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Hierarchical active inference for cognitive architectures 

Abstract 

This thesis explores the methods based on the free energy principle and active inference for modelling 

cognition. Active inference is an emerging framework for designing intelligent agents where psychological 

processes are cast as a form of approximate Bayesian inference. Here, I appeal to it to test the design of a set 

of cognitive architectures, via simulation. These architectures are defined in terms of probabilistic hierarchical 

generative models where an active inference agent executes a task under the assumption that all cognitive 

processes aspire to the same objective: the minimization of an approximation of sensory surprisal, named 

variational free energy. Chapter 1 introduces the free energy principle and its assumptions about self-

organizing systems. Chapter 2 describes how from the mechanics of self-organization can emerge a minimal 

form of cognition able to achieve autopoiesis. These mechanics can be formalized in terms of active Bayesian 

inference where a cognitive agent behaves adaptively through action and perception under a probabilistic 

generative model. In chapter 3 I present the method of how I formalize these models in a hierarchical setting 

and discrete state spaces. The architectures proposed allow providing a more biologically plausible account of 

more complex cognitive processing that entails deep temporal features. I then present three simulation studies 

using these kinds of architectures that aim to show different aspects of cognition, their associated behavior and 

the underlying neural dynamics. In chapter 4, the first study proposes an architecture that represents the 

visuomotor system for the encoding of actions during action observation, understanding and imitation. In 

chapter 5, the generative model is extended and is lesioned to simulate brain damage and neuropsychological 

patterns observed in apraxic patients. In chapter 6, the third study proposes an architecture for cognitive control 

and the modulation of attention for action selection. At last, I argue how active inference can provide a formal 

account of information processing in the brain and how the adaptive capabilities of the simulated agents are a 

mere consequence of the architecture of the generative models. Cognitive processing, then, becomes an 

emergent property of the minimization of variational free energy.  
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Introduction 

 

In the second half of the previous century, the leading approach in theoretical and experimental 

psychology shifted from behaviorism to information processing (Barsalou, 2014). This shift was driven by 

developments in other disciplines, such as Cybernetics (Ashby, 1957), the science where information 

processing and adaptive control are interpreted as adjustments to perturbations, information theory (Shannon, 

1948) which provided a mathematical formalism to quantify information, and the science of computation, since 

von Neumann’s first design of intelligent machines (Von Neumann & Burks, 1966). The idea that humans can 

also be described as information-processing machines emerged from all these new insights. This made the 

applications of machine learning and cognitive science close to the other (Ackley et al., 1985; Newell & Simon, 

1972). Furthermore, in the last decades, embodied cognition in neuroscience, enactivism in philosophy, and 

applications in robotics pushed for a more grounded approach to cognition, by showing its roots in motor 

behavior (Barsalou, 2008; Lungarella et al., 2003; O’Regan, 2011). These approaches emphasized the concept 

that cognition typically involves acting with a physical body immersed in an environment, leading toward a 

pragmatic turn in cognitive science (Engel et al., 2013, 2016).  

This thesis aims to offer a unified perspective under a unique framework, the free energy principle and 

its main corollary, active inference. The free energy principle starts from dynamical systems theory and 

Bayesian statistics and applies them to the study of self-organization (Haken, 2004; Kauffman & Kauffman, 

1993). In this way, many aspects of the brain, such as how we perceive and behave, become a necessary, self-

evident and emergent feature of the physics of life (Friston, 2019; Kirchhoff et al., 2018). Active inference, on 

the other hand, represents the corollary of how the free energy principle is realized. Under this setting, 

biological agents are cast as probabilistic inference machines that embody a generative model that continuously 

generates predictions to maintain their existence by following a sole imperative: the minimization of a tractable 

proxy of self-information, called variational free energy, via engaging in perception and action (Da Costa et 

al., 2020; Friston et al., 2017; Parr et al., 2022). 

This unique mathematical solution accounts for different psychological functions, such as perception, 

learning, and decision-making, by treating them as interdependent inference processes. Under active inference, 

cognition and behaviour are formalized as belief-based schemes with several implications on physiology, 

neurobiology and neural correlates (Parr et al., 2022). The assumption is that specific cognitive processes and 

the associated neurobiological substrata can be derived from the principle of minimizing variational free 

energy under a generative model. Thus, in the studies presented, this idea will be used to show how organisms 

solve their adaptive problems, via agent-based simulations. More practically, these simulations rely on the 

design of a specific generative model in discrete state spaces that recapitulates aspects of cognition and brain 

dynamics and how they are translated into behavior, realized by a probabilistic specification of the trajectories 

of desired future observations. The usefulness of this stands in the fact that active inference furnishes the rules 

and the constraints required to simulate, predict and understand behaviour: as mentioned by Richard Feynman 
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“What I cannot create, I do not understand”. Indeed, creating simulations represents one of the novel directions 

taken by cognitive science to depart from more narrative formulations typical of the previous century (Parr et 

al., 2022). The falsifiability and the subsequent experimental investigation are then associated with testing a 

specific generative model and the associated process theories following the so-called computational 

phenotyping trend (Schwartenbeck & Friston, 2016; Smith et al., 2021).  

The free energy principle stems from straightforward results from statistical mechanics. In a way, it 

provides a Bayesian interpretation of the principle of least action (Friston, 2010, 2019; Ramstead et al., 2022). 

In the next three chapters I provide a theoretical background by sketching up the fundamental assumptions of 

the principle: I start from the definition of any ‘thing’ provided by the Markov blanket and how this connects 

to a physical, dynamical system interpretation of a system that organizes itself. Then I show how a new kind 

of physics can provide a probabilistic description of the system, taking into account the concept of surprise 

and model evidence. This is based on a key formalism: generative models. These formal tools ‘look as if’ they 

are embodied by every self-organizing agent: the notion of action and perception emerge automatically when 

the creature minimizes free energy (Friston, 2019). Crucially, when we speak about cognitive architectures 

and more intelligent designs, the process becomes prospective as the behaviour of an allostatic agent is directed 

towards the future (Corcoran et al., 2020). I show how this is put into practice by providing simulations in 

discrete state spaces under partially observable Markov decision processes. The subsequent three chapters 

implement these formalizations in three simulations studies, presented in article format, that aim to provide a 

biologically plausible account of relatively complex behaviors and cognitive processing: they include visual 

sampling, hierarchical encoding of action representations, motor execution and mechanisms of the reciprocal 

influence between enacted and observed movements, the underlying neuropsychological processes and the 

functional impairments in case of brain lesions, habitization, the engaging of mental effort and attentional 

control, and more. In all these characterizations the aim is to provide links between the computational 

formalism, the cognitive representation, and the underlying neurobiology. The aim is to show that cognitive 

processing can be regarded as an emergent property of the process of minimizing variational free energy at 

different temporal scales. At the same time, I highlight how disfunctions emerge from optimal inferences but 

with suboptimal parameters. I also hint to the idea of how neural dynamics and brain organization must reflect 

the cognitive processing and the shapes of the generative models. The idea is to test if and how active inference 

can offer a way of understanding cognition and behavior starting from the dynamics of self-organization and 

Bayesian inference.   
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Chapter 1  

The architecture of life: self-organization under the free energy principle 

 

1.1 The Markov blanket 

Consider the following problem. How does a biological system resist the natural tendency to disorder 

and dissipation in an unpredictable and constantly changing world? The fluctuation theorem generalizes the 

second law of thermodynamics by demanding the long-term increase of a system’s entropy. In other terms, it 

mandates thermodynamic equilibrium or, in a word, death (Evans & Searles, 2002). Yet, living organisms 

seem to violate this law as they are capable of existing for long periods of time, maintaining a precise set of 

physiological states (Friston & Ao, 2012). The free energy principle (FEP) aims to account for this observation 

by answering these questions: if something does exist, what kind of processes, dynamics or features must it 

possess? What must a living being do to exist?  

The FEP starts by providing a particular statistical definition of living things and then displays the 

behavior and the dynamics that satisfy that definition (Friston, 2019). The first step is to separate things that 

exist from those that do not. To do this is necessary to rely on the notion of a spatial boundary (Pearl, 1988). 

If cast in a statistical term, the probabilistic boundary is called Markov blanket. Consider a state space with all 

the states of the universe; here, we take some of those states and call them internal states. Their blanket states 

would be the ones that separate the internal states from the influence of external states. Therefore, the external 

states are conditionally independent from the internal states. More specifically, the blanket states are 

constituted by the parents of an internal state, its children, and the parents of the children. See figure 1.1 for an 

exemplification. The fundamental feature of the Markov blanket is the Markov property: considering the causal 

relationship of these three sets of states, in order to have a statistical interpretation of the dynamics of the 

internal states given the external states, the only thing required to know are the blanket states. In a real-world 

setting, the blanket states can be seen as the statistical partitions that separate the living being from the outside 

world, the external states. For example, to understand what is going on in the environment (the external states), 

the brain (the internal state) builds a statistical interpretation based on the blanket states, meaning the 

stimulations of my sensory epithelia, such as the physiological state of my photoreceptors when I am observing 

the world (Friston, 2019). 

Furthermore, as shown in figure 1.1., the blanket states can also be divided into: 1) active states that 

can change external states and are influenced only by internal states; 2) sensory states which influence the 

internal states and are influenced by external states. From this characterization, it emerges how, in a dynamical 

setting, the organism and the environment are coupled: active states, constituted by effectors, actuators and 

reflexes, act upon the world by influencing the external states which, in turn, they generate an impression on 

the sensory states, such as sensory organs and receptors, that updates internal states which determine further 
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active states in a perpetual action-perception cycle (Friston, 2019; Parr et al., 2022). In real-world settings, the 

Markov blanket characterization usually entails a multiscale perspective, which can be viewed as a system of 

nested Markov blankets. For example, the membrane of a cell is insulated but put in interaction with a network 

of other cells which constitutes a creature that, in interactions with other creatures, becomes a social network 

or a society (Hesp et al., 2019; Palacios et al., 2020). 

Importantly, the statistical partition provided by the Markov blanket suggests a symmetry in this 

interaction, as the influence between external and internal states because one becomes informative of the other 

through the blanket. This leads to a form of synchronization or dynamical coupling, an emergent property of 

two coupled systems predicting each other (Friston & Frith, 2015). This phenomenon is easily exemplified in 

the 1600s experiment from the Dutch scientist Christiaan Huygens where two oscillators, such as two pendula 

or metronomes, converge to a synchronous ticking when they share a common mechanical support. Through 

this support, indeed, the metronomes can communicate by ‘acting’ through mechanical forces. This 

synchronization is one of the most pervasive emergent properties in nature, and complex systems in particular 

(Friston et al., 2021; Strogatz, 2012; Strogatz & Stewart, 1993), as it explains the dynamics of brain and heart 

cells, swarms, fireflies, circadian rhythms, and several other systems (Matheny et al., 2019; Varela et al., 2001). 

See figure 1.1 for an exemplification.  

 

Figure 1.1. On the left, a schematic in the form of a Bayesian network depicts the states of the universe and, 

given an internal state, we can individuate its Markov blanket by taking the parents of the internal state, its 

children, and the parents of the children. Each arrow indicates conditional dependence; thus, the internal state 

is insulated from the influence of the external states. These external states influence the sensory states of the 

internal state, which can influence the blanket's active states. Only through action via active states can the 

system influence the external states. On the right panel, the dynamical coupling between internal and external 

states through the blanket. The reciprocal influence of these two leads the two oscillators to synchronize. 
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As I will show, by looking at this synchrony between internal and external states, it looks as if they 

are representing and acting upon each other. The internal states are modelling and influencing the environment 

but at the same time, the environment is modelling and influencing the internal states. I will show how these 

dynamics can be cast in terms of Bayesian mechanics. 

 

1.2 From non-equilibrium steady state dynamics to Bayesian mechanics 

I have shown how the FEP defines something that exists as statistically separated from the 

environment. How, however, is the Markov blanket kept intact? Further characterization involves describing 

a dynamical system that entails a specific set of states (Friston, 2019). These kinds of systems can be described 

by stochastic differential equations such as the Langevin equation: 

ẋ = 𝑓(𝑥) +  𝜔 

This equation describes the rate of change (dot notation indicates the derivative with respect to time) 

of some states x, in terms of their flow 𝑓(𝑥) and random fluctuations 𝜔. The next step is to describe the shape 

of the probability density of the states p(x) which can be interpreted as a likelihood of finding the system (e.g., 

an organism) in question in a specific (e.g., physiological) state at any point in time with a state sampled at 

random. Under this view, systems that gather themselves together, such as living organisms, can be cast as a 

random dynamical system that possesses a Markov blanket under the definition of the probability density p(x) 

which takes the name of non-equilibrium steady state density (NESS density). In other words, an open system 

at non-equilibrium steady state entails a pullback attractor, such as an attracting set of physiological states, and 

the trajectories of the system, over time, will revisit that attracting set (Arnold, 1995; Crauel & Flandoli, 1994; 

Friston & Ao, 2012). To describe the evolution in time of this steady-state density, an interpretation is provided 

in terms of density dynamics by using the Fokker-Planck equation: 

ṗ(𝑥 | 𝑚) = ∇ ∗ (Γ∇ − 𝑓)𝑝 

This equation describes the evolution in time of the probability density function ṗ(𝑥 | 𝑚) considering 

a state 𝑥 and a Markov blanket 𝑚. The change of this density is described by random fluctuations and the flow 

of the states through the state-space where ∇ is the gradient, Γ is the variance of the fluctuations and 𝑓is the 

flow. Crucially, we want to consider systems that are defined by and thus restrict themselves to a particular 

number of states (Friston, 2019). For example, an organism that seeks to maintain a certain body temperature 

or to restrict the levels of blood glucose within a certain range. Therefore, we can set this probability density 

as not changing, meaning with a rate of change ẋ equal to 0. In this case, the Fokker-Planck equation entails a 

steady-state solution. This allows us to rearrange the equation and to intuitively observe that, when the density 

is not changing, the flow of the states must be countering the random fluctuations −𝑓(𝑥) =  𝜔. 

ṗ(𝑥 | 𝑚) = 0 ⇒ 𝑓(𝑥) = (Γ −  𝒬)∇ ln 𝑝(𝑥 |𝑚) 
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A further step forward allows us to rewrite the solution to this equation according to Helmholtz’s 

decomposition: we can express the flow of the states as a solenoidal flow 𝒬 (a conservative, rotational, 

divergence-free component) and a gradient flow Γ (a dissipative, irrotational, curl-free component), with 

respect to the steady-state density (Friston, 2019; Friston & Ao, 2012). These flows can be easily exemplified 

by picturing a stream of water flowing down a sinkhole where the basin's altitude is given by the log of the 

probability of occupying any state (see figure 1.2).  

 

Figure 1.2. The left panel represents the trajectory of the random dynamical system with a NESS through the 

state space. Here we associate a probability density p(x), with that trajectory. The right panel represents the 

shape of the dynamics on p(x) in terms of the Helmholtz decomposition as two flows: one sinusoidal flow Q, 

in red, that goes around the contours of the log probability of the states and one curl-free gradient flow Γ, that 

counteract the random fluctuations by performing an ascent on the log probability. The two representations 

are connected by the Fokker-Plank equation. 

 

In simpler terms, the states that an organism keeps revisiting are enclosed in a very limited set. The 

system is flowing towards and oscillating around those attracting states and this revisiting defines the steady 

state density and the kind of organism itself. Crucially, the attracting set corresponds to the conditions that 

allow for the organism’s homeostatic integrity or, in other words, the agent’s phenotype as the description of 

the characteristics compatible with its long-term existence (Corcoran et al., 2020; Friston, 2010; Parr et al., 

2022). Therefore, living beings self-organize towards a specific set of physiological states as they constantly 

come back to that same neighborhood of states. This, however, doesn’t mean that they aspire to be at 

thermodynamic equilibrium: there is complexity in this itinerancy as the dynamics of the internal states that 

generate behavior are not random (Friston, 2019). The solenoidal curl represents this constant oscillation, and 

it is manifest at every level of self-organization: from slow to fast electrophysiological oscillations in the brain, 

to circadian cycles, to hunger and satiation states and biological rhythms. On the other hand, the gradient flow 

is necessary to restrict the number of states as it counteracts the random fluctuations. These fluctuations would 

result in the dissolution of the blanket, and the system itself would cease to exist. Crucially, the system is 
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always trying to flow in a way that ‘looks as if’ it is minimizing the negative log probability of the blanket 

states x (Friston, 2019). This quantity has a key meaning in information theory, known as surprisal or self-

information (Shannon, 1948). 

− ln 𝑝(𝑥) 

This means that everything that exists, by possessing the attracting set of states, must look as if it is 

trying to minimize surprisal by gradient descent. From the perspective of the living being, this surprisal scores 

how much a sensory state differs from the attracting states that define where the agent’s physiology can endure. 

For example, a surprising state for me would be my body temperature reaching 38° C as my attracting state 

for my phenotype is set at 37°.  

From this observation, a ‘new kind’ of physics can be derived: Bayesian mechanics (Friston, 2019; 

Ramstead et al., 2022). According to it, the internal states of the Markov blanket can be seen as parametrizing 

a belief distribution over the external states. In other words, it ‘looks as if’ the system is performing a form of 

inference. In this is implicit a fundamental point: the system and the NESS density can be interpreted as a 

generative model since the highest probability region of the state space of the system will be a joint distribution 

over all the variables of the system. Under the Markov blanket, the generative model is the joint probability 

distribution over external and blanket states. This is supported by the statistical generalization of the complete 

class theorem, which states that, under certain assumptions, any process that follows a cost function in a finite 

sample space is Bayes optimal with respect to some prior (Andrews, 2021; Friston, 2019; Friston et al., 2022). 

Therefore, any dynamical system that minimizes some cost function (surprisal) according to some decision 

procedure is considered Bayes optimal under a generative model. This allows casting self-organization in terms 

of Bayesian inference (Friston, 2019). 
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Chapter 2 

Self-evidencing architectures: generative models for perception and action 

 

2.1 Generative models 

In the most basic formalization, generative models are probabilistic models that can describe how (e.g., 

sensory) observations are generated or caused by events and objects in the environment that can’t directly be 

accessed, thus often called hidden states. The simplest form of a generative model is the one typically described 

by Bayes’ theorem where s represents the possible hidden states and o the possible observations. Thus, p(s) is 

the prior belief over those states and the likelihood p(o|s) specifies how the states generate the outcome.  

𝑝(𝑠, 𝑜) = 𝑝(𝑠) ∗ 𝑝(𝑜|𝑠) 

To understand how causes lead to consequences, the model has to be inverted: namely, the Bayes rule 

is applied to update prior beliefs into posterior beliefs, by inverting the likelihood mapping, starting from the 

probability of observations given the causes to infer the probability of causes given the observations.  

𝑝(𝑠|𝑜) =   
𝑝(𝑠) ∗ 𝑝(𝑜|𝑠)

 𝑝(𝑜)
 

On the denominator, the marginal likelihood or Bayesian model evidence p(o) is necessary to obtain a 

distribution of just one of the two variables from the joint distribution. It is a measure of the model's goodness 

of fit as it represents the probability of generating the data from the prior. Crucially, Bayesian model evidence 

is linked to surprisal: they are inverse functions, thus, maximizing one corresponds to minimizing the other.  

Minimizing average surprisal (entropy), correspond to maximizing the evidence for the agent model 

of the sensory exchanges with the world. This process is often called self-evidencing (Hohwy, 2016) and 

recapitulates one previously mentioned feature that stems from the FEP: every biological organism is a model 

of the environment in which they are immersed. For example, the phenotype of an agent represents the model 

of the environment, optimized by evolution, while the brain represents the optimized model of the econiche of 

one specific agent optimized through neurodevelopment and learning (Parr et al., 2022). Organisms are indeed 

inference machines that optimize the predictions of their models given the sensory data from the world.  

The idea of the brain as a statistical machine that makes inferences about its sensations is ancient and 

was first articulated by the physicist Helmholtz. The problem of perception has been explicitly associated with 

a form of hypothesis testing (Dayan et al., 1995; Gregory et al., 1980) which in recent interpretations are 

formalized under the Bayesian brain hypothesis and predictive coding (Clark, 2013b; Knill & Pouget, 2004; 

Rao & Ballard, 1999). Under these views, perception corresponds to the application of the Bayes rule to obtain 

the posterior probability distribution of the hidden states of the world. A generative model like the one 

described allows formalizing perception as a probabilistic characterization of the sensory consequences of 
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hidden states. However, I overlooked a crucial step: in most cases, evaluating surprisal or model evidence is 

an intractable problem. Indeed, exact Bayesian inference is usually mathematically unfeasible as it requires an 

impossible marginalization or integration problem over every possible state of the world, which is physically 

unrealizable (Beal, 2003; Friston et al., 2006; Parr et al., 2022). This is where the concept of variational free 

energy comes into play: variational inference or variational Bayes is a form of approximate Bayesian inference 

in which it is assumed a functional form for the posterior beliefs. This implies that it will depart from the form 

of the true posterior distribution and this departure renders this technique an approximation. However, thanks 

to this, tractability is earned.  

 

2.2 Perception as variational inference 

Under the FEP, perception is the process that minimizes an approximation of surprisal called 

variational free energy by updating beliefs about the hidden states of the world given sensory observations. 

This is obtained by performing gradient descent on variational free energy under a generative model, a process 

also known as variational inference (Bastos et al., 2012; Friston, 2005, 2010). Introduced by Richard Feynman 

(Feynman, 1972) in quantum physics, the concept of free energy is used to solve complex integration problems 

when computing model evidence and it has been exploited in statistics and machine learning (e.g., Neal & 

Hinton, 1998). The key feature is that, instead of trying to minimize something that cannot be measured, a 

measurable and always positive bound is created. Then, by minimizing the bound, the unknown quantity can 

be minimized too. The free-energy bound is created by use of a nonnegative quantity called Kullback–Leibler 

divergence.  

This KL divergence measures the difference between two probability distributions: the first is an 

arbitrary distribution called variational density or recognition density q(s) and the second is the posterior 

density, which is the probability of causes after having observed their consequences. When Free energy is 

minimized, the variational density is rendered maximally similar to the true posterior probability p(s|o). This 

can be done by optimization processes such as the iterative updating of q sufficient statistics through a gradient 

descent algorithm (e.g., variational message passing, Parr et al., 2022). 

F(𝑠)⏟
𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐹𝐸

 = D𝐾𝐿[𝑞(𝑠)||𝑝(𝑠|𝑜)]⏟            
𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

  − ln 𝑝 (𝑜)⏟    
𝑆𝑢𝑟𝑝𝑟𝑖𝑠𝑎𝑙

                                                              

This accounts for perception or state estimation as a form of belief updating, as the minimization of 

the discrepancy between the model and the world. This can be operationalized in terms of prediction errors 

where the optimal explanation of sensory data is the hypothesis that minimizes the prediction errors the most 

while diverging as less as possible from prior beliefs. By rearranging the terms, free energy can be written as: 

F(𝑠)⏟
𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐹𝐸

= D𝐾𝐿  [𝑞(𝑠) || 𝑝(𝑠)]⏟          
𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦

  −  E𝑞(𝑠)[ln 𝑝(𝑜|𝑠)]⏟          
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
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The generative model must generate, via perception, the most possible accurate predictions (thus with 

minimal prediction errors) with the least possible complexity (as an Occam’s razor that entails efficiency and 

prevents overfitting, Parr et al., 2022). However, perceptual inference by itself is unable to reduce surprisal as 

it only reduces the difference between free energy and surprisal by minimizing the bound. To counteract 

random fluctuations, self-organize e maintain homeostatic integrity, it is necessary to influence the external 

states of the world through action and movement. 

 

2.3 Active inference 

Under the FEP, the fundamental step further is to consider generative models that include action and 

the active sampling of sensory data: a biological agent can minimize surprisal by changing the things that are 

predicted, the data that are sampled. This is active inference (Parr et al, 2022). In this setting, our priors furnish 

the data that we expect to experience and we selectively sample the observations that realize that prior. In other 

words, an agent will act upon the world to make its predictions come true (Friston et al., 2013; Friston & Ao, 

2012; Parr et al., 2022). Indeed, the generative model of an organism does not simply represent the dynamics 

of the environment but it also specifies the preferred conditions that support the agent’s existence. These 

conditions correspond to the attracting set of states and are encoded in the prior beliefs of the generative model. 

Implicitly, these priors constitute preferred observations that are considered more likely to occur and entail 

less surprisal (Parr et al., 2022). Practically, the generative model of an active inference agent entails a prior 

over the trajectories of active states. These trajectories are known as policies 𝜋 and consist of sequences of 

future observations. The generative model that also includes policies 𝜋 is described by the following equation: 

𝑝(𝑠, 𝑜, 𝜋) = 𝑝(𝑜|𝑠, 𝜋) ∗ 𝑝(𝑠|𝜋) ∗ 𝑝(𝜋) 

Crucially, this leads to a prospective form of inference about the trajectories of future observations. 

Thus, the generative model must consider the free energy of the future known such as the expected free energy. 

The model entails the prior beliefs about the sensations that will be encountered in the future, and the system 

will choose the most probable path to realize them (Parr et al., 2022). This, fundamentally, corresponds to a 

form of planning as the selection of action sequences known as planning as inference (Botvinick & Toussaint, 

2012). The agent predicts future observations by performing ‘what-if’ simulations by generating possible 

futures (one for each policy π) by scoring each policy in terms of expected free energy and selecting the one 

that is expected to minimize free energy in the future. The expected free energy associated with each policy π 

considers the prior preferences of the agent (extrinsic or pragmatic value) and the expected information gain 

about states of the world (intrinsic or epistemic value). These terms can be expressed in terms of risk and 

ambiguity: risk is the (KL) divergence between anticipated outcomes given a policy q(o|π) and preferred 

outcomes (p(o). Ambiguity is the expected uncertainty (i.e., conditional entropy H) about outcomes, given the 

model's likelihood p(o|s): 
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G(𝜋)⏟
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐹𝐸

 = D𝐾𝐿  [𝑞(𝑜|𝜋) || 𝑝(𝑜)]⏟            
𝑅𝑖𝑠𝑘

  +  E𝑞(𝑠|𝜋)[H[𝑝(𝑜|𝑠)]]⏟            
𝐴𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦

  

These two components of expected free energy ensure that the agent plans and adaptively balances 

exploitation (i.e., preference-seeking) and exploration (i.e., information-seeking) as the agent is driven to both 

maximize utilitarian aspects of behaviour and resolve uncertainty by pursuing epistemic affordances (Parr et 

al., 2022). This furnishes self-evidencing with an enactive aspect and a minimal form of cognition (Corcoran 

et al., 2020). With active inference, then, self-organization starts to look like autopoiesis (Maturana, &. and 

Varela, 1980); Thompson & Varela, 2001).  

The theoretical strength of active inference is that both perception and action serve the same objective 

function: they both minimize free energy by updating my model in the present and by changing the world to 

make it more similar to my prior beliefs in the future. This also addresses how perception itself is not a passive 

process but a constructive (generative) and active process where a perceptual hypothesis about the causes of 

the sensation is confirmed or disconfirmed by the sensory observation (Blake & Yuille, 1992; Friston, Adams, 

et al., 2012; Yuille & Kersten, 2006). Another strength of active inference resides in its biological plausibility. 

For example, in contrast to reinforcement learning, where the definition of an arbitrary reward function is 

required, in active inference, value is determined by first principles as it is an emergent propriety of self-

organization (Parr et al., 2022). Furthermore, it incorporates epistemic drives, artificial curiosity and 

information seeking under a unique solution, without the need for supplementary information gain bonuses. 

At last, as I will show, more complex aspects of cognition can emerge when the generative model becomes 

hierarchical by generating predictions about components of the generative model itself.  
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Chapter 3 

Hierarchical architectures: active inference in deep temporal models 

 

3.1 Active inference in discrete state spaces: partially observable Markov decision processes 

In active inference, a task is represented by simulating a cognitive agent that makes observations in an 

environment, takes decisions and acts upon it. This environment is represented as a discrete state space where 

sets of hidden states s, called states factors, are defined as beliefs or discrete probability distributions over 

unobserved task variables, such as the agent's position in the environment, and set of outcomes o, called 

outcome modalities, are the observable stimuli, from which the agent can infer hidden states. The temporal 

evolution of the states is discretized in a number of time points. This kind of modelling takes the name of 

partially observable Markov decision process (POMDP) and entails two general features. The first is partial 

observability, which means that the true states of the world are hidden and can only be inferred by observations 

that may have a degree of uncertainty. The second feature is the Markov property, according to which beliefs 

about future states, on which the agent organizes its behaviour, depend only on the states at the current time 

and not on the past ones (Friston, FitzGerald, et al., 2017b). POMDP can be represented by using graphical 

models: figure 3.1 depicts a Bayesian network where the circles, called nodes, correspond to variables (e.g., 

observations, hidden states, and policies), while the arrows connecting the nodes entail edges that explain the 

kind of dependencies, such as the probabilistic relations, among the variables. For example, the arrow that 

goes from the node state at timepoint 1 to the node outcome at timepoint 1 means that the value of the latter 

depends on the value of the former according to the probabilistic mapping described by the edge A, which 

encodes a likelihood matrix.  
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Figure 3.1 Bayesian network of an active inference partially observable Markov decision process. The circles 

correspond to variables: observations, hidden states, and policies; the arrows connecting the nodes are 

equipped with edges that entail the probabilistic relations among the variables. In this example, the model 

entails 3 timesteps, thus, starting from an initial state s1 the policy π sets the trajectory for two transitions 

among states. 

More specifically, the A matrix represents the (likelihood) mapping between states and outcomes. The 

B matrix (transition function) encodes the probability of moving from one state to another. The C matrix 

encodes prior beliefs about observations, which in active inference reflect prior preferences. The D vector 

encodes the prior about the initial hidden state. The E vector encodes priors about policies. The G denotes 

expected free energy. The γ is a precision parameter associated with expected free energy which encodes 

confidence in the current G estimates; Finally, β0 is a prior over the precision. See also Table 1 for further 

details. 

 

Symbol Mathematical formulation 

𝜋: beliefs about policies π = σ(lnE – γG) 

 

G: Expected free energy (used to score 

policies during planning), in terms of risk 

and ambiguity in matrix notation. 

𝐆𝜋 = 𝐀s𝜋,𝜏 ∗ (ln𝐀s𝜋,𝜏 − ln𝐂𝜏)⏟                
𝑅𝑖𝑠𝑘

   −𝑑𝑖𝑎𝑔 (𝐀T ln𝐀) ∗ 𝐀s𝜋,𝜏⏟                
𝐴𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦

 

A: likelihood matrix that encodes the 

statistical relations between hidden states 

p(𝑜 | 𝑠) 
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and outcomes. It maps how states (causes) 

generate outcomes (consequences) 

B: transition matrix that encodes the 

statistical relations between subsequent 

states (e.g., beliefs about how states 

change over time).  

 

p(𝑠t+1 | 𝑠t) 

 

C: matrix encoding prior preferences over 

observations. Observations with higher 

probabilities are desired, e.g., the attracting 

set 

p(𝑜|C) 

 

D: vector encoding the prior belief about 

hidden states at the first time point  

𝑝(𝑠1|D) 

E: vector encoding the prior belief about 

policies. Beside planning, some policy can 

have higher probability 

𝑝(𝜋) 

 

γ: precision parameter about expected free 

energy G which encodes confidence about 

the current G estimates. 

γ 

 

β0: hyperparameter that determines the 

initial value of γ 

β = 1 / γ 

 

 

At every timepoint a policy is selected according to the following equation, which represents a (prior) 

distribution over the policies: 

𝜋0  =  σ(lnE − 𝛾G) 

This distribution comprises two components. The former is the prior over the policies (an E vector) 

and the latter is the expected free energy G. The balance between these two terms is determined by a precision 

term (γ), which encodes the confidence of beliefs about G. Finally, the equation includes σ, which is a 

normalized exponential (softmax) function that normalizes its values to ensure that it is a probability 

distribution. Subsequently, policy-dependent transition probabilities encoded in the B matrix, or the D vector 

if it is the first time point, generate hidden states which then generate observations at each time point according 

to the likelihood A matrix. After receiving an observation, the equation also incorporates the variational free 

energy F, in the posterior over policies: 

 𝜋 =  σ(lnE − F − 𝛾G) 
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At last, an action u and the associated transition between states is selected according to the following 

equation, where 𝜶 represents a precision parameter that controls the randomness of the action selection 

mechanism: 

𝑝 (𝑢 |𝛼) =  σ(𝛼 ∗ ln 𝑝(𝑢| 𝜋)) 

As I will show in the studies, the structure of these models can be extended to include a hierarchical 

level that makes inferences about lower-level state transitions. These are called deep temporal models. 

 

3.2 Hierarchical active inference: deep temporal models  

Every biological agent embodies a specific generative model that accounts for the her adaptive needs 

and cognitive capabilities at various levels of complexity (Corcoran et al. 2020). Very simple generative 

models account mostly for reflexive and reactive behavior by being equipped with a target setpoint (such as 

an expected physiological state) that reacts to a prediction error (Adams et al., 2013). Generative models that 

entail a minimal form of cognition, planning, or agency, as the one described in the previous section, are 

equipped with the prior belief that they will minimize free energy in the future and they entertain the possibility 

of alternative (or counterfactual) trajectories of behavior. This, as I said, is at the basis of allostatic control, 

autopoiesis or anticipatory homeostatic control (Corcoran et al., 2020; Parr et al., 2022; Pezzulo et al., 2015). 

However, these models afford inference at only one timescale and are too shallow to account for complex 

cognitive functions in a more biologically plausible way. On the other hand, hierarchical generative models 

allow for inference at multiple timescales. These kinds of models, also known as deep temporal models, entail 

a higher hierarchical level that represents the dynamics of the lower level (Friston, 2008; Friston et al., 2018; 

Kiebel et al., 2008; Pezzulo et al., 2018). The higher level informs and updates the lower level while the lower 

level observes the upcoming state transitions. Consider the example of reading: the encoding of letters occurs 

at a faster rate and subordinates the encoding of the word, which in turn is faster and subordinates the encoding 

of the sentence. This kind of processing highlights the necessity of a temporal hierarchy which allows to go 

beyond the immediate demands of homeostasis regulation and further extend the agent's autonomous horizon 

(Friston et al., 2018; Hesp et al., 2021; Pezzulo et al., 2018).  

In practice, a hierarchical active inference model consists of two models, one placed above the other 

and then linked in a bidirectional manner. Specifically, at a higher level, each time-point furnishes the initial 

states for the first time-point of the level below. On the other hand, the posterior belief at the last timepoint of 

the level below provides an observation for the associated timepoint at the higher level. The lower level 

operates at a slower timescale than the higher-level model because each observation at a higher level must 

‘wait’ for the whole sequence of time points at the lower level. See figure 3.2 for a hierarchical Bayesian 

network. 
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Figure 3.2. In this hierarchical Bayesian network, every timepoint at the higher level generates prior that 

influences the dynamics at the lower level. On the other hand, the posterior beliefs at the lower level are 

propagated bottom-up and become observations at the higher level (Friston et al., 2018). This provides 

bidirectional interactions between variables at different levels of the hierarchy because the inference of each 

variable is simultaneously influenced by messages passed from different directions.  

 

This kind of deep inference allows us to infer events that change at different timescales, from slower 

dynamics at higher levels to faster dynamics at lower hierarchical levels and to simulate agents that entail more 

sophisticated strategies for planning and hence to represent more complex cognitive phenomena (Parr et al., 

2022). These kinds of architecture are necessary to encode perceptual events with nested dynamics where a 

set of percepts must be recognized before the regularities among those percepts can be detected (Smith, Friston, 

et al., 2022). Furthermore, through these architectures, narratives and hierarchical representations such as those 

typical of language can be encoded as the higher level of the model generate predictions about the deeply 

structured sequence of state transitions at the lower level. In the next chapter, I will introduce the first 

application of this idea, in the context of action representations.  
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Chapter 4 

1st Architecture: an active inference model of hierarchical action 

understanding, learning and imitation1 

 

We advance a novel active inference model of the cognitive processing that underlies the acquisition 

of a hierarchical action repertoire and its use for observation, understanding and imitation. We illustrate the 

model in four simulations of a tennis learner who observes a teacher performing tennis shots, forms hierarchical 

representations of the observed actions, and imitates them. Our simulations show that the agent’s oculomotor 

activity implements an active information sampling strategy that permits inferring the kinematics aspects of 

the observed movement, which lie at the lowest level of the action hierarchy. In turn, this low-level kinematic 

inference supports higher-level inferences about deeper aspects of the observed actions: proximal goals and 

intentions. Finally, the inferred action representations can steer imitative responses but interfere with the 

execution of different actions. Our simulations show that hierarchical active inference provides a unified 

account of action observation, understanding, learning and imitation and helps explain the neurobiological 

underpinnings of visuomotor cognition, including the multiple routes for action understanding in the dorsal 

and ventral streams and mirror mechanisms. 

 

4.1 Introduction: action understanding as a hierarchical inference problem 

Understanding actions performed by other people is vital for social cognition. An action can be defined 

as a sequence of kinematic bodily movements (e.g., movements of the left arm and fingers) elicited and 

monitored by a goal (e.g., grasping an object). Hence, we assume that action understanding amounts to 

inferring the actor's goal by observing her movement kinematics, such as the positions of her limbs, angles of 

joints, their relative positions, and respect to objects and the context (Jacob & Jeannerod, 2005). In turn, since 

an action may result from many movements, the inference of action goals from observed movements 

constitutes an inverse problem (Csibra & Gergely, 2007; Jacob & Jeannerod, 2005).  

Several researchers proposed that to solve this inverse (one-to-many) problem, the brain adopts a 

probabilistic strategy, which can be formulated in Bayesian terms as:  

𝑝(𝑔𝑜𝑎𝑙 | 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡)  =  𝑝(𝑔𝑜𝑎𝑙)  ∗  𝑝(𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 | 𝑔𝑜𝑎𝑙) / 𝑝(𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡) 

In the above equation, the (posterior) probability of an action goal given the observed movement p(goal | 

movement) is proportional to the (prior) probability of the goal p(goal) before observing the movement and 

the probability p(movement | goal) that a specific goal generates the observed movement (likelihood). These 

 
1 Paper submitted to Physics of Life Reviews 
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two (prior and likelihood) terms constitute a so-called generative model of how actions are generated, that the 

brain uses (technically, "inverts") for action recognition - or the inference about the action goal that may have 

produced an observed movement (Baker et al., 2006, 2009; Dindo et al., 2011; Kilner et al., 2007).  

It has been proposed that the brain uses the same generative model for both action execution and 

recognition and this generative model is structured hierarchically (Byrne & Russon, 1998; Grafton & de C. 

Hamilton, 2007; Jeannerod, 1994; Kilner, 2011; Pacherie, 2008). In this study, we present a computational 

analysis of these hierarchical action representations by considering four levels of representation of an 

exemplificative set of skilled movements, namely, tennis movements; see Figure 4.1. At the bottom of the 

hierarchy, the kinematic level encodes the kinematic features of movements (e.g., speed and acceleration) of 

actions. For example, in our tennis context, the kinematic level regards specific body parts involved in the 

execution of a tennis shot. One step higher in the hierarchy, we formalize a postural level where different 

combinations of body parts constitute postures that are the building blocks of tennis movements. The further 

hierarchical level encodes the proximal goal of the action, such as the aim to execute a particular tennis shot, 

by enacting a sequence of postures. The highest, intention level represents the ultimate reason for executing 

the action, which in this setting corresponds to a general class of shots: forehand, backhand, or smash. Notably, 

each class of shots has multiple realizations at the proximal goal and kinematic levels (e.g., a forehand can be 

done to the left or right), but the intention level is more generic and agnostic about particular realizations. 
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Figure 4.1. This schematic illustrates the hierarchical representation of an action repertoire in the example 

scenario that we adopt in this paper: playing tennis. The hierarchy comprises three levels of hidden variables 

(postures, proximal goals, and intentions) and an observation layer (kinematics). The higher the level of the 

hidden variable, the more the representation is associated with abstract and generalized action meanings. 

Here, kinematics aspects are exemplified with body parts which spatial relations constitute different body 

postures; proximal goals denote sequences of postures that realize tennis shots, in this case a left or right 

forehand; rather, intentions denote the most general class of shots, here forehand, that entails multiple 

realizations at the proximal goal and kinematic levels. Note that this schematic (and our computational model) 

omits the motor level, which is responsible for the specification of patterns of muscle activity to execute the 

movements specified at the kinematic level. This schematic also illustrates that in this hierarchical setting, 

action understanding amounts to inferring the higher levels of the hierarchy (e.g., goals and intentions) by 

only having access to low-level (kinematic) observations. 

 

In sum, the hierarchical arrangement of the generative model illustrated in Figure 4.1 implies that the 

brain encodes a rich cognitive representation of actions, which links together more abstract features of action 

at higher levels (i.e., the intentions they realize and the contexts in which they can be successfully deployed) 

to functional or anatomo-kinematic rules at lower levels (Grafton, 2009). Importantly, in this hierarchical 

setting, action understanding amounts to inferring the higher levels of the hierarchy (e.g., goals and intentions) 

by only having access to movement observations. Action understanding also paves the way to imitating the 

observed actions (Hurley & Chater, 2005). 

This study aims to advance a unified computational account of the cognitive processing underlying 

action observation, understanding, learning and imitation abilities. This novel proposal is grounded in the 

framework of active inference, which provides a normative perspective on brain computations and behaviour 

(Parr et al., 2022). While our proposal is domain-general, we illustrate it in a generative model of a "tennis 

task", in which a naive tennis player (henceforth, the learner) infers and imitates the actions executed by an 

expert player (henceforth, the teacher). Please consider that in our study, the game of tennis is taken as an 

exemplificative scenario; the naive and expert tennis players do not recognize or reproduce the bodily 

movements of human tennis players, but only an abstract representation of these movements (i.e., combinations 

of abstract movement features, see below the model description). While the task structure consists of an 

abstract, toy-example, the model aims to provide a general and biologically plausible account of action 

understanding, learning, and imitation. Our simulations will show that the inferential dynamics supporting the 

recognition, learning and imitation of (tennis) actions, as well as the saccadic movements that promote (active) 

perception, emerge naturally from the active inference formulation and align well with empirical results and 

neurobiological models from previous literature. 

In the next sections of this paper, we present and discuss four simulations of the tennis task using 

active inference. Each simulation is designed to illustrate one specific aspect of the framework that is relevant 
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to explain how we understand and imitate actions. The first simulation illustrates the core mechanisms of active 

inference in play during action understanding, highlighting its inferential and active nature. This simulation 

shows the empirical predictions (e.g., beliefs updating, oculomotor dynamics and response selection and times) 

that can be derived by casting action understanding as a process of (active) inference over a hierarchical 

generative model of postures, goals, and intentions. The second simulation illustrates how during the 

observation of familiar actions, oculomotor dynamics are guided by the imperative of reducing uncertainty 

(about which action one is observing), which is automatically elicited in active inference in ambiguous 

contexts. This simulation also illustrates how prior beliefs and the motor knowledge of the observed 

movements can influence the observation pattern. The third simulation illustrates how during the observation 

and learning of novel actions, oculomotor dynamics are guided by the imperative to pursue novelty, which 

arises automatically in active inference when the observed actions are unknown and the context affords 

learning. This simulation also illustrates that the learning process creates a more reliable (likelihood) mapping 

between lower and higher levels of representation and affords a deep (semantic) level of action understanding. 

Finally, the fourth simulation illustrates how in active inference, action observation automatically facilitates 

the execution of imitative actions but interferes with the execution of alternative actions. This is because both 

action understanding and execution rest on shared (ideomotor) codes across perception and action. Finally, we 

illustrate the neurobiological implications and the possible neural implementation of our proposed model. 

 

4.2 Active inference simulations during action understanding and imitation 

4.2.1 Simulation 1: hierarchical inference about actions in a tennis task 

The tennis task involves two people: an experienced player (teacher), who demonstrates how to 

perform different kinds of tennis shots correctly, and a naive player (learner), who observes the teacher's 

actions and tries to understand and imitate them. The computational model formally describes how the learner 

performs action understanding and imitation, by observing how the teacher’s body movements unfold over 

time.  

As illustrated in Figure 4.2D, the learner's visual scene encodes the movements of the teacher. The 

visual elements of the scene are the teacher’s body parts, and their relative position in a four-slot quadrant. 

Each combination of body parts corresponds to a specific posture. Each posture is univocally defined by the 

relative position of two body parts. Specifically, posture 1 occurs whenever the head is beside the foot; posture 

2 occurs whenever the head is beside the racket; and posture 3 occurs whenever the head stands diagonally 

with respect to the racket. The body part hand covers the two remaining locations in each configuration of 

postures. The transitions between postures represent the teacher's movements to hit the ball, or her proximal 

goals. Here, the teacher has six possible proximal goals (right or left forehand, right or left backhand, right or 

left smash), each defined by a unique sequence of four postures. For example, the sequence of postures 3-1-3-
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2 corresponds to the right backhand. Finally, proximal goals can be further classified into three intentions 

(forehand, backhand or smash) that abstract away from the specifics of (left or right) actions.  

 

Figure 4.2. Results of Simulation 1: action observation, belief updates during action understanding and 

imitative motor response. The Panels A-D correspond to the four hierarchical levels of the model shown in 

Figure 4.1. Here, we describe them in the reverse order, starting from the bottom (kinematic observation) level 

to the top (intention) level. The D panel shows the teacher’s sequence of postures during a tennis shot (here, 

a right backhand). Each posture corresponds to a different combination of body parts. The blue line represents 

the simulated learner’s eye movement trajectory, and the red dots her saccade locations. Note that the learner 

can only make saccades to one body part at a time but can integrate this information over time, to infer the 

current posture of the teacher, shown in panel C. This information is represented as probabilistic beliefs: the 

darker the colour of each cell, the larger the posterior belief about a specific posture. Please note that these 
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(and the other) beliefs change over time, as the learner obtains more information about the teacher’s postures. 

In panel B are shown the dynamics of the probabilistic beliefs associated with the sequences of postures, where 

each sequence corresponds to one of the proximal goals of the teacher. Panel A shows the probabilistic beliefs 

associated with the highest level of representation: the intentions. Finally, panel E shows the imitative 

response executed by the learner where she correctly executes the same sequence of postures that she has 

observed. 

 

In the model, action understanding is cast as inference of the three hidden variables (intentions, 

proximal goals, and postures) based on observation of movement (body part kinematics). In turn, this 

hierarchical inference can be conceptually divided into three kinds of inferences, see Figure 4.2. The first kind 

of inference only regards the most superficial features of action, i.e., the inference of postures from kinematic 

observations. In the model, the learner can only execute a saccade and observe a single body part of the teacher 

at a time (i.e., the positioning of head, hand or leg) but she can accumulate this information over time to infer 

the teacher's posture, defined here as a specific combination of body parts. Figure 4.2D shows the example of 

a learner performing saccades (red dots) to different body parts, which are informative about which of three 

possible postures she is observing. Figure 4.2C shows the dynamics of the inference about postures in the 

computational model. The model maintains beliefs (as probability distributions, where darker colours denote 

higher probabilities) about postures and updates them when it obtains novel information via further saccades. 

Figure 4.2B shows the belief dynamics associated with the second kind of inference, which regards a deeper 

aspect of the observed movements: the one that concerns proximal goals. This second kind of inference uses 

the results of the first kind of inference (i.e., the inferred postures) as observations. The specific example 

illustrated in Figure 4.2B regards the inference that the teacher’s proximal goal is executing a right backhand, 

based on the fact that the sequence of observed postures is 3-1-3-2. Figure 4.2A shows the third kind of 

inference, which regards the most general aspect of the observed movement: the intention. The specific 

example illustrated in Figure 4.2A regards the inference of the backhand intention. Finally, Figure 4.2E shows 

that the learner can imitate the observed action by executing the sequence of postures that she previously 

inferred (or if needed, another sequence that realizes the same intention). The possibility to imitate observed 

actions rests on the fact that the model infers (forms beliefs about) the observed sequence of actions or policy. 

In other words, imitation is simply the enactment of the policy that was inferred with the highest probability. 

See methods for an explanation of how beliefs about the observed action are translated into a motor response. 

 

4.2.2 Simulation 2: observation of familiar actions and the role of uncertainty and prior knowledge in active 

sensing 

In the previous simulation, we explained that the learner employed saccades to gather information 

about the teacher's postures, proximal goals, and intentions, but we did not explain how she selected the next 

saccades. The second simulation aims to show that in active inference, action understanding is achieved by 
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engaging sequences of eye movements that gather salient information (Donnarumma et al., 2017; Friston, 

Adams, et al., 2012; Friston et al., 2015; Parr & Friston, 2017). Salience is determined by predicting where to 

perform the next fixation to help reduce uncertainty about the observed action. This is in keeping with theories 

of perception as an active process, which involves planning sequences of (oculomotor) actions that lead to 

optimal information foraging and proactively gathering information to reduce uncertainty (Blake & Yuille, 

1992; O’Regan, 2011; Tsotsos, 2011). This uncertainty-reduction imperative is one of the components of the 

(expected free energy) equation that guides the selection of policies in active inference; see the Methods for 

details. This imperative becomes more prominent when there is some uncertainty to resolve, such as when the 

learner does not know which action she is observing but loses importance if the learner has prior knowledge 

about the action – unless this prior knowledge is misleading.  

Consider a learner who is observing the teacher executing a right smash shot in two different 

conditions (see Figure 4.3). In one condition, illustrated in the left panels of Figure 4.3, the learner has no prior 

knowledge about the teacher's goal (i.e., she has a flat prior belief). In the other condition, illustrated in the 

right panels of Figure 4.3, the learner has been informed that the teacher will perform a left forehand shot (i.e., 

she has a misleading prior belief). In both cases, eye movements are engaged to solve the uncertain aspects of 

the action as they are directed towards the most salient location of the scene, which tests the learner's 

hypotheses. However, what is deemed the most salient location to gaze depends on the learner's hypotheses or 

prior beliefs (which are updated after gathering novel observations). As an effect, the patterns of eye 

movements and belief updating of the left panels of Figure 4.3 and the right panels of Figure 4.3 are different. 

In both cases, the learner eventually recognizes the correct proximal goal (right smash); however, this process 

is slightly slower in the latter case, when she starts from a misleading prior. This can be observed by looking 

at the simulated reaction times (see the Methods), below the D panels.  
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Figure 4.3. Results of Simulation 2: the dynamics of action understanding of two learners, with no prior 

knowledge (left learner) or incorrect prior knowledge (right learner). The D panels show the different 

oculomotor dynamics for the two cases, respectively. The A, B and C panels show the different belief dynamics 

for the two cases, with the same notation as in Figure 4.2. Note that at timestep 3, the right learner (with 

misleading priors) strongly believes to observe a left forehand and posture 2. However, after inferring she is 

observing posture 1, she changes her mind and correctly infers she is observing a right smash. On the contrary, 

at timestep 3, the left learner (with flat priors) assigns the same probability to the left forehand and the right 

smash and to the two possible incoming postures (1 and 2). After observing posture 1, she correctly infers she 

is observing a right smash, without significant surprise. Although the right one employed more time to 

correctly categorize the observed action, both learners correctly imitate the action, see panel E. 

 

This simulation permits appreciating how active perception and the dynamics of belief updating - and 

hence whether recognition will be successful or unsuccessful, fast or slow - depend on the learner's prior 

beliefs. This is because the prior beliefs determine the salience of visual locations and which location to gaze 

next. In this perspective, salience is not associated with basic properties of the stimulus, such as noise, but it 

is defined formally as an information gain - and is therefore high in locations that have a high potential to 

resolve uncertainty (Donnarumma et al., 2017; Friston, Adams, et al., 2012; Friston et al., 2015). Specifically, 

salience can be formalized as a Bayesian surprise, which corresponds to the divergence between the prediction 

of a generative model and the actual outcome. Before a saccade, the learner can use her generative model to 

estimate Bayesian surprise and hence the salience of each location - and then select the highest salience location 
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(Itti et al., 1998; Itti & Baldi, 2009; Itti & Koch, 2000). Using this method, a salient location corresponds to 

the one expected to reduce uncertainty, if a saccade were performed towards it (Parr & Friston, 2017). 

Empirical research shows that this notion of Bayesian surprise characterizes well which aspects of a visual 

scene capture human attention (Itti & Baldi, 2009; Mirza et al., 2016; Posner & Petersen, 1990). 

Another important point to notice is that prior information can come from different sources: it can be 

provided exogenously (for example, via verbal or contextual cues) or be generated endogenously, based on the 

learner’s motor knowledge. A consistent body of evidence has shown that eye movements are engaged 

coherently during both action execution and observation, suggesting that they come from the same generative 

model that encodes one’s motor knowledge (Flanagan & Johansson, 2003). More broadly, this suggests that 

the parameters employed for categorizing and encoding action representations are shared with those for action 

execution – which is a feature implemented in our model (see the Methods for a description of the model 

parametrization). This feature has been widely studied in relation to the mirror system (Aglioti et al., 2008; 

Bonini, 2016; Calvo-Merino et al., 2005, 2006; Cross et al., 2006; Maranesi et al., 2014, 2019; Pedullà et al., 

2020; Pezzulo, 2013; Rizzolatti & Craighero, 2004). Later, we will elaborate further on this topic.  

4.2.3 Simulation 3: observation of novel actions: the role of novelty in active sensing and learning 

So far, we assumed that the learner already knows the teacher's actions that she observes. This 

simulation illustrates what happens when the learner first observes novel postures and then learns a never-

observed proximal goal.  

There is a fundamental difference between the (active) perception of known and unknown actions. As 

discussed above, the perception of known actions is directed towards salient locations that reduce uncertainty 

about what action a person is observing. In turn, to calculate saliency, the learner needs to be endowed with a 

generative model that permits predicting “what would I see if I observe, in a specific moment, that location of 

the teacher’s body?” By definition, during the observation of unknown actions, the learner's model is 

incomplete and hence she cannot make reliable action predictions that are necessary to assess what is salient. 

In this case, then, her oculomotor behaviour is mainly driven by the novelty of sensory evidence rather than 

saliency or Bayesian surprise. Observing unknown actions induces a novelty-seeking, curious behaviour that 

is mainly driven by bottom-up processes such as attentional capture (e.g., orienting responses) (Sokolov, 1963) 

or perceptual curiosity, defined as “the interest in and giving attention to novel perceptual stimulation” 

(Berlyne, 1954; Collins et al., 2004), as opposed to the prominence of top-down, expectation-guided processes 

during the pursuit of salient information.  

The patterns of oculomotor movements related to salience (Figure 4.2) and novelty (Figure 4.4) are 

significantly different. Visually sampling unknown actions generally requires more saccades because many 

locations provide novel information, and the learner cannot predict in advance which posture she will observe 

next; this is because she does not know how postures are determined in the unknown action. The novelty-

seeking behaviour is crucial to resolve the learner's “semantic knowledge gap” regarding the acquisition of the 

unknown mapping between body parts and postures in the learner's generative model. In Bayesian terms, this 
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unknown mapping corresponds to the likelihood p(o|s) and it regards the relations between hidden states (s) at 

a higher hierarchical level – here, the level of postures – and the possible outcomes (o) at the level below – 

here, the body part kinematics. As illustrated in Figure 4.4, sampling novel locations permits the learner to fill 

in this knowledge gap, and to learn the likelihood mapping between body parts and their combinations (Baranes 

et al., 2015; Barto et al., 2013; Gottlieb & Oudeyer, 2018; Schwartenbeck et al., 2019).  

 

Figure 4.4. Results of Simulation 3: observation and imitation of a novel action. In panel D are shown the 

simulated oculomotor dynamics when the learner observes an unknown action, here corresponding to the 

sequence of postures 1-3-2-1. In this case, visual attention is driven by both surprise and novelty. The latter 

induces the sampling of several novel locations, resulting in a larger number of saccades compared to previous 

cases, in which the observed actions were known. In panels C and B, it can be noted how the probabilistic 
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beliefs are more spread across the hidden states resulting in a much larger amount of uncertainty. This leads 

the student to an “undecided” intention categorization in panel A. 

 

Figure 4.5 illustrates schematically how the novel knowledge that the agent acquired through novelty 

sampling permits it to learn the likelihood mappings of the higher hierarchical levels of the generative model. 

Specifically, the likelihood mapping illustrated in Figure 4.5 encodes the probabilistic relations between the 

levels of the postures and the proximal goals. Figure 4.5A shows the real statistics of the environment (called 

generative process in active inference), which in our example corresponds to the real and objective mapping 

between proximal goals and postures. Each row of the panel shows the sequence of postures expected under a 

particular proximal goal: the first three columns represent the postures (1 to 3) at quadrant location 1; the 

second three columns represent the postures at quadrant location 2; the third three columns represent the 

postures at the quadrant location 3; and the last four columns represent the postures at the quadrant location 4. 

For example, the fourth row shows that performing a left backhand elicits the sequence of postures 3-2-1-3 

(these postures are marked in black, which corresponds to the fact that they have a high probability). Figure 

4.5B shows the learner's generative model before learning (to put it simply, her knowledge about the 

environment's statistics). This generative model is analogous to the generative process, but the row 

corresponding to the left backhand is grey, which indicates that the learner does not know the sequence of 

postures elicited by this proximal goal (technically, she has a flat belief state). The (likelihood) mapping 

between the left backhand goal and the corresponding sequence of postures is the “semantic knowledge gap” 

that the learner has to fill by learning. Finally, Figure 4.5C shows that after some trials, the learner has (almost 

completely) filled in this gap as she learned a sufficiently reliable (likelihood) mapping between the left 

backhand goal and the corresponding sequence of postures.  
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Figure 4.5. Results of Simulation 3: how the generative model is updated when a novel action is learned. In 

this example, the part of the generative model that is updated is the (likelihood) mapping between postures 

and goals. For each panel (A, B, C), the rows represent the goals and the columns represent the three postures 

for each of the four quadrant locations. In each square, a darker tint represents a larger probabilistic 

contingency between the states (goals) and the observations (postures). Panel A shows the contingencies of 

the so-called generative process, which correspond to the true statistics of the environment. The generative 

process represents the real probability of observing a posture given a goal. Panel B represents the likelihood 

of the learner’s generative model before learning. In the generative process, the goal left backhand 

corresponds to the sequence of postures 3-2-1-3. However, before learning, the learner’s generative model 

does not include yet this mapping, but, instead, a “flat” mapping between the left backhand goal and all the 

possible postures (grey tint, since probabilities are spread). Panel C shows that, after learning from 12 
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simulation trials, the learner has acquired knowledge about these contingencies and the likelihood mapping 

in the generative model is almost completely aligned with that of the generative process (tints are close to 

black and white). 

 

Crucially, we assume that the quality of the likelihood mapping of the learner’s generative model 

determines her semantic understanding of the observed actions. Specifically, a strong likelihood mapping 

between two levels of the action representation hierarchy affords a deep, semantic understanding of the action 

meaning. Conversely, a weak (or flat) likelihood mapping cannot afford semantic understanding. This is 

because the likelihood mapping establishes a link between the different levels of action-description in the 

hierarchy of Figure 4.1. Learning a likelihood mapping creates a link between two representation levels, 

therefore expanding the learner's action vocabulary with novel conceptual representations. Furthermore, and 

importantly, this learning process grounds the novel action representations at higher hierarchical levels into 

sensorimotor experiences at lower hierarchical levels – which is key for semantic understanding within theories 

of embodied and grounded cognition (Barsalou, 2008; Pezzulo et al., 2011; Rumiati et al., 2010; van Elk et al., 

2014). The embodied approach argues that processing conceptual representations requires eliciting 

sensorimotor experiences, for example, by simulating them (Von Hofsten, 2007). Motor representations are 

then automatically elicited when we activate conceptual representations (Aziz-Zadeh & Damasio, 2008; 

Galetzka, 2017; Meteyard et al., 2012), as shown in the context of language (Borghi et al., 2019; Borghi & 

Binkofski, 2014; Borghi & Cimatti, 2010; Davis & Yee, 2021; Hauk et al., 2004). Note that here the term 

"sensorimotor experiences" should be intended broadly to encompass multiple exteroceptive, proprioceptive 

and interoceptive modalities – all of which can become linked to action representation during the learning of 

likelihood mappings.  

In summary, conceptual-semantic learning is the process that allows a novel, meaningless action to be 

associated with semantic meaning by establishing links between action representations across hierarchical 

levels, such as between conceptual representations of the action vocabulary and sensorimotor processes. This 

perspective implies that a novel observed action has no semantic meaning until the connections between higher 

and lower levels of description of the action (or likelihood mappings) are established. Until semantic meaning 

(in the sense described above) is established, the learner will be able to discriminate between actions at the 

kinematic level, but not to understand their meaning or the underlying intention – as these actions are not 

present in her action vocabulary, nor they are linked to any existing intention. In this condition, their 

representation is supposed to be episodic in memory but not semantic (Tessari et al., 2006). This distinction 

between a shallow level of action understanding that only involves its kinematics and a deeper level that also 

involves proximal goals and intentions is key when the representation is used to execute an action, such as 

during imitation, as we illustrate in the next simulation. 

4.2.4 Simulation 4: facilitation and interference between observed and executed actions   
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There is increasing evidence that the neuronal underpinnings of action execution and observation are 

largely shared, at least in humans and other primates (but also possibly in other animals). This was most 

iconically demonstrated by the discovery of mirror neurons: a set of neurons (originally found in the pre-motor 

area F5 of the macaque, di Pellegrino et al., 1992) that discharge both during the observation of an action 

directed to an object and its execution. Mirror neurons are part of a much wider action-observation network 

(AON) constituted by three bilateral cortical areas reciprocally connected: the ventral premotor cortex, the 

inferior parietal lobule, and the superior temporal sulcus (Rizzolatti & Craighero, 2004). Further studies have 

suggested that the engagement of the mirror system depends on the observer’s motor knowledge (Aglioti et 

al., 2008; Calvo-Merino et al., 2005, 2006; Cross et al., 2006; Pedullà et al., 2020). To explain the above 

findings, various researchers have proposed that action observation and understanding are based on motor 

resonance and the automatic activation of the motor system in the observer’s brain (Rizzolatti et al., 2001; 

Rizzolatti & Sinigaglia, 2010); on a “motor simulation” of the observed action in one’s nervous system (Aglioti 

et al., 2008; Calvo-Merino et al., 2005, 2006; Cross et al., 2006; Gergely & Csibra, 2003; Grafton, 2009; 

Jeannerod, 1994; Pedullà et al., 2020); or on shared (ideomotor) neural codes for perception and action 

(Hommel et al., 2001; James, 1890).  

Another convergent line of research has shown that action observation and execution reciprocally and 

continuously influence each other: observing an action can produce automatic visuomotor priming (Brass et 

al., 2001) and the automatic imitation of the same action (Heyes, 2011; Tessari et al., 2002) but interferes with 

the simultaneous execution of different actions (Kilner et al., 2003). Observing an action compatible with the 

performed movement (e.g. lifting the index finger while observing an index finger move upwards) facilitates 

reaction times, whereas observing a movement incompatible with the performed one slows down reaction 

times and accuracy (e.g. lifting the index finger while observing a finger press; Brass et al., 2001) – possibly, 

because both actions need to be simultaneously encoded in the mirror system (Catmur et al., 2009).  

In this simulation, we illustrate how the model accounts for automatic facilitation and interference 

effects, given that its representations of (beliefs about) actions are shared across perception and action in the 

model hierarchy. We compare two cases: in the first case (left panels of Figure 4.6), the learner is instructed 

to observe an action (left smash) and then to produce an imitative response. In the second case (right panels of 

Figure 4.6), the learner is instructed to observe the left smash action but to produce an incongruent action (a 

left forehand).  
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Figure 4.6. Results of Simulation 4: the dynamics of motor priming (left panels) and interference (right panel) 

for two learners. The left learner observes a left smash and imitates the same action (motor priming). The right 

learner observes a right forehand but executes a left smash (motor interference). The discrepancy can be 

observed in the less precise “target postures” in the E panel to the right, where the grey tint indicates 

candidate target postures that correspond to the observed sequence 1-3-2-3. 

 

Figure 4.6 shows that observing an action facilitates the execution of congruent, imitative responses 

(left panels) but interferes with the execution of incongruent actions (right panels), as shown empirically. This 

becomes evident by considering that during the execution of the same (left smash) action, the beliefs about 

policies (see the Methods) are more uncertain in the E panel on the right compared to the E panel on the left.  

4.2.5 Summary and discussion of the simulations 

The simulations described in this section help illustrate the key mechanisms of active inference that 

are relevant to modelling how we understand and imitate actions. Here, we summarize them by highlighting 

three main points. First, action observation and understanding can be cast as inferential processes that engage 

active information-gathering strategies (see Simulation 1). Understanding an action requires a hierarchical 

generative model to produce a cascade of perceptual hypotheses and predictions (about what action one is 

currently observing, the sequence of motor acts and the ensuing observations) and active sampling strategies 

to test the predictions by selecting the most salient observations. The fact that an action repertoire is 

hierarchically arranged is a common assumption across theoretical and neurobiological studies (Grafton & de 

C. Hamilton, 2007; Jacob & Jeannerod, 2005; Pacherie, 2008). Here, we move from theoretical descriptions 
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of hierarchies to a fully implemented computational model. Our proposal emphasizes that the hierarchical 

action representation constitutes a generative model that supports inferential dynamics and the active selection 

of relevant information. This perspective, therefore, aligns action understanding to a broader view of predictive 

coding and inference in the brain (Friston, 2005, 2008; Friston, FitzGerald, et al., 2017b; Parr et al., 2022; 

Pezzulo et al., 2018a, 2021). 

Second, there is a fundamental difference between oculomotor dynamics during the observation of 

familiar actions (Simulation 1 and 2) versus novel actions (Simulation 3). In the former case, when the 

observed action is already part of the learner's action repertoire (and generative model), oculomotor strategies 

are guided by the imperative of reducing uncertainty about what action one is observing. In the latter case, 

when the action is not part of the learner's action repertoire (and generative model), oculomotor strategies are 

guided by novelty-seeking. Importantly, the two imperatives of uncertainty-reduction and novelty-seeking 

emerge naturally from the active inference framework (particularly from the expected free energy equation, 

see the Methods). In both cases, the observation policy maximizes information gain; however, the type of 

uncertainty differs when familiar and novel actions are observed. In the former case, the model needs to resolve 

uncertainty about the hidden states causing the observations (this is called hidden state exploration and is 

driven by salience). In contrast, in the latter case, the model needs to establish how hidden states generate 

outcomes driven by uncertainty about the model parameters (this is called parameter exploration and is driven 

by novelty). Notably, these two imperatives prescribe two different behaviours (Schwartenbeck et al., 2019). 

Hidden state exploration predicts that the learner actively seeks salient observations that allow for 

unambiguously inferring the hidden states that generate the outcomes. In contrast, parameter exploration 

predicts that the learner actively seeks novel combinations of hidden states and outcomes, because this 

determines the learning of how outcomes are generated. Only via this novelty-seeking behaviour can the 

learner acquire knowledge about the relationships between different levels of action representation and 

between hidden states and observations (for novel actions), hence filling the gaps in her generative model. This 

is important insofar as we assume that the meaning in action semantics emerges from pursuing novelty across 

the multiple hierarchical levels of action representation. The learner can still track novel actions without an 

integrated action representation, but this would not correspond to a deep semantic representation in our 

account. 

Third, in the proposed model, hierarchical action representations and internal models are shared across 

action execution and perception. The sharing can prime the execution of actions that are congruent with an 

observed action and interfere with incongruent actions. This is important insofar as it highlights the importance 

of engaging one's action repertoire during the observation of actions executed by others, as highlighted by a 

large body of neurobiological evidence - as we will elaborate below.  
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4.3 Neurobiological underpinnings of the proposed model 

So far, we described the functioning of the hierarchical active inference model but disregarded its 

relations with neurobiological findings about action execution and understanding. Here, we briefly discuss 

how the hierarchical active inference model links to neurobiological findings about the functioning of dorsal 

and ventral visual streams and the action observation network. 

4.3.1 Mapping the model's computational strategies into the multiple-routes model for action understanding 

Simulations 1, 2 and 3 suggest that the visuomotor system recapitulates and solves at the 

neurocognitive level the trade-off between engaging explorative saccades and goal-directed saccades (see the 

Methods for the rationale). Furthermore, the visuomotor system solves the trade-off between salience and 

novelty-driven exploratory behaviour, which is particularly relevant for modulating learning. To recap, both 

novelty and salience (as Bayesian surprise) elicit attentional capture and arousal that direct appropriate 

responses and enhance learning. Even though they are usually confounded, they are distinct concepts: while 

novelty is associated with acquiring representations (as we showed), surprise relates to improving predictions. 

Indeed, novelty entails a divergence from memory, while surprise entails a divergence from expectations 

(Barto et al., 2013). Thus, the fundamental prediction of our formalization is that during action observation, if 

the context allows for learning, observation will be driven by both novelty and surprise. On the opposite side, 

when observation is restricted to inference about movement kinematics, it will be driven only by surprise. We 

suggest that surprise and novelty might recruit partially distinct neuronal circuits and computational strategies. 

A strategy named parameter exploration (Schwartenbeck et al., 2019) is driven by visual novelty and is 

engaged to obtain meaning about actions, which translation is associated with skilful motor control; a strategy 

named hidden states exploration is driven by salience (Bayesian surprise) and is engaged to recognize the 

kinematic aspect of actions and the motor translation is associated with short-term, online, sensorimotor, and 

flexible responses. 

This description fits well with multiple-routes models for action understanding, tool-use and imitation. 

A two-routes cognitive model (initially proposed by Rothi et al., 1991), and later developed by others (e.g., 

Buxbaum & Randerath, 2018; Cubelli et al., 2000; Rumiati & Tessari, 2002; Tessari et al., 2007) based on the 

study of apraxic patients, proposes that the visuomotor system, during the translation of the visual input 

(gestures or objects) into a motor program (the corresponding action), can follow a semantic route recalling 

conceptual and semantic representations of action, or a direct route that bypasses semantic information 

transforming the visual input into a motor act. Here, we propose a parallelism: within the semantic route, 

actions are observed according to salience and novelty-driven visual attention and then imitated according to 

procedural motor control (see the Methods for an illustration of how motor control is implemented in the 

model). On the other hand, within the direct route, actions are observed according only to salience-driven 

attention and imitated according to goal-directed motor control. Therefore, we suggest that the two routes may 

encode two distinct cognitive and behavioural strategies that correspond to the salience-driven hidden state's 
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exploration over movements with goal-directed control for the direct route and both novelty and salience-

driven parameters exploration with procedural control for the semantic route. Furthermore, the semantic 

encoding is hierarchical in terms of cognitive representation, which is also reflected in the neuroanatomy as it 

will be explained soon. Studies support our prediction in the context of imitation where, when the context is 

not stable enough, the cognitive strategy for action recognition and imitation is empowering the direct route 

with surprise-driven exploration (hidden state exploration) even when meaningful actions are displayed (see 

(Tessari et al., 2006, 2007, 2021, 2022; Tessari & Rumiati, 2004). The alternative strategy (parameter 

exploration) is engaged when there are enough stable regularities in the world to be learned. Therefore, surprise 

driven hidden state exploration will be useful in conditions where behaviour must be adapted to trial-by-trial 

changes.  

Similarly, our account of the two strategies can be associated with the two-action system model for 

encoding object affordances in the context of tool use: one pathway entails affordances based on objects 

structure and is specialized for visuomotor interactions with objects based on currently observed visual 

information, such as shape, size, and location that are constantly updated and processed online (i.e., the 

Structure system). The other pathway entails their functional manipulation and relies upon long-term, 

conceptual representations and extracts the features of the action that remain constant across occurrences (i.e., 

the Function system; Binkofski & Buxbaum, 2013; Jax & Buxbaum, 2010). Once again, at the computational 

level, the Structure system resembles the idea of surprise-driven hidden state exploration and goal-directed 

control. The Function system resembles what we have proposed for novelty-driven parameter exploration, as 

it permits extracting the constant features of the action and learning the contingencies between kinematic and 

higher-level, semantic aspects.  

The cognitive processes underlying the two routes have been extensively investigated in several 

neuropsychological studies with brain-damaged patients with a focus on the neural and cognitive correlates of 

imitation of familiar and novel actions (Achilles et al., 2016, 2019; Bartolo et al., 2001; Cubelli et al., 2000; 

Goldenberg & Hagmann, 1997; Mengotti et al., 2013; Peigneux et al., 2004; Rumiati et al., 2005; Tessari et 

al., 2007) and support a network in the left hemisphere: lesions of the ventro-dorsal stream (from medial 

superior temporal area, MT/MST, to the inferior parietal lobule, and then to the ventral premotor cortex) 

produce impairments to more conceptual aspects of action representation, such as skilled use and pantomime 

of objects (e.g., Martin, Nitschke, et al., 2016a; Martin, Dressing, et al., 2016; Tessari et al., 2007, 2021). On 

the contrary, the direct route and the processing of new movements have been associated with the dorso-dorsal 

stream (from V3a to V6 to V6a, to the superior parietal lobule, and then to the dorsal pre-motor areas 

(Binkofski & Buxbaum, 2013; Hoeren et al., 2014; Martin, Dressing, et al., 2016; Mengotti et al., 2015; Tessari 

et al., 2007, 2021). At last, the processing of known gestures and the semantic route have been related to 

regions belonging to both the ventral (from V2 and V4 to the posterior inferotemporal, the central and the 

anterior inferotemporal areas) and the ventro-dorsal streams (Hoeren et al., 2014; Martin, Nitschke, et al., 

2016a; Martin, Dressing, et al., 2016; Rijntjes et al., 2012; Rumiati et al., 2005; Tessari et al., 2021; Weiller et 

al., 2009, 2011b), suggesting that the ventral stream might decode the meaning of a movement (and intransitive 
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gestures particularly), and the ventro-dorsal stream the tool-related, meaningful gestures. The dorso-ventral 

structures also allow us to infer the possible functions from structure (Binkofski & Buxbaum, 2013; 

Goldenberg & Hagmann, 1998; Heilman et al., 1997) and can discover the alternative functions of familiar 

tools (Heilman et al., 1997; Roy & Square, 1985). This ability recalls the parameter exploration strategy we 

have argued to emerge during learning. 

In sum, we propose that there is a correspondence between the salience driven low-level hidden state 

exploration plus the goal-directed control (at the computational-cognitive level of description), the direct route 

(at the algorithmic level) and the dorso-dorsal route (at the anatomical level). On the other hand, we propose a 

correspondence between salience and novelty driven parameter exploration plus procedural control (at the 

computational-cognitive level), the semantic route (at the algorithmic level) and the ventral and ventro-dorsal 

streams (at the anatomical level). Finally, higher semantic aspects, such as abstract and symbolic 

representations, can be associated with the ventral stream. See Figure 4.7 for a graphical illustration of this 

proposed taxonomy. 

 

Figure 4.7. A plausible neural implementation of the proposed hierarchical model (this is a modified version 

of the neuro-cognitive model proposed by Tessari, Proietti & Rumiati, 2022, on Cognitive Neuropsychology). 

Visuomotor cognition is distributed onto multiple routes in the dorsal and ventral pathways. According to our 

proposal, the dorso-dorsal stream is mainly dedicated to lower-level aspects of action representations, the 
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dorso-ventral pathway affords more general aspects of action semantics and the ventral stream is dedicated 

to the most abstract features. Please see the main text for an explanation.  

 

4.3.2 The action observation network 

In simulation 4, we investigated the interactions between action observation and execution. It has been 

proposed that these two processes reciprocally and continuously influence each other since motor and visual 

knowledge share a common representation (Gazzola & Keysers, 2009). In our model, understanding and 

execution are influenced by a common memory parameter, as shown in simulation 2 (and in details in the 

Methods), where prior experience (including motor knowledge) can influence eye movements at the 

observation level. 

At a neurophysiological level, the mirror neuron system (a cortical circuit connecting ventral premotor 

cortex, inferior parietal lobule and superior temporal sulcus) was associated with understanding the meaning 

of the observed (object-oriented) action by extracting and representing its meaning and goal (Fogassi et al., 

2005; Rizzolatti et al., 2001; Rizzolatti & Craighero, 2004). This has led to the direct-matching hypothesis 

(Iacoboni et al., 1999) that argues that action understanding occurs when the visual representation of the 

observed action is mapped onto the observer’s own motor representation of the same action. More recently, a 

predictive coding account of the mirroring phenomenon has been advanced: it has been proposed that the 

mirror neuron system follows a predictive coding scheme in relation to action observation where the most 

likely cause of the observed movement is inferred by minimizing prediction error in the cortical hierarchy of 

the action-observation network (AON; Friston et al., 2011; Kilner et al., 2007). Generally speaking, on the 

predictive coding account, what the visuomotor system does during action observation is resolving the inverse 

(inference) problem created by the one-to-many mapping of action-to-goals. For this, the visuomotor system 

represents the best explanation of the observed action as a generative model (p(goal | movement)), where the 

AON predicts the sensory consequences of what would be the most likely set of movements to be executed to 

achieve that goal. The predictive coding scheme supports the continuous comparison between the predicted 

sensory information and the actual sensory input, and ultimately the inference of the action goal (when 

prediction error is minimized). A crucial assumption is that mirror neurons discharge during the observation 

of an action because they are part of the same generative model that predicts the sensory input related to that 

action (Friston et al., 2011; Kilner et al., 2007). Hence, predictive action monitoring is the functional role 

associated with the mirror neuron system. Motor resonance is not achieved by a direct matching mechanism 

but by emulative action inference or motor, embodied, simulation (Csibra & Gergely, 2007; Gallese & 

Goldman, 1998; Jeannerod, 2001, 2006; Pezzulo, Barsalou, et al., 2013). Please note that the predictive coding 

formalization is very similar to the Bayesian belief updating method adopted in our model, with two main 

differences. First, our model is formulated in discrete time, whereas predictive coding is formulated in 

continuous time – which implies not just a formal difference but also a different form for the “neuronal message 

passing” in the two schemes (see Parr et al., 2022 for details). Second, and importantly, here we use active 
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inference, which extends predictive coding to also cover action dynamics. In the model proposed here, the 

generative model (putatively corresponding to the AON) supports oculomotor control in addition to movement 

prediction. In other words, our model would imply the AON and the mirror neuron system in the active 

perception of observed movements (Donnarumma et al., 2017) – a hypothesis that remains to be tested in 

future studies. 

 

4.4 Methods 

4.4.1 The hierarchical model used in the simulations 

Active inference is a generic framework to model cognitive phenomena but realizing each set of 

simulations requires designing a specific generative model. To realize the simulations reported in this article, 

we used the hierarchical generative model shown in Figure 4.8. The hierarchical arrangement of the generative 

model shown in Figure 4.8 reflects – and formalizes – the hierarchical organization of action representations 

shown in Figure 4.1; see Friston et al., 2018; Mirza et al., 2016 for related models in active inference and 

Botvinick, 2008; Friston, 2008; Kiebel et al., 2008, 2009; Lee & Mumford, 2003 for a broader view of 

hierarchical models in the brain. 
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Figure 4.8: Schematic of the hierarchical generative model used in this article. (A) The Action Understanding 

level. At this level, there are two hidden state factors and two outcome modalities. The first factor is the 

proximal goal performed by the teacher (the sequence of postures) while the second factor is the categorization 

of the intention. The two outcome modalities are exteroception and feedback. (B) The Action Observation level. 

At this level, two hidden state factors and two outcome modalities exist. The hidden factors are the three 
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possible postures of the teacher and the four possible eye positions of the agent. The two outcome modalities 

are exteroception (what) and proprioception (where). (C) The Action Execution level. At this level, there are 

one hidden factor and one outcome modality. The hidden factor is the posture executed. The outcome modality 

is proprioception. The notation used in the generative model follows standard conventions to describe 

generative models under active inference (Friston, FitzGerald, et al., 2017b). Nodes denote probability 

distributions and edges denote probabilistic relations between them. The capitalized letters A-E denote the 

matrices of the model: the A (likelihood), B (transition function), C (prior over observations), D (prior about 

hidden states), and E (prior about policies) matrices. The G denotes expected free energy. The lowercase 

letters a, d and e denote the parameters of the respective matrices. The lowercase letters s, o and π denote 

hidden states, observations and policies, respectively. The symbol γ is a precision parameter used for policy 

selection. See the main text and Friston et al., 2018 for technical details. 

 

In the generative model shown in Figure 4.8, hidden state factors correspond to different states of the 

world, such as the location (where) and category (what) of an element (e.g., the teacher's body parts). Outcome 

modalities correspond to the possible observations. Multiple outcome modalities are involved in accounting 

for parallel sources of sensory input, such as visual inputs and proprioceptive sensations.  

Our generative model comprises three levels that are reciprocally connected. The Action Understanding level 

models the inference of proximal goals from postures and of intentions from proximal goals (hence formalizing 

the functioning of levels 3 and 4 in Figure 4.1). The Action Observation level models the recognition of 

movement kinematics and postures (hence formalizing the functioning of levels 1 and 2 in Figure 4.1) as well 

as action observation dynamics, or the active sampling of information. Finally, the Action Execution level 

models motor responses.  

Action recognition exploits the reciprocal connections between the Action Understanding and the 

Action Observation levels. The hidden states at the Action Understanding level are propagated top-down to 

influence state transitions at the Action Observation level, by setting their prior beliefs (Friston et al., 2018). 

In other words, the Action Understanding level generates the hypotheses that are tested by engaging saccades 

at the Action Observation level. On the other hand, the posterior beliefs about postures at the Action 

Observation level are propagated bottom-up and become observable outcomes at the Action Understanding 

level (Friston et al., 2018). This provides bidirectional interactions between variables at different levels of the 

hierarchy because the inference of each latent variable is simultaneously influenced by messages passed from 

different directions.  

Please note also that as usual in hierarchical models, state transitions at different levels proceed at 

different time rates. Specifically, the Action Understanding level proceeds at a slower time rate because to 

generate an outcome at each time step, it must “wait” for all the outcomes from the Action Observation level. 

In our simulations, to categorize a sequence of postures and their goal, the agent employs five timesteps, each 

of which requires at most four timesteps of posture categorization at the Action Observation level. In addition, 
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the simulated reaction times are obtained by running the toc function in Matlab to evaluate the time employed 

for the categorization of each posture and the associated proximal goal. 

The execution of motor actions exploits the reciprocal connections among all three levels. The 

translation from observed movements into goals occurs at the Action Understanding level, whereas the 

translation from goals into procedural motor responses uses the connections between the Action Understanding 

and Action Execution levels. Finally, goal-directed motor responses occur thanks to the connections between 

the Action Observation and Action Execution levels. Please see below for a discussion of procedural versus 

goal-directed pathways in the model. Note that the Action Execution level proceeds at its own pace and is not 

temporally linked to the other levels. 

The generative model shown in Figure 4.8 generates outcomes as follows: a policy is selected at the 

Action Understanding level using a softmax function of expected free energy. The state-transition probabilities 

(B matrices) prescribed by the selected policy determine the sequence of hidden states. These hidden states 

generate outcomes at this level (through the A matrixes) and the initial hidden states at the Action Observation 

level (through to the D vectors). Please note that during inference, new observation can lead to a revision of 

hidden states and of the expected free energy (via the C matrices), hence influencing policy selection. This 

means that the agent starts acting driven by a given policy but can select new policies along the way based on 

new observations.  

Computationally, the agent solves the task by engaging in approximate Bayesian inference and 

(variational) belief updating (Beal, 2003). As described in the introduction, variational Bayes is based on 

introducing an arbitrary distribution called variational density or recognition density q(s) and in rendering it 

maximally similar to the true posterior probability of the generative model p(s|o) optimizing it by the iterative 

updating of its sufficient statistics through, for example, a gradient descent algorithm. Furthermore, active 

inference assumes that this form of variational inference can be directly mapped into a set of hypotheses about 

how messages are transmitted at the neural level and used to predict neuronal responses during hidden states 

estimation and action selection (Friston, FitzGerald, et al., 2017b; Friston & Kiebel, 2009). Under the 

hypothesis that the brain encodes a generative model of its sensations, and that different groups of neurons 

encode the beliefs specified in the generative model (e.g., beliefs about intentions, proximal goals and 

postures), the belief dynamics illustrated in Figures 4.2-4.6 can be equated to the dynamics of neural activity 

of these groups of neurons, which evolve in a way that minimizes free energy. 

4.4.2 Action recognition dynamics are driven by salience and/or novelty, in context-dependent ways 

Action recognition dynamics are guided by different drives, depending on the context. In the context 

of familiar, meaningful actions (Simulations 1, 2 and 4) observation policies are driven by the need to reduce 

uncertainty about hidden states. This uncertainty is represented by Bayesian surprise as it scores the divergence 

between the predicted and the actual outcomes. Generally speaking, the model tends to predict familiar 

sequences of postures that it has seen most often in the past (see below) and that are encoded into prior beliefs 

over the initial states D at the Action Understanding level. Hence, during the recognition of a familiar, 
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meaningful action, high-level prior expectations generate hypotheses about movement kinematics that are 

verified by engaging epistemic actions – eye movements that sample information to reduce uncertainty. Eye 

movements are directed towards salient locations, which are the locations that the model expects to reduce 

uncertainty the most, if a saccade were performed towards them (Donnarumma et al., 2017; Friston, Adams, 

et al., 2012; Parr & Friston, 2017). In this perspective, salience is defined as information gain, or the potential 

resolution of uncertainty about hidden states (Friston et al., 2015). 

The observation of novel actions (Simulation 3) is substantially different from the observation of 

familiar actions, as the model has the opportunity to learn novel contingencies between proximal goals and 

postures. In our model, these contingencies are encoded in the (a parameters of the) A matrix that links hidden 

states (proximal goals) and outcomes (postures) at the Action Understanding level. Crucially, when the model 

is allowed to learn (a) parameters, the expected free energy equation has to be expanded to include a new 

(novelty) term: 

 

G(𝜋)⏟
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐹𝐸

 = D𝐾𝐿 [𝑞(𝑜|𝜋) || 𝑝(𝑜)]⏟            
𝑅𝑖𝑠𝑘

  + E𝑞(𝑠|𝜋)[H[𝑝(𝑜|𝑠)]]⏟            
𝐴𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦

 −  E𝑝(𝑜|𝑠)𝑞(𝑠|𝜋)[D𝐾𝐿[𝑞(𝐀|𝑜, 𝑠) || 𝑞(𝐀)]]⏟                      
𝑁𝑜𝑣𝑒𝑙𝑡𝑦

 

 

The novelty term in this expanded equation scores how much the beliefs in the a parameters (mapping 

states to outcomes) are expected to change after a new observation. In turn, including this new term in the 

expected free energy ensures that the agent will tend to select policies that pursue novelties. This entails a form 

of active learning, during which the active inference agent will preferentially look at (novel) locations that it 

expects to change the a parameters the most (Schwartenbeck et al., 2019). In sum, the expanded free energy 

equation highlights the importance of engaging in two forms of exploratory behaviour, which are guided by 

salience and novelty, respectively. While pursuing salience is useful to reduce the uncertainty about hidden 

states (ambiguity), pursuing novelty is useful to reduce uncertainty about model parameters (sometimes called 

ignorance). 

4.4.3 Two varieties of model learning: model expansion and statistical sequence learning 

The model engages in two varieties of learning. The former kind of learning is a model expansion. As 

discussed above, in Simulation 3, we allowed the model to expand its repertoire of semantic action 

representations by learning novel contingencies between proximal goals and postures in the A matrix. This has 

been done by setting a column that encodes one of the proximal goals (left backhand) in the A matrix as a 

uniform distribution. This way, the likelihood mapping for that state entails equal probability for all 

observations, carrying no information. We allowed learning over 12 consecutive trials, but we prevented the 

learner from trying to recognize the left backhand during the first 11 trials of learning. By doing so, we ensured 

that the learning of the left backhand was done in an unsupervised manner, without feedback from correct or 
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incorrect recognition, which would have been misleading in early learning phases; see (Smith et al., 2020) for 

a similar approach.  

The latter kind of learning is a process of statistical sequence learning. When the process of action 

recognition is repeated for multiple trials, the agent accumulates information over time and acquires familiarity 

with the observed sequences of postures. Formally, the agent sequentially updates its prior beliefs about the 

sequence of postures, by accumulating Dirichlet distributions in the d parameter (Beal, 2003; Blei et al., 2003; 

Friston et al., 2016). This statistical learning process ensures that the agent can assign a higher prior probability 

to the sequences of postures that were observed more often in the past.  

4.4.4 Motor control and its two components: procedural and goal-directed  

The model determines the selection and control of imitative responses by two components. The first 

component is the posterior belief about the proximal goals, as encoded by the prior beliefs over the policies 

(E) and the associated e parameter at the Action Execution level. The e parameter constitutes a form of 

procedural motor knowledge that guides action selection in a habitual manner - which means that the agent 

expects to execute the (next action in the) sequence it has observed more often in the past. The second 

component that determines action selection is the posterior belief about the (recognized) postures, which – via 

a form of visuo-spatial working memory (Cai et al., 2018; Logie, 1986) – influences the agent’s prior 

preferences (C) and hence, in turn, the expected free energy (G). In short, the agent expects to execute the 

same action that it has inferred by observing the teacher’s movements. We consider the former a procedural 

memory (Engelkamp & Zimmer, 1984, 1985, 1989) as it uses cached (E) values that are learned over time and 

the latter a goal-directed form of control as it uses expected free energy (G) computations that take the agent’s 

prior preferences (C) into account. 

The specific action executed depends on the weight given to the procedural (E) and goal-directed (G) 

components. The relative influence of the two components is determined by the parameter γ (gamma) which 

corresponds to the precision of beliefs about the expected free energy. This process of precision weighting 

corresponds to attentional modulation at the cognitive level and synaptic gain at the neurophysiological level 

(Clark, 2013a; Feldman & Friston, 2010; Parr & Friston, 2017). In our simulations, the modulation of the γ 

parameter is implicated in the imitative responses for familiar and novel actions. When the learner observes a 

familiar action, the imitative response is mostly driven by the procedural memory (E) of the action sequence, 

while goal-directed control generated by G can be engaged with a lower level of precision, as a form of online 

monitoring of the movements. Notably, by engaging procedural memories, the model processes an entire action 

sequence as a whole rather than evaluating its component actions one by one - a mechanism that has been 

sometimes called "chunking" (Botvinick, Niv, et al., 2009; Dezfouli et al., 2014; Dezfouli & Balleine, 2013; 

Miller et al., 1960). In active inference, this sequential knowledge is encoded in a (V) matrix that relies on 

prior beliefs about the policies (E). On the other hand, when the learner observes a novel action, she needs to 

rely on expected free energy (G) computations to perform a step-by-step online encoding and monitoring of 

the movement. In this case, the weight of the procedural component (E) is attenuated, reflecting the lack of 
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prior experience. Hence, while imitative responses are more driven by procedural knowledge in the former 

case, in the latter case, they are more driven in a goal-directed manner. This trade-off between goal-directed 

and procedural (or habitual) control strategies has often been related to a difference between model-based and 

model-free methods of reinforcement learning (Daw et al., 2005; S. W. Lee et al., 2014; Maisto et al., 2019; 

Pezzulo, Rigoli, et al., 2013). More of this is shown in chapter 6. 

Interestingly, the two (procedural and goal-directed) components of action can trigger different actions 

in the case of non-imitative actions, as in Simulation 4. If the agent were instructed to execute a non-imitative 

action, the goal-directed (G) component would correctly infer the to-be-executed action. However, as 

discussed above, the agent's procedural component (E) is implicitly tuned to execute imitative actions. Hence, 

it would trigger an imitative response that interferes with the correct action; see the right panel of Figure 4.6. 

4.4.5 The contributions of mirror mechanisms to action observation, understanding and selection 

In our model, mirror mechanisms contribute to action observation, understanding and selection in two 

main ways. First, the agent's motor knowledge about action sequences encoded in the e parameter influences 

the d parameter that encodes prior expectations about the next observed actions, which guides in a cascade 

action observation processes (Donnarumma et al., 2017; Friston et al., 2011). In this way, the agent implicitly 

expects to observe the action sequence she knows the most. Second, as discussed above, posterior beliefs about 

the (inferred) postures at the Action Recognition level become prior preferences (C) at the Action Execution 

level. This means that when a posture is recognized, the agent automatically prepares an imitative response 

that might facilitate the execution of congruent actions but impair the execution of incongruent actions, as 

often observed experimentally (Brass & Heyes, 2005). 

 

4.5 General discussion 

We have shown how action observation, understanding and execution can be represented in a 

hierarchical active inference model to illustrate a plausible way of how the visuomotor system may compute 

visual information and translate it into a motor program.  

Our model highlights that perception can be treated as an inferential process based on a hierarchical 

generative model; and that it is based on active information sampling strategies. Indeed, in our proposed model, 

building a perceptual representation requires an active process of selecting salient data to test the expectations 

of an internal generative model - and how this saliency can be influenced by prior information. Furthermore, 

our model highlights a fundamental difference between oculomotor strategies that are guided by uncertainty 

reduction and prior knowledge during the observation of familiar actions, versus novelty-seeking during the 

observation of novel actions. Crucially, pursuing novelty generates exploratory behaviour that permits 

acquiring knowledge about the relationships between the several levels of action representation. We argue that 

this novelty-based learning process is key to acquiring meaningful action semantics. Another relevant aspect 
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of our model is that it reuses the same internal models and codes across action prediction, understanding and 

response preparation. The sharing of common models and codes produces mirror responses, priming or 

interference effects, depending on the congruency between observed and executed actions. Finally, we 

discussed the putative neuroanatomical correlates of key mechanisms of the model. We highlighted that the 

different strategies of visual exploration and motor control used by the model could map to different routes of 

visuomotor cognition within the dorsal and ventral pathways. All these proprieties emerge naturally from the 

process of active inference as vastly described in the literature. What is unique in our proposal is the generative 

model's particular (deep) structure and how messages are propagated from one block to another. On this 

account, an element of novelty is how the posterior beliefs from both levels of understanding contribute to 

action selection at the Action Execution level and how the posteriors about the executed actions are propagated 

back to the understanding levels (see the method for a detailed description of the model). This organization of 

the model recapitulates and supports several experimental findings while offering a formal perspective under 

a unique solution. Therefore, the model permits the formulation of some empirical predictions that can be 

tested experimentally in future studies. For example, at the behavioural level, this model predicts that during 

the semantic learning of an action, humans will vary their pattern of observation according to the amount of 

stimulus novelty and salience that drives the sampling of new saccade location. This highlights the different 

contributions to the attentional capture of novelty and surprise (Barto et al., 2013). Furthermore, we extended 

the notion that cues and expectations can alter motor behaviour by showing that these alterations (e.g., Jacquet 

et al., 2012) can be level-of-representation-specific as in the case of affordances (Sciulli et al., in preparation). 

This may clue to further investigations into the phenomenon of mirroring or motor resonance as the effect 

seems to be stronger for lower levels of representations (e.g., object-oriented actions) and disappears as the 

action becomes more symbolic and abstracted (Csibra & Gergely, 2007). Another set of model predictions 

regards the neuronal dynamics that we would expect to observe during action observation and imitation, if 

they correspond to inferential processes, as our active inference model assumes. The belief dynamics plotted 

in Figures 4.2-4.6 can be easily mapped into (simulated) neuronal population dynamics, using the methods 

illustrated in Friston et al., 2017. The systematic testing of the model predictions in experimental conditions is 

an objective that we intend to pursue in the future. Furthermore, the present model can be involved in 

neuropsychological studies on patients following the trend of computational phenotyping (Krakauer & 

Shadmehr, 2007; Schwartenbeck & Friston, 2016), where a “digital version” of the patient is simulated by 

fitting the patient’s action into the model and recover the parameters of the model that generated them. 

Specifically, a prior or a likelihood matrix can be damaged to resemble neuropsychological disorders. See the 

next chapter for developments in this direction. Finally, while the goal of the present papers was to propose a 

general formal (active inference) scheme for visuomotor cognition, the proposed model could be further 

elaborated by including more realistic and detailed motor control models that permit simulating sophisticated 

behavioural tasks, beyond the simple tennis example used here by associating the kinematic level with a 

generative model for continuous states spaces as shown in Parr et al., 2021 and Parr & Friston, 2018. 
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Chapter 5 

2nd Architecture: limb apraxia and active inference in the visuomotor 

pathways 

 

This study provides a computational account of apraxia and the visuomotor system under the active 

inference framework. In this context, the computational aspects of the brain are explained as a process of 

Bayesian inference to minimize an approximation of the surprisal associated with sensory observations, called 

variational free energy. The aim is to show how the neurofunctional organization of the visuomotor system 

becomes an emergent property of free energy minimization, under the appropriate generative model. The 

model proposed suits the current neuropsychological literature as it recapitulates cognitive models based on 

the two visuomotor pathways. By applying virtual lesions to the model, we provide the profiling of five apraxia 

syndromes that affect different cognitive aspects of motor behaviour. These new hypotheses about the 

neurocomputational basis of the pathology can offer a more formal quantitative approach in future clinical 

research. 

 

5.1 Introduction 

In this study, we aim to provide a unified perspective on the visuomotor system and its deficits by 

jointly describing them in neuropsychological, computational and neuroanatomical terms under the framework 

of active inference, where brain structures are considered to entail a probabilistic generative model that 

explains the causes that generate sensory observations, and brain functions are cast as a process of active 

Bayesian inference to minimize an approximation of the improbability of those sensations. By adopting this 

formalization, we provide a computational account of apraxia with a generative model that suits the 

neurofunctional evidence of previous cognitive and neuroanatomical models. We start with an overview of 

limb apraxia. Then we propose a descriptive cognitive model of the visuomotor system that, starting from 

previous historical proposals, provides an updated perspective that can be coherently mapped with the current 

neuropsychological and neuroanatomical literature. We then propose a generative model able to account for 

the tasks executed during clinical assessments coherently. We refer to some key theoretical constructs that are 

useful to motivate the structure of the generative model and how it recapitulates the previously shown cognitive 

model. Next, we explain how the artificial lesions are applied to the model and how they are justified when 

pathology is cast as optimal inference with suboptimal priors. Lastly, we proceed with profiling five syndromes 

affecting the visuomotor system due to brain damage by providing a simulation of behaviour and a formal 

illustration of how specific pathological priors may characterize the deficits. We aim to account more formally 

for the predictions generated by the cognitive model by addressing how behavioural impairment may be 

produced at the neurocomputational level. In each simulation, the impairment can be observed both at the 
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behavioural level, observing how the simulated patient is able or unable to perform the task correctly, and at 

the level of probabilistic beliefs. This approach is inspired by the one of computational phenotyping, which 

originated in psychiatric research (Schwartenbeck & Friston, 2016), where the computations performed by the 

brain are associated with measurable behaviours (Krakauer & Shadmehr, 2007; Mirza et al., 2016; Testolin & 

Zorzi, 2016).  

 

5.2 Limb apraxia 

Limb apraxia is a deficit of the intentional execution of actions, firstly described by Steinthal (1881) 

as an impairment in planning, executing actions and moving a body part because of a brain lesion. Crucially, 

the deficits are caused by neither a lack of comprehension of the task instructions nor a deficit of the 

sensorimotor system, object recognition problems or frontal inertia (De Renzi et al., 1986; Heilman & Rothi, 

1993). Furthermore, the deficit affects bilateral actions as the impairments manifest when either the affected 

or the unaffected hand is used (Heilman & Rothi, 2003). The assessment of apraxia usually involves imitation, 

instead of the verbal probing of actions, since the cognitive-motor deficit often coexists with language 

comprehension deficits (Goldenberg, 2014; Renzi, 1985). In particular, imitation of both meaningful and 

meaningless actions is required as the latter are often impaired and are not represented in long-term memory 

(Goldenberg et al., 1996; Mengotti et al., 2013; Rumiati & Tessari, 2002a; Tessari et al., 2007). Meaningless 

actions carry no meaning as they do not produce an identifiable effect on the environment, either material or 

communicative, and their interpretation is related to recognizing only kinematic aspects (Goldenberg, 2014; 

Proietti et al., 2021). On the other hand, in meaningful actions, their meaning can be recognized and reproduced 

from the stored representation in long-term memory. Moreover, they can be distinguished into transitive 

actions, involving actual manipulations (such as actual tool use or the performance of complex sequences of 

actions, or pantomime of tool use) and intransitive actions, which involve symbolic gestures (such as the 

military salute or waving goodbye).  

 

5.3 A cognitive model of praxis  

The first cognitive model of praxis was proposed by Rothi and colleagues (Rothi et al., 1991) based 

on the models of language production (Patterson & Shewell, 1987) and has been later implemented by many 

authors (Buxbaum & Randerath, 2018; Cubelli et al., 2000; Rumiati & Tessari, 2002a). The model describes 

the cognitive elaboration involved in different motor tasks, such as recognizing and producing actions by 

imitating, pantomiming on verbal command or at object view, and the possible processing failures that can 

occur at different steps of the elaboration based on input and output processes, type of stimulus and modalities 

requirements (Rothi et al., 1991). In this study, we propose a further elaborated version of the cognitive model 

and a mapping with neuroanatomical substrates and computational mechanisms. 
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Our model entails three routes that map visual inputs into motor outputs. A first direct, sub-lexical, route based 

on a visuo-motor conversion mechanism parses the observed action in smaller and simpler motor components 

without involving stored action representations. Such a route is the only one involved in the reproduction of 

meaningless actions (nevertheless it can also be involved in the reproduction of meaningful actions). A lexical 

route is specific for meaningful actions that already belong to a person’s repertoire and can be further divided 

into semantic and non-semantic subroutes. The non-semantic route involves an action and tools-related 

recognition system which drives a motor output (action output system) by reproducing only over-learned, 

meaningful actions, encoded as action engrams (Rumiati & Tessari, 2002a; Tessari et al., 2021). This route 

mostly relies on structure-related components of actions and tools (Cubelli et al., 2000; Rothi et al., 1991; 

Tessari & Rumiati, 2004). On the other hand, the semantic route involves more abstract components that 

include a vocabulary of actions (action semantics) and higher conceptual representations. It provides a 

mechanism for motor programs storage that is driven by an explicit gesture identification process and by 

semantic representations of tools, such as their function (Bartolo et al., 2001; Buxbaum & Randerath, 2018; 

Cubelli et al., 2000; Mengotti et al., 2013; Rumiati & Tessari, 2002a). All routes converge into a motor working 

memory buffer that holds temporarily both meaningful or meaningless motor plans for being performed 

(Buxbaum & Randerath, 2018; Cubelli et al., 2000; Rumiati & Tessari, 2002a) and allows learning new actions 

(Ottoboni et al., 2021; Tessari et al., 2006). See Figure 5.1.  

The routes are richly interactive, and in most instances, they all contribute to visuomotor processing, 

although their contribution depends on the nature of the task and the environment (Buxbaum & Kalénine, 

2010; Tessari & Rumiati, 2004). However, under some circumstances, such as brain damage, the different 

contributions of the routes to action reproduction can emerge. For example, double dissociations in patients' 

performance occur as selective deficits in imitating either meaningful or meaningless actions, suggesting 

relative functional independence between the direct and the lexical routes (Bartolo et al., 2001; Cubelli et al., 

2006; Mengotti et al., 2013; Tessari et al., 2007). As we will show, the specific cognitive and behavioural 

deficit depends on the locus of the impaired processing stage (Bartolo et al., 2001; Heilman et al., 1982; Sirigu 

et al., 1995). 
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Figure 5.1: A functional model of visuomotor cognition and its neuroanatomical mapping: from the top of the 

model on the left, visual (but also phonological) information is taken as input. This information is then 

processed in parallel by three routes that entail a different level of hierarchical elaboration, from a more 

sensorimotor representation to a more conceptual one. The different processing stages are linked in the form 

of three routes: a direct route (in blue), a lexical non-semantic route (in red) and a lexical semantic route (in 

green). Damages can occur at different processing stages along the routes, producing differentiated 

behavioural deficits. On the right, these three routes are mapped on the cortical neuroanatomy of the dorso-

dorsal pathway (in blue for the direct route), of the dorso-ventral pathway (in red for the lexical non-semantic 

route) and of the ventral pathway (for the lexical semantic route). This figure is an implemented version from 

Tessari, Proietti, & Rumiati, (2021). Cognitive Neuropsychology, 38(7-8), 515-530. 

 

5.4 Neuroanatomical mapping 

At a neuroanatomical level, the cognitive model can be mapped onto distinct subdivisions of the 

visuomotor pathways in the brain (Binkofski & Buxbaum, 2013; Rizzolatti & Matelli, 2003) starting from the 

historical contribution of (Goodale & Milner, 1992; Jeannerod et al., 1995; Mishkin et al., 1983). 

A dorso-dorsal stream is specialized for online sensorimotor representations of the postural alignment 

of different body parts and converts physical object properties, such as location or size, into appropriate motor 
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commands for the control of reaching and grasping. On the other hand, a ventro-dorsal stream contains long-

term structural representations about skilled actions, known motor programs, the manipulation of known tools 

and the spatiotemporal aspects of actions (Binkofski & Buxbaum, 2013; Dressing et al., 2018; Hoeren et al., 

2014; Niessen et al., 2014). At last, the ventral stream processes the categorical relationships between 

perceptual and semantic elements (Dressing et al., 2018; Klein et al., 2013; Lambon Ralph, 2014; Musso et 

al., 2015; Patterson et al., 2007; Rijntjes et al., 2012; Weiller et al., 2011), including conceptual, functional 

and semantic aspects of tool-use and gestures and the more symbolic ones (Dressing et al., 2018; Heilman et 

al., 1982; Niessen et al., 2014; Ottoboni et al., 2021; Rijntjes et al., 1999; Tessari et al., 2007; Vry et al., 2015). 

This stream has some overlapping with areas involved in communicative tasks (Finkel et al., 2018). 

Anatomically, the dorso-dorsal pathway runs from V3a to V6 to V6a and the medial intraparietal area 

(MIP) in the superior parietal lobule (SPL), and from there, via the superior longitudinal fascicle II, to premotor 

areas (F2vr and F7-non-SEF1) (Dressing et al., 2018; Hoeren et al., 2014; Martin, Dressing, et al., 2016; Martin 

et al., 2016; Martin, Nitschke, et al., 2016a; Vry et al., 2015). The ventro-dorsal pathway runs, via arcuate and 

superior longitudinal fascicle III, from the medial superior temporal area (MT/MST) to the inferior parietal 

lobule (IPL), and then to the ventral premotor cortex (AIP – F5 and VIP – F4) (Binkofski & Buxbaum, 2013; 

Kalénine et al., 2010; Kreher et al., 2008; Vingerhoets, 2014; Vry et al., 2012). The ventral pathway runs 

through the extreme capsule, the inferior fronto-occipital fascicle and the uncinate fasciculus, connecting the 

inferior, middle and superior temporal area and the IPL to anterior IFG (Catani et al., 2002, 2005; Hamzei et 

al., 2016; Makris & Pandya, 2009; Rijntjes et al., 2012; Saur et al., 2008; Weiller et al., 2011, 2021). Some 

authors suggest that also the lateral occipitotemporal cortex (LOTC) should be included in the ventral stream 

(Lingnau & Downing, 2015). 

The direct route and the processing of new movements for meaningless gesture imitation have been 

associated with the dorso-dorsal stream (Binkofski & Buxbaum, 2013; Hoeren et al., 2014; Martin, Dressing, 

et al., 2016; Rumiati et al., 2005; Tessari et al., 2007) while the processing of known gestures and the lexical 

routes have been related with regions belonging to both the ventral and the ventro-dorsal streams (Dressing et 

al., 2018; Kleineberg et al., 2018; Rijntjes et al., 2012; Weiller et al., 2009, 2011b; Wurm & Caramazza, 2022). 

Specifically, the ventral stream might decode the meaning of a movement at the conceptual level,  with a focus 

on social and intransitive gestures and non-motor aspects and task-irrelevant objects properties (Bracci et al., 

2017; Cubelli et al., 2000; Petreska et al., 2007; Wurm et al., 2017; Wurm & Caramazza, 2022) and the ventro-

dorsal stream the structural descriptions of tools and recognition of gestures as meaningful (see also, Dressing, 

et al., 2018; Tessari et al., 2021).  

 

5.5 The simulated tasks and the generative model  

Once again, to characterize the praxis disorders our formalization is based on an active inference 

model. From a neuropsychological perspective, a functional model of cognitive processing must be extracted 
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from how a given task is executed. Thus, to be able to infer how cognitive processing may be carried out, what 

must be modelled is the task and not the function. This is crucial because dissociations are found in the aspects 

of the task and not in cognitive functions. We then assume that the task recapitulates the function. Given this, 

our profiling of simulated patients is based on how they execute different visuomotor tasks and commands.  

The setting for these simulated tasks involves a “clinician” and a “patient”. The clinician can perform a 

gesture that must be observed, verbally recognized, or imitated by the patient. Alternatively, the clinician can 

verbally command the patient to execute a gesture. More specifically, based on the clinical assessments used 

by Cubelli and colleagues (Cubelli et al., 2000), the “simulated patient” can be required to execute four kinds 

of tasks: 

• Imitation of familiar actions: the clinician performs a gesture without objects that has to be imitated 

by the patient. The gesture consists of a tool-use pantomime such as the pantomime of hammering.  

• Imitation of novel meaningless actions: the clinician performs a meaningless gesture that has to be 

imitated by the patient. This task allows for assessing the functioning of the direct pathway. 

• Execution of meaningful actions from verbal commands: the clinician verbally pronounces a 

meaningful gesture that the patient has to reproduce (e.g., “wave goodbye”). 

• Recognition of meaningful actions: the clinician performs a meaningful gesture, and the patient has to 

label it verbally. 

In practice, each of these tasks is simulated via a generative model in a partially observable Markov 

decision process. The generative model we propose is an extended and modified version of the one illustrated 

in Chapter 4. See also Figure 5.2 for a detailed account.  

In the tasks, the clinician performs or commands an action that is cognitively processed by the patient at 

four levels of hierarchical representations as probabilistic beliefs (Grafton & de C. Hamilton, 2007; Wurm & 

Lingnau, 2015):  

1) a kinematics analysis level, which entails the encoding of kinematic features of movements (in our case, 

represented as elementary motor engrams, meaning body parts and their relations);  

2) a body schema representation level, where the relations between body parts are described as a posture;  

3) a structural description level, where a form of recognition occurs and the representations are organized in 

more complex engrams, stored in memory (in the model as sequences of postures);  

4) a functional-conceptual description level, where a form of identification occurs as the representations are 

generalized at a conceptual level and become less constrained by motor aspects.  

A more detailed description of the functioning of the model is provided in chapter 4. For this study’s 

purposes, it is important to remind that the model structure comprises three sections: a higher hierarchical 
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inference level (action understanding level) that accounts for a semantic interpretation of the observed action, 

encoding the structural description level and the functional-conceptual description level; a lower level of 

inference (action observation level) for the observation and the recognition of kinematics aspects encoding the 

kinematics analysis level and the body schema representation level; a motor response structure (action 

execution level) linked to both levels, that reproduce the observed or commanded action. The translation from 

the kinematic patterns to lexical and semantic interpretations of the clinician’s actions occurs between the 

action observation level and the action understanding level. The translation into motor responses is prompted 

by both levels. See Figure 5.2. 

Although the task is not representative of a practical neuropsychological assessment, the structure of 

our model is sufficiently complex to highlight the functional rules and constraints provided by active inference 

and message passing. Therefore, we can provide an operative example of how a disconnection in one or more 

nodes affects the overall functioning of the visuomotor system, associating the breaking of specific links with 

different profiles of limb apraxia.  

How are the tasks prompted in the generative model? Computationally speaking, in a meaningless 

gesture the mapping between state and outcomes (likelihood function, A matrix) at the structural description 

and functional-conceptual description levels is highly entropic. This means that the simulated participant only 

has access to a kinematics analysis and a body schema representation to translate the observed action into 

movement (Buxbaum et al., 2000). On the other hand, when this mapping is precise, the patient knows the 

meaning of the gesture (i.e., she is in front of a meaningful gesture). In short, the knowledge of the meaning 

of a gesture is associated with having precise likelihood mapping. Verbal commands are prompted by setting 

a higher prior belief on the representation of a specific action. Verbal recognition is assumed when the action 

is identified at the functional-conceptual description level.  The imitative responses are generated by taking 

the posterior belief about the states of the action understanding level and the action observation level and are 

used to inform prior preferences and the prior policies at the action execution level.  
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Figure 5.2: The generative model has been adapted from chapter 4. Here, hidden state factors correspond to 

different states of the world, such as the location (where) and category (what) of an element. Outcome 

modalities correspond to the possible observations. Multiple outcome modalities account for parallel sources 

of sensory input, such as visual inputs and proprioceptive sensations. The generative model produces actions 

both during observation to gather the most informative piece of data and during the execution of the motor 

response. The most probable policy is selected using a softmax function of policies expected free energy to do 

this. The B matrixes determine a single piece of actions (as state transitions), while A matrixes constitute 

recognition as perceptual inference (observation of the outcomes). Initial prior beliefs are represented by D 

vectors (probability of initial states), while C matrices are a prior that biases the amount of expected free 

energy G to determine a priori which outcomes are preferred. E constitutes a prior over the policies defining 

a priori which policies are more probable to be selected.  
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5.6 Modules, hierarchies and degeneracy in the generative model 

In this section, we highlight three features pertaining to the structure of the generative model that are 

particularly relevant for the anatomical organization of the brain and that become even more relevant when 

considering its lesions. 

When variational free energy is considered among competing models for explaining certain data, its 

minimization is achieved by the process of Bayesian model selection, where the model with the most evidence 

is the one that provides the most accurate explanation of the data and, at the same time, is the less complex 

(e.g., its structure entails the least number of parameters or degrees of freedom). Therefore, optimizing the 

structure of a generative model to make it less complex is another way of minimizing free energy and this is 

associated with the neuroanatomical organization (e.g., structure learning, Friston et al., 2017; Hobson & 

Friston, 2012; Tononi & Cirelli, 2006). Crucially, this complexity can be reduced when the conditional 

dependencies are known so that only the marginal distributions need to be encoded (e.g., the internal states of 

a Markov Blanket only require knowing the blanket states (Friston, 2021; Parr et al., 2020).  

The hierarchical organization of the brain represents one of the structural proprieties reducing model 

complexity (Hasson et al., 2015; Kiebel et al., 2008; T. S. Lee & Mumford, 2003; Murray et al., 2014; Vidaurre 

et al., 2017). To support this, our generative model is equipped with a deep temporal feature: the Action 

understanding level generates the hypotheses that are tested by engaging saccades at the Action observation 

level. At the same time, the posterior beliefs about postures at the Action observation level are passed as 

ascending messages, becoming observable outcomes at the Action understanding level (Proietti et al. 2021). 

This also highlights how the higher the hierarchical level the more actions are represented in an abstract way. 

Moreover, the temporal dynamics in the different levels runs at different scales (Friston et al., 2017; Kiebel et 

al., 2008, 2009). Intuitively and in similitude with the language domain, the evolution of the states related to 

kinematics aspects of an action (as the meaning of a word) entail a faster time scale than the one associated 

with the intention (the meaning of the whole sentence). However, the different levels of the hierarchy interact 

bidirectionally as the inference of each latent variable is simultaneously influenced by messages passed from 

different directions. 

Furthermore, to account for complexity in the model structure, the brain also entails functional 

segregation or neuronal populations, also known as modules (O’Keefe & Recce, 1993; Zeki & Shipp, 1988). 

According to Parr and colleagues (Parr et al., 2020), this modularity can be mathematically expressed in the 

form of factorization of a probabilistic system. This can be achieved following the mean-field theory (Fasoli, 

2013), where posterior beliefs can be approximated as the product of statistically independent factors (Beal, 

2003). These factors are not completely independent but send messages to one another via their mean-fields 

(their average values). These mean-field dynamics can be interpreted as a description of the message passed 

among the neural modules (Parr et al., 2019; van de Laar & de Vries, 2019). This help to formalize their 

functional specialization, such as in the classical account of how the brain can encode ‘what’ and ‘where’ 
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information independently (Friston & Buzsáki, 2016; Parr et al., 2020). This also comes useful because this 

factorization relates to the notion of transfer learning or context invariance (Bengio, 2011; Parr et al., 2020; 

Rojas-Carulla et al., 2018). In our context, this relates to the fact that the meaning of a gesture can be inferred 

independently from the context, e.g. when the gesture is observed from different visual perspectives (in the 

schemes, when the disposition of body parts is flipped). Although we make no claims about which specific 

approximation techniques may be implemented in the brain, the notion of beliefs factorization supports the 

interpretation of the brain as a system that entails sparse dependency structures (Parr et al., 2020) and therefore, 

multiple visuomotor neural streams. 

The third feature in our model relevant to structure complexity is degeneracy: this concept in biological 

systems refers to the ability to use alternative structures for the same task (Edelman & Gally, 2001; Tononi et 

al., 1994, 1999). This subsumes a many-to-one mapping where different physical structures can yield the same 

functional outcomes or behaviour. In the brain, this means that a cognitive function can be supported by more 

than one neural system (Friston & Price, 2003; Noppeney et al., 2004; Price & Friston, 2002; Sajid et al., 

2020). This is a crucial topic in neuropsychology where the same behavioural output (e.g., spelling words) can 

be achieved by two different strategies (phonological vs lexical/semantic). Indeed, it provides a perspective of 

how different pathways may support functional recovery after brain damage. Acknowledging that neuronal 

structures entail various degrees of degeneracy and pluripotentiality (Noppeney et al., 2004) is crucial for 

designing more accurate lesion-deficit models (Sajid et al., 2020). In our model, a degenerate function emerges 

from the fact that the agent motor control (Action execution level) is driven by the posterior belief of 3 factors, 

the body schema representation, the structural description level and the functional-conceptual description, 

which are then combined and weighted as a form of hierarchical motor control (Pezzulo et al., 2018b). Our 

agent's ability to execute actions is then spared even if one of these three motor control inputs is disconnected. 

Our simulated profiling will provide a more detailed account of degenerate function in visuomotor control. 

In summary, through our model, we show how neuropsychological data support the functional 

relevance of a modular and hierarchical organization showing how patients manifest selective deficits in 

cognitive functions supported by different neural streams and at different levels of abstraction, from motor to 

more semantic. We also show how a degenerate function can be maintained (e.g., imitation of a gesture) even 

if hierarchical structures that support it at different levels of categorization are lesioned (Humphreys and Forde 

2001).  

 

5.7 Disconnections and Bayes optimal pathology 

The structure of the generative model that the brain implements to make inferences is the key factor 

that determines anatomical connectivity (Parr & Friston, 2018a). We will show that our scheme appears to be 

consistent as, when disrupted, it gives rise to the same deficit observed in experimental and clinical domains. 

But how is this disruption motivated and performed? Our neuropsychological characterization is motivated by 
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the notion of Bayes optimal pathology (Parr et al., 2018), which argues that any neuropsychological disorder 

entails a set of prior beliefs that would make a patient’s behaviour appear Bayes optimal. In other words, a 

patient’s non-adaptive behaviour is not explained by a broken inference process, but it is due to damages over 

the biological substrata that encode priors and parameters. In this context, one can speak of optimal Bayesian 

inference with suboptimal priors (Parr et al., 2018). The question we pose, then, is what kind of prior beliefs 

are set to generate that optimal behaviour and which neural structure may encode those priors. 

Lesions in our model are performed in a way that resonates with the notion of disconnection syndrome 

(Catani & Ffytche, 2005). A disconnection syndrome may arise from the disruption of the likelihood mapping 

between two neural populations (e.g., the mean fields or factors). This likelihood is encoded in the Dirichlet 

parameters of A matrices. These parameters encode synaptic connection strengths providing an account of 

Hebbian neural plasticity. Furthermore, a disconnection may arise when the propagation of posteriors from 

one factor or hierarchy to another is interrupted, resembling the disruption of axonal connections. In our 

simulations, we will formally illustrate the pathological priors for each of the different profiles that characterize 

the neuropsychological syndromes.  

This illustration is provided by associating our generative model with the descriptive cognitive model 

shown in Figure 5.1. In this way, the cognitive model becomes operationalized in that the links and the nodes 

in the cognitive model are reflected in the message passing among the links and the nodes in the generative 

model. Therefore, we can map the computation performed in the generative model with the cognitive function 

described by the cognitive model. In the following sections, we provide the profiling of five clinical syndromes 

affecting the visuomotor system, originally proposed by Cubelli and colleagues (2000), by simulating brain 

damages in different nodes (priors and parameters) of the generative-cognitive model. We will show how each 

profile and lesion corresponds to a specific impairment in cognitive and behavioural functions.  

 

5.8 In silico brain damages of the praxis model 

5.8.1 Simulation 1: profiling pantomime agnosia   
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Figure 5.3: to simulate damage over the semantic memory, we lesion the likelihood matrix A that encodes the 

mapping between hidden states and outcome at the structural level of representation as represented by the red 

dotted line in the cognitive model in panel B. In the generative model, this corresponds to an entropic distribution 

in some of the relations between states and observations as shown in panel A where the darker the tint, the stronger 

the probabilistic relation. At the behavioural level, this translates into impairments in the recognition of familiar 

actions as indicated by the red dotted line in panel C. 

 

The damage is performed on the action input system by setting flat beliefs (highly entropic belief, e.g., 

a flat distribution) about the probabilities distribution that encodes the likelihood function (a parameter) for 

the structural description level. This damage can be then seen as a loss of lexical (structural) knowledge 

(Buxbaum 2001). Thus, the simulated patient manifests the clinical profile of gesture and pantomime agnosia 

where there is impaired comprehension and discrimination of the observed gestures with a spared ability to 

imitate or execute them on verbal command (Rothi et al., 1986). The first clinical report of this disorder was 

provided by Rothi and colleagues (1986). Here, patients’ visual agnosia, defined as impaired visual 

recognition, is not determined by a deficit in visual acuity, attention, or general cognitive ability. The reported 

patients could imitate pantomimes they could not recognise (Rothi et al., 1986). A pantomime agnosic patient 

entails an impairment due to a severe loss of visual knowledge about tools structure. The observations on this 

deficit support the idea that the stored knowledge about tools’ structure and function, and gesture identities, 

such as recognition and understanding, is not necessary for processes subserving object use and imitation 
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(Buxbaum et al., 1997; Lauro-Grotto et al., 1997; Negri et al., 2007). Identifying an object and recognizing the 

object-associated pantomimes is dissociated from the ability to use tools and imitate their pantomime. In short, 

motor production processes related to object use are dissociated from the action or object recognition (Negri 

et al., 2007; Rumiati et al., 2009; Tessari et al., 2007).  

5.8.2 Simulation 2: profiling conceptual apraxia  

 

Figure 5.4: to simulate damage over the semantic memory, we lesion the likelihood matrix A that encodes the 

mapping between hidden states and outcome at the highest level of representation, the conceptual-functional level. 

This is represented by the red dotted line in the cognitive model in panel B. In the generative model, this corresponds 

to an entropic distribution in some of the relations between states and observations as shown in panel A where the 

darker the tint, the stronger the probabilistic relation. At the behavioural level, this translates into impairments in 

executing actions on verbal commands as indicated by the red dotted line in panel C. 

 

The generative model is damaged in the locus of the highest level of action and tools representation, 

where they are represented at a semantic and conceptual level. This is done by setting flat beliefs in the a 

parameter for the functional description level. Consequently, it also impairs the system (phonological input 

lexicon) that biases action engrams via external verbal cues (d parameter on prior beliefs) to be translated into 

motor programs. In the simulated patient, imitation is spared but there are impairments in the execution of 

action on verbal command. There are also problems in attributing meaning to gestures via explicit verbal 
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identification; however, visual recognition is intact (Ochipa et al., 1992; Heilman et al.,  1995). This occurs 

because the system is still able to provide a structural description of the input supported by the non-conceptual 

ventro-dorsal pathway but the multimodal and nonmotor aspects of action knowledge are impaired, which are 

supported in the posterior IPL and the ventral occipital temporal cortex (VOTC) (Bi et al., 2016; Leshinskaya 

& Caramazza, 2014)). This recapitulates the ability to disentangle familiar from unfamiliar gestures and to tell 

apart well-executed from clumsy gestures but not to engage in higher-level identifications. This corresponds 

to the clinical profile of conceptual apraxia also defined as a semantic type of ideational apraxia (Cubelli 2000) 

where familiar gestures are recognized as such (structural description is spared), but identification is impaired. 

These deficits occur in the absence of ideomotor apraxia and semantic language impairments (Bayles et al., 

1987): while ideomotor apraxic patients typically make production errors, such as temporal or spatial errors 

(Heilman and Rothi, 1985), semantic ideational apraxic patients typically make content errors (Ochipa et al., 

1989). The loss of knowledge concerns the appropriate actions associated with the tool: the patient shows 

impairment in selecting the appropriate tool for a particular task and understanding and solving mechanical 

problems based on intuitive physics. (Ochipa, et al., 1992).  This supports the idea that the impairment locus 

is at a conceptual, functional description level and the neural separability of perceptual and conceptual 

representations (Leshinskaya & Caramazza, 2016). These patients are able to imitate the known actions, that 

they do not recognize, properly via the visuo-motor conversion system, i.e. the direct route. 

5.8.3 Simulation 3: profiling procedural apraxia  
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Figure 5.5: to simulate a damage in the action output system, we lesion the passage of posterior belief about the 

observed action to prior policies E. This is represented in the cognitive model in panel B. In the generative model, 

this corresponds to an entropic distribution of the prior over the policies E as shown in panel A in the scheme 

showing the probability of selecting a policy a priori (the darker the tint the stronger the prior). At the behavioural 

level, this translates into an impairment in imitating familiar actions that require the engaging of a previously 

learned procedural plan, as indicated by the red dotted line in panel C. 

 

The generative model is damaged in the link that propagates beliefs from lexical (both semantic and 

non-semantic) representations to the skilled procedural motor controller E, representing the action output 

system that drives motor responses. In other words, the motor program stored in memory disconnects from 

procedural-skilled motor control that would drive the execution of the action as a whole action program. 

Therefore, the simulated patient manifests the clinical profile of a procedural type of apraxia where familiar 

gestures are recognized and comprehended, but their execution is impaired; on the other hand, meaningless 

gestures are correctly imitated through the direct route (Tessari et al., 2007). The clinical profile is supported 

by the observation that deficits in movement programming, which include wrong action sequences, 

inappropriate use of objects and matching tasks, are dissociable from more action semantics errors 

(Hermsdörfer et al., 2012). The anterior IPL, the posterior middle temporal gyrus, the insula and the extreme 

capsule are associated with the encoding motor knowledge as action engrams (Buxbaum et al., 2005; Heilman 

& Rothi, 2003; Hermsdörfer et al., 2013; Kalénine et al., 2010) to detect invariant spatiotemporal features of 

skilled movements shaped during motor learning (Hoeren et al., 2014; Vry et al., 2012; Weisberg et al., 2007). 

5.8.4 Simulation 4: profiling conduction apraxia 
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Figure 5.6: to simulate damage in the visuo-motor conversion mechanism, we lesion the passage of posterior belief 

about the observed action to prior preferences about action execution. This is represented in the cognitive model in 

panel B. In the generative model, this corresponds to an entropic distribution of preferred observations as shown 

in panel A in the matrix that encodes the precision of goals (the darker the tint the more desired the observation). 

At the behavioural level, this translates into impairments in imitating meaningless actions that require online 

sensorimotor encoding, as indicated by the red dotted line in panel C. 

 

The generative model is damaged in the system that translates low-level, sensorimotor representations 

about the observed action into the motor plan. This system represents a visuomotor conversion mechanism 

that sets motor goals for the action execution level, given the posterior belief of the action observation level 

(Pezzulo et al., 2018, Proietti et al., 2021). Our cognitive model entails a disconnection in the direct route, 

mapped anatomically into the dorso-dorsal stream. The simulated patient manifests the clinical profile of 

conduction apraxia where the impairment is specific for meaningless actions while familiar gesture 

recognition, comprehension and execution are spared (Ochipa et al., 1994). The performance of movement is 

often clumsy and rigid (Heugten, 1998; Shelton & Knopman, 1991). More specifically, an impaired imitation 

of meaningless gestures is associated with a dysfunction of the body schema (Buxbaum et al., 2000) which 

encoding is based on the integration of visual and proprioceptive input about the position of body parts that 

supports spatial limb representations encoded in the SPL (Hagura et al., 2007; Lacquaniti et al., 1995; Seelke 

et al., 2012) and the visuospatial transformations involved in mapping observed postures into ‘somatesthetic 

spatial code’ performed by the IPS (Buxbaum, 2001; Creem-Regehr et al., 2007; Watson et al., 1986). This is 
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recapitulated in our generative model as the disruption is localized in the kinematics analysis and body schema 

representation levels. Numerous clinical cases of patients able to correctly execute tools pantomime and 

symbolic gestures but unable to imitate meaningless actions have been reported and some of them also reported 

double dissociations between imitation of meaningful and meaningless actions (Bartolo et al., 2001; 

Goldenberg & Hagmann, 1997; Ochipa et al., 1994). These studies support that the imitation of meaningless 

gestures relies on a low-level sensorimotor pathway that rapidly maps perception to action execution, 

independently from semantic memory. Most impairments have been observed after left brain damage and 

specifically in the inferior parietal cortex, which is more commonly associated with apraxia (Bartolo & Ham, 

2016; De Renzi et al., 1980; Goldenberg, 1995; Goldenberg & Hagmann, 1997; Heilman & Rothi, 1993). 

Indeed, meaningless hand gesture processing involves predominantly brain areas in the left hemisphere 

required in action planning. The network includes the temporo-occipital junction (BA 19/37), the inferior and 

superior parietal cortex (BA 40and BA 5/7), with a critical role of the inferior parietal lobe for mapping 

perception to action (Dressing et al., 2018; Martin, Dressing, et al., 2016; Martin et al., 2016; Martin, Nitschke, 

et al., 2016a). 

5.8.5 Simulation 5: action working memory apraxia 

 

Figure 5.7: to simulate a damage to the motor working memory, we lesion the buffer for motor responses in the 

cognitive model. In the generative model, this corresponds to the alpha precision parameter for action selection. 

The red dotted line shows the locus of the lesion (panel B). At the computational level, this means that introducing 
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a low value of the alpha precision parameter in the softmax function used to calculate the control state given a 

policy, will render the distribution for the selection of the possible controls highly entropic in comparison to high 

values that renders it precise (panel A). At the behavioural level, this translates into impairments in every task that 

requires action execution, as indicated by the red dotted line in panel C. 

 

The generative model is damaged in the precision parameter (the alpha parameter) for the system that 

translates the policy in a sequence of control states, resulting in a high amount of randomness in selecting these 

controls. This parameter for action selection can indeed be interpreted as a memory buffer for actions that 

holds the motor plan ready to be implemented. The higher its value, the more precisely the planned actions are 

implemented. On the other hand, very low values can be seen as an inability to hold the current plan and 

translate it into actions. Thus, when this mechanism is damaged, all motor responses are impaired. Indeed, the 

simulated patient manifests impairments in executing gestures either on verbal command or in imitation tasks 

(both meaningful and meaningless actions). The working memory subsystem is dedicated to processing motor 

information not associated with verbal or visuospatial working memory and is specific for encoding, retaining, 

and recalling goal-directed actions and body configurations (Galvez-Pol et al., 2020). The existence of a 

working memory component for actions has been supported in several behavioural studies (Rumiati & Tessari, 

2002; Smyth et al., 1988; Smyth & Pendleton, 1990; Wood, 2007) where a decreased memory span has been 

observed on a primary motor task that is being executed concomitantly to a secondary sensorimotor task in 

comparison to a verbal or spatial secondary task (where this decrease has not been observed). A recent study 

has reported neuropsychological evidence for a distinct motor working memory subsystem: left hemisphere 

stroke patients with apraxia showed a more pronounced deficit in motor working memory tasks (involving 

pictures of object-oriented, meaningless and meaningful actions) in comparison to left hemisphere patients 

without apraxia and controls (Bardakan et al., 2022). At the neuroanatomical level, the maintenance of this 

motor information appears to be associated with the frontoparietal praxis network. Specifically, increased 

functional connectivity and activation in the frontoparietal network (Cai et al., 2018) has been found during a 

greater memory load of motor information. Furthermore, the left middle and right inferior frontal gyri and the 

superior and inferior parietal lobule of the left hemisphere are involved in the maintenance of biological motion 

(Lu et al., 2016). In the context of tool use, activations in the left inferior frontal gyrus and the left ventral 

premotor cortex have been observed during the maintenance of manipulable tools compared to non-

manipulable ones (Mecklinger et al., 2002). In our model, the lower the precision parameter (the alpha 

parameter), the less precisely the planned actions are implemented, increasing the apraxic deficit as in the 

neuropsychological evidence provided by Bardakan and colleagues (2022), who showed that the overall 

performance in the motor WM tasks predicted the severity of apraxic deficits in clinical tests of gesture 

imitation. 
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5.9 Discussion 

Literature on apraxia may result complex and confusing. As suggested by Petreska and colleagues 

(Petreska et al., 2007)  this might be due to a lack of systematicity in the apraxia assessments that leads to 

contradictory and inconsistent results, ambiguous use of terminologies and high dimensionality in models’ 

parameters that blurs statistical approaches. With this paper, we aim to provide a first principled approach to 

unify perspectives under the framework of active inference. Indeed, when working under a normative principle, 

the key to understanding brain function is specifying the appropriate generative model (Parr et al., 2020; Parr 

& Friston, 2018a). We have shown as the cognitive model is recapitulated by the structure of the generative 

model and show and lesion applied in one node of the former corresponds to computational mechanisms of 

the latter, such as a sub-optimal prior or a change in a parameter value. In our simulations we have provided 

five apraxia profiles: pantomime agnosia entailing a loss of structural knowledge of actions and tools, 

conceptual apraxia where the loss of knowledge pertains to the highest functional representation, procedural 

apraxia as the inability to translate a perceived movement into a pre-existent motor program, conduction 

apraxia where the failed translation into movements pertains lower level sensorimotor capabilities and, at last, 

action working memory apraxia where the deficit is due a decrease memory span in motor tasks. These profiles 

emerge automatically by lesioning the model at different processing stages and as manifested by the 

consequent behavioural deficits. Therefore, the scheme we propose appears to be consistent as, when disrupted, 

it gives rise to the same deficit observed in experimental and clinical domains. Furthermore, compared to 

previous proposals, our model argues for the existence of a third route inspired by evidence from the context 

of language (e.g., Coltheart et al., 1983; Coslett, 1991; Law et al., 2005; Wu et al., 2002) but also proposed by 

neuropsychological literature (Dressing et al., 2018; Martin et al., 2016; Martin, Nitschke, et al., 2016a). This 

may help explain contradictions in the apraxia literature since lesions are often extensive, and the semantic 

and non-semantic subdivisions of the lexical route may be ambiguously affected.  

Although our profiling is purely descriptive (as it does not involve direct measurements), we aim to 

set a direction for future research. Setting generative models that recapitulate actual clinical assessments 

designed to fit better model parameters may lead the way for a formal and systematic approach. This would 

allow for quantitative computational phenotyping (Schwartenbeck & Friston, 2016) and the assessment of 

statistical proprieties such as degeneracy as shown in (Sajid et al., 2020). 
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Chapter 6 

3rd Architecture: Cognitive control in active inference 

 

We advance a novel formulation of cognitive control and the deployment of optimal attention for 

action selection, within the active inference framework. The theory proposes that cognitive control amounts to 

optimising a (precision) control signal, which balances deliberative and habitual components of action 

selection. This underwrites goal-seeking behaviour while minimizing cognitive effort. To illustrate the theory, 

we simulate a scenario in which a driver aims to reach her destination safely and with optimal cognitive control 

in different conditions. When the environment is predictable, she can get to her destination using habitual 

strategies that engage minimal attentional resources. However, when the driver faces unexpected and 

potentially dangerous circumstances, she deploys cognitive control to engage in deliberative policies 

anticipating bad outcomes. Our simulations highlight the information processing dynamics of an active 

inference agent that deploys cognitive control in conditions of high or low environmental predictability. These 

numerical experiments show that selecting deliberative policies engages several “cognitive control” processes 

to increase monitoring resources and learning rates, devaluate habits and resolve cognitive conflicts. However, 

despite their apparent heterogeneity, all these processes stem coherently from free energy minimization, which 

is the core claim of active inference. Finally, we discuss the putative neurobiology of cognitive control. We 

argue that the neural activity in the dACC reflects the specification of an optimal (precision) control signal that 

balances deliberate and habitual components of action. In contrast, neural activity in the dopaminergic system 

reflects the further optimization of the precision control signal in relation to the current observations.  
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6.1 Introduction 

It is common wisdom that "practice makes perfect". From a cognitive perspective, practice also entails 

a gradual passage from an effortful or controlled mode – during the performance of novel tasks – to more 

automatic information processing during the performance of familiar tasks (Anderson, 1982; Shiffrin & 

Schneider, 1977). For example, while a novice driver must devote significant cognitive resources to each 

aspect of the driving task, an experienced driver can often drive effortlessly, paying little “attention to action”.  

A common explanation of this phenomenon is that the control of skilled and novel actions is associated 

with two fundamentally different types of brain processes or controllers, which are called automatic versus 

controlled (or intentional), habitual versus deliberate, or procedural versus goal-directed processes, or system 

1 versus system 2 (Balleine & Dickinson, 1998; Daw et al., 2005; Kahneman, 2011; Norman & Shallice, 1986; 

Stanovich & West, 2000). The same dichotomy between separate action selection mechanisms, or controllers, 

recurs across lower-level motor control studies and higher-level decision-making studies (Milli et al., 2021). 

Hence, to generalize, below, we use the word actions to refer to the products of these two controllers, 

irrespective of whether they are movements, decisions or mental actions.  

In habitual or procedural control, the task is initiated and executed without deliberate attention and is 

performed automatically, without tapping into limited processing resources and without awareness (Kahneman 

et al., 1983; Posner, 1978; Shiffrin & Schneider, 1977). This type of control is engaged for relatively simple 

or well-learned cognitive and motor tasks. Two hallmarks of habitual-procedural control are the fact that 

environmental stimuli can directly trigger action initiation and that action execution can directly engage a 

preconfigured behavioural plan, such as a sequence of motor acts (Anderson, 1982; Taatgen & Lee, 2003) or 

action chunks (Dezfouli & Balleine, 2012; Rumiati & Tessari, 2002b; Tessari et al., 2006, 2021). The 

combination of these two factors ensures that tasks are generally executed faster (because actions are recalled 

automatically) and with little expenditure of cognitive resources (because the agent needs to monitor only the 

final outcome of the preconfigured plan, not each constituent motor act). This corresponds to the usual 

definition of a habit as a skilled action, which can be engaged with minimal processing resources (K. J. Miller 

et al., 2018). Of course, these advantages come at the expense of flexibility: this type of control is only 

appropriate when the situation is predictable but can fail in novel or unforeseen circumstances (Moors & De 

Houwer, 2006; Schneider & Chein, 2003). 

On the other hand, deliberate or goal-directed control involves the formation of novel action plans, the 

careful online monitoring of their outcomes and the capability to counteract maladaptive habitual responses 

and temptations. In turn, these are all cognitively demanding tasks, which is why deliberative control is 

associated with mental effort and the engagement of attentional resources (and perhaps conscious processing). 

At the same time, deliberative control is flexible and permits dealing more effectively with complex and 

unforeseen circumstances, novel contingencies and volatilities (Balleine & Dickinson, 1998). 
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Since habitual-procedural and controlled-deliberate processes have complementary strengths and 

weaknesses, the crucial question is how they are selected and/or combined during action selection. Some 

proposals assume a “competition” or “arbitration” between two separate behavioural controllers based on their 

relative uncertainties (Daw et al., 2005). However, more recent proposals assume that the different controllers 

can cooperate and be combined, therefore providing a continuum of solutions (S. W. Lee et al., 2014; Pezzulo, 

Rigoli, et al., 2013) and perhaps might be arranged hierarchically (Dezfouli et al., 2014; Pezzulo et al., 2015). 

Furthermore, there is growing appreciation of the fact that the arbitration or combination of habitual-procedural 

and controlled-deliberate processes is a cost-benefit computation that should consider not just the pragmatic 

benefits but also the cognitive effort required to engage those processes (Daw et al., 2011; Dolan & Dayan, 

2013; Maisto et al., 2019; Pezzulo, Rigoli, et al., 2013). This leads us to formal theories of cognitive control, 

which formalize the decision of how much cognitive effort to deploy to engage in more costly (controlled-

deliberate) or less costly (habitual-procedural) processes. 

A model of attention that provided an early attempt to characterize this cost-benefit computation is 

called attention to action by Norman and Shallice (1986). Accordingly, two processes operate 

complementarily to select and control actions (although their joint operation could be disrupted under certain 

maladaptive conditions). First, a contention scheduling selects amongst the possible action schemas – which 

in modern terms could be called a policy selection mechanism – that selects among policies or action sequences 

(Friston, et al., 2017; McClelland & Rumelhart, 1981; Parr et al., 2022; Rumelhart & Norman, 1982; Sutton 

& Barto, 1998). Second, a supervisory attentional system controls the selection of action schemas by exerting 

some additional activation (or inhibition) to an action schema to bias its selection in the contention scheduling 

mechanisms. This second mechanism provides some cognitive control by deploying attention, which requires 

cognitive effort, especially if the schema to be selected is unfamiliar (Cooper & Shallice, 2000; Shallice & 

Burgess, 1993).  

A more recent, neurobiologically grounded theory of cognitive control and the deployment of 

cognitive effort is the expected value of control (EVC) by Shenhav and colleagues (2013). This theory proposes 

that the allocation of control is based on a cost-benefit evaluation of the payoff one obtains by engaging a 

controlled process and the cost (cognitive effort) required to engage the sufficient amount of control to achieve 

the payoff. The theory identifies three key processes of cognitive control. First, the regulation process 

describes the capacity of a control mechanism to influence lower-level information processing mechanisms. 

Regulation is achieved by a control signal that changes the parameters and functioning of lower-level 

mechanisms, and which has two fundamental features: identity and intensity. Identity specifies which lower-

level parameters are targeted or which behaviour is up-weighted and which one is inhibited. Conversely, 

intensity represents the strength of the signal, such as the degree to which the lower-level parameters are 

displaced from their default value. Second, the specification process is responsible for the decision of whether 

or not to pursue a controlled process and (in case) the actual selection of the most appropriate control signal, 

which specifies which of the possible action plans should be engaged and how intensely (e.g., accurately) they 

should be pursued. Third, the monitoring process ensures that the cognitive system has essential information 
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for signal specification, which includes information about current circumstances and whether the current 

behaviour is affording progress towards goals. An ample literature suggests that monitoring processes could 

consider various sources of information, such as response conflict, response delays, errors, and negative 

feedbacks, which might indicate a need for cognitive control (Botvinick et al., 2001; Laming, 1968; Rabbitt, 

1966; Shenhav et al., 2013). Finally, at the neural level, EVC theory ascribes to the dorsal anterior cingulate 

cortex (dACC) roles in monitoring and specification, and the lateral prefrontal cortex (lPFC) a role in 

regulation. 

Here, we advance a formal account of cognitive control and its associated cost-benefit computations, 

and cognitive and neuronal processes within the active inference framework. We formalize cognitive control 

as the optimization of a single control signal: a (precision) parameter that balances habitual and deliberate 

components of action selection in (hierarchical) active inference (Pezzulo et al., 2015, 2018). One can also 

describe the optimization of the precision parameter as a form of meta-control because the precision parameter 

controls (or weights) the contributions of habitual and deliberate controllers (Botvinick et al., 2019; Doya, 

2002; Silvetti et al., 2018). We will show that optimizing the precision parameter provides an optimal solution 

to the key problem of cognitive control: namely, ensuring accurate action selection at the lowest computational 

cost.  

Our account conceptually relates to previous proposals that cast attention to action (Norman & 

Shallice, 1986) and cognitive control (Shenhav et al., 2013) as optimization problems. However, unlike 

previous proposals, we derive control equations from the normative scheme of active inference. Besides its 

normative appeal, our proposal reconciles two separate streams of research that focus on aspects of cognitive 

control that depend on reward-related factors (Shenhav et al., 2013) and epistemic factors, such as 

environmental uncertainty and ambiguity (Behrens et al., 2007). Active inference uses a free energy 

minimization scheme that considers both pragmatic (goal or reward achievement) and epistemic (uncertainty 

minimization) imperatives during action selection, hence explaining the two facets of cognitive control. 

Furthermore, casting free energy minimization in terms of gradient descent allows one to simulate neuronal 

dynamics in the dACC, the locus coeruleus and the dopaminergic system.  

In the following paragraphs, we detail our formal implementation of cognitive control within active 

inference and the putative neuronal correlates of control computations. We subsequently describe three 

simulations that exemplify active inference in driving tasks with distinct (lower to higher) control demands. 

Finally, we summarize and further discuss how our formulation explains the rich phenomenology and 

neurobiology of cognitive control. 

 

6.2 Computational model of cognitive control during driving 

6.2.1 Simulation scenario: the driving task 
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In this numerical study, we simulate a driver who aims to travel safely from home to her office and 

allocates an optimal level of cognitive control to complete the task successfully without wasting cognitive 

resources. The driving scenario comprises 32 trials or “road-steps”; see Figure 6.1. At each road-step, the agent 

receives a sensory cue from the environment and selects one of two possible policies: she can either drive 

forward along the road or dodge to the left. During our simulations, most of the time, there are no danger cues; 

hence, the driver can safely follow the default policy to drive forward, which becomes increasingly habitual. 

However, sometimes a danger (i.e., a deer on the road) appears and  —to avoid a collision — the driver needs 

to select the alternative, dodging policy. In turn, this requires engaging cognitive control to inhibit the habitual 

policy (i.e., drive forward) and select the alternative policy (i.e., dodge to the left) 2.  

6.2.2 Generative model for the driving task 

The agent solves this task using the generative model shown in Figure 6.1. As in the previous chapters, 

the generative model is illustrated with the formalism of Partially Observable Markov Decision Processes 

(POMDP), with nodes s1, s2 and s3 denoting hidden states (i.e., beliefs or discrete probability distributions 

over unobserved task variables, such as the agent's position and the presence of dangers); nodes o1, o2 and o3 

denote observations (observable stimuli, from which the agent can infer hidden states); the node π denotes 

beliefs about the policies (or action sequences); and edges represent probabilistic relations among state 

variables (the letters A, B, C, D, E within the squares that mark the edges specify the probabilistic mappings 

among variables). 

As explained already, when simulating active inference, variational free energy (F) is computed for 

each allowable policy or action sequence (π) and comprises two terms; see Equation 1. The first is a complexity 

term that scores a (Kullback Leibler or KL) divergence between the posterior beliefs about states of an auxiliary 

distribution (called a variational density q(s|π) in variational inference), and the posterior beliefs about states 

of the generative model (called posterior density p(s|π)). The second term is accuracy, which scores the 

expected (logarithm of) the probability of observations given beliefs about unobservable states (ln p(o|s)). 

These two terms jointly ensure that the agent engages in a continuous perception-action cycle, by updating its 

(posterior) beliefs about the states to better fit its observations and by selecting courses of action that actively 

sample the observations predicted by the model. This means that perception and action fulfil the same (free 

energy minimization) imperative. 

 

F(𝜋)⏟
𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐹𝐸

 = D𝐾𝐿  [𝑞(𝑠|𝜋) || 𝑝(𝑠|𝜋)]⏟              
𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦

  −  E𝑞(𝑠|𝜋)[ln𝑝(𝑜|𝑠)]⏟          
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

           (1) 

                                 

 
2 It could be argued that dodging to the left is an automatic response for obstacle avoidance, not a deliberate 

plan. However, in this simple setting, we omit automatic responses from the active inference model and treat 

the dodging behaviour as a deliberate policy. 
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Again, as already explained, the expected free energy associated with each policy π considers the prior 

preferences of the agent (i.e., extrinsic or pragmatic value), the expected information gain about states of the 

world (intrinsic or epistemic value) and the expected information gain associated with the parameters of the 

model (novelty). The first two terms can be rearranged into risk and ambiguity. Risk is the (KL) divergence 

between anticipated outcomes given a policy (q(o|π)) and preferred outcomes (p(o)). Ambiguity is the expected 

uncertainty (i.e.,  conditional entropy H) about outcomes, given the model's likelihood p(o|s). However, since 

in this model we implement learning, a third component is added, the novelty term that scores how much the 

beliefs in likelihood parameters (a mapping between states and outcomes) are expected to change after a new 

observation: 

 

G(𝜋)⏟
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐹𝐸

 = D𝐾𝐿  [𝑞(𝑜|𝜋) || 𝑝(𝑜)]⏟            
𝑅𝑖𝑠𝑘

  +  E𝑞(𝑠|𝜋)[H[𝑝(𝑜|𝑠)]]⏟            
𝐴𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦

 − E𝑝(𝑜|𝑠)𝑞(𝑠|𝜋)[D𝐾𝐿[𝑞(𝐀|𝑜, 𝑠) || 𝑞(𝐀)]]⏟                      
𝑁𝑜𝑣𝑒𝑙𝑡𝑦

        (2) 

 

For simplicity, we assume that the agent's generative model (shown in Figure 6.1) represents faithfully 

the task variables and the statistical relations between them, although some aspects of the world need to be 

learned (specifically, the A matrix). The A matrix represents the (likelihood) mapping between states and 

outcomes. The B matrix (transition function) encodes the probability of moving from one state to another. The 

C matrix encodes prior beliefs about observations, which in active inference reflect prior preferences. The D 

vector encodes the prior about the initial hidden state. The E vector encodes priors about policies. The G 

denotes expected free energy. The lowercase letters a and e denote the (Dirichlet) concentration parameters of 

the A and the E matrices, respectively, and which are used to model learning by accumulating probabilities. 

The γ is a precision parameter associated with expected free energy; it plays a particularly important role in 

this setting, as it represents the control signal optimized through G(γ). Finally, β0 is a prior over the precision, 

used to simulate dopaminergic responses.  

As shown in Figure 6.1, the generative model comprises four sets of hidden states. These represent a 

warning signal (warning signal present or absent), the driver's current behaviour (drive forward or dodge to 

the left), a danger (deer on the road present or absent), and the safety of the situation (safe travel if there is no 

car crash or injured deer if the car has crashed into the animal). For each set of hidden states, there is a 

corresponding set of observations.  

Finally, in this task, we consider the choice between two very simple policies 𝜋 having length 1 (i.e., 

that comprise only one action): namely, drive forward and dodge to the left). This reflects the fact that for 

simplicity, the active inference agent only makes one decision per trial or "road-step" (i.e., they do not plan 

across multiple timesteps). For each trial, the agent starts from a (dummy) initial state, receives a sensory 

observation, selects a policy and makes a transition to another state. Then, a new trial begins. 



  

73 
 

 

Figure 6.1: The driving scenario. The top panel represents the scenario, with 32 trials or "road steps". The 

centre panel shows the generative model of the active inference agent, expressed using the formalism of 

Partially Observable Markov Decision Processes (POMDP). The nodes represent the agent's beliefs about 

states and task variables, which are encoded as discrete probability distributions. The edges represent the 

statistical relations between these variables, which are specified in the A, B, C, D and E matrices. The 

lowercase letters a and e denote the (Dirichlet) concentration parameters of the A and the E matrices, 

respectively, and which are used to model learning by accumulating [co]occurrences. Crucially, the 

modulation of cognitive control corresponds to the specification of a precision parameter γ, which is 

continuously updated at each road-step of the task and balances habitual and deliberate components of action 

selection. The bottom panel illustrates the four sets of hidden states of the model and the corresponding 

observations. See the main text for an explanation.  
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6.2.3 Implementing cognitive control in active inference 

Having described the generative model of the active inference agent, we focus on the part of the model 

dedicated to cognitive control. We illustrate how active inference characterizes the cognitive control processes 

(namely, regulation, specification and monitoring) identified in previous studies (Shenhav et al., 2013) and 

how it explains their associated neural computations in the dACC and dopaminergic systems. 

Regulation of control. The key circuit for the regulation of control is shown in Figure 6.2 (note that 

this figure simply "zooms in" on the parts of Figure 6.1 that are relevant for cognitive control). Regulation here 

refers to the capacity of a control mechanism to influence lower-level information processing, i.e., a meta-

control. Figure 6.2 shows that the driver’s behaviour is determined by balancing deliberate (G) and habitual 

(E) components of action. In the figure, the deliberate component of action (G) corresponds to the online 

scoring of the quality of the different policies, i.e., their expected free energy. In contrast, the habitual 

component of action (E) corresponds to a prior over the policies. This prior is learned over time by 

accumulating the statistics of policy occurrences (i.e., the more a policy is selected, the greater its prior 

becomes). Note that this accumulation is a straightforward consequence of minimising variational free energy 

with respect to the underlying Dirichlet parameters e. 

  

Figure 6.2: Regulation of cognitive control in active inference. This figure zooms in on the components of the 

architecture in Figure 6.1 that regulate cognitive control. See the main text for an explanation.  

 

Crucially, the weighting of deliberate and habitual components of action depends on the γ parameter, 

which constitutes a precision estimate of beliefs about expected free energy (i.e., the precision of G or 

confidence placed in deliberative planning). This precision parameter plays the same role as attentional 

resources (Cooper & Shallice, 2000; Shallice & Burgess, 1993) and the control signal (Shenhav et al., 2013) 

in cognitive theories of cognitive control: it determines the weighting of habitual (E) and deliberate (G) 

components of action selection. In general, the higher the precision γ of G, the greater the weight of deliberate 

control over habitual control. However, the stronger the habitual component (E), the higher the γ parameter 

needs to be to induce some deliberative control over action selection. 
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In our driving example, the driver's habitual behaviour (E) corresponds to the driving forward policy. 

This habit will become increasingly precise with time if no perils are encountered. Selecting the alternative 

(dodge to the left) policy —  in the presence of perils — requires cognitive control by increasing the precision 

γ of the deliberate component (G). Notably, the final policy selection results from a weighted combination of 

habitual and deliberate components. The relative contributions of these two components are transformed into 

a (prior) probability distribution over policies through a normalized exponential (softmax) function, as 

illustrated in Equation 3: 

 

𝜋 =  σ(lnE − γG)                                                                       (3) 

 

Specification of a control signal. As discussed above, the precision parameter γ plays the role of a 

control signal that balances habitual and deliberate components of action. Determining the optimal value of γ 

requires balancing the benefits of deploying cognitive control (e.g., the possibility of obtaining preferred 

outcomes) versus the required cognitive cost, which we assume to be proportional to γ.  

To specialise the generative model for cognitive control – and to render it able to specify a control 

signal – we introduce a prior over the precision of beliefs about policies. This prior G(γ) can be regarded as an 

expected free energy, not of policies, but of the precision of beliefs about policies. We will refer to this quantity 

as a control cost; namely, the surprisal or negative log likelihood of the precision taking a particular value, see 

Equation 4: 

 

G(γ)⏟
𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑐𝑜𝑠𝑡

= − ln 𝑝(γ) = D𝐾𝐿[𝑝𝐺(𝜋|γ) || 𝑝𝐸(𝜋)]⏟              
𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦

    −    E𝑞(𝑜|γ)[ln 𝑝(𝑜)] + E𝑞(𝑜|γ)[H[𝑝(𝑜|𝑠)]] − E𝑝(𝑜|𝑠)𝑞(𝑜|γ)[D𝐾𝐿[𝑞(A|𝑜, 𝑠) || 𝑞(A)]]⏟                                                
       𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑠𝑡

                                    

(4) 

𝑝𝐺(𝜋|γ) = 𝜎(γ𝐆),         𝑝𝐸(𝜋) = 𝜎(𝐄), 

      𝑞(𝑜|γ) =∑ 𝑞(𝑜, 𝑠, 𝜋|γ)
𝑠,𝜋

,      𝑞(𝑜, 𝑠, 𝜋|γ) = 𝑞(𝑜|𝑠)𝑞(𝑠|𝜋)𝑞(𝜋|γ) 

𝑞(𝜋|γ) =  σ(ln𝐄 − γ𝐆) 

𝑞(𝑜|𝑠) = 𝐀 

𝑞(𝑠|𝜋) = 𝐁(𝜋)𝑠 

ln 𝑝(𝑜) = 𝐂 

 

This control cost has two terms. The first term (complexity) ensures that the most likely precision 

minimises the divergence between beliefs about deliberative and habitual policies. One can regard this 
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divergence as mental effort; namely, the Kullback–Leibler (KL) divergence between beliefs about the policy 

to pursue under deliberate control, given the control signal γ, and the policy to pursue under habitual control. 

Intuitively, the habit is assumed to be a "default policy" or an initial bias about how to act that can be engaged 

at no cost, reflecting the assumption that decision-makers are intrinsically biased towards low-effort options 

(Botvinick et al., 2009; Jimura et al., 2010; Kool et al., 2010; Kool & Botvinick, 2014). Conversely, in 

conditions of cognitive conflict between a habitual and a deliberate policy, the agent might engage mental 

effort to pursue a deliberate policy that differs from the habit (see Figure 6.3 for a clarification of the difference 

between cognitive conflict and mental effort). Therefore, the complexity term reflects how much an agent 

diverges from the habit when engaging in deliberate behaviour (Rubin et al., 2012; Todorov, 2009; Zénon et 

al., 2019). Since the relative weight of deliberate behaviour depends on the strength of the control signal (i.e., 

the value of γ), selecting a stronger control signal to ensure that the action is deliberative induces higher mental 

effort. Rather, selecting a weaker control signal causes behaviour to be dominated by habitual priors and is 

associated with lower mental effort.  

The second term (expected cost) represents the utility of selecting a specific value of the γ parameter 

and ensures that the policies that result from the most likely γ are valuable. Note that – as usual in active 

inference (Friston, Samothrakis, et al., 2012; Friston et al., 2014) – the notion of a “valuable” policy 

encompasses three terms. The first term is an extrinsic value that depends on prior preferences. The second 

and third terms score the resolution of uncertainty associated with the hidden states (i.e., ambiguity-avoidance) 

and resolution of uncertainty associated with the model's parameters (i.e., novelty-seeking), respectively. The 

fact that active inference considers both the preferred outcomes and the resolution of uncertainty will become 

important later when we explain cognitive control dynamics (and associated brain responses in the dACC) 

when pursuing both rewarding (Shenhav et al., 2013) and informative (Behrens et al., 2007) outcomes. 

It is important to remark that the expected free energy G(γ) in Equation 4 (that optimizes the control 

signal γ) is different from the expected free energy G(𝜋) of Equation 2 (that scores policies), in at least two 

ways. First, G(γ) includes a complexity term that scores mental effort. Second, it includes a notion of expected 

cost that also depends upon the precision – because the predicted outcomes depend upon subsequent states, 

that depend upon the policies that depend upon precision.  

In summary, the specification of a control signal corresponds to the minimization of expected free 

energy G(γ) – or the optimization of the precision parameter γ that balances habitual and deliberate components 

of action selection. In this setting, G(γ) (i.e., control cost) can be seen as a hierarchical inference level that 

plays the role of a prior over precision that ensures the achievement of the most valuable and informative 

outcomes — for example, that aversive outcomes are avoided — subject to the constraint that cognitive effort 

is minimised; in the sense that beliefs about deliberative policies do not diverge markedly from beliefs about 

habitual policies.  
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Therefore, the precision parameter γ plays the role of a control signal and its optimization permits 

defining its "identity" and the "intensity" (Shenhav et al., 2013). Signal identity specification corresponds to 

choosing a γ that prioritizes either the policy driven by habits (E), drive forward, or the policy driven by 

deliberate control (G), dodge to the left. This is determined by the direction of change of γ: when γ decreases, 

the habitual policy (drive forward) is prioritized; whereas when γ increases, the deliberate policy (dodge to the 

left) is prioritized. Signal intensity corresponds to the specific value of γ that results from the minimization of 

the expected free energy G(γ) (intended as a control cost): the higher the signal, the greater the engagement of 

deliberate control and the requested mental effort.  

 

Figure 6.3: Clarification of the differences between cognitive conflict and mental effort. Cognitive conflict 

corresponds to the KL divergence between beliefs about the policy to pursue under deliberate control and the 

policy to pursue under habitual control. It is high when the KL between the habitual and deliberate policy 

distributions is high; conversely, if the two policies were the same, there would be no cognitive conflict to 

resolve. Mental effort is a complexity cost required to resolve cognitive conflict: the KL divergence between 

beliefs about the deliberate policy, given the control signal γ and the habitual policy. In case of a cognitive 

conflict, the agent can either invest low mental effort, hence prioritizing habitual policies, or invest high mental 

effort, hence prioritizing deliberate policies.  

 

Monitoring changes in the state of the environment. In active inference, decisions are made on the 

basis of the agent's current estimate of the state of the environment and its beliefs about the relations between 

actions and outcomes. Monitoring significant changes in the state of the environment is key for accurate 

control, as it could signal that the existing action-outcome contingencies are no longer valid. For example, the 

unexpected appearance of a warning signal might indicate that the usual driving forward policy would no 

longer afford a safe journey, and the agent needs to learn the novel task contingencies to plan effectively.  
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We assume that the active inference agent constantly monitors the changes in the state of the 

environment, which are formalized here as Bayesian surprise, or the KL divergence between the agent's beliefs 

about the state of the environment at the current and the previous time steps. When Bayesian surprise exceeds 

a threshold (set arbitrarily to 1), two model parameters are modified. First, the entropy of the action monitoring 

matrix (i.e., the portion of the a matrix that links actions and outcomes) is increased; see Figure 6.4. The 

rationale is that when the agent experiences high Bayesian surprise, it becomes less certain about the links 

between its behaviour (driving forward - dodging to the left) and its outcomes (injured deer – safe travel). 

Second, the learning rate (η parameter) of the same action monitoring matrix is increased (note that the other 

parts of a are not updated during the simulations). This implies that the agent updates its model faster in the 

presence of novel observations and hence can re-learn efficiently the relations between her actions and their 

subsequent outcomes. Taken together, these two changes imply that in (volatile) situations characterized by 

high Bayesian surprise, the agent is less confident about how to act to achieve desired outcomes but learns the 

novel task contingencies faster (Behrens et al., 2007; Sales et al., 2019).  

 

Figure 6.4: How the action monitoring matrix (i.e., the portion of the a matrix that links actions and outcomes) 

changes after significant surprises. (A-C) When the road is free and no unexpected events are observed, the 

driver's beliefs about her current policy (drive forward) reflect the true statistics of the environment, compare 

the left columns shown in B and C, which show action-outcome contingencies in the generative process and 

generative model, respectively. (D-F) However, unexpected events like the presence of a deer might signal that 
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action-outcome contingencies in the generative process might have changed (i.e., volatility), as shown in (E). 

In the presence of unexpected events, the entropy of the action monitoring matrix (F) is increased, which 

implies that the agent is no more confident that she will obtain her preferred outcomes by following the drive 

forward policy. In parallel, the learning rate (η parameter) of the same matrix is increased, too, which implies 

that the matrix can learn novel contingencies faster. 

 

6.3 Neuronal dynamics of cognitive control  

Active inference can be used to simulate putative neuronal dynamics associated with the free energy 

minimization and the optimization of model parameters (Bastos et al., 2012; Da Costa et al., 2021; Friston, 

2005; Friston et al., 2006; Friston et al., 2017; Isomura, 2021; Parr et al., 2022). Below we focus on how we 

simulate neuronal dynamics in two brain structures that play a crucial role in cognitive control: the dACC and 

the dopaminergic (DA) system. 

6.3.1 Neuronal dynamics in the dACC and the specification of a control signal 

In this setting, we associate neuronal dynamics in the dACC to the specification of a cognitive control 

signal, represented by the precision parameter γ. The model finds the optimal value for γ via a gradient descent 

of expected free energy G(γ), by computing the derivative of equation 43.  

In our subsequent simulations, the final (optimized) value of the control signal γ for each trial, which 

we associated with dACC activity, will be illustrated in panels D of Figures 6.6-6.8. Please note that the 

gradient of the expected free energy G(γ) and the optimal control signal γ change at each simulation trial, 

because the parameters of the generative model are continuously updated and the agent collects more 

observations that change the expected free energy of her policies and accumulates more evidence in the E 

matrix. 

6.3.2 Dopaminergic activity 

Previous implementations of active inference (without cognitive control) assumed that dopaminergic 

activity corresponds to the precision of policies γ, which in turn indexes how much an agent is confident in her 

choices (Friston et al., 2014; Langdon et al., 2018; Schwartenbeck, FitzGerald, Mathys, Dolan, & Friston, 

2015). In this setting, policy precision updates after receiving new observations reflect phasic dopaminergic 

responses in the brain. Positive spikes reflect the fact that novel observations increase the agent's confidence 

 
3 For ease of implementation, we simplified the model described in the main text in two ways. First, we used 

the values of G, e and a from the previous trial, not the current trial (note that numerically these values are 

very similar). Second, instead of computing the gradient of expected free energy for each component of 

Equation 4, we considered the estimated probability of each outcome weighted by the value of the G(π) vector 

associated to that outcome. 
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about the policy she is pursuing, whereas negative spikes reflect the fact that the novel observations decrease 

her confidence:  

 

β0  =  
1

γ
                   (6) 

β𝑢𝑝𝑑𝑎𝑡𝑒𝑑 =  β − β0 + (π𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟  −  π𝑝𝑟𝑖𝑜𝑟) ∗ Gπ⏟                
𝐺 𝑒𝑟𝑟𝑜𝑟

    (7) 

with the posterior belief about the policies being: 

π =  σ (lnE − F −
1

β
G)   (8) 

 

Dopamine, therefore, plays a central role in belief updating, as it encodes the meaningful information 

content of observations (FitzGerald et al., 2015; Friston, Shiner, et al., 2012; Friston et al., 2014; 

Schwartenbeck, FitzGerald, Mathys, Dolan, Kronbichler, et al., 2015) which under certain conditions resemble 

reward prediction errors (Cohen et al., 2012; D’Ardenne et al., 2008; Flagel et al., 2011; Schultz, 1998; Schultz 

et al., 1997). Importantly, at difference with previous implementations of active inference (without cognitive 

control), in the current model (with cognitive control) the precision parameter γ is optimized twice: first, during 

the specification of the control signal (Equation 5, discussed in the previous section) and second, when new 

observations are gathered that change the confidence in the policies (Equation 7). The latter update, described 

in Equation 7, depends on a “G error” that scores the difference between posterior and prior policies – and has 

been called an “affective charge” in previous active inference studies (Hesp et al., 2021). To the extent that 

dopaminergic activity corresponds to the precision parameter γ, it combines the contributions of both Equation 

5 and 7, respectively. In our subsequent simulations, these two contributions are illustrated separately (in 

panels D and F, respectively, of Figures 6.6-6.8), and they are subsequently summed up (in panels G of Figures 

6.6-6.8) to model dopaminergic activity. 

 

6.4 Simulations of cognitive control in the driving task 

Below we illustrate three simulations of cognitive control in the driving scenario. The three simulations 

use the same active inference model and parameters but present the driver with different challenges. In 

Simulation 1, the driver does not encounter any unexpected danger and can safely drive towards her office. 

This simulation illustrates habitization and the diminishing costs of cognitive control in habitual settings. In 

the other two simulations, the driver encounters an unexpected danger (Simulation 2) or a danger signalled by 

a traffic sign (Simulation 3). These two simulations illustrate how the demands of cognitive control increase 

under changing environmental conditions - and in which situations exerting cognitive control can be effective 

or not effective. 
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6.4.1 Simulation 1: Habitization and the decrease of “attention to action” in habitual settings 

The first simulation of the driving scenario exemplifies a case in which the driver can safely proceed 

from home to the office because no unexpected events occur along the way. The driver can thus safely select 

the policy drive forward at each trial and achieve the desired outcome (safe travel) at the last trial (Figure 

6.5A). However, the process that leads to the selection of the drive forward policy differs during the first and 

subsequent trials, respectively. During the first trials, the agent relies on deliberate control (driven by G) and 

invests cognitive effort (Figure 6.5E), hence eliciting activation of dACC (Figure 6.5D). During the task, 

however, the agent experiences a stable context, with no unexpected events (Bayesian surprise decreases 

significantly, Figure 6.5B). Consequently, the policy to drive forward slowly becomes a habit, as evidence for 

the policy is accumulated in E (Friston et al., 2016; Maisto et al., 2019). This habitual learning decreases the 

demands for cognitive control and attentional resources and permits selecting "chunks" of actions (Anderson 

et al., 2019; Botvinick, Huffstetler, et al., 2009; Dezfouli et al., 2014; Dezfouli & Balleine, 2013; Miller et al., 

1960; Taatgen & Lee, 2003; Tessari et al., 2006, 2021, 2022).  

This habitization of behavior is reflected in various ways in the model. The decreased cognitive 

demands become evident by considering that expected free energy G(γ) (Figure 6.5C) and the dACC activity 

that represents the control signal (Figure 6.5D) decrease with time, which implies that desired outcomes (safe 

travel) can be obtained at a smaller cognitive cost. The decrease in mental effort shown in Figure 6.5E is 

another index of habitization, and the fact the agent experiences no cognitive conflict between her habitual 

policy (to drive forward) and alternative policies (Figure 6.5H). Furthermore, the increased precision of the 

information in the "monitoring matrix" (Figure 6.5I) shows that the agent becomes increasingly confident in 

the ways her actions produce desired outcomes, which in turn causes G(γ) to decrease. Finally, the decreased 

cognitive demands are reflected in dopaminergic activity (Figure 6.5G). Please note the decrease in 

dopaminergic activity over time reflects the decrease of both the control signal (Figure 6.5D) and the G error 

(Figure 6.5F). 
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Figure 6.5: Results of Simulation 1. (A) This simulation illustrates the case of a driver who drives safely over 

32 trials (or road-steps), without unexpected events. The simulation illustrates several key variables of 

cognitive control. These include (B) Bayesian surprise; (C) expected free energy G(γ); (D) the precision 

parameter γ, which we associated with a control signal and dACC activity (please note that γ starts from 1 and 

it can increase or decrease, but it only decreases in this simulation); (E) mental effort; (F) “G error”, which 

indexes the confidence in expected free energy; (G) simulated dopaminergic responses; (H) cognitive conflict; 

and (I) the monitoring matrix. In this simulation, all the variables shown in panels B-H decrease over time, 
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whereas the part of the monitoring matrix associated with “driving forward” (shown in panel I) becomes 

increasingly more precise. Please see the main text for explanations. 

 

6.4.2 Discussion of simulation 1 

This simulation exemplifies the habitization of behaviour that arises in stable environmental conditions 

when the driver does not experience significant surprises. Developing habits in stable conditions is an efficient 

solution to the trade-off humans and other animals have to solve – about selecting the best course of action 

without wasting excessive resources. In reinforcement learning, it is common to cast this trade-off in terms of 

a competition between a model-free controller, which is cheap but rigid, and a model-based controller, which 

is more cognitively expensive but more flexible, and which might have distinct neuronal substrates (S. W. Lee 

et al., 2014; Abrahamse et al., 2013; Dezfouli & Balleine, 2013; Pezzulo et al., 2015). After (over)training, the 

action becomes habitual, that is, guided by model-free methods based on cached action values, or by stimulus-

response mechanisms, which can be engaged automatically and with minimal processing resources enabling 

fast and skilled performance (Dezfouli et al., 2014; Dezfouli & Balleine, 2013; Keramati et al., 2011; Maisto, 

et al., 2019). It is argued that habitization depends on the fact that after sufficient learning, the model-free 

controller becomes less uncertain than the model-based controller and is selected to control behavior (Daw et 

al., 2005).  

Here, we offer a different (but perhaps complementary) perspective on the process that guides the 

formation of a habit. There are at least four important points that characterize our proposal. First, the passage 

from a more complex to a simpler controller (in our proposal, G and E) is guided by a control signal that is 

continuously optimized based on internal estimates of Bayesian surprise and cognitive conflict, not a 

comparison of the uncertainty of the two controllers. The second related point is that in our proposal, the 

transition to habits is smooth because the different (simpler and more complex) controllers do not “compete” 

but are weighted by the control signal. In our simulation, the control signal becomes increasingly smaller and 

this reflects a smooth process of habitization over time (Daw et al., 2011; Dolan & Dayan, 2013; D. Lee et al., 

2012; Otto et al., 2013; Pezzulo, Rigoli, et al., 2013). Third, in our proposal, habitization reflects not only the 

passage from a more complex to a simpler controller but also a series of other changes at the cognitive 

monitoring and control variables level. As explained above, several variables such as mental effort, cognitive 

conflict, the precision of the monitoring matrix and learning rate all change in a coordinated manner to pass 

from a mode of “high attention to action” to a mode of “low attention to action”. This is in keeping with broad 

theoretical perspectives that emphasize the importance of higher-level cognitive control mechanisms in 

mediating the trade-off between simpler and more complex behavioural controllers (Behrens et al., 2007; 

Norman & Shallice, 1986; Shenhav et al., 2013). Finally, and importantly, we show that the solution to the 

above problems of cognitive control and the balance of simpler and more complex controllers can be 

characterized within a biologically plausible (free energy minimization) scheme that optimizes both 

performance and cognitive resources. 
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In sum, simulation 1 illustrated a situation where the demands for cognitive control gradually decrease 

and behaviour can be executed with low “attention to action” – passing from deliberate to habitual behaviour. 

The next two simulations illustrate the opposite case: a situation in which the demands for cognitive control 

(that are initially low) suddenly increase and the system has to suddenly put “attention to action” – hence 

passing from habitual to deliberate behaviour. 

6.4.3 Simulation 2: the failure to increase “attention to action” in time after surprising events 

Simulation 2 illustrates a more challenging scenario, in which the driver initially drives safely towards 

the office but she subsequently sees an unexpected deer along the road (at trial 19), which she hits shortly after 

(at trial 27); see Figure 6.6. The first part of the simulation, before trial 19, is analogous to Simulation 1. For 

simplicity, we reused exactly the e parameters learned during Simulation 1; and this is why the other 

parameters (Bayesian surprise, conflict and so on) settle fast during the first trials. During this period, the driver 

pursues the drive forward policy, which shortly becomes a habitual behaviour, requiring little cognitive control 

(see the low values of the variables shown in Figures 6.7B-E). However, when the driver sees the unexpected 

deer at trial 19, Bayesian surprise suddenly increases (Figure 6.6B), signalling changed environmental 

conditions (or volatility) and producing a cascade of effects. The driver is not confident anymore that her 

current plan will bring the desired outcomes, meaning that her monitoring matrix becomes more entropic 

(Figure 6.6I). She experiences a situation of cognitive conflict (Figure 6.6H) and has to assess whether, to 

avoid the danger, she must override her habitual behaviour and engage the deliberate policy to dodge instead. 

Managing this conflict increases mental effort (Figure 6.6E) and resources for cognitive control (Figures 6.7C-

D) to devaluate habitual control in favour of deliberate control.  

However, a crucial thing to notice is that deciding on the right policy to avoid danger requires time. In 

this simple example, we assume that the driver is inexperienced and hence firstly needs to re-build some 

precision in the monitoring matrix (Figure 6.2I). In the meantime, the driver has little confidence in her current 

action policy, as evident in the dopaminergic responses (Figure 6.6G), which show increasingly larger negative 

peaks, as the driver approaches the deer. In this specific simulation, the re-planning and the increase in 

cognitive control (Figure 6.2D) are not fast enough; hence, the driver hits the deer at trial 27, producing a dis-

preferred (injured deer) outcome. This simulation, therefore, illustrates the case of an inexperienced driver 

who drives habitually, with low “attention to action” – and is not fast enough to adapt to changed environmental 

contingencies.  
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Figure 6.6: Results of Simulation 2. A driver encounters an unexpected deer on the road (trial 19) and hits it 

(trial 27), as it is not fast enough to re-adapt to the novel situation. Panels A-I are the same as in Figure 6.6. 

See the main text for an explanation. 
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Please note that we could have provided the driver’s generative model with additional pre-configured 

monitoring matrices to deal with dangerous situations, like a deer on the road. In this way, the driver could 

have solved the problem of avoiding the deer by inferring the most contextually appropriate monitoring matrix, 

and then “loading” it. However, we decided to simulate an inexperienced driver with no pre-configured 

monitoring matrices (whose learning rate is not unrealistically high). This helps us illustrate that significant 

environmental changes (as signalled by high Bayesian surprise) promote model learning – which in our model, 

depends on the fact that the monitoring matrix becomes more entropic and the learning rate increases – but 

this, in turn, requires some time. 

6.4.4 Discussion of simulation 2 

This simulation exemplifies a failure to engage in deliberative behaviour (and to devaluate habitual 

behaviour) because cognitive control is engaged too late or too weakly. In the simulation, the driver 

experiences a significant cognitive conflict between the habitual policy to drive forward and the deliberate 

policy to dodge to the left. This kind of cognitive conflict has been extensively linked to cognitive control 

dynamics. One early proposal is that conflict can lead to compensatory adjustments in perceptual and attention 

processing (Berlyne, 1960). More recently, it has been proposed that conflict directly influences the regulation 

of cognitive control (Botvinik et al., 2001). This research identified several types of events that may trigger 

cognitive conflict – namely, explicit feedbacks about one’s performance, the anticipation of a negative 

outcome or the observation of unexpected environmental events. All these events indicate a potential need to 

increase the intensity (and specify the identity) of the control signal.  

In turn, context monitoring is essential to determine the identity and intensity of the control signal. 

Formally, this emerges from the fact that the expected accuracy of the expected free energy G(γ) multiplies 

the value of an outcome by the probability of achieving it. When Bayesian surprise is high, the monitoring 

matrix loses precision and G(γ) increases, because the driver is not sure anymore that she will obtain her 

preferred outcome by pursuing the current course of action. In our simulation, between trials 19 and 27, the 

driver accumulates evidence indicating that the drive forward policy will lead to an undesired outcome (injured 

deer). This permits minimizing G(γ) by changing plan and engaging in the deliberate policy dodge to the left, 

which predicts a desired outcome (safe travel).  

Unfortunately, in this specific simulation, cognitive control is engaged too late (but see the next 

simulation for a more positive outcome). This simulation, therefore, exemplifies a case in which, despite the 

cognitive conflict has been noticed, an insufficient level of control was allocated to the task and then habitual 

control was insufficiently devaluated (Botvinick et al., 2001, 2004). This example is representative of a broader 

class of conditions, described as default override (Shenav et al., 2013). Several studies reported dACC activity 

in tasks that require overcoming an automatic but task-inappropriate response (Silton et al., 2010). In these 

situations, the desired behaviour is less automatic than the default behaviour that occurs automatically – and 

represents the source of the conflict (Shenav et al., 2013).  
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Another relevant example is reversal learning in the context of motor control when overtrained actions 

can become resistant to devaluation. This manifests as an after-effect on motor adaptation (Izawa et al., 2008; 

Wei & Körding, 2009). For example, for a pilot, driving a car is an overlearned procedural task that uses a 

habitual behavioural controller and low cognitive resources. When a perturbation is introduced in the control 

task (for example, the steering direction of the wheel is inverted, such that when turning right, the car steers to 

the left), there is a strong “overriding” of habitual control that can lead to the wrong outcomes. Devaluating 

the motor habit requires a very high intensity of the control signal (Shadmehr et al., 2010; M. A. Smith et al., 

2006). From an active inference perspective, if deliberate and habitual controllers are arranged in a hierarchy 

(Pezzulo, et al., 2015), overtraining produces very strong beliefs in the lower (habitual) hierarchical level and 

therefore, the descending predictions generated by the higher (deliberate) levels cannot contextualize them and 

override the default behaviour.  

There are two ways to solve (or at least alleviate) this problem. First, the agent can engage a strong 

control signal. Indeed, a large body of evidence indicates that when a cognitive conflict occurs, a control signal 

must have an adequate intensity to override in time the default response (Cavanagh et al., 2013; De Martino et 

al., 2006; Paus et al., 1993; Shenhav et al., 2013). Second, the agent can be endowed with a precise monitoring 

matrix, which increases the confidence that the deliberate model will produce desired outcomes and prioritizes 

it. The next simulation will show that when these conditions hold, the active inference agent is able to override 

habitual behaviour and select the most adaptive course of actions to avoid danger. 

6.4.5 Simulation 3: increasing “attention to action” after a warning signal permits avoiding dangers  

Simulation 3 illustrates the case of a driver who initially drives safely towards her office, but then (at 

trial 10) encounters an unexpected warning signal that informs her that the environment is volatile, hence 

decreasing her confidence in the current policy and increasing her learning rate. As a consequence of these 

preparatory processes, the driver has sufficient time and resources to subsequently avoid the deer, which she 

encounters at trial 19; see Figure 6.7.  

As in the two previous simulations, the driver initially pursues the habitual policy to drive forward. At 

trial 10 (Figure 6.7A) the driver encounters a warning signal that is unexpected and therefore signals some 

volatility (Figure 6.7B). To make the simulation more challenging, we treat the warning signal as a generic 

advice that does not directly increase the belief about encountering wild animals along the road. Rather, the 

warning signal makes the driver less confident that her current course of actions will lead to the desired 

outcome, rendering her monitoring matrix less precise (Figure 6.7I) and increasing her learning rate – which 

are exactly the preconditions that promote model revision. The imprecise mapping between actions and 

outcomes increases the level of G(γ) (Figure 6.7C) and the mental effort (Figure 6.7E). At trial 19, the driver 

encounters a wild animal on the road. Different from Simulation 2, this surprising event (Figure 6.7B) comes 

while the agent had already estimated the environment to be volatile and was paying more “attention to action” 

– as evident by the high level of G(γ) (Figure 6.7C) and the high learning rate. This is why the driver is able 

to deploy an appropriate control signal in time (Figure 6.7D) and ultimately select the policy to dodge to the 
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left that avoids the deer at trial 24 (Figure 6.7A). Interestingly, the time interval between trial 19 (when the 

deer is first seen) and trial 24 (when the deer is avoided) is characterized by a rapid switch in the valence 

assigned to the situation, with a rapid passage from the prediction of a negative outcome (negative peaks in 

Figure 6.7F, between trials 20-22) to the prediction of a positive outcome (positive peaks in Figure 6.7F, 

between trials 23-25) when the policy to dodge to the left is selected. The same dynamics is reflected in the 

simulated dopaminergic activity shown in Panel 8G, which sums up the contributions of the control signal 

(Panel 8D) and the G error (Panel 8F). 
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Figure 6.7: Results of Simulation 3. A driver encounters an unexpected warning signal (at trial 10) that 

triggers a series of preparatory processes, which help her avoid a deer that she subsequently encounters on 

the road (trial 19). Panels A-I are the same as in Figure 6.6. See the main text for an explanation. 

6.4.6 Discussion of simulation 3 

This simulation illustrated the importance of warning signals to pre-empt unexpected and aversive 

outcomes (Gabriel & Orona, 1982). At the behavioural level, the warning signal makes the driver more ready 

to change her course of action. This is because, in our simulation, the warning signal is a cue that the 

environment is volatile, determining an increased “attention to action” and learning rate. The fact that higher 

levels of attention and learning rates are applied in more volatile environments is in line with a large amount 

of evidence that links prediction errors to task accuracy and effort (Piray & Daw, 2020; Sales et al., 2019). For 

example, participants solving the Stroop task show less interference in incongruent trials that are frequent 

compared to the case in which they are rare (Lindsay & Jacoby, 1994; Logan & Zbrodoff, 1979). Similar 

results can be observed in imitation studies that manipulated the volatility of stimuli familiarity. Participants 

show a decrease in accuracy and an increase in effort and deliberation when they process familiar stimuli that 

are intermingled with unfamiliar stimuli, compared to the case in which the same stimuli are more predictable 

(Tessari et al., 2007, 2022; Tessari & Rumiati, 2004). Moreover, trying to exert cognitive control when a cue 

was given in both predictable and unpredictable conditions was further detrimental in RTs (i.e. processing 

time; Tessari et al., 2022).  

Several theories in cognitive science emphasize that expectations and prediction errors play a key role 

in learning, too (Daw et al., 2011; Rescorla & Wagner, 1972). For example, according to the Pearce-Hall 

theory of learning, surprising events lead to increased attention levels that facilitate learning (Pearce & Hall, 

1980; Roesch et al., 2012). In keeping, it has been repeatedly shown that the violation of expectations promotes 

learning (Behrens et al., 2007; Courville et al., 2006; Jacquet et al., 2012; Mathys et al., 2011; Soltani & 

Izquierdo, 2019; Swan & Pearce, 1988). According to another perspective, increasing the learning rate as an 

effect of high prediction errors could be considered a form of control signal that shapes subsequent responses 

(Shenhav et al., 2013). 

At the neurophysiological level, the dopaminergic system, including substantia nigra, the ventral 

tegmental area, striatum, orbitofrontal cortex, amygdala and other associated structures (Schultz, 2007), has 

long been linked to learning by reward prediction error (Gershman, 2017; Glimcher, 2011; Schultz et al., 1997). 

Our framework does not directly link dopaminergic responses to learning by reward prediction error. However, 

this link is indirect (FitzGerald et al., 2015), as the conditions that promote high dopaminergic responses (e.g., 

increased control signals) are the same that promote learning (e.g., increased learning rates). In addition to the 

putative role played by the dopaminergic system, the mechanisms of learning and decision-making also involve 

the prefrontal and cingulate cortexes (Botvinick et al., 2001; Rushworth & Behrens, 2008; van Veen et al., 

2001). For example, changes in context volatility that are associated with improved learning elicit dACC 
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responses (Behrens et al., 2007; Brown & Braver, 2005; Carter et al., 1998); see below for a more detailed 

discussion of the relations between dopamine and dACC. 

 

6.5 General discussion 

We presented a novel theory of cognitive control within the framework of active inference. We showed 

that the necessary components of cognitive control identified in previous studies – namely, regulation, 

specification and monitoring (Shenhav et al., 2013) – can be straightforwardly described under the free energy 

minimization scheme of active inference. We proposed that cognitive control implies the optimization of a 

cognitive control signal (which corresponds to the precision parameter that balances deliberate and habitual 

components of control in active inference), via free energy minimization. This (meta-level or hierarchical) free 

energy minimization loop complements (or is nested within) the standard process of free energy minimization 

that optimizes perception and action in active inference (Pezzulo et al., 2018). Furthermore, we proposed that 

optimising the control signal (γ) that balances deliberate and habitual control components might reflect 

neuronal dynamics in the dorsal anterior cingulate cortex (dACC). In contrast, dopaminergic responses might 

reflect the further optimization of γ in relation to the current observations (i.e., policy scoring), in accordance 

with the precision hypothesis (FitzGerald et al., 2015). 

To illustrate the novel theory, we discussed three simulations that exemplify the decrease of cognitive 

demands (or “attention to action”) that leads to habitization of beahvior (Simulation 1) and the increase of 

cognitive demands that engage stronger cognitive control, showing under which conditions this could be 

insufficient (Simulation 2) or sufficient (Simulation 3) to select the correct policy to avoid dangers. We decided 

to illustrate the theory with a “driving task” rather than with classical setups to study cognitive control, such 

as the Stroop, the Posner and the Eriksen flanker task (MacLeod, 1991; Nee et al., 2007), because the driving 

task shows more clearly the importance of pursuing a goal and integrating information over time (i.e., across 

multiple trials), during which environmental conditions may change. Having said this, our simulations could 

also be taken as representative of sequences of trials in the Stroop, Postner, flanker, or similar tasks. Indeed, it 

has been extensively shown that the learned statistics (and the errors) across trials influence the deployment of 

cognitive resources and neuronal dynamics in subsequent trials (Gómez et al., 2019). 

Throughout our simulations, we illustrated the interplay of the various cognitive variables and 

mechanisms that have been identified as crucial for cognitive control, which includes, for example, surprise 

and volatility, context monitoring, cognitive conflict, confidence in one’s course of actions and the 

specification of a control signal. While these variables and mechanisms are sometimes studied independently, 

casting cognitive control in terms of active inference shows their relationships. For example, in our proposal, 

Bayesian surprise increases the level of expected free energy G(γ), which in case of cognitive conflict may 

lead to an increase of the control signal γ. While these quantities are distinct, they clearly depend on one 

another, as illustrated in our simulations. Furthermore, it has been argued that the identity and intensity of the 
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control signal are jointly specified in the brain; this is naturally reflected in our model since signal intensity 

and identity correspond to the value and direction of change of the same (γ) parameter. Our proposal also 

distinguishes between cognitive conflict and mental effort concepts that may sometimes be conflated. The 

former corresponds to the KL divergence between (probabilistic beliefs about) the habitual and the deliberate 

policies, whereas the latter is a complexity cost that can be invested to resolve the cognitive conflict: the KL 

divergence between beliefs about the deliberate policy, given the control signal γ and the habitual policy (see 

Figure 6.3).  

Two prominent theories of cognitive control related to our proposal are attention to action (Norman 

& Shallice, 1986) and expected value of control (Shenhav et al., 2013). The former theory assumes that a 

(higher level) supervisory attentional system deploys cognitive control to bias (lower level) action selection, 

whereas the latter assumes that cognitive control is based on a cost-benefit evaluation that balances the payoff 

that one can obtain by engaging a controlled process against its cognitive costs. Our proposal is conceptually 

related to both theories but casts the computations of cognitive control within the overarching framework of 

active inference (Parr et al., 2022). Crucially, in our approach, cognitive control emerges as a straightforward 

extension of the (hierarchical) action-perception loop of active inference and does not require heterogeneous 

mechanisms for optimization, as in previous proposals. In other words, the amount of cognitive control is just 

another thing that is optimized by minimizing expected free energy. Another distinguishing feature of our 

proposal is that the expected free energy functional G(γ) is richer than the notion of expected value of control: 

it considers both reward-related factors that are key in the theory of expected value of control (Shenhav et al., 

2013) and epistemic factors, such as environmental uncertainty and volatility, which are highlighted in other 

studies (Behrens et al., 2007). Furthermore, our approach is based on Bayesian (belief-based) inference, which 

provides a rich formal language to express the core concepts of cognitive control in rigorous ways; for example, 

Bayesian surprise can naturally score unexpected events, and KL divergences can naturally score cognitive 

conflict and mental effort (see above and Figure 6.3).  

6.5.1 Putative neuronal underpinnings of the proposed model 

Finally, the free energy minimization dynamics have straightforward correspondences with neuronal 

responses in various brain areas (Da Costa et al., 2021; Friston et al., 2017). Below, we discuss the putative 

neuronal underpinnings of the proposed model by focusing on three brain structures that are key to cognitive 

control: the dorsal anterior cingulate cortex (dACC), the dopaminergic (DA) system and the locus coeruleus 

(LC). 

6.5.2 The dorsal anterior cingulate cortex (dACC) 

Various studies implied the dorsal anterior cingulate cortex (dACC) in cognitive control and the 

modulation of adaptive behaviour. An influential proposal reviewed above is that the dACC integrates 

information about costs and rewards, to compute the net value associated with the allocation of control to a 

given task, to determine whether and how much control should be invested – and ultimately, to deploy the 

optimized control signal (Shenhav et al., 2013). It has been proposed that the dACC might be directly involved 
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in two of the three key processes of cognitive control: the monitoring of conflict, volatility and the probability 

of undesired outcomes (Botvinik et al., 2001); and the specification of a control signal (Shenhav et al., 2013). 

Furthermore, the dACC could be indirectly involved in the third key process of cognitive control: it could 

deploy information about conflicts to other brain areas, such as the lateral prefrontal cortex (lPFC), which are 

responsible for regulation. A large body of evidence indicates that dACC is active in conditions requiring 

control intensity adjustments and influences brain structures responsible for regulation. For example, various 

neuroimaging studies suggest a relation between dACC activity during conflicts and the subsequent increment 

of activity in areas associated with attentional regulation (Cavanagh & Frank, 2014; Kerns, 2006; Kerns et al., 

2004; King et al., 2010; MacDonald et al., 2000). Similar evidence comes from EEG studies, where 

electrophysiological indicators of dACC responses have been detected during attentional adjustments after 

conflict and errors (Aarts et al., 2008; Carter et al., 1998; Crottaz-Herbette & Menon, 2006; Forster et al., 2011; 

Shenhav et al., 2013; Sohn et al., 2007).  

Following these findings, our proposal associates dACC activity with the optimization of cognitive 

control signals, by minimizing the expected free energy G(γ). This perspective assigns dACC a role in 

prioritizing (precision-weighting) simpler or more complex behavioural controllers, which are present across 

the dorsolateral prefrontal hierarchy (Pezzulo et al., 2015, 2018). Given its key role in monitoring, the dACC 

could also be implied in calculating cognitive conflict (Botvinik et al., 2001), which in our model directly 

influences (and is largely reflected in) the dynamics of expected free energy G(γ). 

6.5.3 The dopaminergic (DA) system  

Dopaminergic (DA) activity plays a crucial role in cognitive control. The high-level modulations in 

prefrontal areas are highly influenced by dopamine activity, particularly from midbrain dopaminergic neurons 

(Brozoski et al., 1979; Cools et al., 2019; Sawaguchi & Goldman-Rakic, 1991). An influential view of 

dopamine's role in cognitive control is that it acts as a motivational modulator that influences value-related 

computations, for the selection of adaptive behaviour (Cools, 2016). In other words, it modulates the value of 

decisions, influencing the willingness for costly control to pursue alternative ones (Aarts et al., 2008; M. 

Botvinick & Braver, 2015; Padmala & Pessoa, 2011; Westbrook & Braver, 2016). Along similar lines, it has 

been proposed that dopamine may influence multiple mechanisms for motivation (Braver et al., 2014): from 

stimulus-rewards Pavlovian associations (Swart et al., 2017) to cognitive cost-benefit analysis and 

reinforcement learning (Salamone et al., 2016; Schultz et al., 1997; Tobler et al., 2005), and putatively by 

promoting learning based on reward prediction errors (Montague et al., 1996).  

In keeping with previous active inference works, we linked dopaminergic responses to the precision 

parameter γ (Friston et al., 2014; Langdon et al., 2018; Schwartenbeck, FitzGerald, Mathys, Dolan, & Friston, 

2015a). Crucially, however, in this model, the precision parameter γ is optimized twice: during the 

specification of the control signal (Equation 5) and when new observations are gathered that change the 

confidence in the policies (Equation 7). Therefore, dopaminergic activity might correspond to the combination 

of these two components. This is illustrated in Figures 6.6-6.8, in which we plot dopaminergic activity (panels 
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G) as the sum of the two components (illustrated in panels D and F, respectively). These two optimizations of 

the precision parameter γ are not unrelated: the former mediates the selection of a “general modality” (e.g., 

habitual or deliberative) of control, whereas the latter mediates the selection of a specific policy and the 

assessment of the value of its outcomes. This perspective could help contextualize the aforementioned theories, 

which assign a motivational role to dopaminergic activity. This role is evident by considering that in Figures 

6.6-6.8, dopaminergic activity tends to increase with control demands, suggesting that it might act as a 

motivational modulator that influences value-related computations (Cools, 2016). At the same time, positive 

and negative peaks of dopaminergic activity track at a fine-grained level the changing confidence in the current 

policies, when novel observations are gathered that predict their success or failure.  

6.5.4 Locus coeruleus (LC) and noradrenaline 

The locus coeruleus (LC) is one of the main sources of noradrenaline (NA) in the brain, and it could 

be a key area to process information about statistical regularities, such as surprise, uncertainty, and volatility 

of the environment (Behrens et al., 2007; Sales et al., 2019). In our proposal, the LC could be responsible for 

calculating Bayesian surprise, with two main effects. First, the LC could deploy information about Bayesian 

surprise to the dACC, via cortico-LC connections – as this information is essential to initiate adjustments to 

the level of control in the dACC. For example, high levels of Bayesian surprise lead to changes to G and 

expected free energy G(γ). Second, a high level of Bayesian surprise could promote the release of 

noradrenaline, therefore increasing the learning rate and fostering faster model updating. Note that here the 

model learning is not a reward-based process, but a process that learns the statistical regularities of actions and 

outcomes (in the monitoring matrix). A complementary perspective is that noradrenaline promotes reward-

based learning, too. In this perspective, there would be a hierarchy of neuromodulators: noradrenaline (which 

lies higher in the hierarchy) would promote the release of dopamine (which lies lower in the hierarchy), which 

in turn would mediate faster learning via reward prediction error (Silvetti et al., 2018).  

In sum, in this section we have provided possible links between the computations of the active 

inference scheme – and in particular, those required to optimize a control signal – and neuronal dynamics in 

the dorsal anterior cingulate cortex (dACC), the dopaminergic (DA) system and the locus coeruleus (LC). Our 

proposals identify a coherent brain circuit that supports the various facets of cognitive control. For example, a 

putative process of “increase of attention to action” could start when conditions of high Bayesian surprise and 

cognitive conflict are detected (via interactions between LC and dACC). This, in turn, would increase the 

learning rate (via noradrenaline) and the control signal (in the dACC), which in turn would change the weight 

assigned to different behavioural controllers (in the lateral prefrontal hierarchy) – possibly, prioritizing a more 

deliberate mode of behaviour that engages higher hierarchical levels. Active inference provides a coherent 

framework to formalize all these subprocesses parsimoniously (i.e., in terms of the optimization of a single, 

free energy functional) and permits generating of crisp quantitative predictions, such as the ones shown in 

Figures 6.6-6.8. Nevertheless, various aspects of this proposal are speculative and remain to be tested in future 

studies. 
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Chapter 7 

Discussion  

 

In the introduction, I have shown how the free energy principle aims to explain what special properties 

things that exist must have. The principle describes things defined in a particular way and then displays the 

dynamics that satisfy that definition. By doing this, it can formalize the rules that govern the self-organization 

of any dynamic system. Self-organization implies moving through a form of itinerancy within the organism’s 

attracting states by maintaining a low-entropy distribution over their set (Friston 2012a; Friston and Ao 2012). 

The explanatory power of the FEP is that all complex behaviour emerges from the simple physics described 

by the Fokker-Plank equation. More practically, the FEP can be seen as a mathematical rationale that can be 

used to develop methods and mechanics for specific applications. Indeed, while the mechanics explain what a 

system is doing, the principle explains why (Ramstead et al., 2022).  

This translates into process theories that function as corollaries for how the free energy principle is 

realized. Active inference offers an account of how the process of free energy minimization is carried on in 

biological and artificial systems. Perception minimizes free energy by updating the Bayesian belief of a 

generative model in order to make it a more accurate representation of the environment, given the upcoming 

observations. Action minimizes free energy by changing the sensory data to make the world more compatible 

with our preferred prior beliefs and goals (Parr et al., 2022). This unique mathematical solution allows for the 

representation of cognitive processing and the underlying neural dynamics. I have shown three 

implementations of this in a hierarchical setting.  

The first study proposed a unified computational account of the cognitive processing underlying action 

observation, understanding, learning and imitation abilities. W provided a computational analysis of 

hierarchical action representations by considering four levels of skilled movements. We have shown that the 

higher the level of the hidden variable, the more the representation is associated with abstract and generalized 

action meanings by providing four simulations of a tennis learner who observes a teacher performing tennis 

shots, forms hierarchical representations of the observed actions, and imitates them. These simulations show 

the empirical predictions (e.g., beliefs updating, oculomotor dynamics and response selection and times) that 

can be derived by casting action understanding as a process of active inference. Finally, we illustrate the 

neurobiological implications and the possible neural implementation of our proposed model, including the 

multiple routes for action understanding in the dorsal and ventral streams and mirror mechanisms (di Pellegrino 

et al., 1992; Rizzolatti & Craighero, 2004; Tessari et al., 2022). 

The second study provided a unified perspective on the visuomotor system and its deficits by jointly 

describing them in neuropsychological, computational and neuroanatomical terms. By adopting the active 

inference formalization, we provided a computational account of apraxia by showing how the generative model 

from study 1 is able to suit the neurofunctional evidence of previous cognitive and neuroanatomical models. 
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We associated the generative model with the structure of a neurocognitive model and addressed how the 

behavioural impairment may be produced at the neurocomputational level. We provided simulations to show 

how the impairment can be observed both at the behavioural level, with a simulated patient that can or cannot 

perform the task correctly, and at the level of probabilistic beliefs. Although we acknowledge that our simple 

discrete models constrain the possibility for more elaborated theoretical accounts (Lanillos et al., 2020), our 

approach is inspired by computational phenotyping, which originated in psychiatric research (Schwartenbeck 

& Friston, 2016) where the computations performed by the brain are associated with measurable behaviours 

(Krakauer & Shadmehr, 2007; Mirza et al., 2016; Testolin & Zorzi, 2016).  

In the third study, we formalize cognitive control as the optimization of a single control signal: a 

(precision) parameter that balances habitual and deliberate components of action selection in hierarchical 

active inference (Pezzulo et al., 2015, 2018). In the simulations, the agent is required to engage an optimal 

level of cognitive control to complete the task successfully, without wasting cognitive resources. This is 

achieved by weighting deliberate and habitual action components depending on the parameter that constitutes 

a precision estimate of beliefs about expected free energy. This precision parameter plays the same role as 

attentional resources (Cooper & Shallice, 2000; Shallice & Burgess, 1993) and the control signal (Shenhav et 

al., 2013) in cognitive theories of cognitive control: it determines the weighting of habitual and deliberate 

components of action selection. Our simulations illustrate the interplay of the various cognitive variables and 

mechanisms that have been identified as crucial for cognitive control, such as surprise and volatility, context 

monitoring, cognitive conflict, confidence in one’s course of actions and the specification of a control signal. 

All these emerge as a straightforward extension of the (hierarchical) action-perception loop of active inference 

and do not require heterogeneous optimisation mechanisms, as in previous proposals. In other words, the 

amount of cognitive control is just another thing that is optimized by minimizing expected free energy. 

With these studies, I have shown how cognitive processing can be regarded as an emergent property 

of the process of minimizing variational free energy at different temporal scales. Setting the appropriate 

generative model is the only necessary step to model any cognitive task, and I showed how even pathological 

function can be regarded as a form of optimal inference with suboptimal prior. This hints that brain 

organization and neural dynamics just recapitulate the shapes of the generative models. An important future 

direction is to set behavioural tasks that can effectively represent cognitive processing and translate them into 

generative models that allow effective model fitting and the recovery of computational parameters (Mirza et 

al., 2016, 2019). This, in line which the idea of computational phenotyping (Schwartenbeck & Friston, 2016), 

allows for a more quantitive approach to otherwise more narrative aspects of behaviour by casting them in 

terms of, e.g., probabilistic belief (Smith, Ramstead, et al., 2022). Furthermore, given the biological plausibility 

of the neural process theories that accompany active inference, the same models can be accompanied by 

neuroimaging investigations, as shown by Schwartenbeck and colleagues (2015). In conclusion, active 

inference offers a way of understanding sentient behavior starting from the dynamics of self-organization. 
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Casting each component of cognition, from perception to planning and action, as an interrelated form of 

inference offers a unified perspective on adaptive systems and their biological substrates.  
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