
ALMA MATER STUDIORUM · UNIVERSITÀ DI BOLOGNA

Dottorato di ricerca in Matematica
Ciclo XXXV

Settore concorsuale di afferenza: 01/A3
Settore scientifico disciplinare: MAT/06

Portfolio optimization in the energy market

Tesi di dottorato presentata da: Elisa Raspanti

Coordinatrice dottorato: Relatore:
Chiar.ma Prof.ssa Chiar.mo Prof.
Valeria Simoncini Andrea Pascucci

Esame finale anno 2023

Abstract

Let’s put ourselves in the shoes of an energy company. Our fleet of electricity
production plants mainly includes gas, hydroelectric and waste-to-energy plants.
We also sold contracts for the supply of gas and electricity. For each year we
have to plan the trading of the volumes needed by the plants and customers: better
to fix the price of these volumes in advance with the so-called forward contracts,
instead of waiting for the delivery months, exposing ourselves to price uncertainty.
Here’s the thing: trying to keep uncertainty under control in amarket that has never
shown such extreme scenarios as in recent years: a pandemic, a worsening climate
crisis and a war that is affecting economies around the world have made the energy
market more volatile than ever. How tomake decisions in such uncertain contexts?

There is an optimization problem: given a year, we need to choose the optimal
planning of volume trading times, to meet the needs of our portfolio at the best
prices, taking into account the liquidity constraints given by the market and the
risk constraints imposed by the company. Algorithms are needed for the generation
of market scenarios over a finite time horizon, that is, a probabilistic distribution
that allows a view of all the dates between now and the end of the year of interest.
Algorithms are needed to solve the optimization problem: we have proposed more
than one and compared them; a very simple one, which avoids considering part
of the complexity, moving on to a scenario approach and finally a reinforcement
learning approach.

Acknowledgements

Questa tesi ha visto diversi attori in scena.
Il capitolo Reinforcement Learning riporta un lavoro di collaborazione che

ha coinvolto l’ufficio ”Modeling and Pricing” e l’Università di Pavia, in partico-
lare il docente Marco Piastra e la docente Andrea Pedrini. Il capitolo Scenario
Optimization è nato dall’evolvere di un progetto di approfondimento al termine
di un corso tenuto al Politecnico di Milano dalla professoressa Maria Prandini. Il
capitolo Price Simulations è stato portato avanti all’interno dell’ufficio ”Modeling

3

and Pricing”, in particolare con il contributo fondamentale di Andrea Cafforio. Il
capitolo Introduction racconta un progetto inter-ufficio: ”Modeling and Pricing”,
”Market Analysis and Price Forecasting”, ”Commodity Optimization”, ”Energy
Risk Control”.

Sono stata comunque dottoranda all’Università di Bologna e ringrazio innanz-
itutto il professore Andrea Pascucci, il mio relatore e la mia guida accademica in
questo percorso; il professore Andrea Cosso che mi ha proposto come correla-
trice per la laureanda Teresa Angeli; un saluto ai dottorandi e ai professori esterni
e interni dei corsi e dei seminari che ho seguito: grazie per la formazione di alta
qualità, interessante spesso al di là del problema oggetto della tesi, e per l’ambiente
stimolante perché ricco di persone appassionate e talentuose.

Al netto dell’alternarsi tra lavoro in presenza e da casa, sono sempre stata
un’impiegata in A2A: ringrazio il referente aziendale per questo progetto, nonché
responsabile dell’ufficio ”Modeling and Pricing”, AndreaMarziali; tutti i miei col-
leghi, in particolare l’ufficio ”Modeling and Pricing”, Alessandra Trolli, Fiorella
Merola, Andrea Cafforio, Elisa Cambiaso, Andrea Marziali per la disponibilità
nell’assecondare i miei impegni da dottoranda; i già citati uffici ”Energy Risk
Control”, ”Commodity Optimization”, ”Market Analysis and Price Forecasing”;
le colleghe di alcuni uffici dell’area ”People and Trasformation” a cui mi sono
rivolta per tutte le questioni burocratiche. Un grazie anche al dirigente dell’area
”Market Analysis, Modeling and Pricing”, Alberto Ravasi e alla dirigente di tutto
il ”Portfolio Management and Trading”, Annamaria Arcudi: assieme ad Andrea
Marziali sono stati gli sponsor interni di questo progetto di collaborazione con
l’università.

Infine un grazie al supporto da casa, umano e canino.

i

ii

Contents

1 Introduction 1
1.1 Our portfolio optimization problem 1

1.1.1 Portfolio description . 6
1.1.2 Risk measure: PaR (Profit at Risk) 7
1.1.3 Other constraints . 9
1.1.4 Problem formulation . 12

1.2 A deterministic approach . 14
1.2.1 Stylized objective function 14
1.2.2 Cluster analysis varying the initial guess 15
1.2.3 Variant: soft constraints 18
1.2.4 Variant: adding bid-ask cost 19
1.2.5 Remarks on the deterministic approach 19

2 Price simulations 27
2.1 Underlyings of interest and empirical facts 29

2.1.1 Forward curves/Spot curves 29
2.1.2 Underlyings of interest 30
2.1.3 Empirical facts . 31

2.2 Model . 35
2.2.1 Find historical relationships 36
2.2.2 Consider a deterministic seasonal factor 37
2.2.3 Apply Principal Component Analysis (PCA) 38
2.2.4 Random core: correlated Gaussian variables 38

iii

2.3 Some issues on the model . 43
2.3.1 Seasonality . 44
2.3.2 Regularize PCA . 46
2.3.3 Components of PCA . 49

2.4 Comparison with another model: OU 51
2.5 Some applications . 52

2.5.1 Calibrate to market: pricing 52
2.5.2 Calibrate to history: creating realistic scenarios 54

2.6 Conclusions . 55

3 Scenario optimization 57
3.1 Optimization problem formulation 59

3.1.1 Chance constrained problem formulation 60
3.2 The proposed scenario-based solution 61

3.2.1 Sample discarding . 62
3.2.2 Convex hull . 64
3.2.3 Scenarios generation . 64

3.3 Results . 66
3.3.1 Comparison with a naive approach 66

3.4 Remarks on this approach . 70

4 Reinforcement learning 77
4.1 Monte Carlo Tree Search (MCTS) 80

4.1.1 Monte Carlo Tree Search: pseudo code 81
4.1.2 Monte Carlo Tree Search: policies 83

4.2 Neural MCTS . 84
4.2.1 Neural MCTS: pseudo code 84
4.2.2 Neural MTCS: policies 86

4.3 Neural MTCS in continuous spaces 88
4.3.1 Progessive widening . 88
4.3.2 Neural importance sampling 88
4.3.3 Cross entropy maximization 90

iv

4.4 Bringing our problem in this framework 90

5 Final remarks and next steps 97
5.1 Comparison between the different approaches 97
5.2 Possible future developments . 98

Bibliography 101

v

vi

Glossary

CCGT Combined cycle gas turbine plant. A plant that produces electricity through
gas; on the one hand it sells electricity, on the other it pays gas and EUA
and some fixed costs according to a given formula, like γgas · Pricegas +

γeua · Priceeua + γfixed, where γgas, γeua, γfixed are given coefficients.. 6

EUA European Emission Allowances. It represents the price you have to pay in
order to emit one tonne of carbon dioxide equivalent (CO2) during a speci-
fied period (https://www.emissions-euets.com/).. 4, 6, 31, 33, 42, 91

MWh MegaWatt-hour. A unit for measuring power that is equivalent to one mil-
lion watts used for one hour.. 10

PaR Profit at risk. A risk measure commonly used in the energy sector.. iii, 7,
16, 17, 22–24, 26, 67, 69, 73

PFOR An Italian acronym that stands for Prezzo di FORnitura. A gas index that
depends on TTF and it indicates the coverage of natural gas procurement
costs; it is published by ARERA (Autorità di Regolazione per Energia Reti
e Ambiente - Italian acronym that stands for Authority for Energy, Networks
and the Environment) before the start of each quarter of the year. Starting
from October 2022, this price no longer exists as ARERA has changed the
methods of calculating the gas price for the protected market.. 3, 6, 7, 91

PL Profit and Loss.. 4, 5, 17, 23, 72, 91, 92

vii

PSV An Italian acronym that stands for Punto di Scambio Virtuale. Price of the
Italian gas.. 3, 6, 7, 30, 31, 33, 35–37, 42, 74, 75, 91

PUN An Italian acronym that stands for Prezzo Unico Nazionale. Price of the
Italian power.. 6, 10, 32, 48

PUNBASE PUN is an Italian acronym that stands for Prezzo Unico Nazionale
(i.e. price of the Italian power); BASE refers to the fact that it is the average
price over all hours of each day of the given period.. 3, 6, 7, 30–32, 34, 36,
42, 44, 91

PUNPEAK PUN is an Italian acronym that stands for Prezzo Unico Nazionale
(i.e. price of the Italian power); PEAK refers to the fact that it is the average
price over the ”peak” hours of each day of the given period, i.e. from 8 a.m.
to 8 p.m of the working days.. 3, 6, 7, 30–32, 36, 42, 44, 46, 74, 75, 91

Q Q stands for Quarter; for example Q4 is the forth quarter of the year.. 10, 11,
13, 67, 68

TTF An acronym that stands for Title Transfer Facility. Price of the Dutch gas..
3, 6, 7, 30, 31, 33–35, 42, 91

viii

Chapter 1

Introduction

In this chapter we describe the main ingredients of the real world problem and the
easiest approach.

1.1 Our portfolio optimization problem

Starting from the 1990s, the liberalization of the gas and electricity markets began
around the world, in particular in Europe, in particular in Italy (see [1]). In addition
to gas and electricity, other relevant products in the energy market are oil, one of
the most traded commodities, by far, not only in the energy sector; coal, since in
the world a large percentage of electricity production is given by coal; CO2, in the
sense that when the production of electricity involves CO2 emissions, you have to
pay a certain amount to produce.
Our fleet of electricity production plants mainly includes CCGTs, hydroelectric
plants and waste-to-energy plants; the subdivision of our electricity production
into technologies reflects the national one, while it differs from that of other Eu-
ropean countries (see Figure 1.1 and 1.2). We also have customers with whom we
enter into contracts for the supply of gas and electricity.

Given a year of interest not yet concluded (typically the current one or the next
one), the production of the plants and the contracts with the customers create the
need to purchase fuel for the plants, where necessary, and to sell the energy pro-

1

Figure 1.1: The figure shows the subdivision of our electricity production into
technologies compared to that of Italy and that of other European countries by
aggregating the data for 2021 ([2]).

duced during the months of the year, to supply gas and electricity to its customers
during the months of the year of interest. Waiting to arrive at the month of deliv-
ery exposes you to the risk of the spot price, in the sense that we cannot know for
sure what price will form in the future, so we usually prefer to keep that risk under
control through forward contracts that fix today the price of something which will
be used in a certain future month. The performance of the portfolio is evaluated
with respect to a level called ”budget level” which corresponds to the value of
all the volumes to be exchanged for that year of interest multiplied by the known
and fixed prices (the budget price curve): on the one hand we try to keep the risk
under control by closing open positions, fixing prices with forward contracts, on
the other hand we try to find the best prices compared to those of the budget curve.

So we have a portfolio of forward exposures relating to power plants and cus-

2

Figure 1.2: The figure shows the subdivision of our electricity production into
technologies compared to that of Italy and that of other European countries by
aggregating the data for 2020 ([2]).

tomer supplies: we have to decide how to divide the prescribed volumes up to each
monthly delivery using the tradable products of each trading date t (one trading
date every month), taking into account of liquidity and the risk constraints. The
goal is choosing the best way to trade the prescribed volumes up to the given de-
liveries in order to optimize total profit, taking into account of all the constraints.

Given a certain time horizon of interest spanning T years and L underlyings,
x1, ...xL, we considerM delivery dates, d1, ...dM , each one associated to a month
of time horizon of interest. As we focus on a portfolio of forward exposures related
to the production and supply of energy for the Italian market, the underlyings of
interest are mainly Italian electricity prices (PUNBASE, PUNPEAK) and Italian
gas prices (PSV, PFOR); in addition there is also the Dutch gas price (TTF), given
that there are contracts that depend on this price which is a reference price for the
European gas market; finally there is also the price that a plant has to pay to emit

3

CO2 (EUA).
For each i ∈ {1, ...L}, for each j ∈ {1, ...M} we have a certain volume

exposure V ij , i.e. a quantity of the commodity xi that we have to buy or to sell
within the delivery date dj . Decisions on the amount of volume exposure to trade
and how to trade it are taken at the trading dates, tk, k = 1, 2, . . . , K; in general,
the set of delivery dates is a subset of the set of trading dates, which means that a
trading date can be earlier than all delivery dates.

The goal is to decide the amounts Vij(tk), k = 1, . . . , K , of the total volume
exposure V ij to trade from the current trading month up to the delivery date for
every underlying xi, i = 1, . . . , L, and every delivery date dj , j = 1, . . . ,M , so
as to maximize the profit over the reference time horizon.

In particular, at the trading date tk, for each underlying xi and delivery date
dj > tk, we have the following options for the (residual) volume

V k
ij = V ij −

∑
h:th<tk

Vij(th) (1.1)

• trade all the volume at the current forward price Fij(tk);

• trade the volume at the delivery month at the spot price Sij = Fij(dj);

• trade the volume at some intermediate month between the current and the
delivery month.

If tk = dj , then, the delivery date dj is met and we have to close the position, i.e.,
satisfy constraint ∑

k:tk≤dj

Vij(tk) = V ij (1.2)

by trading all the residual volumes V k
ij at the spot price Sij .

The profit P is computed with respect to a baseline value associated to a policy
where the entire position is closed at a known budget price level that is denoted
with Bij for the underlying xi with delivery date dj; this means that we evaluate
the performance of the portfolio by comparing the PL of the chosen actions with
respect to the PL that wewould have had by closing the entire position at the budget

4

price level: the goal is to outperform the PL at the budget price level, which we
can calculate at any time since the budget price level is provided as an input.
More precisely, P is given by

P = Pfwd + Pspot (1.3)

where the forward and the spot components are obtained as follows

Pfwd =
L∑
i=1

K∑
k=1

Pfwd,i(tk)

Pspot =
L∑
i=1

K∑
k=1

Pspot,i(tk)

with

Pfwd,i(tk) =
∑

j:tk<dj∧V ij ̸=0

(Fij(tk)− Bij)Vij(tk) (1.4)

Pspot,i(tk) =
∑

j:tk=dj∧V ij ̸=0

(Sij − Bij) (V ij −
∑
th<tk

Vij(th)). (1.5)

Note that, given tk, if not exists j such that tk = dj (i.e. the trading date tk is before
any delivery date), then Pspot,i(tk) = 0. The sign of the price will be positive when
selling and negative when buying.

Note that the splitting of the total profit P into Pfwd and Pspot is a consequence
of the constraints (1.2), since at the delivery date dj the position must be closed
according to the initial volume exposure V ij for all the underlyings xi.

In order to maximize the profit we need to appropriately set the values of the
traded volumes Vij(tk), k = 1, . . . , K , for all underlyings and delivery dates. The
traded volumes are subject not only to the position constraints (1.2), but also to
additional constraints due to the market liquidity and admissible profit at risk as
explained in the next Sections 1.1.3 and 1.1.2.

So for every underlying xi and every delivery dj , from the current month up to
the delivery date, we have to decide which fraction of the total volume exposure
V ij we should trade.
Observe that the first kind of uncertainty that arises in this problem is given by the

5

prices: if we knew exactly the evolution of themarket, we could choose the optimal
combination of volumes, which allows us to close the position and satisfy all the
other constraints of the problem. Note that there is another source of uncertainty:
the initial volumes V ij are taken as an input, but actually they depend also on
the forecast of what will be produced by our power plants and this might change
because of the weather (for example, drought could force us to stop hydroelectric
production) and because of the market conditions (if the costs of producing with
CCGT are higher than the price of electricity, we do not turn on the CCGTs).
Usually the price movements between one month and another are more relevant
than adjustments in forecast volumes and this is the reason why we have focused
more on price uncertainty.

1.1.1 Portfolio description

We are interested in a portfolio in the energy market. The main underlyings in-
volved are the ones typical of the Italian energy market:

• PUN, i.e. the Italian power price, in particular PUNBASE and PUNPEAK;

• PSV, i.e. the Italian gas price;

• EUA (related to CCGT);

• TTF, i.e. the Dutch gas price, the most traded product in the European gas
market;

• PFOR, i.e. an Italian index that depends on TTF.

On one side there is power plant production, in particular:

• hydroelectric power plants and waste-to-energy plants: they have to sell the
electricity (PUNBASE, PUNPEAK) they planned to produce;

• CCGTs: they have to sell the electricity (PUNBASE, PUNPEAK) they planned
to produce; at the same time they have to buy the gas (PSV) and the permis-
sion to emit CO2 (EUA).

6

On the other side there are customer supplies, in particular:

• power supplies (PUNBASE, PUNPEAK);

• gas supplies, in particular:

– PSV;

– the spread PSV - TTF and the spread PSV - PFOR; these two spreads
are related to the gas sales indexed to TTF and PFOR, respectively.

It is mandatory not to speculate on prices, but instead to hedge the position in the
most convenient way.

1.1.2 Risk measure: PaR (Profit at Risk)

The company defines the maximum limit of total economic capital for market
risks, on an annual basis, which qualifies the appetite for risk associated with a
certain level of return. This value determines the maximum accepted variation
in EBITDA1 due to adverse commodity price developments over the reference
time interval and given a predefined confidence level. With the passage of time,
the level of risk on the horizon of the reference accounting year is reduced by
reducing the open positions and increasing the portion of realised PL accrued on
closed positions. Over time, price volatility is also reduced due to the shortening
of the time horizon; then decreasing monthly risk limits will be defined. These
limits will be proposed by the risk manager on the basis of the calculation of the
risk reduction by time, in line with the annual limit.

For this reason, for each trading date tk, we need to impose a bound on the risk
by using the Profit at Risk (PaR), which is the p-th percentile (typically p = 1)
of the distribution of the profit for the portfolio associated to a policy where all
volume exposures of all underlyings are traded at the delivery month at the spot
price instead of being traded at the forward price curve Fij(t1), j = 1, . . . ,M ,
known at the current time t1 when portfolio optimization is performed.

1A company’s earnings before interest, taxes, depreciation, and amortization.

7

This method for assessing the risk for a portfolio has been used since the start
of the electricity market ([3]).

In order to assess the PaR, we can estimate the profit distribution at the trading
date tk by Monte Carlo simulation using the profit expression

L∑
i=1

∑
{j: dj>tk}

(Sij − Fij(t1))V
k
ij , (1.6)

and extracting multiple samples of the spot prices Sij , i = 1 . . . , L, j = 1, . . . ,M .
We can then consider the first percentile (p = 1) corresponding to the minimum
value of the profit guaranteed with confidence (100 − p)% and impose that it is
not smaller than a certain target value. Alternatively, we can adopt an analytic
approach similar to that used for the Value at Risk ([4]): we compute the standard
deviation of the random variable (1.6) and multiply it by the inverse of the cu-
mulative Gaussian probability distribution for a given (100− p)% confidence by
making the simplifying assumption (see [5]) that (1.6) is a Gaussian random vari-
able because the spot prices Sij , i = 1 . . . , L, j = 1, . . . ,M , are jointly Gaussian.

By collecting in vector Vk all the residual volumes V k
ij , i = 1, . . . , L, j ∈

{1, . . . ,M, such that dj > tk}, defined in (1.1), (1.6) can be rewritten in compact
form as:

L∑
i=1

∑
{j: dj>tk}

(Sij − Fij(t1))V
k
ij = S⊤

k Vk

where Sk is a suitably defined vector whose elements are of the form Sij−Fij(t1),
i = 1, . . . , L, j ∈ {1, . . . ,M, such that dj > tk}. The variance of (1.6) can then
be expressed as

V ⊤
k ΣkVk

whereΣk is the variance matrix of Sk, which can be estimated by extracting multi-
ple independent realizations of the spot pricesSij i = 1 . . . , L, j ∈ {1, . . . ,M, such that dj >
tk}.

As a result, the PaR constraint at tk rewrites as

α
√
V ⊤
k ΣkVk ≤ ηk ⇐⇒ V ⊤

k ΣkVk ≤
η2k
α2

, (1.7)

8

where α is the inverse of the cumulative Gaussian probability distribution for the
desired confidence level (100− p)% and ηk is the upper bound on the PaR at time
tk.

Note that the numerical formula (the p-th percentile of the distribution of the
profit) is more precise, but it is not a quadratic constraint. So we calibrate param-
eter α in Formula (1.7) so that the two PaR values (the numerical and the analytic
one) are the same at the beginning, then we look for the optimal decision using the
analytical formula. This approximation could be justified by the fact that typically
the PaR does not change much during the month, so we remain in the neighbor-
hood of the initial value.

1.1.3 Other constraints

In addition to the risk constraint, there are other constraints:

• liquidity,

• tradability,

• position.

The liquidity constraint is simply a maximum quantity given for each tradable
product of each underlying on each trade date; note that since there is only one
trading date per month, the liquidity constraint refers to the maximum tradable
quantities in the entire month. The position constraint is the one given by Formula
(1.2). We dedicate a subsection for the tradability.

Tradable products

We cannot trade any monthly forward contract at any trading date because, in
general, energy markets are not liquid enough.

At each trading date tk, for each underlying xi, we can choose between nine
tradable products:

- the next four monthly forward contracts;

9

- the next four quarterly forward contracts;

- the next one yearly forward contract.

Given a trading date tk, for each underlying xi, usually we consider less than
nine products, because we are interested only in the products that involve the year
of interest. In the examples below the year of interest is 2021.

Figure 1.3: The 9 products that can be traded at the trading date in February 2020:
the next four months, none of them is on 2021; the next four quarters, i.e. Q20

2 (the
second quarter of 2020), Q20

3 (the third quarter of 2020), Q20
4 (the fourth quarter of

2020), Q21
1 (the first quarter of 2021); if we are interested only in 2021, we have

only one quarter available, Q21
1 ; the next year (i.e. 2021). Therefore there are only

two products for the year of interest: Q21
1 and the whole year.

Figure 1.4: The 9 products that can be traded at the trading date in November
2020: the next four months, i.e. December 2020, January 2021, February 2021,
March 2021 (only three of them are in 2021); the next four quarters, i.e. the four
quarters of 2021; the next year (i.e. 2021). In this case there are eight products
for the year of interest: January 2021, February 2021, March 2021, Q21

1 , Q21
2 , Q21

3 ,
Q21

4 and the whole year.

When a period begins it is no longer tradable. For instance, as shown in Figure
1.4, when the trading date is in January 2021, year 2021, quarter Q21

1 , and January
2021 are no longer tradable. Also, trading a forward contract over a period like a
quarter means that we divide the volume by each month of the period. For exam-
ple, buying 30 000 MWh of PUN of the Q21

4 means buying 10 000 MWh for each
month from October 2021 to December 2021.

10

Figure 1.5: The 9 products that can be traded at the trading date in January 2021:
the next four months, i.e. February 2021, March 2021, April 2021, May 2021; the
next four quarters, i.e. Q21

2 , Q21
3 , Q21

4 , Q22
1 (only three of them are in 2021); the

next year (i.e. 2022); as soon we are in 2021, we cannot trade the year 2021. So
there are seven products available: February 2021, March 2021, April 2021, May
2021, Q21

2 , Q21
3 , Q21

4 .

Products are not mutually exclusive and we can trade different products in the
same month. For instance, in Example 1.4, we can trade the product with delivery
in January 2021 with a monthly (yellow), quarterly (blue) and yearly (red) product.
In order to compute the residual exposure at the trading date in November 2020 for
the delivery in January 2021, we must then consider three products, the monthly,
the quarterly and the yearly one.

Each traded volume Vij(tk) needs to be parameterized in terms of tradable
products, that represent the decision variables of the optimization problem.

For each delivery date dj we denote byMj ,Qj , and Yj respectively the month,
quarter, and year to which dj belong. Correspondingly, V ij

Mj
(tk), V ij

Qj
(tk) and

V ij
Yj
(tk) are the amount of monthly, quarterly and yearly products. Then, the cu-

mulative volume for underlying xi with delivery date dj at the trading date tk ≤ dj

is given by

Vij(tk) = V ij
Mj

(tk) · 1Mj
(tk) +

V ij
Qj
(tk)

3
· 1Qj

(tk) +
V ij
Yj
(tk)

12
· 1Yj

(tk) (1.8)

where

• 1Mj
(tk) = 1 if tk is either monthMj or one of the 4 months beforeMj , and

0 otherwise;

• 1Qj
(tk) = 1 if tk is between twelve months before the start of Qj and the

month before the start of Qj , and 0 otherwise;

11

• 1Yj
(tk) = 1 if tk is between twelve months before the start of Yj and the

month before the start of Yj , and 0 otherwise.

Formula (1.8) can be rewritten in compact form as

Vij(tk) = Aij(tk)
⊤Xij(tk) (1.9)

where

Xij(tk) =
[
V ij
Mj

(tk)V
ij
Qj
(tk)V

ij
Yj
(tk)
]⊤

(1.10)

collects all volumes related to monthly, quarterly, yearly products for the consid-
ered underlying and delivery date for the trading date tk and Aij(tk) is a suitably
defined row vector.

Position constraints in (1.2) then rewrite as∑
k:tk≤dj

Aij(tk)
⊤Xij(tk) = V ij (1.11)

For each trading date tk, for each underlying xi, we have boundaries on the
tradable quantity, which translated into the liquidity constraints

Xij(tk) ≤ X ij(tk), i = 1, . . . , L, j = 1, . . .M, k = 1, . . . K, (1.12)

which entail that usually we cannot close the position in a single trading date.
For each trading date tk, for each underlying xi, for each of the nine tradable

products, we have boundaries on the tradable quantity; this means that usually we
cannot close the position in a single trading date. Indeed, trading a huge volume
of a given product on a single trading date would have a significant market impact
(see [6]), and would possibly change the current market price.

1.1.4 Problem formulation

Our goal is to maximize the cumulated profit (1.3), without exceeding the risk limit
(1.7) for each trading date. There is also the liquidity constraint, that acts like a

12

domain D for the decision variables; moreover there is the position constraint,
i.e. we have a given total quantity V ij for each underlying and each delivery. We
can normalize the decision variables, that is considering the actions over time as a
fraction of the total exposure. By changing the sign, we can think at minimizing
instead of maximizing. So the problem is

min
(Vij(tk))ijk∈D

−P subject to (1.7), (1.2) ∀tk

By looking at Formula (1.3) one might notice that

• the volume exposures V ij and the budget level Bij are given as input for
each couple underlying-delivery;

• our decision variables are the volumes to be traded,Xij(tk), that in Formula
(1.3) are translated as their cumulative action on delivery dates, Vij(tk) (see
Formulas (1.9) and (1.10));

• the forward prices Fij(tk) are not given for tk > t1, they are uncertain vari-
ables; spot prices are only a special case of forward prices, when the trade
date and the delivery date coincide; for tk = t1, Fij(tk) represent the current
forward prices, so they are known.

By knowing for sure the evolution of the forward curves we could guess the opti-
mal sequence of actions in order to optimize (1.3) without violating the constraints.
We know for sure the current forward price and the current spot price; for example
if the current trading date is on January of the year of interest, for each underlying
xi we know the prices of the current forward tradable products (February, March,
April, May, Q2, Q3, Q4) and the spot price of the current month (January), but
what about the prices of the next trading dates? How can we choose a strategy
without knowing the value of some variables? The fact is that we do not know the
evolution of the forward curves, so we have to use an approach that can deal with
uncertainty.

13

1.2 A deterministic approach

1.2.1 Stylized objective function

Before considering the whole problem, we start from a naive approach: let’s sup-
pose that we can trade only today, at the current forward prices, using the current
tradable actions, otherwise we will trade at delivery (see Figure 1.6). So we do not
consider intermediate dates, it is a simplified approach. Moreover we use a fore-
cast (called view) for the price at delivery: in this way everything it is known in
advance, there are no uncertain variables, it is a deterministic optimization, where
the objective function becomes

PLnaive(t1) = PLcurrentfwd(t1) + PLview(t1) (1.13)

PLcurrentfwd(t1) =
L∑
i=1

∑
j:dj>t1

(Fij(t1)− Bij)Vij(t1) (1.14)

PLview(t1) =
L∑
i=1

∑
j:dj>t1

(V iewij − Bij)(V ij − Vij(t1)) (1.15)

So instead of Formula (1.3), we have Formula (1.13). Note that in the rest of this
chapter we can omit t1, the current trading month, as there is no other t to get
confused with in the deterministic approach.

Python package

This is a deterministic optimization, since there is not uncertainty on the involved
variables. We can tackle this optimization using a python package: scipy.optimize;
in particular we use the function scipy.optimize.minimize with the method SLSQP
(Sequential Least SQuares Programming) that minimizes a function of several
variables with any combination of bounds, equality and inequality constraints, i.e.
a problem of this form:

min
x

f(x) subject to

cj(x) = 0 ∀j ∈ E

ck(x) = 0 ∀k ∈ I

14

lb ≤ x ≤ ub

where E and I are sets of indices containing equality and inequality constraints
respectively, lb stands for lower bound, ub stands for upper bound. The SLSQP
method is the default choice for scipy.optimize when there are constraints; it is
based on the algorithm originally implemented by Dieter Kraft [7], that is basi-
cally a Newtonian method for solving the Lagrange system; in order to understand
it better see also the chapter ”Sequential Quadratic Programming” of [8].
This is a sequential numerical algorithm easy to use and of general use; we are
aware that there are more specific numerical algorithms (such as the one used in
the Section 3.3) and it would be interesting to analyze the output by modifying
the numerical algorithm. However the use of a sequential algorithm gives the ad-
vantage of obtaining a solution even if it is not possible to fully satisfy all the
constraints; there are cases where having a result might be interesting even if it is
not optimal, such as when the risk limit is far from the initial PaR (see Subsec-
tion 1.2.2). Furthermore we are forced to use an algorithm that does not require
convexity for some variants such as that of Subsection 1.2.4.

1.2.2 Cluster analysis varying the initial guess

As said before this is a deterministic optimization that can be solved easily using
a python package such as scipy.optimize. This means using an iterative method
starting from an initial guess. So one might be wonder

• how we should choose the initial guess;

• whether the final outcome could differ according to the initial guess.

Initial guess

We check the correct sign (buy or sell) of each product i and delivery j according
to the corresponding sign of exposure V ij .
Then we choose zero or the maximum liquidity for each product; considering all
the possible combinations would be expensive, so we choose randomly a fixed

15

number N of combinations, i.e. N = 1000. This initial guesses satisfy the liquid-
ity constraint by construction.
For each guess we compute the PaR, then the distance of the PaR with respect to
the target. We want to penalize those that does not satisfy the risk constraint, so
we modify the distance measure by doubling it up when the guess does not satisfy
the constraint.
We consider as the best initial guess the one with the lower distance.

Cluster analysis

Instead of considering just one guess we can consider a sample of initial guesses
as starting points of the iterative solving method. We choose the ones that satisfy
the risk constraint if there are some, otherwise we choose the best n = 100 guesses
according to the distance described in the paragraph before. Considering all the
N = 1000 combinations generated at the previous step would cost too much time,
moreover if we choose the best guesses it is more likely that the iterative method
find the optimum.
We would like to dispel some doubt:

• is essentially unique or is there more than one optimum? Can we distinguish
some clusterization?

• does the iterative method reach the optimum independently from the initial
guess?

• the iterative method give in output a message that represents the final status
such as ”Optimization terminated successfully”, ”Iteration limit reached”,
”Positive directional derivative for linesearch”, ”Inequality constraints in-
compatible” and so on and so forth: are there any pattern on the final output
according to the final message?

In principle, there might be solutions that are equivalent in terms of PaR and the
global value of the objective function, but that can be different because

16

• they allocate differently the volume between the tradable products of the
same underlying,

• they allocate differently the volume between products of highly correlated
underlyings,

• they allocate differently the PL between now (PLcurrentfwd) and at delivery
(PLview).

As you can see in the examples below (see Figure 1.7 and 1.9), the final status
”Optimization terminated successfully” corresponds to a unique solution, when
the message is ”Iteration limit reached” (with maximum iteration 1000) the solu-
tion is usually closer with respect to the case ”Positive directional derivative for
linesearch”.
By taking a look at the cluster numerically found, if the solution is essentially
unique, we expect a single cluster; in fact there are cases in which it is so (see
Figure 1.10); in other cases more than one cluster is found (see Figure 1.8), but
by a closer inspection there is just a transferring of volumes between the tradable
products of the same underlying that are involved in the same deliveries (for ex-
ample a quarter and its months). There are cases in which the initial PaR is too far
from the target, due to disruptive changes in the market; in these cases the clusters
might be more significant: for example there could be a cluster that has higher
risk, but higher profit and another cluster that has lower risk, but lower profit (see
Figure 1.11).

Python package

In order to perform clustering we used the method KMeans from the python pack-
age sklearn.cluster in order to choose centroids 2 that minimise the within-cluster
sum-of-squares criterion, a measure of how internally coherent clusters are:

n∑
i=0

min
µj∈C

(
‖xi − µj‖2

)
2a centroid is the mean of the samples in the cluster

17

where µj are the centroids, xi are all the given points. This algorithm is described
in [9].
In order to plot the dendrogram we used the method dendrogram from the python
package scipy.cluster.hierarchy; in order to construct the dendrogram we used the
method linkage from the python package scipy.cluster.hierarchy, in particular we
used the Ward variance minimization algorithm, where the distance between two
clusters u and v is given by the following formula:

d(u, v) =

√
|v|+ |s|

T
d(v, s)2 +

|v|+ |t|
T

d(v, t)2 − |v|
T
d(s, t)2

where u = s ∪ t, v is an unused cluster in the forest, T = |v|+ |s|+ |t where the
symbol | · | represents the cardinality of its argument. For more details see [10].
We can use the dendrogram as a way of choosing the best number of clusters; but
we can also use other metrics, like the silhouette score (see [11]). The silhouette
score is calculated using the formula

(b− a)

max(a, b)

where for each sample a is the mean intra-cluster distance and b is the distance
between a sample and the nearest cluster that the sample is not a part of (mean
nearest-cluster distance). Observe that this score is only defined if number of la-
bels is between two and the number of samples minus 1; moreover this score is a
values between 1 and −1; if it is 0 there are overlapping clusters, when it is 1 the
clusters are perfectly distinguishable, if is is negative it means that a sample has
been assigned to the wrong cluster.

1.2.3 Variant: soft constraints

There might be times when it is hard to satisfy all the constraints, so we can relax
the constraints. So, instead of imposing to verify the liquidity, position and risk
constraints, we insert the constraints in the objective function (such as in equation
(1.16)): every time we do not fulfill a constraint, we pay a penalty. We can define
a weight (αi i = 1, ...4) for the penalty of each constraint to represent the fact that

18

we might be interested in satisfy a constraint more than another.

α1(PLcurrentfwd + PLview)− α2(target− PaR)++

−α3

(∑
il

(Vxi
(l)− ubil)

+ + (−lbil − Vxi
(l))+

)
− α4

(∑
ij

(Vij − V ij)
+

)
(1.16)

where ubil and lbil are the upper bound and the lower bound of the tradable product
l of underlying xi (so they represent the liquidity constraint), Vxi

(l) is the volume
of underlying xi and product l, Vij is the cumulative action of the tradable products
of underlying xi for delivery dj . Note that this objective function is based on the
same idea of the one used in Section 4.4, where instead of constraints, we introduce
a penalty proportional to the exceeding the limit value.

1.2.4 Variant: adding bid-ask cost

In order to avoid, for example, selling the quarter and buying its months, i.e. in
order to avoid zero-sum actions, we can add a regularization term, in order to take
into account that each trading action has a cost; so in Formula (1.13) we add a
term:

Costbid−ask =
∑
xi

∑
l

|Vxi
(l)|cil (1.17)

where cil is the semi-distance between bid and ask for the tradable product l of
the underlying xi. Observe that by adding this term to the objective function, on
the one hand we can force the algorithm to prefer more liquid products, on the
other hand the problem becomes a non-convex optimization, while most of the
optimization algorithms require convexity.

1.2.5 Remarks on the deterministic approach

The main advantage of this deterministic approach is that it is the easiest to under-
stand and implement. If a solution exists, then it is substantially unique regardless
of the starting point (see Figures 1.7, 1.8, 1.9, 1.10), apart from changes in the dis-
tribution of volume for products that concern the samematurities (for example one

19

quarter and the corresponding three months). If there is no solution to the given
constraints, the algorithm will end up in one of two clusters (see Figure 1.11): it
either tries to find a better profit with higher risk or a lower risk with lower profit.
We tested some variants for the objective function: when the constraints are too
hard, you can relax them (see Section 1.2.3); to get more realism, you can add the
bid-ask cost (see Section 1.2.4), but keep in mind that this way you lose convexity,
so in general it is more difficult to find solutions.
The main drawback of this approach is that it leaves out many aspect of the com-
plete problem, in particular the fact that there are many intermediate trading dates:
we need simulations for the evolution of the forward curves (see Chapter 2) and
methods that are able to extract a decision given those simulations (see Chapters
3 and 4).

20

Figure 1.6: Let’s say today is June of year Y. Year of interest: Y+1. Above: all
the tradable actions for all trading dates (for a single underlying), the yearly prod-
ucts (red), the quarterly products (green block), the monthly products (thick black
edges) and the spot (grey). Below: the tradable actions according to the naive ap-
proach: today and at delivery.

21

Figure 1.7: Trading month: October of year Y. Delivery months: the months of
year Y+1. On the left: PaR value (reported as a percentage of the target PaR) after
the optimization varying the initial guess (the best 100 initial guesses over 1000).
On the right: objective function value according to the optimization varying the
initial guess. Blue points correspond to the message ”Iteration limit reached”, red
points correspond to the message ”Optimization terminated successfully”. As you
can see, the blue points are more scattered, anyway all the values are very close one
to each other; in particular the ones corresponding to the message ”Optimization
terminated successfully” are essentially the same.

22

Figure 1.8: Trading month: October of year Y. Delivery months: the months of
year Y+1. On the left: the dendrogram representing the clustering of all the so-
lutions (on the x-axis) according to the distance (on the y-axis). By looking at
the hugest jump in distance, we could pick two clusters, as suggested by the col-
ors. On the right: the silhouette score for a number of clusters between 2 to 24;
between these values the highest score is reached by two. By a closer inspec-
tion to the centroids found using two clusters, we found that the two solutions are
equivalent in terms of PaR and total PL and also in terms of total volume traded
at the forward price, aggregating by underlying: for the same underlying there is
a different allocation of the same total volume between the tradable products, in
particular between quarters and the calendar.

23

Figure 1.9: Trading month: November of year Y. Delivery months: the months
of year Y+1. On the left: PaR value (reported as a percentage of the target PaR)
after the optimization varying the initial guess; we used 252 initial guesses, all
the ones (over 1000 random combinations) that satisfy the risk constraint. On the
right: objective function value according to the optimization varying the initial
guess. Blue points correspond to the message ”Optimization terminated success-
fully”, green points correspond to the message ”Iteration limit reached”, red points
correspond to the message ”Positive directional derivative for linesearch”. As you
can see, the red points are more scattered, anyway all the values are very close one
to each other; in particular the ones corresponding to the message ”Optimization
terminated successfully” are essentially the same.

24

Figure 1.10: Trading month: November of year Y. Delivery months: the months
of year Y+1. On the left: the dendrogram representing the clustering of all the
solutions (on the x-axis) according to the distance (on the y-axis). By looking at
the hugest jump in distance, we could pick one cluster, as suggested by the colors.
On the right: the silhouette score for a number of clusters between 2 to 24; between
these values the highest score is reached by two, the other scores are almost the
same low value. As in the case of October, we could say that apart from a different
allocation between quarters and the calendar, there is a unique solution.

25

Figure 1.11: Trading month: December of year Y. Delivery months: the months
of year Y+1. Starting from the top: the value of objective function (on the y-
axis) for each different starting point (on the x-axis), coloured by the clusters you
can see in the dendrogram of this figure. Figure on the middle: the same graph
for PaR, reported as a percentage of the target PaR. Here you can distinguish that
the there are two clusters (blue and red) corresponding one to higher risk, higher
profit, the other to lower risk, lower profit. Figure on the bottom: the dendrogram
representing the clustering of all the solutions (on the x-axis) according to the
distance (on the y-axis). Here you can see that the there are two clusters: the
orange one and the green one.

26

Chapter 2

Price simulations

In this chapter we propose a model for the simulation of correlated forward curves
for a portfolio of the Italian energy sector.

We model forward prices directly using a Heath-Jarrow-Morton framework;
spot prices are thought of as a particular case of the forward, so we can compare
this model with a spot model. We point out some empirical facts about our portfo-
lio of interest, then we point out how we have tried to separate the noise from the
signal in order to have more realistic simulations. Finally we outline the market
calibration of this model and the next possible steps to improve it.
The main novelty of this model is the fact that it addresses an entire portfolio of
forward curves in the Italian energy market; moreover we propose a market cal-
ibration that has proved to be effective with a reduced computational cost. We
compare the spot prices of this model with another model and we investigated the
high dimensional noise pattern of the Italian energy prices. This model can be
useful both for pricing and for optimization purposes.

The main idea comes from [12] and it takes shape from the Heath-Jarrow-
Morton framework in interest rates ([13]): in the energy sector it is more natural
to model directly the forward prices instead of starting from the spot prices pro-
cess, since the derivation is not straightforward (see [14], [15], [16]).

27

The randomness source of this model is Gaussian; we are aware that it is not the
only possible choice and that there are evidences of non-normality in the forward
prices of electricity market (see [14]); a possible future development is to apply
a Normal-Inverse Gaussian distribution (see [17]) to our data. It is well known
(see [15]) that in the energy market, in particular in the electricity market, we need
to consider more noise sources than for example in the interest rate market to de-
scribe a realistic forward curve: our empirical analysis (see Section 2.3) confirms
this fact. The reasons for the presence of such a high-dimensional noise pattern are
to be found in the multiple sources of information (weather, temperature, storage,
seasonality, power plant shutdowns) that may affect the energy markets.
For the energy market, there are many references for the simulation of the spot
prices ([18], [19], [20], [21], [22]), some reference for the simulation of forward
curves ([23], [24], [25], [26], [17]), but there are still few references ([27], [28],
[29], [30]) on how to simulate an entire portfolio of forward contracts in the en-
ergy market: we are interested in maintaining both a realistic correlation between
different underlyings and realistic behavior for the specific underlying. There are
references that speak of commodities in general ([26], [31]) but when it comes to
energy, oil ([23], [24]) and gas ([25]) are the most common examples; electricity
is rarely mentioned. Furthermore, we are interested in the Italian energy market,
while most of the references for the simulation of forward curves do not use data
from the Italian energy market; this could be due to the fact that the Italian gas and
electricitymarket is not so liquid andwas bornmore recently than, for example, the
Nordic market ([20], [32]). The main contribution of this chapter is the selection
and fitting of existing literature models for forward simulations for our particular
portfolio, adding an example in a field where there are still few examples.

The rest of the chapter is structured as follows. We list the underlyings of
interest and show some empirical facts between Section 2.1.1 and Section 2.1. We
therefore present the proposed approach in Section 2.2, whose core is a Principal
Component Analysis, which allows us to select the main factors that drive the
evolution of each forward curve. In Section 2.3 we report some experiments aimed
at overcoming the presence of simulations that have too large jumps for the power

28

products. We emphasize that this model could also be used for pricing thanks
to a simple calibration to the market in Section 2.5.1 and, finally, we draw some
conclusions in Section 2.6.

The content of this chapter was accepted at 8th Edition of the Energy Finance
Italia Conference, at Politecnico di Milano.

2.1 Underlyings of interest and empirical facts

2.1.1 Forward curves/Spot curves

When you look at a market price, you might ask

• the trading date (t): at which time you can trade the underlying at that price;

• the maturity date (T): in which period the underlying will be delivered.

Describing a spot curve is easier than describing a forward curve (see Figure 2.1).
Given a set of maturity dates T1, T2, ...TN , a spot curve describes for each Ti, i =
1...N the price at the maturity date for the maturity date itself, i.e. represents the
price of the underlying at maturity, i.e. the trade date and the maturity date are the
same1.

Given the same set of maturity dates, a forward curve describes the prices at
a specific trading time for all the maturity dates of interest: so you need another
piece of information, the trading time.
Note that given a maturity date Ti, exists a unique spot price, STi

, but there exist as
many forward prices FTi

(t) as trading dates t ≤ Ti. When t = Ti, FTi
(t) = STi

.
If you want to simulate the spot prices, you need a one-dimensional array with
indices T1, T2, ...TN for each simulation (see Figure 2.1 on the right). On the other
side, if you want to simulate the forward prices, you need another dimension (see

1We take as monthly spot price for PSV and TTF the monthly average of the Day Ahead prices,
for PUN the monthly average of theMGP price (whereMGP stands forMercato del Giorno Prima),
while for EUA we take the monthly average of the quotes of the futures with delivery in December
of that year; this because the future with delivery in December is a particular reference price.

29

Figure 2.1: On the left: spot prices of Italian electricity for maturities from January
2018 to December 2019. On the right: simulations of the spot prices of Italian
electricity for maturities from January 2018 to December 2019.

Figure 2.2): for each simulation you need a two-dimensional array with indices
T1, T2, ...TN (maturity dates) on one dimension and t1, t2,tN (trading dates) on
the other dimension.

Warnings:

• You expect that the forward curve at the trading time ti+1 is not indepen-
dent on the forward curve at the trading time ti, so you should not simulate
separately each trading date.

• Moreover if you want to simulate a set of underlyings you should take into
account of the correlations in order to be more realistic, so you should not
simulate separately each underlying.

So we need a model that simulates the evolution of a set of correlated forward
curves.

2.1.2 Underlyings of interest

Below are some examples of forward curves for the underlyings of interest in our
analysis: PUNBASE and PUNPEAK (Figure 2.3), TTF and PSV (Figure 2.4),

30

Figure 2.2: On the left: a 3D representation of the evolution of the forward curve
of Italian electricity through different trading dates for the maturities from January
2018 to December 2019. On the right: the projection on the plane price-maturity.
Note that this is a single scenario, but we want to simulate N evolutions of this
kind.

EUA (Figure 2.5).

2.1.3 Empirical facts

By looking at these examples we can infer some empirical facts:

• the movements of PUNBASE and PUNPEAK are almost synchronous;

• to a certain extend there is synchrony also between TTF and PSV;

• EUA forward curves are linear;

• gas forward curves (PSV and TTF) have some seasonality (higher during
winter, lower during summer);

• power forward curves (PUNBASE and PUNPEAK) show sharper move-
ments than those of gas forward curves.

We underline the fact that usually in the energy markets, in particular for gas and
power forward contracts, there are different delivery periods, for example months,

31

Figure 2.3: PUN (the Italian Electricity price), like most electrical market, is
twofold (see https://www.eex.com/en/glossary). On the left: a base price (it refers
to “the load profile of power deliveries with a constant output over 24 hours of
every day of the delivery period”). On the right: a peak price (it refers to “a load
profile for power deliveries with a constant output over twelve hours from 8 a.m.
to 8 p.m. on any business day of the delivery period”). These are (respectively)
PUNBASE and PUNPEAK forward curves of one (random) trading day per month
from November 2018 to October 2020. Each line corresponds to a trading day.

quarters, years, and these periods can overlap; instead of simulating different pe-
riods and thus imposing non-arbitrage conditions (see [14]), we only simulated
forward contracts with monthly delivery.
We underline also the fact that since we want to simulate the evolution of the for-
ward curves with monthly deliveries, we take the historical forward curves with
monthly deliveries; in most cases there is no provider that gives us a forward curve
with monthly granularity, because especially in the case of the Italian electricity
price there is not enough liquidity. For this reason we have an algorithm that ev-
ery day builds the monthly forward curve given the closing prices for different
delivery periods (months, quarters or years) published by a given provider; this
algorithm translates quarterly prices into monthly or annual ones into monthly us-
ing appropriately calibrated weights; in this way we can extract historical forward

32

Figure 2.4: On the left: TTF forward curve of one (random) trading day per month
from November 2018 to October 2020. Each line corresponds to a trading day.
TTF refers to the Dutch Gas Price, the most traded Gas Price in the European
market. On the right: the same for PSV; PSV refers to the Italian Gas Price.

Figure 2.5: EUA forward curve of one (random) trading day per month from
November 2018 to October 2020. Each line corresponds to a trading day. EUA
refers to the price you have to pay if you emit CO2; for example, you have to
pay this certificate if you produce electricity with a CCGT (Combined Cycle Gas
Turbine).

curves with monthly deliveries from our database.

33

How some events might affect price movements

The need for a simulation tool could arise for several reasons. One reason might
be to test a certain strategy against different scenarios. Here you can see how im-
portant it can be to have such a tool, since reality has shown us that it is best to be
prepared for a wide range of scenarios.
For example in Figure 2.6 it can be seen that starting from March 2020 the PUN-
BASE forward curve for deliveries in 2020 has dropped dramatically, probably
due to a drop in demand due to travel and economic activity restrictions to stop
the spread of Covid-19 (see [33], [34]).

Figure 2.6: The evolution of the PUNBASE forward curve for deliveries in 2020,
starting from February 2018, evaluating the monthly average on the trading dates.

In Figure 2.7, instead, it can be seen that starting from the summer 2021 the
TTF forward curve for deliveries in 2021 has increased hugely, for a variety of
contributing causes that end in a global energy crisis (see [35]); by looking at the
historical spot prices, it can be seen how extreme the movement is (see Figure 2.8).

Moreover, because of the conflict in Ukraine, you can see a wild increase in

34

Figure 2.7: The evolution of the TTF forward curve for deliveries in 2021, starting
from March 2018, evaluating the monthly average on the trading dates.

PSV forward curve for deliveries in 2022, comparing the monthly average on two
consecutive months, February 2022 and March 2022 (see Figure 2.9).

2.2 Model

Starting from the model described in [12], we extracted the principal components
of the covariance matrix of the logarithmic returns for each underlying of our port-
folio; moreover we calibrated the deterministic movement given by seasonality
([36]). In order to simulate simultaneously all the underlyings of our portfolio we
followed the approach described in [28], with the main difference that here we
have more than two underlyings.
Observe that there is also a particular version of model from [12] with just two
factors and with a specific functional form (see [37]), extended also for the case
with more than one underlying (see [29], [30]).

35

Figure 2.8: The evolution of the spot prices of PUNBASE, PUNPEAK and PSV,
evaluating the monthly average starting from November 2016 until December
2021.

2.2.1 Find historical relationships

As a first step we wanted to find the historical relationship between the forward
prices at different trading dates and/or different delivery. Following [12], we ex-
tracted four years of historical forward prices for the nextM = 24 monthly matu-
rities; i.e. for each historical trading dates tz, z = 1..N we extracted the prices

F (tz, tz + τi)

of the next M monthly maturities τi, i = 1..M . Given this data, we computed
a sample covariance matrix S of the logarithmic of the difference of the price
between consecutive trading dates.

36

Figure 2.9: The evolution of the PSV forward curve for deliveries in 2022, start-
ing from the trading month January 2021, evaluating the monthly average on the
trading dates.

2.2.2 Consider a deterministic seasonal factor

In the energy market, it is well known ([36], [12]) that consumption as well as
production follows seasonal patterns; so we considered a deterministic seasonal
factor. For each underlying, we computed the standard deviation of the logarithmic
returns and we collected these results in a matrix

Σ̃k =
(
σ̃k(Ma,Mb)

)
a,b

where k represents the underlying,Ma represents the number of month in the year
(January= 1, February= 2,..) andMb represents the time-to-maturity measured in
months.

37

2.2.3 Apply Principal Component Analysis (PCA)

Principal Component Analysis is one of the most widely used Dimensionality Re-
duction technique which finds directions of maximal variations through a eigende-
composition. So we found eigenvalues (w) and eigenvectors (v) of the covariance
matrix S. Given w and v, we sorted them in descending order according to the w
values, then we built another matrix by concatenating each eigenvector multiplied
by the square root of its corresponding eigenvalue; so we obtained

Σk =

(
vki

√
wk

i

)
i

(2.1)

where k represents the underlying,wk
i represents the i-th eigenvalue of S and vki its

corresponding eigenvector (a column vector). Instead of taking all the columns of
Σ, we chose the first nb columns. This means that we reduced the dimensionality,
keeping the most significant factors. The number nb of components depends on
the underlying.

2.2.4 Random core: correlated Gaussian variables

The model we used can be written asdF k(t, T) = F k(t, T)σ̃k(T, T − t)
∑

i σ
k
i (T − t)dW k

i

dW k
i dW

h
j = ρkhij dt

(2.2)

where k and h represent underlyings and i and j represent indices of the compo-
nents (chosen for the PCA); σ̃k(T, T − t) is the seasonality of the volatility for
maturity T (a specific month) and time-to-maturity T − t (a distance in month)
and σk

i (T − t) is the i − th principal component of underlying k for time-to-
maturity T − t; finally ρkhij is the historical correlation between each pair (k, h)
of underlyings for each pair (i, j) of components. In the previous subsections we
already described how to construct the seasonality (Σ̃ = (σ̃)) and the principal
components of covariance (Σ = (σi)). Finally we have to compute the historical
correlation between each pair (k, h) of underlyings for each pair (i, j) of compo-
nents. Observe that we denote by W k

i the Brownian motion for the component i

38

of the underlying k.
So this is a forward curve model in the sense that it explicitly models all forward
prices rather than just spot prices; it follows the Heath-Jarrow-Morton framework,
originally designed for forward interest rates, but potentially also working in the
energy market.
Warning:

R = (ρkhij)

is the correlation matrix, built element by element. While a directly computed cor-
relation matrix is always positive definite, this reconstructed matrix may not be!

Let’s consider N diffusion processes with correlated Brownian motions:

dXi(t) = ai(X, t)dt+ σi(X, t)dWi(t) i = 1, ..., N

dW(t) ∼ N (0,Rdt)

dWi(t)dWj(t) = ρij(t)dt

whereR = (ρij(t))ij is the correlation matrix, as such it is symmetric and pos-
itive definite, with ρij ∈]− 1, 1[if i 6= j and ρii = 1.

You can transform the previous stochastic differential equations in order to
obtain independent Brownian motions: you have to decompose R. You can use
the Cholesky decomposition or the singular value decomposition (SVD).

Cholesky decomposition

Hypothesis on the matrixR for a Cholesky decomposition: Hermitian and positive
definite.

Hermitian: a complex square matrix that is equal to its conjugate transpose,R =

RH ; if R is real, R = RH implies R = RT , i.e R is symmetric (a square
matrix that is equal to its transpose);

39

Definite positive: a Hermitian matrix R such that z∗Rz > 0 each vector z 6= 0.
Other definitions:

• Since the eigenvalues of an Hermitian matrix are always real, an Her-
mitian matrixR is positive definite if and only if all its eigenvalues are
strictly positive;

• R Hermitian matrix is positive definite if and only if its leading prin-
cipal minors (the determinants of its upper-left kxk sub-matrix) are all
positive;

• R hermitianmatrix is positive definite if and only if the form< x, y >=

y∗Rx is an inner product on Cn.

In this case, given R a real symmetric positive definite matrix, you can find L,
a triangular inferior matrix such that

R = LLT

So the SDEs becomedXi(t) = ai(X, t)dt+ σi(X, t)LdZ(t) i = 1, ..., N

dZ(t) ∼ N (0, Idt)

Singular value decomposition (SVD)

Hypothesis on the matrix R for a SVD: the SVD can be applied to any matrix.
Given a matrix R, the SVD is R = UΣV T where

• U is an orthogonal matrix whose columns are the eigenvectors of RRT ;

• V is an orthogonal matrix whose columns are the eigenvectors of RTR;

• Σ is an all zero matrix except for the first r diagonal elements (singular
values σi) that are the square roots of the eigenvalues of RRT (equivalently
RTR).

In the case of a real symmetric matrix, SVD is equivalent (apart from the signs
of the vectors) to

40

Eigen-value decomposition : R = XΛX−1, where X−1 = XT (so U = X and
σi = |λi|);

Orthogonal decomposition : R = PDP T , where P is a unitary matrix and D

diagonal;

Schur decomposition : R = QSQT , where Q is a unitary matrix and S a diago-
nal matrix (if R is not symmetric, S is an upper triangular matrix).

In this case, given R a real symmetric matrix, you can find Γ (the orthogonal
matrix of eigenvectors) and a diagonal matrix D (the corresponding eigenvalues)
such that

R = ΓDΓT = (Γ
√
D)(Γ

√
D)T

So the SDEs becomedX(t) = A(X, t)dt+ diag(σi(X, t))Γ
√
DdZ(t) i = 1, ..., N

dZ(t) ∼ N (0, Idt)

So, on one side, the Cholesky decomposition makes the SDE simpler, since
you have a triangular matrix; on the other side, SVD requires weaker hypothesis
on R, in particular it does not require positive definiteness.

Regarding forward simulations, we compare the error between the historical
and the simulated correlation of logarithmic returns of forward price: in the case
of Cholesky there is a higher error: the absolute difference between historical and
simulated correlation, averaging over different evaluation dates and all the pairs of
underlyings, is about 35%with Cholesky and 9%with SVD (see Figure 2.10). On
the other hand if you look at the decomposition error, both method perform very
well, but Cholesky is better: the average distance (the mean absolute percentage
error, averaging over all elements) between the original matrix and the one given
by the decomposition is about 10−17 with Cholesky and 10−16 with SVD (see Fig-
ure 2.11). The problem is that Cholesky fails if the matrix is not positive definite.

On both cases there is an arbitrary choice: the column ordering. By changing
the column ordering, it changes the decomposition. How this change can affect the

41

Figure 2.10: Absolute difference between historical and simulated correlation for
all the pairs of underlyings for different evaluation dates. On the left: the result
using Cholesky decomposition. On the right: using SVD. Here we used three
components for the TTF, five for the PSV, one for the EUA, seven for the PUN-
BASE, seven for the PUNPEAK. We can see that in general this distance is lower
for SVD decomposition.

simulations? According to our tests on several valuation dates, a combination ap-
pears to have the lowest error by taking the average across all pairs of instruments
and five dates: TTF, EUA, PSV, PUNBASE, PUNPEAK. Therefore, bearing in
mind that the advantage of SVD is that it does not require the matrix to be positive
definite, the two methods perform both rather well in the approximation of the
matrix, but not in the same way in the approximation of the historical correlation;
as we currently have no theoretical explanation of this latter outcome, it could be
subject to further investigation.

42

Figure 2.11: Distance between the original matrix and the one given by the de-
composition according the two different decomposition methods. The distance is
computed as a mean absolute percentage error, averaging over all elements.

2.3 Some issues on the model

The first tests we did were not satisfactory, in particular due to the behaviour of
power simulations: it happened too often that we have gotten too large swings
and too sharp movements (see Figure 2.12). We stressed the model by different
perspectives in order to have more realistic simulations:

• we applied different types of regularization of the term σ̃;

• we applied different variations of the PCA algorithm in order to better sep-
arate signal from noise;

• we tested different combinations of number of principal component for each
underlying.

43

Figure 2.12: An example of bad simulation for PUNBASE and PUNPEAK. On
the x-axis the monthly maturities (in number of months with respect to the first
trading month), on the y-axis the prices; each different curve refers to a different
trading month.

2.3.1 Seasonality

Seasonality is the deterministic part of the simulated forward curves. You might
wonder if it would be better to approximate seasonality in order to increase the
generalization of the simulation. You might also wonder if including seasonality
gives you more realistic simulations or if it’s better not to factor a term for season-
ality instead.

Regularize seasonality

Nurbs Using the python package geomdl (see [38]) devoted to NURBS (Non-
Uniform Rational Basis Spline), we approximated the seasonality surface
with a NURBS. You have to specify which degree you want to use on each
of the two directions of the surface; the degree have to be strictly lower
than the number of points in that direction. Since we have twelve points in
a directions (months in a year) and twenty-four along the other (the time-
to-maturity), we tried all the possible combinations of degree for both the
directions in order to find the lower approximation error (see Figure 2.13).
The lowest error is for degree equal to one for both directions, while you

44

found the highest errors for the intermediate values; the behaviour is the
same for all the underlyings.

Figure 2.13: Approximation error (computed as mean absolute difference) be-
tween the surface describing seasonality and the NURBS approximation for all
the underlyings, for all the combinations of degree of both directions.

Fourier Looking at the images of the implied volatility of electricity options (see
[36]), one might be tempted to approximate seasonality with a sinusoid or a
combination of sinusoid. So

• we found the best approximating plane and remove it;

• then we found the sinusoid components on both directions of the sur-
face (using python package scipy.fft), calibrating without using the
first κ = 4 time-to-maturity (because they are more irregular).

No regularization We compared the two cases above with the case with no reg-
ularization at all.

For an intuitive idea of the two approximations see Figure 2.14.

45

Figure 2.14: A comparison of two different approximation for the deterministic
factor for PUNPEAK. On the left: NURBS. On the right: the step-by-step method
based on Fourier transform (evaluation date: 19/12/2018).

Looking at the principal components, we found that NURBS stands out of the
crowd with wider movements and peaks. We tracked down in the simulations the
same unreliable behaviour for the NURBS case. On the other side neither Fourier
overcomes the sharp movements for power simulations.

Seasonality: with or without?

Comparing the case with and without the seasonal factor, we came to the conclu-
sion that it is better to include seasonality, because in this way there is a lower
error between historical and simulated correlation (see Figure 2.15).

2.3.2 Regularize PCA

Can we distinguish between noise and signal? This is a frequently asked question
while addressing PCA-approach. In our application, we are concerned that our
historical dataset, especially Italian power prices, is noisy because the market is

46

Figure 2.15: The average over five samples dates of the absolute difference be-
tween historical and simulated correlation for all the pairs of instruments. The
label “0” refers to the case without seasonal factor, “1” with seasonal factor.

not that liquid, so there may be historical forward curves that do not follow a
smooth evolution; it is difficult to distinguish these non-fluid movements a priori.
So we tested two approach in order to regularize PCA.

Robust PCA PCA is a standard statistical procedure to recover a low-rank matrix
from a given data matrix; but PCA is highly sensitive to outliers in the data.
According to [39], given a matrix M , with a low rank, we can decompose
that matrix, i.e.

M = L0 +N0

where L0 has low-rank andN0 is a small perturbation matrix. This decom-
position can help you to distinguish between signal and noise and this might
be crucial if you have perturbed measurements; the authors found that the
decomposition is solvable andmoreover it can be solved by tractable convex
optimization. Through this algorithm the authors recover the “true” signal

47

L0 starting from the perturbed observations given by M . In our case, the
perturbation could be attributed to some asynchronous movements between
the underlyings of the portfolio; so we recovered L0 and then we applied
PCA to that matrix.

Expectation-maximation PCA There is a paper ([40]) that addresses a similar
problem: it supposes to have a noisy dataset with missing values. They
present a method for performing PCA on this type of unreliable data. As the
authors say, a limitation of classic PCA is that it does not distinguish between
variance due to measurement noise and variance due to genuine underlying
signal variations; so they present a method to directly solve for the PCA
eigenvectors with an iterative solution based upon expectationmaximization
(EM) PCA (EMPCA). EM consists in an E-step and a M-step:

E-step: find the expectation of the hidden variables, given the current pa-
rameters;

M-step: find the optimal parameters (maximize the likelihood) given the
hidden variables.

In this case, the parameters to solve are the eigenvectors, the latent variables
are the coefficients for fitting the data using those eigenvectors. So we apply
this algorithm to our matrices.

No regularization We consider also the case in which we apply directly PCA,
without regularization.

In order to compare these three cases we consider the behaviour of the princi-
pal components and of the simulations. Since the objective is to improve power
simulations, we apply regularization only in the case of power instruments. The
principal components of empca are similar to the one with no regularization, apart
from the first component: the case of empca shows up and down movements. For
both empca and rpca approaches it still appears the behaviour we want to avoid
for PUN simulations.

48

2.3.3 Components of PCA

One of the choice is how many components for each instrument. According to
[41] there can be different criteria; for example given a certain level, you can con-
sider the number of components so that the cumulative percentage of the explained
variance reaches that level; otherwise you can look for a cutoff point by looking
at the eigenvalues in descending order. All these criteria are trying to answer the
following question: is variance explained enough? The spectrum of the sample
covariance matrix S (Figure 2.16) shows that we would need a huge amount of
components especially for PUN, in order to reach a 90%: in particular it would fit
three components for TTF, five for PSV, one for EUA, twelve for PUNBASE and
thirteen for PUNPEAK.

Figure 2.16: The cumulative percentage explained of the spectrum for each instru-
ment; average of 19 different evaluation dates. By looking at this graph, you might
say that you need three components for TTF, between five and seven for PSV, one
for EUA, twelve for PUNBASE, thirteen for PUNPEAK in order to reach 90%.

We performed a simulation using different combinations of components for

49

ten different dates between 2019 and 2020. Based on our tests, we have come to
these conclusions:

• if we compare the historical correlation with the one of the simulated prices,
we saw that there are pairs of instruments easiest to mimic, for example the
pair TTF-PSV;

• adding more components causes an increase in the correlation error, espe-
cially between PUN and PSV, so in general it is safer to keep low the number
of components;

• we found that it is better when PUNBASE and PUNPEAK have the same
number of components, otherwise the correlation error for this couple in-
creases.

So, on the basis of our tests, one of the most effective way to reach a good match
with reality both looking at the single underlying and looking at the couples of
underlyings is to keep low (at most three) the number of components for each
underlying and to keep the same number of components for high correlated under-
lyings.
Taking into account of these considerations, we chose one components for TTF,
PSV, EUA and two for PUNBASE and PUNPEAK.
By reducing the number of components we can mitigate the effect of “bad simula-
tion” (see Figure 2.12), i.e. extreme and unrealistic jumps. Another good reason
to keep component counts low is the fact that this way we can easily scale to a
larger portfolio. We are aware that each component is supposed to catch a partic-
ular movement of the forward surface, so we lose some realism by using only one
component; in fact, as [12] said, the typical pattern obtained from PCA is the one
in Figure 2.17: there are risk factors that act to “shift”, “tilt” and ”bend”, and all
these constitute a decomposition for an approximation of the overall volatility.

50

Figure 2.17: Left: the first three principal components for PSV. Right: all the
components for PSV.

2.4 Comparison with another model: OU

When we simulate the evolution of a forward curve, we can consider the spot price
as a particular point of that evolution, the last one. So we can compare the spot
simulations induced by this model with the ones of a spot model, like the Ornstein-
Uhlenbeck (OU) model (see [42], [43]), a mean-reverting model often used in the
energy market: dSk(t) = λk(µk − Sk(t))dt+ σkdW k

dW kdW h = ρkhdt

where k and h represent underlyings. We observed the behaviour of this twomodel
in different market situations:

• during the global energy crisis (see [35]) that started in Summer 2021;

• during the pandemic of Covid19 (see [33], [34]);

• before the pandemic.

We saw that since both models rely on the initial forward curve they follow the
different market situation in a similar way (see Figure 2.18). They act differently
when it comes to spread, i.e. in dealing with correlations (see Figure 2.19).

51

Figure 2.18: A visual comparison of N = 104 spot simulations of PUNBASE using
our HJM-based model (top) and OU (bottom) model, considering three different
year of interests (from the left: 2020, 2021, 2022), starting from the October of
the year before. Here you can see that the two model acts in a similar way, the
main change is due to a change in the forward market (the third column has higher
prices due to the energy crisis started in Summer 2021).

2.5 Some applications

2.5.1 Calibrate to market: pricing

This model offers a closed formula for plain vanillas (see [12]). At date t the
European call option price is

c(t, F (t, s);K,T, s) = Et [P (t, T)max(0, F (T, s)−K)] (2.3)

where P (t, T) is the T -maturity discount factor and Et represents the expectation
under the risk neutral measure conditioned to filtration Ft. From equation (2.2)

F (t, T) = F (0, T)·exp

[
nb∑
i=1

∫ t

0

σ̃(T, T − u)du

(
−1

2

∫ t

0

σi(T − u)2du+

∫ t

0

σi(T − u)dzi(u)

)]
(2.4)

52

Figure 2.19: A visual comparison of the delta between PSV and TTF for N =
104 simulations using our HJM-based model (on the left) and OU (on the right)
model, considering the deliveries of 2022 starting fromMarch 2022. Observe that
in this case the two model act in a different way, the spread is larger in the OU
model, while the actual spread of the settlement price is historically less than 10
euro/MWh.

where nb is the number of components; so the natural logarithms of the forward
prices at time T are normally distributed

lnF (T, s) ∼N (mN , sN) (2.5)

mN = lnF (t, s)− 1

2

nb∑
i=1

∫ t

0

σ̃(T, T − u)σi(T − u)2du (2.6)

sN =
nb∑
i=1

∫ t

0

σ̃2(T, T − u)σ2
i (T − u)du (2.7)

where N (mN , sN) is the normal distribution with mean mN and standard devia-
tion sN . So the solution of (2.3) is given by

c(t, F (t, s);K,T, s) = P (t, T)
(
F (t, s)N(h)−KN(h−

√
w)
)

(2.8)

53

where

h =
lnF (t, s)/K + 1

2
w

√
w

w =
nb∑
i=1

∫ T

t

σ̃2(T, T − u)σ2
i (T − u)du

and N is the standard normal cumulative distribution function. Thanks to For-
mula (2.8) we can modify the columns σi of matrix Σ in order to minimize the
approximation error between the plain vanillas given by Formula (2.8) and the
plain vanillas listed on the market. In this way we can use the simulations of this
model to evaluate numerically exotic derivatives.
So we can calibrate to market the columns σi of matrixΣ. In order to avoid numer-
ical problems due to the large number of elements to be calibrated, since matrix
Σ (see Formula (2.1)) is built from eigenvectors (vi)i and eigenvalues (wi)i, we
decided to change only the eigenvalues in the calibration: this allows us to save
memory and time, while still having a good market calibration, i.e. a good fit to
the prices of quoted plain vanillas (see Figure 2.20).

2.5.2 Calibrate to history: creating realistic scenarios

Market calibration is performed when you want simulated prices to match market
information, usually plain vanilla prices; you need this consistency when using
these simulations to evaluate an exotic financial product. On the other hand, if
only historical information is used to choose the parameters of our model, the most
direct way to use these simulations is to create realistic scenarios, for example to
have a tail measure of the price distribution.
Having realistic scenarios could be crucial, for example, for the numerical solution
of optimization problems or for measuring the risk of a portfolio considering the
most extreme scenarios. In fact when you need to evaluate portfolio risk measures,
for example PaR2, usually you need a model that simulate correlated spot curves.
Moreover, if you are looking at the evolution of a portfolio of future contracts,
if your goal is finding the more profitable way to hedge your position while no

2PaR stands for Profit-at-Risk; it is the percentile (usually the worst first percentile) of the profit
distribution of open positions in a portfolio of futures contracts (see Section 1.1.2).

54

Figure 2.20: A comparison between the original option market price and the ap-
proximated one computed using our calibrated model for the Call options of PUN-
BASE (see Formula (2.8)) according to the market of 25th June 2020 for different
strikes and two different monthly maturities, July 2020 and August 2020.

exceeding a given target risk measure, you need a model that simulate correlated
forward curves.

2.6 Conclusions

This model offers some pros:

• an effective tool to simulate correlated instruments for the Italian energy
market; to the best of our knowledge, there is not much literature for such a
tool for the Italian energymarket and, more in general, for an entire portfolio
of correlated underlyings;

55

• a closed formula to calibrate to market (useful for pricing); by choosing to
change only the eigenvalues in the calibration we reach good performance
while saving on computational cost;

• intuitive justifications for the behaviour of simulations (seasonality of the
volatility, historical movements captured by the PCA);

• having a tool to simulate correlated instruments is crucial when it comes to
portfolio risk measures, because in those cases you have to simulate taking
account of the correlated movements of the instruments.

Here we outline some future research directions for our problem.

• We would like simulations that are indistinguishable from the real ones: can
we improve them further? For example, we can make some tests by chang-
ing the random core of the model, for example the Normal Inverse Gaussian
Lévy process (see [44]) instead of the Brownian Motion; on the one hand
we would add more realism to the simulations, but on the other hand we
would have to face some issue related to keep realism also in the correlated
generations and we would have to look for a closed pricing formula in order
to calibrate to market.

• There are also other methods for facing robust PCA, for example by consid-
ering the problem of robust PCA as a nonconvex optimization problem on
the manifold of low-rank matrices (see [45]).

• Currently the literature on forward simulations for the Italian electricitymar-
ket is scarce, so there are not many benchmarks: can we find a model for a
market similar to the Italian electricity market in order to have a compari-
son?

• How can we further check the goodness of our simulations? Are there any
other methods or criteria to measure the quality of the simulations? For
example, there are papers (see [46], [47]) which propose some metrics for
evaluating the performance of financial time series.

56

Chapter 3

Scenario optimization

We address portfolio optimization for futures contracts in the energy market. The
goal is to decide when to buy the monthly deliveries of a given year for all un-
derlyings in the portfolio so as to maximize profit subject to constraints on risk,
position, and liquidity. This can be formulated as a chance constrained optimiza-
tion problem with probabilistic guarantees on the optimal profit value. A chance
constrained feasible solution is obtained using the sampling and discarding ap-
proach to scenario optimization, where constraints in probability are replaced with
deterministic ones associated to different price realizations and those worsening
the profit are discarded. The high memory requirement of the scenario approach
implementation is addressed by using a compression scheme.

We consider the problem of setting a portfolio of futures in the energy market.
Energy futures are contracts to buy energy products at a predetermined future date
and price. They are meant to reduce the exposure of investors to price fluctuations
of the underlying assets. Our goal is to best hedge the starting position for all
monthly deliveries of a given year, for all underlyings in the portfolio, so as to
maximize profit subject to constraints on risk, position, and liquidity.

Since prices for future dates are stochastic, uncertainty must be taken into ac-
count when choosing dates and volumes to be traded. This can be done according
to three main different paradigms: maximize the profit on average, robustly over
all uncertainty instances, or over all uncertainty instances except for a set of pre-

57

defined probability ϵ ∈ (0, 1).

The first paradigm is adopted in the early paper [48] on modern portfolio op-
timization, addressing a problem where the expected profit is maximized for a
given level of risk expressed in terms of profit variance, thus realizing a trade-off
between risk and return through the diversification of the portfolio among different
assets. Variants of the model in [48] were suggested in the literature, considering
the projections of future returns by investors when assessing the expected profit,
[49], and accounting only for the negative deviations from the expected return in
the risk assessment, see, e.g., [50, 51].

In this chapter, we adopt the third paradigm and formulate the problem as a
chance constrained program where we allow for a possible degradation with re-
spect to the target (maximal) profit but only over a set of uncertainty realizations
of probability at most equal to a given ϵ. Conservativeness of the worst case ap-
proach accounting for all uncertainty instances, even those that are unlikely to
occur, is thus avoided, while still providing guarantees on performance. Given
that the so-obtained chance constrained optimization problem is non-convex and
hard to solve, we propose to adopt the scenario approach [52] to provide a chance
constrained feasible, though possibly sub-optimal, solution. To improve perfor-
mance, we adopt the sampling and discarding scenario method in [53], which en-
tails to first extract N prices realizations (”scenarios”) using a suitably designed
stochastic model, and then discard the κ < N worst ones so as to best improve the
profit objective function. If κ and N are suitably chosen according to the desired
ϵ, then, the obtained optimal profit value is guaranteed to be the maximum over all
price realizations except for a set with probability at most ϵ, with high confidence.
By exploiting the fact that stochastic uncertainty enters the scenario optimization
program linearly, we are able to cope with the memory requirement growth as a
function of the time horizon and number of underlyings, through a compression
scheme relying on the convex hull of the prices realizations. Interestingly, the
proposed approach can be applied irrespective of the correlation structure of the
stochastic prices, which do not need to obey a Markovian model as in those ap-
proaches to portfolio optimization based on dynamic programming (see [54] and

58

the references therein).
The rest of the chapter is structured as follows. The addressed problem was

described in Section 1.1 and reformulated here in Section 3.1. After discussing
possible solution concepts, we present the proposed scenario-based solution and
its sampling and discarding variant in Section 3.2, together with the scenario com-
pression scheme. After discussing how the scenarios are generated in Subsection
3.2.3, we finally report some numerical results in Section 3.3 and draw some con-
clusions in Section 3.4.

The content of this chapter was accepted at the EuropeanConference on Stochas-
tic Optimization - Computational Management Science (ECSO-CMS) 2022, at the
Department of Economics of Ca’ Foscari University of Venice.

3.1 Optimization problem formulation

In this section we formulate the addressed portfolio optimization problem.
We start by defining the decision vector X obtained by piling up all vectors

Xij(tk) in (1.10) corresponding to the tradable products for the underlying xi, the
delivery dates dj and the trading date tk with i = 1, . . . , L, j = 1, . . . ,M and
k = 1, . . . , K .

The non-negativity component-wise constraintX ≥ 0 jointly with the position
and liquidity constraints (1.2) and (1.12) can be expressed compactly as a linear
constraint

EX ≤ F (3.1)

for appropriately defined matrices E and F ; to take into account the sign (buy or
sell) we attribute it to prices. The PaR constraints (1.7) imposed at each trading
date tk can be jointly rewritten as a quadratic constraint

X⊤A1X + A⊤
2 X ≤ β (3.2)

since Vk in (1.7) is a collection of the residual volumes V k
ij which by (1.1) can be

expressed as an affine function of Vij(tk) and (given (1.9) and the definition ofX)
of X .

59

As for the profit P to be maximized (cf. (1.3)), it can be rewritten as a linear
function of X

P = C(δ)⊤X, (3.3)

where C(δ) is a vector that depends affinely on vector δ whose elements are the
forward and spot prices Fij(tk) and Sij = Fij(tk), i = 1, . . . , L, j = 1 . . . ,M ,
k = 1, . . . , K .

Our goal is to set the decision vector X so as to maximize the profit (3.3),
while satisfying the linear and quadratic constraints (3.1) and (3.2).

Note however that at the trading date when the decision is taken, only the prices
of the current forward tradable products and the spot price of the current month
are known, which makes the optimization problem affected by uncertainty through
the price vector δ.

3.1.1 Chance constrained problem formulation

A possible approach to account for uncertainty is to look for a robust solution that
is guaranteed for all uncertainty instances, i.e.:

min
X,h

h subject to

− C(δ)X ≤ h, ∀δ ∈ ∆

(3.1), (3.2)

This requires knowledge of the set ∆ where the uncertainty δ takes values and
involves solving a semi-infinite optimization program with a finite number of op-
timization variables and an infinite number of constraints. More importantly, the
obtained solution (X⋆, h⋆) is typically conservative, i.e., with a low guaranteed
profit−h⋆, since all uncertainty instances are accounted for, irrespectively of their
likelihood to occur.

If we assume that δ is distributed over ∆ according to some probability mea-
sure P, we can adopt the so-called chance constrained approach where perfor-
mance is optimized over a set of of probability at least equal to 1 − ϵ where

60

ϵ ∈ (0, 1) is an a-priori specified violation parameter. This allows to mitigate
the conservativeness of the robust approach since the δ instances that deteriorate
performance but has low probability to occur are neglected when assessing the
profit, while at the same time defining the acceptable risk level through the choice
of ϵ. The resulting optimization program

min
X,h

h subject to

P(δ ∈ ∆ : −C(δ)X ≤ h) ≥ 1− ϵ

(3.1), (3.2)

is non-convex and hard to solve, in general, and the probability measure P needs to
be known explicitly. This motivates the adoption of the proposed scenario-based
solution to chance-constrained optimization.

3.2 The proposed scenario-based solution

Suppose that ∆ and P are not known explicitly but only indirectly thorough in-
dependent and identically distributed samples {δ(i)}Ni=1 (the scenarios) extracted
from ∆ according to P.

We can then define the scenario program

min
X,h

h subject to (3.4)

− C(δ(i))X ≤ h, i = 1, . . . , N

(3.1), (3.2).

This approach has many advantages: the setup is very general, it is computation-
ally tractable, it is a direct approach (it does not attempt to estimate ∆ or P). The
main problem is how to certify the solution: here the constraint feasibility is ad-
dressed empirically, but we want to provide a measure of the probability of viola-
tion of the constraint. It can be proved (see [55]) that given β ∈ (0, 1), then, with
confidence 1− β it holds that

P(δ ∈ ∆ : −C(δ)X ≤ h) ≥ 1− ϵ, (3.5)

61

where

ϵ = 1− N−d

√
β(
N
d

) (3.6)

with d denoting the number of decision variables; so we know that given enough
simulations (N), fixed a certain degree of uncertainty (β), we can keep the error
(ϵ) above a certain level.

In this way, chance-constrained feasibility is recovered.
In our problem, the scenarios are given by price simulations. We simulate the

prices of the future trading dates for all the delivery dates of the time-horizon of
interest; these price simulations represent random extraction of future price sce-
narios according to a model calibrated on historical prices (see Chapter 2 for more
details).

Given a scenario, i.e., the entire forward price evolution for each underlying,
each tradable product, each trade date, the problem becomes deterministic; we
want to find the optimal combination of volumes to be traded from now up to the
end of the year of interest, in order to close the given volume exposuresminimizing
the worst value of the loss, while satisfying risk and liquidity constraints for each
trading date. So we deal with the uncertain part of the problem, i.e. the evolution
of the forward prices, by extractingN scenarios and evaluating themaximum level
of the loss varying the scenarios.

3.2.1 Sample discarding

Starting from the observation that the extracted scenarios can negatively affect per-
formance, in order to improve performance, while preserving chance-constrained
feasibility, we adopt the sampling and discarding approach, [53]. This involves
discardingκ overN scenarios so as to best improve performance (makingh smaller
in our setting).

If κ and N satisfy

(
κ+ d− 1

κ

) κ+d−1∑
i=0

(
N

i

)
ϵi(1− ϵ)N−i ≤ β (3.7)

62

where ϵ, β ∈ (0, 1) are the violation and confidence parameter and d is the number
of optimization variables, then, the chance-constraint (3.5) is satisfied with con-
fidence 1 − β. Observe that using Formula (3.7) with κ = 0, we have a tighter
evaluation of epsilon with respect to Formula (3.6). Instead of solving numerically
the Formula (3.7), we use the expression for κ in [53]:

κ =

ϵN − d+ 1−

√
2ϵN ln

(ϵN)d−1

β

 (3.8)

where b·c determines the maximum integer smaller or equal than the argument.
Figure 3.1 shows an example where performance actually improves signifi-

cantly: in the figure, the blue dots represent the value of the loss given by −P

(changing sign in the (1.3) formula) as the price scenarios vary, the horizontal
green line represents the worst loss, while the dashed red line represents the up-
dated worst loss after removing κ worst case scenarios.

Figure 3.1: An example of applying the sampling and discarding approach that
shows a profit improvement by discarding the scenarios that lead to the worst
losses; for this test, we have d = 43 decision variables, we set ϵ = 0.1, β = 0.0001,
from which we get N = 10000, κ = 93.

63

3.2.2 Convex hull

As the reference time horizon for profit optimization grows, the number d of de-
cision variables increases and, consequently, the number of scenarios needed to
provide a solution with a certain ϵ and β guarantees grows (cf. (3.6)). This has an
impact on the memory requirements and computational effort involved when solv-
ing the scenario program since each scenario maps into an inequality (see (3.4)).
In order to mitigate this problem we can take advantage of the fact that those in-
equalities are affine in δ and impose the inequalities just for the vertices of the
convex hull of all scenarios δ(i), i = 1, . . . , N , thus reducing the number of con-
straints.

Given a start date, each price simulation δ(i) is a vector of fixed length, each
element of the vector represents the price of a given underlying for a given product
that can be traded on a given trade date; for example if the start date is December
before the year of interest and if there are six underlyings, there are 390 decision
variables, so each price scenario is a vector of length 390 (see Figure 3.2).

Unfortunately, most algorithms for finding the convex hull consider low di-
mensional cases (2 or 3 dimensions), motivated by many applications to image
processing. Algorithms like QuickHull (see [56]) work in higher dimension, but
usually no more than d = 8.
In Figure 3.2 we report the total number of decision variables as the trading start
date varies: in our case we have up to 648 decision variables (see Figure 3.2), so
instead of looking for the exact convex hull we adopt an approximation and use
the algorithm in [57], which minimizes the approximation error for a fixed number
of vertices and has already been used to reduce the number of constraints in the
scenario solution to chance-constrained optimization (cf. [58]).

3.2.3 Scenarios generation

For a deeper description of the model we used for scenario generation see Chapter
2.

When a forward price is simulated, there are three reference dates: the current

64

date, the trading date and the delivery date.

• current date: The simulation is based on the information provided at a
given time t1, so t1 is the current date.

• trading date: The simulation is referred to a market situation in the future,
i.e., a market situation of a certain time t2, with t2 > t1: usually all the
following market situations from t1 up to the end of the period of interest
are simulated; if t2 ≡ t1, the forward prices of time t1 are known, there is
no need to simulate; we only consider one trade date for each month.

• delivery date: Given a certain trading date, the forward prices of a certain
delivery t3 are simulated; note that t3 ≥ t2; usually for each t2 the prices of
several delivery dates t3 are simulated.

It is necessary to simulate the evolution of correlated forward curves, from
the current trading date, for all the following trading dates until the end of the
relevant year, for all delivery dates of the relevant year; therefore there is a two-
way evolution of prices: on deliveries and on trading dates.

In order to simulate forward prices, we consider the model in [28, Chapter 2]:

dFi,t3(t2) = Fi,t3(t2)σ̃
i(t3, t3 − t2)

nb(i)∑
z=1

σi
z(t3 − t2)dW

i
z

where

• i is the index for the underlying,

• z is the index for the component of Principal Component Analysis applied
to the sample covariance matrix of historical forward prices; it ranges from
1 to a number nb(i), chosen empirically,

• t2 represents the trading date,

• t3 represents the delivery date,

• σ̃ represents the seasonal component,

65

• σz represents the component of Principal Component Analysis applied to
the sample covariance matrix of historical prices,

• W i
z are random extraction from a multivariate Gaussian distribution where

the standard deviation between the components z of each underlying i is
historically estimated.

In practice, we first consider each underlying separately, estimating a seasonal
component σ̃ of the evolution and then we apply a dimension reduction of the com-
ponents σz to be calibrated via Principal Component Analysis. Then we estimate
an historical correlation between the components of each underlying, for all the
components of all the underlyings of the portfolio. In this way we have all the
ingredients to run the scenarios generator.

Note: in [12, Chapter 8] the reader can also find an easy way to calculate plain
vanillas using this model, so there is a way to implement a market calibration,
but since we are not using simulations for pricing purposes, we are only using a
historical calibration.

3.3 Results

In this section we present some numerical results obtained using the python pack-
age cvxpy (see [59], [60]), and, in particular, the solver ECOS - Embedded Conic
Solver (see [61]): ”The main interior-point algorithm is a standard primal-dual
Mehrotra predictor-corrector method with Nesterov-Todd scaling and self-dual
embedding, with search directions found via a symmetric indefinite KKT system
[..]”).

3.3.1 Comparison with a naive approach

We consider a reference baseline approach to the portfolio optimization problem
and compare the results for a backtest for the whole portfolio of 2020 starting from
the trading date of December 2019. For a deeper description of the naive approach
see also Section 1.2.

66

The reference baseline approach consists in solving a deterministic optimization
problem, it does not have uncertain variables: each time tk the algorithm looks
for the actions that keep the portfolio below the limit PaR for time tk, satisfying
liquidity and position constraints for time tk, finding the best combination between
a forward action today and a spot action at delivery, using a forecast of the spot
price. So the goal is still to minimize the loss given by Pfwd + Pspot, but in this
case we do not have price simulations, we just use one curve for current forward
prices, Fij(t1) for i = 1, . . . , L and j = 1, . . . ,M , and a forecast for spot prices,
called view and denoted as Viewij for i = 1, . . . , L and j = 1, . . . ,M .

More formally,

min
Vij

L∑
i=1

∑
j:dj>t1

(Fij(t1)− Bij)Vij(t1) +
L∑
i=1

∑
j:dj>t1

(Viewij − Bij)
(
V ij − Vij(t1)

)
subject to

(3.1), (3.2)

The baseline approach does not consider all the intermediate dates, so its for-
ward profit Pfwd takes into account only of the current forward prices and the
current tradable volumes; for each tk it considers only the current forward action
and the possible spot action, each time looking for the best combination between
now and at delivery. On the contrary, the scenario approach, that we have de-
scribed before, every time tries to find the best combination between now and all
the possible times until delivery.

In order to do this backtest, for each trading month from December 2019 up
to December 2020, we update all the prices and the residual volume exposures for
each couple underlying - delivery of 2020. For example in December 2019, we
have

• a forward price for each tradable product (the next year: 2020, the next four
quarter: Q20

1 , Q20
2 , Q20

3 , Q20
4 , the next four months: January 2020, February

2020, March 2020, April 2020) of each underlying;

• a forecast for the spot price for each monthly delivery of 2020 and each
underlying;

67

• N scenarios for the evolution of the forward price for each tradable product
of each underling and each trading date from December 2019 until Decem-
ber 2020.

Then, we adopt both the scenario-based and the baseline approaches to compute
the optimal volumes to be traded in December 2019 at the forward prices of De-
cember 2019. The next step is tomove to the nextmonth, January 2020, and update
the residual volume exposure for both approaches; we update all the prices:

• the forward prices for each tradable product of January 2020 (the next quar-
ters: Q20

2 , Q20
3 , Q20

4 , the next months: Febraury 2020, March 2020, April
2020, May 2020) of each underlying;

• a forecast for the spot price for each (remaining) monthly delivery of 2020
and each underlying (the forecast made in January 2020 is different from
the one made in December 2019);

• the N scenarios for the evolution of the forward price for each tradable
product of each underling and each trading date from January 2020 until
December 2020; these scenarios are different from the ones made in De-
cember 2019, because each month the price simulator uses new data from
the market.

Then we determine with both approaches the optimal volumes to be traded in Jan-
uary 2020 at the forward prices of January 2020. Since the year of interest is
started, we can also compute the spot profit of January 2020, i.e. the profit refer-
ring to the remaining volumes of the delivery of January 2020 to be closed at the
spot price. The next step is to move to the next month, February 2020: here we
have to update the residual volume exposures and all the prices. And so on and so
forth.

For this backtest, we set ϵ = 0.1, β = 0.0001, from which we get N =

10000, κ = 129 for each scenario problem; this κ is found starting from the initial
hypothesis of κ as in Formula (3.8), then iteratively checking Formula (3.7): if
the inequality of Formula (3.7) is satisfied, we keep that value for κ, otherwise we
reduce it by one and check the inequality (3.7) again.

68

In Figure 3.3 we compare the profit of the two components of the formula
(1.3) for the two algorithms: the component given by the forward products (Pfwd)
and the one given by the volumes left at delivery (Pspot); you can see that the two
methods have similar results in terms of overall profit. In order to compare the
two methods, the forward profit Pfwd that is shown in Figure 3.3 is the one for
the forward price at time tk, without the intermediate dates, even if the objective
function for the scenario-based solution is still given by formula (1.3). The results
are close and there is one method systematically lower than the other; but this
example suggests that the scenario approach reaches less extreme values.

Figure 3.4 shows that both methods fulfill the PaR constraints (the red line).
During the backtest, while the deterministic approach estimates the risk for the
single trade date, the scenario approach estimates the risk for the time horizon
after a trading date: this is why the deterministic approach has only one point for
each trading date (the green points), while the scenario approach has a curve for
each trading date (the blue lines with progressive length reduction).

From a practical point of view, the main advantage of the proposed approach is
having on overview of all the trading months, even the future ones. This overview
might be adjusted over the time, according to a receding horizon approach, us-
ing updated price realizations. Changes in suggested actions are expected when
there are changes in the market, otherwise if the market remains stable, the out-
put remains the same even after updating the price realizations; in Figure 3.5, for
example, there are two different case: we focus on two consecutive trading dates
for a backtest in 2020 looking at a single instrument and we find that the output of
our optimization algorithm does not change; on the other hand, focusing on two
consecutive trading date for a backtest in 2021 and looking at a single instrument,
we find that the output changes. In fact, starting from March 2020, because of the
pandemic ([34], [33]), prices in the energy market remained low for a few months,
while starting from the middle of 2021 the energy crisis ([35]) arrived and prices
in the energy market had a huge progressive increase (in Figure 3.6 we report the
evolution of the actual forward curves for those instruments in those trading times).

69

3.4 Remarks on this approach

In this chapter we addressed an optimization problem for a portfolio of forward
contracts in the energy market using the scenario optimization technique. The
scenario optimization approach is a very intuitive tool that has strong theoretical
foundations. Typically in a portfolio optimization problem one aims at maximiz-
ing the expected return (based on a certain objective function) while minimizing
risk (according to some risk measure); the problem of portfolio selection has been
known since [48], but in this case there is the constraint of closing the position
within a given delivery, so here the problem consists in choosing the optimal se-
quence of fractions of the volume exposure, in order to choose the best prices,
while satisfying liquidity and risk constraints. By the proposed scenario approach
we can make a plan for the entire reference period and adjust it at each trading
date based on the possible realizations of all the intermediate prices (including the
spot) and not just on a forecasting of the spot. This allow a better tuning to the
actual uncertainty entering the system.

70

Figure 3.2: For each trading date, starting from January of the year preceding the
year of interest we count the annual, quarterly and monthly tradable products for
a single instrument: the annual product Y is one before the year of interest, oth-
erwise it is zero; the number of quarterly products Q and the number of monthly
products M depend on the distance between the trade date and the year of inter-
est, since the only tradable quarters are the following four quarters and the only
tradable months are the following four months, provided that they belong to the
year of interest, so in general Q andM are between zero and four. By adding the
rows Y ,Q andM we find the number of tradable products for a single instrument
for a single trading date (the row single instr, i.e. the blue columns); multiplying
the count of a single instrument by six we find the number of tradable products for
the whole portfolio for a single trading date (the row single date, i.e. the orange
columns); summing up all tradable products (i.e. decision variables) from a given
trading date to the end of the period of interest we find the cumulated gray curve.

71

Figure 3.3: Comparison of the two methods: the forward and spot profit for each
tradingmonth between December 2019 and December 2020 for the year of interest
2020. Note that the scenario approach suggests what to trade on the current date
and also provides an overview ofwhat to trade on all upcoming trading dates, while
the deterministic approach provides quantities to be exchanged only for the current
date. Here we only consider the realized PL, the one given by the current date:
therefore for each trading date of the backtest, we estimate the realized forward
PL, i.e. the one given by the forward contracts of the current trading date, and we
evaluate the realized spot PL, i.e. the one given by the residual volume exposures
for monthly delivery which coincides with the current trading date.

72

Figure 3.4: Comparison of the two methods: the PaR for each trading month be-
tween December 2019 and December 2020 for the year of interest 2020, reported
as a percentage of the maximum target PaR. The red line is the constraint, the green
line represents the PaR values of the baseline approach, each blue line represents
the PaR value from a different starting month according to the scenario approach.

73

Figure 3.5: Left: the percentage difference over time of products of PSV to be
traded according to the optimization algorithm for two consecutive tradingmonths,
June 2020 and July 2020. Right: the percentage difference over time of products
of PUNPEAK to be traded according to the optimization algorithm for two con-
secutive trading months, April 2021 andMay 2021. The tables are not full because
we only consider tradable products. PSV is an Italian acronym that stands for Vir-
tual Exchange Point and is the price of Italian petrol. PUN is an Italian acronym
which stands for Prezzo Unico Nazionale (i.e. the price of Italian power); PEAK
refers to the fact that it is the average price in the ”peak” hours of each day of the
period in question, i.e. from 8:00 to 20:00 on working days.

74

Figure 3.6: On the left: the forward curve for PSV with trade date spanning from
June 2020 and September 2020 and delivery dates the monthly deliveries of 2020.
On the right: the forward curve for PUNPEAK with trade date spanning from
April 2021 and July 2021 and delivery dates the monthly deliveries of 2021.

75

76

Chapter 4

Reinforcement learning

Artificial Intelligence (AI) is the art of imitating human intelligence; a particular
subset of AI is Machine Learning, the science that ”teaches” a computer a spe-
cific task through a training that calibrates certain parameters. Not many decades
ago, Artificial Intelligence seemed to be in a dead end: now thanks to greater data
availability, more hardware power, and new advances on the algorithmic side, it
is an active research field.

Machine Learning usually falls into these branches: Supervised Learning, Un-
supervised Learning, Reinforcement Learning.
We talk about Supervised Learning when you provide to the computer a dataset
D = {(xi, yi)}i=1..n where each couple (xi, yi) represents an example of input and
output; the goal is learning the relationship between x and y through samples, so
that when a new x̃ arrives, the machine can suggest the correct ỹ.
On the other hand, it is called Unsupervised Learning when the dataset of inputs
is not labelled with the corresponding outputs; the machine has to learn a pattern
from the given dataset D = {xi}i=1..n. Note that according to the Unsupervised
Learning approach we lack an external supervisor and this may be the case in some
problems.
Finally, Reinforcement Learning (see [62]) starts from the idea that the most natu-
ral way to learn is by interacting with our environment; we want to learn a function

77

π that maps situations to actions, so to optimize a given function R. Function π is
called policy and function R is called reward. So Reinforcement Learning is dif-
ferent from Supervised Learning because we do not have representative examples
of the correct behaviour in order to learn the policy. At the same time Reinforce-
ment Learning is different from Unsupervised Learning because we are trying to
optimize a reward by learning the optimal policy, instead of trying to find some
hidden structure.

Figure 4.1: Image taken from [62]: the agent receives the state St from the en-
vironment and choose the action At; the environment changes the state into St+1

and update the reward Rt+1.

Reinforcement Learning is a useful tool to represent and solve sequential decision-
making processes: there is an agent, a decision-making entity, that has to choose
an action according to the current state of the environment (everything outside
of the agent) receiving a reward. We talk aboutMarkov Decision Process (MDP)
(see [63]) every time the next state st+1 and reward rt+1 depend only on the current
state st and action at, i.e.

P (st+1, rt+1|s1, a1, r1, ...st, at, rt) = P (st+1, rt+1|st, at).

So in order to define a MDP you need a state space S , an action spaceA a reward
function r, where

r : S x A → R

and a transition operator that models the dynamics of the MDP; knowing this op-
erator means knowing the probability distribution of the next state st+1, given the

78

current state st and action at:

Pi,j,k = P (st+1 = i|st = j, at = k).

Some Reinforcement Learning systems are model-free, others are model-based.
Using a model-based approach means knowing completely the behaviour of the
environment; in this way you can plan by predicting the next state and the next
reward given the current state and the action. So using a model-based approach
means knowing the transition probabilities, which is generally quite unrealistic.
On the opposite side, a model-free method is a kind of trial-and-error learner. We
will use the model-free approach.
There is also another important distinction: whether the horizon is finite or not.
When the horizon is finite, the return R is simply the sum of the total reward over
all times t up to the final one T ; when the horizon is not finite, the return is defined
as a series

∑
t r(st)γ

t where 0 < γ < 1 so that the series is convergent, given that
exists an upper bound independent from t for the single reward. In our problem
the horizon is finite.
For each state s there is also a value function, V π(s), that measures the total amount
of reward to be expected starting from the state s according to a given policy π,
i.e. Eπ[R|st = s] where Eπ is the expectation according to policy π; we have to
measure this value in order to take action, but determine values is harder than de-
termine rewards: the central role of value estimation is easily understood and there
are many reinforcement learning algorithms driven by the value function. Another
important function is the action-value function, Qπ(s, a) that is the total amount
of reward to be expected starting from the state s selecting action a and following
policy π, i.e. Eπ[R|st = s, at = a]. For each state s we can define the optimal
value function V ∗(s) as the maximum V π(s) over all the policies π; in the same
way, for each couple state s and action a we can define the optimal value-action
function Q∗(s, a) as the maximum Qπ(s, a) over all the policies π. The optimal
policy π∗(s, a) is the one that realizes the optimal Q∗(s, a).
There is an important link between reinforcement learning andDynamic Program-

79

ming ([64]): the optimal value function can be found using the Bellman equation:

V ∗(s) = max
a∈A(s)

∑
si∈S

Psi,s,a (E[rt+1|st+1 = si, st = s, at = a] + V ∗(i)) .

The dynamic programming approach involves the transition probabilities, it is
model-based, while here we use a model-free approach.

4.1 Monte Carlo Tree Search (MCTS)

Let’s consider a game represented by a tree, where

• each node represents a game status

• each arrow represents a possible game action.

At the end of the game there is a reward: we want to find the best policy, which
is a function that given a game state can show us the best game action in order to
increase the chances of having the highest reward.

A brute force strategy - systematically trying all possible actions - would im-
mediately run into memory problems. Furthermore, the possible actions could be
infinite or they could be chosen in a continuous space: even with huge memory
resources a brute force strategy would be impossible. Also there could be uncer-
tainty about the next state, given the current state and the action: this could happen
due to an opponent or because there are some uncontrollable variables (e.g. I want
to find the fastest route in a city, but I don’t know if the traffic light will favor me).
One game that shows uncertainty and one of the more stylized but yet effective
instance of this framework is the multi-armed bandit (see [65], [66]): a K-armed
bandit problem is defined byK gambling machines; if you play machine i n times

80

you will obtain a sequence of rewards independent and identically distributed ac-
cording to an unknown law; the reward is immediate but stochastic and a policy
suggests you the next machine to play balancing the knowledge from the previous
plays (the average return obtained from each machine) and the desire to explore
enough the potential of each machine.
An approach that deals with this kind of games is the Monte Carlo Tree Search
(see [67], [68], [69]), based on sampling and selective iterative search.
Before of MCTS there was the simple Monte Carlo approach ([70]) to deal with
a game with a huge branching factor like Go: the idea is to play a random game
starting from the current position and evaluate the final outcome; repeat N times
and compute a mean over the N simulations in order to have an evaluation of
the expected final value from the current position. It was proved in [70] that this
approach is winning against a beginner even with very few simulations. The prob-
lem of this Monte Carlo approach is that after a certain number of simulations the
search reaches a plateau and it does not improve.
Then it was proposed in [68] the MCTS approach, a combination between tree
search and Monte Carlo: this framework saves memory by sharing information
between one move and the others and it introduces a selectivity that allows to de-
vote more time to most promising nodes, reducing the probability of exploring the
less promising ones, without letting this probability to zero.
The research interest of this algorithm is due to the success that has been proved
with playing Go ([71]) and the fact that there are many potential applications,
whenever there is a problem that can be described in terms of state and action and
there is the possibility of extracting scenarios to simulate episodes.

4.1.1 Monte Carlo Tree Search: pseudo code

MCTS episode

1. Initialize time, t=0;

2. Initialize state, st;

3. MCTS step: find the best action at;

81

Figure 4.2: An imagine that gives an idea ofMCTS episode: for eachmove there is
a partial selective exploration (the cones have a limited depth); the information is
shared between one move and the others (the cones are overlapping); the approach
concentrates its efforts on the most promising nodes (the tree is not symmetrical).

4. st+1 = τ(st, at), where τ is the transition function;

5. Update t 7→ t+ 1 and repeat from point 2 until the end of the game.

MCTS step

selection Start from current state and traverse the (already stored and possibly
empty) tree by following the selection policy until a leaf node is encoun-
tered.

expansion Add the leaf node to the tree.

simulation + backpropagation Play a simulated game (according to the simula-
tion policy) and backpropagate the result. Repeat n times.

After repeating m times, each time adding a node, find the best action according
to the output policy.

82

4.1.2 Monte Carlo Tree Search: policies

In order to concentrate the efforts on the most promising nodes, we want to find
the right balance between exploration and exploitation: we do not want to miss
good alternatives, but we also want a criterion to remove suboptimal solutions.
This balance is performed thanks to a selection policy called UCT (see [65]), that
stands for Upper Confidence Bounds (UCB, see [66]) applied to Trees.

selection policy

πUCT (s) = argmax
a∈A(s)

(
Q̂(s, a) + c(s)

√
2 log(N(s))

N(s, a)

)

Here s represents a state, a an action, N(s) it the number of transitions already
performed from state s, N(s, a) is the number of already performed selections of
the action a starting from state s, Q̂(a, s) is the estimate of the outcome of ac-
tion a starting from state s, c(s) is a given function that controls the degree of
exploration, A(s) is the action space in state s. Every time we visit a state s and
choose an action a, we update all these values. This selection policy shows the
two side of exploration-exploitation dilemma: if Q̂(a, s) prevails, we exploit the
value given by the past evaluations, on the other side if the number of visitN(s) is
small enough with respect to the number N(s, a) of actions from the state s, then
exploration prevails.

The simulation policy is driven by a uniform probability distribution:

simulation policy

πsym(s) = a with P (s, a) =
1

|A(s)|

So we randomly choose in the space of admissible actions for the state s.

The output policy is a greedy policy, because it simply looks for the action
a ∈ A(s) that has been chosen the most starting from state s:

83

output policy

πgre(s) = argmax
a∈A(s)

N(s, a)
m→+∞−→ argmax

a∈A(s)

Q̂(s, a)

So it is an empirical way of finding the best action. When the number m of rep-
etitions of the procedure selection-expansion-simulation-backpropagation is big
enough, the action that maximizesN(s, a) should coincide with the one that max-
imize Q̂(s, a).

One drawbacks of the MCTS is the fact that the knowledge is shared between
one move and another, but not between MC episodes; moreover there is no overall
policy found, so you need something that saves the policy that you learnt during
the MCTS. MCTS is inherently stochastic, instead we would like a deterministic
policy to be able to measure performance.

4.2 Neural MCTS

So the biggest problemwithMCTS is that no general policy is found because there
is no knowledge transfer between episodes. We can use a deep neural network to
allow for the transfer of knowledge between episodes of MC, so that a general pol-
icy can be found, through the reinforcement learning mechanism: this approach
is called Neural MCTS ([71], [72]) and it is at the basis of AlphaZero algorithm
by David Silver.
One of the main novelty introduced by this algorithm with respect to other algo-
rithms that try to compete in strategic games is the fact that there is no need to
insert domain-specific heuristics, it learns by self-play; in this sense it is general-
purpose.

4.2.1 Neural MCTS: pseudo code

Note that here we use the tilde and the hat to distinguish between neural network
outputs and empirical estimates, respectively.

84

Figure 4.3: This image gives an idea of how Neural MCTS works. The dataset
of training is given by episodes played with MCTS. Then there is a Deep Neural
Networks (DNN) that is twofold: it learns the function that, given a state, maps
an action into a probability; moreover it learns an esteem of the final expected
reward, given a state. This outcomes are used for building the next set of training
through other MCTS episodes.

Iteration: (repeat k times): play one MCTS episode Ej and collect data items
DEj . Then train DNN with dataset D =

∪k
j=1 DEj .

MCTS episode: play a whole game expanding the tree through MCTS steps; ob-
tain DE :=

{
si, P̂ (si), V̂

E
}
, where si represents all the states of the tree

encountered during the MCTS episode, P̂ (si) are the correspondent empir-

85

ical probabilities and V̂ E the total empirical reward of the episode.

MCTS step : see Figure 4.4. This MCTS step is similar to the one of the previous
paragraph, but it involves a neural network which has a Y shape: it takes a
state s as input, processes the state through a common body that becomes
twofold. From one side there is P̃ , that allows you to compute the vector of
the probabilities of all actions given the state s; this vector is used to select
the best action. From the other side there is Ṽ , the value that anticipates the
final reward and it allows you to avoid the simulating step.

Figure 4.4: MCTS step

4.2.2 Neural MTCS: policies

The main difference with respect to the MCTS is the fact that the deep neural
network is present in the policies, so it is like a self-powering mechanism: the
episodes played with MCTS constitute the dataset for the training of the neural

86

network; at the same time, the MCTS is played using the neural network in some
specific points. At the beginning, the parameter of the neural network are initial-
ized randomly. The selection policy, called PUCT (where P stands for predictor),
is a balance between exploitation and exploration, as in the MCTS case:

selection policy

πPUCT (s) = argmax
a∈A(s)

(
Q̂(s, a) + c(s)P̃ (a|s)

√
N(s)

N(s, a) + 1

)

Also in this case the exploitation part is given by Q̂(s, a), the empirical mean of
the value of the next states starting from state s and choosing action a. Also in this
case the exploration part depends on the numberN(s) of visit of state s and on the
number N(s, a) of the times we choose action a starting from state s. But there is
another term: P̃ (a|s), the probability of choosing action a given state s according
to the optimal policy trained by the neural network; this term helps to balance the
exploration part.

There is no simulation policy:

simulation policy it does not exist.

In place of simulation we evaluate using Ṽ (s), the deep neural network value that
anticipates the final outcome of the reward of the MCTS episode given a state s.

Finally the output policy:

output policy

πout(s) = argmax
a∈A(s)

P̂ (s, a) with P̂ (s, a) =
N(s, a)

N(s)

So we simply use the choice frequency of action a as an empirical approximation
for the probability that a gives the best result.

87

4.3 Neural MTCS in continuous spaces

What if action space A is continuous? Having a continuous space necessitates
some changes to the algorithm in several places.
First of all, if the space is continuous, equivalently if the space is discrete but of
high dimension, we cannot explore all the actions of a given state, it is numerically
impossible; we need amethod for exploring space. Moreover instead of having the
list of all possible actions and their correspondent probabilities, we have a proba-
bility distribution; but it is an empirical one, we do not have the functional formula.
So we need a way to sample from an empirical probability distribution. Finally we
would like to pick the action with the highest probability; in the discrete case this
is simple, because we can list all the possible actions, compute their probability
and choose the action with the maximum probability: how should we do when the
action space is continuous?

4.3.1 Progessive widening

How to numerically explore a continuous space? We choose a number κ of initial
actions by sampling the probability P̃ (a|s). Then we use progressive widening
([73]): add new actions if |A(s)|2 ≤ N(s), so we decide when to add new actions
by comparing the cardinality |A(s)| of the sample of actions of this state s and the
number N(s) of visits of the state s. In this way we devote more resources to the
most promising research direction.

4.3.2 Neural importance sampling

How to numerically sample the probability P̃ (a|s)? We use the neural impor-
tance sampling ([74]): we extract z from a uniform probability distribution in the
interval [0, 1], z ∼ U(0, 1); we get x = h(z|θ) where h is a neural network with
parameters θ so that x is distributed according our density: it is easier to train h

than to numerically invert the cumulative distribution function.
We want that both h−1 and det

(
∂h
∂θ

)
, the determinant of the Jacobian of h with re-

spect to θ, exist and are easy to calculate. Function h is given by the composition

88

of several functions:
h = f1 ◦ f2 ◦ f3...

where each fi is built so to make the inverse and the determinant of hwell-defined
and easy to calculate. In fact each fi ≡ f is defined in the following way:

y = f(z) where z ∈ Rd

We can normalize z, so that z ∈ [0, 1]d; moreover d could be represented ad the
disjoint union of A and B: we split the indices into two disjoint sets, so each
element of z could be split accordingly; in particular y = (yA, yB), z = (zA, zB)

and f is defined as yA = zA

yB = c(zB,m(zA|θ))

where c stands for coupling layer and m is a neural network with parameters θ.
The inverse of such a function, z = f−1(y), exists and it is easy to calculate:zA = yA

zB = c−1(yB,m(yA|θ))

Since the neural network m is based on the constant part of the input, its invert-
ibility is not a problem; so invertibility of h is ultimately discharged on c. The
Jacobian ∂f

∂z
is given by four blocks:

∂f

∂z
=

(
IA 0

... ∂c
∂zB

)
where IA represents the identity matrix for the components of sets A. We want to
define c(zB) = (c1(z

B
1), c2(z

B
2), ...) such that ∂c

∂zB
is a diagonalmatrix diag

(
∂c1
∂zB1

, ∂c2
∂zB2

, ...
)
,

so that
det

∂f

∂z
= det

∂c

∂zB
=
∏
i

∂ci
∂zBi

Apart from the identity, the easiest transformation that satisfy this property is a
translation, c(zB,m(zA|θ)) = zB +m(zA|θ). But since h, at the end of the day,
should represent a change in measure, a translation would not be so significant; so
we choose the exponential function, c(zB,m(zA|θ)) ≡ c(zB, (s, t)) = eszB + t.

89

4.3.3 Cross entropy maximization

How to numerically find argmaxa P̃ (a|s)? We use the cross entropy maximiza-
tion (CEM), an iterative method often used for solving problem in a continuous
domain using the reinforcement learning.
We initialize a randommean µ0 and a random variance σ0 in the space of the action
a; then we samplem elements according to the normal distributionN (µ0, σ0). We
compute the probability for all these elements, then we consider the k < m with
the highest probability. At this point we find the parameter µ1 and σ1 that give the
best fit for the distribution N (µ1, σ1) according the set of k elements of highest
probability. Then we repeat with another extraction from this normal distribution,
we compute the probability, then find the subset with highest probability and we
fit another normal distribution to this new subset. We repeat the procedure until a
convergence criterion is met (a maximum number of iterations or a minimum vari-
ation from one step to the other). In this way we find a maximum in a continuous
space for an empirical probability distribution: it is the final value of the mean of
the normal distribution at the end of the iterative process, i.e. µn.
Note that this algorithm has many parameters: we have to choose the maximum
number of iterations; for each iteration we repeat the calibration procedure for a
given number of batches, extracting a given number of samples each time, so we
have to choose the number of batches and the number (m) of samples for each
batch; finally we have to choose k, the size of the subset of the elements of maxi-
mum probability.

4.4 Bringing our problem in this framework

We want to tackle a portfolio optimization of future contracts in the Italian energy
market (see Chapter 1). There is a finite number of dates in which we can trade
and we have some liquidity and risk constraints for each date. The deliveries of
the contracts of our portfolio all belong to a specific year of interest. For instance,
let’s fix our starting date in the December of the year before of the year of interest;
if we suppose that there is a single trading decision for each month, we have twelve

90

time steps; when we are in December of the year of interest there are no choices
left, we have to close all the positions and hedging all we did not hedge before.
We have a tool (see Chapter 2) that simulates the evolution of the forward prices
for the six underlyings of interest of our portfolio for all the deliveries of the year
of interest: PUNBASE, PUNPEAK, PSV, TTF, PFOR, EUA. This tool will feed
the different MCTS episodes, allowing to build a dataset for the neural network in
the Neural MCTS algorithm.
We have to translate into code the definition of state, reward, action and environ-
ment. All the remaining algorithmic part is independent from the specific problem,
apart from the choice of the hyperparameters that allow us to have a good conver-
gence rate.
Each state represents the set of all the information we can have at a given date;
in our case there are the volume exposure, the forward prices at which we can
trade on that date, the spot prices (if the current date belongs to the deliveries of
the year of interest), the budget prices, the covariance matrix of the components
(see Subsection 2.2.3) of each underlying, the covariance matrix of all the couples
underlying-delivery, the liquidity constraints and the target limit for the risk. All
these value have to be concatenate in a tensor that will constitute the input for the
neural network. Note that over time there might be some elements that reduce
their size. For example the tradable products are the next four months, the next
four quarters and the next year and we consider only the products that belong to
our year of interest; so, there is not the same number of tradable products for each
trading date. So we have to pad our vector with zeros in order to have the same
size for the input on every date. The choice of the set of information that defines
the state is one of the choices that can modify the performance of the algorithm; for
example, one test we could do is to add information to the state, such as including
not only current forward prices, but also some past forward prices; this could be
more informative on the evolution of forward prices, which is the most significant
aspect for deciding when certain actions must be taken. As for the reward, being
a finite time horizon, we evaluate only the final return, which in this case means
the sum of all the forward PL, those directly achieved with forward contracts, and

91

the sum of all the spot PL, those we evaluate at each monthly delivery, for all the
monthly deliveries of the year of interest; when we have reached the end of the
time horizon we can sum up and judge the final value of the strategy along the
entire time horizon. In defining the action we must consider the rule of tradability
(see Subsection 1.1.3). In order to have a complete definition of the Markov Deci-
sion Process, we should define also the transition probability, i.e. the probability
of the next state, given the current state and the chosen action; but in our problem
we do not fully know the behaviour of the environment, in particular we do not
know the transition probabilities.
The rate of convergence of the neural network is better when the input is normal-
ized; but we have to take into account that there are certain functions that have to
be translated from the normalized to the real world: for example the target limit
for the risk is a unique number for all the portfolio; we can normalize the volumes
and the prices for the single underlying, but we can not normalize this target limit,
so the risk has to be computed in the non-normalized world.
In the Neural MTCS framework there is no a natural definition of constraints, so
instead of imposing hard constraints we introduced them in a soft way, as penalties
of the objective function we want to maximize:

α1PL−α2(PaR−target_PaR)+−α3(traded_volume−maximum_volume)+

where α1, α2, α3 are hyperparametric choices and (·)+ is the positive part; in this
way, whenever the constraints are not satisfied, the value of the objective function
is reduced as much as the limit is exceeded; when all the constraints are satisfied,
no penalty must be paid. So it may happen that some constraints are not met, but
we expect this effect to be minimized by training.

It is very difficult to appreciate a convergence improvement in our neural net-
work and we believe that the weak link is the cross entropy maximization (see
Section 4.3.3): when we challenge the CEM to find the maximum of a Gaussian
distribution in a multidimensional space, the performances are good enough; but
when we add a sinusoidal noise to the Gaussian distribution (see Figure 4.5), the
performances become soon poor as the dimension increase (see Figures 4.6, 4.7).

92

Figure 4.5: This is a graph for input dimension N = 2 of the function f(x) =

|cos(b∗‖x‖)|e−
∥x∥
a2 , where ‖x‖ =

√∑N
i=1(xi − c)2, where a ∈ R, b ∈ R, c ∈ RN

are parameters, x ∈ RN . In this dimension, the global maximum (the red dot) is
easily identified by the cross entropy maximization algorithm.

So the tricky point of this Continuous Neural MCTS is the neural importance
sampling because by increasing the size of the action space, we have to increase
the number of simulations to have a reliable result, that is, to be sure that we have
found the best policy.

Another open point is given by one approximation we made: we considered
only the stochasticity on prices, but actually also the volume exposure might be
adjusted over time, for example because a pandemic provokes a drop in the energy
demand, or because a global energy crisis raises prices dramatically or because a

93

war together with a climate crisis changes completely the energy market; even in
the absence of a global crisis, there could be adjustments to the estimated pro-
duction of power plants and to customer demand. In order to consider also these
movements, we would need to feed the MCTS episode with scenarios in which
there are changes in the volume exposures, so we need to simulate prices and vol-
umes together. We tried to test ([75]) the relationship between the variation in the
forward prices and the variation in the volume exposures using a residual neural
network that has an interpretation in the stochastic optimal control (see [76]): the
method was not successful, so the best approximation we have up to know is to
add a random noise to the volumes in order to have a simulation of the state that
takes into account also of the variation in the volume exposure.

94

Figure 4.6: The norm of the relative error by varying the input dimension and the
number of samples in a batch. Note that when input dimension is greater than 12,
more samples than 107 would be needed to have low error; at the same time, when
the number of samples in a batch reaches 108, even for low input sizes, there are
memory problems.

95

Figure 4.7: This is a count of the input dimension (i.e. the total number of tradable
volumes, i.e. the number of actions) by trade date. Possible trading dates start from
the year before the year of interest, where Y is the year of interest. Size is the sum
of tradable products for a portfolio of six underlyings, considering M, Q and Y,
where M are the monthly products (the next four months belonging to the year
of interest), Q are the quarterly products (the next four quarters belonging to the
year of interest), and Y is the yearly product (as soon as the year begins it is no
longer tradable). Note that the input dimensions range from 6 to 54, but Figure 4.6
suggests that for input sizes greater than 12 there is either a large error or memory
leaks.

96

Chapter 5

Final remarks and next steps

5.1 Comparison between the different approaches

The deterministic approach described in Section 1.2 is simple to interpret and im-
plement. It is based on a forecast (called ”view”) of the the spot price that en-
compasses market and macroeconomic information: this might be a double-edged
sword, because the view usually adds information to that extracted directly from
historical and current prices, but if the resulting spot price is very far from what
the view predicted, perhaps because something unpredictable happened, the per-
formance will be poor. Furthermore, this approach does not consider the interme-
diate dates from today to delivery, so it does not consider the whole complexity of
the problem.
The scenario approach described in Chapter 3 overcomes this issue, but in order
to implement this approach we had also to develop a tool to simulate correlated
forward curves (see Chapter 2); this tool adds an important piece to our puzzle
also because, to the best of our knowledge, it is not trivial to find a model to simu-
late correlated forward curves with the additional difficulty of having underlying
assets in the Italian energy market, which is not very liquid.
A good point of the scenario approach is having theorems that measure the reli-
ability of the result based on the size of the problem; this approach is relatively
easy to implement, it looks for the set of actions for all intermediate dates that

97

meet constraints and minimize worst profit based on price scenarios; but there are
memory problems which we have approached with an approximation of the con-
vex envelope.
Also the reinforcement learning approach (Chapter 4), as the scenario approach,
is a stochastic approach that considers the whole complexity of the problem and
uses the tool to simulate correlated forward curves, but it it works very differently.
It is based on the training of a deep neural network that calibrates its parameters
in order to optimize the final profit of the portfolio, with a penalty proportional
to the overcoming of the liquidity, risk and position constraints. This deep neural
network takes inspiration from the famous AlphaZero (winning in the game of Go
and chess) and the training set is given by simulated games, where the game here is
given by trading volumes to hedge our initial portfolio starting from a certain date
up to the end of the year of interest; we need price simulations to create these sim-
ulated stories. The challenge was given by the fact that AlphaZero was thought
for discrete actions and discrete states, while our problem lives in a continuous
space. In particular we have to deal with a continuous numerical probability dis-
tribution, so we need a tool to extract a sample from this distribution and to find
the mode of this distribution; so we tried to take inspiration from an article (see
[74]), but we faced some numerical issues, in particular our deep neural network
did not converge.

5.2 Possible future developments

We could extend the deterministic approach described in Section 1.2 by taking
into account all intermediate dates, assuming, for example, that the view and the
forward curve of each underlying do not change over time. In this way we would
answer how to keep the risk below the limit for each date, while having liquidity
constraints, with the assumption that prices do not change; this approach would
be easier to interpret than stochastic approaches, but the main drawback would be
the fact that prices actually change a lot, so we should take that into account.
As we said at the beginning, there is another source of uncertainty, in addition to

98

prices: volume exposures depend on the forecast of customer demand and power
plant production and since it is a forecast it could be adjusted over time. We tried
to find a relationship between price changes and volume changes (see [75]), but
it seemed to be almost random, so we could add random noise to the volumes to
mimic reality and we could use this set to train the deep neural network of the
Chapter 4.
We could explore the link between reinforcement learning and optimal control
(see [77], [78]): stochastic calculus tools could provide theoretical justification
and interpretability to these algorithms, for example a convergence analysis and
more generally analytical results.
We could overcome the memory issue of the scenario approach of Chapter 3 by
rewriting the problem as a Quadratic Unconstrained Binary Optimization (QUBO,
see [79]):

min
x

xTQx

where x is a vector of binary decision variables and Q is a square matrix of con-
stants. This model can embrace a variety of optimization problems, most of which
are NP-hard: by combining classical and quantum computing, it is possible to ap-
proach the optimum, finding a high-quality solution in polynomial time. We can
embody our problem in this framework even if we have constraints: we can con-
sider the risk constraint (see Formula (1.7)) as a penalty, while the position and
liquidity constraints (see Formula (1.2) and Formula (1.12)) define the domain.

99

100

Bibliography

(1) Giachetti Fantini, M. La liberalizzazione del mercato dell’energia elettrica
e del gas naturale: il caso italiano nel panorama europeo. ApertaContrada
2017, 1–103.

(2) Electricity Maps, https : / / app . electricitymaps . com/, Accessed:
2022-12-29.

(3) Longva, P.; Keers, G. Risk Management in the Electricity Industry. IAEE
17th Annual International Conference 1994, 15.

(4) Adamko, P.; Spuchľáková, E.; Valášková, K. The history and ideas behind
VaR. Procedia Economics and Finance 2015, 24, 18–24.

(5) Gambaro, A. M.; Secomandi, N. A Discussion of Non-Gaussian Price Pro-
cesses for Energy and Commodity Operations. Production and Operations
Management 2021, 30, 47–67, DOI: https://doi.org/10.1111/poms.
13250.

(6) Farmer, J. D.; Gerig, A.; Lillo, F.; Waelbroeck, H. In 2008.

(7) Kraft, D. A software package for sequential quadratic programming; tech.
rep. DFVLR-FB 88-28; Institut fuer Dynamik der Flugsysteme, Oberpfaf-
fenhofen: Institut fuer Dynamik der Flugsysteme, 1988.

(8) Nocedal, J.; Wright, S. J., Numerical optimization; Springer, New York,
NY.: 2006.

(9) Arthur, D.; Vassilvitskii, S. In SODA ’07: Proceedings of the eighteenth
annual ACM-SIAM symposium on Discrete algorithms, 2007.

101

https://app.electricitymaps.com/
https://doi.org/https://doi.org/10.1111/poms.13250
https://doi.org/https://doi.org/10.1111/poms.13250

(10) Müllner, D.Modern hierarchical, agglomerative clustering algorithms, 2011.

(11) Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and val-
idation of cluster analysis. Journal of Computational and Applied Math-
ematics 1987, 20, 53–65, DOI: https://doi.org/10.1016/0377-
0427(87)90125-7.

(12) Clewlow, L.; Strickland, C., Energy derivatives: Pricing and risk manage-
ment; Lacima Publications: 2000.

(13) Heath, D.; Jarrow, R.; Morton, A. Bond Pricing and the Term Structure
of Interest Rates: A New Methodology for Contingent Claims Valuation.
Econometrica 1992, 60, 77–105.

(14) Benth, F. E.; Benth, J. S.; Koekebakker, S., Stochastic Modeling of Electric-
ity and Related Markets; World Scientific Publishing Co. Pte. Ltd.: 2008.

(15) Koekebakker, S.; Ollmar, F. Forward curve dynamics in the Nordic elec-
tricity market.Managerial Finance 2005, 31, 73–94.

(16) Benth, F.; Koekebakker, S. Stochastic Modeling of Financial Electricity
Contracts. Energy Economics 2008, 30, 1116–1157, DOI: 10.1016/j.
eneco.2007.06.005.

(17) Barth, A.; Benth, F. E. The forward dynamics in energy markets – infinite-
dimensionalmodelling and simulation. Stochastics 2014, 86, 932–966, DOI:
10.1080/17442508.2014.895359.

(18) Cai, W.; Pan, J. Stochastic Differential Equation Models for the Price of
European CO2 Emissions Allowances. Sustainability 2017, 9, 207, DOI:
10.3390/su9020207.

(19) Oyuna, D.; Yaobin, L. Forecasting the Crude Oil Prices Volatility With
Stochastic VolatilityModels. SAGEOpen 2021, 11, 215824402110262, DOI:
10.1177/21582440211026269.

(20) Noorani, I.; Mehrdoust, F.; Lio,W. Electricity spot price modeling bymulti-
factor uncertain process: a case study from the Nordic region. Soft Comput-
ing 2021, 25, DOI: 10.1007/s00500-021-06083-8.

102

https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/j.eneco.2007.06.005
https://doi.org/10.1016/j.eneco.2007.06.005
https://doi.org/10.1080/17442508.2014.895359
https://doi.org/10.3390/su9020207
https://doi.org/10.1177/21582440211026269
https://doi.org/10.1007/s00500-021-06083-8

(21) Ogbogbo, C. P. Stochastic Model Of Crude Oil Spot Price Process As A
Jump-Diffusion Process. Applied Mathematics and Information Sciences
2019, 13, 1029–1037.

(22) Burger, M.; Klar, B.; Müller, A.; Schindlmayr, G. A spot market model
for pricing derivatives in electricity markets. Quantitative Finance 2004, 4,
109–122, DOI: 10.1088/1469-7688/4/1/010.

(23) Hosseini, M. In 2007.

(24) Ladokhin, S.; Borovkova, S. Three-factor commodity forward curve model
and its joint P and Q dynamics. Energy Economics 2021, 101, Publisher
Copyright: © 2021 The Authors Copyright: Copyright 2021 Elsevier B.V.,
All rights reserved., 1–15, DOI: 10.1016/j.eneco.2021.105418.

(25) Chiarella, C.; Clewlow, L.; Kang, B.Modelling and Estimating the Forward
Price Curve in the Energy Market. Quantitative Finance Research Centre,
University of Technology, Sydney, Research Paper Series 2009.

(26) Higgins, M. A Two Factor Forward Curve Model with Stochastic Volatility
for Commodity Prices, 2017, DOI: 10.48550/ARXIV.1708.01665.

(27) Li, A. Covariance Matrix Extrapolation for Energy Forward Prices. SSRN
Electronic Journal 2003, DOI: 10.2139/ssrn.938083.

(28) Sclavounos, P. D.; Ellefsen, P. E. Multi-factor model of correlated com-
modity forward curves for crude oil and shipping markets. 2009.

(29) Edoli, E.; Tasinato, D.; Vargiolu, T. Calibration of a multifactor model for
the forward markets of several commodities. Optimization 2013, 62, DOI:
10.1080/02331934.2013.854786.

(30) Russo, F. Commodity risk management: a two-factor model with long-term
dependency, Ph.D. Thesis, Università degli studi Roma Tre, 2017.

(31) Pirrong, C., Commodity Price Dynamics: A Structural Approach; Cam-
bridge University Press: 2011.

103

https://doi.org/10.1088/1469-7688/4/1/010
https://doi.org/10.1016/j.eneco.2021.105418
https://doi.org/10.48550/ARXIV.1708.01665
https://doi.org/10.2139/ssrn.938083
https://doi.org/10.1080/02331934.2013.854786

(32) Audet, N.; Heiskanen, P.; Keppo, J.; Vehviläinen, I. InModelling Prices in
Competitive Electricity Markets, Bunn, D., Ed.; John Wiley & Sons Inc.:
United States, 2004.

(33) Ghiani, E.; Galici, M.; Mureddu, M.; Pilo, F. Impact on Electricity Con-
sumption and Market Pricing of Energy and Ancillary Services during Pan-
demic of COVID-19 in Italy.Energies 2020, 13, DOI: 10.3390/en13133357.

(34) Lazo, J.; Aguirre, G.; Watts, D. An impact study of COVID-19 on the elec-
tricity sector: A comprehensive literature review and Ibero-American sur-
vey. Renewable and Sustainable Energy Reviews 2022, 158, 112–135, DOI:
https://doi.org/10.1016/j.rser.2022.112135.

(35) Gilbert, A.; Bazilian, M. D.; Gross, S. THE EMERGING GLOBAL NAT-
URAL GASMARKET AND THE ENERGY CRISIS OF 2021-2022. For-
eign Policy 2021.

(36) Fanelli, V.; Schmeck, M. D. On the seasonality in the implied volatility of
electricity options.Quantitative Finance, DOI: 10.1080/14697688.2019.1582792
2018.

(37) Kiesel, R.; Schindlmayr, G.; Boerger, R. A two-factor model for the elec-
tricity forward market. Quantitative Finance 2009, 9, 279–287, DOI: 10.
1080/14697680802126530.

(38) Bingol, O. R.; Krishnamurthy, A. NURBS-Python: An open-source object-
oriented NURBS modeling framework in Python. SoftwareX 2019, 9, 85–
94.

(39) Candes, E. J.; Li, X.; Ma, Y.; Wright, J. Robust Principal Component Anal-
ysis?, 2009.

(40) Bailey, S. Principal Component Analysis with Noisy and/or Missing Data.
Publications of the Astronomical Society of the Pacific 2012, 124, 1015–
1023, DOI: 10.1086/668105.

104

https://doi.org/10.3390/en13133357
https://doi.org/https://doi.org/10.1016/j.rser.2022.112135
https://doi.org/10.1080/14697680802126530
https://doi.org/10.1080/14697680802126530
https://doi.org/10.1086/668105

(41) Hair, J. F.; Anderson, R. E.; Tatham, R. L.; Black, W. C.,Multivariate data
analysis; Fourth edition, Prentice Hall (Englewood Cliffs, New Jersey).:
1995.

(42) Schwartz, E. The Stochastic Behavior of Commodity Prices: Implications
for Valuation and Hedging. The Journal of Finance 1997, 52, 923–973.

(43) Guerini, A.; Marziali, A.; Nicolao, G. MCMC calibration of spot prices
models in electricity markets. Applied Stochastic Models in Business and
Industry 2019, 36, DOI: 10.1002/asmb.2471.

(44) Barndorff-Nielsen, O. Normal Inverse Gaussian Distribution and Stochastic
Volatility Modelling. Scandinavian Journal of Statistics 1997, 24, 1–13.

(45) Zhang, T.; Yang, Y. Robust PCA by manifold optimization. Journal of Ma-
chine Learning Research 2018, 19.

(46) Buehler, H.; Horvath, B.; Lyons, T.; Perez Arribas, I.; Wood, B. A Data-
Driven Market Simulator for Small Data Environments. 2020.

(47) Buehler, H.; Horvath, B.; Lyons, T.; Perez Arribas, I.; Wood, B. Generating
Financial Markets With Signatures. 2020.

(48) Markowitz, H. Portfolio Selection. The Journal of Finance , Mar., 1952,
Vol. 7, No. 1 (Mar., 1952), pp. 77-91 1952.

(49) Black, F.; Litterman, R. Global Portfolio Optimization. Financial Analysts
Journal 1992, 48, 28–43.

(50) Hallerbach,W.; Grootveld, H. Variance versus downside risk: is there really
that much difference? European Journal of Operational Research 1999,
114, 304–319.

(51) Gökgöz, F.; Atmaca, M. E. Financial Portfolio Optimization in Electric-
ity Markets: Evaluation via Sharpe Ratio. 2016, DOI: 10.5281/zenodo.
1127190.

(52) Campi, M.; Garatti, S.; M.Prandini The scenario approach for systems and
control design. Annual Reviews in Control 2009, 33, 149–157.

105

https://doi.org/10.1002/asmb.2471
https://doi.org/10.5281/zenodo.1127190
https://doi.org/10.5281/zenodo.1127190

(53) Campi,M. C.; Garatti, S. A Sampling-and-Discarding Approach to Chance-
Constrained Optimization: Feasibility and Optimality. Journal of Optimiza-
tion Theory and Applications 148(2):257-280 DOI: 10.1007/s10957-010-
9754-6 2011.

(54) Das, S. R.; Ostrov, D.; Radhakrishnan, A.; Srivastav, D. Dynamic optimiza-
tion for multi-goals wealth management. Journal of Banking and Finance
2022, 140, 106–192, DOI: https://doi.org/10.1016/j.jbankfin.
2021.106192.

(55) Margellos, K.; Falsone, A.; Garatti, S.; Prandini,M.DistributedConstrained
Optimization and Consensus in Uncertain Networks via Proximal Mini-
mization. IEEE Transactions on Automatic Control 2018, 63, 1372–1387,
DOI: 10.1109/TAC.2017.2747505.

(56) Barber, C. B.; Dobkin, D. P.; Huhdanpaa, H. The Quickhull algorithm for
convex hulls. Acm Transactions on Mathematicl Softward 1996, 22, 469–
483.

(57) Sartipizadeh, H.; Vincent, T. L. Computing the Approximate Convex Hull
in High Dimensions, 2016.

(58) Sartipizadeh, H.; Açikmeşe, B. In 2018 Annual American Control Confer-
ence (ACC), 2018, pp 4700–4705, DOI: 10.23919/ACC.2018.8430936.

(59) Agrawal, A.; Verschueren, R.; Diamond, S.; Boyd, S. A rewriting system
for convex optimization problems. Journal of Control and Decision 2018,
5, 42–60.

(60) Diamond, S.; Boyd, S. CVXPY: A Python-embedded modeling language
for convex optimization. Journal of Machine Learning Research 2016, 17,
1–5.

(61) Domahidi, A.; Chu, E.; Boyd, S. In European Control Conference (ECC),
2013, pp 3071–3076.

(62) Sutton, R. S.; Barto, A. G., Reinforcement Learning: An Introduction, Sec-
ond; The MIT Press: 2018.

106

https://doi.org/https://doi.org/10.1016/j.jbankfin.2021.106192
https://doi.org/https://doi.org/10.1016/j.jbankfin.2021.106192
https://doi.org/10.1109/TAC.2017.2747505
https://doi.org/10.23919/ACC.2018.8430936

(63) Puterman,M. L.,Markov Decision Processes: Discrete Stochastic Dynamic
Programming;Wiley Series in Probability and Statistics;Wiley: 1994, DOI:
10.1002/9780470316887.

(64) Bellman, R., Dynamic Programming; Dover Publications: 1957.

(65) Kocsis, L.; Szepesvári, C. In 2006; Vol. 2006, pp 282–293, DOI: 10.1007/
11871842_29.

(66) Auer, P.; Cesa-Bianchi, N.; Fischer, P. Finite-time Analysis of the Multi-
armed Bandit Problem. Machine Learning 2002, 47, 235–256, DOI: 10.
1023/A:1013689704352.

(67) Kozelek, T. Methods of MCTS and the game Arimaa. Master’s thesis, De-
partment of Theoretical Computer Science and Mathematical Logic 2009.

(68) Coulom, R. In 2006; Vol. 4630, DOI: 10.1007/978-3-540-75538-8_7.

(69) Gelly, S.; Wang, Y. Exploration exploitation in Go: UCT for Monte-Carlo
Go. 2006.

(70) Brügmann, B.Monte CarloGo; tech. rep.;Munich:Max-Planke-Inst. Phys.,
1993.

(71) Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.;
Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; Lillicrap, T.; Simonyan,
K.; Hassabis, D. A general reinforcement learning algorithm that masters
chess, shogi, andGo through self-play. Science 2018, 362, 1140–1144, DOI:
10.1126/science.aar6404.

(72) Silver, D. Reinforcement Learning and Simulation-Based Search in Com-
puter Go. PhD thesis 2009.

(73) Chaslot, G.; Winands, M.; Herik, H.; Uiterwijk, J.; Bouzy, B. Progressive
Strategies for Monte-Carlo Tree Search. New Mathematics and Natural
Computation 2008, 04, 343–357, DOI: 10.1142/S1793005708001094.

(74) Müller, T.; Mcwilliams, B.; Rousselle, F.; Gross, M.; Novák, J. Neural Im-
portance Sampling. ACM Transactions on Graphics 2019, 38, 1–19, DOI:
10.1145/3341156.

107

https://doi.org/10.1002/9780470316887
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/11871842_29
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1142/S1793005708001094
https://doi.org/10.1145/3341156

(75) Angeli, T. Applicazione delle Reti Neurali residuali ai Mercati Energetici
e Loro Interpretazione come problema di Controllo Ottimo stocastico, MA
thesis, Alma Mater Studiorum - Universitá di Bologna - Corso di studio in
Matematica, 2021.

(76) Ee, W.; Han, J.; Li, Q. A mean-field optimal control formulation of deep
learning. Research in the Mathematical Sciences 2018, 6, DOI: 10.1007/
s40687-018-0172-y.

(77) Huré, C.; Pham, H.; Bachouch, A.; Langrené, N. Deep Neural Networks Al-
gorithms for Stochastic Control Problems on Finite Horizon: Convergence
Analysis. SIAM Journal on Numerical Analysis 2021, 59, 525–557, DOI:
10.1137/20M1316640.

(78) Wang, H.; Zariphopoulou, T.; Zhou, X. Y. Reinforcement Learning in Con-
tinuous Time and Space: A Stochastic Control Approach. Journal of Ma-
chine Learning Research 2020, 21, 1–34.

(79) Glover, F. W.; Kochenberger, G. A. A Tutorial on Formulating QUBO
Models. CoRR 2018, abs/1811.11538.

108

https://doi.org/10.1007/s40687-018-0172-y
https://doi.org/10.1007/s40687-018-0172-y
https://doi.org/10.1137/20M1316640

	Introduction
	Our portfolio optimization problem
	Portfolio description
	Risk measure: PaR (Profit at Risk)
	Other constraints
	Problem formulation

	A deterministic approach
	Stylized objective function
	Cluster analysis varying the initial guess
	Variant: soft constraints
	Variant: adding bid-ask cost
	Remarks on the deterministic approach

	Price simulations
	Underlyings of interest and empirical facts
	Forward curves/Spot curves
	Underlyings of interest
	Empirical facts

	Model
	Find historical relationships
	Consider a deterministic seasonal factor
	Apply Principal Component Analysis (PCA)
	Random core: correlated Gaussian variables

	Some issues on the model
	Seasonality
	Regularize PCA
	Components of PCA

	Comparison with another model: OU
	Some applications
	Calibrate to market: pricing
	Calibrate to history: creating realistic scenarios

	Conclusions

	Scenario optimization
	Optimization problem formulation
	Chance constrained problem formulation

	The proposed scenario-based solution
	Sample discarding
	Convex hull
	Scenarios generation

	Results
	Comparison with a naive approach

	Remarks on this approach

	Reinforcement learning
	Monte Carlo Tree Search (MCTS)
	Monte Carlo Tree Search: pseudo code
	Monte Carlo Tree Search: policies

	Neural MCTS
	Neural MCTS: pseudo code
	Neural MTCS: policies

	Neural MTCS in continuous spaces
	Progessive widening
	Neural importance sampling
	Cross entropy maximization

	Bringing our problem in this framework

	Final remarks and next steps
	Comparison between the different approaches
	Possible future developments

	Bibliography

