Pradhan, Sunny
(2023)
Finite group lattice gauge theories for quantum simulation, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Fisica, 35 Ciclo. DOI 10.48676/unibo/amsdottorato/10929.
Documenti full-text disponibili:
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (5MB)
|
Abstract
The present manuscript focuses on Lattice Gauge Theories based on finite groups. For the purpose of Quantum Simulation, the Hamiltonian approach is considered, while the finite group serves as a discretization scheme for the degrees of freedom of the gauge fields. Several aspects of these models are studied. First, we investigate dualities in Abelian models with a restricted geometry, using a systematic approach. This leads to a rich phase diagram dependent on the super-selection sectors. Second, we construct a family of lattice Hamiltonians for gauge theories with a finite group, either Abelian or non-Abelian. We show that is possible to express the electric term as a natural graph Laplacian, and that the physical Hilbert space can be explicitly built using spin network states. In both cases we perform numerical simulations in order to establish the correctness of the theoretical results and further investigate the models.
Abstract
The present manuscript focuses on Lattice Gauge Theories based on finite groups. For the purpose of Quantum Simulation, the Hamiltonian approach is considered, while the finite group serves as a discretization scheme for the degrees of freedom of the gauge fields. Several aspects of these models are studied. First, we investigate dualities in Abelian models with a restricted geometry, using a systematic approach. This leads to a rich phase diagram dependent on the super-selection sectors. Second, we construct a family of lattice Hamiltonians for gauge theories with a finite group, either Abelian or non-Abelian. We show that is possible to express the electric term as a natural graph Laplacian, and that the physical Hilbert space can be explicitly built using spin network states. In both cases we perform numerical simulations in order to establish the correctness of the theoretical results and further investigate the models.
Tipologia del documento
Tesi di dottorato
Autore
Pradhan, Sunny
Supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
lattice gauge theories, quantum simulation, gauge theories, condensed matter, quantum computation, statistical mechanics, finite groups
URN:NBN
DOI
10.48676/unibo/amsdottorato/10929
Data di discussione
1 Giugno 2023
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Pradhan, Sunny
Supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
lattice gauge theories, quantum simulation, gauge theories, condensed matter, quantum computation, statistical mechanics, finite groups
URN:NBN
DOI
10.48676/unibo/amsdottorato/10929
Data di discussione
1 Giugno 2023
URI
Statistica sui download
Gestione del documento: