Hierarchical active inference for cognitive architectures

Proietti, Riccardo (2023) Hierarchical active inference for cognitive architectures, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Psychology, 35 Ciclo. DOI 10.48676/unibo/amsdottorato/10920.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (6MB)

Abstract

This thesis explores the methods based on the free energy principle and active inference for modelling cognition. Active inference is an emerging framework for designing intelligent agents where psychological processes are cast in terms of Bayesian inference. Here, I appeal to it to test the design of a set of cognitive architectures, via simulation. These architectures are defined in terms of generative models where an agent executes a task under the assumption that all cognitive processes aspire to the same objective: the minimization of variational free energy. Chapter 1 introduces the free energy principle and its assumptions about self-organizing systems. Chapter 2 describes how from the mechanics of self-organization can emerge a minimal form of cognition able to achieve autopoiesis. In chapter 3 I present the method of how I formalize generative models for action and perception. The architectures proposed allow providing a more biologically plausible account of more complex cognitive processing that entails deep temporal features. I then present three simulation studies that aim to show different aspects of cognition, their associated behavior and the underlying neural dynamics. In chapter 4, the first study proposes an architecture that represents the visuomotor system for the encoding of actions during action observation, understanding and imitation. In chapter 5, the generative model is extended and is lesioned to simulate brain damage and neuropsychological patterns observed in apraxic patients. In chapter 6, the third study proposes an architecture for cognitive control and the modulation of attention for action selection. At last, I argue how active inference can provide a formal account of information processing in the brain and how the adaptive capabilities of the simulated agents are a mere consequence of the architecture of the generative models. Cognitive processing, then, becomes an emergent property of the minimization of variational free energy.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Proietti, Riccardo
Supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Active inference, Bayesian inference, free energy principle, generative model, cognitive processing, action observation, action understanding, apraxia, neuropsychology, cognitive control, attention, dopamine
URN:NBN
DOI
10.48676/unibo/amsdottorato/10920
Data di discussione
27 Giugno 2023
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^