Efficient and low-computational predictive models for spectral sensors

Franceschelli, Leonardo (2023) Efficient and low-computational predictive models for spectral sensors, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Monitoraggio e gestione delle strutture e dell'ambiente - sehm2, 35 Ciclo. DOI 10.48676/unibo/amsdottorato/10883.
Documenti full-text disponibili:
[img] Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (5MB)

Abstract

Spectral sensors are a wide class of devices that are extremely useful for detecting essential information of the environment and materials with high degree of selectivity. Recently, they have achieved high degrees of integration and low implementation cost to be suited for fast, small, and non-invasive monitoring systems. However, the useful information is hidden in spectra and it is difficult to decode. So, mathematical algorithms are needed to infer the value of the variables of interest from the acquired data. Between the different families of predictive modeling, Principal Component Analysis and the techniques stemmed from it can provide very good performances, as well as small computational and memory requirements. For these reasons, they allow the implementation of the prediction even in embedded and autonomous devices. In this thesis, I will present 4 practical applications of these algorithms to the prediction of different variables: moisture of soil, moisture of concrete, freshness of anchovies/sardines, and concentration of gasses. In all of these cases, the workflow will be the same. Initially, an acquisition campaign was performed to acquire both spectra and the variables of interest from samples. Then these data are used as input for the creation of the prediction models, to solve both classification and regression problems. From these models, an array of calibration coefficients is derived and used for the implementation of the prediction in an embedded system. The presented results will show that this workflow was successfully applied to very different scientific fields, obtaining autonomous and non-invasive devices able to predict the value of physical parameters of choice from new spectral acquisitions.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Franceschelli, Leonardo
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Spectral sensors, Statistical analysis, Predictive models, PLSR, Machine Learning, Embedded Systems
URN:NBN
DOI
10.48676/unibo/amsdottorato/10883
Data di discussione
19 Giugno 2023
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^