Analysis of earthquakes predictability

Biondini, Emanuele (2023) Analysis of earthquakes predictability, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Il futuro della terra, cambiamenti climatici e sfide sociali, 35 Ciclo. DOI 10.48676/unibo/amsdottorato/10926.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (10MB)

Abstract

Earthquake prediction is a complex task for scientists due to the rare occurrence of high-intensity earthquakes and their inaccessible depths. Despite this challenge, it is a priority to protect infrastructure, and populations living in areas of high seismic risk. Reliable forecasting requires comprehensive knowledge of seismic phenomena. In this thesis, the development, application, and comparison of both deterministic and probabilistic forecasting methods is shown. Regarding the deterministic approach, the implementation of an alarm-based method using the occurrence of strong (fore)shocks, widely felt by the population, as a precursor signal is described. This model is then applied for retrospective prediction of Italian earthquakes of magnitude M≥5.0,5.5,6.0, occurred in Italy from 1960 to 2020. Retrospective performance testing is carried out using tests and statistics specific to deterministic alarm-based models. Regarding probabilistic models, this thesis focuses mainly on the EEPAS and ETAS models. Although the EEPAS model has been previously applied and tested in some regions of the world, it has never been used for forecasting Italian earthquakes. In the thesis, the EEPAS model is used to retrospectively forecast Italian shallow earthquakes with a magnitude of M≥5.0 using new MATLAB software. The forecasting performance of the probabilistic models was compared to other models using CSEP binary tests. The EEPAS and ETAS models showed different characteristics for forecasting Italian earthquakes, with EEPAS performing better in the long-term and ETAS performing better in the short-term. The FORE model based on strong precursor quakes is compared to EEPAS and ETAS using an alarm-based deterministic approach. All models perform better than a random forecasting model, with ETAS and FORE models showing better performance. However, to fully evaluate forecasting performance, prospective tests should be conducted. The lack of objective tests for evaluating deterministic models and comparing them with probabilistic ones was a challenge faced during the study.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Biondini, Emanuele
Supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Computational seismology; Earthquake interaction, forecasting and predisction; Statistical seismology.
URN:NBN
DOI
10.48676/unibo/amsdottorato/10926
Data di discussione
21 Giugno 2023
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^