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Abstract

Machine (and deep) learning technologies are more and more present in several
fields. It is undeniable that many aspects of our society are empowered by such
technologies: web searches, content filtering on social networks, recommendations
on e-commerce websites, mobile applications, etc., in addition to academic re-
search. Moreover, mobile devices and internet sites, e.g., social networks, support
the collection and sharing of information in real time. The pervasive deployment
of the aforementioned technological instruments, both hardware and software, has
led to the production of huge amounts of data. Such data has become more and
more unmanageable, posing challenges to conventional computing platforms, and
paving the way to the development and widespread use of the machine and deep
learning. Nevertheless, machine learning is not only a technology. Given a task,
machine learning is a way of proceeding (a way of thinking), and as such can be
approached from different perspectives (points of view). This, in particular, will
be the focus of this research. The entire work concentrates on machine learning,
starting from different sources of data, e.g., signals and images, applied to differ-
ent domains, e.g., Sport Science and Social History, and analyzed from different
perspectives: from a non-data scientist point of view through tools and platforms;
setting a problem stage from scratch; implementing an effective application for
classification tasks; improving user interface experience through Data Visualiza-
tion and eXtended Reality. In essence, not only in a quantitative task, not only in
a scientific environment, and not only from a data-scientist perspective, machine
(and deep) learning can do the difference.
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Chapter 1

Introduction

“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at tasks in T , as
measured by P , improves with experience E.”

Tom Mitchell [17]

The field of machine learning is concerned with the question of how to construct
computer programs that automatically improve with experience [17, 18]. A class
of machine learning computational models that have gained particular interest in
the past decade, deep learning, comprises different processing layers, which learn
data representations with multiple levels of abstraction, and an increasing num-
ber of applications employ these techniques [17, 19]. Machine and deep learning
technologies power many aspects of modern society, e.g., web searches, content
filtering on social networks, and recommendations on e-commerce websites, and
are more and more present in consumer products, e.g., cameras and smartphones.
Such technologies can identify objects in images, transcribe speech into text, match
new items, posts, or products with users’ interests, select relevant search results,
etc., to bring some examples [19].

There is no single perspective for research in the field of machine learning.
To better analyze this concept, it is possible to start from the elements present
in its definition: the task T , the experience E, and the performance measure P ;

1
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without forgetting those who interface with these algorithms, developers, domain
experts, and users. These elements are all necessary within a machine-learning
pipeline. Correctly setting a task, starting from a “good” dataset, and selecting
and developing a performing algorithmic strategy are all fundamental steps in a
machine learning approach. The work carried out for this Thesis adopts a holistic
approach as it involves, as far as possible, all the steps required in the adoption
of machine (and deep) learning in its entirety, from its different perspectives, but
always in connection with real-world and pragmatic applications.

Firstly, we considered the point of view of problem domain experts that are
non-data scientists. In fact, machine learning algorithms solve domain-specific
problems in a variety of contexts but their full benefit may be achieved when all
categories of interested parties, i.e., including domain experts, who not necessarily
be data scientists, will be empowered with their use. Following this, some recent
efforts and developments in the area of data science are moving in the direction of
making data science itself accessible to non-expert practitioners [20, 21, 22].

Secondly, we focused on a task T defined from scratch, considering all its as-
pects. The individuation of a problem, the setting of the experiment, the recruit-
ment of the participants, the data collection, and the statistical analysis. For the
specific task we addressed, we experienced the necessity of adopting classical anal-
ysis methodologies while waiting to collect enough data to apply machine learning
algorithms. Data is an integral part of any machine learning solution [23].

Third, we applied machine learning algorithms and models to specific applica-
tions and, therefore, on the experience E and the performance measure P . The
algorithms (and their architecture) are the essence of machine learning. Nowa-
days, different learning algorithms, for different applications, in different contexts,
exist [24, 25, 26, 27, 28].

Then, we concluded by considering the point of view of users, those who ef-
fectively use the developed applications. In particular, how machine learning can
improve the interface user experience through eXtended Reality. Extended Real-
ity, e.g., Augmented Reality and Mobile Augmented Reality, is transforming into a
technology that may be available in a variety of contexts, expanding from an only
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academic or highly specialized technology to an everyday one [29, 30, 31, 32, 33].
The following is a detailed overview of the research presented in this Thesis, in

addition to its structure. Importantly, in each Chapter, an additional and specific
Introduction, along with Related Works and Contributions is reported.

Chapter 2 In this Chapter, machine learning is focused on and analyzed from a
non-data scientist point of view. The focus is to verify how it is possible, without
any specific customization, to employ machine learning algorithms provided by
different publicly accessible tools and platforms (namely, Weka, Orange, Ludwig,
and Knime), to solve a classification problem obtaining significant results and per-
formance that would have been deemed remarkable until not long ago. Finally,
we discuss the possible issues and opportunities posed by such an approach, in-
cluding an additional comparison considering a programming language (namely
Python). To do this, we set in the Sports Science area, considering a Human Ac-
tivity Recognition classification task: to recognize if a unilateral dumbbell bicep
curl (a weightlifting exercise) is performed correctly or not, considering the four
most common mistakes (for a total of five possible classes).

Chapter 3 In this Chapter, the stage for a machine learning task was set from
scratch. In particular, the stage set in the present work wants to explore the
distinctive contribution of motor planning and control to Human Reaching Move-
ments in the Psychological field, considering the selection/inhibition of a prepotent
response. To do this a portable and low-cost 3-axis wrist-worn accelerometer was
utilized to collect raw acceleration data as a starting point for successive kinemat-
ics analysis regarding the Reaction Time, Movement Duration, and Time to Peak
Velocity of the examined movements.

Chapter 4 In this Chapter, the research started from a collection of vernacular
images (the IMAGO collection), belonging to Family Photo Albums, and focused
on the effective application of machine learning models, i.e., Convolutional Neural
Network and Vision Transformed-based ones, considering different classification
tasks, i.e., the dating and the socio-historical context classification, of an image.
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This is to present the design and implementation of a multimedia application that,
resorting to deep learning models, could assist socio-historians in their cataloging
work. Then, always considering these Socio-Historical aspects in the Cultural
Heritage environment, we study the relations between quantitative methods and
qualitative analyses, including both their potentials and limits. Again, exploiting
cross-dataset experiments, we aim to show how deep learning models could reveal
their resources, not only in terms of their performance but also in terms of their
possible applications to intercultural research.

Chapter 5 In this Chapter, the usage of machine learning to improve user in-
terface experience was explored, through Data Visualization, Virtual and (Mobile)
Augmented Reality. Three different (Mobile) Augmented Reality applications and
systems in different contexts are proposed and presented in detail. From Cultural
Heritage through Family Photo Albums with a Collaborative Photo Environment
system, to the Wine Domain with an Augmented Wine Recognition system, pass-
ing from an Artisan Work environment like the locksmith one with a Mobile Key
Recognition application proposal. In these applications/systems, different compo-
nents were implemented and/or exploited, among these Optical Character Recog-
nition modules, database structures, search algorithms, machine learning models,
and client-server paradigms, in addition to eXtended Reality guided interfaces.

Chapter 6 In this Chapter, a discussion regarding the entire work is reported,
with a view to possible future works.



Chapter 2

Machine learning from a non-data

scientist point of view

Considering a Human Activity Recognition task in the Sport Science area

2.1 Introduction

Data science has become more and more powerful as the development of algo-
rithms and computing power has made huge progress. In addition, machine learn-
ing is nowadays integrated into many areas of everyday life, and this often happens
without the end users understanding or even noticing it [18, 19, 24, 25, 34, 35].
However, to harness their full potential, the great majority of tools that are today
available to this end require expert data scientists to guarantee the application of
the most appropriate algorithms to the context of use [36, 37]. In fact, researchers
have used (and continue to use) machine learning algorithms to solve domain-
specific problems in a variety of contexts. Nevertheless, the maximum benefit of
applying such technologies for the social good may be achieved only when, also
non-specialist data scientists will be empowered with their use, capable of under-
standing and interacting with data, and such a goal may be obtained as intuitive
data-human tools and interfaces will be widely available. Some recent efforts and
developments in the area of data science are moving in the direction of making

5
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data science itself accessible to non-expert practitioners [20, 38, 21, 22]. For sev-
eral years researchers have tried to lower the barrier of machine learning through
the creation of new systems [39, 40, 41, 42], and now times have perhaps become
mature.

This project takes a step along this path. In fact, in this work, we do not want
to address data science only in the “classical” way. Focusing on such perspective,
we started exploring the data-human connection that may be possible to establish
utilizing available tools, with little or no background knowledge of how a data
science pipeline works. To this aim, we picked an exemplar scenario, and off-
the-shelf machine learning algorithms are put to good use to obtain meaningful
results in the field of qualitative activity recognition. To know that qualitative
activity recognition studies aim at determining the quality of execution of a given
movement, rather than recognizing the movement itself (which may have been
implemented at an earlier stage of the process or simply be known a priori). With
this information in hand, it would be possible to give (real-time) feedback on
the quality of the movement that has been performed, information that is key in
many different domains [43, 44, 45, 46]: Human Activity Recognition (HAR) has
emerged as a key research area in the last years and is gaining increasing attention
by the pervasive computing research community [47]. To pursue such an aim, we
started from an existing qualitative activity recognition dataset, containing raw
data and computed parameters obtained from Inertial Measurement Units (IMUs),
and in the past analyzed utilizing feature selection techniques and custom machine
learning paradigms [15]. The IMUs were attached to athletes while performing a
weightlifting exercise with dumbbells. The focus of the researchers that created
and first studied such a dataset was to devise a machine learning model capable of
identifying the correct way of lifting dumbbells, as well as four typical mistakes.
To this end, they exploited a feature selection approach and a custom model for
the classification of weightlifting movements.

In this project, however, we verify how it is possible, without any specific cus-
tomization, i.e., without changing the default settings and/or performing any type
of feature selection, to employ machine learning algorithms, provided by differ-
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ent publicly accessible platforms (namely, Weka, Orange, Ludwig, and Knime), to
solve a classification problem obtaining significant results and performance that
would have been deemed remarkable until not long ago. Nevertheless, since not all
of the utilized platforms and algorithms have led to satisfactory results, we finally
discuss the possible issues and opportunities posed by such an approach, including
an additional comparison considering a programming language (Python). More in
detail, we considered a few of the most prominent simplified data-human interface
machine learning platforms, devised to be used by non-expert users:

• Weka, “Waikato Environment for Knowledge Analysis”, developed at the
University of Waikato in New Zealand since 1993 [48];

• Orange, developed at the University of Ljubljana since 1996 [49];

• Ludwig, a deep learning software released in early 2019 by Uber [50];

• Knime, initially developed at the University of Konstanz, which specializes
in pharmaceutical applications [51].

In addition, this work refers to the respective publications [1, 2], including a tax-
onomy of the considered learning platforms to aid the non-expert user with a map
of the strengths and weaknesses of such tools.

The remainder of this Chapter is organized as follows. In Section 2.2 the most
relevant literature for this work, including data-human interfaces (Section 2.2.1)
and activity recognition (Section 2.2.2), is reviewed. In Section 2.3 the main contri-
butions are highlighted. Section 2.5 introduces the platforms and the programming
language that have been here employed as user-data interfaces presents the models
considered for the experiments, and shows the results obtained with the different
approaches. Section 2.6 reports a discussion to summarize the findings and draw
conclusions.
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2.2 Related works

The importance of granting the opportunity of profitably utilizing machine
learning algorithms to all is gaining thrust, as witnessed by the increasing number
of works that are appearing in the literature on this theme. In this Section, we
review a sample of the most relevant scientific works concerned with the importance
of easy-to-use data-human interfaces, in Section 2.2.1, as well as a few of those
related to the domain of Human Activity Recognition (HAR), in Section 2.2.2.

2.2.1 Data-human interfaces

The ever-increasing amount of collected data, in several different domains, is
leading many non-experts in data science to face the problem of diagnosing and
solving problems with the use of machine learning [26, 52, 53, 54, 55, 56, 27, 57]. To
support such needs, the research community has studied and developed platforms
that aim at easing the use of the existing models and algorithms by non-experts.
In the following, we present three different contributions and alternatives to those
exploited in this project, where the problem of empowering non-data scientists
with adequate data analysis tools has been considered.

In particular, Patel et al. [58] firstly discussed the difficulties of applying ma-
chine learning algorithms for non-data scientists, pointing out the need for tools
that could let a wider community of developers effectively use them. Secondly,
they worked on tools that could lower the applicability barrier of such algorithms.
To pursue a such objective, the author created Gestalt, a prototype integrated
development environment. Gestalt provides explicit support for connecting the
principal steps in a pipeline of a machine learning algorithm and an interactive
graphical interface through which developers can quickly sort and filter examples
to drill down into the data they need.

Again, analyzing situations in which non-expert practitioners may use machine
learning algorithms, Yang et al. [59] investigated how a such set of users build ma-
chine learning solutions along with the problem they encounter. The authors con-
cluded that, even though it is challenging, a machine learning tool for non-experts
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should be both easy to use and robust. To advance on this insight, the authors
discussed design implications and created a sensitizing concept to demonstrate
how designers might guide non-experts to easily build robust solutions.

Finally, Chen et al. [60] focused on studying how visualization could improve
learning machines in order to be more accessible to more users, as it happens in
many complex data-oriented domains. In detail, they employed a visual interface
to engage practitioners in a design exercise that explored how they would carry
out multi-step diagnosis.

Several studies have tried, hence, to simplify the language of data science by
linking it to visual metaphors to facilitate the interaction model between humans
and data. Unlike the works here discussed, the present contribution considers
different visual and non-visual programming approaches, aiming at showing where
critical issues may emerge in the process of approaching data science with off-the-
shelf solutions. Considering a real-world scenario, we exhibit the potentials and
limits that may arise when employing a specific set of machine learning algorithms
with the individuated platforms.

2.2.2 Human activity recognition

HAR is an emerging field of research in pervasive computing and human-
computer interaction, due to the enormous improvement of sensor technologies
and the constantly increasing computing power. It aims at recognizing human
activity based on the data obtained from different sensor sources, such as video
cameras, wearable sensors (e.g., accelerometer, magnetometer, gyroscope) or ambi-
ent sensors (e.g., radar, sound sensors, pressure sensors, temperature sensors) [61].
Many works have so far explored this approach, utilizing both supervised and un-
supervised learning methodologies [15, 1, 27, 62, 63, 64, 65, 66, 67, 68]. HAR has
already become part of our everyday life when we think, for instance, of smart-
phones or smartwatches that are capable of detecting basic activity states with
the help of a simple built-in accelerometer [62, 69, 70]. The application areas of
HAR are manifold, including the recognition of daily life activities [71, 72, 73],
the assessment of skill and performance in sports [15, 74, 75, 76], the monitor-
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ing of long-term health conditions for disease diagnostics [77, 78, 26, 52, 79], and
training of personnel in industrial and maintenance processes [80, 81, 44]. Several
researches have focused on a qualitative assessment of human activities. The works
in this area are more concerned with how an activity is performed, rather than
with which that activity was performed.

In [76], for instance, Ladha et al. developed the skill assessment platform
ClimbAX for climbing using tri-axial accelerometers. Analyzing the acceleration
patterns of competitive climbers, they were able to find a correlation between the
sensor-data predicted scores, based on performance attributes derived from the
raw acceleration data, and the competition scores.

In [82], Khan et al. proposed a generalized skill assessment framework using a
hierarchical and stochastic rule induction method. The framework was tested in
the context of surgical skill assessment of medical students.

In [15], instead, Velloso et al. investigated the feasibility of automatically as-
sessing the quality of the execution of weightlifting exercises. In particular, four
Inertial Measurement Units (IMUs) were used to track the motion of a unilateral
dumbbell biceps curl. The participants were asked to perform biceps curl repeti-
tions in five different ways (5 different classes): one correctly and four incorrectly,
according to the most ways common mistakes. Then, the gathered data were used
as a training dataset for a machine learning algorithm: a 10-fold Random Forest.
In the first step, the authors processed the raw data, computing derived features
per each, in correspondence to each curl movement, for a total of 96. In a second
step, utilizing a correlation-based feature selection algorithm, they determined the
17 most relevant features necessary to describe each curl repetition.

Concluding, in this work, a different approach has been adopted compared to
the works discussed in this Section, building on the raw dataset published in [15].
Taking a non-expert data scientist’s perspective, only raw data is used. In fact,
unlike the previously discussed approach, no further analysis of the dataset and
no feature selection algorithm have been implemented. Such an approach brought
us to consider all the available sensor data as provided, i.e., the raw data was
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not grouped/analyzed in correspondence with each curl movement and no feature
selection algorithm was employed. In other words, the sensor data has been con-
sidered as it is, and such a dataset has been simply manipulated and employed
without requiring specific data science expertise.

2.3 Contributions

The main contribution of this project amounts: (i) to show how, without the
need for any specific training in data analysis, existing and newly released data
science platforms may now be put to good use to obtain interesting results; (ii)
to notice that such results are comparable to those obtained in past studies [15],
where custom-designed algorithms were instead engineered for the same purpose.
A situation that is possible also thanks to the increasing availability of computing
resources supporting the use of raw datasets as a whole. This is simply done by
putting such interfaces to good use, without changing the default model settings
and/or performing any type of feature selection. As a final term of comparison,
we also exploited the use of the deep learning libraries provided by an interpreted
programming language, namely Python [83].

In summary, this research provides: (a) an assessment and comparison of the
results obtainable by non-data scientists when resorting to easy-to-use, off-the-
shelf, visual and non-visual-based data science platforms applied to a specific and
well-investigated problem; (b) the verification of the possible pitfalls a non-data
scientist could fall on with the use of the considered platforms (i.e., Weka, Orange,
Ludwig, and Knime); (c) a final analysis of the chosen dataset, which serves as a
further term of comparison, based on the use of mainstream Python-based learning
libraries.

2.4 Dataset

This project is based on the dataset provided by Velloso et al. [15]. As afore-
mentioned, the dataset contains the raw Inertial Measurement Units (IMUs) data
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Figure 2.1: IMUs setup by Velloso et al. [15].

of all participants, the extracted features, and the specification related to “how”
the bicep curl is performed: the target feature classe. In addition, information
such as the participants’ names is reported, for a total of 158 features (excluding
the target one).

More in detail, four IMUs were used to track the motion of a unilateral dumb-
bell biceps curl (a scheme is reported in Fig. 2.1). The participants were asked to
perform one set of 10 repetitions of the biceps curl in five different ways: correctly
(classe value A) and incorrectly, according to four different but ways common
mistakes (classe values B, C, D, E, respectively). Then, the authors processed the
raw data, sampled at 45 Hz, provided by the 4 sensors, computing 8 features per
each, in correspondence to each curl movement: mean, variance, standard devia-
tion, max, min, amplitude, kurtosis and skewness, generating in total 96 derived
features. Considering the csv formatted file, this consists of a row for the features
description, 39, 242 rows for raw data, and 159 columns.

In contrast to [15], who used a sliding window approach [84] to generate their
feature set, in the proposed method the user is placed in front of the raw data
and no features selection algorithm is used. The only step that is taken, when
processing the original dataset, was to ignore all extracted features and information
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that did not directly originate from the sensors, such as information about the
participants (e.g., participants’ names). Important to note that this operation can
also be performed without the need for any data science-specific tool (e.g., with a
program like Excel). Consequently, only the raw Euler angles (i.e., roll, pitch, and
yaw), the raw data provided by the accelerometer, gyroscope, and magnetometer,
and the total acceleration were used as inputs. This results in a total of 52 input
features:

4IMUs · (3EulerAngles+ (3Sensors · 3Axis) + Acctotal) = 52.

Then, the same procedure was repeated using only the Euler angles and the total
acceleration as inputs, resulting in a total of 16 input features:

4IMUs · (3EulerAngles+ Acctotal) = 16.

Such a feature set was identified to contrast it with one of the comparable di-
mensions, but different variables, employed in [15]. For both settings, the target
feature is the feature classe. The label A corresponds to the correctly executed
movements, while the other labels B, C, D, and E correspond to different classes
of incorrectly executed movements.

2.5 Methods and experiments

Following the purpose of this work, in order to portray the results a classifier
achieves, before getting to show the learning platforms and methods used, a few
of the most common quantities which are used in literature for such aim are here
reported. In particular, considering the different rates of True Positive (TP),
False Positive (FP), True Negative (TN), and False Negative (FN), the following
different quantities can be computed.

Precision The proportion of positive identifications that were actually correct;

precision =
TP

TP + FP
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Recall The proportion of actual positives that were identified correctly;

recall =
TP

TP + FN

Accuracy The ratio of the number of correct identification to the total number
of input samples;

accuracy =
TP + TN

TP + FP + TN + FN

F1 score A function of precision and recall, in particular:

F1 = 2 ∗ precision ∗ recall
precision+ recall

F1 score might be a better measure to use than accuracy in order to seek a balance
between precision and recall, and there is an uneven class distribution.

ROC curve and AUC The Receiver Operating Characteristic curve (ROC
curve) is a graph showing the performance of a classification model at all classi-
fication thresholds. This curve plots two parameters: True Positive Rate (TPR)
and False Positive Rate (FPR), where:

TPR =
TP

TP + FN
FPR =

FP

FP + TN

AUC, instead, measures the entire two-dimensional area underneath the entire
ROC curve from (0, 0) to (1, 1), and ranges in value from 0 to 1. A possible
interpretation of AUC is the probability that the model ranks a random positive
sample more highly than a random negative sample.

The aforementioned metrics are effectively used in data science environments,
however, require a mathematical background, which exceeds the one simply nec-
essary to distinguish a TP from a TN (as well as FP and FN). Then, we decided
to compute the Confusion Matrix : characterized by an interesting visual impact,
as it is not summarized by a scalar numeric figure but to a bi-dimensional matrix.
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Confusion matrix The confusion matrix, or error matrix, is a matrix where
each row represents the actual values, i.e., the real values, while each column
represents the predicted ones. The element on row i and on column j represents
the number of cases in which class i has been classified as class j. In this work,
in particular, after having computed the confusion matrix, the element (i, j) has
been divided by the total number of actual elements of the class related to the row
i and multiplied by 100, in order to obtain percentage values and results that may
be simpler to interpret. Next to the rows and columns of each confusion matrix,
we will then report the number of actual and predicted elements, respectively,
belonging to the different classes. From now on we will refer to this matrix as
confusion matrix - proportion of actual.

In the following, we discuss the results obtained by exploiting a Random Forest,
other ensemble models, and a neural network with Weka, Orange, Knime, and
Python. With Ludwig, we employ its default Encoder-Decoder neural network.
In addition, for the specific case of neural networks, we also provide a succinct
analysis concerning the parameter values adopted within the learning platforms
and the Python libraries.

2.5.1 Weka

The Weka platform, “Waikato Environment for Knowledge Analysis”, repre-
sents a graphical interface to open source machine learning software. In particu-
lar, Weka supports several standard data mining tasks such as data preprocessing,
clustering, classification, regression, visualization, and feature selection. Contain-
ing a plethora of built-in tools for standard machine learning tasks, it is widely
used for teaching, research, and industrial applications.

Models Within this contribution, Weka was employed to use models which fall
under the neural network and ensemble model classes. In particular, the default
Multi Layer Perceptron (MLP), Random Forest, and Bagging models were built to
analyze the aforementioned dataset (Fig. 2.2) [85, 57]. Using this platform, only
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Figure 2.2: Models in Weka.

the configuration related to the size of the training set was changed concerning
the default values and, in particular, was set to the 66% of the entire dataset (the
default value takes into account a cross-validation option).

Hardware setup and results The training of the models in Weka was per-
formed with a laptop with: (a) RAM: 12GB; (b) Processor: Intel(R) Core(TM)
i7-7500U CPU 2.70GHz-2.90GHz; (c) System: Windows 10 Home (64-Bit).

When 52 input features were considered, 457 s were required to train the mod-
els, while with 16 input features this step took 97 s. The confusion matrices -
proportion of actual for MLP, Random Forest, and Bagging in both settings are
shown in Table 2.1.

Discussion With Random Forest and Bagging it is possible to observe excellent
results both considering 52 and 16 input features. With MLP excellent results can
be observed considering 52 input features, whereas a substantial increase in the
error rate is observed with 16 input features.
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Multi Layer Perceptron - 52 features

predicted

ac
tu

al

A B C D E sum

A 98.70% 0.50% 0.11% 0.48% 0.21% 3,776

B 1.94% 95.61% 1.75% 0.39% 0.31% 2,572

C 0.39% 3.93% 93.30% 1.73% 0.65% 2,314

D 0.27% 0.18% 3.52% 95.56% 0.46% 2,185

E 0.12% 0.44% 0.64% 0.40% 98.40% 2,495

sum 3,795 2,584 2,301 2,166 2,496 13,342

Multi Layer Perceptron - 16 features

predicted

ac
tu

al

A B C D E sum

A 89.96% 2.67% 2.99% 3.97% 0.40% 3,776

B 12.33% 61.39% 13.41% 7.70% 5.17% 2,572

C 2.77% 10.20% 75.50% 9.29% 2.25% 2,314

D 1.42% 3.43% 9.61% 84.53% 1.01% 2,185

E 2.40% 5.17% 7.78% 4.85% 79.80% 2,495

sum 3,869 2,120 2,609 2,531 2,213 13,342

Random Forest - 52 features

predicted

ac
tu

al

A B C D E sum

A 99.97% 0.03% 0.00% 0.00% 0.00% 3,776

B 0.12% 99.88% 0.00% 0.00% 0.00% 2,572

C 0.00% 0.00% 99.96% 0.04% 0.00% 2,314

D 0.00% 0.00% 0.37% 99.59% 0.05% 2,185

E 0.00% 0.00% 0.00% 0.04% 99.96% 2,495

sum 3,788 2,570 2,321 2,178 2,495 13,342

Random Forest - 16 features

predicted
ac

tu
al

A B C D E sum

A 99.95% 0.03% 0.00% 0.00% 0.03% 3,776

B 0.08% 99.57% 0.31% 0.04% 0.00% 2,572

C 0.00% 0.26% 99.35% 0.39% 0.00% 2,314

D 0.05% 0.00% 0.09% 99.82% 0.05% 2,185

E 0.00% 0.04% 0.08% 0.00% 99.88% 2,495

sum 3,777 2,569 2,311 2,191 2,494 13,342

Bagging - 52 features

predicted

ac
tu

al

A B C D E sum

A 99.71% 0.08% 0.16% 0.00% 0.05% 3,776

B 0.70% 98.41% 0.51% 0.27% 0.12% 2,572

C 0.13% 0.13% 99.22% 0.52% 0.00% 2,314

D 0.09% 0.41% 1.37% 99.08% 0.05% 2,185

E 0.00% 0.20% 0.24% 0.24% 99.32% 2,495

sum 3788 2,551 2,351 2,168 2,484 13,342

Bagging - 16 features

predicted

ac
tu

al

A B C D E sum

A 99.07% 0.69% 0.00% 0.21% 0.03% 3,776

B 1.09% 99.97% 1.40% 0.31% 0.23% 2,572

C 0.17% 1.08% 98.23% 0.43% 0.09% 2,314

D 0.14% 0.37% 0.96% 98.44% 0.09% 2,185

E 0.16% 0.92% 0.48% 0.24% 98.20% 2,495

sum 3,780 2,576 2,342 2,183 2461 13,342

Table 2.1: Confusion matrices - proportion of actual respect to MLP, Random
Forest, and Bagging with Weka, using 66% of the dataset as training data.
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Figure 2.3: Models in Orange.

2.5.2 Orange

Orange is an open-source data visualization, machine learning, and data mining
toolkit. In Orange, data analysis is done by stacking components, called widgets,
into workflows: there is a large library of widgets and these components communi-
cate with each other in the built models. Combining different widgets enables you
to build comprehensive data analysis models as you want, and using the Orange
interactive graphical user interface, complex data analytics pipelines can be built
focusing on the data analysis part, rather than coding. These characteristics make
Orange a useful tool for users with little or no coding experience and knowledge
of data science in general.

Models In Orange, the data analysis has been performed resorting to default
Neural Network, Random Forest, and AdaBoost models [86, 87]. Fig. 2.3 shows
the visual representation of the data analysis pipeline constructed.
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Neural Network - 52 features

predicted

ac
tu

al

A B C D E sum

A 99.83% 0.14% 0.01% 0.01% 0.01% 37,940

B 0.18% 99.59% 0.16% 0.02% 0.06% 25,820

C 0.01% 0.25% 99.27% 0.44% 0.02% 23270

D 0.03% 0.00% 0.51% 99.22% 0.23% 21,870

E 0.00% 0.05% 0.05% 0.17% 99.72% 24,530

sum 37,931 25,839 23,269 21,855 24,536 133,430

Neural Network - 16 features

predicted

ac
tu

al

A B C D E sum

A 98.04% 0.96% 0.46% 0.39% 0.15% 37,940

B 2.65% 91.20% 3.90% 1.03% 1.21% 25,820

C 0.58% 3.87% 90.41% 4.20% 0.94% 23,270

D 0.54% 0.81% 4.78% 92.63% 1.23% 21,870

E 0.25% 1.03% 1.87% 2.52% 94.33% 24,530

sum 38,195 25,243 23,725 22,271 23,996 133,430

Random Forest - 52 features

predicted

ac
tu

al

A B C D E sum

A 99.94% 0.04% 0.01% 0.01% 0.01% 37,940

B 0.41% 99.38% 0.17% 0.01% 0.02% 25,820

C 0.01% 0.50% 99.30% 0.19% 0.00% 23,270

D 0.01% 0.01% 0.81% 99.09% 0.08% 21,870

E 0.00% 0.04% 0.04% 0.20% 99.73% 24,530

sum 38,028 25,802 23,343 21,768 24,489 133,430

Random Forest - 16 features

predicted
ac

tu
al

A B C D E sum

A 99.78% 0.12% 0.05% 0.02% 0.03% 37,940

B 0.62% 98.30% 0.93% 0.09% 0.07% 25,820

C 0.06% 0.57% 98.76% 0.59% 0.02% 23,270

D 0.02% 0.06% 0.50% 99.32% 0.09% 21,870

E 0.05% 0.13% 0.24% 0.19% 99.39% 24,530

sum 38,044 25,607 23,408 21,938 24,433 133,430

AdaBoost - 52 features

predicted

ac
tu

al

A B C D E sum

A 98.61% 0.81% 0.20% 0.24% 0.14% 37,940

B 1.32% 96.17% 1.36% 0.57% 0.59% 25,820

C 0.35% 1.26% 96.71% 1.24% 0.43% 23,270

D 0.43% 0.54% 1.34% 97.17% 0.51% 21,870

E 0.13% 0.74% 0.62% 0.60% 97.91% 24,530

sum 37,965 25,729 23,378 21,923 24,435 133,430

AdaBoost - 16 features

predicted

ac
tu

al

A B C D E sum

A 98.64% 0.81% 0.17% 0.18% 0.20% 37,940

B 1.18% 95.91% 1.53% 0.72% 0.66% 25,820

C 0.24% 1.54% 96.84% 0.98% 0.40% 23,270

D 0.36% 0.77% 0.98% 97.45% 0.44% 21,870

E 0.18% 0.92% 0.44% 0.61% 97.85% 24,530

sum 37,905 25,823 23,316 21,947 24,439 133,430

Table 2.2: Confusion matrices - proportion of actual respect to Neural Network,
Random Forest, and AdaBoost with Orange, using 66% of the dataset as training
data and 10 repetitions of train/test.
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Hardware setup and results The training of the models in Orange was per-
formed with a laptop with: (a) RAM: 16GB; (b) Processor: Intel(R) Core(TM)
i7-8550U CPU @ 1.80GHz, 1992 Mhz, 4 Core(s), 8 Logical Processor(s); (c) Sys-
tem: Microsoft Windows 10 Home.

The first run with 52 input features took 244 s to train the models using 66%

of the dataset, and 10 repetitions of train/test. In the second run with 16 input
features, and the same settings, 220 s were required. The confusion matrices -
proportion of actual for Neural Network, Random Forest, and AdaBoost in both
settings are shown in Table 2.2.

Discussion Neural Network and Random Forest both showed optimal reliabil-
ity when the 52 input features were used. Also, AdaBoost performed very well,
thus showing a higher error rate. Interestingly, the confusion matrix - proportion
of actual of Random Forest and AdaBoost remained almost unchanged as 16 in-
put features were used, while the Neural Network error rate increased by almost
ten percentage points. This means that Random Forest proved to be the robust
algorithm when handling the considered raw data.

2.5.3 Ludwig

Ludwig is an open-source deep learning toolbox whose models are characterized
by a versatile and flexible Encoder-Decoder architecture: it is possible to use the
default model, without setting any parameters or creating a personalized model
changing these default parameter values. Furthermore, it is possible to train the
model by providing just a tabular file, a csv-formatted file, containing the data,
and a configuration file, a yaml-format file, which defines which columns of the
tabular file are input and which are target features. The configuration file also
defines the type of features to be used in the model. At the moment of this
project, Ludwig contained Encoder-Decoder architecture for features with values
enable to the following types: text, numerical, binary, category, set, sequence,
image, time series, and bag. With the described characteristics, Ludwig can help
users who do not have specific knowledge in coding and/or in data sciences in
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Figure 2.4: Model in Ludwig.

general to apply deep learning algorithms. Nevertheless, differently from Orange,
there is no graphical user interface.

Models In Ludwig the default Encoder-Decoder model has been built: no pa-
rameter has been set by the user [88]. The original csv-formatted data file was
therefore considered and, in relation to this, the yaml-formatted file, containing
the information related to the features, was built. In the task under analysis,
considering the feature types available in Ludwig, all the input features are nu-
merical, while the target feature is categorical (Fig. 2.4). The dataset containing
39, 242 rows of raw data was divided as follows in training, validation, and test
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Encoder-Decoder - 52 features

predicted

ac
tu

al

A B C D E sum

A 86.11% 2.01% 7.68% 3.22% 0.98% 2,239

B 12.83% 59.72% 13.56% 2.05% 11.84% 1,512

C 6.54% 6.99% 78.66% 0.90% 6.91% 1,331

D 7.54% 4.20% 23.31% 50.04% 14.92% 1,287

E 5.39% 12.54% 8.82% 3.71% 69.54% 1,428

sum 2,383 1,274 1,478 1,850 812 7,797

Encoder-Decoder - 16 features

predicted

ac
tu

al

A B C D E sum

A 72.58% 8.04% 6.07% 9.02% 4.29% 2239

B 22.35% 36.24% 15.34% 10.05% 16.01% 1512

C 27.72% 7.74% 50.04% 7.44% 7.06% 1331

D 14.30% 13.52% 18.73% 44.44% 9.01% 1287

E 13.17% 29.06% 19.26% 14.57% 23.95% 1428

sum 2,704 1,420 890 1,550 1,233 7,797

Table 2.3: Confusion matrices - proportion of actual respect to Ludwig Encoder-
Decoder, using approximately 70% of the dataset as training data, 10% as valida-
tion, and 20% as test.

set: 27, 5884 rows for training, 3, 857 rows for validation, and the 7, 797 remaining
rows for the test set. Considering the aim of this work, it is important to specify
that this data split was made by default by the model, no indication of how to
divide the data into the different sets was provided by the user.

Hardware setup and results The training of the model in Ludwig was per-
formed with a laptop with: (a) RAM: 12GB; (b) Processor: Intel(R) Core(TM)
i7-7500U CPU 2.70GHz-2.90GHz; (c) System: Windows 10 Home (64-Bit).

For the first run with 52 input features, it took 172 s to train the model with
70% of the dataset and with 55 epochs. Important to note that the default value
for the epochs number is 100, but after 5 epochs since the last validation accuracy
improvement an early stopping occurs, as happened in this case, in which the best
value of accuracy on the validation set is at epoch 50. For the second run with 16

input features, it took 228 s to train the model with 70% of the dataset and with
100 epochs. In Table 2.3 the confusion matrices - proportion of actual obtained
from these tests are shown.
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Discussion Interesting results have been obtained with Ludwig. Although per-
centage values are lower than those obtained with Weka and Orange, the results
reveal to be promising, when focusing the attention on the class of correct move-
ments (i.e., class A). The results obtained utilizing 52 input features are significant,
especially considering that in many applications it is sufficient to correctly distin-
guish “correct” from “incorrect” movements. The percentage of times a correct
movement (i.e., class A) is detected then decreases when using 16, instead of 52
input features, as shown in Table 2.3.

2.5.4 Knime

Knime, in particular the Knime Analytics Platform, is an open-source software
for creating data science models. Knime attempts to make understanding data and
designing data science workflows and reusable components accessible to everyone
users open, and continuously integrating new developments. With this platform, it
is possible to create visual data science workflows with an intuitive, drag-and-drop
style graphical interface, and without the need for coding. To build a data science
workflow over 2, 000 nodes are available and there is the possibility to model each
step of the analysis to control the flow of data. Therefore, like Orange, Knime is
characterized by an interactive graphical user interface.

Models In Knime we adopted the same models used in Orange or, when this
was not possible, models that belonged to the same class (e.g., AdaBoost and
Boosting both belong to the ensemble model class). Therefore, the default Multi
Layer Perceptron (MLP), Random Forest and Boosting models have been used to
analyze the dataset [89]. The only configuration of the Knime nodes that have been
changed, concerning the default values, is the size of the training set, which was
set to 66%, while the default value would have been 10% of the entire dataset. The
visual representation of the final data science workflow constructed with Knime is
shown in Fig. 2.5.
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Figure 2.5: Models in Knime.

Hardware setup and results The training of the models in Knime was per-
formed with a laptop with: (a) RAM: 12GB; (b) Processor: Intel(R) Core(TM)
i7-7500U CPU 2.70GHz-2.90GHz; (c) System: Windows 10 Home (64-Bit).

When using 52 input features, the training took 83 s, whereas with 16 input
features the time required was 32 s. The confusion matrices - proportion of actual
for MLP, Random Forest, and Boosting in both settings are shown in Table 2.4.

Discussion With the Random Forest algorithm, the obtained results are very
similar to those obtained with the Random Forest built in Weka and Orange, for
both the 52 and the 16 input features settings. Boosting and MLP were not as
successful, instead, in fact, a closer look at the default parameter values reveals
that these may not be suitable for the considered classification problem. As shown
in Table 2.7 (end of Section 2.5), the main default parameters values for the MLP
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Multi Layer Perceptron - 52 features

predicted

ac
tu

al

A B C D E sum

A 68.28% 6.97% 9.24% 10.64% 4.88% 3,789

B 11.73% 37.31% 13.68% 11.38% 25.89% 2,565

C 18.78% 20.51% 44.05% 12.03% 4.63% 2,311

D 13.41% 8.08% 27.86% 27.45% 23.21% 2,215

E 8.08% 20.71% 21.77% 15.31% 34.12% 2,462

sum 3,818 2,384 2,872 1,958 2,310 13,342

Multi Layer Perceptron - 16 features

predicted

ac
tu

al

A B C D E sum

A 77.82% 7.46% 8.44% 3.39% 2.89% 3,778

B 18.71% 45.82% 15.61% 8.55% 11.31% 2,608

C 13.22% 13.61% 56.35% 10.82% 6.01% 2,330

D 6.38% 16.98% 22.95% 31.69% 22.00% 2,209

E 4.63% 21.10% 19.32% 9.52% 45.43% 2,417

sum 3,989 2,679 3,013 1,533 2,128 13,342

Random Forest - 52 features

predicted

ac
tu

al

A B C D E sum

A 99.97% 0.00% 0.00% 0.00% 0.03% 3,789

B 0.16% 99.81% 0.04% 0.00% 0.00% 2,565

C 0.00% 0.22% 99.61% 0.17% 0.00% 2,311

D 0.00% 0.00% 0.32% 99.50% 0.18% 2,215

E 0.00% 0.00% 0.00% 0.20% 99.80% 2,462

sum 3,792 2,565 2,310 2,213 2,462 13,342

Random Forest - 16 features

predicted
ac

tu
al

A B C D E sum

A 99.87% 0.13% 0.00% 0.00% 0.00% 3,778

B 0.08% 99.50% 0.42% 0.00% 0.00% 2,608

C 0.04% 0.17% 99.44% 0.34% 0.00% 2,330

D 0.00% 0.00% 0.32% 99.64% 0.05% 2,209

E 0.00% 0.04% 0.08% 0.12% 99.75% 2,417

sum 3,776 2,605 2,337 2,212 2,412 13,342

Boosting - 52 features

predicted

ac
tu

al

A B C D E sum

A 76.56% 2.96% 13.35% 5.15% 1.98% 3,789

B 15.13% 59.61% 12.94% 3.94% 8.38% 2,565

C 27.65% 10.13% 50.32% 8.65% 3.25% 2,311

D 21.44% 7.04% 16.03% 46.00% 9.48% 2,215

E 6.13% 13.12% 6.46% 21.28% 53.01% 2,462

sum 4,554 2,354 2,515 2,039 1,880 13,342

Boosting - 16 features

predicted

ac
tu

al

A B C D E sum

A 66.97% 9.79% 9.00% 11.04% 3.20% 3,778

B 16.10% 42.06% 16.53% 13.23% 12.08% 2,608

C 12.83% 21.24% 46.22% 15.06% 4.64% 2,330

D 7.51% 15.84% 8.87% 55.73% 12.04% 2,209

E 6.91% 25.36% 19.61% 17.19% 30.33% 2,417

sum 3,582 2,925 2,518 2,774 1,543 13,342

Table 2.4: Confusion matrices - proportion of actual respect to MLP, Random
Forest, and Boosting with Knime, using 66% of the dataset as training data.
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model are the following: 100 maximum number of iterations, 1 hidden layer, and
10 neurons per layer, and in essence may not be sufficient for this task.

2.5.5 Python

As a final experiment, we performed the analysis of the considered data em-
ploying Python, an interpreted, high-level, general-purpose programming language
that is widely used by the machine learning community [90]. Python, in fact, pro-
vides a plethora of libraries available for data science applications. Among the
most widely used for modeling, it is possible to find scikit-learn and Keras [91, 92].
Scikit-learn represents a general-purpose library, as it includes both machine and
deep learning models. Keras, instead, is more centered on the use of deep learn-
ing, hence, neural network-based algorithms. In the following, we explain the
differences between using these two libraries from a non-data scientist perspective.

Models In Python, we employed scikit-learn functions to build a Multi Layer
Perceptron (MLP), AdaBoost and Random Forest models, resorting as much as
possible to the default parameter values. Regarding this, for all the considered
models, only one default parameter value was changed: instead of the default
value of the 75% of data, we used the 66% of the entire dataset for training, to
resemble as much as possible the operational settings before.

Hardware setup and results The training of the models in Python was per-
formed with a laptop with: (a) RAM: 12GB; (b) Processor: Intel(R) Core(TM)
i7-7500U CPU 2.70GHz-2.90GHz; (c) System: Windows 10 Home (64-Bit).

The training required 24 s and 16 s when considering the 52 and 16 input
features, respectively. The confusion matrices - proportion of actual for MLP,
Random Forest, and AdaBoost for both settings are shown in Table 2.5.

Discussion In Python, considering the scikit-learn functions, Random Forest
and MLP exhibit very good performance, reaching an accuracy close to 100%,
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Multi Layer Perceptron - 52 features

predicted

ac
tu

al

A B C D E sum

A 99.79% 0.21% 0.00% 0.00% 0.00% 3,829

B 2.87% 94.10% 2.37% 0.16% 0.50% 2,578

C 0.04% 1.84% 95.29% 2.74% 0.09% 2,336

D 0.46% 0.28% 6.65% 90.51% 2.11% 2,181

E 0.00% 0.66% 1.78% 0.70% 96.86% 2,418

sum 3,906 2,499 2,475 2,059 2,403 13,342

Multi Layer Perceptron - 16 features

predicted

ac
tu

al

A B C D E sum

A 97.41% 1.66% 0.21% 0.37% 0.35% 3,738

B 0.93% 92.05% 5.60% 0.27% 1.16% 2,590

C 0.09% 2.52% 95.00% 1.37% 1.03% 2,341

D 0.28% 0.41% 7.13% 91.07% 1.10% 2,173

E 0.20% 0.96% 2.72% 1.92% 94.20% 2,500

sum 3,678 2,538 2,600 2,080 2,446 13,342

Random Forest - 52 features

predicted

ac
tu

al

A B C D E sum

A 100.00% 0.00% 0.00% 0.00% 0.00% 3,829

B 0.08% 99.88% 0.04% 0.00% 0.00% 2,578

C 0.00% 0.00% 100.00% 0.00% 0.00% 2,336

D 0.00% 0.00% 0.55% 99.40% 0.05% 2,181

E 0.00% 0.00% 0.00% 0.04% 99.96% 2,418

sum 3,831 2,575 2,349 2,169 2,418 13,342

Random Forest - 16 features

predicted
ac

tu
al

A B C D E sum

A 99.97% 0.03% 0.00% 0.00% 0.00% 3,738

B 0.23% 98.80% 0.89% 0.04% 0.04% 2,590

C 0.00% 0.04% 99.66% 0.30% 0.00% 2,341

D 0.00% 0.00% 0.23% 99.72% 0.05% 2,173

E 0.00% 0.00% 0.12% 0.16% 99.72% 2,500

sum 3,743 2,561 2,364 2,179 2,495 13,342

AdaBoost - 52 features

predicted

ac
tu

al

A B C D E sum

A 68.06% 18.41% 8.64% 3.29% 1.59% 3,829

B 13.15% 63.42% 9.27% 6.90% 7.25% 2,578

C 2.05% 6.98% 80.99% 7.23% 2.74% 2,336

D 3.44% 4.03% 10.13% 73.59% 8.80% 2,181

E 3.18% 7.82% 4.92% 4.96% 79.11% 2,418

sum 3,145 2,780 2,802 2,198 2,417 13,342

AdaBoost - 16 features

predicted

ac
tu

al

A B C D E sum

A 67.42% 17.26% 8.56% 4.47% 2.30% 3,738

B 12.66% 62.01% 11.20% 5.52% 8.61% 2,590

C 1.07% 13.46% 74.93% 8.80% 1.75% 2,341

D 7.18% 3.68% 13.21% 58.77% 17.17% 3,173

E 5.44% 10.68% 8.04% 6.40% 69.44% 2,500

sum 3,165 2,913 2,852 1,953 2,459 13,342

Table 2.5: Confusion matrices - proportion of actual of MLP, Random Forest, and
AdaBoost implemented with Python and scikit-learn functions, using 66% of the
dataset as training data.
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considering both the 52 and 16 input features, while high error rates are observed
when employing AdaBoost.

A layer-by-layer model Resorting then to Keras, we implemented a layer-by-
layer neural network and analyzed its behavior when using the default values for
the model parameters. Now, it is important to note that it is necessary to set at
least a few parameters in Keras: not all of the required parameters have a default
value. In Table 2.7 (end of Section 2.5) we specify which parameters are necessary
for the MLP model while lacking pre-set default values (i.e., hidden layers number,
neurons number in a layer, loss function, and optimizer). In addition, it is possible
to observe that the default settings utilized for the number of epochs and the
activation function are ill-suited to approach a real-world problem, as they amount
to a single epoch and a linear activation function. Hence, we proceeded to adopt the
default settings, wherever there were available, deciding to choose as values for the
remaining parameters those suggested in [93], a well-known beginners’ data science
blog. Then, we used the following parameter values: 1 epoch (default value); 2
hidden layers with 32 neurons for each layer; “linear” activation function (default
value); “categorical_crossentropy” loss function; “adam” optimizer. The confusion
matrices - proportion of actual obtained with this setting, considering 52 and 16

input features, respectively, are shown in Table 2.6.

The performance of the described MLP model appears unacceptable. This
could be due to the default parameter values: these may not be suitable for the
considered classification problem. In particular, we note that considering a linear
activation function the resulting MLP behaves as a linear model. Therefore, when
using Keras in Python and in particular a model which requires the tuning of
different parameters, some knowledge related to how the specific model works are
necessary to obtain any significant result.

Finally, we decided to verify the complexity of building in Keras an MLP
model which is capable of obtaining significant results. We hence used the same
lines of code, simply changing the default values as follows: 40 epochs and 80

epochs considering, respectively, 52 and 16 input features; 2 hidden layers with 32
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MLP Keras default - 52 features

predicted

ac
tu

al

A B C D E sum

A 37.85% 56.37% 0.74% 3.38% 1.66% 3,786

B 22.66% 63.96% 2.63% 4.72% 6.03% 2,586

C 32.30% 63.27% 2.30% 0.54% 1.59% 2,393

D 21.45% 65.62% 0.19% 9.09% 3.65% 2,135

E 29.85% 58.48% 1.60% 5.24% 4.83% 2,442

sum 3,979 8,131 194 585 453 13,342

MLP Keras default - 16 features

predicted

ac
tu

al

A B C D E sum

A 52.72% 9.37% 18.93% 5.02% 13.96% 3,883

B 50.98% 16.76% 16.72% 3.82% 11.70% 2,589

C 65.00% 1.36% 16.97% 7.08% 9.59% 2,274

D 41.04% 16.96% 22.15% 7.03% 12.82% 2,176

E 54.63% 13.64% 22.23% 4.92% 4.59% 2,420

sum 7,060 1,528 2,574 727 1,453 13,342

MLP Keras modified - 52 features

predicted

ac
tu

al

A B C D E sum

A 98.71% 0.92% 0.13% 0.21% 0.03% 3,786

B 4.80% 92.81% 1.89% 0.00% 0.50% 2,586

C 0.21% 1.46% 93.73% 4.22% 0.38% 2,393

D 0.84% 0.28% 4.92% 93.68% 0.28% 2,135

E 0.45% 0.94% 0.78% 1.80% 96.03% 2,442

sum 3,895 2,499 2,421 2,153 2,374 1,334

MLP Keras modified - 16 features

predicted

ac
tu

al

A B C D E sum

A 94.93% 2.45% 0.82% 1.44% 0.36% 3,883

B 1.43% 92.08% 3.24% 1.12% 2.12% 2,589

C 0.00% 4.88% 90.46% 3.91% 0.75% 2,274

D 0.14% 0.46% 4.78% 93.75% 0.87% 2,176

E 0.04% 1.03% 1.12% 2.44% 95.37% 2,420

sum 3,727 2,625 2,304 2,273 2,413 13,342

Table 2.6: Confusion matrices - proportion of actual respect to MLP implemented
layer by layer with Python and Keras, using 66% of the dataset as training data.

neurons for each layer; “relu” activation function and “softmax” activation function
for the output layer; “categorical_crossentropy” loss function; “adam” optimizer.
The confusion matrices - proportion of actual for the MLP models in both settings
are shown in Table 2.6. It is possible to observe that, with only a few modifications,
it was possible to obtain interesting results: all diagonal values fall above the 90%

threshold.
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Neural Network/MLP default values

Weka Orange Knime Python - Scikit-learn Python - Keras

Epochs 500 200 100 200 1

Hidden layers 1 1 1 1 no default value

Neurons per layer (attributes+ classes)/2 100 10 100 no default value

Activation function sigmoid ReLu clipped logistic ReLu linear

Loss function / optimized log / optimized log no default value

Optimizer / adam rprop adam no default value

Table 2.7: Default values for principal Neural Network/MLP model parameters in
the different considered learning platforms and programming language.

2.6 Discussion and conclusions

In this project, we considered different learning platforms a non-data scientist
may invoke to make sense of a collection of raw data. In particular, we treated a
classification problem in the area of qualitative activity recognition (i.e., unilateral
dumbbell biceps curl in our scenario), and we adopted four different data-human
interface learning platforms (Weka, Orange, Ludwig, and Knime) which do not
require any coding skills from their users (but, obviously, the raw data), and
a programming language as Python. In addition, to follow the purpose of this
contribution, simple models, in which the user does not have to set any unnecessary
parameter values, have been built.

Main results of our experimental campaign, from the point of view of

the choice of the employed default models (a) The Random Forest model
has proven to be reliable throughout all the adopted approaches; (b) The other
ensemble models (i.e., Bagging, AdaBoost, and Boosting), and neural networks
models led to both good and bad results, depending on the platform.

Main results of our experimental campaign, from the point of view

of the choice of the employed platforms (a) Weka shows excellent results
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(above the 98% threshold) with the Random Forest and Bagging models and both
possible feature sets. The MLP model, however, obtained excellent results only
with the 52 input features. This is for all the considered classes of movements;
(b) Orange obtained very interesting results (above the 90% threshold) with all
models and feature sets, for all the considered classes of movements; (c) Ludwig
obtained acceptable results (above the 85% threshold) when considering the class
of correct movements and the 52 input feature; (d) Knime shows very interest-
ing results (above the 90% threshold) with both feature sets, for all the considered
classes of movements, with the Random Forest model. The other models employed
in this platform (i.e., MLP and Boosting) led to unacceptable results (below the
80% threshold); (e) The model offered by the scikit-learn library in Python led
to controversial results. The MLP and Random Forest models exhibited diagonal
values on the confusion matrices - proportion of actual which all exceeded the
90% threshold. The AdaBoost model, instead, fell as low as the 58.77% correctly
classified for one of the considered cases; (f) The MLP model offered by the Keras
library in Python led to very poor and unacceptable results when utilizing the
default parameter values. Nevertheless, just changing some of these default val-
ues, but not the code structure, we showed how the model could exceed the 90%

threshold, for all the classes and both the considered feature sets.

In essence, this work indicates that the safest platform for a non-expert user
of data science techniques may be Orange, whereas the best algorithmic choice,
among the tested ones, may be the Random Forest. Clearly, further investigations
are required, considering additional and diverse datasets as well as further machine
learning algorithms. In addition, an observation about the phenomenon of overfit-
ting is necessary regarding the neural network/MLP models, implemented in the
considered learning platforms and programming language, to which an in-depth
analysis concerning the different default settings was carried out. In particular,
if a model has a default setting characterized by parameter values that lead it to
have high complexity, it is possible that the model is too faithful to the training set
and therefore not able to generalize on the test set. Nevertheless, it is possible to
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observe that, in the cases in which the aforementioned characteristics are present
(e.g., neural network/MLP models with a high number of neurons per layer), ex-
cellent results are obtained on the test set and therefore we can conclude that no
overfitting occurred. Then, for the sake of completeness, we briefly report on the
data preprocessing steps that were required with the different learning platforms.
More in detail, we implemented the following procedures: (i) Locate and delete
rows containing null values in the dataset. In particular, this operation was ex-
pressively needed with Knime and Python. Such a situation is, instead, handled
automatically in Weka, Orange, and Ludwig; (ii) Convert the values of the target
feature classe from categorical to numeric. This operation was only necessary by
utilizing the Python programming language with the Keras libraries. The other
adopted learning platforms handled this situation automatically. Please note that
the least possible steps were implemented to keep the preprocessing phase as sim-
ple as possible: we solely aimed at removing any possible error messages. Any
other possible data preprocessing (e.g., data normalization) has not been applied
to the initial raw data unless already included in the default settings of the different
learning platforms.

Concluding, with the increasing development of application packages like the
aforementioned (Weka, Orange, Ludwig, and Knime), it is possible to observe how
the complexity of applying machine learning algorithms is shifting more and more
from possessing specialist knowledge in data science and algorithm implementation
to owning the ability to design systems and collect the right data concerning the
data analysis problem that is considered. The aim of this work was to demonstrate
that there are simple ways of applying machine learning algorithms to easily create
models that may still provide significant results related to a specific problem, with-
out necessarily having specialized knowledge in the field of data science. For this
purpose, a classification problem from the field of qualitative activity recognition
was considered and solved with the help of the machine learning platforms Weka,
Orange, Ludwig, and Knime. A further analysis related to the same classification
problem was then carried out utilizing the Python programming language. Im-
portant to highlight that, to pursue the aim of this work, the models were put to
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good use without setting any unnecessary parameters. Our analysis exhibits how
the employed learning algorithms, with the considered raw dataset, can be power-
ful, but parameter-dependent. Therefore, data-human interfaces and the learning
algorithms they implement may certainly represent a useful tool for non-expert
data scientists, nevertheless, they should carefully be put to good use. In fact,
for a considered problem, and the relative analysis, different knowledge (domain
knowledge rather than a technical one) could be sufficient/necessary (or not). In
some cases, a specific domain knowledge, in addition to the use of learning tools,
is enough to obtain good results (e.g., the case explained in detail in this Chap-
ter). Other times, however, both an in-depth domain and algorithmic knowledge
are essential. An example will be given in Chapter 4. In the research work there
explained, in-depth domain knowledge is essential to understand how to frame
learning models, concerning the socio-historical considered tasks. Nevertheless,
without in-depth knowledge of machine and deep learning theory, algorithms, and
parameters, it would have been practically impossible to be able to build deep
learning models capable of obtaining results like the ones here shown.
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Chapter 3

Setting the stage for a machine

learning task

Considering a Human Reaching Movement analysis in the Psychological field

3.1 Introduction

Our everyday life is deeply defined by the voluntary actions we execute to-
ward ourselves and toward the world that surrounds us. The way we plan and
control our movements has been widely investigated for different motor tasks, to
deepen our understanding of which motor strategies individuals adopt to select
and execute different goal-oriented actions. In particular, as action features are
usually movement-specific, we want to focus on a specific arm movement, namely
reaching, which allows human beings to act within their peri-personal space by
grasping, manipulating, and using objects, as well as to interact with their own
bodies and with other people. Performing a reaching movement action requires
both pre-planning and on-line control of the desired motor output. Such two
mechanisms are settled in distinct brain regions, respectively intervening in either
the early or later movement time and appear influenced by different sensorimotor
aspects and cognitive processes [94]. Indeed, the role of motor networks might go
beyond the action specification that answers to the “how to do it” and contribute

35
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to the simultaneous process of action selection, which addresses the “what to do”
issue and chooses among currently available options [95]. It goes without saying
that cognitive control is fundamental to the process of action selection, including
the ability to inhibit inappropriate or incorrect responses [96]. Rather than a uni-
tary process, inhibition is a multifaceted skill that comprehends sensory, cognitive,
behavioral, and motor sub-components [97], such as the ability to stop prepotent
motor activities.

Then, performing cognitive operations and motor actions can be considered
two faces of the same coin, as they vastly rely on shared mechanisms that allow
us to produce appropriate responses with respect to goals and context [98]. All
relevant processes specialize with age, with motor and cognitive development being
closely connected and inter-related in a dynamic process of exploring and adjust-
ing to the demands of the external physical and social environment [99]. Although
cognitive and motor difficulties often co-occur in neurodevelopmental conditions
and have been extensively studied as separate processes [100, 101], their com-
mon underlying mechanisms are still to be furthered. We strongly believe that
an integrated approach will provide a more complete understanding of the inter-
play between low-level sensorimotor processes and high-level executive functioning.
Indeed, executive functions are those top-down processes (i.e., working memory,
inhibition, and shifting) that enable people to plan, monitor, and control sensori-
motor, socio-affective, and cognitive processes, being fundamental to mental and
physical wellbeing [102]. Among these functions, the ability to inhibit automatic
and highly probable responses, and let less probable alternatives successfully com-
pete for control of cognition and behaviors, ensures that we are flexible and open
to learning from the surrounding environment [103].

In addition, the inhibition of prepotent responses is a well-studied process be-
ing affected by disorders such as Attention Deficit and Hyperactivity Disorder
(ADHD) [104], which is diagnosed based on inattentiveness, impulsiveness and hy-
peractivity symptoms [105]. On one hand, at the cognitive level, it is established
that people with ADHD, despite the wide variability that characterizes develop-
mental trajectories, are overall impaired in executive functions [106]. People with
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ADHD can entail several aspects of cognitive and motor impulsivity, which consists
of non-reflective stimulus-driven processes and manifests itself through inhibitory
difficulties, distractibility, faster, and less accurate responses to neuropsychological
tests [107]. On the other hand, at the motor level, it is still debated whether mo-
tor signs of atypical development can be detected from infancy and interpreted as
early risk factors for the following development of ADHD cognitive and behavioral
symptoms [108]. Some co-occurrent difficulties in motor skills (e.g., fine motor
precision, manual dexterity, bilateral coordination, balance and postural control,
running speed and agility, limb coordination, strength) can be found in about 50%
of individuals with ADHD [109]. However, those are not diagnostic criteria and
there is no evidence so far supporting the link between motor impairments and
ADHD-specific symptoms such as inhibitory deficiencies [109]. To shed light on
this, an approach that studies these two aspects in an integrated manner could
provide an innovative perspective on difficulties with inhibition and behavioral
hyperactivity. Potential underlying mechanisms of inhibition difficulties relate to
motor planning, which is responsible for selecting the action target and the tim-
ing of movements (e.g., reaction times, movement times, and acceleration/velocity
parameters) [94].

In this analysis, the stage set in the present work wants to explore the distinc-
tive contribution of motor planning and control to human reaching movements in
the psychological field, in order to set the stage for a possible machine learning
task. In particular, the movements were triggered by the selection of a prepo-
tent response (Dominant) or, instead, by the inhibition of the prepotent response,
which required the selection of an alternative one (Non-dominant). To this end,
we adapted a Go/No-Go task [110] to investigate both the dominant and non-
dominant movements, firstly, of a cohort of 19 neurotypical adults and, secondly,
of a cohort of 17 children with ADHD and 26 children with Typical Development
(TD), utilizing different kinematic measures, in order to discriminate between the
planning and control components of the two actions. In this analysis, a portable
and low-cost 3-axis wrist-worn accelerometer was put to good use to obtain raw
acceleration data and compute and break down its velocity components, with the
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aim to discuss the possibility to consider an accelerometer-based analysis in a
clinical context.

In the first study with neurotypical adults, the obtained results indicate that,
with the inhibition of a prepotent response, the selection and execution of the
alternative one yields both a longer Reaction Time (RT) and Movement Duration
(MD). The Time to Peak Velocity (TPV) appeared higher in the non-dominant
response with respect to the dominant response, revealing that participants tended
to indulge more in motor planning than in adjusting their movement along the
way. Moreover, comparing such results to the findings obtained by other means
in the literature, we could verify the feasibility of an accelerometer-based analysis
to disentangle distinctive cognitive mechanisms of human movements. The entire
analysis and the relative results regarding this first study are published in [3].

In a second study, instead, we aimed to explore the different strategies used by
children with ADHD and TD to provide a prepotent response or inhibit the prepo-
tent and select an alternative one, following the same way adopted for neurotypi-
cal adults. We hypothesized that children with ADHD, compared to neurotypical
controls, would show greater difficulties inhibiting the prepotent response, which
the literature also refers to as motor impulsivity [111]. In addition, we expected
children with ADHD to make more errors than controls in the non-dominant con-
dition, and show an atypical motor profile, with reduced or less effective motor
planning. In particular, as markers of motor impulsivity, we expected reduced
RT and TPV in the group of children with ADHD [111]. Nevertheless, although
no group difference emerged on accuracy levels, the kinematic analysis of correct
responses revealed that, unlike neurotypical children, those with ADHD did not
show increased motor planning in non-dominant compared to the dominant trials.
In our implemented task, motor control could have compensated leading to good
accuracy. However, this strategy might make inhibition harder in more natural-
istic situations that involve complex actions. Combining cognitive and kinematic
measures could be a potential innovative method for assessment and intervention
of subtle differences in executive processes such as inhibition, going deeper with
respect to just relying on behavioral outcomes alone. The idea for this second
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study was presented in [4, 5], while the entire analysis and relative results relative
are published in [6].

The rest of this Chapter is organized as follows. In Section 3.2 previous anal-
yses presented in the literature, regarding the task considered in our analysis, are
reviewed. In Section 3.3 the main contributions of these studies are reported.
In Section 3.4 the entire experimental setup and procedure are furnished, starting
from the recruitment phase (Section 3.4.1) and the participant characteristics (Sec-
tion 3.4.2), through the procedure and the task details (Sections 3.4.3 and 3.4.4,
respectively), until the apparatus (Section 3.4.5). Then, in Section 3.5 the dataset
collected is introduced and explained. Follows Section 3.6, in which we present
the method exploited for these studies, dividing the acceleration calibration and
preprocessing (Section 3.6.1), the velocity and TPV computation (Section 3.6.2),
and the statistical approach and analysis (Section 3.6.3). After this, all the ob-
tained results are reported in Section 3.7. In particular, firstly, we report the
results regarding the study with neurotypical adults (Section 3.7.1) and, secondly,
the ones regarding the study with children with ADHD and TD (Section 3.7.2).
The same schema is replicated both for the discussion of the presented results
and the conclusions drawn from this work in Section 3.8 (divided in Section 3.8.1
and Section 3.8.2) and in Section 3.9 (divided in Section 3.9.1 and Section 3.9.2),
respectively. Successively, in Section 3.10 possible future works are provided.

3.2 Related works

Previous studies were mainly based on correlational analysis of motor skills and
purely cognitive performance at inhibition tasks and failed to find clear relation-
ships [109]. In addition, investigating inhibition without dissociating motor and
cognitive aspects that are deeply interrelated offers further insights into the under-
lying processes. Nevertheless, the compelling possibility of integrating a kinematic
measure into the traditional neuropsychological evaluation is strongly limited by
the need for sophisticated motion capture systems. In fact, those used for research
purposes are often expensive and bulky, thus being hardly affordable for most
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clinical centers. In order to use low-cost portable solutions and boost the appli-
cability of motion analysis, inertial sensors have been recently recommended for
their good measurement reliability and validity [112]. Adopting this technology
in clinical practice would allow for a more detailed analysis of the mechanisms
underlying the child’s performance on tests of interest: it could be used during
assessment for setting specific intervention goals, for monitoring treatment effects,
and as a treatment tool itself when used as biofeedback.

Different paradigms are commonly used to measure the inhibition of prepotent
responses (e.g., Stroop, Stop-signal, and Go/No-Go tasks), with diverse versions
that rely on mainly cognitive processes or entail varying degrees of motor compo-
nents and activate both distinct and shared neural areas [113, 114]. In neuropsy-
chology, one of the most used is the Go/No-Go one [110]. On one hand, the “Go”
trials require participants to provide a fast response (i.e., do something) as soon as
a dominant cue appears. On the other hand, the “No-Go” trials require to inhibit
the response and not answer (i.e., do nothing) when another non-dominant cue
appears (the latter usually appears less frequently than the dominant one) [115].
The motor component comes into play when the response requires some sort of
movement, from pressing a button to reaching a target, which sometimes has to
be voluntarily stopped before or during its execution [113]. However, the classical
task is unable to investigate the different motor strategies individuals may adopt to
perform either a prepotent or alternative response. Then, since the very planning
of this motor response could reveal important information about the processes
at play, a deeper understanding of motor responses in cognitive tasks needs an
improved consideration, leading to a new perspective on the shared mechanisms
that underpin adaptive behaviors. In particular, to further distinguish between
planning and control aspects in the various phases of action, kinematic measures
have been included with adapted a Go/No-Go paradigm that asked participants
to perform either a prepotent action elicited most of the time (Dominant) or an
alternative less frequent one (Non-dominant).

In a possible adaptation of the Go/No-Go task, both Reaction Time (RT)
and Movement Duration (MD) were calculated and analysed [116]. Researchers
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often use RT to indicate the time from the appearance of the “Go” stimulus to
the moment when the person gives the response (which corresponds to the end
of the movement). In addition, this is the index of choice for studying variability
in the inhibitory abilities of people with ADHD [117]. However, using RT as the
total response time does not consider the two underlying processes separately: the
preparatory activities that take place before the start of the movement and the
actual motor execution [118]. Then, we hereby calculate RT as the time from
the appearance of the “Go” stimulus to the beginning of the movement, so that
it gives us a measure of pure motor planning. A higher need for motor planning
is expected to result in higher RTs [119]. The MD, instead, is calculated as the
movement execution time from when the response movement begins to when it ends
and, across MD, motor planning gradually gives way to control and monitoring
of the ongoing movement, which involve distinct processes [94]. Nevertheless, it is
worth noting that motor planning is not relegated to RT, but also overlaps with
motor control during the MD. Indeed, “as planning is generally operative early and
control late in a movement, the influence of each will rise and fall as the movement
unfolds” [94, p. 5]. Therefore, kinematic indices other than RT and MD would be
more informative to further clarify the mechanisms beneath distinct movements,
with promising possibilities to distinguish the specific inhibitory impairments that
are common in several neuropsychological conditions [120]. As planning seems
to be primarily devoted to processing cognitive information, whereas control is
dedicated to homing in on a target with specific spatial features [94], the inhibition
of prepotent motor responses evoked by Go/No-Go tasks would likely load on
planning mechanisms.

The movement research field has extensively debated the distinctive meaning
of different motor indices, which are affected by different factors, thus providing
insights into distinct neuropsychological mechanisms underlying motor activities.
In particular, acceleration discloses the movement smoothness, whereby an opti-
mal reaching is ideal, for instance in experimental contexts and robotics, the one
with the minimum jerk, namely the rate of acceleration change in time [121, 122].
The smoothness of a reach-to-grasp movement might depend on whether the tar-
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get object is present, imagined, or absent, on how it is oriented, or on which is the
plane of movement (e.g., horizontal or vertical plane) [123]. Neuro-imaging studies
collected evidence of distinct cortical networks being related to distinct kinematic
features. A research work [124] studied the fast repetitive voluntary hand move-
ments of neurotypical adults revealing that movement acceleration was mainly
coupled with a coherent activation of contralateral primary motor (M1) hand area
at ≈ 3 Hz and ≈ 6 Hz of movement frequencies. Moreover, only when the hand
movement is aimed at touching its own fingers, the primary somato-sensory (S1)
hand area became the most coherent brain area at ≈ 3 Hz of motion frequency.
In addition, the activation of DLPFC area (dorsolateral prefrontal cortex), which
is responsible for goal-directed action planning, and PPC area (posterior parietal
cortex), which is responsible for sensorimotor integration and movement monitor-
ing, were coherent with movement acceleration [125]. Instead, focusing on velocity,
the minimum-jerk model predicts that reaching trajectories starting and ending at
full rest will show a symmetric, bell-shaped velocity path, with 50% of MD spent
both accelerating and decelerating. However, MD and velocity across time are
shaped by several factors, such as the individual developmental trajectory [126],
the affordances of the target object (e.g., a cup or a spoon) [123], and social in-
tentions during interactions with others [127]. On this matter, the percent Time
to Peak Velocity percentage (TPV%) may represent a useful index to disentangle
how much of the movement time is devoted to planning or control. Theoretical
(e.g., in robotics) reaching trajectories starting and ending at full rest will show a
bell-shaped velocity path, with the first half of MD spent accelerating and the sec-
ond one decelerating, resulting in a 50% TPV [122, 121]. On one hand, given that
whether a kinematic parameter occurs earlier or later over the MD would reflect
more either planning or control [94], a small TPV% resulting in a longer decelera-
tion phase may indicate a greater need for control and adjustment of the ongoing
movement. On the other hand, a big TPV% resulting in a shorter deceleration
phase may indicate a greater need for motor planning.

Regarding people with ADHD, adults have been found to show atypical motor
profiles, with longer RTs to start moving after a “Go” cue and higher variability in
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the velocity shape over time, suggesting impaired motor planning capacities [128].
It is interesting to note that there is a kind of slowness in sensorimotor and cogni-
tive processes that underlie behavioral manifestations of impulsivity, hyperactivity,
and inattention. A developmental perspective is needed to understand how these
atypicalities have emerged and are maintained from childhood to adulthood. This
would help us design targeted and age-appropriate interventions to promote a
change in the mechanisms underlying the cognitive and behavioral difficulties of
ADHD. Notably, purely cognitive training specifically targeting executive functions
such as working memory, attention, inhibition, and shifting rarely results in cog-
nitive nor behavioral or academic improvements, with scarce effect on ADHD core
symptoms [129, 130]. It has been speculated that leveraging embodied cognition
and cognitive-motor approaches could boost training efficacy [131]. This multi-
dimensional perspective would eventually chart the way to define and test both
motor and cognitive interventions to strengthen inhibition by passing through mul-
tidimensional doorways. Despite their presence and impact, motor difficulties of
people with ADHD often end up being overlooked by research and clinical practice.

Concluding, the present study aims at setting the stage for a future machine
learning task considering a human reaching movement analysis in the psychological
field, investigating the human ability to inhibit prepotent motor responses, through
an adapted version of the Go/No-Go paradigm, implemented from scratch. Neu-
rotypical adults, children with ADHD and Typical Development (TD) were re-
cruited. A commercially available, low-cost, easy-to-use, wearable accelerometer
sensor was employed to capture movement features, and the applicability of such
a low-cost portable tracking tool in a clinical context was discussed.

3.3 Contributions

Starting from scratch, from an experimental perspective, the main contribu-
tions of this study amounts to [3]: (i) Adapt a Go/No-Go task to assess the motor
planning and control in the selection or inhibition of a prepotent response through
kinematics measures; (ii) Implement the aforementioned task to make it accessible
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for testing through low-cost components, i.e., a computer with a touch screen and
a position sensor; (iii) Collect kinematics data, i.e., raw acceleration data, through
a low-cost wearable device, i.e., a 3-axis wrist-worn accelerometer; (iv) Build and
validate an entire pipeline of analysis in order to use this low-cost portable motion
tracking tool, to boost the applicability of our methods of analysis to a broad range
of research and clinical contexts, such as the human reaching movement analysis
in the psychological field; (v) Set both the data collection and data analysis to
possibly integrate with machine learning algorithms, as soon as the dataset size is
enough, in order to increase the applicability of such a pipeline in such a context.

Importantly, this work provides different contributions to the results of hu-
man reaching movement analysis in the psychological field. From this perspective,
the main contributions amount to: (i) Investigate both the dominant and non-
dominant movements of a cohort of 19 neurotypical adults, utilizing kinematic
measures to discriminate between the planning and control components of the two
actions through a customized low-cost portable motion tracking tool [3]; (ii) Dis-
cuss and verify the feasibility of an accelerometer-based analysis to disentangle
distinctive cognitive mechanisms of human movements [3]; (iii) Investigate chil-
dren’s ability to inhibit prepotent motor responses, through the same paradigm
and apparatus, with a cohort of 17 children with Attention Deficit and Hyperac-
tivity Disorder (ADHD) and 26 children with Typical Development (TD) as the
control group, focusing on measuring the velocity shape across movement time
(“when”) [4, 5, 6].

3.4 Experimental setup and procedure

3.4.1 Recruitment

Neurotypical adults The recruitment took place among university students
with no past or present history of clinical conditions (self-reported). The partici-
pants voluntarily participated in the study and did not receive compensation.
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Children with TD and ADHD For the study with children participants, data
collection was planned to take place between December 2019 and April 2020, as
part of a collaborative project with a clinical center in northern Italy, which is spe-
cialized in ADHD diagnosis and intervention. Later, however, data collection was
interrupted at the beginning of the Covid-19 pandemic and resumed when the cen-
ter was authorized to reopen to external operators (i.e., the investigators). Thus,
a further phase of data collection was carried out between October and December
2021. The partner center had an average intake of 60 children, and all were offered
voluntary participation in the study. The final sample of children with ADHD was
determined by the number of parents and children who joined and participated.
Since ADHD is an inherently heterogeneous condition [132, 133], we have not es-
tablished inclusion or exclusion criteria based on IQ, level of support needed, or
possible presence of co-occurring medical or neuropsychological conditions. Thus,
we aimed to include participants from the heterogeneous ADHD population. Psy-
chologists confirmed children’s diagnoses and provided IQ assessments through
the WISC-IV scale. Moreover, we collected parent-reported questionnaires on the
child’s executive (Executive Functions Questionnaire - Q.FE [134]) and sensory
profile (Short Sensory Profile - SSP [135]), as well as the presence and severity
of restricted and repetitive behaviors (Repetitive Behavior Scale-Revised - RBS-
R [136]). A convenient control group of children with Typical Development (TD)
in the same age range was tested at the University of Padova. According to par-
ents’ reports, typically developing children had no medical or neuropsychological
conditions.

3.4.2 Participants

Neurotypical adults For the first study, which also includes the discussion
about the feasibility of an accelerometer-based analysis to disentangle distinctive
cognitive mechanisms of human movements, we recruited 19 neurotypical adults
aged from 18 to 26 years old (M = 22.3, SD = 1.9), among them 5 men.
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IQ RBS Tot Low-level RRB High-level RRB Q-FE Tot SSP Tot

M 107.2 21.8 7.8 14.0 90.6 136.4

SD 17.6 15.5 6.5 11.8 20.9 26.2

Table 3.1: ADHD group characterisation (nADHD = 17). Mean (M) and Standard
Deviation (SD) of: IQ, total score from the WISC-IV scale; RBS Tot, total score
from the RBS-R. Higher scores indicate a more severe profile of restricted and
repetitive behaviors; Low-level RRB, scores from Stereotyped, and Self-Injurious
subscales of the RBS-R; High-level RRB, scores from Compulsive, Ritualistic,
Sameness and Restricted Interests behaviors subscales of the RBS-R; SSP Tot,
total score from the SSP. Higher scores indicate better sensory profile; Q-FE Tot,
total score from Q-FE. Higher scores indicate better executive functions.

Children with TD and ADHD For the second study, instead, we recruited
17 children with ADHD (4 female children) from 6 to 15 years of age (M = 9.4,
SD = 2.2), and 26 children with Typical Development as control group (10 female
children), from 6 to 13 years of age (M = 9.2, SD = 2.1). Three additional par-
ticipants (2 in the ADHD and 1 in the TD group) were excluded due to technical
issues that prevented them from completing at least 50% of the trials of the task.
Characteristics of the ADHD group are provided in Table 3.1, which includes IQs
and scores from the parent-reported assessment. A total of 12 children were di-
agnosed with the combined subtype of ADHD, 2 with the inattentive subtype,
and 3 with the impulsive/hyperactive subtype. Moreover, 6 children received a
comorbid diagnosis of specific reading disorders (from moderate to severe), 2 chil-
dren received a diagnosis of a specific spelling disorder (moderate), and 4 were
diagnosed with other behavioral and emotional disorders.

3.4.3 Procedure

Participants were welcomed into the lab and asked to sign a written consent
form (for the children participants, their parents signed it). The study and all the
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experimental methods were approved by the Research Ethics Committee of the
School of Psychology, University of Padova (protocol no. 3251). The experiment
was carried out in accordance with the approved guidelines and regulations.

The participants sat at a desk and wore an accelerometer research watch on
their dominant wrist (a schema of the experimental setup is reported in Fig. 3.1a).
They were instructed to place the dominant hand at a specific starting position,
monitored by a presence sensor. At the distance of their arm length, they found
a response touchscreen, so they were required to completely extend their arm to
touch the response screen. A specific task (details in Section 3.4.4) was proposed
and required the participant to make action selection choices by touching one of the
response keys on the screen. Upon comparison of a central stimulus, participants
were asked to select, reach, and press one of two response keys placed one on the left
and one on the right side of the central stimulus, following specific instructions.
Before the start of the next trial, participants had to return their hand to the
sensor. As soon as the hand was in place, the next trial started after a random delay
(in a range from 0 to 2, 000 ms), which prevented participants from anticipating
the onset of the next trial. The task tested the participant’s ability to select
a prepotent or an alternative response (a schema of the experimental procedure
is reported in Fig. 3.1b) and, during this behavioral task, the kinematics of the
participant’s dominant arm was monitored by the wrist-worn 3-axis accelerometer.

3.4.4 Task

The task protagonist in this study focuses on the motor planning and control in
the selection or inhibition of a prepotent response and a Go/No-Go paradigm was
adapted to assess this phenomenon. More in detail, upon a comparison of a central
stimulus (red/green, upwards/downwards arrow), participants were asked to se-
lect, reach, and press one of two response keys (either a red circle or a green circle)
placed one on the left and one on the right side of the central stimulus, following
specific instructions. Participants were told to select (a) the response key of the
same color of the central stimulus when it was an upwards/downwards (counter-
balanced between participants) arrow (dominant condition) and (b) the response
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(a)

(b)

Figure 3.1: Experimental (a) setup and (b) procedure.

key of the different color when the central stimulus was an averted (either upwards
or downwards, counterbalanced between participants) arrow (non-dominant con-
dition). We built a prepotent response for the same-color action, given that it was
the one that appeared with a higher chance (75%). On the contrary, we elicited
an inhibitory different-color action, which was the less probable one (25%). In this
way, we were able to measure the kinematics (details in Section 3.6) of dominant
vs. non-dominant selections, being the movements equal.

Participants were instructed to reply as quickly and accurately as possible.
Failure to press any keys within 2, 000 ms was marked as “omission”. When partic-
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ipants moved their dominant hand from the starting position before the appearance
of the cue stimulus, instead, the response was tagged as “anticipation” and the pro-
gram aborted the trial by providing no cue stimulus. Omissions and anticipations
were considered invalid trials, therefore excluded from the analysis. For this task,
each participant was required to perform 160 valid trials (i.e., trials with correc-
t/incorrect answers). In any case, the total trials never exceed a maximum number
of 180, if omissions and anticipations occurred. In addition, two blocks of trials
were administered, distinguished by the red/green response keys being located
once on the right and once on the left side of the touchscreen. To maintain par-
ticipants’ engagement during the task, a short (30 seconds on average) video from
well-known movies appeared every 40 trials. As aforementioned in Section 3.4.3,
before the start of the next trial, the participant had to return his hand to the
sensor, which prevented participants from anticipating the onset of the next trial.
As soon as the hand was in place, as long as the previous trial was not running
anymore, the next trial started after a random delay in the range from 0 to 2, 000

ms. We will refer to this independent variable as StimulusRandomTime and anal-
yse its effect on participants’ performance. Indeed, this variable manipulated the
time available to pre-activate the sensorimotor system and predict the incoming
occurrence of the central stimulus, potentially affecting the response timing [137].
A schema of the experimental setup and procedure is reported in Fig.3.1. The
task lasted about 15 minutes.

3.4.5 Apparatus

Although motor analysis is highly informative both in research and clinical set-
tings, kinematic studies often rely on expensive, bulky, and sophisticated motion
capture systems which may not be affordable in most operative and experimental
contexts. To use low-cost portable solutions and boost the applicability of mo-
tion analysis, both custom-made [138] and commercial tools have been recently
evaluated. One extensively used commercial option is the Leap Motion Controller
system, a small compact device containing two cameras and three infrared light
diodes which have, however, spatial and temporal limits compared to motion cap-
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ture systems [139]. Another commercial possibility that seems more promising in
terms of measurement reliability and validity is the inertial sensors built with 3-
axis accelerometers, gyroscopes, and magnetometers. In particular, Cahill-Rowley
and Rose [112] analyzed human reaching kinematics through both inertial sensors
and gold-standard motion capture systems. The two methods provided consistent
measures of displacement, peak velocity magnitude and timing. In light of this
encouraging evidence, the time is ripe for the use of low-cost accelerometers to
investigate distinct neuropsychological mechanisms beneath action selection. In
particular, in the present study:

• We employed the GENEActiv Original 3-axis wrist-worn accelerometer [16]
(size: 43 mm × 40 mm × 13 mm, weight without the strap: 16 g) to monitor
participants’ arm movements. The device measured accelerations through a
MEMS sensor, within a range of ±8 g, at a 12 bit (3.9 mg) resolution with
a 100 Hz logging frequency;

• The task was implemented resorting to a JavaFX-based application [140];

• To run the experiment, we employed a laptop Lenovo G50-80 (Intel Core
i5-5200U (2.2 GHz), 4 GB DDR3L SDRAM, 500 GB HDD, 15.6” HD LED
(1366 × 768), Intel HD Graphics 5500, Windows 10 64-bit);

• The analysis of the resulting data was performed resorting to Python [83]
and primarily to pandas, NumPy, and SciPy libraries;

• Participants responded by tapping on a 19 inch touchscreen (LG-T1910BP),
with response time 5 ms;

• The presence-absence of the participant’s hand in the starting position was
detected through a custom-made presence sensor based on Arduino Leonardo
which sent the hand detection data to the laptop via one of its USB ports.
The presence sensor was connected to a ground capacitor (100 pF) and a
capacitive sensor, which consisted of a copper foil wrapped with plastic film
(dimension 20 cm × 12 cm, thickness 0.1 mm) and the presence sensor pro-
gram was written using the Arduino Capacitive Sensing Library.
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3.5 Dataset

Following the experimental setup and procedure described in Section 3.4, dif-
ferent information is collected in order to proceed with the analysis. In particular,
for each participant (both adults and children participants) are reported a number,
instead of the proper name (for a privacy constraint), Gender, and Age, as demo-
graphic information and the Group, i.e., neurotypical adults, children with TD,
or children with ADHD. In addition, regarding the children with ADHD, other
information is collected. Some characteristics of the ADHD group are reported,
in a cumulative format, in Table 3.1, Section 3.4.2. Nevertheless, this information
is not directly used for the analysis here reported. Instead, for each trial, are
reported: the Condition of the trial, i.e., dominant or non-dominant; the raw ac-
celeration values along the 3-axis, i.e., x, y, and z, of the wrist-worn accelerometer;
the Trial Evaluation, i.e., valid, anticipation, or omission; the Answer Evaluation,
i.e., correct or incorrect; the time instant in which the sensor is pressed (P), i.e.,
before the trial start; the time instant in which the central stimulus appears on the
touch screen (S), i.e., when the trial starts; the time instant in which the sensor is
released (R), i.e., when the answering movement starts; the time instant in which
a button on the touch screen is clicked (A), i.e., when an answer is given. In this
way, we are able to select valid trials to analyze and compute different measures,
among which the Reaction Time (RT), as the time passed from S to R, and the
Movement Duration (MD), as the time passed from R to A. In addition, as better
explained in the following Section 3.6, we also considered the independent variable
StimulusRandomTime as the time passed from P to S, randomly set in the range
from 0 to 2, 000 ms, in each trial. In total, the dataset comprehends 3, 145 trials
(i.e., rows) from the neurotypical adult participants, 4, 526 rows from the children
with TD, and 3, 023 from the children with ADHD [141, 6].

Importantly, collecting data following this procedure gives us the possibility to
apply machine learning algorithms to the same task, or to another based on the
same dataset, once we have reached a sufficient quantity of data for this class of
algorithms.
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3.6 Method

During the experimental phase, different data was collected both regarding
the task application and the movement kinematics measures, as just described in
Section 3.5. In this Section, we will focus on the method to follow in to analyze
them. Initially, for each valid trial (i.e., no anticipation, no omission) we reported
different time instants: sensor pressed, stimulus appeared, sensor released, and
answer given, which from now on we will refer to as P, S, R, and A, respectively.
To obtain these data, we synchronized the software logs and the accelerometer
with the computer local time, thus combining the accelerometer data with the
task outputs. The time intervals that are related to the kinematic measures of
interest were [S,R], which defined RT, and [R,A], which corresponded to the MD
and was used to compute the TPV%. In addition, the interval [P,S] determined
the StimulusRandomTime. Then, we started with the computation of the effective
acceleration, individuated through raw accelerometer data calibration and pre-
processing. Subsequently, we computed velocity and the Time to Peak Velocity
percentage (TPV%), which is the percentage of time spent from R to maximum
peak velocity in the time interval from R to A (i.e., the MD). From a theoretical
and mathematical point of view, the most direct way to start computing the TPV%

is by applying an integration in time and obtaining velocity from acceleration. In
particular, let a(t) be the acceleration signal on one axis, the related velocity signal
v(t) can be computed as v(t) =

∫ tf
ti

a(dt)dt+C, where ti and tf are the initial and
final time instants of the movement and C is an integration constant. However,
when faced with real data and numerical functions (e.g., numerical integration),
numerical errors can return unreliable velocity values. In the following, we walk
through the methodology adopted to compute the TPV% value starting from the
accelerometer data collected during the experimental phase.

Important to note that the acceleration calibration and preprocessing analysis
have been run on the data collected by an external experimenter (not part of the
cohort involved in the trials) who repeated multiple selection tasks, just as a par-
ticipant. Within the task, the experimenter answered a central cue stimulus by
tapping a central response key below the cue. In this way, the displacement re-
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Raw accelerometer data

↓
Band-pass filter

↓
Offset estimation and subtraction

↓
Conversion from g to m/s2

↓
Calibrated and preprocessed acceleration

Figure 3.2: Schema of acceleration calibration and preprocessing.

mained roughly the same for each trial. In particular, the experimenter performed
40 trials: 1 anticipation, 2 omissions, and 37 valid answers. The subsequent analy-
sis focused on the raw acceleration signals that started when the sensor was pressed
for the first trial and ended when the last valid answer was given.

3.6.1 Acceleration calibration and preprocessing

The accelerometer data were sampled at 100 Hz (i.e., data sampled every 10 ms)
and stored in g units for offline analyses. Considering the 3-axis accelerometer,
the principal output was, for each axis, the measured signal, acquired accelera-
tion, which may be broken into effective acceleration, gravity acceleration, and
noise [142]. To examine the true movements of the participants, we processed the
acquired acceleration components to obtain their corresponding effective acceler-
ation ones, as raw acceleration signals also contained noise, which could include
an offset error, and gravity. In particular, the separation of the latter components
becomes increasingly difficult during rotational movements. In fact, in the case
of rotational movements (which were observed during our experimental task), the
frequency domains of the movement-related component and the gravitational com-
ponent can overlap, thus their separation can become challenging [142]. Resorting
to the state-of-the-art approaches [142], the effective acceleration was extracted by
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x component

y component

z component

Figure 3.3: Acceleration signals before (x, y, z) and after (x_filt, y_filt, z_filt)
the band-pass filter application.

implementing the following two key steps: (a) a band-pass filter, and (b) an offset
estimation and subtraction step. A schema is reported in Fig. 3.2. Following [142],
a 4th order Butterworth band-pass filter with cut-off frequencies equal to 0.2-15
Hz was applied to the signal. The filter cut-off frequency of 0.2 Hz was chosen on
the presumption that most daily movements of human body parts occur at fre-
quencies higher than 0.2 Hz. The cut-off frequency of 15 Hz was, instead, chosen
to remove the effect of high-frequency noise. Also, the 1-20 Hz cut-off frequencies
were evaluated, considering other choices made in literature [125, 142, 122, 143],
but it was possible to observe no meaningful difference for the 0.2-15 Hz band.
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position 1 position 2 position 3

Figure 3.4: Accelerometer at rest positions [16].

Algorithm 1 Accelerometer offset
1: procedure (for each axis x, y, z)
2: i in (x, y, z)

3: df_filt_acc← DataFrame with filtered acceleration
4: df_offset_acc← new DataFrame for offset acceleration
5: epsiloni ← offset value for axis i
6: for j in range (0, len(df_filt_acc)): do
7: if df_filt_acc[j, acci] < (epsiloni · (−1)) then
8: df_offset_acc[j, acci] = df_filt_acc[j, acci] + epsiloni

9: else if df_filt_acc[j, acci] > epsiloni then
10: df_offset_acc[j, acci] = df_filt_acc[j, acci]− epsiloni

11: else
12: df_offset_acc[j, acci] = 0

13: end if
14: end for
15: end procedure

Comparing now the acceleration signals (x, y, and z, in Fig. 3.3) it is possible
to see that the raw acceleration components were shifted for 0 g due to the gravity.
The z component, for example, would fall as low as −g. After applying the band-
pass filter, all acceleration components adjusted to lie around 0 g (x_filt, y_filt,
and z_filt in Fig. 3.3). To estimate the offset error, data was collected from the
accelerometer while at rest with the x, y and z axes pointing towards the ground
(see Fig. 3.4). From the filtered signal, for each of the three components, we
computed the mean of the differences between actual accelerometer readings and
the 0 g value expected from an accelerometer at rest. Hence, we obtained an
offset value for each of the three axes. Successively, such values were removed
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(a) (b) (c)

Figure 3.5: Acceleration values in g sampled at 100 Hz from the accelerometer at
rest: (a) no filtering, (b) band-pass filtering, and (c) band-pass filtering and offset
removal (ndata for each position = 6, 960).

from the acceleration data components, according to the pseudocode reported in
Algorithm 1. The visualisation of the signal from the accelerometer at rest fixed
in the three different positions shows the filter effect and the presence of an offset
error (Figs. 3.5a and 3.5b). Indeed, the offset removal led to data closer to zero
(Fig. 3.5c). Finally, we obtained an estimate of the effective acceleration, adopting
g = 9.80665 m/s2 for the conversion from g to m/s2 units.
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3.6.2 Velocity and TPV computation

Considering now the calibrated and preprocessed acceleration, let accRA be
the signal related to the time interval [R,A] of a specific valid trial, we applied the
cumulative trapezoidal numerical integration function in order to compute velocity.
In Fig. 3.6, we reported the velocity components obtained by applying this function
to the acceleration values of a trial. After this step, we computed the magnitude
(which represents the velocity module) from its components, always shown in
Fig. 3.6. Nevertheless, the application of an integration function could lead to
an incremental numerical error due to a possible bias (i.e., additive noise) present
in the acceleration (visible in Fig. 3.6), whereby the x component and magnitude of
velocity present increasing monotonous curves rather than the expected bell shape.
Such a phenomenon may lead to the creation of a “new” and “false” maximum
peak at the end of MD, making the computation of the central “true” peak quite
challenging. To overcome this issue, we applied the detrend function to the velocity
magnitude, thus removing the signal linear trend and reducing the numerical error
described above. Further details are then reported through an additional and more
general analysis.

In the following, with no loss of generality with respect to the aims of the pro-
cedure here described, we consider the sin(t), 2sin(t), and 3sin(t) waveforms as
exemplar acceleration components signals. Therefore, we proceeded to compute
the velocity components integrating the acceleration ones and obtaining the veloc-
ity magnitudes, reported in Fig. 3.7a. After that, we applied the detrend function
to the velocity magnitude, as shown in Fig. 3.7b. From these results, it is possi-
ble to see that the application of detrend function only modified the signal with
respect to the ordinate axis, but did not change the signal shape. This is because
the velocity magnitude is computed from acceleration components characterized
by neither trend nor bias. Repeating the same analysis, but starting from accel-
eration components where each of these has a constant bias, instead, we obtained
the velocity magnitude before and after the application of detrend function, as
shown respectively in Figs. 3.7c and 3.7d. In particular, in Fig. 3.7c it is possible
to see an incremental numerical error due to the presence of the acceleration bias,
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Figure 3.6: Velocity signals of a trial where the error due to the acceleration bias is
visible in both the x component and the magnitude (increasing monotonous curves
that do not represent the expected bell shape).

as this is amplified by the application of the numerical integration function. Both
the signal shape and the signal peak changed. Nevertheless, after the application
of the detrend function, some of the signal changes due to this numerical error
were removed, as reported in Fig. 3.7d. It is important to note that, comparing
velocity signals in Figs. 3.7b and 3.7d, (a) the peak values changed, but (b) the
peak position in time is the same. From this exploratory analysis of the signals,
hence, it is possible to conclude that, although the velocity values could change
due to the detrend function application, the position in time of the peak velocity
remains stable. This property meets the requirement of individuating the TPV
value set in this work.

As reported in this additional analysis, while the velocity values could change
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(a) (b)

(c) (d)

Figure 3.7: Velocity magnitudes obtained from the integration of the acceleration
vector components, (a)-(b) with and (c)-(d) without a constant bias, (a)-(c) before
and (b)-(d) after applying the detrending.

due to the detrend function application, the position in time of the peak velocity
appeared stable, thus allowing us to calculate the TPV% (“when”). Though, we
were not able to further investigate those indices based on the velocity value (“how
fast”), e.g., the mean velocity, the value of peak velocity. To better clarify this
aspect, we adopted a mathematical approach to assess the reliability and validity
of the calibrated and preprocessed acceleration and the computed velocity values.
As for the calibration and preprocessing analyses (Section 3.6.1), we considered
the data collected by an experimenter not belonging to the cohort involved in
our trials. We measured the distance between the sensor and where the response
keys appear on the touchscreen, corresponding to the actual hand displacement
required to reach the screen. Then, we compared such displacement to the one
computed from the acceleration data. In particular, we calculated the displacement
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Figure 3.8: Displacement values in m computed from the acceleration values with
different methods: constant acceleration, constant velocity, and double integration.

of interest (from R to A, for each valid trial) in three different ways:

(i) Firstly, under the hypothesis of constant acceleration, for each trial, we com-
puted the mean acceleration from R to A, and the displacement as the prod-
uct between the mean acceleration and the square of time required to cover
the distance of interest divided by 2 (i.e., according to the equation of uni-
formly accelerated motion);

(ii) Secondly, under the hypothesis of constant velocity, for each trial, we com-
puted the mean velocity from R to A, and the displacement as the product
between time from R to A and mean velocity (i.e., according to the equation
of uniform motion);

(iii) Finally, for each trial, we computed the displacement by applying a dou-
ble numerical integration to acceleration, using the cumulative trapezoidal
numerical function, which does not rely on any hypothesis regarding accel-
eration or velocity.
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Method M SD Actual displacement

Constant acceleration 0.76 0.28

0.46Constant velocity 0.38 0.15

Double integration 0.34 0.16

Table 3.2: Computed and actual displacement values in m (ntrials = 37).

To calculate the displacement following the aforementioned procedures, the signal
was not subject to detrending. The detrending, in fact, can affect velocity compo-
nent values, which is not acceptable when aiming to compute its magnitude. For
this reason, the contribution of the numerical errors may be expected to appear in
the displacement. The boxplot of the calculated displacement values is visualized
in Fig. 3.8. Then, we computed the Mean (M) and the Standard Deviation (SD)
among all trials (37 trials with answer, valid trials). For each method, these results
are reported in Table 3.2 and compared to the actual displacement. Notably, the
mean values are distant from the actual displacement and the standard deviations
are quite high, especially under the hypothesis of constant acceleration. This could
be due to the fact that the assumption of neither a constant acceleration nor a
constant velocity is appropriate to the actual characteristics of our task. Moreover,
a double integration to compute displacements from acceleration can lead to large
numerical errors, making this a weak method to assess the reliability and validity
of velocity values. Indeed, this computation could be principally impeded by the
accumulation of the numerical errors discussed so far. Therefore, with this study,
we were not able to confirm nor disprove the reliability and validity of acceleration
and velocity values obtained from a setting based on a wrist-worn sensor. Never-
theless, we were able to show that such an approach may be put to good use to
obtain the peak velocity timing (“when” in time) information, e.g., time to peak
velocity, that may be fruitfully used to analyze the response of a subject.

Ultimately, we aimed to exclude possible extreme TPV% values that would be
due to numerical errors, in cases where the detrend function was not sufficient to
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remove their effect on the signal. Furthermore, we aimed to remove those TPV%

values that were unlikely related to task-related human reaching movements, but
rather potentially ascribable to extra-task movements. For these reasons, the a-
priori inclusion criteria for valid TPV% values comprehended those values between
5% and 95%.

3.6.3 Statistical approach and analysis

Once the TPV% values were computed, along with RT and MD values, and the
answer accuracy observed, we proceeded with different analyses exploiting statis-
tical approaches. In light of the novelty of our paradigm, an exploratory approach
was elected to test different potential hypotheses through a model comparison. Im-
portantly, differently from the second study (with children with TD and ADHD),
during the first study (with neurotypical adults) the objective was not only to
analyze the participants’ movements during the adapted Go/No-Go task but also
to test and validate the experimental procedure, task and apparatus considered,
which is based on the use of a low-cost wrist-worn 3-axis accelerometer.

Neurotypical adults For the first study, we investigated whether the TPV%

was influenced by the random effect of participants (i.e., interpersonal variabil-
ity), as well as the fixed effect of Condition (within-subjects, two levels categorical
factor: dominant vs. non-dominant). Moreover, we checked for the effect of the
random time before the central stimulus onset. The latter was a continuous inde-
pendent variable that we named StimulusRandomTime. Each research hypothesis
was specified as a statistical model, such that the statistical evidence of the for-
malised models was evaluated using information criteria [144].

Mixed-effects models were employed to account for the repeated measures de-
sign of the experiment (i.e., trials nested within participants). In particular, gen-
eralized mixed-effects models were used considering the Beta distribution (with
logit link function) of our dependent variable (TPV%). Indeed, the TPV% con-
tained continuous proportions on the interval (0, 100), easily rescaled in the interval
(0, 1) (TPV), and can be approximated by a Beta distribution [145]. The statisti-
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Model Dependent variable Random effect Fixed effects

mb0 TPV Participants −

mb1 TPV Participants Condition

mb2 TPV Participants Condition + StimulusRandomTime

mb3 TPV Participants Condition × StimulusRandomTime

Table 3.3: Model specification for the first study with neurotypical adults.

cal analyses were conducted using the R version 4.0.2 [146], with the glmmTMB
package [147] to run the model comparison.

Therefore, we specified four nested models considering the TPV as the depen-
dent variable and the random effect of participants:

• mb0 (null model) specified the hypothesis of no difference due to the inde-
pendent variables and only accounted for the random effect of participants;

• mb1 specified the hypothesis of a difference due to the Condition effect;

• mb2 specified the hypothesis of a difference due to the additive effect of
Condition and StimulusRandomTime;

• mb3 specified the hypothesis of a difference due to the interaction effect of
Condition and StimulusRandomTime.

In addition, the details of the model specification are depicted in Table 3.3. The
four models were compared both through the Akaike weights (i.e., the probability
of each model, given the data and the set of considered models) [144], using the
R package AICcmodavg [148] and a likelihood ratio test (anova(mb0, mb1, mb2,

mb3) R function).

Children with TD and ADHD For the second study, we considered 4 de-
pendent variables. An exploratory approach was elected to test different po-
tential hypotheses linking each dependent variable to the predictors of interest.
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Through separated sets of model comparisons, different research hypotheses were
specified as statistical models, and their statistical evidence was evaluated using
information criteria [144]. We separately investigated whether each dependent
variable (Accuracy, RT, MD, TPV) was influenced by the fixed effects of Condi-
tion (within-subjects, two levels categorical factor: dominant vs. non-dominant),
Group (between-subjects, two levels categorical factor: ADHD vs. TD), and Age
(continuous numeric variable). All models accounted for the random effect of
participants (i.e., interpersonal variability).

Generalized mixed-effects models were employed to account for the repeated
measures design of the experiment (i.e., trials nested within participants, which
has been included as a random effect in the analyses) and specify the distribution
of each dependent variable. For each dependent variable, a set of models were
compared through the Akaike weights [144], using the AICcmodavg [144] R pack-
age. Then, likelihood ratio tests were used to compare the chosen models and test
the effects predicted by the best model. In addition, as an index of goodness of
prediction, conditional R2 (the ratio of variance explained by fixed and random ef-
fects over total variance) and marginal R2 (the ratio of variance explained by fixed
effects over total variance) were calculated to quantify the variance explained by
the whole model (including the contribution of individual variability) or the fixed
effects only (excluding the contribution of individual variability) [149]. Higher per-
centages of explained variance indicate a stronger strength of association between
the dependent variable and the predictors, with the selected model making better
predictions. The analyses have been run with R, version 4.0.2 [150].

Therefore, we considered the five models that follow:

• m0 (null model) specified the hypothesis of no difference due to the indepen-
dent variables and only accounted for individual variability;

• m1 specified the hypothesis of a Condition effect;

• m2 specified the hypothesis of additive Condition and Group effects;

• m3 specified the hypothesis of additive Condition, Group and Age effects;
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• m4 specified the hypothesis of a two-way interaction effect between Condition
and Group, with the additive Age effect.

3.7 Results

3.7.1 Neurotypical adults

The 19 participants provided 2, 962 correct responses, 54 incorrect ones (24
in the dominant condition and 30 in the non-dominant condition), 107 omissions
(78 in the dominant condition and 29 in the non-dominant condition), and 22

anticipations [3]. As aforementioned in Section 3.6, we only included responses
whereby the TPV% was within the 5-95% range, thus considering extremes as due
to extra-task movements. At the end of this procedure, we excluded 59 out of
2, 962 trials.

RT, MD, and TPV Minimum and maximum values, Means (M) and Standard
Deviations (SD) of RT, MD, and TPV% of correct responses in each condition are
reported in Table 3.4. The distribution of TPV values in each condition is shown
in Fig. 3.9. The model comparison outputs, namely the degree of freedom (Df),
Akaike weights (AICcWt), chi-squared test statistic values (χ2), and p-values (p)
are reported in Table 3.5.

The most plausible model, given the data and the set of considered models,
was mb2 (AICcWt = 0.44), which included the random effect of participants, the
additive effects of Condition (statistically significant according to p < .001), and
StimulusRandomTime (statistically non-significant according to p = .08); p-values
from summary(mb2) R function. These effects are depicted in Fig. 3.10.

3.7.2 Children with TD and ADHD

Children with TD (26 participants) provided 4, 104 valid responses out of 4, 526
total trials (91%). Children with ADHD (17 participants) provided 2, 472 valid
responses out of 3, 023 total trials (82%) [6]. This demonstrates both successful
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RT MD

Condition ntrials min max M SD ntrials min max M SD

Dominant 2,253 62 ms 1,373 ms 558 ms 136 ms 2,253 266 ms 1,562 ms 500 ms 167 ms

Non-dominant 709 335 ms 1,365 ms 601 ms 163 ms 709 291 ms 1,562 ms 591 ms 207 ms

TPV%

Condition ntrials min max M SD

Dominant 2,213 5.04% 94.36% 40% 15%

Non-dominant 690 6.9% 94.31% 45% 17%

Note: TPV% includes less trials due to the exclusion of extreme values

Table 3.4: Neurotypical adults, descriptive statistics (nparticipants = 19).

Model Df AICcWt χ2 p

mb0 3 0.00

mb1 4 0.20 49.70 <0.001

mb2 5 0.44 3.58 0.06

mb3 6 0.36 1.63 0.20

Table 3.5: Neurotypical adults, model comparison.

task competition (with our task being adequate for both groups) and a low rate
of discarded data. As aforementioned in Section 3.6, we only included responses
whereby the TPV was within the 5-95% range, thus considering extremes as due to
extra-task movements. In addition, for the children participants, that may perform
more extra-task movements, we planned to exclude those responses whereby either
RT or MD was less than 100 ms, being them ascribable to anticipation. At the end
of this procedure, from valid trials performed by both groups, we excluded 217 out
of 6, 576 responses (3.3%), and the excluded responses were not further analyzed.
Then, the final dataset comprehended 6, 359 observations. In particular, children
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Figure 3.9: Neurotypical adults, distribution of the TPV values (ntrials = 2, 903).

with ADHD provided 2, 234 correct and 137 incorrect (i.e., the wrong answer
was provided) responses, while children with TD provided 3, 777 correct and 211

incorrect responses.

Accuracy Percentages of correct responses according to Group and Condition
are reported in Table 3.6. Model comparison was run with the glmmTMB [147] R
package. The binomial distribution was specified to account for the binary nature
of the dependent variable (1 = correct, 0 = incorrect). According to Akaike weights
(AICcWtm0 < .01; AICcWtm1 = .39; AICcWtm2 = .14; AICcWtm3 = .15;
AICcWtm4 = .14), the best model was m1 (39% probability of being the best
model; χ2 = 369.3; p < .001), which revealed a significant effect of Condition
(p < .001). As visualized in Fig. 3.11, accuracy was reduced in the non-dominant
condition. Conditional R2 (the ratio of variance explained by fixed and random
effects over total variance) indicates that m1 explains 33% of variance, whereas
marginal R2 (the ratio of variance explained by fixed effects over total variance)
indicates that Condition explains 19% of variance. Therefore, 14% of variance was
explained by individual variability (i.e., the random effect of participants).
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Figure 3.10: Neurotypical adults, model mb2, Condition and StimulusRandomTime
effects on the TPV (nparticipants = 19; ntrials = 2, 903).

RT, MD, and TPV We further explored kinematic features of correct responses
to investigate whether, beyond accuracy, children with ADHD would show subtle
motor atypicalities. Means (M) and Standard Deviations (SD) of RT, MD, and
TPV of correct responses in each condition and group are reported in Table 3.7.

In addition, we conducted a visual inspection of the velocity shape and trend
across movement time, describing both group and individual differences. At the
group level, children with ADHD show a flatter velocity profile over the time
course of the movement, with a less evident peak velocity at the beginning of the
movement. Due to the high number of images related to this analysis, all the plots
and the relative discussion are reported in Appendix 3.A.

RT Model comparison was run with the glmer function of lme4 [151] R package.
The gamma distribution was specified to account for the positively skewed nature
of the dependent variable. According to the Akaike weights (AICcWtm0 < .001;
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Accuracy

Group Condition M SD

ADHD
Dominant 98% 3%

Not-dominant 83% 16%

TD
Dominant 98% 2%

Not-dominant 85% 11%

Table 3.6: Children with ADHD and TD, descriptive statistics of accuracy levels,
percentage of correct responses (nADHD = 17; nTD = 26).

AICcWtm1 < .01; AICcWtm2 < .01; AICcWtm3 = .19; AICcWtm4 = .80), the
best model is m4 (80% probability of being the best model; χ2 = 4.9; p = .03),
which reveals a significant interaction between Condition and Group (p = .03),
and a significant effect of Age (p < .001). As visualized in Fig. 3.12, children
with TD showed increased RT in the non-dominant compared to the dominant
condition, thus devoting more time to motor planning when the response required
inhibition. This pattern was not present in children with ADHD, who did not
differentiate RT depending on Condition. Moreover, there is a negative associa-
tion between RT and Age, with RT decreasing at older ages, regardless of group.
Conditional R2 (the ratio of variance explained by fixed and random effects over
total variance) indicates that m4 explains 37% of variance, whereas marginal R2

(the ratio of variance explained by fixed effects over total variance) indicates that
Condition×Group and Age explain 28% of variance. Therefore, 9% of variance is
explained by individual variability (i.e., the random effect of participants).

MD Model comparison was run with the glmer function of lme4 [151] R package.
The gamma distribution was specified to account for the positively skewed nature
of the dependent variable. According to the Akaike weights (AICcWtm0 < .001;
AICcWtm1 < .29; AICcWtm2 < .41; AICcWtm3 = .22; AICcWtm4 = .08), the



70 CHAPTER 3. SETTING THE STAGE FOR A ML TASK

Figure 3.11: Children with ADHD and TD, predicted effect of Condition on accu-
racy (ntrials = 6, 359; nADHD = 17; nTD = 26; estimated marginal means with
whiskers representing 95% confidence intervals).

best model is m2 (41% probability of being the best model; χ2 = 2.7; p = .1), which
reveals a significant effect of Condition (p < .001), and a non-significant effect of
Group (p = .09). As visualized in Fig. 3.13, MD increased in the non-dominant
condition compared to the dominant condition. Conditional R2 (the ratio of vari-
ance explained by fixed and random effects over total variance) indicates that m4
explains 38% of variance, whereas marginal R2 (the ratio of variance explained by
fixed effects over total variance) indicates that Condition and Group explain 20%

of variance. Therefore, 18% of variance is explained by individual variability (i.e.,
the random effect of participants).

TPV Model comparison was run with the glmmTMB [147] R package. The
beta distribution was specified to account for the nature of the dependent variable
(continuous proportions on the interval 0 : 1). According to the Akaike weights
(AICcWtm0 < .01; AICcWtm1 = .08; AICcWtm2 = .06; AICcWtm3 = .04;
AICcWtm4 = .83), the best model is m4 (83% probability of being the best model;
χ2 = 8.3; p = .004), which reveals a significant interaction between Condition and
Group (p = .004), and a non-significant effect of Age (p = .3). As visualized in
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RT MD TPV

Group Condition M SD M SD M SD

ADHD
Dominant 652 211 565 217 447 182

Not-dominant 653 217 734 242 456 228

TD
Dominant 691 198 514 190 460 175

Not-dominant 716 217 656 242 504 215

Table 3.7: Children with ADHD and TD, descriptive statistics of correct responses,
values in ms (ntrials = 6, 011; nADHD = 17; nTD = 26).

Fig. 3.14, TD children showed increased TPV in the non-dominant compared to
the dominant condition, thus devoting more time to motor planning when the re-
sponse required inhibition. This pattern was not present in children with ADHD,
who did not differentiate TPV depending on Condition. At both group and indi-
vidual level, further graphical inspection of velocity shape across time is described
in Appendix 3.A. Conditional R2 (the ratio of variance explained by fixed and ran-
dom effects over total variance) indicates that m4 explains 71% of variance, whereas
marginal R2 (the ratio of variance explained by fixed effects over total variance)
indicates that Condition×Group and Age explain 9% of variance. Therefore, 62%
of variance is explained by individual variability (i.e., the random effect of partic-
ipants).

3.8 Discussion

3.8.1 Neurotypical adults

In the first study, we explored neurotypical adults’ movements during the im-
plemented task, an adapted Go/No-Go paradigm (details in Section 3.4.4) [3].
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Figure 3.12: Children with ADHD and TD, predicted effects of Condition×Group
and Age on RT (ntrials = 6, 011; nADHD = 17; nTD = 26; RT is expressed in
seconds; estimated marginal means with whiskers representing 95% confidence
interval; for the Age effect shaded area represents the 95% confidence interval).

Motor planning and motor control The descriptive statistics indicated that
participants performed the non-dominant response (compared to the dominant
one) by increasing both the RT (Reaction Time, time devoted to motor planning)
and MD (Movement Duration, time of motor execution). However, these two
indices are not sufficient to disentangle the planning and control phases of the
movement. Indeed, given that motor planning and control overlap during the
MD [94], we analyzed the Time to Peak Velocity (TPV) to further distinguish
these two mechanisms. As a relative asymmetry index, whether the TPV occurred
earlier or later over the MD would reflect more either planning or control. From
our exploratory model comparison, we can expect people to show bigger TPV in
the non-dominant compared to the dominant condition. This evidence supported
the idea that neurotypical adults require greater motor planning rather than an
online adjustment to inhibit a prepotent response, selecting and performing an
alternative one. Our results are consistent with the extant literature, whereby
planning is devoted to processing cognitive information and control is dedicated
to getting on a target and adjusting to its specific spatial features [94].
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Figure 3.13: Children with ADHD and TD, predicted effects of Condition on MD
(ntrials = 6, 011; nADHD = 17; nTD = 26; MD is expressed in seconds; estimated
marginal means with whiskers representing 95% confidence interval).

Stimulus random time The most plausible model given our data and set of
specified models showed that when people had to wait for more to start the trial
(StimulusRandomTime), they increased the movement time devoted to motor plan-
ning. Although not significant from a statistical point of view, this effect suggests
that a longer preparation time before the trial starts might allow participants to
increase the time devoted to motor planning. We can interpret this finding in light
of the massive literature about the preparatory effect of the fore period, which
is the time from a warning signal and a “Go” stimulus, and is known to affect
response times [152]. In our study, participants had to place their hand on the
presence sensor to signal their readiness to start the next trial. The time instant
they pressed the sensor can be seen as an active warning signal that pre-activates
the sensorimotor system. After a variable random time interval (StimulusRandom-
Time), the central “Go” stimulus appeared to trigger participants’ responses. We
can speculate that, within 2, 000 ms, a longer preparation time increases adults’
motor planning. As the fore period effect and the temporal preparation abilities
change across development, future studies could expand on the ontogeny of these
mechanisms [153].
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Figure 3.14: Children with ADHD and TD, predicted effects of Condition×Group
and Age on TPV (ntrials = 6, 011; nADHD = 17; nTD = 26; TPV is expressed
as a percentage within the 0 : 1 range; estimated marginal means with whiskers
representing 95% confidence interval).

Limitation It is worth mentioning that this first study has some limitations:
(a) our sample did not include a balanced number of women and men, thus pre-
venting us to make any claims about potential gender differences, that should be
furthered in future studies, and (b) we could not base our sample size specification
on previous literature that tested motor inhibition through the TPV%. Therefore,
our findings should be interpreted as preliminary and exploratory indications to
develop future confirmatory studies.

3.8.2 Children with TD and ADHD

In a second study, we explored the mechanisms underlying the inhibition of a
prepotent motor response, which is frequently reported to be affected in children
with Attention Deficit and Hyperactivity Disorder (ADHD) [6]. The performance
of ADHD and Typical Development (TD) groups at our adaptation of a Go/No-Go
paradigm (details in Section 3.4.4), showed both similarities and differences.
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Accuracy Both children with ADHD and TD made more errors in the non-
dominant compared to the dominant condition. This indicates that the task was
effective in inducing a prepotent response in the dominant condition, which was the
more frequent one, and facilitated by the requirement to match the “Go” stimulus
and the response option by color. Children with ADHD and TD were equally
accurate in selecting the correct response so no group difference was found in
accuracy levels. This unexpected result could be due to the ease of the task, which
required a rather simple motor response, as also evidenced by the high percentages
of correct responses. In tasks with greater time pressure or greater complexity of
the motor action required to answer, we could expect more marked differences
between the two groups. Although the task was based on the central properties of
Go/No-Go (i.e., more frequent administration of the dominant condition), some
differences may have made our task easier than traditional ones at the level of
inhibition of prepotent responses. In particular, responding by reaching rather
than quickly pressing a button may have allowed participants more time to process
the cue, recall the instructions, and redirect their response during movement. In
addition, this may explain the high accuracy, and at the same time allowed us to
study not only the reaction time (movement pre-planning) but also what happens
during movement (motor planning gradually gives way to control of the ongoing
movement).

Motor planning Beyond accuracy, the main findings of this study revealed
that the ADHD group showed different motor patterns that possibly indicate re-
duced motor planning compared to the TD group. In the non-dominant condition
compared to the dominant condition, TD children spent more time planning the
movement, which resulted in longer Reaction Time (RT) and greater percent Time
to Peak Velocity (TPV%). Indeed, a higher relative time to peak velocity, i.e.,
greater TPV, is an efficient strategy of the motor system, that reduces the time
and resources needed for online movement correction [154]. In addition, children
with ADHD did not modulate RT and TPV according to condition, not dedicat-
ing more time to motor planning when needed to inhibit the prepotent response.
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This subtle lack of flexibility in adjusting the motor and cognitive strategies to the
task demands can be interpreted as a marker of motor and cognitive impulsivity.
Our findings are in line with previous literature showing that atypical activation
of premotor systems may contribute to impaired response inhibition in children
with ADHD [155]. There is an interesting debate in the literature on the link be-
tween motor preparation and spatial attention [156, 157], which could be further
explored to understand the link between cognition and movement in ADHD.

Motor control Across both groups, children showed increased Movement Du-
ration (MD) in the non-dominant vs. dominant condition. This indicates that
inhibitory processes take place during movement execution. Throughout the move-
ment, motor planning gradually gives way to control and monitoring of the ongoing
movement [94]. To better disentangle how much of the movement time is devoted
to planning or control, we employed the percent Time to Peak Velocity (TPV%) as
a relative asymmetry index. Theoretical reaching trajectories starting and ending
at full rest have a bell-shaped velocity path, with the first half of MD spent ac-
celerating and the second one decelerating, resulting in a 50% TPV [122, 121]. In
actual reaching movements, distinct characteristics of the target differently affect
the movement acceleration-deceleration symmetry. Whereas physical precision of
the movement (e.g., grasping small objects) requires more control and longer decel-
eration [158], cognitive load affects the early stages of movements, thus requiring
more planning [159]. The smaller TPV captured across conditions in the ADHD
compared to the TD group indicates a higher portion of movement being dedi-
cated to the deceleration phase, which usually stands for motor control [94, 158].
Increased movement variability in children with ADHD [160] has often been inter-
preted as an indication of poor motor control, when instead it could be a compen-
satory strategy that, given a reduced planning, requires more online adjustments
during movement execution. To better understand “how” children with ADHD
regulate movement in its final phase, future studies would benefit from the use of
additional kinematic indices that capture online motor correction more precisely
(e.g., the number of direction changes and acceleration/deceleration units).
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Although kinematic indices are widely used as a mirror of underlying cognitive
mechanisms, it is even more informative to combine them with the study of neural
correlates [161]. Previous evidence suggests that increased activation of prefrontal
areas can help children with ADHD compensate for atypical activation of premotor
areas in Go/No-Go tasks [155]. It is unclear whether this can be attributed to
planning or control mechanisms. The study of EEG components and the timing of
neural activities that precede and take place during responses to cognitive tasks can
be coupled with kinematic indices to shed light on planning-control dynamics [162,
163]. To the best of our knowledge, little is still known about the specifics of such
mechanisms in ADHD.

Children with ADHD might employ compensatory strategies for planning dif-
ficulties, which may be sufficient to achieve good accuracy in very simple tasks as
the one employed in our work. Indeed, they chose between two alternatives that
differed only in one motor (i.e., the movement direction: reaching the key to the
right or to the left of the central stimulus) and cognitive (i.e., the response key
color) parameter. However, this might not be sufficient in more naturalistic situ-
ations, in which alternative choices differ in more complex kinematic parameters
(e.g., using the right arm or the left arm to respond), or require finer cognitive
processing (e.g., selecting the most appropriate behavior according to a specific
social context).

Age From the obtained results, it is also possible to see a progressive reduction in
RT as the age of participants increases, which is consistent with decades of findings
from developmental studies [164]. This suggests that motor planning becomes
globally more effective and rapid with age, and therefore requires fewer cognitive
resources. Given the low sample size, the statistical models tested included the
age variable as an additive effect (i.e., irrespective of experimental condition and
group membership). Thus, we accounted for the differences attributable to the
age of participants in the accuracy and overall kinematic profile. However, we did
not specifically assess the role of age in interaction with the other predictors (i.e.,
experimental condition and group membership).
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Limitation It is worth mentioning that also this second study has some limita-
tions. As we were not interested in assessing gender differences, (a) our sample
is not balanced by participant gender, which reduces its representativeness of the
general population. In addition, the sample size was determined by the number
of families that agreed to participate in the study. Given the complexity of the
experimental design (i.e., multiple dependent and independent measures are of
interest), its exploratory nature, and the paucity of prior evidence on which to
estimate expected effect sizes and appropriate sample sizes, (b) our sample size
may be insufficient to reveal further differences between groups. Further inferen-
tial research will be needed to confirm the considerations presented in this work.
Nevertheless, research on developmental populations with specific conditions fre-
quently suffers from small sample sizes and even single-case studies. Replication
of studies, meta-analyses, and multi-lab projects would help deal with this issue in
the long run of knowledge acquisition, whereby every study contributes to a piece
of the puzzle.

3.9 Conclusions

The present work wants to investigate the relative contribution of motor plan-
ning and control to the inhibition of a prepotent response. Before starting with
the analyses, we concentrated on implementing a task to assess the selection or
inhibition of a prepotent response, and a Go/No-Go paradigm was adapted to
this. Successively, we focused on the experimental procedure, task and appara-
tus, and methods to obtain reliable results. Importantly, in every single phase of
the research, we always proceeded with the aim of setting a stage for a machine
learning task, waiting to reach a sufficient amount of data.

In addition, the present work employed a low-cost wearable 3-axis accelerom-
eter to investigate human motor inhibition. The inertial sensors built with 3-axis
accelerometers, gyroscopes, and magnetometers have been indicated as promising
commercial tools to study the kinematics of human movements and overcome the
constraints of expensive motion capture systems. Although they have the poten-
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tial of being portable and wearable, they appeared to provide accurate and reliable
data only for some kinematic indices, such as the value and timing of peak veloc-
ity [112]. On one hand, based on our kinematic measurements and analyses, the
kinematic indices built upon the velocity value did not appear sufficiently reliable
and valid (Section 3.6.2). On the other hand, however, those related to the ve-
locity shape over time seemed to be valid indices. Indeed, our average Time to
Peak Velocity percentage (TPV%) was consistent with those reported by previ-
ous studies, similar tasks, and motion capture systems with the highest level of
precision [143]. Therefore, we support the use of a commercial and low-cost 3-
axis accelerometer to calculate the TPV% and compare participants’ performance.
Then, future studies could utilize the present method and apparatus to disentan-
gle the planning and control mechanisms of motor actions that involve different
neuropsychological abilities, thus providing fundamental insights into the design
of motor and psychological interventions.

3.9.1 Neurotypical adults

Overall, the first study of this work expands on our understanding of which
motor strategy is successful for neurotypical adults to inhibit prepotent reach-
ing movements [3]. This would lay the foundations for investigating the atypical
strategies implemented by individuals and clinical groups with inefficient motor
inhibition. Although motor inhibition is affected in several neurodevelopmental
disorders, the underlying multifaceted mechanisms shape unique phenotypes that
require appropriate and specific interventions [165]. For instance, inhibitory skills
are linked to individual traits such as impulsiveness [166], and inhibitory con-
trol deficits have been found through Go/No-Go tasks in autism spectrum disor-
ders [167], whereby difficulties in inhibiting prepotent responses seem to be asso-
ciated with higher-order repetitive behaviors [168]. Moreover, inhibition is part
of a broader category of control processes named executive functions, which are
distinguished but correlated [169], and play a fundamental role in everyday ac-
tion selection and execution. Indeed, although difficulties and impairments in the
action domain are common to several clinical conditions (i.e., multiple sclerosis,
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Alzheimer’s disease, Parkinson’s disease), the underlying sensory, motor and cog-
nitive mechanisms might dramatically differ among patients [170, 171, 172, 173].

3.9.2 Children with TD and ADHD

In a second study, instead, we explored the motor strategy to inhibit prepo-
tent reaching movements for children with ADHD and TD, considering the same
experimental procedure, task, and apparatus [4, 5, 6]. Children with ADHD can
exhibit similar accuracy to the TD control group in simple tasks tapping on the in-
hibition of prepotent motor responses. However, accurate inhibition appears to be
achieved through different mechanisms, including less motor planning and greater
ongoing control of movements. Although online control of one’s own responses may
be sufficient to compensate for planning difficulties in simple experimental tasks,
this could profoundly impact the behavior of children with ADHD in everyday
life contexts, which involve very complex choices among numerous possible alter-
natives. Moreover, motor and cognitive impulsivity might be related to broader
atypicalities, ranging from sensory atypia and stereotypies to executive difficulties
in everyday tasks. For this reason, it is fundamental to understand the mecha-
nisms underlying impulsivity and design interventions that are individualized on
the child’s profile, and synergistically target the motor and cognitive dimensions of
inhibition. To this end, the use of portable, user-friendly, and low-cost kinematic
sensors (e.g., a wrist-worn accelerometer) offers great possibilities for neuropsycho-
logical assessment and treatment, being also affordable for local clinical services.
In sum, this study opens the door to further research that will help the scientific
and clinical community understand and target impulsivity, leading to benefits on
children’s developmental trajectory and well-being.

3.10 Future works

Starting from this work, further research is needed to investigate the implica-
tions of atypical motor and cognitive inhibition on the daily life, learning, and so-
cial skills of children with ADHD. Future studies with appropriate sample sizes and
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broader age ranges may further investigate developmental changes in inhibitory
strategies, also exploring potential ADHD-related differences. For instance, some
children with ADHD show stereotypies which are involuntary, restricted, and repet-
itive patterns of behaviors that limit the child’s resources to learn and practice
various, appropriate and goal-directed actions [174, 175, 176]. Specifically, mo-
tor stereotypies are present in both neurodevelopmental conditions and typical
development [177], and might be related to ineffective motor planning [178] and
inhibitory difficulties [179]. Indeed, motor-related cortical potentials in premotor
areas, which anticipate voluntary motor actions, are found to be absent before
stereotypy onset in typical development [178]. Stereotypies are mostly studied
in Autism Spectrum Disorder (ASD), as they are core symptoms of those con-
ditions [105]. However, they are frequently found in ADHD, and show similar
characteristics across ASD and ADHD [180], which often co-occur, share clinical
manifestations, and entail impairments in overlapping mechanisms [181, 182]. No-
tably, stereotypies can be related to cross-diagnostic sensory, motor, and cognitive
mechanisms. Atypical inhibition of prepotent responses is correlated with repeti-
tive behaviors, with differences between higher-order and sensorimotor stereotyp-
ies [168, 183]. Moreover, stereotypies are associated with sensory difficulties [184],
which can be present in ADHD [185, 186, 187], and are bounded to the motor
and cognitive processes through complex, dynamic, and multidirectional relation-
ships. We can speculate that those children with greater stereotypies could have
less effective sensory and executive profiles, as well as motor planning difficulties.
They might need to devote more resources to motor control to effectively inhibit
a prepotent response. In [188], for example, our works [3, 6] are cited for research
regarding agency and reward across development and in autism. The authors, in
particular, aim at disentangling the role of agency and reward in driving action
selection of autistic and non-autistic children and adults, considering different vari-
ables (among which reaction time measures) and a free-choice paradigm. Future
studies may employ our paradigm to better understand whether atypical cognitive
and motor inhibition may contribute to broader individual differences in everyday
sensory, cognitive, and social functioning. Studies with more hypothesis-driven
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approaches and an appropriate sample size would allow us to draw clearer, more
inferential conclusions on the complex relationships between these variables.

Shifting to the experimental apparatus considered, this work opens the door
to important application challenges in bringing these methods and knowledge into
clinical practice. It would be crucial to integrate the kinematic analysis into the
classical neuropsychological tests that evaluate executive functions, to better un-
derstand how a response to a given test is planned and adjusted along the way.
In this regard, the distinction between reaction time and movement duration is a
promising perspective for neuropsychological research, as it allows a distinction to
be made between two different mechanisms underlying a response (i.e., planning
and control). Moreover, this method would facilitate not only the identification
of specific difficulties and the monitoring of the treatment effects but also serve
as an intervention tool itself. For instance, using kinematic measures as biofeed-
back could promote patients’ awareness of their behaviors and facilitate learning
strategies to modify them. Although the use of inexpensive and portable kine-
matic sensors removes one of the barriers to its use in the clinic, the difficulty of
analyzing and interpreting the raw data obtained with such instruments remains.
To overcome this obstacle, it will be necessary for researchers to develop and make
available user-friendly software that processes the raw kinematic data and com-
pute performance indices that are interpretable by clinicians. To this end, we first
need large-scale validation studies that provide normative values and risk indices
to evaluate an individual’s performance.

Along the same line, from a performance perspective, future studies would
benefit from the use of additional kinematic indices that capture online motor cor-
rection more precisely, e.g., number of direction changes, acceleration/deceleration
units. Again, future studies might include video recordings and offline coding of
the experimental sessions, thus (a) checking for potential cases where participants
show extra-task movements that could result in anomalous trials, and (b) further
increasing the accuracy of the preprocessing from a methodological point of view.
In particular, to remove the gravity component from the acquired acceleration,
future studies could use a combination of an accelerometer and gyroscope. In this
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way, data related to the orientation of the accelerometer would be available in order
to remove the gravitational acceleration. However, the gyroscope would not solve
the numerical errors driven by possible accelerometer bias and numerical mathe-
matical functions. These issues could be addressed from an algorithmic point of
view, with the evaluation of other methods and models in order to process raw
accelerometer data in a way that could reduce the numerical errors. Here is the
key point: the learning algorithms, an algorithm class that could obtain promising
results with huge amounts of raw data.

Machine learning algorithms could study different input signals and learn in-
formation from the data. In this case, a supervised data set would incrementally
improve the results, but also an unsupervised approach could be taken into account.
The idea of applying machine learning algorithms is where “we arrive” from this
work, but it is also from where “we start”. Importantly, in fact, not to forget the
idea of this work of setting from scratch the stage for a machine learning task to
explore a specific aspect of human reaching movement (the distinctive contribution
of motor planning and control) through an accelerometer-based analysis.
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3.A Appendix - Velocity shape and trend

We here conduct a visual inspection of our data, with a specific focus on velocity
shape and trend across movement time [6]. Notably, only correct trials (i.e., trials
in which the participant gave the correct answer) are considered. Firstly, we
plotted the data of the two groups separately, children with Attention Deficit and
Hyperactivity Disorder (ADHD) and with Typical Development (TD). Secondly,
we plotted individual data to explore individual variability. As explained in the
previous Section 3.6.2, we do not focus on velocity magnitude values, but rather
focus on velocity curve shape and trend in time [3].

Group level At the group level, i.e. children with ADHD and TD, each Figure
is composed of 3 graphs, one for each row. The first and second graphs constitute
a boxplot composition from trials in either the dominant (red) or non-dominant
(blue) condition, respectively. The x-axis represents the movement time (in ms),
whereby the instant in which the participant starts moving (R) is aligned with the
0 value. The y-axis, instead, shows the velocity values (in m/s). For each 10 ms
of movement time (corresponding to the accelerometer sampling rate), we plotted
a boxplot composed of data from all equivalent time points of the different trials.
Although the y-axis value ranges were affected by outliers, they were excluded
from the visualization for the sake of graphic clarity and readability. For instance,
in case some blank spaces appear in the superior and inferior parts of a boxplot,
some invisible outliers are present. As we focus on the velocity shape and trend
across time, and do not aim to compare its magnitude across different graphs, we
did not set a fixed y-axis range for all the Figures. We have therefore avoided
a flattening of the boxplots resulting from variability between participants. As
not all the trials have the same movement duration, the boxplots are composed of
varying amounts of data. We consider this fact in the third graph, which represents
the number of trials contributing to each time instant of each boxplot, in either
the dominant (red) or non-dominant (blue) condition, respectively.
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Individual level At the individual level, in addition to the graphs reported at
the group level, we reported a plot representing velocity for each trial. Each curve
corresponds to a single trial and is visualized in red for the dominant condition,
and in blue for the non-dominant condition. The x-axis represents the movement
time (in ms), while the y-axis shows the velocity values (in m/s). Then, a vertical
green line marks the time instants when the participant ended his/her movement
in each trial (A), the participant touches the screen and provides an answer. Green
lines make it easier to capture movement duration in each trial.

3.A.1 Children with TD and ADHD - Group analysis

From a group-level visualization, it is possible to observe that the TD group
showed a more pronounced bell-shaped velocity pattern at the beginning of move-
ments, as represented by the time-ordered set of boxplots (Fig. 3.15). This seems
in line with previous literature suggesting that children with ADHD do not show a
typical bell-shaped velocity profile, which indicates impaired motor planning [128].

Figure 3.15: Children with TD and ADHD groups.
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3.A.2 Children with TD - Individual analysis

For the 26 children with TD participants, numbers ranging from 101 to 126

are reported as a participant’s identification code (Figs. 3.16, 3.17, 3.18, 3.19,
3.20). From these graphs, it is possible to note that, although all participants
showed a bell-shaped velocity profile at the beginning of movements, there is wide
intra-group variability. The significance of this motor variability, concerning the
individual characteristics of typically developing children, is largely under-studied
in the scientific literature and deserves further investigation to explore the possi-
bility of capturing predictive cues about children’s motor development.

3.A.3 Children with ADHD - Individual analysis

For the 17 children with ADHD participants, numbers ranging from 1 to 17 are
reported as a participant’s identification code (Figs. 3.21, 3.22, 3.23). From these
graphs, it is possible to observe that some participants of this group did not show
an initial bell-shaped velocity pattern (see participants 1, 2, 3, 11, 14). As for the
TD group, profound intra-group variability is visible and would be worth further
investigation. We can speculate that, beyond diagnosis, individual differences in
children’s motor developmental trajectory interact with other neuropsychological
domains to delineate risk profiles that merit clinical attention.

Figure 3.16: Children with TD (part 1).
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Figure 3.17: Children with TD (part 2).
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Figure 3.18: Children with TD (part 3).
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Figure 3.19: Children with TD (part 4).
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Figure 3.20: Children with TD (part 5).
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Figure 3.21: Children with ADHD (part 1).
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Figure 3.22: Children with ADHD (part 2).
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Figure 3.23: Children with ADHD (part 3).
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Chapter 4

A detailed machine learning

application

Considering Socio-Historical aspects in the Cultural Heritage environment

4.1 Introduction

Analog or digital photography? All started with analog photography, but fol-
lowing Kodak’s invention of the first megapixel sensor in 1986, digital photogra-
phy has slowly grown to substitute its analog predecessor, playing a key role in
the early 21st century digital revolution and social transformation [189, 190]. As
a relevant example, photography has modified the way mobile phones are used,
as their integration of digital cameras has at once fostered an exponential growth
of the photos that are shot and uploaded to the Internet every year, as well as a
paradigm shift in mobile communications, which today rely on high-quality mul-
timedia [191, 192, 193, 194]. These phenomena have proven to be game-changers
for how people communicate and the bloom of new fields of research, as both
academia and industry, have exploited such plethora of visual data to develop and
apply computer vision models to a variety of different problems (e.g., face recog-
nition, autonomous driving) [195, 196, 197, 198, 199, 200]. Now, while a wealth of
research is being devoted to the processing and analysis of digital images, much

95
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has to be done regarding analog ones, mainly because printed images may be: (a)
scattered in numerous public and private collections, (b) of variable quality, and
(c) damaged due to hard or continued use or exposure. In addition, any analysis
utilizing image processing and computer vision algorithms require the potentially
quality degrading initial digitization step. Nevertheless, despite the complications
and challenges brought on by analog photographs, they still represent an unparal-
leled source of information regarding the recent past. In fact, no other visual media
has been used as pervasively to capture the world throughout the 20th century, as
the availability of consumer grade photo cameras supported the spread and pop-
ularity of vernacular photography practices (e.g., travel photos, family snapshots,
photos of friends and classes) [201, 202].

Family photo albums represent an example of vernacular photography that has
drawn the attention of researchers and public institutions. Although one of the
most popular practices in photography since the end of the 19th century, an in-
crease in scholarly interest in family photo albums dates back to the early 1980s.
A recent work defines family photo albums a globally circulating form that not only
takes locally specific forms but also “produces localities” that create and negotiate
individual stories [203]. Along the same lines, in another relevant contribution,
family photo albums represent a reference point for the conservation, transmission,
and development of a community Social Heritage [204]. In essence, scholars from
different fields agree in identifying such type of photography collections as capable
to reveal sociological and historical insight and capturing salient features regarding
the evolution of local communities in space and time. They are, however, in most
cases scattered among private homes and only available on paper or photographic
film, thus making their collection and analysis by historians, socio-cultural anthro-
pologists, and cultural theorists very cumbersome. Their study may also become
difficult due to the number of photos that such collections contain: a large-scale
analysis of such photos, in fact, is often impossible, as manual verification of the
characteristics of more than a few hundred pictures would be excessively burden-
some, considering also that in many cases no associated descriptions are available.
This is why contributions in this field often base their findings on the study of
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small corpora of photos [203, 204]. Though, computer-based methodologies could
aid such a process in various ways (e.g., speeding the cataloging step) with the use
of modern computer vision techniques.

In this work, we investigate such an approach, taking as a case study the
socio-historical analysis of a collection of family album photographs. More in de-
tail, we here start introducing the IMAGO dataset, a collection of family album
photos assembled and maintained at the University of Bologna, since 2004 [204].
Then, we proceed to present the design and implementation of a multimedia ap-
plication that, resorting to deep learning models, implements the family album
photo classification for cataloging purposes. Exploiting the proposed application,
the IMAGO dataset has offered the opportunity of experimenting with photos
taken between the years 1845 and 2009, characterized by the fact that each im-
age portrays at least one person. In particular, it has been possible to estimate
their socio-historical content, i.e., the shooting dates and socio-historical contexts
of the images, through a deep learning-based approach without resorting to any
other sources of information.

Nevertheless, this is not all. In fact, starting from this project we proceeded
with additional analysis and applications. More in detail, (a) focusing the analysis
from a different perspective, we verified whether/how a quantitative approach
(i.e., a deep learning-based approach) may be used to synthesize a model apt to
perform specific qualitative analyses (e.g., to determine socio-historical information
of a vernacular photo). Again, starting from the same point, (b) through the
implementation of cross-dataset experiments, we could observe temporal shifts
which may be due to intercultural influence.

Starting from point (a), the relations between quantitative methods and qual-
itative analyses, their potentials, and limits, represent open questions within dif-
ferent research communities [205, 206, 207, 208]. Due to the growth of digital
and digitized data, qualitative analyses are becoming more and more expensive
and difficult to apply to massive datasets, and quantitative methods seem to
be the only way to deal with them [208]. Recent research in computer science
has been focusing on how quantitative methods may be able to support quali-
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tative analyses [208, 209, 210, 211]. However, some criticisms emerge also for
quantitative methods, which may improperly apply the definition of measure-
ment, simply matching tasks, objects, and events to numbers, according to specific
rules [206, 212]. In addition, they may be misleading due to insufficient care in
data collection, feature definition and processing, and adherence to the domain
of interest [205]. Despite such critics, recent research in computer science has
been focusing on how quantitative methods may be able to support qualitative
analyses [208, 209, 210, 211]. In this case, our aim is to contribute to such de-
bate, showing how quantitative and qualitative methods can coexist to carry out
integrated analyses to evaluate more data than those usually examined in a qual-
itative process while adopting a well-defined theoretical foundation. In studying
this kind of phenomenon, scholars usually resort to a small corpus of photos often
gathered and verified adopting custom protocols [203, 204] and draw their conclu-
sions embracing qualitative analyses approaches [213]. The adoption of qualitative
methods has been so far justified by the small number of items socio-historians
have at their disposal and by a general scepticism around the adoption of quanti-
tative methods. We show how mixing qualitative and quantitative methods may
overcome such difficulties. Therefore, we verify whether quantitative techniques,
built resorting to results obtained from qualitative processes, may be employed
to perform specific qualitative analyses, yielding a mixed qualitative-quantitative
one. More in detail, we resorted to our socio-historical classification toolchain [7],
focusing on the estimation of the socio-historical content [214]. In this way, we fo-
cus on the relationship between quantitative and qualitative methods considering
the specific case of socio-historical analyses [8].

Moving to point (b), scholars from different fields agree in identifying family
album photo collections as capable of capturing salient features regarding the evo-
lution of local communities in space and time, representing an unparalleled source
of information regarding the recent past [201, 202]. The different clothes that peo-
ple wear, their haircut styles, the tools and machinery, the natural landscape, the
overall environment, etc., may exhibit the culture of a given time and place. All
of these visual features not only may amount to important cues to estimate the
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shooting year [215] but could be the key point for observing and verifying possible
intercultural influence (i.e., the adoption of different customs and habits in dif-
ferent epochs and countries). To this aim, we always resorted our socio-historical
classification toolchain [7], this time focusing on the dating task (i.e., to estimate
the date a photo was taken) and performing a more thorough analysis with respect
to this task. In fact, we resorted also other datasets and models from [216, 217],
previously presented in the literature, in order to carry out cross-dataset experi-
ments, in addition to the IMAGO dataset and our classifiers. In this way, deep
learning models revealed their potential not only in terms of their performance but
also in terms of their possible applications to intercultural research.

Exceeding our initial expectations, such an approach has revealed its merit in
terms of performance, but also in terms of the foreseeable implications for the
benefit of different socio-historical researches. For these reasons, this contribution
can be set at the intersection of socio-historical studies, multimedia computing, and
artificial intelligence. Finally, with this work and all the related publications [7, 8,
9], we have laid the groundwork for further work, both in the field of user interface
experience [10] and in the field of digital twins [12], respectively. Nevertheless,
details of these works will be given in the next (Chapter 5).

The remainder of this Chapter is organized as follows. In Section 4.2 we review
the state-of-the-art that falls closest to our contributions analyzing, in particular,
those regarding the vernacular photographs, datasets and tasks (Section 4.2.1),
and those regarding quantitative methods for qualitative analysis, potentials and
limits (Section 4.2.2). In Section 4.3 the main contributions of this work are col-
lected. In Section 4.4 we provide a description and the main characteristics of
the dataset introduced and adopted in this work dwelling more on the annotation
process (Section 4.4.1), the socio-historical context (Section 4.4.2), and the data
class distribution (Section 4.4.3). In Section 4.5 we sketch the necessary socio-
historical background in order to carry out the socio-historical analysis taken into
account. Then, we present in Section 4.6 the multimedia tool designed to assist
socio-historians and proceed in Section 4.7 with the method description dividing
data preprocessing (Section 4.7.1), data partitioning (Section 4.7.2), model ar-
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chitecture (Section 4.7.3), and training setting (Section 4.7.4). We validate the
models trained on the proposed dataset to define an evaluation baseline for both
the socio-historical tasks, i.e., socio-historical context classification and dating, and
the different deep learning models considered, respectively in Section 4.8 (divided
in Sections 4.8.1 and 4.8.2), and Section 4.9 (divided in Sections 4.9.1 and 4.9.2).
In Section 4.10 we compare the classification performance of our application with
the results obtained by a socio-historical scholar. Follow Section 4.11 that, consid-
ering a different perspective, explores if/how quantitative method could support
qualitative analysis and Section 4.12 that reports and discusses cross-dataset ex-
periments from an intercultural influence perspective. Finally, in Section 4.13
conclusions are drawn and possible future work directions are provided.

4.2 Related works

In this Section, we report the works, present in literature, that fall closest to
our project in terms of datasets and tasks (Section 4.2.1), and terms of discussion
about possible relations between quantitative methods and qualitative analyses,
their potentials, and limits (Section 4.2.2).

4.2.1 Vernacular photograph, datasets and tasks

Considering the state-of-the-art in the meantime this work was carried out, and
the works that fall closest in terms of datasets and tasks, only a few have so far
analyzed analog collections of vernacular photographs [216, 217, 218]. For example,
Ginosar et al. [216] employed a deep learning approach to analyze and date 37, 921

historical frontal-facing American high school yearbook photos taken from 1928

to 2010 [216]. Here, a convolutional neural network architecture was trained to
analyze people’s faces and predict the year in which a photo was taken. In addition,
the authors observed gender dependency in the performance of dating models.
Along the same line, Salem et al. [217] presented a dataset containing images of
students taken from high school yearbooks, covering the 1950 to 2014 time span,
considering 1, 400 photos per year. They resorted to convolutional neural networks
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Original dataset Type(s) of

photography

Type(s) of

camera

Theme Cardinality Period

[216, S. Ginosar et al.] Portrait Digital and
analog

Frontal face from
High school yearbook

168,055 1905 - 2013

[217, T. Salem et al.] Portrait Digital and
analog

High school
yearbook

ca 600,000 1912 - 2014

[218, E. Müller et al.] Vernacular and
landscape

Digital and
analog

No specific theme 1,029,710 1930 - 1999

IMAGO collection Vernacular Analog Family albums ca 80,000 1845 - 2009

Table 4.1: Characteristics of existing datasets and IMAGO.

to estimate the shooting year of each image. To assess the characteristics that allow
correctly classifying a picture, they considered both color and grey-scaled images
containing faces, torsos (i.e., upper bodies including people’s faces), and random
regions from the images. The best performance was obtained considering color
images portraying the torso of people. In addition, their results provide cues that
human appearance is related to time. Instead, Muller et al. [218] analyzed the
dating through the lenses of vernacular and landscape photos belonging to years
1930 to 1999, including at most 25, 000 pictures per year. The authors proposed
different baselines relying on deep convolutional neural networks, considering the
dating as both a regression and a classification task. Differently, Molina et al. [215]
formulated the date estimation task as an image-retrieval one where, given a query,
the retrieved images are ranked in terms of date similarity. For their study, they
analyzed the same public dataset employed in [218]. In Table 4.1 the characteristics
(e.g., image content, number of images, and covered time span) of the archives
employed in the works described so far are reported. In most cases, only specific
subsets of such archives have been analyzed using computer vision techniques. To
provide a comfortable comparison, the same information regarding the IMAGO
collection (i.e., the collection originating the dataset analyzed in this work) is
provided in the last row of the same Table.

Other works have already investigated the digital cataloging of historical pho-
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tos [219, 220, 221]. Corrin et al. in [222], for example, developed a prototype
to find duplicates and tag photos depicting similar scenes in the Carnegie Mellon
University Archives’ General Photograph Collection. Arnold et al. in [223], in-
stead, draw on scholarship from semiotics and visual cultural studies to develop
a framework called distant viewing, to individuate larger patterns within a corpus
that may be difficult to discern by closely studying only a small set of objects (e.g.,
narrative arcs in American sitcoms). Wevers et al. in [224], again, published one
of the works that fall closest in scope, where the CHRONIC and the SIAMESET
datasets were introduced to study the transition from illustrations to photographs
in the history of Dutch newspapers.

Concluding, none of the works cited in this Section, (a) utilized pre-defined
socio-historical categories as means of analysis, (b) considered a cross-dataset and
intercultural perspective when approaching the dating task, and (c) the family
album theme. Then, to the best of our knowledge, the present work amounts to the
first contribution to investigate family album photographs classification according
to the socio-historical context definitions and background (Sections 4.4.1, 4.4.2,
and 4.5), and the possibility to verify intercultural influence through the dating.

4.2.2 Quantitative and qualitative, potentials and limits

How quantitative methods could support qualitative analyses, their poten-
tials, and limits, represent open questions within different research communi-
ties [205, 206, 207, 208]. On one side, the results obtained by adopting quantita-
tive methods could converge to those returned by qualitative ones. For example,
Baumer et al. [208] compared a qualitative approach, from interpretive social sci-
ence, and a quantitative one, from natural language processing, on textual data
showing that these methods produced similar results. On the other side, some
criticism emerges also for quantitative methods, which may improperly apply the
definition of measurement [206] or they may be misleading due to insufficient care
in handling data (e.g., feature selection, feature extraction) [205]. For example,
Choy [212] pointed out that in social studies, throughout quantitative methodolo-
gies, different people and communities characteristics (e.g., identities, perceptions,
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and beliefs) cannot be meaningfully converted to numbers or adequately explained
without references to the proper context in which people live. Nevertheless, despite
such critics, recent research in computer science has been focusing on how quan-
titative methods may be able to support qualitative analyses [208, 209, 210, 211].
For example, Radford et al. [209] highlighted that, although a variety of issues have
emerged with the use of machine learning models in social data analyses, their in-
tersection has provided critical new insights into social behavior. They stated that
“machine learning can and should become a critical piece of social science” and
“similarly, social science should become an increasingly important part of machine
learning”. Geiger et al. [210] provided a critical analysis of a corpus of research
that resorted to human annotation to produce datasets for supervised learning,
considering data from Twitter. They observed the similarities between creating
human-labeled datasets and content analysis, underlining the importance of uti-
lizing high-quality training data to produce high-quality classifiers. Scheuerman
et al. [211] highlighted the importance of data quality comes from, which criticizes
how computer vision datasets are built, emphasizing the importance of categories
structuring methods.

Concluding, starting from this debate and focusing on the concrete problem of
implementing a socio-historical classification toolchain for a collection of vernac-
ular photos, we here show how (i) adopting a well-defined theoretical foundation,
(ii) through the implementation of quantitative methods, (iii) can be possible to
evaluate more data than those usually examined in a qualitative analysis.

4.3 Contributions

From a family album photo collection, through socio-historical knowledge, and
the application of deep learning algorithms, the principal contributions of this
research (until now) amount to:

(a) The introduction of a family album photo collection [7], IMAGO, compris-
ing over 80, 000 analog photos taken between 1845 and 2009 and belonging
to ca 1, 500 families, primarily from the Emilia-Romagna and immediately
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neighboring regions in Italy;

(b) A deep learning-based multimedia application to assist scholars in Social
History in their cataloging work [7]. In particular, this process consists
in identifying the socio-historical information of an image, i.e., its socio-
historical context and shooting year, according to the definitions provided
in [204]. Importantly, while the dating has been so far considered in liter-
ature [216, 217, 218], the estimation of the socio-historical context has not
been yet investigated;

(b1) A thorough evaluation of the performance obtained by Convolutional
Neural Network (CNN) models [225, 226, 227] trained on the IMAGO
dataset for both the considered tasks, i.e., estimation of the socio-
historical context and shooting year;

(b2) A comparison between the performance of the adopted CNN-based ap-
proaches and a Transformer-based ones [228, 229];

(c) The discussion of how a family album photo collection obtained through qual-
itative approaches has been exploited to perform a quantitative analysis [8]
that mimics the qualitative one performed by socio-historical scholars;

(d) The attempt to verify possible intercultural influences by analyzing the dif-
ferences in dating [9], i.e., the adoption of different customs and habits in
different epochs and countries, resulting from cross-dataset experiments, in
which we employ also the datasets and models from [216, 217].

(e) A comparison of the performance of the implemented deep learning models,
CNN and Transformer-based, with the performance obtained from expert
analysis of a socio-historian [7, 8], with the additional aim of finally assessing
the validity of the proposed framework.
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4.4 Dataset

The IMAGO collection, that we introduced in [7], is a project started in 2004 by
socio-historical scholars to study the evolution of Social History through the lenses
of family album photographs. This project produced (and continue to produce, as
new photos are acquired from new incoming Bachelor students in the “Fashion Cul-
tures and Practices” course every year) a digital collection of analog family album
photos gathered and maintained by the Department of the Arts of the University
of Bologna (a presentation of the project may be found at imago.unibo.it). Now,
this collection includes more than 80, 000 photos shot between 1845 and 2009, be-
longing approximately to 1, 500 family albums, offering the opportunity of studying
the evolution of Italian society during the twentieth century. Among these images,
a total of 16, 642 received labels from their owners (bachelor students in the “Fash-
ion Cultures and Practices” course), under the supervision of a socio-historical
faculty, to focus on different socio-historical aspects. In particular, among these
labels, the year in which the photo was taken and the socio-historical category the
photo belongs to [204]. These 16, 642 images, from now on, will be referred to as
the IMAGO dataset1, the dataset analyzed in this work. In Fig. 4.1 are shown
four exemplar images from the IMAGO dataset, which belong to different decades
and represent different socio-historical contexts. These images are representative
of the different characteristics that may be found in each photo (e.g., number of
people, clothing, colors, and location), highlighting one of the main ones, i.e., each
photograph portrays at least one person.

4.4.1 Annotation process

The annotation process represents a key point for different aspects of this
work. In particular, the annotation process of the photos belonging to the IMAGO
dataset followed a well-defined protocol. Firstly, with a lecture, the socio-historical
background, the dataset construction goals, and the different classification cate-
gories were presented and explained to the owners of the photos. For what concern

1The IMAGO dataset is available upon request.

http://imago.unibo.it
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Figure 4.1: Sample images from IMAGO dataset.

the socio-historical context, it is fundamental that the different categories were
produced by a qualitative coding process [230] based on sociological and histori-
cal criteria derived from different researches. Secondly, a second lecture covered
the annotation problem in detail, focusing on the reliability and authenticity of
sources of socio-historical materials, including the shooting year. Then, this an-
notation process generated two socio-historical metadata per each photo: (a) the
socio-historical context and (b) the shooting year [204].

Note that this entire process highlighted the importance of interviewing the
original owner of the photo. In fact, in case such person(s) were not available
(e.g., old photo): (a) one could find a second-hand informed party (e.g., anyone
informed of the context), alternatively (b) an attempt to infer the socio-historical
information could be made by analyzing any written annotations behind the photo,
and (c) whenever none of these paths led to a solution no annotation would be
added and the photo would be discarded. This is because, from a socio-historical
perspective, the information provided by the owner of a photograph amounts to
the ground truth. It is the owner that injects into the dataset the social compo-
nent along with the historical one. Therefore, the owner or a directly connected
party (e.g., relatives and friends) holds the ground truth. For this reason, it is not
possible to resort to just any automatic labeling services (e.g., Amazon SageMaker
Ground Truth or the Google AI Platform Data Labeling Service [231, 232]) to
obtain a high-quality annotation of given datasets. These elements emphasize the
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quality and uniqueness of such datasets, including IMAGO. Nevertheless, such an
approach is not new to the computer vision community. Other works in litera-
ture have also considered as image metadata the information provided by their
owners [233, 234].

4.4.2 Socio-historical context

In the following, we provide the socio-historical context categories individuated
in the IMAGO dataset [235], along with a brief explanation:

• Work, photos belonging to this class are mostly characterized by people
sitting and/or standing in workplaces and wearing work clothes and/or gear;

• Free-time, includes scenes of leisure time, reconstructing, wherever possible,
generational and gender differences. It also includes images representing
people who make new experiences, visit far-off landmarks, expand social
relationships, and interact with nature;

• Motorization, although often closely related to the Free-time category, this
class has been distinguished as it includes symbolic objects such as cars and
motorcycles, which represent a social and historical landmark;

• Music, as for the Motorization one, this class may also include scenes from
leisure time, characterized in this case by the appearance of musical instru-
ments or events;

• Fashion, as clothing, represents a mirror of the articulated intertwining of
socio-economic, political, and cultural phenomena. This class is character-
ized by the presence of symbolic objects and clothes, such as suits, trousers,
skirts, and coats;

• Affectivity, characterized by the presence of people (e.g., couples, friends,
families, or colleagues) bound by inter-personal relationships;

• Rites, portraits of sacred and/or celebratory events from family lives;
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• School, this class includes all the photos which represent schools, often char-
acterized by symbolic objects, such as desks and blackboards, or groups of
students;

• Politics, this class contains photos related to political gatherings, demon-
strations, and events.

The socio-historical context categories just described employed to analyze the
IMAGO dataset have been defined from a socio-historical point of view. To ex-
plain how, we here report on the rationale behind the use of two exemplar ones,
Motorization and Affectivity, while a more in-depth analysis of all classes may be
found in [236, 235, 214, 237]. The Motorization category is meant to mark an im-
portant change in people’s lifestyles. We can take as an example the boom of sales
for motorcycles. Such phenomena not only changed the production trend and its
related economical ecosystem but also changed the social behavior of people in the
area in which such a boom took place. It affected the society idea of mobility and
of how people gathered together. In these terms, the motorization aspect becomes
therefore fundamental for the study of Social History. On a completely different
plane, instead, the Affectivity category regards personal feelings. This class wants
to represent the changes that occurred between the affective and family relation-
ships. For example, in the first decades of the twentieth century, family emotional
relationships were considered estrangement. This phenomenon also reflects in the
photographs that depict wife and husband, parents and children, brothers and
sisters. Although all members of the same family, they all posed without any af-
fectional gestures (e.g., hugs). From the second post-war on-wards, things change
starting with younger people who changed poses in terms of distances, contacts,
hugs, etc.

4.4.3 Data class distributions

Considering the IMAGO dataset, in Fig. 4.2 we report the class distribution
concerning the labels considered in this work, i.e., the socio-historical context cat-
egory and the shooting year. In particular, in Fig. 4.2a is reported the distribution
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(a) Socio-historical category

(b) Shooting year

(c) Socio-historical category through shooting year

Figure 4.2: IMAGO dataset class distribution.

of the socio-historical context category over the entire dataset, where it is possible
to observe that the dominant classes are Affectivity, Fashion, and Free-time. In-
stead, in Fig. 4.2b is shown the number of labeled images available per shooting
year in the 1930 to 1999 time frame. Among the 16, 642 labeled images, the overall
available images in this interval amount to 15, 673 and, out of such time interval,
the number of available images is too little to be visually represented. Here it is
possible to observe that most of the considered images fall between 1950 and 1980.
Then, from such plots, it is evident the unbalance that exists in terms of the num-
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ber of photos both per socio-historical context category and shooting year. Finally,
for the sake of completeness, Fig. 4.2c reports the image distribution considering
the shooting year, but highlighting the socio-historical context category.

4.5 Socio-historical background

Now, before proceeding to explain the cataloging tool implemented in this work,
it is necessary to sketch the socio-historical background [7]. In fact, no classification
problem can be solved without effectively clarifying which classification categories
are. This review aims at providing the basics necessary to understand how different
context categories emerge in socio-historical studies. To do this, firstly (a) we
delineate the main differences between traditional and social history, secondly (b)
we explain how and why family photo albums fall within the areas of interest of
the such field of study, and finally (c) we introduce the process that socio-historian
scholars implement when cataloging a corpus of data.

Firstly, point (a), Social History amounts to an interdisciplinary field of re-
search that combines sociological and historical methods to understand how so-
cieties have developed over time and how the past has and may influence the
present [238]. In the words of Cabrera, traditional history and social history differ
as follows: Traditional History, especially classical political history, was based on
the concept of the subject: the subjectivity of historical agents was rational and au-
tonomous; the subject a preconstituted center; and, therefore, actions were caused,
and fully explained, by the intentions that motivated them. Social History, on the
other hand, was based on the concept of society. For social historians, subjectivity
and culture are not rational creations, but representations or expressions of the
social context in which the causes of actions were to be found [239]. Such social
contexts, with their own historical logic, represent the ground on which categories
are constructed, to grasp the meaning and organize social reality [240]: the cat-
egories represent a complex relational network whose nature is neither subjective
nor objective, but the result of a specific historical phenomenon with its own be-
havior. Therefore, the categories do not constitute a simple mean for transmitting
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social reality, but are an active part in its definition and are called socio-historical
contexts. The starting point of a socio-historical analysis is the space in which
the interweaving between individual initiative and social coercion takes place. An
attempt is usually made to explain how society works on different theoretical
bases resorting to traditional oppositions: public/private, subjective/objective,
ideal/ material, visible/invisible, body/conscience. Further analyses are then in-
troduced turning to the concept of social imaginary, defined as “The way in which
ordinary people imagine their social contexts which, often, does not translate into
a theoretical formulation but is conveyed in images, stories and legends” [214]. In
essence, any socio-historical context introduced in such analyses should describe
the evolution of social history and therefore the change of sociality and of peoples’
behavior in a defined space/time. To this aim, socio-historical categories are iden-
tified starting to study historical archival documents from different topics (e.g.,
economics, traditions, wars). Among such documents, now contemporary histori-
ans also resort to multimedia sources [241]. Out of the many multimedia sources
today available, photography emerges as the one capable to cover the greatest time
span so far, although, photographs have risen to the dignity of primary sources of
information just in the last few decades [235].

Secondly, point (b), for the purposes of this work, socio-historical context cat-
egories have been obtained relying on the study of family album photos. This
particular kind of picture originates from a well-known socio-historical abstraction
that, at the same time, also represents a fundamental component of social struc-
tures: the family [242]. The family is, indeed, a fundamental construct in social
history studies, since it embodies at once the public and the private spheres. In
fact, the photos contained in the family albums can be read, on the one hand, as
private visual memories of one’s own history, destined to remain hidden from soci-
ety and, on the other hand, as traces and signs of the collective social imaginary of
a given historical period. So, family album photographs (e.g., spontaneous and/or
anonymous images otherwise destined to remain hidden) depict the daily existence
of their time, not considering them solely as memories, but also as a network of
signs, traces, and documents that may be used to interpret the past [235].
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Finally, point (c), although socio-historical contexts may emerge from the study
of archival documents and family album photographs, the specific context of a
specific photo may remain hard to tell. This is because, without knowing when a
picture was taken and what the people there portrayed were doing, it may be im-
possible to associate any accurate information to the picture. In addition, accurate
information in most cases may be obtained only by resorting to the knowledge of
the subjects represented in the photo. For this reason, socio-historians rely on the
knowledge of the main source, if available, which may be the owner of the photo-
graph, for example. Indeed, such information could be impossible to find. In fact,
when studying and cataloging a corpus of photos, no reliable source of information
may be available. This problem is common for socio-historical scholars, in such
a case they resort to other approaches, which may include classifying data based
on a visual inspection and implementing onerous processes to reduce as much as
possible the misclassifications of socio-historical features. As a relevant example
consider Enns et al. [243], where the authors collected and visually analyzed and
classified 355 photos related to women involved in the agriculture learning activity.

4.6 Idea of cataloging tool

Socio-historical analyses include dealing with various sources of information,
systematically examining their soundness, exemplarity, meaning, and seeking for
inter and intra-correlations and relationships which may help to understand what
happened in the past [244]. Sources are in general not objective, but shaped by the
politics, practices, and events that selectively document protest [245]. In summary,
the procedure of historical inquiry implies the following steps: (i) identification and
selection of sources, (ii) registration and classification for further investigation, and
(iii) a critical inquiry of the collection. Starting from here, the socio-historian’s
work can then proceed in multiple directions. A sound socio-historical study may
hence require the inspection and classification of hundreds or even thousands of
documents and images [246, 247, 243]. This amounts to burdensome work which of-
ten seeks the big picture provided by large corpora of data, rather than the specific
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Figure 4.3: Schema of the multimedia support application for socio-historians.

information returned by a single document or image. Such type of process opens
to the use of automatic tools, capable of classifying huge amounts of data in short
amounts of time. This has already been discussed over two decades ago, for exam-
ple in [248], where linguistic and statistical tools, that could be profitably used by
historians and socio-historians in the study of events, are illustrated. Nowadays,
much more can be expected thanks to the development of computing tools, capable
of handling growing amounts of multimedia data originating from heterogeneous
sources. This would require a holistic approach taking care of source(s): (i) digiti-
zation, (ii) accessibility through standard interfaces, and (iii) analysis with models
capable of translating socio-historical tasks into computing ones.

A typical socio-historical task amounts to inferring from and subsequently ap-
plying categorical models to large corpora of data. We apply the such idea to the
case of family album photos, proposing a multimedia tool capable of processing
and cataloging such type of pictures. To this aim, in Fig. 4.3 the components of
the proposed application are reported. The core is the Socio-Historical Module
(SHM), which is composed of one or more classifiers, depending on the socio-
historical tasks of interest. For the purpose of this work, such tasks have been
defined on top of family album photos, originating from the IMAGO dataset (de-
tails regarding its socio-historical value are discussed in Sections 4.4 and 4.5). This
dataset offered the opportunity of predicting two socio-historical information: the
context and the shooting year. In brief, the SHM amounts to a tool that may
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automatically label photos with the obtained predictions giving, in addition, the
opportunity of confirming or correcting such estimates, when necessary, during
cataloging procedures.

The classifiers that compose the SHM could be defined by exploiting different
kinds of computer vision techniques. However, in the last decade, deep learning
approaches have generally provided higher accuracies [249], both for the dating
task [216, 217, 218] and for the analysis of historical image datasets [222, 223].
For such reasons, we also exploited such tools in the development of the SHM. In
particular, inspired by the work of Salem et. al [217], we trained several classifiers
considering different image regions, belonging to the same picture, selected using
different criteria. We focused on the whole image and the crops enclosing the
faces and the full-figures of the people there portrayed. Such patches are always
present when dealing with family album photos which always include at least
one person in each. To effectively estimate the value provided by such patches
in terms of prediction performance, we also considered random ones. Hence, for
the whole image and each of the aforementioned regions, we trained two specific
single-input classifiers, one per each of the two socio-historical tasks of interest.
Such classifiers are named following the analyzed patches: full-image, faces, people,
and random-patches. The single-input architecture utilizes either a Convolutional
Neural Network (CNN) or a Transformer as backbone and a fully connected layer
for the final classification (more details in Section 4.7). Importantly, the results of
such classifiers may not be comparable, as the amount of data utilized to perform a
prediction varies depending on the fact that the full-image is used during testing, or
parts of it (patches). This fact required establishing a different evaluation method,
considering not a single face/person/random-patch, but introducing a layer that
merged all of such activations into a single one per each picture. In practice, the
activation vectors returned by a single-input classifier (e.g., the face classifier) for
each region were averaged per each image in order to compute the most probable
class.

Finally, we also exploited the ensemble of these models (Fig. 4.4). We re-
sorted to such an approach as it has been successfully applied in literature [250]
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Figure 4.4: Ensemble of the different models trained on the proposed datasets; de-
pending on the information exploited to obtain the final prediction the activations
from a model may be included or not.

and did not require any additional training and tuning of hyperparameters. This
kind of approach was employed, not only to exploit the averaging effect [251] but
also because it helps identify which type of classifier and data provide a valid
contribution at inference time. As represented in Fig. 4.4, such an approach is
modular, supporting the selection of the single-input classifiers. However, since
we are considering activations coming from a single image or obtained averag-
ing across multiple regions, these may contain values at different scales. For this
reason, we l2-normalized the different inputs of the ensemble to support the com-
bination of the activation vectors coming from the full-image, faces, people and
random-patches classifiers. Then, the final prediction is obtained by averaging the
outputs described above and computing the most probable class.

4.7 Method

The entire IMAGO dataset, 16, 642 labeled photos spanning from 1845 to 2009,
was used during the analysis of the socio-historical context classification task. For
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what concerns the dating task, instead, the 15, 673 pictures covering the 1930 to
1999 temporal interval have been employed to avoid those years with a very limited
number of samples (see Fig. 4.2b).

4.7.1 Data preprocessing

The preprocessing phase aimed principally at (i) isolating the regions of interest
from each photo, and (ii) improving the quality of the images composing the
dataset, resorting to different techniques.

Starting from point (i), since in this setting both faces and people could rep-
resent regions of interest to be exploited for such analysis [217, 216] (the socio-
historical background is reported in Section 4.5), we created the IMAGO-FACES
and the IMAGO-PEOPLE datasets, comprising over 60, 000 samples each. The
first is composed of individual faces, while the second is composed of single per-
son’s full-figure images. Importantly, as aforementioned in the previous Section,
such patches are always present since we are dealing with photos that always in-
clude at least one person. These have been obtained by processing each image
of the IMAGO dataset using the open-source implementations of YOLO-FACE
and YOLO available at [252, 253], respectively. The IMAGO-FACES dataset has
been constructed accounting for the number of people portrayed in a photo. In
fact, by adopting a fixed-size bounding box it may be possible to lose relevant
details (e.g., hairstyle) or to include pixels related to the faces of other people.
To avoid such a problem, an adaptive strategy has been adopted and the size of
the bounding box used to crop a face depends on the number of people portrayed
in a photo: the greater the number of people, the smaller the bounding box.
In this way, it was possible to extract the shoulders and the full head of a sin-
gle person even when a picture portrayed tens of people. The construction of the
IMAGO-PEOPLE dataset follows the same criteria employed for IMAGO-FACES,
though, images can present different aspect ratios (i.e., people may be standing
or sitting in photos). In Fig. 4.5 are shown some sample images taken from the
IMAGO-FACES and the IMAGO-PEOPLE dataset, respectively, considering dif-
ferent decades and different socio-historical contexts. It is possible to appreciate
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Figure 4.5: Sample of different patches: IMAGO-FACES, IMAGO-PEOPLE, and
IMAGO-RANDOM.

that IMAGO-PEOPLE includes details that are not present in IMAGO-FACES
(e.g., the clothing of a person). The IMAGO-FACES and IMAGO-PEOPLE were
defined only to fine-tune the deep learning models for the socio-historical tasks
introduced with the IMAGO dataset. So, we will not release such datasets, since
their creation is technology-dependent. Indeed, in the future, algorithms or mod-
els providing more accurate bounding boxes for faces and people regions could be
introduced. Finally, to study the possible usefulness of non-human features within
a family album photo dataset, we created a dataset called IMAGO-RANDOM,
comprising 8 randomly cropped regions, of 128 × 128 pixels, from each image in
the IMAGO dataset (some samples are reported in Fig. 4.5). Other window sizes
were also tested but returned a lower performance.

Moving to point (ii), we verified the utility of performing denoising and su-
per resolution operations, as all the images considered in this work derive from
scans of the analog prints. For denoising, we tested the neural network model
from [254], and the Bilateral Filter [255]. For super resolution, we used an open-
source implementation of the ESRGAN model [256], within the Image Restoration
Toolbox [257]. The overall improvement obtained from adopting such strategies
was revealed to be negligible, we hence opted for an analysis based on the original
scans of analog photos.
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4.7.2 Data partitioning

All the datasets considered, i.e., IMAGO, IMAGO-FACES, IMAGO-PEOPLE,
IMAGO-RANDOM, have been partitioned as follows: 80% for training and 20%

for testing. In addition, 10% of the training images is used as the validation set
for hyperparameters tuning. For each image in the train set of IMAGO, the faces
and the people portrayed, and the random patches are extracted and added to
the corresponding dataset subset. This process is repeated also for the validation
and test sets, as it guarantees that none of the training samples may end in the
validation and test sets.

4.7.3 Model architecture

In this work, we started considering CNN-based classifiers. In particular, for
the CNN single-input classifiers, we adopt a well-known architecture pre-trained
on ImageNet [258]: ResNet50 [225], InceptionV3 [226] or DenseNet121 [227]. This
architecture was modified replacing the top-level classifier with a new classification
layer, whose structure depends on the socio-historical task (i.e., the number of
output classes) and whose weights have been randomly initialized. In addition,
the pre-trained convolutional layers have been specifically fine-tuned for the given
input data and task. Different architectures were considered, in order to verify
the independence of our dataset from the specific architecture itself. However, the
results were very similar (Tables 4.2 and 4.7, Sections 4.8.1 and 4.9.1, respectively),
then we decided to choose the ResNet50 as the main backbone for our analysis since
it represents a good trade-off between performance and number of parameters [259].
Nevertheless, also Transformer-based classifiers exist. The Transformer is a deep
learning architecture that relies entirely on the self-attention mechanism to draw
global dependencies between input and output [260], and recent works have shown
that such an approach can achieve comparable or even superior performance than
CNNs [228, 229, 261]. In particular, the Vision Transformer (ViT) architecture,
proposed by Dosovitskiy et al. [228], has achieved state-of-the-art performance on
several computer vision benchmarks. For these reasons, we decided to exploit the
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Transformer architecture and, more in detail, the ViT architecture in this work,
in addition to the CNN one. For the Transformer single-input classifiers we then
proceeded fine-tuning different ViT configurations (i.e., Tiny, Small, Base, and
Large) varying the size of the input images (i.e., 224 × 224 or 384 × 384) and
considering patches of 16× 16 pixels.

4.7.4 Training setting

During the training phase of the CNN-based classifiers, we applied data aug-
mentation (e.g., random crop and horizontal flip), in order to make the model
less prone to overfitting. Each model has been fine-tuned using a weighted cross
entropy loss to counter the unbalance in our dataset [262]. The Adam optimizer
has been employed with a learning rate of 1e-4 and a weight decay of 5e-4. We
set the batch size to 32 for the training of the full-image classifier and to 64 for
the faces, people, and random-patches models. Instead, for the Transformer-based
classifiers training, we followed the procedure reported in [228], while adopting a
weighted cross-entropy loss to counter the dataset unbalance [262] and preserving
the subdivision in training, validation, and test sets used in our other experiments.

These processes were adopted, respectively, for both the socio-historical con-
text classification and dating tasks for all of the proposed datasets, i.e., IMAGO,
IMAGO-FACES, IMAGO-PEOPLE, and IMAGO-RANDOM.

4.8 Socio-historical context classification results

The entire IMAGO dataset is used in our analysis for the socio-historical con-
text classification task. The results are reported in terms of top-k accuracy, i.e.,
if the correct class is not the one with the highest predicted probability, but falls
among the k with the highest predicted probabilities, it will be counted as correct.
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Full-image classifier

CNN-based

Architecture DenseNet121 InceptionV3 ResNet-50

#params (K) 6,963 25,130 23,526

input dim 256 299 256

Top-1 63.72 64.08 64.35

Top-2 83.38 83.83 85.00

Top-3 92.37 92.28 92.85

Top-4 96.54 96.75 96.66

Top-5 98.47 98.53 98.35

Table 4.2: Accuracy for the socio-
historical context full-image classifiers
considering the CNN-based models and
the Top-k predicted classes (k ranging
from 1 to 5).

Single-input classifiers

ResNet50-based

Patches full-image faces people random-patches

Top-1 64.35 41.30 56.54 37.35

Top-2 85.00 65.55 78.48 62.40

Top-3 92.85 82.75 89.90 80.31

Top-4 96.66 90.86 94.74 90.42

Top-5 98.35 94.98 97.42 95.35

Table 4.3: Accuracy for the socio-
historical context single-input classifiers
considering the ResNet50-based models
and the Top-k predicted classes (k rang-
ing from 1 to 5).

4.8.1 CNN-based classifiers

Firstly, we proceed to report on the performance obtained with the CNN single-
input classifiers and with the Ensemble model. Secondly, we provide a qualitative
Grad-CAM analysis of the behavior of these classifiers.

Single-input classifiers Regarding the single-input classifiers performance, in
Table 4.2 are reported the results considering the CNN full-image classifiers,
described in Section 4.7, considering the well-know architecture DenseNet121,
ResNet50, and InceptionV3. It is possible to observe that the results are very
similar. Then, considering the trade-off between performance and the number of
parameters, we decide to choose the ResNet50 as the main backbone for subse-
quent analyses. In Table 4.3 are reported the results considering all the ResNet50
single-input classifiers (i.e., full-image, faces, people, and random-patches). The
full-image classifier exhibits a higher accuracy compared to the others.
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Single-input classifiers

Category full-image faces people random-patches

Affectivity 64.54 28.25 43.15 29.58

Work 30.00 24.00 22.00 29.00

Fashion 65.79 55.87 67.60 38.80

Motorization 88.44 17.01 51.02 29.66

Music 40.62 15.62 25.00 12.50

Politics 65.52 24.14 48.28 66.67

Rites 71.50 42.50 66.50 39.59

School 60.58 22.12 48.08 14.42

Free-time 58.09 46.09 58.78 51.94

Table 4.4: Single class accuracy for each
socio-historical context ResNet50 single-
input classifier.

Figure 4.6: Confusion matrix for the
ResNet50 full-image classifier.

In Table 4.4, to further investigate the reasons behind such results, we report
a comparison between the accuracy of each class considering the different single-
input classifiers. As it is possible to observe, the model trained on IMAGO provides
the best performance for the Motorization, Rites, Music, School, Affectivity, and
Work classes. This may be due to the presence of specific objects that drive the
performance of the model, also considering that the model was initialized with the
ImageNet pre-trained weights [258], which contains classes such as race car and car
wheel. Indeed, from a socio-historical point of view, images from the classes Rites
and Music could contain physical objects and/or symbols that are representative
of that class (e.g., formal attires, musical instruments). Nevertheless, such objects
only acquire meaning when people deal with them. However, the fact that the
full-image classifier reached the highest accuracy for the School, Affectivity and
Work classes means that the network has also learned to recognize the presence
of groups of people (e.g., school classes, friends standing in front of a monument,
mother hugging her child) and specific clothing. Despite this classifier performing
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best, some peculiar results have to be discussed. For example, the people clas-
sifier performs slightly better for the Fashion and Free-Time categories. This is
probably because the network may be focusing on people’s cloth details and poses
instead of exploiting specific objects and/or backgrounds that are not present in
the people’s crops. Exemplar areas on which the models focus, in order to clas-
sify its images, are reported in the following paragraph regarding the Grad-CAM
analysis. Finally, the Politics class amounts to the only one for which, in terms of
performance, the random-patches classifier is comparable to the full-image one. In
Fig. 4.6, in addition, is shown the confusion matrix obtained with the full-image
classifier. It is possible to observe that the classes responsible for the largest share
of misclassifications are Fashion, Affectivity, and Free-time. This may be due to
different causes. Firstly, some classes share visual elements. For example, pictures
labeled with Work class often depict people in uniform in workplaces. These could
mistakenly be classified as belonging to the Fashion class, as pictures in this class
are characterized by people in pose wearing some particular cloth items. Another
example involves the Music and Free-time classes. Indeed, the Music category
is characterized by photos portraying people playing some instruments or taking
part in some musical event. The latter, however, could be easily associated with
Free-time photos, since they also often portray groups of people in similar envi-
ronments and poses. Secondly, the IMAGO dataset is unbalanced, as reported in
Fig. 4.2a, Section 4.4.3. Indeed, the most misclassified classes are also those which
contain fewer samples.

Ensemble classifiers Regarding the ensemble classifiers performance, we also
evaluated different ensemble classifiers obtained from the combinations of the
single-input classifiers. However, such combinations did not provide any signif-
icant improvement with respect to just considering the full-image model. For this
reason, we decide to not report here the results and, from now on, we consider
the full-image classifier for the analysis that will follow and as the socio-historical
context classifier in our application (schema in Fig. 4.3).
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Figure 4.7: Grad-CAM analysis of socio-historical contexts of images within
IMAGO, using the ResNet50 full-image classifier.

Grad-CAM analysis We exploited a qualitative analysis that aims at high-
lighting which visual cues led the classifier to associate a specific socio-historical
category with a picture. To do so, we exploited the Grad-CAM algorithm [263],
which delimits the areas driving the predictions performed by a deep learning
model.

In Fig. 4.7 are depicted samples of correctly classified IMAGO images pro-
cessed by the Grad-CAM algorithm. Each column, starting from the left, shows
five exemplary images belonging to the Affectivity, Fashion, Motorization, Music,
Politics, Rites, and School classes, respectively. Such images are representative of
the regions exploited by the full-image classifier. More in detail, people in certain
poses close to each other (e.g., hugs, holding a baby, handshakes), as shown in
the first column of Fig. 4.7, are characteristic of the Affectivity class. Specific



124 CHAPTER 4. A DETAILED ML APPLICATION

Figure 4.8: Grad-CAM examples of failure cases, considering the ResNet50 full-
image classifier; Affectivity recognized as Motorization and Work recognized as
School.

objects like earrings, necklaces, and lapels, but also particular hairstyles, are used
to classify a picture as belonging to the Fashion class (second column of Fig. 4.7).
All kinds of vehicles, as well as musical instruments, are used to recognize a given
picture as a member of the Motorization or the Music classes, shown in the third
and fourth columns of Fig. 4.7, respectively. The presence of a political banner is
typical of pictures in the Politics class (fifth column of Fig. 4.7). The model also
appears to individuate the objects that characterize the Rites class (e.g., white
dress, flowers, pour a drink, cheers), as shown in the sixth column of Fig. 4.7.
Finally, children wearing school uniforms, as well as school gear (e.g., books, pens,
desks) are used to recognize pictures in the School class (last column of Fig. 4.7).
As stated before, it is not surprising that the model was able to correctly clas-
sify pictures belonging to the Motorization and Music classes, as these are clearly
characterized by specific objects and, more importantly, already part of the model
pre-trained on ImageNet [258]. However, also for the majority of the other classes
(not studied so far in the literature, to the best of our knowledge), the model seems
to be able to isolate and focus on the details which distinguish them.

In Fig. 4.8 are shown, instead, some failure cases for the full-image classifier.
From the leftmost picture and its probability histogram, it is possible to see that
a photo containing a car was classified as belonging to the Motorization class,
but the ground truth label assigned to the picture was Affectivity (two people
standing close to each other). Instead, the rightmost picture and its corresponding
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probability histogram show that a picture depicting a school class was classified
as belonging to School, while the actual one was Work (a teacher is standing in
the rightmost part of the picture). On one hand, such misclassifications may be
traced back to the fact that the IMAGO dataset has been labeled by the owners
of the pictures. The pictures thus convey such specific points of view, which
may not be correctly predicted by the network. On the other hand, however,
the point of view of the photo owner amounts to the ground truth, according
to the methods adopted in socio-historical studies. In fact, the leftmost picture
presented in Fig. 4.8 was classified as Affectivity since the owner of the photograph
was the child of the couple there portrayed. The same phenomenon happens in
the rightmost one since the one who labeled the photo was a teacher of those
students. This proves the intrinsic challenge that the socio-historical classification
task poses, since any classifier, including an expert socio-historian, may be subject
to such kind of errors. For such reason, we further investigate this phenomenon in
Section 4.10, analyzing the differences between the predictions obtained with the
deep learning models and the choices made by a socio-historical scholar.

4.8.2 Transformer-based classifiers

The results obtained with the considered Transformer-based classifiers are
shown and discussed following the same line adopted for the CNN-based classifier
results. Firstly, we proceed to report on the performance obtained with single-
input classifiers and with the Ensemble model. Secondly, we provide a qualitative
Grad-CAM analysis of the behavior of these models.

Single-input and ensemble classifiers In Table 4.5 the results obtained with
ViT single-input classifiers are available and contrasted with those obtained with
the corresponding ResNet50 single-input classifiers, previously presented in Sec-
tion 4.8.1. It is possible to observe that in most cases either ViT-Base or ViT-Large
outperforms the ResNet50 while requiring a much higher number of parameters
and thus increasing the complexity of the model. Instead, when a similar number
of parameters is used (e.g., ViT-Small with input size 224 × 224), ViTs exhibit a
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Single-input classifiers

CNN-based Tranformer-based

Architecture ResNet50 ViT-Tiny ViT-Small ViT-Base ViT-Large ViT-Tiny ViT-Small ViT-Base ViT-Large

#params (K) 23,526 5,526 22,669 85,806 303,311 5,599 21,815 86,097 303,700

input dim 256 224 384

full-image

Top-1 64.35 53.62 60.96 66.24 67.87 57.43 65.13 68.53 69.19

Top-5 98.35 96.63 97.72 98.71 98.74 97.14 97.84 99.01 99.10

faces

Top-1 41.30 35.58 41.23 42.98 43.13 35.61 37.21 40.64 39.43

Top-5 94.98 89.87 93.54 92.03 93.84 89.84 91.67 93.90 93.21

people

Top-1 56.54 48.42 53.23 56.08 59.21 46.58 51.99 60.35 62.51

Top-5 97.42 93.78 96.15 97.32 97.45 93.36 95.85 98.02 97.69

random-patches

Top-1 37.35 33.56 40.29 44.09 43.78 39.06 38.08 43.72 44.34

Top-5 95.35 86.22 93.20 93.05 95.28 92.74 91.49 92.74 93.57

Table 4.5: Comparison of single-input classifiers for socio-historical context classifi-
cation, considering both ResNet50 and ViT-based models; the accuracy is reported
considering the Top-1 and Top-5 predicted classes.

slightly lower performance.

In Table 4.6 we report a comparison between the accuracy of each class con-
sidering the different single-input classifiers, while in Fig. 4.9 the confusion matrix
obtained with the full-image classifier, considering the ViT-Small architecture.
Comparing these results with those reported in Table 4.4 and Fig. 4.6, it is worth
noticing that ViT-Small obtains a more balanced per-class accuracy, respect to
ResNet50. An additional observation regarding the application of ViT-based clas-
sifier to socio-historical tasks, considering both the socio-historical context classi-
fication and dating, is reported in the next Section 4.9.2.

As for the CNN-based models, we also considered different ensemble combina-
tions of the ViT-based models, but no relevant improvements were detected and,
for this reason, are not here reported.
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Single-input classifiers

Category full-image faces people random-patches

Affectivity 52.76 30.41 32.21 11.00

Work 55.00 4.00 26.00 8.00

Fashion 54.24 55.32 58.75 51.85

Motorization 95.24 37.41 93.20 61.38

Music 53.12 12.50 56.25 9.38

Politics 79.31 51.72 58.62 59.26

Rites 72.25 44.75 62.75 40.61

School 80.77 49.04 63.46 58.65

Free-time 66.09 34.43 58.61 58.13

Table 4.6: Single class accuracy for each
socio-historical context ViT-Small single-
input classifier.

Figure 4.9: Confusion matrix for the
ViT-Small full-image classifier.

Grad-CAM analysis In Fig. 4.10 are reported some correctly classified IMAGO
pictures processed by the Grad-CAM algorithm. Per each row, five images belong-
ing respectively to the Affectivity, Motorization, Music, Politics, and School classes
are shown. In addition, we have images processed by the Grad-CAM algorithm
applied to ViT-Small (second row) compared to the same classified with ResNet-50
(first row). Such images are representative of the characteristics that the different
classifiers learned for each class. It is possible to observe that more accurate activa-
tions are obtained with ViT-Small when compared to the corresponding examples
for ResNet50.

4.9 Dating results

For what concerns the dating task, as aforementioned in Section 4.7, the 15, 673
images (of the 16, 642 labeled pictures belong to the IMAGO dataset), covering
the 1930 to 1999 temporal interval, have been employed to avoid those years with
a very limited number of samples (see Fig. 4.2b). The results are expressed in
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ResNet-50

ViT-Small

Affectivity Motorization Music Politics School

Figure 4.10: Grad-CAM analysis of socio-historical contexts of images within
IMAGO, using ResNet-50 and ViT-Small.

terms of time distances, as also reported in [216, 217]. The time distance defines
the tolerance accepted in predictions concerning the actual year. For example,
if a photo was labeled with the year 1942 and the model returned 1937, or even
1947, this would be considered correct if the time distance is set to be equal or
greater than 5, otherwise, it represents an error. In this work, model accuracies
were computed considering temporal distances of 0, 5, and 10 years and have been
assessed for both single-input and ensemble classifiers.

4.9.1 CNN-based classifiers

As stated for the socio-historical context classification task, also for the dating
task both single-input and ensemble models are exploited.

Single-input classifiers Regarding the performance of the single-input classi-
fiers, in Table 4.7 are reported the results considering the CNN full-image classi-
fiers, described in Section 4.7, considering the well-known architecture DenseNet121,
ResNet50, and InceptionV3. As for the socio-historical context classification task,
also for the dating task, it is possible to appreciate that different baseline mod-
els (i.e., ResNet-50, InceptionV3, DenseNet121) return similar accuracies. Then,
considering the trade-off between performance and the number of parameter, we
decide to choose the ResNet50 as the main backbone for subsequent analyses,
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Full-image classifier

CNN-based

Architecture DenseNet121 InceptionV3 ResNet-50

#params (K) 7,026 25,256 23,651

input dim 256 299 256

d = 0 10.68 10.45 11.31

d = 5 60.77 61.38 62.56

d = 10 82.47 82.82 82.54

Table 4.7: Accuracy for the dating full-
image classifiers considering the CNN-
based models and different time distances
(d = 0, d = 5, d = 10).

Single-input classifiers

ResNet50-based

Patches full-image faces people random-patches

d = 0 11.31 15.01 15.77 11.64

d = 5 62.56 58.09 62.40 54.26

d = 10 82.54 78.39 82.47 76.12

Table 4.8: Accuracy for the dating
single-input classifiers considering the
ResNet50-based models and different
time distances (d = 0, d = 5, d = 10).

also for this task. In addition, to effectively estimate the value, in terms of pre-
diction performance and the comparison between the potential of human (e.g.,
faces and people) vs. non-human features in image dating, we also considered
random-patches (details in Section 4.7.1). In Table 4.8 are reported the results
considering all the ResNet50 single-input classifiers, (i.e., full-image, faces, people,
and random-patches). The models fine-tuned on faces and people regions achieved
a higher accuracy compared to the full-image classifier when considering a time
distance equal to 0. This is also true for the random-patches classifier, which per-
formed even worse with larger time distances. These results could be explained by
model averaging obtained from the ensembling of multiple image regions, as the
use of more data allows controlling the uncertainty and reducing the prediction
error rate [251]. Nevertheless, this increase in performance may also be due to the
faces and people classifiers learning specific visual features characteristic of peo-
ple’s appearance (e.g., dresses, hairstyle, earrings, trousers) of given time slices.
To verify whether such improvement was due to the averaging effect, we designed
a specific experiment.

In particular, we considered a test subset composed of all those images contain-
ing at least n = 8 faces or people crops (details in Section 4.7.1). To weigh the role
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Single-input classifiers

# of crops faces people random-patches

1 11.70 (1.47) 11.74 (1.56) 6.35 (1.27)

2 12.88 (1.39) 14.32 (1.46) 6.97 (1.23)

3 13.46 (1.27) 15.09 (1.44) 8.01 (1.20)

4 13.87 (1.25) 15.47 (1.26) 8.15 (1.14)

5 14.19 (1.19) 15.71 (1.14) 8.16 (1.07)

6 14.40 (1.10) 15.89 (1.06) 8.42 (0.95)

7 14.58 (1.06) 16.07 (1.04) 8.47 (0.86)

8 14.82 (0.95) 15.93 (0.91) 9.00 (0.00)

Table 4.9: ResNet50 single-input classifiers averaging accuracies, along with their
standard deviation, considering an increasing number of patches (faces, people,
random-patches) and a time distance d = 0.

of the number of faces/people, the accuracy values were computed considering k

faces/people, with k growing from 1 to n. To ensure the completeness and fairness
of this experiment, 1, 000 random trials per each k faces/people/random-patches
were considered. In Table 4.9 the results of such experiment have been grouped
by k. It is possible to observe that, in general, averaging across multiple inputs
results in a higher performance, which increases when considering the faces and
people regions.

Ensemble classifiers Regarding the ensemble classifiers performance, differ-
ently from the socio-historical context classification task, an ensemble of different
classifiers provides positive results for the dating task. Following the flow described
in Fig. 4.4, we proceeded to evaluate different ensemble combinations, exploiting
the full-image, faces, people and random-patches classifiers. Since no significative
improvements were observed employing the random-patches classifier, for the sake
of clarity, Table 4.10 only includes the results which involve the full-image (T),
faces (F), and people (P) classifiers. It is possible to observe that the best overall
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Ensemble classifiers

ResNet50-based

Patches T + F T + P F + P T + F + P

d = 0 17.14 16.79 17.91 18.51

d = 5 66.51 66.44 64.02 67.53

d = 10 85.66 84.80 83.75 86.17

Table 4.10: Ensemble model considering different combinations of ResNet50 full-
image (T), faces (F) and people (P) classifiers. The accuracy is reported for
different time distances (d = 0, d = 5, d = 10).

performance is obtained with the ensemble combination of all these three clas-
sifiers. This shows that the model may benefit from averaging across different
classifiers, as well as across multiple regions [251]. This model performs better
than any single-input classifier. From now on, we consider, for all the following
experiments, the model that reached the best performance which is the ensemble
of the full-image, faces, and people classifiers. Moreover, this ensemble has been
adopted in our application to estimate the shooting year of a picture.

In Fig. 4.11a, in addition, is shown the confusion matrix considering a time
distance equal to 0. The diagonal structure demonstrates that the confusion mostly
occurs between neighboring years, except for the initial and the final decades
(this has been observed also in other works, as in [216]). The confusion created
within the first 20 years may be caused by the low quality of the images and
the limited number of samples representing those years. The confusion created
within the last 20 years, instead, may be related to the fact that the number of
images for these years is very limited (Fig. 4.2b, Section 4.4.3). Nevertheless, it
is interesting to observe the information provided in Fig. 4.11b, where the model
accuracy and the number of samples per decade are reported. This Figure confirms
the finding exhibited by the confusion matrix, the model accuracy improves after
the 50’s. Fig. 4.11b also shows that, despite a reduction in terms of available
samples per decade after the 80’s, the performance of the model does not decrease.
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(a) Confusion matrix for the dating task con-
sidering a time distance d = 0

(b) Model accuracy (red line) and number of
samples (blue line) by decade for a time dis-
tance d = 0

Figure 4.11: Dating task measures for the ensemble model.

The accuracy generally improves after the 50’s (also when the number of samples
drops), and again this could be related to the fact that the images are of better
quality than the previous decades.

Merged classifier For the dating task, regarding the multi-input classifiers, we
stated an additional experiment. This decision was due to the fact that an ensem-
ble of different single-input classifiers (i.e., full-image, faces, and people) provides
positive results for this task. In particular, we defined the Merged classifier: a
model which combines the single-input classifiers introduced before, with the aim
not only to exploit different sources of information but also to learn how. Hence,
a new training session was carried out as the newly introduced network was asked
to learn how to perform such a combination. In particular, the pre-trained single-
input classifiers were employed, but the classification layer was removed, preserving
the CNN backbone as feature extractors. Adopting such architecture, the cardinal-
ity of the different extracted feature vectors depends on the number of faces/people
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portrayed in an image, and the average of such feature vectors was computed to
combine them with the vector obtained from the full-image. As a picture could
contain more than one person, multiple IMAGO-FACES and IMAGO-PEOPLE
images could stem from a single one in IMAGO (i.e., full-images). The three re-
sulting feature vectors were linearly combined employing a weighted sum, whose
weights were a set of three real scalars learned during the training phase. The
final vector, resulting from the linear combination, is fed to a fully connected layer
with a softmax activation function, yielding the final probability vector used for
the classification. Regarding the training set, we proceeded in the same way re-
ported in Section 4.7.4. Considering the ResNet50 architecture for the CNN-based
Merged classifier, accuracy of 18.71, 67.59, and 86.17 are obtained for different
time distance, d = 0, d = 5, and d = 10, respectively. These results appear in
line with the ones obtained with the ResNet50 Ensemble classifier, considering the
same set of patches (i.e., considering the full-images, faces, and people classifiers),
reported in Table 4.10.

When comparing the results of the different approaches, the Merged model
improves compared to the single-input classifiers, as happens for the ensemble
ones. In this case, this improvement can be explained by both the ensembling of
multiple image regions and the fact that the Merged model has learned to fuse the
features from different classifiers. Nevertheless, since the improvement with the
Merged model was not significant with respect to the Ensemble one (considering
the full-images, faces, and people classifiers), we decide to continue with the latter
for further experiments.

Grad-CAM analysis Considering the dating task, we investigated which cues
led the trained models to determine the specific year of a picture. Differently
from the socio-historical task, such type of qualitative analysis may already be
found in literature [216, 217]. Nevertheless, as for the socio-historical context
classification task, we applied the Grad-CAM algorithm [263] to delimit the areas
exploited by the deep learning models to perform the classification. In Fig. 4.12 are
reported the results for some correctly classified images. In particular, each row
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FULL-IMAGES FACES PEOPLE
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Figure 4.12: Grad-CAM analysis of estimating the shooting year of different
full-images within IMAGO, and their respective IMAGO-FACES and IMAGO-
PEOPLE images; samples spread over different decades.

corresponds to a specific decade and includes the Grad-CAM of an IMAGO full-
image, and the two corresponding IMAGO-FACES and IMAGO-PEOPLE images,
respectively. It is possible to see that the single-input classifiers focused on different
regions. This may support the increased accuracy obtained in the multi-input
model: different single-input classifier exploits different features. From a socio-
historical perspective, these visual results may be exploited to verify whether the
highlighted cues correspond to visual factors which are recognized as representative
of a specific period.

4.9.2 Transformer-based classifiers

The results obtained with the considered Transformer-based classifiers regard-
ing the dating task are shown and discussed following.
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Single-input classifiers

CNN-based Tranformer-based

Architecture ResNet50 ViT-Tiny ViT-Small ViT-Base ViT-Large ViT-Tiny ViT-Small ViT-Base ViT-Large

#params (K) 23,651 5,538 21,693 85,852 303,373 5,611 21,839 86,144 303,763

input dim 256 224 384

full-image

d = 0 11.31 5.16 7.27 9.47 10.26 4.62 7.11 10.17 9.97

d = 5 62.56 38.85 43.40 50.72 53.44 35.21 46.37 54.11 55.74

d = 10 82.54 58.38 62.84 71.92 73.68 54.46 66.19 74.98 75.21

faces

d = 0 15.01 3.47 5.10 6.66 7.43 4.11 4.78 6.72 7.46

d = 5 58.09 31.39 39.42 46.46 46.59 34.58 38.34 45.73 49.24

d = 10 78.39 51.21 60.77 68.51 68.58 55.32 59.85 68.01 71.70

people

d = 0 15.77 4.05 4.40 7.11 7.87 4.14 4.68 7.33 7.97

d = 5 62.40 33.65 34.51 46.88 48.69 32.22 38.91 46.18 49.17

d = 10 82.47 54.21 51.56 68.90 70.24 52.42 59.40 67.81 70.04

random-patches

d = 0 11.64 4.08 5.00 7.08 7.43 4.21 5.00 7.20 7.49

d = 5 54.26 34.08 36.05 41.82 43.39 32.83 34.11 42.17 41.89

d = 10 76.12 56.81 57.09 64.81 66.59 51.51 54.22 64.81 64.74

Table 4.11: Comparison of single-input classifiers for the dating, considering both
ResNet50 and ViT-based models; the accuracy is reported for different time dis-
tances (d = 0, d = 5, d = 10).

Single-input and ensemble classifiers Differently from the socio-historical
task (Table 4.5, Section 4.8.2), the results reported in Table 4.11 show that the
ResNet50 outperforms all single-input ViT configurations for the dating task. Also,
different ensemble combinations are considered, but no relevant improvements were
detected and then the results are not here reported. Since both for single-input
and ensemble classifiers, the ViT-based ones do not significantly outperform the
ResNet50-based one, no qualitative analysis (Grad-CAM analysis) is carried out
in this case.
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Remark Concluding, the ViT approach exhibits divergent behaviors when ap-
plied to the socio-historical context classification and dating tasks. Why this
occurred may be explained by resorting to [264], where the authors highlighted
how ViT (a) incorporates more global information than ResNet at lower layers,
leading to different features, and (b) strongly preserves spatial information adopt-
ing class tokens. Indeed, the inclusion of more global information at lower layers
and the strong preservation of spatial information could be the reason why the
socio-historical context classification task obtained a better accuracy than dating.
This is also qualitatively represented by a few Grad-CAM examples reported in
Fig. 4.10, Section 4.8.2: more accurate activations are obtained with ViT when
compared to the corresponding examples for ResNet50. On the contrary, the dat-
ing task often requires focusing on specific local visual cues rather than on global
ones, as also highlighted by Ginosaur et al. in [216].

4.10 Human vs. machine assessment

To this point, we exploited the IMAGO dataset to train the models which com-
pose the Socio-Historical Module (SHM) (details in Section 4.6), amounting to the
core of the application designed to help socio-historians in cataloging family album
photographs. To assess the performance the application could attain in terms of
accuracy, with respect to a human expert, we designed a specific experiment where
a socio-historian was asked to categorize all the pictures in the IMAGO test set
(amounting to 3, 327 images), providing both the socio-historical context category
and the shooting year. On one hand, the SHM models can provide a ranking for
the classes predicted for each specific photo (i.e., Top-k for the socio-historical
context classification and a time interval confidence for dating). On the other
hand, the socio-historian deals with the corpus of images, labeling them based on
past archival and cataloging work experiences. In the following, we provide the
details of the comparison with respect to the two socio-historical tasks considered
in this work.
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Top-k Accuracy

Cumulative k Cardinality Socio-historical context module Socio-historian

1 2,147 64.88 54.82

1-2 3,278 72.02 66.53

1-2-3 3,327 72.24 66.93

Table 4.12: Human vs. machine for the socio-
historical context classification: accuracy com-
parison for an increasing values of k (k ranging
from 1 to 3), where k indicates the number of se-
lections made by the socio-historian and the most
probable classes returned by the model.

Accuracy

Time distance Dating module Socio-historian

d = 0 18.51 5.93

d = 5 67.53 56.36

d = 10 86.17 82.53

Table 4.13: Human vs. ma-
chine for the dating classifica-
tion: accuracy comparison for
different time distances (d = 0,
d = 5, d = 10).

Socio-historical context classification task For this experiment, the socio-
historical scholar was given the opportunity of selecting multiple categories per
each photo. As a result of this possibility, one class was chosen for 2, 147 photos,
two classes for 1, 131, and three classes for 49 images. It is interesting to point
out that, although free to use as many labels as desired, no more than three have
been considered at once. To make a fair comparison, we considered the k most
probable classes chosen by the SHM model and compared them with the k classes
selected by the socio-historian. Then, we proceeded to compute the accuracy of
the socio-historian and the model, as follows. For example, if the ground truth
for a photo was “Affectivity”, the predictions provided by the application and
the selections made by the socio-historian would be considered positive if both
contained “Affectivity”. Since the scholar could choose the number of categories
to assign, we computed such scores cumulatively. In particular, in correspondence
of Cumulative k with k = 1 (Table 4.12) a prediction is counted as positive in
case it matches the ground truth. It follows that, if k > 1, a positive match
is recorded in case one of the k predictions matches the ground truth. All the
results are reported in Table 4.12. It is possible to observe that the proposed
application obtained accuracy levels that surpassed those obtained by the socio-
historical scholar. For example, when we consider those pictures that were tagged
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Figure 4.13: Human vs. machine experiment diagram.

with only one category by the socio-historical scholar, an accuracy of 54.82 was
obtained vs. an accuracy of 64.89 for the application (+10.07). This occurred also
when considering those pictures for which the socio-historian chose one or more
classes: the application was still able to obtain higher performance. In Fig. 4.13
we show a representative example of a case where the model predicts the correct
label, unlike the socio-historian. Here, the socio-historian fails at recognizing a
particular detail that only the owner could have known (the subject of the photo
is posing wearing a particular outfit), while on the contrary the model correctly
classified this image.

Dating task Taking into account the dating task, the socio-historian labeled
all the pictures belonging to the test set assigning a year in the 1930-1999 time
span. The results are reported in Table 4.13. The dating module performed better
than the socio-historian considering the specific picture shooting year (+12.58 in
accuracy). The difference in performance decreases when a higher time distance
is considered, arriving at +3.64 when the time distance is equal to 10.
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4.11 Quantitative methods for qualitative analyses

Changing perspective (point of view), we state into the debate concerning how
the integration of quantitative and qualitative methods should occur by experi-
menting if a quantitative approach, such as a deep learning-based classifier, may
be used to synthesize a model apt to perform specific qualitative analyses regarding
socio-historical aspects [7, 8].

In particular, we approached the concrete problem of implementing a socio-
historical classification toolchain for a collection of vernacular photos: the IMAGO
dataset. Firstly, we individuated a corpus of vernacular photographs (Section 4.4).
Secondly, we involved the people included in the photos in the annotation process
of a subset of the corpus of data (Section 4.4.1). In particular, for the socio-
historical context classification task, we resorted to existing socio-historical con-
text categories derived from previous qualitative studies (Section 4.4.2). Important
to highlight that the well-defined annotation process amounted to the step which
let us build quantitative methods to perform an analysis that typically demands
qualitative ones: in brief, classify a photo according to the given socio-historical
context categories and the available time span for the shooting year. Thirdly, we
fine-tuned and deployed existing deep learning models to classify the entire corpus
of data (Section 4.7). Finally, we compared the results obtained with our deep
learning-based approach to the ones obtained by a socio-historian (Section 4.10).
Hence, we focus on the relationship between quantitative and qualitative methods
considering the specific case of socio-historical analyses. The results of such as-
sessment proved that quantitative methods could not only speed up the cataloging
processes but also support socio-historians in carrying out qualitative analyses of
complex or large catalogs of visual information. Clearly, this is only one step
in the direction of exploiting quantitative models to support qualitative analysis,
which in this case may take into account all the processes involved in the complex
socio-historical domain.
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Figure 4.14: Sample images from IMAGO dataset.

4.12 Evidence of intercultural influence exploiting

a cross-dataset study?

Thanks to the IMAGO dataset (more details in Section 4.4 and some exemplar
images in Fig. 4.14), it was possible to apply different deep learning-based archi-
tectures to classify images belonging to family photo albums without any other
sources of information, respect to their socio-historical context category and/or
shooting year (results in Sections 4.8 and 4.9) [7]. Nevertheless, in this Section we
want to analyze another socio-historical aspect starting from the following ques-
tion: “Is it possible, exploiting the available instruments (e.g., the IMAGO dataset,
implemented deep learning-based classifiers), to observe temporal shifts which may
be due to known intercultural influences [9]?”

More in detail, to observe and examine the effects of possible intercultural
influences (i.e., the adoption of different customs and habits in different epochs
and countries) we decided to carry out a cross-dataset study, which also involves
models previously presented in the literature. Then, we started to consider the
datasets reported in [216, 217, 218, 215]. While [218, 215] included vernacular
photos in heterogeneous settings and countries, where often no people are por-
trayed, [216, 217] analyzed American datasets comprising people’s faces and tor-
sos. Although such datasets do not include family album photos, they share some
common traits with IMAGO: people in pictures are often in pose and dressed for
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(a) [216] on IMAGO-FACES (b) IMAGO-FACES on [216]

(c) [217] on IMAGO-FACES (d) IMAGO-FACES on [217]

Figure 4.15: Cross-dataset experiments error distributions.

a specific occasion. In addition, it is possible to extract what characterizes all
of them: people’s faces and torsos. This allowed us to perform a cross-dataset
comparison considering the models trained on the IMAGO-FACES and IMAGO-
PEOPLE and the models trained to exploit the datasets introduced in [216, 217],
switching the considered evaluating datasets. Firstly, to do this, we fine-tuned the
architectures used in [216, 217] following the procedures described in their exper-
imental sections. The dataset introduced in [216] considers people’s faces, while
the one introduced in [217] offers both people’s faces and torsos. Secondly, we
evaluated these models on the IMAGO dataset. Vice versa, the faces and people
classifiers, presented in this work [7], have been evaluated on the corresponding
regions in the datasets from [216, 217]. For a fair evaluation, the experiments were
carried out on the 1930-1999 time span for the [216] vs. IMAGO comparison, while
considering the 1950-1999 for the [217] vs. IMAGO one, respectively. Then, we
collected the error between the predicted and the actual year per each picture.
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The error distributions for the cross-dataset experiments involving face images
are reported in Fig. 4.15. In Figs. 4.15a and 4.15c the error distributions shifted
towards positive values while in Figs. 4.15b and 4.15d towards negative ones. The
models built on top of American datasets [216, 217] applied to IMAGO-FACES
tend to overestimate the image shooting year while the opposite phenomenon
(underestimation) occurs when the model presented in this work is applied to
both [216, 217]. The same phenomenon appeared considering people’s torsos. This
fact could be due to different reasons. The images contained within the considered
datasets have been acquired from different places and locations, using different
cameras and scanning devices, leading to what is defined as the problem of dataset
shift. However, there is another dimension to consider, the effect of intercultural
influences. Indeed, during the second half of the 1900 people’s appearance from the
USA and Italy were influenced by each other [265, 266]. Then, the obtained results,
even if not confirmatory, provide clues about possible intercultural influences as
the model trained with Italian pictures underestimates the American ones, while
the model trained with Americans overestimates the Italian ones. These results are
not final, but certainly motivate further investigations on this topic: deep learning
models revealed their potential not only in terms of their performance but also in
terms of their possible applications to intercultural influence research.

4.13 Conclusions and future works

In this work, we proposed a multimedia application to assist socio-historians
in cataloging family album photos: the Socio-Historical Module (SHM). We pre-
sented the IMAGO dataset composed of photos belonging to family albums, rep-
resenting a source of socio-historical knowledge. The dataset amounts to 16, 642

pictures, each of which is labeled with its socio-historical metadata: shooting
year and context. We trained and tested single-input, ensemble and merged deep
learning models, carrying out a comparative analysis considering Convolutional
Neural Network and Transformer-based classifiers. The results showed that the
Transformed-based approach could be promising also for socio-historical analysis.
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This consists in identifying the sociological and historical context of a picture, ac-
cording to the definitions provided by socio-historical scholars [204]. We proceeded
to compare the performance of our application with the performance of a socio-
historian. The results of such assessment proved that our application could speed
up cataloging processes, with no loss of accuracy when compared to the perfor-
mance of a human expert, thus providing important support to socio-historians. To
the best of our knowledge, this is the first work addressing the socio-historical con-
text classification. In addition, focusing on this work from another point of view,
this work could be also positioned into the debate concerning how the integration
of quantitative and qualitative should occur, concentrating on how quantitative
methods (deep learning-based classifiers) may support qualitative analysis (socio-
historical tasks). From this perspective, the results obtained in this work proved
that quantitative methods could not only speed up the cataloging processes but
also support socio-historians in carrying out qualitative analyses of large image
collections. Last but not least, we adopted the implemented models to search for
cues of intercultural influences through cross-dataset experiments. We evaluated
the models trained on IMAGO-FACES and IMAGO-PEOPLE images and the
classifiers trained on the datasets exposed in [216, 217], following a cross-dataset
configuration. The dating error distributions exhibited an interesting symmetry
that motivates further experiments.

Clearly, this only represents a step in the direction of creating a holistic ap-
proach to the socio-historic cataloging problem and exploiting quantitative models
to support qualitative analysis, as many are the involved processes and sources of
information. For example, in this specific case, the models were trained to utilize
an unbalanced dataset and consider image regions that often included non-relevant
information for classification purposes (e.g., background). In addition, when fo-
cusing on the socio-historical classification or dating, scholars perform analyses
that resort at once to different sources of information (e.g., newspapers, maga-
zines, archival documents), as well as to traces belonging to the same historical
period. These represent three of the most relevant limits for this work. Hence,
further investigations in this domain may consider: (a) larger amounts and more
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balanced sets of data, (b) a better segmentation of the relevant areas of the im-
ages, and (c) the implementation of a multi-modal approach, capable of including
also other sources of information and data formats. For what concerns the first
point, the availability of larger datasets could surely improve the models discrim-
inative power, also reducing possible unbalance problems. Regarding the second,
the use of segmentation models may benefit the individuation of more relevant re-
gions. For the third one, multi-modal learning appears as the approach that may
best replicate the comprehensive approach normally adopted by socio-historians
during cataloging processes. Indeed, exploiting knowledge from historical archival
documents (and other sources) could improve the general cataloging and analysis
effort. For example, knowing how people dressed during a specific period might
improve the classification for both the socio-historical context and dating. Such a
path, although complex, may not be impossible to follow. Indeed, recent natural
language processing solutions can provide discriminative features that could be
exploited in our models to improve the overall performance [267].



Chapter 5

Machine learning to improve

interface user experience

Considering AR, and MAR interface applications in different contexts

5.1 Introduction

The advancements in terms of networking, image resolution, computer vision,
and mobile cloud computing performance, together with the improvements of mo-
bile devices (i.e., tablets and smartphones), are transforming Augmented Real-
ity (AR) and Mobile Augmented Reality (MAR) into a technology which may
be put to good use in a variety of contexts, expanding from an only academic
or highly specialized technology to an everyday one [268, 221, 30]. Nevertheless,
arriving to overlay rendered virtual annotations on top of the camera view of the
real world (e.g., photo albums, product labels) often requires not only AR/MAR
interface implementation but also intensive use of computer vision paradigms for
object recognition and tracking, data availability, database structuring, and ma-
chine learning models.

In this work, we propose different AR/MAR applications and systems in dif-
ferent contexts, from cultural heritage through family photo albums, to the wine
domain with a wine recognition process, passing from an artisan work environment
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like the locksmith one. These applications/system proposals were also published
and submitted in [10, 12, 13] and [14], respectively.

Collaborative Photo Environment (CPE) Inside the cultural heritage field,
photographs amount to a prominent example of materials as a testament to the
past. The photos, yielding information and clues about what happened in different
situations, represent a unique chance to revive old memories about affections,
relatives, friends, special events, etc. Moreover, at the time of social distancing,
since the advent of the Covid-19 pandemic forced people to stay at home, away
from places of interest, families and friends, photographs may represent a link
between people and a distraction from worries and fears. Starting from this, and
from a previous work [269], we propose an AR application as a digital application
that may bring people together and support the exploration of the content of
family photo albums with the aid of machine learning models [10].

Mobile Key Recognition (MKR) Considering an artisan’s craft rooted back
into the past, the key locksmithing, we want to show how MAR capabilities may
simplify and ameliorate the performances of such ancient trade. Key locksmiths
are professional figures existing since the 18th century, and their main tasks are
designing and repairing locks and keys. Nowadays, key locksmiths already put to
good use advanced tools on the job (e.g., lock by-pass), but one of the slowest
parts of their job remains the key type recognition. This is a known problem in
the industrial field, in fact, highly specialized hardware, namely key readers, is
employed to reduce the recognition time. This project aims at introducing the
requirements posed by such craft, proving that also a MAR-based application may
be implemented to support and speed the execution of the key type recognition
process. In particular, a synergistic approach is adopted, putting together the
use of AR and machine learning paradigms. Furthermore, this could impact the
everyday lives of ordinary citizens, since it poses the bases of remote locksmithing
activities thinking, for example, of a mobile application in which the user exploits
one of her/his cameras to identify and request a copy of a key, independently from
its location [12].
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Augmented Wine Recognition (AWR) Since in some domains the lack of
reference images may be particularly disruptive for a recognition task, we here
present a system that does not require any reference image to perform a reading
and recognition system. In particular, we set in the wine domain. Considering
wine bottles, in fact, labels may not be available because (a) the wineries period-
ically change them, and (b) specific bottles may belong to the long tail, making
label retrieval difficult or even impossible. For these reasons, we decided to develop
a wine recognition system based on a textual database, instead of an image one,
exploiting a machine learning-based OCR and implementing a custom search al-
gorithm. In addition, to improve the user experience and to reach better usability,
we decided to support this recognition system with an AR interface [13, 14].

The rest of this Chapter is organized as follows. In Section 5.2 we review the
state-of-the-art that falls closest to our work, considering their specific application
domains, while in Section 5.3 the main contributions of the proposed projects are
grouped. Then, respectively in Sections 5.4, 5.5, and 5.6, the CPE, MKR, and
AWR applications/systems are described in detail. Finally, in Section 5.7 general
conclusions are stated.

5.2 Related works

In this Section, we report the works, present in the literature, in line with our
projects. For the sake of clarity, we proceed separately for the three proposed appli-
cations/systems: the Collaborative Photo Environment, Mobile Key Recognition,
and Augmented Wine Recognition, respectively.

Collaborative Photo Environment Many different researchers worked on the
known problem with materials belonging to the cultural heritage field, which
amounts to its digitization and archiving, in order to make it available in an
easy and portable way. In [221], for example, the authors posed particular atten-
tion to this topic, exploring the opportunities and the criticalities which emerge
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with the use of computational systems to preserve cultural resources and local
traditions (i.e., Bolognese tortellini food-making). In OmniArt [270], however, the
authors digitized the dataset belonging to a museum, labeling each artwork with
its author(s), period, gender, and style. Another example may be found in The
Newspaper Navigator Dataset [271], where the authors described the digitization
of which over 16 million pages of historic American newspapers, containing not
only meta-data related to their textual contents but also the spatial regions of
interest and their semantic meaning. Such kinds of datasets are not only useful
from an archiving point of view but also may be exploited to increase the corpus
of knowledge as a unique source to learn and produce knowledge about unknown
material. In addition, it is possible to identify a clear workflow in such works:
(i) digitize specific cultural heritage assets, (ii) build a dataset, and (iii) share it
with the world. Nevertheless, it is also possible to find research projects that have
focused only on the sharing phase. In [272], for example, the authors explored the
possibility of using the camera feed to live stream artistic performances or cultural
traditions and customs. Inspired by such works, in [269] the authors considered
a cultural heritage dataset composed by the digitization of analog family album
photos, labeled by their date and socio-historical context category (e.g., free-time,
school, rites) by expert socio-historians, namely IMAGO, and the socio-historical
classifiers trained on it and able to predict, respectively, the socio-historical con-
text and the shooting year of a family album photo [7] (details in Chapter 4, where
they are presented), as a starting point to an AR application. As a direct con-
tinuation, we improve this work, starting from the same workflow: a user, while
browsing through a photo album, wears a head-mounted display, which captures
and labels the images he/she is watching, overlapping the result in his/her view.
In particular, we decided to follow this path, adding to our application the chance
to share the augmented user’s view with anyone, through a live-streaming system.
In addition, to evaluate the effectiveness of such an AR system, we also asked a
group of participants to answer some questions regarding their experience.



5.2. RELATED WORKS 149

Mobile Key Recognition Automation tasks continuously grow in many in-
dustrial working fields, aiming to improve work efficiency and reduce the work
load [273]. Indeed, as proved by the authors of [30], industrial workers, who often
carry out repetitive actions (e.g., car assembly pipeline), may now benefit from
the exploitation of MAR paradigms. However, it may be more difficult to real-
ize effective MAR systems for those professionals who operate in environments
characterized by a multitude of tasks. This is, for example, the case of craftsmen
who often, being small business owners, are not able to benefit from standardized
work protocols (e.g., locksmiths, carpenters, potters and glass-makers). Only a
very limited amount of work has so far considered a such type of settings, from
the point of view of digital technologies. Among these, AR systems have been
envisioned as apt to encode artisans’ knowledge, providing a possible response to
the growing need of preserving their skills and passing them on to future genera-
tions [274, 275]. Nevertheless, the development of mobile devices, networks, and
computer vision capabilities fosters the chance of providing low-cost and practi-
cal solutions for the benefit of artisans’ tasks. For this reason, considering the
key locksmithing, we propose a flexible MAR system capable of recognizing (and
encoding) the key types to ease the artisan’s everyday work.

Augmented Wine Recognition Practical product identification is often per-
formed with barcodes or QR codes, although AR applications also rely on image
recognition [276, 29, 277]. Identifying and exploiting visual cues in the photos of
food products has appeared in various research contributions [278, 279, 280, 28].
Nevertheless, we will focus on the research works close to wine label recognition for
AR applications, considering both industry and academic scenarios. As an online
service, WineEngine recognizes wine labels [281], and using the service requires
adding reference label images to the WineEngine collection. Moving to a commer-
cial application available on mobile app stores, Living Wine Labels [282] “gives
life” to the wine bottle telling stories and showing 3D content in AR, by framing
the front label of one of the eleven brands it supports. Vivino, instead, is the
most downloaded app with a community comprising 20 million users around the
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globe [283, 284], and allows to access different wine evaluations, explore selections
of wines, scan the wine bottle front labels or restaurant wine lists to find out more
about the wines. Vivino does not provide an AR interface but implements an
image retrieval approach resorting to the Vuforia Cloud Recognition service that
compares incoming scans uploaded by the app to the stored front label images to
discover the closest match [284]. Given the high number of downloads and the large
community, we used Vivino to perform an experiment that further supports the
rationale of our work. In particular, we tested the app on a random selection of 60
bottles found at a local supermarket: 47 were correctly recognized (78% accuracy)
in 2.05 s on average (0.65 s of standard deviation). In addition, also academic
contributions have followed image retrieval-based approaches. In [285] the authors
implemented a front-label recognition method computing SURF key points and
label descriptors and comparing such descriptors to precomputed ones in a label
database to search for a match. Similar approaches may be found in [286, 287].
In [288] the authors proposed a CNN-SIFT framework for wine label retrieval,
where a trained CNN model recognizes the manufacturer to narrow the search
range, while a SIFT descriptor empowered with RANSAC and TF-IDF mecha-
nisms matches the final sub-brand. In [289] the authors presented an AR system
running on a Microsoft HoloLens, making use of the Vuforia SDK to recognize
markers attached to the wine bottles and to display information concerning those
bottles [290]. It is also possible to find other approaches in the literature, although
these do not lead to a complete solution to wine recognition. In [291], for exam-
ple, the authors concentrated on a preliminary step, a region of interest extraction
method (GrabCut algorithm) for front labels, that may serve subsequent ones such
as image analysis, recognition, and retrieval. In [292], the authors implemented an
OCR-based solution to read serial numbers from wine labels to provide counterfeit
prevention and brand protection. Differently, the AWR system does not rely on a
label image database. The proposed approach relies, instead, on the information
reported on a bottle label that uniquely characterizes each specific wine.
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5.3 Contributions

Considering different AR/MAR systems, for different applications, in different
contexts, the principal contributions of this work are reported in the following.

Collaborative Photo Environment A Collaborative Photo Environment (CPE)
system [10] that, starting from a previous work [269], includes:

(a) The training of the YOLO architecture to recognize and crop images from
family photo albums;

(b) The implementation of the AR system that pipelines the HoloLens 2 user’s
view capture and subsequently augments it with the information drawn by
the YOLO and IMAGO deep learning models [7];

(c) The devise of a simple service to share the HoloLens 2 user’s view to anyone
from any kind of device;

(d) The evaluation and the validation of the proposed system through a simple
assessment model, asking a group of people to provide their comments (with
a survey) regarding the use of our prototype.

Mobile Key Recognition A Mobile Key Recognition (MKR) application pro-
posal [12] that, since task automation continuously grows in many industrial work-
ing fields, it may be more difficult to realize systems for artisan professional figures.
We decided to focus on how MAR technologies could support (as a low-cost and
practical solution) the craftsmen professional figure of the key locksmith that, to
the best of our knowledge, has not been considered so far for this research. In
particular, the proposed application is a MAR application, characterized by: (a) a
custom AR-guided interface for an easy key type recognition and visualization, (b)
a client-server paradigm, (c) the implementation of an Optical Character Recog-
nition (OCR) module, and (d) the use of machine learning algorithms to predict
the most-probable key type based on its visual features.
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Augmented Wine Recognition An Augmented Wine Recognition (AWR)
system that does not resort to an image match mechanism. Such a result comes
considering the text on the label that contains the relevant information charac-
terizing a wine (usually the back label), and taking advantage of the extensive
tradition existing in this domain, which translates into specific regulations on how
such information is printed on such a label. In particular, a deep learning-based
OCR module and a custom search algorithm were implemented. In addition, an
online demonstration1 completes the presentation of the AWR system proposed.

5.4 Revive family photo albums through an AR

collaborative environment

Setting in the cultural heritage field, we here present a system to revive family
photo albums through an Augmented Reality (AR) collaborative environment.
In particular, the contents are organized as follows: in Section 5.4.1 the domain
knowledge necessary to explain our project is reported [269, 10]. In Section 5.4.2
we proceed to introduce our system, while in Section 5.4.3 we report its details
concerning the design and implementation. In Sections 5.4.4 and 5.4.5, instead, we
describe the assessment model, reporting the experimental setting and evaluation,
respectively. Then, in Section 5.4.6 we analyze the obtained results. In addition,
in Section 5.4.7 we want to highlight how the collaborative environment presented
could be nowadays strictly related to the concept of digital twins [11]. Finally, in
Section 5.4.8 we conclude by providing a discussion about the overall project and
possible future works in the same research direction.

5.4.1 Domain knowledge

Historical and analog photos provide an unrepeatable chance to revive old
memories about social events, affections, relatives, friends, special events, etc.
During the 20th century, people printed and collected such kinds of pictures in

1Accessible at https://tinyurl.com/2p82vmc8.

https://tinyurl.com/2p82vmc8
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photo albums, namely family photo albums. Nevertheless, photos belonging to an
album often lack some socio-historical information (e.g., shooting year). Follow
this line, and starting from the digitization and cataloging system introduced,
and explained in detail in Chapter 4, in this project we will consider the date
(in particular, the shooting year) and the socio-historical context (Section 4.4.2,
Chapter 4) as socio-historical information of interest. For the sake of clarity,
avoiding unnecessary repetitions, we directly refer to Chapter 4, with particular
attention to Section 4.5, for additional details regarding family album photos and
their role in the social history.

5.4.2 Collaborative Photo Environment

With this project, we aim at giving the possibility to revive family photo albums
through an AR collaborative system, the Collaborative Photo Environment (CPE).
In particular, this system will be composed of different components, coming from a
previous project [269], among which: the HoloLens 2 [293] as the wearable device,
AR paradigms to implement our interface, and deep learning algorithms to catalog
the pictures observed by the user. With respect to the previous one, the proposed
system includes: (a) the chance to share with remote users the HoloLens 2 scene
view, and (b) a more performing detecting and cataloging process, exploiting a
well-known object detector, YOLO [294]. All these elements will be explained, in
detail, in the following.

5.4.3 CPE - Design and implementation

As previously stated, this project aimed at extending the work introduced
in [269], concentrating on improving the detection performance and providing an
authentic experience of sharing family memories exploiting AR and deep learn-
ing techniques. To reach these goals, a custom AR system that comprehends
an HoloLens 2 interface, and deep learning processing was designed. Such steps
are visually represented in Figs. 5.1 and 5.2. Additional details concerning the
components of the proposed system will be provided in the following.
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Figure 5.1: HoloLens 2 interface architecture.

AR interface and sharing As shown in Fig. 5.1, we envisioned an application
for the HoloLens 2 device. In particular, the application sends all of the frames
within the user’s view to the deep learning models which, in case one or more
pictures are detected, provides the bounding box(es) and the label(s) that can be
then visualized in AR. Then, such information is utilized to augment the visual-
ization of the family album photographs by resorting to the HoloLens 2 interface.
In addition, the application supports the sharing of the augmented HoloLens 2
user’s view to other devices, e.g., smartphones, tablets, and computers.

Photo detection With respect to a previous work [269], the detection module
of the photos implemented in this system has been improved. The previous work,
in fact, resorted to a classical computer vision pipeline to implement the task
of recognizing the area in which family album photos were located. This pipeline
was composed of stacking pre-processing image algorithms (i.e., bilateral filtering),
edge-detection (i.e., canny edge detector), and contour-detection ones (i.e., Sobel).
However, a more recent trend amounts to the exploitation of the performances
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Figure 5.2: Deep learning process architecture.

of deep learning-based object detectors, as they can learn how to manage more
varied and complex situations [295]. Within the deep learning object detectors
zoo, the YOLO architecture has emerged, since its newest version (v5) [296]. In
particular, we resorted to YOLOv5s, because it amounts to a good compromise
between performance and memory usage, making it a good candidate to jointly
work with the HoloLens 2. The YOLO architecture, however, is not sufficient to
solve the task of recognizing photos within family albums, as in the original version
it is trained with ImageNet [297]. This motivates the decision of synthesizing a
new one, which results from a random pasting, on random backgrounds (e.g.,
paper, wall, grass backgrounds), of n pictures (with n ranging between 0 and 4),
casually picked from the IMAGO dataset. Images might also partially overlap
(some examples are reported in Fig. 5.3). With this process, 9, 006 images were
obtained and subsequently partitioned in training (7, 372 images) and test (1, 634
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Figure 5.3: Images from synthetic dataset.

Figure 5.4: Result images from synthetic test set after YOLOv5s inference.

images) sets. Then, we proceeded to fine-tune the YOLOv5s model and exploit
data augmentation techniques (e.g., random brightness, horizontal and vertical
flipping) for 10 epochs, with a batch size of 32, considering the adam optimizer,
and setting a learning rate of 1e-3 with a weight decay equal to 5e-4. A sample of
the evaluation of such a trained model on our test set is depicted in Fig. 5.4. The
result of this stage is a deep learning model capable of cropping pictures appearing
in family albums (top-half of Fig. 5.2).

Photo inference Once the photos were detected, the IMAGO deep learning
models, i.e., the IMAGO DATING and IMAGO SOCIO-HISTORICAL CON-
TEXT classifiers [7] (details in Chapter 4), are exploited to predict the date and
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Figure 5.5: Real-world example of augmented HoloLens 2 view.

the socio-historical context of each picture. As specified in Chapter 4, the mod-
els are capable of dealing with pictures taken within the 1930-1999 interval, and
whose socio-historical context belongs to {Work, Free-time, Motorization, Music,
Fashion, Affectivity, Rites, School, Politics}, according to their definition [7] (Sec-
tion 4.4.2, Chapter 4). Such labels, along with the ones provided by YOLO, are
then sent to the HoloLens 2 to augment the view of the photographs with such
information (bottom-half of Fig. 5.2).

User-view sharing The labels obtained from the IMAGO deep learning models
(i.e., the shooting year and the socio-historical context category) are also leveraged
as a piece of information that may be shared, following a collaborative style, and
sent to the device interfaces of those users who are viewing photo album from
a remote location. To this aim, we built a simple HTTP server to continuously
stream, to any kind of device (e.g., smartphone, tablet), the augmented view of
the HoloLens 2. In brief, the server processes the video stream captured by the
HoloLens 2 and adds to each frame the labels returned by the YOLO and IMAGO
deep learning models. The use of HTTP is a design choice meant to support
easy access to the stream, from any type of device. A real-world example of the
augmented view, as seen from the HoloLens 2, is provided in Fig. 5.5.
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5.4.4 CPE - Experimental setting

Participants To evaluate the effectiveness of the proposed AR application, we
asked a group of 10 participants to answer some questions regarding their experi-
ence. This group had an average age of 26 years, and was composed of 3 females
and 7 males. The number of participants has been chosen as a trade-off between
the necessity of acquiring sufficient feedback data from a population and the time
spent for the evaluation phase. In addition, 10 participants have repeatedly proven
to be a sufficient population to discover over 80% of existing interface design prob-
lems [298, 299].

Ethics Written consent to participate in this experimental study was collected
from each subject. The experimental session was possible thanks to the full com-
pliance with the Covid-19 sanitary protocol adopted by the University of Bologna.

5.4.5 CPE - Experimental evaluation

As aforementioned, once participants tested the experiences, they were asked
to complete a survey. This has been designed to assess four constructs: Perceived
Ease and Enjoyment of Use (PEEU), Deep Learning Gain (DLG), HoloLens Per-
spective (HLP), and Receiver Perspective (RP), respectively.

PEEU and DLG constructs The PEEU and DLG constructs were both eval-
uated through a 5-point Likert scale. For simplicity, a general overview of these
constructs is reported in Table 5.1. Individuals’ satisfaction and acceptance of
a technological innovation, such as an AR application, may be analyzed through
different theoretical approaches. The Technology Acceptance Model (TAM) [300]
amounts to one of the most popular assessment approaches, as it allows to mea-
sure of user intentions in terms of their attitudes, subjective norms, perceived
usefulness, perceived ease of use, and related variables. In this project, we want to
concentrate on perceived usefulness and ease of use. Perceived usefulness is defined
as the degree to which individuals believe that adopting one particular technology
will improve an aspect of their life, whereas perceived ease of use is the degree to
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Construct Question Evaluation

PEEU

(A1) I found the new interface easy to understand 5-point Likert scale

(A2) I would prefer watching an Augmented Family Photo Album respect to a normal one 5-point Likert scale

(A3) I enjoyed the overall experience 5-point Likert scale

DLG

(B1) I appreciated the automatic identification of pictures 5-point Likert scale

(B2) I appreciated the automatic estimate of of pictures’ date 5-point Likert scale

(B3) I appreciated the automatic estimate of of pictures’ socio-historical context 5-point Likert scale

Table 5.1: Items and questions used in the survey to assess the Perceived Ease
and Enjoyment of Use (PEEU) and Deep Learning Gain (DLG) constructs.

which an individual thinks that adopting a particular technology will be easy to
use. Starting from these definitions, we composed the PEEU construct with the
following questions:

(A1) I found the new interface easy to understand;

(A2) I would prefer watching an Augmented Family Photo Album with respect to
a normal one;

(A3) I enjoyed the overall experience.

The A1 sentence immediately gets to the point, item A2 has been introduced
as a further investigation to understand if the users prefer to live an augmented
experience with respect to a classical one. Through A3, a broad evaluation of
the experience was asked. Following this path, we also want to evaluate the use-
fulness of the deep learning models that have been developed to carry out the
three different computer vision tasks present in this work: family album photos
recognition, date, and socio-historical context estimations. For such reason, we
also designed the chunk of question items defined as Deep Learning Gain (DLG),
which is thought to measure the utility of our deep learning models:

(B1) I appreciated the automatic identification of the pictures;

(B2) I appreciated the automatic estimation of the picture dates;
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Construct Question Evaluation

HLP

(C1) Would you use the HoloLens 2 application to share your memories? Yes/No question
(C2) Nowadays, would you use the HoloLens 2 application to share your photo

family album with a distant affection? Yes/No question
(C3) Nowadays, would you prefer to share your memories with the HoloLens 2

rather than sharing them in presence? Yes/No question
(D1) Would you use the HoloLens 2 application to share with anyone your photo

family album? 5-point Likert scale
(D2) Do you think this HoloLens 2 application would push you to contact more

your affections? 5-point Likert scale
(D3) Do you think this HoloLens 2 application would push you spend more time

visualizing your photo family album? 5-point Likert scale

RP

(C4) Would you use this application to revive memories with a distant affection? Yes/No question

(C5) Do you think this application would push you to contact more your affections? Yes/No question

(D4) Would you use this application to visualize photo family albums of strangers? 5-point Likert scale
(D5) Nowadays, do you think this application could foster the creation of bonds

between strangers? 5-point Likert scale

Table 5.2: Items and questions used in the survey to assess the HoloLens Perspec-
tive (HLP) and the Receiver Perspective (RP) constructs.

(B3) I appreciated the automatic estimation of the picture socio-historical context.

HLP and RP constructs The questions regarding both the HLP and RP con-
structs are defined in Table 5.2. This additional set of questions was defined to
explore the different perspectives of users enjoying our application, i.e., the one
of the HoloLens 2 wearer and the remote one. In particular, they are based on
the concept of Behavioural Intention, which is the individual intention to use a
particular technology. Such items are an adaptation of the most significant ele-
ments used in [301]. However, different from the previous constructs, which were
meant to exclusively measure the usefulness of our system, these questions aim at
inspecting more intimate aspects of the users’ intentions, i.e., the use they would
make of this application and its impact on their daily lives. In particular, both
constructs were investigated by exploiting two groups of questions: the C and
D groups. The C group is formed by Yes/No question scale questions, to avoid
neutral scores:
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(C1) Would you use the HoloLens 2 application to share your memories?

(C2) Nowadays, would you use the HoloLens 2 application to share your family
photo album with a distant friend or relative?

(C3) Nowadays, would you prefer to share your memories with the HoloLens 2,
rather than sharing them in presence?

(C4) Would you use this application to revive memories with a distant affection?

(C5) Do you think this application would push you to contact more your affec-
tions?

This group of items appears sufficient to answer and evaluate our constructs. In-
deed, they face the problem of sharing memories from different perspectives. Ques-
tions C1, C2, and C3 regard the intentions of the HoloLens 2 user. Questions C4
and C5, instead, are about the remote user ones. Nevertheless, we also wanted to
explore deeper aspects of Behavioural Intentions. For this reason, we also intro-
duced the D group, evaluated through a 5-point Likert scale, to capture all the
nuances of the user’s intentions. This set is formed by the following questions:

(D1) Would you use the HoloLens 2 application to share with anyone your family
photo album?

(D2) Do you think this HoloLens 2 application would push you to contact more
your affections?

(D3) Do you think this HoloLens 2 application would push you to spend more
time visualizing your photo family album?

(D4) Would you use this application to visualize family photo albums of strangers?

(D5) Nowadays, may this application help creating bonds between strangers?

The D-items group formed by the first group of questions, D1, D2, and D3, rein-
forces the opinion regarding the role of our AR application in the revival of the
family photo albums cultural phenomena. The second group, instead, composed
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Construct Items α MIIC

PEEU A1-A3 0.73 0.46

DLG B1-B3 0.81 0.58

HLP D1-D3 0.69 0.43

RP D4-D5 0.56 0.39

HLP C1-C3 0.71 0.45

Table 5.3: Cronbach’s α index and MIIC for the considered constructs.

of D4 and D5, regards the possible role that our design could have in socialization,
inspecting the possibility to share such intimate material with strangers.

5.4.6 CPE - Experimental results

All the collected data have undergone a reliability check to test their inter-
nal consistency and validate our research, through the widely used Cronbach’s
alpha (α) index. However, α may result in low values for constructs when the
tested population is equal to or less than ten items [302]. Therefore, we have
also analyzed the Mean Inter-Item Correlation (MIIC), which is appropriate for
our case [303]. In a range from 0 to 1, the MIIC confidence interval is 0.15 to
0.50, whereas higher values denote the items overlap. As reported in Table 5.3, all
scales demonstrate to be reliable for the MIIC measure (all MIICs > 0.15). As it
is possible to see, our analysis does not take into consideration the group C4-C5.
This is because such questions are concerning very different aspects. The first one
regards the application we are proposing, while the second involves family and
personal aspects which are beyond the scope of this research.

PEEU and DLG constructs - survey analysis In Fig. 5.6 are reported the
survey results about the PEEU and the DLG construct items. In particular, we
have detailed the Mean (M) and the Standard Deviation (SD) for each of them.
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Figure 5.6: Histogram comparison of 5-point Likert A-x and B-x items results,
related to the PEEU and DLG constructs, respectively colored in green and orange;
the Mean scores, along with their Standard Deviations, are reported.

From such responses, it is evident that there is a strong agreement about the
usefulness and ease of use of our application. Indeed, only the A2 item highlights
M < 4 (where 5 is the maximum). This is because some of the respondents continue
to prefer reviving their old memories physically with their affections. Surprisingly,
all the questions regarding the DLG construct have M = 4.5. This outcome was
not so obvious, since the respondents are clearly suggesting their preference for
the use of modern technologies in the given application scenario.

HLP and RP constructs - survey analysis Fig. 5.7 reports the survey re-
sults for the HLP and the RP construct items. In particular, Fig. 5.7a depicts
the percentage of agreement for the C-x items of the two groups, while Fig. 5.7b
describes the likelihood for the D-x ones, evaluated with the Mean (M) and the
Standard Deviation (SD) of Likert scores. Given the percentage of agreement on
the C-x items, reported in Fig. 5.7a, we can infer that the considered population,
from both the HoloLens 2 user and the remote perspectives, would use our AR
application to contact their affects and revive together their memories, when phys-
ically distant. This is of great importance since our work could be useful to bring
back to life the tradition of family reunions in front of a family album, even when a
family is geographically spread. However, we can notice from the answer to C3, in
line with the discussion in the previous analysis, that our respondents were equally
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(a) Yes/No answer percentages for the C-x
items, related to the HLP and RP constructs,
respectively colored in pink and light-blue

(b) Histogram comparison of 5-point Likert D-x
items results, related to the HLP and RP con-
structs, respectively colored in pink and light-
blue. The Mean scores, along with their Stan-
dard Deviations, are reported

Figure 5.7: HLP and RP construct results.

divided when asked whether they would prefer to live such a moment physically
or virtually. The results described in Fig. 5.7b follow the trend of the previous
ones. Nevertheless, even if there is great uncertainty (due to high SD), the D2
answer highlights the fact that our proposal may not be sufficiently convincing to
contact an affection, in some way linked to the photo album, more than usual.
In addition, D4 and D5 scores underline that a large part of our respondents is
not so comfortable regarding the sharing of such intimate materials with anyone
who wants to appreciate it. Nevertheless, these answers may provide additional
inspiration for future works.

5.4.7 Collaborative Photo Environment and digital twins

Starting from this project, from the socio-historical classifiers [7] (photo socio-
historical context and shooting year classification) and the Collaborative Photo
Environment (CPE) [10], we decided to move in the research direction of Hu-
man Collaborative Intelligence (HCLINT) and Digital Twins (DTs). This specific
proposal was also published in [11].



5.4. COLLABORATIVE PHOTO ENVIRONMENT 165

The advancements of Artificial Intelligence, Big Data Analytics, and the In-
ternet of Things paved the path to the emergence and use of DTs as technologies
to “twin” the life of a physical entity in different fields, both in research and in-
dustry [304, 305, 306, 307, 308], aiming at replicating, twinning, or mirroring
some physical entity. At the same time, the advent of eXtended Reality (XR)
in industrial and consumer electronics has provided novel paradigms that may be
put to good use to visualize and interact with DTs. In fact, thanks to XR (i.e.,
the umbrella term that groups together Virtual, Augmented, and Mixed Real-
ity), it is possible to manipulate DTs directly influencing the physical world and
vice versa [305, 306, 308]. Again, XR technologies can support human-to-human
interactions for training and remote assistance and could transform DTs into col-
laborative intelligence tools.

Thinking about our project in such a context, we implemented the Human
Collaborative Intelligence empowered Digital Twin framework (HCLINT-DT) in-
tegrating human annotations (e.g., textual and vocal) to allow the creation of an
all-in-one-place resource to preserve such knowledge. In particular, we concen-
trated on how humans could help others, adopting the HCLINT-DT approach,
since in general, an HCLINT could help humans in supporting other humans in
their activities. In fact, HCLINT involves an extensive collaboration of different
team members to solve problems while giving a non-stop real-time learning opportu-
nity, as reported in [309]. Nevertheless, this framework could be adopted in many
fields, not only the cultural heritage one, supporting users to learn how to carry
out an unknown process or explore others’ past experiences. The assessment of
this framework has involved implementing a DT to support human annotations,
reflected in both the physical world (AR) and the virtual one (VR). Following
this line of thought, we also resorted to a well-known knowledge transfer strategy
commonly adopted by humans: asynchronous and persistent annotations. We also
moved a further step in this process, providing and sharing human annotations
made of text, voice, or videos aligning both the physical and the virtual worlds
utilizing XR (AR plus VR, in this case) paradigms. To validate such an approach,
we assessed a use case involving family photo albums through an online survey.
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As result, the outcomes of the interface design assessment confirm the interest in
developing HCLINT-DT-based applications, showing a general agreement on the
ease of use of the AR interface and the overall experience, even if there was only
a partial agreement in preferring AR. Finally, we also evaluated how the proposed
framework could be translated into a manufacturing and industrial context. We
explored the adaptability of the proposed approach considering a use case drawn
from a local industrial electrical engineering context: the HCLINT-DT showed a
good adaptability level.

5.4.8 Discussion and future works

In Section 5.4, we presented an AR system to revive one of the biggest fam-
ily traditions, i.e., family photo albums exploration, putting to good use the
HoloLens 2, with the possibility to exploit a collaborative environment. To reach
such a goal, the AR system here proposed includes a trained version of the most
known deep learning-based object detector (YOLO, and in particular YOLOv5s) in
order to recognize pictures within a family photo album and two additional deep
learning models (IMAGO DATING and IMAGO SOCIO-HISTORICAL CON-
TEXT classifiers [7], already introduced in Chapter 4). Such models served the
purpose of providing the information (i.e., date and socio-historical context) needed
to augment a given HoloLens 2 user’s view, i.e., a family photo album view. In
addition, we implemented a simple streaming service, allowing users to access the
shared family photo albums from any kind of device (e.g., computer, tablet, and
smartphone). The system has been assessed with the interview of ten users who
found the interface easy to use and who provided enthusiastic feedback regarding
the proposed experience. Based also on the users’ comments, we were able to
individuate possible future directions of research.

Firstly, as possible future work, we aim to include an active collaboration be-
tween HoloLens 2 user and remote ones. In particular, we aim at letting them
synchronously manipulate the augmented and shared view, through any kind of
non-AR device (e.g., smartphone, tablet, and computer) and AR devices (e.g.,
HoloLens 2). Such kind of manipulation amounts to provide: (a) data annotation
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capabilities through vocal recognition, and (b) affine transformations such as mov-
ing, flipping, and rotating. With these extensions, our objective is to increment the
level of interest, possibly enhancing the quality of the overall experience. Secondly,
we want to augment the capabilities of the examined IMAGO deep learning mod-
els, giving them the possibility to infer richer details, such as the people’s identity,
the country, any symbolic objects (e.g., chairs, cars), and/or specific events (e.g.,
weddings, birthdays).

Considering, instead, the introduced HCLINT-DT framework (described in
Section 5.4.7) [12], possible future research directions include: (a) the integration
of crowd intelligence technologies, one of the most promising in the field of Artifi-
cial Intelligence and DTs [310, 311], and (b) understanding how the HCLINT-DT
framework could support machines (and machine learning), and the consequences
of such processes on human activities. Finally, instances of this framework could
be created for additional areas and domains, other than the considered ones (e.g.,
education, marketing). For example, our related work [12] is cited in [312] where
the authors aim to provide a holistic approach to design collaboration platforms
that may foster multiple communication patterns and workplace productivity to
support humans in the loop. In particular, in this case, they focused on the context
of the design and management of urban spaces.

5.5 Empowering locksmith crafts through MAR

Considering an artisanal craft rooted back into the past, key locksmithing, a
mobile application proposal for key recognition is here presented, showing how
Mobile Augmented Reality (MAR) capabilities may today simplify and ameliorate
the performances of such ancient trade [12]. In particular, the contents are orga-
nized as follows: in Section 5.5.1, the relevant background necessary to explain
our MAR application proposal is reported, together with the possible challenges.
In Section 5.5.2, we proceed to introduce our proposal, describing the application
architecture (Section 5.5.3) and the recognition process (Section 5.5.4). Finally, in
Section 5.5.5, we provide an overall discussion to conclude this proposal.
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Figure 5.8: Key head, stem and profile main visual features.

5.5.1 Domain knowledge

After providing the background necessary to understand how a key may be se-
lected and recognized, according to specific characteristics, such domain knowledge
is translated into technical problems that would emerge adopting MAR and com-
puter vision paradigms. Given a key, the most discriminative parts are the head,
stem, and profile. The main characteristics, instead, are reported in Fig. 5.8 and
Table 5.4. Then, the key type recognition task consists in identifying the meta-
data related to a given key (e.g., serial code, length, silhouette). This task can be
simply summarized as follows: (i) take as input picture(s) of a key, and (ii) return
as outputs its most probable key type(s) and related meta-data. Nevertheless,
many aspects related to this proposal make it challenging: (a) the quality of the
pictures could not be sufficient for the intended purpose, (b) distinguishing a key
type requires measuring the key stem and profile at a millimeter resolution, and
(c) it is mandatory to recognize the silhouettes of different parts of the key (i.e.,
key head, stem, and profile). In particular, problems (a) and (b) may be addressed
considering that the state-of-the-art in mobile devices may today support their so-
lution [313]. Of course, the settings in which the mobile devices will take the key
pictures have to be light-safe and homogeneous (e.g., a work table with uniform
color). For (c), instead, today it is possible to resort to both computer vision (i.e.,
contour detection) and machine learning (i.e., K-nearest neighbors) algorithms
that may proficiently recognize the silhouettes of all the key parts of interest.
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Feature Description

Serial Code (label) Unique serial code (alphanumeric)

Head brand Brand symbol (image)

Head code Code representing a key profile (alphanumeric)

Head silhouette Key head silhouette (image)

Stem length Stem length (measured in mm)

Stem width Stem width (measured in mm)

Stem silhouette Key stem silhouette (image)

Profile thickness Profile thickness (measured in mm)

Profile silhouette Key profile silhouette (image)

Table 5.4: Key type main discriminative features.

5.5.2 Mobile Key Recognition

Considering the key type recognition task, with this project we want to propose
a mobile real-time application, the Mobile Key Recognition (MKR), with a MAR-
guided interface, in which an artisan may be assisted step-by-step to reach the key
type recognition goal. In the following, the application architecture, and the key
recognition process are presented.

5.5.3 MKR - Application architecture

The MAR application here proposed follows a client-server paradigm, where:
(i) the client runs on mobile devices (e.g., smartphones, tablets) aiming to capture
photos of the key head, stem, and profile; (ii) sends them to the server; (iii) visu-
alizes the returned best matching key type(s). The server side, then: (i) infers the
most probable key type(s), taking as input the pictures sent by the client; (ii) sends
back to the client MAR interface the inferred key type(s). The MAR application
workflow is built based on the design described in Fig. 5.9. Then, it is possible to
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(a) (b) (c)

(d)

(g) (f) (e)

Figure 5.9: Key type recognition MAR application workflow.

distinguish the operations which will contribute to the individuation of the type:
the analysis of the key head, stem, and profile, respectively. The information that
may be extracted from these key parts is the most discriminative and allow one to
search for and recognize the key type (details in Fig. 5.8 and Table 5.4). Such op-
erations are sequential and aim to isolate the most probable key type(s), pruning
the options available in the reference database, as more information is exploited at
each step. All the previous operations are hidden from the user, who is only asked
to point the mobile device aligning a key in the position suggested by the MAR
interface. The key alignment is repeated for each region of interest, as depicted
in Figs. 5.9a, 5.9b, and 5.9c. The main advantages of a MAR-guided interface
are: simplifying the user’s work and obtaining the best frame for each analyzed
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key part. In particular, the latter is obtained through a segmentation algorithm,
following an operation that allows retrieval of the real-size measurements of the
key, the camera calibration step. In fact, the camera calibration step, which is per-
formed with the use of a reference object, is necessary to determine the real size
of an object in an image. In addition, the reference object, a key in this proposal,
should have the following properties: its dimensions have to be known in terms of
width or height, and its position should make it easily recognizable (for its position
or its intrinsic features like color or shape) [314]. After this calibration step, it
is possible to determine all of the key measures (i.e., stem length and width, and
profile thickness). Importantly, we remind that such measures fall into a prefixed
range, information which is put to good use within the proposed MAR applica-
tion to support correctly estimate their values. As depicted in Figs. 5.9a, 5.9b,
and 5.9c, for each image acquisition step the MAR interface proposes a central
shape in which the user is asked to place the different key parts. These shapes are
computed by exploiting real-world measurements, thanks to the camera calibra-
tion step, and projected with Augmented Reality (AR) techniques. This algorithm
aims to isolate the key regions of interest, producing specific pictures which are
sent to the server side (Fig. 5.9d). The reference database is organized to facilitate
the search operation and, then, it includes only the most discriminative features
for the key type recognition task. In particular, it includes two dataframes: the
first amounts to a reference one, and it is populated with all the meta-data related
to each known key (details in Section 5.5.1), while the second, namely continual
learning dataframe, is initially empty and it is populated applying a continual
learning approach.

5.5.4 MKR - Key recognition process

Following the MAR-guided interface (Figs. 5.9a, 5.9b, and 5.9c), pictures of the
key head (both sides), stem, and profile are generated (Fig. 5.10), and after the
client side sends them to the server (Fig. 5.9d). In particular, the server iterates
until a unique key type is identified or all the pictures are analyzed.

Initially, the pictures regarding the key head are analyzed, as these may reveal
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(a) (b) (c)

Figure 5.10: Key (a) head, (b) stem, and (c) profile.

(a) (b) (c) (d)

Figure 5.11: Key head OCR reader samples.

information about the key itself, e.g., brand, text, alphanumeric codes, and even
the head silhouette. Such information may dramatically narrow down the set of
possible choices for the user. In particular, for what concerns any information
printed above the key head, Optical Character Recognition (OCR) modules may
be invoked to extract characters or numbers. Some exemplar cases of how an OCR,
here EasyOCR [315], may perform are shown in Fig. 5.11. It is possible to note
that the OCR module may fail to recognize some characters and/or numbers. For
example: in Fig. 5.11a only one character is mistaken; the content of Figs. 5.11b
and 5.11c is recognized correctly (excluding vertical text); Fig. 5.11d exhibits only
one wrong letter, while no numbers were recognized. Nevertheless, many of these
errors could be corrected using algorithms of image processing (e.g., noisy removal,
thresholding) and natural language processing (e.g., Levenshtein distance). Then,
in essence, the OCR approach appears promising.
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(a) (b) (c)

Figure 5.12: Key head (a) picture, (b) silhouette, and (c) actual silhouette.

Successfully, we proceeded to extract the silhouette of the key head. This
process is not exclusively related to the key head, but it will also be applied to infer
the key stem and profile silhouettes. At this point, pictures of both sides of a key
head (an example is given in Fig. 5.12a) are submitted to an image normalization
process, which is performed by exploiting a contour detection algorithm [316] that
extrapolates an approximation of the silhouette (an example is given in Fig. 5.12b).
In this case, the pixels of the contoured images are fed to a machine learning model
that exploits pattern similarities between images to retrieve the most probable
key type. The aforementioned model was derived training a supervised learning
algorithm, namely K-nearest neighbors (KNN) [317], on the silhouettes already
included in the reference database (an example is given in Fig. 5.12c).

Then, the choice of a supervised learning approach as the KNN was driven
since it is a trade-off between simplicity, low training time, and efficiency [318].
Moreover, the KNN is a suitable algorithm for a continual learning setting. We
expect that in many cases, after pruning the reference database with the key head
text-like data and silhouette, the search task will end. In this case, the MAR in-
terface shows the best key type. Nevertheless, the approach based on the key head
could fail, since only the text-like data and/or the head silhouette is identified, or
no useful information could be extracted. If any of these scenarios occur, the next
step amounts to analyze the key stem. As described in Section 5.5.1, the key stem
is characterized by different parts, but from a purely algorithmic point of view, we
could discretize it in three main features: width, length, and silhouette. Thanks to
the camera calibration step, the server is already able to measure stem width and



174 CHAPTER 5. ML TO IMPROVE INTERFACE USER EXPERIENCE

(a) (b1) (b2) (b3)

Figure 5.13: Key stem (a) length and width; key stem (b1) picture, (b2) silhouette,
and (b3) actual silhouette.

length. Moreover, the stem silhouette may be extracted through the same process
used for the key head. An example of key stem length and width measurements
and silhouette extraction is reported in Fig. 5.13. As for the key head analysis,
after further pruning the reference database with the key stem information, we
hypothesize that the search task could end. In this case, the MAR interface shows
the best key type. In case also the key stem analysis fails, the workflow includes
the analysis of the key profile, which consists in acquiring its thickness and sil-
houette. Analogously to the key stem analysis, such information could be guessed
with the designed camera calibration, and the silhouette extraction and matching
algorithms. An example is reported in Fig. 5.14.

Finally, with this information, the last pruning of the reference database is
carried out. No other analyses are possible at this point in the proposed workflow,
and full control is taken by the MAR interface. If the key analyses return a unique
record, the key type with its meta-data will be displayed on the MAR interface.
The possibility of visualizing and manipulating the 3D representation of the pre-
dicted type could also be useful to check the correctness of the prediction [319].
Otherwise, if multiple results were provided, the most probable n key types are
sorted by importance and then displayed on the MAR interface (Fig. 5.9e). The
user can visualize the 3D representation for each of the proposed types, starting
from the most probable one (Fig. 5.9f). Therefore, if the first visualized type is
not the correct one, the user can choose to visualize the others. For what con-
cerns the handling of wrong answers (none of the most probable key types is the
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(a) (b1) (b2) (b3)

Figure 5.14: Key profile (a) thickness; key profile (b1) picture, (b2) silhouette, and
(b3) actual silhouette.

correct one), this is a matter of investigation which may be managed depending
on the key type. Adopting a continual learning approach the performances of the
proposed solution could improve as more data are inserted in the database [320].
The continual learning dataframe, used to implement this approach, is composed
of rows that contain, for each analyzed key, its corresponding correct type and
MAR-extracted images (related to key head, stem, profile, and their respective
contours). This dataframe is initially empty and it will be progressively filled by
the users that submit new analyses to the MAR system. In particular, this op-
eration will improve the performance of KNN by adding a point belonging to a
certain class in the space of the actual data distribution. This should lead to an
improvement in cluster robustness, where each cluster represents a key type.

5.5.5 Discussion

In Section 5.5, we introduced a MAR application, the Mobile Key Recognition
(MKR) application, to help key locksmiths in their work, recognizing the key
types. We integrated the domain into an AR interface, designing an easy-to-use
MAR-guided interface. It is worth mentioning that this proposal presents some
criticalities. In particular, (a) poor calibration may lead to errors, and (b) the OCR
may fail in carrying out its task. Nevertheless, it shows that MAR paradigms may
well benefit different kinds of needs and domains impacting the social sphere, also
posing the bases of remote locksmithing activities.
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5.6 Rethinking wine recognition through AR

Setting in the wine domain, and considering the recognition task, we here
present a system to recognize a wine supported by an Augmented Reality (AR)
interface [13]. In particular, the contents are organized as follows: in Section 5.6.1
the domain knowledge necessary to explain our project is reported, specifying the
information necessary to characterize (and recognize) a wine [13, 14]. In Sec-
tion 5.6.2 we introduce our framework detailing the design of the AR interface
(Section 5.6.3) and all the components, i.e., the machine learning-based Optical
Character Recognition (OCR) module, the textual database (textual DB), and
the search algorithm (Section 5.6.4). Then, in Section 5.6.5 we show the results
obtained with the presented approach, both in terms of efficacy and efficiency.
Finally, in Section 5.6.6 we conclude by providing a discussion on how this project
may be further improved through possible future works.

5.6.1 Domain knowledge

A wine bottle often includes two labels, a front one and a back one. Typically,
the front label is devoted to brand communication, whereas the back label reports
all the information characterizing a given wine according to its home-country regu-
lations [321]. In this project, we consider wines bottled following Italian regulations
which require specific information to be present on the bottle label (e.g., wine ap-
pellation) in the same field of view (i.e., a consumer should not have to turn a
bottle to read them all) [322]. Italian wine labels report, in fact, various pieces of
information [323, 324, 325, 326]. Follows a list of the most important ones:

• Name, typically found at the top-center of the label;

• Type, distinguishes wines among wines, varietal wines, and appellation wines.
A varietal wine does not possess an appellation and just provides the grape
variety used to produce it. In the case of an appellation wine, instead, this
is related to the territorial/geographical area of production.
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• Appellation, can fall into two sub-categories, Protected Geographical Indica-
tion (PGI) wines and Protected Designation of Origin (PDO) wines. Italian
PDO wines can be DOC or DOCG, now both included in DOP. PGI wines,
instead, can be IGT, now included in IGP. Both DOP and IGP indicate
products whose characteristics depend on a specific geographical environ-
ment, and the second differs from the first because only one of the produc-
tion phases must take place in that specific area to get this appellation. This
information has to be reported on the wine bottle label, but it is possible
to choose between DOC, DOCG, or IGT appellations or the corresponding
European category, i.e., DOP or IGP. For completeness, we report below
the meaning of the following Italian acronyms, translated into English for
more clarity: Designation of Origin Controlled (DOC), Designation of Ori-
gin Controlled and Guaranteed (DOCG), Protected Designation of Origin
(DOP), Typical Geographical Indication (IGT), and Protected Geograph-
ical Indication (IGP). In addition, to give a general idea, the Appellation
value amounts to the “proper name” of the appellation category (e.g., Pigno-
letto, Romagna). Important to note that on the label the appellation (e.g.,
DOC, DOP) should appear near the appellation value;

• Winemaker/winery, the name of the winery where wine is bottled, should
always appear on the label. A winery may work for multiple labels/brands;

• Region of origin, is not required. For appellation wines, this information can
be inferred from the appellation value. Otherwise, it can be found once the
winery has been identified;

• Origin trademark, a wine does not necessarily have a trademark of origin. If
present, some examples are: Quality Sparkling Wine Produced in a specific
region (VSQPRD), Quality Aromatic Sparkling Wine Produced in a specific
region (VSAQPRD), Aromatic Sparkling Wine (VSA);

• Effervescence, is used to discriminate between still, sparkling, and spumante
wines. If nothing is specified on a bottle, the wine is assumed to be still;
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• Sweetness, is described under different terms based on its type of efferves-
cence. For still and sparkling wines, on one hand, there are terms such as
Secco, Semisecco, Abboccato, Amabile, and Dolce. If nothing is specified a
still/sparkling wine is considered Secco. For spumante wines, on the other
hand, there are many more possible terms, including Brut nature, Extra brut,
Brut, Extra dry, Sec, Demi-sec, and Doux. Such information is mandatory
only for spumante wines. In addition, if the sugar content of the product
justifies the use of two terms, the choice is up to the manufacturer;

• Color, can be red, white, or rosé;

• Mention, if present, indicates a particular wine characteristic. Some exam-
ples are Riserva, Superiore, Classico, and Passito;

• Bottling year, is mandatory only for DOP wines;

• Production method, if present, this information is often accompanied by the
relative logo. Some examples are Organic, Vegan, and No sulfites;

• Alcohol volume, is mandatory and expressed as a percentage value. In the
possible value range, only .5 steps are allowed;

• Bottle capacity, is mandatory. This information and the alcohol volume
must be in the same field of view and easily visible (e.g., high color contrast
between font and background).

Importantly, the most discriminative information (e.g., wine name, appellation) is
usually placed in the top area of the label using a font that is larger than the rest
of the text that there appears [323, 324, 325].

5.6.2 Augmented Wine Recognition

The proposed system, the Augmented Wine Recognition (AWR), includes: (a)
an AR interface running on a mobile device, and (b) a back-end comprising a hier-
archical textual DB and an algorithmic pipeline, that employs a machine learning-
based OCR at two different stages, in addition to a specifically customized search
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Figure 5.15: The Augmented Wine Recognition (AWR) system.

module. A representative scheme is reported in Fig. 5.15 [13, 14] and, in the
following, we present the different components.

5.6.3 AWR - AR interface

The AR interface of the system has been developed for Android-based smart-
phones. Once started, it continuously scans the surroundings using the mobile
camera and, after a certain amount of collected frames, it checks whether the
smartphone is targeting a known wine label (showing a spinning loading icon on
the bottom left corner of the screen). If a wine label is recognized, the application
displays its name, appellation, region, and (if available) the region image associ-
ated with the first result of the query. The app also lists other possible candidates
on a right panel. In case a different wine result is selected from the list mentioned
above, the app displays a dialogue asking to save the selected result and, if con-
firmed, it shows only the selected wine bottle until the “Close” button is pressed.
If the back-end recognizes the targeted wine, but the corresponding entry is not
present in the database, an alert is displayed. Lastly, using a toggle on the bottom
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(a) (b) (c) (d)

Figure 5.16: The AR interface: (a) wrong suggestions, (b) correct suggestion, (c)
correct wine confirmation, and (d) active scan stops after the correct identification
has been confirmed.

right corner of the screen, the user can stop the scan at any moment. In Fig. 5.16
some interface examples are exhibited.

5.6.4 AWR - Back-end

The system back-end comprises a hierarchical textual DB, and an algorithmic
pipeline integrating an OCR and a specifically customized search module. In
particular, the OCR is involved in two different stages of the pipeline. The first
stage, the cropping one, serves the purpose of reducing the area where relevant
words will then be searched. This is performed considering that the information
useful to individuate a wine is typed with font sizes that are greater than any
other text appearing on the label. This fact is then used to create a bounding box
that encloses all the pieces of text of interest. The second stage, the decoding one,
entails implementing the full pipeline of an OCR, trying to identify the words that
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are typed on a label. In this project, we exploited an off-the-shelf deep learning-
based OCR, EasyOCR [315], to implement the two steps of interest. In this setting,
a hierarchical textual DB can take advantage of the data involved in the process.
In fact, the information that characterizes a wine may be organized in mutually
exclusive groups and a hierarchical structure, as it emerges from Section 5.6.1.
Some pieces of information are mutually exclusive (e.g., Sweetness): for example,
if a wine is “Dolce” it cannot belong to any of the other categories of sweetness. In
addition, if some information appears on a label (e.g., DOC), it is then mandatory
to report other pieces of data (e.g., grapes harvest year). Being aware of such types
of dependencies and structures, it was possible to drastically reduce the (wine)
search space and, consequently, the search running time, as better described in
the following. Now, we continue by discussing the components of the AWR back-
end, according to the label processing order.

OCR module An OCR algorithm has been employed to initially individuate
the spatial locations of relevant words and then the words themselves. The words
individuated by the OCR are successively passed to a search algorithm that ex-
ploits the textual DB (described in the following). A wealth of research has been
performed in the OCR domain [327]. As aforementioned, in this project, we ex-
ploited an off-the-shelf deep learning-based OCR, EasyOCR [315], to implement
the two steps of interest. The EasyOCR detection component employs the CRAFT
algorithm defined in [328], while the recognition model amounts to a CRNN de-
signed in [329], and trained with the pipeline reported in [330]; the decoding step is
implemented with CTC [331]. For these reasons, EasyOCR appeared particularly
suited to our use case as trained on images belonging to heterogeneous environ-
ments (not only scanned documents). In addition, the results reported in [332]
identified EasyOCR as the best OCR for natural image scenarios. Then, we pro-
ceeded qualitatively to evaluate the potential of this tool on generic wine bottle
labels. Notice that the EasyOCR retrieves the text along with the bounding box
encapsulating it in the original image. Some qualitative results are reported in
Fig. 5.17 [13, 14]. This preliminary experiment showed positive and negative as-
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Figure 5.17: EasyOCR retrieved words on different wine labels, accepting all the
words, without considering the confidence factor.

pects of EasyOCR. In particular, many relevant keywords were recognized, even
with different kinds of fonts and backgrounds, whereas others were not detected or
correctly transcribed. This can be motivated in several ways: (a) the text does not
lie on a planar surface, (b) the color contrast varies between background and text,
(c) poor light conditions, and (d) the words on the wine bottle label could be very
distant from the ones used to train the EasyOCR decoder (just some technical
words like DOC are included). Hence, EasyOCR may return values that are mis-
taken and do not hence allow a correct querying mechanism. It may be possible
to break such limits by exploiting a fine-tuning approach to the EasyOCR model
by resorting to wine domain-specific datasets. However, these datasets should be
defined from scratch, labeling wine bottle label pictures with the coordinates of
the relevant text and its corresponding characters, resulting in a costly procedure
in terms of time and workforce. So, a different path was taken and wrong predic-
tions are corrected by exploiting a search algorithm tailored to pre-defined wine
domain dictionary terms. In particular, we will proceed as follow: delineating how
the wine database has been organized to expedite the search process and describ-
ing the algorithmic pipeline, which also includes the cropping and decoding steps
based on EasyOCR.
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Figure 5.18: Example of a possible wine features conversion from a text-like to a
hierarchical-tree-structure.

Wine database The features that distinguish a wine from another are Type,
Appellation, Appellation value, Effervescence, Sweetness, and Color. Nevertheless,
as anticipated, these features are not independent. For example, the “Lambrusco
di Sorbara rosato” is a rosé sparkling wine, with a DOC appellation, but also the
“Reggiano Lambrusco rosato” is a rosé sparkling wine, with a DOC appellation.
Then, firstly we grouped wines by one feature, like the Appellation (e.g., DOC,
DOCG), and secondly we created other sub-groups based on each of the other
ones, like the Effervescence (e.g., sparkling, still, spumante wine). To visually
support the previous statements, we report in Fig. 5.18 [13, 14] an example that
shows how to convert the wine features from a textual format to a hierarchical-
tree-structure. The hierarchical textual DB follows a classical Non-Binary Tree
structure. Then, finding a wine entails visiting the last level of the hierarchy. In
case of multiple hits (i.e., more than one leaf), these are all returned. Fig. 5.18
shows, in particular, that each layer of the tree is composed of k nodes that rep-
resent the possible k values of a particular feature (e.g., the nodes in the level of
the Appellation represent the values DOC, DOCG, DOP, IGT, and IGP). This
choice was driven, not only by the natural match between the wine type hierarchy
and tree data structure but also by considering an efficient NoSQL-like database
implementation. Our hierarchical tree database follows a specific nested key-value
data model, where the key is the value of a feature, and the value is the subset
of all the wines that are characterized by that particular value. Knowing a priori
the values of the features to traverse, and that the access computational cost in a
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one-level key-value database is constant, therefore a single wine-type tree-traversal
depends on the number of hierarchy levels (i.e., the features). The hierarchical-tree
database can be defined in different ways, according to the order of the features.
For this project, the textual DB includes 2, 427 textual descriptions of wine types
from the Emilia-Romagna region, built as a four-level hierarchy, considering in
order the following features: Appellation, Sweetness, Appellation value, and Name.
This order matches two criteria: prune as many leaves at the top hierarchy of the
tree, and sort features according to their search space. The first one refers to the
number of tree nodes pruned when the value of a feature is known. The higher the
value, the higher the position of the feature in the hierarchy. The second, instead,
refers to the number of possible values that can be matched by the feature. For
example, in our dataset, the appellation possesses one among five possible values
(i.e., DOC, DOCG, DOP, IGT, and IGP), whereas the appellation value can be
one of thirty different values. Hence, the search space of the appellation is lower
than the one of the appellation value, and for this reason, it takes a higher place
in the hierarchy. These facts motivate the chosen hierarchy, as a trade-off between
the tree pruning impact and the matching speed. Finally, to query a particu-
lar wine in this dataset, it is sufficient to provide the textual information for the
different considered features. At this point, the search algorithm (described in
the following) starts finding candidate-relevant words, using a two-step strategy
(cropping and decoding) based on EasyOCR. The algorithm continues iterating
through the hierarchical textual DB, starting with a linear search that compares
such text with the term(s) stored at the given level of the hierarchy, and comput-
ing the best match according to a pre-defined textual distance (e.g., Levenshtein,
Hamming, Cosine). In practice, each layer of the hierarchy presents a finite set of
possible terms and the algorithm picks the most probable one, which depends on
the distance between the retrieved words and the terms proposed by the current
tree level. Once the best match is found, the algorithm proceeds to analyze the
next level of the hierarchy, after pruning the other branches.
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(a) Original frame (b) Area of interest (c) Cropped area

Figure 5.19: Example of cropping the area of interest.

Search algorithm Exploiting a domain-specific wine hierarchical textual DB,
EasyOCR, and a method to detect and correct OCR post-errors, the full pipeline
used to identify a wine is described. As anticipated (details in Section 5.6.1), in
a wine bottle label any relevant information is written using a font that is larger
than other text and it is usually placed in the top area of the label [325]. Then,
for these words, the area retrieved by EasyOCR is larger than any other retrieved
one. Based on such a hypothesis we implemented a pre-process step, composed
by the OCR words area detection, that automatically detects the areas that en-
close the words of interest. Not considering this fact would require accounting
for all of the words identified on a label (Fig. 5.19a). Instead, with such an as-
sumption it is possible to run the Cropping by detected areas algorithm that is
responsible for cropping the area of interest. In particular, this is performed as
follows. Firstly, only the words enclosed inside bounding boxes that are larger
than the median are in the end selected (Fig. 5.19b). Secondly, the bounding
box that includes all of such words becomes the final one that is used to crop
the label (Fig. 5.19c). In this way, the word detection part has been decoupled
from the textual inference one, and the number of words that are processed is
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Algorithm 2 Hierarchical search
1: procedure wine_bottle_hierarchical_search(wine_bottle_retrieved_words, hierarchical_database,

wine_bottle_features, threshold, distance_method)
2: for relevant_feature in wine_bottle_features do
3: dict_matched_words_values← {}
4: for feature_value in relevant_feature.possible_values() do
5: matched_terms← LINEAR_SEARCH_POST_OCR_CORRECTION(

wine_bottle_retrieved_words,

feature_value, threshold, distance_method)

6: dict_matched_words_values[feature_value]← matched_terms
7: end for
8: correct_feature_value← highest_score(dict_matched_words_values)

9: wine_bottle_retrieved_words, hierarchical_database← branch_database(
hierarchical_database,

wine_bottle_retrieved_words,

correct_feature_value)

10: end for
11: return hierarchical_database
12: end procedure

reduced. An initial effect of this choice consists in avoiding words that could be
misinterpreted by EasyOCR because of their size and location (e.g., small area
words placed near the boundaries of the camera field of view). After this step, the
OCR words inference is executed, returning all the words found in the images. A
successive effect is that the full EasyOCR pipeline is at this point utilized only on
a subset of all the words reported on the label, reducing hence the computational
cost of this step. To further reduce the set, we remove any duplicate words and
some stopwords. Then, the set of words is passed to the final step of the over-
all algorithm: the Hierarchical search algorithm. The python-like pseudo-code for
the Hierarchical search algorithm is summarized in Algorithm 2. This Algorithm
takes as parameters the words returned by the EasyOCR decoder, a copy of the
hierarchical textual DB, the wine features, and a distance threshold (Algorithm 2,
line 1). With the first cycle, it iterates on the relevant wine features, initializing
the dictionary that will then be used to save all matched terms (Algorithm 2,
lines 2 and 3). The second cycle (Algorithm 2, line 4), instead, iterates on the
possible values of the considered feature (e.g., for the Appellation, it will iterate
on DOC, DOCG, and IGT). The linear search post-OCR correction algorithm,
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described in detail in the following, is then invoked to find any existing matches
for the given feature term (Algorithm 2, line 5), and all matches are added to the
dictionary (Algorithm 2, line 6). Now, the dictionary contains all the matches
found for the given feature values (Algorithm 2, line 7). The algorithm selects the
value of the feature that received the highest number of matches. For example,
between “Denominazione Origine Controllata” and “Denominazione Origine Con-
trollata e Garantita”, the latter would be chosen because more letters have been
matched. In case, instead, two features receive the same matching score, they
are both selected. The hierarchical database only retains the branch including
the matching feature (Algorithm 2, line 8). Once a particular feature value(s) is
picked, the hierarchical database is skimmed accordingly, branching the specific
sub-tree(s) that involves that value(s). At the end of the skimming procedure,
the remaining elements of the hierarchical textual DB contain only one or more
elements that possibly include the correct wine. Finally (Algorithm 2, line 9), the
hierarchical database is returned. This will contain only one record correspond-
ing to the right bottle of wine or the branches that best match the information
found on the label. Given this description, the cost of the Hierarchical search al-
gorithm depends on the number of considered features, on all the possible values
the considered features may take, and on the cost of the Linear search post-OCR
correction algorithm that will be discussed shortly. The Linear search post-OCR
correction algorithm implements two different sub-tasks, detection and correction
ones, where the first identifies incorrect tokens, while the second one tries to cor-
rect the errors found by the previous step. In this project, this algorithm has been
performed by adopting an isolated-word approach, based on a lexical approach
relying on specific lexicons (or word unigram language model) and a distance met-
ric for selecting candidates of OCR errors. In this case, the Levenshtein metric
has been chosen [333]. The python-like pseudo-code for the Linear search post-
OCR correction algorithm is reported in Algorithm 3. As also highlighted by this
pseudo-code, this algorithm works as a two-level nested loop that iterates over
the words retrieved by the OCR and the values of the word that define a wine
feature (Algorithm 3, lines 3 and 4). Per each couple, it calculates the distance
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Algorithm 3 Linear search post-OCR correction
1: procedure linear_search_post_ocr_correction(ocr_retrieved_words, wine_feature_words, thresh-

old, distance_method)
2: matched_words← []
3: for word_wine_feature in wine_feature_words do
4: for word_ocr in ocr_retrieved_words do
5: distance← distance_method(word_ocr, word_wine_feature)
6: if distance ≤ threshold then
7: matched_words.append(word_wine_feature)

8: break
9: end if
10: end for
11: end for
12: return matched_words
13: end procedure

adopting the distance_method (Algorithm 3, line 5), and if this is less or equal
to a certain threshold, the word_ocr is considered to be the word_wine_feature

(Algorithm 3, lines 6 and 7). In this case, the threshold represents a value of
accepted distance: the lower the distance, the more likely the word_ocr can be
considered to be the word_wine_feature. In such a case, the algorithm interrupts
the inner loop (Algorithm 3, line 8) and continues to search for the next relevant
word inside the label text (Algorithm 3, line 3). The threshold value is computed
as a percentage of the word_wine_feature: a threshold equal to 0 indicates that
the two words must be the same (no difference), while a threshold equal to 1

means that word_ocr would match word_wine_feature as their distance is less
or equal than k, where k is the character length of word_wine_feature. For what
concerns the computational cost, this algorithm processes two lists of respectively
n and m size (i.e., ocr_retrieved_words and wine_feature_words), which are
two constants as these may be both upper bounded by some fixed value. Using
this search, it is possible to correctly identify terms coming from the wine domain
using their eventually distorted form as returned by EasyOCR. Concluding, the
Linear search post-OCR correction algorithm exploits the domain knowledge (in-
troduced in Section 5.6.1). Some features possess a default value (e.g., the wine
Effervescence) and, if none of the non-default values is detected, the default one is
taken. Also considering this fact, it is worth noticing that failures can be caused
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by: (a) a bad identification of a feature (no relevant word is detected in the OCR
list or the words are partially wrongly predicted), and (b) relevant information is
not reported on the label.

5.6.5 Experimental setting and results

The results obtained exploiting the presented system (described in the previous
Sections 5.6.2, 5.6.3, and 5.6.4) on 45 different wine bottles coming from the Emilia-
Romagna region in Italy are here reported. The hierarchical textual DB contained
2, 426 different wine coming from this area. The evaluation has been carried out
considering a multi-frame setting. In particular, 45 videos are taken, one for each
different wine bottle, lasting an average of 8 seconds while rotating the camera
around it and selecting one frame per second choosing the less blurred one. This
adopts the variance of image Laplacian to get the most in-focus frame, as reported
in [334]. In this scenario, the multi-frame setting is motivated by two reasons: (a)
employing videos may be possible to reduce OCR detection errors caused by the
environment (e.g., light conditions), and (b) it does not require the user to stop and
take a picture of what he/she is seeing each time. In the following, the performance
of the AWR system is reported both in terms of efficacy and efficiency.

Efficacy Per each considered frame, the algorithm (described in the previous
Sections) is applied to the words retrieved by EasyOCR. This returns all the wines
that expose an equal difference between the original name length and the number
of words matched (and so the highest number of matches with the words found
by the OCR). While calculating the efficacy, a bottle is considered as guessed if
its name is included in the set of retrieved ones. Before presenting the obtained
results, we must point out that a hyperparameter tuning procedure was carried
out to choose the best threshold values that identify a word as recognized (the
one introduced in Algorithm 3). To understand what this means in practice, we
recall that a word retrieved by EasyOCR is considered to match one in the wine
domain set if their Levenshtein distance falls below a given percentage threshold.
In the settings of this project, two different thresholds were adopted to recognize
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Hyper-parameter Implemented Model (IM) IM with a simulated perfect OCR

(Word type, Confidence) (full words, 0.3), (acronyms, 0.1) (full words, 0.0), (acronyms, 0.0)

Guessed bottles 41/45 45/45

Accuracy 91% 100%

Returned bottles min = 1, mean = 1.41, max = 15 min = 1, mean = 1.01, max = 8

Table 5.5: Obtained results with chosen hyperparameters for confidence on the
considered wine dataset.

respectively full words and acronyms (e.g., Denominazione di Origine Controllata
vs. DOC). Hence, the hyperparameter tuning consists in testing the algorithm on
all the considered bottles, varying those confidences between 0 and 1, with a step
of .1. The confidences picked are respectively 0.3 for the full words and 0.1 for
the acronym, which returned the best overall results: 41/45 bottles were guessed,
reaching a 91% of accuracy. This accuracy value was obtained, considering that
the algorithm could provide more than one bottle as output, retrieving on average
1.41 bottles per examined video (with a maximum of 15 and a minimum of 1). It
is interesting to note that the errors depended on the performance of the OCR. To
prove this, we created 45 different text files, one per tested bottle, to mimic the
performance of a perfect OCR, simply transcribing all the words contained in the
bottle respecting the order of the considered language (i.e., Italian). Adopting such
data and imposing the confidence to 0 (with a perfect OCR setting the algorithm
should match the exact words), the algorithm did not provide any error. On
average, the linear search algorithm applied to the perfect OCR setting retrieved
on average 1.01 bottles per examined video (with a maximum of 8 and a minimum
of 1). All the presented results are reported in Table 5.5.

Efficiency In such a context, it is important to measure not only the efficacy
but also the efficiency of the considered algorithm. As stated in the previous Sec-
tions, the algorithm is composed of four steps: (i) EasyOCR words area detection,
(ii) cropping by detected areas, (iii) EasyOCR words inference, and (iv) final hi-
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Mode Step Min time [s] Mean time [s] Max time [s]

Hierarchical

OCR words area detection 0.44 0.55 0.69

Cropping by detected areas 0.025 0.029 0.036

OCR words inference 0.45 0.83 1.24

Hierarchical search algorithm 0.11 0.96 2.15

Total time 1.02 2.37 4.11

Full-linear Total time 22.63 153.66 404.53

Table 5.6: Min, mean and max time of the bottle detection algorithm over the
considered bottles and frames, reported in s.

erarchical search algorithm. For this reason, we here report the mean time taken
by the entire algorithm pipeline to identify an examined bottle. Importantly, all
the captured times regarding EasyOCR do not include the deep learning model
initialization times. Time measurements were obtained by executing a single trial
of the complete algorithmic pipeline on all the bottles video frames. In Table 5.6
the min, mean and max of such times, calculated over the bottles, are reported
in seconds (grouped under the Hierarchical mode). Each metric derives from the
average time over 10 trials, and this process was done to better approximate the
effective distribution of such times. At this point, a comparison between the effi-
ciency of the hierarchical tree search vs. a classical linear one has been performed.
In particular, we defined a single-column database that contains all the relevant
values of the different features that discriminate a wine. Instead of pruning the
tree based on given feature values, we applied Algorithm 2 at each step of the
whole data structure. Then, the final output consists of all those wines that have
matched the maximum number of their word description. Again, we report the
computed min, mean, and max values obtained over the same set used for previ-
ous evaluations over 10 trials. The obtained results are included at the bottom of
Table 5.6 (under the Full-linear mode). These times are roughly a hundred times
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higher than the ones presented before. This is justified by the fact that the tree
is never pruned, and consequently, the algorithm compared all the OCR retrieved
words with all the m words that compose each of the n samples (2, 426 in our case).

5.6.6 Discussion and future works

In Section 5.6, we presented the Augmented Wine Recognition (AWR) system,
and all the details regarding both the domain knowledge (e.g., wine background)
and the technical one (e.g., OCR approach) are provided. In addition, we reported
various related works to underline the aspects in which our system differs from
others [13, 14]. Nowadays (augmented) wine recognition systems and services are
typically based on pure computer vision approaches, but not without limitations.
Such limitations, hence, have motivated this project. In particular, a wine could
possess different visual features (in time), but many wines could appear similarly.
A sole visual analysis may cause wrong detections, because the labels change (not
a rare phenomenon), also due to the changes in the related regulations. To avoid
this phenomenon, very frequent database/fine-tuning updates would be required.
This may not always be possible, though, as in the case of rare labels belonging
to the long tail of the market. Adopting a textual perspective, hence, allowed us
to overcome limitations posed by visual features, expanding the possible field of
application, both in time and space, and speeding up the update process. The
results appear promising, but more work is needed to improve and generalize our
system in a more varied context.

Firstly, further works on image pre-processing techniques may be carried out
to improve the Optical Character Recognition (OCR) performance (e.g., image
rectification [335] and super resolution [336]). This may also involve the adoption
of deep learning models for the semantic segmentation of wine labels, following an
approach similar to [337]. Following this point, a larger dataset of labeled bottle
images, which also includes the annotations of the words along with (specifying the
language) their bounding boxes, should be created. Adopting such a dataset may
ease several problems. The OCR performance could increase by exploiting a fine-
tuning approach using label visual annotations and domain-specific vocabularies.
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This would ameliorate the problem highlighted in the results reported in Table 5.5.
This will also pose the bases for a more general and applicable detection pipeline
that exceeds the Italian wines domain (e.g., fine-tuning in other languages).

Secondly, it may be possible to adopt a multi-domain approach for wine recog-
nition exploiting our OCR-based framework, but also deep learning models to
analyze visual features similarity (i.e., image retrieval). One of the possible use
cases of this approach can be described by the following steps: (i) to use the
presented textual framework to skim, as much as possible, the textual database
(textual DB), and (ii) to execute a simple query image on the remaining wines in
another image database.

Finally, by correctly adopting the OCR, other relevant information in the label
can be detected, e.g., the Bottle capacity and the Alcohol content. These could
be used, along with the wine Name, to derive other information such as the calo-
rie intake, maximum recommended daily dose, and maximum dose for driving.
Hence, many possible future research directions could be explored to improve the
proposed system. Nevertheless, promising performance is achieved showing that
an identification mechanism based not only on visual features but also on textual
data could be a valid method in many application contexts.

5.7 Conclusions

In these projects, we have proposed (three) different AR/MAR applications
and systems in (three) different contexts, starting from a Collaborative Photo
Environment [10, 11] in the cultural heritage field, proceeding with a Mobile Key
Recognition [12] application considering an artisan craft, i.e., the key locksmithing,
and ending with an Augmented Wine Recognition [13] system setting in the wine
domain. The principal aim of all these projects was to prove (and highlight) the
benefits in different terms (e.g., efficacy, efficiency, performance, and usability),
principally combining machine learning algorithms and eXtended Reality inter-
faces, regardless of the application context.
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Chapter 6

Conclusions

Starting from what was stated in the Introduction (Chapter 1), we here draw
the conclusion of this Thesis research work. Since each previous Chapter contains
one (or more) detailed Section(s) related to the Discussion, Conclusions, and Fu-
ture works, the following are reported general conclusions concerning the overall
research work, in order to avoid unnecessary repetitions. The main focus was to
prove that defining machine learning as the class of learning algorithms [17] is
limiting, and not enough. In particular, considering the principal elements charac-
terizing a machine learning pipeline, from the developers to the users, from the task
to the performance measure, we aimed at analysing machine learning in its entirety.
Importantly, we followed this way continuously searching for connections with real
and pragmatic applications, from different perspectives and points of view.

From a non-data scientist point of view, and a developer perspective, consider-
ing a Human Activity Recognition task in the Sport Science area, the complexity of
applying machine (and deep) learning algorithms is shifting more and more from
possessing a data science knowledge and algorithm implementation background to
owning the ability to design systems and collect data (Chapter 2). This is due to
the increasing development of machine learning tools and platforms: Weka, Or-
ange, Ludwig, and Knime, for example. The analysis showed how the employed
machine learning algorithms with a raw dataset can be powerful but, simulta-
neously, parameter-dependent. Data-human interfaces combined with machine

195
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learning algorithms may certainly represent useful instruments for non-data scien-
tists nevertheless, they should be utilized with attention. Further investigations
could be done, considering additional datasets, platforms, and algorithms.

From the task perspective, and to structuring (and organizing) a new one from
scratch, the possibility to utilize a low-cost wearable to collect raw data, consid-
ering a Human Reaching Movement analysis in the Psychological field, to set a
complete stage for a learning task (waiting to reach a sufficient amount of data),
was analyzed in detail (Chapter 3). The obtained results support the use of a
commercial and low-cost 3-axis accelerometer to collect raw data in the consid-
ered task, posing the basis for similar studies in similar settings. Instead, from a
performance perspective, future studies would benefit from the use of additional
kinematic indices, with the possibility to include video recordings and offline cod-
ing to capture additional dimensions and data. Following this line, building a task
to apply machine learning is where “we arrive” from this research (now), but it
is also from where “we start”. The obtained results want to be the initial step to
exploring through machine learning specific aspects of human reaching movement,
e.g., the distinctive contribution of motor planning and control. Machine learning
algorithms could study (and learn information) from different input data. In this
case, a supervised data set would incrementally improve the results, but also an
unsupervised approach could be taken into consideration.

Starting from a non-data scientist developer perspective, through setting a task
from scratch, we arrived to consider the model point of view, including the domain
knowledge, the architecture, the performance measure, and all the relevant ele-
ments that characterize a learning pipeline. In particular, we explored this “point
of view” considering Socio-Historical aspects in the Cultural Heritage environment
(Chapter 4). We proposed a multimedia application to assist socio-historians in
cataloging family album photos. We trained and tested single and multi-input (en-
semble and merged) deep learning models, considering both convolutional neural
network and transformer-based classifiers. The obtained results proved that our
application could provide important support to socio-historians. In addition, we
concentrated on how quantitative methods (deep learning-based classifiers) may
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support qualitative analysis (socio-historical aspects), and the possibility to search
for cues of intercultural influences through cross-dataset experiments, obtaining in
both cases interesting results. This only represents a step in the direction of cre-
ating a holistic approach to socio-historical tasks and, analyzing the limits of this
research, further investigations in this domain may consider larger amounts and
more balanced sets of data, better segmentation of the relevant areas of the im-
ages, and the implementation of a multi-modal approach, capable of including also
other sources of information and data formats, e.g., text.

Finally, we explored the point of view of users, and how machine learning can
improve the interface user experience through eXtended Reality. In particular, we
proceeded considering Augmented Reality, and Mobile Augmented Reality interface
applications in different contexts : the cultural heritage and family album photos,
the artisans’ crafts with the key locksmith figure, and the wine domain through
bottle labels (Chapter 5). We aimed at proving and highlighting the benefits to
combine machine (and deep) learning algorithms and eXtended Reality-guided
interfaces, regardless of the application context. The eXtended Reality, in fact,
is transforming into a technology that may be available in a variety of contexts,
expanding from an only academic or highly specialized technology to an everyday
one.

Then, we proved that talking about machine learning, we do not necessarily
want to focus on an algorithm or an application for its own sake as the goal of
the discussion. In addition, not only in a quantitative task, not only in a scientific
environment, and not only from a data scientist perspective, machine (and deep)
learning can do a difference. From this, it is possible to proceed in different
directions to search other machine learning perspectives and points of view, as
well as other application contexts. This is not said to be the end, it could be a
new beginning.
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