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Abstract 
 

Deterministic earthquake prediction has proven to be an extremely complex problem 

for scientists. Improving the ability to predict earthquakes is one of the major 

challenges for Seismology and a key goal for the protection of properties, 

infrastructure, and people inhabiting Earth's areas characterized by high seismic risk. 

Full knowledge and understanding of the phenomenon are necessary for earthquake 

predictions to be reliable. However, this poses a nontrivial problem for the scientific 

community since strong earthquakes are relatively rare compared to other natural 

phenomena and occur at inaccessible depths. In this thesis, the development, 

application, and comparison of both deterministic and probabilistic forecasting 

methods is shown.  

Regarding the deterministic approach, the implementation of an alarm-based 

method using the occurrence of strong (fore)shocks, widely felt by the population, as 

a precursor signal is described. This model is then applied for retrospective 

prediction of Italian earthquakes of magnitude M≥5.0,5.5,6.0, occurred in Italy from 

1960 to 2020. Retrospective forecasting performance is evaluated using tests and 

statistics recognized in the literature and specific for deterministic alarm-based 

models.  

Regarding probabilistic models, this thesis focuses mainly on the EEPAS (Every 

Earthquake a Precursor According to Scale) and ETAS (Epidemic Type Aftershock 

Sequence) models. Although the EEPAS model has been previously applied and 

tested for some regions of the world, it has never been applied for the forecast of 

Italian earthquakes. Therefore, in this thesis, the EEPAS model is applied to the 

retrospective forecast of Italian shallow earthquakes of magnitude M≥5.0 using a new 

software developed in MATLAB. The retrospective forecasting performance of the 

treated probabilistic models was compared with that of other models both time 

dependent and time independent using the new CSEP tests based on the negative 
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binomial distribution. The EEPAS and ETAS models applied for forecasting Italian 

earthquakes show different characteristics. In particular, the EEPAS and ETAS 

models seem to have better forecasting performance in the long and short period, 

respectively.  

The deterministic model based on the occurrence of strong (fore)shocks (called 

FORE) is compared with the EEPAS and ETAS models using the alarm-based 

deterministic approach. The comparison and evaluation analyses show that all 

models overperform a random forecasting model. However, evaluation of relative 

performance suggests better forecasting power for the ETAS and FORE models. 

To realistically evaluate the forecasting performance of all models, however, 

prospective tests should be conducted. One of the main problems that emerged 

during the development of this thesis is the lack of objective prospective CSEP tests 

for evaluating deterministic models and comparing them with probabilistic ones. 
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Chapter 1 

Introduction on main characteristics of 

earthquakes and properties of occurrence 
 

Earthquakes have affected the Earth since the formation of the solid crust 4 billion years ago 

and have plagued humanity since the construction of the first village. Earthquakes, most 

caused by the movement of tectonic plates that have characterized every step in the formation 

of mountain ranges, oceans, and continental drift, are evidence of the dynamism of planet 

Earth (Marshak, 2004). 

1.1 Elastic rebound theory  

Earthquakes are rapid movement of the Earth due to a sudden release of potential 

deformation energy by the lithosphere. An earthquake is therefore the consequence 

of the breaking of rocks and is felt through the shaking of the ground. The 

mechanism of earthquake generation can be explained by the elastic rebound model 

proposed by Reid (1910) from the observation of geodetic data and information 

analyzed during and after the 1906 San Francisco earthquake of magnitude 7.8. 

According to the elastic rebound model, lithospheric rocks react elastically when 

subjected to differential stress. When the applied deformation stress exceeds the 

failure load, the rocks fail along one or more fault surface, i.e., a surface of weakness. 

When a failure occurs, the rocks suddenly readjust to reach a new potential state. The 

rock blocks, separated from the fault surface, continue their relative readjustment for 

a variable time frame until a new equilibrium condition is reached (Fig. 1.1). The 

sudden rearrangement of the rock volumes involved produces seismic waves that 

propagate in space and time as spherical wave fronts. Elastic rebound theory (Reid, 

1910) assumes that rocks rupture and subsequent propagation of seismic waves 

begins at a certain time (origin time 𝑡(0)) and at a certain nucleation point in space 

(hypocenter) located at a certain depth along the fault plane. Analysis of most 
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destructive earthquakes shows that they generally occur at a depth of less than 50 

km, although they can be deeper, where past earthquakes have already weakened 

the brittle rocks that constitute an active fault or in parts of cold lithosphere in 

subductuon zones, where the brittle-ductile transition is deeper than in a normal 

geothermal gradient. Estimation of hypocentral parameters requires a seismic 

network consisting of stations capable of recording arrival times and oscillations 

induced by seismic waves. The analysis of the arrival time of seismic waves 

generated by an earthquake from several stations makes it possible to estimate the 

latitude, longitude, depth, and origin time of the recorded earthquake. 

 

Figure 1.1: Elastic rebound theory (Wei et al., 2015). 

 

1.2 Seismic catalogues 

Seismic catalogs represent one of the essential products made available by the 

agencies that manage, monitor, and analyze data deriving from seismic networks. A 

seismic network consists of instruments capable of recording waveforms and of other 

equipment able to process data related to the occurrences of seismic events (Fig. 1.2). 

Seismic catalog contains parametric information of earthquakes (latitude, longitude, 

depth, magnitude, and sometimes additional information such as focal mechanism) 
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that are recorded for a certain region. Such datasets are extremely important for 

analysis and research on seismicity patterns and seismic risk. However, each 

seismicity catalogue is the product of complex procedures that begin with the 

configuration of the seismic network, the choice of sensors and software to process 

the data, and the choice of a localization procedure and magnitude scale. The 

human-chosen computational tools and defined processing steps, combined with the 

spatial and temporal heterogeneity of the seismic network and seismicity, make 

catalogues inherently heterogeneous (Woessner et al., 2010). Seismic catalogues can 

be classified into different types (pre-historic, historic, and instrumental).  Pre-

historic seismic catalogues are based on geological information obtained by 

campaign observations and contain information on earthquakes that may have 

occurred even in past millennia. Historic seismic catalogues are based on information 

collected by historical archives that describe macro-seismic effects of earthquakes on 

population or buildings. By regression analysis of the observed intensity field it is 

possible to trace the location, origin time and magnitude of historical earthquakes 

with some reliability (Gasperini et al., 1999; Rovida et al., 2020, 2022). The 

instrumental seismic catalogs are datasets derived from primary instrumental data 

produced by seismologists who are able to process the data and record the 

occurrence of earthquakes and the related hypocentral parameters (origin time, 

longitude, latitude and depth) and magnitude (Woessner et al., 2010). 

 

1.3 Magnitude scales 

 Since the development of the first magnitude scales  by Richter (1935), different  

magnitude scales with different definitions and characteristics have been proposed 

(Lay and Wallace, 1995). The use of one or the other depends on the characteristics of 

a seismic network. One of the most used magnitude scale of greatest use is the local 

magnitude 𝑀𝐿, defined by Richter (1935). It is given by the ratio of the decimal 

logarithm of the maximum amplitude 𝐴 (expressed in 𝑚𝑚) recorded by a Wood-
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Anderson torsion seismometer with a period of 0.8 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 and the maximum 

amplitude that the same instrument would have recorded for a standard earthquake 

𝐴0 (i.e. an earthquake of magnitude 𝑀𝐿 = 0 which at 100 𝑘𝑚 from the epicenter 

produces an amplitude of 10−3 𝑚𝑚). For earthquakes occurring at different distances 

it is necessary to introduce corrections to scale 𝐴0 relative to the effective distance 

from the station. These corrections consider the amplitude attenuation due to 

geometric spreading (Richter, 1935; Gutenberg and Richter, 1942; Jennings and 

Kanamori, 1983; Hutton and Boore, 1987; Di Stanza and Console, 2002; Gasperini, 

2002; Lolli et al., 2015). Further corrections are applied considering that modern 

seismometers with different amplification and damping characteristics are currently 

used to estimate the local magnitude. Modern instruments can emulate the Wood-

Anderson seismometers (synthesized Wood-Anderson) through adjustments. Other 

magnitude scales have been defined (Gutenberg and Richter, 1956) such as the body 

wave magnitude 𝑚𝑏 based on the amplitude of body waves (𝑃 and 𝑆) and the surface 

wave magnitude 𝑀𝑆 based on the amplitude of surface waves (Love and Rayleigh 

waves). However, these two magnitude scales are not appropriate for strong 

earthquakes because they tend to saturate for high magnitudes (𝑚𝑏 > 5.0, 𝑀𝑆 >  8). 

Therefore, some of the earthquakes recorded in catalogs with such magnitude scales 

may have higher energy than reported (Woessner et al., 2010). The magnitude scale 

𝑚𝐷 (duration magnitude) is based on the duration of the phenomenon (Eaton, 1992), 

that is the time interval between the recording of the first pulse and the return to the 

background signal. Therefore, 𝑚𝐷 does not depend on the amplitude of the peaks 

recorded by the seismograph, but on the duration of the phenomenon estimated by 

the seismogram. The duration magnitude is generally used to attribute the 

magnitude to low or medium earthquakes that occur locally or regionally and can be 

used in cases where the exact calibration of seismometers is not known. The 

definitions of the previous magnitude scales are purely empirical. Moreover, it has 

been observed that they tend to underestimate or overestimate the true magnitude. 

This depends on the physical characteristics of the instruments used for seismic wave 



13 

 

recordings. In fact, seismographs can record seismic waves in a certain frequency 

range. Earthquakes, produce seismic waves even at very low frequency, which 

cannot be correctly recorded by seismometers. This phenomenon increases with the 

energy released by the earthquake, so high magnitudes may be underestimated.  

The introduction of the seismic moment magnitude 𝑀𝑤 by Hanks and Kanamori 

(1979), made it possible to relate the magnitude with the physics of the phenomenon. 

Moment magnitude is based on the elastic rebound theory (Reid, 1910) under which 

a couple of forces applied symmetrically on the two blocks of a fault generates a 

torsional moment (seismic moment). In addition, from the relationship between 𝑀𝑤 

and seismic moment, it is possible to empirically estimate the parameters like the 

length, width, and area of the fault, and the co-seismic displacement. Wells and 

Coppersmith (1994) showed consistency between the estimation of these parameters 

and observations.   

 

1.4 Heterogeneity of seismic catalogues  

The data logging capacity of a seismic network (Fig. 1.2) depends strongly on the 

density and number of stations in the area, their operating status, logging 

characteristics and the degree of connection with data processing headquarters. The 

choice of using a certain magnitude scale rather than another depends on the 

characteristics of the network. Often different definitions of magnitude may be used 

for a single network. This inevitably leads to heterogeneous seismic catalogs. This 

heterogeneity produces artefacts in the analysis of the statistical distribution of 

magnitudes and in other uses of seismic catalogues, such as the application and 

testing of seismicity models. Therefore, variations in the measured rate of seismicity 

can result from both natural and man-made causes. It is important to differentiate 

them as much as possible to identify significant and real rate changes in seismicity 

studies (Habermann, 1987; Matthews and Reasenberg, 1988). Man-made changes can 
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be caused by transitions of a seismic network, which include changes in station 

coverage, type of magnitude reported, improved seismic wave attenuation models, 

instrumentation, and automation (e.g., analog, and digital data processing 

waveform). Such changes occasionally become apparent and can be noticed by 

analyzing systematic temporal variations in the magnitude-frequency distribution of 

earthquakes (Habermann, 1982). Heterogeneities are not only related to individual 

seismic catalogs, but different catalogs produced by different networks are 

heterogeneous with respect to each other. In fact, although the local 𝑀𝐿 magnitude is 

most commonly used, it is not directly comparable across different seismic catalogs 

because the estimation considers local characteristics and may involve the use of 

different techniques.  However, heterogeneities are also related to the different 

methods of estimating hypocentral parameters. 

 

Figure 1.2: Map of seismic networks present in the Euro-Mediterranean region 

indicated with different colors. Data on seismic stations are available on the web 

services of IRIS (Incorporated Research Institutions for Seismology, 

https://www.iris.edu/hq/). 
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1.5 Properties of occurrence of earthquakes 

Analysis of data recorded from long-term seismic catalogs makes it possible to 

observe and analyze the typical occurrence behavior of earthquakes such as the 

relationship between high-magnitude and low-magnitude earthquakes, 

spatiotemporal clustering, or the behavior of seismicity before or after a strong 

earthquake. 

 

1.5.1 Earthquakes as a Poisson point processes  

Earthquakes are represented in space and time as points marked by their magnitude. 

This allows us to consider earthquakes as point processes. Point processes are widely 

used in probability theories to model spatiotemporal data (Daley and Vere-Jones, 

2008) and are widely used in many disciplines such as ecology, epidemiology, 

geography, telecommunications, and others. Mathematically, a point process is a 

countable set of points randomly distributed in a certain space-time domain (Fig. 

1.3), therefore, it can be considered as a stochastic model that defines probabilistic 

rules for the occurrence of points (e.g., earthquakes) in time and space (Zhuang et al., 

2012). In fact, if we compress the time axis of the seismograph to view all earthquake 

records on a large time scale, the waveforms of each strong earthquake become 

independent pulses randomly distributed over time (Zhuang et al., 2012). The 

hypothesis of complete temporal randomness assumes that the number of events in 

each time window follows the Poisson distribution with a certain expected number 

of events 𝜆 in the unit of time. A stationary Poisson process is usually considered a 

fundamental assumption of many probabilistic seismic hazard analysis (Cornell, 

1968). However, in the short-medium term earthquakes tend to occur in clusters and 

strong earthquakes are always followed by aftershocks that have some relation to the 

mainshock. Analysis of clustered seismic events has shown that in global (Aki, 1956) 

or local (Knopoff, 1964) catalogs the events of the main sequences are significantly 

non-poissonian.  This conclusion is important for earthquake forecasting, since the 
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demonstration of non-randomness in earthquake catalogs gives hope that a basis can 

be found for predicting the timing of occurrence by decoding the sequential message 

in the list of events. Gardner and Knopoff (1974) investigated seismicity in Southern 

California after removal of the aftershock clusters founding Poissonian behavior.  

Considering 𝑁(𝑎, 𝑏) as the number of earthquakes of a point process occurred in a 

certain temporal window 𝑡(𝑎, 𝑏), the processes can be considered as Poissonian if:  

i) The number of events 𝑚 and 𝑘 occurring in disjoint temporal windows are 

independent.  

𝑃{𝑁(𝑎, 𝑏) = 𝑚, 𝑁(𝑐, 𝑑) = 𝑘} = 𝑃{𝑁(𝑎, 𝑏) = 𝑚} 𝑃{𝑁(𝑐, 𝑑) = 𝑘} (1.1) 

ii) The probability distribution of 𝑁 events occurring in a certain time 

window depend only on its length.  

iii) The probability of two or more events occurring simultaneously is 

considered negligible i.e., two or more events cannot occur simultaneously. 

The Poisson process is considered stationary or homogeneous if the probability that 

𝑁 events occurring within a certain time window of 𝜏 extent, follow the Poisson 

distribution   

𝑃{𝑁(𝑎, 𝑎 + 𝜏) = 𝑘} =
(𝜆𝜏)𝑘

𝑘!
exp (−𝜆𝜏) 

(1.2) 

where 𝜆 is the average rate of occurrence in an interval of unit length and 𝜆 is 

constant in time. A non-stationary Poisson process is instead characterized by a time 

dependent rate 𝜆(𝑡). Therefore, in this case, the probability distribution of 𝑁 events in 

each time window depends on the 𝜆(𝑡) and the processes cannot be stationary. In a 

non-stationary Poisson process, the expected number of events for a certain time 

window of length [𝑡1, 𝑡2[ is given by 

Λ(𝑡1, 𝑡2) = ∫ 𝜆(𝑡)𝑑𝑡 
𝑡2

𝑡1

 
(1.3) 

and the probability to observe 𝑘 events in the time interval [𝑡1, 𝑡2[ is given by 

𝑃{𝑁(𝑡1, 𝑡2] = 𝑘} =
[Λ(𝑡1, 𝑡2)]

𝑘

𝑘!
exp[−Λ(𝑡1, 𝑡2)] . 

(1.4) 
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The nonstationary Poisson process can be used as an alternative to the stationary 

Poisson model when an apparent trend or seasonality is visible in the data (Zhuang 

et al., 2012). 

 

 

Figure 1.3: Sequence of ordered points within a given time window. 

 

1.5.2 Maximum Likelihood Estimation (MLE) for a Poisson point process   

Given an observed point process containing 𝑁 events occurring at times 𝑡 =

{𝑡1, 𝑡2, … , 𝑡𝑛} within a given time interval [𝑡𝑠, 𝑡𝑒[ (fig. 1.3), each 𝑖 − 𝑡ℎ time of 

occurrence can be taken as an infinitesimal interval 𝜏𝑖 = [𝑡𝑖, 𝑡𝑖 + 𝛿𝑡[. The likelihood 

function (Akaike, 1998; Myung, 2003) is determined by the joint probability to 

observe each 𝑖 − 𝑡ℎ event in the time interval 𝜏𝑖 and to not observe any event in the 

time range  ] 𝑡𝑖 , 𝑡𝑖+1[.  Considering a non-stationary Poisson process characterized by 

an intensity function 𝜆(𝑡), the probability to observe an event in 𝜏𝑖 is given by  

𝑃{𝑛(𝜏𝑖) = 1} ≈ 𝜆(𝑡𝑖)𝛿𝑡 + 𝑜(𝛿𝑡) (1.5) 

and the probability to observe zero events in the time range  ]𝑡𝑖 , 𝑡𝑖+1[ is given by 

𝑃{𝑛( 𝑡𝑖−1 , 𝑡𝑖) = 0} = exp [−∫ 𝜆(𝑡)
𝑡𝑖+1

𝑡𝑖

𝑑𝑡]. 
(1.6) 

Such probabilities can be derived from eqs. 1.2 and 1.4. Considering that in a Poisson 

process the occurrence of events are assumed disjoint, the likelihood function is 

equal to 

𝐿(𝑡𝑖; 𝑁) =∏[𝜆(𝑡𝑖)𝛿𝑡]

𝑁

𝑖=1

 ∏exp [−∫ 𝜆(𝑡)
𝑡𝑖+1

𝑡𝑖

𝑑𝑡]

𝑁−1

𝑖=1

= 

= (𝛿𝑡)𝑁∏ [𝜆(𝑡𝑖)]
𝑁

𝑖=1
∏ exp [−∫ 𝜆(𝑡)

𝑡𝑖+1

𝑡𝑖

𝑑𝑡]
𝑁−1

𝑖=1
. 

(1.7) 
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To simplify algebraical resolution, the application of the natural logarithm is 

preferable, and the log-likelihood function become: 

𝑙𝑜𝑔𝐿(𝑡𝑖; 𝑁) =∑𝑙𝑜𝑔[𝜆(𝑡𝑖)𝛿𝑡]

𝑁

𝑖=1

−∑∫ 𝜆(𝑡)
𝑡𝑖+1

𝑡𝑖

𝑑𝑡

𝑁−1

𝑖=1

= 

= N log(𝛿𝑡) +∑𝑙𝑜𝑔[𝜆(𝑡𝑖)]

𝑁

𝑖=1

−∫ 𝜆(𝑡)
𝑡𝑒

𝑡𝑠

𝑑𝑡 . 

(1.8) 

 

In many applications and in the literature (e.g. Ogata, 1983) the likelihood function is 

used to estimate the optimal parameters of a model that assumes a certain parametric 

probability distribution 𝑝(𝑥, 𝜃), given some observed data 𝑥 = {𝑥1, … , 𝑥𝑛}. The 

optimal parameters are found by estimating the maximum of the likelihood function 

(MLE). Considering a set of function 𝑐𝐿(𝑥, 𝜃) where 𝑐 is a multiplicative constant, 

their maximum value is obtained for the same 𝜃. For the MLE, the constant 

multiplicative term (𝛿𝑡)𝑁 in the equation (1.7) can be neglected and the equation to 

maximize is then: 

𝐿′(𝑡𝑖; 𝑁) =∏ [𝜆(𝑡𝑖)]
𝑁

𝑖=1
∏ exp [−∫ 𝜆(𝑡)

𝑡𝑖+1

𝑡𝑖

𝑑𝑡]
𝑁−1

𝑖=1
 

(1.9) 

 

or if the log-likelihood is preferable: 

𝑙𝑜𝑔𝐿′(𝑁; 𝑡𝑠, 𝑡𝑒) =∑𝑙𝑜𝑔[𝜆(𝑡𝑖)]

𝑁

𝑖=1

−∫ 𝜆(𝑡)
𝑡𝑒

𝑡𝑠

𝑑𝑡  . 
(1.10) 

 

1.5.3 Frequency-magnitude relationship of earthquake occurrence               

(The Gutenberg-Richter law) 

The frequency-magnitude relationship of earthquakes, known as the Gutenber-

Richter law (GR, Gutenberg and Richter, 1944) is an empirical relation that represents 

one of the foundations of modern seismology. The GR describes the occurrence of 

earthquakes in a certain space-time domain as a function of magnitude. In particular, 
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the number (𝑁) of earthquakes decreases exponentially as the magnitude (𝑀) 

increases according to the relationship:  

𝐿𝑜𝑔10[𝑁(𝑀)] = 𝑎 − 𝑏𝑀 (1.11) 

𝑁(𝑀) = 10𝑎−𝑏𝑀 (1.12) 

The 𝑎-value describes the overall level of seismicity in the region of interest. Its value 

therefore depends on the seismic characteristics of the area and catalog considered. 

The 𝑏-value represent the relative proportion between high and low magnitude 

seismic events. Generally, over long periods its value is around 1. High values of 𝑏 

(𝑏 > 1) indicate a high proportion of low-magnitude events in an earthquake dataset, 

and conversely (𝑏 < 1) indicates a high proportion of high-magnitude events. The 

commonly used forms for visualizing the magnitude-frequency relationship are the 

cumulative and incremental non-cumulative magnitude-frequency distribution 

(FMD) curves. The cumulative FMD described by the equation (1.12) is showed in 

Fig. 1.4 with light grey and red circles provide the number of earthquakes with 𝑚 >

𝑀. On the other hand, the non-cumulative or incremental FMD, represented in the 

same figure by grey and light blue triangles provide the numbers of earthquake with 

a certain magnitude range. Usually, magnitudes are binned so their value is within 

the range [𝑀 −
𝑑𝑀

2
, 𝑀 +

𝑑𝑀

2
]  where 𝑑𝑀 is the magnitude bin. The two parameters 𝑎-

value and 𝑏-value, represent the number of earthquakes with magnitude 𝑚 ≥ 0 and 

the slope of the cumulative FMD, respectively. The exponential distribution (1.12) is 

in principle valid for each magnitude. However, seismic networks are not completely 

able to detect all earthquakes whose magnitude is lower than a certain 𝑀𝑚𝑖𝑛. As is 

evident in Fig. 1.4, for 𝑚 < 𝑀𝑚𝑖𝑛 the FMD distributions deviate from the theoretical 

exponential distribution due to a lack of such events in the seismic catalogue.  
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Figure 1.4: Cumulative (red dots) and non-cumulative (light blue triangles) 

frequency magnitude distribution (FMD) of Italian inland earthquakes reported by 

the Homogenized InstRUmental Seismic catalog (Lolli et al., 2020) for the period 

2012-2022. As marked by gray dots and triangles, the FMD deviate from the 

exponential distribution for 𝑚 < 𝑀𝑚𝑖𝑛 (indicated as completeness magnitude 𝑚𝑐).  

 

1.5.4 The b-value Maximum Likelihood Estimation  

The GR equations (1.11 and 1.12) can be also expressed in exponential form as:  

ln (𝑁) = 𝛼 − 𝛽𝑀 (1.13) 

𝑁(𝑀) = 𝑒𝛼−𝛽𝑀 (1.14) 

Where 𝛼 = ln(10) 𝑎 and 𝛽 = ln(10) 𝑏. Assuming that all recorded earthquakes are 

greater than a certain minimum magnitude 𝑀𝑚𝑖𝑛, the probability to detect an event 

of magnitude 𝑚 is given by:  

𝑝(𝑚|𝑏) =
𝑁(𝑚)

∫ 𝑁(𝑥)𝑑𝑥
+∞

 𝑀𝑚𝑖𝑛

=
exp(𝛼) exp (−𝛽𝑚)

∫ exp(𝛼) exp(−𝛽𝑥) 𝑑𝑥
+∞

 𝑀𝑚𝑖𝑛

==
exp (−𝛽𝑚)

−
1
𝛽
exp (−𝛽𝑥)|

+∞
 𝑀𝑚𝑖𝑛

 
(1.15) 

But lim
𝑥→+∞

−𝛽−1 exp(−𝛽𝑥) → 0 so the upper limit term of the integral is negligible, 

thus:  
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𝑝(𝑚|𝑏) =
exp (−𝛽𝑚)

1
𝛽
exp (−𝛽𝑀𝑚𝑖𝑛)

= 𝛽𝑒𝑥 𝑝[−𝛽(𝑚 −𝑀𝑚𝑖𝑛)]   , 𝑀𝑚𝑖𝑛 ≤ 𝑚 
(1.16) 

or 

𝑝(𝑚|𝑏) = 𝑏 𝑙𝑜𝑔(10) 10−𝑏(𝑚−𝑀𝑚𝑖𝑛), 𝑀𝑚𝑖𝑛 ≤ 𝑚 

 

(1.17) 

Equations (1.16 and 1.17), however, unrealistically assume that earthquakes of any 

magnitude can be observed up to infinity (Bender, 1983). Considering the 

characteristics of the observational region a maximum magnitude threshold (𝑀𝑚𝑎𝑥) 

can be fixed and from (1.15) we obtain:  

𝑝(𝑚|𝑏) =
𝛽exp (−𝛽𝑚)

exp(−𝛽𝑀𝑚𝑖𝑛) − exp (−𝛽𝑀𝑚𝑎𝑥)
   , 𝑀𝑚𝑖𝑛 ≤ 𝑚 ≤ 𝑀𝑚𝑎𝑥  

(1.18) 

Equations (1.16) and (1.18) converge to the same value as the magnitude range 

becomes wider and usually, if 𝑀𝑚𝑖𝑛 ≪ 𝑀𝑚𝑎𝑥, the equations (1.16) or (1.17) are 

preferred.  

Given a set of observed magnitudes that are statistically independent 𝑚 =

{𝑚1, 𝑚2, … ,𝑚𝑖} the likelihood function 𝐿(𝑚|𝑏) is given by the product of each 𝑖 − 𝑡ℎ 

probability of observation (eq. 1.16 or 1.18). Therefore, the joint probability to observe 

the entire set of magnitudes 𝑚 is given by:   

𝐿(𝑚|𝑏) =∏𝑝𝑖(𝑚|𝑏)

𝑛

𝑖=1

 
(1.19) 

To simplify algebraical resolution, the application of the natural logarithm is 

preferable, and the log-likelihood estimation is given by: 

𝑙𝑜𝑔𝐿(𝑚|𝑏) = log [∏𝑝𝑖(𝑚|𝑏)

𝑛

𝑖=1

]=∑log(𝑝𝑖(𝑚|𝑏)) =

𝑛

𝑖=1

 

=∑log[𝑏 𝑙𝑜𝑔(10) 10−𝑏(𝑚−𝑀𝑚𝑖𝑛)] =

𝑛

𝑖=1

 

=∑𝑙𝑜𝑔[𝑏 log(10)] − 𝑙𝑜𝑔[10−𝑏(𝑚−𝑀𝑚𝑖𝑛)] =

𝑛

𝑖=1

 

=∑𝑙𝑜𝑔[𝑏 log(10)] − log(10) 𝑏(𝑚𝑖 −𝑀𝑚𝑖𝑛) =

𝑛

𝑖=1

 

(1.20) 
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= 𝑛 𝑙𝑜𝑔[𝑏 log(10)] + 𝑏 log(10)(𝑛 𝑀𝑚𝑖𝑛 −∑𝑚𝑖

𝑛

𝑖=1

) 

 

The optimal 𝑏-value is found using the MLE method (Aki, 1965), thus the derivative 

of 𝑙𝑜𝑔𝐿(𝑏) is posed equal to 0.  

𝑑 

𝑑 𝑏 
𝑙𝑜𝑔𝐿(𝑏) = 0 

𝑑 𝑙𝑜𝑔𝐿(𝑏)

𝑑 𝑏 
=
𝑛

𝑏
+ 𝑛 𝑀𝑚𝑖𝑛 log(10) − log(10)∑𝑚𝑖

𝑛

𝑖=1

= 

=
1

𝑏 log(10)
+  𝑀𝑚𝑖𝑛 −

1

𝑛
∑𝑚𝑖

𝑛

𝑖=1

=
1

𝑏 log(10)
+  𝑀𝑚𝑖𝑛 − �̅� = 0 

(1.21) 

The analytical solution of (1.21) was the formula proposed by Aki (1965) 

𝑏 =
log10 𝑒

�̅� −  𝑀𝑚𝑖𝑛  
 . 

(1.22) 

where �̅� is the mean value of the magnitude of the considered dataset. The equation 

proposed by Aki (1965) as described (1.22) assumes that magnitudes are a continuous 

quantity on the real number line. Although in principle this assumption is correct, 

magnitudes in seismic catalogs are generally given in incremental bins of finite 

width.  The use of binned magnitudes requires the correction term −
𝑑𝑀

2
 in the 

original formula (Utsu, 1966) to avoid a bias in the b-value estimation 

𝑏 =
log10 𝑒

�̅� − ( 𝑀𝑚𝑖𝑛 −
𝑑𝑀
2
) 
 , 𝑚 ≥  𝑀𝑚𝑖𝑛  

(1.23) 

The standard deviation associated to the estimated b-value is given by the equation 

proposed by Shi and Bolt (1982):  

𝜎𝑏 = 2.30𝑏
2√
∑ (𝑚𝑖 − �̅�)

2𝑛
𝑖=1

𝑛(𝑛 − 1)
 

(1.24) 

where 𝑛 is the number of events used in estimating the b-value. Recently (van der 

Elst, 2021) demonstrated that the b-value of equation (1.23) obtained by the MLE 

(Aki, 1965) is only approximate, in particular for the discretized magnitudes. van der 

Elst (2021) proposed the exact equation:  
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𝑏 =
1

log (10)
𝑑𝑀
2

coth−1 [
1

𝑑𝑚
2

(�̅� −  𝑀𝑚𝑖𝑛 +
𝑑𝑀

2
)] . 

(1.25) 

 

1.5.5 Completeness magnitude 

Even if the exponential distribution described by the GR (1.12) in principle should be 

followed by the FMD at each magnitude, they begin to diverge from the theorical 

distribution as the magnitudes become smaller. This is due to a lack of events in the 

dataset. This lack is due to the characteristic of the seismic network that is not able to 

detect all earthquakes with magnitude lower than a certain magnitude defined as 

completeness magnitude 𝑀𝑐. There are multiple causes for an earthquake to not 

being recorded:  

i) The magnitude can be too small, and the signal detected is not distinguishable 

respect the background signal. In addition, if the magnitude is small and not 

detected by multiple stations, hypocenter parameters cannot be defined.  

ii) Network operators willfully neglect events with low magnitude.  

iii) Event occurs after a large earthquake and during a seismic sequence. In this 

case, the background noise increases and prevents the detection of minor seismic 

events. Usually, after a strong earthquake the magnitude of completeness 

increases for a certain time period in the spatial domain where the main quake 

occurred.  

The 𝑀𝑐 is therefore intended as the minimum magnitude beyond which 100% of 

earthquakes are detected by a seismic network (Rydelek and Sacks, 1989). A correct 

estimate of the 𝑀𝑐 is essential because a too high estimated value leads to discard 

data that could be used. On the other hand, a too low value of  𝑀𝑐 leads to the 

inclusion of incomplete data. The choice of an appropriate 𝑀𝑐 has a direct impact on 

the GR parameters evaluation. Such parameters are widely used in seismic hazard 

studies  (Wiemer et al., 2009) and in developing earthquakes forecasting models (e.g. 
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Wiemer and Schorlemmer, 2007; Gulia and Wiemer, 2019).  The b-value tends to be 

underestimated if the dataset contains earthquakes with 𝑚 < 𝑀𝑐 because the GR 

model does not fit data correctly. The GR can be then applied only in the complete 

part of the dataset (𝑚 ≥ 𝑀𝑐, 𝑓𝑖𝑔. 1.4). To ensure GR validity and the correct 

assessment of related parameters, earthquakes with 𝑚 < 𝑀𝑐 are discarded and in 

(1.23)  𝑀𝑚𝑖𝑛 is substituted by 𝑀𝑐.  

Most of methods used to assess the 𝑀𝑐 are based on the validity of the GR. Because of 

its computational speed, a widely used technique for estimating 𝑀𝑐 is the Maximum 

Curvature method (Wyss et al., 1999; Wiemer, 2000). This method consists in 

defining the point of maximum curvature by estimating the first derivative of the 

non-cumulative FMD curve. In practice, this matches the magnitude bin with the 

highest frequency of events in the FMD. Despite its easy applicability, is 

demonstrated that the Maximum Curvature method tends to underestimate the 𝑀𝑐 

of about 0.2 units (Woessner and Wiemer, 2005). In addiction if the non-cumulative 

FMD is gradually curved or with up and down in the curvature region Mc is 

underestimated and other more sophisticate techniques are recommended (see for 

example Roberts et al., 2015).     

Another commonly used method to assess 𝑀𝑐 is based on the stability of b-value 

(Cao and Gao, 2002). According to this method the completeness is estimated 

analyzing the stability of b-value in function of a cut-off magnitude. As the cut-off 

magnitude approaches the true 𝑀𝑐, the b-value approaches its true value and remain 

constant, forming a plateau. Other methods have been proposed in the literature 

(Rydelek and Sacks, 1989; Woessner and Wiemer, 2005; Amorese, 2007), each with its 

own characteristics. None of them has to be preferred, but they must be applied 

carefully to avoid incompleteness effects that could affect the b-value estimate. 

1.5.6 Spatiotemporal variations in magnitude of completeness 

Spatiotemporal variations in magnitude of completeness over the long term are due 

to the evolution (improvement) of the seismic network. Improvements in the seismic 
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network consist of the placement of new stations to enlarge the spatial coverage and 

thus the detection of seismic events. Usually, transition phases of a seismic network 

are well identified in seismic catalogs that show a clear change in Mc (Hutton et al., 

2010). Long-term seismic catalogs are characterized by a decreasing Mc over time 

(Fig. 1.5). The analysis of Mc makes it possible to select a sub-dataset in which Mc 

does not change. If a more extended data set is required, in which Mc changes over 

time, the maximum Mc for the whole period is recommended. Short-term 

spatiotemporal variations are very common during seismic sequences of strong 

earthquakes in which the seismic noise is higher and prevents proper detection of 

weaker events. This causes a transient increase in the magnitude of completeness 

until the seismicity rate and seismic noise are diminished (Fig. 1.6).      

 

 

Figure 1.5: Temporal decrease of the Horus seismic catalog completeness magnitude 

as described in Lolli et al., (2020). As evident, periods of seismic network upgrades 

correspond to improvements (decreases) in completeness magnitude. 

 



26 

 

 

Figure 1.6: Temporary increases in the magnitude of completeness estimated during 

the Norcia earthquake sequence that started in October 2016 (Mw=6.5) within a 

radius of 50 km from the epicenter. An increase in completeness magnitude can also 

be observed in the same area due to the sequence that started with the Amatrice 

earthquake of 24 August 2016. 

 

1.5.7 Clusters and aftershock sequences  

As mentioned already, earthquakes tend to occur in clusters in space and time (fig. 

1.7). This is evident after a strong shock in which numerous other earthquakes occur 

in the same area. However other clustering phenomena are common such as seismic 

swarms or foreshocks. Seismic swarms are characterized by a sequence of low to 

moderate magnitude earthquakes and with an unclear mainshock occurring in a 

certain area. The duration of these phenomena generally ranges from a few days to 

months, more rarely they can last even years (e.g.   The Matsushiro earthquake 

swarm occurred from 1965 to 1967; Mogi, 1989). Despite the causes that trigger a 

mainshock (par. 1.1), such as stress transfers, the causes that produce seismic swarms 

can be of different nature. Tectonic stress causes a slow motion of a fault blocks 

generating seismic swarms.   Other swarms are generated when magma or 

pressurized fluids crack and proceeds through rocks (Hainzl, 2004). Sometimes 

before the occurrence of a mainshocks minor shocks (foreshock) are observed in the 
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same area. These events can cluster in the area for which the mainshock will occur 

(Zhuang et al., 2019). 

 

Figure 1.7:  Map of seismicity around the epicenter of the Norcia earthquake that 

occurred on 30 October 2016. The mainshock of Mw=6.5 is indicated by the red star 

to which the focal mechanism is associated (according to the GCMT catalogue). The 

size and color of the dots representing successive earthquakes are defined according 

to their magnitude. 
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1.5.8 Omori-Utsu law 

The occurrence of strong shocks is in general followed by aftershock sequences 

because of the relative readjustment of the rocks that constitutes the fault blocks. The 

number of aftershocks decay over time, and the sequence can be defined as finished 

when it is indistinguishable from the background seismicity. Omori (1894), analyzed 

the occurrences of aftershocks felt in Gifu following the Nobi earthquake (𝑀 = 8) 

that occurred in 1891 in central Japan and observed that their frequencies per unit of 

time were represented by the equation  

𝑛(𝑡) =
𝐾

𝑡 + 𝑐
 

(1.26) 

where 𝑡 is the elapsed time since the mainshock, 𝑐 is a temporal delay ranging from 

minutes to hours (or days) necessary to avoid the singularity at 𝑡 = 0, and 𝐾 is the 

productivity parameter that depends on both the mainshock magnitude and the 

completeness magnitude after the mainshock. If plotted in 𝑙𝑜𝑔 − 𝑙𝑜𝑔 scale, the 

Omori’s equation represents a straight line with slope −1 for 𝑡 ≫ 𝑐 (fig. 1.8).  Utsu 

(1961) continued the work started by Omori by observing the occurrence of 

aftershocks that followed the mainshock of Nobi until 1969. Reporting the 

occurrences in the plot started by Omori (1894), Utsu (1961) noted that the sequence 

of aftershocks had continued for 80 years after the mainshock with a uniform decay, 

but the slope of the line was 1.05.  Utsu (1961) already corrected the Omori’s formula 

(1.17) adding the parameter 𝑝 that consider the rate of decay: 

𝑛(𝑡) =
𝐾

(𝑡 + 𝑐)𝑝
 

(1.27) 

Successive observations on the occurrence of aftershocks showed that the parameter 

𝑝 can range from 0.8 to 1.6 (Hirano, 1924; Utsu, 1961; Mogi, 1962). 
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Figure 1.8: Decay of events of magnitude greater than 3 over time, following the 

Norcia earthquake of 30 October 2016 (blue dots). The red curve represents the decay 

obtained by the Omori-Utsu distribution.  

 

1.5.9 Estimation of the parameters of Omori distribution  

The estimation of parameters of the Omori-Utsu equation can be done through the 

MLE method (Ogata, 1983). Assuming a set of occurrence times of aftershock 

sequence, 𝜏 = {𝑡1, … , 𝑡𝑛} , within the time interval [𝑡𝑠, 𝑡𝑒] with an intensity function 

𝜆(𝑡) given by the eq. (1.27), the log-likelihood function derived from eq. (1.10) is 

given by: 

log L(K, c, p; τ) =∑𝑙𝑜𝑔 [
𝐾

(𝑡𝑖 + 𝑐)
𝑝] −

𝑁

𝑖=1

∫ [
𝐾

(𝑡 + 𝑐)𝑝
]

𝑡𝑒

𝑡𝑠

𝑑𝑡 = 

=

{
 
 

 
 𝑁𝑙𝑜𝑔(𝐾) − 𝑝∑[log(𝑡𝑖 + 𝑐)] − 𝐾[log(te + 𝑐) − log (𝑡𝑠 + 𝑐)]     𝑖𝑓 𝑝 = 1

𝑁

𝑖=1

𝑁𝑙𝑜𝑔(𝐾) − 𝑝∑[log(𝑡𝑖 + 𝑐)] −
𝐾[(𝑡𝑒 + 𝑐)

1−𝑝 − (𝑡𝑠 + 𝑐)
1−𝑝]

1 − 𝑝

𝑁

𝑖=1

  𝑖𝑓 𝑝 ≠ 1

 

(1.28) 

The MLE can be performed posing the partial derivatives with respect each 

parameter equal to 0. If 𝑝 ≠  1:   
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𝜕𝑙𝑜𝑔𝐿

𝜕𝐾
=
𝑁

𝐾
−
[(𝑡𝑒 + 𝑐)

1−𝑝 − (𝑡𝑠 + 𝑐)
1−𝑝]

(1 − 𝑝)
= 0 

(1.29) 

𝐾 =
𝑁(1 − 𝑝)

[(𝑡𝑒 + 𝑐)
1−𝑝 − (𝑡𝑠 + 𝑐)

1−𝑝]
 

(1.30) 

𝜕𝑙𝑜𝑔𝐿

𝜕𝑐
= −𝑝∑[

1

𝑡𝑖 + 𝑐
]

𝑁

𝑖=1

− 𝑘[(𝑡𝑒 + 𝑐)
−𝑝 − (𝑡𝑠 + 𝑐)

−𝑝] = 0 
(1.31) 

𝜕𝑙𝑜𝑔𝐿

𝜕𝑝
= −∑[log(𝑡𝑖 + 𝑐)

𝑁

𝑖=1

] −
𝐾[(𝑡𝑒 + 𝑐)

1−𝑝 − (𝑡𝑠 + 𝑐)
1−𝑝 ]

(1 − 𝑝)2

+
𝐾[log(𝑡𝑒 + 𝑐) (𝑡𝑒 + 𝑐)

1−𝑝 − log(𝑡𝑠 + 𝑐) (𝑡𝑠 + 𝑐)
1−𝑝]

1 − 𝑝
= 0 

(1.32) 

Usually, for multi-parametric distributions, the log-Likelihood function 𝑙𝑜𝑔𝐿(𝜃) is 

maximized numerically by a non-linear optimization algorithm. The standard error 

for the time distribution parameters can be derived from the variance-covariance 

matrix  𝐽(𝜃)−1 as the inverse of the Fisher information matrix   (Ogata, 1983; Lolli and 

Gasperini, 2003):  

𝐽(𝜃) = ∫ [
1

𝜆(𝜃, 𝑡)
(
𝜕𝜆(𝜃, 𝑡)

𝜕𝜃
)

𝑇

(
𝜕𝜆(𝜃, 𝑡)

𝜕𝜃
)]

𝑡𝑒

𝑡𝑠

 
(1.33) 

where for the distribution of Omori-Utsu: 

𝐽(𝐾, 𝑐, 𝑝) =

[
 
 
 
 
 
 

 1

𝐾(𝑐 +  𝑡)𝑝
−𝑝

(𝑐 +  𝑡)𝑝 + 1
−𝑙𝑜𝑔(𝑐 +  𝑡)

(𝑐 +  𝑡)𝑝

−𝑝

(𝑐 +  𝑡)𝑝 + 1
𝑘𝑝2

(𝑐 +  𝑡)𝑝 + 2
𝑘 𝑝 𝑙𝑜𝑔(𝑐 +  𝑡)

(𝑐 +  𝑡)𝑝 + 1

−𝑙𝑜𝑔(𝑐 +  𝑡)

(𝑐 +  𝑡)𝑝
𝑘 𝑝 𝑙𝑜𝑔(𝑐 +  𝑡)

(𝑐 +  𝑡)𝑝 + 1
𝑘 𝑙𝑜𝑔(𝑐 +  𝑡)2

(𝑐 +  𝑡)𝑝 ]
 
 
 
 
 
 

 

(1.34) 

The standard error (SE) for each parameter 𝜃𝑖𝑡ℎ is computed as the square root of the 

corresponding diagonal element of  𝐽(𝜃)−1 (Ogata, 1978, 1983). Another similar 

approach to assess SEs consist in determine the square root of the diagonal of 

variance-covariance matrix computed as the inverse of the Hessian matrix for log-

likelihood function at the maximum (Ogata, 1988; Lolli et al., 2009).    
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For data reported in fig. 1.8  

Standard errors computed using 𝑱(𝜽)−𝟏 

method 

Standard errors computed using 𝑯(𝜽)−𝟏 

method 

𝐽(𝐾, 𝑐, 𝑝) = [
0.008 −0.983 −7.648
−0.983 256.804 389.843
−7.648 389.843 10107.308

] 

𝐽(𝐾, 𝑐, 𝑝)−1 = [
3441.229 9.794 2.226
9.794 0.032 0.006
2.226 0.006 0.002

] 

𝑠𝑡𝑑(𝐾) = 58.66;   𝑠𝑡𝑑(𝑐) = 0.18; 

𝑠𝑡𝑑(𝑝) = 0.04; 

𝐻(𝐾, 𝑐, 𝑝) = [
0.01 −0.457 −16.926
−0.457 57.948 325.755
−16.926 325.755 36520.982

] 

𝐻(𝐾, 𝑐, 𝑝)−1 = [
3452.413 19.222 1.429
19.222 0.125 0.008
1.429 0.008 0.001

] 

𝑠𝑡𝑑(𝐾) = 58.75;   𝑠𝑡𝑑(𝑐) = 0.35; 

𝑠𝑡𝑑(𝑝) = 0.03; 
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Chapter 2 

Predictability and forecastability of earthquakes 
 

“Major natural disasters call for a change of mentality that obliges us to abandon the logic of 

pure consumerism and promote respect for creation” (Albert Einstein). 

2.1 Seismic risk  

The occurrence of earthquakes in regions, cities and densely populated areas poses 

enormous risks that can threaten the national prosperity and the social welfare 

(Jordan, 2009). Urban seismic risk quantification is a complex problem that requires a 

detailed knowledge of the environment, infrastructures and understanding of 

seismic phenomena as well as the human behavior under dangerous situations. The 

estimation of seismic risk can be improved through the international collaboration of 

scientist and engineers analyzing and developing building engineering strategies. 

Indeed, during a strong seismic event, one of the greatest sources of risk to the 

population is the damage or collapse of buildings or infrastructure. The seismic risk 

is a forecast of damage to society, usually expressed in terms of casualties or 

economic losses, which would be caused by a future seismic event in a certain space-

time domain. Its assessment depends on three parameters: the hazard (𝐻) that is an 

intrinsic characteristic of a region, the exposure (𝐸) of the community, and 

vulnerability (𝑉). In some cases, the population who are aware of the danger in their 

territory are prepared for disasters and the capability to respond and restore 

earthquake dagame is faster (Fig. 2.1). This capability is called resilience (r) which 

reduces the global risk (Jordan, 2009) as follows: 

𝑅𝑖𝑠𝑘 =
𝐻 ∗ 𝐸 ∗ 𝑉

𝑟
 

(2.1) 
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 The implicit goal of earthquake risk analysis is to assess the areas that could be 

affected by the worst consequences caused by a destructive earthquake and to inform 

policy makers who are involved in risk reduction. 

 

Figure 2.1: The risk equation (Jordan, 2009). 

 

2.1.1 Hazard and hazard map 

The hazard is the first term of the risk equation (eq. 2.1) and is qualitatively different 

from the others. In fact, the hazard cannot be reduced. Indeed, the primary hazard 

related to the breaking of rocks and the resulting ground shaking generated by the 

passage of seismic waves is a characteristic feature of the involved area. Earthquakes 

involve high forces and energies that cannot be controlled by humans. The hazard 

estimated as the probability to exceeding a fixed level of ground shaking obtained by 

the analysis of frequencies of previous seismic events, cannot be managed. In 

addition, the Hazard should also consider the probability of secondary events 

(Jordan, 2009) generated by an earthquake such as tsunami, liquefaction of soil, mud 

volcanoes etc.  An adequate seismogenesis characterization combined with a 

historical seismic catalog and a relationship describing the attenuation of the seismic 

wave with the distance from the source area can be used to estimate the probability 

for a certain ground motion. Starting from this information is possible to define the 

hazard map. The main aims of this latter are to inform the policy makers and the 

population about the characteristic of the territory and making regulation for the 

construction or upgrade of buildings. For Italy the National Institute of Geophysics 
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and Vulcanology (INGV) developed a seismic hazard map (Fig. 2.2) that is 

periodically reviewed and updated with new information. A Seismic hazard map 

generally plots the peak horizontal ground acceleration with a certain probability of 

exceedance in 50 years (10% for the INGV hazard map).  

 

Figure 2.2: Seismic hazard map of Italy developed by the INGV and with the hazard 

expressed in terms of horizontal pick ground acceleration with probability of 10% in 

50 years.  

 

2.1.2 Exposure and vulnerability 

The presence of cities or villages in areas potentially subject to natural hazards 

constitutes the exposure. The exposure to the hazard can be reduced using policies 

that regulate the construction of new buildings and new infrastructures near active 

faults or potentially dangerous areas (Armstrong, 2001).   The susceptibility of 
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infrastructure to damage following a certain level of ground shaking constitutes 

vulnerability. One effective strategy to reduce the vulnerability is to operate on the 

fragility of the buildings through regulations that establish severe earthquake-

resistant construction criteria for new buildings and improving the already existing 

buildings resistance to the indicted shear stress caused by the seismic waves (Jordan, 

2009).   

 

2.1.3 Resilience 

The resilience is the response of the community involved to the injury suffered. If the 

population is adequately prepared to suffer a certain type of damage it has the time 

to prepare appropriate actions to repair the damage suffered (Jordan, 2009). 

Community resilience can be improved through public and private sector 

preparedness for response in the face of an emergency. The greater the community's 

preparedness for a certain type of damage, the lower the risk associated with it. 

Achieving high levels of resilience requires the co-participation of all levels of 

government by improving coordination and cooperation in the case of an emergency 

(Perry et al., 2008). An additional aspect that should not be underestimated is 

education to the community of hazards characteristic of a given area to improve the 

preparedness of the population for the occurrence of the damaging phenomenon 

such as a strong earthquake (Perry et al., 2008).    

 

2.2 Earthquakes predictability  

Earthquake prediction has proven to be a very intricate issue for seismologist and the 

improvements in this field were slower than for other natural phenomena (Jordan, 

2009). Indeed, one of the main problems is that it is currently not possible to directly 

observe what exactly happens at the exact moment an earthquake is generated, 

because it occurs in the interior of the planet at depths not yet accessible. 
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Furthermore, the state of stress acting on a fault or fault system as well as the limit 

stress before the rocks failure cannot be directly observed and measured (Wyss, 

2001). A valid earthquake prediction should be able to specify the location, time, and 

magnitude, within a certain limit of uncertainty. Such information should be also 

coupled with a high probability that a certain earthquake will occur (Allen, 1976). An 

efficient earthquake prediction method could be important in saving many lives and 

in mitigating the economic damages caused by a strong and destructive earthquake. 

An effective prediction could be used by the civil protection service to alert the 

community and prepare countermeasure for the impending danger allowing 

adequate preparation of the population involved. For risk reduction it is not possible 

to manage the seismic hazard of a region because depends on their seismotectonic 

features. The way for reduce risk and mitigate the effects of a strong earthquake is 

decreasing the seismic vulnerability and exposure. This is possible through 

prevention and an appropriate information campaign to raise community awareness 

of seismic risk.  Earthquake prediction has been widely debated in recent decades. 

The most skeptical approach considers earthquakes as a random process in space 

and time and for this reason earthquakes are inherently unpredictable (Geller et al., 

1997). On the other hand, according to the more optimistic approach, the 

predictability of earthquakes is difficult but not impossible and only through a better 

understanding of the phenomenon and the support of technology will this goal be 

achievable (Wyss, 2001). 

 

2.2.1 The search for the “silver bullet” 

In the second half of the 1970s, seismologists were optimistic that earthquakes could 

be predicted quickly. This wake of optimism came largely from the first successful 

prediction of the 7.8 magnitude Haicheng earthquake in China February 4, 1975 

(Cicerone et al., 2009). Numerous phenomena such as geodetic deformation, 

groundwater level variation, chemistry and other properties were analyzed before 
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the mainshock occurrence. However, the precursor signal that played a key role in 

the warning was the increase in foreshock activity a few hours before. After the 

earthquake of magnitude 7.8 the city was seriously damaged but warning signal and 

the subsequent evacuation order saved the lives of thousands of residents. Although 

the prediction of the Haicheng earthquake was a blend of confusion, empirical 

analysis, intuitive judgment, and good deal of luck, it was an attempt to predict a 

major earthquake that for the first time did not end up with practical failure.  The 

optimism inspired by this success was short-lived. The following year, on July 28, 

1976, an earthquake of magnitude 7.6 struck the city of Tangshan, a thriving 

industrial city with approximately one million inhabitants, without warning. None of 

the precursors observed near Haicheng were observed this time. The earthquake 

caused at least  250,000 fatalities and 164,000 injured (Wang et al., 2006). The analysis 

of precursor signals related to the preparation process of strong earthquakes, the 

“silver bullets” as defined by (Jordan, 2006), continued for the next two decades, and 

in the 1990s, during the 25th General Assembly of the International Association of 

Seismology and Physics of the Earth’s Interior (IASPEI) held in Istanbul, the idea of 

compiling a list of significant precursors was advanced. As precursor signal is 

intended a variation of a physical, chemical, or biological characteristic in a certain 

geographical region that could be related to the preparation process of a strong 

seismic event (Wyss, 1997). A precursor signal is defined as diagnostic if can predict 

with high probability the location, time, and the magnitude range of an impending 

seismic event with a small range of error (Wyss, 1991). In addition, it is necessary for 

the precursor signal to be strongly correlated with seismic activity and to be 

supported by accurate documentation describing the quality, characteristics, and 

result of observations before an earthquake. The evaluation procedure to assess the 

predictive capability of each proposed precursor signal (Fig. 2.3) has been more 

rigorous than a journal peer review because of the limited opportunity for 

independent testing (Wyss and Booth, 1997). During the first evaluation round, 

concluded in the early 1990s, the expert panel criticised the lack of a precise 



39 

 

definitions of the anomalies associated with the candidate precursor phenomena, a 

comprehensive explanation of the experiments conducted, or consideration of other 

possible origin of the anomalies. At the beginning of 1994 the list of candidate 

precursors was composed by five precursor signals derived from seismicity patterns 

(foreshocks and pre-shocks), ground water proprieties (Radon concentrations and 

temperature decrease in ground water) and crustal deformation (ground water rise) 

(Wyss, 1997).  

 

Figure 2.3: Review process used by the IASPEI Sub-commission on Earthquake 

Prediction to evaluate nominations for the IASPEI Preliminary List of Significant 

Precursors (Wyss, 1997).   

 

Other proposed precursor signals include change in crustal strain rates, changes in 

seismic wave velocities, change in crustal electrical conductivity, change in Radon or 

other geochemical gasses concentration in ground water, in ground and air, ground 

water level fluctuations, thermal anomalies, precursor based on seismicity (Cicerone 
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et al., 2009). At the end of the 1990s, it was concluded that it was not sufficiently clear 

whether the phenomena proposed as significant precursor signals were understood 

to such a degree that they could be used for prediction. However, they represent a 

list of phenomena that were considered to show an above-average probability of 

being useful in earthquake prediction (Wyss and Booth, 1997).   

Although the search for precursor diagnostic signals and the silver bullet approach 

proved to be fruitless (Kagan, 1997) the analyses on precursor signals have 

contributed to the improvement of knowledge of seismic phenomena, processes 

related to fault systems and seismic sources. Currently, technologies and instruments 

have improved considerably, and quality seismological, geodetic, and geophysical 

data are currently available for many regions of the world. These advances have 

improved the ability to analyze earthquake predictability. However, to check and 

analyze non seismic signals is necessary to install and maintain a specific network 

and wait a long time for the occurrence of damaging earthquakes. In contrast, most 

of the world's seismic regions have a seismological network that exists since dozens 

of years and continuously collects data. For this reason, signals based on seismicity 

or that can be derived from seismicity could be simpler to analyze and test. 

 

2.2.2 Deterministic predictions  

Deterministic predictions try to define the occurrence of future seismic events within 

a certain space-time domain. They are typically defined as deterministic affirmations 

according to a future earthquake will occur (or will not) in a certain subdomain of a 

geographical region, with a certain magnitude range and in a certain time window 

(𝑡, 𝑡 + Δ𝑡). The deterministic prediction approach consists in the analysis over time 

and space of a precursor signals or seismicity patterns that could suggest with high 

probability the occurrence of an impending strong target earthquake. A target 

earthquake is defined as an event characterized by a magnitude above a certain 

identified threshold. An alarm of temporal duration Δ𝑡 is triggered when a single 
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precursor phenomena or a certain combination of them is detected (Keilis-Borok, 

2002). A target event to forecast is considered predicted if it occurs within the alarm 

space-time domain. An alarm is considered false alarm if no target earthquake occurs 

within the alarm domain (type I error, or false positive).  If a target earthquake occurs 

outside any alarm space-time domain and in a sub-domain without any alarm is 

considered a failure to predict (type II error, false negative) (Fig. 2.4). 

 

 

Figure 2.4: Possible outcome from alarm-based deterministic predictions (Keilis-

Borok, 2002). 

 

A deterministic forecast can also be performed using anti-alarm, an assertion that no 

target earthquake will occur within a certain space-time domain for which the anti-

alarm has been issued (Molchan and Kagan, 1992). Even if the procedure to conduct 

deterministic prediction is developed and described in literature (Molchan and 

Kagan, 1992; Keilis-Borok, 2002; Zechar and Jordan, 2008), it is currently not yet 

possible to make reliable deterministic predictions of earthquakes because a 

diagnostic precursor observable before the majority of strong earthquakes (the 

“silver bullet”) has not yet been found. In addition, often  precursor phenomena are 

different for different earthquakes and the success of measuring some anomalous 

phenomenon before an earthquake usually depends on having a good scientific 

experiment operating in an area before, during and after an earthquake (Cicerone et 

al., 2009). 
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2.3 Probabilistic forecasts 

Earthquake forecasting is an essential tool for earthquake risk reduction, and after 

the failure of the 'silver bullet' search in the 1980s-1990s, the approach has changed 

radically since the new century.  In fact, currently seismologists prefer to speak about 

“earthquakes forecasting” instead of “earthquakes prediction”. The difference is not 

only linguistic but requires changing the approach from deterministic prediction to 

statistic forecast. The probabilistic forecasts do not focus directly on the behavior of 

potentially precursive signals, but rather on the probability that a future target 

earthquake will occur in given space-time domain (Marzocchi and Lombardi, 2009; 

Jordan et al., 2011). Depending on the level of information used for their elaboration, 

the forecasts can be defined as time dependent and time independent. Time-

independent forecasts assume earthquakes as Poissonian random processes in the 

long-term and the short-term seismicity is not considered for probability estimates. 

Probability estimates are made considering hypocenter of past earthquakes, active 

faults position, average time of recurrence, satellite, and tectonic data to assess the 

long-term seismic hazard (Jordan et al., 2011). Time-dependent forecasts, on the other 

hand, aim to define the time-dependent probability that a certain target earthquake 

will occur given the information 𝐼(𝑡) available at a certain instant 𝑡. Such information 

regard mainly the short and medium-term seismicity that can be obtained from 

seismic and geological catalogues in which the history of seismicity of a certain 

region, the characteristics of faults that have been activated over time triggering 

earthquakes, are recorded (Jordan et al., 2011).  

 

2.3.1 Forecast time scale 

Earthquake forecasts can be classified according to their time interval of validity in 

long, medium, and short term. Long-term forecasts generally define the time-
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independent probability of occurrence over a time horizon of the order of a decade 

and are useful in seismic hazard assessment.  This latter is necessary and essential 

both for the characterization of the territory and from the decision-making point of 

view to establish the regulations that define the guidelines for the construction of 

new buildings or the adaptation of existing ones. Medium-term forecasts provide 

probabilistic estimates on time scales of the order of a year and can be useful for 

preparing retrofitting operations of existing buildings. Short-term forecasts, on the 

other hand, provide probabilistic information on a daily, weekly, or monthly time 

scale (Fig. 2.5). 

 

 

Figure 2.5:  Map of expected number of events per square kilometer of magnitude 

greater than 4 for 12 April 2009 in the L'Aquila earthquake area (Marzocchi and 

Lombardi, 2009). The upper left corner shows the daily probability of having 

earthquakes of magnitude 4 and 5 or higher in the entire area. The forecasts on the 

left and right are the same. (Left) The map contains the past seismicity used by the 

model. (Right) The map contains earthquakes (blue dots) that occurred during the 

forecast time windows. The size of the dots is scaled with the magnitude. 
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Such forecasts are relevant, especially during periods of higher than usual seismicity 

(e.g., before a strong earthquake if it is preceded by foreshocks, or after a strong 

earthquake) where the population and decision-makers wish to receive information 

regarding the possibility of major seismic events to prepare immediate seismic risk 

mitigation operations (Marzocchi and Lombardi, 2009; Azarbakht et al., 2021). 

However, although the daily or weekly probability of a potentially destructive 

earthquake in a given area may increase by several orders of magnitude from the 

background value, after an intermediate earthquake or during a seismic sequence, it 

often remains in the range of a few percent.  Such low probability values are difficult 

to use to prepare imminent and generalized mitigation procedures (Marzocchi et al., 

2015), although they provide relevant information to civil protection authorities if 

properly communicated. 

 

2.3.1 Operational earthquake forecasting (OEF)  

The probability of occurrence of a certain target earthquake in each area does not 

remain constant over time but generally varies on a daily scale in correlation with 

seismicity. The purpose of operational earthquake forecasting (OEF) is to distribute 

authoritative information regarding variations in seismic risk over time, particularly 

in the short term, to assist communication and preparation of the population for a 

potential destructive earthquake (Jordan et al., 2014).  The guidelines and status for 

the development of OEF were proposed and described by the International 

Commission for Earthquake Forecasting and for Civil Protection (ICEF) appointed by 

the Italian government following the L'Aquila earthquake. Underlying the guidelines 

for OEF described in the ICEF report (Jordan et al, 2011) and remarked, e.g., in 

Jordan et al., 2014, Woo and Marzocchi 2013, the two important principles that 

should guide OEF concern transparency and the separation of risk from hazard. 

According to the principle of transparency, authoritative information on future 

seismic activity should also be communicated in probabilistic terms with a certain 
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timeliness and frequency to all potential members of the public who wish to use it. 

The principle of separating risk from hazard, supports the dissemination of scientific 

information on future seismic activity independently of its application for seismic 

risk assessment and mitigation. The dissemination of OEF information in 

probabilistic terms therefore helps to separate hazard estimates and thus the role of 

scientists from that of public civil protection administrations. The sharing of 

probabilistic estimates produced by earthquake forecasting models recognized in the 

literature e.g. ETAS (Ogata, 1988) to a wide audience allows, under the guidance of 

civil protection administrations, to weigh decisions individually by assessing the 

costs and benefits of each seismic risk mitigation action (Woo and Marzocchi, 2014) 

(Fig. 2.6). A similar application of OEF was tested in New Zealand, where during the 

Canterbury and Cook Streit earthquake sequences, which occurred between 2011 and 

2013, the population was informed of the increased danger in the short term. In 

particular, the population in the affected areas was allowed to undertake individual 

mitigation operations, including evacuation (Jordan et al., 2014).  

 

Figure 2.6: Schematic diagram of an operational forecasting system  (Jordan et al., 

2014). 

In this sense, operational earthquake forecasting offers a more cautious approach 

than the declaration of an alarm or the mass evacuation of an area. Such caution in 

fact limits the economic damage resulting from a potential false alarm. The 
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dissemination of short-term seismic hazard estimates allows the individual to 

interpret and understand the information and thus to undertake the behavior 

deemed most appropriate in terms of risk mitigation. 

2.3.2 Epidemic Type Aftershock Sequence (ETAS) model 

Most probabilistic models applied in seismology are based on empirical 

relationships. The Epidemic Type Aftershock Sequence (ETAS, Ogata, 1988)) is 

defined as a stochastic point process and is particularly used to model aftershock 

sequences and to obtain probabilistic estimates of earthquake occurrence. The ETAS 

model was formulated considering that the decay in time of the aftershock sequence 

often cannot be described by a single Omori-Utsu law.  Guo and Ogata (1997) and 

Ogata et al., (2003) observed that often the strongest aftershocks are capable of 

generating a secondary aftershock sequence. Therefore, the ETAS model considers 

each aftershock as capable of triggering subsequent aftershocks and the occurrence 

rate for a certain 𝑡𝑡ℎinstant is given by the superposition, weighted by the magnitude 

of the parent event, of the decays described by the time-shifted Omori-Utsu decay 

function (Ogata and Zhuang, 2006) (fig. 2.7). The expected temporal occurrence rate 

at the time 𝑡 takes the form: 

𝜆(𝑡,𝑚) = ℎ(𝑚) [𝜇 + ∑ 𝑘(𝑚𝑖)𝑓(𝑡, 𝑡𝑖)

𝑡𝑖 < 𝑡

] 
(2.2) 

where 𝜇 represents the rate of background seismicity (expressed as shocks per unit 

time) of the analyzed area. In the literature several implementations of the Epidemic 

Type Aftershock Sequence (ETAS) model are described (e.g., Console et al., 2006, 

Lombardi and Marzocchi, 2010). In most of them the time dependence 𝑓(𝑡, 𝑡𝑖) is 

formulated as an Omori decay starting at the times of occurrence of each earthquake 

𝑓(𝑡) =
𝐻(𝑡 − 𝑡𝑖)𝑘

(𝑡 − 𝑡𝑖 + 𝑐)
𝑝

 
(2.3) 

where 𝑡𝑖 represent the occurrence time of the 𝑖 − 𝑡ℎ event, the parameters 𝑘, 𝑐 and 

𝑝 are the typical parameter of the Omori-Utsu law (see section 1.10) that are common 
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to all 𝑖 − 𝑡ℎ event (Ogata, 1998)  and 𝐻(𝑡 − 𝑡𝑖) is the Heaviside step function which is 

1 if 𝑡 − 𝑡𝑖 > 0 and is 0 otherwise. The first term of the summation, 𝑘(𝑚𝑖), is adopted 

to scale the efficiency of a shock in generating aftershock according to its magnitude 

𝑚𝑖 and takes the form  

𝑘(𝑚𝑖) = 𝑒
𝛼(𝑚𝑖−𝑚𝑐) (2.4) 

where 𝛼 is the triggering capability parameter, 𝑚𝑐 is the minimum magnitude of 

completeness. The multiplication factor, ℎ(𝑚), represent the Gutenberg and Richter 

law for earthquake magnitudes of 𝑚𝑐 or larger and takes the form  

ℎ(𝑚) = 𝛽𝑒−𝛽(𝑚−𝑚𝑐) (2.5) 

where 𝛽 = 𝑏 𝑙𝑛10 and 𝑏 is the slope of the frequency-magnitude distribution (eqs. 

1.23 and 1.25).  

 

Figure 2.7: Expected daily rate of earthquakes with 𝑀 ≥ 5.0 for a squared area of side 

43 km surrounding the epicenter of L'Aquila earthquake occurred in Italy on 6 April 

2009, estimated using the ETAS model described in section 4.5. 
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The temporal ETAS model was extended by Ogata (1998) to several space-time 

models that are defined considering empirical studies of spatial aftershock clustering 

(Ogata and Zhuang, 2006). The space-time ETAS model is characterized by a 

conditional intensity function, which is the probability of an earthquake occurring in 

the infinitesimal volume of space-time conditional on all past seismicity (Ogata and 

Zhuang, 2006; Lombardi and Marzocchi 2010b) defined with the form 

𝜆(𝑡𝑖, 𝑥𝑖, 𝑦𝑖 , 𝑚𝑖) = 𝜈𝜆0(𝑥, 𝑦,𝑚) +∑[𝑓(𝑡 − 𝑡𝑖)𝑘(𝑚𝑖)𝑔(𝑥 − 𝑥𝑖, 𝑦 − 𝑦𝑖|𝑚𝑖)ℎ(𝑚)]

𝑡𝑖<𝑡

 (2.6) 

where 𝜆0(𝑥, 𝑦, 𝑚) represents the background seismicity,  𝜈 represents the ratio 

between the expected rate of independent events of the background seismicity and 

the total number of events.  

The probability distribution function of the location 𝑔(𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑖|𝑚𝑖) of triggered 

events depends on the magnitude 𝑚𝑖 and the location (𝑥𝑖, 𝑦𝑖) of its parent. During the 

evolution and improvement of the ETAS space-time model through clustering 

analysis in different regions, several formulations to describe the spatial triggering 

pdf were proposed (Zhuang et al., 2004, 2011; Ogata and Zhuang, 2006). The most 

used, summarized in Zhuang et al. (2011), are: 

(i) 
𝑔(𝑥 − 𝑥𝑖, 𝑦 − 𝑦𝑖) =

1

2𝜋𝐷2
𝑒
−
(𝑥−𝑥𝑖)

2+(𝑦−𝑦𝑖)
2

2𝐷2  
(2.7) 

used by Rathbun (1993) and Console et al. (2003) where 𝐷 is the characteristic 

triggering distance. 

(ii) 
𝑔(𝑥 − 𝑥𝑖, 𝑦 − 𝑦𝑖|𝑚𝑖) =

1

2𝜋𝐷2𝑒𝛼(𝑚𝑖−𝑚𝑐)
𝑒
−
(𝑥−𝑥𝑖)

2+(𝑦−𝑦𝑖)
2

2𝐷2𝑒𝛼(𝑚𝑖−𝑚𝑐)  
(2.8) 

used by Ogata (1998) and Console et al. (2003) where the triggering distance from the 

epicenter (𝑥𝑖, 𝑦𝑖) is scaled according to the magnitude 𝑚𝑖 of the 𝑖 − 𝑡ℎ event.  

(iii) 
𝑔(𝑥 − 𝑥𝑖, 𝑦 − 𝑦𝑖) =

(𝑞 − 1)[𝐷2]𝑞−1 

𝜋[(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2 + 𝐷2]𝑞
 

(2.9) 
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used by (Ogata, 1998; Console et al., 2003; Falcone et al., 2010; A. M. Lombardi and 

Marzocchi, 2010) where the 𝑞 parameter is adopted as exponent for the triggering 

spatial kernel.  

(iv) 
𝑔(𝑥 − 𝑥𝑖, 𝑦 − 𝑦𝑖|𝑚𝑖) =

(𝑞 − 1)[𝐷2𝑒𝛼(𝑚𝑖−𝑚𝑐)]
𝑞−1

 

𝜋[(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2 + 𝐷2𝑒 𝛼(𝑚𝑖−𝑚𝑐)]𝑞
 

(2.10) 

used by (Ogata, 1998; Zhuang et al., 2002, 2004) considering the scaling factor (as in 

eq. 2.8). 

(v) 
𝑔(𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑖|𝑚𝑖) =

(𝑞 − 1)[𝐷2𝑒𝛾(𝑚𝑖−𝑚𝑐)]
𝑞−1

 

𝜋[(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2 + 𝐷2𝑒 𝛾(𝑚𝑖−𝑚𝑐)]𝑞
 

(2.11) 

used by (Zhuang, 2005; Ogata and Zhuang, 2006; Marzocchi and Lombardi, 2009) 

where the scaling factor 𝛾 is assumed independent by the scaling factor 𝛼 used to 

scaling the productivity of the 𝑖 − 𝑡ℎ event.   

The estimation of parameters of the ETAS model (e.g., 𝑘, 𝑐, 𝑝, 𝐷, 𝛼, 𝛾, 𝑞, and 𝜈) can be 

done through the MLE method (Ogata, 1998). Given the set of times, magnitudes, 

and space coordinates {(𝑡𝑖, 𝑚𝑖, 𝑥𝑖, 𝑦𝑖)|𝑚𝑖 ≥ 𝑚𝐶 , 𝑖 = 1, … , 𝑛} for events that occurred 

within an analysis region 𝑅 during a time range [𝑇1, 𝑇2] the log likelihood of the 

space-time ETAS model (eq. 2.6) is given by:  

ln 𝐿 = ∑ ln 𝜆(𝑡𝑖, 𝑚𝑖, 𝑥𝑖, 𝑦𝑖)

𝑡𝑖∈(𝑇1,𝑇2);𝑚𝑖≥𝑚𝑐;(𝑥𝑖,𝑦𝑖)∈𝑅

−∫ ∫ ∬𝜆(𝑡,𝑚, 𝑥, 𝑦) 𝑑𝑦 𝑑𝑥 𝑑𝑚 𝑑𝑡

𝑅

𝑚𝑢

𝑚𝑐

𝑇2

𝑇1

 
(2.12) 

where 𝑚𝑢 is the maximum expected magnitude for the region R. The second term of 

the loglikelihood function (eq. 2.12) represent the expected number 𝑁 of events 

during the time windows [𝑇1, 𝑇2]. From N, assuming the occurrence of earthquakes 

as a generalized Poisson process is possible to estimate the probability of earthquake 

occurrence with magnitude 𝑚𝑐 ≤ 𝑚 ≤ 𝑚𝑢 within the region 𝑅 (Fig. 2.8) during the 

time window [𝑇1, 𝑇2] as 

 

𝑃 = 1 − 𝑒𝑥𝑝(−∫ ∫ ∬𝜆(𝑡,𝑚, 𝑥, 𝑦) 𝑑𝑦 𝑑𝑥 𝑑𝑚 𝑑𝑡

𝑅

𝑚𝑢

𝑚𝑐

𝑇2

𝑇1

) 
(2.13) 
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Figure 2.8: Map of expected number of events per square kilometer of magnitude 

greater than 5.5 for 5 (left) and 6 (right) April 2009 in the L'Aquila earthquake area 

(Marzocchi and Lombardi, 2009). In the upper left corners are the occurrence 

probabilities are indicated.  
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the computational part and interpretation of the results. 

The study and analysis of the frequency with which strong shocks (4.0≤Mw<5.0), widely felt 

by the population, were followed in the same area by potentially destructive main shocks 

(Mw≥5.0) have been conducted for various seismic areas around the world. Assuming the 

stationarity of the seismic release properties, such frequencies can be tentatively used to 

estimate the probabilities of potentially destructive shocks after the occurrence of future 

strong shocks. This allows us to set up an alarm-based forecasting hypothesis related to strong 

foreshocks occurrence.  Such hypothesis is tested retrospectively on the data of a homogenized 

seismic catalogue of the Italian area against a purely random hypothesis that simply forecasts 

the target main shocks proportionally to the space-time fraction occupied by the alarms. We 

compute the latter fraction in two ways i) as the ratio between the average time covered by the 

alarms in each area and the total duration of the forecasting experiment (60 years) and ii) as 

the same ratio but weighted by the past frequency of occurrence of earthquakes in each area. In 
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both cases the overall retrospective performance of our forecasting algorithm is definitely 

better than the random case. Considering an alarm duration of three months, the algorithm 

retrospectively forecasts more than 70% of all shocks with Mw5.5 occurred in Italy from 

1960 to 2019 with a total space-time fraction covered by the alarms of the order of 2%. 

Considering the same space-time coverage, the algorithm is also able to retrospectively 

forecasts more than 40% of the first main shocks with Mw5.5 of the seismic sequences 

occurred in the same time interval. Given the good reliability of our results, the forecasting 

algorithm is set and ready to be tested also prospectively, in parallel to other ongoing 

procedures operating on the Italian territory.   

 

3.1 Introduction 

Even if the deterministic prediction of earthquakes is presently not feasible and 

perhaps it will never be (Geller et al., 1997), several methods of probabilistic 

operational forecasting have been proposed in the last decades (see Jordan and Jones, 

2010 and Jordan et al., 2011 for an overview). Many of such methods take advantage 

of the well-known property of earthquakes to cluster in space and time (Mulargia 

and Geller, 2003; Kagan, 2014) and in particular of the possibility that relatively small 

shocks, occurring in advance (foreshocks) of destructive main shocks, might be used 

as precursory signal.   

Jones and Molnar (1976, 1979) first observed that the property of worldwide strong 

earthquakes of being preceded by a few days or weeks of smaller shocks could have 

been used to predict somehow their occurrence. Jones (1984, 1985) noted that in 

California the occurrence of a weak shock increased of several order of magnitude 

the probability of occurrence of a main shock in the following hours or days and  

Agnew and Jones (1991) and  Jones (1994) computed the probability of a major 

earthquake along the San Andreas fault in California, given the occurrence of a 

potential foreshock nearby the fault. The occurrence of foreshocks was then adopted 
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as one of possible precursor of large earthquakes by the Southern San Andreas 

Working Group Southern San Andreas Working Group (1991) and  Reasenberg 

(1999a, 1999b)  estimated the prospective frequency of potential foreshock being 

followed by stronger earthquakes in California and worldwide. 

In Italy, Caputo et al. (1977, 1983) analyzed earthquakes’ swarms as forerunners of 

strong earthquakes, Grandori et al. (1988) proposed an alarm system based on the 

occurrence of a pair of foreshocks, Console et al. (1993) and  Console and Murru 

(1996) studied the foreshock statistics and their possible relationship to earthquake 

prediction and  Di Luccio et al. (1997)  and Console et al. (1999) set up a forecasting 

hypothesis for the occurrence of earthquakes conditioned by prior events.  

More recently, Gasperini et al. (2016), by the retrospective analysis of a homogeneous 

seismic catalogue of the Italian region, computed the relative frequencies with which 

strong shocks (defined as 4.0≤Mw<5.0) were followed in the same area by potentially 

destructive main shocks (defined as Mw≥5.0, 5.5, 6.0). In particular, they found that 

just after strong shocks, the relative frequency of potentially destructive main shocks 

in the same area increases with respect to quiet periods by a factor up to about 

100000. Then, as time goes by without any main shock occurring, such factor 

decreases logarithmically down to less than 10 for time windows of months to years. 

Within one day after the occurrence of a strong shock, the frequencies of main shocks 

with Mw ≥ 5.0 and Mw ≥ 5.5 range from 5 per cent to 2 per cent while within one 

month they range from 14 per cent to 6 per cent. Frequencies remain quite stable for 

about one hour after the strong shock and then start to decrease logarithmically at a 

rate of about 1 per cent for a doubling of the time elapsed from the strong shock. The 

frequencies of large main shocks (Mw ≥ 6.0) are generally lower than 1 per cent 

except from about one month after a strong shock with 4.5 ≤ Mw < 5.0 when they 

become of the order of 4 per cent, but they decrease well below 1 per cent about two 

or three months after the strong shock if the main shock did not actually occur in the 

meantime. About 30 per cent of main shocks have been preceded by strong shocks in 
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the day before, about 50 per cent one in the month before and about 60 per cent in the 

year before.  

All such evidence suggests us to formulate an alarm-based forecasting hypothesis 

related to the simple occurrence of strong shocks in a given area. In this work we first 

set up such hypothesis and then optimize it by the retrospective analysis of the 

HOmogenized instRUmental Seismic catalogue (HORUS) of the Italian area from 

1960 to 2019 (Lolli et al., 2020) which is an improved and updated version of the 

seismic catalogue used by Gasperini et al. (2016).  

In our knowledge, this is the first alarm-based forecasting experiments applied to the 

Italian region after the one by Grandori et al. (1988) cited above and after Console et 

al. (2010) and Murru et al. (2009) who converted to an alarm-based approach 

previous probabilistic forecasting studies by Console and Murru (2001) and Console 

et al. (2003, 2006). In fact, the latter studies, as well as others forecasting efforts in 

Italy (see Schorlemmer et al., 2010 and Marzocchi et al., 2014 for an overview), mostly 

based on the Epidemic-Type Aftershock Sequence (ETAS) model (Kagan and 

Knopoff, 1987, Ogata, 1988), were developed to reproduce at best the general 

behavior of future seismicity, not to issue a warning of a possibly impending 

damaging earthquake.  

The present forecasting hypothesis will be possibly submitted for prospective testing 

and validation to the testing facilities of the Collaboratory Study of Earthquake 

Predictability (CSEP, Jordan, 2006, Zechar et al., 2009). 

 

3.2 Setting up the forecasting hypothesis 

We issue an alarm of duration Δ𝑡 within a circular area (CA) of radius R every time a 

strong shock with 𝑀𝑚𝑖𝑛 ≤ 𝑀 < 𝑀𝑚𝑎𝑥 occurs inside the CA. As target events to be 

forecasted we consider all the shock, with magnitude above a threshold 𝑀𝑚 ≥ 𝑀𝑚𝑎𝑥. 

We must note that after the actual occurrence of a target shock, the forecast of further 
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target shocks in the same area and in the following weeks or months is somehow 

favored by the strong aftershocks of the previous target event. Hence, we also verify 

the ability of our method to forecast only the first target shock of each sequence. We 

then consider also a declustered set of target shocks obtained by eliminating those 

target shocks occurred within a distance 𝐷 = 50 km and a time window of a year 

after another target shock of the sequence, even if they are larger than the first target 

shock of the sequence. This kind of declustering is somehow different with respect to 

that adopted for example in seismic hazard assessment (e.g., Gardner and Knopoff, 

1974, Reasenberg, 1985) in which each sequence is usually represented by the largest 

shock, even if it is not the first one in the sequence. We choose the declustering space 

and time windows based on our experience on past Italian seismic sequences, but we 

also checked visually that non possible secondary mainshock remains not 

declustered. Also note that the chosen declustering windows approximately 

correspond to those determined by the algorithm of Gardner and Knopoff (1974) for 

M=5.5. 

As source areas we consider a regular tessellation of the Italian territory made of 

partially overlapping CAs with fixed radius 𝑅. Starting from an initial CA, centred at 

latitude 47º and longitude 7º, we compute the centers of the neighbor CAs by moving 

with steps 𝐷 = 𝑅√2 both in longitude (from 7º to 19º) and in latitude (from 47º to 36º) 

covering then the whole Italian area with partial overlapping (Fig. 3.1). Based on the 

results of our previous analysis (Gasperini et al., 2016), we choose a radius 𝑅 = 30 

km, as a good compromise between the opposing demands of having short spatial 

resolution and a sufficiently high number of earthquakes within each CA, so 

obtaining a total of 695 partially overlapping CAs. However, as the completeness of 

the seismic catalogue is poor in offshore areas, we consider in our analysis only the 

CAs within which at least one earthquake with Mw≥4.0 occurred inland from 1600 to 

1959 (so as to be independent of the seismicity from 1960 to 2019 that will be used for 

the retrospective testing and optimization of the forecasting method), according to 
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the CPTI15 catalogue  (Rovida et al., 2016, 2020). According to Gasperini et al. (2016), 

we consider as target shocks the earthquakes with Mw5.0, Mw5.5 and Mw6.0, 

which, in Italy, usually cause moderate, heavy, and very heavy damage to buildings 

and none, a few and many victims respectively. Larger thresholds cannot be 

investigated because only three shocks with Mw ≥6.5 (1976 Friuli with Mw=6.5, 1980 

Irpinia with Mw=6.8 and 2016 Norcia with Mw=6.6) occurred during the time 

interval covered by the HORUS seismic catalogue. 

 

Figure 3.1: Tessellation of the Italian territory used for the retrospective forecast 

experiment. Circular areas (CA) with R=30 km within which at least one earthquake 

with Mw≥4.0 occurred inland from 1600 to 1959 according to the CPTI15 catalogue 

(Rovida et al., 2020). 



57 

 

We count a success if a target shock occurs during one or more alarm time windows 

Δ𝑡 and within one or more CA. On the contrary we count a missed forecast if a target 

shock occurs outside any alarm window of any CA. According to Molchan (1990, 

1991) we compute the miss rate as  

𝜈 =
𝑁 − ℎ

𝑁
 

(3.1) 

where h is the number of target events successfully forecasted and N is the total 

number of target events.  

We also compute the total time duration 𝑑𝑐 of alarms as the union of all alarm 

windows within each CA. This can also be computed by multiplying the window 

length Δ𝑡 by the number n of issued alarms and then subtracting the sum of time 

intersections between alarm windows ∩ 𝑡𝑠 

𝑑𝑐 =⋃Δ𝑡 = 𝑛Δ𝑡 −∑∩ 𝑡𝑠 
(3.2) 

The fraction of time occupied by alarms within each CA is then computed as 

𝜏𝑐 =
𝑑𝑐
𝑇

 
(3.3) 

where T is the total duration of the forecasting experiment. 

Finally, the overall fraction of space-time occupied by alarms is computed as the 

average of 𝜏𝑐 over all CAs  

𝜏𝑢 =
1

𝑀
∑𝜏𝑐 

(3.4) 

where M is the number of CAs. Note that such definition of fraction of space-time 

occupied by alarms is consistent with strong shocks occurring in the overlapping 

region of two adjoining CAs because in such case we sum the alarm fraction of time 

𝜏𝑐 for both CAs.  

Following Shebalin et al. (2011) we also compute the fraction of space-time occupied 

by alarms by weighting each alarm with the long-term rate of earthquakes within 
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each CA. We compute such rate based on the data of the CPTI15 catalogue (Rovida et 

al., 2016, 2020) using different completeness thresholds Mc for different time 

intervals from 1620 to 1959 (Table 3.1). We count the numbers of earthquakes 𝑁(𝑀𝑐) 

above each magnitude threshold Mc occurred within each CA and within the 

corresponding time interval of completeness Δ𝑇(𝑀𝑐). Then we compute for each 

magnitude threshold the expected rate 𝜆 (event/year) of earthquakes with Mw≥4.0, 

assuming the b-value of the frequency-magnitude distribution (Gutenberg & Richter, 

1944) equal to 1 (Rovida et al., 2020): 

𝜆 =
𝑁(𝑀𝑐)

Δ𝑇(𝑀𝑐)
10𝑀𝑐−4.0 

(3.5) 

In each CA, we then compute the average 𝜆𝑎𝑣𝑒 of rates 𝜆 > 0 from different 

magnitude thresholds. For those CAs for which such average frequency cannot be 

computed because there are no earthquakes within the completeness time window of 

any magnitude threshold, we assign the minimum rate computed overall. Finally, 

the weighted fraction of space-time occupied by alarms is computed from all CAs as  

𝜏𝑤 =
∑𝜆𝑎𝑣𝑒𝜏𝑐
∑𝜆𝑎𝑣𝑒

 
(3.6) 

See the details of such computations for each CA in Table S1 of the supplemental 

material (Supplementary material 1). 

 

Table 3.1 – Magnitudes of completeness of the CPTI15 catalogue (Rovida et al., 2016, 

2020) 

Magnitude threshold Mc Time interval of completeness  𝚫𝐓 (years) 

Mw≥4.5 1880-1959 80 

Mw≥5.0 1880-1959 80 

Mw≥5.5 1780-1959 180 

Mw≥6.0 1620-1959 340 
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3.3 Dataset used for testing and optimization 

To test and optimize our algorithm, we apply it retrospectively to the HOmogenized 

instRUmental Seismic catalogue (HORUS) of Italian instrumental seismicity from 

1960 to 2019 (Lolli et al., 2020). For the time interval from 1960 to 1980, HORUS 

coincides with the dataset prepared by Lolli et al. (2018). For the period from 1981 to 

2019, it is obtained by merging various data sources and homogenizing the 

magnitudes to Mw as described by Gasperini et al. (2012, 2013). The catalogue used 

here is updated up to the end of 2019, but an automatic procedure able to 

continuously update such catalogue in near real-time (with daily to hourly updates) 

through the downloading of new data from on-line sources and the application of 

magnitude conversions is implemented by Lolli et al. (2020). 

The magnitude completeness threshold for the period 1960-1980 has been assessed 

by Lolli et al. (2018) to be about 4.0 whereas, according to Gasperini et al. (2013), it is 

definitely lower for the successive time periods. Such thresholds might be definitely 

larger in offshore areas owing to the large distances from the closest seismic stations, 

which are usually located on land (excepting for a few instruments deployed on the 

sea bottom). This is the reason why we only consider earthquakes with Mw≥4.0 

occurred within the 190 CAs containing one inland earthquake at least. As our 

interest is to forecast earthquakes that potentially threaten lives and goods, we also 

limit the analysis to shocks shallower than 50 km. We show in Figs. 3.2 and 3.3 the 

spatial distribution of inland earthquakes from the HORUS catalogue (Lolli et al., 

2020) with Mw4.0 and depth < 50 km used for testing and optimization, and the 

time distribution of magnitudes of all inland earthquakes, respectively. The 

catalogue provides uncertainties for all magnitude estimates, ranging from less than 

0.1 (for Mw estimated by moment tensor inversion) to about 0.5 (for Mw proxies 

from body wave magnitude mb observed by a few stations). In general, magnitude 

and location errors have the effect to increase the randomness of the catalogue and 

then to penalize skilled forecasting methods with respect to unskilled ones.  
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Figure 3.2: Spatial distribution of inland earthquakes from the HORUS catalogue 

(Lolli et al., 2020) with Mw4.0 and depth <50 km used for testing and optimization. 

Black dots indicate 4.0Mw<5.0, green dots 5.0Mw<5.5, blue dots 5.5Mw<6.0, red 

dots Mw6.0. 

 

Owing to the Gutenberg Richter (1944) law, errors tend on average to overestimate 

all magnitudes because there are more earthquakes below a given threshold which 

can be overestimated than earthquakes above the same threshold which can be 

underestimated. The larger the error the larger the overestimation. 

On the other hand, magnitude errors are generally larger for small earthquakes 

because the latter are observed by less stations and because accurate method of 

magnitude determination, like moment tensor inversion, cannot be applied to them. 
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This means that in general small earthquakes are overestimated more than larger 

ones and then that foreshocks are overestimated more than target shocks. 

 

 

Figure 3.3: Time distribution of magnitudes of inland earthquakes km from the 

HORUS catalogue (Lolli et al., 2020) with depth <50 km used for testing and 

optimization. Black dots indicate Mw<5.0, green dots 5.0Mw<5.5, blue dots 

5.5Mw<6.0, red dots Mw6.0. 

 

Owing to the Gutenberg Richter (1944) law, errors tend on average to overestimate 

all magnitudes because there are more earthquakes below a given threshold which 

can be overestimated than earthquakes above the same threshold which can be 

underestimated. The larger the error the larger the overestimation. 

On the other hand, magnitude errors are generally larger for small earthquakes 

because the latter are observed by less stations and because accurate method of 

magnitude determination, like moment tensor inversion, cannot be applied to them. 

This means that in general small earthquakes are overestimated more than larger 

ones and then that foreshocks are overestimated more than target shocks. 
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One possible consequence in the present case is that errors in magnitude might 

improperly increase the number of alarms and then the space-time fraction occupied 

by alarms, particularly in earlier times when the coverage of seismic networks was 

coarser, so that to slightly underestimate the real skill of the method. Conversely the 

number of target shocks should not be affected much by magnitude errors because in 

HORUS catalogue the most (about 80%) of Mw5.0 are accurately computed by 

moment tensor inversions. 

 

3.4 Testing and optimizing the forecasting hypothesis 

We here follow the approach proposed by Zechar and Jordan (2008, 2010) based on 

the so called “Molchan error diagram” (Molchan, 1990, 1991; Molchan and Kagan, 

1992). The latter consists of a plot (e.g., Fig. 3.4) of the miss rate 𝜈 (eq. 3.1) as a 

function of the fractions of space-time occupied by alarms 𝜏 (𝜏𝑢 of eq. 3.4 or 𝜏𝑤 of eq. 

3.6). For a paradoxical forecasting method not issuing any alarm, the space-time 

occupied by alarms is 0 and no target events can be forecasted (all target events are 

missed) then it is represented by the point (𝜏, 𝜈) = (0,100%) at the upper left corner 

of the Molchan diagram. On the other hand, for a forecasting method issuing an 

alarm at any time and in any place, so occupying the entire space-time volume, no 

target events are missed and then the forecasting method is represented by the point 

(𝜏, 𝜈) = (100%, 0) at the lower right corner of the diagram. The points on the 

diagonal line connecting such two points (e.g., the black continuous line in Fig. 3.4), 

with equation 

𝜈 = 1 − 𝜏 (3.7) 

indicate the expected performance of a purely random forecasting method that 

simply forecasts target events proportionally to the space-time fraction occupied by 

the alarms.  

On the diagonal line, the ratio between the success rate and the space-time fraction  
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𝐺 =
1 − 𝜈

𝜏
 

(3.8) 

   

is 1 for any 𝜏, while for a skilled forecasting method, located below the line, 𝐺 > 1 

represents the “probability gain” factor with respect to the random case. 

Following Zechar and Jordan (2008), 𝜏 (𝜏𝑢 or 𝜏𝑤) can be assumed as the probability of 

forecasting a target event by chance and then can be used to measure the 

performance of a forecasting method under the reasonable assumption that the 

probability of having exactly h successful forecasts over N targets is given by the 

binomial probability function 

𝐵(ℎ|𝑁𝜏) = (
𝑁
ℎ
) (𝜏)ℎ(1 − 𝜏)𝑁−ℎ (3.9) 

Then the cumulative probability of having by chance h or more successful forecasts is  

𝛼 = ∑𝐵(𝑛|𝑁𝜏)

𝑁

𝑛=ℎ

= 1 −∑𝐵(𝑛|𝑁𝜏)

ℎ−1

𝑛=0

 
(3.10) 

Such statistic allows to measure the skill of a forecasting methods, given the miss rate 

𝜈 and the fraction of space-time occupied by alarms 𝜏. In particular, the lower the 

statistic the higher the skill. Moreover, by inverting eq. (3.10), we can compute the 

expected miss rate 𝜈 at a given 𝜏, for a hypothetical forecasting method with given 

probability 𝛼, and then to plot confidence limits on the Molchan diagram (e.g., the 

blue, violet and green lines in Fig. 3.4).  

This statistic can be used to validate a forecasting method using a prospective dataset 

(collected after the final fixing of the forecasting hypothesis) but even to optimize the 

forecasting hypothesis by searching the values of the parameters of the forecasting 

algorithm (if any) for which the statistic is minimum, by using a retrospective 

dataset. 

A given forecasting method with fixed parameter values is represented by a single 

point (𝜏, 𝜈) on the Molchan diagram. However, one can even consider curves 
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(Molchan trajectories) connecting different points referred to the same general 

forecasting approach but obtained by varying one of the free parameters of the 

forecasting algorithm. In our case we can vary the alarm time window Δ𝑡 from 0 to 

the total duration T of the experiment. In this way, we span the total space-time 

occupied by the alarms and correspondingly the number of successful forecasts, 

which increase with increasing Δ𝑡.  

In the light of such definition, the diagonal line in the Molchan diagram can be seen 

as the Molchan trajectory of a purely random forecasting method. If a forecasting 

method performs better than the random one, its trajectory mainly lies in the lower 

left half of the Molchan diagram below the random line.  

Zechar & Jordan (2008, 2010) proposed to use as a measure of the performance of an 

alarm-based forecasting method the integral of the success rate function 1 − 𝜈𝑓(𝜏) 

normalized to the alarm space-time coverage 𝜏 

𝑎𝑓(𝜏) =
1

𝜏
∫ [1 − 𝜈𝑓(𝑡)]
𝜏

0

𝑑𝑡 
(3.11) 

As the integral corresponds to the area above the Molchan random trajectory, the 

statistic was named Area Skill (AS) score. The AS score is normalized so that its value 

ranges between 0 and 1: the larger the statistic the better the performance. 

The expected value of the AS score for a purely random method can be derived by 

substituting the equation (3.7) of the random line 𝜈𝑓(𝑡) = 1 − 𝑡 in equation (3.11). 

This gives  

〈𝑎𝑓(𝜏)〉 =
1

𝜏
∫ [1 − (1 − 𝑡)]
𝜏

0

𝑑𝑡 =
1

𝜏

𝜏2

2
=
𝜏

2
 

(3.12) 

   

Such expectance function is represented in a plot as a function of 𝜏 by a straight line 

connecting the axes origin (0,0) with the point (100%, 50%) (e.g., the black line in Fig. 

3.5). In such plot, the skilled forecasting methods lie above such random line. 
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Zechar & Jordan (2008, 2010) explored the AS score distribution and found that, for a 

continuous alarm function, the AS score at 𝜏 = 1 is asymptotically Gaussian with a 

mean of 1/2 and a variance of 1/(12N). They also found that the kurtosis excess is -

6/(5N) and hence, for N of the order of a dozen at least, the Gaussian approximation 

provides a good estimate of confidence bounds. Finally, they argued that even if the 

area skill score can be computed for any 𝜏, the power of the test tends to increase 

with increasing 𝜏 and therefore it is the best to use 𝑎𝑓(𝜏 = 1) for hypothesis testing. 

 

3.5 Results of retrospective testing 

In Fig. 3.4 we show the Molchan trajectories for all target shocks (35) with Mw≥5.5 

(not declustered) preceded by strong shocks with 4.4≤Mw<4.8, by varying Δ𝑡 from a 

width of a few seconds to the total duration T=60 years of the catalogue. Red and 

dark blue lines refer to the unweighted (𝜏𝑢) and weighted (𝜏𝑤) fractions of space-time 

occupied by alarms respectively (see in Table 3.2 the numerical values of plotted 

curves).  

The adopted foreshock Mw range (Mw=4.60.2) was chosen after a comparative 

analysis of the relative performance of various ranges with lower and upper 

magnitude bounds varying from the completeness threshold of the catalogue 

(Mw=4.0) to the minimum magnitude of target shocks (Mw=5.0). Such analysis was 

aimed at maximizing the overall AS score and at the same time minimizing the total 

number of alarms (Fig. 3.6).  

Both the red and dark blue lines in Fig. 3.4 lie well below the 𝛼 =1% confidence curve 

(green) for all explored Δ𝑡. All the target shocks are successfully forecasted (𝜈 =0) for 

Δ𝑡=20 years (corresponding to 𝜏𝑢 = 32% and 𝜏𝑤 = 51%) or larger. For Δ𝑡=1 year, 

about 83% of target shocks (29) are successfully forecasted, with space-time 

coverages 𝜏𝑢 =3.3% and 𝜏𝑤 =6.3%. 40% of target shocks (14) are forecasted with Δ𝑡=1 

day for which 𝜏𝑢 = 0.01% and  𝜏𝑤 = 0.03%. The AS diagram in Fig. 3.5 (see Table 3.2 
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for numerical values) confirms such good performance with the scores of the 

forecasting method (red and dark blue lines) well above the random expectation 

(black) and the 1% confidence line (green) for any Δ𝑡. The overall AS scores 𝑎𝑓(𝜏 =

1) =0.960.05 and 𝑎𝑓(𝜏𝑤 = 1) =0.940.05, based on the Student’s t-test, are 

significantly larger than the expectance of a random method (0.5) with significance 

level (s.l.) ≪0.01. 

 

 

Figure 3.4: Molchan diagram for all target shocks with Mw≥5.5 (not-declustered). 

Red and dark blue lines indicate the forecasting performance of foreshocks with 

4.4≤Mw<4.8 for unweighted (𝜏𝑢) and weighted (𝜏𝑤) fractions of space-time occupied 

by alarms respectively (see text). The black continuous line indicates a purely 

random forecasting method that separates skilled (below the line) from unskilled 

(above) forecasting methods. The light blue, violet and green lines indicate the 

confidence limits for 𝛼 =50%, 5% and 1% respectively. The black dashed lines 

indicate probability gains G=2, 5, 10, 20 and 50.  
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Figure 3.5: Area skill score diagram for all target shocks with Mw≥5.5 (not-

declustered). Red and dark blue lines indicate the forecasting performance of 

foreshocks with 4.4≤Mw<4.8 for unweighted (𝜏𝑢) and weighted (𝜏𝑤) fractions of 

space-time occupied by alarms respectively (see text). The black continuous line 

indicates the performance of a purely random forecasting method that separates 

skilled (below the line) from unskilled (above) forecasting methods. The light blue, 

violet and green lines indicate the confidence limits for 𝛼 =50%, 5% and 1% 

respectively.  

 

As noted above the aftershocks produced by the first target shocks of seismic 

sequence may significantly contribute to forecast subsequent target shocks with 

Mw≥5.5 within the same sequence. We then proceed to analyze in the same way the 

declustered set of target shocks with Mw≥5.5 obtained by discarding all target shocks 

occurred within a spatial distance R=50 km and a time window of a year after the 

first and all subsequent Mw≥5.5 shocks of the sequence. This reduces the number of 

considered target shocks with Mw≥5.5 from 35 to 14. 

In Fig. 3.7 and 3.8 we report the same plots as in Fig. 3.4 and 3.5 but for the 

(declustered) set of only the first target shocks with Mw≥5.5 of each sequence (see 
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Table 3.3 for numerical values). The performance is worse than for the not-

declustered set but remains well below the random line and the 𝛼=1% confidence 

curve in the Molchan diagram of Fig. 3.7 and also well above the 𝛼 =1% confidence 

line of AS diagram of Fig. 3.8. Even in this case all 14 target shocks are successfully 

forecasted with Δ𝑡=20 years or larger. For Δ𝑡=1 year, 64% of target shocks (9) are 

forecasted and 29% (4) for  Δ𝑡=1 day. The overall AS score 𝑎𝑓(𝜏𝑢 = 1) =0.930.08 and 

𝑎𝑓(𝜏𝑤 = 1) =0.870.08 are lower than for the not-declustered set but anyhow they are 

significantly larger than the expectance (0.5) of a random method with s.l. ≪0.01. 

 

Figure 3.6: Area Skill (AS) score computed for declustered targets with Mw≥5.5, 

using unweighted (red line) and weighted (blue) fractions of space-time occupied by 

alarms, and total number of alarms (grey bars) as a function of the foreshock 

magnitude range. The arrows indicate the range Mw=4.60.2, chosen as best 

compromise between high AS score and low number of alarms. 
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Table 3.2 – Values of variables in Molchan and Area Skill score plots of Fig. 3.4 and 

3.5 for Mw≥5.5 not-declustered targets.  

t (years) t (days) 𝝉𝒖 𝝉𝒘 h 𝝂 𝒂𝒇(𝝉𝒖) 𝒂𝒇(𝝉𝒘) 

1.6E-08 5.8E-06 8.6E-10 2.0E-09 0 1.000 0.000 0.000 

3.2E-08 1.2E-05 1.7E-09 4.1E-09 1 0.971 0.021 0.022 

6.3E-08 2.3E-05 3.4E-09 8.1E-09 2 0.943 0.037 0.038 

1.6E-07 5.8E-05 8.6E-09 2.0E-08 2 0.943 0.051 0.051 

3.2E-07 1.2E-04 1.7E-08 4.1E-08 2 0.943 0.054 0.054 

4.8E-07 1.7E-04 2.6E-08 6.1E-08 3 0.914 0.060 0.060 

9.5E-07 3.5E-04 5.1E-08 1.2E-07 3 0.914 0.073 0.073 

1.9E-06 6.9E-04 1.0E-07 2.4E-07 3 0.914 0.080 0.080 

3.8E-06 1.4E-03 2.0E-07 4.9E-07 4 0.886 0.090 0.090 

9.5E-06 3.5E-03 5.1E-07 1.2E-06 4 0.886 0.104 0.104 

1.9E-05 6.9E-03 1.0E-06 2.4E-06 6 0.829 0.124 0.124 

2.9E-05 1.0E-02 1.5E-06 3.6E-06 6 0.829 0.140 0.139 

5.7E-05 2.1E-02 3.0E-06 7.1E-06 6 0.829 0.155 0.155 

1.1E-04 4.2E-02 6.0E-06 1.4E-05 7 0.800 0.170 0.170 

3.4E-04 0.13 1.7E-05 4.0E-05 11 0.686 0.227 0.227 

6.8E-04 0.25 3.4E-05 7.7E-05 12 0.657 0.276 0.276 

1.4E-03 0.50 6.5E-05 1.5E-04 13 0.629 0.316 0.314 

2.7E-03 1.00 1.3E-04 2.8E-04 14 0.600 0.350 0.349 

8.2E-03 3.00 3.6E-04 7.8E-04 20 0.429 0.438 0.436 

0.019 7.02 8.1E-04 1.7E-03 22 0.371 0.527 0.525 

0.042 15.22 1.7E-03 3.5E-03 23 0.343 0.587 0.585 

0.083 30.44 3.2E-03 6.5E-03 24 0.314 0.628 0.625 

0.250 91.31 9.1E-03 0.018 26 0.257 0.684 0.682 

0.500 182.62 0.017 0.034 26 0.257 0.712 0.710 

1.000 365.24 0.033 0.063 29 0.171 0.747 0.745 

2.000 730.49 0.062 0.114 30 0.143 0.791 0.789 

5.000 1826.21 0.134 0.238 30 0.143 0.827 0.825 

10 3652.43 0.220 0.374 33 0.057 0.855 0.852 

15 5478.64 0.280 0.457 34 0.029 0.877 0.871 

20 7304.85 0.324 0.511 35 0.000 0.892 0.883 

25 9131.06 0.355 0.546 35 0.000 0.901 0.891 

30 10957.28 0.379 0.572 35 0.000 0.908 0.896 

35 12783.49 0.398 0.592 35 0.000 0.912 0.899 

40 14609.70 0.413 0.605 35 0.000 0.915 0.901 

45 16435.91 0.424 0.613 35 0.000 0.917 0.903 

50 18262.13 0.431 0.617 35 0.000 0.919 0.903 

55 20088.34 0.434 0.619 35 0.000 0.919 0.904 

60 21914.55 0.436 0.620 35 0.000 0.920 0.904 

Full occ. Full occ. 1.000 1.000 35 0.000 0.965 0.940 

t is the duration of alarms, 𝜏𝑢 and 𝜏𝑤 the unweighted and weighted fraction of 

space-time occupied by alarms respectively, h the number of successful forecasts, 𝜈 

the miss rate, 𝑎𝑓(𝜏𝑢) and 𝑎𝑓(𝜏𝑤) the Area Skill scores computed considering the 

unweighted and weighted fraction of space-time occupied by alarms respectively. 

The last row (t= Full occ.)  reports values for a full occupation of the space-time by 

alarms. 
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Figure 3.7: Same as Fig. 3.4 for declustered (first) target shocks with Mw≥5.5.  

 

 

Figure 3.8: Same as Fig. 3.5 for declustered (first) target shocks with Mw≥5.5. 
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Table 3.3 – Same as Table 3.2 for Mw≥5.5 declustered targets (Fig. 3.7 and 3.8). 

 

t (years) t (days) 𝝉𝒖 𝝉𝒘 h 𝝂 𝒂𝒇(𝝉𝒖) 𝒂𝒇(𝝉𝒘) 

1.6E-08 5.8E-06 8.6E-10 2.0E-09 0 1.000 0.000 0.000 

3.2E-08 1.2E-05 1.7E-09 4.1E-09 0 1.000 0.000 0.000 

6.3E-08 2.3E-05 3.4E-09 8.1E-09 0 1.000 0.000 0.000 

1.6E-07 5.8E-05 8.6E-09 2.0E-08 0 1.000 0.000 0.000 

3.2E-07 1.2E-04 1.7E-08 4.1E-08 0 1.000 0.000 0.000 

4.8E-07 1.7E-04 2.6E-08 6.1E-08 1 0.929 0.012 0.012 

9.5E-07 3.5E-04 5.1E-08 1.2E-07 1 0.929 0.043 0.043 

1.9E-06 6.9E-04 1.0E-07 2.4E-07 1 0.929 0.057 0.057 

3.8E-06 1.4E-03 2.0E-07 4.9E-07 2 0.857 0.082 0.082 

9.5E-06 3.5E-03 5.1E-07 1.2E-06 2 0.857 0.119 0.119 

1.9E-05 6.9E-03 1.0E-06 2.4E-06 2 0.857 0.131 0.131 

2.9E-05 1.0E-02 1.5E-06 3.6E-06 2 0.857 0.135 0.135 

5.7E-05 2.1E-02 3.0E-06 7.1E-06 2 0.857 0.139 0.139 

1.1E-04 4.2E-02 6.0E-06 1.4E-05 2 0.857 0.141 0.141 

3.4E-04 0.13 1.7E-05 4.0E-05 3 0.786 0.166 0.165 

6.8E-04 0.25 3.4E-05 7.7E-05 3 0.786 0.189 0.189 

1.4E-03 0.50 6.5E-05 1.5E-04 4 0.714 0.219 0.218 

2.7E-03 1.00 1.3E-04 2.8E-04 4 0.714 0.251 0.250 

8.2E-03 3.00 3.6E-04 7.8E-04 4 0.714 0.274 0.273 

0.019 7.02 8.1E-04 1.7E-03 5 0.643 0.300 0.299 

0.042 15.22 1.7E-03 3.5E-03 5 0.643 0.329 0.329 

0.083 30.44 3.2E-03 6.5E-03 6 0.571 0.360 0.359 

0.250 91.31 9.1E-03 0.018 6 0.571 0.404 0.403 

0.500 182.62 0.017 0.034 6 0.571 0.416 0.415 

1.000 365.24 0.033 0.063 9 0.357 0.473 0.471 

2.000 730.49 0.062 0.114 10 0.286 0.568 0.565 

5.000 1826.21 0.134 0.238 10 0.286 0.646 0.642 

10 3652.43 0.220 0.374 12 0.143 0.701 0.695 

15 5478.64 0.280 0.457 13 0.071 0.742 0.731 

20 7304.85 0.324 0.511 14 0.000 0.772 0.755 

25 9131.06 0.355 0.546 14 0.000 0.792 0.771 

30 10957.28 0.379 0.572 14 0.000 0.805 0.781 

35 12783.49 0.398 0.592 14 0.000 0.815 0.789 

40 14609.70 0.413 0.605 14 0.000 0.821 0.793 

45 16435.91 0.424 0.613 14 0.000 0.826 0.796 

50 18262.13 0.431 0.617 14 0.000 0.829 0.797 

55 20088.34 0.434 0.619 14 0.000 0.830 0.798 

60 21914.55 0.436 0.620 14 0.000 0.831 0.798 

Full occ. Full occ. 1.000 1.000 14 0.000 0.926 0.875 

 

In Figs. 3.9, 3.10, and Figs. S1 and S2 of supplementary material 1, we report the same 

plots of Fig. 3.4, 3.5, 3.7 and 3.8 for target shocks with Mw≥5.0 (numerical values in 

Tables S2 and S3). The performance is definitely worse than for Mw≥5.5 but still 

better than the 1% confidence limit. In particular, even for Δ𝑡 =60 years, only 89 over 
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98 (91%) target shocks for the not-declustered set and only 36 over 44 (82%) for the 

declustered set are successfully forecasted. The reason is that even when Δ𝑡 is equal 

to the total duration of the catalogue, in some CAs there remains a fraction of time 

(before the first strong shock) without any strong shock and then without any alarm. 

Actually, the maximum fraction of space-time occupied by alarms (𝜏𝑢) is only about 

44% of the total space-time and 9 target shocks with Mw≥5.0 occurred in the 

remaining 56%. Here, the last part of the Molchan trajectories, consisting of a linear 

decrease from the last point defined by the algorithm (𝜏𝑢 = 44% and  𝜏𝑤 = 62% with  

𝜈 = 9% for not-declustered and 18% for declustered) to the lower left corner (𝜏 =

100%, 𝜈 = 0), can be interpreted as the application to the remaining earthquakes, not 

predicted by any foreshock, of a purely random forecasting method with success rate 

proportional to the fraction of the remaining space-time region not covered by our 

forecasting algorithm.  

The overall AS scores are 𝑎𝑓(𝜏𝑢 = 1) =0.890.03 and 𝑎𝑓(𝜏𝑤 = 1) =0.850.03 for the 

not-declustered set and 𝑎𝑓(𝜏 = 1) =0.780.04 and 𝑎𝑓(𝜏𝑤 = 1) =0.700.04 for the 

declustered set. In all cases they are significantly larger than the expectance (0.5) of a 

random method with s.l.  ≪0.01. 

In Figs. 3.11, 3.12, and Figs. S3 and S4 of the supplementary material 1, we also report 

the plots for targets with Mw≥6.0 (see numerical values in Tables S4 and S5). The 

performance is similar to that for Mw≥5.5 but as the number of target events is 

smaller (10 not-declustered and 7 declustered), the power of the tests and the 

reliability of possible inferences are relatively poorer. This is actually reflected by the 

fact that the confidence limits in this case are relatively close to the Molchan and AS 

trajectories. 

All not-declustered targets are successfully forecasted with Δ𝑡 = 20 years, 80% with 

Δ𝑡 =1 year and 50% with Δ𝑡 =1 day. For declustered targets, the corresponding 

forecasting rates are 100%, 71% and 43% respectively. The overall AS scores are 

𝑎𝑓(𝜏𝑢 = 1) =0.950.09 and 𝑎𝑓(𝜏𝑤 = 1) =0.910.09 for not-declustered and 𝑎𝑓(𝜏𝑢 =
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1) =0.930.11 and 𝑎𝑓(𝜏𝑤 = 1) =0.870.11 for declustered. In all cases they are 

significantly larger than the expectance (0.5) of a random method with s.l.≪0.01. 

 

Figure 3.9: Same as Fig. 3.4 for all target shocks with Mw≥5.0 (not-declustered). 

 

 

Figure 3.10: Same as Fig. 3.5 for all target shocks with Mw≥5.0 (not-declustered). 
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Figure 3.11: Same as Fig. 3.4 for all target shocks with Mw≥6.0 (not-declustered).  

 

 

Figure 3.12: Same as Fig. 3.5 for all target shocks with Mw≥6.0 (not-declustered).  
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One question that may come to mind when looking at the results of such space-time 

analysis is how much of the observed forecasting performance is due to spatial 

clustering and how much to time clustering. In order to try to answer such question, 

we made some further computations in which the time clustering is eliminated by 

assuming in each CA a permanent alarm for the entire duration of the forecasting 

experiment (T=60 years). We computed the time independent Molchan and AS score 

trajectories by adding step by step one CA at a time, starting from the CA with 

highest weight (highest long-term seismic activity) and then going on, up to add all 

CAs. At each step, the unweighted and weighted fractions of space occupied by 

alarms are computed by simply taking 𝜏𝑐 = 1 in eq. (3.4) and (3.6) respectively for the 

included CAs and 𝜏𝑐 = 0 for the not included CAs. 

The results of such time-independent analysis for declustered (first) target shocks 

with Mw≥5.5 is shown in Figs. 3.13 and 3.14. Even if they are not fully comparable 

with the time-dependent analysis of Fig. 3.7 and 3.8 because the trajectories depend 

on the adopted ordering of the CAs, from the most to the least active, we can note 

that the skill of time-independent analysis appears definitely lower, particularly at  

small 𝜏 and for the weighted trajectories (blue lines). This can be easily explained by 

the higher time clustering at short times (and then at small 𝜏) and by the fact that the 

weights based on the long-term seismic activity penalize more the CAs where the 

target shocks actually occurred in the last 60 years. 

The results for declustered (first) target shocks with Mw≥5.0 and Mw≥6.0 are 

reported in Figs. S5, S6, S7 and S8 of supplementary material 1. For Mw≥5.0, the 

comparison of Fig. S5 and S6 with the time-dependent analysis of Figs. S1 and S2 is 

similar to the case for Mw≥5.5 described before. For Mw≥6.0, the comparison of Fig. 

S13 and S14 with the time-dependent analysis of Figs. S3 and S4, apart for small 𝜏, 

apparently indicates an overall higher skill for the time-independent analysis with 

respect to the time-dependent one. This is due to the fact that for Mw≥6.0 all 

declustered target shocks occurred in CAs with very high long-term seismic activity 
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and that, as noted above, time-independent and time-dependent statistics are not 

fully comparable between them. 

 

Figure 3.13: Same as Fig. 3.4 for time-independent analysis of declustered (first) 

target shocks with Mw≥5.5.  

 

Figure 3.14: Same as Fig. 3.5 for time-independent analysis of declustered (first) 

target shocks with Mw≥5.5.  
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3.6 Optimization of the forecasting algorithm  

For a practical application of the forecasting method, it might be useful to determine 

the values of the algorithm parameter Δ𝑡 for which the forecasting method is more 

efficient and useful for risk mitigation. To accomplish this purpose, we analyze the 

behavior of some statistics that depend on the alarm time window Δ𝑡. 

In Fig. 3.15 we report, for declustered targets and weighted fraction of space-time 

occupied by alarms (𝜏𝑤), the binomial probability (Eq. 3.9), that is the probability that 

the observed number of successful forecasts is obtained by chance, as a function of 

Δ𝑡. The lower the probability the higher the strength of the forecast. In general, 

probabilities are relatively low within a wide range going from one day to some 

years. For Mw≥5.0 (red line), very low probabilities are observed around Δ𝑡 = 2 ÷ 10 

days. For Mw≥5.5 (blue line) and Mw≥6.0 (green line) the minimum probabilities are 

larger than the ones for Mw≥5.0, and they remain relatively low from a few hours to 

a few months. Within such ranges, the forecasting ability of our method reaches its 

higher efficiency. 

The behavior of the probability gain G (eq. 3.8) as a function Δ𝑡 (Fig. 3.16) shows, for 

all the three magnitude thresholds, monotonically descending trends from more than 

100000 at very short Δ𝑡 (less than a minute) to slightly more than 1 at very long Δ𝑡 

(tens of years). Such curves also show relatively milder slopes in correspondence of 

steep decreases of binomial probabilities in Fig. 3.15 (i.e., around 0.001 day and a few 

days). 

In Fig. 3.17 we show the miss rate 𝜈 as a function of Δ𝑡. In general, it decreases with 

increasing Δ𝑡. The (negative) trends - with respect to log10Δ𝑡 - are in between the -5% 

and -10% per decade, for Δ𝑡 ranging from a few seconds to about 1 year. Then they 

start to decrease more rapidly (about -20% per decade) reaching 0 for Mw≥5.5 and 

Mw≥6.0 and 19% for Mw≥5.0 at very large Δ𝑡. 
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Figure 3.15: Binomial probability density for declustered (first) target shocks and 

weighted fraction of space-time occupied by alarms for different magnitude 

thresholds as a function of the alarm duration Δ𝑡.  

 

 

Figure 3.16: Probability gain for declustered (first) target shocks and weighted 

fraction of space-time occupied by alarms for different magnitude thresholds (see 

inset) as a function of the alarm duration Δ𝑡.  
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Figure 3.17: Miss rate for declustered (first) target shocks and different magnitude 

thresholds (see inset) as a function of the alarm duration Δ𝑡.  

 

The behavior of the same statistic for the full set of target events (not declustered) is 

reported in Figs. S9, S10 and S11 of the supplemental material. It is similar to those of 

the declustered set but the binomial probabilities are lower, the probability gains are 

higher, and the miss rates decrease more rapidly with Δ𝑡. 

Another aspect to be considered for the practical application of the forecasting 

method is the dependence on Δ𝑡 of the fractions of space-time occupied by alarms 𝜏𝑢  

and 𝜏𝑤 (Fig. 3.18). A long alarm interval Δ𝑡 (with a corresponding long fraction of 

space-time occupied by alarms 𝜏) allows to forecast more target earthquakes but at 

the same time it has relatively lower probabilities of occurrence than a shorter Δ𝑡. 

Furthermore, a longer duration of alarms would impact more with life activities of 

the population in the involved area. Even if any decision on the possible practical 

application in real situations would eventually require a careful evaluation by 

decision makers even considering a cost-benefits analysis (e.g., van Stiphout et al., 

2010; Herrmann et al., 2016), we examine here as an example the choice of Δ𝑡= 3 
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months (0.25 years). This choice, in most cases, results in a fairly trade-off between a 

good efficiency and a narrow space-time fraction covered by alarms 𝜏 ≈  2.  

 

Figure 3.18: Unweighted (red) and weighted (dark blue) fraction of space-time 

occupied by alarms as a function of the alarm duration Δ𝑡.  

 

We can see in Table 3.4 that in this case the method is able to retrospectively forecast 

more than 50% of not-declustered target shocks with Mw≥5.0 and more than 70% of 

those with Mw≥5.5 and Mw≥6.0. We also report in Table 3.4 the statistic of the 

numbers of successful alarms with respect to the total number of alarms indicating 

higher rates for target with Mw≥5.0. About one fifth of alarms actually forecast an 

earthquake, while the fraction of successful alarms definitely decreases for larger 

targets and further decreases for declustered sets down to about 1%. Note that 

several alarm time windows are actually overlapped and then the total duration of 

alarms is shorter than the simple sum of alarm windows (Eq. 3.2). 
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Table 3.4 – Retrospective forecasting performance of the algorithm for Δ𝑡= 3 months.  

Target Magnitude ≥5.0 ≥5.5 ≥6.0 𝜏𝑢 𝜏𝑤 

Not declustered 

Forecasted/total shocks 55/98 56% 26/35 74% 7/10 70% 0.9% 1.9% 

Successful/total alarms 115/617 18.6% 72/617 11.7% 30/617 4.9% 0.9% 1.9% 

Declustered 

Forecasted/total shocks 8/44 18% 6/14 43% 4/7 57% 0.9% 1.9% 

Successful /total alarms 13/617 2.1% 9/617 1.5% 8/617 1.3% 0.9% 1.9% 

 

The performance of the method is definitely worse for the first target shocks 

(declustered set), but it improves by increasing the magnitude of target shocks. 

Actually, 4 over 7 first target shocks with Mw≥6.0 over the last 60 years in Italy are 

retrospectively forecasted in this way. 

We tested the stability with time of the forecasting performance by subdividing the 

seismic catalog in two equal parts of 30 years: before and after 1/1/1990. The same 

computations of Table 3.4 for Δ𝑡= 3 months for intervals 1960-1989 and 1990-2019 are 

reported in Tables 3.5 and 3.6 respectively. The rates of successfully forecasted target 

shocks (declustered or not) are similar in the two periods whereas the space-time 

fraction occupied by alarms is definitely lower in the most recent period, consistently 

with the higher ratios between successful and total alarms. We could argue that 

smaller magnitude errors in most recent times, owing to the continuous 

improvement of the Italian seismic network, reduce the number of false alarms and 

then increase the observed skill of the forecasting method with respect to the 

previous period.  

In Table 3.7 and 3.8 we report the lists of retrospective forecasts of the first 

(declustered) target shocks with Mw≥5.5 and Mw≥6.0 respectively occurred in Italy 

from 1960 to 2019 (also see the results for the declustered first shocks with Mw≥5.0 in 

Table S6 and the results for not-declustered targets with Mw≥5.0, 5.5 and 6.0 in 

Tables S7, S8 and S9 respectively of the supplemental material 1).  
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Table 3.5 – Same as Table 3.4 for the time interval 1960-1989. 

Target Magnitude ≥5.0 ≥5.5 ≥6.0 𝝉𝒖 𝝉𝒘 

Not declustered 

Forecasted/total shocks 21/45 47% 11/15 73% 3/4 75% 1.0% 2.1% 

Successful/total alarms 45/336 12.9% 22/336 6.6% 9/336 2.7% 1.0% 2.1% 

Declustered 

Forecasted/total shocks 3/25 12% 3/7 43% 2/3 67% 1.0% 2.1% 

Successful/total alarms 5/336 1.5% 5/336 1.5% 3/336 0.89% 1.0% 2.1% 

 

Table 3.6 – Same as Table 3.4 for the time interval 1990-2019. 

Target Magnitude ≥5.0 ≥5.5 ≥6.0 𝝉𝒖 𝝉𝒘 

Not declustered 

Forecasted/total shocks 34/53 64% 15/20 75% 4/6 67% 0.4% 0.7% 

Successful/total alarms 70/281 24.9% 50/281 17.8% 21/281 7.5% 0.4% 0.7% 

Declustered 

Forecasted/total shocks 5/19 26% 3/7 43% 2/4 50% 0.4% 0.7% 

Successful/total alarms 8/281 3.5% 4/281 1.4% 5/281 1.8% 0.4% 0.7% 
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Table 3.7 – Results of retrospective forecast of first main shocks (declustered targets) 

with Mw≥5.5 in Italy from 1960 to 2019, using Δ𝑡= 3 months (0.25 years).  

Year Month Day Lat Lon Mw 𝒕𝒂 (days)  Epicentral area 

1962 8 21 41.233 14.933 5.7 0.093 2.22 h Irpinia 

1968 1 15 37.700 13.100 5.7 0.425 10.2 h Valle del Belice 

1976 5 6 46.250 13.250 6.5 7.810-4 67 s Friuli 

1979 9 19 42.717 12.950 5.8 Missed  Valnerina 

1980 11 23 40.800 15.367 6.8 Missed  Irpinia-Basilicata 

1984 4 29 43.204 12.585 5.6 Missed  Umbria settentrionale 

1984 5 7 41.666 13.820 5.9 Missed  Monti della Meta 

1990 5 5 40.650 15.882 5.8 1.510-4 13 s Potentino 

1997 9 26 43.023 12.891 5.7 22.1  Appennino umbro-

marchigiano 

1998 9 9 40.060 15.949 5.5 Missed  Appennino lucano 

2002 10 31 41.717 14.893 5.7 Missed  Molise 

2009 4 6 42.342 13.380 6.3 6.5  Aquilano 

2012 5 20 44.896 11.264 6.1 Missed  Pianura Emiliana 

2016 8 24 42.698 13.234 6.2 Missed  Monti della Laga 

𝑡𝑎 is the maximum time advance of the foreshock with respect to the main shock. 

“Missed” indicates that the target shock was not forecasted. Epicentral area identifiers 

are taken from the CPTI15 catalogue (Rovida et al., 2016, 2020). 

 

We can note that for two target shocks (1976 Friuli and 1990 Potentino) the forecast 

could have hardly been used by civil protection services to adopt safety 

countermeasures because the forecasting strong shocks occurred too shortly before 

the main shock (67 s and 13 s respectively). In other cases, the time delay between the 

forecasting shock and the main shock (going from a couple of hours to a few weeks) 

would have been sufficient to take some countermeasures.  
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Table 3.8 – Same as Table 3.7 for first main shocks with Mw≥6.0. 

Year Month Day Lat Lon Mw 𝒕𝒂 (days)  Epicentral area 

1962 8 21 41.233 14.933 6.2 0.100 2.40 h Irpinia 

1976 5 6 46.250 13.250 6.5 7.810-4 67 s Friuli 

1980 11 23 40.800 15.367 6.8 Missed  Irpinia-Basilicata 

1997 9 26 43.015 12.854 6.0 22.5  

Appennino umbro-

marchigiano 

2009 4 6 42.342 13.380 6.3 6.5  Aquilano 

2012 5 20 44.896 11.264 6.1 Missed  Pianura Emiliana 

2016 8 24 42.698 13.234 6.2 Missed  Monti della Laga 

 

We could note that a foreshock did actually occur a couple of days before the first 

mainshock of 20 May 2012 (Mw=6.1) in the area of Pianura Emiliana, but its 

magnitude (Mw=4.2) was only slightly below the lower threshold of Mw=4.4 we 

adopted. The retrospective ability to predict Mw6.0 earthquakes might have been 

improved then by slightly reducing such lower threshold but at a cost of a general 

reduction of the performance of the algorithm, because of the increment of the 

number of alarms and of the fraction of space-time covered by alarms. 

 

3.7 Conclusions of chapter 3  

We analyzed a simple algorithm to forecast shallow (depth<50 km) main shocks 

(Mw≥5.0, 5.5, 6.0) that threaten the life and the goods of the population living on the 

Italian mainland territory, based on the previous occurrence within circular areas of 

30 km of radius of widely felt strong shocks (4.4 Mw<4.8) not particularly harmful 

in themselves. Based on a retrospective analysis of the HOmogenized instRUmental 

Seismic catalogue (HORUS) of Italy from 1960 to 2019 (Lolli et al., 2020) this method 

retrospectively forecast the majority of damaging earthquakes occurred in Italy in the 
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past 60 years by issuing alarms covering only a small fraction of the space-time 

coverage.   

We estimated such fraction even considering the different levels of seismic activity in 

different areas of Italy by weighting more the alarm times in circular areas where the 

average seismicity rate, computed from the CPTI15 seismic catalogue (Rovida et al., 

2016, 2020) from 1600 to 1959, is higher.  

The retrospective testing using the Molchan diagram (Molchan, 1990, 1991, Molchan 

& Kagan, 1992) and the Area Skill score (Zechar & Jordan, 2008) methods indicates 

that such approach clearly overperforms a purely random method with high or very 

high confidence, depending on the target shock magnitude threshold.  

As the secondary main shocks during seismic sequences are definitely easier to be 

forecasted by this method because the aftershocks of the first main shock usually 

generate alarms at weakly (if not daily) rate, we also tested the ability of our 

approach to predict only the first main shock of each sequence. We found that the 

forecasting ability remains high even if being lower than that considering all main 

shocks. 

Even if the true verification of the efficiency of the method will only be made on a 

prospective dataset, we believe that such simple forecasting algorithm could be 

useful, like other operational forecasting approaches presently considered by the 

Italian Civil Protection Department, for planning preparation measures in the field 

(e.g., Marzocchi et al., 2014).  

The latter approaches are mainly based on the ETAS model (Kagan & Knopoff, 1987, 

Ogata, 1988) and, as well as that of the present work, showed to retrospectively 

forecast the evolution of Italian seismicity better than an inhomogeneous random 

process with spatial rates corresponding to past seismicity. On the other hand, 

Marzocchi and Zhuang (2011) showed that ETAS models is able to describe quite 

well even the observed foreshock activity. However, a comparison of the relative 
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efficiency of our approach with ETAS models and even with other forecasting 

approaches (like for example the EEPAS method (Rhoades and Evison, 2004) would 

require that the probabilistic formulation of the latter methods is adapted to the 

alarm-based one (for example by selecting a particular probability thresholds above 

which to declare an alarm). However, such adaptation is not trivial and hence, the 

question on which of the different approaches is better in predicting future damaging 

earthquakes remains not answered presently and has to be deferred to future papers 

comparing all methods in an alarm-based context by using, for example, the 

approach proposed by  Shebalin et al. (2014). 

One advantage of the present forecasting approach is that it is easy to implement and 

communicate because it does not require any other scientific analysis than the correct 

determination of the location and of the magnitude of the precursory shock. In 

principle every person could be informed very quickly by a notification sent by one 

of the already available mobile Apps which provide near real-time access to the 

INGV online earthquake list (http://terremoti.ingv.it/en#).  

http://terremoti.ingv.it/en
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especially on the clarification of some aspects of the EEPAS model.   

 

The EEPAS (Every Earthquake a Precursor According to Scale) forecasting model is a space–

time point-process model based on the precursory scale increase (𝜓) phenomenon and 

associated predictive scaling relations. It has been previously applied to New Zealand, 

California and Japan earthquakes with target magnitude thresholds varying from about 5 to 

7. In all previous application, computations were done using the computer code implemented 

in Fortran language by the model authors. In this work we applied it to Italy using a suite of 

computing codes completely rewritten in Matlab. We first compared the two software codes to 

ensure the convergence and adequate coincidence between the estimated model parameters for 

a simple region capable of being analysed by both software codes. Then, using the rewritten 

codes, we optimised the parameters for a different and more complex polygon of analysis using 
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the Homogenized instRUmental Seismic catalogue (HORUS) data from 1990 to 2011. We 

then perform a pseudo-prospective forecasting experiment of Italian earthquakes from 2012 to 

2021 with Mw≥5.0 and compare the forecasting skill of EEPAS with those obtained by other 

time independent (SUP, SVP, and PPE) and time dependent (ETAS) forecasting models 

using the information gain per active cell (IGPA). The preference goes to the ETAS model for 

short time intervals (3 months) and to the EEPAS model for longer time intervals (6 months 

to 10 years).  

 

4.1 Introduction 

EEPAS is an earthquake forecasting method based on the statistical analysis of 

seismicity (Rhoades and Evison, 2004). Its basic assumption is that magnitudes and 

rates of minor seismicity increase before a strong shock. This phenomenon (called 

𝜓 − 𝑝ℎ𝑒𝑛𝑜𝑚𝑒𝑛𝑜𝑛) was described by Evison and Rhoades (2004) for some regions of 

the world in which high quality earthquakes catalogues are available. They analyzed 

47 earthquakes with magnitude ranging between 5.8 and 8.2 to derive three empirical 

scaling relations: for time, magnitude and area.  These relate the magnitude of 

mainshock (𝑀𝑚) with the precursor magnitude (𝑀𝑃) the precursor time (𝑇𝑃) and the 

precursor area (𝐴𝑝). Such empirical scaling relations show that in general the 

magnitude of precursor events is smaller than the magnitude of the mainshock by at 

least one magnitude unit. The EEPAS model considers each earthquake as an 

individual precursor according to the scale indicated by its magnitude, rather than as 

a possible member of a 𝜓 phenomenon. 

The details of the EEPAS method are described in several papers (e.g., Rhoades and 

Evison, 2004; Evison and Rhoades, 2005; Rhoades, 2007, 2011; Rhoades et al., 2020), 

some of which contain typos that makes the formulation not perfectly identical in all 

of them. For such reason in this work, we describe again the method as well as some 

assumptions made without explicit mentions in previous papers. 
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We implemented such formulations in a suite of MATLAB codes that we first 

compared with the code EEPSOF (Rhoades, 2021) used in all previous applications of 

EEPAS methods. Even if the results of this comparison are not identical, they indicate 

a tight agreement between parameters estimates from the two codes, before the 

introduction of spatial parameters in the optimization procedure. After that, the differences 

become a little more pronounced for parameters 𝑎𝑇, 𝜎𝐴 and 𝑏𝑇, where the two codes differ by 

12.5%, 10.2% and 24.0%, respectively. These differences can be explained by the 

different numerical algorithm adopted by the two codes for spatial integration. 

However, the final maximum log-likelihood scores and the numbers of forecasted 

earthquakes are very similar.  Details on EEPAS software comparison are described 

in section 4.4.  

For comparison purposes we also consider other forecasting models and in particular 

the Epidemic Type Aftershock Sequence (ETAS) model (Ogata, 1988, 1989, 1998) and 

two time-independent forecasting models: the Spatially Uniform Poisson (SUP) and 

the Spatially Variable Poisson (SVP) models (Console et al., 2006). A summary of the 

characteristics of each model is given in Table 4.1.  

The fitting of the free parameters of various models is carried out by maximizing the 

log-likelihood function of an inhomogeneous Poisson point process, which is given 

by: 

ln 𝐿 = ∑ ln 𝜆(𝑡𝑖, 𝑚𝑖, 𝑥𝑖 , 𝑦𝑖)

𝑡𝑖∈(𝑡𝑎,𝑡𝑏);𝑚𝑖≥𝑚𝑇;(𝑥𝑖,𝑦𝑖)∈𝑅

−∫ ∫ ∬𝜆(𝑡,𝑚, 𝑥, 𝑦) 𝑑𝑦 𝑑𝑥 𝑑𝑚 𝑑𝑡

𝑅

𝑚𝑢

𝑚𝑇

𝑡𝑏

𝑡𝑎

 
(4.1) 

where 𝜆(𝑡,𝑚, 𝑥, 𝑦) is the rate density function for PPE (eq. 4.13), EEPAS (eq. 4.5), 

ETAS (eq. 4.29), SUP or SVP (eq. 4.30) models; (𝑡𝑎, 𝑡𝑏) is the time interval of the 

fitting period; (𝑚𝑇 , 𝑚𝑢) is the magnitude range of target earthquakes; and R is the 

spatial region of analysis.  
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Table 4.1- Summary of applied forecasting models. 

 

Model Main features Reference 

SUP Stationary uniform Poisson model based on the 

observed seismicity rate 𝑀 ≥ 𝑚𝑇.  

Console & Murru 

(2001) 

SVP Space variable Poisson model based on the smoothed 

seismicity rate 𝑀 ≥ 𝑚𝑇 observed in each cell.  

Console & Murru 

(2001) 

PPE Quasi time-dependent model based on the hypothesis 

that future earthquakes tend to occur near the place of 

the recent ones. The rate-density of future earthquakes 

is modelled as proportional to a smoothed version of 

past seismicity.  

Jackson & Kagan 

(1999); Rhoades & 

Evison (2004) 

EEPAS-NW Space/time-dependent model based on the hypothesis 

that each earthquake (𝑀 ≥ 𝑚𝑐) contributes to the 

transient increment of the future rate of 𝑀 ≥ 𝑚𝑇 in its 

vicinity according to 𝜓predictive relations.  

Rhoades & Evison 

(2004) 

EEPAS-W As above but the contribution of aftershocks and 

triggered events are downweighed.  

Rhoades & Evison 

(2004) 

ETAS-SUP Epidemic-type aftershock model based on the 

hypothesis that each earthquake can perturb the rate of 

earthquakes and generate its own Omori-like decay 

sequence. The SUP is used as background model.  

Ogata (1988, 1989), 

Ogata & Zhuang 

(2006) 

ETAS-SVP As above but with SVP as background model. Ogata (1988, 1989), 

Ogata & Zhuang 

(2006) 

 

4.2 The EEPAS earthquake forecasting model 

The EEPAS model is based on the increase in rate and in magnitude of the minor 

seismicity observed before the occurrence of major earthquakes (𝜓-phenomenon, 

Rhoades and Evison, 2004). Evison and Rhoades (2004) analyzed the 𝜓-phenomenon 

that evolved before 47 major earthquakes in well catalogued regions (such as 

California, New Zealand, northern Mexico, Japan, and Greece) developing three 

empirical scaling relations that relate the precursor magnitude (𝑀𝑝) with the 

mainshock magnitude (𝑀𝑚), precursor time (𝑇𝑝)  and precursory area (𝐴𝑝). Where, 

as 𝑀𝑝 is assumed as the mean of the three largest precursor shocks, as 𝑇𝑝 is the time 

interval between the onset of the 𝜓-phenomenon and mainshock, and 𝐴𝑝 (expressed 
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in km) is the smallest rectangular spatial box containing the precursory events, 

mainshock and aftershocks (for details see Evison and Rhoades, 2004). The predictive 

scale relations are thus defined as  

𝑀𝑚 = 𝑎𝑚 + 𝑏𝑚𝑀𝑝 , (4.2) 

log(𝑇𝑝) = 𝑎𝑡 + 𝑏𝑡𝑀𝑝  , (4.3) 

and  

log (𝐴𝑝) = 𝑎𝑎 + 𝑏𝑎𝑀𝑝. (4.4) 

In the EEPAS model each i-th earthquake, occurring at time 𝑡𝑖 with magnitude 𝑚𝑖 

and located at (𝑥𝑖, 𝑦𝑖), is assumed to contribute to the transient increment of the rate 

density 𝜆𝑖(𝑡, 𝑚, 𝑥, 𝑦) of future seismicity (defined as the derivative of the expected 

number of earthquakes with respect to time, magnitude and location coordinates) by 

the term 

𝜆𝑖(𝑡,𝑚, 𝑥, 𝑦) = 𝑤𝑖𝑓1𝑖(𝑡)𝑔1𝑖(𝑚)ℎ1𝑖(𝑥, 𝑦) (4.5) 

where 𝑤𝑖 is a weighting factor which depends on other earthquakes in its proximity 

(see below). 𝑓1𝑖(𝑡), 𝑔1𝑖(𝑚) and ℎ1𝑖(𝑥, 𝑦) are the probability density functions of time, 

magnitude and location, respectively. The assumed forms for these distributions are 

defined consistently with the 𝜓 scaling relations by Rhoades and Evison (2004). The 

time distribution is assumed to be Lognormal with the form  

𝑓1𝑖(𝑡) =
𝐻(𝑡 − 𝑡𝑖)

(𝑡 − 𝑡𝑖) ln(10) 𝜎𝑇√2𝜋
exp [−

1

2
(
log(𝑡 − 𝑡𝑖) − 𝑎𝑇 − 𝑏𝑇𝑚𝑖

𝜎𝑇
)

2

] 
 

(4.6) 

where 𝐻(𝑡 − 𝑡𝑖) is the Heaviside step function, which takes the value 1 if 𝑡 − 𝑡𝑖 > 0,  

and 0 otherwise. This means that at the time t, the rate density function is contributed 

only by earthquakes occurring before t. Here 𝑎𝑇 , 𝑏𝑇 and 𝜎𝑇 are free parameters to be 

determined.  

The magnitude distribution 𝑔1𝑖(𝑚) is assumed to be normal with the form:  
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𝑔1𝑖(𝑚) =
1

𝜎𝑀√2𝜋
exp [−

1

2
(
𝑚 − 𝑎𝑀 − 𝑏𝑀𝑚𝑖

𝜎𝑀
)
2

] 
(4.7) 

where a𝑀, 𝑏𝑀 and 𝜎𝑀 are free parameters.  

The space distribution is assumed to be bivariate Normal with circular symmetry 

with the form 

ℎ1𝑖(𝑥, 𝑦) =
1

2𝜋𝜎𝐴
210𝑏𝐴𝑚𝑖

exp [−
(𝑥 − 𝑥𝑖)

2 + (𝑦 − 𝑦𝑖)
2

2𝜎𝐴
210𝑏𝐴𝑚𝑖

] 
 (4.8) 

where 𝜎𝐴 and 𝑏𝐴 are free parameters.  

An adjustment is necessary because of the missing contribution of earthquakes below 

the minimum completeness magnitude 𝑚𝑐 which causes the rate density at 

magnitude m to be underestimated on average by a fraction 𝛥(𝑚) of its real value 

given by  

𝛥(𝑚) = 𝜙 (
𝑚 − 𝑎𝑀 − 𝑏𝑀𝑚𝑐 − 𝜎𝑀

2𝛽

𝜎𝑀
) 

(4.9) 

where 𝜙 is the Normal distribution integral. Then 𝛥(𝑚) can also be written as 

𝛥(𝑚) =
1

2
erf [(

𝑚 − 𝑎𝑀 − 𝑏𝑀𝑚𝑐 − 𝜎𝑀
2𝛽

𝜎𝑀√2
) + 1] 

(4.10) 

where erf is the Error function. 

Hence, to compensate for the lack of earthquakes with magnitude lower than the 

completeness magnitude 𝑚𝑐, 𝜆𝑖(𝑡, 𝑚, 𝑥, 𝑦) is inflated by a factor 
1

𝛥(𝑚)
.  

The total rate density is obtained by summing the contribution of all past 

earthquakes and also adding a background term that allows for the possibility that 

an earthquake can occur without an appreciable scale increase of precursory shocks:  

𝜆(𝑡,𝑚, 𝑥, 𝑦) = 𝜇𝜆0(𝑡, 𝑚, 𝑥, 𝑦)      + ∑ 𝜂(𝑚𝑖)𝜆𝑖(𝑡,𝑚, 𝑥, 𝑦)

𝑡−𝑑𝑒𝑙𝑎𝑦

𝑡𝑖≥𝑡0;𝑚𝑖≥𝑚𝑐

 
(4.11) 
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where 𝜆0(𝑡,𝑚, 𝑥, 𝑦) is the background rate density, 𝑡0 is the time of the beginning of 

the catalogue, 𝜇 is the mixing parameter and can be interpreted as the proportion of 

earthquakes that occur without precursory shocks. The normalizing function 𝜂 is 

defined by 

𝜂(𝑚𝑖) =
𝑏𝑀(1 − 𝜇)

𝐸(𝑤)
exp [−𝛽 (𝑎𝑀 + (𝑏𝑀 − 1)𝑚𝑖 +

𝜎𝑀
2𝛽

2
)] 

(4.12) 

where 𝐸(𝑤) is the mean weight of earthquakes in the catalogue; a𝑀, 𝑏𝑀 and 𝜎𝑀 are 

free parameters; and 𝛽 = 𝑏 ln 10, with 𝑏 being the slope of the frequency-magnitude 

distribution of Gutenberg and Richter (1944).  The normalizing function 𝜂(𝑚𝑖)  

ensures that the number of earthquakes expected by the model approximatively 

matches the actual number of target earthquakes. The delay term in equation (4.11) is 

to prevent the fit of the parameters being influenced by the short-term clustering of 

earthquakes (such as aftershocks and swarms). The EEPAS model is focused on the 

long-term clustering detected by the precursory scale increase phenomenon and its 

associated scaling relations. For this reason, the delay (usually assumed to be 50 

days) after the time of occurrence of each earthquake is applied and no earthquake 

from the input catalogue is considered before such time interval elapsed after its 

occurrence.  

The background rate density 𝜆0(𝑡,𝑚, 𝑥, 𝑦) depends on the proximity of the location 

(x, y) with respect to previous seismicity. It is described by a quasi-time-invariant 

smoothed seismicity model, described by Rhoades and Evison (2004), which is 

similar to the forecasting model proposed by Jackson and Kagan (1999) and is called 

PPE (Proximity to Past Earthquakes). It takes the form 

𝜆0𝑖(𝑡,𝑚, 𝑥, 𝑦) = 𝑓0𝑖(𝑡)𝑔0𝑖(𝑚)ℎ0𝑖(𝑥, 𝑦) (4.13) 

where  𝑓0𝑖(𝑡) is the time density function, 𝑔0𝑖(𝑚) is the magnitude density function 

and ℎ0𝑖(𝑥, 𝑦) is the spatial density function. The time density function takes the form  

𝑓0𝑖(𝑡) =
1

𝑡𝑖 − 𝑡0
 

(4.14) 
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This ensures that at any time the estimated rate of earthquakes with 𝑚 ≥ 𝑚𝑇 within 

the region R is similar to the past rate.  

The magnitude density function is that implied by the frequency magnitude law of 

Gutenberg and Richter (1944):  

𝑔0𝑖(𝑚) = 𝛽 exp[−𝛽(𝑚𝑖 −𝑚𝑐)] (4.15) 

Finally, ℎ0𝑖(𝑥, 𝑦) is the sum over all earthquakes with 𝑚𝑖 ≥ 𝑚𝑇 from time 𝑡0 up to, 

but not including time 𝑡 of smoothing kernels with the form 

ℎ0𝑖(𝑥𝑖, 𝑦𝑖) = ∑ 𝑎(𝑚𝑖 −𝑚𝑇)
1

𝜋
(

1

𝑑2 + 𝑟𝑖
2) + 𝑠

𝑡−𝑑𝑒𝑙𝑎𝑦

𝑡𝑖>𝑡0;𝑚𝑖>𝑚𝑇

 
(4.16) 

where 𝑟𝑖 is the distance in km between (𝑥, 𝑦) and the epicenter (𝑥𝑖, 𝑦𝑖); 𝑎 is a 

normalizing parameter, 𝑑 is a smoothing distance and 𝑠 is a small term that includes 

the contribution from earthquakes that occur far from past epicenters.  

The rate density 𝜆0(𝑡,𝑚, 𝑥, 𝑦) of the PPE model decreases gradually with time 

elapsed after an earthquake occurrence and increases when a new earthquake occurs. 

The function ℎ0𝑖(𝑥, 𝑦) considers the earthquake location and the function 𝑓0𝑖(𝑡) the 

passage of time.  

The purpose of the weighting factor 𝑤𝑖 in eq. (4.5) is to give more weight to 

earthquakes that are more likely to be part of a long-term clustering, thus giving less 

weight to events that are aftershocks of previous earthquakes. Two different 

weighting strategies were applied in the past application of EEPAS. The simplest one 

is giving the same weight 𝑤𝑖 = 1 to each earthquake in the catalogue. With this 

strategy aftershocks triggered by previous earthquakes have the same weight of any 

other shock. The other strategy is to assign a lower weight to any earthquake which 

is likely to be an aftershock of a previous earthquake. Therefore, the total rate density 

is mostly given by earthquakes that are part of long-term clustering.   
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This latter strategy requires estimating the rate density 𝜆′ for aftershock occurrence, 

incorporating epidemic-type aftershock behavior (Ogata, 1988, 1989; Console and 

Murru, 2001). The aftershock model adopted for EEPAS takes the form: 

𝜆′(𝑡,𝑚, 𝑥, 𝑦) = 𝜈𝜆0(𝑡,𝑚, 𝑥, 𝑢) + 𝑘 ∑ 𝜆𝑖
′(𝑡,𝑚, 𝑥, 𝑦)

𝑡𝑖≥𝑡0

  (4.17) 

where 𝜆0 is the rate density given by PPE model, 𝜈 is the proportion of earthquake 

that are not aftershocks, 𝑘 is a normalization constant and 𝜆′(𝑡, 𝑚, 𝑥, 𝑦) describes the 

aftershocks occurrence with the form:  

𝜆𝑖
′(𝑡, 𝑚, 𝑥, 𝑦) = 𝑓2𝑖(𝑡)𝑔2𝑖(𝑚)ℎ2𝑖(𝑥, 𝑦) (4.18) 

where 𝑓2𝑖(𝑡), 𝑔2𝑖(𝑚) and ℎ2𝑖(𝑥, 𝑦) are respectively the density functions for time, 

magnitude, and locations of the aftershocks of the i-th earthquake. The time 

distribution is given by the modified Omori law (Utsu, 1961; Ogata, 1983): 

𝑓2𝑖(𝑡) = 𝐻(𝑡 − 𝑡𝑖)
𝑝 − 1

(𝑡 − 𝑡𝑖 + 𝑐)
𝑝

 
 (4.19) 

where 𝑡𝑖 is the time of the i-th earthquake, and 𝑐 and 𝑝 are the Omori law parameters.  

The magnitude distribution follows the Gutenberg and Richter (1944) law, and it is 

assumed that the magnitude of an aftershock is smaller than its mainshock by at least 

𝛿 units  

𝑔2𝑖(𝑚) = 𝐻(𝑚𝑖 − 𝛿 −𝑚)𝛽 exp[−𝛽(𝑚 −𝑚𝑖)] (4.20) 

The addition of the parameter 𝛿 is based on the so-called Bath’s law (Båth, 1965), 

according to which the largest aftershock typically has a magnitude about 1.2 units 

smaller than the mainshock. Finally, the spatial distribution is assumed to be 

bivariate Normal with circular symmetry:  

ℎ2𝑖(𝑥, 𝑦) =
1

2𝜋𝜎𝑈
210𝑚𝑖

𝑒𝑥𝑝 [−
(𝑥 − 𝑥𝑖)

2 + (𝑦 − 𝑦𝑖)
2

2𝜎𝑈
210𝑚𝑖

] 
(4.21) 

where 𝜎𝑈 is a free parameter. The weighting factor is then computed as  

𝑤𝑖 =
𝜈𝜆0(𝑡𝑖, 𝑚𝑖, 𝑥𝑖, 𝑦𝑖)

𝜆′(𝑡𝑖, 𝑚𝑖, 𝑥𝑖 , 𝑦𝑖)
 

(4.22) 
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In this way, if an earthquake has the characteristics of an aftershock, it will have a 

weight close to 0; on the contrary, if an earthquake that in no way resembles an 

aftershock it will have a weight close to 1. Short descriptions of the parameters of the PPE 

and EEPAS models are listed in Table 4.2. 

4.3 Application to Italy 

We chose 𝑚𝑇 = 5.0 as the lower magnitude limit for target shocks, because in Italy 

such earthquakes potentially cause damage to buildings and threaten the health and 

life of inhabitants. This choice is also consistent with most of the applications of 

EEPAS model to other regions of the World (Rhoades and Evison  2004, Evison and 

Rhoades 2005, Rhoades 2007, 2011). 

We chose the learning time interval from 1990 to 2011 for fitting the EEPAS model, 

because the accuracy and completeness of the Italian catalogue has improved 

significantly since 1990 (Gasperini et al., 2013), We use the independent ten-year 

interval from 2012 to 2021 for retrospective testing of the model. 

As application region R, we consider a regular tessellation of the Italian territory 

made of square cells with side 𝐿 = 30√2 km from 7°E to 19°E in longitude and from 

36°N to 47°N in latitude. The choice of L is made for compatibility with previous 

work by Gasperini et al. (2021), so that each square cell is (almost) perfectly inscribed 

in a circular cell with radius of 30 km. Because the completeness of the earthquake 

catalogue is poor in offshore areas, according to Gasperini et al. (2021), we consider 

only the cells within which at least one earthquake with 𝑀 ≥ 4.0 occurred inland 

from 1600 to 1959 according to the CPTI15 catalogue (Rovida et al., 2020) and from 

1960 to 2021 according to the Homogenized instrRUmental Seismic (HORUS) 

catalogue (Lolli et al., 2020). We also excluded the cells that are not contiguous to the 

main analysis polygon (such as insulated cells on islands). In total, 177 square cells 

constitute the region of analysis R (Fig. 4.1).  
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Table 4.2- Summary of PPE and EEPAS parameters. 

Model Parameter Description Restriction 

PPE 

𝑎 Normalizing constant. ≥ 0 

𝑑 Smoothing kernel kilometric distance. ≥ 1 

𝑠 
Small value to account for earthquakes far from past 

epicenters. 
≥ 0 

EEPAS 

𝑎𝑀 
Intercept of scaling relation between precursor 

magnitude and target magnitude (eq. A1). 
1.0 − 2.0 

𝑏𝑀 
Slope of scaling relation between precursor 

magnitude and target magnitude (eq. A1). 
1 (𝑓𝑖𝑥𝑒𝑑) 

𝜎𝑀 

Standard deviation of scaling relation between 

precursor magnitude and target magnitude (see 

Fig.1, Rhoades and Evison, 2011) 

0.2 − 0.65 

𝑎𝑇 
Intercept of scaling relation between precursor time 

and target magnitude (eq. A2) 
1 − 3 

𝑏𝑇 
Slope of scaling relation between precursor time and 

target magnitude (eq. A2) 
0.3 − 0.65 

𝜎𝑇 

Standard deviation of the scaling relation between 

precursor magnitude and target magnitude (see 

Fig.1, Rhoades and Evison, 2011). 

0.15 − 0.6 

𝑏𝐴 
Slope of scaling relation between precursory area 

and target magnitude (eq. A3). 
0.2 − 0.6 

𝜎𝐴 

Related to Aa of scaling relation between precursory 

area and magnitude (see Fig.1, Rhoades and Evison, 

2011). 

1 − 30 

𝜇 
Proportion of target shocks that occurs without an 

appreciable sequence of precursory shocks. 
0 − 1 

Aftershocks 

(EEPAS) 

𝑐 c-parameter of Omori-Utsu law 0 − 0.5 

𝑝 p-parameter of Omori-Utsu law 1 − 1.6 

𝑘 Normalizing constant. ≥ 0 

𝜈 Proportion of earthquake that are not aftershocks 0 − 1 

𝛿 
Average magnitude difference between the 

mainshock and the largest aftershock 
0.7 (𝐹𝑖𝑥𝑒𝑑) 

𝜎𝑈 Cluster diffusion parameter 0.006 (𝐹𝑖𝑥𝑒𝑑) 

 

 

For fitting of the EEPAS model parameters, an earthquake catalogue with a 

completeness magnitude (𝑚𝑐)  at least two units lower than the target magnitude 

(𝑚𝑇) is desirable (Rhoades and Evison, 2004). For Italy an earthquake catalogue with 
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homogeneous magnitudes and high resolution is the HORUS catalogue (Lolli et al., 

2020) reporting earthquakes from 1960 to the present. According to Lolli et al. (2020), 

HORUS can be considered complete within the Italian mainland for 𝑚 ≥ 4.0 since 

1960, for 𝑚 ≥ 3.0 since 1981, for 𝑚 ≥ 2.5 since 1990, for 𝑚 ≥ 2.1 since 2003 and for 

𝑚 ≥ 1.8 since 2005. In the dataset for this work, we used only shallow earthquakes 

with depth 𝑍 ≤ 40 𝑘𝑚.  To avoid edge effects in the fitting of model parameters, the 

contribution of earthquakes in the neighborhood of the region R must also be 

considered (Rhoades and Evison, 2004). We assume as neighborhood region the area 

included in the CPTI15 polygon (Fig. 4.2) according to Rovida et al. (2020).  

To account for the limited accuracy of magnitude data, we binned all magnitudes to 

the nearest tenth of a unit: 

𝑚𝑏𝑖𝑛𝑛𝑒𝑑 =
int(𝑚𝑟𝑎𝑤 × 10 + 0.5)

10
 

(4.23) 

This also means that a magnitude lower threshold rounded to the nearest tenth of a 

unit (e.g.,  𝑚𝑇 = 5.0) implies an effective threshold 0.05 units smaller (e.g., 𝑚𝑇 =

4.95). 

The HORUS catalogue reports 27 target shocks with Mw 5.0 from 1990 to 2011 and 

27 from 2012 to 2021. Thus, the rate of target shocks in the testing period is about 

twice that in the learning period. Hence, the forecasting of the correct number of 

earthquakes in the testing period by any forecasting method will be difficult. 

After the first target shock (“mainshock”) of a seismic sequence, the forecasting of 

successive target shock (“aftershocks”) is easier, owing to the presence of small 

aftershocks. Hence, we also fit and test the models against a set of target earthquakes 

only including the first target shock of each sequence. According to Gasperini et al. 

(2021), we eliminate the target shocks, occurring within a spatial window of 50 km 

and a time window of one year after any other target shock. In order to prevent 

various models from trying to forecast removed target earthquakes, we also remove 

all other (minor) shocks belonging to such spatial and time windows. The numbers 
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of considered target shocks for the mainshock only set then reduce to 12 and 9 for the 

learning and testing time intervals, respectively. 

 

Figure 4.1: Tessellation of the Italian territory region used for the fitting of 

parameters and for the retrospective experiment. The thick black line delimits the 

analysis region R. The cells that R comprises are only those within which at least one 

earthquake with 𝑀 ≥ 4.0 from 1600 to 2021 have occurred according to CPTI15 

catalogue (Rovida, Locati, Camassi, and Lolli, 2020) and have 30√2 km of side.  
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Figure 4.2: Epicenters of earthquakes with magnitude  2.5 that occurred within the 

CPTI15 polygon (outer thick polygon) between 1990 and 2021. The inner thick 

polygon represents the forecasting area R. 
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4.4 Implementation of MATLAB code and comparison with EEPSOF 

Version 2.3w  

We developed a suite of codes in MATLAB language reproducing the formulation of 

the EEPAS model described in section 4.2. We tested them against the EEPSOF code 

(Version 2.3w) developed by D. A. Rhoades (Rhoades, 2021) and provided as a 

binary Linux executable file compiled by Fortran77. To make the comparison, we 

adopted a simplified spatial geometry of an Italian areas (Fig. 4.3) as EEPSOF hardly 

manages the complex shape made by or tessellation of the application area (e.g., 

figure 4.1). The purpose of the comparison is to ensure that the optimized parameter 

values and the relative maximum log-likelihoods are satisfactorily similar.  

One difference between the MATLAB implementation and EEPSOF is the treatment 

of spatial data. While the EEPSOF code itself computes the kilometric distances 

directly from geographical coordinates, for the MATLAB implementation we have 

chosen to firstly convert all coordinates from the WGS84 geographic reference to 

kilometric coordinates in the RDN2008 Italy Zone (E-N) EPSG: 7794 by the QGIS 

software. 

We applied both codes to the dataset of target earthquakes with magnitude M ≥ 5.0 

that occurred from 1990 to 2020 within the analysis polygon. The latter is a rectangle 

with sides of 576 km eastward and of 745 km northward (Fig. 4.3). The vertices of the 

polygon for EEPSOF were converted from kilometric coordinates in the RDN2008 

Italy Zone (E-N) system to the WGS84 coordinate reference system. For fitting the 

EEPAS model, we used the earthquakes from the HORUS seismic catalogue (Lolli et 

al., 2020) with 𝑀 ≥ 2.5 and 𝑍 ≤ 50 𝑘𝑚 occurring inside the polygon from 1960 to 

2020. To avoid edge effects in the fitting of model parameters, the contribution of 

earthquakes in the neighborhood up to 200 km from the polygon were also 

considered (Fig. 4.3). The used dataset contains 38,086 events, of which 24,816 are 

within the analysis polygon. For both software codes, the log-likelihood optimization 
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is carried out using the downhill simplex method (Nelder and Mead, 1965) as 

described in Rhoades and Evison (2004). 

 

Figure 4.3: Map of epicenters of earthquakes with 𝑀 ≥ 2.5 and 𝑍 ≤ 50𝑘𝑚 that 

occurred from 1990 to 2020 within the region adopted for the software codes 

comparison. The interior rectangular area represents the analysis polygon for which 

the EEPAS model is applied. The black point represents the epicenters of earthquake 

occurred within the analysis polygon. The external rectangle represents the influence 

area for which earthquake indicated by the grey points are also considered for the 

parameters estimation to avoid edge effects. The white squares represent target 

earthquakes with  𝑀 ≥ 5.0 that occurred within the analysis polygon in the period 

1990-2020. 



103 

 

For the comparison, the fit of the EEPAS parameters is made in five iterations, one 

for the parameters 𝑎𝑇 , 𝑎𝑀 and 𝜗𝐴 and the others adding one at a time the parameters 

(𝜗𝑇 , 𝜗𝑀, 𝑏𝐴, 𝑏𝑇)  to notice the onset of possible deviations. In the first iteration the 

parameters  𝜗𝑇 , 𝜗𝑀, 𝑏𝐴, 𝑏𝑇 were set to 0.23, 0.32, 0.35 and 0.40 respectively, based on 

analyses conducted on scaling relationships obtained from the analysis of individual 

earthquakes (Rhoades and Evison, 2004). With these parameters set, 𝑎𝑇, 𝑎𝑀 and 𝜎𝐴 

were fit by the maximum likelihood estimation using as starting values 1.5, 1.4 and 

3.3, respectively. The fit procedure continued by adding one parameter at a time and 

considering the previously obtained values as initial values. The parameters, log-

likelihoods values and the expected numbers of earthquakes are reported in Table 

4.3. 

  

Table 4.3: Estimated parameters, expected number of target earthquake and 

log-likelihood values for each iteration step. 

EEPSOF code 

1st step 2nd step (𝝈𝑻) 3rd step (𝝈𝑴) 4th step (𝒃𝑨) 5th step (𝒃𝑻) 

𝑎𝑇 2.2264 𝑎𝑇 2.2109 𝑎𝑇 2.2204 𝑎𝑇 2.2187 𝑎𝑇 2.2173 

𝑎𝑀 1.2295 𝑎𝑀 1.2289 𝑎𝑀 1.0165 𝑎𝑀 1.0339 𝑎𝑀 1.0141 

𝜎𝐴 2.3893 𝜎𝐴 2.3739 𝜎𝐴 2.3360 𝜎𝐴 1.2387 𝜎𝐴 1.1125 
  𝜎𝑇 0.2757 𝜎𝑇 0.2696 𝜎𝑇 0.2686 𝜎𝑇  0.2683 
    𝜎𝑀 0.4845 𝜎𝑀 0.4820 𝜎𝑀 0.4918 
      𝑏𝑎 0.4899 𝑏𝑎 0.5181 
        𝑏𝑇 0.4021 

𝐿 -961.64 L -961.491 L -960.876 L -960.632 L -960.594 

�̅� 40.8569 �̅� 40.0899 �̅� 39.7087 �̅� 39.8445 �̅� 39.5826 

MATLAB code 

1st step 2nd step (𝝈𝑻) 3rd step (𝝈𝑴) 4th step (𝒃𝑨) 5th step (𝒃𝑻) 

𝑎𝑇 2.2190 𝑎𝑇 2.2074 𝑎𝑇 2.2118 𝑎𝑇 2.2075 𝑎𝑇 2.4950 

𝑎𝑀 1.2188 𝑎𝑀 1.2208 𝑎𝑀 1.0477 𝑎𝑀 1.0049 𝑎𝑀 1.0025 

𝜎𝐴 2.3929 𝜎𝐴 2.3769 𝜎𝐴 2.3456 𝜎𝐴 1.0015 𝜎𝐴 1.0097 

  𝜎𝑇 0.2670 𝜎𝑇 0.2603 𝜎𝑇 0.2607 𝜎𝑇  0.2652 

    𝜎𝑀 0.4493 𝜎𝑀 0.4771 𝜎𝑀 0.4642 

      𝑏𝑎 0.5413 𝑏𝑎 0.5399 

        𝑏𝑇 0.3236 

L -961.791 L -961.719 L -961.264 L -960.945 L -960.755 

�̅� 41.222 �̅� 40.6459 �̅� 40.5468 �̅� 40.6171 �̅� 40.9646 
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The optimized parameter values for the first iteration are unequivocally similar for 

the two codes, because the differences are less than 0.9%. In the second and third 

step, the estimates of parameters 𝑎𝑀 and 𝜗𝑇 begin to slightly deviate, with maximum 

percentage differences up to about 3.0%.  With the introduction in the fit of the 

spatial parameters, the differences of the other parameters also increase. In the fifth 

and final iteration, the differences are more pronounced, particularly for the 

parameters 𝑎𝑇, 𝜎𝐴 and 𝑏𝑇, where the codes differ by 12.5%, 10.2% and 24.0%, 

respectively. However, the differences in log-likelihoods and expected numbers of 

earthquakes remain small. Such differences mainly concern spatial parameters and 

may be related to the different way in which distances are handled by the two 

software codes and to the different method used to integrate over space.  

 

4.5 Implementation of the ETAS, SUP, and SVP models  

In the literature we can find several implementations of the Epidemic Type 

Aftershock Sequence (ETAS) model to earthquake forecasting in Italy (e.g., Console 

et al., 2006, Lombardi and Marzocchi, 2010, see also section 2.3.2). In all of them the 

time dependence is formulated as a sum of Omori decays starting at the times of 

occurrence of each earthquake 

𝑓(𝑡) =∑
𝐻(𝑡 − 𝑡𝑖)𝐾

(𝑡 − 𝑡𝑖 + 𝑐)
𝑝

𝑛

𝑖=1

 
(4.24) 

where K, p and c are free parameters and 𝐻(𝑡 − 𝑡𝑖) is the Heaviside step function 

which is 1 if 𝑡 − 𝑡𝑖 > 0 and is 0 otherwise. 

The productivity of each earthquake of magnitude 𝑀𝑖 is described by  

𝑟 = 𝑒𝛼(𝑀𝑖−𝑀𝑐) (4.25) 

where 𝛼 is a free parameter and 𝑀𝑐 is the minimum magnitude of completeness. 

The decay of the productivity with the distance from the epicenter (𝑥𝑖, 𝑦𝑖) of each 

earthquake can be described by many probability density functions (e.g., Ogata, 
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1998; Console et al., 2003; Zhuang et al., 2004; Lombardi and Marzocchi, 2010; 

Marzocchi and Zhuang, 2011, see also section 2.3.2). In this work we considered the 

spatial PDF as described in Ogata and Zhuang (2006) where the smoothing term is an 

exponential function of the magnitude:   

𝑔(𝑥, 𝑦) =
(𝑞 − 1)[𝐷2𝑒𝛾(𝑚𝑖−𝑚𝑐)]

𝑞−1
 

𝜋[(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2 + 𝐷2𝑒𝛾(𝑚𝑖−𝑚𝑐)]𝑞
 

(4.26) 

where q, 𝐷 and 𝛾  are free parameters.  

Finally, the frequency magnitude distribution of shocks is given by the Gutenberg 

and Richter (1944) law 

ℎ(𝑚) = 𝛽𝑒−𝛽(𝑚−𝑀𝑐) (4.27) 

where 𝛽 = 𝑏 𝑙𝑛10 is a free parameter. 

Combining all the previous terms together, and adding a time invariant background 

seismicity term 𝜆0(𝑥, 𝑦,𝑚), the rate density of ETAS models is given by 

𝜆(𝑡, 𝑥, 𝑦,𝑚) = 𝑓𝑟𝜆0(𝑥, 𝑦,𝑚) + [𝑓(𝑡)𝑟𝑔(𝑥, 𝑦)ℎ(𝑚)] (4.28) 

That is 

𝜆(𝑡, 𝑥, 𝑦,𝑚) = 𝑓𝑟𝜆0(𝑥, 𝑦,𝑚) + 

(4.29) 
+{∑

𝐻(𝑡 − 𝑡𝑖)𝐾

(𝑡 − 𝑡𝑖 + 𝑐)
𝑝

𝑛

𝑖=1

𝑒𝛼(𝑀𝑖−𝑀𝑐)
(𝑞 − 1)[𝐷2𝑒𝛾(𝑚𝑖−𝑚𝑐)]

𝑞−1
 

𝜋[(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2 + 𝐷2𝑒𝛾(𝑚𝑖−𝑚𝑐)]𝑞
𝛽𝑒−𝛽(𝑚−𝑀𝑐)} 

The parameter 𝜈 represents the ratio between the expected number of independent 

events of the background seismicity 𝜆0(𝑥, 𝑦,𝑚) and the total number of events.  

The time invariant models of seismicity consist of stationary Poisson processes, in 

which the average earthquake occurrence rate may be spatially uniform (Spatially 

Uniform Poisson, SUP) or variable (Spatially Variable Poisson, SVP). SUP and SVP 

can also be seen as independent models of seismicity occurrence to compare with 

other forecasting models (Console et al., 2006).  

Their rate density is given by:  

𝜆0(𝑥, 𝑦,𝑚) = 𝜇0(𝑥, 𝑦)𝛽 exp[−𝛽(𝑚 −𝑀𝑐)] (4.30) 
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where 𝜇0(𝑥, 𝑦) is the spatial rate density of earthquakes with magnitudes equal or 

larger than 𝑀𝑐. In the SUP model the space-density is assumed to be uniform and 

independent of the location (𝑥, 𝑦). 𝜇0 is obtained by dividing the number of 

earthquakes with magnitude above 𝑀𝑐 over the whole analysis region R by the total 

surface area considered.  

In the SVP model, the spatial density 𝜇0(𝑥, 𝑦) is considered as a continuous smooth 

function of the geographical location (𝑥, 𝑦). To estimate it as a spatially varying 

function, it is necessary to divide the polygon into squared cells of suitable size. The 

number of earthquakes 𝑁𝑘 with magnitude equal to or larger than 𝑀𝑐 in each cell is 

estimated. Each 𝑁𝑘 value, representative of a single cell is then smoothed by a 

Gaussian filter with correlation distance 𝑑𝑐 and normalized so as to preserve the total 

number of events as described in Frankel (1995). For each cell, the smoothed 𝑁𝑘 is 

given by  

�̃�𝑘 =
𝛴𝑙𝑁𝑘 exp(−𝛥𝑘𝑙

2 𝑑𝑐
2⁄ )

𝛴𝑙 exp(−𝛥𝑘𝑙
2 𝑑𝑐

2⁄ )
 

(4.31) 

where 𝛥𝑘𝑙 is the distance between the center of the 𝑘thand the 𝑙th cells. To obtain �̃�𝑘 

in terms of number of events per unit of time and area, it must be divided by the total 

duration of the earthquake catalogue and by the area of the cell. The value of 𝜇0(𝑥, 𝑦) 

in each point of the space is computed by the weighted mean over the distance of the 

four nearest cells that surround the point. To determine 𝑑𝑐 we follow the procedure 

suggested by Console and Murru, (2001):  the learning dataset (from 1990 to 2011) is 

divided into two sub-catalogues of about the same temporal length and 𝑑𝑐 is chosen 

as the value that maximizes the log-likelihood of a sub-catalogue using the smoothed 

seismicity obtained from the other sub-catalogue (Fig 4.4). The analysis for the 

optimal 𝑑𝑐 is conducted for both sub-catalogues and the obtained values for 𝑑𝑐 are 

respectively 𝑑𝑐1 = 16.0 and 𝑑𝑐2 = 13.0. The optimal correlation distance 𝑑𝑐 = 14.5 is 

given by the mean of these two estimates. Once the value 𝑑𝑐 is optimized, the spatial 
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density of earthquakes 𝜇0(𝑥, 𝑦)  of the SVP background model can be assessed for 

each cell and for each point in space (Fig. 4.1).  

The parameter 𝑞 of the ETAS model is set to 1.5, according to physical investigation 

showing that the static stress changes decrease with epicentral distance as 𝑟−3 

(Lombardi and Marzocchi, 2010). The other parameters  (𝑘, 𝑝, 𝑐, 𝛼, 𝑑, 𝜈) are fitted by 

the maximization of the likelihood function (eq. 4.1) of using the interior point 

method.  

 

Figure 4.4: (Upper frame) Log-likelihood of the sub-catalogue of earthquakes that 

occurred in the period 1990 - April 2000 under the time-independent SVP model 

obtained by the seismicity from April 2000 to 2011. (Lower frame) Log-likelihood of 

the sub-catalogue of earthquakes that occurred in the period April 2000 to 2011 

under the time-independent SVP model obtained by the seismicity from 1990 - April 

2000.    
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4.6 Estimation of parameters of EEPAS and other forecasting models using 

the learning dataset 

Considering the high number of free parameters to be determined for the EEPAS 

model (in principle about 20), the maximization of the log-likelihood function (eq. 

4.1) would be very time consuming and subject to numerical instability. However, 

according to Rhoades and Evison (2004), simultaneous optimization of all parameters 

is not necessary because some of them, such as the b-value of the Gutenberg and 

Richter (1944) relation and the parameters of the aftershock epidemic decay model 

(𝑝, 𝑘, 𝑐, 𝜈), can be, in fact, separately fitted or even be simply assigned based on 

previous works in the same area.  

The 𝑏 − value  of the Gutenberg and Richter (1944) relation is chosen to be 

representative of the behavior of the frequency magnitude distribution of target 

events in the fitting time interval. For the mainshocks + aftershocks and mainshocks 

only target earthquake sets, the values 𝑏 = 1.084 and 𝑏 = 1.176, respectively, are 

computed so that the number of predicted target events by the spatial uniform 

Poisson model (SUP) exactly match the number of observed events (27 and 12 

respectively) in the learning set. This also makes the numbers of shocks predicted by 

the other models implemented for comparison consistent with observed ones. The 

parameters of the aftershock model are not particularly critical for the EEPAS model; 

however, they are necessary to determine the weight 𝑤 (eq. 4.22) of the contribution 

of each earthquake (𝑀 ≥ 𝑚𝑐), by defining the probability of an earthquake being an 

aftershock of a previous seismic event. The parameters 𝑝 = 1.2 and 𝑐 = 0.03 of 

equation (4.19) were chosen as typical parameters of Omori’s law (Ogata, 1983). The 

two parameters 𝜈 and 𝑘 in equation (4.17) were fitted by maximizing the likelihood 

of earthquakes with 𝑚 ≥ 𝑚𝑇 occurring within R in the period 1990-2011.  

Finally, the parameter 𝜎𝑈 = 0.006 of equation (4.21) is chosen to be consistent with 

the mean value of the cluster diffusion parameter for Italy (Musmeci and Vere-Jones, 

1992). The parameter 𝛿 = 0.7 of equation (4.20) is taken from previous works for 
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New Zealand, California and Japan (Evison and Rhoades 2005, Rhoades and Evison, 

2004, Rhoades, 2007, 2011). The parameters of the PPE model (eq. 4.16) 𝑎, 𝑑, and 𝑠 are 

fitted simultaneously using the maximum likelihood method.  

Regarding EEPAS parameters, the fit is made in three successive iterations. The 

parameter 𝑏𝑀 is fixed to 1 for all three iterations; that means there is perfect scaling 

between precursor and target magnitudes (Rhoades and Evison, 2004).  

In the first iteration, the parameters 𝑏𝑇 and 𝑏𝐴 are fixed to 0.40 and 0.35, respectively, 

based on analyses conducted on scaling relationships obtained from the analysis of 

individual earthquakes. The parameters 𝜎𝑀 and 𝜎𝑇 are also fixed to 0.32 and 0.23, 

respectively. Such values correspond to the residual standard deviation for the 

magnitude and time scaling relations (Rhoades and Evison, 2004). Finally, 

parameters 𝑎𝑇, 𝑎𝑀, 𝜎𝐴 and 𝜇 are computed by maximum likelihood estimation.  

In the second iteration, the previously fitted parameters 𝑎𝑇, 𝑎𝑀, 𝜎𝐴 are kept fixed at 

the obtained values and the parameters 𝑏𝑇, 𝑏𝐴, 𝜎𝑀, 𝜎𝑇 and 𝜇  are computed instead by 

the maximum likelihood.  

In the third and last iteration a final computation is made of all parameters (𝑎𝑇, 𝑎𝑀, 

𝜎𝐴, 𝑏𝑇, 𝑏𝐴, 𝜎𝑀,𝜎𝑇 and 𝜇) simultaneously, by providing the optimizer with starting 

values of the parameters as obtained in previous optimizations. The parameter 𝜇, 

responsible for mixing the two models PPE and EEPAS, is the only parameter fitted 

in all three iterations of optimization.  

The parameter values obtained by maximizing the likelihood are reported in Tables 

4.4 and 4.5 for the mainshocks+aftershocks and the mainshocks only target sets 

respectively.  In the same tables, we also report the parameters of the other 

forecasting models (SUP, SVP, ETAS-SUP and ETAS-SVP) computed for comparison 

(see Table 4.1) and the parameter standard errors estimated as the square roots of the 

diagonal elements of the variance-covariance matrix, computed as the inverse of the 

Hessian matrix of the log-likelihood function at the maximum (Ogata, 1988).  
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Table 4.4 - Estimated parameters for various models (mainshock + aftershocks). 

SUP SVP ETAS-SUP 
𝑏 1.08 ∗ 𝑏 1.08 ∗ 𝑏 1.08 ∗ 

  𝑑𝑐   14.5 ∗ 𝑘 0.029 ± 0.001 

PPE (parameters shared with EEPAS) 𝑐 0.004 ± 0.001 

𝑏 1.08 ∗ 𝑝 1.042 ± 0.004 
𝑎 0.62 ± 0.18 𝐷 1.04 ± 0.03 
𝑑 30 ± 12 𝛾 0.45 ± 0.04 
𝑠 9.0 × 10−13 ± 1.5 × 10−3 𝛼 1.11 ± 0.03 

EEPAS-NW EEPAS-W 𝑞 1.5∗ 

𝑎𝑀 1.22 ± 0.17 𝑎𝑀 1.23 ± 0.16 𝑓𝑟 0.264 ± 0.006 
𝑏𝑀 1∗ 𝑏𝑀 1∗ ETAS-SVP 
𝜎𝑀 0.25 ± 0.11 𝜎𝑀 0.24 ± 0.11 𝑏 1.08 
𝑎𝑇 2.55 ± 0.07 𝑎𝑇 2.72 ± 0.07 𝑘 0.0207 ± 5 × 10−4 
𝑏𝑇 0.35 ± 0.02 𝑏𝑇 0.32 ± 0.02 𝑐 0.0021 ± 1 × 10−4 
𝜎𝑇 0.15 ± 0.01 𝜎𝑇 0.15 ± 0.01 𝑝 1.084 ± 0.003 
𝑏𝐴 0.52 ± 0.06 𝑏𝐴 0.51 ± 0.05 𝐷 0.895 ± 0.022 
𝜎𝐴 1.00 ± 0.03 𝜎𝐴 1.00 ± 0.03 𝛾 0.53 ± 0.04 
𝜇 0.18 ± 0.13 𝜇 0.16 ± 0.12 𝛼 1.22 ± 0.02 

  𝑐 0.03∗ 𝑞 1.5∗ 

  𝑝 1.2∗ 𝑓𝑟 0.416 ± 0.006 

  𝑘 0.13∗   

  𝜈 0.61∗   

  𝛿 0.7∗   

  𝜎𝑈 0.006∗   

*fixed or fitted independently 
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Table 4.5 - Estimated parameters for various models (mainshocks only). 

SUP SVP ETAS-SUP 
𝑏 1.18 ∗ 𝑏 1.18 ∗ 𝑏 1.18 ∗ 

  𝑑𝑐   14.5 ∗ 𝑘 0.028 ± 0.001 

PPE (parameters shared with EEPAS) 𝑐 0.002 ± 2 × 10−4 

𝑏 1.18 ∗ 𝑝 1.002 ± 0.003 
𝑎 0.39 ± 0.20 𝐷 1.28 ± 0.04 
𝑑 32 ± 15 𝛾 0.36 ± 0.07 
𝑠 91.58 × 10−7 ± 1.5 ± 0.002 𝛼 0.81 ± 0.03 

EEPAS-NW EEPAS-W 𝑞 1.5∗ 

𝑎𝑀 1.33 ± 0.13 𝑎𝑀 1.23 ± 0.16 𝑓𝑟 0.39 ± 0.01 
𝑏𝑀 1∗ 𝑏𝑀 1∗ ETAS-SVP 
𝜎𝑀 0.20 ± 0.01 𝜎𝑀 0.20 ± 0.01 𝑏 1.18 
𝑎𝑇 1.35 ± 0.11 𝑎𝑇 1.36 ± 0.11 𝑘 0.0180 ± 5 × 10−4 
𝑏𝑇 0.60 ± 0.03 𝑏𝑇 0.60 ± 0.03 𝑐 0.001 ± 8 × 10−5 
𝜎𝑇 0.15 ± 0.06 𝜎𝑇 0.15 ± 0.07 𝑝 1.065 ± 0.003 
𝑏𝐴 0.45 ± 0.07 𝑏𝐴 0.48 ± 0.07 𝐷 1.04 ± 0.02 
𝜎𝐴 1.63 ± 0.55 𝜎𝐴 1.00 ± 0.44 𝛾 0.53 ± 0.04 
𝜇 0.34 ± 0.30 𝜇 0.36 ± 0.30 𝛼 0.86 ± 0.03 

  𝑐 0.03∗ 𝑞 1.5∗ 

  𝑝 1.2∗ 𝑓𝑟 0.55 ± 0.008 

  𝑘 0.13∗   

  𝜈 0.61∗   

  𝛿 0.7∗   

  𝜎𝑈 0.006∗   

*fixed or fitted independently 

 

In Tables 4.6 and 4.7, we report the information gain per event (IGPE) and the Akaike 

information criterion (AIC, Akaike, 1974) goodness of fit estimators of various 

models for the mainshocks+aftershocks and the aftershocks only target sets 

respectively. The IGPE is defined as  

𝐼𝐺𝑃𝐸 =
𝐿 − �̂�

𝑁
 

(4.32) 

where 𝐿 and �̂� are the likelihoods obtained by a model and reference model, 

respectively. The Akaike information criterion (AIC) defined as  

𝐴𝐼𝐶 = −2 log(𝐿) + 2𝑘 (4.33) 

where 𝐿 and 𝑘 are the maximum likelihood and the number of fitted parameters for 

the model involved, respectively. The lower the 𝐴𝐼𝐶 statistic, the better the fit to the 
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data. We can note how both the ETAS models have better scores (higher 

loglikelihood, information gain per event and lower AIC) than EEPAS and other 

models. Both EEPAS models also have lower loglikelihoods than SVP and higher 

AIC (worse) than SUP for the mainshock only set. Such scores are not particularly 

significant because they only represent the goodness of the fit of the models to 

learning dataset and might include some degree of data overfitting.   

Table 4.6 – Performance estimators of various models in the learning time interval 

(1990-2011) (mainshock + aftershocks). 

 SUP SVP PPE EEPAS-NW 
EEPAS-

W 
ETAS-SVP 

ETAS-

SUP 

E 27 27.22 27 27.67 27.73 27.49 27.52 

lnL -524.63 -465.47 -514.11 -500.39 -496.06 -363.87 -363.58 

IGPE 0.00 2.19 0.39 0.90 1.06 5.95 5.97 

AIC 1051.3 934.9 1036.2 1026.8 1018.1 727.7 727.1 

𝚫AIC 0.00 2.15 0.28 0.45 0.61 5.99 6.00 

E: number of predicted events, lnL: loglikelihood score, IGPE: information gain per 

event with respect to model SUP, AIC: Akaike Information Criteria, AIC Akaike 

Information Criteria difference with respect to model SUP per event. 
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Table 4.7 – Performance estimators of various models in the learning time interval 

(1990-2011) (mainshocks only). 

 SUP SVP PPE EEPAS-NW 
EEPAS-

W 
ETAS-SVP 

ETAS-

SUP 

E 12.00 12.19 11.99 14.26 14.75 12.01 11.97 

lnL -246.15 -237.68 -243.52 -239.92 -239.79 -215.57 -212.91 

IGPE 0.00 0.75 0.22 0.52 0.54 3.03 3.16 

AIC 494.30 479.37 495.04 505.84 505.40 435.49 432.57 

DAIC 0.00 0.62 -0.03 -0.48 -0.46 1.88 2.10 

E: number of predicted events, lnL: loglikelihood score, IGPE: information gain per 

event with respect to model SUP, AIC: Akaike Information Criteria, AIC Akaike 

Information Criteria difference with respect to model SUP. 

 

4.7 Retrospective comparison of forecasting models on the independent 

testing dataset 

We apply the suite of tests defined by the Collaboratory for the Study of Earthquake 

Predictability (CSEP, Jordan, 2006, Zechar et al., 2010) and particularly the new ones 

described by Bayona et al., (2022).  

Such tests assess the consistency of observed earthquakes with a forecast model by i) 

the conditional loglikelihood (cL-test) ii) the observed number of earthquakes (N-

test), iii) their spatial distribution (S-test) and iv) their magnitude distribution (M-

Test). However, we do not report the results for the latter, because all forecasting 

models assume a Gutenberg–Richter frequency–magnitude distribution and all pass 

the M-test. 

Traditional CSEP tests are based on a likelihood function that regards earthquakes in 

individual cells or bins as independent and Poisson distributed (Schorlemmer et al., 

2007, 2010, Zechar et al., 2010). However, the Poisson distribution insufficiently 
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captures the spatiotemporal variability of earthquakes, especially in the presence of 

clusters of seismicity (Werner and Sornette, 2008; Lombardi and Marzocchi, 2010; 

Nandan et al., 2019). The new CSEP tests are characterized by a lower sensitivity to 

clustering of target events rather than the traditional ones.  

The new CSEP N-test compares the number of predicted earthquakes in all (time–

space–magnitude) bins with the number of target earthquakes observed and is based 

on the negative binomial distribution (NBD)  

𝑝[(𝜔|𝜏, 𝜈)] =
Γ(𝜏 + 𝜔)

Γ(𝜏)𝜔!
𝜈𝜔(1 − 𝜈)𝜔 

(4.34) 

Where 𝜔 = 1,2, … is the number of events, 𝜏 > 0 and 0 ≤ 𝜈 ≤ 1 are parameters and Γ 

is the Gamma function. The mean and the variance of NBD are given by 

𝜇 = 𝜏
1 − 𝜈

𝜈
; 𝜎2 =

1 − 𝜈

𝜈2
 

(4.35) 

According to Werner et al. (Werner et al., 2010) and Bayona et al. (2022) we used the 

number of expected earthquakes as the mean value 𝜇 of the NBD. The variances are 

determined considering the numbers of events with Mw 5.0 within 10 years non 

overlapping intervals from 1882 to 2011 (Fig.4.5) from the Italian historical catalogue 

CPTI15 (Rovida et al., 2020). The computed variances are 𝜎𝑁𝐷
2 = 67.76 and 𝜎𝐷

2 = 35.94 

for the mainshocks+aftershocks and the mainshocks only data sets, respectively. The 

numbers of earthquakes corresponding to 95% (p=0.0250.975) and 97.5% 

(p=0.01250.9875) predictive limits, based on the NBD cumulative distribution 

function, are computed.  If the observed number of earthquakes falls within such 

limits, the model satisfactorily describe the observed data. 
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Figure 4.5: Number of target events (𝑀 ≥ 5.0) reported in the CPTI15 earthquake 

catalogue (from 1880 to 1959) and in the HORUS seismic catalogue (from 1960 to 

2021) in non-overlapped 10-year intervals for mainshocks+aftershocks (left) and 

mainshocks only (right). Green bars indicate the number of target shocks occurred 

during the test period. 

 

The binary cL-test compares the joint binary log-likelihood (JBLL) of the forecasted 

events by a model with the observed seismicity, with the distribution of joint binary 

log-likelihoods obtained by the simulation of random catalogues.  

The rates forecasted by the model within each active bin (i.e., time-space-magnitude 

bins containing observed events) are first normalized to the total number of observed 

active bins (so that their sum is 1). The active bins are then sorted according to the 

increasing value of the normalized rate and a vector of cumulated normalized rates is 

computed (ranging from 0 and 1). The number 𝑁𝑠𝑖𝑚 of target earthquakes to simulate 

is fixed to the number of observed active bin. For each simulated earthquake (or 

observed bin), a uniformly distributed random number is extracted in the interval 

]0,1]. The earthquake is then placed in the first bin for which the cumulated 

normalized rate exceeds the random sampled value (Zechar et al., 2010). 

For each simulated catalogue the JBLL is estimated and, after 𝑁 = 10000 simulated 

catalogues, the simulated JBLL distribution is obtained. If the JBLL obtained by a 
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model lies in the lower tail of the simulated JBLL distribution, the forecasting model 

does not reproduce well the real seismicity pattern and then the test fails.  

The binary log-likelihood is obtained by calculating the probability of an earthquake 

in a forecast bin. Assuming the Poissonian distribution, the probability of observing 

𝜔 = 0 events, given an expected rate 𝜆, is 𝑃0 = exp (−𝜆), while the probability of 

observing more than zero events is 𝑃1 = 1 − 𝑃0 (Bayona et al., 2022). The binary log-

likelihood for each bin is thus given by  

𝐵𝐿𝐿 = 𝑋𝑖 ln(1 − exp(−𝜆)) + (1 − 𝑋𝑖) ln(exp(−𝜆)) (4.36) 

where  𝑋𝑖 = 1 if the 𝑖 − 𝑡ℎ bin contains at least one event and 𝑋𝑖 = 0 otherwise. The 

observed binomial joint log-likelihood is given by the summation of the BLL over all 

space-magnitude-time bins: 

𝐽𝐵𝐿𝐿 =∑∑∑𝑋(𝑙, 𝑗, 𝑘) ln[1 − exp(−𝜆(𝑙, 𝑗, 𝑘))] + [1 − 𝑋(𝑙, 𝑗, 𝑘) ln(exp (−𝜆(𝑙, 𝑗, 𝑘)] 

𝑡

𝑘=1

𝑚

𝑗=1

𝑠

𝑙=1

 
(4.37) 

The S-test evaluates the consistency of the spatial occurrence of target earthquakes 

regardless of their magnitudes.  

For the new S-test the joint binary log-likelihood of the forecasted catalogue is 

calculated considering only the spatial distribution of forecasted events. To isolate 

the spatial distribution, the forecasted events are summed over the magnitude and 

time bins. In addition, to assess the JBLL, the forecasted catalogue is normalized to 

the number of active spatial cells. The simulation procedure to obtain the spatial 

simulated JBLL is similar to that described above for the binary cL-test, but 𝑁𝑠𝑖𝑚 is 

fixed to the number of active spatial cells. For the cL, N and S test, the computed 

statistic is the quantile score: that is, the fraction of simulated likelihoods that are less 

than or equal to the likelihood observed by the model. A small value, lower than the 

usual significance level 𝛼 = 0.05 or than the Bonferroni-adjusted significance level 

𝛼𝐵𝑓 = 0.05 2⁄ = 0.025  means that the model inadequately describes the seismicity 

pattern.  
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To evaluate the relative skill of the forecasting models, we use the information gain per active 

bin (IGPA, Bayona et al., 2022), which is based on the likelihood difference with respect to a 

reference (baseline) forecasting model divided by the number of earthquakes or by the 

number of active bins (the bins in which the likelihood contribution is not zero) 

respectively.The IGPA is thus given by 

𝐼𝐺𝑃𝐴 =
𝑁𝑏𝑎𝑠𝑒 − 𝑁𝑚𝑜𝑑

𝑀
+ 
1

𝑀
∑[𝑋𝑚𝑜𝑑(𝑚) − 𝑋𝑏𝑎𝑠𝑒(𝑚)]

𝑀

𝑚=1

 
(4.38) 

Where 𝑁𝑏𝑎𝑠𝑒 and 𝑁𝑚𝑜𝑑 are the total number of earthquakes expected by the baseline 

and the model respectively, 𝑀 is the number of active bins, and 𝑋𝑚𝑜𝑑(𝑚) and 

𝑋𝑏𝑎𝑠𝑒(𝑚) are the joint log-likelihood score obtained in the bin with the 𝑚− 𝑡ℎ target 

earthquake by the model and the reference baseline model respectively.  According 

to Rhoades et al. (2011) the variance of  𝑋𝑚𝑜𝑑(𝑚) − 𝑋𝑏𝑎𝑠𝑒(𝑚) is given by 

𝑠2 = 
1

𝑀 − 1
∑(𝑋𝑚𝑜𝑑(𝑚) − 𝑋𝑏𝑎𝑠𝑒(𝑚))

2 −
1

𝑀2 −𝑀

𝑀

𝑚=1

[∑ 𝑋𝑚𝑜𝑑(𝑚) − 𝑋𝑏𝑎𝑠𝑒(𝑚)

𝑀

𝑚=1

]

2

. 
(4.39) 

The IGPA error is estimated as ±𝑡𝑠√𝑀, where 𝑡 is the 95th (or 97.5th) percentile of the 

Student’s t distribution with 𝑀 − 1 degrees of freedom. 

 As baseline model we take the SUP, which is the simpler one. We do not need a 

correction for the number of free parameters, as proposed by Rhoades et al., (2014), 

because the fitting of models is independent of the testing set targets, being made 

using the learning set. In addition, we do not use the parimutuel gambling score 

(PGS) by Zhuang (2010) and Zechar and Zhuang (2014), because Serafini et al. (2022) 

recently demonstrated that PGS is improper when the number of forecasting 

methods being tested is greater than two.  

4.8 Results  

In Fig. 4.6 and Table 4.8, we report the numbers of mainshocks+aftershocks targets 

predicted by various models using different time intervals (3 months, 6 months, 1 

year, 5 years, and 10 years) of prediction. All models definitely underestimate the 

total number of target earthquakes (27) that actually occurred. The reason is that the 
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average rate of targets in the testing set (about 2.7 per year) is more than twice than 

that in learning set (about 1.2 per year). However, according to Werner et al. (2011), 

the negative binomial N-test is characterized by wider confidence intervals than the 

traditional Poissonian N-test and then the forecast models are found to be consistent 

as the observed number earthquakes is within both the 95% and 97.5% confidence 

intervals (Fig. 4.7 and Table 4.9).  The binary cL-tests show that all forecasted models 

adequately describe the observed seismicity as the quantile scores exceed the 0.025 

and 0.05 significance levels (Fig. 4.8 and Table 4.10).  The S-test (Fig. 4.9 and Table 

4.11) confirm the spatial consistency between the forecasts and the observed dataset. 

The results of the IGPA (T-test) for mainshocks+aftershocks targets in Fig. 4.10 and 

Table 4.12 indicate that for the shortest prediction interval of 3 months the best 

performing models are the ETAS-SVP and ETAS-SUP. For longer prediction 

intervals, the best performing models are the EEPAS-NW and EEPAS-W, but such 

superior performance appears to be statistically significant only for time intervals of 

5 and 10 years. 

In Fig. 4.11 and Table 4.13, we report the numbers of mainshocks only targets 

predicted by various models using different time intervals of prediction. All models 

still underestimate the total number of targets (9) that actually occurred, as even in 

this case the average rate of targets in the testing set (0.9 per year) is greater than in 

the learning set (0.5 per year). All models pass the negative binary N-test (Fig. 4.12 

and Table 4.14), cL-test (Fig. 4.13 and Table 4.15) and S-test (Fig. 4.14 and Table 4.16) 

for all time intervals of prediction. The results of the IGPA (T-test) mainshock only 

targets in Fig. 4.15 and Table 4.17 confirm that the best performing models are ETAS-

SVP and ETAS-SUP for the shortest prediction interval of 3 months and the EEPAS-

NW and EEPAS-W for longer prediction intervals. However, such superior 

performance is not significant for any time interval. 
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Figure 4.6: Numbers of targets (mainshocks+aftershocks) in the testing set (2012-

2021) predicted by various models using different prediction intervals. The effective 

total number of targets is 27. 

 

Table 4.8 - Numbers of earthquakes predicted by various models in the testing time 

interval (2012-2021) (mainshocks + aftershocks). 

Time interval SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP  ETAS-SVP 

3 Months 12.27 13.11 14.03 14.41 13.70 8.36 8.00 

6 Months 12.27 13.11 13.98 14.40 13.69 7.43 7.73 

1 Year 12.27 13.11 13.87 14.38 13.67 6.94 7.42 

5 Years 12.27 13.11 12.94 14.21 13.53 5.90 6.79 

10 Years  12.27 13.11 11.25 13.86 13.25 4.66 6.05 
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Figure 4.7: Results of number consistency test (N-test) in the testing set (2012-2021) 

for various models using different prediction intervals (mainshocks+aftershocks). 

Colored circles indicate the number of observed events in the testing set.  Black and 

grey bars indicate the 95% and 97.5% confidence limits, respectively. Green colored 

circles indicates that all models passed the test.  

 

Table 4.9 – Binary N test in the testing time interval (2012-2021) (mainshocks + 

aftershocks). 

Time intvl SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP ETAS-SVP 

3 Months 0.112 0.125 0.143 0.151 0.136 0.073 0.071 

6 Months 0.112 0.125 0.142 0.151 0.136 0.068 0.070 

1 Year 0.112 0.125 0.140 0.150 0.136 0.066 0.068 

5 Years 0.112 0.125 0.123 0.147 0.133 0.061 0.065 

10 Years  0.112 0.125 0.099 0.139 0.128 0.057 0.062 
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Figure 4.8: Results of conditional likelihood consistency test (cL-test) in the testing set 

(2012-2021) for various models using different prediction intervals 

(mainshocks+aftershocks). Black and grey bars indicate the 95% and 97.5% 

confidence limits, respectively. Green colored circles indicates that all models passed 

the test.  

 

Table 4.10 – Binary cL test in the testing time interval (2012-2021) (mainshocks + 

aftershocks). 

Time intvl SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP ETAS-SVP 

3 Months 0.109 0.180 0.287 0.186 0.321 0.826 0.815 

6 Months 0.106 0.177 0.241 0.182 0.305 0.391 0.387 

1 Year 0.109 0.171 0.247 0.171 0.292 0.390 0.346 

5 Years 0.105 0.167 0.241 0.165 0.275 0.366 0.228 

10 Years  0.096 0.151 0.240 0.131 0.231 0.650 0.214 
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Figure 4.9: Results of spatial consistency test (S-test) in the testing set (2012-2021) for 

various models using different prediction intervals (mainshocks+aftershocks). Black 

and grey bars indicate the 95% and 97.5% confidence limits, respectively. Green 

colored circles indicates that all models passed the test.  

 

Table 4.11 – Binary S test in the testing time interval (2012-2021) (mainshocks + 

aftershocks). 

Time intvl SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP ETAS-SVP 

3 Months 0.095 0.084 0.598 0.415 0.443 0.820 0.581 

6 Months 0.613 0.090 0.589 0.416 0.452 0.865 0.589 

1 Year 0.277 0.091 0.581 0.415 0.441 0.856 0.496 

5 Years 0.083 0.085 0.434 0.358 0.393 0.720 0.250 

10 Years  0.092 0.009 0.148 0.283 0.344 0.798 0.131 
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Figure 4.10: Comparison between various models in different time intervals 

(mainshocks+aftershocks) in the testing set (2012-2021) by the IGPA (T-test). Black 

and grey bars indicate the 95% and 97.5% confidence limits, respectively. Colored 

circles are green if the IGPA of a model is larger than the reference value 0 

corresponding to the SUP model, yellow if IGPA of a model is lower than the 

reference model, but not significantly and red if a model IGPA is significantly lower 

than the reference model. 

 

Table 4.12 – Information Gain per active bin in the testing time interval (2012-2021) 

(mainshocks + aftershocks). 

Time intvl SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP ETAS-SVP 

3 Months 0.00(7) 0.53(6) 0.54(5) 0.81(3) 0.73(4) 1.13(1) 1.08(2) 

6 Months 0.00(7) 0.55(3) 0.52(4) 0.82(1) 0.74(2) 0.35(6) 0.49(5) 

1 Year 0.00(7) 0.57(3) 0.54(4) 0.84(1) 0.76(2) 0.22(6) 0.37(5) 

5 Years 0.00(7) 0.62(3) 0.53(4) 0.89(1) 0.80(2) -0.01(6) 0.14(5) 

10 Years  0.00(7) 0.67(3) 0.46(4) 0.90(1) 0.81(2) -0.38(6) -0.15(5) 

 Numbers within brackets indicate the ranking of models from 1 (best) to 7 (worst). 
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Figure 4.11: Numbers of targets (mainshocks only) in the testing set (2012-2021) 

predicted by various models and prediction intervals. The effective total number of 

targets is 9. 

 

Table 4.13 - Numbers of earthquakes predicted by various models in the testing time 

interval (2012-2021) (mainshocks only). 

Time interval SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP  ETAS-SVP 

3 Months 5.46 5.86 5.41 6.02 6.06 4.23 4.17 

6 Months 5.46 5.86 5.40 6.02 6.06 4.02 4.06 

1 Year 5.46 5.86 5.38 6.01 6.05 3.82 3.96 

5 Years 5.46 5.86 5.18 5.92 5.96 3.19 3.67 

10 Years  5.46 5.86 4.82 5.51 5.57 2.97 2.57 
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Figure 4.12: Results of number consistency test (N-test) in the testing set (2012-2021) 

for various models using different prediction intervals (mainshocks only). Black and 

grey bars indicate the 95% and 97.5% confidence limits, respectively. Colored circles 

indicate the number of observed events in the testing set.  Green colored circles 

indicates that all model passed the test.  

 

Table 4.14 – Binary N test in the testing time interval (2012-2021) (mainshocks). 

Time intvl SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP ETAS-SVP 

3 Months 0.373 0.410 0.369 0.424 0.428 0.275 0.271 

6 Months 0.373 0.410 0.368 0.424 0.428 0.260 0.263 

1 Year 0.373 0.410 0.366 0.423 0.427 0.246 0.256 

5 Years 0.373 0.410 0.349 0.415 0.419 0.205 0.236 

10 Years  0.373 0.410 0.320 0.378 0.383 0.190 0.229 
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Figure 4.13: Results of conditional likelihood consistency test (cL-test) in the testing 

set (2012-2021) for various models using different time intervals (mainshocks only). 

Black and grey bars indicate the 95% and 97.5% confidence limits, respectively. 

Green colored circles indicates that all model passed the test.  

 

Table 4.15 – Binary cL test in the testing time interval (2012-2021) (mainshocks). 

Time intvl SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP  ETAS-SVP 

3 Months 0.362 0.211 0.3945 0.349 0.337 0.890 0.620 

6 Months 0.355 0.209 0.3833 0.354 0.341 0.773 0.414 

1 Year 0.356 0.209 0.3946 0.350 0.343 0.624 0.328 

5 Years 0.346 0.210 0.3748 0.342 0.319 0.668 0.292 

10 Years  0.349 0.202 0.4079 0.383 0.391 0.671 0.279 
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Figure 4.14: Results of spatial consistency test (S-test) in the testing set (2012-2021) for 

various models using different prediction intervals (mainshocks only). Black and 

grey bars indicate the 95% and 97.5% confidence limits, respectively. Green colored 

circles indicates that all model passed the test.  

 

Table 4.16– Binary S test in the testing time interval (2012-2021) (mainshocks). 

Time 

intvl SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP ETAS-SVP 

3 Months 0.457 0.159 0.710 0.631 0.641 0.887 0.427 

6 Months 0.439 0.160 0.711 0.632 0.641 0.881 0.439 

1 Year 0.397 0.158 0.695 0.628 0.640 0.866 0.397 

5 Years 0.290 0.161 0.623 0.605 0.611 0.865 0.290 

10 Years  0.241 0.162 0.484 0.509 0.536 0.834 0.241 
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Figure 4.15: Comparison between various models in different time intervals 

(mainshocks only) in the testing set (2012-2021) by the IGPA (T-test). Black and grey 

bars indicate the 95% and 97.5% confidence limits, respectively. Colored circles are 

green if the IGPA of a model is larger than the reference value 0 corresponding to the 

SUP model, yellow if IGPA of a model is lower than the reference model, but not 

significantly and red if a model IGPA is significantly lower than the reference model. 

 

Table 4.17 – Information Gain per active bin in the testing time interval (2012-2021) 

(mainshocks). 

Time intvl SUP SVP PPE EEPAS-NW EEPAS-W ETAS-SUP ETAS-SVP 

3 Months 0.00(7) 0.22(5) 0.18(6) 0.42(2) 0.36(3) 0.52(1) 0.35(4) 

6 Months 0.00(7) 0.25(4) 0.20(5) 0.45(1) 0.39(2) 0.26(3) 0.12(3) 

1 Year 0.00(7) 0.28(3) 0.23(4) 0.75(1) 0.42(2) 0.03(5) 0.01(6) 

5 Years 0.00(7) 0.36(3) 0.27(4) 0.52(1) 0.47(2) -0.14(6) -0.09(5) 

10 Years  0.00(7) 0.39(3) 0.27(4) 0.52(1) 0.50(2) -0.22(6) -0.12(5) 

Numbers within brackets indicate the ranking of models from 1 (best) to 7 (worst). 
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4.9 Conclusions of Chapter 4 

We applied the EEPAS earthquake forecasting model to Italy, similarly to previous 

application in other seismic regions of the world (e.g., Rhoades and Evison, 2004, 

Evison and Rhoades, 2005, Rhoades, 2007, 2011, Rhoades et al., 2020), using a suite of 

computing codes completely rewritten in MATLAB and implementing both EEPAS 

formulations with the input earthquakes not weighted (EEPAS-NW) and weighted 

(EEPAS-W). We calibrated and fitted the model parameters using earthquakes of the 

HORUS seismic catalogue of Italy (Lolli et al., 2020) for the learning period 1990-

2011. The EEPAS model was then applied to forecast all earthquakes (mainshocks + 

aftershocks) of the same seismic catalogue with 𝑀 ≥ 5.0 and only the mainshocks 

that occurred within the polygon of analysis for the test period 2012-2021. We 

compared the forecasting skill of EEPAS with the ones obtained by other time 

dependent (ETAS-SUP and ETAS-SVP) and time independent (SUP, SVP and PPE) 

models implemented on the same dataset. We used a set of new CSEP consistency 

tests based on a negative binary likelihood function as described in Bayona et al., 

(2022).  This latter likelihood function reduces the sensitivity of spatial log-likelihood 

scores to the occurrence of seismic events (Bayona et al., 2022) compared to previous 

versions of the tests based on a Poisson distribution assumption. The number of 

expected target earthquakes forecasted by each model tends to decrease as the 

forecasting interval increases. The highest expected number of earthquakes is for a 

window of 3 months. However, all models tend to underestimate the total numbers 

of expected events that actually occurred, 27 and 9 for the mainshocks + aftershocks 

and mainshocks only datasets, respectively. This is due to the different average rate 

of target events in the learning and testing period. This difference does not affect the 

performance of consistency tests, which are passed by all models. In particular, the 

cL and S-test showed an adequate consistency between the forecasted and the 

observed events distribution as the quantile scores exceed the significance values of 

0.025 and 0.05.  The difference in the seismicity rate between the learning and the 

testing period is less pronounced for the mainshocks only dataset and the 
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consistency tests show similar results. We also assess the relative forecasting skill of 

various models using the IGPA (Rhoades et al., 2011, Bayona et al., 2022) considering 

as baseline reference model the SUP. For both mainshocks+aftershocks and 

mainshocks only datasets, the best performing model is the ETAS-SUP and ETAS-

SVP for the shortest prediction interval of 3 months and the EEPAS-NW and EEPAS-

W for the longer prediction intervals. These results confirm the different 

characteristics of the models ETAS and EEPAS. The latter model seems more 

appropriate than the ETAS model for making forecasts of the long-term seismicity, 

even if the small number of target shocks suggest some caution. In particular, the 

weighted version of EEPAS is designed so that to weigh less earthquakes that are 

likely to be aftershocks of a previous one. These results also suggests that EEPAS 

could be a valid candidate for hybrid forecasting models in combination to ETAS.    
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Chapter 5 

Analysis and comparisons of FORE, EEPAS, and 

ETAS models using the alarm-based approach 
 

From this chapter it was taken the following article: Biondini, E., and P. Gasperini, 2023, 

Comparison between alarm-based and probability-based earthquake forecasting methods 

Geophys. J. Int. (submitted) 

 

In chapter 4, the Every Earthquake a Precursor According to Scale (EEPAS) probabilistic 

model has been applied to the pseudo-prospective forecasting of shallow earthquakes with 

magnitude 𝑀 5.0 in the Italian region. The forecasting performance of EEPAS with that of 

the Epidemic Type Aftershock Sequences (ETAS) forecasting model, have been compared 

using the most recent tests developed within the Collaboratory Study for Earthquake 

Predictability (CSEP). In this chapter, the performance of EEPAS and ETAS models are 

compared with that obtained by a deterministic model based on the occurrence of strong 

foreshocks (FORE model) using an alarm-based approach. The model parameters and 

probability thresholds for issuing the alarms are calibrated on a learning dataset from 1990 to 

2011 while the pseudo-prospective forecasting performance is assessed on a validation dataset 

from 2012 to 2022. 

Such tests demonstrate that, even if all models outperform a purely random method, the 

EEPAS model exhibits lower forecasting performance than ETAS model and the latter a 

slightly lower performance than the FORE model. However, truly prospective tests are 

necessary to validate such results, ideally using new testing procedures allowing the analysis 

of alarm-based models, not yet developed within the CSEP. 
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5.1 Introduction  

Estimates of earthquake occurrence probabilities provided by empirical probabilistic 

models based on short-term (e.g., ETAS) or medium- to long-term (e.g., EEPAS) 

earthquake clustering can provide relevant information in terms of probability 

increases of several orders of magnitude prior to the occurrence of a strong 

earthquake or during an earthquake sequence (Marzocchi et al., 2015). However, 

these probabilities hardly exceed a few percent. Although the main purpose of 

Operational Earthquake Forecasting (OEF) is the near-real-time or daily 

dissemination of information on seismic risk and thus the probability of occurrence 

of a certain target earthquake 𝑀 ≥ 𝑀𝑚𝑖𝑛, predictions intended as the definition in 

advance of the location, time, and magnitude range of an impending or future 

earthquake require much higher probability estimates than those currently provided 

by forecast models. From a decision-making perspective, to set up generalized 

immediate seismic risk mitigation operations, such low probability values are 

difficult to employ even if they provide relevant information. 

In this chapter we follow Jordan et al. (2011) to distinguish between a probabilistic 

forecast and a deterministic prediction using strict definitions: the former is the 

indication of the probability that one or more target event will occur in a given space-

time domain, whereas the latter is the binary assertion that target events will occur or 

not in a given space-time alarm window. 

To evaluate the forecasting performance of probabilistic models, a suite of statistical 

test has been developed, within the ambit of the Collaboratory Study for Earthquake 

Predictability (Schorlemmer et al., 2007; Werner et al., 2010; Bayona et al., 2022), 

while tests appropriate for  deterministic models were developed by Molchan (1990, 

1991), Zechar and Jordan (2008, 2010) and Shebalin et al. (2011). The two approaches 

are not directly compatible and hence a problem arises for comparing the 

performance of probabilistic versus deterministic models. 
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The implementation of the probabilistic approach, to assess the forecasting 

performance of deterministic models (for example using the CSEP tests) is not trivial 

because it can be difficult to associate a rate of occurrence of target earthquakes with 

some kind of potentially precursory phenomenon. A similar approach has been 

implemented   by Murru et al. (2009) and Console et al. (2010) to evaluate 

probabilistic models applied to Italian and New Zealand seismicity respectively. 

Thus, to compare the forecasting performance of probabilistic and deterministic 

methods, the use of tests and procedure developed for deterministic methods is 

usually preferable.  

In this chapter, the probabilistic forecasting models described in chapter 4 (see also 

Biondini et al., 2023) are compared with a deterministic forecasting method based on 

the occurrence of strong (fore) shocks (hereafter FORE method) described in chapter 

3 (see also Gasperini et al., 2021). 

In this chapter, the probabilistic EEPAS-NW and ETAS-SVP models (see Table 4.1) 

described in Chapter 4 are examined and applied to the retrospective forecast of 

target earthquakes with 𝑀 ≥ 5.0 occurred in Italy using the deterministic alarm-

based approach (see Chapter 3). The forecasting capabilities are then compared with 

the forecasting method based on the occurrence of strong (fore)shocks (hereafter 

FORE method) described in Chapter 3. 

 

5.2 Setting up the deterministic experiment 

The probabilistic models discussed in Chapter 4 were fitted to forecast earthquakes 

of magnitude 𝑀 ≥ 5.0. For this experiment, such magnitude is chosen as lower limit 

of target earthquakes to be forecasted. Similarly, the grid consisting of 177 non-

overlapped square cells of side 𝐿 = 30√2 km described in section 4.3 and showed in 

Fig. 4.1 was considered as application region R.  
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To implement the alarm-based approach, the analysis and optimization of both the 

threshold rate for the probabilistic models and the magnitude range required by the 

FORE method was conducted for the period 1990-2011. This period corresponds to 

the learning period in which the parameters of the EEPAS and ETAS probabilistic 

models applied to Italian seismicity (described in Chapter 4) were fitted and 

optimized. The retrospective alarm-based forecasting experiment is conducted for 

the period 2012-2022. This period corresponds to the test set used for the 

retrospective application of the EEPAS and ETAS models described in Chapter 4. 

Both the optimization and the retrospective forecasting experiment are conducted 

using the HORUS seismic catalogue (Lolli et al., 2020). The two formulations of 

EEPAS (EEPAS-NW and EEPAS-W) and ETAS (ETAS-SUP and ETAS-SVP) 

produced quite similar retrospective forecasting results and performance, 

respectively (see sections 4.7 and 4.8). Therefore, for this experiment, only the 

EEPAS-NW and ETAS-SVP models are considered. These latter are characterized by 

a slightly better forecasting performance than EEPAS-W and ETAS-SUP, 

respectively. The FORE method, based on the occurrence of potential foreshocks, 

(described in Chapter 3) was adapted for application to the region of analysis and 

dataset defined above.  

 

5.3 Setting forecast assumptions and testing procedures 

The expected daily rate for the probabilistic EEPAS-NW and ETAS-SVP models is re-

estimated for each cell, every time an earthquake of magnitude 𝑚 ≥ 2.5 (depth <40 

km) occurs within the analysis polygon R (Fig. 4.1) according to the HORUS seismic 

catalogue.   

An alarm with duration Δ𝑡,  is issued in a given cell, every time the expected rate 

estimated by such models exceeds some threshold value. Similarly, for the FORE 

method, an alarm is issued whenever a strong shocks of magnitude within 𝑀 ±
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Δ𝑀 occurs. A target earthquake (𝑀 ≥ 5.0) is considered successfully predicted if 

occurs within an alarm window. On the contrary, it is considered as a failure to 

predict if occurs outside any alarm windows.  

 

  

Figure 5.1: Tessellation of the Italian territory region used for the fitting of 

parameters and for the pseudo prospective experiment. The thick black line delimits 

the analysis region R. The cells that R comprises are only those within which at least 

one earthquake with 𝑀 ≥ 4.0 from 1600 to 2021 have occurred according to CPTI15 

catalogue (Rovida, et al. 2020) and have 30√2 km of side.  
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The experiment is then repeated several times, expanding the alarm time window 

from a few second to the total duration of the experiment (10 years). Similarly to 

what was described in Chapter 3, according to Molchan (1990, 1991), the miss rate 𝜈, 

i.e. the fraction of unexpected earthquakes (eq. 3.1) and the space-time duration of 

the alarms 𝜏 given by the union of all alarm windows for each cell (eqs. 3.2 and 3.3) 

are computed. Following Shebalin et al. (2011) the fraction of the space-time 𝜏𝑤 

occupied by the alarms is also calculated by weighting each alarm with the long-term 

earthquake rate of each cell (eqs. 3.5 and 3.6) as described in section 3.2. See the 

details of such computations for each cell in Table S1 of the supplemental material 2. 

Following the approach of Zechar and Jordan (2008, 2010), based on the Molchan 

error diagram (Molchan, 1990, 1991) the miss rate 𝜈 and the fraction of space-time 

occupied by alarms 𝜏  are used to represent the so-called Molchan diagram (Figs. 5.5, 

5.6, 5.7). This diagram compares the prediction skills of a given forecasting method 

with those of a random model that simply predicts target earthquakes proportional 

to the fraction of space-time occupied by alarms (see section 3.4 for more details). To 

assess how much better (or worse) the performance of the forecasting models 

compared to the random model is, the Ares Skill (AS) score (eq. 3.11) is computed 

according to Zechar and Jordan (2008, 2010). 

 

5.4 Optimization of alarm thresholds  

To identify the optimal expected daily rate threshold for the probabilistic models, an 

optimization procedure has been conducted by varying the threshold value 

logarithmically from 10−6 to 0.5. For the FORE method the optimal range of potential 

foreshocks has been chosen by considering various increasing magnitude ranges 

with central values varying from 4.1 to 4.5 and ranges with respect to the central 

values varying from 0.1 to 0.5. Using the different thresholds, each model was thus 

applied to retrospectively forecast target events (27) occurred during the learning 

period (1990-2011). Using the AS score, the forecasting performance for the tested 
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threshold have been evaluated. In the previous work (see Chapter 3), the maximum 

AS score and the minimum number of alarms are considered as criteria for selecting 

the optimal threshold value. However, in this comparison experiment since the 

expected daily rate was estimated for all cells at each earthquake occurrence time, the 

alarms, in periods of high seismicity, are mostly overlapped. For this reason, the 

number of alarms may not be representative of the fraction of space-time occupied 

by the alarms. As second criterion to identify the best alarm threshold, the fraction of 

space-time occupied by alarms (𝜏1𝑦𝑟) was used considering the alarm window 

extension equal to one year. In addition, as further restriction, only threshold values 

with 𝜏1𝑦𝑟 lower than 20% are considered.   

In Figs. 5.2, 5.3 and 5.4 are showed the variations of the AS scores of the EEPAS-NW, 

ETAS-SUP and FORE models as a function of the analyzed alarm thresholds, 

respectively. Red and dark blue lines refer to the unweighted (𝜏𝑢) and weighted (𝜏𝑤) 

fractions of space-time occupied by alarms respectively (see in Tables S2 and S3 in 

Supplementary material 2 for the numerical values of plotted curves). The bars of the 

histogram represent the unweighted fraction of space-time occupied by alarms 

(𝜏1𝑦𝑟), considering one year as the alarm time (Δ𝑡). In the same figures, the black 

arrowheads indicate our choices of the best probability thresholds or ranges: 𝑝 =

3 × 10−5 for EEPAS, 𝑝 = 3 × 10−4 for ETAS and 4.5 ± 0.3 for FORE. 
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Figure 5.2:  For EEPAS forecasting model, Area Skill (AS) score computed for targets 

with Mw≥5.0, using unweighted (red) and weighted (dark blue) fractions of space-

time occupied by alarms, and fractions of space-time occupied by of alarms 

considering  t=1 year (bars), as a function of the expected daily rate threshold. The 

chosen threshold is indicated by the black arrowhead (3 × 10−5). 

 

Figure 5.3: Same as Fig. 5.2 for ETAS-SVP. With the criteria adopted the chosen 

expected daily rate threshold indicated by the black arrow is 3 × 10−4.  
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Figure 5.4: Same as Fig. 5.2 for the FORE model.  The AS score and the fraction of 

space-time occupied by alarms are computed as a function of the foreshock 

magnitude range. The arrows indicate the range Mw=4.50.3, chosen as best 

compromise between high AS score and low fraction of space-time occupied by 1-

year alarms (𝜏1𝑦𝑟). 

 

 

5.5 Results of pseudo-prospective testing 

Using the thresholds optimized for the learning interval 1990-2011, the models were 

applied pseudo-prospectively to forecast the 27 target events with Mw≥5.0 that 

occurred in the test period 2012-2021. In Fig. 5.5 the Molchan trajectories obtained by 

the EEPAS-NW for target shocks preceded by an increase of the expected daily rate 

larger than the threshold 3 × 10−5 are reported, by varying Δ𝑡 from a width of a few 

seconds to the total duration T=11 years of the test period. Red and dark blue lines 

refer to the unweighted (𝜏𝑢) and weighted (𝜏𝑤) fractions of space-time occupied by 

alarms respectively (see in Table 5.1 the numerical values of plotted curves). Both the 

red and dark blue lines in Fig. 5.5 lie below the diagonal line representing the 

Molchan trajectory of the purely random model, indicating a better forecasting 

performance than this latter for all explored Δ𝑡. The model fails to predict the total 
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number of target earthquakes even for Δt=11 years, for which only 14 over 27 (51.9%) 

target events are predicted with a corresponding 𝜏𝑢 ≈ 21% and 𝜏𝑤 ≈ 48%. The 51.9% 

of forecasted target events is reached starting form Δt=0.25 days (6 hours) with a 

corresponding 𝜏𝑢 ≈ 7.8% and 𝜏𝑤 ≈ 19%. The overall AS scores 𝑎𝑓(𝜏 = 1) =0.710.06 

and 𝑎𝑓(𝜏𝑤 = 1) =0.630.06, based on the Student’s t-test, are larger than the 

expectance of a random method (0.5). 

In Fig. 5.6 the same plot as in Fig. 5.5 is showed but for the ETAS-SVP model using 

3.00E-4 as daily rate threshold (see Table 5.2 for numerical values). The performance 

is definitely better than EEPAS-NW. In particular, the Molchan trajectory remains 

well below the diagonal line and for  𝜏𝑢 and 𝜏𝑤 less than 65% is also below the 𝛼=1% 

confidence curve (green). As for the EEPAS-NW, ETAS-SUP fails to predict the total 

number of target earthquakes even for Δt=11 years, for which only 23 over 27 (85.2%) 

target events are predicted with a corresponding 𝜏𝑢 ≈ 44% and 𝜏𝑤 ≈ 66%. Such 

percentage of forecasted events is reached starting from Δt=2 years with the 

corresponding 𝜏𝑢 ≈ 28% and 𝜏𝑤 ≈ 47%. The overall AS scores 𝑎𝑓(𝜏 = 1) =0.880.06 

and 𝑎𝑓(𝜏𝑤 = 1) =0.850.06, are higher than those obtained by EEPAS-NW.  

In Fig. 5.7 it is showed the Molchan trajectory obtained by the FORE model using 

4.2 ≤ 𝑀𝑤 ≤ 4.8 as magnitude range for the foreshock events (see Table 5.3 for 

numerical values). The forecasting performance is better than EEPAS-NW and ETAS-

SVP, respectively. In particular, the Molchan trajectory remains well below the 

diagonal line and for  𝜏𝑢 and 𝜏𝑤 less than 80% is also below the 𝛼=1% confidence 

curve (green). As for the two previous models, FORE fails to predict the total number 

of target earthquakes even for Δt=11 years, for which the 25 over 27 (92.3%) target 

events are predicted with a corresponding 𝜏𝑢 ≈ 34% and 𝜏𝑤 ≈ 49%. For all 𝛥𝑡 

analysed, the FORE model is characterised by lower 𝜏𝑢 and 𝜏𝑤 than those reported 

by the other models (see Tables 5.1 and 5.2). The overall AS scores 𝑎𝑓(𝜏𝑢 =

1) =0.920.06 and 𝑎𝑓(𝜏𝑤 = 1) =0.900.06, are higher than those obtained by EEPAS-

NW and ETAS-SUP.  
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Figure 5.5: Molchan diagram and AS score of the EEPAS-NW model for target 

shocks with Mw≥5.0. Red and dark blue lines indicate the forecasting performance of 

expected daily rate threshold 3 × 10−5for unweighted (𝜏𝑢) and weighted (𝜏𝑤) 

fractions of space-time occupied by alarms respectively (see text). The black 

continuous line indicates a purely random forecasting method that separates skilled 

(below the line) from unskilled (above) forecasting methods. The light blue, violet 

and green lines indicate the confidence limits for 𝛼 =50%, 5% and 1% respectively. 

The black dashed lines indicate probability gains G=2, 5, 10, 20 and 50.  

 

Figure 5.6: Same as Fig. 5.5 for the ETAS-SVP model.  
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Figure 5.7: Same as Fig. 5.5 for the FORE model.  
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Table 5.1.  Values of variables in Molchan plot of Fig. 5.5 for the EEPAS-NW model. 

t (years) t (days) 𝝉𝒖 𝝉𝒘 h 𝝂 𝒂𝒇(𝝉𝒖) 𝒂𝒇(𝝉𝒘) 

1.6E-08 5.8E-06 1.4E-02 3.4E-02 0 1.000 0.037 0.037 

3.2E-08 1.2E-05 1.4E-02 3.4E-02 2 0.926 0.074 0.074 

6.3E-08 2.3E-05 1.4E-02 3.4E-02 3 0.889 0.099 0.099 

1.6E-07 5.8E-05 1.4E-02 3.4E-02 3 0.889 0.105 0.105 

3.2E-07 1.2E-04 1.4E-02 3.4E-02 3 0.889 0.114 0.114 

4.8E-07 1.7E-04 1.4E-02 3.4E-02 4 0.852 0.140 0.140 

9.5E-07 3.5E-04 1.4E-02 3.4E-02 5 0.815 0.172 0.172 

1.9E-06 6.9E-04 1.4E-02 3.5E-02 6 0.778 0.205 0.205 

3.8E-06 1.4E-03 1.5E-02 3.5E-02 7 0.741 0.236 0.236 

9.5E-06 3.5E-03 1.6E-02 3.8E-02 7 0.741 0.255 0.255 

1.9E-05 6.9E-03 1.7E-02 4.2E-02 8 0.704 0.268 0.268 

2.9E-05 1.0E-02 1.9E-02 4.5E-02 8 0.704 0.281 0.281 

5.7E-05 2.1E-02 2.3E-02 5.5E-02 8 0.704 0.312 0.312 

1.1E-04 4.2E-02 3.0E-02 7.1E-02 11 0.593 0.390 0.390 

3.4E-04 0.13 5.3E-02 1.2E-01 13 0.519 0.434 0.434 

6.8E-04 0.25 7.8E-02 1.9E-01 14 0.481 0.464 0.464 

1.4E-03 0.50 1.1E-01 2.7E-01 14 0.481 0.480 0.480 

2.7E-03 1.00 1.5E-01 3.6E-01 14 0.481 0.488 0.488 

8.2E-03 3.00 1.9E-01 4.5E-01 14 0.481 0.488 0.488 

0.019 7.02 1.9E-01 4.6E-01 14 0.481 0.488 0.488 

0.042 15.22 1.9E-01 4.6E-01 14 0.481 0.488 0.488 

0.083 30.44 1.9E-01 4.6E-01 14 0.481 0.488 0.488 

0.250 91.31 1.9E-01 4.6E-01 14 0.481 0.489 0.488 

0.500 182.62 0.195 0.459 14 0.481 0.489 0.488 

1.000 365.24 0.197 0.462 14 0.481 0.489 0.489 

2.000 730.49 0.201 0.466 14 0.481 0.490 0.489 

3.000 1095.73 0.203 0.470 14 0.481 0.490 0.489 

5.000 1826.21 0.207 0.475 14 0.481 0.491 0.490 

7.000 2556.70 0.210 0.480 14 0.481 0.491 0.490 

10 3652.43 0.211 0.481 14 0.481 0.491 0.490 

11 4017.66 0.211 0.481 14 0.481 0.491 0.490 

Full occ. Full occ. 1.000 1.000 27 0.000 0.706 0.634 

t is the duration of alarms, 𝜏𝑢 and 𝜏𝑤 the unweighted and weighted fraction of 

space-time occupied by alarms respectively, h the number of successful forecasts, 𝜈 

the miss rate, 𝑎𝑓(𝜏𝑢) and 𝑎𝑓(𝜏𝑤) the Area Skill scores computed considering the 

unweighted and weighted fraction of space-time occupied by alarms respectively. 

The last row (t= Full occ.)  reports values for a full occupation of the space-time by 

alarms. 
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Table 5.2.  Same of Table 5.1 for the ETAS-SVP model. 

t (years) t (days) 𝝉𝒖 𝝉𝒘 h 𝝂 𝒂𝒇(𝝉𝒖) 𝒂𝒇(𝝉𝒘) 

1.6E-08 5.8E-06 2.5E-07 6.6E-07 0 1.000 0.000 0.000 

3.2E-08 1.2E-05 5.1E-07 1.3E-06 2 0.926 0.037 0.037 

6.3E-08 2.3E-05 1.0E-06 2.6E-06 3 0.889 0.074 0.074 

1.6E-07 5.8E-05 2.5E-06 6.6E-06 3 0.889 0.099 0.099 

3.2E-07 1.2E-04 5.1E-06 1.3E-05 3 0.889 0.105 0.105 

4.8E-07 1.7E-04 7.6E-06 2.0E-05 5 0.815 0.120 0.120 

9.5E-07 3.5E-04 1.5E-05 3.9E-05 6 0.778 0.162 0.162 

1.9E-06 6.9E-04 2.8E-05 7.4E-05 8 0.704 0.209 0.209 

3.8E-06 1.4E-03 5.2E-05 1.4E-04 10 0.630 0.266 0.266 

9.5E-06 3.5E-03 1.1E-04 2.9E-04 13 0.519 0.350 0.351 

1.9E-05 6.9E-03 1.9E-04 5.1E-04 14 0.481 0.413 0.415 

2.9E-05 1.0E-02 2.6E-04 7.0E-04 14 0.481 0.441 0.443 

5.7E-05 2.1E-02 4.3E-04 1.2E-03 14 0.481 0.473 0.474 

1.1E-04 4.2E-02 7.1E-04 2.0E-03 15 0.444 0.498 0.499 

3.4E-04 0.13 1.5E-03 4.1E-03 18 0.333 0.558 0.558 

6.8E-04 0.25 2.3E-03 6.3E-03 18 0.333 0.595 0.596 

1.4E-03 0.50 3.4E-03 9.3E-03 19 0.296 0.624 0.624 

2.7E-03 1.00 4.6E-03 1.3E-02 19 0.296 0.646 0.646 

8.2E-03 3.00 7.0E-03 1.9E-02 19 0.296 0.665 0.666 

0.019 7.02 1.0E-02 2.8E-02 19 0.296 0.677 0.678 

0.042 15.22 1.6E-02 4.4E-02 20 0.259 0.694 0.694 

0.083 30.44 2.6E-02 7.0E-02 20 0.259 0.712 0.711 

0.250 91.31 6.2E-02 1.5E-01 21 0.222 0.739 0.737 

0.500 182.62 0.107 0.226 22 0.185 0.763 0.757 

1.000 365.24 0.181 0.342 22 0.185 0.784 0.776 

2.000 730.49 0.276 0.472 23 0.148 0.801 0.792 

3.000 1095.73 0.335 0.546 23 0.148 0.810 0.800 

5.000 1826.21 0.404 0.622 23 0.148 0.817 0.806 

7.000 2556.70 0.429 0.648 23 0.148 0.819 0.808 

10 3652.43 0.438 0.657 23 0.148 0.820 0.809 

11 4017.66 0.438 0.657 23 0.148 0.820 0.809 

Full occ. Full occ. 1.000 1.000 27 0.000 0.880 0.849 
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Table 5.3.  Same of Table 5.1 for the FORE model. 

t (years) t (days) 𝝉𝒖 𝝉𝒘 h 𝝂 𝒂𝒇(𝝉𝒖) 𝒂𝒇(𝝉𝒘) 

1.6E-08 5.8E-06 8.9E-10 2.2E-09 0 1.000 0.009 0.009 

3.2E-08 1.2E-05 1.8E-09 4.4E-09 1 0.963 0.032 0.032 

6.3E-08 2.3E-05 3.5E-09 8.7E-09 2 0.926 0.057 0.057 

1.6E-07 5.8E-05 8.9E-09 2.2E-08 2 0.926 0.066 0.066 

3.2E-07 1.2E-04 1.8E-08 4.4E-08 2 0.926 0.069 0.069 

4.8E-07 1.7E-04 2.7E-08 6.5E-08 2 0.926 0.071 0.071 

9.5E-07 3.5E-04 5.3E-08 1.3E-07 2 0.926 0.073 0.073 

1.9E-06 6.9E-04 1.1E-07 2.6E-07 2 0.926 0.073 0.073 

3.8E-06 1.4E-03 2.2E-07 5.2E-07 2 0.926 0.074 0.074 

9.5E-06 3.5E-03 5.3E-07 1.3E-06 2 0.926 0.083 0.083 

1.9E-05 6.9E-03 1.0E-06 2.5E-06 3 0.889 0.092 0.092 

2.9E-05 1.0E-02 1.5E-06 3.7E-06 3 0.889 0.101 0.101 

5.7E-05 2.1E-02 2.9E-06 7.0E-06 3 0.889 0.123 0.123 

1.1E-04 4.2E-02 5.5E-06 1.3E-05 5 0.815 0.246 0.245 

3.4E-04 0.13 1.5E-05 3.6E-05 12 0.556 0.338 0.337 

6.8E-04 0.25 2.8E-05 6.7E-05 12 0.556 0.386 0.386 

1.4E-03 0.50 5.2E-05 1.2E-04 12 0.556 0.421 0.420 

2.7E-03 1.00 9.6E-05 2.2E-04 13 0.519 0.495 0.493 

8.2E-03 3.00 2.7E-04 5.8E-04 16 0.407 0.550 0.548 

0.019 7.02 6.1E-04 1.3E-03 16 0.407 0.580 0.578 

0.042 15.22 1.2E-03 2.5E-03 17 0.370 0.602 0.600 

0.083 30.44 2.2E-03 4.4E-03 17 0.370 0.642 0.643 

0.250 91.31 5.7E-03 1.3E-02 19 0.296 0.684 0.680 

0.500 182.62 0.012 0.023 20 0.259 0.711 0.708 

1.000 365.24 0.023 0.043 20 0.259 0.727 0.725 

2.000 730.49 0.049 0.089 20 0.259 0.731 0.729 

3.000 1095.73 0.069 0.118 20 0.259 0.736 0.734 

5.000 1826.21 0.086 0.141 21 0.222 0.753 0.748 

7.000 2556.70 0.119 0.182 22 0.185 0.761 0.754 

10 3652.43 0.135 0.200 22 0.185 0.789 0.784 

11 5478.64 0.339 0.489 25 0.074 0.789 0.784 

Full occ. Full occ. 1.000 1.000 27 0.000 0.918 0.896 
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Following Shebalin et al. (2011), the miss rates (𝜈) of the analyzed models can also be 

compared to another skilled reference model, characterized by its space-time 

fractions occupied by alarms (𝜏𝑟𝑒𝑓) and miss rates (𝜈𝑟𝑒𝑓), instead of the purely 

random model.  

In such comparison, the miss rates 𝜈𝑟𝑒𝑓’s of the reference model are plotted on the 

diagonal line of the Molchan diagram were 𝜏 = 1 − 𝜈𝑟𝑒𝑓.  Even for the other 

compared models, the expected miss rates (ν) must be plotted versus 𝜏 = 1 − 𝜈𝑟𝑒𝑓, 

but as they are computed at different values of 𝜏 than the 𝜏𝑟𝑒𝑓’s of the reference 

model, a linear interpolation is required. Hence for each 𝜏𝑟𝑒𝑓 of the reference ETAS-

SVP model, we compute the interpolated miss-rates, for both EEPAS and FORE 

models, as 

𝜈𝑖𝑛𝑡 =
𝜈𝑎 − 𝜈𝑏
𝜏𝑎 − 𝜏𝑏

(𝜏𝑟𝑒𝑓 − 𝜏𝑏) + 𝜈𝑏 (5.1) 

Where 𝜏𝑎 and 𝜏𝑏 are the fractions occupied by alarms, of the compared models, 

immediately larger and smaller than 𝜏𝑟𝑒𝑓 respectively, and 𝜈𝑎 and 𝜈𝑏 the 

corresponding miss rates respectively. 

As for the Molchan diagrams showed above (Figs. 5.5, 5.6, and 5.7), if the miss rates 

of a compared model (𝜈𝑖𝑛𝑡) for the corresponding 𝜏 = 1 − 𝜈𝑟𝑒𝑓,  are lower than 𝜈𝑟𝑒𝑓, it 

has a better predictive ability than the reference model. The predictive ability is 

compared considering both the unweighted (𝜏𝑢) and weighted (𝜏𝑤) fractions of 

space-time occupied by alarms (reported in Tables 5.4 and 5.5).  

In Figs. 5.8 and 5.9 the Molchan (or better Molchan-Shebalin) diagrams and the AS 

scores for unweighted (𝜏𝑢) and weighted (𝜏𝑤) fractions of space-time occupied by 

alarms are reported, respectively (see Tables 5.4 and 5.5 for numerical values). Where 

the ETAS model is reported as the diagonal line (orange) joining the coordinate 

points (1 − 𝜈𝑟𝑒𝑓, 𝜈𝑟𝑒𝑓). The Molchan trajectory for the EEPAS-NW (blue) and FORE 

models (red) join the points (1 − 𝜈𝑟𝑒𝑓, 𝜈𝑖𝑛𝑡).The predictive power is compared 

considering both the unweighted (𝜏𝑢) and weighted (𝜏𝑤) fractions of space-time 
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occupied by alarms. For this comparison the ETAS-SVP is used as reference model 

using as 𝜏𝑟𝑒𝑓 the 𝜏 values (𝜏𝑢 and 𝜏𝑤)  reported in Table 5.2. The miss rates (𝜈𝑖𝑛𝑡) of 

EEPAS-NW and FORE models associated to the 𝜏𝑟𝑒𝑓 are obtained by the linear 

interpolation of the coordinate points (𝜏, 𝜈) reported in Tables 5.1 and 5.3, 

respectively.  

In Figs. 5.8 and 5.9 the Molchan diagrams and the AS scores for unweighted (𝜏𝑢) and 

weighted (𝜏𝑤) fractions of space-time occupied by alarms are reported, respectively 

(see Tables 5.4 and 5.5 for numerical values). The ETAS-SVP model is reported as the 

diagonal line (orange) joining the coordinate points (1 − 𝜈𝑟𝑒𝑓 , 𝜈𝑟𝑒𝑓). The Molchan 

trajectory for the EEPAS-NW (blue) and FORE models (red) join the coordinates 

points (1 − 𝜈𝑟𝑒𝑓, 𝜈𝑖𝑛𝑡). In both Figs. 5.8 and 5.9 the EEPAS-NW model is characterized 

by a Molchan trajectory well above the reference diagonal line showing a worse 

predictive performance than ETAS-SVP since for the same 𝜏 = 1 − 𝜈𝑟𝑒𝑓, the 𝜈𝑖𝑛𝑡 of the 

EEPAS-NW is always greater than that of ETAS-SVP.  Such worst forecasting 

performance is also confirmed by the AS scores 𝑎𝑓(𝜏𝑢 = 1) and 𝑎𝑓(𝜏𝑤 = 1), which 

both equal to 0.18, that is smaller than that (0.5) of the reference ETAS model.  On the 

contrary, the FORE model is characterized by Molchan trajectories lower or close to 

the reference model for 𝜏 < 60%.  For 𝜏 > 60% the FORE Molchan trajectory lies for 

short stretches slightly above the diagonal line. However, overall, the predictive 

performance is (slightly) better than the reference model because the AS scores for 

the unweighted and weighted trajectories, 𝑎𝑓(𝜏𝑢 = 1) = 0.54 and 𝑎𝑓(𝜏𝑤 = 1) = 0.55 

respectively, confirm such better forecasting skills. 
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Figure 5.8: Molchan diagram and AS score of the EEPAS-NW and FORE models 

considering the ETAS-SVP model as reference and unweighted fraction of space-time 

occupied by alarms (𝜏𝑢). The Molchan trajectory of EEPAS-NW and FORE models 

are indicated by the blue and red curves, respectively. The diagonal continuous line 

(orange) indicates the miss rates of the ETAS-SVP model and separates models with 

higher performance (below the line) from worst (above) forecasting methods 

compared to the reference. 

 

Figure 5.9: Same as Fig. 5.8 for weighted fraction of space-time occupied by alarms 

(𝜏𝑤).  
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Table 5.4.  Values of variables in Molchan plot of Fig. 5.8 for unweighted fractions of 

space-time occupied by alarms (𝜏𝑢). 

𝝉𝒓𝒆 𝝂𝒓𝒆𝒇 𝒂𝒇(𝝉𝒓𝒆) 𝝂𝒊𝒏𝒕𝑬𝑬𝑷𝑨𝑺 𝒂𝑬𝑬𝑷𝑨𝑺(𝝉𝒓𝒆) 𝝂𝒊𝒏𝒕𝑭𝑶𝑹𝑬 𝒂𝑭𝑶𝑹𝑬(𝝉𝒓𝒆) 

0.000 1.000 0.000 1.000 0.000 1.000 0.000 

0.074 0.926 0.037 1.000 0.000 0.926 0.037 

0.111 0.889 0.056 1.000 0.000 0.890 0.055 

0.111 0.889 0.056 1.000 0.000 0.889 0.055 

0.111 0.889 0.056 1.000 0.000 0.828 0.055 

0.185 0.815 0.093 1.000 0.000 0.760 0.116 

0.222 0.778 0.111 1.000 0.000 0.566 0.153 

0.296 0.704 0.148 1.000 0.000 0.556 0.224 

0.370 0.630 0.185 1.000 0.000 0.556 0.268 

0.481 0.519 0.241 1.000 0.000 0.510 0.314 

0.519 0.481 0.259 1.000 0.000 0.459 0.329 

0.519 0.481 0.259 1.000 0.000 0.414 0.329 

0.519 0.481 0.259 1.000 0.000 0.407 0.329 

0.556 0.444 0.278 1.000 0.000 0.401 0.346 

0.667 0.333 0.333 1.000 0.000 0.370 0.391 

0.667 0.333 0.333 1.000 0.000 0.367 0.391 

0.704 0.296 0.352 1.000 0.000 0.345 0.404 

0.704 0.296 0.352 1.000 0.000 0.318 0.404 

0.704 0.296 0.352 1.000 0.000 0.288 0.404 

0.704 0.296 0.352 1.000 0.000 0.269 0.404 

0.741 0.259 0.370 0.731 0.007 0.259 0.421 

0.741 0.259 0.370 0.651 0.007 0.259 0.421 

0.778 0.222 0.389 0.506 0.026 0.259 0.436 

0.815 0.185 0.407 0.481 0.048 0.199 0.451 

0.815 0.185 0.407 0.481 0.048 0.166 0.451 

0.852 0.148 0.426 0.442 0.070 0.075 0.470 

0.852 0.148 0.426 0.406 0.070 0.074 0.470 

0.852 0.148 0.426 0.363 0.070 0.067 0.470 

0.852 0.148 0.426 0.349 0.070 0.064 0.470 

0.852 0.148 0.426 0.343 0.070 0.063 0.470 

0.852 0.148 0.426 0.343 0.070 0.063 0.470 

0.852 0.148 0.426 0.343 0.070 0.063 0.470 

0.852 0.148 0.426 0.343 0.070 0.063 0.470 

1.000 0.000 0.500 0.000 0.182 0.000 0.544 

𝝂𝒓𝒆𝒇 is the miss rate of the ETAS-SVP model (reference), 𝜏𝑟𝑒 the fractions of space 

time occupied by alarms used to plot the Molchan diagram and given by 1 − 𝜈𝑟𝑒𝑓, 

𝜈𝑟𝑒𝑓 the reference miss rate, 𝜈𝑟𝑒𝑓 the interpolated miss rate,  𝑎𝑓(𝜏𝑟𝑒),  𝑎𝐸𝐸𝑃𝐴𝑆(𝜏𝑟𝑒) and 

𝑎𝐹𝑂𝑅𝐸(𝜏𝑟𝑒)  the Area Skill scores computed for the reference, EEPAS and FORE 

models, respectively. 
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Table 5.5.  Values of variables in Molchan plot of Fig. 5.9 for weighted fractions of 

space-time occupied by alarms (𝜏𝑤). 

𝝉𝒓𝒆 𝝂𝒓𝒆𝒇 𝒂𝒇(𝝉𝒓𝒆) 𝝂𝒊𝒏𝒕𝑬𝑬𝑷𝑨𝑺 𝒂𝑬𝑬𝑷𝑨𝑺(𝝉𝒓𝒆) 𝝂𝒊𝒏𝒕𝑭𝑶𝑹𝑬 𝒂𝑭𝑶𝑹𝑬(𝝉𝒓𝒆) 

0.000 1.000 0.000 1.000 0.000 1.000 0.000 

0.074 0.926 0.037 1.000 0.000 0.924 0.038 

0.111 0.889 0.056 1.000 0.000 0.889 0.056 

0.111 0.889 0.056 1.000 0.000 0.889 0.056 

0.111 0.889 0.056 1.000 0.000 0.814 0.056 

0.185 0.815 0.093 1.000 0.000 0.740 0.123 

0.222 0.778 0.111 1.000 0.000 0.556 0.161 

0.296 0.704 0.148 1.000 0.000 0.556 0.232 

0.370 0.630 0.185 1.000 0.000 0.550 0.275 

0.481 0.519 0.241 1.000 0.000 0.497 0.321 

0.519 0.481 0.259 1.000 0.000 0.430 0.337 

0.519 0.481 0.259 1.000 0.000 0.407 0.337 

0.519 0.481 0.259 1.000 0.000 0.407 0.337 

0.556 0.444 0.278 1.000 0.000 0.387 0.355 

0.667 0.333 0.333 1.000 0.000 0.370 0.399 

0.667 0.333 0.333 1.000 0.000 0.353 0.399 

0.704 0.296 0.352 1.000 0.000 0.326 0.413 

0.704 0.296 0.352 1.000 0.000 0.295 0.413 

0.704 0.296 0.352 1.000 0.000 0.272 0.413 

0.704 0.296 0.352 1.000 0.000 0.259 0.413 

0.741 0.259 0.370 0.704 0.007 0.259 0.429 

0.741 0.259 0.370 0.604 0.007 0.259 0.429 

0.778 0.222 0.389 0.502 0.028 0.213 0.445 

0.815 0.185 0.407 0.481 0.050 0.177 0.461 

0.815 0.185 0.407 0.481 0.050 0.130 0.461 

0.852 0.148 0.426 0.481 0.071 0.074 0.480 

0.852 0.148 0.426 0.421 0.071 0.066 0.480 

0.852 0.148 0.426 0.351 0.071 0.055 0.480 

0.852 0.148 0.426 0.327 0.071 0.051 0.480 

0.852 0.148 0.426 0.318 0.071 0.050 0.480 

0.852 0.148 0.426 0.318 0.071 0.050 0.480 

0.852 0.148 0.426 0.318 0.071 0.050 0.480 

0.852 0.148 0.426 0.318 0.071 0.050 0.480 

1.000 0.000 0.500 0.000 0.185 0.000 0.554 
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5.6 Conclusion of chapter 5 

In this chapter, the deterministic forecasting method based on the occurrence of 

strong foreshocks described in Chapter 3 (called FORE) was compared with the 

probabilistic EPAS-NW and ETAS-SVP models described in Chapter 4 using the 

deterministic alarm-based approach. The forecasting models were applied to 

retrospectively forecast shallow earthquakes (depth<40 km) of magnitude 𝑀 ≥ 5.0 

occurred in Italy from 2012 to 2022. All models were calibrated through a learning 

dataset from 1990 to 2011 using earthquakes reported in the HORUS seismic 

catalogue (Lolli et al., 2020). Based on the learning dataset, various expected daily 

rate thresholds for the EEPAS-NW and ETAS-SVP models and various magnitude 

ranges of foreshocks for the FORE model were considered to identify the optimal 

alarm threshold required to implement the deterministic approach. For each 

threshold analyzed the miss rates and the fractions of space-time occupied by the 

alarms were estimated by varying the temporal extension of the alarm window 𝛥𝑡 

from a fraction of a second to the total duration of the learning dataset (10 years). 

Following the method described in section 3.2, such fractions were also estimated by 

considering the different levels of seismic activity in the various areas of Italy, by 

weighting more the alarm times in cells where the average seismicity rate, calculated 

from the CPTI15 seismic catalogue (Rovida et al., 2016, 2020) from 1600 to 1990, is 

higher. The choice of the optimal alarm thresholds was made by considering both the 

Area Skill Score (Zechar and Jordan, 2008) and the fraction of space-time occupied by 

the alarms. Such thresholds were then used for pseudo-prospective tests and 

comparisons to assess the forecasting performance in the period 2012-2021. 

Retrospective tests conducted using the Molchan diagram (Molchan, 1990, 1991, 

Molchan & Kagan, 1992) and the Area Skill score indicate that all the three models 

overperform a purely random method. In addition, following the approach 

suggested by Shebalin et al. (2011), the forecasting performances of the models were 

compared taking the ETAS-SVP as reference model. These tests show that for the 
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same fractions of space-time occupied by the alarms, the EEPAS-NW model presents 

a worse forecasting performance compared to the ETAS-SVP model. In contrast, the 

FORE model presented a slightly better forecast performance. However, a more 

careful analysis should be done prospectively, maybe using new method developed 

within the CSEP. 

Overall, this study highlights the potential of deterministic forecasting approaches in 

improving earthquake forecasting in Italy. Our findings contribute to ongoing efforts 

to develop more accurate and reliable earthquake forecasting methods, which can 

ultimately help mitigate the impact of seismic events on communities and 

infrastructure.  
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Chapter 6 

Overall conclusions 
 

6.1 Discussion and main results  

Deterministic earthquake prediction, understood as the definition in advance within 

narrow limits of the location, time and magnitude, of an impending earthquake has 

proven to be a complex problem for scientists and progress in this area has been 

much slower than in other natural phenomena. Although the search for “silver 

bullets”, i.e. precursor signals capable of giving information about the occurrence of 

an imminent strong earthquake, conducted during the last two decades of the 20th 

century and supervised by the IASPEI commission was unsuccessful, it made a great 

contribution to the understanding of seismic phenomena (Jordan et al., 2011). Such 

research has identified some candidate signals that may be more useful than others 

in earthquake prediction, such as changes in strain rate, seismic wave velocity, 

crustal electrical conductivity, anomalous concentrations of Radon or other 

geochemical gases in groundwater, increased clustering of seismicity near the future 

epicenters of a stronger earthquakes, and other seismicity-based precursors (Wyss, 

1991). However, although the analysis of precursor signals has not led to significant 

results from a forecasting perspective, it is nevertheless important that these 

phenomena continue to be analyzed and studied (Wyss, 2001). This is motivated by 

the fact that, compared to previous decades, analysis techniques and earthquake 

datasets have improved significantly (Jordan, 2006). The failure in the search for the 

silver bullet has also led to a changing approach. Currently, seismologists prefer to 

speak about “Earthquake forecasting” instead of “Earthquake prediction”. This 

difference is not only linguistic but requires a probabilistic rather than deterministic 

approach. Currently, the probability of occurrence of earthquakes in a given area 

over time is estimated using empirical models generally based on seismicity. 
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However, improving earthquake forecasting remains one of the greatest goals for 

seismology and a key objective for the future. Reliable forecasting plays a 

fundamental role in protecting the lives of people and mitigating the economic and 

material damage caused by a strong earthquake.  

This thesis presented the development, analysis, evaluation and comparison of the 

retrospective forecasting performance of models applied to the prediction of Italian 

earthquakes using both alarm-based deterministic and probabilistic approaches. 

Regarding the deterministic approach, the capabilities of a simple algorithm (FORE) 

based on the occurrence of strong (fore)shocks of magnitude 4.4 ≤ 𝑀𝑤 ≤ 4.8, 

described in Chapter 3, were examined.  This method was applied for the 

retrospective forecast of shallow earthquakes with magnitude Mw≥5.0,5.5,6.0 

occurred in the period 1960-2020 within an analysis grid consisting of partially 

overlapping circles of radius 30 km. According to this model, an alarm of duration 𝛥𝑡 

is issued within a circle, every time an earthquake of magnitude within the range of 

potential foreshocks occurs. The method was applied to retrospectively forecast 

earthquakes occurred between 1960 and 2020 reported in the HORUS catalogue. In 

particular, the forecasting performance of the method was evaluated on the entire set 

of target earthquakes (non declustered), and on a subset of them in which only the 

first shocks of the earthquake sequences (declustered) are considered. Following 

Shebalin et al. (2011), we also computed the performance of the model by weighting 

each circle with the long-term earthquake rate in order to penalize the model where 

medium to strong earthquakes are more likely to occur making easier to predict 

target earthquakes with this forecasting method. The results of the retrospective 

evaluation tests provided significant results, showing a clear superiority to a 

hypothetical purely random prediction model. In particular, the Molchan diagrams 

(Molchan 1990,1991) and the related area skill diagrams (Zechar and Jordan, 2008) 

score showed that the highest performance was obtained for target earthquakes of 

Mw≥5.5. In fact, they show that using an optimized alarm ∆t of 3 months (0.25 years) 
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26 of the 35 (74.3%) not declustered target earthquakes that occurred in the region of 

analysis were predicted with an unweighted 𝜏𝑢 = 0.9% and weighted 𝜏𝑤 = 1.9% 

fraction of space-time occupied by alarms.  

 Such excellent forecasting performance is also confirmed for declustered target 

earthquakes with Mw≥5.5 where retrospective application of the model revealed that 

6 of the 14 target earthquakes (42.9%) that occurred in the test period were forecast 

with the same spatiotemporal coverage of alarms of the not declustered analysis 

(𝜏𝑢 = 0.9% and 𝜏𝑤 = 1.9%). 

Regarding probabilistic models, the focus of this thesis has been the application and 

comparison of the EEPAS (Every Earthquake a Precursor According to Scale) 

forecasting model with other models used in the literature in the context of 

earthquake forecastability (Chapter 4). The EEPAS model is a space-time point 

process model based on the scale increase of the precursor phenomenon (Ψ). This 

phenomenon was observed and analyzed by Evison and Rhoades (2004) for various 

regions of the world and consists of an increase in the rate and magnitude of minor 

seismicity before a strong earthquake.  The EEPAS model developed by Rhoades and 

Evison (2004), described in Chapter 4, considers each i-th earthquake to contribute to 

the variation in expected future rate density according to its magnitude, time of 

occurrence and geographical location. However, as the model is designed, the 

expected future rate density should only be defined by the long-term clustering of 

earthquakes. To prevent the model from being affected by short-term clustering, 

according to Rhoades and Evison (2004), the weighting factor was also used to 

reduce the contribution of aftershocks to the definition of the expected rate density. 

The EEPAS-NW and EEPAS-W nomenclature was adopted to distinguish the two 

different formulations with unweighted (NW) and weighted (W) seismicity, 

respectively. Although the EEPAS model has been applied in many seismic regions, 

such as New Zealand, California and Japan (Rhoades and Evison, 2004; Evison and 

Rhoades, 2005; Rhoades, 2007, 2011; Rhoades et al., 2020), no application has ever 
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been made on Italian seismicity. In this thesis, the EEPAS model was therefore 

applied to Italy and its retrospective forecasting performance was compared with 

those obtained by other time-independent and time-dependent models using the 

new CSEP consistency methods based on the negative binomial distribution (cL-test, 

N-test and S-test) the IGPA (Information Gain per Active cell/bin) statistic as 

described in Bayona et al. (2022). In particular, the EEPAS model was compared with 

the time independent SUP (Space Uniform Poisson), SVP (Space Variable Poisson) 

and the time dependent PPE (Proximity to Past Earthquakes) and ETAS (Epidemic 

Type Aftershock Sequence) models. For the latter, two variants were implemented 

with SUP and SVP as background models, respectively. 𝑚𝑇 = 5.0 was chosen as the 

lower magnitude limit of the target earthquakes, also in agreement with previous 

work on EEPAS. 

Using the HORUS seismic catalogue, the analyzed probabilistic models were 

calibrated using the period 1990-2012 as the learning dataset. A grid consisting of 177 

cells of side 𝐿 = 30√2 km was considered as the application region. Using the fitted 

parameters on the seismicity of the learning period, the models were applied to 

retrospectively forecast 27 target earthquakes (“mainshocks+aftershocks”) that 

occurred in the period 2012-2022, reported in the HORUS seismic catalogue, using 

different forecast windows from 3 months to 10 years. Since forecasting of target 

earthquakes occurring after the first shock of a sequence may sometimes be easier, 

the forecasting performance of only the first shocks of sequences ("mainshocks") was 

also examined. For the test period, all analyzed models, in particular ETAS-SUP and 

ETAS-SVP underestimated the number of target earthquakes for both target datasets 

of mainshocks+aftershocks and mainshocks only. This probably was due to the 

different rate of target earthquakes that characterized this learning and the test 

periods. The consistency of the spatial distribution, the spatial-magnitude 

distribution and the number of expected earthquakes with those observed were 

examined using the new CSEP S-test, cL-test and N-test, respectively, as described in 



157 

 

Bayona et al., 2022. These tests, based on the negative binomial distribution, are 

characterized by lower sensitivity than the traditional CSEP tests. Although the 

number of earthquakes forecasted by each model is lower than the number of 

earthquakes observed, all CSEP consistency tests gave positive results, showing 

adequate consistency between forecasted and observed earthquakes for both the 

“mainshocks + aftershocks” and the “mainshocks only” target datasets.  However, 

these results may depend on a too low cell resolution, as usually such consistency 

tests are conducted considering a grid of cells having sides 0.1°x0.1°. Relative 

forecasting skills were examined used the IGPA statistic (Information Gain for Active 

bin, Bayona et al., 2022) which is based on the difference in likelihood of a model 

from that of a reference model. The SUP model was considered as the reference 

model. IGPA results for both mainshocks+aftershocks and mainshocks target 

earthquakes showed that for forecast intervals shorter than 3 months, the best 

performing models are ETAS-SVP and ETAS-SUP. For longer forecast intervals, the 

best performing models are EEPAS-NW and EEPAS-W, respectively. Such superior 

performance, however, is found to be significant only for forecast intervals greater 

than 5 years.  

The EEPAS-NW and ETAS-SVP probabilistic models, which showed slightly better 

retrospective forecasting performance, were compared with the FORE model using 

the deterministic alarm-based approach as described in chapter 3. For this purpose, 

the FORE model was applied on the same analysis region of ETAS and EEPAS using 

the same dataset. To implement the alarm-based analysis, an optimization procedure 

was conducted to identify the optimal alarm threshold consisting of a certain 

expected daily rate value for the ETAS and EEPAS models and a range of potential 

foreshocks for the FORE model, respectively. 

The optimization procedure was conducted using the learning dataset 1990-2012. The 

Area Skill score and the fraction of space-time occupied by alarms considering the 

duration of an alarm window equal to one year were considered as criteria for 
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choosing the optimal alarm threshold. Using the chosen thresholds, the models were 

applied and to the evaluation of retrospective forecasts of earthquakes that occurred 

in the 2012-2022 test dataset using the Molchan diagram and Area Skill score. The 

retrospective evaluation methods showed that all three models considered 

overperform a purely random forecast model, in particular the ETAS-SVP and FORE 

models. Using the approach suggested by Shebalin et al. (2011), the relative 

performance of the models was also evaluated using the ETAS-SVP model as a 

reference model. The latter test showed that for the same fractions of space-time 

occupied by alarms, using the alarm-based approach, ETAS-SVP and FORE models 

presented better forecasting performance than EEPAS-NW. 

For a real performance evaluation and comparison of the forecast performance of the 

EEPAS, ETAS, and FORE models, however, it would be appropriate to conduct 

prospective forecast tests possibly within CSEP.  

 

6.2 A new EEPAS software  

The implementation of all the models examined in this thesis was done by 

developing original software and codes. In particular, for the EEPAS model, this 

implementation represents an important step in terms of replicability and 

applicability of the model. In fact, the model’s authors developed proprietary, 

license-protected software that permits the application of the model under 

predefined conditions and, under certain aspects, limiting the model’s 

reproducibility. In fact, such software (EEPSOF), is available only for the Fortran 

language in the form of an executable file for Linux operating systems. During the 

doctoral activities, a careful analysis of the EEPAS model was conducted to 

understand, reproduce and apply the model. Through numerous attempts to 

reproduce the several published works (Rhoades and Evison, 2004; Evison and 

Rhoades, 2005; Rhoades, 2007, 2011) concerning EEPAS, it was possible to develop a 
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new, more flexible code in MATLAB. Before reaching an adequate consistency 

between the two codes, many experiments were conducted by submitting the same 

input datasets to both software and examining the outputs. Although the two codes 

operate differently, particularly in terms of the treatment of distances and the 

method by which the integral of the expected rate density is calculated over space, 

they showed fairly consistent results in estimating optimal model parameters and in 

earthquake forecasting. To extend the possibility of understanding and applying the 

method the new code will be developed later in Python. 

6.3 Future perspectives and final remarks  

The analysis conducted for the FORE model and the results obtained highlight how 

the deterministic approach can also make an active and potentially significant 

contribution to improving earthquake forecasting capability. Although the analysis 

of precursor phenomena has not yielded great results in previous decades, it cannot 

be abandoned. In fact, the progress of technology provides now improved analysis 

tools and better data sets that could reveal new information for studying earthquakes 

and improving their predictability. Although an increase in the research of 

deterministic methods has been observed in recent years, there are still no standard 

prospective testing methodologies available in the CSEP field. 

To improve the ability to forecast earthquakes, it is important that the models 

developed are reproducible. In this regard, for the analyses in this thesis, the EEPAS 

model was applied independently by its developers for retrospective forecast of 

Italian earthquakes. For this purpose, new software has been developed in MATLAB, 

although, to increase usability it will later be implemented in Python as well. 

Although the characteristics of the model found by the analyses conducted using the 

new software are consistent with what has been observed in previous applications, 

this model should nevertheless be studied further and analyzed prospectively using 

CSEP testing methods. Comparison of deterministic models based on precursor 

signals with probabilistic models such as ETAS or EEPAS using objective standard 
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procedures could provide interesting results in terms of performance and potential 

applicability for earthquake risk mitigation. Therefore, the possibility of being able to 

include to the CSEP prospective tests also evaluation tests for deterministic models 

that possibly allow comparison with probabilistic models should be explored.
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Figure S1: Molchan diagram declustered (first) target shocks with Mw≥5.0. Red and 

dark blue lines indicate the forecasting performance of foreshocks with 4.4≤Mw<4.8 

for unweighted (𝜏𝑢) and weighted (𝜏𝑤) fractions of space-time occupied by alarms 

respectively (see main text). The black continuous line indicates the performance of a 

purely random forecasting method that separates skilled (below the line) from 

unskilled (above) forecasting methods. The light blue, violet and green lines indicate 

the confidence limits for 𝛼 =50%, 5% and 1% respectively. The black dashed lines 

indicate probability gains G=2, 5, 10, 20 and 50. 
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Figure S2: Area skill score diagram declustered (first) shocks with Mw≥5.0. Red and 

dark blue lines indicate the forecasting performance of foreshocks with 4.4≤Mw<4.8 

for unweighted (𝜏𝑢) and weighted (𝜏𝑤) fractions of space-time occupied by alarms 

respectively (see main text). The black continuous line indicates the performance of a 

purely random forecasting method that separates skilled (below the line) from 

unskilled (above) forecasting methods. The light blue, violet and green lines indicate 

the confidence limits for 𝛼 =50%, 5% and 1% respectively. 
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Figure S3: Same as Fig. S1 for declustered (first) target shocks with Mw≥6.0.  

 

 

Figure S4: Same as Fig. S2 for declustered (first) target shocks with Mw≥6.0.  
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Figure S5: Same as Fig. S1 for time-independent analysis of declustered (first) target 

shocks with Mw≥5.0.  

 

 

Figure S6: Same as Fig. S2 for time-independent analysis of declustered (first) target 

shocks with Mw≥5.0. 
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Figure S7: Same as Fig. S1 for time-independent analysis of declustered (first) target 

shocks with Mw≥6.0.  

 

 

Figure S8: Same as Fig. S2 for time-independent analysis of declustered (first) target 

shocks with Mw≥6.0. 
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Figure S9: Binomial probability density for all target shocks (not-declustered) and 

weighted fraction of space-time occupied by alarms for different magnitude 

thresholds (see inset) as a function of the alarm duration Δ𝑡.  

 

 

Figure S10: Probability gain for all target shocks (not-declustered) and weighted 

fraction of space-time occupied by alarms for different magnitude thresholds (see 

inset) as a function of the alarm duration Δ𝑡.  
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Figure S11: Miss rate for all target shocks (not-declustered) for different magnitude 

thresholds (see inset) as a function of the alarm duration Δ𝑡.  

 

Table S1 – List of center coordinates of circular areas (CA) with radius of 30 km. 𝑁4.5, 

𝑁5.0,  𝑁5.5, 𝑁6.0: numbers of earthquakes occurred within each CA, according to the 

CPTI15 catalogue up to year 1959, with Mw4.5, 5.0, 5.5 and 6.0 respectively in 

respective time intervals of completeness. 𝜆4.5, 𝜆5.0, 𝜆5.5, 𝜆6.0: average rates (events/y) 

of earthquakes with Mw≥4.0 within each CA computed from observed earthquakes 

with Mw4.5, 5.0, 5.5 and 6.0 respectively and assuming a b-value=1 (see text). 𝜆ave: 

average of non-null rates 𝜆4.5, 𝜆5.0, 𝜆5.5, 𝜆6.0. 𝑤 = 𝜆𝑎𝑣𝑒/∑𝜆𝑎𝑣𝑒: overall weight of each 

CA (∑𝑤 = 1). 

 

Nc Latitude Longitude 𝑵𝟒.𝟓 𝑵𝟓.𝟎 𝑵𝟓.𝟓 𝑵𝟔.𝟎 𝝀𝟒.𝟓 𝝀𝟓.𝟎 𝝀𝟓.𝟓 𝝀𝟔.𝟎 𝝀𝐚𝐯𝐞 w 

1 47.0000 11.4757 4 2 0 0 0.1581 0.2500 - - 0.2041 0.004107 

2 47.0000 12.0351 1 1 0 0 0.0395 0.1250 - - 0.0823 0.001656 

3 46.6185 10.3330 4 0 0 0 0.1581 - - - 0.1581 0.003182 

4 46.6185 10.8885 2 0 0 0 0.0791 - - - 0.0791 0.001591 

5 46.6185 11.4440 2 0 0 0 0.0791 - - - 0.0791 0.001591 

6 46.6185 11.9995 1 0 0 0 0.0395 - - - 0.0395 0.000796 

7 46.6185 12.5550 5 1 0 0 0.1976 0.1250 - - 0.1613 0.003247 

8 46.6185 13.1105 15 8 2 1 0.5929 1.0000 0.3514 0.2941 0.5596 0.011263 
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Nc Latitude Longitude 𝑵𝟒.𝟓 𝑵𝟓.𝟎 𝑵𝟓.𝟓 𝑵𝟔.𝟎 𝝀𝟒.𝟓 𝝀𝟓.𝟎 𝝀𝟓.𝟓 𝝀𝟔.𝟎 𝝀𝐚𝐯𝐞 w 

9 46.2369 9.7581 1 0 0 0 0.0395 - - - 0.0395 0.000796 

10 46.2369 10.3098 1 0 0 0 0.0395 - - - 0.0395 0.000796 

11 46.2369 10.8614 1 0 0 0 0.0395 - - - 0.0395 0.000796 

12 46.2369 11.9647 1 1 0 0 0.0395 0.1250 - - 0.0823 0.001656 

13 46.2369 12.5163 9 1 4 2 0.3558 0.1250 0.7027 0.5882 0.4429 0.008915 

14 46.2369 13.0679 34 16 7 2 1.3440 2.0000 1.2298 0.5882 1.2905 0.025974 

15 46.2369 13.6195 11 5 2 0 0.4348 0.6250 0.3514 - 0.4704 0.009468 

16 45.8554 8.0957 0 0 0 0 - - - - 0.0395 0.000796 

17 45.8554 9.1913 1 0 0 0 0.0395 - - - 0.0395 0.000796 

18 45.8554 9.7392 4 0 0 0 0.1581 - - - 0.1581 0.003182 

19 45.8554 10.2870 5 0 0 0 0.1976 - - - 0.1976 0.003978 

20 45.8554 10.8348 8 2 0 0 0.3162 0.2500 - - 0.2831 0.005698 

21 45.8554 11.3827 2 0 0 0 0.0791 - - - 0.0791 0.001591 

22 45.8554 11.9305 6 3 1 1 0.2372 0.3750 0.1757 0.2941 0.2705 0.005444 

23 45.8554 12.4783 6 1 2 1 0.2372 0.1250 0.3514 0.2941 0.2519 0.005070 

24 45.8554 13.0262 0 0 0 0 - - - - 0.0395 0.000796 

25 45.8554 13.5740 1 1 0 0 0.0395 0.1250 - - 0.0823 0.001656 

26 45.4738 7.0000 0 0 0 0 - - - - 0.0395 0.000796 

27 45.4738 7.5441 3 0 0 0 0.1186 - - - 0.1186 0.002387 

28 45.4738 8.0882 3 0 0 0 0.1186 - - - 0.1186 0.002387 

29 45.4738 8.6323 1 0 0 0 0.0395 - - - 0.0395 0.000796 

30 45.4738 9.1764 1 0 0 0 0.0395 - - - 0.0395 0.000796 

31 45.4738 9.7206 3 1 1 0 0.1186 0.1250 0.1757 - 0.1398 0.002813 

32 45.4738 10.2647 6 1 0 0 0.2372 0.1250 - - 0.1811 0.003645 

33 45.4738 10.8088 9 4 1 0 0.3558 0.5000 0.1757 - 0.3438 0.006920 

34 45.4738 11.3529 5 1 1 0 0.1976 0.1250 0.1757 - 0.1661 0.003343 

35 45.4738 11.8970 0 0 0 0 - - - - 0.0395 0.000796 

36 45.4738 12.4411 0 0 0 0 - - - - 0.0395 0.000796 

37 45.0923 7.0000 4 2 0 0 0.1581 0.2500 - - 0.2041 0.004107 

38 45.0923 7.5405 7 2 0 0 0.2767 0.2500 - - 0.2633 0.005300 

39 45.0923 8.6214 3 0 0 0 0.1186 - - - 0.1186 0.002387 

40 45.0923 9.1619 2 1 0 0 0.0791 0.1250 - - 0.1020 0.002054 

41 45.0923 9.7023 1 1 0 0 0.0395 0.1250 - - 0.0823 0.001656 

42 45.0923 10.2428 1 1 0 0 0.0395 0.1250 - - 0.0823 0.001656 

43 45.0923 10.7832 6 1 1 0 0.2372 0.1250 0.1757 - 0.1793 0.003608 

44 45.0923 11.3237 8 3 1 1 0.3162 0.3750 0.1757 0.2941 0.2903 0.005842 

45 45.0923 11.8642 0 0 0 0 - - - - 0.0395 0.000796 
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Nc Latitude Longitude 𝑵𝟒.𝟓 𝑵𝟓.𝟎 𝑵𝟓.𝟓 𝑵𝟔.𝟎 𝝀𝟒.𝟓 𝝀𝟓.𝟎 𝝀𝟓.𝟓 𝝀𝟔.𝟎 𝝀𝐚𝐯𝐞 w 

46 44.7107 7.0000 3 1 1 0 0.1186 0.1250 0.1757 - 0.1398 0.002813 

47 44.7107 7.5369 2 0 1 0 0.0791 - 0.1757 - 0.1274 0.002564 

48 44.7107 8.0738 0 0 0 0 - - - - 0.0395 0.000796 

49 44.7107 8.6107 4 0 0 0 0.1581 - - - 0.1581 0.003182 

50 44.7107 9.1476 7 1 1 0 0.2767 0.1250 0.1757 - 0.1925 0.003874 

51 44.7107 9.6844 6 0 0 0 0.2372 - - - 0.2372 0.004774 

52 44.7107 10.2213 11 5 2 0 0.4348 0.6250 0.3514 - 0.4704 0.009468 

53 44.7107 10.7582 19 4 3 0 0.7510 0.5000 0.5270 - 0.5927 0.011929 

54 44.7107 11.2951 20 10 2 1 0.7906 1.2500 0.3514 0.2941 0.6715 0.013515 

55 44.7107 11.8320 7 2 0 0 0.2767 0.2500 - - 0.2633 0.005300 

56 44.7107 12.3689 2 0 0 0 0.0791 - - - 0.0791 0.001591 

57 44.3292 7.0000 5 1 0 0 0.1976 0.1250 - - 0.1613 0.003247 

58 44.3292 7.5334 5 0 0 0 0.1976 - - - 0.1976 0.003978 

59 44.3292 8.0668 3 0 0 0 0.1186 - - - 0.1186 0.002387 

60 44.3292 8.6002 0 0 0 0 - - - - 0.0395 0.000796 

61 44.3292 9.1335 0 0 0 0 - - - - 0.0395 0.000796 

62 44.3292 9.6669 5 2 1 0 0.1976 0.2500 0.1757 - 0.2078 0.004182 

63 44.3292 10.2003 19 8 4 1 0.7510 1.0000 0.7027 0.2941 0.6870 0.013827 

64 44.3292 10.7337 9 2 0 0 0.3558 0.2500 - - 0.3029 0.006096 

65 44.3292 11.2671 20 8 0 0 0.7906 1.0000 - - 0.8953 0.018019 

66 44.3292 11.8005 15 3 2 1 0.5929 0.3750 0.3514 0.2941 0.4034 0.008118 

67 44.3292 12.3338 6 2 2 0 0.2372 0.2500 0.3514 - 0.2795 0.005626 

68 43.9476 7.5299 0 0 1 0 - - 0.1757 - 0.1757 0.003536 

69 43.9476 8.0599 4 1 2 1 0.1581 0.1250 0.3514 0.2941 0.2321 0.004672 

70 43.9476 9.6497 0 0 0 0 - - - - 0.0395 0.000796 

71 43.9476 10.1797 13 2 2 1 0.5139 0.2500 0.3514 0.2941 0.3523 0.007091 

72 43.9476 10.7096 12 2 1 0 0.4743 0.2500 0.1757 - 0.3000 0.006038 

73 43.9476 11.2396 14 4 2 1 0.5534 0.5000 0.3514 0.2941 0.4247 0.008548 

74 43.9476 11.7695 25 4 2 2 0.9882 0.5000 0.3514 0.5882 0.6070 0.012216 

75 43.9476 12.2995 11 4 3 0 0.4348 0.5000 0.5270 - 0.4873 0.009808 

76 43.9476 12.8294 22 12 3 0 0.8696 1.5000 0.5270 - 0.9656 0.019434 

77 43.9476 13.3594 5 3 1 0 0.1976 0.3750 0.1757 - 0.2494 0.005020 

78 43.5661 10.1595 2 0 0 0 0.0791 - - - 0.0791 0.001591 

79 43.5661 10.6861 4 0 1 1 0.1581 - 0.1757 0.2941 0.2093 0.004213 

80 43.5661 11.2126 9 2 1 0 0.3558 0.2500 0.1757 - 0.2605 0.005243 

81 43.5661 11.7392 2 0 0 0 0.0791 - - - 0.0791 0.001591 

82 43.5661 12.2658 8 4 3 1 0.3162 0.5000 0.5270 0.2941 0.4093 0.008239 
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Nc Latitude Longitude 𝑵𝟒.𝟓 𝑵𝟓.𝟎 𝑵𝟓.𝟓 𝑵𝟔.𝟎 𝝀𝟒.𝟓 𝝀𝟓.𝟎 𝝀𝟓.𝟓 𝝀𝟔.𝟎 𝝀𝐚𝐯𝐞 w 

83 43.5661 12.7924 3 1 1 2 0.1186 0.1250 0.1757 0.5882 0.2519 0.005069 

84 43.5661 13.3190 7 3 1 1 0.2767 0.3750 0.1757 0.2941 0.2804 0.005643 

85 43.5661 13.8455 3 2 0 0 0.1186 0.2500 - - 0.1843 0.003709 

86 43.1845 10.6629 3 0 0 0 0.1186 - - - 0.1186 0.002387 

87 43.1845 11.1862 3 2 0 0 0.1186 0.2500 - - 0.1843 0.003709 

88 43.1845 11.7095 1 1 0 0 0.0395 0.1250 - - 0.0823 0.001656 

89 43.1845 12.2328 9 2 2 0 0.3558 0.2500 0.3514 - 0.3190 0.006421 

90 43.1845 12.7561 25 10 6 3 0.9882 1.2500 1.0541 0.8824 1.0437 0.021006 

91 43.1845 13.2793 9 2 2 1 0.3558 0.2500 0.3514 0.2941 0.3128 0.006296 

92 43.1845 13.8026 4 2 0 0 0.1581 0.2500 - - 0.2041 0.004107 

93 42.8030 11.1603 0 0 0 0 - - - - 0.0395 0.000796 

94 42.8030 11.6803 10 2 0 0 0.3953 0.2500 - - 0.3226 0.006494 

95 42.8030 12.2004 6 1 0 0 0.2372 0.1250 - - 0.1811 0.003645 

96 42.8030 12.7204 37 13 8 1 1.4626 1.6250 1.4055 0.2941 1.1968 0.024088 

97 42.8030 13.2405 34 12 6 3 1.3440 1.5000 1.0541 0.8824 1.1951 0.024054 

98 42.8030 13.7605 3 2 1 0 0.1186 0.2500 0.1757 - 0.1814 0.003651 

99 42.4214 11.6518 3 0 0 0 0.1186 - - - 0.1186 0.002387 

100 42.4214 12.1686 1 0 0 0 0.0395 - - - 0.0395 0.000796 

101 42.4214 12.6855 12 3 2 0 0.4743 0.3750 0.3514 - 0.4002 0.008056 

102 42.4214 13.2024 29 17 5 3 1.1463 2.1250 0.8784 0.8824 1.2580 0.025320 

103 42.4214 13.7192 11 8 3 1 0.4348 1.0000 0.5270 0.2941 0.5640 0.011351 

104 42.4214 14.2361 2 2 0 0 0.0791 0.2500 - - 0.1645 0.003311 

105 42.0399 11.6237 0 0 0 0 - - - - 0.0395 0.000796 

106 42.0399 12.1375 1 0 0 0 0.0395 - - - 0.0395 0.000796 

107 42.0399 12.6512 6 3 0 0 0.2372 0.3750 - - 0.3061 0.006161 

108 42.0399 13.1650 12 1 1 0 0.4743 0.1250 0.1757 - 0.2583 0.005200 

109 42.0399 13.6787 15 5 1 1 0.5929 0.6250 0.1757 0.2941 0.4219 0.008492 

110 42.0399 14.1925 5 4 1 1 0.1976 0.5000 0.1757 0.2941 0.2919 0.005874 

111 42.0399 14.7062 0 0 0 0 - - - - 0.0395 0.000796 

112 42.0399 15.2200 4 0 1 0 0.1581 - 0.1757 - 0.1669 0.003359 

113 42.0399 15.7337 4 2 0 1 0.1581 0.2500 - 0.2941 0.2341 0.004711 

114 42.0399 16.2475 1 0 0 1 0.0395 - - 0.2941 0.1668 0.003358 

115 41.6583 12.1069 1 0 0 0 0.0395 - - - 0.0395 0.000796 

116 41.6583 12.6176 10 4 1 0 0.3953 0.5000 0.1757 - 0.3570 0.007185 

117 41.6583 13.1283 3 0 0 0 0.1186 - - - 0.1186 0.002387 

118 41.6583 13.6390 19 4 0 1 0.7510 0.5000 - 0.2941 0.5151 0.010366 

119 41.6583 14.1497 12 4 1 0 0.4743 0.5000 0.1757 - 0.3833 0.007715 
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Nc Latitude Longitude 𝑵𝟒.𝟓 𝑵𝟓.𝟎 𝑵𝟓.𝟓 𝑵𝟔.𝟎 𝝀𝟒.𝟓 𝝀𝟓.𝟎 𝝀𝟓.𝟓 𝝀𝟔.𝟎 𝝀𝐚𝐯𝐞 w 

120 41.6583 14.6604 7 3 3 1 0.2767 0.3750 0.5270 0.2941 0.3682 0.007411 

121 41.6583 15.1711 7 2 2 2 0.2767 0.2500 0.3514 0.5882 0.3666 0.007378 

122 41.6583 15.6818 18 10 2 1 0.7115 1.2500 0.3514 0.2941 0.6517 0.013118 

123 41.6583 16.1925 11 6 0 0 0.4348 0.7500 - - 0.5924 0.011923 

124 41.2768 9.0308 1 0 0 0 0.0395 - - - 0.0395 0.000796 

125 41.2768 16.1385 1 0 0 0 0.0395 - - - 0.0395 0.000796 

126 41.2768 13.0924 0 0 0 0 - - - - 0.0395 0.000796 

127 41.2768 13.6001 0 0 0 0 - - - - 0.0395 0.000796 

128 41.2768 14.1077 6 1 0 0 0.2372 0.1250 - - 0.1811 0.003645 

129 41.2768 14.6154 8 3 2 3 0.3162 0.3750 0.3514 0.8824 0.4812 0.009686 

130 41.2768 15.1231 11 5 3 4 0.4348 0.6250 0.5270 1.1765 0.6908 0.013904 

131 41.2768 15.6308 3 0 0 1 0.1186 - - 0.2941 0.2064 0.004153 

132 41.2768 16.6462 0 0 0 0 - - - - 0.0395 0.000796 

133 40.8952 9.0190 1 0 0 0 0.0395 - - - 0.0395 0.000796 

134 40.8952 14.0666 0 0 0 0 - - - - 0.0395 0.000796 

135 40.8952 14.5714 6 0 0 0 0.2372 - - - 0.2372 0.004774 

136 40.8952 15.0761 21 7 4 5 0.8301 0.8750 0.7027 1.4706 0.9696 0.019515 

137 40.8952 15.5809 31 9 5 4 1.2254 1.1250 0.8784 1.1765 1.1013 0.022166 

138 40.8952 16.0856 2 1 0 0 0.0791 0.1250 - - 0.1020 0.002054 

139 40.8952 16.5904 1 0 0 0 0.0395 - - - 0.0395 0.000796 

140 40.5137 14.5281 0 0 0 0 - - - - 0.0395 0.000796 

141 40.5137 15.0300 1 1 0 0 0.0395 0.1250 - - 0.0823 0.001656 

142 40.5137 15.5318 20 3 1 0 0.7906 0.3750 0.1757 - 0.4471 0.008998 

143 40.5137 16.0337 9 2 2 1 0.3558 0.2500 0.3514 0.2941 0.3128 0.006296 

144 40.5137 16.5356 4 1 0 0 0.1581 0.1250 - - 0.1416 0.002849 

145 40.5137 17.0375 1 0 0 0 0.0395 - - - 0.0395 0.000796 

146 40.5137 17.5393 0 0 0 0 - - - - 0.0395 0.000796 

147 40.1321 15.4838 2 0 2 0 0.0791 - 0.3514 - 0.2152 0.004332 

148 40.1321 15.9828 9 4 4 1 0.3558 0.5000 0.7027 0.2941 0.4632 0.009322 

149 40.1321 16.4819 1 0 0 0 0.0395 - - - 0.0395 0.000796 

150 40.1321 17.9790 1 0 0 0 0.0395 - - - 0.0395 0.000796 

151 39.7506 15.9329 4 3 0 0 0.1581 0.3750 - - 0.2666 0.005365 

152 39.7506 16.4291 6 3 2 0 0.2372 0.3750 0.3514 - 0.3212 0.006464 

153 39.7506 16.9254 5 1 1 1 0.1976 0.1250 0.1757 0.2941 0.1981 0.003987 

154 39.3690 8.9742 0 0 0 0 - - - - 0.0395 0.000796 

155 39.3690 15.8838 1 1 1 0 0.0395 0.1250 0.1757 - 0.1134 0.002282 

156 39.3690 16.3774 9 3 6 2 0.3558 0.3750 1.0541 0.5882 0.5933 0.011941 
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Nc Latitude Longitude 𝑵𝟒.𝟓 𝑵𝟓.𝟎 𝑵𝟓.𝟓 𝑵𝟔.𝟎 𝝀𝟒.𝟓 𝝀𝟓.𝟎 𝝀𝟓.𝟓 𝝀𝟔.𝟎 𝝀𝐚𝐯𝐞 w 

157 39.3690 16.8709 1 0 1 2 0.0395 - 0.1757 0.5882 0.2678 0.005390 

158 38.9875 8.9635 0 0 0 0 - - - - 0.0395 0.000796 

159 38.9875 15.3449 6 3 0 0 0.2372 0.3750 - - 0.3061 0.006161 

160 38.9875 15.8358 1 1 1 1 0.0395 0.1250 0.1757 0.2941 0.1586 0.003192 

161 38.9875 16.3266 4 0 3 5 0.1581 - 0.5270 1.4706 0.7186 0.014463 

162 38.9875 16.8175 3 0 1 1 0.1186 - 0.1757 0.2941 0.1961 0.003947 

163 38.6059 14.8121 8 3 0 0 0.3162 0.3750 - - 0.3456 0.006956 

164 38.6059 15.3003 7 3 0 0 0.2767 0.3750 - - 0.3258 0.006558 

165 38.6059 15.7886 5 2 2 1 0.1976 0.2500 0.3514 0.2941 0.2733 0.005500 

166 38.6059 16.2768 7 1 4 4 0.2767 0.1250 0.7027 1.1765 0.5702 0.011477 

167 38.6059 16.7651 1 1 1 0 0.0395 0.1250 0.1757 - 0.1134 0.002282 

168 38.2244 13.3139 4 1 0 0 0.1581 0.1250 - - 0.1416 0.002849 

169 38.2244 13.7996 7 3 1 0 0.2767 0.3750 0.1757 - 0.2758 0.005551 

170 38.2244 14.7709 6 1 1 1 0.2372 0.1250 0.1757 0.2941 0.2080 0.004186 

171 38.2244 15.2566 13 2 2 2 0.5139 0.2500 0.3514 0.5882 0.4259 0.008571 

172 38.2244 15.7423 13 6 4 3 0.5139 0.7500 0.7027 0.8824 0.7122 0.014335 

173 38.2244 16.2280 3 2 2 1 0.1186 0.2500 0.3514 0.2941 0.2535 0.005103 

174 37.8428 12.7979 15 6 2 1 0.5929 0.7500 0.3514 0.2941 0.4971 0.010005 

175 37.8428 13.2811 9 6 1 1 0.3558 0.7500 0.1757 0.2941 0.3939 0.007928 

176 37.8428 13.7642 2 1 0 0 0.0791 0.1250 - - 0.1020 0.002054 

177 37.8428 14.2474 11 3 0 0 0.4348 0.3750 - - 0.4049 0.008150 

178 37.8428 14.7306 8 2 0 0 0.3162 0.2500 - - 0.2831 0.005698 

179 37.8428 15.2137 12 2 2 1 0.4743 0.2500 0.3514 0.2941 0.3425 0.006893 

180 37.8428 15.6969 0 0 0 0 - - - - 0.0395 0.000796 

181 37.8428 16.1800 3 1 0 0 0.1186 0.1250 - - 0.1218 0.002451 

182 37.4613 12.7682 4 0 0 0 0.1581 - - - 0.1581 0.003182 

183 37.4613 13.2489 1 0 0 0 0.0395 - - - 0.0395 0.000796 

184 37.4613 13.7296 0 0 0 0 - - - - 0.0395 0.000796 

185 37.4613 14.6909 6 2 1 0 0.2372 0.2500 0.1757 - 0.2210 0.004447 

186 37.4613 15.1716 8 3 3 1 0.3162 0.3750 0.5270 0.2941 0.3781 0.007610 

187 37.0797 14.6521 5 2 1 0 0.1976 0.2500 0.1757 - 0.2078 0.004182 

188 37.0797 15.1303 1 0 0 2 0.0395 - - 0.5882 0.3139 0.006317 

189 36.6982 14.6139 1 1 0 0 0.0395 0.1250 - - 0.0823 0.001656 

190 36.6982 15.0898 0 0 0 0 - - - - 0.0395 0.000796 
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Table S2 – Values of variables in Molchan and Area Skill score plots of Fig. 3.9 and 

3.10 (section 3.5) for Mw≥5.5 not-declustered targets.  

t (years) t (days) 𝝉𝒖 𝝉𝒘 h 𝝂 𝒂𝒇(𝝉𝒖) 𝒂𝒇(𝝉𝒘) 

1.6E-08 5.8E-06 8.6E-10 2.0E-09 0 1.000 0.000 0.000 

3.2E-08 1.2E-05 1.7E-09 4.1E-09 1 0.990 0.003 0.003 

6.3E-08 2.3E-05 3.4E-09 8.1E-09 2 0.980 0.009 0.009 

1.6E-07 5.8E-05 8.6E-09 2.0E-08 2 0.980 0.016 0.016 

3.2E-07 1.2E-04 1.7E-08 4.1E-08 2 0.980 0.018 0.018 

4.8E-07 1.7E-04 2.6E-08 6.1E-08 3 0.969 0.021 0.021 

9.5E-07 3.5E-04 5.1E-08 1.2E-07 3 0.969 0.026 0.026 

1.9E-06 6.9E-04 1.0E-07 2.4E-07 3 0.969 0.028 0.028 

3.8E-06 1.4E-03 2.0E-07 4.9E-07 4 0.959 0.032 0.032 

9.5E-06 3.5E-03 5.1E-07 1.2E-06 4 0.959 0.037 0.037 

1.9E-05 6.9E-03 1.0E-06 2.4E-06 6 0.939 0.044 0.044 

2.9E-05 1.0E-02 1.5E-06 3.6E-06 6 0.939 0.050 0.050 

5.7E-05 2.1E-02 3.0E-06 7.1E-06 6 0.939 0.055 0.055 

1.1E-04 4.2E-02 6.0E-06 1.4E-05 10 0.898 0.068 0.068 

3.4E-04 0.13 1.7E-05 4.0E-05 19 0.806 0.121 0.120 

6.8E-04 0.25 3.4E-05 7.7E-05 20 0.796 0.159 0.158 

1.4E-03 0.50 6.5E-05 1.5E-04 24 0.755 0.191 0.190 

2.7E-03 1.00 1.3E-04 2.8E-04 29 0.704 0.229 0.228 

8.2E-03 3.00 3.6E-04 7.8E-04 41 0.582 0.312 0.310 

0.019 7.02 8.1E-04 1.7E-03 45 0.541 0.382 0.380 

0.042 15.22 1.7E-03 3.5E-03 47 0.520 0.427 0.425 

0.083 30.44 3.2E-03 6.5E-03 48 0.510 0.455 0.453 

0.250 91.31 9.1E-03 0.018 55 0.439 0.501 0.499 

0.500 182.62 0.017 0.034 58 0.408 0.537 0.535 

1.000 365.24 0.033 0.063 65 0.337 0.580 0.578 

2.000 730.49 0.062 0.114 70 0.286 0.630 0.628 

5.000 1826.21 0.134 0.238 74 0.245 0.686 0.683 

10 3652.43 0.220 0.374 82 0.163 0.729 0.724 

15 5478.64 0.280 0.457 85 0.133 0.756 0.748 

20 7304.85 0.324 0.511 87 0.112 0.772 0.761 

25 9131.06 0.355 0.546 87 0.112 0.782 0.769 

30 10957.28 0.379 0.572 87 0.112 0.789 0.775 

35 12783.49 0.398 0.592 89 0.092 0.794 0.779 

40 14609.70 0.413 0.605 89 0.092 0.798 0.782 

45 16435.91 0.424 0.613 89 0.092 0.801 0.783 

50 18262.13 0.431 0.617 89 0.092 0.803 0.784 

55 20088.34 0.434 0.619 89 0.092 0.804 0.785 

60 21914.55 0.436 0.620 89 0.092 0.804 0.785 

Full occ. Full occ. 1.000 1.000 98 0.000 0.889 0.849 

 t is the duration of alarms, 𝜏𝑢 and 𝜏𝑤 the unweighted and weighted fraction of 

space-time occupied by alarms respectively, h the number of successful forecasts, 𝜈 

the miss rate, 𝑎𝑓(𝜏𝑢) and 𝑎𝑓(𝜏𝑤) the Area Skill scores computed considering the 

unweighted and weighted fraction of space-time occupied by alarms respectively. 

The last row (t= Full occ.)  reports values for a full occupation of the space-time by 

alarms. 
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Table S3 – Same as Table S2 for Mw≥5.0 declustered targets (Fig. S1 and S2). 

 

t (years) t (days) 𝝉𝒖 𝝉𝒘 h 𝝂 𝒂𝒇(𝝉𝒖) 𝒂𝒇(𝝉𝒘) 

1.6E-08 5.8E-06 8.6E-10 2.0E-09 0 1.000 0.000 0.000 

3.2E-08 1.2E-05 1.7E-09 4.1E-09 0 1.000 0.000 0.000 

6.3E-08 2.3E-05 3.4E-09 8.1E-09 0 1.000 0.000 0.000 

1.6E-07 5.8E-05 8.6E-09 2.0E-08 0 1.000 0.000 0.000 

3.2E-07 1.2E-04 1.7E-08 4.1E-08 0 1.000 0.000 0.000 

4.8E-07 1.7E-04 2.6E-08 6.1E-08 1 0.977 0.004 0.004 

9.5E-07 3.5E-04 5.1E-08 1.2E-07 1 0.977 0.013 0.013 

1.9E-06 6.9E-04 1.0E-07 2.4E-07 1 0.977 0.018 0.018 

3.8E-06 1.4E-03 2.0E-07 4.9E-07 2 0.955 0.026 0.026 

9.5E-06 3.5E-03 5.1E-07 1.2E-06 2 0.955 0.038 0.038 

1.9E-05 6.9E-03 1.0E-06 2.4E-06 2 0.955 0.042 0.042 

2.9E-05 1.0E-02 1.5E-06 3.6E-06 2 0.955 0.043 0.043 

5.7E-05 2.1E-02 3.0E-06 7.1E-06 2 0.955 0.044 0.044 

1.1E-04 4.2E-02 6.0E-06 1.4E-05 2 0.955 0.045 0.045 

3.4E-04 0.13 1.7E-05 4.0E-05 4 0.909 0.060 0.060 

6.8E-04 0.25 3.4E-05 7.7E-05 4 0.909 0.075 0.075 

1.4E-03 0.50 6.5E-05 1.5E-04 4 0.909 0.083 0.082 

2.7E-03 1.00 1.3E-04 2.8E-04 4 0.909 0.087 0.087 

8.2E-03 3.00 3.6E-04 7.8E-04 6 0.864 0.104 0.104 

0.019 7.02 8.1E-04 1.7E-03 7 0.841 0.128 0.128 

0.042 15.22 1.7E-03 3.5E-03 7 0.841 0.144 0.144 

0.083 30.44 3.2E-03 6.5E-03 8 0.818 0.157 0.156 

0.250 91.31 9.1E-03 0.018 8 0.818 0.173 0.172 

0.500 182.62 0.017 0.034 10 0.773 0.188 0.187 

1.000 365.24 0.033 0.063 14 0.682 0.228 0.227 

2.000 730.49 0.062 0.114 19 0.568 0.296 0.294 

5.000 1826.21 0.134 0.238 22 0.500 0.387 0.383 

10 3652.43 0.220 0.374 29 0.341 0.463 0.455 

15 5478.64 0.280 0.457 32 0.273 0.512 0.498 

20 7304.85 0.324 0.511 34 0.227 0.544 0.525 

25 9131.06 0.355 0.546 34 0.227 0.564 0.541 

30 10957.28 0.379 0.572 34 0.227 0.578 0.551 

35 12783.49 0.398 0.592 36 0.182 0.588 0.559 

40 14609.70 0.413 0.605 36 0.182 0.596 0.565 

45 16435.91 0.424 0.613 36 0.182 0.602 0.568 

50 18262.13 0.431 0.617 36 0.182 0.606 0.570 

55 20088.34 0.434 0.619 36 0.182 0.607 0.571 

60 21914.55 0.436 0.620 36 0.182 0.608 0.571 

Full occ. Full occ. 1.000 1.000 44 0.000 0.778 0.699 
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Table S4 – Same as Table S2 for Mw≥6.0 not-declustered targets (Fig. 3.11 and 3.12 of 

section 3.5). 

 

t (years) t (days) 𝝉𝒖 𝝉𝒘 h 𝝂 𝒂𝒇(𝝉𝒖) 𝒂𝒇(𝝉𝒘) 

1.6E-08 5.8E-06 8.6E-10 2.0E-09 0 1.000 0.000 0.000 

3.2E-08 1.2E-05 1.7E-09 4.1E-09 0 1.000 0.000 0.000 

6.3E-08 2.3E-05 3.4E-09 8.1E-09 1 0.900 0.025 0.025 

1.6E-07 5.8E-05 8.6E-09 2.0E-08 1 0.900 0.070 0.070 

3.2E-07 1.2E-04 1.7E-08 4.1E-08 1 0.900 0.085 0.085 

4.8E-07 1.7E-04 2.6E-08 6.1E-08 1 0.900 0.090 0.090 

9.5E-07 3.5E-04 5.1E-08 1.2E-07 1 0.900 0.095 0.095 

1.9E-06 6.9E-04 1.0E-07 2.4E-07 1 0.900 0.097 0.097 

3.8E-06 1.4E-03 2.0E-07 4.9E-07 2 0.800 0.124 0.124 

9.5E-06 3.5E-03 5.1E-07 1.2E-06 2 0.800 0.169 0.169 

1.9E-05 6.9E-03 1.0E-06 2.4E-06 3 0.700 0.209 0.209 

2.9E-05 1.0E-02 1.5E-06 3.6E-06 3 0.700 0.240 0.239 

5.7E-05 2.1E-02 3.0E-06 7.1E-06 3 0.700 0.270 0.269 

1.1E-04 4.2E-02 6.0E-06 1.4E-05 3 0.700 0.285 0.284 

3.4E-04 0.13 1.7E-05 4.0E-05 4 0.600 0.328 0.327 

6.8E-04 0.25 3.4E-05 7.7E-05 5 0.500 0.387 0.386 

1.4E-03 0.50 6.5E-05 1.5E-04 5 0.500 0.442 0.440 

2.7E-03 1.00 1.3E-04 2.8E-04 5 0.500 0.470 0.469 

8.2E-03 3.00 3.6E-04 7.8E-04 6 0.400 0.522 0.521 

0.019 7.02 8.1E-04 1.7E-03 7 0.300 0.593 0.591 

0.042 15.22 1.7E-03 3.5E-03 7 0.300 0.648 0.646 

0.083 30.44 3.2E-03 6.5E-03 7 0.300 0.673 0.671 

0.250 91.31 9.1E-03 0.018 7 0.300 0.690 0.690 

0.500 182.62 0.017 0.034 7 0.300 0.695 0.694 

1.000 365.24 0.033 0.063 8 0.200 0.721 0.720 

2.000 730.49 0.062 0.114 8 0.200 0.758 0.756 

5.000 1826.21 0.134 0.238 8 0.200 0.780 0.778 

10 3652.43 0.220 0.374 9 0.100 0.808 0.804 

15 5478.64 0.280 0.457 9 0.100 0.827 0.821 

20 7304.85 0.324 0.511 10 0.000 0.844 0.834 

25 9131.06 0.355 0.546 10 0.000 0.858 0.844 

30 10957.28 0.379 0.572 10 0.000 0.867 0.850 

35 12783.49 0.398 0.592 10 0.000 0.873 0.855 

40 14609.70 0.413 0.605 10 0.000 0.878 0.857 

45 16435.91 0.424 0.613 10 0.000 0.881 0.859 

50 18262.13 0.431 0.617 10 0.000 0.883 0.860 

55 20088.34 0.434 0.619 10 0.000 0.884 0.860 

60 21914.55 0.436 0.620 10 0.000 0.884 0.861 

Full occ. Full occ. 1.000 1.000 10 0.000 0.949 0.911 
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Table S5 – Same as Table S2 for Mw≥6.0 declustered targets (Fig. S3 and S4). 

 

t (years) t (days) 𝝉𝒖 𝝉𝒘 h 𝝂 𝒂𝒇(𝝉𝒖) 𝒂𝒇(𝝉𝒘) 

1.6E-08 5.8E-06 8.6E-10 2.0E-09 0 1.000 0.000 0.000 

3.2E-08 1.2E-05 1.7E-09 4.1E-09 0 1.000 0.000 0.000 

6.3E-08 2.3E-05 3.4E-09 8.1E-09 0 1.000 0.000 0.000 

1.6E-07 5.8E-05 8.6E-09 2.0E-08 0 1.000 0.000 0.000 

3.2E-07 1.2E-04 1.7E-08 4.1E-08 0 1.000 0.000 0.000 

4.8E-07 1.7E-04 2.6E-08 6.1E-08 0 1.000 0.000 0.000 

9.5E-07 3.5E-04 5.1E-08 1.2E-07 0 1.000 0.000 0.000 

1.9E-06 6.9E-04 1.0E-07 2.4E-07 0 1.000 0.000 0.000 

3.8E-06 1.4E-03 2.0E-07 4.9E-07 1 0.857 0.036 0.036 

9.5E-06 3.5E-03 5.1E-07 1.2E-06 1 0.857 0.100 0.100 

1.9E-05 6.9E-03 1.0E-06 2.4E-06 2 0.714 0.157 0.157 

2.9E-05 1.0E-02 1.5E-06 3.6E-06 2 0.714 0.200 0.200 

5.7E-05 2.1E-02 3.0E-06 7.1E-06 2 0.714 0.242 0.242 

1.1E-04 4.2E-02 6.0E-06 1.4E-05 2 0.714 0.264 0.264 

3.4E-04 0.13 1.7E-05 4.0E-05 3 0.571 0.325 0.325 

6.8E-04 0.25 3.4E-05 7.7E-05 3 0.571 0.375 0.374 

1.4E-03 0.50 6.5E-05 1.5E-04 3 0.571 0.401 0.400 

2.7E-03 1.00 1.3E-04 2.8E-04 3 0.571 0.414 0.414 

8.2E-03 3.00 3.6E-04 7.8E-04 3 0.571 0.424 0.423 

0.019 7.02 8.1E-04 1.7E-03 4 0.429 0.466 0.465 

0.042 15.22 1.7E-03 3.5E-03 4 0.429 0.520 0.519 

0.083 30.44 3.2E-03 6.5E-03 4 0.429 0.545 0.543 

0.250 91.31 9.1E-03 0.018 4 0.429 0.562 0.561 

0.500 182.62 0.017 0.034 4 0.429 0.567 0.566 

1.000 365.24 0.033 0.063 5 0.286 0.603 0.601 

2.000 730.49 0.062 0.114 5 0.286 0.654 0.652 

5.000 1826.21 0.134 0.238 5 0.286 0.686 0.684 

10 3652.43 0.220 0.374 6 0.143 0.725 0.720 

15 5478.64 0.280 0.457 6 0.143 0.754 0.744 

20 7304.85 0.324 0.511 7 0.000 0.777 0.763 

25 9131.06 0.355 0.546 7 0.000 0.797 0.777 

30 10957.28 0.379 0.572 7 0.000 0.810 0.786 

35 12783.49 0.398 0.592 7 0.000 0.819 0.793 

40 14609.70 0.413 0.605 7 0.000 0.825 0.796 

45 16435.91 0.424 0.613 7 0.000 0.830 0.799 

50 18262.13 0.431 0.617 7 0.000 0.833 0.800 

55 20088.34 0.434 0.619 7 0.000 0.834 0.801 

60 21914.55 0.436 0.620 7 0.000 0.834 0.801 

Full occ. Full occ.. 1.000 1.000 7 0.000 0.928 0.873 
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Table S6 - Results of retrospective forecast of first main shocks (declustered targets) 

with Mw≥5.0 in Italy from 1960 to 2019, using Δ𝑡= 3 months (0.25 years).  

Year Month Day Lat Lon Mw 𝒕𝒂 (days)  Epicentral area 

1960 1 11 41.300 13.983 5.0 Missed  Roccamonfina 

1962 8 21 41.233 14.933 5.7 0.093 2.22 h Irpinia 

1963 2 2 42.400 12.900 5.3 0.046 1.10 h Reatino 

1963 2 13 40.500 15.583 5.3 Missed  Potentino 

1963 8 9 44.367 12.100 5.4 Missed  Romagna 

1965 8 19 46.100 13.100 5.2 Missed  Prealpi friulane 

1967 4 3 44.800 10.750 5.0 Missed  Reggiano 

1967 10 31 37.800 14.367 5.0 Missed  Monti Nebrodi 

1967 12 30 45.000 12.100 5.4 Missed  Emilia Romagna orientale 

1968 1 14 37.900 13.000 5.2 Missed  Valle del Belice 

1969 11 14 40.583 15.567 5.3 Missed  Potentino 

1970 8 19 43.133 10.883 5.0 Missed  Colline Metallifere 

1972 11 26 42.900 13.267 5.2 Missed  Marche meridionali 

1975 6 19 41.650 15.733 5.1 Missed  Gargano 

1975 11 16 44.617 9.433 5.0 Missed  Appennino piacentino 

1976 5 6 46.250 13.250 6.5 7.810-4 67 s Friuli 

1977 9 16 46.300 12.983 5.3 Missed  Friuli 

1978 9 24 40.667 16.117 5.1 Missed  Materano 

1979 9 19 42.717 12.950 5.8 Missed  Valnerina 

1980 6 14 41.767 13.683 5.0 Missed  Marsica 

1980 11 23 40.800 15.367 6.8 Missed  Irpinia-Basilicata 

1982 8 15 40.943 15.320 5.3 Missed  Irpinia 

1983 11 9 44.653 10.342 5.0 Missed  Parmense 

1984 4 29 43.204 12.585 5.6 Missed  Umbria settentrionale 

1984 5 7 41.666 13.820 5.9 Missed  Monti della Laga 

1990 5 5 40.650 15.882 5.8 1.510-4 13 s Potentino 

1991 5 26 40.689 15.822 5.1 Missed  Potentino 

1995 9 30 41.790 15.971 5.2 Missed  Gargano 

1996 10 15 44.799 10.679 5.4 Missed  Pianura emiliana 

1997 9 26 43.023 12.891 5.7 22.1  Appennino umbro-marchigiano 

1998 9 9 40.060 15.949 5.5 Missed  Appennino lucano 

2002 10 31 41.717 14.893 5.7 Missed  Molise 

2003 9 14 44.255 11.380 5.2 Missed  Costa croata settentrionale 

2004 11 24 45.685 10.521 5.0 Missed  Garda occidentale 

2008 12 23 44.544 10.345 5.4 Missed  Parmense 

2009 4 6 42.342 13.380 6.3 6.5  Aquilano 

2012 1 25 44.871 10.510 5.0 Missed  Pianura emiliana 

2012 5 20 44.896 11.264 6.1 Missed  Pianura emiliana 

2012 10 25 39.875 16.016 5.3 Missed  Pollino 

2013 1 25 44.164 10.446 5.0 Missed  Garfagnana 
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Year Month Day Lat Lon Mw 𝒕𝒂 (days)  Epicentral area 

2013 12 29 41.395 14.434 5.1 Missed  Matese 

2016 8 24 42.698 13.234 6.2 Missed  Monti della Laga 

2018 8 16 41.874 14.865 5.3 1.9  Molise 

2018 12 26 37.644 15.116 5.2 81.1  Etna sud-orientale 

𝑡𝑎 is the maximum time advance of the foreshock with respect to the mainshock. 

“Missed” indicates that the target shock was not forecasted. Epicentral area identifiers 

are taken from the CPTI15 catalog (Rovida et al., 2016, 2020). 

 
 
 
 

Table S7 – Results of retrospective forecast of not-declustered targets with Mw≥5.0 in 

Italy from 1960 to 2019, using Δ𝑡= 3 months (0.25 years). 

Year Month Day Latitude Longitude Mw ta(days) 

1960 1 11 41.3000 13.9833 5.0 Missed 

1962 8 21 41.2333 14.9333 5.7 9.26E-02 

1962 8 21 41.2333 14.9333 6.2 9.99E-02 

1962 8 21 41.1333 15.1167 5.3 1.17E-01 

1963 2 2 42.4000 12.9000 5.3 4.59E-02 

1963 2 13 40.5000 15.5833 5.3 Missed 

1963 8 9 44.3667 12.1000 5.4 Missed 

1965 8 19 46.1000 13.1000 5.2 Missed 

1967 4 3 44.8000 10.7500 5.0 Missed 

1967 10 31 37.8000 14.3667 5.0 Missed 

1967 12 30 45.0000 12.1000 5.4 Missed 

1968 1 14 37.9000 13.0000 5.2 Missed 

1968 1 15 37.8000 13.2000 5.3 4.05E-01 

1968 1 15 37.7000 13.1000 5.7 4.25E-01 

1968 1 15 37.8000 13.2000 5.5 9.10E-01 

1968 1 16 37.7000 13.3000 5.6 2.03E+00 

1968 1 25 37.7000 13.1000 5.2 1.07E+01 

1968 6 16 37.8000 14.8000 5.2 Missed 

1969 11 14 40.5833 15.5667 5.3 Missed 

1970 8 19 43.1333 10.8833 5.0 Missed 

1972 11 26 42.9000 13.2667 5.2 Missed 

1975 6 19 41.6500 15.7333 5.1 Missed 

1975 11 16 44.6167 9.4333 5.0 Missed 
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Year Month Day Latitude Longitude Mw ta(days) 

1976 5 6 46.2500 13.2500 6.5 7.74E-04 

1976 5 11 46.2667 13.0167 5.0 5.10E+00 

1976 9 11 46.2667 13.1667 5.3 7.71E+01 

1976 9 11 46.3000 13.3167 5.6 8.59E+01 

1976 9 15 46.2667 13.1500 5.9 8.05E+01 

1976 9 15 46.3000 13.1833 6.0 8.08E+01 

1976 9 16 46.2800 12.9800 5.5 8.24E+01 

1977 9 16 46.3000 12.9833 5.3 Missed 

1978 9 24 40.6667 16.1167 5.1 Missed 

1979 9 19 42.7167 12.9500 5.8 Missed 

1980 2 28 42.8000 12.9667 5.0 Missed 

1980 6 14 41.7667 13.6833 5.0 Missed 

1980 11 23 40.8000 15.3667 6.8 Missed 

1980 11 24 40.8333 15.2833 5.0 2.30E-01 

1980 11 24 40.8667 15.3333 5.0 3.41E-01 

1980 11 25 40.6333 15.3833 5.4 1.97E+00 

1981 1 16 40.8903 15.4398 5.2 5.32E+01 

1982 8 15 40.9433 15.3202 5.3 Missed 

1983 11 9 44.6525 10.3423 5.0 Missed 

1984 4 29 43.2040 12.5853 5.6 Missed 

1984 5 7 41.6657 13.8202 5.9 Missed 

1984 5 11 41.6502 13.8437 5.5 3.68E+00 

1990 5 5 40.6495 15.8818 5.8 1.46E-04 

1991 5 26 40.6890 15.8217 5.1 Missed 

1995 9 30 41.7903 15.9712 5.2 Missed 

1996 10 15 44.7988 10.6787 5.4 Missed 

1997 9 26 43.0228 12.8910 5.7 2.21E+01 

1997 9 26 43.0147 12.8538 6.0 2.25E+01 

1997 10 3 43.0427 12.8245 5.2 2.95E+01 

1997 10 6 43.0275 12.8467 5.5 3.31E+01 

1997 10 12 42.9062 12.9203 5.2 3.86E+01 

1997 10 14 42.8982 12.8987 5.6 4.07E+01 

1998 3 21 42.9485 12.9143 5.0 4.27E+01 

1998 3 26 43.1458 12.8090 5.3 4.77E+01 

1998 4 3 43.1853 12.7568 5.1 5.53E+01 

1998 9 9 40.0600 15.9490 5.5 Missed 
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Year Month Day Latitude Longitude Mw ta(days) 

2002 10 31 41.7167 14.8932 5.7 Missed 

2002 11 1 41.7415 14.8432 5.7 Missed 

2003 9 14 44.2550 11.3800 5.2 Missed 

2004 11 24 45.6850 10.5210 5.0 Missed 

2008 12 23 44.5440 10.3450 5.4 Missed 

2009 4 6 42.3420 13.3800 6.3 6.50E+00 

2009 4 6 42.3600 13.3280 5.1 6.54E+00 

2009 4 6 42.4630 13.3850 5.1 7.41E+00 

2009 4 7 42.3360 13.3870 5.1 7.83E+00 

2009 4 7 42.3030 13.4860 5.5 8.18E+00 

2009 4 9 42.4890 13.3510 5.4 9.47E+00 

2009 4 9 42.5040 13.3500 5.2 1.03E+01 

2009 4 13 42.4980 13.3770 5.0 1.43E+01 

2012 1 25 44.8710 10.5100 5.0 Missed 

2012 5 20 44.8955 11.2635 6.1 Missed 

2012 5 20 44.8787 11.1202 5.0 Missed 

2012 5 20 44.9052 11.1650 5.0 Missed 

2012 5 20 44.8737 11.2703 5.2 Missed 

2012 5 20 44.8597 11.1520 5.0 3.54E-02 

2012 5 20 44.8135 11.4407 5.2 4.62E-01 

2012 5 29 44.8417 11.0657 5.9 9.18E+00 

2012 5 29 44.8652 10.9795 5.5 1.04E-01 

2012 5 29 44.8558 10.9410 5.2 1.07E-01 

2012 10 25 39.8747 16.0158 5.3 Missed 

2013 1 25 44.1643 10.4458 5.0 Missed 

2013 6 21 44.1308 10.1357 5.3 Missed 

2013 12 29 41.3952 14.4342 5.1 Missed 

2016 8 24 42.6983 13.2335 6.2 Missed 

2016 8 24 42.7922 13.1507 5.5 2.60E-02 

2016 10 26 42.8747 13.1243 5.5 6.35E+01 

2016 10 26 42.9048 13.0902 6.1 6.36E+01 

2016 10 30 42.8303 13.1092 6.6 6.71E+01 

2016 11 1 42.9902 13.1345 5.0 6.91E+01 

2017 1 18 42.5450 13.2768 5.3 8.36E+01 

2017 1 18 42.5310 13.2838 5.7 4.97E+01 

2017 1 18 42.5033 13.2770 5.6 4.97E+01 
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Year Month Day Latitude Longitude Mw ta(days) 

2017 1 18 42.4733 13.2747 5.2 4.98E+01 

2018 8 16 41.8742 14.8648 5.3 1.86E+00 

2018 12 26 37.6440 15.1160 5.1 8.11E+01 

𝑡𝑎 is the maximum time advance of the foreshock with respect to the mainshock. 

“Missed” indicates that the target shock was not forecasted. 
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Table S8– Same as Table S6 for not-declustered targets with Mw≥5.5. 

Year Month Day Latitude Longitude Mw ta(days) 

1962 8 21 41.2333 14.9333 5.7 9.26E-02 

1962 8 21 41.2333 14.9333 6.2 9.99E-02 

1968 1 15 37.7000 13.1000 5.7 4.25E-01 

1968 1 15 37.8000 13.2000 5.5 9.10E-01 

1968 1 16 37.7000 13.3000 5.6 2.03E+00 

1976 5 6 46.2500 13.2500 6.5 7.74E-04 

1976 9 11 46.3000 13.3167 5.6 8.59E+01 

1976 9 15 46.2667 13.1500 5.9 8.05E+01 

1976 9 15 46.3000 13.1833 6.0 8.08E+01 

1976 9 16 46.2800 12.9800 5.5 8.24E+01 

1979 9 19 42.7167 12.9500 5.8 Missed 

1980 11 23 40.8000 15.3667 6.8 Missed 

1984 4 29 43.2040 12.5853 5.6 Missed 

1984 5 7 41.6657 13.8202 5.9 Missed 

1984 5 11 41.6502 13.8437 5.5 3.68E+00 

1990 5 5 40.6495 15.8818 5.8 1.46E-04 

1997 9 26 43.0228 12.8910 5.7 2.21E+01 

1997 9 26 43.0147 12.8538 6.0 2.25E+01 

1997 10 6 43.0275 12.8467 5.5 3.31E+01 

1997 10 14 42.8982 12.8987 5.6 4.07E+01 

1998 9 9 40.0600 15.9490 5.5 Missed 

2002 10 31 41.7167 14.8932 5.7 Missed 

2002 11 1 41.7415 14.8432 5.7 Missed 

2009 4 6 42.3420 13.3800 6.3 6.50E+00 

2009 4 7 42.3030 13.4860 5.5 8.18E+00 

2012 5 20 44.8955 11.2635 6.1 Missed 

2012 5 29 44.8417 11.0657 5.9 9.18E+00 

2012 5 29 44.8652 10.9795 5.5 1.04E-01 

2016 8 24 42.6983 13.2335 6.2 Missed 

2016 8 24 42.7922 13.1507 5.5 2.60E-02 

2016 10 26 42.8747 13.1243 5.5 6.35E+01 

2016 10 26 42.9048 13.0902 6.1 6.36E+01 

2016 10 30 42.8303 13.1092 6.6 6.71E+01 

2017 1 18 42.5310 13.2838 5.7 4.97E+01 

2017 1 18 42.5033 13.2770 5.6 4.97E+01 
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Table S9 – Same as Table S6 for not-declustered targets with Mw≥6.0. 

Year Month Day Latitude Longitude Mw ta (days) 

1962 8 21 41.2333 14.9333 6.2 9.99E-02 

1976 5 6 46.2500 13.2500 6.5 7.74E-04 

1976 9 15 46.3000 13.1833 6.0 8.08E+01 

1980 11 23 40.8000 15.3667 6.8 Missed 

1997 9 26 43.0147 12.8538 6.0 2.25E+01 

2009 4 6 42.3420 13.3800 6.3 6.50E+00 

2012 5 20 44.8955 11.2635 6.1 Missed 

2016 8 24 42.6983 13.2335 6.2 Missed 

2016 10 26 42.9048 13.0902 6.1 6.36E+01 

2016 10 30 42.8303 13.1092 6.6 6.71E+01 
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Supplementary material 2 

Analysis and comparisons of FORE, EEPAS, and 

ETAS models using the alarm-based approach 
 

Table S1 – List of center coordinates of cells with side 30√2 km. 𝑁4.5, 𝑁5.0,  𝑁5.5, 𝑁6.0: 

numbers of earthquakes occurred within cell, according to the CPTI15 catalogue up 

to year 1959, with Mw4.5, 5.0, 5.5 and 6.0 respectively in respective time intervals of 

completeness. 𝜆4.5, 𝜆5.0, 𝜆5.5, 𝜆6.0: average rates (events/y) of earthquakes with 

Mw≥4.0 within each cell computed from observed earthquakes with Mw4.5, 5.0, 5.5 

and 6.0 respectively and assuming a b-value=1 (see text). 𝜆ave: average of non-null 

rates 𝜆4.5, 𝜆5.0, 𝜆5.5, 𝜆6.0. 𝑤 = 𝜆𝑎𝑣𝑒/∑𝜆𝑎𝑣𝑒: overall weight of each cell (∑𝑤 = 1). 

 

Nc Latitude Longitude 𝑵𝟒.𝟓 𝑵𝟓.𝟎 𝑵𝟓.𝟓 𝑵𝟔.𝟎 𝝀𝟒.𝟓 𝝀𝟓.𝟎 𝝀𝟓.𝟓 𝝀𝟔.𝟎 𝝀𝐚𝐯𝐞 w 

1 46.8073 10.5448 1 - 0 0 0.0395 - - - 0.0395 0.001490 

2 46.8130 11.1014 2 1 0 0 0.0791 0.1250 - - 0.1020 0.003845 

3 46.8163 12.2148 0 0 0 0 - - - - 0.0395 0.001490 

4 46.3759 8.3471 0 0 0 0 - - - - 0.0395 0.001490 

5 46.4252 10.5550 2 0 0 0 0.0791 - - - 0.0791 0.002979 

6 46.4341 12.2133 1 0 0 0 0.0395 - - - 0.0395 0.001490 

7 46.4317 12.7662 10 6 2 1 0.3953 0.7500 0.3514 0.2941 0.4477 0.016871 

8 46.4267 13.3189 10 4 1 0 0.3953 0.5000 0.1757 - 0.3570 0.013453 

9 45.9544 7.2787 2 1 0 0 0.0791 0.1250 - - 0.1020 0.003845 

10 45.9944 8.3723 0 0 0 0 - - - - 0.0395 0.001490 

11 46.0240 9.4679 0 0 0 0 - - - - 0.0395 0.001490 

12 46.0348 10.0163 1 0 0 0 0.0395 - - - 0.0395 0.001490 

13 46.0430 10.5650 1 0 0 0 0.0395 - - - 0.0395 0.001490 

14 46.0486 11.1138 0 0 0 0 - - - - 0.0395 0.001490 

15 46.0515 11.6628 1 1 0 1 0.0395 0.1250 - 0.2941 0.1529 0.005761 

16 46.0518 12.2118 6 1 2 2 0.2372 0.1250 0.3514 0.5882 0.3254 0.012264 

17 46.0495 12.7608 2 0 1 0 0.0791 - 0.1757 - 0.1274 0.004800 

18 46.0445 13.3097 2 1 0 0 0.0791 0.1250 - - 0.1020 0.003845 

19 46.0369 13.8585 1 0 0 0 0.0395 - - - 0.0395 0.001490 

20 45.5734 7.3108 0 0 0 0 - - - - 0.0395 0.001490 

21 45.5944 7.8536 3 0 0 0 0.1186 - - - 0.1186 0.004469 

22 45.6288 8.9409 1 0 0 0 0.0395 - - - 0.0395 0.001490 

23 45.6421 9.4852 1 0 0 0 0.0395 - - - 0.0395 0.001490 

24 45.6528 10.0298 3 0 0 0 0.1186 - - - 0.1186 0.004469 

25 45.6609 10.5748 7 3 0 0 0.2767 0.3750 - - 0.3258 0.012279 

26 45.6664 11.1199 4 1 1 0 0.1581 0.1250 0.1757 - 0.1529 0.005763 

27 45.6693 11.6651 3 1 1 0 0.1186 0.1250 0.1757 - 0.1398 0.005267 

28 45.6696 12.2104 1 1 0 0 0.0395 0.1250 - - 0.0823 0.003100 

29 45.6673 12.7557 0 0 0 0 - - - - 0.0395 0.001490 

30 45.1691 6.8036 0 0 0 0 - - - - 0.0395 0.001490 

31 45.1924 7.3422 3 2 0 0 0.1186 0.2500 - - 0.1843 0.006945 
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Nc Latitude Longitude 𝑵𝟒.𝟓 𝑵𝟓.𝟎 𝑵𝟓.𝟓 𝑵𝟔.𝟎 𝝀𝟒.𝟓 𝝀𝟓.𝟎 𝝀𝟓.𝟓 𝝀𝟔.𝟎 𝝀𝐚𝐯𝐞 w 

32 45.2470 8.9615 0 0 0 0 - - - - 0.0395 0.001490 

33 45.2601 9.5021 1 1 0 0 0.0395 0.1250 - - 0.0823 0.003100 

34 45.2707 10.0431 1 1 1 0 0.0395 0.1250 0.1757 - 0.1134 0.004274 

35 45.2787 10.5844 1 0 0 0 0.0395 - - - 0.0395 0.001490 

36 45.2841 11.1258 1 0 0 0 0.0395 - - - 0.0395 0.001490 

37 45.2870 11.6674 0 0 0 0 - - - - 0.0395 0.001490 

38 44.8113 7.3731 1 0 1 0 0.0395 - 0.1757 - 0.1076 0.004055 

39 44.8318 7.9088 0 0 0 0 - - - - 0.0395 0.001490 

40 44.8497 8.4450 0 0 0 0 - - - - 0.0395 0.001490 

41 44.8652 8.9816 4 1 1 0 0.1581 0.1250 0.1757 - 0.1529 0.005763 

42 44.8782 9.5187 0 0 0 0 - - - - 0.0395 0.001490 

43 44.8886 10.0561 2 1 0 0 0.0791 0.1250 - - 0.1020 0.003845 

44 44.8965 10.5938 3 0 1 0 0.1186 - 0.1757 - 0.1471 0.005545 

45 44.9018 11.1316 1 0 0 0 0.0395 - - - 0.0395 0.001490 

46 44.9046 11.6696 1 0 0 0 0.0395 - - - 0.0395 0.001490 

47 44.9049 12.2076 1 0 0 0 0.0395 - - - 0.0395 0.001490 

48 44.4075 6.8717 2 1 0 0 0.0791 0.1250 - - 0.1020 0.003845 

49 44.4302 7.4033 5 0 0 0 0.1976 - - - 0.1976 0.007448 

50 44.4681 8.4682 0 0 0 0 - - - - 0.0395 0.001490 

51 44.4834 9.0014 1 0 0 0 0.0395 - - - 0.0395 0.001490 

52 44.4961 9.5350 2 1 0 0 0.0791 0.1250 - - 0.1020 0.003845 

53 44.5064 10.0689 4 2 1 0 0.1581 0.2500 0.1757 - 0.1946 0.007333 

54 44.5142 10.6030 3 2 0 0 0.1186 0.2500 - - 0.1843 0.006945 

55 44.5195 11.1373 13 7 0 0 0.5139 0.8750 - - 0.6944 0.026169 

56 44.5223 11.6718 7 1 0 0 0.2767 0.1250 - - 0.2008 0.007569 

57 44.5226 12.2062 2 0 0 0 0.0791 - - - 0.0791 0.002979 

58 44.0490 7.4330 0 0 0 0 - - - - 0.0395 0.001490 

59 44.0689 7.9618 2 1 1 1 0.0791 0.1250 0.1757 0.2941 0.1685 0.006348 

60 44.0865 8.4911 0 0 0 0 - - - - 0.0395 0.001490 

61 44.1243 10.0814 9 4 3 1 0.3558 0.5000 0.5270 0.2941 0.4192 0.015798 

62 44.1319 10.6121 8 1 0 0 0.3162 0.1250 - - 0.2206 0.008314 

63 44.1372 11.1429 4 1 0 0 0.1581 0.1250 - - 0.1416 0.005334 

64 44.1399 11.6739 16 4 2 3 0.6325 0.5000 0.3514 0.8824 0.5915 0.022292 

65 44.1402 12.2049 5 2 2 0 0.1976 0.2500 0.3514 - 0.2663 0.010037 

66 44.1380 12.7359 18 11 4 0 0.7115 1.3750 0.7027 - 0.9297 0.035037 

67 43.6875 7.9875 0 0 1 0 - - 0.1757 - 0.1757 0.006620 

68 43.7421 10.0936 0 0 0 0 - - - - 0.0395 0.001490 

69 43.7496 10.6209 2 1 1 0 0.0791 0.1250 0.1757 - 0.1266 0.004770 

70 43.7548 11.1484 5 1 1 0 0.1976 0.1250 0.1757 - 0.1661 0.006260 

71 43.7575 11.6760 5 1 1 0 0.1976 0.1250 0.1757 - 0.1661 0.006260 

72 43.7578 12.2036 3 2 0 0 0.1186 0.2500 - - 0.1843 0.006945 

73 43.7556 12.7312 3 1 1 1 0.1186 0.1250 0.1757 0.2941 0.1783 0.006721 

74 43.7510 13.2587 3 3 1 0 0.1186 0.3750 0.1757 - 0.2231 0.008407 

75 43.3598 10.1056 1 0 0 0 0.0395 - - - 0.0395 0.001490 

76 43.3673 10.6296 2 0 1 1 0.0791 - 0.1757 0.2941 0.1830 0.006894 

77 43.3724 11.1538 2 1 0 0 0.0791 0.1250 - - 0.1020 0.003845 

78 43.3751 11.6780 0 0 0 0 - - - - 0.0395 0.001490 

79 43.3753 12.2023 3 2 2 0 0.1186 0.2500 0.3514 - 0.2400 0.009044 

80 43.3732 12.7266 0 0 0 2 - - - 0.5882 0.5882 0.022167 

81 43.3687 13.2507 0 0 1 2 - - 0.1757 0.5882 0.3820 0.014394 

82 43.3618 13.7748 1 0 0 0 0.0395 - - - 0.0395 0.001490 

83 42.9850 10.6381 0 0 0 0 - - - - 0.0395 0.001490 

84 42.9900 11.1590 2 2 0 0 0.0791 0.2500 - - 0.1645 0.006200 
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Nc Latitude Longitude 𝑵𝟒.𝟓 𝑵𝟓.𝟎 𝑵𝟓.𝟓 𝑵𝟔.𝟎 𝝀𝟒.𝟓 𝝀𝟓.𝟎 𝝀𝟓.𝟓 𝝀𝟔.𝟎 𝝀𝐚𝐯𝐞 w 

85 42.9926 11.6800 6 1 0 0 0.2372 0.1250 - - 0.1811 0.006824 

86 42.9929 12.2010 1 0 0 0 0.0395 - - - 0.0395 0.001490 

87 42.9908 12.7220 5 1 3 1 0.1976 0.1250 0.5270 0.2941 0.2860 0.010776 

88 42.9863 13.2430 12 3 3 0 0.4743 0.3750 0.5270 - 0.4588 0.017289 

89 42.9795 13.7637 2 2 1 0 0.0791 0.2500 0.1757 - 0.1682 0.006340 

90 42.6101 11.6820 3 1 0 0 0.1186 0.1250 - - 0.1218 0.004590 

91 42.6104 12.1998 1 0 0 0 0.0395 - - - 0.0395 0.001490 

92 42.6083 12.7176 13 2 1 0 0.5139 0.2500 0.1757 - 0.3132 0.011802 

93 42.6039 13.2353 12 6 3 4 0.4743 0.7500 0.5270 1.1765 0.7320 0.027584 

94 42.5972 13.7529 1 0 0 0 0.0395 - - - 0.0395 0.001490 

95 42.2276 11.6839 0 0 0 0 - - - - 0.0395 0.001490 

96 42.2279 12.1986 0 0 0 0 - - - - 0.0395 0.001490 

97 42.2258 12.7133 4 2 1 0 0.1581 0.2500 0.1757 - 0.1946 0.007333 

98 42.2215 13.2278 7 2 1 0 0.2767 0.2500 0.1757 - 0.2341 0.008823 

99 42.2148 13.7423 1 1 0 0 0.0395 0.1250 - - 0.0823 0.003100 

100 42.2059 14.2565 5 5 1 1 0.1976 0.6250 0.1757 0.2941 0.3231 0.012176 

101 42.1946 14.7705 0 0 0 0 - - - - 0.0395 0.001490 

102 41.8454 12.1974 1 0 0 0 0.0395 - - - 0.0395 0.001490 

103 41.8433 12.7090 8 3 1 0 0.3162 0.3750 0.1757 - 0.2890 0.010890 

104 41.8390 13.2205 5 1 0 0 0.1976 0.1250 - - 0.1613 0.006079 

105 41.8325 13.7319 12 4 1 1 0.4743 0.5000 0.1757 0.2941 0.3610 0.013605 

106 41.8236 14.2430 1 1 0 0 0.0395 0.1250 - - 0.0823 0.003100 

107 41.8125 14.7540 0 0 0 0 - - - - 0.0395 0.001490 

108 41.7991 15.2645 4 0 1 2 0.1581 - 0.1757 0.5882 0.3073 0.011582 

109 41.7835 15.7748 9 6 1 1 0.3558 0.7500 0.1757 0.2941 0.3939 0.014843 

110 41.7655 16.2846 3 2 0 0 0.1186 0.2500 - - 0.1843 0.006945 

111 41.4608 12.7048 1 1 0 0 0.0395 0.1250 - - 0.0823 0.003100 

112 41.4566 13.2133 0 0 0 0 - - - - 0.0395 0.001490 

113 41.4501 13.7217 3 0 0 1 0.1186 - - 0.2941 0.2064 0.007776 

114 41.4413 14.2298 4 2 1 1 0.1581 0.2500 0.1757 0.2941 0.2195 0.008271 

115 41.4304 14.7377 3 1 0 1 0.1186 0.1250 - 0.2941 0.1792 0.006754 

116 41.4172 15.2453 0 0 0 0 - - - - 0.0395 0.001490 

117 41.4017 15.7526 6 2 1 1 0.2372 0.2500 0.1757 0.2941 0.2392 0.009016 

118 41.3840 16.2594 0 0 0 0 - - - - 0.0395 0.001490 

119 41.0741 13.2062 0 0 0 0 - - - - 0.0395 0.001490 

120 41.0590 14.2169 0 0 0 0 - - - - 0.0395 0.001490 

121 41.0482 14.7218 4 0 0 0 0.1581 - - - 0.1581 0.005958 

122 41.0352 15.2265 6 3 2 4 0.2372 0.3750 0.3514 1.1765 0.5350 0.020161 

123 41.0199 15.7308 1 0 1 1 0.0395 - 0.1757 0.2941 0.1698 0.006398 

124 41.0025 16.2347 0 0 0 0 - - - - 0.0395 0.001490 

125 40.9829 16.7381 0 0 0 0 - - - - 0.0395 0.001490 

126 40.6915 13.1993 1 0 0 0 0.0395 - - - 0.0395 0.001490 

127 40.6852 13.7018 0 0 0 0 - - - - 0.0395 0.001490 

128 40.6767 14.2041 0 0 0 0 - - - - 0.0395 0.001490 

129 40.6660 14.7062 2 0 0 0 0.0791 - - - 0.0791 0.002979 

130 40.6532 15.2080 2 1 1 0 0.0791 0.1250 0.1757 - 0.1266 0.004770 

131 40.6381 15.7094 2 1 1 0 0.0791 0.1250 0.1757 - 0.1266 0.004770 

132 40.6209 16.2104 2 1 0 0 0.0791 0.1250 - - 0.1020 0.003845 

133 40.6015 16.7110 1 0 0 0 0.0395 - - - 0.0395 0.001490 

134 40.5800 17.2110 0 0 0 0 - - - - 0.0395 0.001490 

135 40.5563 17.7105 0 0 0 0 - - - - 0.0395 0.001490 

136 40.2711 15.1898 0 0 0 0 - - - - 0.0395 0.001490 

137 40.2563 15.6884 0 0 3 1 - - 0.5270 0.2941 0.4106 0.015473 
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Nc Latitude Longitude 𝑵𝟒.𝟓 𝑵𝟓.𝟎 𝑵𝟓.𝟓 𝑵𝟔.𝟎 𝝀𝟒.𝟓 𝝀𝟓.𝟎 𝝀𝟓.𝟓 𝝀𝟔.𝟎 𝝀𝐚𝐯𝐞 w 

138 40.2393 16.1867 3 1 0 0 0.1186 0.1250 - - 0.1218 0.004590 

139 40.1501 18.1745 1 0 0 0 0.0395 - - - 0.0395 0.001490 

140 39.8744 15.6679 0 0 0 0 - - - - 0.0395 0.001490 

141 39.8576 16.1633 1 1 0 0 0.0395 0.1250 - - 0.0823 0.003100 

142 39.8388 16.6583 1 1 0 0 0.0395 0.1250 - - 0.0823 0.003100 

143 39.4760 16.1404 4 3 4 0 0.1581 0.3750 0.7027 - 0.4119 0.015524 

144 39.4574 16.6328 1 0 1 2 0.0395 - 0.1757 0.5882 0.2678 0.010092 

145 39.4367 17.1246 0 0 0 0 - - - - 0.0395 0.001490 

146 39.0942 16.1180 1 0 2 3 0.0395 - 0.3514 0.8824 0.4244 0.015994 

147 39.0759 16.6076 2 0 0 0 0.0791 - - - 0.0791 0.002979 

148 39.0555 17.0968 0 0 1 1 - - 0.1757 0.2941 0.2349 0.008852 

149 38.7546 14.6325 2 2 0 0 0.0791 0.2500 - - 0.1645 0.006200 

150 38.7426 15.1206 5 2 0 0 0.1976 0.2500 - - 0.2238 0.008435 

151 38.7125 16.0960 6 2 4 4 0.2372 0.2500 0.7027 1.1765 0.5916 0.022294 

152 38.6944 16.5830 1 1 2 2 0.0395 0.1250 0.3514 0.5882 0.2760 0.010402 

153 38.3723 14.6186 3 1 0 0 0.1186 0.1250 - - 0.1218 0.004590 

154 38.3604 15.1041 0 0 0 0 - - - - 0.0395 0.001490 

155 38.3465 15.5894 5 1 0 0 0.1976 0.1250 - - 0.1613 0.006079 

156 38.3307 16.0743 3 1 2 2 0.1186 0.1250 0.3514 0.5882 0.2958 0.011147 

157 38.3128 16.5589 0 0 0 0 - - - - 0.0395 0.001490 

158 38.0186 12.1867 0 0 0 0 - - - - 0.0395 0.001490 

159 38.0168 12.6706 0 0 0 0 - - - - 0.0395 0.001490 

160 38.0131 13.1544 0 0 0 0 - - - - 0.0395 0.001490 

161 38.0073 13.6381 2 2 0 0 0.0791 0.2500 - - 0.1645 0.006200 

162 37.9996 14.1216 1 1 1 0 0.0395 0.1250 0.1757 - 0.1134 0.004274 

163 37.9899 14.6049 1 0 0 0 0.0395 - - - 0.0395 0.001490 

164 37.9782 15.0880 3 1 2 1 0.1186 0.1250 0.3514 0.2941 0.2223 0.008376 

165 37.9645 15.5707 4 2 1 1 0.1581 0.2500 0.1757 0.2941 0.2195 0.008271 

166 37.9488 16.0531 2 1 1 0 0.0791 0.1250 0.1757 - 0.1266 0.004770 

167 37.6340 12.6671 0 0 0 0 - - - - 0.0395 0.001490 

168 37.6303 13.1484 0 0 0 0 - - - - 0.0395 0.001490 

169 37.6247 13.6296 0 0 0 0 - - - - 0.0395 0.001490 

170 37.6170 14.1107 1 0 0 0 0.0395 - - - 0.0395 0.001490 

171 37.6074 14.5915 3 1 0 0 0.1186 0.1250 - - 0.1218 0.004590 

172 37.5959 15.0721 4 1 2 1 0.1581 0.1250 0.3514 0.2941 0.2321 0.008748 

173 37.2344 14.0999 0 0 0 0 - - - - 0.0395 0.001490 

174 37.2250 14.5783 3 1 1 0 0.1186 0.1250 0.1757 - 0.1398 0.005267 

175 37.2136 15.0565 2 1 0 2 0.0791 0.1250 - 0.5882 0.2641 0.009952 

176 36.8425 14.5654 1 1 0 0 0.0395 0.1250 - - 0.0823 0.003100 

177 36.8313 15.0412 0 0 0 0 - - - - 0.0395 0.001490 
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Table S2 – Values Area Skill score and unweighted (𝜏𝑢 1𝑦𝑟) and weighted (𝜏𝑤 1𝑦𝑟) 

fractions of space-time occupied by alarms considering the duration of each alarm 

equal to 1 year obtained for each analyzed threshold soil for the EEPAS-NW and 

ETAS-SVP models plotted in Figs. 5.2 and 5.3 (section 5.4). 

 EEPAS-NW ETAS-SVP 

Threshold soil AS score 𝝉𝒖 𝟏𝒚𝒓 𝝉𝒘 𝟏𝒚𝒓 AS score 𝝉𝒖 𝝉𝒘 𝟏𝒚𝒓 

1.00E-06 0.791 0.999 0.999 0.851 0.961 0.988 

2.00E-06 0.801 0.954 0.989 0.858 0.896 0.959 

3.00E-06 0.812 0.900 0.978 0.870 0.840 0.931 

4.00E-06 0.824 0.842 0.964 0.884 0.794 0.903 

5.00E-06 0.836 0.786 0.946 0.881 0.758 0.879 

6.00E-06 0.847 0.734 0.921 0.866 0.724 0.854 

7.00E-06 0.803 0.672 0.891 0.871 0.696 0.835 

8.00E-06 0.819 0.604 0.847 0.864 0.674 0.817 

9.00E-06 0.800 0.566 0.819 0.871 0.652 0.799 

1.00E-05 0.810 0.529 0.792 0.877 0.634 0.786 

2.00E-05 0.824 0.270 0.550 0.882 0.520 0.689 

3.00E-05 0.846 0.166 0.434 0.883 0.463 0.636 

4.00E-05 0.786 0.114 0.350 0.893 0.424 0.597 

5.00E-05 0.692 0.087 0.307 0.899 0.393 0.567 

6.00E-05 0.698 0.070 0.270 0.903 0.367 0.542 

7.00E-05 0.704 0.053 0.227 0.908 0.347 0.519 

8.00E-05 0.705 0.049 0.209 0.909 0.331 0.501 

9.00E-05 0.708 0.042 0.181 0.907 0.318 0.485 

0.0001 0.708 0.031 0.140 0.910 0.305 0.470 

0.0002 0.500 0.000 0.000 0.930 0.225 0.365 

0.0003 0.500 0.000 0.000 0.892 0.187 0.316 

0.0004 0.500 0.000 0.000 0.874 0.162 0.281 

0.0005 0.500 0.000 0.000 0.865 0.144 0.256 

0.0006 0.500 0.000 0.000 0.864 0.131 0.238 

0.0007 0.500 0.000 0.000 0.867 0.121 0.223 

0.0008 0.500 0.000 0.000 0.871 0.112 0.210 

0.0009 0.500 0.000 0.000 0.856 0.105 0.199 

0.001 0.500 0.000 0.000 0.860 0.100 0.190 

0.002 0.500 0.000 0.000 0.847 0.069 0.145 

0.003 0.500 0.000 0.000 0.846 0.056 0.125 

0.004 0.500 0.000 0.000 0.813 0.047 0.110 

0.005 0.500 0.000 0.000 0.823 0.039 0.097 

0.006 0.500 0.000 0.000 0.830 0.035 0.089 

0.007 0.500 0.000 0.000 0.833 0.031 0.081 

0.008 0.500 0.000 0.000 0.835 0.028 0.077 

0.009 0.500 0.000 0.000 0.843 0.025 0.072 
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 EEPAS-NW ETAS-SVP 

Threshold soil AS score 𝝉𝒖 𝟏𝒚𝒓 𝝉𝒘 𝟏𝒚𝒓 AS score 𝝉𝒖 𝝉𝒘 𝟏𝒚𝒓 

0.01 0.500 0.000 0.000 0.847 0.022 0.066 

0.02 0.500 0.000 0.000 0.834 0.010 0.038 

0.03 0.500 0.000 0.000 0.821 0.006 0.027 

0.04 0.500 0.000 0.000 0.793 0.004 0.018 

0.05 0.500 0.000 0.000 0.799 0.003 0.014 

0.06 0.500 0.000 0.000 0.799 0.003 0.013 

0.07 0.500 0.000 0.000 0.803 0.002 0.010 

0.08 0.500 0.000 0.000 0.807 0.001 0.008 

0.09 0.500 0.000 0.000 0.770 0.001 0.007 

0.1 0.500 0.000 0.000 0.770 0.001 0.005 

0.2 0.500 0.000 0.000 0.719 0.000 0.001 

0.3 0.500 0.000 0.000 0.682 0.000 0.001 

0.4 0.500 0.000 0.000 0.574 0.000 0.000 

0.5 0.500 0.000 0.000 0.555 0.000 0.000 
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Table S3 – Same of Table S2 for the FORE model (Fig. 5.4 of section 5.4) 

FORE 

Magnitude 

range 
AS score 𝝉𝒖 𝟏𝒚𝒓 𝝉𝒘 𝟏𝒚𝒓 

4.1±0.1 0.859 0.024 0.066 

4.2±0.1 0.863 0.022 0.061 

4.3±0.1 0.880 0.019 0.059 

4.4±0.1 0.837 0.016 0.044 

4.5±0.1 0.818 0.010 0.026 

4.6±0.1 0.726 0.010 0.027 

4.7±0.1 0.734 0.008 0.020 

4.8±0.1 0.747 0.008 0.020 

4.9±0.1 0.709 0.004 0.012 

4.2±0.2 0.865 0.035 0.093 

4.3±0.2 0.874 0.029 0.074 

4.4±0.2 0.877 0.024 0.065 

4.5±0.2 0.844 0.019 0.054 

4.6±0.2 0.833 0.014 0.037 

4.7±0.2 0.740 0.011 0.028 

4.8±0.2 0.750 0.009 0.022 

4.3±0.3 0.860 0.040 0.099 

4.4±0.3 0.885 0.032 0.083 

4.5±0.3 0.888 0.028 0.076 

4.6±0.3 0.839 0.022 0.059 

4.7±0.3 0.836 0.015 0.039 

4.4±0.4 0.870 0.042 0.104 

4.5±0.4 0.882 0.035 0.087 

4.6±0.4 0.886 0.028 0.077 

4.5±0.5 0.869 0.043 0.105 
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