Physical modeling and numerical simulations of degradation mechanisms in devices and insulators for power applications

Giuliano, Federico (2023) Physical modeling and numerical simulations of degradation mechanisms in devices and insulators for power applications, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Ingegneria elettronica, telecomunicazioni e tecnologie dell'informazione, 35 Ciclo. DOI 10.48676/unibo/amsdottorato/10925.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (4MB)

Abstract

In this thesis, a TCAD approach for the investigation of charge transport in amorphous silicon dioxide is presented for the first time. The proposed approach is used to investigate high-voltage silicon oxide thick TEOS capacitors embedded in the back-end inter-level dielectric layers for galvanic insulation applications. In the first part of this thesis, a detailed review of the main physical and chemical properties of silicon dioxide and the main physical models for the description of charge transport in insulators are presented. In the second part, the characterization of high-voltage MIM structures at different high-field stress conditions up to the breakdown is presented. The main physical mechanisms responsible of the observed results are then discussed in details. The third part is dedicated to the implementation of a TCAD approach capable of describing charge transport in silicon dioxide layers in order to gain insight into the microscopic physical mechanisms responsible of the leakage current in MIM structures. In particular, I investigated and modeled the role of charge injection at contacts and charge build-up due to trapping and de-trapping mechanisms in the oxide layer to the purpose of understanding its behavior under DC and AC stress conditions. In addition, oxide breakdown due to impact-ionization of carriers has been taken into account in order to have a complete representation of the oxide behavior at very high fields. Numerical simulations have been compared against experiments to quantitatively validate the proposed approach. In the last part of the thesis, the proposed approach has been applied to simulate the breakdown in realistic structures under different stress conditions. The TCAD tool has been used to carry out a detailed analysis of the most relevant physical quantities, in order to gain a detailed understanding on the main mechanisms responsible for breakdown and guide design optimization.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Giuliano, Federico
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
TEOS; Silicon oxide; Galvanic insulation; Reliability; TCAD; modeling; defects; impact-ionization; Back-end; MIM;
URN:NBN
DOI
10.48676/unibo/amsdottorato/10925
Data di discussione
21 Giugno 2023
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^