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Abstract

The present manuscript focuses on Lattice Gauge Theories based on
finite groups. For the purpose of Quantum Simulation, the Hamiltonian
approach is considered, while the finite group serves as a discretization
scheme for the degrees of freedom of the gauge fields. Several aspects of
these models are studied. First, we investigate dualities in Abelian mod-
els with a restricted geometry, using a systematic approach. This leads to
a rich phase diagram dependent on the super-selection sectors. Second,
we construct a family of lattice Hamiltonians for gauge theories with a
finite group, either Abelian or non-Abelian. We show that is possible
to express the electric term as a natural graph Laplacian, and that the
physical Hilbert space can be explicitly built using spin network states.
In both cases we perform numerical simulations in order to establish the
correctness of the theoretical results and further investigate the models.
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Introduction

Gauge theories are an essential ingredients in our microscopical description
of fundamental laws and are a cornerstone of contemporary physics. In high-
energy physics, they underlie the Standard Model that describe the elementary
particles and their interaction. While in Condensed Matter (CM), gauge the-
ories emerge as effective descriptions of strongly correlated phenomena, such
as superconductivity or the fractional Hall effect.

Lattice Gauge Theories (LGTs) are one of the most promising methods
for non-perturbative studies of gauge theories [1]. First developed by Wil-
son in 1974 for investigating quark confinement [2], it is now going through
a renaissance period due to the growing field of Quantum Simulation (QS)
[3]. The work by Wilson opened up the possibility of simulating Quantum
Field Theories, in particular QCD, in regimes that are not accessible through
perturbative methods. Unfortunately, the numerical simulations can also be
limited, due to some intrinsic issues of the methodologies used. One infamous
example is the sign problem in the presence of a finite chemical potential.

Regardless of numerical techniques, the simulation on classical devices
of quantum systems is inherently limited, due to the exponential growth of
the Hilbert space. For this reason, in 1982, Feynman [4] suggested that the
best way to simulate a quantum model is through a controllable experimental
quantum device, which is able to mimic or emulate the degrees of freedom and
dynamical laws of another system. In short, Feynman was the first physicist
to put forward the idea of quantum simulators. These devices can either be a
specialized machine, able to simulate a specific class of models or a universal
machine that can simulate any model, i.e., a quantum computer.

What characterizes a gauge theory is the presence of local symmetries,
which can be regarded as local constraints, that signal the presence of re-
dundant degrees of freedom. In order to make them approachable via QS,
they have to be reformulated on a lattice in a Hamiltonian framework. In
this way, they can be fully treated as quantum many-body systems. However,
the extensive number of local gauge constraints can complicate the implemen-
tation and simulation process. Some kind of scheme has to be employed in
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order to either eliminate redundant degrees of freedom, or make unphysical
configurations inaccessible.

Another point of debate regarding LGTs is the digitalization of gauge
fields. In a typical gauge theory, like QED or QCD, the degrees of freedom
live on a compact manifold (the gauge group manifold) making the number of
states de facto infinite for each point in space. This is not compatible with a
typical quantum simulator, where only a finite register of states is available,
especially on a quantum computer. Therefore, some care has to be adopted
in order to find a set of states and operators that can effectively reproduce a
gauge theory in the continuum. There are many methods available: quantum
link models, finite subgroups, representations truncations, etc.

In this work we focus on finite group gauge theories. We argue that choos-
ing a finite subgroup of a Lie group (like U(1) or SU(N)) offers a more natural
way of truncating the number of degrees of freedom, but while U(1) can be
approximated with arbitrary precision with ZN the same is not true for a gen-
eral SU(N). The choice of finite groups preserves the unitarity of the parallel
transporters, associated with the gauge fields. This property is lost, for exam-
ple, if one chooses to truncate the irreducible representations of the Lie group
instead. We focus on both Abelian [5] and non-Abelian [6] finite groups, and
examine different aspects.

This manuscript is structured as follow:

Chap. 1 As a starting point, in the first part of the chapter we review Yang-
Mills theory. It is a gauge field theory based on the compact Lie groups,
like SU(N). They can be regarded as generalizations of QED and are
the basis for theories like QCD. In order to create a clear context for
LGTs, we also review Yang-Mills theory in Euclidean space-time and its
Hamiltonian formulation.

In the second part of the chapter we move ontoWilson’s lattice gauge for-
mulation [2]. This is going to be useful in showcasing some fundamental
concepts: the discretization on the lattice, how to construct interaction
terms for the gauge fields, what kind of order parameters can be used.

Chap. 2 In this chapter, we change subject and introduce in more detail
the topic of Quantum Simulation. After a general exposition and ex-
planation of its context, we review the current landscape through the
possible paths that can be taken in Quantum Simulation: digital, analog
and quantum-inspired. Then, we focus more on the state of the art of
Quantum Simulation of LGTs.
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Chap. 3 The content of this chapter is based on [5]. We considered LGTs
with gauge group ZN , in order to have a discretized U(1) theory. Then,
we formulated these models on a ladder geometry, because it is an almost
one-dimensional lattice that allows for magnetic terms, which are not
possible in a pure one-dimensional chain.

With QS in mind, we wanted to find an effective description of these
models that was able to resolve all the gauge constraints. One of the
main achievements of the work is the construction of a duality map be-
tween these ZN models and quantum clock models (QCMs) [7]. Thanks
to this duality, we were able to show that the super-selection sectors of
the gauge model map to a different class of QCMs. This leads to the fact
that each super-selection sector has its own distinguished phase diagram,
in particular regarding deconfinement-confinement phase transitions.

Chap. 4 The content of this chapter is based on [6], where we consider lattice
gauge theories with finite gauge group, focusing more on the non-Abelian
case, inspired by the Hamiltonian formulation of Kogut and Susskind [8],

In the case of a Lie group, the electric Hamiltonian is given by the
Casimir element of the Lie algebra, which can be reinterpreted as the
Laplacian on the group manifold. In this chapter we show that in the
case of a finite group, an analogous construction is possible, even though
there is no equivalent of a Lie algebra for a finite group. In particular,
we show that the electric Hamiltonian can still be written as a natural
Laplacian, but, this time, on the Cayley graph of the finite group.

Another important result of this work is the full description of the phys-
ical, gauge-invariant Hilbert space, regardless of the choice of group or
Hamiltonian. This was possible thanks to the use of spin network states,
which exploits the subspace of invariant states of a vertex. Addition-
ally, we show also how to compute the dimension of the physical Hilbert
space for any lattice size.
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chapter one

Introduction to Lattice Gauge
Theories

One of the most important open questions in high-energy physics is confine-
ment in Quantum Chromodynamics (QCD), or in general in a non-Abelian
gauge theory. The best evidence for confinement comes from the Wilson for-
mulation of gauge theories on a lattice [2], which, at first glance, can appear
odd because the vacuum is not a crystal [9]. Indeed, there have not been
experimental proofs so far that show any deviations from the symmetries of
the Lorentz group.

From the point of view of particle physics, the lattice represents a mathe-
matical trick. It provides a cutoff, which removes the ultraviolet infinities that
often appear in Quantum Field Theories (QFTs). It is just a regulator and as
such it must be removed after renormalization. Physical results can only be
extracted in the continuum limit, where the lattice spacing goes to zero.

But why do we need such a regulator? Infinities have always been present
in QFTs since its conception. Consider the case of Quantum Electrodynamics
(QED). It had an immense success without ever using a discrete space-time,
thanks to perturbation theory. The most conventional calculation schemes
are based on Feynman expansions, where a given observable is expressed as
a power series in the interaction coupling. The terms are computed until
a divergence is met in a particular diagram. Then, these divergences can
be removed using some regularization scheme or methods provided by the
Renormalization Group [10].

The reason why this methodology may fail in non-Abelian theories lies in
the fact that some phenomena, like confinement, are inherently non-perturbative.
Roughly speaking, perturbation theory relies on the fact that the true inter-
acting theory is just a slight modification of the free theory. In other words,
it works only when the coupling constants are small. In the case of QCD,
the free theory with vanishing coupling constant has no resemblance to the
observed phenomenon.
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Introduction to Lattice Gauge Theories

In order to go beyond the diagrammatic approach of Feynman expansions,
one needs a non-perturbative cutoff. This is the main strength of the lattice,
it eliminates all the wavelengths smaller than the lattice spacing before any
kind of expansions is done. Furthermore, on a lattice a field theory is mathe-
matically well-defined, in contrast with many standard formulations of QFTs
(like the path-integral approach).

Lattice Gauge Theories (LGTs) are just a reformulation of QFTs on a lat-
tice, which exposes a close connection with Statistical Mechanics (SM). For
example, it can be showed that a path-integral in QFT is equivalent to a parti-
tion function in SM. Furthermore, it can be showed that the coupling constant
in QFT corresponds directly to the temperature, and a strong coupling ex-
pansion becomes equivalent to a high temperature expansion. Thus, a lattice
formulation of QFTs allows a particle physicist to use the full technology of
SM and Condensed Matter (CM). Notice that this connection between QFT
and SM does not require a lattice, but it is only made more transparent by it.

While in particle physics the lattice is a useful trick, this is not true in CM.
Indeed, in this field a lattice structure can emerge naturally, or rather it can
even be required. It is sufficient to think that many materials have a crystalline
structure, hence the mathematical models describing these materials have to
be formulated on a lattice. Then, field theories can be used for probing the
physics at scale lengths much larger that the lattice spacing. Therefore, in
CM the roles are reversed: continuous fields are “approximations” of what
really happens on a lattice.

In this section we first briefly review Yang-Mills theory, which is the gener-
alization of QED to any non-Abelian compact gauge group, like SU(N). Then,
we move onto the Wilson formulation of LGTs in the path-integral approach.

1.1 Review of Yang-Mills theory

A Yang-Mills (YM) theory is a gauge field theory on Minkowski space R1,d

coupled to matter. The gauge group G is usually chosen to be a compact Lie
group like U(1) or SU(N) and the matter fields are defined by a representation
of G. For example, QCD is an SU(3) gauge theory with Dirac spinors in the
fundamental representation. We choose to keep the dimension d of space
completely general and to use D to denote the full dimension of space-time,
i.e., D = d+ 1.

We start from the Lagrangian. Considering that YM theory can be seen
as the generalization of QED, a U(1) gauge theory, to any compact Lie group,

11



Introduction to Lattice Gauge Theories

the Lagrangian looks exactly like the one from QED:

LYM = − 1
2g2 tr(FµνF

µν) + ψ(iγµDµ −m)ψ, (1.1)

with some differences that will be explained later. Hereafter, the Einstein
summation rule is implied. Notice that in (1.1) we have only considered
one fermionic species. In more realistic cases we would have a some over
the different fermion flavors but for simplicity and ease of exposition we will
ignore flavors and consider only type of fermion.

Gauge fields The symbol Dµ in (1.1) denote the covariant derivative:

Dµ = ∂µ − iqAµ, (1.2)

where Aµ are the space-time components of the gauge fields. Each component
is Lie algebra valued function of space-time:

Aµ(x) =
∑
a

Aaµ(x)T a, (1.3)

where the sum is over the generators T a of the Lie algebra g, corresponding to
the group G. In the following, we will use Greek indices for space-time coordi-
nates, and Latin indices for the algebra structure. We choose the convention
where the generators T a are Hermitian with

[T a, T b] = ifabcT c and tr
(
T aT b

)
= 1

2δ
ab, (1.4)

with real structure constants fabc.
The dynamics of the gauge fields is given by Fµν , which is the strength-field

tensor and defined as

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]. (1.5)

and transforms in the adjoint representation of SU(N). Notice that when
G = U(1), i.e. Abelian, the commutator term in (1.5) vanishes and we re-
obtain the strength-field tensor of QED. Like the gauge field Aµ, also the
tensor Fµν lives in the Lie algebra g. Therefore, the product FµνFµν is actually
a matrix. Only scalar terms are allowed in the Lagrangian (1.1), hence we
have to take the trace:

trFµνFµν =
∑
a

FµνaF aµν .
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Fermions Given the fact that we will not look at dynamical matter fields
in this manuscript, we only give a very brief introduction to fermions. The
fermion field ψ(x) lives in the fundamental representation of G. The La-
grangian of a free fermion field ψ is

Lψ = ψ(∂µγµ −m). (1.6)

The matrices γµ form a Clifford algebra, which is defined by the relations

{γµ, γν} = 2ηµν , (1.7)

where ηµν is the space-time metric. For the latter we choose the convention
ηµν = diag(+1,−1,−1,−1). The conjugate field ψ is defined as

ψ = ψ†γ0.

The interaction with the gauge field can be obtained with a simple minimal
coupling, where the derivative ∂µ is substituted with the covariant derivative
Dµ in (1.2).

Gauge transformations A gauge transformation is defined by a group valued
function of space-time g : R1,d → G. It transforms the fermion field as

ψ(x) 7→ g(x)ψ(x). (1.8)

Here we have been a bit sloppy with notation, by writing g(x)ψ(x) in (1.8) we
actually mean the action of the element g(x) ∈ G in the same representation
of ψ(x).

In order to have an invariant Lagrangian, the gauge fields Aµ have to
undergo a transformation induced by the function g:

Aµ(x) 7→ g(x)Aµ(x)g(x)−1 + ig(x)∂µg(x)−1, (1.9)

so that Dµψ(x) 7→ g(x)Dµψ(x), while

Fµν 7→ g(x)Fµνg(x)−1. (1.10)

Path-integral For a path integral formulation we need to first define the
action. This is just the integral of the Lagrangian in (1.1), over the D-
dimensional space-time:

S[A,ψ, ψ] =
∫
R1,d

dDxL. (1.11)
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The action (1.11) defines the “weight” in the path-integral. Now we can write
down the partition function for a YM theory:

Z =
∫
DADψDψ eiS[A,ψ,ψ]. (1.12)

The measures in the path-integral can be physically interpreted as a measure
over all the possible configurations of the fields Aµ, ψ and ψ, but are still
lacking a rigorous mathematical definition [10]. We will not elaborate further
on this topic.

1.1.1 Euclidean field theory

In the previous section we introduced YM theory in Minkowski space-time.
We now need to move onto Euclidean space-time, which is the starting point
for LGT. This is true for various reasons. As stated previously, Euclidean
formulation allows to bridge into the territory of SM, meaning we can use its
full technology. Second, there are also some advantages from the operational
point of view. The weight in (1.12) is a complex phase, which can be prob-
lematic from the computational point of view because a priori convergence
is not guaranteed. We will see that in Euclidean space-time the weight will
become a positive-defined function, which makes it clear it is a probability
distribution.

In order to pass to a Euclidean space-time Rd+1, we need to perform aWick
rotation, where the time coordinate x0 is mapped to a forth space coordinate
x4:

x0 7→ −ix4.

To distinguish quantities in Euclidean or Minkowski space-time we use the
subscripts E and M , respectively. The rotation (1.1.1) affects both space-
time measures,

dDxM = dx0ddxi and dDxE = ddxidx4,

and the time-components of the quantities that enters the Lagrangian, which
leads to an overall effect

LE = −LM .

The action is defined in the same way in both types of space-time,

SM =
∫

dDxMLM and SE =
∫

dDxELE ,

and due to the Wick rotation (1.1.1), we obtain that they satisfy

iSM = −SE . (1.13)

14



Introduction to Lattice Gauge Theories

This leads to the following definition of the Euclidean path-integral:

ZE =
∫
DADψDψ e−SE [A,ψ,ψ]. (1.14)

Notice that the weight e−SE in (1.14) is now a positive-valued function, given
that SE is a real function, and has the form of a Boltzmann weight. In other
words, following the spirit of SM, we have now a probability distribution e−SE

over the configurations of the fields Aµ, ψ and ψ.
Let’s describe this procedure in more details. The Wick rotation does not

change the aspect of the gauge kinetic term,

− 1
2g2 tr(FµνF

µν), (1.15)

but the sum is now a simple Euclidean sum, where there are minus signs
appearing when raising or lowering indices, and µ = 1, . . . , d+ 1.

Considering now the fermionic part of the YM Lagrangian, we need to
perform the Wick rotation on the Dirac fields ψ and ψ. In Minkowski space-
time

ψ
(
iγµMDµ −m

)
ψ = ψ

(
iγµM∂µ + γµMAµ −m

)
ψ, (1.16)

where γµM denotes the gamma matrices in Minkowski space-time:

{γµM , γ
ν
M} = 2ηµν .

The Euclidean Clifford algebra instead uses gamma matrices γµE that instead
satisfy

{γµE , γ
ν
E} = 2δµν .

Given that we have ∂0 = i∂4 and A0 = iA4, the correct form can only be
achieved by putting γ0M = γ4E . This procedure yields

ψ
(
iγµM∂µ + γµMAµ −m

)
ψ = −ψ

(
γµE∂µ + iγµEAµ +m

)
ψ. (1.17)

Since LE = −LM , we can conclude

LE = 1
2g2 tr(FµνF

µν) + ψ(γµDµ +m)ψ, (1.18)

where the indices are all Euclidean and Dµ = ∂µ + iAµ.

1.1.2 Hamiltonian formulation

Even though Wilson’s formulation [2] is in the path-integral and Lagrangian
language, we will also review the Hamiltonian formulation of non-Abelian QFT
because its connection to Quantum Simulation. Expressing a YM theory in
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Introduction to Lattice Gauge Theories

the Hamiltonian language can be tricky, especially in the presence of gauge
symmetries. Usually, one has to procede by computing the conjugate momenta
and perform a Legendre transform in order to obtain the Hamiltonian. In the
presence of gauge symmetries, the time-component A0 of the gauge fields does
not have a conjugate momentum. Instead it leads to a constraint:

∂L
∂Ȧ0

= 0, (1.19)

which means that the Legendre transform is not invertible.
The easiest remedy is to fix the gauge beforehand, by imposing A0 = 0,

which is called canonical or temporal gauge. With this condition, the gauge
fields Lagrangian can be written as

− 1
2g2 tr(FµνF

µν) = 1
g2

(
E2 −B2

)
= 1
g2

(Eai Eai −Ba
i B

a
i ), (1.20)

where E and B are, respectively, the corresponding electric and magnetic
fields for a non-Abelian theory. In the temporal gauge we only have the
spatial components A of the gauge field Aµ. The electric field E is the time
derivative of A, i.e. E = dA

dt , which means that E is the conjugate momentum
to A. Meanwhile, the magnetic field B can be obtained from the spatial
components of the strength-field tensor Fµν , with Bi = −1

2εijkF
jk, where εijk

is the Levi-Civita symbol. Once the gauge is fixed, the Hamiltonian can be
finally be obtained with a Legendre transform:

H = 1
g2
Eai Ȧ

a
i −

1
2g2 (E

a
i E

a
i −Ba

i B
a
i ) =

1
2g2 tr

(
E2 +B2

)
. (1.21)

In the Hamiltonian formulation, the fields A and E have to be elevated to
operators, by imposing the following commutation relations:[

Aai (x), Ebj (y)
]
= ig2δijδabδ(x− y)[

Eai (x), Ebj (y)
]
=
[
Aai (x), Abj(y)

]
= 0.

(1.22)

A careful reader will notice that (1.22) are completely analogous to a position-
momentum commutation relation, similar to [xi, pj ] = iδij . In fact, like in the
latter case, where the momentum pi is the generator of translations of xi, the
electric field E is the generator of translation of A. To be more precise, it
is the canonical momentum E/g2 that generates translations of A. In other
words, E/g2 generates infinitesimal gauge transformations. This point of view
will be rather useful when treating the gauge fields on a lattice.

In order to impose the canonical gauge A0 = 0, the equation of motion for
A0 has to be satisfied:

∂µ

(
∂L

∂(∂µA0)

)
− ∂L
∂A0

= 0. (1.23)
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Figure 1.1. A (very) rough sketch of the phase diagram of QCD [11].

In the absence of sources, this leads to

DiEi = 0, (1.24)

where Di and Ei are the spatial components of the covariant derivative and
electric field, respectively. What we obtained is basically the generalization
of Gauss law to non-Abelian theories. In fact, the condition (1.24) for a U(1)
theory reduces to the well known ∇ · E = 0. Unfortunately, the equation
(1.24) is inconsistent with the commutation relations (1.22), so it cannot be
implemented as an operator equation. The easiest solution, or loophole, to
this empasse is to impose to consider physical or gauge-invariant only states
that satisfy

DiEi |ψphys〉 = 0. (1.25)

This constraint select a subspace of the overall Hilbert space H, which will be
labeled as the physical Hilbert space Hphys.

1.1.3 The sign problem

A number of interesting phases have been predicted for QCD in the µ−T plane
[11], where µ is the chemical potential and T the temperature, such as quark-
gluon plasma [12] or color superconductivity [13] (see Fig. 1.1). Unfortunately,
detailed quantitative analysis of QCD has been limited to the µ = 0 region
only [11]. This is mainly due to the difficulty of studying QCD in the low
energy regime, where the perturbative approach fails [9, 10]. Moreover, even
LGTs, at least in the path-integral formulation, is not applicable for µ 6= 0
due to the infamous sign problem.

In the Hamiltonian formulation, the chemical potential in introduced in the
same manner as standard SM. If H is the Hamiltonian density operator and
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N a fermion density operator, then one can simply replace H with H − µN .
In the case of a YM theory, the fermion density operator would correspond to
the fermion number operator N = ψ†ψ.

In the path integral formalism, fermions are introduced as Grassmann
variables. This means that they can easily be integrated out [10, 11]:∫

DψDψ exp
(
−
∫
dDxψKψ

)
= detK, (1.26)

where K is the kinetic operator for the fermions. If the fermions are coupled
to Aµ, as it happens in YM theory, then K has some complicated dependence
on the fields Aµ. If one includes the chemical potential term µψ†ψ in the
Lagrangian, then the fermion determinant detK turns out to be complex
[11], with a non-trivial phase factor.

As a result, the integrand of the path-integral is no longer positive-definite,
and it cannot be interpreted as a probability distribution. Furthermore, a
complex weight in the path-integral makes the integrand oscillatory, which
does not help with convergence. This is summarizes the so-called sign problem,
which poses severe limitation to, for example, Monte Carlo (MC) simulations
in the finite µ region.

1.2 Wilson approach to Lattice Gauge Theories

Starting from the path integral formulation, the first step in the formulation of
a LGT is the discretization of space-time, where a discrete d+ 1-dimensional
lattice substitutes the continuum space-time. The simplest choice in this re-
gard is a hypercubic lattice with lattice spacing a, but in theory an LGT can
be defined on any type of lattice. An immediate advantage of using a lattice
instead of a continuum is the natural ultraviolet cutoff given by the inverse of
the lattice spacing.

Formally, a lattice L is defined as

L =

x ∈ RD : x =
D∑
µ=1

anµµ̂ nµ ∈ Z

, (1.27)

where µ = 1, . . . , D, and µ̂ is the unit vector in the µ̂-th direction. The edges,
or links, will be labeled by a pair (x, µ̂), meaning that we are referring to the
link in the µ̂ direction from the vertex, or site, x. It is important to fix an
orientation for each direction in the lattice. The most natural choice is to
choose +µ̂ for each µ̂. So, even though (x, µ̂) and (x + µ̂,−µ̂) refers to the
same link, the former is traversed in the positive direction while the latter in
the negative direction.
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Figure 1.2. Left. Unit vectors µ̂ in three-dimensional lattice. Right. Example of a three-
dimensional lattice.

In an LGT, both the sites and links host degrees of freedom (d.o.f). In
particular, the matter fields lives on the sites while the gauge fields live on the
links. The definition of these d.o.f will need some care, because we have two
main requirements, especially if we are interested in YM theory:

• The lattice action should reduce to the continuum action in the contin-
uum limit, i.e., a→ 0;

• The lattice action should respect the gauge symmetry.

Lorentz invariance is naturally broken on a lattice but we expect to recover it
in the continuum limit.

1.2.1 Gauge fields on a lattice

The simplest way to define a YM action on a lattice would be to consider a
continuum action, substitute finite-difference approximations for derivatives,
and replace the space-time integral by a sum over the lattice sites. However,
the result of this is an action which is not-gauge invariant for non-zero lattice
spacing [2]. This is likely to mean that the theory would still lack gauge-
invariance in the a→ 0 limit. The alternative, outlined in [2, 9], would be to
formulate gauge invariance for a lattice theory then modify its action until it
is gauge invariant for any a.

We start by considering a general group G. We associate an element
Uµ(x) ∈ G to each link (x, µ). If one traverse the link in the opposite direc-
tion, one should consider the inverse element U−1. In the case of SU(N), we
take Uµ(x) to be the matrices in the fundamental representation and a vector
potential can be obtained in the continuum limit by writing

Uµ(x) = eiagAµ(x). (1.28)
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Figure 1.3. Single plaquetteWilson loop
Wµν(x), which is defined on the plaque-
tte in the (µ, ν)–plane at x (highlighted in
blue). For conveniencewe have set a = 1.

It is necessary to discuss about gauge invariance before moving to the
dynamics of these gauge fields. A gauge transformation is described by a
group-valued function g(x) (in the appropriate representation), which acts on
the vertices x. The variable Uµ(x) sits in the middle of the site x and x+ µ̂,
therefore it transforms as

Uµ(x) 7→ g(x)Uµ(x)g(x+ aµ̂)†. (1.29)

The action of the gauge fields Uµ(x) has to satisfy two requirements: it
has to be gauge-invariant and reduce to the pure gauge YM action in the
continuum limit. From (1.29), we can immediately deduce that taking the
product of Uµ(x) along a closed curve will yield a gauge-invariant quantity.
The simplest close curve we can consider is a plaquette, i.e., the smallest square
face.

Consider a plaquette sitting in the (µ, ν)-plane at site x (see Fig. 1.3). We
define the single plaquette Wilson loop Wµν(x) as

Wµν(x) = Uµ(x)Uν(x+ aµ̂)Uµ(x+ aν̂)†Uν(x)†. (1.30)

Notice that we do not have any sum in the indices µ and ν because they are
not Lorentz indices. Only scalar quantities are allowed in the action, so we
need to take the trace of Wµν . Then, our lattice action will be defined as the
sum over the plaquettes of trWµν (and its Hermitian conjugate):

SW = − 1
g2

∑
x

∑
µ,ν

(
trWµν(x) + trW †

µν(x)
)
. (1.31)

This is known as the Wilson action [2, 9]. The quantity trWµν behaves as
expected in the continuum limit, where we have to work with the strength
field Fµν :

trWµν ≈ N −
a4

2 trFµνFµν +O(a6), (1.32)

The lattice action is not unique. The Wilson action in (1.31) is the sim-
plest choice that one can make that satisfies our requirement. Some other
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modifications are possible, they can include other types of closed loops or
other representations. These modification have their place, for example for
improving the continuum limit or errors [14–16]. However, they will not be
considered here.

Obviously, in a path-integral formulation of LGTs we need to define the
path-integral in order to have a quantum theory:

Z =
∫ ∏

(x,µ̂)
dUµ(x)e−SW . (1.33)

Here we integrate over all possible values for the gauge variables. Due to the
fact that Uµ are elements of a group G that for most physical applications
is compact, the most natural choice is to the invariant group measure also
known as Haar measure [9, Chap. 8]. Notice that (1.33) is now a well defined
mathematical quantity, unlike the path-integral in continuum theory where
a clear mathematical definition is still lacking. Now that the path-integral
measure has been defined, we can compute the average of an observable O
with

〈O〉 = 1
Z

∫ ∏
(x,µ̂)

dUµ(x)Oe−SW (1.34)

1.2.2 Order parameters and gauge invariance

The Wilson formulation of LGTs can resemble spin models studied in sta-
tistical mechanics. The link variables Uµ(x) can be thought as some sort of
generalization of the spin d.o.f. They are distributed in a crystal-like structure
and interact with their nearest neighbours, in this case through a four-body
interaction (the plaquette action), instead of two-body interaction (like the
Ising model). If one wants to pursue this analogy, then it is reasonable to look
at order parameters that behaves like the spontaneous magnetization, where
a non-vanishing expectation value signals a phase transition. The analogue of
such an order parameter in LGT would be something like

〈Uµ(x)〉 6= 0, (1.35)

but it has been shown that this is impossible in Wilson theory [17]. Let’s
argue why.

In standard spin models, a non-zero magnetization represents a sponta-
neous breaking of the global symmetry of the system. Consider the simplest
case of the classical Ising model, where the d.o.f are binary variables σ = ±1.
Without an external field, the energy is given by the interaction of nearest
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neighbouring spins, i.e., σiσj . This system has an obvious global Z2 symme-
try, that corresponds to the inversion σi 7→ −σi off all the spins. A ferromag-
netic phase is, by definition, signaled by 〈σ〉 6= 0, which necessarily breaks the
global Z2 symmetry of the model. Once a direction is selected by 〈σ〉 6= 0,
it remains stable under thermal fluctuations because they cannot coherently
shift the magnetization of a large (or infinite) number of spins.

In a LGT, an expectation value like (1.35) would break gauge invariance,
which is a local symmetry, not a global one. As explained previously, gauge in-
variance means that the action is unchanged under local arbitrary “rotations”
of the link variables Uµ(x) (see (1.29)). Hence, thermal fluctuations will in-
duce such rotations and in the long rung it will average on all the possible
gauges, which leads to

〈Uµ(x)〉 =
∫

dUµ(x)Uµ(x) = 0 (1.36)

if Uµ contains only non-trivial irreducible representations of the group (see
Th. 5 in App. A). This means that “magnetization” is always vanishing in
a LGT and gauge invariance cannot be spontaneously broken, which is the
contents of the Elitzur theorem [17].

The conclusion of this brief discussion may seem rather grim, as magneti-
zation in spin models is the most convenient and used order parameter. But
this does not mean that there are no other order parameters in a LGT. We
have just showed that the problem when considering something like 〈Uµ〉 is
gauge invariance. So, the most reasonable step forward is to consider gauge-
invariant quantities as order parameters. We have already seen that tracing
over a product of Uµ variables along a closed curve is a gauge-invariant quan-
tity, called Wilson loop (WL).

In so far, we have considered only single plaquette loops but nothing re-
straints us from considering arbitrary large loops, indeed it serves as a con-
finement test for pure gauge theories. It has been shown [2] that confinement
is equivalent to the area law behaviour of WLs, i.e.,

〈W (C)〉 ∼ exp(−σA(C)), (1.37)

where A(C) is the minimal area inside the closed path C and σ the string
tension (the coefficient of the linear potential between two quarks). On the
other hand, in the absence of confinement one finds instead the perimeter law:

〈W (C)〉 ∼ exp(−kP (C)), (1.38)

where P (C) is the perimeter of the curve C and k just some constant.
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The reason behind this behaviour can be seen with a simple qualitative
picture [2, 9]. A closed timelike WL basically represents a process in which
a quark-antiquark pair is produced, moved along the sides of the loop and
annihilated. If we are in a confining phase we can then expect a liner potential
between the quark and antiquark. We can imagine a flux tube binding the
two charges, which swoops the whole inside area of the loop. Then, it is
easy to image that the energy of this whole process will necessarily depend
on the area of the loop. On the other hand, if we are in a deconfined phase
then there is no potential binding the two quarks. In this case the energy
of the whole process depends only on the self-energy of quarks, which move
along the sides of the loop. Therefore, the leading energy contribution of this
process depends on the perimeter, instead of the area. Obviously, this picture
is no longer valid when dynamical matter is involved, because in a confining
phase pair production is always preferred when separating two quarks at large
distances.

From (1.37) and (1.38), we can deduce that the string tension σ can be
used as an order parameter. It is non-zero for a confining phase, while it
vanishes for a deconfined phase. But it is non-local in nature, as it involves the
asymptotic behaviour of potential, and therefore of the correlation functions
of the theory.

23



Introduction to Lattice Gauge Theories

1.2.3 Fermions on a lattice

The fermionic degrees of freedom lives on the sites of the lattice. So, for each
site x of the lattice L, we have a spinor variable ψx. Then, in order to build the
lattice action, the derivative ∂µψ(x) has to be substituted with a symmetric
finite difference

∂µψ(x) −→ 1
2a(ψx−µ̂ − ψx+µ̂).

One can suppose that this substitution, accompanied with the usual substi-
tution of integrals with sums over the lattice will yield the correct lattice
action for fermions. Unfortunately, this is not the whole story. Defining lat-
tice fermions is not this straightforward due to the known doubling problem
[18, 19]. In simple terms, when introducing fermions on a lattice, instead of a
continuous space, it leads to an extra number of spurious fermions, which are
just lattice artifacts.

In order to get an insight into the fermion doubling issue, consider the
correlation function for a single fermionic species. If K is the kinetic matrix
for the fermions, then G = K−1 gives their correlation matrix. One finds that
the correlation function between two sites x and y has the form [9]

(G)x,y =
1

adLd

∑
k

G̃ke
2πik·(x−y)/L, (1.39)

where a is the lattice spacing, Ld the total volume and G̃k the correlation
function in momentum space:

G̃−1
k = m+ i

a

∑
µ

γµ sin(2πkµ/L). (1.40)

It involves a simple trigonometric function because the derivative term involves
nearest neighbouring sites. One can then take the model to a large lattice,
which justifies in substituting the discrete sums with integrals:

2πkµ
La

→ qµ and 1
adLd

∑
k

→
∫ dqd

(2π)d
, (1.41)

where the qµ’s are continuous momentum variables. This substitution maps
(1.40) into

G̃−1
k = m+ i

a

∑
µ

γµ sin(aqµ). (1.42)

One can naively think of taking the limit a → 0 and expand sin(aqµ)
around the zero and obtain something that look like the correct continuum
limit:

G̃−1
µ = m+ i/q +O(a2). (1.43)
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But one should not be fooled by this sloppy procedure just because it appears
to give the wanted result. Each component qµ takes values in the region
[−π/a,+π/a], hence we have to integrate on the whole volume [−π/a,+π/a]d.
Looking at (1.42), it is clear that the major contributions to G in (1.39) comes
from the zeros of G̃−1

k . This, not only vanishes in the region qµ ∼ 0 but also for
large momentum qµ ∼ π/a. The propagator has no suppression of momentum
values near π/a. We can isolate the large momenta region by considering

q̃µ = qµ − π/a (1.44)

for each direction in space. In this way, we de facto half the integration region,∫ π/a

−π/a
dqµ →

∫ π/2a

−π/2a
(dqµ + dq̃µ) (1.45)

and now the limit a → 0 can be taken safely, but it comes with a price to
pay. For each direction in space, we have two independent regions that gives
a free fermion contribution to the propagator in the continuum limit. We
have effectively doubled the number of fermions for each direction. In a d-
dimensional lattice we end up with 2d independent fermions, even though we
initially started with just one.

There are many solutions to this fermion doubling problem [19, 20], but we
will focus only on one in this manuscript: the staggered fermions [8, 19]. We
have seen that these fictitious fermions come from the large momenta regions,
where qµ ∼ π/a. Brutally cutting out this large momenta regions spoils the
completeness of the Fourier transform, so it is not a solution, but a smarter
solution can give out the same effect. The idea is to spread the fermionic
d.o.f over multiple lattice sites, reducing effectively the momenta space. For
example, in two dimensions it would correspond to placing the particles on
even sites and the antiparticles on odd sites. A site is considered even or odd
when (−1)x = (−1)x1+···+xd = +1 or −1.

To obtain a staggered fermion, we define a new fermionic species χ(x) such
that

ψ(x) =
∏
µ

(γµ)nµχ(x), (1.46)

where xµ = anµ. Now, if we want to express the discretized covariant deriva-
tive, the term γµψ(x+anµ) have two extra powers of γµ compared to ψ. Since
(γµ)2 = ±1, we have therefore

ψ(x)γµψ(x) = (−1)ηµ(x)χ(x)†χ(x+ anµ), (1.47)

where ηµ(x) is some sign function depending on the site x. This function
can be obtained from the commutation relations of the gamma matrices. In
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particular, in two dimensions we have

η1(x) = 1 and η2(x) = (−1)n1 , (1.48)

while in four (Euclidean) dimension we have instead [20]

η1(x) = 1, η2(x) = (−1)n1 , η3(x) = (−1)n1+n2 , η4(x) = (−1)n1+n2+n3 .

(1.49)
A similar reasoning can be applied to the mass term mψ(x)ψ(c), where it
becomes

mψ(x)ψ(x) = (−1)η(x)χ(x)†χ(x), (1.50)

for some sign function η(x) that can be obtained from the commutation rela-
tions of the gamma functions.
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chapter two

Quantum Simulation of Lattice
Gauge Theories

2.1 Quantum simulation

Simulating quantum mechanics is a very challenging task [4, 21], especially if
one is interested in many-body systems. The description of a state requires
a large number of variables, for keeping track of all the quantum amplitudes,
which grows exponentially with the system size. Hence, one would have an
exponential explosion in terms of classical resources (like for example computer
memory), which clearly is not suitable.

If simulating a quantum system is not a task for classical machines, then it
should be a task for quantum machines [3, 4, 22–25]. The possibility of using
quantum devices for simulating physics was first envisioned by Feynman in his
seminal talk [4]. The main idea is to encode the d.o.f of an ideal mathematical
model of a physical system into a controllable and reliable quantum system.
In other words, a quantum simulator is an experimental device that mimics a
simple model, or a family of simple models [23]. Using quantum physics for
simulating quantum physics itself may seem like fighting fire with fire, but it
can actually be a powerful strategy. We will no longer need an exponentially
large number of variables for describing the target system, because the d.o.f of
the target system and the simulator would be in a one-to-one correspondence.
Therefore, the size of a quantum computer would only be proportional to the
size of the quantum system it intends to simulate, without an exponential
explosion in quantum resources.

In this perspective, one would need a specific quantum simulator for sim-
ulating a specific class of models. This is not necessarily true with a quantum
computer [26–29]. The idea for such a device was put forward in [4, 21, 26]
and it would act as a universal quantum simulator, a statement proved by
Lloyd in [30]. One caveat of the universal simulator is the need of digital-
ization of the target system d.o.f and its evolution, because a quantum com-
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U ′

preparation measurement

Figure 2.1. Schematic picture of a quantum simulator.

puter is essentially discrete, it is made up of qubits, so they are not suited for
continuous-variable computation. This is in some sense analogous to classical
computers, where real numbers have to be truncated and represented with a
finite-size register of bits. On the other hand, a problem-specific simulator can
potentially uses some kind of physical platform which allows for continuous
d.o.f [24, 31].

In general, Quantum Simulation (QS) can be (loosely) defined as simu-
lating a quantum system by quantum mechanical means, and by quantum
simulator we mean a controllable quantum system used for simulating or em-
ulating another quantum system. There are three paths that can be taken in
this regard [22]:

• Digital Quantum Simulation

• Analog Quantum Simulation

• Quantum Information inspired algorithms for classical simulation

We will review each path in the following sections. Out of the three options,
only the digital and analog QSs are actually based a some kind of quantum
simulator. The last option uses methods inspired by quantum information for
efficiently and faithfully approximates quantum states, which in turns makes
classical simulations feasible for a large class of models.

2.1.1 Digital quantum simulations

The digital approach to QS employs the circuit model of quantum computation
[27, 32]. This model is analogous to the circuit model of classical computation,
where one works with bits, the smallest possible amount of information, an
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Figure 2.2. Picture of a Bloch sphere. A
generic state of a qubit can be written as
|ψ〉 = cos θ

2 |0〉 + eiϕ sin θ
2 |1〉, so it is fully

describedby a twoangles θ andφ. For this
reason, theHilbert space of a qubit can be
visualized as a two-dimensional sphere.

on–or–off state, and a minimal set of logical operators (like NOT, AND, OR,
etc.). In quantum computation, the set up is the same but with some key
differences: bits are substituted with qubits and the logical operators with
unitary operators.

A bit can only have two values, either 0 or 1. In quantum computing these
values are elevated to two orthonormal states |0〉 and |1〉. Therefore, the bits
are substituted with qubits, which are two-levels quantum systems. A generic
state of a qubit is |ψ〉 = α |0〉+β |1〉, with the normalization condition α2+β2 =
1, and the complex amplitudes α and β encodes the carried information. A
visual representation of the Hilbert space of a qubit is given by the Bloch
sphere (see Fig. 2.2). A set of qubits is called a quantum register and they
encode the state of the quantum computational machine, the equivalent of the
tape of a Turing machine.

The logical operators, or gates, of classical computation are single-bit or
double-bit functions that have only a single-bit output. This makes classical
computation non-reversible1. The idea behind quantum computing is to use
the time-evolution of an ad-hoc quantummachine for performing computation.
Time-evolution is a unitary process, which means that is reversible. Hence,
the non-reversible model of classical computation is not suited for quantum
computing. There is no one-to-one correspondence between the operations on
a classical machine and those on a quantum machine. Logical operations on a
quantum computer, also called quantum gates, have to implemented through
unitary operators that act on the quantum register. A succession of logical
operator, therefore, is equivalent to the product of these unitary operators.
This makes the whole computation a unitary process, hence reversible.

It is known, in classical computing, that only a minimal set of logical gates
1There exist models of classical computation that are reversible, see [33], which will not

be discussed here and are not very common in every-day applications. In [33] a universal
three-bits gate is introduced that allows for reversible computation.
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Figure 2.3. Examples of quantum gates.
From top to bottom: (i) Hadamard gate
H; (ii) Phase gateRk; (iii) CNOT (controlled
NOT) gate.

are actually needed in order to perform any computation. For example, with
a NOT gate and a AND gate is possible to implement every other possible logical
function (actually only the NAND gate is necessary). A similar result is true also
for quantum computing [34]. One only needs a minimal set of quantum gates in
order to implement any unitary operators with arbitrary precision. Similar to
the classical case, for quantum computing we only need single-qubit and two-
qubits gates. The two-qubits gates have an important role, because they allow
to introduce entanglement, which is the secret ingredient that makes quantum
computing distinct from classical computing. This minimal set usually entails
a set of single-qubit and one two-qubits entangling gate (like the CNOT gate).
In Fig. 2.3 some example of quantum gates are shown, while in Fig. 2.4 an
example of a quantum circuit can be found.

Even though it has been proven that “anything” can be simulated on a
quantum computer [30], not all unitary operations can be simulated efficiently.
The time-evolution of the target quantum system requires digitalization, which
means that it has to be decomposed in smaller steps in order to be encodable
as a sequence of quantum gates. This is possible to an arbitrary precision
thanks to the Trotter-Suzuki product formula for the exponentiation of com-
plex matrices:

eA+B = lim
n→∞

(
eA/neB/n

)n
. (2.1)

In most physically interesting case, the Hamiltonian is a sum of non-commuting
terms:

H =
∑
l

Hl,

where [Hl,Hl′ ] 6= 0 for l 6= l′. In the case of a time-independent Hamiltonian,
the time-evolution operator is given by

U(t) = e−it
∑

l
Hl such that U(t) |ψ(0)〉 = |ψ(t)〉 . (2.2)
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In order to implement (2.2) on a quantum operator, the time-evolution has to
be divided in N steps of length ∆t, such that t = N∆t and U(t) ' (U(∆t))N .
For each single time step we can apply the first-order Trotter-Suzuki formula
[27, 35] for the time-evolution operator:

U(∆t) = e−i∆t
∑

l
Hl =

∏
l

e−i∆tHl +O(∆t2). (2.3)

The drawback of Trotterization is that high accuracy comes at the cost
of very small ∆t and therefore a very large number of quantum gates. The
scheme used in (2.3) has some shortcomings, that can be improved with higher
order decompositions that will necessarily introduce more complexities in the
quantum circuit. Moreover, some other types of methods have to be used in
the case of time-dependent Hamiltonians [36].

It should be stressed that we are still far from perfect digital quantum
computation. A typical quantum computer is affected by noise due to its
interaction with the environment. The effect of noise can corrupt the state
of the quantum register, by flipping or dephasing the qubits for example.
Furthermore, interaction with an external environment will necessarily lead
to decoherence where all the “quantumness” of the system is lost [37–39].

It becomes clear that error correction is a necessity for fault-tolerant quan-
tum computing [40, 41] but it can greatly increase the number of qubits needed
for useful computations. Indeed, it is said we are currently living in the noisy
intermediate-scale quantum (NISQ) era of quantum computing [42]. The term
refers to moderately sized quantum computers (around 50–100 qubits) whose
gates are still affected by noise but are not large enough to fully implement
error correction.

The typical setup for a digital simulation consists of three steps:

Initial-state preparation. The quantum register is prepared in the initial state
|ψ(0)〉. This step can be difficult by itself, and it is not always guaran-
teed that an efficient algorithm may exist.

Unitary evolution. The circuit has to reproduce or simulate the action of a
unitary operator U . This unitary operator is usually the time-evolution
operator of the target system, which has to be decomposed in a sequence
of smaller operation through trotterization, as explained before.

Final measurement. After obtaining the wanted state |ψ(t)〉 = U |ψ(0)〉, a
measurement is needed in order to extract relevant physical information.
Instead of capturing the whole wave function |ψ(t)〉, with, for example,
quantum tomography, one may proceed with the direct estimation of
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|j1〉

|j2〉

|jn−1〉

|jn〉

|0〉+ ei2π0.j1...jn |1〉

|0〉+ ei2π0.j2...jn |1〉

|0〉+ ei2π0.jn−1jn |1〉

|0〉+ ei2π0.jn |1〉

H R2 Rn−1 Rn

H Rn−2 Rn−1

H R2

H

Figure 2.4. Example of a quantum circuit. In particular this circuit executes the quantum
Fourier transform [27]. It uses some of the gates showed in Fig. 2.3.

certain physical quantities, such as correlation functions or spectra of
operators.

2.1.2 Analog quantum simulations

Analog QS is another type of approach to QS, where one quantum system (the
simulator) mimics or emulate another (the target) [25, 43–49]. This approach
is not based on building a universal machine, like a quantum computer, that
can emulate any other system. Instead, it focuses on recreating the features,
or a subset of relevant features, of a chosen class of models in order to compute
some physically relevant quantities.

Analog QS follows the idea of analog computation, where an experimen-
tal device is conceived for executing a specific algorithm, meaning that it is
a specialized machine with some degree of controllability. Analog computa-
tion is not a new idea, rather it is the oldest type of computing devised by
mankind, and analog machines are the earliest types of computers to ever be
used [24]. Some historical examples can be the astrolabe for plotting the heav-
ens (around 200 BC), the Antikythera mechanism for predicting astronomical
routes (around 150 BC), or the mechanical differential analyser for integrating
differential equations (around 1876) [50].

In an analog simulation, the Hamiltonian of the target Htarg, is directly
mapped onto the Hamiltonian of the simulator, Hsim:

Htarg ←→ Hsim.

Obviously, this is possible only if there is a mapping between the system
and the simulator. If |φ(0)〉 is the initial state of the target, then it can
be mapped to the initial state |ψ(0)〉 of the simulator, via an operator O,
i.e. |ψ(0)〉 = O |φ(0)〉. Next, the simulator would perform the desired time
evolution U(t) |ψ(0)〉 = |ψ(t)〉. The result then can be mapped back to a
state of the target system via O−1, i.e. O−1 |ψ(t)〉 = |φ(t)〉. In this case the
Hamiltonians would be related by the mapping O, Hsim = OHtargO−1. Note
that the simulator may only partly reproduce the dynamics of the target, or
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simulate some effective description of it. The choice of the mapping depends
on what needs to be simulated and on the capabilities of the simulator [22].
Finding the mapping in an analog QS might look, at first, simpler than finding
the most efficient gate decomposition of a Hamiltonian, but it is not always
true and there are no recipes ready for constructing these mappings in a
general case.

Initial state preparation is not such a topic in analog QS, as it is in digital
QS. This is based on the assumption that the target system and the simula-
tor are presumed to be very similar. It is expected that the preparation of
the initial state can occur naturally in processes mimicking the natural relax-
ation of the simulated system to an equilibrium state. Moreover, analog QS
has the natural advantage that physical quantities can be measured directly,
without the need of special schemes like in digital QS, which can yield direct
information about the target system [23].

One important advantage of analog QS is that fact that it does not require
a fully fledged quantum computer. In fact, the simulator does not even need
to be a quantum computer at all. This possibly makes analog QS much more
achievable from the experimental point of view in the short term. Many
different platforms are already available (see also Fig. 2.5):

• ultracold atoms and molecules [47, 49, 51];

• trapped ions [46];

• photons [45];

• polaritons [52];

• nuclear magnetic resonance systems [53];

• artificial lattices [54];

• superconducting qubits [48].

For more details see [22, 23, 25] and references therein.
Analog QS can be useful even in the presence of errors, up to a certain

tolerance level, because it would still be able to give qualitative answers. Sup-
pose one is interested in knowing if whether a certain set of physical conditions
leads to a given quantum phase transition. Even without the full quantita-
tive description or the perfect tuning of the control parameters, an analog
simulator would, potentially, still be able to show the presence or not of a
phase transition. Furthermore, due to the analog nature of these simulators,
standard error correction and fault tolerance are not allowed [23], while the
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Figure 2.5. Picture from [25]. Examples of analog quantum simulators: (a) atoms in opti-
cal lattices, (b) one-dimensional or (c) two-dimensional arrays of cavities; (d) ions in linear
chains, (e) two-dimensional arrays of planar traps, or (f) two-dimensional Coulomb crystal;
(g) electrons in quantum dot arrays created by a mesh gate, (h) in arrays of superconducting
circuits, or (i) trapped on the surface of liquid helium. For more details see [22, 25].

level of controllability depends on the type of platform used. For example,
in the case of ultracold atoms in optical lattices the typical control param-
eters involve lattice parameters (laser wavelength, geometry, dimensionality,
etc. . . ), temperature and other thermodynamical control parameters, as well
as atomic interaction strength [49].

2.1.3 Quantum-inspired algorithms

Traditionally, classical simulations of quantum systems have been done using
one of the following methods [23]:

• Quantum Monte Carlo (MC).

• Systematic perturbation theory.

• Exact Diagonalization (ED).

• Density Matrix Renormalization Group (DMRG).

Each of these methods has its problems. Quantum MC methods can work
with large systems but fails for fermionic systems due to the sign problem
[55, 56]. Perturbation theory is applicable only when there is a small coupling
constant, so it fails for strongly interacting systems. ED works only for rather
small systems [55, 56]. DMRG is a variational method that has been proven
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to be fully functional for strongly interacting systems [57–59]. Additionally,
it has been proven to be of great success for one-dimensional systems, while
for two-dimensional models it can be quite limited [60].

Thanks to the development of quantum information, new classical algo-
rithms have been put forward for the simulation of quantum many-body sys-
tems, that much more exploit the quantum nature of these systems. One of
the most groundbreaking example of quantum-inspired algorithms is the use
of Tensor Networks (TNs) [61–66]. They make it possible to “compress” the
information about a many-body wave function by expressing it as a contrac-
tion of a network of tensors (as suggested by the name). Additionally, TN
also helped shining a light of the effectiveness of DMRG.

In a TN, to each physical site there is associate a tensor with a certain
number of indices (or legs). One of these indices is called the physical index
of the tensors, which runs over the basis of the local Hilbert space. The other
indices are auxiliary indices, their dimension is governed by a parameter χ
called the bond dimension and are “connected” to other sites. Roughly speak-
ing, these auxiliary indices encodes the entanglement information between the
connected sites.

To make it more clear, consider a one-dimensional open chain (with L

sites), where each site has a d-dimensional local Hilbert space with basis
{|i〉 , i = 1, . . . , d}. A general global state |Ψ〉 of the whole chain can be
written as

|Ψ〉 =
∑

i1,...,iL

Ci1,...,iL |i1 · · · iL〉 . (2.4)

The whole state is encoded in the tensor Ci1,...,iL of order L, which has a
total of dL entries. The indices in are physical indices of the tensor. Through
Singular Value Decomposition, it is possible to factorize the tensor Ci1,...,iL
into L tensors Ain , one for each site [57]:

Ci1,...,iL =
∑

α1,...,αL−1

Ai1α1A
i2
α1,α2 · · ·A

iL−1
αL−2,αL−1A

iL
αL−1 . (2.5)

We have introduced a set of indices αn, the auxiliary indices, which are con-
tracted (i.e. summed over). The example above is basically the essence of a
Matrix Product States (MPSs), a typical example of TN in one dimension.

The order of the indices αn depends on the number of Schmidt eigenval-
ues of the bipartition that separates the first n sites from the rest. In other
words, it depends on the entanglement entropy between the first n sites of the
chain and the rest. Not all the Schmidt eigenvalues are of the same impor-
tance, therefore each tensor Ain can be optimized by discarding the Schmidt
eigenvalues that are under a certain threshold. In this way we compress the
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wave-function, by preserving the information that best represent the entan-
glement in the state. The order of the indices αn after the optimization is the
bond-dimension, and it is this parameter that fine tunes the amount of entan-
glement. Notice that with χ fixed, the right hand side of (2.5) has only around
Ldχ2 entries, which scales better that dL. If the system has a finite amount of
entanglement, then there is an optimal value for the bond dimension χ. This
would mean that we do not really need all the dL entries of Ci1,...,iL . Only the
Ldχ2 entries of the right hand side of (2.5) are sufficient to faithfully represent
|Ψ〉.

For a large class of physical models, the ground state is gapped and has a
finite correlation length, which leads to a finite amount of entanglement. This
fact is expressed by the so-called area law, where the entanglement between
two partitions of the system grows with size of the boundary, the area between
the two partitions, and not with the volume of the partition itself [67–71]. The
main advantage of TN methods is their ability to capture this area law, which
lead to an efficient computation of the ground states of these models.

TNs were first inspired by the ground state of the AKLT model [72], and
from there different types TNs were developed. The paradigmatic example
of TNs are the MPSs in one-dimension [57, 65], and the Projected Entangled
Pair States (PEPSs) in two dimensions [62, 73]. Some other variants of TNs
exists, like Tree TNs [74, 75] or Multi-scale Entanglement Renormalization
Ansatz (MERA) [76–78]. An example of MPS, PEPS, and Tree TN are shown
in Fig. 2.6.

TN methods can still have some shortcomings. They work especially well
for one-dimensional gapped systems, but it can become quite challenging to
make them work efficiently in gapless systems or in higher dimensions. When
a system is in a gapless phase, the correlation length diverges, which leads
to drastic change in the entanglement structure. This is best captured by
comparing the behaviour of entanglement entropy in massive (gapped) and
massless (critical) one-dimensional models [68, 69]. In a massive theory the
entanglement entropy is directly proportional to number of boundary points,
regardless of the subsystem size (as long as it is larger then the correlation
length). On the other hand, in a massless and critical phase the entanglement
entropy has a direct dependence on the size of the subsystem.

Therefore, in a critical phases the bond-dimension would, potentially, need
to increase with the system size in order to effectively capture the ground-
state wave-function. Another shortcoming is the computational complexities
of tensor contractions in dimensions higher than one. This is because the
number of legs of a tensor increases with the dimensionality of the system,
which lead to higher computational costs when performing calculations [61].
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|Ψ〉

(a) Quantum state

(b) MPS

(c) PEPS

(d) TTN

Figure 2.6. Examples of TNs. From top to bottom: (a) a generic quantum state can be rep-
resented as a unique tensor, with one index (or leg) for each site. (b) a MPS in one dimension;
each site have one tensor with one physical leg and two auxiliary legs that connects with the
neighbouring sites (only one leg at the boundary). (c) a PEPS in two dimensions on a square
lattice; each site has an auxiliary legs going in each possible direction on the lattice. (d) a Tree
TN state in one-dimension; each site has one tensorwith one physical leg, but now these ten-
sors are contracted in hierarchical structure, with intermediate tensors, that do not reflect the
lattice geometry.
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2.2 Simulating gauge theories

LGTs are arguably one of the most computationally intensive quantum many-
body problem, due to the large numbers of d.o.f and, especially, the local gauge
constraints. Typically, LGT computations uses the Quantum MC method in
the Euclidean path integral formulation, due to the natural presence of a
Boltzmann factor in the action, that act as a statistical weight. MC methods
applied to QCD, which from here it will be referred as Lattice QCD, already
yielded a number of very interesting results, that includes: calculations of fun-
damental properties of QCD (such as quark masses and the running coupling);
masses of QCD bound states (such as protons, neutron, pions, etc.); structure
of hadrons (for example how quarks and gluons interact with one another in-
side the proton); flavour physics (leading to constraints on the CKM matrix
elements) and much more [79, 80].

However, MC methods suffer from some issues, mostly due to the Eu-
clidean space-time formulation and the sign problem. The Euclidean space-
time, due to its imaginary time, makes it impossible to compute observables
that explicitly depend on real time. They are accessible only in Minkowski
space-time, where time has a different signature. An example of these ob-
servables are light-cone correlations, in terms of which partonic properties are
formulated and expressed [81]. As already mentioned, another severe short-
coming of Lattice QCD is posed by the sign problem, which has already been
briefly discussed in Sec. 1.1.3. In summary, when chemical potential is intro-
duced, the Boltzmann weight acquire a complex phase and can no longer be
interpreted as a statistical weight. It should be noted that the sign problem in
Lattice QCD is not strictly of fermionic origin, as it usually happens in quan-
tum many-body physics, but is more fundamental and is due to the signature
of space-time [80].

Furthermore, it has been proven that the sign problem is NP–hard2 for the
three-dimensional Ising spin glass [83], so, most probably, is also NP–hard for
Lattice QCD. NP–hardness should not discourage a scientist from trying to
solve a problem, rather it is what makes a problem interesting. NP–hardness
only prevents a generic and efficient solution from existing (if NP 6= P is in
fact true). However, this does not mean that there are not ways to alleviate
the hardness of a problem, in particular if one uses some physical insight.

2NP–hard problems are, informally, at least as hard as the hardest problem in NP. In
very layman terms, NP is the class of problems that are verifiable in polynomial time, and is
set against the P class where the problems are solvable in polynomial time [82]. If it is true
that NP 6= P, then NP problems would not admit an efficient algorithms for finding solution,
“efficient” would mean in polynomial time. Although it is widely believed that NP 6= P, this
conjecture it is still yet not proven and it is one of the Millennium Prize Problems.
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One way where physical insight has been used for classical simulation is
represented by TNs methods, which completely avoids the sign problem for
LGTs. They achieve such a result by not relying on MC methods and im-
portance sampling, but by working directly in the Hilbert space of the model
under investigation. As with every computational technique, it still has its
shortcomings (see the discussion in Sec. 2.1.3).

On the other hand, one can try to avoid any computational complexity
by means of QS, either digital or analog. Recently, different approaches have
been proposed for the QS of LGTs, from different communities [1, 80, 84].

For analog QS, the options ranges from ultracold atoms in optical lattices
[85–89], trapped ions [90, 91], or superconducting qubits [92–94]. The propos-
als have addressed LGTs of at different levels (Abelian or non-Abelian, with
or without dynamical matter, etc.) For a complete review, see [1, 80, 84].

Regarding digital QS of LGT, some kind of digitalization of the fields is
necessary. By digitalization, we mean the task of formulating, representing,
and encoding QFT in ways that are useful for computations. The path-integral
formulation, presented in Sec. 1.2, is the most straightforward digitalization
scheme for non-perturbative field theory but it is not feasible for quantum
computing. It relies on resources far beyond near-term quantum computers.
For example, in gauge theories with Lie groups, like QCD or QED, the d.o.f
lives on a compact manifold. This means that there an infinite number of
states for each point in space-time (or lattice). In other terms, the bosons that
represent the gauge fields have an infinite-dimensional Hilbert space. This is
obviously not feasible on quantum computer with a finite quantum register,
for the same reason that real numbers cannot be represented on a classical
computers. Hence, some kind of truncation scheme is necessary. Additionally,
in the path-integral formulation of LGT, fermionic fields are integrated out,
leaving a non-local action. A direct application of this procedure to quantum
computers would require a high connectivity between qubits3, which again is
not feasible for near-term quantum computers.

The starting point for the digital simulation of LGTs is the Hamiltonian
formulation. This has been worked out by Kogut and Susskind in their seminal
paper [8], but it has been done with compact Lie groups in mind, like SU(N).
So, some extra steps are necessary in order to have a formulation of LGTs that
are implementable on a quantum computer. Several proposal for digitized
LGTs have been put out [95–104] and different paths are possible. In the
following list we highlight the main approaches for digitalized LGTs:

3One could work around this problem with suitable chains of 2-qubit gates.

39



Quantum Simulation of Lattice Gauge Theories

Quantum Link Models Essentially, this proposal digitizes U(N) and SU(N)
gauge fields with spin operators in extra dimensions, while preserving
gauge symmetry [102, 105]. This makes them suitable for digital sim-
ulations, because spins have finite d.o.f, while the continuum limit is
reached with dimensional reduction techniques.

Dual variables Many gauge theories have compact d.o.f. This compactness
means that the lattice action admits a (possibly infinite) character ex-
pansion in the irreducible representations of the gauge group. These
irreducible representations are the dual variables [106, 107]. The dis-
creteness of these dual variables makes them adapt for QS. Then, the
irreducible representations can be further truncated in order to have a
finite number of d.o.f.

Finite subgroups The simplest way to approximate a continuous group would
be by substituting it with one of its discrete subgroup. This reduces the
number of d.o.f to a finite number, one for each element of the subgroup.
This can greatly simplifies theoretical analysis [108] and the development
of algorithms [104]. On the other hand, it introduces issues when con-
sidering the continuum limit, due to a “freezing transition”, that can be
mitigated with the addition of some extra terms [109, 110].

In the works presented in this manuscript [5, 6] we chose to focus on finite
groups, because they allow a formulation of LGTs where the unitarity of the
gauge fields is preserved4. With digital QS as the main goal, unitarity is
particularly convenient. In quantum computation only unitary operations are
directly implementable as sequence of quantum gates. Hence, when a basis
is fixed, the action of both the gauge fields and the electric fields will be
translatable in terms of sequence of quantum gates. This greatly simplifies
the development of quantum algorithms for LGTs.

However, this comes with a cost. The need to preserve unitarity may
require the modification of the algebraic relations between the gauge fields and
its conjugates. This is extremely relevant if one cares about the continuum
limit, which is an important topic for someone that is interested in simulations
of QCD for example. But if one is just interested in the theoretical exploration
of finite group gauge theories, then this issue can be put aside, which is what
we intend to do.

4To be more specific, the parallel transporters associated with the gauge fields and their
conjugate operators are unitary.

40



chapter three

Dualities in Abelian Models

In this chapter we present the findings of [5], where a duality transformation
from the gauge-invariant subspace of a ZN LGT on a ladder geometry to an
N -clock model on a single chain. The main feature of this mapping is the
emergence of a longitudinal field in the clock model, whose value depends on
the super-selection sector of the gauge model. In order to investigate this
and see if confined phases might emerge, we perform a numerical analysis for
N = 2, 3, and 4, using Exact Diagonalization.

3.1 Toric Code and its features

The Toric Code (TC) is two-dimensional model of spin-12 d.o.f, which can be
regarded as an example of a pure Z2 LGT. We consider the model on a L×L
square lattice L with periodic boundary conditions. The d.o.f are defined on
the links ` of the lattice and the link Hilbert space is C2. The main operators
used for this model are the Pauli matrices

X` =
(
0 1
1 0

)
and Z` =

(
1 0
0 −1

)
, (3.1)

which here have been written in the computational basis {|0〉 , |1〉}, where the
Z-matrix is diagonal. It is important to note that these matrices X and Z

anticommutes on the same link.

{X`, Z`} = 0, (3.2)

while they commute with operators of other links.
The main local operators that enters the Hamiltonian are the star operator

and plaquette operator of the lattice. The term star refers to the links attached
to a common vertex v, while by plaquette p we mean the links around a face of
the lattice. A star operator and a plaquette operator are respectively defined
as

Av =
∏
`∈v

Z`, Bp =
∏
`∈p

X`. (3.3)
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Figure 3.1. Graphical representation of
the vertex operator Av and plaquette op-
erator Bp, defined in (3.3).

where v is a vertex and p a plaquette (see Fig. 3.1). One can easily see that

[Av, Av′ ] = 0 and
[
Bp, Bp′

]
= 0 (3.4)

for all vertices v and v′, and all plaquettes p and p′. But it is also true that

[Av, Bp] = 0 (3.5)

for all v and p. This is because a star and a plaquette share zero or two links,
so the signs factors from the anticommutation of X and Z cancel out. The
eigenvalues of the Pauli matrices are just ±1, so the same holds true for As
and Bp. Moreover, like the Pauli matrices, also A2

s = 1 and B2
p = 1.

Now, given the operators in (3.3), we can write down the Hamiltonian of
the TC:

HTC = −
∑
v

Av −
∑
p

Bp (3.6)

which is exactly solvable, due to (3.4) and (3.5).

3.1.1 Topological Ground states

Given the commutation relations of the Av and Bp operators in (3.4) and
(3.5), one can find the ground state |Ω〉 by simply imposing the constraints

Av |Ω〉 = |Ω〉 and Bp |Ω〉 = |Ω〉 , ∀v, p. (3.7)

From these constraints one can explicitly construct a ground state for the TC
in the following way. Working in the Z-basis, we can start from

|0〉TC =
⊗
`∈L
|0〉` , (3.8)

which is the state where every link is in the |0〉, where Z |0〉 = |0〉. This state
obviously satisfy the first condition in (3.7).

Now, regarding the Bp’s operators, consider a single plaquette in the state
|0〉p where every link is in the |0〉 state. The action of Bp flips the state of

42



Dualities in Abelian Models

every link, from |0〉 to |1〉, obtaining |1〉p. Therefore, a plaquette is in an
eigenstate of Bp if is in an equal superposition of |0〉p and |1〉p. Knowing
this, it is straightforward to see that the operator (1 + Bp)/

√
2 generates an

eigenstate of Bp from |0〉p. In fact, a simple calculation

Bp
1+Bp√

2
|0〉p =

Bp + 1
√
2
|0〉p (3.9)

shows that we obtain an eigenstate of Bp with eigenvalue +1, due to B2
p = 1.

Therefore, we can obtain a ground state for the TC Hamiltonian

|Ω〉 =
∏
p

1+Bp√
2
|0〉TC . (3.10)

More generally, we can define the space of ground states

G = {|Ω〉 : As |Ω〉 = |Ω〉 , Bp |Ω〉 = |Ω〉 ∀s, p}, (3.11)

whose content depends on the topology of the lattice. For example, we will
show that with periodic boundary conditions then there are four degenerate
ground states.

Consider a lattice L of size L × L with periodic boundary conditions in
both directions, i.e. a torus. From (3.7), we have 2L2 constraints. These are
not all independent because if we multiply them all, we obtain∏

v

Av = 1 and
∏
p

Bp = 1, (3.12)

which actually means that there are 2L2 − 2 independent conditions. The
total Hilbert space has dimension 22L2 . Combined with 2L2 − 2 independent
conditions we obtain 22L2−2L2+2 = 4 independent states. Therefore, dimG = 4
because we have four degenerate distinct ground states. These are eigenstates
of all Av and Bp, with all the same eigenvalues. Any other that commutes with
the Hamiltonian is given by a product of Av and Bp, so it cannot distinguish
the different ground states.

The only way to distinguish these ground states is through non-local oper-
ators that commute with the Hamiltonian in (3.6). Non-local in this instance
means not expressible as a product or sum of vertex and plaquette operators.
But first let look more closely at local operators.

Consider any region R on the lattice L. Without loss of generality, let R
be a connected region, which means it is just a set of jointed plaquettes. On
this region R we can define a local operator W as a product of Bp operators:

W =
∏
p∈R

Bp. (3.13)
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This operator commutes will the terms of the Hamiltonian (3.6). Due to
X2
` = 1, the previous equation can be rewritten as

W =
∏
`∈∂R

X`. (3.14)

In other words, W is equivalent to the product of X’s along the closed curve
given by the boundary ∂R of R. In fact, the Bp themselves are defined as
product of X’s along a closed curve, the plaquette. In a sense, they are all
string operators on closed curves.

The same argument can be repeated for Av with the minor caveat that
the dual lattice have to considered. In the dual lattice L∗, to each plaquette
p of L corresponds a vertex v∗ on the dual lattice. Then, to each link ` in L
corresponds a link `∗ in L∗ in the perpendicular direction. In this way, a star
becomes a plaquette in the dual lattice and we can repeat the same argument.
Consider a region R∗ a local operator S such that

S =
∏
v∈R∗

Av, (3.15)

and, due to Z2
` = 1, this is equal to

S =
∏

`∈∂R∗
Z`. (3.16)

The local operator S is a string of Z’s operators along the closed curve given
by the boundary ∂R in L∗. The same can be said for Av, it is a string
operator around the smallest possible curve in L∗. We can conclude that all
the local operators that commutes with Hamiltonian are just string operators
over closed curve in either L or L∗. But, these operators have all a common
feature, they are defined on contractible curves. Meaning that they can be
“continuously” deformed to a single point.

String operators on non-contractible curves, either on the direct or dual
lattice, are the non-local operators we have been looking for distinguish the
states in G. Consider two non-contractible loops L1 and L2 on L along the 1̂
and 2̂ direction respectively, like in Fig. 3.2. On these paths we can define the
string operators W 1 and W 2 as

W 1 =
∏
`∈L1

X`, W 2 =
∏
`∈L2

X`. (3.17)

It can be proved that they commute with all the terms of the Hamiltonian,
even though they cannot be expressed as a product of them. The same can
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L1
W1

L2

W2

C1

S1

C2

S2 Figure 3.2. Graphical representation of
the different types of non-local operators.
On the non-contractible loops L1 and L2
(in the direct lattice) we have definedW 1
and W 2 (see (3.17) ). While on the non-
contractible cuts C1 and C2 (in the dual lat-
tice) we have the operators S1 and S2.

be repeated on the dual lattice L∗, by considering two non-contractible cuts
C1 and C2 and defining S1 and S2 as

S1 =
∏
`∈C1

Z`, S2 =
∏
`∈C2

Z`. (3.18)

Likewise, the operators in (3.18) commutes with all the vertex and plaquettes
operators but they do not commute with the operators in (3.17).

In fact, (3.17) and (3.18) anticommutes,

{W 1, S2} = 0 and {W 2, S1} = 0, (3.19)

while [
W 1,W 2

]
= 0 and

[
S1, S2

]
= 0. (3.20)

These relations can be thought as the same commutation relations of the X
and Z gates of two qubits.

Therefore, the TC (on a torus) has a protected subspace G, see (3.11),
that behaves like the Hilbert space of two qubits and the operators (3.17)
and (3.18) acts like unitary gates on this space. Unfortunately, we cannot
do quantum computation with these topological qubits because there is no
entangling gates. Nonetheless they can be used for storing information in a
fault-tolerant way, because in order to flip a topological qubit you would need
to act with a non-local operator that involves a large amount of links.

3.1.2 Toric Code as a Z2 LGT

The TC was formulated as a type of error-correcting code for quantum com-
puting, but it can be reinterpreted as a pure Z2 LGT. This is a type of LGT
where we allow only two possible states for the gauge field.
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Figure 3.3. Gauge-invariant vertex
states for the Z2 LGT. Green lines
represent the |1〉 link state.

On a single link `, we consider the X` as the gauge field operator, while
Z` the electric field operator. In this way, we can automatically see that
the term Bp is the magnetic energy because it has the same form of single-
plaquette WL. Furthermore, the vertex operator Av can be read as a gauge
transformation on the vertex v, because the Z’s operators flips the states in
the X-basis, which would corresponds to gauge field configurations.

Now that we know the form of gauge transformations, we call a state
physical or gauge-invariant if

Av |φ〉 = |φ〉 ∀v ∈ L, (3.21)

which leads to the definition of the physical Hilbert space:

Hphys = {|φ〉 s.t. Av |φ〉 = |φ〉 ∀v ∈ L}. (3.22)

For greater clarity, lets work in the electric basis, which is just the Z-basis
where the electric field is diagonal. The electric field operator Z has eigenvalue
+1 and −1, corresponding respectively to the states |0〉 and |1〉. In order to
meet the condition in (3.21), a vertex configuration must have an even number
of links in the |1〉 state (examples can be seen in Fig. 3.3).

We have already argued that the Bp’s give the magnetic energy, and ob-
viously the Z’s give the electric energy. Hence, the pure gauge theory Hamil-
tonian is just

HZ2 = −
∑
p

Bp − λ
∑
`

Z`, (3.23)

where λ is a generic coupling that tunes the strength of the electric field with
respect to the magnetic field. Notice that we no longer have a dynamical
vertex term in (3.23) because we have imposed the condition (3.21) on the
physical states.

In order to better explain the different phases we can have by varying the
coupling λ in (3.23), we want to have a closer look at the physical states. We
have already seen that the condition (3.21) constraints the types of vertex
configurations. From the allowed configuration, we can see that the only
possible lattice states (in the electric basis) are states made of closed electric
loops. An example of such state can be seen in Fig. 3.4.
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Figure 3.4. Physical states in the Z2 LGT
are made of closed electric loops.

For λ = 0 we recover the TC and its ground state can be reinterpreted as
an equal superposition of all the possible configuration of closed electric loops.
This kind of phase is also called a loop condensate. For large λ the electric
term dominates over the magnetic term, hence all the links will favor the state
|0〉. So in the regime of strong coupling we expect to be in a polarized phase,
where the presence of electric loops is suppressed. Therefore, there is a critical
coupling λc for which we have a phase transition. In the language of gauge
theories, the loop condensate corresponds to a deconfined phase while the
polarized one is a confined phase. Hence, for λc we have a deconfined-confined
phase transition.

3.1.3 Super-selection sectors

We have already seen in Sec. 3.1.1 the non-local operators W 1,2 and S1,2
that can classify the topological ground states. They can be treated on equal
footing in the pure TC, because they both commutes with all the terms of the
Hamiltonian (3.6). This is no longer true in (3.23), when the electric term is
present. Both kind of operators are gauge-invariant, in the sense that they
commute with the gauge transformations Av, i.e.[

W 1,2, Av
]
= 0 and

[
S1,2, Av

]
= 0, for all v ∈ L (3.24)

but only the S1,2 string operator commute with the electric field Z`.
This means, that we can classify all the state of Hphys (see (3.22)) through

their S1 and S2 eigenvalues, because they commute with the Hamiltonian.
Therefore, we obtain a decomposition of the physical Hilbert space in super-
selection sectors

Hphys = H(0,0)
phys ⊕H

(0,1)
phys ⊕H

(1,0)
phys ⊕H

(1,1)
phys , (3.25)

where for each |φ〉 ∈ H(n,m)
phys we have

S1 |φ〉 = (−1)m |φ〉 and S2 |φ〉 = (−1)n |φ〉 , (3.26)
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S1 = +1 S1 = −1

W 2

Figure 3.5. Pictorial representation of states of different super-selection sector and the ac-
tion of the string operatorW2. Notice that the actionW 2 introduces a non-contractible elec-
tric loop in the state, whichmodifies the value of S1, which, in a sense, measure the presence
of non-contractible electric loops in the orthogonal direction 2̂.

where n,m = 0, 1.
The string operators W 1,2 do not commute with the Hamiltonian (3.23),

hence they cannot be used to classify the states in Hphys. On the other hand,
given the algebraic relations (3.19), they are able to modify the effect of S1,2.
In fact, W 1,2 can change the super-selection sectors:

W1 : H(n,m)
phys 7→ H

(n+1,m)
phys and W2 : H(n,m)

phys 7→ H
(n,m+1)
phys , (3.27)

where the n,m = 0, 1 and the addition is taken modulus 2.
From a more physical point of view, the operator Si (with i = 1, 2) mea-

sures the presence non-contractible electric loops in the state in the direction
orthogonal to î. Therefore, the decomposition in (3.25) divides the physical
Hilbert space by the number of non-contractible electric loops in each direc-
tion. On the other hand, the operators W i introduces a non-contractible
electric loop in the î direction, which explains (3.27) . This can be seen in
Fig. 3.5. Notice that in the case of Z2 LGT we can have at most one non-trivial
electric loops. For examples, two parallels electric loops can be obtained by a
strip of Bp operators, without requiring the W string operators.

3.2 Generalization to ZN
In this section we are going to generalize the Z2 LGT to a class of Abelian
LGT with discrete symmetry ZN . This class is of particular interest because
they approximate a U(1) gauge theory in the limit N →∞.
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1

ω

ω2

ω3

ω4

V U

Figure 3.6. The operators U and V of a
single link, in theZ5 case. The V plays the
role of a position operator, while U that of
a shift operator.

3.2.1 Schwinger-Weyl algebra

According to Wilson’s Hamiltonian approach to LGTs [2], U(1) gauge fields
are defined on the links of a lattice L either in a pair of conjugate variables,
the electric field E` and either the vector potential A`, satisfying

[E`, A`′ ] = iδ`,`′ , (3.28)

or equivalently the magnetic operator, also called comparator, U` = e−iA` ,
such that

[E`, U`′ ] = δ`,`′ U`, (3.29)

all acting on an infinite dimensional Hilbert space defined on each link ` ∈ L.
This form of the canonical commutation relations represents the infinitesimal
version of the relations:

eiξEe−iηAe−iξE = eiξηe−iηA, (3.30)

for any ξ, η ∈ R, that define the Schwinger-Weyl group [111–113].
For a discrete group like ZN , the notion of infinitesimal generators loses

any meaning and we are led to directly consider, for each link ` ∈ L, two
unitary operators V`, U`, such that [113, 114]

V`U`V
†
` = e2πi/NU`, UN` = 1N , V N

` = 1N . (3.31)

while they commute on different links. Thus, by representing ZN with the set
of the N roots of unity ei2πk/N (k = 1, · · · , N), commonly referred to as the
discretized circle, we see that V plays the role of a “position operator” on the
discretized circle, while U that of a “momentum operator”.

These algebraic relations admit a faithful finite-dimensional representation
of dimension N [115], for any integer N , which is obtained as follows. To each
link `, we can associate an N -dimensional Hilbert space H` ' CN . As an
orthonormal basis for H` we choose the electric basis {|vk,`〉 , k = 1, . . . , N},
that diagonalizes the operator V`. With this choice, we can promptly write
the actions of U` and V`:

U` |vk,`〉 = |vk+1,`〉 , (mod N)
V` |vk,`〉 = ωk |vk,`〉 ,

(3.32)
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(x, 1̂)

(x, 2̂)
x x+ 1̂

x+ 2̂

Figure 3.7. Labelling of the sites and the
links in the two dimensional lattice. A site
is labeled simply with x = (x1, x2), while
1̂ = (1, 0) and 2̂ = (0, 1) stand for the unit
vectors of the lattice. A link ` is denoted
with a pair (x,±î), with î = 1̂, 2̂.

where ω = e2πi/N and k = 0, . . . , N − 1. It is immediate to find the action for
the Hermitian conjugates U †

` and V †
` :

U †
` |vk,`〉 = |vk−1,`〉 , (mod N)

V †
` |vk,`〉 = ω−k |vk,`〉 .

(3.33)

With this choice, U` and V` in matrix form are written as

U` =


0 0 · · · · · · 1
1 0 · · · · · · 0
0 1 . . . ....

... . . . . . . ...
0 0 · · · 1 0

 and V` =


1
ω

ω2
. . .

ωN−1

 . (3.34)

We choose to work in this particular basis and the various k can be interpreted
as the quantized values of the electric field on the links.

In the ZN case it is important to fix the orientation of the lattice L, because
for N ≥ 3 we have U † 6= U and V † 6= V . We choose the orientation shown in
Fig. 3.7. On a two-dimensional square lattice of size L× L, the links ` of the
lattice can also be labeled with (x,±î), where x ∈ L is a site and î = 1̂, 2̂ the
two independent unit vectors. In this way, (x,±î) will refer to the link that
start in x and goes in the positive (negative) direction î. As we will see later,
the choice of the orientation affects the definition of any string operator. The
general rule for when defining a string operator as a product of O operators,
where O is either U or V for example, is to use O when going in the positive
direction or O† otherwise.

3.2.2 Gauge invariance and Hamiltonian

Gauge transformations transforms the vector potential while preserving the
electric field. For a U(1) gauge theory, a local phase transformation is induced
by a real function αx defined on the vertices x ∈ L, such that A` 7→ A`+(αx2−
αx1) or equivalently

U` 7→ ei(αx2−αx1 )E`U`e
−i(αx2−αx1 )E` , (3.35)
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U

U

U†

U† U�

V

V

V †

V †

Gx

Figure 3.8. Pictorial representation of
the Gauss operatorsGx in (3.36) (left) and
plaquette operator U� in (3.37) (right).

where x1, x2 are the initial and final vertices of the (directed) link `. In the
case of a discrete symmetry, a gauge transformation at a site x ∈ L is a
product of V ’s (and V †’s) defined on the links which comes out (and enters)
the vertex. More specifically, for a two dimensional lattice, if the link ` at site
x is oriented in the positive direction, i.e. either (x,+1̂) or (x,+2̂), then V is
used, otherwise V †. Thus, the single local gauge transformation at the site x
is enforced by the operator:

Gx = V(x,1̂)V(x,2̂)V
†
(x,−1̂)V

†
(x,−2̂), (3.36)

as shown in the left part in Fig. 3.8.
The operators that enters the Hamiltonian have to be gauge invariant,

i.e. commute with all the operators Gx. Using (3.36) and recalling (3.31),
it is possible to see that the V`’s commute with Gx (as expected), while the
U`’s do not. In spite of that, we can build gauge-invariant operators out of
the comparators U`. Generalizing directly from TC case, one another gauge-
invariant operator is the plaquette operator, which we will denote with U�,
that will play the role of the magnetic operator. A plaquette now has an
orientation. Given a plaquette � with vertices {x, x+ 1̂, x+ 1̂ + 2̂, x+ 2̂}, we
consider the path that start from x and goes in the counterclockwise direction.
On this plaquette, the operator U� is defined as follows:

U� = U(x,1̂)U(x+1̂,2̂)U
†
(x+1̂+2̂,−1̂)U

†
(x+2̂,−2̂), (3.37)

which can be seen on the right in Fig. 3.8.
The whole operator algebra A of the theory is generated by the set of all

U` and V` (and their Hermitian conjugates) of all the links of the lattice L,
while the gauge-invariant subalgebra Agi consists of operators that commutes
with all the Gx:

Agi = {Ogi ∈ A : [Ogi, Gx] = 0 ∀x ∈ L}. (3.38)

Guided by the TC, we already know that the set {U�, V`} (for all plaquettes
� and all links `) does not generate the whole algebra Agi, in the case of
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L1
W 1

L2
W 2

C1

S1

C2

S2

Figure 3.9. Graphical representation of
the non-local operatorsW 1,2 (in blue) and
S1,2 (in red) and their respective paths
L1,2 and C1,2.

periodic boundary conditions. Indeed, we have yet to add string operators on
non-contractible loops.

In Sec. 3.1.1 we have already introduced the non-local operators W i and
Si, with i = 1, 2. These can readily be generalized to the ZN case, by replacing
X` and Z` with U` and V` respectively. More precisely, consider direct non-
contractible loops Li and cuts Ci (in the i-th direction). Then W i and Si
operators are defined as

W i =
∏
`∈Li

U` and Si =
∏
`∈Ci

V`, (3.39)

with the caveat that when going in the negative direction, U † and V † have to
be used. Operators W i will also be called Wilson loops, while the Si will be
called ‘t Hooft strings (tHS). These operators are pictured in Fig. 3.9.

Both sets of operators, W i and S, are gauge invariant but only the WLs
cannot be expressed as product of neither U� and V`. Therefore, they have to
be added explicitly to the set of generators of Agi in order to obtain the whole
algebra. Similar to the TC, these non-local operators will play a fundamental
role in defining the super-selection sectors of the theory.

The class of models we consider are described by the Hamiltonian [116–
118]:

HZN
(λ) = −

∑
�

U� − λ
∑
`

V` + h.c., (3.40)

where the first sum is over the plaquettes � of the lattice while the second
sum is over the links `. As stated before, the operators U� plays the role of a
magnetic term, to be more precise it is the magnetic flux inside the plaquette
�, while V is the electric term. The coupling λ tunes the relative strength of
the electric and magnetic energy contribution.

52



Dualities in Abelian Models

3.2.3 Physical Hilbert space and super-selection sectors

The total Hilbert space Htot is given by

Htot =
⊗
`∈L
H`, (3.41)

where H` ' CN in the case of ZN theory. A state of the whole lattice |φphys〉 ∈
Htot is said to be physical if it is a gauge-invariant state:

Gx |φphys〉 = |φphys〉 , ∀x ∈ L. (3.42)

This condition can be translated into a constraint on the eigenvalues v` of the
electric operators V`. Given that a link ` can be referred to as (x, î), then the
constraint (3.42) can be translated to

v(x,1̂)v(x,2̂)v
∗
(x,−1̂)v

∗
(x,−2̂) = 1. (3.43)

For a ZN theory we have v` = ωk` , where ω = ei2π/N , which leads to∑
i=1,2

(
k(x,̂i) − k(x,−î)

)
= 0 mod N. (3.44)

for (3.42). Given the fact that the k in (3.31) represent the values of the electric
field, one can see that (3.44) can be interpreted as a discretized version of the
Gauss law ∇ · ~E = 0 in two dimensions, for a pure gauge theory.

Consider now the physical Hilbert space for a ZN theory:

Hphys = {|φphys〉 : Gx |φphys〉 = |φphys〉 ∀x ∈ L}. (3.45)

This space can be decomposed into super-selection sectors, like it has been
done for the Z2 theory in Sec. 3.1.3. In fact, it can be generalized in a straight-
forward way, using the string operators in (3.39) (showed in Fig. 3.9). The
physical Hilbert space Hphys decomposes as

Hphys =
N−1⊕
n,m=0

H(n,m)
phys , (3.46)

where each sector (n,m) satisfy

S1 |φ〉 = ωm |φ〉 and S2 |φ〉 = ωn |φ〉 (3.47)

for |φ〉 ∈ H(n,m)
phys . This is possible because the tHSs S commutes with all the

terms of the Hamiltonian.
On the other hand, the W i do not commute with all the terms in the

Hamiltonian (3.40), in particular with the electric operators V`, but are still
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gauge-invariant. Nonetheless, we are interested in the commutation relation
between the WLs and tHSs:

W 1S2 = ωS2W 1 and W 2S1 = ωS1W 2. (3.48)

It is a direct generalization of the relations (3.19) of the TC, where the sign
−1 is upgraded to a characteristic phase ω. Given (3.48), it is easy to see that
the WLs have the ability to change the super-selection sectors:

W1 : H(n,m)
phys → H

(n+1,m)
phys and W2 : H(n,m)

phys → H
(n,m+1)
phys , (3.49)

where the addition is taken modulus N .
From a physical point of view, the WLs operators create non-contractible

electric loops around the lattice, while the tHSs detect the presence and the
strength of these electric loops, by traversing it in the orthogonal direction.
Exactly like in the case of the Z2 LGT, but the difference that now the non-
contractible electric strings can have different “strengths”, given by the differ-
ent eigenvalues of Si. Therefore, it is clear that the Hilbert subspace H(n,m)

phys
is the subspace of all the states that contains an electric loop of strength ωn

and ωm along the 1̂ and 2̂ direction, respectively.
Furthermore, the evolution of a state in H(n,m)

phys with the Hamiltonian in
(3.40) is confined in H(n,m)

phys . This is because none of the local terms in the
Hamiltonian can change the super-selection sector, only the non-local WLs.
In this chapter we will see how this fact can have major consequences when
considering ZN models on particular lattice geometries, in particular on the
ladder.

3.3 Abelian models on the ladder

In this short chapter we will introduce ZN LGT on a ladder geometry. This
type of lattice can be considered as a strip of a two-dimensional square lattice.
The peculiarity of this geometry is that it allows the existence of magnetic
terms in a quasi one-dimensional lattice, which usually are not possible in
a pure one-dimensional systems. Moreover, since the Hilbert space is highly
constrained, it allows the possibility to study systems of moderate size through
exact diagonalization. The latter will be analyzed in the last section.

A ladder is a lattice L made of two parallels chains, the legs, coupled to
each other by the rungs to form square plaquettes. On the ladder, each rung
is identified by a coordinate i = 1, . . . , L, where L is the length of the ladder,
and the two vertices on the rung are denoted with i↑ and i↓ in the upper and
lower leg, respectively (see Fig. 3.10). Links, as usual, will be denoted by `.
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Link operators

i↓

i↑

U0
i

U↑
i

U↓
i

j↓

j↑

V 0
j

V ↑
j

V ↓
j

Gauss op.Plaq. op.

i↓

Ui

G↑
j

j↑

G↓
k

k↓

Figure 3.10. Picture of the different ladder operators. Left: the magnetic and electric link
operators. Right: plaquette operator Ui and the Gauss operators G↑

j and G
↓
k. Notice that

operators and sites on the upper leg are indicated with an up arrow, on the lower leg with a
down arrow and on the rungs with a superscript 0.

On the legs they are labelled as `↑i (upper leg) or `↓i (lower leg), while on the
rungs they are labelled `0i .

We preserve the same formulation of ZN LGT but in order to lighten our
notation, we use the symbols V 0

i , U
0
i for the operators defined on the rung i,

and V ρ
i , U

ρ
i with ρ =↑, ↓ for the operators on the horizontal links of the upper

and lower leg, respectively, to the right of the rung. In synthesis:

U`0
i
≡ U0

i , U
`↓
i
≡ U↓

i , U
`↑
i
≡ U↑

i

V`0
i
≡ V 0

i , V
`↓
i
≡ V ↓

i , V
`↑
i
≡ V ↑

i .
(3.50)

The plaquette operator on the right of the rung i will be labeled as Ui:

Ui = U↓
i U

0
i+1(U

↑
i )

†(U0
i )†. (3.51)

Moreover, on a ladder the vertices are three-legged, so the Gauss operators
are slightly modified:

G↑
i = V ↑

i (V
↑
i−1)

†(V 0
i )† and G↓

i = V ↓
i V

0
i (V

↓
i−1)

†, (3.52)

where G↑
i and G↓

i refers, respectively, to the Gauss operators on the vertices
i↑ and i↓. As a reference see Fig. 3.10.

Finally, we write explicitly the Hamiltonian for a ZN LGT on a ladder:

HN -lad(λ) = −
∑
i

[
Ui + λ

(
V ↑
i + V ↓

i + V 0
i

)
+ h.c.

]
. (3.53)

For what concerns the super-selection sectors of the theory, non-contractible
loops are possible now only in the 2̂ direction. Therefore, out of the WL op-
erators in (3.39) only W 1 is well defined, meaning that we can create non-
contractible electric loops along the 1̂. Hence, only S2 in (3.39) (the tHS
conjugate to W1) can be used as a mean for distinguishing these different
sectors. Explicitly, the WL W 1 and S2 can be written as

W 1 =
∏
i

U↓
i and S2 = V ↑

i0
V ↓
i0
, (3.54)
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S2 = V ↑
i0
V ↓
i0

W 1 =
∏

i U
↓
i

Figure 3.11. Picture of the non-local
string operatorsW 1 and S2 on the ladder.

Z2 sector n = 0

Z2 sector n = 1

Figure 3.12. Example of two physical
configurations (in the electric basis) in
a Z2 theory in the two different super-
selection sectors. This shows that states
belonging to two different sectors can be
quite different.

where i0 is any chosen rung (see Fig. 3.11). Furthermore, it does not make
sense to consider the tHS S1 because it is equal to the product of all the Gauss
operators on either one of the legs,

S1 =
∏
i

G↓
i =

∏
i

G↑
i , (3.55)

so it always equal to the identity on physical states, signaling the obvious fact
that we do not have non-contractible electric loops around the 2̂ direction.
We can conclude that the physical Hilbert space can be decomposed in only
N sectors as

Hphys = H(0)
phys ⊕H

(1)
phys ⊕ · · · ⊕ H

(N−1)
phys , (3.56)

and in each sector we have that

S |φ〉 = ωn |φ〉 if |φ〉 ∈ H(n)
phys. (3.57)

Due to the fact that the ladder is quasi one-dimensional, the presence of
non-contractible electric loops can highly affects the physical states. Take the
case of a Z2 theory, which is pictured in Fig. 3.12. It has just two sectors:
n = 0 and n = 1. In the former all the physical configuration are made
of closed loop, distributed along the 1̂ direction. While in the latter, the
physical configurations are just deformations of of one single electric loop that
goes around the ladder. This can make us reasonably believe that the two
sectors might have completely different physical content.

Like in the two-dimensional case, the Hamiltonian can be reduced to a
single super-selection sector. One of the main features of this is that once the
sector is fixed, it is possible to write a duality transformation of the Hamil-
tonian to a pure one-dimensional quantum clock model, resolving entirely the
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gauge symmetries. Thanks to this duality map, we will see how that the dif-
ferent sectors have very different behaviour and each can have its own unique
phase diagram. The latter is the object of discussion of the second part of this
chapter, but before doing so we need to introduce the notion of dualities and,
in particular, the bond-algebraic approach to dualities.

3.4 Dualities in physics

Duality is a simple yet powerful idea in physics. They can be intended as
specific mathematical transformations connecting seemingly unrelated physi-
cal phenomena. They have been know for a long time, indeed a first example
would be the duality of the electromagnetic field in the absence of sources, no-
ticed by Heaviside in 1884. Generally in physics, the concept of duality is con-
nected to ideas, like symmetries, mappings between different coupling regimes,
perturbative expansions for strongly correlated systems, and the wave-particle
duality of quantum mechanics [106, 119].

They play a major role in statistical physics and condensed matter. In
statistical mechanics, dualities were introduced for the first time by Kramers
and Wannier [120], who found a relation between the high temperature and
low temperature regimes of the two-dimensional Ising mode. In this way,
they were able to find the critical temperature years before Onsager solution
[121]. In this case we speak of self-dualities, where the same model is mapped
onto itself but in a different coupling regime. The essential legacy of Kramers
and Wannier is the fact that self-dualities can put constraints on the phase
boundaries and the exact location of critical points.

Not all dualities are self-dualities. In fact, it also possible to relate two ap-
parently different physical models with a duality transformation. A known ex-
ample is the Jordan-Wigner transformation [122, 123], where spin d.o.f (which
are bosonic in nature) are mapped onto fermionic d.o.f in one-dimension. This
duality shows that, in fact, there is not much difference between bosonic and
fermionic d.o.f in one dimension.

3.4.1 The bond-algebraic approach

In the following section we will quickly review the bond-algebraic approach
to dualities [119, 124], because it offers a powerful and convenient way for
dealing with duality transformations, in particular when gauge symmetries
are involved. The concept of bond-algebra was first introduced in [125] and it
exploits the fact that most Hamiltonian are a sum of simple and (quasi)local
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terms:
H =

∑
Γ
λΓhΓ, (3.58)

where Γ is a set of indices (e.g. the lattice sites but can be completely general)
and λΓ are numbers (usually the couplings). Roughly speaking, by quasi-
local we mean that a operator hΓ involves a small number of d.o.f that are
spatially near each other (for example nearest neighbour). The terms hΓ are
called bond operators (or simply bonds). From the bonds hΓ we obtain a bond
algebra A{hΓ}, which is the algebra of all the operators generated by all the
possible products and sums of the bonds hΓ and their Hermitian conjugates.
In practical terms, given a set of bonds {hΓ}, the bond-algebra A{hΓ} is the
algebra spanned by

{1, hΓ, h†Γ, hΓhΓ′ , h†ΓhΓ′ , hΓh
†
Γ′ , h

†
Γh

†
Γ′ , hΓhΓ′hΓ′′ , . . . }

By construction, A{hΓ} is closed under the operation Hermitian conjugation,
but since an HamiltonianH is Hermitian then h†Γ = hΓ′ for some Γ′. Therefore,
A{hΓ} is simply spanned by

{1, hΓ, hΓhΓ′ , hΓhΓ′hΓ′′ , . . . }

Notice that the bonds hΓ that generate A{hΓ} do not need to be independent.
It is important to point out that a single Hamiltonian H can have different

bond algebras associated to it. In fact, a bond algebra is determined by the
partitioning of the bonds in H. In principle, given any two decomposition of
the same Hamiltonian,

H =
∑
Γ
λΓhΓ =

∑
Σ
λ′Σh

′
Σ,

one should expectA{hΓ} 6= A{h′Σ} in general (see [119]). To make an example,
consider the Hamiltonian

H =
∑
i

(hxσxi + hyσ
z
i ).

We can either partition the bonds by taking σxi and σzi as generators separately
or by taking hxσxi +hzσzi as a single bond. In the former case we would obtain
A{σx, σz}, while in the latter we would have A{hxσxi + hzσ

z
i }. These two

algebras are clearly different,

A{σx, σz} 6= A{hxσxi + hzσ
z
i },

because A{hxσxi + hzσ
z
i } is commutative, while A{σx, σz} is not.
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In the framework of bond-algebra, quantum dualities can be formulated
as homomorphisms of bonds-algebras. By homomorphism we intend a map Φ
between two algebras A1 and A2 that preserves the linear and multiplicative
structure of the algebras. In mathematical terms, given any u, v ∈ A1 and
any complex number λ we have

Φ(u+ λv) = Φ(u) + λΦ(v) and Φ(uv) = Φ(u)Φ(v).

To be more precise with our definition of quantum duality, consider two
Hamiltonians H1 and H2 that act on Hilbert spaces of the same dimensions.
They are said to be dual if there is some bond-algebra AH1 of H1 that is
homomorphic to some bond-algebra AH2 of H2 and if the homomorphism
Φ : AH1 → AH2 maps H1 onto H2, Φ(H1) = H2. These mappings do not
need to be isomorphisms (i.e. invertible), especially when gauge symmetries
are involved, and we will explain why later.

In a traditional approach to quantum dualities, one tries to map each
degree of freedom of H1 onto a degree of freedom of H2. This can be rather
cumbersome, because in this way most duality transformations appear to be
non-local. In other words, one degree of freedom on one side may correspond
to a large number of d.o.f on the other side. This is apparent, for example,
with the Jordan-Wigner transformation, where a single spin is dual to a whole
chain of fermions.

Quantum dualities in the bond-algebraic approach are instead local, mean-
ing that each single bond hΓ1 of H1 is mapped onto a single bond hΓ2 of H2.
This may translates in non-locality when treating elementary d.o.f and this is
due to the fact that the generators of a bond algebra are usually two- (or more)
body operators and expressing the elementary d.o.f with these operators may
require large (if not infinite) products.

An isomorphism like Φ is physically sound if it is unitarily implementable
[119], which means that there is a unitary matrix U such that the duality
isomorphism reads

Φ(O) = UOU†, ∀O ∈ A, (3.59)

where A is the operator algebra of the model under investigation [119].
To make the bond-algebraic approach more clear we will consider one ex-

ample: the Quantum Ising Model (QIM). In this model we will see an example
of self-duality through the use of disorder variables. Our intent is not to shine
new physics but to show how the use of bond-algebras offers a clear formalism
for treating dualities.

59



Dualities in Abelian Models

3.4.2 The quantum Ising model

The Quantum Ising Model with a transverse field is a chain of spin-12described
by the Hamiltonian

HIsing(h) =
∑
i

(
σzi σ

z
i+1 + hσxi

)
, (3.60)

where the sums runs over the sites of the chain and h is the transverse field
strength. Notice that the Hamiltonian HIsing is indeed a sum of quasi-local
terms. In particular we have two types of terms: the interaction term σzi σ

z
i+1

and the transverse field σxi . They are local or quasi-local because they involve
at most two neighbouring sites. These two sets of terms are the bonds of the
Hamiltonian HIsing, therefore bond-algebra A{σzi σzi+1, σ

x
i } is spanned by:

{1, σzi σzi+1, σ
z
i σ

z
i+1σ

z
jσ

z
j+1, . . . , σ

x
i , σ

x
i σ

x
j , . . . , σ

z
i σ

z
i+1σ

x
i , . . . }.

We consider an infinite chain in order to avoid subtleties with the boundaries
conditions, which can have major effects on a duality transformation.

The algebraic relations that defines the generators of AIsing can be sum-
marized as follows:

1. each bonds square to the identity operator,

(σzi σzi+1)2 = (σxi )2 = 1.

2. the bonds σxi anticommutes with σzi σ
z
i+1 and σzi−1σ

z
i while commuting

with the others, {
σxi , σ

z
i σ

z
i+1
}
=
{
σxi , σ

z
i−1σ

z
i

}
= 0.

3. the bonds σzi σzi+1 anticommutes with σxi and σxi+1 while commuting with
the others, {

σzi σ
z
i+1, σ

x
i

}
=
{
σzi σ

z
i+1, σ

x
i+1
}
= 0.

Given the symmetric roles that the basic bonds σxi and σzi σzi+1 play with
each other, we can set up a mapping ΦIsing that exchange their roles:

ΦIsing(σzi σzi+1) = σxi , ΦIsing(σxi ) = σzi−1σ
z
i . (3.61)

This transformation can be extended to the whole AIsing through the homo-
morphic property of ΦIsing. It preserves all the important algebraic relation-
ship and is one-to-one, hence it is an isomorphism of AIsing onto itself. The
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σz
i σ

z
i+1 σx

j

µz
j−1µ

z
jµx

i

ΦIsing ΦIsing Figure 3.13. Pictorial representation of
the duality map ΦIsing, that maps the QIM
on the same model on the dual lattice

Hamiltonian HIsing is just an element of AIsing. We can apply ΦIsing to HIsing

and use its homomorphic property, which yields

ΦIsing(HIsing(h)) =
∑
i

(
ΦIsing(σzi σzi+1) + hΦIsing(σxi )

)
=
∑
i

(
σxi + hσzi−1σ

z
i

)
= h

∑
i

(
σzi σ

z
i+1 + h−1σxi

)
.

(3.62)

Notice that the indices in the sum can be freely shifted because we are working
with an infinite number of sites. We have thus obtained

ΦIsing(HIsing(h)) = hHIsing(h−1), (3.63)

henceforth ΦIsing is a self-duality of (3.60). Notice that HIsing(h) is mapped
onto itself but with the inverted coupling, h 7→ h−1, meaning that we can
map the strongly coupled phase h� 1 into the weakly coupled phase h� 1,
and vice versa. This is basically the quantum version the Kramers-Wannier
duality [120, 126].

If we think of the term σxi as living on the site i and of σzi σzi+1 as of living
on the link between the site i and i+1, then we can think of ΦIsing as mapping
(3.60) onto the dual lattice. In fact, the dual lattice of a chain is still a chain
and the site term σxi is mapped onto a link term σzi σ

z
i+1, and vice versa.

We want to have a clearer physical picture of the duality map ΦIsing and
build a bridge with the traditional approach to dualities for the QIM. For this
reason we want to find the elementary d.o.f of the dual model. The d.o.f of
the dual model lives on the sites of the dual lattice, which corresponds to the
links of the original lattice. On these dual sites we again have spin-12d.o.f and,
for more clarity, we use µx and µz for referring to the Pauli matrices acting
on these new spins. The dual site i corresponds to the link (i, i+1), while the
dual link (i− 1, i) corresponds to the site i.

From (3.61), we already know that

σzi σ
z
i+1 = µxi and σxi = µzi−1µ

z
i . (3.64)

The role of µxi is evident, it measure the alignment of two neighbouring spins
on the sites i and i+1, while the meaning of µzi is still opaque. We can arrive at
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|Ω↑〉(a)

|Ω↓〉(b)

µz
i |Ω↑〉(c)

σx
i |Ω↑〉(d)

Figure 3.14. (a) and (b) ferromagnetic
ground states |Ω↑〉and ||Ω↓〉〉. (c) kink cre-
ated on the link between site i and i + 1
by the operator µz

i . (d) kink-antikink pairs
created around the site i by the spin flip
σx
i .

the definition of µzi by exploiting the map ΦIsing. The bond µzi−1µ
z
i corresponds

to the image of σxi through ΦIsing, so we know how they are mapped. If we
isolate µzi with an infinite product, we then obtain

µzi =
i∏

j=−∞
µzj−1µ

z
j =

i∏
j=−∞

σxj . (3.65)

We see that µzi flips all the spins before the i-th site. From (3.65), we can see
the non-local origin of the dual d.o.f in traditional dualities. When working
with two, or more, body terms, in order to isolate a single body term the use
of large (or even infinite) product is necessary.

To understand the role of µxi and µzi , consider now the ferromagnetic
ground states |Ωρ〉 of (3.60), where ρ =↑, ↓. Say we start from |Ω↑〉, with-
out loss of generality. The action of µzi on |Ωρ〉 is to create a kink, which is a
domain wall between two ordered regions. From this point of view, a single
spin-flip σxi |Ω↑〉 creates a kink-antikink pair.

3.4.3 Gauge-reducing dualities

In this section we will review the notion of gauge-reducing dualities, In order
to do so we start by highlighting the difference between ordinary symmetries
and quantum symmetries.

Following the statement of Wigner’s theorem [127], a quantum symmetry
is a unitary or anti-unitary mapping that commute with the Hamiltonian.
This does not mean that all symmetries have the same physical meaning or
mathematical consequences. By the term “ordinary symmetries” we refer to
the most common types of symmetry that we encounter in physical systems
that usually correspond to global transformation of the physical apparatus
or system, like for example rotational invariance. These symmetries have a
direct physical impact, since they can influence the level degeneracy of an
Hamiltonian and force strict selection rules.
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On the other hand, gauge symmetries are local symmetries of the model
that signal the presence of redundant d.o.f. In fact, it is better to think of
gauge symmetries as local constraints on the elementary d.o.f of the gauge
model. As a result, the state space of a gauge model is larger than the set of
physical states, which are exactly the states that are invariant under the action
of the gauge symmetries. The same reasoning applies to the observables of
the gauge model. An observables is represented by an Hermitian operator and
a physical observable is represented by an Hermitian operator that commutes
with gauge symmetries.

So, if physical states and physical observables already satisfies the local
constraints of the gauge symmetries, this means that the physical impact of
the latter is already encoded in the former. It is clear that the ordinary
symmetries and gauge symmetries are very different and is better to put them
conceptually far apart as possible [119].

When dealing with a gauge model, it would be natural to assume that, in
order to establish a duality, the gauge symmetries have to be eliminated first
from the gauge model. In other terms, that it would be necessary to proceed
with gauge-fixing [106]. By gauge-fixing we mean the process of “turning off”
some d.o.f, by means of gauge transformations. A popular example of gauge-
fixing in Z2 or ZN LGTs is the axial gauge, where all the gauge d.o.f along a
specified direction are fixed [106] (i.e. turned off). A global gauge-fixing is not
always possible and it may depends, for example, on the geometry of system
or its boundary conditions.

Although gauge-fixing is common in traditional approach to dualities in
gauge models, it is not strictly necessary with bond-algebras. As stated in
[119], with the bond-algebraic approach one can find mappings to models
without any gauge symmetry, that preserve all the important algebraic prop-
erties without the need of gauge-fixing. Later in the chapters, we will see
some examples of gauge-reducing dualities that do not need require gauge-
fixing first.

The procedure goes as follows: consider a gauge model and let HG be its
Hamiltonian and GΓ its gauge symmetries. An operator O is gauge-invariant
if and only if it commutes with all the GΓ:

O physical ⇐⇒ [O, GΓ] = 0 ∀Γ.

Clearly, the Hamiltonian has to be gauge-invariant, hence [HGR, GΓ] = 0.
Now let HGR be the dual Hamiltonian of a non-gauge, or gauge-reduced,
model. Furthermore, let AG and AGR be the bond-algebra of the gauge and
gauge-reduced models, respectively. A gauge-reducing duality is a map

ΦGR : AG → AGR
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such that HG is mapped onto HGR while making all the gauge symmetries of
the gauge model trivial:

ΦGR(HG) = HGR and ΦGR(GΓ) = 1 ∀Γ. (3.66)

Unlike the dualities in Sec. 3.4.1, a gauge-reducing duality like ΦGR has
to be implementable as a projective unitary operator U . Formally, this can be
written as

ΦGR(O) = UOU†, UU† = 1, U†U = PGI (3.67)

where PGI is the projector of the subspace of gauge-invariant states, i.e.GΓ |ψ〉 =
|ψ〉 for all Γ. Roughly speaking, this projective unitary operator can be repre-
sented as rectangular matrix that preserves the norm of gauge-invariant states
while projecting out all the other states.

In the next section we will use an example of gauge-reducing duality, which
will be instrumental for the rest of the chapter.

3.4.4 Dualities in two dimensions

As an example of gauge-reducing duality, we will apply the technology in-
troduced in Sec. 3.4.3 to the Z2 LGT in two-dimensions. We resume the
Hamiltonian (3.23)

HZ2 = −
∑
p

Bp − λ
∑
`

Z` = −
∑
p

Bp − λ
∑
x

(
Z(x,+1̂) + Z(x,+2̂)

)
, (3.68)

and its Gauss (or vertex) operators

Av =
∏
`∈v

Z`, (3.69)

which generate the gauge symmetries and commute with the Hamiltonian[
HZ2 , Av

]
= 0 ∀v ∈ L.

In particular, each term of the Hamiltonian commutes with the Gauss
operators, which means that the bond algebra they generate is gauge-invariant,
This bond-algebra satisfy three simple relations:

(i) all the bonds square to the identity,

(ii) each spin Z anti-commutes with two adjacent plaquettes operators U

(iii) each plaquette operator U anti-commutes with four spins Z.
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The model HZ2 is dual to the d = 2 QIM. The Hamiltonian of the latter
in two-dimensions is

HIsing = −
∑
i

(
σzi σ

z
i+1̂ + σzi σ

z
i+2̂ + hσxi

)
, (3.70)

where the index i runs over the sites. One recognizes as separate bonds the
terms σzi σzi+1̂, σ

z
i σ

z
i+2̂, and σ

x
i . It is immediate to see that these bonds satisfy

the same relations of the bonds of HZ2 .
The dual model of HZ2 lives on the dual lattice. Therefore we identify a

plaquette p in the gauge model with a site i of the QIM, while x will refer to
the lower left site of the plaquette p. With this notation, we can now build
the duality mapping Φ2d as follows:

Φ2d(Z(x,1̂)) = σz(i−2̂)σ
z
i , Φ2d(Z(x,2̂)) = σz(i−1̂)σ

z
i , Φ2d(Up) = σxi . (3.71)

Applying to Φ2d to HZ2 we obtain

Φ2d(HZ2) = −
∑
i

σxi − λ
∑
i

(
σz(i−2̂)σ

z
i + σz(i−1̂)σ

z
i

)
= λHIsing(λ−1)

Thus, Φ2d maps HZ2 to HIsing, up to a multiplicative constant, if we identify
the constants λ↔ h−1.

From (3.71), one readily obtains

Φ2d(Gx) = 1,

which means that Φ2d is in fact a gauge-reducing duality. Therefore, HIsing

represents all the physics contained in Hgauge, but without all the redundant
d.o.f. Notice that we started with the “raw” Hamiltonian (3.68) and obtained
Φ2d without the need of gauge-fixing.

The reason why it is possible to encode the physical content of the gauge
model in a simpler QIM is the following. The physical states of a pure gauge
model is made of closed electric loops and each electric loop can be thought
as containing magnetic flux. So, each physical state can be fully described
by indicating which plaquettes contains magnetic flux and which do not. The
electric lines naturally arises as domain walls between plaquettes with different
flux.

Basically, the duality mapping Φ2d assigns to each plaquette a spin-12 d.o.f,
indicating the flux state. Everything else readily follows. The plaquette oper-
ator Up flips the state of the plaquette, therefore it should be mapped to an
operator that flips the spin in p, thus σx. The electric fields V(x,1̂) and V(x,2̂)
are just domain walls between plaquettes, therefore they should be mapped
to interaction terms like σz

i−1̂σ
z
i and σz

i−2̂σ
z
i .
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This duality can be extended to ZN models in straightforward manner
[128]. This requires substituting the Pauli matrices with an equivalent set
of operators, that act on a N -dimensional local Hilbert space and satisfy an
algebra similar to the Schwinger-Weyl algebra (3.31). These operators are the
clock operators that define the Quantum Clock Models. We will discuss these
models in a bit.

3.5 Dualities of the ladder models

In this section we discuss the main result in [5], which is a construction of a
duality map between LGTs on a ladder geometry and Quantum Clock Models.
Before proceeding with construction of the duality map, we briefly describe
what are QCMs.

3.5.1 Quantum clock models

Quantum Clock Models (QCMs) are a class of models that generalizes the QIM
[129, 130]. They show a resemblance to the ZN LGT models we introduced
previously, in Sec. 3.2. In fact, this similarity will later be exploited in order
to obtain a gauge-reducing duality of the ZN LGT ladder models.

The Hamiltonian (3.60) of QIM, with trasverse field, uses Pauli matrices
σz and σx as basic operators and they have the fundamental property that
they anticommutes on the same site, {σzi , σxi } = 0 This relation rewritten as

σzi σ
x
i = −σxi σzi , (3.72)

which be read as follows: if the two operators are exchanged, then a phase −1
is acquired. Another important fact about Pauli matrices we want highlight
is that they square to the identity:

(σxi )2 = (σzi )2 = 1. (3.73)

QCM are generalizations of the QIM, but not to higher spins. A p-state
QCM (or simply a p-clock model) utilizes a set of unitary operators that
generalizes (3.72) and (3.73) in the following sense: the operators σx and σz

are promoted to the clock operators X and Z, respectively; they are p × p
unitary matrices whose exchange produces a phase ω = ei2π/p and their p-th
power is equal to the identity. The algebraic properties of these clock operators
X and Z can be summarized as follows:

XZ = ωZX, Xp = Zp = 1p,

X† = X−1 = Xp−1, Z† = Z−1 = Zp−1 (3.74)
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We see that the Schwinger-Weyl algebra in (3.31) and the clock operator
algebra in (3.74) are basically the same, but there are some key differences to
point out betweens a ZN LGT and a p-clock model.

The d.o.f of a ZN LGT live on the links of the lattice while in a p-clock
model they live on the sites. But the most important aspect is that we don’t
have any gauge symmetry in a p-clock model, hence we do not have to impose
any local constraints or physical conditions. These models can be derived as
the quantum Hamiltonians of the classical 2D vector Potts model, which is a
discretization of the 2D planar XY model [7].

A typical p-clock model Hamiltonian with transverse field has the form

HN -clock(λ) = −
∑
i

ZiZi+1 − λ
∑
i

Xi + h.c. (3.75)

which is, as expected, very similar to the quantum Ising Hamiltonian in (3.60).
Furthermore, just like the latter, p-clock models with only transverse field are
self-dual: the clocks can be mapped into the kinks (or domain walls) and
one would obtain the same exact Hamiltonian description but with inverted
transverse field [7]. For p < 5, the clock models present a self dual point for
λ = 1, that separates an ordered phase from a disordered one. On the other
hand, for p ≥ 5 we have an intermediate continuous critical phase between
the ordered and disordered phase with two BKT transition points, which are
related to each other through the self-duality [131].

These models have been thoroughly studied, even with the addition of a
longitudinal field proportional to Zi [132] or chiral interactions. In particular,
in the case of chiral interactions, it was shown [133] that the Hamiltonian
(3.75) can be mapped to a parafermionic chain through a Fradkin-Kadanoff
transformation, and in presence of a Z3 symmetry, it shows three different
phases [134], if open boundaries are implemented: a trivial, a topological and
an incommensurate (IC) phase. The case which presents a real longitudinal
field term was considered in [135], where some of the critical exponents have
been estimated. The general case, where chiral interactions are included in a
ZN model, has been studied in [133]. Here, the author considered the model
as an extension of the Ising/Majorana chain and found the edge modes of
the theory. He also calculated the points, in the parameter space, where the
model is integrable or ‘superintegrable’. All these studies are motivated by
theoretical interest and recent experiments, which can be analysed by the
above models [136].
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3.5.2 Gauge-reducing duality onto clock models

In this section we will show one of the main result of [5]: how to construct
a mapping of the ZN ladder LGT onto a N -clock model on a chain with a
transversal field and a longitudinal field, the latter depending on the super-
selection sector of the ladder LGT.

The first step is the decomposition of the set of bonds in (3.40). Obviously,
the magnetic terms U� have to be separated from the electric terms V`, but
the latter cannot be all treated the same. It is clear from the geometry of
the ladder, that the links `0 have a different role when compared with the
links `↑ and `↓, because the former are domain walls while the latter are not.
Therefore, the duality transformation has to distinguish between the vertical
links and horizontal links. Furthermore, also the top links `↑ and bottom links
`↓ have to be treated separately because the electric operator on them have
different commutation relations with the plaquette operators. In fact, using
the notation introduced in Sec. 3.3, we have

UiV
↓
i = ωV ↓

i Ui, UiV
↑
i = ω−1V ↑

i Ui. (3.76)

and indeed they acquire different phases.
The plan is to associate to each plaquette a clock degree of freedom, hence

we identify a plaquette �i with a site i of a clock chain and the magnetic flux
of a plaquette becomes the “fundamental gauge invariant degree of freedom”
of the LGT ladder model. Given the fact that we are working in the electric
basis, we chose for convenience to map the ZN magnetic operator Ui to the
“momentum” operator Xi of the N -clock chain. The electric field on a vertical
link `0 is the result of the flux difference between the two plaquettes that it
separates, which suggests that the operator V 0 have to be mapped to a kinetic-
type term like Z†

iZi−1. This can be readily verified. From (3.51) we get

V 0
i Ui = ω−1UiV

0
i , V 0

i Ux−1 = ωUx−1V
0
i ,

therefore the maps
Ui 7→ Xi, V 0

i 7→ Z†
iZi−1,

clearly conserves the commutation relations of Ui and V 0
i .

For now we are left with task of finding a suitable mapping of V ↑ and V ↓.
With respect to the other bonds of the theory, both of them commute with
V 0 while for (3.76) holds for Ui. Hence, a suitable and general mapping of V ↑

and V ↓ can be:
V ↓
i 7→ c↓iZi, V ↑

i 7→ c↑iZ
†
i , (3.77)
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where c↓i and c
↑
i are complex numbers. Although, they cannot be any complex

number. Both V ↓
i and V ↑

i have to be mapped onto unitary operators, which
limits the numbers c↓i and c↑i to be complex phases.

To further constraint the value of these coefficients, we can use the Gauss
law. In particular, given the fact that we are looking for a gauge-reducing
duality, the aim is to make the Gauss law trivial. Using the mappings (3.5.2)
and (3.77) in (3.52) yields

G↑
i 7→ (c↑iZ

†
i )(c

↑
i−1Z

†
i−1)(Z

†
iZi−1)† = c↑i (c

↑
i−1)

∗,

G↓
i 7→ (c↓iZ

†
i )(Z

†
iZi−1)(c↓i−1Z

†
i−1) = c↓i (c

↓
i−1)

∗
(3.78)

Gauss law have to be satisfied in a pure gauge theory, which mean that
we have to impose G↑

i = 1 and G↓
i = 1 for all i. This is only possible if

c↓i = c↓, c↑i = c↑, ∀i. (3.79)

Furthermore, thanks to (3.78) we also know how to introduce static matter
into this duality, because it can be thought as a violation of the Gauss law.
We just have to change the phases c↑i and c↓i .

The last factor to consider is how the c↑ and c↓ are related on the same
site i. In this regard, the super-selection sectors of the theory come to the
rescue. As established in Sec. 3.3, the super-selection sectors are identified by
the eigenvalue of S2 in (3.39), which in the ladder geometry becomes

S2 = V ↑
i V

↓
i (3.80)

for any fixed x. Its eigenvalue are simply ωk, for k = 0, . . . , N − 1.
Given a super-selection sector ωk, using the mapping (3.77) on (3.80) yields

S2 7−→ (c↑Z†
i )(c

↓Zi) = c↑c↓ = ωk. (3.81)

Here, one is free to choose c↑ and c↓, given that their product has to be equal
to ωk. This freedom corresponds to a global symmetry of the system and it
has nothing to due with the gauge symmetries, because the latter has already
been solved. We choose to fix c↑ to 1 and c↓ to ωk:

c↑ = 1, c↓ = ωk. (3.82)

In conclusion, we summarize the duality mapping for the super-selection
sector ωk of the ZN LGT on a ladder:

Ui 7−→ Xi, V 0
i 7−→ Z†

iZi−1,

V ↑
i 7−→ Z†

i , V ↓
i 7−→ ωkZi.

(3.83)
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With the duality (3.83), from (3.53) in the sector (ωk, 1) we obtain

HN -lad(λ) 7−→ λHN -dual(λ−1) (3.84)

where HN -dual is the dual N -clock Hamiltonian:

HN -dual(λ−1) = −
∑
i

(
Z†
iZi−1 + λ−1Xi + (1 + ωk)Zi + h.c.

)
(3.85)

We see that (3.85) is a clock model with both transversal and longitudinal
fields. In particular, the longitudinal field carries the information of the super-
selection sector of the ladder model.

Interestingly, for N even the sector k = N/2 has a special role. Within
this sector ωk = −1, for which the longitudinal field disappears and HN -clock

reduces to self-dual quantum clock models with a known quantum phase tran-
sition. This phase transitions for k = N/2 can be put in correspondence with
a confined-deconfined transition, which will be discussed in much more detail
in the next section.

Let us remark that the complex coupling (1 + ωn) does not make the
Hamiltonian (3.85) necessarily chiral [133, 137]. In fact, one can get the real
Hamiltonian

HN -dual(λ−1) = HN -clock(λ−1)− 2 cos
(
πn

N

)∑
i

(
Zi + Z†

i

)
. (3.86)

by absorbing the complex phase in the Zi-operators, with the transformation
Zi 7→ ω−n/2Zi. This transformation globally rotates the eigenvalues of the
Zi-operators, while preserving the algebra relations. For n even, this is just a
permutation of the eigenvalues, meaning that it does not affect the Hamilto-
nian spectrum. Instead, for n odd, up to a reorder, the eigenvalues are shifted
by an angle π/N , i.e. half the phase of ω. In the latter case we will denote
the rotated Zi operator with Z̃i. The energy contribution of the extra term in
(3.86) depends on the real part of these eigenvalues and for n odd we obtain
that the lowest energy state is no longer unique, in fact it is doubly degener-
ate. This means that for λ → ∞, where the extra term becomes dominant,
we expect an ordered phase with a doubly degenerate ground state. Finally,
one can easily prove that the sectors n and N − n are equivalent 1.

3.6 A case study: N = 2, 3 and 4

In this section we present the results of the numerical investigations of [5].
But first, we present the reasoning for the choice of order parameters used for

1For the sector N − n we have that the overall factor cos(π(N − n)/N) is just
− cos(πn/N). The minus sign can then be again absorbed into the Z’s operators. This
overall operation is equivalent to the mapping Z 7→ ω−n/2Z for the sector N − n.
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Figure 3.15. Visual representation of the duality transformation from the ZN ladder LGT to
theN-clock model. The plaquette operator Ui and the electric operators V ↑ and V ↓ map to
one-site operators in the clock model, while the remaining electric operator V 0 maps to a
hopping term between nearest neighbouring sites.

investigating the phase diagram, and second we show how the duality have
been used for resolving the Gauss law in numerics.

3.6.1 Investigating the phase diagram

We wish to study the phase diagram of the ZN LGT phase diagram, in par-
ticular we are interested in any deconfined-confined phase transition (DCPT).
In a pure gauge theory, these phases are investigated with non-local order pa-
rameters like the WL (WL) (not be confused with the non-contractible WLs
in (3.39)). This is because we expect the deconfined phase to be a topological
phase, which can be investigated only with non-local order parameters.

Given a closed region R, a WL operator WR is defined as

WR =
∏
�∈R

U�. (3.87)

Alternatively, considering the oriented boundary ∂R one can write

WR =
∏
`∈∂R

U`, (3.88)

where the Hermitian conjugate is implied every time we move in the negative
directions. It is also implied that the curve ∂R is a contractible loop. As
explained in Sec. 1.2.2, quark confinement is related to the expectation value
〈WR〉 of a WL, which can be thought as a gauge field average over the region
R. In particular, in the presence of quark confinement the gauge field average
follows an area law, where it decays exponentially with the area enclosed by
R. On the other hand, in the deconfined phase we have a perimeter law, where
the gauge field average decays exponentially with the perimeter of R.
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W

0 L/2 L

Figure 3.16. Half-ladder Wilson loop on the ladder. Notice that W can only grow in one
direction, meaning there is no difference in scaling between the area and the perimeter.
Nonetheless, it still can be used for distinguishing phases.

Unfortunately on a ladder geometry there is not much difference between
the area and the perimeter of a WL. In fact, in units of the lattice spacing,
the area of a WL over n plaquettes is n while its perimeter is just 2n + 2.
They both grow linearly. Nonetheless, we can still look at the behaviour of
the WL, for a fixed length, at different couplings λ, for the following reason.

When the coupling λ in (3.40) is equal to zero, the TC is recovered and in
any of its topological sector the ground state is the equal superposition of all
the states with any number of closed electrical loops, in a similar fashion to
coherent states. This makes the TC a quantum loop gas, which is a deconfined
phase. Furthermore, the operator WR in (3.87) creates an electrical loop
around the region R. From the ground state constraints of the TC (3.7), it
can easily be proved that WR leaves its ground states unchanged, showing in
fact that they behaves as coherent states, which leads to 〈WR〉 = 1.

Therefore, 〈WR〉 ≈ 1 signals a deconfined phase and, on the other hand,
a vanishing 〈WR〉 ≈ 0 would correspond to confined phase. This is what is
expected in the opposite limit, λ→∞, when only the electric term survives.
For this reason, even tough we lack an area/perimeter law on the ladder
geometry it is still sensible to look at the behaviour of the WL. Analogous
models in two-dimensions show that there is indeed a transition for non-zero
λ [116–118].

In the dual clock model picture, the WL translates to a disorder operator
[126], which means that a deconfined phase can be thought of as a paramag-
netic (or disordered) phase, while the confined phase is like a ferromagnetic (or
ordered) phase. Moreover, the longitudinal field breaks the N -fold symmetry
of the ferromagnetic phase into a one-fold or two-fold degeneracy, depending
on the parity (n even/odd) of the super-selection sector.

For the reasons showed above, we have decided to study the ZN LGT on
a ladder by evaluating the half-ladder WL (see Fig. 3.16):

W = U1U2 · · ·UL/2. (3.89)

Additionally, we have also decided to study each physical subspace H(n)
phys (for

n = 0, . . . , N −1) separately, because we wanted to investigate if the choice of
super-selection sector has any effect on the phase diagram. This motivated us
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dual 2–clock chain

Z2 LGT, sector n = 0 Z2 LGT, sector n = 1

|Ω0〉 |Ω1〉

Figure 3.17. Duality between the states of a 2–chain and the states of aZ2 ladder LGT in the
different sectors n = 0 (no non-contractible electric loop) and n = 1 (one non-contractible
loop around the ladder). In the sector n = 0 it is evident that all the physical states contains
closed electric loops. On the other hand, in the sector n = 1 the physical states are all the
possible deformation of the electric string that goes around the ladder.

to use ED, where the state space can be implemented exactly. The physical
subspace H(n)

phys has dimension NL, much smaller than N3L (the dimension of
the total Hilbert space), hence it allows for larger lattice sizes for ED.

3.6.2 Implementing the Gauss law in numerics

In order to proceed with ED one has to provide two things:

• the basic operators of the theory (U` and V`);

• the physical Hilbert space, given a lattice with specified size and bound-
ary conditions.

The former is fairly standard, while the latter is the most challenging and
interesting aspect to implement.

If one has to work with only physical states, then one has to check the
Gauss law for every site. With the brute-force method one has to generate all
the possible states and then filter out all the states that violate Gauss law.
This method, like any brute-force method, is not very efficient. To better
exemplify this, consider a Z2 theory on a L × L periodic lattice, which have
L2 sites and 2L2 links. There are therefore 22L2 possible configurations and
for each one up to L2 checks (one per site) has to be performed. Moreover,
it can be showed that there are only 2L2 physical states. As a result, the
construction of the physical Hilbert space involves O(L222L2) operations in a
search space of 22L2 objects for finding only 2L2 elements. All of this makes the
inefficiency of this brute-force method very clear, even for moderately small
lattices.

The approach adopted in this work exploits the duality in Sec. 3.5 and
represents an exponential speedup with respect to the brute-force method. It
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is not a search or pattern-matching algorithm, each physical configuration is
procedurally generated from the states of the dual clock model.

Given a ZN LGT on a lattice of size L× L, we consider the dual N -clock
model on a similar lattice with A = L2 sites. In its Hilbert space HN -clock
there is no gauge constraint or to apply, hence the basis is the set of states
|{si}〉 ≡ |s0s1 · · · sA−1〉 with each si = 0, . . . , N − 1. Each state si of the
dual clock model corresponds to the flux state in the i-th plaquette of the
gauge model. Additionally, the operators Ui and U †

i act as “creation” or
“annihilation” operators on the flux state (respectively), meaning that they
increase or decrease the flux in the i-th plaquette. Hence, if we establish
first what the |0 · · · 0〉 clock state would correspond in the gauge model, then
we can proceed to obtain the dual to a generic state |{si}〉 by applying the
Ui operators. The clock state |0 · · · 0〉 is the Fock vacuum from which every
other clock state can be obtained, by applying the Xi clock operators. The
corresponding state in the gauge model would be a state with no flux in the
plaquettes. In this regard, the “Fock vacuum” is not unique. There is one
vacuum for each super-selection sector.

Therefore, from a clock state |{si}〉 we can obtain the dual gauge state
model in the (m,n) sector, by means of powers of Ui:

|{si}〉 7−→
A−1∏
i=0

U sii |Ω(n,m)〉 , (3.90)

where Ui is the plaquette operator on the i-th plaquette and |Ω(m,n)〉 is the
“Fock vacuum” of the (m,n) sector.

Moreover, the “Fock vacua” |Ω(n,m)〉 can be obtained easily, thanks to
(3.49):

|Ω(n,m)〉 = (W 1)n(W 2)m |Ω(0,0)〉 , (3.91)

where
∣∣∣Ω(0,0)

〉
is just the state |000 · · · 0〉 in the electric basis of the gauge

model, where all the links are in zero electric field state (see Fig. 3.18).
As one can deduce, the information about the super-selection sector of the

LGT model is carried out in the Hamiltonian HN -clock of the dual clock model
and not in the structure of HN -clock itself. This means that is possible to build
each sector H(n,m)

phys in (3.45) from HN -clock, with the appropriate
∣∣∣Ω(n,m)

〉
. In

order to simplify notation, we will denote the vacua of the ladder model simply
as |Ωn〉 for the n-th sector.

If we want to quantify the obtained speedup with this method, in the
case of a Z2 theory on a square lattice L × L there are 2L2 possible clock
configurations. For each configuration, there are at most L2 magnetic fluxes
to apply. This translates into O(L22L2) operations, which is an exponential
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vacuum |Ω0〉 of the sector n = 0

vacuum |Ω1〉 of the sector n = 1

|0〉
|1〉

W 1

Figure 3.18. The different “Fock vacua” |Ω0〉 and |Ω1〉 of the Z2 ladder LGT. The latter can
be obtained from the former by applying the WL operatorW1. The states |0〉 and |1〉 refers to
the eigenstates of the electric field operator V , which is just σz in the Z2 model.

speedup with respect to the brute-force (notice the lack of a factor 2 in the
exponent) and is easily generalizable for any ZN . Although, it remains an
open question whether a similar method can be applied for gauge theories
with non-Abelian finite groups.

3.6.3 Numerical results

In the following, we present the results with N = 2, 3 and 4, for different
lengths.

Results forN = 2

As a warm up, we consider the Z2 ladder LGT, with lengths L = 10, 12, . . . , 18.
This model is equivalent to a p = 2 clock model, which is just the quantum
Ising chain, with only two super-selection sectors for n = 0 and n = 1. The
dual Hamiltonian (3.86) for Z2 and sector n = 0 is

H2-dual
n=0 (λ−1) = H2-clock(λ−1)− 2

∑
i

(
Zi + Z†

i

)
, (3.92)

while for n = 1 we just have

H2-dual
n=1 (λ−1) = H2-clock(λ−1). (3.93)

When n = 1 the Hamiltonian H2-dual contains only the transverse field,
hence it is integrable [132]. Thus, we expect a critical point for λ ' 1, which
will be a DCPT in the gauge model language. This is clearly seen in the
behaviour of the half-ladder WL, as shown in the lower panel of Fig. 3.19. For
n = 0, both the transverse and longitudinal fields are present, hence the model
is no longer integrable [138–140] and we expect to always see a confined phase,
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Figure3.19. Z2WL in the sectorsn = 0 (top) andn = 1 (bottom), for sizesL = 10, 12, . . . , 18.
The sector n = 0 presents only a deconfined point at λ = 0 and then decays rapidly into a
confined phase, while the sector n = 1 has a phase transition for λ ' 1.

except for λ = 0. This is indeed confirmed by the behaviour of the half-ladder
WL shown in the upper panel of Fig. 3.19.

Notice that for n = 0 in Fig. 3.19, there is a lack of line crossings between
values of WL for different L. This suggests that in the thermodynamic limit,
we will have a single point 〈W 〉 6= 0 for λ = 0, and a flat line 〈W 〉 = 0 for
λ 6= 0, confirming the prediction of a always confining phase (excluded λ = 0).

We can further characterize the phases of the two sectors by looking at
the structure of the ground state, for λ < 1 and λ > 1, which is possible
thanks to the exact diagonalization. In particular, in the deconfined phase
of the sector n = 1, the ground state is a superposition of the deformations
of the non-contractible electric string that makes the n = 1 vacuum |Ω1〉.
For this reason, this phase can be thought as a kink condensate [126] (which
is equivalent to a paramagnetic phase), where each kink corresponds to a
deformation of the string. Instead, for λ > 1, where we have confinement (as
in the n = 0 sector), the ground state is essentially a product state, akin to a
ferromagnetic state. This analysis has been performed at the end of Sec. 3.6.3.

Results forN = 3

The Z3 LGT is studied for lengths L = 7, 9, 11 and 13. This model can be
mapped to a 3-clock model, which is equivalent to a 3-state quantum Potts
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model with a longitudinal field, which is present in all sectors, as one can see
from (3.86). The dual Hamiltonian H3-dual(λ−1) for the sector n = 0 is

H3-dual
n=0 (λ−1) = H3-clock(λ−1)− 2

∑
i

(
Zi + Z†

i

)
, (3.94)

while for n = 1 and 2 (which are symmetric to each other) we have

H3-dual
n=1,2 (λ−1) = H3-clock(λ−1)− 2 cos

(
π

3

)∑
i

(
Z̃i + Z̃†

i

)
. (3.95)

Remember that Z̃i stands for the Zi operator with eigenvalues shifted by
ω1/2 = eiπ/N . In all three cases we have a longitudinal field, which is expected
to disrupt any paramagnetic state. Thus, we do not expect to observe a
phase transition, and this is confirmed by the behaviour observed in Fig. 3.20.
Meanwhile, all the sectors present a deconfined point at λ = 0, as expected.

In the case n = 0, for λ > 0 we recognize a quick transition to a con-
fined phase, similar to what happens in [141]. This behaviour is similar to
what has been observed for the Z2 and n = 0 case in Fig. 3.19, hence the
same reasoning apply. While for n = 1 and 2 (which are equivalent), the
model exhibits a smoother crossover to an ordered phase characterized by a
doubly-degenerate ground state, for λ > 1. Notice that, as discussed above,
the presence of the “skew” longitudinal field breaks the three-fold degeneracy
expected in the ordered phase of the 3-clock model into a two-fold degeneracy
only. Additionally, for L = 13 we notice that a slight bump start to appear. If
some speculation is allowed, this fact, united with the crossover region, may
suggest that there is some intermediate phase between the deconfined point
and the confined region. For this kind of analysis, higher lattice sizes are nec-
essary which means that ED is no longer adequate. Thankfully, now that we
are confident in the duality between ladder LGTs and QCMs, we can directly
study this region in the QCMs setup, by simulating (3.95) with for example
DMRG.

Results forN = 4

The Z4 ladder LGT have four super-selection sectors. The behaviour of half-
ladder WLs as function of λ is shown in Fig. 3.21. The Hamiltonian in the
first sector, n = 0, is

H4-dual
n=0 (λ−1) = H4-clock(λ−1)− 2

∑
i

(
Zi + Z†

i

)
, (3.96)

As in the previous models, for n = 0 we see a deconfined point at λ = 0,
followed by a sharp transition to a confined phase. Likewise, the lack of line
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Figure 3.20. Z3 WL for the sectors n = 0 (top) and n = 1, 2 (bottom, which are equivalent),
for sizes L = 7, 9, 11 and 13. Inset: energy differences ∆Ei = Ei − E0 for i = 1, 2, as
a function of the coupling λ, in the sectors n = 1, 2, showing the emergence of a double-
degenerate ground state for λ > 1.

crossings of the WL at different L suggests that in the limit L → ∞ we will
only have 〈W 〉 6= 0 for λ = 0.

The dual Hamiltonian of the sector n = 2,

H4-dual
n=2 (λ−1) = H4-clock(λ−1), (3.97)

has no longitudinal field, it is the only one to present a clear DCPT for λ ≈ 1,
as it is expected from the fact that the 4-clock model is equivalent to two
decoupled Ising chains [7].

In the two equivalent sectors n = 1 and 3, where the dual Hamiltonian is

H4-dual
n=1,3 (λ−1) = H4-clock(λ−1)− 2 cos

(
π

4

)∑
i

(
Z̃i + Z̃†

i

)
, (3.98)

the longitudinal field is non-zero and the WL shows a peculiar behaviour,
at least for the largest size (L = 10) of the chain: it decreases fast as soon
λ > 0, to stabilize to a finite value in the region 0.5 . λ . 1, before tending
to zero. It is comparable to Z3 and n = 1, 2 situation, where a slight bump
appear when the size L is increased. The characteristics of this phase (with
the crossover region for Z3 and n = 1, 2) would deserve a deeper analysis, that
we plan to do in a future work. For λ & 1, the system enters a deconfined
phase with a double degenerate ground state, as for the Z3 model.
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Figure 3.21. Z4 WL for sectors n = 0, . . . , 3 and sizes L = 6, . . . , 10. Only the sector n = 2
has a clear deconfined-confined phase transition, as expected from the duality with the 4-
clock model.

Distribution of the amplitudes of the ground state

In the N = 2 case, we further differentiate the phase diagrams of the two
sectors by looking at the ground state amplitudes distribution, for λ < 1 and
λ > 1. Obviously, the ground state can be written as a superposition of the
gauge invariant states of Hphys in the given sector

|Ψg.s.〉 =
∑
n

cn |n〉 , (3.99)

The basis |n〉 and the amplitudes cn are sorted in a decreasing order with
respect to the modulus of the latter. The first state of the list, with am-
plitude c1, is always the Fock vacuum |Ω〉 of the sector, hence we consider
the distribution of the ratios |cn/c1|, which are plotted in Fig. 3.22–3.23 for
λ = 0.1 and λ = 1.5, respectively. The most interesting one is at λ = 0.1,
where the difference between the deconfined phase in the sector n = 1 and the
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confined one in the sector n = 0 can be seen. In particular, in the deconfined
phase the ground state is a superposition of deformations of the Fock vacuum,
i.e the non-contractible electric string, which can be thought as a kink con-
densate [126] (or as a paramagnetic phase), where each kink corresponds to
a deformation of the string. Meanwhile, for λ > 1, where we have confine-
ment in both sectors, the ground state is essentially a product state, akin to
a ferromagnetic state. This is explained in Fig. 3.22 and Fig. 3.23.

3.7 Concluding remarks

In this work, we proposed an exact gauge preserving duality transformation
that maps the ZN lattice gauge theory on a ladder onto a 1D N−clock model
in a transversal field, coupled to a possibly complex longitudinal field which
depends on the super-selection sector.

This map allowed us to perform numerical simulations with an ED algo-
rithm with sizes up to L = 18, 13, 10 for N = 2, 3, 4 respectively. To study
the phases of the model and a possible DCPT transition, we calculated the
Wilson loops in the different topological sectors, finding an unusual behaviour
in the sectors with n odd (mod N), possibly suggesting the emergence of a
new phase, such as for example the incommensurate phase appearing in chiral
clock models [134, 137, 142], whose characterization requires however to con-
sider longer sizes of the chain in order to evaluate the asymptotic behaviour
of correlators.

This will be the subject of future work, in which we can also consider
the possibility to include static and dynamical matter in the lattice gauge
model. Another possible direction would be the extension of these duality
transformations to non-Abelian gauge theories.
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Z2 g.s. amplitudes distribution, λ = 0.1
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Figure 3.22. Z2 ground state amplitude distribution for λ = 0.1 of the first 200 states and
with lattice size 12× 2. Top: distribution of the ratios |cn/c1| for the sector n = 0 (see (3.99)).
We see that the heaviest states that enters the ground state, apart from the vacuum that sets
the scale, are made of small electric loops, typical of a confined phase. Bottom: the same
distribution of ratios for the sector n = 1. We see that the heaviest states are made of bigger
and bigger deformations of the electric string that goes around the ladder. This happens
because the energy contributions depends only on the domain walls between two plaquettes
with different flux content. This behaviour is similar to the so-called kink condensation in spin
chains [126], where the disordered state can be expressed as a superposition of all possible
configuration of kinks (i.e. domain walls between two differently ordered regions). In the
language of the duality, this deconfined phase then maps to the paramagnetic phase of the
quantum Ising model with only transverse field.
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Z2 g.s. amplitudes distribution, λ = 1.5
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Figure 3.23. Z2 ground state amplitude distribution for λ = 1.5 of the first 200 states and
with lattice size 12× 2. Top: distribution of the ratios |cn/c1| for the sector n = 0 (see (3.99)).
Bottom: the same distribution of ratios for the sector n = 1. For both sectors n = 0 (top) and
n = 1 (bottom) we are in a confined phase, which corresponds to a ferromagnetic phase in the
dual model (the QIM). Here we see a polarized state where the domain walls are suppressed
and the ground state is essentially a product state.

82



chapter four

Finite Group Gauge Theories

In this chapter we present the work [6], where a class of finite group LGT in
the Hamiltonian formulation are considered.

One of the main results of [6] is the construction of an electric term, that
admits an interpretation of as a Laplacian operator on the group. This con-
struction is valid in both Abelian or non-Abelian case. The characterization
of the Hamiltonian using the finite-group Laplacian may be used to obtain
non-trivial physical information about the theory.

Another important finding of [6], is the construction of the physical, gauge-
invariant Hilbert space, independently of the choice of Hamiltonian. This relies
on the use of spin network states, which are particularly suitable in the case
of finite groups. Based on this fact, we derive a simple formula for computing
the dimension of the physical Hilbert space.

Finally, we illustrate the use of the gauge-invariant basis by constructing
the Hamiltonian for a gauge theory based on the dihedral group and compute
some quantities of interest via ED.

4.1 Ingredients for finite groups

In this section we develop an Hamiltonian approach to finite group LGT, by
showcasing the necessary ingredients. These main ingredients are basically the
Hilbert space and the Hamiltonian operator. Regarding the Hilbert space, we
will show that are two possible choices of basis, that are roughly analogous to
a “position basis” and “momentum basis”. The first would corresponds to the
group element basis, while the second to the irreducible representation basis.

As for the Hamiltonian operator, we will focus more on the electric term
because the magnetic term is pretty straightforward. As anticipated, the
electric Hamiltonian admits an interpretation as a certain natural Laplacian
operator on the group. This Laplacian is non-unique, which means that for a
given gauge group G we can have an entire family of LGTs. This construction
extends the electric term used in the Kogut-Susskind formulation [8] of LGTs,
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based on Lie groups, to finite groups. At the end of the section we will also
review the question of Lorentz invariance and classification of the possible
models.

4.1.1 The Hilbert space and gauge invariance

In the Hamiltonian formulation of LGTs [8, 95, 98], time is continuous while
the d spatial dimensions are discretized into a hypercubic lattice L. The
definition of the Hilbert space for both a compact Lie group or a finite group
is substantially the same. As we have seen in Sec. 1.2, a group element g ∈ G
is assigned to each spatial lattice link ` ∈ L, where G is the gauge group.
Links are oriented, and if a link is traversed in the opposite orientation, then
g is replaced with g−1.

In the Lie group case, one would typically write Uµ(x) = exp{(iAµ(x))} ∈
G for the gauge field variable assigned to the lattice link (x, µ̂), where Aµ(x)
is the vector potential. Note that finite groups have no Lie algebras, so we
work with group-valued quantities as far as possible. In what follows, we write
g ∈ G for a group element indifferently for both finite and Lie groups G.

A classical configuration is given by a choice of group element g on each
lattice link, which means that the configuration space is exactly G. In a
quantum theory, the configuration space G has to be upgraded to a Hilbert
space HG, spanned by the elements of G:

HG ≡ span{|g〉 : g ∈ G}, (4.1)

Therefore, an element |ψ〉 of HG can be written as

|ψ〉 =
∫

dg ψ(g) |g〉 , (4.2)

where
∫
dg is the Haar measure of G, if G is a compact Lie group. In the case

of a finite group, (4.2) becomes simply

|ψ〉 =
∑
g∈G

ψ(g) |g〉 , (4.3)

where a Haar measure is not needed and a simple sum is sufficient. The basis
{|g〉 : g ∈ G} can be considered as the analogous of a “position basis”. In the
case of a Lie group, the wavefunction ψ(g) is square-integrable with respect
to the Haar measure. Therefore, the Hilbert space HG on each link can be
identified with L2(G), i.e. the space of square-integrable functions on G [98].
Instead, for a finite group the Hilbert space HG is simply the group algebra
C[G], which is the complex vector space spanned by the group element basis.
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The overall Hilbert space Htot is then given by a tensor product over the
links:

Htot =
⊗
`∈L
HG` , (4.4)

where HG` is the Hilbert space of the single link `. Note that for a finite
group, C[G] has finite dimension, because it is spanned by the finitely-many
group element states {|g〉}. Therefore the Hilbert space on each link is finite-
dimensional and Htot is finite-dimensional on a finite lattice, with dimHtot =
|G|L where L is the number of links. For a Lie group, on the other hand,
we have infinitely many basis states {|g〉} and therefore the Hilbert space is
infinite-dimensional on each link.

In the Hamiltonian formulation of gauge theories, the statement that the
theory is invariant under gauge transformations translates at the level of the
Hilbert space by restricting the allowed states only to those which are gauge-
invariant. In particular, on the single-link Hilbert space one can define left
and right “translation operators”, in the analogy where {|g〉} is a position
basis in group space [95],

Lg |h〉 = |gh〉 , Rg |h〉 =
∣∣∣hg−1

〉
. (4.5)

A local gauge transformation is given by a choice of group element gx ∈ G at
every site x of the lattice [98]. This acts on the overall Hilbert space Htot via
the operator

G({gx}) =
⊗

l=〈xy〉∈links
LgxRgy , (4.6)

where {gx} is an arbitrary choice of group elements gx at each lattice site x,
and the link l connects the points x and y. In other words, each link state |gl〉
transforms as |gl〉 7→ |gxglg−1

y 〉.
The only physical states are those which satisfy the so-called “Gauss’ law”

constraint [8, 20, 98]
G({gx}) |ψ〉 = |ψ〉 , (4.7)

for any possible choice of local assignments {gx} of group variables to lattice
sites. The Gauss law (4.7) is an exponentiated version of the usual Gauss law
formulated in terms of Lie algebra generators. The states which satisfy (4.7)
form the physical, gauge-invariant Hilbert space Hphys. Note that the condi-
tion (4.7) only involves group-valued quantities and is thus valid for both Lie
groups and finite groups. In the case of finite groups, the condition simplifies
because it is sufficient to impose invariance against a set of generators of the
finite group.
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One can also straightforwardly include matter fields such as fermion fields
which live on each lattice site. Under a gauge transformation, they transform
as Ψ(x)→ R(gx)Ψ(x), where R is some representation of the gauge group.

4.1.2 The representation basis

It turns out to be fruitful to introduce a different basis of the overall Hilbert
space H, “dual” to the group element basis. The operators Lg and Rg in-
troduced in (4.5) are unitary representations of G, known as the left and
right regular representations [143, 144]. This is because LgLh = Lgh and
(Lg)−1 = Lg−1 = (Lg)†, as can be explicitly checked by acting on the group
element basis, and the same holds for R. Their representation theory leads
to the Peter-Weyl theorem [98, 144] (see also App. A.3). It works for both
compact Lie groups and finite groups and it can be summarized as

HG =
⊕
j∈Σ

V ∗
j ⊗ Vj , (4.8)

where j is a label for the irreducible representationss (irreps) of G, and Σ is
the set of all irreps of G. For more details see App. A, where we collected
some general results on representation theory.

Here Vj is the representation vector space corresponding to the represen-
tation j, and V ∗

j is its dual. For both compact Lie groups and finite groups
the irreps are finite-dimensional and can be chosen to be unitary. For a fi-
nite group, Σ is a finite set, while it is countably infinite for a compact Lie
group [143, 144]. In terms of the Peter-Weyl decomposition, the left and right
regular representations take a particularly simple form [145],

LgRh =
⊕
j

ρj(g)∗ ⊗ ρj(h), (4.9)

where ρj is the matrix of the j-th irrep of G. The individual action of either
Lg or Rh may be obtained by setting either g or h to the identity. The formula
(4.9) is especially useful because, as we will see in Sec. 4.2, it simplifies the
action of the Gauss’ law constraint (4.7).

The Peter-Weyl theorem provides an alternative basis for the single-link
Hilbert space. For each irrep j one chooses appropriate bases for V ∗

j and Vj ,
which we denote {|jm〉} and {|jn〉} respectively, where 1 ≤ m,n ≤ dim j.
Here dim j ≡ dimVj is the dimension of the representation. On each repre-
sentation subspace, we use the shorthand notation |jmn〉 ≡ |jm〉⊗|jn〉. Then
the “representation basis” for HG is given by the set {|jmn〉} for all j ∈ Σ
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and 1 ≤ m,n ≤ dim j. In terms of the group element basis, one has [95]

〈g|jmn〉 =
√

dim(j)
|G|

[ρj(g)]mn , (4.10)

where the bases {|jm〉}, {|jn〉} are chosen so that ρj is unitary. It should
be emphasized that (4.10) is valid for both finite and compact Lie groups;
|G| is either the order of the finite group or the volume |G| ≡

∫
dU 1 given

by the possibly unnormalized Haar measure [98, 145]. It is a basic result
of the representation theory of finite groups that

∑
j (dim j)2 = |G|, which

ensures that the group element basis and the representation basis have the
same number of states [143].

Consider now the case G = ZN . It can be written down as

ZN = {1, r, r2, . . . , rN−1},

where r is the generator, while the irreps are simply

ρj(rk) = 〈rk|j〉 = ωkjN for j = 0, 1, . . . , N − 1 (4.11)

with ωN = e2πi/N . Using (4.10), the bases { |rk〉} and {|j〉} are related by

|j〉 =
N−1∑
k=0
|rk〉 〈rk|j〉 = 1√

N

N−1∑
k=0
|rk〉ωkjN . (4.12)

We have rediscovered the discrete Fourier transform. This allows us to think
of (4.10) as a “non-Abelian Fourier transform”, when the group G is non-
Abelian. In the case of the dihedral group D4 (which will be considered later
in this chapter), we have four one-dimensional representations, each of which
spans a one-dimensional subspace of C[G]. Then, have a two-dimensional
representation which spans a 22 = 4 dimensional subspace of C[G] through
the four basis elements |jmn〉 for 1 ≤ m,n ≤ 2. We have summarized the
representation theory of some groups of interest in App. B.

Since every group admits a trivial, one-dimensional irrep with ρ(g) ≡ 1,
we always have a singlet representation state |0〉, which may be extended to
the whole lattice to form the “electric vacuum” |0E〉,

|0E〉 =
⊗
`∈L
|0〉` , |0〉` =

1√
|G|

∑
g

|g〉` , (4.13)

where we used (4.10) to express |0〉` in the group element basis.
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4.1.3 The Hamiltonian

A generic LGT Hamiltonian H is made of two parts, the electric part HE

and the magnetic part HB, i.e. H = HE +HB. These have to be considered
separately and a for a simple reason. The magnetic term involves only the
spatial component of the field strength tensor, i.e., B2 ∼ F ijFij , while the
electric term involves also the temporal components, i.e., E2 ∼ F 0iF0i. Given
that in the Hamiltonian formalism time is continuous while space is discrete,
the two terms cannot be treated on the same footing. This differs from the
Wilson action approach, where the magnetic and electric are treated equally
because it has to be Lorentz-invariant.

The Hamiltonian for a LGT takes the general form [8, 95]

H = λE
∑
`∈L

hE + λB
∑
�

hB(g�), (4.14)

where hE is an operator that depends only on each lattice link, while hB
depends on the lattice plaquettes �. The symbol g� stands for the product
of the link variables around a plaquette �, i.e. g� = g1g2g

−1
3 g−1

4 . It is also
possible to add matter fields, but we focus here on the pure gauge theory.

If the gauge group is a Lie group, each group element g = eiX can be
written as the exponential of a Lie algebra element X. Then one also has
infinitesimal generators of left-translations ˆ̀a

L such that

LeiTa = exp
{(
iˆ̀aL
)}
,

where T a is a Lie algebra basis and a a color index [98]. In other words, ˆ̀L is
the Lie algebra representation corresponding to the group representation L,
and plays the role of the chromo-electric field.

The Lie group Hamiltonian, also known as the Kogut-Susskind Hamilto-
nian, is then given by [8, 98]

hE =
∑
a

(
ˆ̀a
L

)2
and hB = 2(dim ρ− Re tr{ρ(g�)}), (4.15)

where ρ is the fundamental representation of SU(N), with couplings λE = g2/2
and λB = 1/g2 in terms of a coupling constant g (the lattice spacing is set
to 1). As the group element basis may be thought of as a “position basis” in
group space, the infinitesimal generators of translations ˆ̀a

L may be thought
of as “momentum” operators in group space. Then the electric Hamiltonian
hE , which is the sum of the squares of the “momenta” in all directions, is a
Laplacian in group space. Applying the Peter-Weyl decomposition (4.9) to ˆ̀a

L,
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one finds that [98, 145]

hE =
∑
a

(
ˆ̀a
L

)2
=
∑
jmn

C(j) |jmn〉 〈jmn| , (4.16)

where C(j) is the quadratic Casimir operator, which depends only on the
representation C(j). For U(1), for example C(j) = j2, while for SU(2) one
finds C(j) = j(j + 1).

We note that the magnetic Hamiltonian depends only on group-valued
quantities and is therefore well-defined for both Lie groups and finite groups.
On the other hand, the electric Hamiltonian depends on the infinitesimal Lie
algebra through ˆ̀a

L and therefore the definition does not extend to finite groups.
Nonetheless, the decomposition (4.16) is well-defined also for finite groups, but
one must leave the coefficients C(j) unsatisfactorily unspecified because finite
groups do not have a Casimir operator [95].

If one thinks of a finite group as a natural discretization of some parent
Lie group, the natural choice of electric Hamiltonian is a discrete Laplacian
on the finite group. The geometric structure of a finite group is that of a
graph, with group elements as vertices and the group operation defining the
edges. This is called a Cayley graph. The discrete Laplacian on the finite
group is then naturally given by the graph Laplacian of the Cayley graph.
This choice also preserves the interpretation of the electric Hamiltonian as a
quantum-mechanical rotor in group space [8].

We explain the construction of the finite group Laplacian in detail in
Sec. 4.1.4, and the resulting Hamiltonian takes the form of (4.14) with

hE =
∑
g∈Γ

(1− Lg) and hB = hB(g�), (4.17)

where Γ ⊂ G is a subset of the group (not a subgroup) such that

1. 1 6∈ Γ, i.e. Γ doesn’t contain the identity element.

2. Γ−1 = Γ, i.e. it is invariant under inversion of group elements. In other
words, if g ∈ Γ, then g−1 ∈ Γ also.

3. gΓg−1 = Γ, i.e. it is invariant under conjugation. In other words, Γ is a
union of conjugacy classes of G.

These conditions on Γ ensure that the electric Hamiltonian is gauge-invariant.
On the other hand, as usual, the magnetic term is gauge-invariant as long
as hB is any real function such that hB(g1g�g−1

1 ) = hB(g�) for any g1 ∈ G.
As explained in Sec. 4.1.5, the Hamiltonian (4.17) includes as a special case
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the transfer-matrix Hamiltonian obtained in [146] which consists in a certain
specific choice of subset Γ. The choice of Γ is in fact not unique, a fact which
we will also discuss in later sections.

While the magnetic Hamiltonian hB is diagonal in the group element basis,
the electric Hamiltonian hE is diagonal in the representation basis. In fact,
hE in (4.17) in the irrep basis becomes

hE =
∑
jmn

hE(j) |jmn〉 〈jmn| with hE(j) = |Γ| −
1

dim j

∑
g∈Γ

χj(g), (4.18)

where |Γ| is the number of elements in Γ and χj is the character of the irrep
labelled j. The electric Hamiltonian may be interpreted as an “on-link” hop-
ping term within group space; in fact, up to a constant, it may be written
as

hE = −
∑
g∈Γ

∑
h∈G
|gh〉 〈h| , (4.19)

and it favours each link to sit in the electric ground state (4.13), which is
fully delocalized in group space. On the other hand, the magnetic term is a
plaquette-based potential which pushes plaquettes close to the identity. The
competition between the two non-commuting terms gives rise to non-trivial
dynamics.

We would like to emphasize that the description of the electric Hamiltonian
hE in (4.17) as the graph Laplacian of the Cayley graph associated with the
group is not simply an interesting analogy, but also a tool which may be used
to extract information on the Hamiltonian itself.

As an example, we note the well-known fact that the smallest eigenvalue
of a graph Laplacian is always zero (given by the trivial representation state
(4.13)) and its degeneracy equals the number of connected components of the
graph [147]. Moreover, it is not hard to show that if Γ does not generate the
group G, but rather only a subgroup 〈Γ〉 < G, then the Cayley graph splits
into connected components which are identified with the cosets of 〈Γ〉 in G.
The number of such components, and therefore the degeneracy of the ground
state of hE on each link, is given by

electric ground state degeneracy = |G|
|〈Γ〉| . (4.20)

This is the degeneracy of hE on each link; the degeneracy of the electric
HamiltonianHE =

∑
links hE on the Hilbert space of the whole lattice is larger.

If, instead, Γ generates the whole group, then the electric Hamiltonian is not
degenerate. A detailed proof can be found in Appendix C.1. The degeneracy
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Figure 4.1. 5 Examples of Cayley graphs. (a) and (b) show Z5 with Γ = {g, g−1} and Γ =
{g, g2, g−1, g−2} respectively. (c) showsD4 with Γ = {r, r−1, s}

of the electric ground state is not only an important feature of the theory, but
also technically important for methods such as adiabatic quantum simulation.

As we will see at the end of Sec. 4.1.4, an electric Hamiltonian with de-
generate ground state can be constructed in the simple case of the dihedral
group D4.

4.1.4 The finite group Laplacian

In this section we explain in detail the construction of the finite group Lapla-
cian, which we take as the electric Hamiltonian, as the graph Laplacian of
the Cayley graph of the finite group. Given a finite group G, we choose a set
of generators Γ ⊂ G, which we require to be invariant under inversion and
conjugation. In other words, Γ−1 = Γ and gΓg−1 = Γ for any g ∈ G [147].
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We choose Γ not to include the identity element and we note that the choice
of Γ is not unique.

The Cayley graph has the group elements as vertices, and we place an
edge between g ∈ G and h ∈ G if hg−1 ∈ Γ. The result is a simple undirected
graph. Examples of Cayley graphs for the groups Z5 and D4 are shown in
Fig. 4.1. Given any graph, its Laplacian is defined as [147]

∆ = D −A, (4.21)

where A is the adjacency matrix and D is the degree matrix. Each of these
matrices acts on the vector space of graph vertices, which in the case of a
Cayley graph can be identified with the group algebra C[G]. The degree
matrix is always diagonal, and in this case D = |Γ|1. The adjacency matrix
A is given by

Agh =

1 gh−1 ∈ Γ
0 otherwise

(4.22)

for group elements g, h. On a basis element, one has

A |g〉 ≡
∑
h

Ahg |h〉 =
∑
k∈Γ
|gk〉 =

∑
k∈Γ

∣∣∣gk−1
〉
=
∑
k∈Γ

Rk |g〉 , (4.23)

where Rk is the right regular representation, and we used the closure of Γ
under inversion. Therefore as an operator on C[G],

A =
∑
k∈Γ

Rk =
⊕
j

1j ⊗

∑
k∈Γ

ρj(k)

, (4.24)

where we used the Peter-Weyl decomposition of Rk (4.9). Then we see that∑
k∈Γ

ρj(k)

ρj(g) = ∑
k∈Γ

ρj(kg) =
∑
k∈Γ

ρj(gkg−1g) = ρj(g)

∑
k∈Γ

ρj(k)

,
(4.25)

where we used the closure of Γ under conjugation.
Hence the operator (

∑
k∈Γ ρj(k)) commutes with the irreducible represen-

tation ρj and as such is proportional to the identity by Schur’s lemma [143].
The constant of proportionality can be readily computed by taking a trace.
This therefore implies

A =
∑
j

λjPj , λj =
1

dim j

∑
k∈Γ

χj(k). (4.26)
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where Pj =
∑
mn |jmn〉 〈jmn| is the projector onto the j-th representation

subspace, and χj is the character of the irrep labelled j. Therefore the Lapla-
cian of the Cayley graph is given by

∆ =
∑
j

f(j)Pj , f(j) = |Γ| − 1
dim(j)

∑
k∈Γ

χj(k). (4.27)

which is the same form as the electric Hamiltonian in the representation basis,
(4.18). For any finite group, this formula defines the electric energy f(j) to
be assigned to each irrep.

We give some examples of this construction. For the group ZN it is natural
to construct the electric eigenvalues f(j) with the generating set Γ = {r, r−1}
where r is a generator of ZN , which results in

f(j) = f(N − j) = 4 sin2
(
πj

N

)
, (4.28)

which is the same as in [111]. Moreover for large N ,

f(j)→ 4π2

N2 j
2 N large, (4.29)

which is proportional to the Casimir eigenvalues of U(1) gauge theory [111].
Thus both a truncation of U(1) theory and proper ZN theory naively approach
U(1) theory for large N , albeit in different ways. One can however choose a
different generating set, such as Γ = {r, r−1, r2, r−2} and the corresponding
eigenvalues would be

f(j) = f(N − j) = 4 sin2
(
πj

N

)
+ 4 sin2

(2πj
N

)
. (4.30)

For the dihedral group D4 we can choose for example

Γ1 = {r, r3, s, r2s},

which gives rise to the eigenvalues f(j) shown in Table 4.1, where the repre-
sentations are ordered like in the character table in Table B.1 in Appendix
B.2. Note that Γ1 generates the whole group.

By looking at its character table, we may in fact classify all possible choices
of Γ for D4. In fact, D4 has five conjugacy classes:

C0 = {e}, C1 = {r, r3}, C2 = {r2}, C3 = {s, r2s}, C4 = {rs, r3s}.

One can check that, as is generally true,
∑
i |Ci| = 8 = |G|. In this case, all

conjugacy classes are invariant under inversion, i.e. C−1
i = Ci. Hence any
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f(j)

Γ j 0 1 2 3 4

Γ1 = {r, r3, s, r2s} 0 4 4 8 4
Γ2 = {r, r3, s, rs, r2s, r3s} 0 8 8 8 6
Γ3 = {r, r2, r3} 0 4 0 4 5

Table 4.1. Eigenvalues of the single-link electric Hamiltonian f(j) for the finite group D4,
with three choices of generating sets: Γ1, Γ2, and Γ3 respectively.

union of the Ci’s (i 6= 0) is a valid choice for Γ. There are 24 such possibilities.
Note that this is not true in general, in which case one must choose conjugacy
classes to ensure that Γ−1 = Γ. In the next sections we will consider in more
detail two specific cases:

Γ2 = C1 ∪ C3 ∪ C4 = {r, r3, s, rs, r2s, r3s} and Γ3 = C1 ∪ C2 = {r, r2, r3}.

The choice of Γ2 is especially interesting, because it corresponds to the Hamil-
tonian arising from the transfer-matrix procedure when hB is the real part of
the trace of the faithful irrep of D4; therefore, this choice gives rise to a man-
ifestly Lorentz-invariant theory. Note that also Γ2 generates the whole group.
On the other hand, the set Γ3 = {r, r2, r3} does not generate the whole group,
but only the subgroup of rotations; this is reflected in the electric eigenvalues
in Table 4.1, with the electric ground state being two-fold degenerate on each
link.

4.1.5 Action formulation and Lorentz invariance

The Kogut-Susskind Hamiltonian (4.15) may be obtained via the transfer-
matrix formulation from the Euclidean Wilson action [148, 149]

S = − 2
g2

∑
�

Re tr{ρ(g�)}, (4.31)

where g is the coupling. In the path-integral formulation, the lattice is fully
discretized and thus plaquettes extend also in the time direction. The action
(4.31) is also perfectly valid for finite groups, as one simply replaces the inte-
gration measure over the Lie group with a sum over the elements of a finite
group. The representation ρ can be chosen to be any faithful representation
of the finite group (not necessarily irreducible). One may then repeat the
transfer-matrix formulation for an arbitrary finite group [146]. Starting from
the action (4.31), the transfer-matrix procedure gives rise to a Hamiltonian of

94



Finite Group Gauge Theories

the form (4.17) that we’ve described, with

Γ = {g ∈ G, g 6= 1, max[Re tr{ρ(g)}]} and hB = −2Re tr ρ. (4.32)

In other words, the magnetic Hamiltonian is directly inherited from the action,
while the electric Hamiltonian takes the form of the finite-group Laplacian
with a specific choice of Γ. In the example of the gauge group D4, if we
choose the faithful, two-dimensional irrep for hB, then Re tr ρ(g) can equal
2, 0,−2 on the different conjugacy classes (see the character table of D4 in
Table B.1). Since Re tr ρ(1) = 2, then Γ consists of all group elements g such
that Re tr ρ(g) = 0. This gives rise to the generating set Γ2 anticipated in
Sec. 4.1.4.

These considerations are especially important for the Lorentz invariance
of the theory. While the lattice discretization breaks the Lorentz symmetry
to the subgroup of Euclidean cubic rotations, as long as this subgroup is
preserved one expects to recover Lorentz invariance in the continuum limit.
In particular, the action (4.31) is manifestly invariant under Euclidean cubic
rotations and, therefore, one expects that it gives rise to a Hamiltonian which
describes a Lorentz-invariant theory in the continuum. Intuitively, a Lorentz
transformation can swap the electric and magnetic fields, and it is therefore
not surprising that in a Lorentz-invariant theory the electric and magnetic
Hamiltonians must satisfy specific relations with each other.

In particular, finite-group Hamiltonians of the form (4.17) which however
do not respect the relations (4.32) cannot arise from an action of the form
(4.31). For example, they could come from an action in which plaquettes
extending in one direction (the “time” direction) are weighted differently. For
such Hamiltonians, it is unclear whether they describe a Lorentz-invariant
theory. This includes in particular setting hE(j) = j2 for subgroups of U(1)
and hE(j) = j(j + 1) for subgroups of SU(2) in (4.18), while keeping hB
unchanged. In all such cases, the remnant Lorentz symmetry is explicitly
broken. While Lorentz symmetry is required in particle physics applications,
it might not be necessarily required in other cases, such as some condensed
matter applications, and one may thus independently choose Γ and hB.

4.1.6 Classification of the possible theories

The construction of finite group LGTs with Hamiltonian (4.17) involves a few
arbitrary choices which can be classified. Since the Hilbert space is fixed to
the physical, gauge-invariant Hilbert space Hphys, the only possible choices
involve the various terms in the Hamiltonian. Given a gauge group G in d

spatial dimensions, one may arbitrarily choose:
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1. A set Γ of group elements which does not contain the identity, and is
invariant under both inversion and conjugation Γ−1 = Γ and gΓg−1.

2. A choice for the magnetic Hamiltonian hB = hB(g�). Since it must be
real and satisfy hB(g1g�g−1

1 ) = hB(g�), i.e. it is a class function, by
a well-known result [143] it may be expanded in a sum of characters of
irreducible representations, hB(g) =

∑
j cjχj(g) for coefficients cj which

may be chosen arbitrarily, while ensuring that hB(g) is real. Most typ-
ically hB = −2Re tr ρ, where ρ is some representation (not necessarily
an irrep).

3. If present, possible choices of representations and Hamiltonians in the
matter sector.

4. One can also add a Chern-Simons term as in [150]. This is especially
interesting for quantum simulation, because such theories have a sign
problem.

Further considerations involve the Lorentz symmetry, as explained in Sec. 4.1.5.
Moreover, one may want to choose representations which are non-trivial when
restricted to the center of the gauge group [151, 152].

We note that the above construction allows further generalizations. In
particular, the discretized d-dimensional space does not have to take the form
of a hypercubic lattice, but more generally can be a Bravais or non-Bravais
lattice, or even a cell complex. No difference arises for the electric term, which
is link-based, and the plaquette variable in the magnetic term is replaced by
an an elementary closed loop in the lattice.

4.2 The physical Hilbert space

As we remarked in Sec. 4.1.1, while the overall Hilbert space of the pure gauge
theory is Htot =

⊗
`HG` , only those states that satisfy the so-called “Gauss’

law” constraint (4.7) are to be considered physical [8, 20, 98].
For gauge theories based on most compact Lie groups, the Wilson loops

(despite being overcomplete) span the space of gauge-invariant states [153,
154]. This, however, is not necessarily true for finite groups [153, 155]; this
means that in some cases, it is possible to construct different gauge-invariant
states, which nevertheless have identical Wilson loops. We mention that this
difficulty does not arise for Abelian finite groups such as ZN , in which case
the Wilson loops do span the physical Hilbert space Hphys.

As will be discussed in Sec. 4.2.1, the gauge-invariant Hilbert space for pure
gauge theories may be described in terms of spin network states. This basis
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V ∗
j1

V ∗
j2

Vj3
Vj4

Vj1

V ∗
j4

``− `+

V ∗
j`

Vj`

|jmn〉` = |jm〉` ⊗ |jn〉`

Figure 4.2. Decomposition of the total Hilbert space Htot. Each link space can be decom-
posed into two factors V ∗

j`
and Vj` . The factors around the same site x ∈ L can be then

grouped together. These terms, represented as green regions in the picture, corresponds to
the terms in square brackets in (4.34). Therefore, for each irrep configuration {j} the space
Htot is site-wise decomposed, making it possible to solve Gauss’s law at each site.

turns out to be particularly suitable for finite gauge groups and in Sec. 4.2.2
we give a simple formula to compute the dimension of the physical Hilbert
space for any finite gauge group.

4.2.1 Spin network states

The physical Hilbert space of pure gauge theories with either Lie or finite
gauge group can be explicitly described in terms of spin network states [156,
157]. Spin network states can be defined indifferently when the d-dimensional
space is discretized as an arbitrary graph, and are thus valid in arbitrary
dimension with arbitrary lattices and boundary conditions.

The first key observation is that the action of the Gauss’ law operator (4.7)
is block-diagonal in the representation basis, as can be seen from (4.9). Then
starting from the Hilbert space in the representation basis (4.8), we can, as
usual, permute the summation and product, obtaining

Htot =
⊗
L

⊕
j∈Σ

V ∗
j ⊗ Vj =

⊕
{j}∈{Σ}

⊗
`∈L

V ∗
j`
⊗ Vj` . (4.33)

where now {j} is an assignment of an irrep j` to each lattice link `, and {Σ}
is the set of the possible assignments. The second key observation is that
the gauge transformations (4.7) are given by an independent group-valued
variable gx at each site x of the lattice.

Moreover, due to (4.9) the gauge transformation associated to one site x
acts at most on one of the spaces Vj or V ∗

j associated to a link, but it cannot
act on both. One can then split the two vector spaces Vj and V ∗

j associated
with each link and reorder the V ’s in the tensor product over links so that
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ρ∗j1

ρ∗j2

ρj3
ρj4
x

G({j}x) = Figure 4.3. Gauss operator in the rep-
resentation basis. Notice that it acts on
a single block (green region) of the total
Hilbert space decomposition (4.34).

Vj ’s are now grouped together according to the sites x ∈ L and not the links,

Htot =
⊕

{j}∈{Σ}

⊗
x∈L

⊗
`−=x

V ∗
j`

⊗⊗
`+=x

Vj`

, (4.34)

where by `+ and `− we denote respectively the target and source vertex of
link ` (see Fig. 4.4).

We can repeat the same set of operations for the gauge transformation
operator (4.6), which is therefore given by

G({gx}) =
⊕

{j}∈{Σ}

⊗
x∈L

⊗
`−=x

ρ∗j`(gx)

⊗⊗
`+=x

ρj`(gx)

.
 (4.35)

In the above decomposition, the gauge transformations now act independently
for each x and the Gauss’ law constraint (4.7) gives the physical Hilbert space

Hphys =
⊕

{j}∈{Σ}

⊗
x∈L

Inv

⊗
`−=x

V ∗
j`

⊗⊗
`+=x

Vj`

. (4.36)

Given a representation ρ (not necessarily irreducible) with representation
space Vρ, the set of invariant vectors Inv(Vρ) is the set of vectors v ∈ Vρ
such that ρ(g)v = v for all g ∈ G. Note that this is a separate notion from
that of an “invariant subspace”.

In order to make the reasoning so far more clear, we stress that we were
able di re-arrange the terms that enter Htot in the representation basis in
(4.33). The obtained result (4.34) shows a sum over the irrep configurations
{j} and for each configuration we have a product of representation spaces
over the sites. Then, in each of these new representation spaces we can solve
Gauss’ law. In fact, the set of invariant vectors is just the set of solutions to
the Gauss’ law on a given site and irrep configuration around it.

The characterization of the Hilbert space (4.36) implies that any physical,
gauge-invariant state |Ψ〉 (i.e. a state which satisfies the Gauss’ law (4.7))
may be expanded in a basis of spin network states,

|Ψ〉 =
∑
{j}

∑
A

Ψ({j};A) |{j}, A〉 , |{j}, A〉 =
⊗
x∈L
|{j}x, ax〉 , (4.37)
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where {j} is an assignment of irreps to lattice links and A = (a1, . . . aV ) is a
multi-index which labels the choice of a basis element of invariant states at
each site. With {j}x we denote the irreps assigned to the links connected to
site x.

For a hypercubic lattice in d dimensions with periodic boundary condi-
tions, each site is connected to 2d links and therefore 2d terms appear in the
tensor product within each Inv in (4.36). If instead we choose open boundary
conditions, the sites in the bulk will again be connected to 2d links, but the
sites on the boundary will be connected to fewer links and thus fewer terms
will appear in the tensor product for those sites. In the general case, the
number of terms in the tensor product within each Inv will thus depend on
the site.

We choose to work directly with the spaces of invariant vectors rather than
with spaces of intertwiners more commonly employed in the literature on spin-
network states [156, 157]. We also would like to note that the physical Hilbert
space (4.36) contains all gauge-invariant states, possibly also including states
in sectors with a non-contractible Wilson line.

The calculation of a basis of invariant states (or, equivalently, of the in-
tertwiners) can be difficult in the Lie group case, especially since they admit
infinitely many irreps. On the other hand, since the number of links connected
to each site is finite and independent of the lattice volume, one needs only com-
pute the invariant states of a finite number of tensor product representations
which does not scale with the lattice volume.

This can be achieved in practice by explicitly writing out the matrices of
the tensor product representation

ρ(g) ≡

⊗
`−=x

ρ∗j`

⊗⊗
`+=x

ρj`


and solving the simultaneous equations ρ(g)v = v for a set of generators of
G. In a d-dimensional periodic hypercubic lattice, the number of terms in the
tensor product equals 2d and the maximum dimension of the tensor product
representation is bounded by (dim j)2d ≤ |G|d, owing to

∑
j (dim j)2 = |G|,

independently from the lattice volume.

As an example, we work out explicitly the case of a 2 × 2 square lattice
with periodic boundary conditions. As shown in Fig. 4.4, this system has four
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`1

`2

`3

`4

`8 `7

`6

`5

`

`− `+

Figure 4.4. Left: a 2×2 square latticewith periodic boundary conditions, showing the labels
of the links. Right: labelling of sites attached to a link.

vertices and eight links. Expanding explicitly (4.36) we see that in this case

Hphys =
⊕
j1,...j8

(
Inv
[
V ∗
j1V

∗
j4Vj5Vj8

]
⊗ Inv

[
V ∗
j5V

∗
j2Vj1Vj7

]
⊗

⊗ Inv
[
V ∗
j6V

∗
j7Vj3Vj2

]
⊗ Inv

[
V ∗
j3V

∗
j8Vj6Vj4

])
, (4.38)

where tensor product symbol inside the invariant space brackets has been
omitted in order to lighten the notation. Now consider a single invariant space
Inv
[
V ∗
j1
V ∗
j2
Vj3Vj4

]
with arbitrary assignment of irreps. This vector space ad-

mits an orthonormal basis {|j1j2j3j4; a5〉} where 1 ≤ a ≤ dim Inv
[
V ∗
j1
V ∗
j2
Vj3Vj4

]
indexes the basis vector. We can expand the basis vectors explicitly in terms
of the bases of the Vj as (see also the discussion around (4.10))

|j1j2j3j4; a5〉 =
∑

m1,m2,n3,n4

ψj1j2j3j4(m1m2n3n4|a)×

× |j1m1〉 |j2m2〉 |j3n3〉 |j4n4〉 . (4.39)

The basis vectors can be chosen to be orthonormal. By virtue of spanning
the space Inv

[
V ∗
j1
⊗ V ∗

j2
⊗ Vj3 ⊗ Vj4

]
, they are invariant vectors of the ten-

sor product representation ρ ≡ ρ∗j1 ⊗ ρ∗j2 ⊗ ρj3 ⊗ ρj4 ; as such, they satisfy
ρ(g) |j1j2j3j4; a〉 = |j1j2j3j4; a〉 for all g ∈ G. The coefficients of the expan-
sion ψj1j2j3j4(m1m2n3n4|a) may be easily computed, for example by writing
the tensor product representation matrices ρ(g) explicitly and then solving the
simultaneous equations ρ(g)v = v. The dimension of the space of invariant
vectors depends on the four representations assigned to the relevant site.

Now let A = (a1, a2, a3, a4), which implicitly depends on {j} (because the
range of each ax depends on the irreps assigned around the site x). Given any
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assignment of irreps {j}, A is a choice of a basis vector of invariant states at
the four sites. Therefore an orthonormal basis for the gauge invariant Hilbert
space is given by

|{j};A〉 = |j1j4j5j8; a1〉⊗ |j5j2j1j7; a2〉⊗ |j6j7j3j2; a3〉⊗ |j3j8j6j4; a4〉 . (4.40)

for any possible assignment {j} of irreps to links, and then all possible choices
A of an invariant vector at each of the four sites. The spin-network states
|{j};A〉 then form a basis of the gauge-invariant Hilbert space Hphys. Ex-
panding the tensor product, we find an explicit expression for these states in
terms of the representation basis,

|{j};A〉 =
∑

{m,n}
ψj1j4j5j8(m1m4n5n8|a1)ψj5j2j1j7(m5m2n1n7|a2)×

× ψj6j7j3j2(m6m7n3n2|a3)ψj3j8j6j4(m3m8n6n4|a4)×
× |j1m1n1〉 |j2m2n2〉 · · · |j8m8n8〉 .

(4.41)

where the sum is over all the indices m` and n` (` = 1, . . . , 8), the ordering
of the vector spaces Vj ’s was restored, and shorthand |jmn〉 = |jm〉 ⊗ |jn〉
was used. We note in particular that despite having introduced a splitting of
the variables at each link, in the final answer this splitting disappears and the
spin-network states can be entirely expressed in terms of the representation
basis |jmn〉.

4.2.2 The dimension of the physical Hilbert space

As we have seen in the previous section, spin network states give an explicit
description of the physical Hilbert space Hphys as

Hphys =
⊕

{ρ}∈{Σ}

⊗
v∈L

Inv

⊗
`−=v

V ∗
ρl

⊗⊗
`+=v

Vρl

. (4.42)

where Inv(ρ) is the space of invariant vectors of the representation ρ, {ρ} is an
assignment of irreps to links and {Σ} is the set of such possible assignments.
For a finite group,

dim Inv(ρ) = 1
|G|

∑
g∈G

χρ(g). (4.43)

where χρ is the character of ρ. A proof of this result can be found in Appendix
C.2. This fact can be used to obtain a general formula for the dimension of
the Hphys, which is valid for any lattice in any dimension with any boundary
conditions. On a connected lattice with L links and V sites, we will show that

dimHphys =
∑
C

( |G|
|C|

)L−V
. (4.44)
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where the sum runs over all conjugacy classes C of the group, and |C| is the
size of C. The ratio |G|/|C| is always an integer by the orbit-stabilizer theorem
[143]. Since for a connected graph L − V ≥ −1, the dimHphys in (4.44) is
always an integer. This is clear for L− V ≥ 0; when L− V = −1 the graph is
a tree and since

∑
C |C| = |G|, we find dimHphys = 1; this is to be expected

because on a tree the gauge degrees of freedom can be used to rotate away
the physical ones.

Using (4.43), together with the fact that the character of a tensor product
is given by the product of the characters, we may readily prove (4.44). From
the general formula for the gauge-invariant Hilbert space, we have

dimHphys =
∑
j1···jL

∏
x∈L

dim Inv

⊗
`−=x

V ∗
ρl

⊗
⊗
`+=x

Vρl


= 1
|G|V

∑
j1···jL

∑
g1···gV

∏
x∈L

 ∏
`−=x

χ∗
j`
(gx)

 ∏
`+=x

χj`(gx)

.
Within the product over all sites, there are exactly 2L factors of characters χ,
as each link contributes two representation spaces V and each representation
space gives rise to a character. Thus grouping characters by link, we obtain

dimHphys =
1
|G|V

∑
g1g2···gV

∏
`=〈xx′〉∈L

〈gx, gx′〉 . (4.45)

where we denoted 〈g, h〉 =
∑
j χj(g)∗χj(h). It is a well-known result that

〈g, h〉 is zero unless g and h belong to the same conjugacy class, in which case
〈g, h〉 = |G|/|C| where C is the conjugacy class of both g and h [143]. If any
two adjacent sites x and x′ have gx and gx′ in different conjugacy classes, then
〈gx, gx′〉 = 0 and the corresponding term in the sum is zero. Assuming that
the lattice is connected, this implies that the product over all links is zero
unless all the gx at each site x belong to the same conjugacy class. Then,
since 〈gx, gx′〉 is constant on conjugacy classes, we can write

dimHphys =
1
|G|V

∑
C

∑
g1g2···gV ∈C

|G|L

|C|L
=
∑
C

( |G|
|C|

)L−V
. (4.46)

which concludes the proof. In the Abelian case the above formula simplifies as
all conjugacy classes are singlets and therefore dimHphys = |G|L−V+1. Thus
finite Abelian groups have the largest physical Hilbert space among all groups
of the same order. For periodic boundary conditions in a hypercubic lattice,
L = V d and as such dimH = |G|V d, while dimHphys ≈ |G|V (d−1), so that the
physical Hilbert space has roughly the same size as the overall Hilbert space
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Size BCs L V L− V dimHphys dimH

2× 2 open 4 4 0 5 4096
periodic 8 4 4 8960 1.6×107

2× 3 open 7 6 1 28 2.1×106
periodic 12 6 6 536576 6.9×1010

3× 3 open 12 9 3 1216 6.9×1010
periodic 18 9 9 2.7×108 1.8×1016

Table 4.2. Dimension of the physical subspace of D4 gauge theory on some small lattices
in 2 + 1 dimensions, compared to the dimension of the total Hilbert space. L is the number
of links and V is the number of vertices. Numbers above 107 are approximated values.

in one lower dimension. Nonetheless, both spaces grow exponentially with the
lattice size.

As a further example, we consider the dimension of the Hilbert space for
pure D4 gauge theory. Using (4.44), we find for G = D4 on a lattice with L
links and V sites (see also [158]),

dimHphys = 8L−V
(
2 + 3

2L−V
)
. (4.47)

The dimension of the physical Hilbert space for some two-dimensional finite
square lattices in 2 + 1 dimensions is shown in Table 4.2. We see that its
size grows quickly with the lattice size. We point out that even for a 2 × 2
periodic lattice with a small group such as D4 it is not practical to write
down all possible gauge-invariant states. Unless the structure happens to be
very sparse, writing down the 8960 physical basis elements in terms of the
|G|L = 88 basis elements in the representation basis using 4B floating point
numbers would require roughly 600GB of memory. For a 3×3 periodic lattice
this number rises to 20YB or 2 · 1016GB.

Finally, we remark that since matter fields are site-based, the spin-network
states may be extended to this case as well; the physical Hilbert space would
then be given again by (4.36) with an extra factor of the matter Hilbert space
at each site within each Inv. The detailed description of the gauge-invariant
Hilbert space with matter fields will be given in a future publication.

4.3 A case study: D4

In this section we consider pure gauge theory with gauge group G = D4,
the dihedral group with eight elements, on a small 2× 2 periodic lattice (see
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Fig. 4.4). We compute the Hamiltonian in the gauge-invariant spin-network
basis and diagonalize it exactly.

4.3.1 Implementation of the physical Hilbert space

As remarked in Sec. 4.2.2, the physical Hilbert space of this theory has dimen-
sion equal to 8960 and it’s not practical to store the gauge-invariant states
directly. Instead, we compute numerically the basis of invariant states at a
site for all possible combinations of irreps assigned to the four links attached
to the site. In other words, we compute the coefficients ψ of (4.39).

Then, the gauge-invariant states can be stored just as labels of the choice
of irreps on the links, and invariant vectors at each site. When the coefficients
of a physical state are needed, it is sufficient to call the appropriate ψ’s based
on the label of the state. Therefore one has to store just the invariant vectors
of a single vertex and the labels of the physical states, without needing to
expand (4.41) and save the full result. This greatly cuts down on the amount
of memory necessary for storing the gauge-invariant basis.

Let’s try to quantify this gain. In the D4 gauge theory in two dimen-
sions, we found that the total number of invariant vectors for a vertex is 164.
The size of the invariant vectors depends on the irreps configuration around
the vertex, but they are at most 16-dimensional. Using single-precision float
(which requires 4B), in the worst case scenario (all vectors are 16-dimensional)
the storage for the invariant vectors would require only around 10KB. This
is a fixed storage cost independent of the lattice size. On a 2 × 2 periodic
lattice, in order to label the states we would need 8 integers (irrep index) plus
4 integers (invariant vector choice at each vertex). With 8960 states and 2B
per integer, the total storage cost would amount to ∼230KB, a huge decrease
from the 600GB estimated before. In the case of a 3 × 3 lattice, the storage
cost would increase to ∼15GB, orders of magnitude less than 2×1016GB. Us-
ing these coefficients ψ, we then compute the matrix elements of the electric
and magnetic Hamiltonians separately in the spin-network basis (4.41).

4.3.2 Explicit computation of the Hamiltonian

The electric Hamiltonian is diagonal, and the magnetic Hamiltonian is off-
diagonal. In units of λE + λB the Hamiltonian can be written as

H = λHE + (1− λ)HB where λ = λE
λE + λB

∈ [0, 1]. (4.48)

In practice, for each λ, H is a 8960 × 8960 matrix. As expected for spin-
network states [157], we find H to be very sparse: around 1% of the elements
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Figure 4.5. The different Cayley graphs of the groupD4. Notice that only the third choice is
disconnected, leading to a two-fold degeneracy in the electric Hamiltonian on each link.

are non-zero. A plot of the non-zero elements elements of HB is shown in
Fig. 4.6.

The electric and magnetic Hamiltonians were chosen as in (4.17). In par-
ticular, we chose hB = −2 tr ρ4 where ρ4 is the two-dimensional irrep of D4
and considered the three different choices of the set Γ for hE described in
Sec. 4.1.4. These are:

Γ1 = {r, r3, s, r2s},
Γ2 = {r, r3, s, rs, r2s, r3s},
Γ3 = {r, r2, r3}.

Their Cayley graphs is shown in Fig. 4.5. We recall that the electric Hamil-
tonian is two-fold degenerate on each link with Γ3 but is not degenerate for
Γ1,Γ2. The choice of Γ2, unlike the other two, gives rise to a Lorentz-invariant
theory.

Working in the spin state basis, computing the matrix elements of HE =∑
` hE is rather easy, because is diagonal in the irrep basis:〈

{j}′, A′∣∣HE

∣∣{j}, A〉 = δ({j}, {j}′)δ(A,A′)
∑
`∈L

f(j`) (4.49)

The difficult part comes from the magnetic Hamiltonian HB =
∑

� hB(g�).
In order to compute the matrix elements of HB, one can use the group

elements base, where it is diagonal. In this basis we have

tr ρ4 = 2
∑
g1···g4

Reχ4(g�) |g1g2g3g4〉〈g1g2g3g4| . (4.50)

The above |g1g2g3g4〉 can shorten as |g�〉. We denote with |{jmn}�〉 the state
|j1m1n1 · · · j4m4n4〉 for the links around the plaquette �. Then, a matrix
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element of (4.50) in the |jmn�〉 basis can be computed as〈
{jmn}′�

∣∣tr ρ4∣∣{jmn}�〉 = 2
∑
g�

Reχ4(g�)
〈
{jmn}′�

∣∣g�〉 〈g�|{jmn}�〉
(4.51)

The terms 〈{jmn}�|g�〉 can be obtained from (4.10). The coefficients (4.51)
depends on the representations and can be precomputed. We will refer to then
as C({jmn}′�, {jmn}�).

These coefficients can be used to compute the matrix elements of HB in
the full (non gauge-invariant) irrep basis |{jmn}〉:

〈
{jmn}′

∣∣HB

∣∣{jmn}〉 = −∑
�

∏
`∈�

δ(j′`m′
`n

′
`, j`m`n`)

×
× C({jmn}′�, {jmn}�). (4.52)

Thus, using (4.41), we finally obtain the expression for the magnetic in the
gauge-invariant basis:

〈
{j}′, A′∣∣HB

∣∣{j}, A〉 = −∑
�

∑
{mn}

∑
{mn}′

∏
`∈�

δ(j′`m′
`n

′
`, j`m`n`)


× C({jmn}′�, {jmn}�)

× ψj′1j′4j′5j′8(m′
1m

′
4n

′
5n

′
8|a′1)ψj1j4j5j8(m1m4n5n8|a1)

× ψj′5j′2j′1j′7(m′
5m

′
2n

′
1n

′
7|a′2)ψj5j2j1j7(m5m2n1n7|a2)

× ψj′6j′7j′3j′2(m′
6m

′
7n

′
3n

′
2|a′3)ψj6j7j3j2(m6m7n3n2|a3)

× ψj′3j′8j′6j′4(m′
3m

′
8n

′
6n

′
4|a′4)ψj3j8j6j4(m3m8n6n4|a4).

(4.53)

Notice that when |{j}′, A′〉 and |{j}, A〉 are fixed, only the indices {mn}
and {mn}′ are free. Additionally, each index m or n of the invariant vectors
ψ is contracted with an index of the plaquette coefficients C. The same
goes for the primed indices. This means that the terms of the sum over the
plaquette can be computed as tensor contractions. Using numerical libraries
that efficiently implements tensors, one can greatly improve the computation
time.

Another note that is important to point out is the role of the delta functions
in (4.53). These are what make the magnetic Hamiltonian sparse, combined
with the structure of C. The only non-zero matrix elements are only those
between two states whose irrep configuration coincide outside a plaquette �.
Then, inside the plaquette � also the coefficients C’s has to be non-zero. It is
easy to see that these two facts greatly restrict what matrix elements of HB

can be non-zero.
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Figure 4.6. Plot of the 8960-dimensional Hamiltonian matrix HB . The non-zero elements
are presented as white dots, which have been enlarged in order to make them visible against
the black background. It can be noticed that there is a lot of regular structure, which suggests
that may be methods for further compressing the Hamiltonian. Note that the diagonal lines
are just slightly offset from the true diagonal at the matrix, which contains only zeros.

4.3.3 Numerical results

Ground state energy and gap

Looking at the ground state energy in Fig. 4.7, one sees that the system
evolves from a electric ground state to a magnetic one, with a transition
around 0.6 . λ . 0.8, for all three case. This is because the Hamiltonian
at λ = 0 coincide with HE and hE has always a zero eigenvalue, while at
λ = 1 the Hamiltonian reduces to HB, which is the same in all three cases.
Therefore, a transition is expected for an intermediate value of λ.

The energy gap corresponds to the difference E1 − E0, where E1 is the
energy of the first excited state. When the energy gaps are considered, we
notice a clear difference between Γ3 and the rest. For Γ1 and Γ2 the gap
closes, signalling the aforementioned transition. While for Γ3 the picture is
quite different. The electric Hamiltonian is degenerate, as it is expected from
the fact that Γ3 does not generate the whole D4. This degeneracy is slightly
lifted for λ > 0 but the scale of the gap remains much smaller than in the
other two cases. At this lattice size we are not able to exclude finite size effects
for this lifted degeneracy.

107



Finite Group Gauge Theories

Electric and magnetic expectation values

The ground state expectation values of the electric and magnetic Hamiltonians
are shown in Fig. 4.9. The plaquette Wilson loop is equal to HB apart from
an overall prefactor of 8, and therefore its behaviour is also shown in Fig. 4.9
(right). We note that our data for the ground state energies agrees with that
obtained in [158] with a different method.

One possible way to locate the transition point is to identify it as the
point of sharpest variation of 〈HE〉 and/or 〈HB〉 (i.e. the maximum of the
absolute value of their derivative with respect to λ). With this identification,
the transition points given by either 〈HE〉 or 〈HB〉 coincide at λ∗1 = 0.67(1)
and λ∗2 = 0.76(1) for Γ1 and Γ2, but show a small difference for Γ3, at λ∗3,E =
0.63(1) and λ∗3,B = 0.61(1).

Fidelity susceptibility

Another way to locate the transition points is through the peaks of fidelity
susceptibility [159, 160]. Calling |ψ0(λ)〉 the ground state of H(λ), one can
look at the fidelity susceptibility [159]

χ(λ) = − ∂2

∂ε2
log |〈ψ0(λ)|ψ0(λ+ ε)〉|2

∣∣∣∣
ε=0

, (4.54)

which is expected to peak at the transition [160]. Fig. 4.11 shows χ(λ) for
the three cases and its peak identifies the transition point as λ∗1,χ = 0.67(1),
λ∗2,χ = 0.76(1) and λ∗3,χ = 0.62(1), in agreement with the previous method.

Overall, these results point towards the expected picture of a two-phase
structure for all three cases. The data for Γ1 and Γ2 is consistent with the
usual picture of a confining phase at small λ and a deconfined phase at large
λ. For Γ3, the gap is much smaller, especially at small λ, which complicates
the interpretation of this phase as confining. Of course, due to the small
volume these results are only qualitative and preliminary; a study with larger
volumes would be required in order to properly establish the phase structure.
However, they point to the possibility that theories with electric degeneracy
may display different behaviour and phase structure compared to those with
no electric degeneracy.
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Figure 4.7. Ground state energy of the D4 gauge theory, for the three different generating
Γ1, Γ2 and Γ3. For λ = 1, the Hamiltonian is equivalent for all the three cases, because
is just HB . While, for λ = 0 the ground state energy is zero because in all thee cases HE

has always zero eigenvalues. It can be seen that the transition points is always in the region
0.6 . λ . 0.8.
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Figure 4.8. Left: Energy gap E1 − E0 for Γ1 and Γ2. Right: Energy gap E1 − E0 for only
Γ3. While the behaviour of the ground state energy may seem the same for all the three
generating sets (see Fig. 4.7), the same cannot be said for the energy gaps. This is motivated
from the fact that Γ3 does not generate the whole group, so there is a two-fold degeneracy
in the electric eigenvalues for each link.
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Figure 4.9. Expectation values 〈HE〉 (left) and 〈HB〉 (right). They confirm the picture sug-
gested from Fig. 4.7, where there is a transition region for 0.6 . λ . 0.8.
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Figure 4.10. Variations of the expectation values 〈HE〉 (left) and 〈HB〉 (right). The location
of the peaks can be used identifying the transition points. They coincide for Γ1 (λ∗ = 0.67(1)
and Γ2 (λ∗ = 0.76(1)) and slightly differs for Γ3 (λ∗

E = 0.63(1) and λ∗
B = 0.61(1)). It should

be noted that for Γ3 the peak is much smoother, so the identification of the transition point is
much more difficult.
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Figure 4.11. Fidelity susceptibility χ(λ) for D4 for all the three sets Γ1, Γ2 and Γ3. The
peaks of χ(λ) identifies the transition points for each case. The position of such peaks are
compatible with those in Fig. 4.10. We find λ∗

1,χ = 0.67(1), λ∗
2,χ = 0.76(1) and λ∗

3,χ = 0.62(1)
for Γ1, Γ2 and Γ3, respectively.

4.4 Concluding remarks

In this work we considered Hamiltonians for gauge theories with a finite gauge
group and we have shown that the electric term may be interpreted as a natural
Laplacian operator on the finite group, constructed as the graph Laplacian of
its Cayley graph. The choice of generating set of the Cayley graph has a
simple relation with the ground state degeneracy of the electric Hamiltonian.
We have also given careful consideration to the various choices involved in
constructing a finite group gauge theory and their consequences.

Independently from the choice of Hamiltonian, we have shown that the
physical, gauge-invariant Hilbert space of pure gauge theories may be explicitly
described in terms of spin-network states, which are particularly suitable for
finite groups. This also allows us to derive a simple formula to compute the
dimension of the physical Hilbert space on an arbitrary lattice. Using the spin-
network basis, we diagonalizedD4 gauge theory on a small periodic lattice with
different Hamiltonians. Due to the small system size, these results are only
suggestive, but they point to the possibility that theories with a degenerate
electric Hamiltonian may have a different phase structure than commonly
expected.

The methods employed in this work may be extended in several directions.
The graph Laplacian construction may be adapted to those approaches where
a Lie group is discretized to a finite subset, not necessarily a subgroup [103].
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In that case the finite subset may be seen as a weighted graph, with the edge
weights representing the distance between group elements in the parent Lie
group.

As we have seen, working directly in the gauge-invariant basis reduces the
size of the Hilbert space and and implements the Gauss’ law exactly, at the
expense of higher complexity of the Hamiltonian. It would be worthwhile to
explore whether the gauge-invariant basis can be efficiently implemented, for
example in a quantum circuit. It is also possible to extend the spin-network
basis to gauge theories coupled to matter fields, and we will treat this case in
a future publication.

Finally, it would be very interesting to explore the possibility of a non-
standard mechanism to obtain a continuum limit for finite group gauge the-
ories; for example, this is possible in quantum link models via the D-theory
formulation [161, 162].
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chapter five

Conclusions

In this thesis two works by the author have been presented [5, 6], both about
LGTs with finite groups. Before moving to their discussion, a proper context
has been given by first introducing the general topic of LGTs (Chap. 1) and
Quantum Simulation (Chap. 2).

The first work [5], discussed in Chap. 3, focuses on the use of dualities in
Abelian LGTs. Using a systematic formal approach, that makes use of bond-
algebras, it was possible to obtain a duality transformation from Abelian mod-
els on a quasi one-dimensional lattice (the ladder) to a class of one-dimensional
non-gauge models, called Quantum Clock Models. This map highlights how
the physics of a gauge model can depends on super-selection rules, which is
often an overlooked aspect. Depending on the selected rules we can have a
deconfined-confined phase transition, or none. Or even a new intermediate
phase for which not much is known, as it happened for the Z3 case within the
sector n 6= 0 or the Z4 case for n 6= 0, 2.

The second work [6], discussed in Chap. 4, treats a general framework for
formulating non-Abelian LGTs, in the Hamiltonian formulation, focusing on
two key aspects: the electric term and the physical Hilbert space. Regarding
the former, it introduces a novel perspective where the electric term can be
interpreted as a Laplacian on the Cayley graph of the group. This new inter-
pretation can be considered quite natural, because it generalize the Lie group
case where the electric term is a Laplacian on the group manifold. Further-
more, it has been shown that a complete description of the physical Hilbert
space, for any group, is possible through the use of spin-network states. Such
a achievement can have major consequences, as it can lead to more efficients
implementations of LGTs where no resources has to be wasted on redundant
degrees of freedom.

In conclusion, both works show some novel point of view on the subject of
LGTs for Quantum Simulation, that the author hopes to be beneficial for the
whole community working on these topics.
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appendix A

Some results in representation
theory

In this appendix we sum up some of the basic results of representation theory
of finite and compact Lie groups. All the representation theory here presented
is taken over the complex field C.

A.1 Basic results

A finite group only has finitely many representations up to equivalence, and
they are all unitary:

Theorem 1. Let G be a finite group and Σ the set of equivalence classes of irre-
ducible representations (irreps) of G. Then, Σ is finite, and the representative
of each class can be chosen to be unitary.

We can then state the following:

Theorem 2 (Burnside). Let G be a finite group. Then:

1. If dim(j) is the dimension of the j-th inequivalent irreps of G, and there
are M such irreps, then

M∑
j=1

dim(j)2 = |G|, (A.1)

where |G| is the order of the group.

2. The number of inequivalent irreducible representations of G is equal to
the number of conjugacy classes of G.

An immediate consequence follows:

Corollary 1. If G is a finite Abelian group, then it has precisely |G| inequivalent
irreps.

114



Some results in representation theory

Similar results apply to compact groups. First of all,

Theorem 3. The irreps of a compact Lie group are finite-dimensional.

Moreover,

Theorem 4. Let G be a compact Lie group and Σ the set of equivalence classes
of irreducible representations of G. Then, Σ is countable, and the representa-
tive of each class can be chosen to be unitary.

Given the irreps {πj} of a group (compact Lie or finite), these satisfy the
so-called orthogonality theorem. The statement for compact Lie groups is the
following:

Theorem 5 (Orthogonality theorem for compact Lie groups). Let {πj} be uni-
tary irreps of G. Then∫

dg[πj(g)]∗nm[πj′(g)]n′m′ = Vol(G)
dim(j) δjj

′δnn′δmm′ , (A.2)

where the volume of the group is the volume corresponding to the chosen Haar
measure.

While the statement for finite groups needs some little adjustments:

Theorem 6 (Orthogonality theorem for finite groups). Let {πj} be unitary
irreps of G. Then

∑
g∈G

[πj(g)]∗nm[πj′(g)]n′m′ = |G|
dim(j)djj

′δnn′δmm′ (A.3)

A useful corollary is that the sum of all matrices of a non-trivial irrep j is
zero: ∫

dgπj(g) = 0 or
∑
g∈G

πj(g) = 0, (A.4)

where the former equation correspond to compact groups while the latter to
finite groups. This follows by taking j′ equal to the trivial representation,
whose matrice elements are all equal to the identity. Then if j is non-trivial,
the right-hand side of the orthogonality theorem is always zero. Taking m′ =
n′ on the left-hand side gives the claim
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A.2 Character theory

In this section, we will only be concerned with finite groups. The irreps of a
finite group G are the function χ : G→ C defined as the traces of irreps of G:

χj(g) = trπj(g). (A.5)

There are as many irreducible charactes as there airreducible representations.
We will use the the following result:

Theorem 7. The characters {χj} of a group G form a basis for the space of
class functions on G.

A class function f satisfies

f(axa−1) = f(x) for all x, a ∈ G, (A.6)

which means that it is constant on conjugacy classes. We will also needthe
following

Theorem 8 (Orthogonality theorem for characters). The irreducible characters
of a finite group are orthonormal, in the sense that

1
|G|

∑
g inG

χ∗
i (g)χj(g) = δij . (A.7)

The characters also satisfy a different kind of orthogonality relation, where
one sums over characters rather than over group elements:

Theorem 9. The irreducible characters {χi} of a finite group satisfy

∑
i

χ∗(g)χi(h) =

|G|/|C(g)| g and h are conjugate
0 otherwise

(A.8)

where i indices the irreducible characters and |C(g)| is the sice of the conjugacy
class of g.

Finally, we can define the convolution of two class functions φ and ψ:

(φ ∗ ψ)(g) =
∑
h∈G

φ(gh−1)ψ(h). (A.9)

The convolution is symmetric, φ ∗ ψ = ψ ∗ φ. We will use the fact that the
convolution of two characters is again a character,

χi ∗ χj =
|G|

dim(j)δijχj . (A.10)

This can be showed with a direct computation.
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A.3 Peter-Weyl theorem

The Peter-Weyl theorem is instrumental in the formulation of the Hamiltonian
in Sec. 4.1.2. See [144, 163] for the Lie group case and [143] for the finite group
case. The statement for compact Lie groups is:

Theorem 10 (Peter-Weyl for compact Lie groups). Let G be a compact Lie
group. Then

(i) The space of square-integrable functions on G can be decomposed as a
sum of representation spaces. More precisely, Vj is the vector space for
the irreps πj, then

L2(G) =
⊕
j∈Σ

V ∗
j ⊗ Vj . (A.11)

(ii) The matrix elements of all the inequivalent irreps of G form an orthog-
onal basis for L2(G).

(iii) If {|g〉} is the orthonormal group element basis for L2(G), then the or-
thonormal matrix element basis |jmn〉 satisfies

〈g|jmn〉 =
√

dim(j)
Vol(G) [πj(g)]mn. (A.12)

Note that there are multiple ways of writing the Peter-Weyl decomposition,
as

V ∗ ⊗ V ' EndV ' V ⊕dimV (A.13)

As we will see later, these correspond to different ways of seeing L2(G) as
a representation space.

Note that part (i) can be understood as a generalisation of the Fourier de-
composition. In fact, since U(1) is Abelian, all of its irreps are one-dimensional
and are given by matrix elements of the form {einx} for x ∈ S1 = [0, 2π).
Then the Peter-Weyl theorem states that any square-integrable function on
U(1) ' S1 can be written as a Fourier series.

Recall that matrix elements are defined as follows. Consider the examples
of SU(2) [98], but the generalisation is easy. As we know, the irreps of SU(2)
are labeled by a half integer j ∈ 1

2Z
+. Then in this case

L2(G) =
⊕

j in 1
2Z

+

V ∗
j ⊗ Vj , (A.14)

where Vj = C2j+1 We have irreps πj for each j and the matrix elements are
literally the elements of the matrices representing a certain U ∈ SU(2) as a
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function of U . More precisely, they are functions

[πj(·)]mn = SU(2)→ C, g 7→ [πj(g)]mn, (A.15)

where −j ≤ m,n ≤ j in integer steps. In the general case, it is more natural
to take 1 ≤ m,n ≤ dim(j).

In part (iii) Vol(G) is the volume of the group given by the chosen Haar
measure. The resul of part (iii) can be readily derived as a consequence
of (ii) and the orthogonality theorems for representations. The non-trivial
statement is that the matrix elements of representations space L2(G), while
the orthogonality is an algebraic statement. In fact, by (ii) the matrix elements
[πj ]mn for a basis for the space of wave-functions L2(G). The corresponding
states are then given by

|jmn〉 = Cjmn

∫
dU [πj(U)]mn |U〉 , (A.16)

where the constant Cjmn can be chosen to ensure that the |jmn〉 are normal-
ized. Then we can compute their inner product,

〈
j′m′n′

∣∣jmn〉 = C∗
j′m′n′Cjmn

Vol(G)
dim(j) δjj

′δmm′δnn′ .

It follows that the representation basis {|jmn〉} is orthonormal with an
appropriate choice of constants,

Cjmn =
√

dim(j)
Vol(G)

for compact Lie groups. Everything we have said here also holds for finite
groups, with the replacement Vol(G)→ |G|.

Crucially, the Peter-Weyl theorem also holds for finite groups [143, Sec. 6.2]:

Theorem 11 (Peter-Weyl for finite groups). Let G be a finite groups. Then

(i) The group algebra on G can be decomposed as a sum of representation
spaces. More precisely, if Vj is the vector space for the j-th irrep πj,
then

C[G] =
⊕
j∈Σ

V ∗
j ⊗ Vj . (A.17)

(ii) The matrix elements of all the inequivalent irreps of G form an orthog-
onal basis for C[G].
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(iii) If {|g〉} is the orthonormal group element basis for C[G], then the or-
thonormal matrix element basis {|jmn〉} can be chosen to satisfy

〈g|jmn〉 =
√

dim(j)
|G|

[πj(g)]mn. (A.18)

The result is essentially the same as in the compact case. Note that in the
finite group case there is no issue of convergence, and as such we do not need
to specify further information on the group algebra. The duality relation can
be shown to hold in the same manner as for compact Lie groups.
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Some groups of interest

B.1 The cyclic groups ZN
The cyclic group of order N , which we denote as ZN , consists of the powers
1, r, . . . , rN−1 of an element r such that rN = 1. This can be written formally
as

ZN = 〈r|rN = 1〉. (B.1)

The group ZN can be realized as the group fo rotations through angles 2πk/N
around an axis.

It is an Abelian group, therefore all its irreps are of degree 1. Such a
representation associates with r a complex number χ(r) = ω, and with rk the
number χ(rk) = ωk. Since rN = 1, we have ωN = 1, that is, ω is a root of
unity of degree N , which means

ω = ei2πj/N , for j = 0, 1, . . . , N − 1. (B.2)

Thus, all the irreps are labeled by an integer j = 0, . . . , N − 1 and are all of
degree 1. So we do not need to specify the matrix elements obviously. The
characters χ0, χ1, . . . , χN−1 are given by

χj(rk) = ei2πkj/N . (B.3)

It is immediate to see that χn χn′ = χn+n′ , where n+ n′ is taken modulo N .
Because ZN is Abelian, all its conjugacy classes are singlets, i.e. contains only
one element, hence we have N conjugacy classes.

Regarding the basis of the group algebra C[ZN ], the group basis {
∣∣∣rk〉}

and the irreps basis |j〉 are related by the trasformation

|j〉 =
N−1∑
k=0
|rk〉 〈rk|j〉 = 1√

N

N−1∑
k=0

ωkj |rk〉 , (B.4)

which is just the quantum Fourier transform.
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B.2 The dihedral groupsDN

The dihedral group DN of order N is the group of rotations and reflections
of the plane which preserve a regular polygon with n vertices. It contains N
rotations, which forma a subgroup isomorphic to ZN , and N reflections. Its
order is 2N . If we denote by r the rotation through an angle 2π/N and if s is
any of the reflections, we have:

rN = 1, s2 = 1, srs = r−1. (B.5)

Each dihedral group DN can be regarded as a finite subgroup of the Lie
group O(2). Each element of DN can be written uniquely, either in the form
rk (with k = 0, . . . , N − 1) if it is just a rotation or in the form rks (with
k = 0, . . . , N−1). Notice that srs = r−1 implies srks = r−k, hence (rks)2 = 1.

It is useful to note that DN may be written as the semi-direct product of
two cyclic groups,

DN = Z2 n ZN , (h1, g1)(h2, g2) = (h1h2, g1ϕh1(g2)) . (B.6)

Here ZN is the subgroup of rotations, and the Z2 factor gives the action of the
reflection. Setting Z2 = {e, h}, the twist ϕ acts as φe(g) = g and φh(g) = g−1.

Irreps for N even First, there are 4 irreps of degree 1, obtained by let-
ting ±1 correspond to r and s in all possible ways. The characters of the
one-dimensional irreps will be denoted with ψ0, . . . , ψ3 and are given by the
following table:

r rk s rks

ψ0 +1 +1 +1 +1
ψ1 +1 +1 −1 −1
ψ2 −1 (−1)k +1 (−1)k

ψ3 −1 (−1)k −1 (−1)k+1

Next we consider representations of degree 2. Put ω = ei2π/N and let h be
an arbitrary integer. We define a representation ρh of DN by setting:

ρh(r) =
(
ωh 0
0 ω−h

)
and ρh(s) =

(
0 1
1 0

)
. (B.7)

A direct calculation shows that this is indeed a representation and for generic
elements rk and rks we have:

ρh(rk) =
(
ωhk 0
0 ω−hk

)
and ρh(rks) =

(
0 ωhk

ω−hk 0

)
. (B.8)
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Moreover, ρh and ρN−h are isomorphic. Hence we may assume 0 ≤ h ≤
N/2. The extreme cases h = 0 and h = N/2 are uninteresting: The former
corresponds to the one-dimensional irrep with character ψ0 + ψ1, while the
latter to ψ2 + ψ3. On the other hand, for 0 < h < N/2, the representation ρh
are irreducible. The corresponding characters χh are given by:

χh(rk) = ωhk + ω−hk = 2 cos 2πhk
N

and χh(rks) = 0 (B.9)

The irreducible representations of degree 1 and 2 constructed above are the
only irreducible representations of DN , up to isomorphism. In fact, thesum of
the squares of their degrees

4× 1 +
(
N

2 − 1
)
× 4 = 2N

equals to the order of DN (see (A.1)).

Irreps for N odd In the case of odd N we only have two one-dimensional
irreps, with character table

r s

ψ0 +1 +1
ψ1 +1 −1

We are missing the irreps ψ2 and ψ3 of the previous case because (−1)N =
+1 is true only for N even.

The representations ρh of degree 2 are defined by the same formulas (B.7)
as in the case where N is even. Those corresponding to 0 < h < N/2 are
irreducible and pairwise non-isomorphic. Observe that, since N is odd, the
condition h < n/2 can also be written as h ≤ (n− 1)/2. The formulas of their
characters is the same as (B.9).

These representations are the only ones. Indeed, it can be readily verified
with formula (A.1) of Th. 2. The sum of the squares of their degrees is equal
to

2× 1 + N − 1
2 × 4 = 2N,

which is in fact the order of DN .

The case N = 4 We describe in more detail the dihedral group D4 of order
8. Its elements are

D4 = {1, r, r2, r3, s, rs, r2s, r3s}
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{e} {r, r3} {r2} {s, r2s} {rs, r3s}

χ0 +1 +1 +1 +1 +1
χ1 +1 −1 +1 +1 −1
χ2 +1 +1 +1 −1 −1
χ3 +1 −1 +1 −1 +1
χ4 +2 0 −2 0 0

Table B.1. Character table ofD4

and it has 5 conjugacy classes:

{e}, {r, r3}, {r2}, {s, r2}, {rs, r3s}.

We also have 5 irreps {ρj}, which we number them with j = 0, . . . , 4. For
j = 0, . . . , 3 we have the one-dimensional irreps, while for j = 4 we have the
only two-dimensional irrep:

ρ4(r) =
(
i 0
0 −i

)
and ρ4(s) =

(
0 1
1 0

)
. (B.10)

Alternatively, we can choose another two-dimensional representation π4 which
uses only real matrices

ρ4(r) =
(
0 −1
1 0

)
and ρ4(s) =

(
1 0
0 −1

)
(B.11)

and isomorphic to π4. The character table is shown in Table B.1.
As the j = 4 is the only faithful representation, it is a natural choice for

the magnetic Hamiltonian.

123



appendix C

Some proofs

C.1 Degeneracy of electric Hamiltonian

As discussed in Sec. 4, the degeneracy of the electric Hamiltonian given by
the finite group Laplacian ∆ is directly related to the structure of the Cayley
graph. In particular, it is a standard result that the graph Laplacian always
has a zero mode and its degeneracy equals the number of connected compo-
nents of the graph [147]. Here we show that the Cayley graph is connected if
its generating set Γ generates the whole group. If instead 〈Γ〉 6= G, then the
Cayley graph splits into connected components identified with the cosets of
〈Γ〉 in G; thus the degeneracy of the finite-group Laplacian ∆ equals |G|/|〈Γ〉|.

Any subset Γ ∈ G generates a subgroup 〈Γ〉 < G. The right cosets of
〈Γ〉 are of the form 〈Γ〉h for h in G. Since cosets partition the group, any
two group elements g1 and g2 will belong to some coset, say g1 ∈ 〈Γ〉h1 and
g2 ∈ 〈Γ〉h2. We want to show that there is an edge in the Cayley graph
between group elements g1 and g2 if and only if 〈Γ〉h1 = 〈Γ〉h2. The fact that
gi ∈ 〈Γ〉hi means that gi = kihi for some ki ∈ 〈Γ〉. There is an edge between
g1 and g2 if and only if g1g−1

2 = k1h1h
−1
2 k2 ∈ Γ. But since ki ∈ 〈Γ〉 this is

equivalent to saying that h1h−1
2 ∈ 〈Γ〉, which is equivalent to 〈Γ〉h1 = 〈Γ〉h2.

This concludes the proof.

C.2 Counting of invariant states

In Sec. 4.2.2 we used the fact that for a generic representation ρ, the dimension
of the space of invariant vectors is given by

dim Inv(ρ) = 1
|G|

∑
g∈G

χρ(g) , (C.1)

As is well known, if ρ is irreducible then the corresponding character sums to
zero and there are no invariant states. This is to be expected since irreducible
representations by definition have no non-trivial invariant subspaces, but any
invariant vector would span an invariant subspace.
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Some proofs

Here we provide a proof of the above formula. If v is an invariant vector
for the representation ρ, by definition it satisfies ρ(g)v = v for all g ∈ G. Now
we construct a projector onto the subspace of invariant vectors. We define the
averaging map Av : Vρ → Vρ,

Av(v) = 1
|G|

∑
g∈G

ρ(g)v . (C.2)

The averaging map is the projector onto the subspace of invariant vector. In
fact, given an arbitrary vector v, we see that Av(v) is invariant because

ρ(g)Av(v) = 1
|G|

∑
h∈G

ρ(gh)v = 1
|G|

∑
h∈G

ρ(h)v = Av(v) . (C.3)

Therefore, Av maps the representation space to the subspace of invariant
vectors Av : Vρ → Inv(Vρ). Moreover, if v is invariant, then Av(v) = v, and
more generally, Av2 = Av by a similar calculation. This means that Av is a
projector onto the subspace of invariant vectors. Then the size of projected
subspace is as usual given by the trace of the projector, dim Inv(ρ) = tr{Av},
which reproduces the above formula.
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WL Wilson loop
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