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Abstract

This thesis includes three papers studying diverse questions in development,
economic history and political economy. The first two chapters, that fall under
development and economic history, use novel forms of text data and analysis to
answer the questions at hand.

The first paper, studies the possible impact of a historically matrilineal and
matrilocal caste group on present day outcomes of gender equality. I study
this in the context of present day Kerala, a state in south-west India and the
caste ”Nairs”, who were historically matrilineal, matrilocal and unique to
Kerala. In this paper I try to inch closer to answer these questions : Can a
strong historical matrilineal and matrilocal caste like the Nairs affect gender
equality today? Are Nairs persistent in space across time to have a strong
effect on discrimination against women today? How can you empirically study
about Nairs if data about castes are not published? I introduce a novel
surname strategy using electoral data to deduce caste from the surnames of
electors and overcome the unavailability of caste data. I match historical
villages and census outcomes to present day villages to show proof of
persistence of caste in space. And finally, following a matching exercise I
conclude that the effect of the matrilineal and matrilocal caste on present day
gender outcomes might not be as strong as previously believed.

The second paper studies how discriminatory fake news arises and spatially
diffuses. We focus on India at the onset of the COVID-19 pandemic: on March
30, a Muslim convention (the Tablighi Jamaat) in New Delhi became publicly
recognized as a COVID hotspot, and the next day, fake news on Muslims
intentionally spreading the virus spiked. Using Twitter data, we build a
comprehensive novel dataset of georeferenced tweets to identify anti-Muslim
fake news. We find, in cross-sectional and difference-in-difference settings, that
discriminatory fake news became much more widespread after March 30 (1) in
New Delhi, (2) in districts closer to New Delhi, and (3) in districts with higher
social media interactions with New Delhi. Further, we investigate whether
deeply rooted historical factors may have also played a role in the diffusion of
anti-Muslim fake news: we show that, after March 30, discriminatory fake
news was more common in districts historically exposed to attacks by Muslim
groups.

The final paper is a political economy paper. This paper studies the short
term and long term effect of earlier eligibility on voting in the context of a
large North Italian municipality setting with little institutional barriers to
voting. Using a regression discontinuity design, we compare the voting
outcomes among those just eligible and just ineligible to vote in an election
owing to age restriction rules. We show that although probability of voting is
high in the eligibility deciding election, these effects are short lived and in the
long run, we do not see any difference in voting. Heterogeneity analysis also
shows that the type of election and its salience does not have any effect on



future voting. The gender of the voter also shows no difference in turnout.
Finally, we show that the voting turnout of co-habiting parents of just eligible
voters are higher by around 4.7 percentage points, with no effect on
co-habiting siblings. This opens new avenues for research on the differing
mobilisation of members in the same household by newly eligible voters.
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MATRILINY, CASTE SYSTEMS AND GENDER EQUALITY

Samira Sarah Abraham

Abstract

This paper studies the possible impact of a historically matrilineal and matrilocal caste group

on present day outcomes of gender equality. I study this in the context of present day Kerala,

a state in south-west India and the caste ”Nairs”, who were historically matrilineal, matrilocal
and unique to Kerala. In this paper I try to inch closer to answer these questions : Can a strong
historical matrilineal and matrilocal caste like the Nairs affect gender equality today? Are Nairs
persistent in space across time to have a strong effect on discrimination against women today?
How can you empirically study about Nairs if data about castes are not published? I introduce a
novel surname strategy using electoral data to deduce caste from the surnames of electors and
overcome the unavailability of caste data. I match historical villages and census outcomes to
present day villages to show proof of persistence of caste in space. And finally, following a match-
ing exercise I conclude that the effect of the matrilineal and matrilocal caste on present day gen-

der outcomes might not be as strong as previously believed.



1 Introduction

India had been battling discrimination against women on multiple fronts. However, when
Dr.Amartya Sen (Sen, 1990) came out with his groundbreaking article, “More Than 100 Million
Women Are Missing”, it brought to light the grim reality of the extremely male skewed sex ratios
in India. In the midst of all this discussion, the southern state of Kerala has always been an
outlier and a model state with its average sex ratio of 1084 women for every 1000 men and female
literacy of 91.98 percent (as per the Indian Census 2011) against the national average of 940
women for every 1000 men and a female literacy rate of 65.46 percent. How could that be? Many,
including Dr.Sen, have attributed its likelihood to the presence of a historically strong matrilineal
and matrilocal caste community called the Nairs. This has prompted studies supporting this
hypothesis in history, anthropology and sociology (Gough, 1959),(Jeffrey, 2004)with anecdotal
evidence but an empirical study has been impossible due to the unavailability of data on caste.
The argument about the role of Nairs is not to be disregarded completely, since in India, religious
and cultural institutions as well as kinship systems play a major role in discrimination, including
against women. They create a ”deep rooted son preference”. This deep rooted son preference
arises due to three main factors : the dowry system, patrilineality and patrilocality (Dyson and
Moore, 1983). Under the dowry system, the family of the bride makes large payments in cash and
kind to the groom and his family. Under patrilineality, inheritance is traced through the male line
with women having no shares to property inheritance . Patrilocality involves women leaving their
families and joining their husbands’ family and home after marriage. The cost of dowry, tracing
lineage through sons and the absence of daughters to take care at their old age, make daughters a
"bad investment” for parents. All these practices together lead to a strong son preference and also
very little freedom, independence and voice for even older women. So a matrilineal and matrilocal
community that did not follow a dowry system does eliminate the reasons for a son preference.
However, the aggregates for Kerala might speak equality but the disaggregate numbers are
another story.

While "missing women” and thereby ”missing girls” are mostly attributed to problems of female
infanticide, sex-selective abortion and the mortal neglect of young girls, in India the share of

"missing girls” (up to the age of 15) alone do not account for even a third of the total share of



missing women in the country(Anderson and Ray, 2010). While diseases and their possible
greater incidence in women could explain the excess female mortality, the large number of female
deaths owing to ”Injuries” are alarmingly high in India. Moreover, even with regard to diseases, it
is possible that there is an unequal treatment in access to healthcare between men and women.
Looking at states within India, incidence of missing girls is greater in the northern Indian states
than the southern states. In Kerala, 20 percent of the missing women are at birth. But, the adult
population accounts for almost 70 percent of the total missing women in the state (Anderson and
Ray, 2012). While discrimination alone cannot explain these numbers, fact remains that it cannot
be ignored either.

So, can a strong historical matrilineal and matrilocal caste like the Nairs affect gender equality
today? Are Nairs persistent in space across time to have a strong effect on discrimination against
women today? How can you empirically study about Nairs if data about castes are not
published? In this paper, I try to inch closer to the answers to these questions.

In this paper, I first show a relatively straight forward possibility of using the information in the
Indian electoral rolls to overcome the problems of unavailability of caste data and adult sex ratio
information at a disaggregate level. Although caste remains an important determinant of many
outcomes of education, labour and politics (Munshi, 2019), worries of discrimination resulted in
the Indian Government stopping the publishing of caste information from 1931. This severely
limits the scope of studying about the caste system and the effect caste has on other important
outcomes, both at an individual and community level. From the rolls, I use the surname
information of voters and a simple ”bag of words” approach with the caste surnames published in
a colonial period census to estimate the share of the Nair caste in each village. The Indian census
publishes sex ratio information at a village level, only for two age groups, the 0-6 group and the
6+ group. However, discrimination against women (adults) differs from discrimination against
girls. The gender information I scrape from the electoral rolls helps me understand the spatial
variation of adult sex ratios across Kerala, which was earlier impossible with just the census
information.

Second, I name match the villages using the historical and the present day censuses to show that
there is a great degree of persistence in space of Nairs over time, ie., the villages that had a

greater share of Nairs in the 1870s are still the villages with a greater share of Nairs in present



day. A correlation test returns a strong 0.65 correlation in villages between the Nairs’ shares from
the past and today.

Finally, I use the information of the share of Nairs in each village to study its impact on gender
outcomes in present day. Although I find some weak evidence in Nair majority villages of a
positive impact on gender outcomes, I conclude that the effect of this historical matrilineal
community might not be as strong for Kerala today as often cited.

Literature : This paper contributes to three main strands of literature in economics. First, this
paper contributes to the increasing literature on gender in economics and particularly to the
discussion of matriliny. (Gneezy et al., 2009) has shown that women in a matrilineal society chose
a competitive environment more often than the men in the society. (Lowes, 2022) shows that
women belonging to matrilineal kinships in Africa were less likely to justify domestic violence,
experience less domestic violence and had greater autonomy, especially with regard to seeking
healthcare. Most importantly, she shows that matrilineal kinships closed the gap in education
between boy and girl children and ensured health benefits for the children. (Chakraborty and
Kim, 2010) also states that women in matrilineal communities have greater bargaining power.
Another strand of gender economics directly related to this paper is of course the large work on
biased sex ratios, its determinants, as well as effects (Jayachandran and Pande, 2017),(Dasgupta
and Sharma, 2022). Building on these findings, this paper studies the impact of a traditionally
matrilineal group on the overall population level gender outcomes.

This paper also contributes to the caste literature. Despite data restrictions limiting research on
the caste system, some scholars have made important contributions. (Munshi and Rosenzweig,
2006) explores the role played by caste in the schooling choices of boys and girls belonging to the
same working class-lower caste using survey data. They show that caste networks, in attempts to
ensure continuation of traditional employment, channel boys into local language schools while
girls took advantage of new English-medium schools and accompanying opportunities. (Anderson,
2011) in a field study shows how caste is an impediment to trade and plays an important role in
village level networks. She studies differences in income of lower caste households in villages
where the dominant caste is an upper caste versus villages where the dominant caste is a lower
caste. She shows that in low caste dominant villages, income is substantially higher for the lower

caste households. In this paper, I first introduce a novel method to estimate the share of Nairs at



a village level. I further study the difference in gender outcomes in a Nair majority village versus
otherwise.

Finally, this paper contributes to the cultural persistence literature as well, that has shown that
historical norms, events and institutions can influence a wide array of outcomes, including gender,
trust and attitudes (to name a few). The famous (Alesina et al., 2013) paper shows that gender
norms today are influenced by traditional agricultural practices, particularly the use of the
plough. (Alesina et al., 2018) shows that especially with regard to more male biased sex ratios
today among the descendants of the use of the plough. This paper first shows that there is a
persistence of the Nair caste in space over time using data from the colonial period census and
caste shares computed for today. However, it shows that the matrilineal communities might not
have as strong an effect on more gender equal outcomes today as previously believed.

The remaining paper is organised as follows : Section 2 provides a background on Kerala and the
Nair community. Section 3 details the data used and Section 4 explains how the data is combined

and first contributions. Section 5 presents the methodology and results and section 6 concludes.

2 Kerala and Nairs : A brief history

Kerala is the southernmost state located on the western coast (or Malabar Coast) of India and spans
across 38,863 sq.km with a mostly tropical climate. Before Kerala became an independent state
of India in 1956, it was roughly divided into three regions. The southern region belonged to the
independent state of Travancore, the central region to the state of Cochin and the northern Malabar
region was part of the British presidency. In 1949, the Tranvancore and Cochin states joined to
form an independent state by the name Thirukochi. It was later merged into one state, Kerala in
1956 by joining the entire Malabar region and the Kasargod taluk from the South Canara region
of the British presidency. As of the Census of India, 2011, Kerala was divided into 14 districts, 63
sub-districts and around 1550 villages and towns.

The Nair caste are an upper caste belonging to the Hindu community and unique to Kerala in
location. They were a warrior caste that followed a universal system of matriliny and matrilocality
from the 11th century until the 20th century. Although the origins of Nairs are disputed,it is

accepted that they were a warrior caste and the origins of matriliny and matrilocality is linked with



the nature of their occupation. As the men were mostly away training and fighting as warriors,
the women stayed back and held the property giving rise to the unique systems of the Nairs. The
matrilineal system of inheritance was also a joint family inheritance system where in at birth a girl
became co-owner to the family property with men having no share to this ancestral property and
all women from a common female ancestor living under one roof. With time, this also meant Nairs
were large landowners and agriculturalists with extensive influence on the society.

The matrilineal and matrilocal system of the Nairs meant then women inherited the property
instead of men and remained in their houses even after their marriage. This meant women in
the community had a lifelong security and shelter in their homes irrespective of age unlike other
patrilineal and patrilocal communities. The custom of the dowry system was absent in the system
of the Nairs, thus avoiding all sorts of violence and exploitation it was embodied with. The superior
status of Nair women also meant they had access to education even at a time when female education
was not common. Thus, in short, the Nair system defied all the other systems that encouraged and
caused the exploitation and discrimination of women.

Anecdotal evidence from the 1875 Census of Travancore records the superior status of Nair

women and of the general female population in the region even in those times :

"The Nair females are remarkable for their accomplishments. Reading and writing are essential
with every respectable Nair girl ... If the freedom of women is an index of civilization as we so
often hear it stated, then Travancore is decidedly the most advanced country in the world, for here

the women enjoy the greatest liberty possible.”

It also records a possible favouring of girls in families that followed the matrilineal system and
the evolution of sex ratios similar to those today :

”Travancore is of course no exception to this universal rule. More boys are born here than girls,
though it would appear that mortality is greater among boys than girls, a circumstance which
changes the relative proportions of the sexes when they survive to attain an adult age. The causes
of this disparity in the relative positions of the sexes when viewed in connection with their ages, it
is difficult to discover, while to ascribe it to the partiality of parents in bestowing greater care on

their female issues, will be hazarding an opinion based on insufficient data, though it is a fact that



among the Marumakkathayam' people a female child is prized more highly than a male one”

The matrilineal and matrilocal system started disintegrating in the early 20th century and was
abandoned almost completely by the late 20th century due to the influence of patrilineal /patriarchal
culture of the colonisers and also because of the joint inheritance family system proving aa hindrance

to selling property.

3 Data

3.1 Indian Electoral Data 2014

Every Indian from the age of 18 has the right to vote in the elections in the country. To be eligible
to vote, each individual has to register their details and obtain a voter ID, which is a one time
process until a need to make changes for a change in address or other details. On registering, the
voter’s details become part of the electoral rolls. In 2014, Kerala had a total of 21,424 poll booths
spread across the state and each poll booth has a corresponding electoral roll PDF. The PDF for
a poll booth included a summary about the poll booth including the total number of men and
women voting there, followed by the whole list of voters eligible to vote at the poll booth. The list
included the names of the voters along with their details like age, gender and address.

I use the 2014 electoral data from (Susewind, 2016) who had previously scraped the electoral
PDFs to record the names of all the voters and geolocalised the poll booth locations across Kerala
(Susewind, 2014). I use this information to compute the caste shares and adult sex ratios in villages.

I explain in detail in the next section.

3.2 Historical Census for the 1872/75

Before Kerala became a unified and independent state in India in 1956, it was previously divided
into roughly three units. The independent states of Travancore and Cochin in the south and central
regions of Kerala and the Malabar region to the North which was part of the British Presidency.
As the units were three separate and independent regions, the closest Censuses of the time are the
Census of Travancore 1875, The Census of Native Cochin 1875 and the Census of British India

1871-2: Malabar.

refers to the matrilineal system of inheritance




While all the three censuses record the share of castes and aggregate sex ratios of the time, only
the Malabar and Cochin regions have disaggregated village level information on the caste shares.
Unfortunately they do not record sex ratios at a village level. A major hindrance to using the
historical censuses is the unavailability of historical maps that record the location of the villages
in 1870s. However, name matching the villages by sub-district/district information was helpful to

identify 229 villages across 7 out of the 14 districts in present day Kerala.

3.3 Indian Census Data 2011

The Census of India discontinued reporting caste from 1931 due to concerns of discrimination.
However, I use the latest Indian census of 2011 for information on female literacy and sex ratios
of the age groups 0-6 & 6+ at a village level. It also provides data for controls like population
density, rural/urban classification, average household size,scheduled caste population, scheduled

tribe population, workforce participation.

3.4 Geographical variables

I also compute the distance to coast, the latitude and area approximation of the villages directly

with the use of the shapefile from (Asher et al., 2021).



4 Caste shares, Sex Ratios and Persistence

4.1 The Share of Nairs across Kerala :

The main hindrance to doing research on caste is the very limited availability of caste data. The

Indian Census stopped recording caste information since 1931 to avoid problems of discrimination

and the few surveys that record information on caste provide limited scope for research. With the

standard available caste data, it is literally impossible to identify the variation of the Nair caste

across space especially at such a disaggregated level.

Nairpercent

Oto5 3
5t0 10

10to 15

1510 20 ;?n
‘201025 oy

-
e
251030
30 to 35 '} »
351038 Y &

Figure 1: Variation of Nair shares across villages
in Kerala

While using common surnames are not
a practice that is followed by all the
castes alike, surnames do help identify reli-
gion and caste to a great extent.The Nair
caste follows a common set of surnames,
a record of which is made in the Cen-
sus of Travancore 1875, and I employ a
novel surname classification of the voters’
surnames that were scraped from the elec-
toral data. Using the ”bag of words” ap-
proach, I Identify the share of voters fol-
lowing the common Nair surnames at a poll
booth and this works as a proxy to iden-
tify the share of the Nair caste at the poll

booth.

As the poll booth are geolocalised, overlay-
ing them on a village polygon shapefile of Ker-
ala helps to identify the poll booths that fall

within a village. Aggregating the number of

voters in the poll booths in a village calculates the corresponding shares of the Nair caste at a

village level, which is the unit used for all further analysis.



4.2 Adult Sex ratios across Kerala:

The Indian Census does not report sex ratios by age at the village level and therefore it does not

provide information on the adult sex ratio and its variation across Kerala. The electoral data

scraped only recorded the surnames of the voters and not any information on the gender of the

voters. 1 further scraped the electoral PDFs to record the gender summary of each poll booth

and thereby ascertaining the sex ratio at each poll booth. The information scraped also helped

ascertain the adult sex ratio at the village level in Kerala.

sexratio

I{:_a to 0.9

05te 1.0

10te 1.1 K
11tp 1.2

121013
13to 14

14015
15t0 16

Figure 2: Variation of sex ratios across villages in Kerala

Although voter registration is vol-
untary in India, it is a rather good
estimate of the adult population in
Kerala because in India, a voters
ID not only lets an individual vote
but is a wvalid identity proof ac-
cepted in the country. Moreover the
aggregate sex ratio of Kerala com-
puted from the poll booths reflect
the same as computed by the Cen-
sus for the total sex ratio, around
1.08 females to males. A correla-
tion test for the sex ratio computed
from the poll booths and the sex ra-
tio of the 6+ age group from the
census returns a 0.76 correlation as

well.

In the accompanying map, the regions in red and dark orange are villages with an extreme male

biased sex ratio between 0.85 and 1. These values are not surprising given the the 64 ratios have

a minimum of 0.91. The summary statistics are reported here.



4.3 Persistence of caste in space:

Even though the range of shares of Nairs in these villages are only about a third of the shares in the
1870s, this is not very surprising as the share of the Hindu community itself has shrunk by a large
margin during this period. From constituting around 73 percent of the total Kerala population
in the 1870s, as per the Indian Census of 2011, only 54 percent are part of the Hindu community

today.
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(a) Nair percentage in villages in the 1870s (b) Nair percentage in villages in 2014

The correlation between the shares of Nairs in 1875 and 2014 in the 200 villages identified is
high and the correlation coefficient is around 0.65. This is interesting and useful in two ways. One,
it shows some level of persistence in space of the share of Nairs across time ie, the villages that had
greater share of Nairs in 1870s are still the villages that have a greater share today. Secondly, this
strong correlation also helps as a check for the surname classification used to compute and proxy

for the share of Nairs today.

'The maps in the page are with present-day district boundaries
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5 Main Results

5.1 Treatment

The treatment is defined as a share of Nairs greater than 6 % in the total population of a village. The
choice of 6% is directly derived from the average share of each caste in a village in India. Using the
2006 Rural Economic Development Survey (REDS) data (Munshi and Rosenzweig, 2015) computes
that each caste constitutes around 6% of the population of an Indian village. Moreover, Hardgrave
writing about caste in Kerala (Hardgrave Jr, 1964) approximates around 17 caste groups in an
average village in Kerala, this would also translate to around 5.9% on average per caste in the
village population.

The treatment variable is therefore defined as a binary variable that takes the value of 1 if the
share of the nairs are greater than 6 percent and 0 otherwise. Thus, all villages where Nairs could
be a likely majority are classified as treated and otherwise, as control. This leaves 503 villages in

treated and 996 villages in control.

5.2 Optimal Full Matching

I first follow a matching exercise to ensure that I compare outcomes only between similar treated
and control villages. I adopt the full matching method to balance the covariates. This helps me
avoid any confounding from the measured covariates and make my estimates from the matched data
”doubly robust” . Although a matching method, full matching method falls in an intersection of
matching, stratification and weighting. I adopt the full matching method because of two advantages

it poses apart from giving the best balance between covariates :
e It let’s me use my full sample without dropping any observations.

e It let’s me estimate the Average Treatment Effect (ATE) and not just the Average Treatment

effect on the treated (ATET) like most other methods.

The full matching method works in three steps :

e Using a probit regression the propensity scores are computed for treatment and control from

the covariates.
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e These scores are then used to classify all the units, both treatment and control into subclasses,
such that all the units receive a match. This sub classification is optimal in the sense that,
the sub classification is done such that the absolute distances between treatment and control

in each subclass is as small as possible.

e With matching, weights are computed for each subclass and the control units are weighted to
resemble the treated units. Estimates are than obtained within each subclass and aggregated

across the subclasses.

5.3 Results with full matching

Before performing the full matching, we can access the balance of our pre-matched data using a

probit regression from the table below. :

Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean eCDF Max

distance 0.58 0.22 1.50 2.09 0.34 0.52

Urban dummy 0.31 0.37 -0.11 0.05 0.05

Population Density 1377.39 1297.26 0.08 0.80 0.04 0.11

Average Household Size 4.00 4.42 -0.99 0.29 0.26 0.36
Distance to the coast 15.03 25.01 -0.51 0.38 0.12 0.22
Latitude 9.75 10.87 -1.09 1.58 0.29 0.58

Scheduled Caste Popualtion 11.34 8.91 0.41 0.76 0.14 0.23
Scheduled Tribe Population 1.12 2.44 -0.25 0.24 0.05 0.12
Main workforce participation 26.99 29.21 -0.40 0.43 0.13 0.23

As we can see, there are some severe imbalances. For a balanced data, the standard mean
differences would be close to 0 and at most around .1. The density plots ( here ) also show the

treated and control overlap pre-matching.

Now we perform the matching exercise with the probit regression and sub classification to ensure
balance between the treated and control covariates. The optimal full matching was adopted after

ensuring that it gives the best balance between the covariates for the treated and control.

Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean eCDF Max Std. Pair Dist.

distance 0.34 0.34 0.01 1.00 0.00 0.06 0.01

Urban dummy 0.36 0.32 0.09 0.04 0.04 0.87

Population Density 1238.98 1271.08 -0.03 0.91 0.04 0.09 0.94

Average Household Size 4.24 4.28 -0.09 0.60 0.03 0.08 0.73
Distance to the coast 19.83 22.12 -0.12 0.86 0.03 0.09 1.04
Latitude 10.62 10.57 0.06 1.72 0.09 0.17 0.84

Scheduled Caste Popualtion 8.96 9.66 -0.12 0.74 0.02 0.05 1.01
Scheduled Tribe Population 1.81 2.01 -0.04 0.58 0.05 0.10 0.58
Main workforce participation 28.55 28.18 0.07 0.64 0.05 0.16 1.03

From the covariates balance, we can see that the balance has improved. The full matching

12



method with the probit gives the most covariate balance. The only variables with a standard mean
difference (SMD) greater than .1 is the distance to the coast and the scheduled caste population but
the SMD is as small as .12. We can also see ( here )from the density plots of the covariates, before
and after matching, that there is considerable overlap even for the two covariates with slightly
higher differences in the SMD.

The change in the absolute standard mean differences between the treated and the control after

the full matching can also be observed in the following plot :

Covariate Balance
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Figure 4: Covariate balance before and after full matching
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We can see from the above plot that the unadjusted covariates are far away from 0 and post
matching, the adjusted covariates are brought closer to the 0 standard mean difference value.

After the full matching ensures covariate balance, the treatment effect is estimated incorporat-
ing the matching weights with a linear model , with and without district fixed effects. (Rastogi
and Sharma, 2022) shows that government interventions in pre-natal discrimination translates to
post-natal discrimination and (Anderson and Ray, 2010) point out that discrimination is differ-
ent across age groups. So, we observe the effect of a possible Nair majority in a village on two
main outcomes, the sex ratio and female literacy in the village. But, within sex ratios, we observe
them across three age groups : among adults(18+), among the population older than 6, and in the

0-6 age group. The standard errors reported are cluster robust standard errors, at the subclass level.

Table 1
Dependent variable:
Sex ratio aggregated from polls
(1) (2)
Nair dummy 0.010** 0.007
(0.005) (0.005)
[0.025] [0.17]
District fixed effect Yes
Observations 1,499 1,499
R? 0.261 0.524
Adjusted R? 0.257 0.517
Note: Cluster Robust standard errors at the subclass level *p<0.1; **p<0.05; **p<0.01

In Table 1, the estimated marginal effect of the treatment on adult sex ratios is reported. In
this model, the outcome variable is the sex ratios of adults computed from the number of women
and men in each poll booth aggregated to a village level. The table reports the effect both, with
and without a district fixed effect. In the first column, without the district fixed effect, we see
that a village with a Nair majority ensures the survival of 10 more woman per 1000 men. But on
including a district fixed effect we see only 7 more women survive per 1000 men, although it is not

a significant estimate. Since the p-values are not drastically high, we might not want to fully shut
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down the possibility of a positive effect of Nairs on the survival of women. Since discrimination
is stronger at older age groups, it could be that including even those older than but closer to 18,

might be masking some of the variation.

The census does not report sex ratios for different age groups at the village level. However,
the age differential is crucial because discrimination is not uniform across all the age groups. The
existing literature already points out that, for Kerala, the missing women are in two main groups :
at birth and among older women. The census only reports it for the total population level and for
the 0-6 group at the village level. Thus, from the census, the two sex ratio outcomes that can be

computed are for all children until the age of 6 and for the 6+ population separately.

Table 2 and Table 3 report the treatment effect of a Nair majority village on census reported
outcomes. Table 2 has the sex ratio of the 6+ population from the census as the outcome variable.
A very small negative effect is estimated, however, they are not significant. Since, missing women
aren’t much until the 15 year age category, it is not surprising that the Nair majority villages do
not show a positive treatment effect in this case. Moreover, the p-values of our estimates here are

drastically high, so they cannot be considered as reliable estimates.

Table 2
Dependent variable:
Sex ratio from census for 6+ ages
(1) (2)
Nair dummy —0.004 —0.002
(0.005) (0.005)
[0.42] [0.63]
District fixed effect Yes
Observations 1,499 1,499
R? 0.418 0.57
Adjusted R? 0.414 0.56
Note:Cluster Robust standard errors at the subclass level *p<0.1; **p<0.05; **p<0.01
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Table 3

Dependent variable:

Sex Ratio for under 6 years of age

(1) (2)
Nair Dummy 0.014 0.020
(0.01) (0.014)

[0.13] [0.15]

District fixed effect Yes
Observations 1,499 1,499
R? 0.093 0.174
Adjusted R? 0.085 0.163

Note: Cluster Robust standard errors at the subclass level

Looking at Table 3, where the outcome variable is the sex ratio of children in the age group
of 0-6, we see a slightly different situation. The positive effect computed here is not significant,
however the estimates might not be totally unreliable. With a district fixed effect, we can estimate
the survival of 2 more girls for every 1000 boys in a Nair majority village. Although discrimination
at birth and post birth are very different, since 0-6 is a short time period for the ratios from birth

to change drastically, these could be a faint reflection of the effect on the sex ratios at birth.

Table 4

*p<0.1; **p<0.05; **p<0.01

Dependent variable:

Female literacy

(1) (2)
Nair Dummy —0.27 0.52

(0.4) (0.3)

[0.4] [0.12]
District fixed effect Yes
Observations 1,499 1,499
R? 0.527 0.68
Adjusted R? 0.529 0.675

Note: Cluster Robust standard errors at the subclass level

Table 4 reports the effect of Nair majority villages on female literacy. In column 1, without

including a district effect, the treatment effect estimate is negative although not significant. With a
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district fixed effect in column 2, the treatment effect of a Nair majority village is positive although
not significant. In Kerala, the state government plays a very important role in the education sector,
at the school level. The district effect captures the likely differences in the provision of these services
across districts by the government. Going by the estimates in column 2, a Nair majority village has
a 0.5 percentage point higher female literacy level. The outcome variable of literacy here captures
the share of females above 6 years with the ability to read and write. Since the Government is
involved directly in the provision of primary education, discrimination might reflect more in other
education outcomes like the share of women completing school or going for higher education. So in
this case, we cannot completely disregard the possibility that a Nair majority village might reduce

discrimination in female education.

6 Conclusion

This paper is a first step to understanding the association between the Nair community and their
influence on important indicators of gender equality in Kerala. These results indicate that the
historical matrilineal communities might not have as strong an influence on gender equality today
as commonly believed. But to establish these findings strongly, we need more data and further
analysis.

A first step to understanding more would be to estimate the share of other castes and religions
as well, in each village to better understand their interaction with Nairs. Machine learning methods
in the spirit of (Bhalla and Bhagavatula, 2019), using self-reported caste and surname information
from matrimonial websites could be used as a training data to classify electors’ names from the
existing voter data.

Possibility to geolocalise the historical villages from previous censuses of 1872/75 and after
would also help understand the evolution and variation of the Nair community through time and
space. However, in the absence of knowledge of geographical boundaries, a way around would
be to proxy for the historical shares of Nairs as well. The ongoing recording of the location of
sacred groves in Kerala by the Kerala Forest Department is a promising future expansion. Deities
that castes pray to differ and the distance from or number of Nair deity sacred groves in a village

could be a good proxy for historical Nair locations. This could help expand the cross section to a
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longitudinal study and ensure better identification.

Despite all its limitations, the paper still introduces a novel strategy to proxy for adult sex
ratios and especially for caste data at a very disaggregated level which could open doors for further
research both in the sex ratio literature as well as the caste literature in economics. Moreover, it

shows the persistence of Nairs in space, which is an interesting finding to explore more in the paper.
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7 Appendix

7.1 Summary Stats

vars n mean sd  min max range se

Nair shares today 1 1499 6.09 6.38  0.00 37.63 3763 0.16

Sex ratio aggregated from polls 2 1499 1.08 0.08 0.86 1.53 0.67  0.00
6 + sex ratio from census 3 1499 1.10 0.07 091 1.35 0.44  0.00
Child sex ratio from census 4 1499 0.96 0.06  0.20 1.16 0.96  0.00
Effective female literacy 5 1499 91.18 5.33  50.42 100.00 49.58 0.14

Urban Dummy 6 1499 0.35 0.48  0.00 1.00 1.00 0.01

Population density (per sq.km) 7 1499 1324.15 1011.38 2.30 12039.19 12036.88 26.12
Average household size 8 1499 4.28 0.50  3.20 6.19 3.00 0.01
Distance to the coast 9 1499 21.66 21.42  0.00 110.36 110.36  0.55

Latitude 10 1499 10.49 1.12  8.33 12.77 4.45  0.03

Scheduled caste 11 1499 9.73 6.18  0.00 56.09 56.09  0.16

Scheduled tribe shares 12 1499 2.00 5.93 0.00 71.66 71.66  0.15

Main workforce population 13 1499 28.46 5.93 14.94 58.15 43.21  0.15
Historical Nairs shares from census 14 229 0.15 0.09 0 0.44 0.44 0.01
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7.2 Density Plots for Matching
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Abstract

This paper studies how discriminatory fake news arises and spatially diffuses. We focus on India at the onset
of the COVID-19 pandemic: on March 30, a Muslim convention (the 7ablighi Jamaat) in New Delhi became
publicly recognized as a COVID hotspot, and the next day, fake news on Muslims intentionally spreading the
virus spiked. Using Twitter data, we build a comprehensive novel dataset of georeferenced tweets to identify
anti-Muslim fake news. We find, in cross-sectional and difference-in-difference settings, that discriminatory
fake news became much more widespread after March 30 (1) in New Delhi, (2) in districts closer to New
Delhi, and (3) in districts with higher social media interactions with New Delhi. Further, we investigate
whether deeply rooted historical factors may have also played a role in the diffusion of anti-Muslim fake
news: we show that, after March 30, discriminatory fake news was more common in districts historically
exposed to attacks by Muslim groups.
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”It Was Already Dangerous to Be Muslim in India. Then Came the Coronavirus.” (Perrigo, 2020)

1 Introduction

Fake news—sometimes called false stories—may likely have widespread, long-lasting political, social, and
economic consequences for societies (Zhuravskaya et al., 2020). Evidence shows that fake news spreads
on social media faster and to larger audiences than true stories, often distorting the views of the users who
receive it (Vosoughi et al., 2018). Social media technologies, and the Internet more generally, have favored
the rise of populism and extremist and xenophobic ideas in the United States and Europe (Bursztyn et al.,
2019; Miiller and Schwarz, 2020, 2021).

Scholars have largely focused on the role of misinformation in political contexts,' but to the best of
our knowledge, fake news has rarely been studied as a vehicle for disseminating hate and discriminatory
sentiments toward minorities. Thus, we still know very little about how anti-minority fake news is generated
and how it spreads, either online or in the real world.

Where, and under what conditions, does disinformation about discriminated minorities originate? What
determines its diffusion in space? What types of users create or circulate false stories about minorities? An-
swering these questions presents several empirical challenges: measuring discriminatory fake news, linking
it to a precise geographic location, and, more generally, finding a suitable empirical context to study its
spatial diffusion. To partially overcome these challenges, this paper focus on the social media platform
Twitter to study the spatial determinants of anti-Muslim fake news?” in India at the onset of the coronavirus
pandemic, in 2020.

India is an ideal setting to carry out such analysis for three main reasons. First, India is an extremely di-
verse country with a history of tensions among religious communities, and its Muslim minority has been one
of the communities most discriminated against.> Second, discussion about fake news and misinformation
in India has grown louder in recent years, following the explosive growth in the number of active Internet

users. (Nielsen estimates that India had 646 million active Internet users in December 2021, and Internet

1For instance, Allcott and Gentzkow (2017), Guess et al. (2018), and Grinberg et al. (2019) empirically study the impact of
social media and fake news on the 2016 U.S. presidential election and show that fake news circulated virulently online during the
election campaign, among a narrow group of users.

2In line with Guess et al. (2019), we define fake news as “false or misleading content intentionally dressed up to look like news
articles.”

3 According to a 2019-2020 Pew Research Center survey of religion across India, one in five Muslims say they have recently
faced religious discrimination (Pew Research Center, 2021).
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penetration continues to increase in rural and in urban areas (Nielsen, 2022).) Third, at the onset of the coro-
navirus pandemic, a Muslim religious gathering—the Tablighi Jamaat convention in New Delhi—suddenly
became a national COVID-19 hotspot—about 9,000 congregants and related primary contacts were sent
to quarantine facilities or hospitals in a country that had seen only a handful of reported cases beforehand
(Times of India, 2020).

In this context, we analyze a comprehensive novel dataset of georeferenced tweets, within which we
are able to identify tweets reporting anti-Muslim fake news. Our empirical strategy exploits the timing of
a sequence of events tied to the aforementioned religious gathering. In fact, though the Muslim convention
took place from March 1 to 15, its alleged connection with the pandemic didn’t become salient until the
evening of March 30, when multiple deadly COVID-19 cases were reported among Tablighi participants
and when several institutional actors blamed the convention for spreading COVID in India. For ease of
discussion, we will henceforth refer to this bundle of events on March 30 as the “ZTablighi shock.”

In line with the literature on the scapegoating of minorities during epidemic outbreaks (Jedwab et al.,
2019), we document a large spike in anti-Muslim fake news on March 31: the share of tweets reporting anti-
Muslim false stories—around 0.1% of total tweets in the week preceding the Tablighi shock—jumped to
2.8% on March 31, then peaked at 3.3% a day later. The vast majority of false stories in our sample claimed
that Muslim individuals were deliberately infecting other people, often drawing an analogy between the
spread of the virus and the spread of religion, and asserting that these allegedly intentional infections were
a form of jihad. The hashtag #coronajihad began trending strongly on March 31, 2020.

Based on this finding, we then investigate the spatial diffusion of anti-Muslim discriminatory behavior
in the aftermath of the Tablighi shock. We observe substantial spatial heterogeneity in the diffusion of fake
news. First, exploiting both the cross-district variation after March 30 and a difference-in-difference esti-
mation strategy at the daily district level, we provide evidence that the intensity of discriminatory fake news
is stronger in the state of New Delhi, where the Tablighi event took place. In particular, the difference-in-
difference coefficient suggests that, following the shock, the number of tweets with anti-Muslim fake news
increased by 144 more tweets in New Delhi compared to the rise in other districts. This result is robust to
considering different distance thresholds to account for the role of spatial autocorrelation in statistical infer-
ence and to the use of the share of anti-Muslim fake news as an alternative dependent variable. Moreover,
we document that the diffusion of anti-Muslim misinformation from the New Delhi hotspot was stronger in

districts that are spatially closer to and have more intense social media interactions with the capital. This
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result suggests that both physical distance and social connectedness are key determinants for the spreading
of fake news, pointing to the growing role social networks play in diffusing discriminatory attitudes.

Second, given the national relevance of the Tablighi shock, we follow a large literature on the persistence
of discriminatory beliefs and ideological traits (e.g., Voigtlinder and Voth, 2012) by investigating whether
the observed spatial differences in the diffusion of fake news can be traced back to deeply rooted character-
istics of Indian society. To do so, we exploit a comprehensive dataset of historical conflicts on the Indian
subcontinent; we focus on land-based attacks initiated by Muslim entities in precolonial times (1000-1757).
For the sake of brevity, we will henceforth refer to these events as "Muslim attacks.” We find that the diffu-
sion of fake news in the aftermath of the Tablighi shock was stronger in districts where such Muslim attacks
occurred compared to districts that did not experience Muslim attacks. These results suggest that the histor-
ical experience of conflict with Muslims—and the simultaneous hostility that arose toward them—predicts
current anti-Muslim discriminatory behavior, as captured by the the diffusion of anti-Muslim fake news.

We could be concerned that omitted variables, correlated with our measure of exposure to Muslim
attacks, may be affecting the diffusion of anti-Muslim discriminatory fake news after March 30. To address
this concern, we perform two sets of exercises. First, we show that our results hold if we use several
alternative definitions of exposure to Muslim attacks, such as exploiting the intensity of exposure in terms
of the number of Muslim attacks, using a distance-based measure of exposure as in Dincecco et al. (2022),
restricting Muslim attacks to those occurring only after the advent of the Delhi Sultanate, and including
also Muslim attacks that occurred up to 1840. Second, we show that our results are robust to controlling
in the main specification for several other potential confounders (interacted by a Post-March30 dummy),
including further geographical controls, variables capturing historical state capacity and the local exposure
to colonizers, and measures of linguistic and ethnic fractionalization.

Finally, we also find suggestive evidence that discriminatory users are disproportionately Hindu nation-

alists and individuals active in the political debate.

Literature. By focusing on the rise of anti-Muslim fake news after the coronavirus outbreak, this paper
relates to a recent literature in economics showing that anti-minority behavior increases during economic and
epidemic crises. In the context of economic crises, Doerr et al. (2021) show an increase in anti-Jewish laws
during the Great Depression, while Anderson et al. (2017) and Anderson et al. (2020) show, respectively, an

increase in anti-Jewish persecutions after colder growing seasons in the period spanning the years 1000 to
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1800 and an increase in anti-Black discrimination during the Great Recession (2007-2009). In the context
of epidemics, Jedwab et al. (2019) find that the Black Death of the 1350s triggered anti-Jewish persecutions
in towns where people were more inclined to believe antisemitic allegations but not in towns where the
activities of Jewish inhabitants were complementary to the local economy. Bartos et al. (2021), Dipoppa
et al. (2021), and Lu and Sheng (2022) show, either experimentally or by using a difference-in-difference
strategy, that the ongoing coronavirus pandemic has increased discrimination against the Chinese minority
in the Czech Republic, Italy, and the United States, respectively.

While this literature establishes a causal link between various shocks and increases in discrimination, it
falls short in showing hard evidence on the scapegoating mechanism at play and in discussing the spatial
diffusion of discrimination. By analyzing the content of the tweets in our sample, we are able to pinpoint the
identification of Muslims as a threat to India either through terrorist acts or as intentional spreaders of the
virus. Our text analysis of the tweets confirms that the fear of contagion is the most important underlying
scapegoating mechanism. Moreover, we show that anti-Muslim false rumors are stronger in New Delhi and
in districts where historical Muslim attacks took place, and that they spread throughout the country based
on spatial and social media spillovers from New Delhi.

Our paper also contributes to the recent literature on the persistent effects of historical events, institu-
tions, norms, and values (often transmitted across generations) on various outcomes today (for a review, see
Voth, 2021). Among the studies focusing on long-term antecedents of discrimination, Voigtlinder and Voth
(2012) show that Jewish pogroms during the Black Death strongly predict antisemitic violence in Nazi Ger-
many and votes for the Nazi party. Similarly, Ochsner and Roesel (2019) find that Austrian municipalities
attacked by Turkish troops in early modern times displayed stronger anti-Muslim sentiment and cast more
votes for the far-right party after it started to recall past Turkish atrocities in its 2005 campaign. Along the
same lines, Jha (2013) shows that stronger medieval Hindu-Muslim trade relationships in port locations is
associated with fewer Hindu-Muslim riots from 1850 to 1995. We contribute to this literature by showing
that the proliferation of anti-Muslim fake news at the onset of the coronavirus pandemic was greater in re-
gions with a history of precolonial Muslim attacks. In so doing, we also contribute to the literature analyzing
precolonial determinants of present-day outcomes in India, a context in which research has largely been fo-
cused on the legacy of colonialism (see, e.g., Banerjee and Iyer (2005), Iyer (2010), Castell6-Climent et al.
(2018), Bharadwaj and Mirza (2019), Chaudhary et al. (2020).

More broadly, this paper relates to the literature studying the effects of media on discrimination. Re-
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garding traditional media, DellaVigna et al. (2014), Yanagizawa-Drott (2014), Adena et al. (2015), and
Couttenier et al. (2021) show that propaganda and distorted news coverage can contribute to ethnic violence
against immigrant minorities and increase votes for far-right parties. Regarding digital media, Miiller and
Schwarz (2020, 2021) show, respectively, how Twitter, Facebook and other social media can activate ha-
tred of minorities in the contexts of Donald Trump’s political rise in the United States and of the refugee
crisis in Germany. We contribute to this literature by investigating the determinants of diffusion of fake
news that targets a minority, a topic rather unexplored by the literature. In doing so, we also investigate
the characteristics of the users who post such false information, thereby shedding light on the origin of this
phenomena.

The rest of the paper is organized as follows: Section 2 provides background. Section 3 describes the
data. Section 4 presents the empirical strategy and Section 5 discusses the results. Section 6 examines the

profiles of discriminatory users. Section 7 concludes.

2 Background

2.1 COVID in India and Fake News Against the Muslim Minority
2.1.1 COVID and the Tablighi Jamaat

COVID-19 was first identified in December 2019 in the Chinese city of Wuhan, where a major local out-
break quickly escalated into a global public health emergency. In India, the first cases of contagions were
reported in late January 2020, but they were identified and contained in hopes of avoiding a mass outbreak.
Despite its geographical proximity to China, India had close to no cases in February; by March, however,
daily cases of contagions were being reported. As the situation worsened, regional and national authori-
ties enacted several restrictive policies that canceled domestic and international flights, suspended railways,
created social distancing measures, restricted public gatherings and dine-in restaurants, closed nonessential
businesses, and made it compulsory to wear a mask. These policies culminated in a nationwide lockdown
that began on March 25.

An Islamic missionary movement called the Tablighi Jamaat had scheduled a religious congregation in
March 2020 at the Nizamuddin Markaz mosque in the Indian capital city of Delhi. Thousands of worshippers

from across India and abroad poured into the Markaz between March 1 and March 15. Some stayed at the
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Mosque for the entire period; others traveled throughout the country.

From March 13, the Delhi state government began issuing public notices to avoid gatherings. Direct
letters were sent to the Tablighi Jamaat asking them to disassemble the congregation. The Tablighi Jamaat
responded that it had suspended all activities and had managed to send home some of the attendees, but
that it was having difficulty making arrangements for attendees who were still at the mosque and now
stranded by the railway closures. The Delhi state government announced a weeklong shutdown of the capital
city beginning March 23, further restricting the worshippers from road travel. On March 29, the district
police and health officials started sending some of the worshippers to hospitals and quarantine facilities
after learning that many of them had tested positive for COVID (Outlook, 2020).

The back and forth between local officials and the Tablighi Jamaat, as well as the displacement of
attendees and the increasing number of COVID cases from the Markaz led to a blame game between the
Tablighi Jamaat and state officials. By the end of March, social media and news channels were filled with
discussions on the government’s late response in shutting down the event and on the Tablighi Jamaat’s
irresponsibility in going through with it. Fake news and discriminatory hashtags blaming Muslims for
spreading coronavirus on purpose—including videos showing Muslims licking utensils and a Muslim vendor

spitting on fruit to spread the virus—started popping up.

2.1.2 The Evening of March 30

On the evening of March 30, several events surrounding the Nizamuddin Markaz transformed the once-
sporadic sharing of fake news and Islamophobic tweets into a full-blown crisis. First, the Delhi Police
cordoned off the entire area around the Nizamuddin Markaz. Drones were also deployed to scan the streets
in the area for lockdown violators. Then, the Delhi government announced its intention to file a case against
the Maulana, the religious head of the Tablighi Jamaat, (Press Trust of India , 2020) and two politicians
from the ruling party of the Central Indian government tweeted that the rise in COVID cases in India was
linked to the Nizamuddin Markaz. Late that night, the Telangana State Chief Minister’s office tweeted that
six Markaz attendees had succumbed to the coronavirus and died in Telangana. Though a Tablighi Jamaat
attendee had died from COVID the week before, this was the first time multiple deaths were linked to the
Tablighi event.

Though discriminatory anti-Muslim hashtags and fake news had been shared before (see Appendix

Table Al), March 30 marked a watershed moment. The next day, #coronajihad topped Twitter trends in
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India, and from then on, the floodgates opened for widespread misinformation and fake news about Muslims
deliberately spreading coronavirus (Ritika Jain, Article14, 2020).

On Twitter, hashtags such as #Nizammudin or #NizammudinMarkaz—referring to the mosque—went
from being tweeted 10,200 times by 6 p.m. on March 30 to more than 114,000 times by 10 p.m. on March
31, more than a tenfold increase in 28 hours. Similarly, the hashtag #TablighiJamaat had been tweeted
about 51,100 times by the end of March 31, with blame extending to all Muslims.* This escalation peaked
two days later, when members of India’s central government blamed the Tablighi Jamaat for the sudden
spike in COVID cases in India (THE WEEK , 2020). Hashtags such as #coronajihad, #Nizamuddinldiots,
#TablighiJamatVirus, and #muslimvirus were widely tweeted and retweeted.

Tweets of the same flavor were also rife in local languages. Alongside the Islamophobic hashtags,
these tweets mostly shared old, unrelated videos suggesting that Muslims were trying to purposely spread
coronavirus. One widely circulated video involved an elderly fruit vendor being accused of sprinkling urine
on the fruits he was selling. Another old video of a Sufi ritual, with Muslims purposely sneezing to spread
the virus, went viral. Many other false, convoluted video and audio clips depicting Muslims licking utensils,
scattering currency notes, and spitting on food to spread the coronavirus were created and shared during this
time (Pooja Chaudari, Alt News, 2020).> On April 2, numerous religious gatherings took place across India
to celebrate the Hindu festival of Ram Navami, but the same blame and discrimination pattern did not ensue;
Islamophobic tweets proliferated on these days too.

A notable aspect is that some of the fake news shared during this time recalled precolonial events in-
volving Muslims. The Hindu journalist Samer Halarnkar wrote in April 2020: “Last week, I exited a family
WhatsApp group after listening to a particularly inaccurate, agitated and rambling rant [...] about how Hin-
dus have been "humiliated, subjugated and massacred,’ [...] and how we were ruled by [Muslim] *marauders’
for 1,000 years.” Halarnkar (2020). Similarly, some tweets accused Muslim NGOs and charities of denying
free supplies and meals to poor Hindus and Christians during the lockdown, asserting that "Mughal rulers
too denied food supplies to Hindu subjects during famines. They are only continuing the legacy.” Other
tweets pointed to the Tablighi convention as a tool for spreading Islam, converting Hindus, and evolving

into a "Corona-Jihad,” suggesting that coronavirus could be used as a weapon for a renewed violent attack

4All statistics on trending hashtags come from https://getdaytrends.com/india/. By comparison, the hashtags #HappyNew Year
and #TrumplnIndia (relating to the start of 2020 and the visit by the former U.S. President on February 24, 2020) received about
767,500 and 136,100 tweets, respectively.

3Yet others depicted Muslims groping and misbehaving with nurses at hospitals, beating up doctors, and serving food mixed
with human feces.
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on India.®
In the next section, we briefly discuss historical accounts of precolonial Muslim rule in India and how it

has shaped the collective memory of non-Muslims.

2.2 Historical Conflict in India

In the precolonial period, the Indian subcontinent” was divided into many independent and politically frag-
mented states that, throughout the centuries, have often been in conflict with each other. These conflicts,
motivated by aims of territorial expansion mixed with religious motives, have been shaping the long-term
development patterns of the country (Dincecco et al., 2022).

The earliest Muslim invasions of India can be traced back to the seventh and eighth centuries. Arabs
reached the Bombay coast in 636 AD, and the Umayyud campaigns took place across the present-day
Pakistan-India border between 712 and 740. However, not until the campaigns of Mahmud of Ghazni,
beginning in 1001 with the Battle of Peshawar, did the banner of Islam reached the heart of India (Britannica,
2022). Ghazni sacked and conquered several cities, including the Hindu temple city of Somnath. His empire
was overthrown by the (Muslim) Ghurid dynasty in 1186, which was in turn succeeded by the (Muslim)
Delhi Sultanate in 1206.

Despite the difficulty in clearly defining “Hinduism” or “Islam” at the time, the close contact between
Arabs, Persians, and Turks, and the people of the Indian subcontinent through war and trade possibly led to
an antagonistic religious identification (Mukhia et al., 2017, p.9). As early as the 11th century, the prominent
Muslim scholar Al Biruni wrote ”They (the Hindus) totally differ from us in religion, as we believe in nothing
in which they believe and vice versa (...). Their fanaticism is directed against those who do not belong to
them—against all foreigners. They call them mleccha, ie. impure, and forbid having any connection with
them, be it by marriage or any other kind of relationship, or by sitting, eating, drinking with them, because
thereby, they think they would be polluted. The Hindus claim to differ from us, and to be something better
than we, as we on our side, of course, do vice versa!” (Sachau, 2013).

Tensions among different religious identities continued to rise until the 16th century, when several con-

flicts between major historical rival states—the Delhi Sultanate, the Deccan Sultanates, the Rajput states,

The full text of the tweet is: “The main purpose of establishing this organization is to spread Islam. It has so far converted
people from other religion, mainly Hindus, and trained them in Islamic religious matters and it is spread in 150 countries. ... Are
they Human beings? #Corona_Jihad.”

"The Indian subcontinent includes modern-day India, Bangladesh, Bhutan, Myanmar, Nepal, Pakistan, and Sri Lanka.
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and the Vijayanagara Empire—took place.® While conquests were not exclusively motivated by religion,
rulers were particularly harsh in their treatment of people from different religions. Desecrations of Hindu
temples by Muslims were clear manifestations of these conflicts, trying to undermine and destroy Hindu
religious identity. In particular, the Delhi Sultanate (1206—1526) tried to build a Muslim state and society in
Northern India, using selective temple desecration to delegitimize and extirpate Indian ruling houses (Eaton,
2000).

The Delhi Sultanate succumbed to another Muslim entity, the Mughal Empire, which became one of
the most powerful states on the Indian subcontinent. Most of the Mughals’ conquests were in the territories
of the Delhi Sultanate, but they also reached the domains of Hindu rulers. The reign of the Mughal ruler
Aurangzeb (1658-1707) featured temple desecrations, differential customs duty based on religion, replace-
ment of Hindu headclerks and accountants by their Muslim counterparts, an additional tax on nonbelievers
“to spread Islam and put down the practice of infidelity” (the “jaziya’), and rewards for Muslim conversions
(Sarkar, 1930). Religion was also a key factor during the Mughal-Maratha and Mughal-Sikh battles.’

The nature of interstate conflict changed after the 1757 Battle of Plassey and the victory of the British
East India Company, which established itself as the major player in the political landscape, gradually de-
feating other states and local rulers. Following the Battle of Plassey, Indians of all religious faiths saw
themselves increasingly allied against a common enemy, the European colonial powers.

The history of past Muslim attacks has left a permanent wound in the memory of other communities in
India, shaping beliefs and perceptions toward Muslims. Wolpert (2004) argues that attempts to unify India
before the British colonization had always been difficult and short-lived, with religious influences having
divisive effects. Along the same lines, the 1947 partition of British India between Hindu-majority India and
Muslim-majority Pakistan and Bangladesh triggered a massive population transfer: Hindus and Sikhs left
Pakistan and Bangladesh for India, while Muslims left India to reach the territories where their religious
community was larger (Bharadwaj et al., 2015). More recently, during both the World Value Survey for
India in 1990 and a major 2019-2020 Pew Research Center survey of religion across India, around 30% of

the surveyed population reported they were not willing to have Muslim neighbors (Inglehart et al., 2018;

8In the Delhi and Deccan Sultanates, Islam was professed, while in the Vijayanagara Empire, Hinduism was the main religion.
The Rajput states were mostly Hindu; only a few professed Islam.

9The Mughal-Sikh battles started with the killing and jailing of Sikh leaders by Mughal emperors (who were intent on halting
the expansion of Sikhism), and the clashes continued for more than a century. Similarly, the Mughal-Maratha battles involved
Muslims and Hindus. Shivaji, the leader of the Marathas, opposed the tax on non-Muslims and revived Hindu traditions in his new
empire, taking up Sanskrit and Marathi and abandoning Persian as the court language.
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Pew Research Center, 2021).10

Even today, non-Muslim communities often follow practices that recollect and remind themselves about
past Muslim atrocities. For example, the Rajput festival Jauhar Mela is celebrated every year in Chittorgarh,
in Rajasthan, to remember the “jauhar,” a mass self-immolation custom performed by Hindu Rajput women
to avoid capture, enslavement, and rape by foreign invaders. Locals from Chittorgarh believe jauhars were
performed three times during history, each time as a consequence of an invasion by a different Muslim
ruler. Another example is the chant of the Sikh community in their holy places (gurudwaras) that refers
to an episode in history where Sikh women were jailed by Mughals and forced to grind flour with heavier-
than-normal millstones. The chant!! venerates those women who chose not to convert to Islam despite the

kidnapping and killing of their children.

3 Data

We have assembled a rich dataset from several primary and secondary sources. In this section, we briefly
describe the geographical units at which the analysis is carried out and the variables used. Online Appendix
A provides further details on some of the steps we undertook to build the main dependent variable and
summary statistics for all variables used in our empirical analysis.

We carried out our analysis at the district level. India is currently divided into 773 districts across 28
states and 8 union territories. Because our analysis employs several variables from the 2011 census, we
focus on the administrative divisions of India based on this census year; the resulting sample contains 626
districts.'? In the regressions, we also account for regional or state fixed effects. The States Reorganisation
Act of 1956 divides the states of India into six regions: Northern, North Eastern, Central, Eastern, Western,

13

and Southern.’” On average, regions are made up of six states. Districts are smaller geographical units;

10The India Value Survey of 1990 was based on 2,500 interviews, while the Pew Research Center survey of religion in India
conducted nearly 30,000 face-to-face interviews of adults in 17 languages. The latter survey was carried out before the COVID-19
pandemic. The exact wording of the question in 1990 was: ”On this list are various groups of people. Could you please sort out
any that you would not like to have as neighbors?” ("Muslims” was one of the options in the list), while in 2019 the question was:
”Would you be willing to accept a Muslim as a neighbor?”

1 ”Singhnian jinna ne sawa sawa mann de pisne peese, bachiye de tota galean vich pavaye, par Dharm na haariya,” which
translates to “The lioness like Sikh women who grinded a ton of grain, who wore their torn kids around their necks, but did not give
up on religion.”

12We exclude islands, for which some of our data sources have missing information. Moreover, we group together the four
districts in which New Delhi is divided because, due to the way tweets are geolocated by Twitter, we are not able to identify in
which exact district of New Delhi the tweets were posted, so the New Delhi state will be a unique observation. Besides New Delhi,
in our sample three more states are made up by only one district as well: Chandigarh, Dadra and Nagar Haveli, and Daman and
Diu.

13Regions are commonly called *zones”.
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there are approximately 104 districts per region and about 18 districts per state.

3.1 Anti-Muslim Fake News

To build a measure of anti-Muslim fake news that varies over time and space, we rely on text data from
Twitter.'* First, we obtained all georeferenced tweets published in India from December 1, 2019, to April
30, 2020 (Twitter API for academic research). This set of queries, conducted at the beginning of 2022,
returned 16,967,380 tweets. Each tweet comes with either precise coordinates or a place identifier internal
to Twitter.!> In the latter cases, we also obtained the geographic coordinates of all place identifiers (Twitter
API for academic research). For our analysis, we focus on tweets whose place identifier is at the city level
or a finer spatial scale (these represent roughly 84% of the original sample). In our main exercise, we use
the subset of tweets posted from March 24 to April 6, i.e., from one week before to one week after the
Tablighi shock on March 30. This sample comprises 1,863,349 tweets published by 187,787 distinct users
in 21,977 locations. In addition, we use the tweets posted in December 2019 and January 2020 to construct
a matrix of social media interaction across Indian districts prior to the shock and, more generally, prior to
the COVID-19 outbreak (we describe this measure in detail in Sections 5.1.2 and 5.2.2).

Second, we assembled an extensive list of English-language hashtags and keywords related to anti-
Muslim fake news in India. We started our search for keywords by reading the common fake news stories
gathered by the popular Indian fact-checking website AltNews in March and April 2020. In particular,
we concentrated on fake news that contains the keyword “Muslim” in their titles or excerpts.'® This list
suggests two sets of relevant keywords. The more prominent set identifies Muslims as intentionally spread-
ing the coronavirus through “sneezing,” “spitting,” “licking,” or “peeing” on people or food. The second
set associates Muslims with terrorism by talking for instance about “Islamic Jihadis” or “Corona Jihadis.”
We first searched the tweets in our dataset containing these initial keywords (and their English-language
variations) and the keyword “Tablighi,” then we adopted a snowball approach and collected additional rele-
vant keywords that further identify fake news. Appendix Table A2 reports the final list of all keywords we

gathered.

l4Several scholars have recently used Twitter to investigate moral attitudes and norms (see, e.g., Brady et al., 2017) and political
preferences (for a review, see Zhuravskaya et al., 2020). Twitter is one of the four most widely used social media platforms in India
(the others are Facebook, Instagram, and WhatsApp, which is technically a messaging app) (Sekose, 2021).

15See https://developer.twitter.com/en/docs/twitter-api/v1/data-dictionary/object-model/geo for more information on geolocation
in Twitter.

16 Appendix Table Al reports all fake news we retrieved from the website.
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Finally, we translated our keyword list into 11 Indian languages: Hindi, Kannada, Malayalam. Gujarati,
Marathi, Punjabi, Odia, Tamil, Telugu, Urdu, and Bengali. We selected these languages because (1) they are
the 11 most-spoken languages in India (excluding English), and (2) they are included in the list of languages
that Twitter allows users to choose as their preferred language. Based on the Twitter language classification,
about 40% of the tweets in our working dataset are published in English, 30% percent in Hindi, and 14% in
other languages (none of which exceeds 2.5% of the tweets). For the remaining 16%, Twitter was not able
to identify the language of writing.

To validate the ability of our set of keywords to correctly capture Muslim-related fake news stories
and illustrate their content, we perform the Latent Dirichlet Allocation (LDA) algorithm on the subset of
tweets written in English and containing at least one anti-Muslim keyword.!” The LDA is an unsupervised
machine-learning algorithm that can detect latent topics in a corpus of documents from the co-occurrence
of patterns of words (Blei et al., 2003). A topic is defined as a probability distribution over the entire set of
words present in the corpus, and the number of topics is a parameter left to the choice of the researcher.

In our baseline exercise, we set the number of topics equal to five, while the other free parameters
(governing the shape of the underlying probability distributions) were set according to the standard values
suggested in Griffiths and Steyvers (2004). As is standard in text analysis (and in particular for text anal-
ysis of Twitter data), we preprocessed the text to remove punctuation, numbers, URLs, and mentions; re-
moved stopwords; and reduced the remaining words to their English stems, so that, for instance, “spreader,”
“spreading,” and “spreaded” were all replaced with “spread” in the analysis.

Figure 1 shows the wordclouds for each topic in our baseline exercise. Each wordcloud is composed of
the words with the largest probability weights in the corresponding topic (provided they pass a minimum
cutoff, for better readability), such that the size of the word is proportional to the weight. The topics isolate
different aspects of the tweets’ anti-Muslim content.

Topics 1, 2, and 5 seem to be the ones most likely to contain anti-Muslim false stories. Indeed, Topic
1 draws an analogy between spreading Islam in India and spreading the virus. Here are two sample tweets:
“All this while I thought Islam isn’t a Religion, it’s a cult, I was wrong, - Islam is a disease.”; and “The main
purpose of establishing this organization is to spread Islam. [...] #Corona_Jihad.” Topic 2 captures a specific

type of fake news that spread in the aftermath of the Tablighi gathering, accusing Tablighi participants of

17We rely on the language classification provided by Twitter to detect tweets written in English. These tweets may still contain
some non-English characters.
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intentionally infecting other people and other obscene behaviors. Here are two sample tweets: “Tablighi
Jamaat members in quarantine are walking around without trousers on, listening to vulgar songs, asking
for bidi cigarette from nurse and staff and making obscene gestures towards nurses. Asks police to restrain
them”; and “Are the docs are lying that ur orthodox Muslim men would be naked in front of women medical
staff, spit on them, in some place pelt stone [...]”"). Topic 3 calls for government action, while Topic 4 focuses
on the responsibilities of New Delhi’s local government and police in managing the Tablighi Jamat episode.
Topic 5 focuses on identifying the Tablighi Jamaat convention as a COVID hotspot and blaming the event

for the spread of COVID to other parts of India.
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Figure 1: Wordclouds for the LDA topics in the Sample of Anti-Muslim Tweets Posted in English Between
March 24 and April 4, 2020

3.2 Muslim Attacks

As discussed in Section 2, the resentment against Muslims may have deeply rooted historical origins that

can be traced back to long-ago clashes between Hindus and Muslims. In particular, we focus on precolonial
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conflicts in which a Muslim group or entity participated as an aggressor. This class of conflicts, which we
refer to as Muslim attacks, characterized the history of the Indian subcontinent for several centuries. Our
measure of exposure to Muslim attacks relies on the database assembled by Dincecco et al. (2022)—based on
Jaques (2007)—which contains information on the universe of conflicts recorded on the Indian subcontinent
between the years 1000 and 2000. For each conflict, we have the date, the geographical coordinates, and a
short description of the event. Starting from these records, we manually coded an indicator variable equal to
one for conflicts initiated by a Muslim group or entity. As in Dincecco et al. (2022), we focus on land battles
that occurred in precolonial times (i.e., before 1757).18 Our baseline district-level measure of historical
anti-Muslim sentiments is, thus, the dummy variable Muslim Attack taking the value one if at least one
Muslim land-based attack is observed in a district in the 1000-1757 period. In our robustness checks, we
also present our results with perturbed versions of this measure that rely on different time periods and with

a distance-based measure of exposure to Muslim attacks (along the lines of Dincecco et al., 2022).

3.3 Descriptive Evidence

In this section, we present some basic facts and preliminary descriptive evidence on the temporal and geo-
graphical patterns of discrimination against Muslims in India, focusing on the period from March 1 to May
1, 2020. Figure 2 reports the share of tweets containing anti-Muslim fake news over the total number of
tweets posted in a given day. Interestingly, the share of discriminatory tweets is virtually zero in the weeks
preceding the Tablighi shock, represented in the graph by the solid black vertical line. Consistent with the
narratives discussed in Section 2.1, an abrupt spike occurs on March 31, after the events of March 30 estab-
lished a link in the public’s mind between the Tablighi Jamaat convention and the COVID-19 crisis. The
share of anti-Muslim fake news peaked above 3% of total tweets on April 1, then steadily declined—though
it remained above its preshock level one month later. In our empirical analysis, we restrict our attention to
the two weeks centered around March 30, i.e., from March 24 to April 6.

Our detailed georeferenced data allow us not only to observe discrimination patterns at high temporal
frequencies but also to document their distribution in space. Figure 3a shows the geographical distribution of
anti-Muslim fake news across Indian districts in the week following March 30. To account for heterogeneous

levels of Twitter activity across districts, the map reports the residuals of an OLS regression of the number of

18We concentrate on land battles because they clearly occurred within specific district borders and were by far the most common
type of precolonial conflict.
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Figure 2: Time Series of Anti-Muslim Fake News

share of tweets with anti-Muslim fake news

Notes: The blue line represents the share of tweets condtaaii?ng anti-Muslim fake news keywords over the

total number of tweets in our sample in each day from March 1 to May 1. The solid black line highlights

the date of the shock, March 30.
tweets with anti-Muslim fake news posted in the week after the shock on the total number of tweets posted
in the week preceding the shock. The color scale corresponds to the different deciles of the distribution of
residuals, ranging from low discrimination (white) to high discrimination (dark blue). There is substantial
spatial variation in the intensity of anti-Muslim discrimination in the aftermath of the shock. Discrimination
is higher in the area around New Delhi, along the Ganges Valley in the northeast, and along the western
coast, whereas it is lower, for instance, in the southwest, in the area corresponding to the state of Andra
Pradesh. A second feature that emerges at a glance from the figure is the spatial autocorrelation in the
intensity of discrimination across Indian districts. We confirm this formally by computing the Moran’s
I spatial autocorrelation index on the same residuals depicted in the figure: we obtain a value of 0.28
(significant at the 1% level).

Figures 3b and 3c suggest two potential mechanisms that may partially explain the substantial spatial

heterogeneity in the diffusion of anti-Muslim fake news we observe. First, in Figure 3b, we averaged the
residuals reported in Figure 3a for five rings corresponding to the quintiles of the distribution of distance

to New Delhi—where distance is calculated from the district centroid.'® This is motivated by the fact

that the shock is narrowly localized in New Delhi, where the Tablighi Jamaat convention took place. As

1911 the figure, the district polygons for districts within the same distance quintile have been merged into a single polygon.
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the map shows, there is a clear negative gradient from New Delhi to the outer regions of India. Second,
Figure 3c shows the geography of precolonial Muslim attacks. The red crosses coincide with the exact
conflict locations, while individual districts are highlighted if at least one conflict occurred in their territory
(consistent with the dummy variable used in the econometric analysis). There is a striking resemblance to
the map of anti-Muslim fake news shown in Figure 3a. This suggests that historical Muslim attacks have
left some anti-Muslim sentiments and perceptions that could shape the reaction of different Indian districts

to the Tablighi shock.

4 Empirical Specification

To investigate the determinants of the diffusion of anti-Muslim fake news on social media, we proceed in

two main steps. First, we estimate the following equation in a cross-sectional setting:

Yy = a+ﬁzir+yxir+5r+£ir

where Y;, is the cumulated number of tweets with anti-Muslim fake news posted in district i in region
r on the day after the shock (March 31) and the following two to six days, and Z; captures a potential
determinant for the rise of anti-Muslim fake news. In particular, we will concentrate first on New Delhi,
which is a dummy variable taking the value one for the territory of New Delhi, and then on both New Delhi
and MuslimAttack, which is a dummy taking the value one for districts that experienced at least one Muslim
attack during the precolonial period (1000-1757). The coefficient B shows how much stronger, after the
shock, the diffusion of fake news is in the New Delhi area (or in an area where a conflict was initiated by
Muslim entities), compared to the rest of India. Xj, is a vector of district-specific baseline and geographic
controls, &, are region fixed effects, and ¢, is the error term. To account for spatial autocorrelation, the error
term is clustered according to Conley (1999).

Regional fixed effects capture unobserved historical, linguistic, political, and economic characteristics
at the regional level. Thus, we identify the effect of the New Delhi dummy or the dummy for districts with
precolonial Muslim attacks by comparing anti-Muslim fake news across districts within regions. At the
same time though, region fixed effects do not account for differences at a finer spatial level. To address

this issue, we control directly for prominent baseline and geographic characteristics at the district level,
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Figure 3: Spatial Distribution of Anti-Muslim Fake News and Precolonial Muslim Attacks
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(b) Average Residuals by Quintiles of Distance From (c) Location of Precolonial Conflicts With Muslim
New Delhi Offenders

Notes: Figure 3a depicts the residuals of an OLS regression of the number of tweets with anti-Muslim
fake news keywords posted in a district during the week after the shock (March 31 to April 6) over the
total number of tweets posted in a district during the week before the shock (March 24 to March 30); the
color scale represents different deciles of the distribution of residuals, where darker colors correspond to
higher residuals. In Figure 3b, the same residuals are averaged by quintiles of distance from New Delhi,
where distance is calculated from the district centroid and the district polygons have been merged within
each quintile. In Figure 3c, the red crosses coincide with the exact locations of land-based precolonial

(1000-1757) conflicts where the offender was a Muslim group or entity; the districts in which at least
one such conflict is recorded are highlighted in yellow.
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which could be related to both the likelihood that users posted an anti-Muslim tweet and the likelihood that
a district was exposed to a Muslim attack in the precolonial period. In particular, following insights from
Dincecco et al. (2022) and Michalopoulos and Papaioannou (2018), the baseline controls include the log
of luminosity (+0.01) averaged in the 1992-2010 period to account for local economic development—with
luminosity being a better proxy than official GDP data, especially in poorer areas—and the log of population
density in 1990.%°

Moreover, we control for the log share of Muslim and Hindu population, which may account for district-
specific Muslim versus Hindu contact. We include the log shares of literate and urban population to account
for broader measures of well-being and development. To capture indirect or direct correlates of district-level
differences in Twitter use, we control for the average number of tweets during the week before the shock.
All these data come from the 2011 census, except for the average number of tweets, which is computed
by exploiting our database. Importantly, all regressions exploring the role of Muslim attacks also include a
dummy taking the value one if a district experienced a precolonial conflict in which Muslim groups were not
the aggressors. This accounts for the legacy of conflict-related violence, which may also affect the likelihood
of contemporary violence and discrimination.

Finally, we control for the daily number of COVID-19 deaths, as the spread of fake news could simply
be related to the spread of the coronavirus, rather than to the Tablighi hotspot news or to the legacy of
precolonial Muslim attacks. Moving to the geographical controls, we follow Dincecco et al. (2022) and
include latitude, longitude, altitude, ruggedness, precipitation, land quality, dry rice suitability, wet rice
suitability, wheat suitability, and malaria risk. These factors are commonly accounted for by a broader
literature and should capture potential drivers of historical Muslim-related conflicts. To these factors, we
add distance to the border as well as distance to the closest border between Pakistan and Bangladesh—the
two countries bordering India with the highest share of Muslim population.

While the region fixed effects and the district-level controls account for regional unobservable and
district-level observable characteristics, to further rule out that omitted-variable bias is driving our results,
we now move to a quasi-experimental setting and use a difference-in-difference strategy. Specifically, we
leverage the evening of March 30 as the shock cutoff date during two periods: (1) from March 28 to April

2 (capturing three-day windows before and after the shock), and (2) from March 24 to April 6 (capturing

20Because local luminosity levels in India do not simply reflect population density (Dincecco et al., 2022), we also directly
control for population density. In particular, we use data on population density in the most recent year prior to the years in which
luminosity is measured, but note that its log is correlated at 98% with the log of population density in the last census year, 2011.
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seven-day windows before and after the shock). The estimated equation is:

Yy = BZ;+ YPost; + 0Z; x Post; + 9X;; + 6, + 1, + €

where Y;; is the number of tweets with anti-Muslim fake news posted in district i on day ¢, Z; is a po-
tential determinant of diffusion of anti-Muslim fake news as in the cross-section equation, and Post; is a
dummy taking the value one for all dates after March 30. The main coefficient of interest is 0, which is
the difference-in-difference coefficient of the interaction term between Z; and Post, that shows how much
stronger the increase in the diffusion of fake news is after the shock in the New Delhi area (or in an area
where a conflict was initiated by Muslim entities), compared to the rest of India.”?! With respect to the
cross-section specification, we control for district and date fixed effects (6; and 1, respectively) in the panel
specification.?

Finally, besides the number of COVID deaths, the panel specifications also include as baseline controls
the average number of tweets in the week prior to the shock interacted with the Post, indicator to control
for differential effects over time of Twitter penetration and—when we focus on the relationship between
Muslim attacks and fake news diffusion—a dummy for districts experiencing other precolonial conflicts

(beyond Muslim attacks) interacted with the Post, indicator to control for differential effects of the legacy of

historical violence beyond Muslim attacks.

S Empirical Analysis

5.1 New Delhi: The Tablighi COVID-19 Hotspot
5.1.1 Anti-Muslim Fake News in New Dehli

In Table 1, we discuss whether the Tablighi shock has had a stronger effect on the number of tweets with anti-
Muslim fake news in New Delhi, where the shock originated. In columns 1-2, the analysis is carried out at

the cross-district level and the dependent variable is the total number of tweets with anti-Muslim fake news in

21The interaction coefficient is not interpretable as the effect of the shock in a given area, because the shock had national
relevance and therefore may have affected all Indian districts. The coefficient 8, however, is crucial for understanding what the
strongest determinants of the spatial diffusion of fake news are, by showing where the rise in the number of tweets containing false
news is strongest.

22The obvious implication is that when Z; = NewDelhi, the dummy NewDelhi is absorbed by the district fixed effects, and in all
results the dummy Post; is subsumed by the date fixed effects.
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the postshock period, i.e., from March 31 to April 2. Column 1 accounts for the baseline and geographical
controls, and column 2 adds region fixed effects. In both columns, the coefficient on the dummy New
Delhi—tracking the district where the Tablighi convention took place—is positive and significant at the 1%
level. This suggests that, in the very short term, the shock was associated with a sharper increase in the
number of tweets with discriminatory fake news within the New Delhi area compared to the rest of India.

Columns 3—4 report the results of a difference-in-difference specification using as the dependent variable
the daily number of tweets with anti-Muslim fake news in each Indian district from March 28 to April 2.
Column 3 controls for state and date fixed effects and for the baseline and geographic controls; column 4
adds district fixed effects. The coefficient estimate suggests that, following the shock, the number of tweets
with anti-Muslim fake news increased 144 more in New Delhi compared with the other districts.

Columns 5-8 replicate the analysis of columns 1-4, focusing on the longer, seven-day time horizon. As
concerns the cross-sectional evidence (columns 5-6), the coefficient on the New Delhi dummy is still positive
and significantly different from zero. The results of the difference-in-difference specification (columns 7-8),
however, report a smaller and not significant coefficient.

To shed more light on the effect of the Tablighi shock over time, we perform an event-study analysis.
Specifically, we use a more flexible estimating equation that, rather than interacting the New Delhi dummy
with the Post indicator, interacts the New Delhi measure with each of the time-period dummies, using March
24 as the baseline period. The results can be intuitively seen in Figure 4. We observe a sharper increase in
anti-Muslim fake news right after the shock in New Delhi compared to the rest of India, but the difference
gradually decreases over the following days. The evidence of the event study therefore also helps us explain
the smaller and not significant coefficient of the difference-in-difference specification over the seven-day
period (compared to the one over the three-day period). Reassuringly, there were no differential trends in
anti-Muslim fake news before March 30, when the public began connecting the Tablighi convention and the

COVID outbreak.
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Table 1: New Delhi and the Tablighi Shock

Period: Three Days Seven Days
Cross-Section From shock Panel Cross-Section From shock Panel
Dependent variable: Cum. N. Tweets FN N. Tweets FN Cum. N. Tweets FN N. Tweets FN
(D 2 3) (C)] ) (6) ) (®)
New Delhi 431.6551*  434.6582*** 580.2159***  585.2052***
(85.5375) (83.4294) (126.6417)  (123.2655)
[0.0000] [0.0000] [0.0000] [0.0000]
New Delhi x Post 143.5211%**  144.0059** 84.5201 84.6502
(24.7875) (21.3123) (83.3240) (83.0970)
[0.0000] [0.0000] [0.3104]  [0.3083]
Baseline controls Yes Yes Yes Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes No Yes Yes Yes No
Region FE No Yes No No No Yes No No
State FE No No Yes No No No Yes Yes
District FE No No No Yes No No No Yes
Day FE No No Yes Yes No No Yes Yes
R-squared 0.9646 0.9657 0.9473 0.9637 0.9683 0.9694 0.7997 0.8114
Observations 626 626 3756 3756 626 626 8764 8764

Notes: OLS estimates. Observations are districts. Cross-district level analysis in the March 31-April 2 period in columns 1-2,
daily panel analysis in the March28—April 2 period in columns 3—4, cross-district level analysis in the March 31-April 6 period in
columns 5-6, and daily panel analysis in the March 24—April 6 period in columns 7-8. Cross-section results in columns 1-2 and
5-6 use as a dependent variable the cumulative number of tweets with anti-Muslim fake news, and focus on the dummy variable
New Delhi, tracking the New Delhi district as the main explanatory variable. Daily panel estimates in columns 3—4 and 7-8 use as
a dependent variable the number of tweets with anti-Muslim fake news, and focus on the variable New Delhi x Post, which is a
dummy taking the value one for the district of New Delhi after March 30, as the main explanatory variable. In all specifications,
the baseline controls include the log of luminosity (+0.01) averaged between 1992-2010, the log of population density in 1990, the
log share of Muslim and Hindu population in 2011, the log share of literate and urban population in 2011, and the average number
of tweets before March 31. Geographical controls include latitude, longitude, altitude, ruggedness, precipitation, land quality, dry
rice suitability, wet rice suitability, wheat suitability, malaria risk, distance to the border, and distance to the closest border between
Pakistan and Bangladesh. All cross-section estimates also include the total number of COVID deaths, and region fixed effects are
added to columns 2 and 6. All panel specifications also include the daily number of COVID deaths, a dummy taking the value one
after March 30, and its interaction with the average number of tweets in the preshock period. Columns 3 and 7 control for state
fixed effects, while columns 4 and 8 control for district fixed effects. See the text and the Appendix for details on all variables.
Standard errors in parentheses are clustered to account for spatial correlation up to 250 km in the cross-section, and for both spatial
and serial correlation in the panel specifications. P-values are reported in brackets. *** p<0.01, ** p<0.05, * p<0.1.
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Figure 4: New Delhi and the Tablighi Shock: Event Analysis
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Notes: Each dot is a coefficient from a version of specification 8 in Table 1 that replaces the New Delhi
dummy interacted with the Post March 30 indicator, with the New Delhi dummy interacted with each
date dummy. The reference category is March 24, and the specification also controls for the average
number of tweets in the week before the shock interacted with date dummies. Vertical bars indicate 90%
confidence intervals.

Robustness.  In Appendix B, we perform a series of robustness checks on specification 4 of Table 1.
First, Figure B1 shows that our results are robust to accounting for spatial autocorrelation over distance
thresholds ranging from 100 to 1,500 km. Second, Figures B2 to B7 show the sensitivity of our main
coefficient of interest—New Delhi x Post—to including in the regression specific potentially confounding
factors interacted with the Post March 30 dummy. We start by interacting each baseline and geographic
control in Figures B2 and B3, respectively. Then we do the same exercise by controlling for (1) further
geographic controls in Figure B4, (2) initial conditions in Figure BS, (3) colonization controls in Figure
B6 to account for the role of district-specific differential exposure to the subsequent British colonization,
and (4) fractionalization controls in Figure B7 to specifically consider the role of ethnic, linguistic, and

religious diversity in generating anti-Muslim fake news after March 30.> None of these perturbations of

23 Further geographic controls include distance to the coast, presence of a river, irrigation potential, the coefficient of variation in
rainfall, the percentage of forested area, and distance to petroleum, diamonds, gems, and gold deposits. These variables were assem-
bled by Dincecco et al. (2022) from several sources, including the Natural Earth Data website (https://www.naturalearthdata.com/),
Matsuura and Willmott (2009), Tollefsen et al. (2012), the India Institute of Forest Management (2015), and Bentzen et al. (2017).
As suggested by Dincecco et al. (2022), we proxy initial conditions by including initial state-capacity measures such as the number
of Indian settlements during the Neolithic or Chalcolithic Ages from Nag (2007), the number of important Indian cultural sites
between 300 and 700 and between 800 and 1200 from Schwartzberg (1978), and the natural logarithm of (one plus) the total urban
population in the year 1000 according to Chandler (1987). Colonization controls include a dummy variable for direct British rule
from Iyer (2010), the number of years a district was ruled by the British from Verghese (2016), and a variable tracking the year
in which each district was connected to the first colonial railroad from Fenske et al. (2021). Fractionalization measures, again
assembled by Dincecco et al. (2022) from various sources, include medieval ports and a dummy for districts intersected by the
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the main specification sensibly affects our result. Finally, in Table B1, we show that the main results hold
if we consider as a dependent variable the daily share of tweets with anti-Muslim fake news instead of the
absolute number of anti-Muslim fake news stories.

Altogether, the findings in this section suggest that the Tablighi shock triggered a sharper increase in
anti-Muslim fake news in the New Delhi area, where the religious convention took place, which is consistent

with the evidence discussed in Section 2.

5.1.2 Fake News Spread Spatially From New Delhi

We now investigate whether the anti-Muslim fake news triggered by the Tablighi shock spread spatially
during the three-day and seven-day windows after March 30. We take the specifications of columns 4 and 8
in Table 1 and enrich them to account for fake news’ diffusion. Table 2 reports the results.

First, we focus on the regional area centred around New Delhi. This area, defined in 1985 when the
government approved a regional development plan, encompasses the state of New Delhi and 21 surrounding
districts across the states of Haryana, Uttar Pradesh, and Rajasthan. Its population is over 46 million inhab-
itants, and its urbanization rate is 62.6% (Census of India, 2011). We compute a dummy equal to one for
districts located in the New Delhi region (excluding New Delhi itself) and augment the panel specification
with this variable interacted with the Post-March 30 dummy. Columns 1 and 4 show that the districts neigh-
boring the state of New Delhi reported a significantly higher rise in the number of tweets with anti-Muslim
fake news over the three days and the seven days after the Tablighi shock compared to districts outside the
New Delhi region. This first exercise suggests that anti-Muslim fake news that originated in New Delhi soon
spread to its neighboring territories, propagating a discriminatory sentiment against the Muslim population.

Second, in columns 2 and 5, we study the diffusion of fake news beyond New Delhi’s neighboring dis-
tricts, by using the continuous variable of physical distance; in particular, we include the distance from each
district’s centroid to the centroid of New Delhi interacted with the Post-March 30 dummy. The interaction
term is negative and significant at the 1% level, suggesting that fake news diffused out of New Delhi—but
with a lower magnitude in districts farther from the Tablighi convention. Next, to better explore the role of
distance in the propagation of the shock, we estimate an equation that interacts the Post-March 30 dummy

with dummies taking the value one depending on the decile of distance to New Delhi. The results are de-

Ganges river, religious fractionalization and polarization, ethnic polarization, and the scheduled caste and tribe shares from the
2011 census. Finally, we control for the number of years a district was ruled by Muslims in medieval times.
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picted in Figure 5, plotting the coefficients on the interaction terms for the different deciles. They suggest
that fake news propagated spatially, with a declining effect in space. This evidence aligns well with the
descriptive evidence presented in Section 3.3.

Moreover, the diffusion of fake news may travel on the network of social interactions on Twitter. We
thus construct a measure of social media connectedness with New Delhi. In particular, we exploit the fact
that when tweets are posted in response to a tweet (known as a reply), or by quoting another tweet, the
Twitter API also provides the ID of the original tweet. For each district i, we compute the share of replies to
(and quotes of) tweets initially posted in the state of New Delhi over the total number of replies and quotes
by users located in district i.2* In columns 3 and 6, we include in our specifications both the measure of
social media connectedness to New Delhi interacted with the Post-March 30 dummy and the dummy equal
to one for districts located in the New Delhi region interacted with the Post-March 30 dummy. Interestingly,
these results seem to suggest that spillovers due to social media interactions take place above and beyond

spillovers occurring in the actual physical space.

2We computed our measure using the tweets posted from December 1, 2019 through January 31, 2020. We chose this period
to rule out that the diffusion of COVID dominated social interactions between districts. Moreover, we exclude from the denomi-
nator the quotes and replies to tweets posted within the district because with this measure we want to specifically focus on social
connections outside the district.
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Table 2: Number of Anti-Muslim Fake News Tweets in Space

Period: Three Days Seven Days
Dependent variable: N. Tweets FN N. Tweets FN
(1 2) (3) 4) ) (6)
New Delhi x Post 147.7242%*  142.9669***  148.9854*** 87.3092 83.9065 88.1959
(19.6609) (20.8076) (19.6250) (83.6476)  (83.0038) (83.7197)
[0.0000] [0.0000] [0.0000] [0.2966] [0.3121] [0.2921]
New Delhi Region w/o ND X Post 7.1609*** 6.9495*** 5.1731% 5.0245*
(1.5053) (1.4977) (2.0925) (2.0747)
[0.0000] [0.0000] [0.0134] [0.0154]
Dist. New Delhi (x1000) x Post -1.9623** -1.3963**
(0.3227) (0.3071)
[0.0000] [0.0000]
Social Media Connectedness to New Delhi x Post 1.9456** 1.3694**
(0.4478) (0.4670)
[0.0000] [0.0034]
Baseline controls Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes
R-squared 0.9645 0.9645 0.9648 0.8124 0.8121 0.8125
Observations 3756 3756 3756 8764 8764 8764

Notes: OLS estimates. Observations are districts in each day in two periods: March28—April 2 in columns 1-3, and March24—-April
6 in columns 4-6. In all specifications, the dependent variable is the number of tweets with anti-Muslim fake news, and the baseline
and geographical controls are as in the panel specifications of Table 1. New Delhi x Post is a dummy taking the value one for the
district of New Delhi after March 30. New Delhi Region w/o ND x Post is a dummy taking the value one for districts located in
the National Capital Region surrounding New Delhi (excluding New Delhi itself) interacted with the Post-March 30 dummy. Dist.
New Delhi (x 1000) x Post is the distance from each district’s centroid to the centroid of New Delhi (per 1000 km) interacted with
the Post-March 30 dummy. Social Media Connectedness to New Delhi x Post computes for each district i the share of quotes and
replies to tweets posted in the state of New Delhi by users located in the district (excluding from the denominator the quotes and
replies to tweets posted within the district) interacted with the Post-March 30 dummy. Standard errors in parentheses are clustered
to account for both spatial correlation (up to 250 km) and serial correlation. P-values are reported in brackets. *** p<0.01, **
p<0.05, * p<0.1.
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Figure 5: Number of Fake News Tweets in Space by Deciles of Distance to New Delhi
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Notes: Each dot is a coefficient from a version of specification 5 in Table 2 that replaces distance to
New Delhi interacted with Post; with the interaction of the Post; dummy with dummies taking the value
one depending on the decile of distance to New Delhi. The reference category is the 10th decile, and
the specification also controls for the simple decile dummies and for the average number of tweets in
the week before the Tablighi shock interacted by time dummies. Vertical bars indicate 90% confidence
intervals.

5.2 Deep-Rooted Determinants of Anti-Muslim Fake News and the Tablighi Shock
5.2.1 Precolonial Muslim Attacks and the Tablighi Shock

After showing that fake news spread spatially out of New Delhi, we now investigate whether some deeper
determinants are affecting the spatial diffusion of anti-Muslim discrimination. Following the rich historical
record of Muslim invasions and conquests of territories in present-day India, we focus on the role of pre-
colonial conflicts in which a Muslim group took part as an aggressor. Table 3 mimics the specifications of
Table 1, adding among the explanatory variables a dummy equal to one for districts that experienced Mus-
lim attacks and its interaction with the Post-March 30 indicator. All cross-section specifications additionally
control for conflict events in which the aggressor was not a Muslim group, while panel specifications control
for both this variable (subsumed when using district fixed effects) and its interaction with the Post-March
30 dummy.

In columns 1-2 and 5-6, we present the results of the cross-sectional specifications using as the depen-
dent variable the cumulated number of tweets with anti-Muslim fake news in the three days (columns 1-2)

and seven days (columns 5-6) after the Tablighi shock. Focusing on column 2, both coefficients associated
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with the New Delhi and Muslim Attack dummies are positive and significant at the 1% level, suggesting that
both the location associated with the Tablighi shock and exposure to precolonial Muslim attacks play a role
in explaining the district variation in anti-Muslim fake news diffusion. Note that although the magnitude of
the coefficient associated with Muslim attacks is much smaller than the one associated with the New Delhi
dummy, it amounts to more than 20% of the magnitude of the coefficient associated with districts located in
the New Delhi region (excluding New Delhi, not shown). This comparison further points out the relevance
of precolonial Muslim attacks as long-term determinants of anti-Muslim fake news today.

Columns 3—4 and 7-8 report the results of the difference-in-difference specification using the three-day
and seven-day windows, respectively. The coefficients of the interaction term fall to about one additional
tweet with anti-Muslim fake news when we focus on the period up to seven days after March 30, and they

remain significant at the 5% level (columns 7-8).

Table 3: Number of Tweets With Anti-Muslim Fake News and Historical Muslim Attacks

Period: Three Days Seven Days
Cross-Section From Shock Panel Cross-Section From Shock Panel
Dependent variable: Cum. N. Tweets FN N. Tweets FN Cum. N. Tweets FN N. Tweets FN
(1 (2) 3) 4) ) (6) @ @)
New Delhi 434.9733***  436.6861*** 583.4918**  586.5906***
(83.7485) (81.7575) (123.7766)  (120.6348)
[0.0000] [0.0000] [0.0000] [0.0000]
New Delhi x Post 144.3309"*  144.7996*** 84.9248 85.0433
(24.4654) (21.0321) (83.3062) (83.0811)
[0.0000] [0.0000] [0.3080]  [0.3060]
Muslim Attack 3.3640™ 3.6445%* -0.1582 5.1059** 5.4841%* -0.1643
(1.4481) (1.2084) (0.1576) (2.3999) (1.9924) (0.1058)
[0.0202] [0.0026] [0.3157] [0.0334] [0.0059] [0.1203]
Muslim Attack x Post 1.6349** 1.6346*** 1.0731*  1.0835*
(0.6440) (0.5683) (0.5033)  (0.4727)
[0.0111] [0.0040] [0.0330]  [0.0219]
Baseline controls Yes Yes Yes Yes Yes Yes Yes Yes
Geographic controls Yes Yes Yes No Yes Yes Yes No
Region FE No Yes No No No Yes No No
State FE No No Yes No No No Yes No
District FE No No No Yes No No No Yes
Day FE No No Yes Yes No No Yes Yes
R-squared 0.9650 0.9660 0.9478 0.9640 0.9686 0.9697 0.8000 0.8117
Observations 626 626 3756 3756 626 626 8764 8764

Notes: OLS estimates. Observations are districts. The table replicates the structure and control variables reported in Table 1. All
specifications further include the dummy variable Muslim Attack, tracking districts that experienced attacks from Muslim groups
in the 1000-1757 period, and control for a dummy taking the value one for districts that experienced precolonial conflict in which
Muslims groups were not the aggressors. Panel estimates in columns 3—4 and 7-8 further include Muslim Attack x Post, which is
the interaction term between Muslim Attack and the Post-March 30 dummy, and the interaction between the dummy for conflicts
with non-Muslim aggressors and the Post-March 30 dummy. See the text and the Appendix for details on all variables. Standard
errors in parentheses are clustered to account for spatial correlation up to 250 km in the cross-section, and for both spatial and serial
correlation in the panel specifications. P-values are reported in brackets. *** p<0.01, ** p<0.05, * p<0.1.
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To further shed light on the dynamic patterns of fake news diffusion, we perform an event-study analysis.
We start from the specification in column 8, but, rather than interacting the Muslim Attack dummy with the
Post-March30 indicator, we interact the attack measure with each of the time-period dummies. The baseline
period is March 24. Interestingly, the difference between the number of tweets with anti-Muslim fake news
in areas where the conflict was initiated by Muslim entities and areas without conflict started increasing
on March 31, reached its peak two days later, and declined in the subsequent days. No differential trends
in anti-Muslim fake news are displayed in the preshock period for districts that experienced precolonial
Muslim attacks.

Figure 6: Number of Tweets With Anti-Muslim Fake News and Historical Muslim Attacks: Event Analysis

Coeff. Muslim Attack

Notes: Each dot is a coefficient from a version of specification 8 in Table 3 that replaces the dummy for
districts that experienced precolonial Muslim attacks interacted with the dummy tracking all dates from
March 31 with the dummy Muslim Attack interacted by each date dummy. The baseline period is March
24. The specification also controls for the average number of tweets in the week before the Tablighi shock
interacted by date dummies. Vertical bars indicate 90% confidence intervals.

Robustness. In this section, we perform a series of robustness checks to corroborate our findings on the
role of precolonial Muslim attacks in the diffusion of fake news. We focus on specifications 4 and 8 of Table
3. First, in Appendix Figures B8 and B9, we show that both the interaction of the New Delhi dummy and of
the Muslim Attack dummy with the Post indicator are robust to accounting for spatial correlation of distance
thresholds ranging from 100 to 1,500 km.

Second, in columns 1 and 6 of Table 4, we show that our results hold when using as a dependent variable
the share of tweets with anti-Muslim fake news. Both the location of the Tablighi shock and districts that

experienced precolonial Muslim attacks consistently display a higher share of tweets with anti-Muslim fake
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news after March 30.

Third, we perform different exercise to explore alternative measures of exposure to Muslim attacks.
About 30% of the districts with historical Muslim attacks experienced this type of event more than once, so in
the first exercise, we consider the intensity of exposure to Muslim attacks. In columns 2 and 7 of Table 4, we
thus use Number of Muslim Attacks—tracking the number of conflict events in which Muslim groups were
the aggressors during the 1000—1757 period—interacted with the Post-March30 dummy. The coefficient
of the interaction term is consistently positive and significant, suggesting that in districts experiencing the
highest number of Muslim attacks (eight events), the number of tweets with anti-Muslim fake news increased
by up to 4 tweets after March 30. In our second exercise we consider the fact that districts that did not directly
experience a Muslim attack may nevertheless have been affected to some extent, either because the conflict
occurred in the proximity of the border or because the movement of armies in the territory might have left
some scars. Building on the analysis in Dincecco et al. (2022), in columns 3 and 8 of Table 4, we compute
Muslim conflict exposure as

Z (1+ distancei_’c)_l

ceC
where distance; . is the distance between the centroid of district 7 and the location of a Muslim attack c¢. This
measure implies that the nearer a district is to a particular Muslim attack, the more exposed it is. Muslim
attacks occurring at the district centroid receive a weight of one, or full weight; as the distance of Muslim
attacks from the centroid increases, they receive lower weights. In this way, we impose no cutoff at the
district’s borders. For each district, we consider all conflicts within a radius of 250 km. Our results support
the relevance of being a district that experienced Muslim attacks for an increase in anti-Muslim fake news
after March 30. Note that this result is also robust to the use of an alternative radius of 100 km or 5,000
km (see columns 3—4 and 8-9 of Appendix Table B2). In the third exercise, we show that our benchmark
measure of Muslim-related conflicts is still relevant if we compute it over a more restricted period or over
a longer period. Estimates in columns 1-2 and 6—7 of Appendix Table B2 show that the coefficient is even
larger if we consider districts experiencing Muslim attacks between the birth of the Delhi Sultanate (around
1200) and the establishment of the British East India Company in India, in 1757; it is only slightly lower in
magnitude if we consider 1840 as the cutoff date (after which the British dominated the Indian subcontinent
both militarily and politically). Finally, some districts were exposed to conflict events in which Muslim

groups were not attacking but were still one of the parts involved in the conflict. We show in column 5 of

54



Table B2 that specifically accounting for exposure to conflict involving Muslims does not affect our main
result. In our fourth exercise, we show in columns 4 and 9 of Table 4 that the result on the legacy of
precolonial Muslim attacks for anti-Muslim fake news after March 30 is still positive and significant if we
remove the district of New Delhi from the sample. Results on Muslim attacks are also robust when we

control for spatial and social media spillovers from New Delhi, in columns 5 and 10 of Table 4.

Table 4: Robustness

Period: Three Days Seven Days
Dependent variable: Sh.Tweets FN N. Tweets FN Sh.Tweets FN N. Tweets FN
Specification: N.Conflicts Exposure  No New Delhi  Diffusion N.Conflicts Exposure No New Delhi  Diffusion
] () (3) “) (5) (6) Q] ®) ) (10)
New Delhi x Post 0.0132*** 143.9636"  144.3918"** 149.6529"* 0.0074** 84.3648 84.9132 88.5060
(0.0021) (21.2835)  (20.4401) (19.3889) (0.0030) (83.0657)  (83.0828) (83.6984)
[0.0000] [0.0000] [0.0000] [0.0000] [0.0129] [0.3098] [0.3068] [0.2903]
Muslim Attack x Post 0.0094*** 1.6349*** 1.5230" 0.0078*** 1.0831* 1.0026™*
(0.0028) (0.5626) (0.5693) (0.0017) (0.4896) (0.4742)
[0.0007] [0.0037] [0.0075] [0.0000] [0.0270] [0.0345]
N. Muslim Attacks x Post 0.6511* 0.5181**
(0.3384) (0.2103)
[0.0544] [0.0137]
Exp. Muslim Attack x Post 11.8095*** 8.7965*
(3.1173) (2.5939)
[0.0002] [0.0007]
New Delhi Re. w/o ND x Post 6.8163"* 4.9472%*
(1.4907) (2.0759)
[0.0000] [0.0172]
Conn. to New Delhi x Post 1.9352% 1.3589***
(0.4513) (0.4602)
[0.0000] [0.0032]
Baseline controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R-squared 0.3215 0.9640 0.9648 0.9199 0.9651 0.2223 0.8116 0.8125 0.7883 0.8127
Observations 3756 3756 3756 3750 3756 8764 8764 8764 8750 8764

Notes: OLS estimates. Observations are districts in each day in two periods: March28—April 2 in columns 1-5 and March24—April
6 in columns 6—10. Each column reports a different version of specification 4 or 8 of Table 3, respectively; see the notes below
that table for details on control variables. Columns 1 and 5 use as a dependent variable the daily share of tweets with anti-Muslim
fake news, while all other columns use as a dependent variable the number of tweets with anti-Muslim fake news. Columns 2 and 6
replace the dummy for precolonial Muslim attacks with the number of Muslim attacks in the district. Columns 3 and 7 replace the
dummy for precolonial Muslim attacks with a distance-based measure of exposure to Muslim attacks as in Dincecco et al. (2022).
Columns 4 and 8 exclude New Delhi from the set of observations. Columns 5 and 10 account for spatial and social media spillovers
from New Delhi as in Table 5. In all specifications, the newly included variables are interacted with the Post-March30 dummy. See
the text and the Appendix for details on all variables. Standard errors in parentheses are clustered to account for spatial correlation
up to 250 km in the cross-section, and for both spatial and serial correlation in the panel specifications. P-values are reported in
brackets. *** p<0.01, ** p<0.05, * p<0.1.

Finally, as in Section 5.1.1, Figures B10 to B15 display the sensitivity of the two coefficients of interest
to the inclusion of further control variables and their interaction with the Post-March30 dummy, over the
three-day and seven-day windows. All results are qualitatively similar.

Altogether, the results support the existence of deeply rooted determinants of the increase in anti-Muslim
fake news after the Tablighi shock. This result is in line with the historical narratives on the relevance of

local Muslim invasions and governance for local Indian history, and with present-day anecdotal evidence
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(real life and on Twitter) recalling the legacy of these experiences (see Section 2).

5.2.2 Does Anti-Muslim Fake News Spread Spatially From Precolonial Muslim Attack Districts?

We now turn to exploring whether historical Muslim attacks predict the spatial diffusion of fake news over
the three-day and seven-day windows before and after March 30. Similarly to the exercises carried out in
Table 2, we proceed in three steps. Results are reported in Table 5.

We start from the specification of Table 3, column 8 by including a dummy for districts neighboring
the district where precolonial Muslim attacks occurred. To do so, we rely on a spatial weighting matrix
that identifies neighbors based on rook contiguity. Then, we compute the spatial lag of the Muslim Attack
dummy and its interaction with the Post-March30 dummy. Columns 1 and 4 show that the coefficients of
the interaction term between the spatial-lag variables and the Post-March30 dummy are generally negative
and not significant. This exercise suggests that anti-Muslim fake news originated in districts exposed to
precolonial Muslim attacks but did not spread to the neighboring districts.

Next, in columns 2 and 5, we augment the specification with a variable that records the distance from
each district’s centroid to the closest historical Muslim attack and its interaction with the Post-March30
dummy. The coefficient on the interaction is negative and significant only over the three-day horizon, but
the magnitude of the coefficient is very small, suggesting that the relationship between historical Muslim
attacks and anti-Muslim fake news does not have notable spatial spillovers.

Finally, we check whether the network of social interactions with districts exposed to historical Muslim
attacks plays any role in increasing anti-Muslim fake news. Similar to our analysis in Table 2 (columns 3
and 6), we now additionally control for a district-level measure of social connectedness with districts with
historical Muslim attacks and its interaction with the Post-March30 dummy. None of the coefficients is

statistically significant, suggesting no social media spillovers as well.
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Table 5: Number of Tweets With Anti-Muslim Fake News and Historical Muslim Attacks in Space

Period: Three Days Seven Days
Dependent variable: N. Tweets FN N. Tweets FN
(1) 2 3) 4) ) (6)
New Delhi x Post 144.4784** 1454930  144.4768* 85.2759 85.5007 85.5079
(21.1308) (20.9381) (21.1311) (83.1008) (83.1841) (83.1849)
[0.0000] [0.0000] [0.0000] [0.3048]  [0.3040]  [0.3040]
Muslim Attack x Post 1.7312%* 1.4068** 1.7306** 1.0140**  0.9338**  0.9338**
(0.6084) (0.5696) (0.6082) (0.5152)  (0.4641) (0.4641)
[0.0044] [0.0135] [0.0044] [0.0491]  [0.0442]  [0.0442]
‘W Muslim Attack x Post -0.6032 -0.6153 0.4341
(0.8780) (0.9169) (0.7662)
[0.4921] [0.5022] [0.5710]
Dist. Muslim Attack x Post -0.0015** -0.0010 -0.0010
(0.0006) (0.0009)  (0.0009)
[0.0146] [0.2746]  [0.2646]
Social Media Conn. to Muslim Attack Districts x Post 0.0530 -0.1480
(0.3447) (0.3309)
[0.8778] [0.6547]
Baseline controls Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes
R-squared 0.9640 0.9641 0.9639 0.8115 0.8117 0.8117
Observations 3756 3756 3756 8764 8764 8764

Notes: OLS estimates. Observations are districts in each day in two periods: March28—April 2 in columns 1-3, and March24—April
7 in columns 4-6. In all specifications, the dependent variable is the number of tweets with anti-Muslim fake news, and baseline
and geographic controls are as in the panel specifications of Table 3. W Muslim Attack considers the spatial lag of Muslim Attack,
which is the neighbors of districts with historical Muslim attacks based on a (rook) contiguity matrix, and Dist. Muslim Attack is the
distance from each district’s centroid to the centroid of the closest district that experienced historical Muslim attacks. Social Media
Connectedness to Muslim Attack Districts computes for each district i the share of quotes and replies to tweets posted in districts
with historical Muslim attacks by users located in the district (excluding from the denominator the quotes and replies to tweets
posted within the district). All variables are interacted by the dummy tracking dates after March 30, so their label is accompanied
by x Post after the variable name. Standard errors in parentheses are clustered to account for both spatial correlation (up to 250
km) and serial correlation. P-values are reported in brackets. *** p<0.01, ** p<0.05, * p<0.1.

6 Who is disseminating fake news?

In the previous sections, we study the geography of anti-Muslim discrimination after a COVID-19 hotspot is
reported to be linked with a Muslim convention in New Delhi. We have seen that the discrimination reaction
is unevenly distributed in space, and we have uncovered a number of explanations for this phenomenon.
We still don’t know, however, whether discrimination and the dissemination of anti-Muslim fake news is
also unevenly distributed across Twitter users and, in particular, whether discrimination is predominantly
concentrated among people with specific characteristics.

To dig deeper into these questions, we performed a topic analysis of users’ self-reported biographies.

This allows us to classify users into a limited number of types and better understand the characteristics of
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discriminatory users. First, we downloaded the self-reported biographies of all Twitter profiles associated
with at least one discriminatory tweet during our main study period, i.e., from March 24 to April 3, 2020. We
were able to recover the biographies for 99% (7,088) of these users. To generate a point of comparison, we
set them against an equally sized random sample of users (whose self-reported biographies we also obtained)
who never posted a discriminatory tweet from January 1 to May 6, 2020. Then, we ran an LDA analysis on
this joint sample of 14,176 users in order to decompose their biographies into five latent topics.”. Finally,
we defined a user type to correspond to the topic that receives the largest weight in his or her biography.?®
Figure 7 plots the distribution of user types in the sample of discriminating profiles (in orange) versus
the sample of nondiscriminatory profiles (in green). Topics are identified by the three words that receive
the largest weight inside each topic and are ordered from left to right, in descending order, based on the
share of discriminatory users who belong to that type. Two main messages stand out from the graph. First,
discriminatory users are disproportionately Hindu nationalists (Topic 1) and people interested in politics
(Topic 2). Second, nondiscriminatory users are more likely to belong to types that emphasize cosmopolitan
attitudes (Topic 3), market-oriented issues (Topic 4) and leisure activities (Topic 5). However, as a partial
qualification to this conclusion, the figure also illustrates that discrimination occurs across the board. For
instance, we find a substantial share of discriminating users (above 15%) even in Topic 5, where this group

is more heavily underrepresented.

Z5We dropped a subset of users (31% of discriminatory users, 42% percent of nondiscriminatory users) from the analysis because
their biographies were empty, either to begin with or after we preprocessed the text. In particular, we removed all non-ASCII
characters from the biographies, thus dropping most of the non-English parts of the texts. As a check, we repeated the analysis
without removing non-ASCII characters; we obtained qualitatively similar results.

261n the (limited) case of ties, a user may have been assigned multiple types.
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Figure 7
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7 Conclusion

False stories spread rapidly on social media and the Internet. Given the large diffusion of these technologies
in recent years, concern is growing over the spread of false stories and their social, economic, and political
consequences.

In this paper, we study the fake news phenomenon under a novel perspective, namely as a vehicle to
propagate hate and discriminatory attitudes toward minorities. In particular, we study the diffusion of false
stories against Indian Muslims at the onset of the coronavirus outbreak in India, exploiting a tight sequence
of events on March 30, 2020 that led many to identify a Muslim religious congregation (the Tablighi Jamaat
convention) held in New Delhi as a COVID-19 hotspot. This coincided with an outburst of false stories
reporting that Muslims were deliberately infecting other people and associating the spread of the virus with

a form of jihad conducted by Muslim communities (see the trending hashtag “#coronajihad”).
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We leverage a comprehensive novel dataset of georeferenced text data from Twitter to document a large
spike (from nearly zero to above 3%) in the share of tweets reporting false stories against Muslims and to
investigate the spatial patterns of their diffusion.

Our econometric analysis delivers three sets of results. First, we find that, following the shock, the
intensity of discriminatory fake news was strongest in New Delhi, where the Tablighi event took place.
Second, beyond New Delhi, anti-Muslim false news was more pronounced in districts that are spatially
closer and have more intense social media interactions with New Delhi, further highlighting the increasing
role social networks play in diffusing discriminatory attitudes. Third, we show that the observed spatial
differences in diffusion of fake news after the shock can also be linked to the legacy of precolonial Muslim
attacks.

We build a novel classification of precolonial conflicts—events in which Muslim entities were the ag-
gressors versus events in which Muslim entities were not the aggressors—and we map these events at the
district level. We show that the diffusion of fake news in the aftermath of the Tablighi shock was stronger
in districts where Muslim attacks occurred compared to districts that did not experience historical conflicts.
Using state-of-the-art text analysis techniques, we provide suggestive evidence that discriminatory users are
disproportionately Hindu nationalists and individuals active in political debate.

These findings on present-day India suggest that (epidemic) shocks may affect a country’s overall envi-
ronment of discrimination through the spread of anti-minority false news on social media. This is especially
relevant in the case of (location-specific) persistent beliefs regarding the role of minorities as possible threats
to national security and well-being.

It is still an open question how minorities react to the spread of fake news discriminating against them,
whether they isolate themselves to protect their identity or whether they assimilate more into the local
culture. More broadly, future research should also investigate more closely the dynamic interactions among
minorities, members of the majority group, and political actors, who often contribute to the outbreak and

diffusion of discriminatory false stories.
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A Data Appendix

A.1 Details on fake news and keywords

In this section we report in Table Al the list of fake news we collected from the website AltNews and
in Table A2 the full list of English keywords we employed to identify tweets reporting fake news. These

keywords were also translated in other 11 languages. Keywords in other languages are availble upon request.
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Table A1l: Fake News with "Muslim” in the Title or Abstract

Date Origin | Fake News

02Mar Suresh Chavhanke falsely claims Muslim community in Paris torched railway station

02Mar Muslim girl raped by Hindu mob in Delhi? Pak propaganda website runs fake news

02Mar Muslim shops sell biryani laced with birth control pills to Hindus? Fictional story viral

04Mar AAP offers monetary relief to only Muslim victims of Delhi riots? Dainik Jagran clipping morphed

12Mar | 05Mar | Delhi riots: Times Now misreports man firing at Muslim mob as attack on police

13Mar First Muslim woman SP in Maharashtra? No, image of Women’s Day celebration viral

16Mar | 14Mar | Public TV falsely claims Muslim youths in Karnataka refuse coronavirus testing for “religious reasons”

30Mar Old, unrelated video shared as Muslims licking utensils to spread coronavirus infection

01Apr Video of Sufi ritual falsely viral as mass sneezing in Nizamuddin mosque to spread coronavirus infection

02Apr Old video falsely viral as Muslim man spitting on food at Indian restaurant in the backdrop of coronavirus
pandemic

02Apr Coronavirus: Video of an undertrial in Mumbai falsely viral as Nizamuddin markaz attendee spitting at
cop

04Apr Video of Muslim vendor’s unhygienic handling of fruits falsely linked with spreading coronavirus

04Apr Old video of racist heckling falsely viral as Muslim man spits on passenger in New York metro

05Apr Viral audio: False conspiracy theory about Modi govt introducing ‘vaccine’ to kill Muslims

06Apr Video from Pakistan falsely viral as Muslims punished in India

06Apr Video of Muslims exiting quarantine centre: Not Vinayaka Temple but residential lodging

07Apr Old video from Philippines shared with false claim of Muslim man spitting on bread

07Apr Viral audio falsely claims Muslim vendors have sprung up in Surat to spread coronavirus

08Apr Old video where salon attendant applies saliva on customer’s face falsely shared with Muslim angle

09Apr Communal attack in Bawana shared with false claim of Muslim man injecting fruits with spittle

09Apr Death of health worker in MP falsely communalised as attack by Muslims in UP Islamic jihadis”

11Apr Video viral with false claim that Muslims scatter notes on the road to spread coronavirus

11Apr Video from Pak falsely linked with Hindu man’s alleged murder by Muslim men in Rajasthan

13Apr Alt News video verification: Muslim vegetable vendor assaulted in Badarpur, Delhi

13Apr UP police’s mock drill video shared as ‘corona Jihadis’ arrested during lockdown

14Apr Image of Muslims offering namaz on rooftops in groups is from Dubai

15Apr | 06Apr | Video of fruit vendors in Indore shared with false anti-Muslim angle

15Apr | 13Apr | Pakistani Mufti provoking people to flout lockdown shared to target Indian Muslims

16Apr | 13Apr | Video of women spitting inside houses in Rajasthan’s Kota given false Muslim angle

18Apr False claim suggests Bandra mass gathering accused Vinay Dubey’s father is Muslim

20Apr Video of currency notes in Indore falsely viral as ‘Muslim conspiracy’ to spread coronavirus

20Apr Videos viral with false claim of poor slum dwellers and Muslims hoarding food in Meerut

24Apr | 21Apr | Video from Bijnor viral with false allegation that elderly Muslim vendor sprinkled urine on fruits

27Apr Disabled Muslim man hounded for accidentally dropping currency, accused of spreading coronavirus

27Apr Zee News publishes 2015 story with false claim of human faeces served to ‘non-Muslims’

29Apr Old video falsely shared as Muslims spitting on relief food during lockdown
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Table A2: English Fake News Keywords

#BioJihad
#lslamiccoronavirusjihad
#JamaatKaCoronaDisaster
#JamatVirus
#MuslimsSpreadingCorona
#NizamuddinMarkaj
#TablighisInHiding
corona jihaad
covid jihaad
islamic virus
jihad jamat
muslim infecting
muslim licking
muslim pees
muslim spitting
muslim sprinkling
muslims corona
muslims lick
muslims peed
muslims spitting
muslims sprinkle
muslims urine
Tablighi excreted
tablighi harassed
tablighi virus
CrushTablighiSpitters
Tablighi Talibani crime
corona bomb
crushtablighispitters
nizammudin
tableegi
tablighivirus
terrorist tablighi
MuslimDistancing

#Biologicallihad
#IslamicRepublicVirus
#JamaatkiGundagardi
#JehadiVirus
#muslimvirus
#nizamuddinterrorists
bio jihad
corona jihad
covid jihad
jamat virus
muslim corona
muslim infects
muslim licks
muslim spat
Muslim sprinkle
muslim stones
muslims infect
muslims licked
muslims peeing
muslims spread
muslims sprinkled
muslin peed
Tablighi crime
tablighi harassing
Tabligi 1000 positive
tableeghi
CoronaTerrorism
islamiccoronajehad
jihadivirus
nizamuddinfiasco
tablighijamat
tablighjamaat
tabligih traitors
human bombs

#coronaJehad
#lslamicVirus
#JamaatKoBanKaro
#JihadiJamat
#MuslimVirus
#QuranaVirus
biological jihad
covid jehad
covidjehad
jehad jamat
Muslim infect
muslim lick
Muslim pee
Muslim spit
muslim sprinkled
Muslim urine
muslims infected
muslims licking
muslims spit
muslims spreaded
muslims sprinkling
Nizammuddin jihad
Tablighi grope
Tablighi lewd
#IslamicJihad
CoronaBombsTablighi
jihadi weapon
jamaatkacoronadisaster
markaznizamuddin
nizamuddinmarkaz
tablighijammat
tablighsuperspreader
bantablighdebate

#lIslamicCoronalehad
#jahiljamati
#JAMATI_CORONA_JEHAD
#MarkazCOVIDSpread
#Nizamuddinldiots
#TablighiJamatVirus
Corona J-had
covid J-had
covidjihad
jihaad jamat
muslim infected
muslim licked
muslim peeing
muslim spits
muslim sprinkles
muslim virus
muslims infecting
muslims pee
muslims spitted
muslims spreading
muslims stones
qurana virus
Tablighi harass
Tablighi naked
muslim jihad
markazcovidspread
MuslimMeaningTerrorist
nizamuddincoronacases
nijamuddinmarkaz
tableeghijamaat
tablighis
tabligi
markazvirus
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A.2 Summary Statistics

Table A3: Summary Statistics
Variable Obs Mean Std dev Median Min Max
Time-variant Variables, 3 days:
N. Tweets Fake News 3756 3.0586 19.800 0 0 556
Share Tweets Fake News 3756 0.0110 0.03141 0 0 0.7143
New COVID Deaths 3756 0.0138 0.1721 0 0 5
Time-variant Variables, 7 days:
N. Tweets Fake News 8764 2.0992 14.680 0 0 556
Share Tweets Fake News 8764 0.0074 0.02551 0 0 0.7143
New COVID Deaths 8764 0.0124 0.1748 0 0 8
Time invariant variables:
New Delhi 8764 0.0016 0.03994 0 0 1
New Delhi Region w/o ND 8764 0.0336 0.1801 0 0 1
Dist. New Delhi (x1000) 8764 0.9789 0.5586 0.9496 0.009311 2.2592
Social Media Connectedness to New Delhi 8764 0.1836 0.1791 0.1667 0 1
Muslim Attack 8764 0.1374 0.3443 0 0 1
W Muslim Attack 8764 0.1271 0.1749 0 0 0.8034
Dist. Attack 8764 169.11 176.44 104.62 1.1684 929.27
Non-Muslim Attack 8764 0.0703 0.2556 0 0 1
Social Media Conn. to Districts w/Muslim Attacks 8764 0.2594 0.2023 0.2500 0 1
In(0.01+Luminosity) 8764 0.7031 1.4884 1.0117 -4.6052 4.1373
In(Population density), 1990 8764 5.4952 1.1606 5.5748 -1.4356 10.610
In Share Muslim 8764  -2.7718 1.2934 -2.5669 -6.0956 -0.01496
In Share Hindu 8764  -0.5015 0.8974 -0.1610 -4.7619  -0.006113
Ln Sh. Literate Pop. (2011) 8764  -0.4737 0.1719 -0.4658 -1.2116 -0.1083
Ln Sh. Urban Pop. (+0.01 2011) 8764  -1.5807 0.7165 -1.5734 -4.6052 0.009950
N.Tweets Preshock 8764 208.06 906.91 48.857 0 15391.7
Latitude 8764 23.441 5.7440 24.594 8.3060 34.527
Longitude 8764 81.068 6.2619 79.226 69.802 96.827
Altitude 8764 486.93 718.05 253.10 4 4914.9
Ruggedness 8764 102007.0 165566.0 35094.4 773.67 851959.5
Precipitation 8764 1354.3 674.96 1161.6 200.22 42453
Land Quality 8764 0.4590 0.2929 0.5267 0 0.9720
Dry Rice Suitability 8764 620.75 591.41 789.31 0 1722.7
Wet Rice Suitability 8764 1430.1 791.46 1403.3 0 2826.9
Wheat Suitability 8764 636.76 578.73 608.95 0 2914.7
Malaria Risk 8764 0.1055 0.3323 0.03298 0 2.8075
Min. Distance Pakistan or Bangladesh 8764  494.67 446.51 385.18 0 1862.8
Distance: Border 8764 402403.3 4737269  218057.5 0 1862808.9
Neolithic Settlements 8764 0.3834 1.5827 0 0 20
Chacolithic Settlements 8764 0.3067 1.4194 0 0 19
Cultural Sites (300-700 CE) 8764 0.1581 0.4581 0 0 4
Cultural Sites (8th-12th centuries) 8764 0.6901 1.2525 0 0 10
Ln(1+ Urban population in 1000) 8764  0.07141 0.8906 0 0 11.513
Distance: Coast 8764 410445.1 342190.6  333208.2 0 1246877.5
River 8764 0.5990 0.4901 1 0 1
Irrigation Potential 8652 0.2022 0.3311 0.0005263 0 1
CV Rainfall : Delaware 8764 0.2303 0.07202 0.2180 0.09513 0.5302
Percent Forest 8764 21.327 24.491 11.305 0 93.980
In Distance Petroleum 8764 5.4803 0.7705 5.6335 1.7820 6.6926
In Distance Diamond: Primary 8764 6.6869 0.5575 6.8268 3.7101 7.4802
In Distance Gem 8764 4.9553 0.8702 5.0911 2.2061 6.3544
In Distance Gold Placer 8764 6.3003 0.7105 6.5463 3.5410 7.1669
British direct rule 8428 0.6478 0.4777 1 0 1
Years British Rule 8764 87.882 72.709 112 0 286
Year of First Railroad 6706 1886.2 18.001 1886 1853 1931
Medieval Port 8764 0.0639 0.2446 0 0 1
Duration of Muslim Rule 8764 368.33 235.72 387 0 995
Religious Polarization 8764 0.4744 0.2630 0.4415 0.02417 0.9948
Linguistic Fractionalization 8764 0.4619 0.2781 0.4679 0.01435 4.2053
Religious Fractionalization 8764  0.2646 0.1619 0.2330 0.01215 0.7156
Scheduled Caste Share 8764 0.1493 0.09117 0.1579 0 0.5017
Scheduled Tribe Share 8764 0.1785 0.2694 0.04432 0 0.9858
Ganges 8764  0.0831 0.2760 0 0 1
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B Robustness on the Effect of the ’Tablighi Shock’ on New Delhi

Figure B1: Robustness: New Delhi x Post with Different Conley Thresholds, 3 Day Windows
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Notes: Each dot is the coefficient associated with the variable New Delhi x Post from estimating specification 4 in Table 1 with
Conley standard errors at different distance thresholds (on the vertical axis). Horizontal bars indicate 90% confidence intervals.

Figure B2: Robustness: Baseline Controls Interacted by Post March 30
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Notes: Each dot is the coefficient associated with the variable New Delhi x Post from a version of specification 4 in Table 1
that additionally controls for the variable displayed on the vertical axis and its interaction term with the Post March 30 dummy.
Horizontal bars indicate 90% confidence intervals.
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Figure B3: Robustness: Geographical Controls Interacted by Post March 30
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Notes: Each dot is the coefficient associated with the variable New Delhi x Post from a version of specification 4 in Table 1
that additionally controls for the variable displayed on the vertical axis and its interaction term with the Post March 30 dummy.
Horizontal bars indicate 90% confidence intervals.

Figure B4: Robustness: Further Geographical Controls Interacted by Post March 30
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Notes: Each dot is the coefficient associated with the variable New Delhi x Post from a version of specification 4 in Table 1
that additionally controls for the variable displayed on the vertical axis and its interaction term with the Post March 30 dummy.
Horizontal bars indicate 90% confidence intervals.
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Figure B5: Robustness: Historical Controls Interacted by Post March 30
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Notes: Each dot is the coefficient associated with the variable New Delhi x Post from a version of specification 4 in Table 1
that additionally controls for the variable displayed on the vertical axis and its interaction term with the Post March 30 dummy.
Horizontal bars indicate 90% confidence intervals.

Figure B6: Robustness: Colonization Controls Interacted by Post March 30
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Notes: Each dot is the coefficient associated to the variable New Delhi x Post from a version of specification 4 in Table 1 that addi-
tionally controls for the variable displayed on the vertical axis and its interaction term with the Post March 30 dummy. Horizontal
bars indicate 90% confidence intervals.
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Figure B7: Robustness: Fractionalization Controls Interacted by Post March 30
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Notes: Each dot is the coefficient associated with the variable New Delhi x Post from a version of specification 4 in Table 1
that additionally controls for the variable displayed on the vertical axis and its interaction term with the Post March 30 dummy.
Horizontal bars indicate 90% confidence intervals.

Table B1: Robustness: Share of Tweets with Anti-Muslim Fake News and the Tablighi Shock

Period: Three Days Seven Days
Dependent variable: Sh. Tweets FN Sh. Tweets FN
(1) ®) (3) “

New Delhi x Post 0.0145*  0.0145** 0.0100***  0.0097***
(0.0011)  (0.0012) (0.0026)  (0.0025)
[0.0000]  [0.0000] [0.0001]  [0.0001]

Baseline controls Yes Yes Yes Yes
Geographic controls Yes No Yes No
State FE Yes No Yes Yes
District FE No Yes No Yes
Day FE Yes Yes Yes Yes
R-squared 0.1487 0.3187 0.1278 0.2196
Observations 3756 3756 8764 8764

Notes: OLS estimates. Observations are districts in each day in two periods: March 28—April 2 in columns 1-2, and March24—-April
6 in columns 3—4. In all specifications, we control for day fixed effects. Baseline controls include the log of luminosity (+0.01)
averaged over the period 1992-2010, the log of population density in 1990, the log share of Muslim and Hindu population in
2011, the log share of literate and urban population in 2011, and the daily number of COVID deaths. Geographical controls include
latitude, longitude, altitude, ruggedness, precipitation, land quality, dry rice suitability, wet rice suitability, wheat suitability, malaria
risk, distance to the border, and distance to the closest border between Pakistan and Bangladesh. Odd columns additionally control
for state fixed effects, while even columns control for district fixed effects. See the text and the Appendix for details on all variables.
Standard errors in parentheses are clustered to account for spatial correlation up to 250 km in the cross-section, and for both spatial
and serial correlation in the panel specifications. P-values are reported in brackets. *** p<0.01, ** p<0.05, * p<0.1.
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C Robustness on the ’Tablighi shock” for Muslim Attack Districts

Figure B8: Robustness: Different Conley Thresholds, 3 Day Windows
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Notes: Each dot is the coefficient associated with the variable New Delhi x Post (Panel a) and Muslim Attack x Post (Panel b) from
estimating specification 4 in Table 3 with Conley standard errors at different distance thresholds (on the vertical axis). Horizontal

bars indicate 90% confidence intervals.

Figure B9: Robustness: Different Conley Thresholds, 7 Day Windows
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Notes: Each dot is the coefficient associated with the variable New Delhi x Post (Panel a) and Muslim Attack x Post (Panel b) from
estimating specification 8 in Table 3 with Conley standard errors at different distance thresholds (on the vertical axis). Horizontal

bars indicate 90% confidence intervals.
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Table B2: Robustness: Alternative Definitions of Muslim-Related Conflict

Period:

Three Days Seven Days
Dependent variable: N. Tweets FN N. Tweets FN
Specifications: 1200-1757 1000-1840  Radius 100  Radius 5000 Involvement 1200-1757 1000-1840 Radius 100 Radius 5000 Involvement
Q) 2 3) (€] (5) (6) @) (8) ) (10)
New Delhi x Post 1448470 143.6546™"  144.9899"**  144.0235***  145.2837*** 85.0758 84.4665 85.3282 84.6527 85.1829
(20.9861) (21.3177) (20.4001) (20.4614) (21.1516) (83.0797)  (83.1200)  (83.0375) (83.1264) (83.1377)
[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.3058] [0.3095] [0.3041] [0.3085] [0.3056]
Muslim Attack x Post 1.9203*+* 1.3858"+* 1.8071+* 1.2675* 0.8728** 1.2121%
(0.6041) (0.5124) (0.5869) (0.5003) (0.4408) (0.4808)
[0.0015] [0.0068] [0.0021] [0.0113] [0.0477) [0.0117]
Muslim Conflict Exposure x Post 15.8066™*  11.1052*** 11.2809**  8.1366"**
(4.2933) (2.5520) (3.6979) (2.2476)
[0.0002] [0.0000] [0.0023] [0.0003]
Involved, No Attack x Post -3.1134%* -1.7381**
(0.5907) (0.4718)
[0.0000] [0.0002]
Baseline controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Day FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R-squared 0.9641 0.9639 0.9649 0.9650 0.9641 0.8117 0.8116 0.8124 0.8127 0.8118
Observations 3756 3756 3756 3756 3756 8764 8764 8764 8764 8764

Notes: OLS estimates. Observations are districts in each day in the March 24 —April 7 period . Each specification substitutes Muslim
Attack x Post from specification 8 of Table 3 with an alternative definition of historical exposure to Muslim attacks (interacted with
the Post March 30 dummy). Columns 1-2 and 6—7 perturbs the period over which the variables are computed and focus on the
1200-1757 period and 1000-1840 period, respectively. Colums 3—4 and 8-9 compute exposure to Muslim attacks as in Dincecco
et al. (2022) over distances up to 100 and 5,000 km, respectively. Columns 5 and 10 explicitly account for conflicts in which Muslim
groups were involved but did not directly attack the district, through the variable Involved, No Attack interacted with the Post March
30 dummy. See the text and the Appendix for details on all variables. Standard errors in parentheses are clustered to account for
spatial correlation up to 250 km in the cross-section, and for both spatial and serial correlation in the panel specifications. P-values
are reported in brackets. *** p<0.01, ** p<0.05, * p<0.1.
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Figure B10: Robustness: Baseline Controls Interacted by Post March 30
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Notes: Each dot is the coefficient associated with the variables New Delhi x Post and Muslim Attack x Post from a version of
specification 8 in Table 3 that additionally controls for the variable displayed on the vertical axis interacted with the Post March 30
dummy. Panels a and b report estimates over the 3 day windows while Panels ¢ and d display estimates over the 7 day window.
Horizontal bars indicate 90% confidence intervals.

76



Figure B11: Robustness: Geographical Controls Interacted by Post March 30
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Notes: Each dot is the coefficient associated with the variables New Delhi x Post and Muslim Attack x Post from a version of
specification 8 in Table 3 that additionally controls for the variable displayed on the vertical axis interacted with the Post March 30
dummy. Panels a and b report estimates over the 3 day windows while Panels ¢ and d display estimates over the 7 day window.
Horizontal bars indicate 90% confidence intervals.
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Figure B12: Robustness: Further Geographical Controls Interacted by Post March 30

Dist.Coast - Dist.Coast -
River River
Irrigation pot. - Irrigation pot. -

CV rainfall -

CV rainfall -

Forest Forest

Petroleum

Interacted Control Variable
Interacted Control Variable

Diamonds -|

Diamonds -

Gems Gems o
Gold Gold
T T T T T T T T T T T
100 120 140 16 180 -25 25 .75 1.25 1.75 225 275
Estimate, 90% Confidence Interval Estimate, 90% Confidence Interval
(a) New Delhi x Post, 3 Days (b) Muslim Attack x Post, 3 Days
Dist.Coast Dist.Coast -
River - River -
@ Irrigation pot. @ lIrrigation pot.
Q2 Q2
ks ks
L cvrainfall € cvrainfall
s s
g Forest S Forest -
o o
3 3
S 4 G Petroleum|
o o
2 2
£ Diamonds - £ Diamonds -
Gems Gems o
Gold Gold
T T T T T T T T T T T
-50 50 100 150 200 -25 25 75 1.25 1.75 225 2.75
Estimate, 90% Confidence Interval Estimate, 90% Confidence Interval
(c) New Delhi x Post, 7 Days (d) Muslim Attack x Post, 7 Days

Notes: Each dot is the coefficient associated to the variables New Delhi x Post and Muslim Attack x Post from a version of
specification 8 in Table 3 that additionally controls for the variable displayed on the vertical axis interacted with the Post March 30
dummy. Panels a and b report estimates over the 3 day windows while Panels ¢ and d display estimates over the 7 day window.
Horizontal bars indicate 90% confidence intervals.
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Figure B13: Robustness: Historical Controls Interacted by Post March 30
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Notes: Each dot is the coefficient associated with the variables New Delhi x Post and Muslim Attack x Post from a version of
specification 8 in Table 3 that additionally controls for the variable displayed on the vertical axis interacted with the Post March 30
dummy. Panels a and b report estimates over the 3 day windows while Panels ¢ and d display estimates over the 7 day window.

Horizontal bars indicate 90% confidence intervals.
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Figure B14: Robustness: Colonization Controls Interacted by Post March 30
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Notes: Each dot is the coefficient associated with the variables New Delhi x Post and Muslim Attack x Post from a version of
specification 8 in Table 3 that additionally controls for the variable displayed on the vertical axis interacted with the Post March 30
dummy. Panels a and b report estimates over the 3 day windows while Panels ¢ and d display estimates over the 7 day window.
Horizontal bars indicate 90% confidence intervals.
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Figure B15: Robustness: Fractionalization Controls Interacted by Post March 30
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Horizontal bars indicate 90% confidence intervals.
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THE LONG RUN EFFECTS OF EARLIER ELIGIBILITY ON VOTING AND
MOBILISATION EFFECTS ON HOUSEHOLD MEMBERS

Abstract

Discussions on lowering the voting age are on-going in many countries. This paper studies the
short term and long term effect of earlier eligibility on voting in the context of a large North Ital-
ian municipality setting with little institutional barriers to voting. Using a regression disconti-
nuity design, we compare the voting outcomes among those just eligible and just ineligible to
vote in an election owing to age restriction rules. We show that although probability of voting

is high in the eligibility deciding election, these effects are short lived and in the long run, we do
not see any difference in voting. Heterogeneity analysis also shows that the type of election and
its salience does not have any effect on future voting. The gender of the voter also shows no dif-
ference in turnout. Finally, we show that the voting turnout of co-habiting parents of just eligible
voters are higher by around 4.7 percentage points, with no effect on co-habiting siblings. This
opens new avenues for research on the differing mobilisation of members in the same household

by newly eligible voters.



1 Introduction

Does the first voting experience of an individual matter? Why and who does it matter to?

There have been many on-going discussions across countries about lowering the voting age. Sup-
porters of the policy, often cite that lowering the eligibility will help build a habit of voting early
on (Plutzer, 2002). This is not without any base as literature does record previous voting expe-
rience increasing participation in the future. In the context of the United States, studies have
shown that turnout is greater among those that were eligible previously to vote than first time
voters (Meredith et al. (2009),Dinas (2012),Coppock and Green (2016)).

However, the context of the US is rather peculiar as the institutional barriers are relatively higher
compared to many European countries and more recent literature, in other national contexts are
actually presenting altering evidence (Jessen et al. (2021),Bhatti et al. (2016),Hernaes (2019))
challenging views that voting is habitual, transformative or persistent. Thus, lowering the voting
age to support habitual voting is not obvious and straight forward.

Despite that, lowering the voting age could actually increase turnout indirectly. A growing liter-
ature shows that children’s characteristics and attitudes can often influence their parents (Wash-
ington (2008),Glynn and Sen (2015)) ,especially but not limited to trickle up political socializa-
tion (Wong and Tseng, 2008). Dahlgaard (2018) specifically shows that, turnout is higher among
parents of newly eligible voters compared to those that are ineligible. He further shows that the
effect is visible among cohabiting parents. Thus, lowering the voting age, could ensure more co-
habiting children mobilising parents to vote.

In the midst of altering evidence, we study the long term effects of eligibility on turnout in the
context of a large municipality in Northern Italy. Our data includes voting information for all the
residents across four different elections spread over nine years, thereby, allowing a more compre-
hensive study of the long term impact of eligibility on turnout. The four different elections, cov-
ering two same day municipal/European elections and two national elections allows us to study
heterogeneity along the salience of elections and the likely impact of the type of election on fu-
ture voting turnout of newly eligible voters. We go one more step forward and also study the
likely impact of newly eligible voters on the turnout of their cohabiting siblings and parents in

the eligibility deciding election.
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To study our questions of interest, we use a neat regression discontinuity design (RDD) approach
using the eligibility, in days, with respect to the date of the election as a running variable. In
simple words, we compare the voting outcomes of those that were just eligible to vote (turned 18
right before the election) and those that were just ineligible (turned 18 right after the election).
We perform heterogeneity analysis along the type of elections and along gender. We also use the
same RDD approach with the siblings/ parents’ voting outcomes as the outcome variable and the
same running variable.

Literature: We contribute to the existing literature studying the persistent and habit forming
nature of voting. We emphasise that our study of voting habit formation is only in the context of
eligibility like (Meredith et al. (2009),Dinas (2012),Coppock and Green (2016)) and unlike (Fuji-
wara et al., 2016) who study weather shocks and their impact on voting habit formation in future
elections. Despite those differences, a major contribution we make is that we study habit forma-
tion in a long run context covering almost 9 years. In that sense, in design, our paper is closest
to (Jessen et al., 2021). However, we study it in the Italian context covering the entire popula-
tion of a municipality and thereby overcoming shortcomings of a survey data. Moreover, with
automatic voter registration, our setting involves very low institutional barriers to voting.

We also contribute to the literature that studies the effect of the type of first election on turnout
in subsequent elections (Dinas et al., 2019). (Franklin and Hobolt, 2011) has shown that becom-
ing eligible to vote during a European parliament election actually reduces turnout in future elec-
tions. In our heterogeneity analysis, we are able to study long term turnout of individuals whose
first eligible election was Municipal /European and otherwise.

Finally, we also make important contributions to the relatively new literature that studies the
effect of eligibility of individuals on their co-habiting family members (Dahlgaard, 2018). Since
our data includes all the residents of the municipality, we are able to study the effect of newly
eligible individuals on the turnout of their co-habiting siblings and parents.

To preview our results briefly, we do not find any long terms effects of earlier eligibility on vot-
ing. We do see a high probability of voting in the eligibility deciding election. However, it is
short-lived and in the downstream elections, these effects do not sustain. Robustness checks en-
sure that the estimates we calculated are consistent. Heterogeneity analysis along the type of

election shows no difference in turnout depending on the type of election an individual voted at
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initially. Gender heterogeneity analysis also do not reveal any significant differences between the
male and female voters. Interestingly, we do not find any effect of earlier eligibility of individu-
als on their co-habiting siblings. But, we do find a very strong 4.6 percentage point (p.p.) higher
turnout among co-habiting parents of newly eligible individuals. This estimate is consistent on
restricting to a stricter definition of parents and to robustness checks.

The remaining paper is organised as follows : Section 2 provides some background and details
the data. Section 3 details the empirical specification. Section 4 discusses the results. Section 5

includes robustness checks and section 6 concludes.

2 Data

Our dataset, which is at the voter level, includes all the voting eligible population of the munici-
pality of Bologna. Bologna is one of the larger municipalities of around 300,000 residents, located
in Northern Italy. The dataset covers four elections from 2004 to 2013. It includes the same day
Municipal/European elections of 2004 and 2009, as well as the National elections of 2008 and
2013. ! The turnout records were first digitised and the city of Bologna matched the turnout
data to administrative records using time-invariant voter identifiers. The data was then returned
anonymous and matched with socio-demographic information including age, gender,marital sta-
tus,birthdate, co-habiting members, neighbourhood, immigration status, position in the house-
hold as well as income. Although, studying the long term effects of earlier eligibility in the con-
text of Europe and Northern Italy in particular is interesting, it is even more interesting as it is
an environment with very low institutional barriers to voting. Although compulsory voting was
foregone in 1993, voter registration is automatic. So, any individual who was at least 18 on the
first day of polling in Bologna, was eligible to vote in the election.

Exact birthdate information, including the date, month and year of birth of all individuals helps
us precisely estimate the number of days since and to eligibility with respect to each election.

In our context, we restrict our analysis to individuals who were eligible/ineligible for up to 365
days from first day of elections. We do not go beyond 365 days as we have elections in consecu-

tive years in 2008 and 2009 and we want to avoid using the same individuals on both sides of the

T thank Dr.Enrico Cantoni for sharing the dataset.
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threshold in these years.

3 Empirical Specification

To estimate the long run effects of eligibility on voting turnout, we use a regression discontinuity
design (RDD) similar to the model in (Jessen et al., 2021). We use the same model to also study
the effect of newly eligible voters on the turnout of their cohabiting parents and siblings. As the
eligibility to vote is determined by the age of the voter on the first day of polling , we can take
advantage of this setting to compare the voting outcomes for those that turned 18 right before
and after the election.

We estimate the following sharp RDD model :

Yit, = /80 + /BlD(Xi,to > 0) + /BQDi,tO + B?)Xi,to'D(Xi,to > 0) + Qi + €ity, (1)

In the above equation, y;;, represents the voting outcome of the individual i at election ¢, where
k € {0,1,2,3} ie., we observe the voting outcome of an individual in the eligibility determining
election and three more downstream elections. The running variable, denoted by X, in our
case, is the age of individual ¢, in days, with respect to the date of the election in #.

D(X; 4, > 0) takes a value of 1 when the running variable X;;, > 0 ,representing the individuals
who are just eligible to vote and it takes the value 0 otherwise, representing those that are just
ineligible. To compute the effect of newly eligible voters on their cohabiting siblings and
parents,we use the same equation. y;, in this case, represents the voting outcome of individual
i’s cohabiting sibling/parents in ¢3. Our data includes the exact birth date, including day, month
and year of birth for all individuals, thereby allowing us to precisely estimate the days since and
away from eligibility. We use a 365 day symmetric window on both sides of the threshold and use
optimal bandwidths computed as per (Calonico et al., 2020) for our main specification. The main
coefficient of interest is 57 that captures any discontinuous jumps at the threshold. The main
specification is with a linear running variable, allowing for the slope to vary on either side of the

threshold and includes election fixed effects to capture election specific differences in salience and

2In our data, Bologna has two polling days each in all four years and a person who is atleast 18 on the first day
of polling is eligible to vote
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media attention.The estimates are computed using triangular weighting and bias corrected
standard errors.

One of the key assumptions with RDD estimation is that individuals cannot manipulate the
running variable to receive treatment. In our setting, since eligibility is determined by the date of
the election and the birthday of an individual from 18 years previous, the likelihood of any
manipulation is very low. Despite that, to ensure there is no manipulation, we test for continuity
in the density of the running variable at the threshold and the results are reported in the
appendix 6.1. Another threat to any RDD design is discontinuities in other variables at the
threshold. We check for discontinuities in other variables and report them in the appendix 6.2.
We also show that including these variables in our estimation does not change our outcomes

estimated.

4 Results

4.1 Results for long run effects of eligibility on turnout

We first estimate the effects of earlier eligibility on turnout in the eligibility defining election and
three other downstream elections. In each of the following plots, on the x- axis is the running
variable or the age of an individual in days with respect to the election date in t=0 and the
y-axis is the share of voting in the corresponding election. The following table, Table 1 also
reports the exact estimates and the bias corrected standard errors, linear trends and election

fixed effects.
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From the plots above and the table below, we can see that at t=0, there is a discontinuous jump
at the threshold and those who are just eligible to vote (those who turned 18 right before the
election) were 85.7 percentage points more likely to vote. * However, in the downstream
elections, we do not see any effect of earlier eligibility on turnout. In columns (2),(3),(4)
respectively, we estimate no statistically significant results and column (5) reports the pooled
estimate for all the downstream elections, which is very close to 0 and not statistically significant.
In our robustness checks, we show that these null effects hold even when estimated at shorter and
broader bandwidths, as well as another functional form. In short, we do not find any long term

effects of earlier eligibility on voting.

Table 1: Age and Election turnout

Election, relative to eligibility deciding election (to) (t1) (t2) (t3) (t1-3)

(1) (2) 3) (4) ®)

Estimate 0.857*** 0.042 0.037 —0.055 0.006

(0.014) (0.034) (0.041)  (0.070)  (0.026)
Observations 15624 11982 8018 5042 25042
Note: *p<0.1; **p<0.05; **p<0.01

3In 2004, we find a few observations for individuals ineligible to vote (those who would turn 18 post elections)
having voted. As, these are likely errors in the data, we drop these observations. In 2008, for the individuals who
received eligibility just before the elections (those who turned 18 right before the election), for the first few days
nobody is recorded voting. As this is only in 2008 and no rules were different for that year, we drop these observa-
tions as they are likely errors.
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4.2 Heterogeneity
4.2.1 Along the type of election

We check for heterogeneity effects along the type of election at eligibility and turnout in the
corresponding election and downstream elections. We can observe that for all four years, in the
same election,eligible individuals have almost 85 percentage points more probability in voter

turnout. Turnout is highest in 2004, however the following years, they are slowly declining.

Table 2: Heterogeneity for type of election

Election, relative to eligibility deciding election (to) (t1) (t2) (t3)

(1) 2) (3) (4)

2004 eligibility 0.889*** 0.142* 0.124 —0.055
(0.024) (0.082) (0.078) (0.070)
Observations 3617 3728 3800 5042
2008 eligibility 0.848*** 0.023 0.002
(0.033) (0.050)  (0.051)
Observations 3930 4048 4218
2009 eligibility 0.846*** 0.011
(0.027) (0.062)
Observations 4085 4206
2013 eligibility 0.850™**
(0.028)
Observations 3992
Note: *p<0.1; **p<0.05; **p<0.01

Our data, includes municipal /European election in 2004 and 2009 and the national elections in
2008 and 2013. Therefore, we can observe if turnout is higher in the future among elections
similar to the election individuals first become eligible to vote in. However, our results do not
show any such heterogeneity. Interestingly, for those who became eligible to vote in 2004, turnout
seems to be significant and higher by around 14.2 p.p. in 2008, although we do not see the same
effect persist into 2009 and 2013, nor among future turnout of voters who became eligible in

subsequent years. (Dinas et al., 2019).
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4.2.2 Along gender of voter

We also check for heterogeneity along gender. However, we do not observe any differences in
turnout in among males and females. Turnout is pretty uniform between both genders in the

election they first become eligible to vote in and in their turnout in subsequent elections.

Table 3: Heterogeneity for gender

(Male) (Female)
(1) (2)
At tp 0.856™** 0.859***
(0.019) (0.019 )
Observations 8078 7546
At t 0.004 0.080
(0.048) (0.050)
Observations 6187 5795
At to 0.068 0.002
(0.060) (0.056)
Observations 4113 3905
At t3 -0.063 -0.046
(0.1) (0.094)
Observations 2574 2468
Note: *p<0.1; **p<0.05; **p<0.01

4.3 Results for effect of first time voters on siblings and parents

Another interesting question we explore is the effect of just eligible voters on the turnout of their
co-habiting siblings and parents. Our dataset, includes all the residents of Bologna and their
”position in the household”. So we can use the household information and impute the
relationship between individuals. Below we report the results for the possible effect on
co-habiting siblings. As we can see, we do not see any significant effect of just eligible voters on
the turnout of their co-habiting siblings. We restrict the age difference between siblings for up to
15,10,5 and even just 2 years of age. However, we do not see any effect on co-habiting siblings in
the election where individuals just turn eligible.

On the other hand, with regard to parents, we do find a significant and positive effect. In column
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Table 4: Voter turnout among siblings

Age gap : 15 10 5 2
(1) (2) (3) (4)
Estimate 0.046 0.034 0.049 -0.053
(0.044)  (0.020) (0.054) (0.165)
Observations 4787 4481 2951 577
Note: *p<0.1; **p<0.05; **p<0.01

(1), we report the voter turnout of parents and partners/spouses of the parent. We can see that

voter turnout is higher by around 4.6 p.p among those whose children were just eligible to vote

in the election. In column (2) we use a more stricter approach in defining ”parent”.We exclude

individuals classified as partners or spouses of the "heads of the households” where newly eligible

individuals are classified as ”child”. Even with our stricter approach, the estimates are rather

consistent and we see a 4.7 p.p. higher probability of voting. Our robustness checks in the

following section, show that these estimates are consistent.

Table 5: Voter turnout among parents

Relation to main voters :  Parent and partner/ spouse of parent Parent
(1) (2)

Estimate 0.046** 0.047**

(0.016) (0.020 )

Observations 23832 13855

Note:

*p<0.1; **p<0.05; **p<0.01
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5 Robustness

5.1 Robustness for long term eligibility estimates

As part of our robustness checks, we perform estimations at different bandwidths and using a
different functional form. Our main specification was estimated using the optimal bandwidths as
per (Calonico et al., 2020). We plot them below along with estimates at half and double that
bandwidth. We also include a quadratic polynomial specification. Both the linear and quadratic
specifications are also estimated including controls. Controls include everything reported in the

Appendix and fixed effects for the month-of- year.
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Figure 1: Robustness - all estimates
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5.2 Robustness for effect of first time voters

We perform robustness checks also for the positive and significant turnout estimated among
parents of newly eligible individuals in the eligibility deciding election. We estimate and report
coefficients at the optimal bandwidth, half the bandwidth, double the bandwidth and for a
quadratic polynomial specification. We perform these checks for both the regular and stricter
approach to identifying as parent. As we can see, the estimates are pretty consistent across all

the specifications.
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Figure 2: Robustness- Parents
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6 Conclusion

In a North Italian large municipality setting with very low institutional barriers to voting, we
study the long term effects of earlier eligibility on voting. Using a regression discontinuity design
(RDD) we compare the present and long term voting outcomes of those who were just eligible
and just ineligible to vote at an election. Initially, we see a very high probability of voting among
individuals with earlier eligibility. However, this spike is short lived and in the following years, we
do not see any long term effect of earlier eligibility on voting.

Our heterogeneity analysis, reveals that there are no differences in turnout in the present and
future based on the type of election an individual first voted in. Our data includes two same day
Municipal/European elections and two National elections, however there are no differences owing
to these. We also show that turnout is not different between males and females.

Our most interesting result is the effect of newly eligible individuals on the turnout of their
co-habiting parents and siblings. Interestingly, we see a higher turnout of around 4.7 p.p. among
parents and no difference for co-habiting siblings. This is intriguing because within the same
household, we see a mobilising effect on some members and none on the other. This is an

opening for research to explore the different mechanisms working in the same setting.
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Appendix

6.1 Checking for manipulation in running variable
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Figure 3: Testing for manipulation in the running variable
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6.2 Balance of covariates

Table 6: Balance of covariates

RDD Estimate  Standard Error

Female 0.064 0.054
Distance -46.108 48.637
Income(raw) -6240.022 10275.325
Neighborhood : Borgo Panigale 0.001 0.028
Neighborhood : Navile -0.018 0.038
Neighborhood : Porto -0.029 0.029
Neighborhood : Reno 0.047 * 0.024
Neighborhood : San Donato 0.039 0.03
Neighborhood : San Vitale 0.024 0.035
Neighborhood : Santo Stefano -0.003 0.042
Neighborhood : Saragozza 0.008 0.032
Neighborhood : Savena -0.069 0.042
Married 0.001 0.001
Born in Emilia Romagna 0.042 0.031
Note: *p<0.1; **p<0.05; **p<0.01

6.3 Distribution of positions in households of just eligible and ineligible indi-
viduals

Table 7: Distribution of positions in households of just eligible and ineligible voters

Sl.No. Label N Share Cum
1 Head of household 131 0.84 0.84

2 Spouse 3 0.02 0.86

3 Cohabiting 141 0.90 1.76

4 Child 14701  93.83 95.58
) Stepchild 35 0.22 95.81
6 Step brother /sister 2 0.01 95.82
7 Brother/sister 65 0.41 96.23
8 Grandchild 564 3.60 99.83
9 Nephew /Niece 26 0.17  100.00
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