whole. Combining the two can
give a more comprehensive understanding of the model’s decision-making process.

2. Improved trust and transparency: By providing both local and global explanations,
it is possible to increase the transparency of f and build trust with stakeholders.

3. Increased robustness: Combining multiple (local) explanations can help identify
potential weaknesses or biases in model, allowing the practitioner to improve its
robustness.

4. Better decision-making: By understanding both the local and global behaviour of
f , it is possible to make more informed decisions about how to use it.

One of the first attempts in this direction dates back to Lundberg and Lee [78] through
the local SHAP values and their additivity property, which guarantees to obtain reliable
global feature attributions by averaging them over the entire dataset. Unfortunately
vanilla SHAP is too computationally intensive and it’s not affordable to estimate it on each

86

unit of very large -and possibly high-dimensional- datasets, so the real chance to compute
global SHAP values came with TreeSHAP [77], which provides a fast algorithm valid for
Tree-based models only.
Ribeiro, Singh, and Guestrin [92] propose Anchors, a method extracting local subsets of
the features (anchors) that are sufficient to recover the same prediction, while having good
global coverage. This can be considered as a way to create accurate explanations which
are in between the local and global worlds, i.e. they push to be as widely applicable as
possible, remaining accurate at the same time.
Let us also mention Setzu et al. [101], which proposes to aggregate local explanations:
starting from local decision rules, GlocalX combines them in a hierarchical manner to form
a global explanation of the model. In the ad hoc setting, Harder, Bauer, and Park [48]
proposes to train an interpretable and differentially private model by using several local
linear maps per class: the pseudo-probability of belonging to a given class is the softmax
of a mixture of linear models. This approach is limited to the classification setting, as
with GlocalX and Anchors.

8.1.0. GLEAMS

We propose GLEAMS (Global & Local ExplainAbility of black-box Models through
Space partitioning), a post-hoc interpretability method providing both global and local
explanations. Our goal is to build a global surrogate f̂ of f that shares the global
shape of the black-box model f but, at the same time, has a simple local structure. Our
main motivation in doing so is to extract simultaneously from f̂ : i) local explanations for
any instance, ii) overall importance of the features, iii)“what-if”-type explanations of any
given scenario (not restricted to a local modification), and iv) visual summaries.

In more detail, the core idea of GLEAMS is to recursively split the input space into rect-
angular cells on which the black-box model can be well-approximated by linear models.
This is done in a two-step process. The first step is to sample N points x̂(1), . . . , x̂(N),
evenly spread in X . For each of these points, we query f to obtain ŷ(i) = f(x̂(i)). Thus we
effectively create a dataset (x̂(i), ŷ(i)), which we call measurement points. A somewhat
hidden assumption here is that we can query f as much as desired, in constant time.
Subsequently, the idea is to recursively split the input space X and to approximate the
model f by a linear model on each cell of the partition until the linear model in each
rectangular leaf fits the measurement points with sufficiently good accuracy. This process
is summarized in Figure 8.1.

GLEAMS stands back from other hybrid approaches combining Tree-based models and
Linear Regression, such as Zhang, Nettleton, and Zhu [124] and Ilic et al. [60], since it
proposes to clearly split the domain in mutually exclusive partitions and train separate
linear models on each of them. This produces a highly interpretable final model, providing
only one model to query based on the region where a specific point falls. On the contrary,
the aforementioned models exploit a combination of linear models and tree-based models
to obtain a good fit over the entire domain, without comparting the space in smaller
regions equipped with simple models. Instead, they produce a single complex model valid

87

on the entire domain space, which somewhat hinder interpretability.

−8

−6

−4

−2

0

2

−8

−6

−4

−2

0

2

−10

−8

−6

−4

−2

0

2

4

Figure 8.1: Overview of the global surrogate model construction. Left panel: the black-

box model maps the input space (here X = [0, 1]2) to R, which we can visualize as a

surface. Middle panel: we generate N Sobol points on X , giving rise to N measurement

points on the surface (in blue). Right panel: we fit a piecewise-linear global surrogate

model f̂ on the measurement points by recursively splitting X .

The local explanations are then simply given by the feature coefficients of these local
surrogate models, while global indicators can be readily computed from those, without
querying f model further. Intuitively, given a partition with not too many cells, it is
convenient for the user to look at individual features and visualize globally the model as
a piecewise-linear function. Concurrently, any new example to explain will fall into a cell,
and the user can get a local explanation solely by looking at the coefficients of the local
linear model.

We show experimentally that GLEAMS compares favourably with existing methods in
Chapter 8.2.

8.1.1.0. Measurement points

Our main assumption, going into the description of the method, is the following:

Assumption 1. The input space X is a hyper-rectangle of Rd. That is, there exist real
numbers aj, bj ∈ R for any j ∈ [d] such that

X =
d∏

j=1

[aj, bj] .

Intuitively, this corresponds to a situation where each variable has a prescribed range (for
instance, age takes values in [0, 120]). In particular, we assume that further examples
to explain all fall within this range. If they do not, we attribute to these points the
explanations corresponding to the projection of these points on X . Note that we do not
assume normalized data: aj and bj can be arbitrary. In practice, the boundaries are either
inferred from a training set, or directly provided by the user.
A consequence of Assumption 1 is that we can easily find a set of points covering X
efficiently. To achieve this, we use Sobol sequences [104]. In a nutshell, a Sobol sequence

88

is a quasi-random sequence of points x̂(1), . . . , x̂(N) filling the unit cube [0, 1]d as N grows.
We demonstrate this in dimension d = 2 in Figure 8.2.

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Uniform sampling

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Sobol sequence

Figure 8.2: Differences between uniform sampling (Left panel) and Sobol sequence

(Right panel) in dimension 2. The discrepancy between points is much lower, while

maintaining some apparent randomness in the sampling.

There are several reasons why we use Sobol sequence as the sampling scheme of GLEAMS.
First, we want to be able to provide explanations for the whole input space X , thus the
measurement points should cover X asN grows (there should be no part of X that remains
unprobed). Second, the decision surface of the black-box model can be quite irregular:
good predictive accuracy usually means that the model has a lot of local variation. Thus,
to recover this local variability, the measurement points need to have discrepancy as
low as possible. Sobol points have a lower discrepancy than points sampled uniformly at
random. Third, there is still some irregularity in the sampling process, preventing artifacts
appearing from a simple grid sampling. This is especially important since the points are
later used as input for linear models: we want them to be un-correlated. Finally, even
though other pseudo-random sequences exist in the literature such as Halton sequences
[47], we found Sobol sequences to be the fastest to generate and the most reliable in high
dimensional settings, i.e. do not present significant variable correlations.
To conclude with the description of the sampling process, we note that a consequence
of the curse of dimensionality is the need to take a number of points that is exponential
in the dimension of X . Namely, in our experiments, we set N = 2d+c, where d is the
dimension of X and c is a numerical constant taken as high as possible with respect to
our computing power.

8.1.2.0. Splitting criterion

A very convenient way to partition the input space is to recursively split X , cutting a cell
if some numerical criterion is satisfied. Additionally, we consider splits that are parallel
to the axes. The main reason for doing so is the tree structure that emerges, allowing
later on for fast query time of new inputs (linear in the depth of the final tree). In this
Chapter, we describe the criterion used by GLEAMS.
A popular approach is to fit a constant model on each cell [10, CART]. We see two
problems with constant fits. First, this tends to produce large and thus hard to interpret
trees (see, e.g., Chan and Loh [14]). Second, the local interpretability would be lost,

89

since the local models would not depend on the features in that case. Thus we prefer to
fit linear models on each leaf, and our numerical criterion should indicate, on any given
leaf, if such simple model is a good fit for f .

0 25 50 75 100 125 150 175 200
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

f(x
i)

measurement points

0 25 50 75 100 125 150 175 200
t

0

500

1000

1500

2000

||B
(t)

||

cumulative score process (norm)

Figure 8.3: Evolution of the norm of the cumulative score process. Top panel: mea-

surements of a piecewise-linear model (dark dots) visualized along one axis. Bottom

panel: evolution of ∥B(t)∥1 as a function of t (solid blue line). The process presents a

clear maximum, which gives us a candidate split for this axis (vertical red line).

GLEAMS relies on a variant of model-based recursive partitioning [122, MOB]. Intu-
itively, any well-behaved function can be locally approximated by a linear component,
yielding a statistical model which we now describe. On any given leaf, for any given
feature j, we can reorder the measurement points such that the points contained in the
leaf are x̂(1), . . . , x̂(n), with x̂

(1)
j ≤ . . . ≤ x̂

(n)
j . To these points correspond model values

ŷ(1), . . . , ŷ(n). In accordance with the intuition given above, we write ŷ(i) = β⊤x̃(i) + Ei
for all i ∈ [n], where β ∈ Rd+1 are the coefficients of our local linear model, x̃(i) ∈ Rd+1

is the concatenation of x̂(i) with a leading 1 to take the intercept into account, and Ei
is an error term. Let us now follow Merkle and Zeileis [80] and make an i.i.d. Gaussian
assumption on the Eis, giving rise to the likelihood

L(β; x̂(i)) = 1

(2πσ2)d/2
exp

(
−1
2σ2

(ŷ(i) − β⊤x̃(i))2
)
, (8.1)

where σ2 > 0 is the variance of Ei for all i ∈ [n]. Taking the log in Eq. (8.1), the
log-likelihood of a single observation is given by

ℓ(β; x̂(i)) =
−1
2

{
1

σ2
(ŷ(i) − β⊤x̃(i))2 + d log 2πσ2

}
. (8.2)

The individual scores are obtained by taking the partial derivatives of the log-likelihood

90

with respect to the parameters, that is, for any i ∈ [n],

s(β; x̂(i)) =

(
∂ℓ(β; x̂(i))

∂β0
,
∂ℓ(β; x̂(i))

∂β1
, . . . ,

∂ℓ(β; x̂(i))

∂βd

)⊤

. (8.3)

A straightforward computation yields

s(β; x̂(i)) =
(
ŷ(i) · x̃(i) − x̃(i)x̃(i)Tβ

)
σ−2 . (8.4)

The maximum likelihood estimate β̂ is obtained by solving
∑

i s(β; x̂
(i)) = 0: in this case

this coincides with the ordinary least-squares estimate, in a sense the best linear fit
on the entire leaf. However, what we want is to split this leaf if the deviations from
the linear model computed on the whole leaf are too strong. Therefore, we compute the
cumulative score process defined by

∀t ∈ [0, 1], Bj(t; β̂) =
1√
n

⌊nt⌋∑
i=1

s(β̂; x̂(i)) , (8.5)

and take as a criterion the maximum of the L1 norm of Bj(t), across all features. The
computation of the best split is described in Algorithm 6 and we provide an example in
Figure 8.3.

Algorithm 6 GetBestSplit: Get the best split for a given leaf.

Require: x̂(1), . . . , x̂(n): Sobol points in current leaf; ŷ(1), . . . , ŷ(n): corresponding f values
1: for j = 1 to d do
2: re-order x̂(1), . . . , . . . , x̂(n) according to feature j
3: re-order ŷ(1), . . . , ŷ(n) accordingly
4: compute β̂ = OLS(Ŷ ; X̂)

5: compute predictions y
(i)
ML

6: set σ2 = 1
n

∑n
i=1(ŷ

(i) − y(i)ML)
2

7: compute scores s(β̂; x̂(i)) according to Eq. (8.4)
8: compute Bj according to Eq. (8.5)
9: store mj = maxt∈[0,1] ∥Bj(t)∥1
10: store tj = argmaxt∈[0,1] ∥Bj(t)∥1
11: return j⋆ = argmaxj∈[d]mj, feature to split
12: return t⋆j , value of the split

13: return β̂, local linear model

Note that Eq. (8.5) corresponds to Eq. (13) in Merkle and Zeileis [80], with the notable
difference that Eq. (13) is normalized (by the square root of the estimated covariance
matrix of the scores). We observe empirically that normalizing yields worse results when
detecting the splits.

91

8.1.3.0. Global surrogate model

To build the global surrogate model f̂ , starting from the hyper-rectangle X , we iteratively
split along the best dimension following the strategy described in the previous Chapter.
This process is stopped once one of two criteria is met. On the one side, we stop splitting
when leaves have a coefficient of determination which is high enough: in that event, the
linear fit on the leaf is good enough and there is no need to split further. In practice,
we observe that R2 > .95 is a reasonable stopping criterion. On the other side, one
needs a minimum number of points to be able to fit a linear model in dimension d, thus
GLEAMS also stops splitting if the number of points in the leaf is less than a threshold
nmin. In practice, we set nmin = min(20, d + 1). This recursive procedure is described in
Algorithm 7, and an example output is showcased in Figure 8.4.

Algorithm 7 RecTree: Recursive construction of f̂ .

Require: R: hyper-rectangle; S: Sobol points inside R; V : values of f on S
1: initialize T ← X , tree storing partition and models
2: for L ∈ T.leaves do
3: if R2(L) ≤ ρ and n(L) ≥ 2nmin then
4: set x̂ = {x̂(1), . . . , x̂(n)} = S ∩ L
5: set ŷ = {ŷ(1), . . . , ŷ(n)} accordingly
6: (j, tj) = GetBestSplit(x̂, ŷ)
7: Lℓ ← L ∩ {x̂ : x̂(i)j ≤ tj}
8: Lr ← L ∩ {x̂ : x̂(i)j > tj}
9: L.left child← RecTree(Lℓ, S, V)

10: L.right child ← RecTree(Lr, S, V)
return T

The construction of the global surrogate model, f̂ , is then achieved by simply sampling
Sobol points on X , computing the value of the black-box model at these points, and then
using Algorithm 7. This is summarized in Algorithm 8.

Algorithm 8 GlobalSurrogate: Compute the global surrogate model used by GLEAMS.

Require: f : black-box model; X or its boundaries; N : number of Sobol points; ρ: R2

threshold; nmin: min. number of points per leaf
1: generate S = {x̂(1), . . . , x̂(N)} Sobol points in X
2: compute ŷ(i) = f(x̂(i))
3: V ← {ŷ(1), . . . , ŷ(N)}
4: return T ← RecTree(X , S, V)

GLEAMS computational complexity directly relates to the number N of Sobol points
instead of the dataset size, enabling it to be computed in reasonable time even for very
large datasets. However, since GLEAMS relies on a tree-like partitioning, maximum
depth is unknown a priori, making hard to state its complexity. We only provide a rough
complexity for the Bj(t) process, which is O(Nd2nmin). Notice how Bj(t) complexity is
much lower than linear models complexity of roughly O(N3).

92

13/10/22, 14:09 Chart

about:blank 1/1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1

Figure 8.4: Partition of X produced by Algorithm 7. On each rectangular cell of P , a
linear model is fitted on the Sobol points evaluations of f .

8.1.4.0. GLEAMS Explanations

Let us now assume that we computed the global surrogate model f̂ , that is, a piecewise-
linear model based on a partition of X . At query time, each new example to explain
x(i) ∈ X is rooted to the corresponding hyper-rectangle R in the tree structure, and thus
associated to a linear model β̂R, since the local linear model is fixed inside the cell R.
From this local linear model, we can directly get different sorts of explanations.
We start with local attributions: simply looking at the coefficient β̂R

j tells us how

important feature j is to predict f(x(i)), locally. The intuition here is that f is well-
approximated by x 7→ (β̂R)⊤x(i) on the cell R, thus local variations of the model along
specific axes are well-described by the coefficients β̂R

j . To put it plainly, if β̂
R
j ≫ 0, then we

can say that feature j has a large, positive influence on predicting f(x(i)). As explained in
the introduction, these local explanations can be obtained in constant time, without re-
sampling and querying the model. Moreover, we have precise insights regarding the scale
of these explanations, which is given by the size of R. We see this as an advantage of using
GLEAMS: the portion of space on which the black-box model is locally approximated is
well-identified and accessible to the user. This is not the case with methods such as LIME,
where the local region depends on hyper-parameters that are not fully translatable into
variable boundaries.
Another type of explanations that we can obtain in a straightforward fashion are global
attributions. We define the global importance of feature j as the aggregation of the
local importance of feature j on all cells of the partition P of X . There are several ways
to aggregate those. GLEAMS outputs the weighted average of the absolute value of the
local importance. More precisely, the global importance of feature j is given by

Ij :=
1

V(X)
∑
R∈P

V(R)
∣∣∣β̂R

j

∣∣∣ , (8.6)

where V(E) denotes the d-dimensional volume of E. The motivation for weighting by the
cells’ volume in Eq. (8.6) is to take into account the fact that even though feature j is
very important in a tiny region of the space, if it is not on all other cells then it is not

93

−0.4 −0.2 0 0.2 0.4 0.6

long

yr_built

sqft_living15

grade

sqft_living

positive
positive
negative

coef

va
ri
ab
le
s

Figure 8.5: Local importance (feature attribution) for a regressor trained on the house

sell dataset (see Chapter 8.2.2). We display only the top 5 features to improve readability.

globally important. We take the absolute value to take into account the possible sign
variations: if feature j is positively important on many cells but negatively important on
a similar number of cells, then simply taking the average would tell us that the feature is
not globally important. Such global attributions provide a faithful variables ranking,
based on the impact they show on f predictions.

Notice that Eq. 8.6 exploits the hyper-volume V(R) to compute the weighted average of
the local coefficients β̂R

j . This procedure assigns different importance to each partition R
solely based on its size, yielding true to the model global attributions. It is straightfor-
ward to modify the weights in Eq. 8.6 to obtain true to the data global attributions: it
is just required to consider the percentage of Dtrain units falling inside the given partition
R

Ij :=
1

N

N∑
i=1

∣∣∣β̂j(x(i))∣∣∣ , (8.7)

where β̂j(x
(i)) corresponds to β̂R

j for the partition R in which the Dtrain unit x
(i) falls

in. True to the data attributions can also be obtained as an average over partitions
instead of over Dtrain units, by previously computing the fraction of units in each partition
R. -This speeds up the computation, since we usually obtain a much lower number of partitions

than training points-. Equation 8.7 gives more importance to relevant partitions, namely
regions with high data density, while regards low density partitions as less important.
Equation 8.7 can be computed on any dataset different from Dtrain .
In the following experiments, we consider only the true to the model global attri-
butions, to be able to thoroughly inspect GLEAMS explanations quality in a controlled
environment. However, GLEAMS true to the data global attributions can be very
useful in business use-cases and they are straightforward and computationally cheap to
compute once we already retrieved the GLEAMS global surrogate model.

Finally, another type of explanations that GLEAMS can provide are answers to “what
if” questions. Indeed, simply by querying the GLEAMS piecewise linear model f̂(x(i))

94

at different values of xj, we can answer to the question “what would be the decision if
we changed feature j by this amount?” More precisely, for a given example x(i) and a
feature j, we can look at the evolution of f̂ when all coordinates of the input are fixed
to x(i) , except the j-th: it suffices to travel in the cells intersecting the line of equation
xj = ξj, with ξj ranging in [aj, bj] -boundaries of the feature Xj-, and read the coefficients β̂R

j

of the local linear models associated with the R partitions intersected by the line. These
what-if explanations provide answers to both local and global changes of the variable Xj .
Moreover, they can be computed quickly, since there is no sampling and further calls to
f -we just inspect the set of partitions to retrieve the relevant ones-. This allows us to present
the user with a cursor which can be moved to set the feature value and present the user
with explanations in real time (see Figure 8.6).

Figure 8.6: What if my house was bigger? Answering what-if questions for a regressor

trained on the house sell dataset (see Chapter 8.2.2). Moving along feature sqft living,

for a given example (yellow dot), we can visualize specific values of f (Sobol points in

blue) as well as the linear approximations used by GLEAMS (in green).

It is interesting to notice that global methods consisting of averaging local LIME expla-
nations, such as GlocalX [101], ideally compute quantities with similar meaning to Eq.
8.6 and can be considered similar to GLEAMS under this aspect. Although, GLEAMS
provides inherent fidelity scores for each single linear model ensuring that the piecewise
linear approximation is faithful to the ML model. This is not always the case for LIME
explanations, as explained in detail in Chapters 5,7. Another important difference con-
sists in GlocalX being able to compute true to the data global attributions only -since
GlocalX averages feature importances computed over the entire Dtrain data-, while GLEAMS
provides both global true to the data and true to the model feature importances,
along with the possibility of evaluating what-if scenarios. The whole set of GLEAMS
explanations are computed without additional overhead, provided that the only ingredient
is the domain partition and the related local linear coefficients.

8.2.0. Experiments

In this Chapter, we show GLEAMS at work in different situations. We first demonstrate
in Chapter 8.2.1 how the partitioning scheme is able to recover the structure of the model
surface, on toy data. In Chapter 8.2.2, we show that explanations provided by GLEAMS
are on par with other post-hoc methods (but without recomputing the explanations for
each new example).

95

8.2.1.0. Toy data

As a first sanity check, we ran the partition scheme of GLEAMS on simple models and
checked whether the surrogate model f̂ was indeed close to the true model f . In order
to have a ground-truth for the partition, we chose partition-based models, i.e., there
exists a partition P of X such that the parameters of f are constant on each rectangular
cell R ∈ P . We considered a simple setting where the model is piecewise-linear with
rectangular cells, a situation in which GLEAMS could, in theory, recover perfectly both
the underlying partition and the coefficients of the local models. We present here two
examples: (i) a discontinuous piecewise-linear model with arbitrary coefficients, and (ii)
a piecewise-linear model with continuity constraints. Example (i) is a generalization of
the surface produced by a Random Forest regressor, while example (ii) is reminiscent
of a fully-connected, feedforward, ReLU activated neural network. Note however that
for the latter, the cells of the partition are more complicated than simple rectangles, see
Montufar et al. [85] (in particular Figure 8.1). In each case, GLEAMS recovers perfectly
the underlying model, as demonstrated in Figure 8.7.

−20

−15

−10

−5

0

5

10

15

−20

−15

−10

−5

0

5

10

15

−0.5

0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

2

2.5

3

Figure 8.7: Approximating piecewise-linear models with GLEAMS surrogate model. Left

panels: example (i), model on the left and GLEAMS surrogate on the right. Right

panels: example (ii), model on the left and GLEAMS surrogate on the right.

It is interesting to notice that, despite having a stopping criterion on the coefficient of
determination, not all leaves satisfy this criterion since the other stopping criterion is a
minimal number of points per leaf. Thus it is possible to end up in situations where the
R2 on a given leaf is sub par. Nevertheless, these leaves are by construction quite small.
For instance, in example (i), the average R2 is equal to 1, and in example (ii) it is equal
to .98.

8.2.2.0. Real data

We now report results on the UCI real-world data described in Chapter 3.3. Our goal
here is to show that GLEAMS provides explanations whose quality is comparable to that
of other attribution approaches, while providing these attributions in constant time and
additional insights.
Among the different evaluation frameworks described in Chapter 4.3, we choose to com-
pare GLEAMS to existing methodology using monotonicity and recall.
For the monotonicity, we consider two natural choices for the Uniform distribution p in
Eq. (4.9). First, p ∼ U([ℓj, rj]), where ℓj (resp. rj) are the left (resp. right) boundaries of
R along feature j, where R is the cell containing x(i) , which yields the local monotonic-
ity metric: how well the attributions reflect the variations in prediction locally, that is,

96

from the point of view of GLEAMS, on R. Second, p ∼ U([aj, bj]), which corresponds to
global monotonicity: how well the attributions reflect the variations in prediction on
the whole input space along feature j. Regarding the Recall metric, we report the average
recall over all points of the test set unless otherwise mentioned.

Regarding the ML model applied on the three datasets, we consider only XGBoost
and the multi-layer perceptron (MLP) regarding Linear Regression as a pretty sim-
ple model which does not require explanations and which should not pose any specific
complication to the different explainability methods.

Methods. We compared GLEAMS to three methods, namely LIME for tabular data,
SHAP, and PDP. We used default parameters, except for the number of feature combina-
tions tested in SHAP for the recall metric, which were shrunk to 500 to limit computing
time. GLEAMS results have been obtained using N = 15 (number of Sobol points),
which guaranteed a running time in the order of 5 minutes for each of the three datasets
at hand.

Results. We present our results in Table 8.1, reporting the average metrics taken on
the test set. We recall that all evaluation methods are described in Chapter 4.3.
PDP generally achieves better monotonicity metrics, since it is designed precisely to
obtain feature attributions related to the feature impact on the predictions, but it
performs worse on the recall task. We notice that GLEAMS shows better results on
local and global monotonicity compared to LIME and SHAP on the wine dataset,
while GLEAMS performances start to degrade with an increased number of features. In
particular we notice the poor performance on local monotonicity of the MLP model
for the Parkinson dataset. The degradation is due to the higher dimensionality of the
two datasets, which makes models surface more complex (MLP in particular). Increasing
N would likely improve the results, enabling smaller partitions and more accurate local
models. Regarding the recall metric, SHAP stands as the best in class, while GLEAMS
is usually slightly worse but still comparable with LIME, and systematically better than
PDP.
In general, we consider GLEAMS on par with state-of-the-art explanation methods, in
terms of reliability of explanations.

To sum up, we presented GLEAMS, a new interpretability method that approximates
a black-box model by recursively partitioning the input space and fitting linear models
on the elements of the partition. Both local and global, true to the data and true to
the model, as well as what-if explanations can then be obtained in constant time, for
any new example, in sharp contrast with existing post-hoc methods such as LIME and
SHAP -which provide only specific types of explanations, and require retraining of the algorithm

to explain a new instance-.
Perhaps the main limitation of the method is the assumption that all features are con-

97

Table 8.1: Experimental results.

dataset eval method LIME SHAP PDP GLEAMS

XGB MLP XGB MLP XGB MLP XGB MLP

wine local monoton 0.38 0.51 0.40 0.53 0.56 0.84 0.51 0.77

global monoton 0.24 0.74 0.27 0.78 0.70 0.89 0.36 0.85

recall (6 true feat) 0.89 0.80 1.0 0.87 0.50 0.50 0.77 0.75

house local monoton 0.05 0.63 0.52 0.82 0.51 0.83 0.37 -0.19

global monoton 0.23 0.63 0.37 0.81 0.38 0.82 0.47 0.24

recall (10 true feat) 0.85 0.74 0.99 0.69 0.40 0.40 0.61 0.58

Parkinson local monoton 0.10 0.26 0.47 0.55 0.28 0.49 0.50 0.01

global monoton 0.31 0.46 0.41 0.71 0.52 0.66 0.30 0.36

recall (10 true feat) 0.86 0.77 0.97 0.80 0.40 0.40 0.50 0.60

tinuous. As future work, we aim to extend GLEAMS to mixed features (both categorical
and continuous). Another limitation of the method is the initial number of model queries
needed. One possible way to reduce it would be to evaluate the local regularity of f and
to sample less when the model is smooth.

98

99

Chapter 9
Explainability for Synthetic Data

Eventually, we consider also the complex scenario related to Synthetic Data.
Synthetic data is artificially generated data that is designed to closely resemble real-world
data. It can be used in a variety of business scenarios, such as testing and training machine
learning models, creating realistic simulations, and protecting sensitive data. There are
several reasons why synthetic data is important in business scenarios:

• Data privacy: Synthetic data can be used to protect sensitive data by replacing
it with artificially generated data that preserves the statistical properties of the
original data, but without any of the personal or confidential information. This
allows businesses to use data for testing and training purposes without risking a
data breach.

• Data availability: In some cases, businesses may not have access to the data they
need for testing and training purposes. Synthetic data can be used to generate the
necessary data, allowing businesses to proceed with their projects without delays.

• Data diversity: Synthetic data can be used to generate a diverse range of data,
including data from rare or hard-to-collect categories. This can be useful for testing
and training machine learning models that need to be able to handle a wide range
of input data.

• Data quality: Synthetic data can be generated to be free of errors, biases, or other
issues that may be present in real-world data. This can make it easier to obtain
high-quality results when testing or training machine learning models.

• Data cost: Generating synthetic data can be cheaper and faster than collecting real-
world data, especially if the data needed is difficult or expensive to collect. This
can save businesses time and resources.

Because of these reasons, Synthetic Data usage is becoming more and more frequent in
business scenarios. In particular, there is a huge interest in using synthetic data to build
complex Machine Learning models.
This occurrence adds another level of complexity in order to explain these models. In
fact, we are required to understand what the model learnt from the synthetic data, but

100

at the same time also whether the synthetic data represents well the original data. If the
second assumption does not hold, generated explanations will be useless since they do not
relate to real-world scenarios.

Our goal is therefore to understand the fidelity degree of synthetic data compared to the
original data used to generate them, from now on we will call it synthetic data quality. At
the same time, we must strive to protect the privacy of the original data, in fact privacy
and data quality usually behave as two antagonistic features.

Hereafter we provide a summary of the salient characteristics of Synthetic Data and we
provide both theoretical and practical means to evaluate them. This is a fundamental step
to ensure that synthetic data are reliable and resemble original data, so that explanations
based on them will be meaningful.

Recall that Dtrain and Dtest are two dataset coming from the same Data Generating Pro-
cess (DGP). They usually arise by splitting the original data into two separate sets, in
order to train unbiased ML models. In this situation, Dtrain is the dataset used to fit a
generative model G with the capability of producing a new dataset, Dsynth. To avoid any
bias, Dtest will act as the benchmark dataset.

Previous approaches to synthetic data evaluation are well summarized into three concepts:

• Dsynth shall retain the statistical properties of the original data, i.e. Dtest.

• Data Utility: Prediction models built respectively on Dtrain and Dsynth shall be the
most similar as possible. -Model comparison is carried out on Dtest-

• Privacy of the Dtrain individuals and new ones (emulated by Dtest) shall be guaran-
teed.

Figure 9.1: DAISYnt Pipeline

Hereafter, we review statistical similarity and data utility, while the privacy topic, has
its own dedicated Chapter 9.4. Hittmeir, Ekelhart, and Mayer [53] compare the two cor-
relation matrices and evaluate data utility comparing an aggregate performance metric,
namely MAE. The same authors in [54] consider dataset similarity as well, by matching
the histograms of univariate distributions. Unfortunately, the comparison relied on vi-
sualization techniques, without providing any similarity metric. In [118], the correlation

101

matrix comparison is performed either, while the similarity of univariate distributions
is assessed using the Kolmogorov-Smirnov (KS) two-sample test. In [30] correlation is
calculated by means of a particular ϕ coefficient (enabling its usage on both categorical
and continuous variables). In [63] the Synthetic Ranking Agreement (SRA) is proposed
to assess data utility, even if it is based on heuristic assumptions. In [1], the authors de-
vise three separate metrics to evaluate distribution similarity employing innovative tools.
Eventually, the Synthetic Data Vault (SDV) [89] provides a sandbox for open-source gen-
erative models and related quality metrics.

9.1.0. General Comparison Tests

In many business scenarios, data is solely used for descriptive statistics. The following
tests check Dsynth usefulness for these general-purpose, yet very popular, tasks.

9.1.1.0. Pairwise Correlation

Pairwise correlation is a well-known technique to measure the strength of the association
between two variables. The test compares the pairwise Spearman correlation matrices
RT ,RS, respectively obtained on the Dtest and Dsynth datasets. Spearman retrieves a
good amount of non-linear correlations, while it behaves as Pearson coefficient for linear
dependence. However, it requires numerical variables. To this end, we encode categorical
variables using the CatBoost encoding [21], i.e. an improved version of the Target Encod-
ing which provides guarantees about no information leakage. The technique retains the
relationship between the variable to be encoded and the target, while it may distort asso-
ciations with other independent variables. To compensate for that, the Catboost Encoder
is trained on the Dtest and its mapping is applied to Dsynth, ensuring the same distortion
on both datasets, i.e. preserving their similarity.

Figure 9.2: RT ,RS matrices for the Adult dataset

Matrix similarity is evaluated through a rescaled version of the Frobenius norm [51]:

dcorr
(
RT ,RS

)
= 1−

tr
{
RTRS

}
∥RT∥F ∥RS∥F

= 1− < RT ,RS >F

∥RT∥F ∥RS∥F

The Frobenius inner product concatenates the rows of the matrix and computes the

102

euclidean inner product between the two vectors. Intuitively, it consists of element-wise
comparison of the two matrices.

9.1.2.0. Predictive Power comparison

The Information Value (IV) [121] measures the strength of the association between each
variable and the target, commonly employed in Credit Scoring for feature selection. It
requires categorical variables, so the continuous ones have been binned according to the
deciles of their marginal distribution. We compute two IV vectors IV T , IV S on Dtest and
Dsynth respectively, and measure their similarity by means of Pearson linear correlation:

ρ(IV T , IV S)

High values ensure that Dsynth maintains the same variables ranking and relative distance
between values, while specific IV numbers might differ.

Figure 9.3: IV T , IV S vectors for the Adult dataset

9.2.0. Distributions Comparison Tests

The most powerful tool to describe a dataset is the multivariate distribution: it encodes
all the variables information, such as moments, single feature marginal distribution and
multivariate distribution for groups of features, pointing out correlations and interactions.
Having considered estimating the Dtest, Dsynth (pdf) and subsequently comparing them,
we recognize this is not a viable solution. In fact, parametric estimation is not easily
generalizable since it requires domain knowledge for the distribution choice, while non-
parametric methods do not provide pdf formulas for the comparison. Therefore, we opted
for discrepancy tests between the two pdf, without explicitly estimating them.
Moreover, since we deal with finite datasets, multivariate tests may fail. Thus, we detach
univariate and multivariate distribution comparison. This ensures accurate results on the
low-dimensional tests while it provides a theoretically solid framework to perform high-
dimensional testing, even being aware they could fail due to a huge number of features.

9.2.1.0. Univariate Distributions

There are no proper techniques working well for both categorical and continuous features.
Convenience solutions entail converting continuous variables into categorical, through
binning methods, at the cost of losing information (we lose granularity coercing continuous
variables with many different values into a fixed number of bins). Conversely, it is difficult
to convert categorical features to continuous ones without distorting the multivariate
distribution. We keep the two comparisons separated, in order to employ more powerful
tests.

103

Univariate Distribution - Continuous variables Consider the generic continuous
variable X(k): X

T
(k) (X(k) values in Dtest) are drawn from the fT

(k) marginal distribution,

while XS
(k) (X(k) values in Dsynth) stem from fS

(k). The test goal is to assess whether the

null hypothesis H0 : f
T
(k) = fS

(k) holds.

Distributions are fully characterized by the collection of their moments (eg. mean, vari-
ance, skewness, kurtosis etc), hence an intuitive approach is to search for differences in the
XT

(k), X
S
(k) moments. Regardless of which moment is involved, it is possible to distinguish

the two distributions by choosing a proper q function and evaluating its expectation. Two
equal distributions shall obtain similar expected values for each valid q. As an example,
difference in variance can be grasped using q(x) = x2.

(a) Difference in Mean (b) Difference in Variance (c) Higher-order moments diff

Figure 9.4: Examples of different distributions

Maximum Mean Discrepancy (MMD) [39] looks for the q maximizing the difference be-
tween the two expectations:

MMD[Q, XT
(k), X

S
(k)] := sup

q∈Q

(
1

m

m∑
i=1

q
(
xT(k),i

)
− 1

n

n∑
j=1

q
(
xS(k),j

))
(9.1)

Here m,n respectively stand for the Dtest, Dsynth sample size, while expectations have
been replaced by the sample means. Under mild regularity conditions (Q contains only
continuous, bounded, smooth functions), MMD is guaranteed to be different from 0 only
when fT

(k), f
S
(k) are truly different. However, the superior operator requires screening all the

valid q ∈ Q, making Equation 9.1 impractical to compute. An efficient MMD formulation
involves kernel functions:[

1

m2

m∑
i,j=1

k
(
xT(k),i, x

T
(k),j

)
− 2

mn

m,n∑
i,j=1

k
(
xT(k),i, x

S
(k),j

)
+

1

n2

n∑
i,j=1

k
(
xS(k),i, x

S
(k),j

)] 1
2

The usual choice for k(·, ·) is the Gaussian kernel, thanks to its ability to screen infinitely
large function spaces. In our implementation of the test, we take advantage of the heuristic
provided in [110] to choose the proper value for σ (the only hyper-parameter for the
Gaussian kernel).
Eventually, we estimate the distribution of MMD under the Null Hypothesis H0, using a
permutation test [110]. It essentially consists of randomly partitioning the data Dtest ∪

104

Dsynth into D′
test and D

′
synth (under H0 the two samples come from the same distribution)

and computing the MMD. Repeating it many times, we obtain a numerical approximation
of its distribution. With it, we calculate the acceptance interval (considering a 5% type
I error), through which we establish whether the variable X(k) passed the univariate
similarity test.

(a) Dtest, Dsynth distribution histograms (b) Confidence Interval for the MMD test

Figure 9.5: MMD Test on the Age variable. Here the test failed, meaning that Age

distribution is different in Dtest and Dsynth

While MMD is one of the most powerful tests for distribution similarity, it does not scale
well for large datasets (due to kernels). In DAISYnt the test runs on Dtest and Dsynth

sub-samples, whose size can be set by the user to match its computational and hardware
requirements. An additional option for extremely large datasets, is to bin continuous
variables using deciles and perform the faster categorical distribution testing, at the cost
of a coarser result.

Univariate Distribution - Categorical variables The MMD based test is no use
for categorical variables, therefore DAISYnt incorporates a classic Chi-Square two-sample
test. The null Hypothesis H0 “no significant difference in the X(k) class frequencies
between Dtest and Dsynth” has formula:

C∑
k=1

(
fT
(k),c − fS

(k),c

)2
fT
(k),c

∼ χ2
(n−1)×(C−1)

where c shuffles through the different X(k) classes, fT
(k), f

S
(k) are the class frequencies in

Dtest, Dsynth. Under H0, the test exhibits a χ2 distribution with degrees of freedom
df = (n − 1) × (C − 1), which allows controlling the type I error (DAISYnt default
is 5%). Eventually, it is important to check whether the assumptions are met, in partic-
ular the test is meaningful only if at least 80% of the classes have an expected frequency
(in this case fT

(k)) greater than 5 and no class has 0 frequency in fS
(k) [25]. Following these

prescriptions, DAISYnt do not test variables not complying with such criteria.

105

To obtain a unified metric, DAISYnt applies the proper test to categorical and continuous
variables separately and calculates the fraction of accepted trials.

9.2.2.0. Multivariate Distributions

As already stated, high dimensionality and mixed data are notable challenges for two-
sample distribution tests. To this end, feature selection is employed and categorical and
continuous variables are considered separately. As a minor limitation, DAISYnt cannot
discover any difference in distribution for groups of mixed variables.

Multivariate Distribution - Continuous Variables Based on empirical experi-
ments, we deduce that MMD greatly suffers the curse of dimensionality. Hence, we restrict
the similarity test to the subset of meaningful variables only, namely the relevant ones
for a given prediction task. Boruta [72] is the method of choice, thanks to its stability,
reliability and reasonable computational time.

Boruta improves the Tree-based feature importance, known to be particularly unreliable
in presence of correlation and interactions among variables [108]. The method creates
“shadow features” (variables with no relationship with the target variable) and iteratively
generates Random Forest models, computing confidence intervals for the feature impor-
tance scores. Variables with significantly higher feature importance than any shadow
feature are the relevant ones. Repeated trials ensure statistical stability of the procedure,
while the choice of Random Forest models, which do not require any fine-tuning, guaran-
tees an acceptable computation time.

DAISYnt relies on Boruta to extract the set of numerical meaningful features and runs
the MMD test on it. The test is much more likely to fail whenever one of the important
variables had already failed the univariate test. Moreover, even if all the single variables
passed the univariate test, the multivariate one may fail due to differences in correlations
and interactions. Substantially, the multivariate comparison is more challenging but, in
case of acceptance, gives strong evidence of distribution similarity.

Multivariate Distribution - Categorical Variables We propose to extend the Chi-
Square test to groups of categorical variables by considering a new feature, whose classes
are the cartesian product of the group variables’ classes, and frequency given by the con-
tingency table. The test is carried out on the new feature. Notice that the more variables
in the group, the more likely the test assumptions are not met.

DAISYnt considers the power set of the categorical variables. Starting from the 2-variables
groups, it checks whether the test assumptions are fulfilled. If so, the Chi-Square test is
carried out and the acceptance/rejection is recorded, otherwise the group is discarded.
Bigger groups are tested only if all the sub-groups met the assumptions (otherwise the
super-group would fail them either). The fraction of accepted tests is the DAISYnt
similarity metric for multivariate categorical distributions.

106

9.2.3.0. Discriminator Model

Eventually, we propose to aggregate Dtrain, Dtest and Dsynth together, label each tuple as
original/synthetic, and train a discriminator model to predict the label. Both Dtrain, Dtest

are used to ensure test robustness, for small Dtest dataset. Even if this test is not explic-
itly concerned with distributions, discriminators obtain good performance by implicitly
learning distributional differences between the two datasets.

DAISYnt exploits a Gradient Boosting dxgb and a shallow Neural Network dnn as dis-
criminators (more on model specifics in the Data Utility Chapter 9.3), and evaluates their
performance using Gini Index. Since we strive for synthetic data to be not distinguishable
from the real ones, the discriminator test metric is rescaled as follows:

1− Gini(dxgb) +Gini(dnn)

2

9.3.0. Data Utility Tests

Synthetic data have many different applications, not least to replace real data in predic-
tion tasks. Conceptually, two datasets stemming from the same multivariate distribution
shall yield the same insights, but this is not always the case when advanced models are
involved.
To ensure synthetic data maintain data utility, DAISYnt trains prediction models respec-
tively on Dtrain and Dsynth and devises three tests with an increasing level of detail.

The models employed are Gradient Boosting (Xgboost [16] implementation) and Neural
Network. Xgboost is trained with shallow decision trees of 4 splits. The Neural Network
consists of a single hidden layer of 256 neurons, with Relu activation function. Early
stopping is used to avoid overfitting. Both frameworks have been trained twice on the
Dtrain and Dsynth datasets, obtaining four models GBS, GBT , NNS, NNT . DAISYnt
compares the two frameworks separately, using Dtest as benchmark.

9.3.1.0. Aggregate Prediction Comparison

Since DAISYnt mainly focus on binary classification tasks, it computes the AUC difference
on the Dtest predictions of the four models, considered in pairs. Assuming that models
trained on Dsynth cannot approximate the true underlying DGP better than the Dtrain

ones (well-grounded assumption in practice), the metric is rescaled as follows:

1− AUC(GBT (Dtest))− AUC(GBS(Dtest) + AUC(NNT (Dtest))− AUC(NNS(Dtest)

2

9.3.2.0. Single Prediction Comparison

Woefully we acknowledge that AUC, due to its aggregate nature, does not guarantee the
similarity of single predictions. Conversely, obtaining the same prediction probability

107

Figure 9.6: ROC Curve comparison of GBS, GBT models, and relative AUC

rankings (on the Dtest individuals) is important to produce the same insights.

To this end, we define the Dtest target variable as Y and the models predictions as
Ŷ S
GB, Ŷ

T
GB, Ŷ

S
NN , Ŷ

T
NN . DAISYnt compares prediction vectors using the Cosine Similarity,

which takes into account solely vector direction (corresponding to the ranking concept
for predictions). Cosine similarity is evaluated on the prediction vectors, for Gradient
Boosting and Neural Network separately. Results are then aggregated into a final test
metric:

CS(Ŷ S
GB, Ŷ

T
GB) + CS(Ŷ S

NN , Ŷ
T
NN)

2

9.3.3.0. Compare model internals

The most refined and challenging comparison step is to check whether the model internals
are the same. In a Neural Network, data flows through the network and gets transformed
according to the neurons weights. We define layer activations as the values obtained by
passing a data matrix through the network up to the chosen layer. The objective is to
compare the activations of the NNT and NNS hidden layers, when passing Dtest as the
data matrix. However, Neural Networks employ a huge number of parameters that fre-
quently cause an over-representation, i.e. there are possibly infinite ways of achieving the
same prediction, via different intermediate layer values. We cannot compare activations
directly: they would always be different. Rather, we consider two activations to be equal
when they are isotropic scaling or orthogonally invariant.

Figure 9.7: Toy example of transformations applied to activations matrices [69]

108

The HSIC quantity [40] captures orthogonal transformations but cannot handle the Isotropic
Scaling invariance, which can be achieved by rescaling it into the Centered Kernel Align-
ment (CKA) [69]. Both CKA and HSIC employ kernels to achieve the required transfor-
mations. Popular options are the linear and gaussian kernels, where the difference consists
of a trade-off between flexibility and computation time.

DAISYnt default consists in linear CKA between theNNT andNNS activations matrices,
since the linear kernel usually achieves very similar results to the gaussian one [69].

9.4.0. Privacy Tests

Since there exists no privacy regulation yet on synthetic data, we consider the taxonomy
of privacy risks related to personal data, issued in the Article 29 Working Party Opinion
05/2014. Only the Linkability risk definition is slightly modified, to emphasize that
building a generative model implies privacy obligations towards the Dtrain individuals.
The privacy dangers are grouped as:

• Singling out risk: The attacker single out an individual, using Dsynth.

• Linkability risk: The attacker learns whether a given Dtrain record has been used
to train the generative model.

• Inference risk: The attacker infers the value of a sensitive attribute for new
records, using the relationships contained in the Dsynth.

Hereafter, the focus is on black-box privacy attacks (the attacker has access to synthetic
data only) and how to defend against them, rather than on formal privacy frameworks
such as k-anonymity, l-diversity or differential privacy [4], which are difficult to evaluate
post-hoc. Membership Inference attacks usually exploit an overfitted generative model
which creates Dsynth records too close or too similar to the Dtrain ones. Closeness is used
in [52], while the similarity in [106], to retrieve which records belong to Dtrain. A different
attack can be devised using the same procedure as [64], i.e. training a model to predict a
Dsynth sensitive variable and exploit it to infer confidential information on new records.
In the following we will present tests useful either to ensure that privacy is not at risk or
to spot potential vulnerabilities.

9.4.1.0. Singling Out Tests

Cloned rows test The first test checks the presence of equal records in Dtrain, Dsynth

and measures their percentage. Cloned rows can be removed from the synthetic data, at
the cost of having fewer data and modifying the statistical properties of the dataset.

Close rows test The second test looks for very similar rows. DAISYnt converts con-
tinuous variables into categorical through binning, on both Dtrain and Dsynth, and use the
new categorical versions to calculate the Hamming distance for each original-synthetic
pair of records. Pairs with Hamming distance < 2 are considered close. The test metric
is the fraction of Dsynth records which are close to no Dtrain records.

109

Figure 9.8: Cloned and close rows between Dtrain and Dsynth

9.4.2.0. Linkability Tests

An overfitted G model may potentially leak information about the dataset used for train-
ing. In practice, an attacker may re-identify the Dtrain records starting from Dsynth, if she
has access to a database containing some of the Dtrain individuals.

Linkability distance test The assumption here is that an overfitted G model shall
produce Dsynth units much closer to the Dtrain ones than to Dtest [52], i.e. choosing a
fixed tiny size ϵ, the ϵ-neighbourhood of a generic Dtrain individual Uϵ(x ∈ Dtrain) will
presumably contain more x′ ∈ Dsynth than Uϵ(x ∈ Dtest). Since distance notions suffer
the curse of dimensionality, we perform Factor Analysis of Mixed Data (FAMD) [100]
to retrieve a restricted set of orthogonal variables. On the new coordinates system, we
compute the euclidean distance matrix between Dtrain ∪Dtest and Dsynth. The “median
heuristic” [52] supports the choice of ϵ. Per each x ∈ Dtrain ∪Dtest we count the fraction
of Dsynth units belonging to its neighbourhood, and use it as a ranking measure.

rank(x) =
1

nsynth

nsynth∑
i=1

1 (x′ ∈ Uϵ(x)) where x′ ∈ Dsynth

where 1 is the indicator function.
Under the initially stated assumption, Dtrain data should have higher rank values, i.e. the
rank variable should discriminate well between Dtrain and Dtest data. Its discrimination
power is measured through AUC, obtaining the test metric:

1− AUCrank

From a different standpoint, we create a classification model exploiting the closeness of
synthetic data to classify the units as Dtrain or Dtest.

Linkability ML test Information contained in Dsynth should be more valuable for re-
estimating the Dtrain data rather than Dtest, when G is an overfitted model [106]. To test
such assumption, we build a Neural Network on the Dsynth target variable and employ the
model to obtain target prediction ŷ|x on the x units of Dtrain and Dtest. Considering a
classification task, the cross-entropy error Err(ŷ|x) per each single prediction is computed
(yet the generality of the framework allows for any other error metric to be used).
As before, we test the the Err variable discrimination power, i.e. how well it separates
Dtrain from Dtest units. Considering the worst-case scenario, the threshold τ is chosen to
maximize the proportion differences of Dtrain, Dtest over and below τ (an attacker usually
does not have enough information to choose the best τ). The test metric is computed as

110

follows:

1−
(∑

x∈Dtrain
1{Err(ŷ|x) < τ}
ntrain

−
∑

x∈Dtest
1{Err(ŷ|x) < τ}
ntest

)

9.4.3.0. Inference Risk test

We assume that an attacker has access to a set of public variables Xpub, but only an
aggregate knowledge (average) of a sensitive variable ysens, i.e. ȳsens.
We measure the ysens increased disclosure the attacker gains, by obtaining Dsynth. The
attacker may build a prediction model f : Xpub → Ysens to predict the sensitive attribute
on any individual, rather than predicting ȳsens.

Recall that R2 metric calculates the prediction improvement using the f model, against
the basic average ȳsens prediction. We employ a slightly modified R2 version to measure
the inference risk on the Dtrain units:∑ntrain

i=1 (yi − f(Xpubs,i))
2∑ntrain

i=1 (yi − ȳsens)2

Such test is valuable for the data owner to understand the dangers of sharing Dsynth and
decide how to protect against them.

9.5.0. Applications

In order to test DAISYnt consistency and to show the relevant insights it produces, we
consider the Credit-Scoring dataset of Chapter 3.1. The scope of the application is to
create a reliable synthetic replica to be used for data sharing with model development
purposes. Given the highly regulated domain, we need to be able to provide explanations
for the resulting models. In order to do so, we need to prove the Synthetic Data relia-
bility first, to then allow ML model training and subsequently to explanations. In this
example we are going to assess Synthetic Data Validity only. In a real business scenario,
the practitioner can then choose the preferred explanation method and use it to produce
the required explanations.

We compare four different generative models, trained to produce Dsynth datasets of the
same Dtrain size, and DAISYnt is used to determine the best replica.

Different open-source [89] model implementations have been employed: i) Gaussian Cop-
ula (GC), ii) Conditional Tabular GAN (CTGAN), iii) CopulaGAN, iv) Tabular Varia-
tional Auto-Encoders (TVAE). Out-of-the-box SDV models were used with no fine-tuning
of the hyper-parameters. Concerning the test suite, DAISYnt package1 requires only few
essential parameters, namely the Dtrain, Dtest, Dsynth datasets, knowledge of the categor-
ical features and the target variable. These information are used for a shallow prepro-
cessing step, in which DAISYnt takes care of missing and special values (if specified). On
categorical variables they are handled using ad-hoc classes, while on continuous variables

1https://pypi.org/project/daisynt/

https://pypi.org/project/daisynt/

111

Table 9.1: DAISYnt results on the four Dsynth datasets models

Test Group Detail GC CTGAN CopGAN TVAE

Correlations General basic 0.93 0.96 0.97 0.94

Predictive Power General basic 0 0.97 0.92 0.38

Uni Distrib (bins) Distrib basic 0.81 0.94 0.88 0.94

Uni Distrib (MMD) in-depth 0.13 0.25 0.13 0.25

Multi-Cat Distrib Distrib basic 0.99 1 0.99 1

Multi-Cont Distrib Distrib in-depth 0 0 0 0

Discriminator Distrib in-depth 0.01 0.07 0.08 0.05

Aggregate Preds Utility basic 0.68 0.93 0.92 0.77

Single Preds Utility in-depth 0.02 0.46 0.42 0.12

Model Internals Utility in-depth 0.70 0.79 0.66 0.61

Cloned Rows Privacy basic 1 0.99 0.99 0.99

Close Rows Privacy basic 1 0.99 0.99 0.99

Linkability Dist Privacy basic 0.95 1 0.98 1

Linkability ML Privacy basic 1 0.99 1 0.99

they are treated through mean imputation and a flag indicating which records held the
missing/special fields. The target variable is instead required for data utility. Addition-
ally, we may specify the list of tests to perform, by default DAISYnt runs the entire set.

DAISYnt results are summarised in Table 9.1. All the tests described in the method-
ological sections have been performed, apart from the Inference Risk test. The latter
is especially valuable to understand the privacy implications of sharing synthetic data,
although it requires knowing which features are available to the adversary to carry out
an Inference attack.
General purpose tests guarantee same correlation and predictive power patterns, prov-
ing that the datasets can be used for descriptive analysis. Concerning the distribution
related tests, we notice satisfactory results for the univariate distributions (with binned
variables) and multivariate categorical distributions. However, more in-depth tests, such
as the MMD univariate, continuous multivariate distributions and the discriminator test,
show quite poor values. Since we tested just the vanilla implementations, distribution
discrepancies were expected. However, these results suggest the replicas cannot be em-
ployed for advanced statistical analyses, such as rebalancing good-bad payers [12]. About
data utility, aggregate predictions testify similar AUC values, but this is not enough to
enable model development on the synthetic data. In fact, the more in-depth single predic-
tion test shows that models on Dtrain and Dsynth achieve substantially different insights.
DAISYnt has been especially valuable in determining whether the generated datasets are
reliable enough to proceed further. Given the negative answer, the practitioner would be
required to either fine-tune the SDV generative models to obtain better performances or
to test different and more advanced generative models. Eventually, high privacy metrics

112

guarantee that privacy is preserved and the models do not overfit.
From a generative models standpoint, we notice that GAN models perform visibly better
with respect to Gaussian Copula and TVAE, especially in terms of data utility. The gen-
erated datasets may be used for data sharing purposes, thanks to good privacy results.
For model development purposes.

To sum up, we provide a taxonomy of the important aspects related to Synthetic Data and
powerful tests to assess them. The DAISYnt test suite is an easy-to-use python package,
characterized by modularity and flexibility. The tests are grouped by different properties
and level of detail. Based on the data generation purpose, we may choose the most ap-
propriate tests to run. In fact, different use-cases require different quality levels of each
concept. As an example, data sharing use-cases usually require high privacy levels, model
development needs good data utility, while data augmentation compels strong distribu-
tion similarity. In this regard, DAISYnt is particularly versatile and business oriented.

Future directions entail tests refinement and extending DAISYnt to regression and multi-
class classification prediction tasks, maintaining the applied use-cases focus and the cur-
rent ease of use.

113

Chapter 10
Conclusions

In this thesis we delved into the realm of Explanations for black-box and complex models.
We specifically focused on models trained on Tabular Data, posing specific emphasis on
the Credit Scoring domain.

The techniques described herein are widely applicable to any kind of prediction model
built on Tabular Data stemming from any domain. In fact, we specifically deal with
model-agnostic post-hoc techniques. These are essentially separate tools to be used on
top of the ML algorithm, making them especially suitable in business processes involving
already trained or even outdated models.

Among the well-known Explanation frameworks, our preference is towards Surrogate mod-
els, since they provide both: feature attributions and the chance to test specificwhat-if
scenarios. We recognize that Local Surrogates achieve better explanations, by means
of clarity and reliability, compared to the Global ones.
For this reason we delve specifically into the LIME framework, considered the predecessor
of most of the new Local surrogate techniques. We provide a thorough theoretical descrip-
tion, along with practical insights on each step of the algorithm, proposing improvements
regarding the choice of the local explainable model. We describe the weakpoints of the
method as well, giving particular attention to the instability issue and the complex task
of choosing the proper local size of the explanation. For both of them, we propose state-
of-the-art solutions, namely a pair of statistical stability indices and the OptiLIME
automated policy.

The Stability Indices allow the user to spot instability issues in a trained LIME explana-
tion. They are especially useful to certify reliability of single explanations, but also as a
quantitive benchmark to rely on for improving unstable explanations.
Building on that, the OptiLIME policy finds the best local neighbourhood size by lever-
aging the trade-off between stability and adherence of the explanations.

The further step consisted in blending together the local and global explanation frame-
works, maintaining the best of the two worlds. This is embodied by GLEAMS (Global
and Local ExplAnations through Model Space partitioning), an innovative algorithm par-

114

titioning the space in a Decision Tree fashion and training a Linear model in each partition.
The result is a piecewise linear model which provides local explanations with the same
level of detail as LIME, but with the added bonus of knowing exactly the local bound-
aries, i.e. how far we can push a what-if scenario and still consider the local explanation
valid. In addition, GLEAMS provides a global surrogate model, which allows for both
global feature attributions and extended what-if scenarios. GLEAMS requires to
be trained only once, to then provide explanations for any given unit in constant time.

Eventually, we consider the rising topic of Synthetic Data and its implications on Machine
Learning and related Explanations. In particular, Synthetic Data are considered the new
fuel for Machine Learning models: more and more companies are switching to synthetic
data for a variety of reasons, one above all privacy. From the Explanations viewpoint, it
is important to be aware that using synthetic data brings an additional complexity and
requires us to ensure that the generation step is faithful as well. In order to do so, we
propose a taxonomy of the four main concepts representing synthetic data goodness.
We develop specific tests to validate each concept, incorporated in DAISYnt: a compre-
hensive, fast and easy-to-use suite of tests. Moreover, DAISYnt is broad in scope, allowing
us to assess synthetic datasets suitability for a variety of different business scenarios.

115

List of Figures

2.1 Linear Regression Surface obtained on the Toy Credit Scoring Dataset
(Chapter 3.4.1). The model is trained to predict the Default Probability
using Age and Lenght of Employment 9

2.2 Shape of Logistic, Probit and Linear functions, associated with different
parametrization. In this easy setup, the Probability of Default (PD) is
modelled against a single independent variable X. 10

2.3 Logistic Regression Surface obtained on the Toy Credit Scoring Dataset
(Chapter 3.4.1). The Logistic Function behaves very similar to Linear
Regression -monotonicity is probably too strict assumption in this case- 11

2.4 Basic Structure of a Multi Layer Perceptron (MLP) Neural Network 12
2.5 Neural Network Surface obtained by an MLP model equipped with Sigmoid

activation function. The model has been trained on the Toy Credit Scoring
Dataset (Chapter 3.4.1) . 13

2.6 The Decision Tree model can be seen as consecutive splits starting from the
root node to the leaves (left), or as a set of decision rules (right). Courtesy
of [27] . 14

2.7 Decision Tree model surface obtained on the Toy Credit Scoring Dataset
(Chapter 3.4.1). We notice the piecewise constant f generated over X by
a Decision Tree model. 15

2.8 Random Forest Structure . 16
2.9 Random Forest surface obtained on the Toy Credit Scoring Dataset (Chap-

ter 3.4.1). We notice that the Random Forest surface is more balanced and
contains smaller bumps (less f Variance) than Decision Tree model in Fig-
ure 2.7 . 17

2.10 Gradient Boosting surface obtained on the Toy Credit Scoring Dataset
(Chapter 3.4.1). The surface is usually smoother than Random Forest,
maintaining increased robustness and accuracy than vanilla Decision Trees 18

2.11 Gradient Boosting Tree Model construction. T (X,Θk) is the best Tree

built at step k, its parameters Θk are chosen to minimize the Loss Function
between the target variable Y and the Boosted Model of the previous step.
The Tree is added to the Boosted Ensemble weighted by the βk parameter. 19

116

2.12 Generator G is trained to map a noise sample Z to synthetic data X ′.
Discriminator D is trained to distinguish real data X from synthetic samples 20

2.13 Non-real images generated by GANs in [11], also called DeepFakes 20
2.14 AutoEncoder structure . 20
2.15 Variational AutoEncoders represent each variable of the latent space with

a distribution tending to a standard Gaussian. Courtesy of Jeremy Jordan 21

3.1 Toy Dataset . 27

4.1 PD Plots for single variables on the Toy Credit Scoring Dataset 35
4.2 ICE plots of the individual effects of the X variables on the Probability of

Default, in the Toy Credit Dataset. Each trajectory highlights the PD of
a specific unit, changing only the value of the given Xj variable. 36

4.3 X1 , X2 variables are strongly correlated: ρ = 0.8. We need to compute
f̂(x1 = 0.75). In this situation, the Marginal distribution (orange) does
not represent the true joint distribution p(X1, X2), while the Conditional
distribution (red) inside the bin [0.7, 0.8] is representative of Dtrain behaviour. 38

4.4 ALE computes unit-specific local gradients as the difference in prediction
of the projections of the x(i) point on the grid boundaries, namely f(x̂

(i)
r)−

f(x̂
(i)
l). The average prediction difference is considered in each bin 39

4.5 Left Panel: LIME’s modus operandi: the goal is to approximate the
tangent to the ML model -in this case a classification model separating red

and blue regions- in the neighbourhood of the red x(ref) point [93]. Right
Panel: LIME Algorithm Steps . 44

4.6 LIME helps understand and rank the major death risk factors for the spe-
cific individual of the NHANES dataset . 45

4.7 Comparison between uniformly random and genetically generated points,
considering as reference the star point. Top Uniformly random (left) and
genetic generation (right). Bottom Density of random (left) and genetic
(right) generation. Courtesy of [45] . 46

4.8 It describes well the main differences of using a Linear model or a Decision
Tree as explainable models: the former gives an approximation of the f
tangent describing how we expect the prediction to change when moving on
the variables space, the latter instead finds a decision rule characterizing all
the units belonging to the same patch as the x(ref) reference unit. Courtesy
of [92]. 47

5.1 We consider the same Toy Dataset and Polynomial ML model in Chapter
3.4.2, expanding the X domain upwards. We illustrate how LIME explana-
tions trained only on Dtrain data can be very shaky in sparsely populated
regions. 53

5.2 The best neighbourhood size depends on the reference point and the cur-
vature of the ML function around it. 54

5.3 LIME explanations for different kernel widths. Notice how too large kw
distort the local linear model -testified by the R2 measure as well- 55

https://www.jeremyjordan.me/variational-autoencoders/

117

5.4 In the Right Panel Ridge penalty λ = 1 (LIME default) is employed,
whereas in the Left Panel no penalty (λ = 0) is imposed. It is possible to
see how the estimation gets severely distorted by the penalty, proven also by
the R2 values. This happens especially for small kernel width values, since
each unit has a very small weight and the weighted residuals are almost
irrelevant in the Ridge loss, which is dominated by the penalty term. To
minimize the penalty term the coefficients are shrunk towards 0. 57

5.5 LIME explanations are not informative when applied to Machine Learning
models with many input variables, in this case a Gradient Boosting model
using 100 features, on the Credit Scoring Dataset of Chapter 3.1. 58

6.1 Analysis of LIME Stability on unit 3 of the Test data for ML models
trained on the Wine dataset. Figures i) and ii) contain LIME coefficients
for XGBoost model, Figures iii) and iv) are LIME explanations of a Neural
Network, Figures v) and vi) display LIME coefficients on Linear Regression.
Per each pair, LIME in the left-side picture has kernel width= 0.6, the
right-side one has kernel width= 0.8 . 71

6.2 Analysis of LIME Stability on unit 12 of the Test data for ML models
trained on the Houses dataset. Figures i) and ii) contain LIME coefficients
for XGBoost model, Figures iii) and iv) are LIME explanations of a Neural
Network, Figures v) and vi) display LIME coefficients on Linear Regression.
Per each pair, LIME in the left-side picture has kernel width= 0.6, the
right-side one has kernel width= 0.8 . 72

6.3 Analysis of LIME Stability on unit 6 of the Test data for ML models trained
on the Parkinson dataset. Figures i) and ii) contain LIME coefficients for
XGBoost model, Figures iii) and iv) are LIME explanations of a Neural
Network, Figures v) and vi) display LIME coefficients on Linear Regression.
Per each pair, LIME in the left-side picture has kernel width= 0.6, the
right-side one has kernel width= 0.8 . 73

6.4 Analysis of LIME Stability on unit 1 to 6 of the Test data for Neural Net-
work model trained on the Wine dataset. LIME explanations are carried
out with kernel width= 0.8 . 74

6.5 Analysis of LIME Stability on unit 1 to 6 of the Test data for XGBoost
model trained on the Houses dataset. LIME explanations are carried out
with kernel width= 1.5 . 75

7.1 Relationship among kernel width, R2 and CSI 78
7.2 OptiLIME Search for the best kernel width 80
7.3 NHANES individual Explanations using OptiLIME 81
7.4 Individual Explanations using OptiLIME for unit 23 (Good Payer) 82
7.5 Individual Explanations using OptiLIME for unit 1746 (Bad Payer) 82

118

8.1 Overview of the global surrogate model construction. Left panel: the
black-box model maps the input space (here X = [0, 1]2) to R, which we can
visualize as a surface. Middle panel: we generate N Sobol points on X ,
giving rise toN measurement points on the surface (in blue). Right panel:
we fit a piecewise-linear global surrogate model f̂ on the measurement
points by recursively splitting X . 87

8.2 Differences between uniform sampling (Left panel) and Sobol sequence
(Right panel) in dimension 2. The discrepancy between points is much
lower, while maintaining some apparent randomness in the sampling. . . . 88

8.3 Evolution of the norm of the cumulative score process. Top panel: mea-
surements of a piecewise-linear model (dark dots) visualized along one axis.
Bottom panel: evolution of ∥B(t)∥1 as a function of t (solid blue line).
The process presents a clear maximum, which gives us a candidate split for
this axis (vertical red line). 89

8.4 Partition of X produced by Algorithm 7. On each rectangular cell of P , a
linear model is fitted on the Sobol points evaluations of f 92

8.5 Local importance (feature attribution) for a regressor trained on the house
sell dataset (see Chapter 8.2.2). We display only the top 5 features to
improve readability. 93

8.6 What if my house was bigger? Answering what-if questions for a regressor
trained on the house sell dataset (see Chapter 8.2.2). Moving along feature
sqft living, for a given example (yellow dot), we can visualize specific
values of f (Sobol points in blue) as well as the linear approximations used
by GLEAMS (in green). 94

8.7 Approximating piecewise-linear models with GLEAMS surrogate model.
Left panels: example (i), model on the left and GLEAMS surrogate on
the right. Right panels: example (ii), model on the left and GLEAMS
surrogate on the right. 95

9.1 DAISYnt Pipeline . 100
9.2 RT ,RS matrices for the Adult dataset . 101
9.3 IV T , IV S vectors for the Adult dataset . 102
9.4 Examples of different distributions . 103
9.5 MMD Test on the Age variable. Here the test failed, meaning that Age

distribution is different in Dtest and Dsynth 104
9.6 ROC Curve comparison of GBS, GBT models, and relative AUC 107
9.7 Toy example of transformations applied to activations matrices [69] 107
9.8 Cloned and close rows between Dtrain and Dsynth 109

119

List of Tables

1.1 Toy Credit Scoring Dataset, described in detail in Chapter 3.4.1 3

3.1 NHANES Dataset Composition. 24
3.2 NHANES Dataset Composition . 25
3.3 Datasets description. 25

6.1 LIME applied to Gradient Boosting model. The sum of the bars’ values,

along with the intercept, produces the Local Ridge model prediction. The
bars’ length highlight the specific contribution of each variable: the green
ones push the model towards ”good payer” prediction, whereas the red ones
to ”bad payer”. 68

8.1 Experimental results. 97

9.1 DAISYnt results on the four Dsynth datasets models 111

120

121

Bibliography

[1] Ahmed M. Alaa et al. “How Faithful Is Your Synthetic Data? Sample-Level Metrics
for Evaluating and Auditing Generative Models”. 2021. arXiv: 2102.08921.

[2] David Alvarez-Melis and Tommi S. Jaakkola. “On the Robustness of Interpretabil-
ity Methods”. June 20, 2018. arXiv: 1806.08049 [cs, stat]. url: http://
arxiv.org/abs/1806.08049 (visited on 03/10/2019).

[3] Sebastian Bach et al. “On Pixel-Wise Explanations for Non-Linear Classifier Deci-
sions by Layer-Wise Relevance Propagation”. In: PloS one 10.7 (2015), e0130140.

[4] Steven M. Bellovin, Preetam K. Dutta, and Nathan Reitinger. “Privacy and Syn-
thetic Datasets”. In: Stan. Tech. L. Rev. 22 (2019), p. 1.

[5] Kevin Beyer et al. “When Is “Nearest Neighbor” Meaningful?” In: International
Conference on Database Theory. Springer, 1999, pp. 217–235.

[6] Patrick Billingsley. Probability and Measure. John Wiley & Sons, 2008. isbn:
81-265-1771-9.

[7] Robert Brame et al. “Testing for the Equality of Maximum-Likelihood Regression
Coefficients between Two Independent Equations”. In: Journal of Quantitative
Criminology 14.3 (1998), pp. 245–261. issn: 0748-4518.

[8] Steven Bramhall et al. “Qlime-a Quadratic Local Interpretable Model-Agnostic
Explanation Approach”. In: SMU Data Science Review 3.1 (2020), p. 4.

[9] Leo Breiman. “Random Forests”. In: Machine learning 45.1 (2001), pp. 5–32.

[10] Leo Breiman et al. “Classification and Regression Trees. Wadsworth & Brooks”.
In: Cole Statistics/Probability Series (1984).

[11] Andrew Brock, Jeff Donahue, and Karen Simonyan. “Large Scale GAN Training
for High Fidelity Natural Image Synthesis”. In: International Conference on
Learning Representations. 2018.

[12] Giuseppe Cascarino, Mirko Moscatelli, and Fabio Parlapiano. Explainable Ar-
tificial Intelligence: Interpreting Default Forecasting Models Based on
Machine Learning. Bank of Italy, Economic Research and International Rela-
tions Area, 2022.

https://arxiv.org/abs/2102.08921
https://arxiv.org/abs/1806.08049
http://arxiv.org/abs/1806.08049
http://arxiv.org/abs/1806.08049

122

[13] Sara Castellanos. “Fake It to Make It: Companies Beef Up AI Models With
Synthetic Data”. In: Wall Street Journal. WSJ Pro (July 23, 2021). issn:
0099-9660. url: https://www.wsj.com/articles/fake- it- to- make- it-
companies-beef-up-ai-models-with-synthetic-data-11627032601 (visited
on 12/16/2022).

[14] Kin-Yee Chan and Wei-Yin Loh. “LOTUS: An Algorithm for Building Accurate
and Comprehensible Logistic Regression Trees”. In: Journal of Computational
and Graphical Statistics 13.4 (2004), pp. 826–852.

[15] Hugh Chen et al. “True to the Model or True to the Data?” 2020. arXiv: 2006.
16234.

[16] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System”.
In: Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining - KDD ’16. The 22nd ACM
SIGKDD International Conference. San Francisco, California, USA: ACM Press,
2016, pp. 785–794. isbn: 978-1-4503-4232-2. doi: 10.1145/2939672.2939785.
url: http://dl.acm.org/citation.cfm?doid=2939672.2939785 (visited on
08/02/2019).

[17] I. Glenn Cohen and Michelle M. Mello. “HIPAA and Protecting Health Information
in the 21st Century”. In: Jama 320.3 (2018), pp. 231–232.

[18] Paulo Cortez et al. “Modeling Wine Preferences by Data Mining from Physico-
chemical Properties”. In: Decision support systems 47.4 (2009), pp. 547–553.

[19] Christine S. Cox. Plan and Operation of the NHANES I Epidemiologic
Followup Study, 1987. 27. US Department of Health and Human Services,
Public Health Service, Centers . . ., 1992.

[20] Mark Craven and Jude W. Shavlik. “Extracting Tree-Structured Representations
of Trained Networks”. In: Advances in neural information processing sys-
tems (1996), pp. 24–30.

[21] Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. “CatBoost: Gradient
Boosting with Categorical Features Support”. 2018. arXiv: 1810.11363.

[22] Finale Doshi-Velez and Been Kim. “Towards a Rigorous Science of Interpretable
Machine Learning”. 2017. arXiv: 1702.08608.

[23] European Banking Authority EBA. “Report on Big Data and Advanced Analyt-
ics”. In: (2020). url: https://eba.europa.eu/eba-report-identifies-key-
challenges-roll-out-big-data-and-advanced-analytics.

[24] Jing Fang and Michael H. Alderman. “Serum Uric Acid and Cardiovascular Mortal-
ity: The NHANES I Epidemiologic Follow-up Study, 1971-1992”. In: Jama 283.18
(2000), pp. 2404–2410.

[25] Murray J. Fisher, Andrea P. Marshall, and Marion Mitchell. “Testing Differences
in Proportions”. In: Australian Critical Care 24.2 (2011), pp. 133–138.

[26] Future of Life Institute FLI. The Artificial Intelligence Act. The Artificial
Intelligence Act. Sept. 7, 2021. url: https://artificialintelligenceact.eu/
(visited on 12/09/2022).

https://www.wsj.com/articles/fake-it-to-make-it-companies-beef-up-ai-models-with-synthetic-data-11627032601
https://www.wsj.com/articles/fake-it-to-make-it-companies-beef-up-ai-models-with-synthetic-data-11627032601
https://arxiv.org/abs/2006.16234
https://arxiv.org/abs/2006.16234
https://doi.org/10.1145/2939672.2939785
http://dl.acm.org/citation.cfm?doid=2939672.2939785
https://arxiv.org/abs/1810.11363
https://arxiv.org/abs/1702.08608
https://eba.europa.eu/eba-report-identifies-key-challenges-roll-out-big-data-and-advanced-analytics
https://eba.europa.eu/eba-report-identifies-key-challenges-roll-out-big-data-and-advanced-analytics
https://artificialintelligenceact.eu/

123

[27] Alex A. Freitas, Daniela C. Wieser, and Rolf Apweiler. “On the Importance of Com-
prehensible Classification Models for Protein Function Prediction”. In: IEEE/ACM
Transactions on Computational Biology and Bioinformatics 7.1 (2008),
pp. 172–182.

[28] Jerome H. Friedman. “Greedy Function Approximation: A Gradient Boosting Ma-
chine”. In: Annals of statistics (2001), pp. 1189–1232.

[29] Jerome H. Friedman and Bogdan E. Popescu. “Predictive Learning via Rule En-
sembles”. In: The Annals of Applied Statistics 2.3 (2008), pp. 916–954.

[30] Andrea Galloni, Imre Lendák, and Tomáš Horváth. “A Novel Evaluation Metric
for Synthetic Data Generation”. In: International Conference on Intelligent
Data Engineering and Automated Learning. Springer, 2020, pp. 25–34.

[31] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. “A Neural Algorithm
of Artistic Style”. 2015. arXiv: 1508.06576.

[32] Robert D. Gibbons et al. “The CAD-MDD: A Computerized Adaptive Diagnostic
Screening Tool for Depression”. In: The Journal of clinical psychiatry 74.7
(2013), p. 669.

[33] Toriano Gilbert. “Family Educational Rights and Privacy Act (FERPA)”. In:
(2007).

[34] Alex Goldstein et al. “Peeking inside the Black Box: Visualizing Statistical Learn-
ing with Plots of Individual Conditional Expectation”. In: Journal of Compu-
tational and Graphical Statistics 24 (2015), pp. 44–65.

[35] Ian Goodfellow et al. “Generative Adversarial Nets”. In: Advances in neural
information processing systems 27 (2014).

[36] Alicja Gosiewska and Przemyslaw Biecek. “IBreakDown: Uncertainty of Model
Explanations for Non-Additive Predictive Models”. 2019. arXiv: 1903.11420.

[37] William H Greene. Econometric Analysis. Pearson Education India, 2003.
isbn: 81-7758-684-X.

[38] Brandon M. Greenwell, Bradley C. Boehmke, and Andrew J. McCarthy. “A Simple
and Effective Model-Based Variable Importance Measure”. 2018. arXiv: 1805.
04755.

[39] Arthur Gretton et al. “A Kernel Method for the Two-Sample-Problem”. In: Ad-
vances in neural information processing systems 19 (2006), pp. 513–520.

[40] Arthur Gretton et al. “Measuring Statistical Dependence with Hilbert-Schmidt
Norms”. In: International Conference on Algorithmic Learning Theory.
Springer, 2005, pp. 63–77.

[41] Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. “Why Do Tree-Based
Models Still Outperform Deep Learning on Typical Tabular Data?” In: Thirty-
Sixth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track. 2022.

[42] Riccardo Guidotti. “Evaluating Local Explanation Methods on Ground Truth”.
In: Artificial Intelligence 291 (2021), p. 103428.

https://arxiv.org/abs/1508.06576
https://arxiv.org/abs/1903.11420
https://arxiv.org/abs/1805.04755
https://arxiv.org/abs/1805.04755

124

[43] Riccardo Guidotti and Salvatore Ruggieri. “On the Stability of Interpretable Mod-
els”. In: 2019 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2019, pp. 1–8. isbn: 1-72811-985-5.

[44] Riccardo Guidotti et al. “A Survey of Methods for Explaining Black Box Models”.
In: ACM computing surveys (CSUR) 51.5 (2018), p. 93.

[45] Riccardo Guidotti et al. “Local Rule-Based Explanations of Black Box Decision
Systems”. May 28, 2018. arXiv: 1805.10820 [cs]. url: http://arxiv.org/abs/
1805.10820 (visited on 12/12/2018).

[46] Patrick Hall and Navdeep Gill.An Introduction to Machine Learning Interpretability-
Dataiku Version. O’Reilly Media, Incorporated, 2018.

[47] John H. Halton. “Algorithm 247: Radical-inverse Quasi-Random Point Sequence”.
In: Communications of the ACM 7.12 (1964), pp. 701–702.

[48] Frederik Harder, Matthias Bauer, and Mijung Park. “Interpretable and Differen-
tially Private Predictions”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 34. 04. 2020, pp. 4083–4090. isbn: 2374-3468.

[49] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Sta-
tistical Learning: Data Mining, Inference, and Prediction. Springer Sci-
ence & Business Media, 2009. isbn: 0-387-84858-4.

[50] Patrick J. Heagerty, Thomas Lumley, and Margaret S. Pepe. “Time-dependent
ROC Curves for Censored Survival Data and a Diagnostic Marker”. In: Biomet-
rics 56.2 (2000), pp. 337–344.

[51] Markus Herdin et al. “Correlation Matrix Distance, a Meaningful Measure for
Evaluation of Non-Stationary MIMO Channels”. In: 2005 IEEE 61st Vehicular
Technology Conference. Vol. 1. IEEE, 2005, pp. 136–140. isbn: 0-7803-8887-9.

[52] Benjamin Hilprecht, Martin Härterich, and Daniel Bernau. “Monte Carlo and Re-
construction Membership Inference Attacks against Generative Models”. In: Pro-
ceedings on Privacy Enhancing Technologies 2019.4 (2019), pp. 232–249.

[53] Markus Hittmeir, Andreas Ekelhart, and Rudolf Mayer. “On the Utility of Syn-
thetic Data: An Empirical Evaluation on Machine Learning Tasks”. In: Proceed-
ings of the 14th International Conference on Availability, Reliability
and Security. 2019, pp. 1–6.

[54] Markus Hittmeir, Andreas Ekelhart, and Rudolf Mayer. “Utility and Privacy As-
sessments of Synthetic Data for Regression Tasks”. In: 2019 IEEE Interna-
tional Conference on Big Data (Big Data). IEEE, 2019, pp. 5763–5772.
isbn: 1-72810-858-6.

[55] AI HLEG. “Ethics Guidelines for Trustworthy AI”. In: (2019). url: https://
ec . europa . eu / digital - single - market / en / news / ethics - guidelines -

trustworthy-ai.

https://arxiv.org/abs/1805.10820
http://arxiv.org/abs/1805.10820
http://arxiv.org/abs/1805.10820
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai

125

[56] Arthur E. Hoerl and Robert W. Kennard. “Ridge Regression: Biased Estimation
for Nonorthogonal Problems”. In: Technometrics 12.1 (Feb. 1970), pp. 55–67.
issn: 0040-1706, 1537-2723. doi: 10.1080/00401706.1970.10488634. url: http:
//www.tandfonline.com/doi/abs/10.1080/00401706.1970.10488634 (visited
on 08/02/2019).

[57] Chris Jay Hoofnagle, Bart van der Sloot, and Frederik Zuiderveen Borgesius. “The
European Union General Data Protection Regulation: What It Is and What It
Means”. In: Information & Communications Technology Law 28.1 (2019),
pp. 65–98.

[58] Sara Hooker et al. “A Benchmark for Interpretability Methods in Deep Neural
Networks”. In: Advances in neural information processing systems 32
(2019).

[59] Kurt Hornik. “Approximation Capabilities of Multilayer Feedforward Networks”.
In: Neural networks 4.2 (1991), pp. 251–257.

[60] Igor Ilic et al. “Explainable Boosted Linear Regression for Time Series Forecast-
ing”. In: Pattern Recognition 120 (2021), p. 108144.

[61] Gareth James et al.An Introduction to Statistical Learning. Vol. 103. Springer
Texts in Statistics. New York, NY: Springer New York, 2013. isbn: 978-1-4614-
7137-0 978-1-4614-7138-7. doi: 10 . 1007 / 978 - 1 - 4614 - 7138 - 7. url: http :
//link.springer.com/10.1007/978-1-4614-7138-7 (visited on 07/31/2019).

[62] John Johnston and John DiNardo. Econometric Methods. Vol. 2. New York,
1972.

[63] James Jordon, Jinsung Yoon, and Mihaela van der Schaar. “Measuring the Quality
of Synthetic Data for Use in Competitions”. 2018. arXiv: 1806.11345.

[64] Ali Kassem et al. “Differential Inference Testing: A Practical Approach to Evaluate
Sanitizations of Datasets”. In: 2019 IEEE Security and Privacy Workshops
(SPW). IEEE, 2019, pp. 72–79. isbn: 1-72813-508-7.

[65] Gajendra Jung Katuwal and Robert Chen. “Machine Learning Model Interpretabil-
ity for Precision Medicine”. Oct. 27, 2016. arXiv: 1610.09045 [q-bio]. url: http:
//arxiv.org/abs/1610.09045 (visited on 05/12/2020).

[66] Been Kim, Rajiv Khanna, and Oluwasanmi O. Koyejo. “Examples Are Not Enough,
Learn to Criticize! Criticism for Interpretability”. In: Advances in neural in-
formation processing systems 29 (2016).

[67] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-
tion”. 2014. arXiv: 1412.6980.

[68] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”. 2013.
arXiv: 1312.6114.

[69] Simon Kornblith et al. “Similarity of Neural Network Representations Revisited”.
In: International Conference on Machine Learning. PMLR, 2019, pp. 3519–
3529. isbn: 2640-3498.

https://doi.org/10.1080/00401706.1970.10488634
http://www.tandfonline.com/doi/abs/10.1080/00401706.1970.10488634
http://www.tandfonline.com/doi/abs/10.1080/00401706.1970.10488634
https://doi.org/10.1007/978-1-4614-7138-7
http://link.springer.com/10.1007/978-1-4614-7138-7
http://link.springer.com/10.1007/978-1-4614-7138-7
https://arxiv.org/abs/1806.11345
https://arxiv.org/abs/1610.09045
http://arxiv.org/abs/1610.09045
http://arxiv.org/abs/1610.09045
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1312.6114

126

[70] Mark A. Kramer. “Nonlinear Principal Component Analysis Using Autoassociative
Neural Networks”. In: AIChE journal 37.2 (1991), pp. 233–243.

[71] Solomon Kullback and Richard A. Leibler. “On Information and Sufficiency”. In:
The annals of mathematical statistics 22.1 (1951), pp. 79–86.

[72] Miron B. Kursa, Aleksander Jankowski, and Witold R. Rudnicki. “Boruta–a Sys-
tem for Feature Selection”. In:Fundamenta Informaticae 101.4 (2010), pp. 271–
285.

[73] Thibault Laugel et al. “Defining Locality for Surrogates in Post-Hoc Interpretablity”.
2018. arXiv: 1806.07498.

[74] Lenore J. Launer et al. “Body Mass Index, Weight Change, and Risk of Mobility
Disability in Middle-Aged and Older Women: The Epidemiologic Follow-up Study
of NHANES I”. In: Jama 271.14 (1994), pp. 1093–1098.

[75] Jing Lei et al. “Distribution-Free Predictive Inference for Regression”. In: Journal
of the American Statistical Association 113.523 (2018), pp. 1094–1111.

[76] Benjamin Letham et al. “Constrained Bayesian Optimization with Noisy Experi-
ments”. In: Bayesian Analysis 14.2 (2019), pp. 495–519.

[77] Scott M. Lundberg, Gabriel G. Erion, and Su-In Lee. “Consistent Individualized
Feature Attribution for Tree Ensembles”. Feb. 11, 2018. arXiv: 1802.03888 [cs,

stat]. url: http://arxiv.org/abs/1802.03888 (visited on 03/10/2019).

[78] Scott M. Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model
Predictions”. In: Advances in Neural Information Processing Systems.
Vol. 30. 2017.

[79] Scott M. Lundberg et al. “From Local Explanations to Global Understanding
with Explainable AI for Trees”. In: Nature machine intelligence 2.1 (2020),
pp. 2522–5839.

[80] Edgar C. Merkle and Achim Zeileis. “Tests of Measurement Invariance without
Subgroups: A Generalization of Classical Methods”. In: Psychometrika 78.1
(2013), pp. 59–82.

[81] Tom Mitchell. Machine Learning. McGraw Hill, 1997.

[82] Christoph Molnar. Interpretable Machine Learning. Lulu. com, 2020. isbn:
0-244-76852-8.

[83] Christoph Molnar. Limitations of Interpretable Machine Learning Meth-
ods. 2020. url: https://compstat-lmu.github.io/iml_methods_limitations/
(visited on 05/20/2020).

[84] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. “Methods for In-
terpreting and Understanding Deep Neural Networks”. In: Digital signal pro-
cessing 73 (2018), pp. 1–15.

[85] Guido F. Montufar et al. “On the Number of Linear Regions of Deep Neural
Networks”. In: Advances in neural information processing systems 27
(2014).

https://arxiv.org/abs/1806.07498
https://arxiv.org/abs/1802.03888
https://arxiv.org/abs/1802.03888
http://arxiv.org/abs/1802.03888
https://compstat-lmu.github.io/iml_methods_limitations/

127

[86] Catarina Moreira et al. “An Investigation of Interpretability Techniques for Deep
Learning in Predictive Process Analytics”. 2020. arXiv: 2002.09192.

[87] Andrew Ng and Michael Jordan. “On Discriminative vs. Generative Classifiers: A
Comparison of Logistic Regression and Naive Bayes”. In: Advances in neural
information processing systems 14 (2001).

[88] An-phi Nguyen and Maŕıa Rodŕıguez Mart́ınez. “On Quantitative Aspects of Model
Interpretability”. 2020. arXiv: 2007.07584.

[89] Neha Patki, RoyWedge, and Kalyan Veeramachaneni. “The Synthetic Data Vault”.
In: 2016 IEEE International Conference on Data Science and Ad-
vanced Analytics (DSAA). IEEE, 2016, pp. 399–410. isbn: 1-5090-5206-2.

[90] Fabian Pedregosa et al. “Scikit-Learn: Machine Learning in Python”. In: the
Journal of machine Learning research 12 (2011), pp. 2825–2830.

[91] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ““Why Should I Trust
You?” Explaining the Predictions of Any Classifier”. In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining. 2016, pp. 1135–1144.

[92] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Anchors: High-precision
Model-Agnostic Explanations”. In:Thirty-Second AAAI Conference on Ar-
tificial Intelligence. 2018.

[93] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why Should i Trust
You?: Explaining the Predictions of Any Classifier”. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. ACM, 2016, pp. 1135–1144. isbn: 1-4503-4232-9.

[94] Mireia Ribera and Agata Lapedriza. “Can We Do Better Explanations? A Proposal
of User-Centered Explainable AI.” In: IUI Workshops. Vol. 2327. 2019, p. 38.

[95] Frank Rosenblatt. The Perceptron, a Perceiving and Recognizing Au-
tomaton Project Para. Cornell Aeronautical Laboratory, 1957.

[96] Avi Rosenfeld and Ariella Richardson. “Explainability in Human–Agent Systems”.
In:Autonomous Agents and Multi-Agent Systems 33.6 (2019), pp. 673–705.

[97] Donald B. Rubin. “Statistical Disclosure Limitation”. In: Journal of official
Statistics 9.2 (1993), pp. 461–468.

[98] Steven L. Salzberg. C4. 5: Programs for Machine Learning by j. Ross
Quinlan. Morgan Kaufmann Publishers, Inc., 1993. Kluwer Academic
Publishers, 1994. isbn: 1573-0565.

[99] Wojciech Samek et al. “Evaluating the Visualization of What a Deep Neural Net-
work Has Learned”. In: IEEE transactions on neural networks and learn-
ing systems 28.11 (2016), pp. 2660–2673.

[100] Gilbert Saporta. “Simultaneous Analysis of Qualitative and Quantitative Data”.
In: Societa Italiana Di Statistica. XXXV Riunione Scientifica. Vol. 1.
CEDAM, 1990, pp. 62–72.

https://arxiv.org/abs/2002.09192
https://arxiv.org/abs/2007.07584

128

[101] Mattia Setzu et al. “Glocalx-from Local to Global Explanations of Black Box AI
Models”. In: Artificial Intelligence 294 (2021), p. 103457.

[102] Sharath M. Shankaranarayana and Davor Runje. “ALIME: Autoencoder Based
Approach for Local Interpretability”. In: International Conference on Intel-
ligent Data Engineering and Automated Learning. Springer, 2019, pp. 454–
463.

[103] Lloyd S. Shapley. “A Value for N-Person Games”. In: Contributions to the
Theory of Games 2.28 (1953), pp. 307–317.

[104] I. M. Sobol. “Points Which Uniformly Fill a Multidimensional Cube”. In: Math-
ematics, cybernetics series (1985), p. 32.

[105] Kacper Sokol and Peter Flach. “Explainability Fact Sheets: A Framework for Sys-
tematic Assessment of Explainable Approaches”. In: Proceedings of the 2020
Conference on Fairness, Accountability, and Transparency. 2020, pp. 56–
67.

[106] Liwei Song, Reza Shokri, and Prateek Mittal. “Privacy Risks of Securing Machine
Learning Models against Adversarial Examples”. In: Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Secu-
rity. 2019, pp. 241–257.

[107] Charles Spearman. “The Proof and Measurement of Association between Two
Things.” In: (1961).

[108] Carolin Strobl et al. “Conditional Variable Importance for Random Forests”. In:
BMC bioinformatics 9.1 (2008), pp. 1–11.

[109] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic Attribution for
Deep Networks”. In: International Conference on Machine Learning. PMLR,
2017, pp. 3319–3328. isbn: 2640-3498.

[110] Dougal J. Sutherland et al. “Generative Models and Model Criticism via Optimized
Maximum Mean Discrepancy”. 2016. arXiv: 1611.04488.

[111] Yi Tay et al. “Efficient Transformers: A Survey”. In:ACM Computing Surveys
55.6 (2022), pp. 1–28.

[112] Athanasios Tsanas et al. “Accurate Telemonitoring of Parkinson’s Disease Pro-
gression by Non-Invasive Speech Tests”. In: Nature Precedings (2009), pp. 1–
1.

[113] Lao Tse.Credit Risk Dataset. 2020. url: https://www.kaggle.com/datasets/
laotse/credit-risk-dataset (visited on 01/20/2023).

[114] Wessel N vanWieringen. “Lecture Notes on Ridge Regression”. In: arXiv preprint
arXiv:1509.09169 (2015). arXiv: 1509.09169.

[115] Wessel N. van Wieringen. “Lecture Notes on Ridge Regression”. July 22, 2019.
arXiv: 1509.09169 [stat]. url: http://arxiv.org/abs/1509.09169 (visited
on 12/23/2019).

[116] Pierre-François Verhulst. “Correspondance Mathématique et Physique”. In:Ghent
and Brussels 10 (1838), p. 113.

https://arxiv.org/abs/1611.04488
https://www.kaggle.com/datasets/laotse/credit-risk-dataset
https://www.kaggle.com/datasets/laotse/credit-risk-dataset
https://arxiv.org/abs/1509.09169
https://arxiv.org/abs/1509.09169
http://arxiv.org/abs/1509.09169

129

[117] Giorgio Visani et al. “Explanations of Machine Learning Predictions: A Mandatory
Step for Its Application to Operational Processes”. In: (2019).

[118] Zhenchen Wang, Puja Myles, and Allan Tucker. “Generating and Evaluating Syn-
thetic UK Primary Care Data: Preserving Data Utility & Patient Privacy”. In:
2019 IEEE 32nd International Symposium on Computer-Based Med-
ical Systems (CBMS). IEEE, 2019, pp. 126–131. isbn: 1-72812-286-4.

[119] Chih-Kuan Yeh et al. “On the (in) Fidelity and Sensitivity of Explanations”. In:
Advances in Neural Information Processing Systems 32 (2019).

[120] Muhammad Rehman Zafar and Naimul Mefraz Khan. “DLIME: A Deterministic
Local Interpretable Model-Agnostic Explanations Approach for Computer-Aided
Diagnosis Systems”. 2019. arXiv: 1906.10263.

[121] Eftim Zdravevski, Petre Lameski, and Andrea Kulakov. “Weight of Evidence as a
Tool for Attribute Transformation in the Preprocessing Stage of Supervised Learn-
ing Algorithms”. In: The 2011 International Joint Conference on Neural
Networks. IEEE, 2011, pp. 181–188. isbn: 1-4244-9637-3.

[122] Achim Zeileis, Torsten Hothorn, and Kurt Hornik. “Model-Based Recursive Par-
titioning”. In: Journal of Computational and Graphical Statistics 17.2
(2008), pp. 492–514.

[123] Alwin Yaoxian Zhang et al. “Development of a Radiology Decision Support System
for the Classification of MRI Brain Scans”. In: 2018 IEEE/ACM 5th Inter-
national Conference on Big Data Computing Applications and Tech-
nologies (BDCAT). IEEE, 2018, pp. 107–115. isbn: 1-5386-5502-0.

[124] Haozhe Zhang, Dan Nettleton, and Zhengyuan Zhu. “Regression-Enhanced Ran-
dom Forests”. 2019. arXiv: 1904.10416.

[125] Xingyu Zhao et al. “Baylime: Bayesian Local Interpretable Model-Agnostic Expla-
nations”. In: Uncertainty in Artificial Intelligence. PMLR, 2021, pp. 887–
896. isbn: 2640-3498.

[126] Jianlong Zhou et al. “Evaluating the Quality of Machine Learning Explanations:
A Survey on Methods and Metrics”. In: Electronics 10.5 (2021), p. 593.

[127] Yichen Zhou and Giles Hooker. “Interpreting Models via Single Tree Approxima-
tion”. Oct. 27, 2016. arXiv: 1610.09036 [stat]. url: http://arxiv.org/abs/
1610.09036 (visited on 12/12/2018).

[128] Hui Zou and Trevor Hastie. “Regularization and Variable Selection via the Elastic
Net”. In: Journal of the royal statistical society: series B (statistical
methodology) 67.2 (2005), pp. 301–320.

https://arxiv.org/abs/1906.10263
https://arxiv.org/abs/1904.10416
https://arxiv.org/abs/1610.09036
http://arxiv.org/abs/1610.09036
http://arxiv.org/abs/1610.09036

	Introduction
	Prediction Models
	Prediction Models in general
	Classical Statistical Models
	Machine Learning
	Generative Models

	Datasets
	Crif Credit Scoring dataset
	NHANES Dataset
	Real-World UCI Datasets
	Toy Datasets
	Credit Scoring Toy Dataset
	Synthetic one-dimensional Dataset

	Explanations
	Feature Importance Techniques
	Surrogate Models
	Evaluation of Explainability methods

	LIME in Detail
	Generation Step
	Weighting Step
	Feature Selection
	Local Model Step
	LIME Issues
	Improvements over vanilla LIME

	LIME Stability Indices
	Variables Stability Index: VSI
	Coefficients Stability Index: CSI
	Interpretation of the indices
	Practical Application on Credit Risk Data
	Extensive experiments on Stability Indices

	LIME: select the local nieghborhood size
	Stability & Adherence Trade-off
	OptiLIME
	OptiLIME Application to Real-World Datasets

	Bridging the Gap between Local and Global Explanations
	GLEAMS
	Measurement points
	Splitting criterion
	Global surrogate model
	GLEAMS Explanations

	Experiments
	Toy data
	Real data

	Explainability for Synthetic Data
	General Comparison Tests
	Pairwise Correlation
	Predictive Power comparison

	Distributions Comparison Tests
	Univariate Distributions
	Multivariate Distributions
	Discriminator Model

	Data Utility Tests
	Aggregate Prediction Comparison
	Single Prediction Comparison
	Compare model internals

	Privacy Tests
	Singling Out Tests
	Linkability Tests
	Inference Risk test

	Applications

	Conclusions

