
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

DOTTORATO DI RICERCA IN

COMPUTER SCIENCE AND ENGINEERING

CICLO 35

Settore Concorsuale: 09/H1 - Sistemi di elaborazione delle informazioni

Settore Scientifico Disciplinare: ING-INF/05 - Sistemi di elaborazione delle informazioni

Deploying and Processing
Neural Representations of Signals

Presentata da:
Luca DE LUIGI

Coordinatore di Dottorato:
Ilaria BARTOLINI

Supervisore:
Luigi DI STEFANO

ESAME FINALE ANNO 2023

i

UNIVERSITÀ DI BOLOGNA

Abstract
Facoltà di Ingegneria ed Architettura

Dipartimento di Informatica - Scienza e Ingegneria

Dottorato di Ricerca

Deploying and Processing
Neural Representations of Signals

by Luca DE LUIGI

Neural representations (NR) have emerged in the last few years as a powerful tool to repre-
sent signals from several domains, such as images, 3D shapes, or audio. Indeed, deep neural
networks have been shown capable of approximating continuous functions that describe a
given signal with theoretical infinite resolution. This finding allows obtaining representations
whose memory footprint is fixed and decoupled from the resolution at which the underlying
signal can be sampled, something that is not possible with traditional discrete representations,
e.g., grids of pixels for images or voxels for 3D shapes. During the last two years, many tech-
niques have been proposed to improve the capability of NR to approximate high-frequency
details and to make the optimization procedures required to obtain NR less demanding both
in terms of time and data requirements, motivating many researchers to deploy NR as the
main form of data representation for complex pipelines. Following this line of research, we
first show that NR can approximate precisely Unsigned Distance Functions, providing an
effective way to represent garments that feature open 3D surfaces and unknown topology.
Then, we present a pipeline to obtain in a few minutes a compact Neural Twin® for a given
object, by exploiting the recent advances in modeling neural radiance fields. Furthermore, we
move a step in the direction of adopting NR as a standalone representation, by considering
the possibility of performing downstream tasks by processing directly the NR weights. We
first show that deep neural networks can be compressed into compact latent codes. Then,
we show how this technique can be exploited to perform deep learning on implicit neural
representations (INR) of 3D shapes, by only looking at the weights of the networks.

ii

Publications

[1] Luca De Luigi*, Ren Li*, Benoît Guillard, Mathieu Salzmann, and Pascal Fua. DrapeNet:
Generating Garments and Draping them with Self-Supervision. Accepted at the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) 2023.

[2] Luca De Luigi*, Damiano Bolognini*, Federico Domeniconi*, Daniele De Gregorio,
Matteo Poggi, and Luigi Di Stefano. “ScanNeRF: A Scalable Benchmark for Neural
Radiance Fields”. In: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV). Jan. 2023, pp. 816–825.

[3] Gianluca Berardi*, Luca De Luigi*, Samuele Salti, and Luigi Di Stefano. “Learning the
Space of Deep Models”. In: 2022 26th International Conference on Pattern Recognition
(ICPR). IEEE. 2022, pp. 2482–2488.

[4] Luca De Luigi*, Adriano Cardace*, Riccardo Spezialetti*, Pierluigi Zama Ramirez,
Samuele Salti, and Luigi Di Stefano. Deep Learning on Implicit Neural Representations of
Shapes. Accepted at the International Conference on Learning Representations (ICLR)
2023.

[5] Pierluigi Zama Ramirez, Claudio Paternesi, Luca De Luigi, Luigi Lella, Daniele De
Gregorio, and Luigi Di Stefano. “Shooting labels: 3D semantic labeling by virtual
reality”. In: 2020 IEEE International Conference on Artificial Intelligence and Virtual Reality
(AIVR). IEEE. 2020, pp. 99–106.

[6] Adriano Cardace, Luca De Luigi, Pierluigi Zama Ramirez, Samuele Salti, and Luigi
Di Stefano. “Plugging Self-Supervised Monocular Depth into Unsupervised Domain
Adaptation for Semantic Segmentation”. In: Proceedings of the IEEE/CVF Winter Confer-
ence on Applications of Computer Vision. 2022, pp. 1129–1139.

[7] Pierluigi Zama Ramirez*, Adriano Cardace*, Luca De Luigi*, Alessio Tonioni, Samuele
Salti, and Luigi Di Stefano. “Learning Good Features to Transfer Across Tasks and
Domains”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2023).

[8] Simone Magistri, Marco Boschi, Francesco Sambo, Douglas Coimbra de Andrade,
Matteo Simoncini, Luca Kubin, Leonardo Taccari, Luca De Luigi, and Samuele Salti.
“Lightweight and Effective Convolutional Neural Networks for Vehicle Viewpoint
Estimation From Monocular Images”. In: IEEE Transactions on Intelligent Transportation
Systems (2022).

iii

[9] Marco Boschi, Luca De Luigi, Samuele Salti, Francesco Sambo, Douglas Coimbra
de Andrade, Leonardo Taccari, and Alex Quintero Garcia. Dynamic Bird’s Eye View
Reconstruction of Driving Accidents. Under Review at IEEE Transactions on Intelligent
Transportation Systems.

iv

Acknowledgments

I would like to start by thanking my supervisors, Prof. Luigi Di Stefano and Prof. Samuele
Salti, who gave me the chance to pursue my PhD in the CVLab, a possibility for which I
will always be extremely grateful. They were always there for me, supporting me with an
inspiring and contagious passion for their work. I couldn’t have asked for better supervisors.

I also want to thank all the people in the CVLab, who fought with me through the darkest
moments and were ready to laugh together in the lightest ones.

I am truly grateful to Prof. Pascal Fua for having me in his lab at EPFL for six months,
and to Mathieu Salzmann, Benoît Guillard and Ren Li for the fruitful collaboration during
that period. A warm thank you goes to all the people in EPFL-CVLab: it has been really nice
to be part of such a beautiful group, both in the office and outside.

The rest of the acknowledgments will be in Italian, for my family and friends.

Un immenso grazie a tutti i membri della mia famiglia. Il supporto che mi forniscono
costantemente mi ha permesso di superare le sfide del dottorato con grande serenità, fiducioso
del fatto che sarebbero sempre stati pronti ad affrontare con me gli inevitabili fallimenti ed a
festeggiare insieme i traguardi raggiunti.

Ringrazio con grande affetto anche tutti gli amici, quelli che abitano qui con me a Bologna,
quelli che vivono sparpagliati per la valle del Reno e tutti gli altri sperduti in giro per il mondo.

Il mio ultimo ringraziamento, di certo non meno importante, va a Chiara, Margherita e
Mattia, per aver portato nella mia vita un’ondata di felicità, il carburante di cui avevo bisogno
per concludere il dottorato.

v

Contents

Abstract i

Publications ii

Acknowledgments iv

1 Introduction 1
1.1 Neural Representations of Signals . 1
1.2 Implicit Neural Representations for 3D Shapes 3
1.3 Neural Radiance Fields . 4
1.4 Content of the Thesis . 6

1.4.1 Deploying NR of Signals . 6
1.4.2 Processing NR of Signals . 7

I Deploying NR of Signals 8

2 Modeling Garments with Unsigned Distance Functions 9
2.1 Introduction . 9
2.2 Related Work . 10
2.3 Method . 11

2.3.1 Garment Generative Network . 12
2.3.2 Garment Draping Network . 14

Draping Generic Garments . 14
Self-Supervised Training . 15

2.4 Experiments . 16
2.4.1 Datasets, Settings and Metrics . 16
2.4.2 Garment Parametrization . 18
2.4.3 Garment Draping . 21
2.4.4 Fitting Observations . 24

2.5 Conclusion . 26

vi

3 ScanNeRF: a Scalable Benchmark for Neural Radiance Fields 27
3.1 Introduction . 27
3.2 Related Work . 29
3.3 The ScanNeRF Benchmark . 29

3.3.1 Scan Station Setup . 30
3.3.2 Dataset Filtering . 31
3.3.3 Background Masking . 32
3.3.4 Dataset Organization and Splitting . 32
3.3.5 Scan Time and Number of Objects . 34

3.4 Experiments . 34
3.4.1 Evaluated Frameworks and Settings . 34
3.4.2 Experiments on Evenly Distributed Acquisitions 35
3.4.3 Experiments on Densely Localized Acquisitions 36

3.5 Conclusion . 38

II Processing NR of Signals 40

4 Learning the Space of Deep Models 41
4.1 Introduction . 41
4.2 Related Work . 42
4.3 Method . 43

4.3.1 Framework . 43
4.3.2 Single-Architecture Setting . 45
4.3.3 Multi-Architecture Setting . 46

4.4 Experiments . 49
4.4.1 Datasets and Architectures . 49
4.4.2 Single-Architecture Image Classification 49
4.4.3 Single-Architecture SDF Regression . 51
4.4.4 Multi-Architecture . 52
4.4.5 Multi-Architecture Embedding Interpolation 53
4.4.6 Sampling of Unseen Architectures . 53
4.4.7 Latent Space Optimization . 53

4.5 Conclusion and Future Work . 54

5 Deep Learning on Implicit Neural Representations of Shapes 55
5.1 Introduction . 55
5.2 Related Work . 57
5.3 Learning to Represent INRs . 58

vii

5.4 Using the Same Initialization for INRs . 61
5.5 Deep Learning on INRs . 64

5.5.1 General Settings . 64
5.5.2 Point Cloud Retrieval . 64
5.5.3 Shape Classification . 65
5.5.4 Point Cloud Part Segmentation . 67
5.5.5 Shape Generation . 68
5.5.6 Learning a Mapping Between inr2vec Embedding Spaces 69

5.6 Additional Results and Ablation Studies . 70
5.6.1 Individual INRs vs. Shared Network Frameworks 70
5.6.2 Ablation on INRs Size . 71
5.6.3 Deep Learning on DeepSDF Latent Codes 73
5.6.4 Shape Generation: Additional Comparison 74
5.6.5 Additional Qualititative Results . 74

5.7 Conclusion . 82

6 Final Remarks 83

III Appendices 85

A Modeling Garments with Unsigned Distance Functions 86
A.1 Network Architectures and Training . 86

A.1.1 Garment Generative Network: Encoder 86
A.1.2 Garment Generative Network: Decoder 88
A.1.3 Garment Generative Network: Surface Sampling 88
A.1.4 Draping Network . 89
A.1.5 Training Hyperparameters . 89

A.2 Loss Terms and Ablation Studies . 89
A.2.1 Lpin for Bottom Garments . 89
A.2.2 Llayer for Top-bottom Intersection . 91
A.2.3 Physics-based Refinement . 91

A.3 Additional Results and Considerations . 93
A.3.1 Garment Encoder/Decoder Latent Space Optimization (LSO) 93
A.3.2 Draping Network: Euclidean Distance is not a Good Metric 93
A.3.3 Draping Network: Physics-based Energy Evaluation 95
A.3.4 Inference Times . 95
A.3.5 Fitting SMPLicit to 3D Scans . 96

A.4 Human Evaluation . 96

viii

B Learning the Space of Deep Models 98
B.1 ClassId Classifier . 98
B.2 Network Architectures . 98
B.3 Image Classification: Experiment Details . 101
B.4 3D SDF Regression: Experiment Details . 102
B.5 Fusing Batch Norm and Convolutions . 103
B.6 Visualizing Networks as Images . 104

C Deep Learning on Implicit Neural Representations of Shapes 107
C.1 Obtaining INRs from 3D Discrete Representations 107
C.2 Reconstructing Discrete Representations from INRs 109
C.3 inr2vec Encoder and Decoder Architectures . 111
C.4 Motivation Behind inr2vec Encoder Design . 112
C.5 Experimental Settings . 113
C.6 Implementation, Hardware and Timings . 117
C.7 Testing on Original Discrete 3D Representations 117
C.8 Alternative Architecture for inr2vec . 118
C.9 t-SNE Visualization of inr2vec Latent Space . 119
C.10 INR Classification Time: Extended Analysis . 120

Bibliography 122

1

Chapter 1

Introduction

1.1 Neural Representations of Signals

Every computer-based application that interacts with the world surrounding us requires
a powerful and efficient way of representing data. As a matter of fact, these applications
usually involve the synthesis, estimation, manipulation, display, storage, and transmission of
data about objects and scenes across space and time.

To name some examples, we consider that in Computer Vision data such as images, videos,
and 3D information are collected from specialized sensors – e.g., cameras and lidars – and are
then analyzed to obtain information about the underlying scene. Images can be classified
[10] or used to detect and segment the objects in the scene [11, 12]. Video sequences can be
used to estimate the trajectory of the camera [13] or to reconstruct the 3D geometry of the
environment [14]. 3D data, instead, can be aggregated to recover complete 3D models of
objects [15], can be classified and segmented [16], and can be used to complement the visual
information from images [17].

Apart from Computer Vision, many other applications require to process and/or generate
2D and 3D data. For instance, we consider Computer Graphics – where we are interested in
synthesizing 3D shapes and scenes, and in rendering novel views of them [18] – or Robotics –
where the structure of the 3D environment is used to plan and execute actions [19].

The most common structures adopted to represent the input signals typically involve
some form of discretization, despite their continuous nature. The obvious example of such
discretization is the 2D grid of pixels used to represent images, whose resolution impacts
the number of details captured in the image, with a critical trade-off between quality and
storage requirements. Things are more complicated when dealing with 3D data, with many
different forms of discrete representation coexisting, such as, primarily, voxel grids, point
clouds and triangle meshes. Voxel grids can be seen as the generalization of pixels to 3D data.
While they enable to process voxels by simple extensions of the 2D machinery, the memory
footprint of voxel representations grows cubically with the resolution, hence limiting naive
implementations to mainly 323 or 643 voxel grids. Point clouds avoid wasting memory to
represent the empty space and store only the 3D coordinates of surface points within an

Chapter 1. Introduction 2

FIGURE 1.1. Number of publications related to NR (from [20]). Neural representations were
proposed two decades ago [21], yet their growth in visual computing has been concentrated in the
last two years with over 250 papers.

unorganized data structure. Even if convenient in terms of memory requirements, this kind
of representation lacks the connectivity structure of the underlying surface, resulting in an
undesired loss of information. Triangle meshes represent a good trade-off in terms of memory
requirements and connectivity information, but are still far from optimal when it comes to
ease of processing.

A new form of representation has been proposed in the past few years. Following the many
successes of deep learning, it has been shown that, given enough capacity, fully connected
neural networks can encode continuous signals of arbitrary dimensions at arbitrary resolution.
This leads to the possibility of using a multi-layer perceptron (MLP) to fit a continuous
function that represents a signal of interest. Such MLP is trained to predict the value of the
function of interest – e.g., the RGB color of a point on the image plane – when queried with
the continuous coordinates of a point in the input domain – e.g., the 2D coordinates of the
image point. We will refer to this form of representation as Neural Representations (NR).

NR have been successfully deployed with images [22], videos [23], audio [22], radiance
fields [24] and 3D shapes represented as signed distance functions [25], unsigned distance func-
tions [26] and occupancy fields [27]. There are several potential advantages when considering
NR as a substitute for discrete representations. First of all, the memory footprint of a NR
is given by the number of weights of the adopted MLP. Once the capacity of the network
has been properly calibrated with respect to the complexity of the target signal, the storage
requirement of the NR is fixed and decoupled from the spatial resolution at which the under-
lying signal can be sampled, which is theoretically infinite. This is true for all the mentioned
signals, but perhaps the most convincing example concerns NR fitting radiance fields [24],

Chapter 1. Introduction 3

where a single MLP can be used to generate infinite novel views of a given scene.
Due to their effectiveness and potential advantages over traditional representations,

NR are gathering ever-increasing attention from the scientific community, with striking
improvements in the NR quality [22, 28, 29, 30, 31, 32] and less demanding data and time
requirements [33, 34, 32]. The increasing interest in NR is testified by the concentration of
publications on related topics in the last two years, in spite of NR being originally proposed
two decades ago [21], as reported in [20] and presented in Fig. 1.1.

In the next sections we present the NR that we adopted throughout the thesis, namely
Implicit Neural Representations (INRs) for 3D shapes and Neural Radiance Fields (NeRF).

1.2 Implicit Neural Representations for 3D Shapes

Implicit Neural Representations (INRs) have emerged a few years ago as an effective tool
to represent 3D surfaces whose topology is not known a priori.

In its general formulation, an INR works by training a MLP to fit a continuous function
f : Rin → Rout. To do so, a training set composed of N points xi ∈ Rin with i = 1, 2, ..., N,
paired with values yi = f (xi) ∈ Rout, is exploited to find the optimal parameters θ∗ for the
MLP that implements the INR, by solving the optimization problem:

θ∗ = arg min
θ

1
N

N

∑
i=1

`(yi, fθ(xi)), (1.1)

where fθ represents the function f approximated by the MLP with parameters θ and ` is a
loss function that computes the error between predicted and ground-truth values.

The seminal work DeepSDF [25] proposed to cast the function f to the signed distance
function (SDF) of a 3D closed surface. The SDF is a continuos function that, for any 3D point,
gives its signed distance to the closest point on the surface, with negative sign if the input
point is inside the surface or positive sign otherwise. It follows that the surface is implicitly
described by the level set SDF(·) = 0.

Concurrently to DeepSDF, OccupancyNetworks [27] proposed a slightly different for-
mulation, replacing the SDF with the Occupancy function. In this case, the MLP is trained to
approximate a function whose output can be interpreted as the probability of the input point
to be inside the surface.

Given a 3D surface represented with SDF or Occupancy, an explicit representation of it –
i.e., a triangle mesh – can be obtained using Marching Cubes [35] and this can be done while
preserving differentiability [36, 37, 38].

The major downside of SDF and Occupancy is that they can be used only to represent
closed surfaces, as it is necessary to define which portion of the space is inside the shape. If

Chapter 1. Introduction 4

one needs to represent open surfaces, it is possible to use SDF or Occupancy over an inflated
version of them, which, however, entails a loss in accuracy. For this reason, there has been a
recent push to replace SDFs by unsigned distance functions (UDFs) [26, 39, 40], which enable
accurate modelling of surfaces with any topology.

One difficulty in adopting UDFs is that Marching Cubes was specifically designed to
exploit the signs of SDFs. Obtaining explicit surfaces from UDFs is therefore non-trivial. A
first method was proposed in [26], where the UDF gradients are used to project points onto
the surface, obtaining an oriented point cloud which can be later meshified with [41]. A
recent work [42], instead, proposed a modified version of the Marching Cubes algorithm that
uses the UDF gradients to compute pseudo-signs, enabling the recovery of a complete mesh
from a given UDF.

Over the time many improvements have been proposed on top of the INR original
formulation, with many works focusing on the accuracy of the learned representation [43, 22,
30, 29, 32], and others studying the possibility of reducing the amount of data needed to train
the MLPs [33, 44, 45] and the time needed for the training [34, 32].

We refer to Appendix C.1 for a detailed explanation of how INRs are obtained starting
from discrete representations of 3D shapes.

1.3 Neural Radiance Fields

Neural Radiance Fields (NeRF) [24] represents nowadays the most popular paradigm for
novel view synthesis, rapidly conquering the main stage over explicit approaches exploiting
CNNs [46, 47, 48, 49, 50, 51, 52, 53, 54]. Peculiar to NeRF is a continuous volumetric represen-
tation encoded by a multilayer perceptron (MLP) – opposed to discrete representations such
as voxel grids or multi-plane images – which enables to retrieve color and density of queried
3D points and to render images through differentiable ray casting.

More precisely, NeRF encodes a 3D scene into a function F0 mapping any space position x
and viewing direction d pair into density σ and view-dependent color emission c :

F0 : (x, d)→ (c, σ). (1.2)

Such implicit mapping is learned through a multilayer perceptron (MLP). Specifically, an
intermediate MLP(pos) infers density σ alongside an intermediate embedding e, used by a
shallower MLP(rgb) together with viewing direction d to predict color:

(σ, e) = MLP(pos)(x) ,

c = MLP(rgb)(e, d).
(1.3)

Chapter 1. Introduction 5

Before feeding x to MLP(pos), the 3D coordinates are projected into a higher-dimensional
space through a positional encoding γ(x) based on Fourier features [30] which enables to
learn to represent more accurately the high-frequencies of the underlying function:

γ(x) = (sin (20πx), cos (20πx), ...,

sin (2L−1πx), cos (2L−1πx)).
(1.4)

To render an image, i.e., to get the color of any pixel p, a ray r from the camera center
through the pixel p is cast through the 3D space. Then, the pixel color Ĉ(r) is obtained
through volumetric rendering according to the optical model by Max [55]:

Ĉ(r) =
∫ t f

tn
T(t)σ(r(t))c(r(t), t)dt

T(t) = exp
(
−
∫ t

tn
σ(r(s))ds

) (1.5)

with T(t) being the accumulated transmittance along the ray t from near plane tn to any
specific point t. The value of such integral is estimated through quadrature, by sampling N
evenly distant 3D points along the ray:

Ĉ(r) =

(
K

∑
i=1

Tiαici

)
+ TK+1cbg ,

αi = alpha(σi, δi) = 1− exp(−σiδi) ,

Ti =
i−1

∏
j=1

(1− αj) ,

(1.6)

with αi being the probability of termination at the point i, δi the distance to the adjacent
sampled point, and cbg a pre-defined background color.

Given a set of training images with known camera poses, a NeRF model is trained by
minimizing the photometric MSE between the pixel color C(r) in the training image and the
rendered color Ĉ(r):

Lphoto =
1
|R| ∑

r∈R

∥∥Ĉ(r)− C(r)
∥∥2

2 , (1.7)

withR with the set of rays in a single batch.
Vanilla NeRF has been rapidly extended to deal with different setups, e.g., relighting [56,

57, 58], deformable objects [59, 60, 61, 62, 63], dynamic scenes [64, 65, 23, 66, 67], multi-
resolution images [68] or to implement generative models [69, 70, 71].

Despite the elegant formulation and impressive quality of the synthesised views, the
original NeRF suffers of some notable limitations, such as, in particular, the long training

Chapter 1. Introduction 6

process – a few days in its very first implementation [24] – together with the requirement to
perform a standalone training from scratch for any new scene and the slow rendering speed –
definitely far from real-time.

Faster training. Speeding-up the training procedure represents the main barrier to break
in order to deploy NeRF in real applications, as it would soften the limitation of requiring a
scene-specific training. The main approaches proposed in literature rely on a pre-training
phase [72, 73, 74, 75], deploy additional depth information estimated by means of Multi-View
Stereo (MVS) methods [76, 77], use neural rays [76], exploit explicit representations [78] or
combine them with implicit ones [79, 32].

Faster rendering. Achieving real-time rendering is highly desirable to improve end-user
experience, possibly allowing for interactive visualization of novel viewpoints of a given
object. Recent works exploit octree structures [80] to avoid redundant MLP queries in empty
space, split a single MLP in thousands of tiny ones [81] or leverage explicit volumetric
representations [82, 83, 84, 85].

Next-generation NeRFs. At the time of writing, a few very recent works stand out in
terms of both training and inference speed. DirectVoxGo (DVGO) [79] combines implicit
and explicit representations, using voxel grids together with a light MLP. Plenoxels [78]
gets rid of the MLP and directly optimizes colors over a voxel grid. Instant Neural Graphic
Primitives (Instant-NGP) [32] makes use of hash tables and optimized MLP implementations.
Any of these frameworks can be easily trained in less than 10 minutes and can achieve good
rendering speed without noticeable deterioration of rendering quality.

1.4 Content of the Thesis

The rest of this document is organized in two parts, briefly presented in the following.

1.4.1 Deploying NR of Signals

In Part I we report two works where we deploy NR as the main form of data represen-
tation for complex pipelines, motivated by the aforementioned advantages of NR and the
continuous improvements in the field.

More specifically, in Chapter 2 we present DrapeNet, a framework for generating and drap-
ing garments over human bodies with different shapes and poses, with garments modeled
by approximating their Unsigned Distance Function (UDF). This choice leads to a powerful
representation for the open surfaces of the garments, that feature different geometries and
topologies, and enables sampling new garments, which can be also edited according to
specific characteristics. Finally, since adopting UDF for garments makes the whole pipeline
fully differentiable, DrapeNet can be used to recover the 3D model of clothed people from

Chapter 1. Introduction 7

partial observations such as images and 3D scans. DrapeNet is presented in a conference
paper accepted at the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) 2023.

In Chapter 3, then, we describe ScanNeRF, a pipeline that we designed and implemented
to collect a huge amount of images depicting a given object from different points of view in a
matter of minutes. We show how these images can be used to build an accurate Neural Twin®
of the input object, by taking advantage of neural radiance fields. We further exploit the scan
station built in our work to collect a big and varied dataset of images that can be used to
benchmark any neural rendering method through our public website. ScanNeRF is presented
in a conference paper accepted at the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV) 2023.

1.4.2 Processing NR of Signals

In Part II, we consider an intriguing research question that arises from the above scenario:
beyond storage and communication, would it be possible to process directly NR with deep
learning pipelines to solve downstream tasks as it is routinely done today with discrete
representations? Since NR are neural networks, there is no straightforward way to process
them, as a single NR network can easily count hundreds of thousands of parameters. Thus,
we settle on investigating whether and how it would be possible to cast the above research
question into a representation learning problem, where individual NR are squeezed into
compact and meaningful embeddings amenable to pursuing a variety of downstream tasks.

More specifically, in Chapter 4 we show that the weights of deep neural networks form
a redundant parametrization of their underlying function. Indeed, we introduce NetSpace,
a framework capable of compressing the weights of a given neural network into a low-
dimensional embedding and of predicting the weights of a new network that behaves like
the input one starting only from such embedding. NetSpace is presented in a conference
paper accepted at the International Conference on Pattern Recognition (ICPR) 2022.

In Chapter 5 we move a step further, showing that it is possible to perform deep learning
tasks on implicit neural representations (INR) of 3D shapes. We first introduce inr2vec, a
framework inspired by NetSpace that allows compressing an input INR into a compact
latent code by only looking at its weights. Then, we show that it is possible to use such
low-dimensional vector as input and/or output for standard deep learning machinery to
perform a great variety of task on the INR underlying 3D shape. inr2vec is presented in
a conference paper accepted at the International Conference on Learning Representations
(ICLR) 2023.

8

Part I

Deploying NR of Signals

9

Chapter 2

Modeling Garments with Unsigned
Distance Functions

2.1 Introduction

Draping digital garments over differently-shaped bodies in random poses has been
extensively studied due to its many applications such as fashion design, moviemaking,
video gaming, virtual try-on and, nowadays, virtual and augmented reality. Physics-based
simulation (PBS) [86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96] can produce outstanding results, but
at a high computational cost that precludes real-time performance. Algorithms can be sped
up by exploiting temporal consistency in pose sequences, but not enough.

Hence, recent years have witnessed the emergence of deep neural networks aiming to
achieve the quality of PBS draping while being much faster [97, 98, 99, 100, 101, 102, 103,
104, 105]. These networks are often trained to produce garments that resemble ground-truth
ones. While effective, this requires building training datasets, consisting of ground-truth
meshes obtained either from computationally expensive simulations [106] or using complex
3D scanning setups [107]. Moreover, to generalize to unseen garments and poses, these
supervised approaches require training databases encompassing a great variety of samples
depicting many combinations of garments, bodies and poses.

The recent PBNS and SNUG approaches [108, 109] address this by casting the physical
models adopted in PBS into constraints used for self-supervision of deep learning models.
This makes it possible to train the network on a multitude of body shapes and poses without
ground-truth draped garments. Instead, the predicted garments are constrained to obey
physics-based rules. However, both PBNS and SNUG, require training a separate network
for each garment. They rely on mesh templates for garment representation and feature one
output per mesh vertex. Thus, they cannot handle meshes with different topologies, even for
the same garment. This makes them very specialized and limits their applicability to large
garment collections as a new network must be trained for each new clothing item.

In this chapter, we introduce DrapeNet, an approach that also relies on physics-based
constraints to provide self-supervision but can handle generic garments by conditioning a

Chapter 2. Modeling Garments with Unsigned Distance Functions 10

single draping network with a latent code describing the garment to be draped. We achieve
this by coupling the draping network with a garment generative network, composed of an
encoder and a decoder. The encoder is trained to compress input garments into compact
latent codes that are used as input condition for the draping network. The decoder, instead,
reconstructs a 3D garment model from its latent code, thus allowing us to sample and edit
new garments from the learned latent space.

Specifically, we model the output of the garment decoder as an unsigned distance function
(UDF), which were demonstrated [42] to yield better accuracy and fewer interpenetrations
than the inflated signed distance functions often used for this purpose [110, 111]. Moreover,
UDFs can be triangulated in a differentiable way [42] to produce explicit surfaces that can
easily be post-processed, making our pipeline fully differentiable. Hence, DrapeNet can
not only drape garments over given body shapes but can also perform gradient-based
optimization to fit garments, along with body shapes and poses, to partial observations of
clothed people, such as images or 3D scans.

Our contributions are as follows:

• We introduce a single garment draping network conditioned on a latent code to handle
generic garments;

• By exploiting physics-based self-supervision, our pipeline only requires a few hundred
garment meshes in a canonical pose for training;

• Our framework enables fast draping of new garments with high fidelity, as well as
sampling and editing of new garments from the learned latent space;

• Being fully differentiable, our method can be used to recover accurate 3D models of
clothed people from images and 3D scans.

2.2 Related Work

Two main classes of draping methods coexist, physics-based algorithms [86, 112, 113, 106,
114] that produce high-quality drapings but at a high computational cost, and data-driven
approaches that are faster but often at the cost of realism.

Among the latter, template-based approaches [109, 115, 116, 100, 117, 108, 103, 118]
are dominant. Each garment is modeled by a specific triangulated mesh and a draping
function is learned for each one. In other words, they do not generalize. There are however a
number of exceptions. In [98, 119] the mesh is replaced by 3D point clouds that can represent
generic garments. This enables deforming garments with arbitrary topology and geometric
complexity, by estimating the deformation separately for each point. [120] goes further and
allows differentiable changes in garment topology by sampling a fixed number of points

Chapter 2. Modeling Garments with Unsigned Distance Functions 11

Intersection
Solver

Garment generative network Garment draping network

Garment
latent code

ℒ!"#$ +ℒ%&'!

3D queries
𝑥 ∈ ℝ(×* Body shape and

pose (𝛽, 𝜃)

𝑧

𝑧$+,
Ga

rm
en

t
En

co
de

r

𝑧!"#

+

+

U
DF

De
co

de
r

MeshUDF

Garment
UDF

𝑧$"!

𝑧-+$

Garment Decoder
SUPERVISED

SELF-SUPERVISED

𝛥𝑥, 𝛥𝑥!"#

Δ𝑥$% Skinning - 𝒲

ℒ%!&'() + ℒ$*)+(),
+ ℒ,&'-(!. + ℒ/"00(%(")

ℒ%!&'() + ℒ$*)+(),
+ ℒ,&'-(!. + ℒ/"00(%(")

+ ℒ#() + ℒ0'.*&

To
p

Di
sp

la
ce

m
en

ts
Bo

tto
m

Di
sp

la
ce

m
en

ts

𝛥𝑥, 𝛥𝑥!"#

FIGURE 2.1. Overview of our framework. Left: Garment generative network, trained to embed
garments into compact latent codes and predict their unsigned distance field (UDF) from such
vectors. UDFs are then meshed using [42]. Right: Garment draping network, conditioned on
the latent codes of the generative network. It is trained in a self-supervised way to predict the
displacements ∆x and ∆xref to be applied to the vertices of given garments, before skinning them
according to body shape and pose (β, θ) with the predicted blending weightsW . It includes an
Intersection Solver module to prevent intersection between top and bottom garments.

from the body mesh. Unfortunately, this point cloud representation severely limits possible
downstream applications, which typically require a complete surface.

In recent approaches [110, 111], a space of garments is learned with clothing items
modeled as inflated SDFs and one single shared network to predict their deformations
as a 3D displacement field. This makes deployment in real-world scenarios easier and allows
the reconstruction of garments from images and 3D scans. However, the inflated SDF scheme
reduces realism and precludes post-processing using standard physics-based simulators or
other cloth-specific downstream applications. Furthermore, both models are fully supervised
and require a dataset of draped garments whose collection is extremely time-consuming.

Alleviating the need for costly ground-truth draped garments is tackled in [108, 109],
by introducing physics-based losses to train draping networks in a self-supervised manner.
The approach of [108] relies on a mass spring model to enforce the physical consistency
of static garments deformed by different body poses. The method of [109] also accounts
for variable body shapes and dynamic effects; furthermore, it incorporates a more realistic
and expressive material model. Both methods, however, require training one network per
garment, a limitation we remove.

2.3 Method

We aim to realistically deform and drape generic garments over human bodies of various
shapes and poses. To this end, we introduce the DrapeNet framework, presented in Fig. 2.1.

Chapter 2. Modeling Garments with Unsigned Distance Functions 12

It comprises a generative network shown on the left and a draping network shown on the
right. Only the first is trained in a supervised manner, but using only static unposed garments
meshes. This is key to avoiding having to run physics-based simulations to generate ground-
truth data. Furthermore, we condition the draping network on latent vectors representing
the input garments, which allows us to use the same network for very different garments,
something that competing methods [109, 108] cannot do.

The generative network is a decoder trained using an encoder that turns a garment
into a latent code z that can then be decoded to an Unsigned Distance Function (UDF),
from which a triangulated mesh can be extracted in a differentiable manner [42]. The UDF
representation allows us to accurately represent open surfaces and the many openings that
garments typically feature. Since the top and bottom garments – shirts and trousers – have
different patterns, we train one generative model for each. Both networks have the same
architecture but different weights.

The resulting garment generative network is only trained to output garments in a canonical
shape, pose, and size that fit a neutral SMPL [121] body. Draping the resulting garments to
bodies in non-canonical poses is then entrusted to a draping network, again one for the top
and one for the bottom. As in [109, 108, 111], this network predicts vertex displacements w.r.t.
the neutral position. The deformed garment is then skinned onto the articulated body model.
To enable generalization to different tops and bottoms, we condition the draping process on
the garment latent codes of the generative network, shown as ztop and zbot in Fig. 2.1.

We use a small database of static unposed garments loosely aligned with bodies in the
canonical position to train the two garment generating networks. This being done, we exploit
physics-based constraints to train in a fully self-supervised manner the top and bottom
draping networks for realism, without interpenetrations with the body and between the
garments themselves.

2.3.1 Garment Generative Network

To encode garments into latent codes that can then be decoded into UDFs, we rely on a
point cloud encoder that embeds points sampled from the unposed garment surface into a
compact vector. This lets us obtain latent codes for previously unseen garments in a single
inference pass from points sampled from its surface. This can be done given any arbitrary
surface triangulation. Hence, it gives us the flexibility to operate on any given garment mesh.

We use DGCNN [122] as the encoder. It first propagates the features of points within the
same local region at multiple scales and then aggregates them into a single global embedding
by max pooling. We pair it with a decoder that takes as input a latent vector, along with
a point in 3D space, and returns its (unsigned) distance to the garment. The decoder is

Chapter 2. Modeling Garments with Unsigned Distance Functions 13

a multi-layer perceptron (MLP) that relies on Conditional Batch Normalization [123] for
conditioning on the input latent vector.

We train the encoder and the decoder by encouraging them to jointly predict distances that
are small near the training garments’ surface and large elsewhere. Because the algorithm we
use to compute triangulated meshes from the predicted distances [42] relies on the gradient
vectors of the UDF field, we also want these gradients to be as accurate as possible [45, 39].
We therefore minimize the loss

Lgarm = Ldist + λgLgrad , (2.1)

where Ldist encodes our distance requirements, Lgrad the gradient ones, and λg is a weight
balancing their influence.

More formally, at training time and given a mini-batch comprising B garments, we sample
a fixed number P of points from the surface of each one. For each resulting point cloud pi

(1≤ i≤B), we use the garment encoder EG to compute the latent code

zi = EG(pi) (2.2)

and use it as input to the decoder DG. It predicts an UDF field supervised with Eq. (2.1),
whose terms we define below.

Distance Loss. Having experimented with many different formulations of this loss, we
found the following one both simple and effective. Given N points {xij}j≤N sampled from the
space surrounding the i-th garment, we pick a distance threshold δ, clip all the ground-truth
distance values {yij} to it, and linearly normalize the clipped values to the range [0, 1]. This
yields normalized ground-truth values ȳij = min(yij, δ)/δ. Similarly, we pass the output of
the final layer of DG through a sigmoid function σ(·) to produce a prediction in the same
range for point xij

ỹij = σ(DG(xij, zi)) . (2.3)

Finally, we take the loss to be

Ldist = BCE
[
(ȳij)

i≤B
j≤N , (ỹij)

i≤B
j≤N

]
, (2.4)

where BCE[·, ·] stands for binary cross-entropy with continuous labels. As observed in [124],
the sampling strategy used for points xij strongly impacts training effectiveness. We describe
ours in Appendix A.1.3. In our experiments, we set δ = 0.1, being the top and bottom
garments normalized respectively into the upper and lower halves of the [−1, 1]3 cube.

Chapter 2. Modeling Garments with Unsigned Distance Functions 14

Gradient Loss. Given the same sample points as before, we take the gradient loss to be

Lgrad =
1

BN ∑
i,j

∥∥gij − ĝij
∥∥2

2 , (2.5)

where gij = ∇xyij ∈ R3 is the ground-truth gradient of the i-th garment’s UDF at xij and
ĝij = ∇xDG(xij, zi) the one of the predicted UDF, computed by backpropagation.

2.3.2 Garment Draping Network

We describe our approach to draping generic garments as opposed to specific ones and
our self-supervised scheme.

Draping Generic Garments

We rely on SMPL [121] to parameterize the body in terms of shape (β) and pose (θ)
parameters. It uses Linear Blend Skinning to deform a body template. Since garments
generally follow the pose of the underlying body, we extend the SMPL skinning procedure to
the 3D volume around the body for garment draping. Given a point x ∈ R3 in the garment
space, its position D(x, β, θ, z) after draping becomes

D(x, β, θ, z) = W(x(β,θ,z), β, θ,W(x)) , (2.6)

x(β,θ,z) = x + ∆x(x, β) + ∆xref(x, β, θ, z) ,

∆xref(x, β, θ, z) = B(β, θ) ·M(x, z) ,

where W(·) is the SMPL skinning function, applied with blending weightsW(x), over the
point displaced by ∆x(x, β) and ∆xref(x, β, θ, z). W(x) and ∆x(x, β) are computed as in [117,
111]. However, they only give an initial deformation for garments that roughly fits the
underlying body. To refine it, we introduce a new term, ∆xref(x, β, θ, z). It is a deformation
field conditioned on body parameters β and θ, and on the garment latent code z from the
generative network. Following the linear decomposition of displacements in SMPL, it is the
composition of an embedding B(β, θ) ∈ RNB of body parameters and a displacement matrix
M(x, z) ∈ RNB×3 conditioned on z. Being conditioned on the latent code z, ∆xref can deform
different garments differently, unlike the methods of [109, 108].

Since we have distinct encodings for the top and bottom garments, for each one we train
two MLPs (B,M) to predict ∆xref. The other MLPs forW(·) and ∆x(·) are shared.

Chapter 2. Modeling Garments with Unsigned Distance Functions 15

Self-Supervised Training

We first learn the weights of W(·) and ∆x(·) as in [117, 111], which does not require
any annotation or simulation data but only the blending weights and shape displacements
of SMPL. We then train our deformation fields ∆xref in a fully self-supervised fashion by
minimizing the physics-based losses introduced below. In this way, we completely eliminate
the huge cost that extensive simulations would entail.

Top Garments. For upper body garments – shirts, t-shirts, vests, tank tops, etc. – the
deformation field is trained using the loss from [108], expressed as

Ltop = Lstrain + Lbend + Lgravity + Lcol , (2.7)

where Lstrain is the membrane strain energy of the deformed garment, Lbend the bending
energy caused by the folding of adjacent faces, Lgravity the gravitational potential energy, and
Lcol a penalty for collisions between body and garment. Unlike in [108], we only consider the
quasi-static state after draping, that is, without acceleration.

Bottom Garments. Due to gravity, bottom garments, such as trousers, would drop onto
the floors if we used only the loss terms of Eq. (2.7). We thus introduce an extra loss term to
constrain the deformation of vertices around the waist and hips. The loss becomes

Lbottom = Lstrain + Lbend + Lgravity + Lcol + Lpin,

Lpin = ∑
v∈V
|∆xy|2 + λ(|∆xx|2 + |∆xz|2) , (2.8)

where V is the set of garment vertices whose closest body vertices are located in the region
of the waist and hips. See Appendix A.2.1 for details. The terms ∆xx, ∆xy and ∆xz are the
deformations along the X, Y and Z axes, respectively. λ is a positive value smaller than
1 that penalizes deformations along the vertical direction (Y axis) and produces natural
deformations along the other directions.

Top-Bottom Intersection. To ensure that the top and bottom garments do not intersect
with each other when we drape them on the same body, we define a loss LIS that ensures
that when the top and the bottom garments overlap, the bottom garment vertices are closer
to the body mesh than the top ones, which prevents them from intersecting – this is arbitrary,
and the following could be formulated the other way around. To this end, we introduce an
Intersection Solver (IS) network. It predicts a displacement correction ∆xIS, added only when
draping bottom garments as

x̃(ztop,zbot)
= x(zbot)

+ ∆xIS(x, ztop, zbot) , (2.9)

where we omit the dependency of x̃, x and ∆xIS on the body parameters (β, θ) for simplicity.

Chapter 2. Modeling Garments with Unsigned Distance Functions 16

ztop and zbot are the latent codes of the top and bottom garments, and x(zbot)
is the input point

displaced according to Eq. (2.6). The skinning function of Eq. (2.6) is then applied to x̃(ztop,zbot)

for draping. ∆xIS(·) is implemented as a simple MLP and trained with

LIS = Lbottom + Llayer, (2.10)

where Llayer is a loss whose minimization requires the top and bottom garments to be
separated from each other. We formulate it as

Llayer = ∑
vB∈C

max(dbot(vB)− γdtop(vB), 0) , (2.11)

where C is the set of body vertices covered by both the top and bottom garments, dtop(·) and
dbot(·) the distance to the top and the bottom garments respectively, and γ a positive value
smaller than 1 (more details in Appendix A.2.2).

2.4 Experiments

In the following, we describe our experimental setup and we test DrapeNet for the
different purposes depicted by Fig. 2.2. We first test our generative network, showing that it
allows for reconstructing different kinds of garments and for editing them by manipulating
their latent codes. We then gauge the draping network both qualitatively and quantitatively.
Finally, we use DrapeNet to reconstruct garments from images and 3D scans.

2.4.1 Datasets, Settings and Metrics

Datasets. Both our generative and draping networks are trained with garments from
CLOTH3D [125], a synthetic dataset that contains over 7K sequences of animated 3D humans
parametrized used the SMPL model and wearing different garments. Each sequence com-
prises up to 300 frames and features garments coming from different templates. For training,
we randomly selected 600 top garments (t-shirts, shirts, tank tops, etc.) and 300 bottom gar-
ments (both long and short trousers). Neither for the generative nor for the draping networks
did we use the simulated deformations of the selected garments. Instead, we trained the
networks using only garment meshes on average body shapes in T-pose. By contrast, for
testing purposes, we selected random clothing items – 30 for top garments and 30 bottom
ones – and considered whole simulated sequences.

Training. We train two different models for top and bottom garments, both for the
generative and for the draping parts of our framework. First, the generative models are
trained on the 600/300 neutral garments. Then, with the generative networks weights frozen,

Chapter 2. Modeling Garments with Unsigned Distance Functions 17

Sampling and draping new garments

Draping generic garments

Fitting garments to observations

Bottom garments

latent sp
ace

Top garments

latent sp
ace

𝑧!"##"$

𝑧#"%

𝑧#"%

𝑧!"##"$

(𝛽, 𝜃)

G
ar

m
en

t
En

co
de

r

Dr
ap

in
g

N
et

w
or

k

Dr
ap

in
g

N
et

w
or

k

G
ar

m
en

t
De

co
de

r
Dr

ap
in

g
N

et
w

or
k

G
ar

m
en

t
De

co
de

r

backpropagation

FIGURE 2.2. Overview of DrapeNet applications. Top: New garments can be sampled from
the latent spaces of the generative networks, and deformed by the draping networks to fit a
given body. Center: The garment encoders and the draping networks form a general purpose
framework to drape any garment with a single forward pass. Bottom: Being a differentiable
parametric model, our framework can reconstruct 3D garments by fitting observations such as
images or 3D scans. The red boxes indicate the parameters optimized in this process.

Chapter 2. Modeling Garments with Unsigned Distance Functions 18

GT
Pr
ed
ic
te
d

TA
RG

ET
RE
SU

LT

FIGURE 2.3. Generative network: reconstruction of unseen garments in neutral pose/shape.
The latent codes are obtained with the garment encoder, then decoded into open surface meshes.

we train the draping networks by following [108]: body poses θ are sampled randomly from
the AMASS [126] dataset, and shapes β uniformly from [−3, 3]10 at each step. The other
hyperparameters are given in Appendix A.1.5.

Metrics. We report the Euclidean distance (ED), interpenetration ratio between body and
garment (B2G), and intersection between top and bottom garments (G2G). ED is computed
between corresponding vertices of the considered meshes. B2G is the area ratio between
the garment faces inside the body and the whole surface as in [111]. Since CLOTH3D
exclusively features pairs of top/bottom garments with the bottom one closer to the body,
G2G is computed by detecting faces of the bottom garment that are outside of the top one,
and taking the area ratio between those and the overall bottom garment surface.

2.4.2 Garment Parametrization

We first test the encoding-decoding scheme of Sec. 2.3.1.
Encoding-Decoding Previously Unseen Garments. The generative network of Fig. 2.1

is designed to project garments into a latent space and to reconstruct them from the resulting
latent vectors. In Fig. 2.3, we visualize reconstructed previously-unseen garments from
CLOTH3D. The reconstructions are faithful to the input garments, including fine-grained
details such as the shirt collar on the left or the shoulder straps of the tank top. Fig. 2.4
and Fig. 2.5 show additional examples of the encoding-decoding capabilities of our garment
generative network for top and bottom test garments, respectively. It is possible to notice how
the output garments closely match the input ones, both in terms of geometry and topology.

Semantic Manipulation of Latent Codes. Our framework enables us to edit a garment
by manipulating its latent code. For the resulting edits to have a semantic meaning, we
assigned binary labels corresponding to features of interest to 100 training garments. For
instance, we labeled garments as having “short sleeves” (label = 0) or “long sleeves” (label
= 1). Then, we fit a linear logistic regressor to the garment latent codes. After training, the

Chapter 2. Modeling Garments with Unsigned Distance Functions 19
G
T

G
T

G
T

PR
ED

PR
ED

PR
ED

FIGURE 2.4. Generative network: reconstruction of unseen garments in neutral pose/shape
(top garments). Latent codes for unseen garments can be obtained with our garment encoder.
These codes are then used by the garment decoder to reconstruct open surface meshes. Input
garments are colored in purple, while the reconstructed meshes are colored in gray.

G
T

G
T

PR
ED

PR
ED

FIGURE 2.5. Generative network: reconstruction of unseen garments in neutral pose/shape
(bottom garments). Latent codes for unseen garments can be obtained with our garment encoder.
These codes are then used by the garment decoder to reconstruct open surface meshes. Input
garments are colored in dark gray, while the reconstructed meshes are colored in light gray.

Chapter 2. Modeling Garments with Unsigned Distance Functions 20

Sl
ee
ve

le
ng
th - +

Fr
on

t
op

en
in
g

- +
Le
ng
th - +

FIGURE 2.6. Garment editing. The latent codes produced by the garment encoder can be
manipulated to edit specific features of the corresponding garments, without altering the overall
geometry.

regressor weights indicate which dimensions of the latent space control the feature of interest.
To this end, we first apply min-max normalization to the absolute weight values and then
zero out the ones below a certain threshold, empirically set to 0.5. The remaining non-zero
weights indicate which dimensions of the latent codes should be increased or decreased to
edit the studied feature: we modify all of them, increasing (decreasing) their value if the
associated weight is positive (negative), with a step proportional to the weight magnitude.
To create Fig. 2.6, we applied this simple procedure to control the sleeve length and the front
opening for top garments along with the length for bottom garments. As can be seen from
the figure, our latent representations give us the ability to edit a specific garment feature
while leaving other aspects of the garment geometry unchanged.

Ablation study for Lgarm. We report here an ablation study that we conducted to deter-
mine the best formulation for Lgarm, the loss function presented in Eq. (2.1), that we use to
train our garment generative network. In particular, we consider three variants for Ldist, the
term of the supervision signal that guides the network to predict accurate values for the gar-
ments UDF. In addition to the binary cross-entropy loss (BCE) presented in Eq. (2.4), we study
the possibility of using more traditional regression losses, such as L1 and L2 losses. Adopting
the notation introduced in Sec. 2.3.1, the L1 loss is defined as 1

BN ∑i,j |min(yij, δ)− ỹij|, while
the L2 loss is computed as 1

BN ∑i,j(min(yij, δ)− ỹij)
2. On top of the three variants for Ldist,

we also consider for each one the possibility of removing the gradients supervision from
Lgarm, i.e., setting λg = 0. We trained our generative network for 48 hours with the resulting
six loss function variants and then compared the quality of the garments reconstructed with
the garment decoder. Fig. 2.7 presents a significant example of what we observed on the
test set. Without gradients supervision (top row of the figure), none of the considered loss
functions (BCE, L1 or L2) can guide the network to predict smooth surfaces without artifacts
or holes. Adding the gradients supervision (bottom row) induces a strong regularization

Chapter 2. Modeling Garments with Unsigned Distance Functions 21

BCE Loss L1 Loss L2 Loss

N
o

gr
ad

ie
nt

s
su

pe
rv

is
io

n
W

ith
 g

ra
di

en
ts

su
pe

rv
is

io
n

FIGURE 2.7. Comparison between different loss functions for the garment generative network.
We present the same garment reconstructed by our generative network after being trained for 48
hours with six different alternatives of loss functions.

on the predicted distance fields, helping the network to predict surfaces without holes in
most of the cases. However, using the L1 loss leads to rough surfaces, as one can observe
in the center column of the bottom row of the figure. The BCE and the L2 losses (first and
third columns of the bottom row), instead, produce smooth surfaces that are pleasant to see.
We finally opted for the BCE loss over the L2 loss, since the network trained with the latter
occasionally predicts surfaces with small holes, as in the example shown in the figure.

2.4.3 Garment Draping

We now turn to the evaluation of the draping network and compare its performance
to those of DeePSD [119] or DIG [111], two fully supervised learning methods trained on
CLOTH3D. DeePSD takes the point cloud of the garment mesh as input and predicts blending
weights and pose displacements for each point; DIG drapes garments with a learned skinning
field that can be applied to generic 3D points, but is similar for all garments. We chose those
because, like DrapeNet, they both can deform garments of arbitrary geometry and topology.

Draping Unseen Meshes. We drape previously unseen garments on different bodies in
random poses. We first encode the garments and use the resulting latent codes to condition
the draping network, whose inference takes ∼5ms. We provide qualitative results in Fig. 2.8
and report quantitative ones in Tab. 2.1. Despite being completely self-supervised, DrapeNet
delivers the lowest ratio of body-garment interpenetrations (B2G) for both top and bottom
garments and the least intersections between them (G2G).

However, DrapeNet also yields higher ED values, which makes sense because there is
more than one way to satisfy the physical constraints and to achieve realism. Hence, in the

Chapter 2. Modeling Garments with Unsigned Distance Functions 22

DeePSD
ED = 29.0mm

DIG
ED = 10.4mm

Ours
ED = 50.0mmGT GT DIGDeePSD Ours

Ours, no Δ𝑥!"#
ED = 44.2mm

FIGURE 2.8. Comparison between DeePSD, DIG and our method. Ours is more realistic despite
having the highest Euclidean distance (ED) error (left), and has less intersection between garments
(right). Left also shows that ∆xref is necessary for realistic deformations.

DeePSD DIG Ours

ED-top (mm) 28.1 29.6 47.9
ED-bottom (mm) 18.3 20.0 27.3

B2G-top (%) ↓ 7.2 1.8 0.9
B2G-bottom (%) ↓ 3.4 0.8 0.3

G2G (%) ↓ 2.0 4.0 0.5

TABLE 2.1. Draping unseen garment meshes. Comparison between DeePSD, DIG and our
method, for top and bottom garments: Euclidean distance (ED), intersections with the body (B2G)
and between garments (G2G) as ratio of intersection areas.

absence of explicit supervision, there is no reason for the answer picked by DrapeNet to be
exactly the same as the one picked by the simulator. In fact, as argued in [109] and illustrated
by Fig. 2.8, which is representative in terms of ED, a low ED value does not necessarily
correspond to a realistic draping. To confirm this, we conducted a human evaluation study
by sharing a link to a website on friends groupchats. We gave no further instructions or
details besides those given on the site and reproduced in Appendix A.4. The website displays
3 drapings of the same garment over the same posed body, one computed using our method
and the others using the other two. The users were asked to select which one of the three
seemed more realistic and more pleasant, with a fourth potential response being “none of
them". We obtained feedback from 187 different people. A total of 1258 individual examples
were rated and we collected 3738 user opinions. In other words, each user expressed 20
opinions on average. The chart in Fig. 2.9 shows that our method was selected more than
50% of the times, with a large gap over the second best, DIG [111], selected less than 30%
of the time. This result confirms that DrapeNet can drape garments with better perceptual
quality than the competing methods.

In Fig. 2.10 we show additional qualitative results of garment draping produced by our
method, where the garment meshes are generated by our UDF model. It can be seen that

Chapter 2. Modeling Garments with Unsigned Distance Functions 23

0 10 20 30 40 50 60

None
DeePSD

DIG
Ours

% of selections
None

DeePSD
DIG
Ours 53.58%

28.01%
9.90%
8.51%

FIGURE 2.9. Human evaluation of draping results. When shown draping results of our method,
DIG and DeePSD, evaluators selected ours as the most realistic one in more than half of the cases.
None refers to the case when they had no clear preference.

FIGURE 2.10. Additional draping results. Draping garments of different topologies over bodies
in various shapes and poses with our method.

our method can realistically drape garments with different topologies over bodies of various
shapes and poses.

Ablation Study. In Fig. 2.11, we show what happens when the draping network is
conditioned with a latent code of a garment that does not match the input one. This creates
unnatural deformations on the front when using the code of a shirt with a front opening
to deform a shirt without an opening. Similarly, the sleeves penetrate the arms when
conditioning with the code of a short sleeves shirt. This demonstrates that the draping
network truly exploits the latent codes to predict garment-dependent deformation fields.

In Fig. 2.8 left we show that removing our novel displacement term ∆xref(·) from Eq. (2.6)
leads to unrealistic results.

We also ablate the influence of our Intersection Solver and observe that G2G increases
from 0.5% to 1.1% without it. This demonstrates the effectiveness of this component at

Chapter 2. Modeling Garments with Unsigned Distance Functions 24

(a) (b) (c) (d)

FIGURE 2.11. Switching input latent codes of the draping network. Draping the same shirt
by conditioning the draping network with (a) the corresponding latent code, (b) the code of an
open vest, (c) of a t-shirt and (d) of a tank top. Gray meshes in dashed boxed are the garments
corresponding to the input latent codes.

reducing collisions between top and bottom garments.

2.4.4 Fitting Observations

Since our method is end-to-end differentiable, it can be used to reconstruct 3D models of
people and their garments from partial observations, such as 2D images and 3D scans.

Fitting Images. Given an image of a clothed person, we use the algorithm of [128, 129] to
get initial estimates for the body parameters (β, θ) and a segmentation mask S. Then, starting
with the mean of the learned codes z, we reconstruct a mesh for the body and its garments by
minimizing

L(β, θ, z) = LIoU(R(D(G, β, θ, z), SMPL(β, θ)), S) ,

G = MeshUDF(DG(z)) ,
(2.12)

w.r.t. z, β and θ, where LIoU is the IoU loss [130] in pixel space penalizing discrepancies
between 2D masks, R(·) is a differentiable mesh renderer [131], and G is the set of vertices of
the garment mesh reconstructed with our garment decoder using z. D(·) and SMPL(·) are
the garment and body skinning functions defined in Eq. (2.6) and in [121], respectively. To
ensure pose plausibility, θ is constrained by an adversarial pose prior [132].

For simplicity’s sake, Eq. (2.12) formulates the reconstruction of a single garment G. In
practice, we extend this formulation to both the top and the bottom garments shown in
the target image. Fig. 2.12 depicts the results of minimizing this loss. It outperforms the
state-of-the-art methods SMPLicit [110], ClothWild [127] and DIG [111]. The garments we
recover follow those in the input image with higher fidelity and visual quality, without
interpenetration between the body and the garments or between the two garments.

After this optimization, we can further refine the result by minimizing the physics-based
objectives of Eq. (2.7) w.r.t. the per-vertex displacements of the reconstructed garments, as
opposed to w.r.t. the latent vectors. We describe this procedure in Appendix A.2.3. As shown
in the third column of Fig. 2.12, this further boosts the realism of the reconstructed garments.
Note that this refinement is feasible thanks to the open surface representation allowed by our
UDF model. Applying these physically inspired losses to an inflated garment, as produced

Chapter 2. Modeling Garments with Unsigned Distance Functions 25

Input SMPLicit ClothWild DIGOurs (raw) Ours (post ref.)

Input SMPLicit ClothWild DIGOurs (raw) Ours (post ref.)

FIGURE 2.12. Recovering garments and bodies from images. From left to right we show the
input image and the 3D models recovered with our method (without and with post-refinement),
and competitors methods: SMPLicit [110], ClothWild [127], DIG [111].

by SMPLicit, ClothWild and DIG, yields poor results with many self-intersections, as shown
in Appendix A.2.3.

Fitting 3D scans. Given a 3D scan of a clothed person and segmentation information, we
apply a strategy similar to the one presented above and minimize

L(β, θ, z) = d(D(G, β, θ, z), SG) + ~d(SMPL(β, θ), SB), (2.13)

w.r.t. z, β and θ, where SG and SB denote the segmented garment and body scan points, and
d(a, b) and ~d(a, b) are the bidirectional and the one-directional Chamfer distance from b to
a. Similarly to Eq. (2.12), we apply Eq. (2.13) to recover both the top and bottom garments.
Fig. 2.13 shows our fitting results for some scans of the SIZER dataset [103]. The recovered
3D models closely match the input scans. Moreover, we can also apply a post-refinement
procedure similar to the one described above, by minimizing both the physics-based losses
from Eq. (2.7) and the Chamfer distance to the input scan w.r.t. the 3D coordinates of the
vertices of the reconstructed models. This leads to even more realistic results, with fine
wrinkles aligning to the input scans.

Chapter 2. Modeling Garments with Unsigned Distance Functions 26

3D Scan Raw Post Refinement

FIGURE 2.13. Recovering garments and bodies from 3D scans. We show 3D models recovered
with our method from scans of the SIZER dataset [103]. Raw indicates the model recovered
with Eq. (2.13) from the 3D scan. Post Refinement refers to the models further refined with the
physics-based losses.

2.5 Conclusion

We have shown that physics-based self-supervision can be leveraged to learn a single
parameterization for many different garments to be draped on human bodies in arbitrary
poses. Our approach relies on UDFs to represent garment surfaces and on a displacement
field to drape them, which enables us to handle a continuous manifold of garments without
restrictions on their topology. Our whole pipeline is differentiable, which makes it suitable
for solving inverse problems and for modeling clothed people from image data.

One interesting direction for future work deals with modeling dynamic poses instead
of only static ones. This is of particular relevance for loose clothes, where our reliance on
the SMPL skinning prior should be relaxed. Another future path for this work concerns the
possibility of replacing the current global latent code that we used for garments by a set of
local codes to yield finer-grained control both for garment editing and draping.

27

Chapter 3

ScanNeRF: a Scalable Benchmark for
Neural Radiance Fields

3.1 Introduction

What is the Metaverse? Stephenson coined this portmanteau in his novel Snow Crash,
hypothesizing that in the 21st century humans, thanks to goggles, would be immersed in
virtual worlds mixed with real ones. And here we are! At the time, however, the technology
to realize the Metaverse was still hypothetical, but today Cross Reality (XR or Extended
Reality) is a fact. XR is made up of a multitude of technologies and variants, such as Virtual
Reality and Augmented Reality, but they all share a single paradigm: seamless interaction
between virtual environments, digital objects and people. That is the Metaverse! But it does
not exist yet, and all that is Digital is often only a virtual representation of the real world.
How much will it cost us, then, to transport all our real world into the virtual one?

For Computer Vision and Computer Graphics experts, it is clear what it means to transport
an object from the real world to the virtual world: a 3D reconstruction! But 3D reconstructions
are expensive, slow, and not all types of objects can be digitized. Yet today, thanks to Deep
Learning, we have another way to teleport objects into the Metaverse: Neural Rendering
[133]. The basic idea is simple: why reconstructing an object in 3D if we have to render it
back in 2D to visualize it by a VR / AR viewer? Neural Rendering (NR) allows us to ask
a neural network “render this object from this point of view”, et voilà! Moreover, some of
the state-of-the-art NR approaches – e.g., Neural Radiance Fields (NeRFs) [24] – allow us to
deploy a simple MLP to represent an entire scene (or object), squeezing the spatial cost of a
digital object from Gigabytes to a few Kilobytes.

In this chapter, we will focus on one key aspect: the gate to the Metaverse. We have
built an effective object scanning station1, dubbed ScanNeRF, which allows for generating
ready-to-use data to train and evaluate state-of-the-art Neural Radiance Fields techniques.
Using this efficient and simple scanning system, we generated the first real dataset with high

1The scan station was built in collaboration with eyecan and won the first prize in the OpenCV Spatial AI
Contest 2022.

https://www.eyecan.ai

Chapter 3. ScanNeRF: a Scalable Benchmark for Neural Radiance Fields 28

1. Scan object (~5 minutes) 2. Train (~1 minute) 3. Render high quality novel views

FIGURE 3.1. Overview of the ScanNeRF framework. Our scan station (left) allows for collecting
thousands of images of an object in a few minutes. Then, modern NeRF variants [79, 78, 32] can be
trained on them in few minutes (center), producing a digital twin of the object itself and allowing
for high-quality, novel view synthesis of it (right).

quality images, pixel masked objects, controlled and repeatable camera poses, specifically
designed to evaluate NeRFs. Firstly, this allows us to realize a benchmark for research in the
area of Neural Rendering. Secondly, it enables to formally describe which and how many
views are best for generating a virtual representation of an object, as well as to unveil some
intriguing challenges for the future – e.g., how to fully render an object from any viewpoint,
given images mostly collected from a single side of it.

To the best of our knowledge, our work is the first to show that with a simple hardware,
made of LEGO, and a low budget – less than 500$ – it is possible to build digital twins of real
objects, rather than focusing on synthetic ones as in most of NeRF papers [24].

Fig. 3.1 presents an overview of our framework. Fitting a NeRF on the scanned object
produces a digest of it, ready to be transported into the Metaverse. Actually, this representation
is very different from that of a classical Digital Twin, this is indeed a Neural Twin®.

Our contributions are as follows:

• We present a simple, yet effective platform for collecting thousands of images to train
NeRFs, or in general, NR frameworks.

• We release a novel benchmark, ScanNeRF, featuring thousands of images depicting real
objects collected in inward-facing setting.

• For each object in the benchmark, we define a multitude of train/val/test splits in order
to study different properties and stress the performance of NeRF variants. Moreover,
we evaluate the performance of three modern NeRFs on these splits, to highlight their
strengths and weaknesses under different experimental settings.

Chapter 3. ScanNeRF: a Scalable Benchmark for Neural Radiance Fields 29

Total # Images Train Test Withheld
Dataset Type scenes per scene splits splits images
NeRF Blended [24] Synth. 8 300 1 1 No
BlendedMVG [134] Synth. 508 200-4 000 NA NA No
LLFF [48] Real 8 30 1 1 No
DTU [135] Real 124 49-64 NA NA No
CO3D [136] Real 18 619 100 2 2 Yes2

ScanNet [137] Real 1613 500-5 000 NA NA No
Tanks & Temples [138] Real 14 4 000-20 000 NA NA No
ScanNeRF (ours) Real 35 4 000 12 9 Yes

TABLE 3.1. Comparison between datasets. We report properties of existing datasets and our
ScanNeRF benchmark.

3.2 Related Work

NeRF and follow-up implementations are usually evaluated on a few, established bench-
marks belonging to two acquisition settings, namely forward-facing and inward-facing, The
most popular benchmarks are NeRF blender [24], made of 8 synthetic inward-facing scenes
with 100 training images and 200 testing images, and LLFF [48], consisting of 8 forward-facing
scenes counting about 30 images each. More recently, MVS datasets such as DTU [135], Tanks
& Temples [138] and BlendedMVG [134] have been used for this purpose, together with a few
more such as CO3D [136] and ScanNet [137] collected through extremely time-consuming
practises.

We argue that the aforementioned benchmarks limit the evaluation of NeRF variants
under different aspects, since i) some of them [24, 48, 135] provide a few hundred images
only, ii) none of them allows for seamlessly scaling the amount of training images or their
distribution across the scene and iii) none explicitly defines a testing set – i.e., the evaluation
is carried out on images available to the researchers, possibly leading to biased results. In
this work, instead, we implement a framework allowing for scalable data collection of a
multitude of scenes. For each of them, we explicitly define a testing set, made of frames for
which only camera poses are made publicly available, while images are withheld to avoid
unfair evaluation. This paves the way towards establishing a next-generation benchmark
for research in Neural Radiance Fields and related techniques. Tab. 3.1 shows a comparison
between the existing datasets introduced before and the proposed ScanNeRF bechmark.

3.3 The ScanNeRF Benchmark

In this section, we describe both hardware and software components of our ScanNeRF
framework. We start by introducing our acquisition platform, then we describe the post-
processing steps implemented to select the final images and the masking strategy used to

2The possibility to evaluate on withheld images has been added in a second version of the dataset, released
concurrently with our work.

Chapter 3. ScanNeRF: a Scalable Benchmark for Neural Radiance Fields 30

FIGURE 3.2. The scan station. Front and side view of our platform, with rotating angles over-
imposed in red.

extract objects. To conclude, we highlight the overall organization of the produced dataset.

3.3.1 Scan Station Setup

The scan station (see Fig. 3.2) that we use to generate the dataset has been built using
the Lego Mindstorm toolkit (code 51515)3 and mounts an OpenCV Oak-D Lite camera4 to
collect images. The system is composed of a rotating base, where the object is placed during
scanning, and a robotic arm holding the camera over the base. Acquisitions are carried out
inside a light box, in order to minimize effects due to shadows. The base and the arm are
fixed on a shared structure, the latter being placed on a higher level with respect to the base,
so as to allow for capturing high objects entirely.

The arm has been built using two Lego motors (id: 6299646)5 connected in series to a
gearbox, which holds the arm. We use two motors and a gearbox to deploy more mechanical
torque, since the arm and the camera are too heavy for the single motors alone.

The base is driven by a single, additional Lego motor, with a ChArUco board fixed on top
of it, which is used to compute the camera pose for each acquired image. This is achieved by
calibrating both the intrinsic and extrinsic parameters of the camera based on the ChArUco
marker and on the standard algorithm implemented using the functionalities made available
by the OpenCV library6.

To acquire images from poses that are evenly distributed on the hemisphere around the
object to be scanned, the arm descends from its initial position, located vertically over the
base (zenith angle ∼20°), to its final position, located horizontally with respect to the base
(zenith angle ∼75°), performing sixteen total steps. After each descending step, the arm

3https://www.lego.com/product/robot-inventor-51515
4https://docs.luxonis.com/projects/hardware/en/latest/pages/DM9095.html
5https://www.lego.com/en-us/product/medium-angular-motor-88018
6https://docs.opencv.org/3.4/da/d13/tutorial_aruco_calibration.html

https://www.lego.com/product/robot-inventor-51515
https://docs.luxonis.com/projects/hardware/en/latest/pages/DM9095.html
https://www.lego.com/en-us/product/medium-angular-motor-88018
https://docs.opencv.org/3.4/da/d13/tutorial_aruco_calibration.html

Chapter 3. ScanNeRF: a Scalable Benchmark for Neural Radiance Fields 31

FIGURE 3.3. Filtering step. For any collected image, we show the azimuth difference with respect
to the previous one (left) and its position on the hemisphere over the object (right). We split the
set of collected images into filtered (blue) and remaining ones (orange).

motors are stopped to hold the position, while the base performs two complete rotations
(720°), to ensure a dense set of acquisitions. During the whole process, the OAKD-Lite camera
records images at 30 FPS frequency and 1440× 1080 resolution. The scan station has been
programmed in python using the API of the Lego Mindstorm Desktop app and is controlled
via bluetooth connection.

Combining the two degrees of freedom given by the arm and the rotating table enables to
collect images all around the scanned object with very low effort, as well as to implement our
scan station with an hardware budget resulting lower than 500$.

3.3.2 Dataset Filtering

After a complete scanning cycle, we obtain roughly 9000 images. As images are acquired
throughout the whole cycle, some of them are captured during arm descent, i.e., the step
towards the following zenith angle. This causes strong, undesired oscillation of the scan
station, with consequent acquisition of several images which are blurred or out from the
main trajectory. A first cleaning step consists in removing such images, keeping only those
obtained when the arm is not moving and the base is rotating. We observe that the rotation of
the base can be detected by computing the azimuth angle of the camera pose in each image
and detecting the intervals where the angle between subsequent images is increasing. Thus,
we discard every image whose azimuth angle differs from the previous one by less than a
fixed threshold, set to 1.15°. Fig. 3.3 shows, for an entire scanning cycle, the filtered (blue)
and kept (orange) images. We can notice how selecting the acquisitions with smaller azimuth
difference (left) effectively removes the images collected during arm descent (right).

Chapter 3. ScanNeRF: a Scalable Benchmark for Neural Radiance Fields 32

original image

computed mask

masked image

rendered alpha

binarize

FIGURE 3.4. Masking procedure. We train Instant-NGP [32] by placing the rendering bounding-
box over the ChArUco board, so as to remove the background and obtain a mask to be applied to
the real image.

3.3.3 Background Masking

In our pipeline, we achieve the motion of the camera around the object by properly moving
the scan station arm and rotating the base on which the object is placed. This procedure
presents a major side effect: the background is not coherent with the computed camera poses,
since it remains still during the acquisition of the images. For this reason – and also to obtain
more pleasant images featuring only the scanned object – we mask out the background.

Purposely, we exploit a neural rendering framework. First, we train Instant-NGP [32] on
the acquired images, which include the background. Then, we use Instant-NGP to render
new images from the same poses as the original images, defining the rendering volume to fit
the ChArUco marker dimensions in order to crop out the incoherent background (Fig. 3.4,
top left). In particular, the rendering volume is placed above the scan station base with a
small offset on the Z axis so as to remove the ChArUco marker from the rendered image. This
allows us to obtain rendered images featuring the object on a black background. Then, we
binarize the rendered images based on the alpha values (i.e., density) of the pixels (Fig. 3.4,
bottom left) to generate the desired masks (Fig. 3.4, bottom right). These masks are applied
to the original images in order to remove both the background and the scan station base,
leaving the object alone in the final images provided by our scan station (rightmost picture in
Fig. 3.4).

3.3.4 Dataset Organization and Splitting

Once the undesired frames have been removed and the remaining ones have been properly
masked to remove the background and the scan station, we first divide each acquired

Chapter 3. ScanNeRF: a Scalable Benchmark for Neural Radiance Fields 33

TRAIN 1000 TRAIN 500 TRAIN 250 TRAIN 100

TRAIN SUB-SPLIT 1TRAIN SUB-SPLIT 0 TRAIN SUB-SPLIT 2

TRAIN SUB-SPLIT 4

TRAIN SUB-SPLIT 3

TRAIN SUB-SPLIT 5 TRAIN SUB-SPLIT 6 TRAIN SUB-SPLIT 7

FIGURE 3.5. Overview of the dataset splits. On the first row, evenly sampled splits with varying
density. On the second and third rows, eight sub-splits with densely localized acquisitions. Point
are colored according to the Z coordinate, for a better visualization of their 3D position.

sequence into three macro-splits, namely Train, Val and Test, so that they contain 1000, 500
and 500 images, respectively. We will release the Train and the Val splits publicly, while we
will keep private the Test split in order to enable a fair evaluation of the submissions that
other researchers would be willing to upload on our website. For each split, we obtain images
taken from positions evenly scattered on the hemisphere above the object by applying the
Farthest Point Sampling algorithm [139] to the 3D positions from which the images were
captured.

From the 1000 images of the Train macro-split, we sample 3 smaller training splits,
containing 500, 250 and 100 images, captured uniformly from the whole hemisphere, as
shown in Fig. 3.5 first row. These additional training splits are designed to compare the
performances of NeRF algorithms when trained on splits with different number of images.

Moreover, every Train/Val/Test macro-split is used to obtain eight additional sub-splits,
each containing images acquired more densely in a specific region and only a small portion
of images taken from positions scattered across the whole hemisphere (Fig. 3.5, second and
third rows). Specifically, we first divide the hemisphere into eight sub-regions, by splitting
each range of the X, Y and Z axes in two. Then, sub-splits are sampled from the 1000/500/500
Train/Val/Test images, by retaining all the images collected from viewpoints in the sub-
regions (∼ 120/60/60, with small fluctuations depending on the selected region), together
with 10% additional frames randomly sampled from the remaining portion of the hemisphere

Chapter 3. ScanNeRF: a Scalable Benchmark for Neural Radiance Fields 34

(∼ 80/40/40).
We designed these sub-splits to investigate on the performance of different NeRF propos-

als when the training set is characterized by an uneven spatial distribution of vantage points
and, thus, foster future research in this direction.

3.3.5 Scan Time and Number of Objects

The pipeline sketched so far allows for effortless scanning of a large amount of objects.
Specifically, an entire acquisition cycle requires about 5 minutes to collect roughly 9000 images,
reduced to about 4000 after the filtering step described in Sec. 3.3.2. At the time of writing, the
ScanNeRF dataset counts 35 real objects over which we evaluate the performance of modern
NeRF frameworks, as reported in the next Section. Moreover, we plan to scale up our dataset
to hundreds (or even thousands!) of objects and distribute the associated Train/Val splits
through our benchmark website (https://eyecan-ai.github.io/scannerf/).

3.4 Experiments

In this section, we conduct experiments on our novel ScanNeRF dataset. Specifically, we
run three modern and efficient NeRF frameworks [79, 78, 32] on the splits we have designed,
so as to investigate on how they perform when varying the density and amount of training
images, as well as how they behave with images being densely acquired only from a specific
region around the scanned object.

3.4.1 Evaluated Frameworks and Settings

We briefly introduce the methods involved in our experiments. The three of them have
been selected for our evaluation because of their speed both at training and rendering time.
In our opinion, such efficiency makes these methods prominent for future advances in the
field.

DVGO [79]. This framework mixes the implicit representation learned by means of MLPs
with explicit ones – i.e., voxel grids – to model density and appearance. This allows for
training a NeRF in roughly 15 minutes.

Plenoxels [78]. A voxel grid is diretly optimized by this method, getting rid of any neural
network. Spherical harmonics are used to model view-dependent RGB values. Training time
for a single scene takes about 10 minutes.

Instant-NGP [32]. This framework deploys a multi-resolution hash table of trainable
feature vectors, allowing the use of a much smaller neural network and achieving faster
convergence. For a single training, approximately 1 minute is enough to reach high-quality
renderings.

https://eyecan-ai.github.io/scannerf/

Chapter 3. ScanNeRF: a Scalable Benchmark for Neural Radiance Fields 35

1000 training images 500 training images 250 training images 100 training images
Scene DVGO* Plenoxels Instant-NGP DVGO* Plenoxels Instant-NGP DVGO* Plenoxels Instant-NGP DVGO* Plenoxels Instant-NGP
airplane1 38.90 34.59 37.14 38.97 33.49 36.40 38.41 27.44 37.57 36.69 22.81 37.30
airplane2 39.82 35.21 37.86 39.85 33.69 38.38 39.46 27.21 37.61 37.60 23.36 37.44
brontosaurus 41.56 34.74 39.95 41.46 30.18 39.99 40.76 24.67 39.93 38.62 20.43 39.96
bulldozer1 35.84 32.05 34.99 35.95 29.78 34.72 35.70 23.68 34.90 34.05 19.34 34.72
bulldozer2 39.16 34.21 38.12 38.96 34.33 37.65 37.96 32.45 38.30 36.12 26.40 38.09
cheetah 37.86 33.35 35.68 37.87 32.47 35.24 37.64 29.54 21.82 36.09 23.49 35.59
dumptruck1 37.93 33.90 36.61 37.93 32.41 36.78 37.44 27.14 36.60 35.63 22.01 36.65
dumptruck2 41.34 35.45 39.96 41.01 34.16 39.44 40.00 30.20 38.82 38.01 25.57 39.93
elephant 38.62 32.11 36.49 38.65 25.10 36.21 38.25 21.04 34.65 36.42 18.06 36.01
excavator 40.87 35.23 38.65 40.65 35.33 39.59 39.82 33.74 38.48 37.83 26.90 39.77
forklift 37.95 32.99 37.82 37.71 33.09 38.22 36.63 32.13 37.68 34.59 25.87 37.80
giraffe 36.67 32.38 34.42 36.72 31.25 34.54 36.45 26.61 34.65 34.78 21.97 34.26
helicopter1 39.77 35.52 37.71 39.73 33.35 36.84 39.29 27.55 37.57 37.56 22.81 36.98
helicopter2 38.05 33.68 36.46 38.11 32.30 36.93 37.66 26.96 36.69 35.97 21.67 36.43
lego 34.52 30.42 33.92 34.58 26.32 33.79 34.33 22.15 33.88 32.78 19.44 33.79
lion 39.16 33.50 38.21 39.16 26.41 38.24 38.73 22.20 37.47 36.89 19.33 34.91
plant1 40.31 34.41 37.21 40.34 28.29 37.23 39.72 22.72 37.42 37.44 19.99 37.03
plant2 42.19 36.61 38.86 42.18 34.07 38.98 41.42 27.38 38.38 39.35 23.01 27.53
plant3 33.63 29.33 33.81 33.58 24.17 34.08 33.11 20.49 34.21 30.47 18.46 33.18
plant4 38.08 32.94 36.43 37.97 29.15 36.55 37.71 25.51 36.97 35.86 22.15 36.79
plant5 39.10 34.30 38.11 39.06 28.02 36.64 38.48 24.01 37.18 36.28 20.79 37.99
plant6 36.76 30.87 34.25 36.84 25.30 35.19 36.46 21.12 35.15 34.51 19.13 35.05
plant7 37.15 31.87 35.57 37.16 26.55 35.43 36.64 20.62 35.50 34.85 18.98 35.36
plant8 39.04 33.47 36.68 39.04 28.13 36.74 38.46 22.06 36.61 36.36 19.93 36.34
plant9 40.05 33.79 37.52 40.07 27.44 37.39 39.36 22.03 37.44 37.42 19.57 37.51
roadroller 39.96 34.66 39.18 39.62 34.59 39.66 38.84 33.46 38.94 36.61 27.28 39.37
shark 39.95 32.88 38.33 39.88 25.31 38.44 39.25 19.98 38.15 37.00 17.78 38.28
spinosaurus 40.86 34.96 39.31 40.88 32.73 39.09 40.44 25.81 39.32 38.71 21.74 39.21
stegosaurus 39.07 33.89 38.60 39.25 29.32 37.96 38.82 25.22 38.36 37.37 22.47 38.52
tiger 37.67 32.87 36.41 37.26 30.20 36.38 37.36 24.65 36.39 35.46 20.44 35.95
tractor 34.02 30.55 33.51 34.10 28.67 33.88 33.87 23.34 33.31 32.42 19.32 33.73
trex 37.97 32.99 37.82 38.11 29.12 37.91 37.74 22.46 37.49 35.70 18.88 38.03
triceratops 41.56 35.89 39.31 41.52 32.50 40.04 40.97 25.91 39.74 39.19 22.69 39.80
truck 37.70 33.67 36.36 37.68 32.80 36.64 37.30 27.53 36.66 35.67 22.44 36.50
zebra 35.06 30.32 33.49 35.10 30.32 33.32 34.84 29.71 33.12 33.63 26.39 33.12
avg 38.52 33.42 36.99 38.48 30.30 36.99 37.98 25.68 36.48 36.11 21.74 36.54

TABLE 3.2. Results on evenly distributed images. We report results in terms of PSNR on the
test splits of 35 scanned objects, when training with varying amount of images (from left to right,
1000, 500, 250 and 100 respectively). * indicates that DVGO has been trained and tested with half
resolution images due to memory constraints.

Training setups. For each method, we run experiments using the official code released by
the authors, keeping the same default hyper-parameters defined in the source code during
training except i) for Instant-NGP, for which we reduced the amount of training step from
100K to 10K without any loss of final rendering quality, and ii) for DVGO, where we train
and render half resolution images for the sake of memory constraints. In our evaluation, we
trained 420 instances for each model (140 for evenly distributed acquisitions, 280 for densely
localized splits). Each training is performed on a single NVIDIA 3090 RTX GPU, requiring a
total of about 175 hours/GPU for training.

Evaluation metrics. To assess the quality of the rendered images, we compute the Peak
Signal Noise Ratio (PSNR) between the rendered (x̂) and real test (x) images:

PSNR(x̂, x) = −10 log10(x− x̂)2. (3.1)

3.4.2 Experiments on Evenly Distributed Acquisitions

We start by training and evaluating the three methods when dealing with evenly dis-
tributed images taken from all around the hemisphere over the scanned object. Tab. 3.2
collects experiments over 35 objects scanned by our scan station. From left to right, we report

Chapter 3. ScanNeRF: a Scalable Benchmark for Neural Radiance Fields 36

the results on the evenly distributed images of the test split achieved by training on the
1000, 500, 250 and 100 images training splits, respectively. We can notice how all the three
NeRF variants excel when trained on 1000 images, always achieving more than 30 PSNR. In
general, Instant-NGP yields higher rendering quality compared to Plenoxels, while DVGO
produces very good results as well, although not directly comparable with the other methods
because of the limiting requirement to work with half resolution images. When gradually
reducing the density of the training images to 500, 250 and 100, we can notice different effects
on the three frameworks. Instant-NGP achieves almost unaltered quality of the rendered
images, DVGO suffers a moderate drop in terms of PSNR (about 2 points when trained on
the smallest training set), while Plenoxels seems to suffer the highest drop of render quality,
falling to about 20 PSNR when trained with 100 images only.

According to this benchmark, Instant-NGP seems the best choice at the time of writing,
thanks to its extremely fast training and rendering speed, its overall high quality and its
robustness to decreasing amounts of training images.

Fig. 3.6 shows some renderings obtained by DVGO, Plenoxels and Instant-NGP when
trained on 1000 images.

3.4.3 Experiments on Densely Localized Acquisitions

After experimenting on evenly distributed acquisitions, we focus on the densely localized
ones. The goal of this experiment is to stress the capability of NeRF algorithms to generate
novel views from positions all over the hemisphere, after training on images captured
mainly from a localized region of the space, with just few samples evenly distributed on the
hemisphere.

We adopt the following protocol: for every object of our dataset, we perform eight
trainings for each of the three selected NeRF algorithms (one training for every train sub-split
described in Sec. 3.3.4). Then, starting from each training, we test the three algorithms on all
the eight test sub-split, performing a total of 64 evaluations for each object.

Tab. 3.3 reports the results of this experiment for each selected NeRF method, averag-
ing them on the 35 objects scanned by our framework. It is possible to observe that, as
expected, all the methodologies obtain good PSNR scores (>30) when trained and tested
on the same sub-split (i.e., on images acquired from positions with the same distribution
over the hemisphere). However, when tested on sub-splits coming from dense acquisition
different from the training ones, their behavior is different from case to case. Plenoxels suffers
significantly from this setting, with a PSNR drop up to 8 points that leads to poor results (∼22
PSNR). DVGO, instead, appears to be more robust, with a PSNR drop inferior to 4 points.
Instant-NGP, finally, seems to be the more resilient to the described stress test, with a PSNR
drop of just 1 point in the worst cases.

Chapter 3. ScanNeRF: a Scalable Benchmark for Neural Radiance Fields 37

GT DVGO* Plenoxels Instant-NGP

FIGURE 3.6. Qualitative results obtained by training with 1000 images. From left to right:
ground-truth, image rendered from DVGO (half resolution), image rendered from Plenoxels,
image rendered from Instant-NGP.

Chapter 3. ScanNeRF: a Scalable Benchmark for Neural Radiance Fields 38

Test Split
Train Split 0 1 2 3 4 5 6 7

0 39.07 36.54 36.45 35.81 36.51 35.76 36.67 35.97
1 37.14 38.36 36.03 35.49 36.04 35.57 36.28 35.57
2 36.74 36.01 38.91 36.37 36.22 35.64 36.86 36.00
3 36.33 35.75 36.91 38.26 35.87 35.31 36.41 35.74
4 36.77 35.95 36.15 35.65 38.78 36.34 36.83 36.07
5 36.26 35.68 35.72 35.23 36.98 38.09 36.46 35.83
6 36.58 35.96 36.42 35.72 36.57 35.85 39.20 36.58
7 36.22 35.61 36.04 35.56 36.15 35.56 37.26 38.43

DVGO*

Test Split
Train Split 0 1 2 3 4 5 6 7

0 31.05 24.74 24.68 22.37 24.91 22.55 24.46 22.27
1 27.97 30.10 24.62 23.15 24.85 23.60 24.33 22.45
2 25.10 22.62 31.37 25.01 24.02 21.86 25.47 22.67
3 24.81 23.32 28.09 30.17 23.50 21.72 24.85 23.30
4 25.16 22.56 24.09 22.00 31.17 25.22 25.47 22.84
5 24.83 23.17 23.66 22.06 28.18 30.30 25.16 23.87
6 24.20 22.15 24.96 22.64 24.79 22.35 31.36 25.06
7 23.90 22.31 24.73 23.45 24.72 23.21 28.02 30.10

Plenoxels

Test Split
Train Split 0 1 2 3 4 5 6 7

0 36.98 36.10 36.43 36.04 36.34 35.75 36.31 35.92
1 36.23 36.99 36.19 36.24 36.14 35.93 36.07 35.95
2 36.54 36.31 37.40 36.64 36.54 36.17 36.61 36.29
3 36.17 36.18 36.53 37.26 36.19 35.94 36.23 36.21
4 36.39 36.00 36.48 36.12 37.12 36.10 36.46 36.09
5 36.07 36.14 36.20 36.16 36.45 36.94 36.21 36.21
6 36.43 36.25 36.63 36.42 36.58 36.15 37.28 36.48
7 36.17 36.11 36.39 36.36 36.31 36.15 36.50 37.20

Instant-NGP

TABLE 3.3. Results on densely localized sub-splits. From top to bottom: DVGO (half-resolution),
Plenoxels and Instant-NGP. We show results in terms of PSNR, averaged over the 35 scanned
objects, for models trained on one of the eight densely localized sub-splits (rows) and tested on
any of the eight sub-splits (columns).

We conjecture that the superior performances achieved by DVGO and Instant-NGP wrt
Plenoxels can be explained considering that the former two methods rely on a MLP which
is not present in the latter. This component can probably learn strong biases from the few
evenly scattered samples, which help DVGO and Instant-NGP to generalize to (almost)
unseen regions of the hemisphere.

3.5 Conclusion

In this chapter, we have introduced ScanNeRF, a scalable benchmark for neural radiance
fields and, in general, neural rendering frameworks. ScanNeRF consists of a simple, yet

Chapter 3. ScanNeRF: a Scalable Benchmark for Neural Radiance Fields 39

effective hardware/software pipeline allowing for collecting thousands images of an object
effortlessly and in a few minutes. Our platform results ideal to scan a multitude of different
objects, which together build up the ScanNeRF benchmark7, a novel dataset made of 35
scenes counting thousands of images each. In our experiments, we stressed the potentialities
of modern NeRF frameworks [79, 78, 32] under different settings thanks to the peculiar
training/validation/testing splits made available by ScanNeRF, highlighting some new
challenges for the community to face. We believe ScanNeRF will play a role in fostering the
research in neural radiance fields frameworks.

7https://eyecan-ai.github.io/scannerf/

https://eyecan-ai.github.io/scannerf/

40

Part II

Processing NR of Signals

41

Chapter 4

Learning the Space of Deep Models

4.1 Introduction

Representation learning has achieved remarkable results in embedding text, sound and
images into low dimensional spaces, so as to map semantically close data into points close
one to another into the learnt space. In recent years, deep learning has emerged as the
most effective machinery to pursue representation learning, many scholars agreeing on
representation learning laying at the very core of the deep learning paradigm. On the
other hand, the success of network compression and pruning approaches [140] highlight
the redundancy of parameters learned by a deep learning model, as in the Lottery Ticket
Hypothesis [141], which shows that training as few parameters as 4% of those of the full
network (i.e., the winning tickets) can attain similar or even higher performance.

Thus, we felt puzzling and worth investigating whether the parameter values of a trained
deep model might be squeezed into a semantically meaningful low-dimensional latent space.
Two questions arise: is it possible to train a deep learning model to learn to represent
other, already trained, deep learning models? And according to which trait should two
already trained models lay either close or further away in the latent space? The Lottery
Ticket Hypothesis may suggest the existence of a low-dimensional key set of information
that is shared by all possible sets of parameters for a predefined architecture that achieve
comparable performance on a given task. Hence, it seems reasonable to conjecture that one
might pursue learning of an embedding space shaped according to similarity in performance.
Moreover, many recent works have demonstrated how small deep networks can be trained
to fit accurately complex signals such as images[22], implicit representations of 3D surfaces
[25, 27] and even radiance fields [24]. One might then be willing to embed such models into a
space amenable to capture the similarity between the underlying signals.

In this chapter we propose a first investigation along this new line of research. In par-
ticular, we show that it is possible to deploy a basic encoder-decoder architecture to learn
a low-dimensional latent space of deep models and that such a space can be shaped so to
exhibit a semantically meaningful structure. We posit that the loss to drive the learning
process of our encoder-decoder architecture should entail functional similarity – rather than

Chapter 4. Learning the Space of Deep Models 42

proximity of parameter values – between the input and output models. Accordingly, we
train our architecture by knowledge distillation to drive the output model generated by the
decoder to mimic the behaviour of the input model. In our study we address two settings:
learning a latent space from a training set of models with the same network architecture and
different parameter values as well as based on a training set comprising models with different
architectures. In both settings, we show that the learnt latent space does posses a semantic
structure as it is possible to sample new trained models with predictable behaviour by simple
interpolation operations. Moreover, we show that in the Multi-Architecture setting a latent
space trained on a set of architectures can generate already-trained models of architectures
never seen instantiated at training time. Finally, we show that in both settings it is possible
to train an architecture by performing latent space optimization on the low dimensional
embedding space instead of optimizing directly the full set of parameters.

4.2 Related Work

Representations. Representation learning concerns the ability of a machine learning algo-
rithm to transform the information contained in raw data in more accessible form. A common
algorithm is the autoencoder [142], a self-supervised solution where the representation is
learnt by constraining the output to reconstruct the input. Our architecture is inspired by
the autoencoder but aim at producing outputs that behave akin to the input (e.g., similar
performance on a certain task). In a recent meta-learning paper, LEO [143], the embedding
of the weights of a single layer of a network is learnt for a few shot learning task. Task2Vec
[144] learns a task embedding on different visual tasks which enables to predict similarities
between them and how well a feature extractor perform on a chosen task. Differently from all
these works, we focus on learning a fixed-size embedding for diverse network architectures
from which it is possible to draw ready-to-use weights for a specific task, even for networks
unseen during training.

Network Parameters Prediction. Many works deploy an auxiliary network to obtain the
weights of a target network. Hypernetworks [145] trained a small network (the hypernetwork)
to predict weights for a large target network on a given task. The same technique has been
extended and applied in many ways: transforming noise into the weights of a target network
(Bayesian setting) [146, 147], adapting the weights of a target network to different tasks
[148, 149], generating weights corresponding to hyperparameters [150], focusing on the
acceleration of the architecture search problem [151]. Moreover, networks that generate their
own weights have been proposed and analyzed [152, 153]. While these works and ours share
the use of a weights generation module, our novel proposal consists in showing how to
learn a fixed-size structured embedding for different architectures and navigate through this

Chapter 4. Learning the Space of Deep Models 43

embeddings

C
O

N
V

 1
X

3

C
O

N
V

 1
X

3

LE
A

K
Y

R
EL

U

LE
A

K
Y

R
EL

U

M
A

X
 P

O
O

LI
N

G

C
O

N
V

 3
x1

LE
A

K
Y

R
EL

U

C
O

N
V

 3
x1

M
A

X
 P

O
O

LI
N

G

LE
A

K
Y

R
EL

U

PRep

PRep

PRep

PRep

PRep

PRep

PRep

PRep

C
O

N
V

 3
X

3

LE
A

K
Y

R
EL

U

R
ES

H
A

P
E

C
O

N
V

 3
X

3

LE
A

K
Y

R
EL

U

R
ES

H
A

P
E

C
O

N
V

 3
X

3

LE
A

K
Y

R
EL

U

R
ES

H
A

P
E

C
O

N
V

 3
X

3

R
ES

H
A

P
E

LI
N

EA
R

 S
C

A
LE

ICPR 2022

FIGURE 4.1. Overview of NetSpace. Our framework takes in input the parameters of a neural
network, squeezes them in a compact embedding and predicts the parameters of a new neural
network that behaves like the input one starting only from such embedding.

space to obtain new weights for these kinds of architectures as well as for architectures not
provided as training examples.

Weight-sharing NAS. In Weight-sharing NAS, optimal architecture search occurs over
the space defined by the subnets of a large network, the supernet. Commonly, subnets share
weights with the supernet and they are available as ready-to-use networks after training. OFA
[154] starts by training the entire supernet and progresses considering subnets of reduced
size. After training, desired subnets are selected with an evolutionary algorithm. In NAT
[155], many conflicting objectives are considered, training only the weights of promising
subnets for every objective. While these works deal with obtaining ready-to-use networks
that obey to desired characteristics, we focus on the embeddability of deep models in a latent
space organized according to features of interest and on the possibility of explore such latent
space by interpolation or optimization.

4.3 Method

In the following, we will use architecture to denote the structure of a deep learning model
(i.e., number and kind of layers, etc.) and instance for an architecture featuring specific
parameter values. Of course, given one architecture there can be many instances with
different parameter values.

4.3.1 Framework

Our framework, dubbed NetSpace and shown in Fig. 4.1, is able to encode trained
instances of different architectures into a fixed-size encoding and to decode this embedding
into new instances that behave like the input ones. The parameters of each instance presented
in input to our framework are stored into a PRep (parameters representation), a 2D tensor
obtained with a simple algorithm exemplified in Fig. 4.2. We designed our framework fixing

Chapter 4. Learning the Space of Deep Models 44

CONVOLUTIONAL LAYER:
Input Channels: 4

Number of Filters: 2
Kernel Size: 3x3

Filter 1 Filter 2

Biases

FULLY CONNECTED LAYER:
Input Size: 12

Output Size: 10

Weights

Biases

𝑃𝑅𝑒𝑝

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑃 = 2 ⋅ 3 ⋅ 3 ⋅ 4 + 1 + 12 ⋅ 10 + 10 = 204

𝑊 = 32 (ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 8)

𝐻 =
𝑃

𝑊
+ 4 −

𝑃

𝑊
𝑚𝑜𝑑 4 =

204

32
+ 4 −

204

32
𝑚𝑜𝑑 4 = 8

𝑃𝑅𝑒𝑝 𝑠𝑖𝑧𝑒 = 𝐻 ×𝑊 = 8 × 32

FIGURE 4.2. Algorithm to compute the PRep of a given instance. We consider here a toy
architecture made out of one convolutional layer and one fully connected layer and we fix the
PRep width to 32. White cells represent padding with constant value 0.

Chapter 4. Learning the Space of Deep Models 45

PReps to be rectangular matrices with high ratio between width and height. Additionally,
to favor easy implementation, the height and the width of a PRep are chosen to be multiple
of 4 and 8, respectively. Considering an architecture with P parameters and having set the
width of the PRep to a number W (divisible by 8), the minimum necessary height of the PRep
can be computed as d P

W e, adding a padding of 4− (d P
W e mod 4) rows, if needed, to fulfill

divisibility by 4. Given an instance of a neural network and a chosen PRep size, the algorithm
to produce the instance PRep is straightforward: parameters from all the layers of the instance
are copied in the matrix in sequence one row after the other and final zero-padding is added
as needed to match the required size.

NetSpace encoder takes as input the PRep of an instance and produces a small fixed-size
embedding, applying first horizontal and then vertical convolutions, alongside with max-
pooling. It is worth pointing out that the encoder is designed to produce embeddings of the
same size for any input PRep dimension.

The embedding from the encoder is then processed by NetSpace decoder, whose basic
block first applies convolutions to increase the depth of the input and then reshapes the
intermediate output to grow along spatial dimensions at the cost of depth. Once the required
PRep resolution has been reached, an independent linear scaling is applied to every element
of the predicted PRep, with weights and biases learnt during the training. We found that this
is needed, in particular, for very deep models, probably because convolutions struggle to
predict parameters that are close in the PRep but that belong to distant layers of the target
architecture. The values of the predicted PRep are loaded into a ready-to-use instance.

The building blocks of the encoder and decoder are specified in more details in Fig. 4.1. In
the remainder of the chapter, we will use the term target instance to refer to the one in input
to NetSpace and the term predicted instance to refer to that instantiated with values from the
predicted PRep.

4.3.2 Single-Architecture Setting

In the Single-Architecture setting, NetSpace is used to learn an embedding space for the
parameters of multiple instances of a single architecture. The first scenario that we consider
deals with instances that exhibit different performance in solving the same task, such as image
classification. Thus, during NetSpace training, the objective is to learn how to predict weights
that match the performance of the target instances. Akin to common practice in Knowledge
Distillation [156], this can be achieved by minimizing a loss term Lpred that represents the
discrepancy between the outputs computed by the target instances and those computed
by the corresponding predicted instances. Formally, considering a target instance Nt and
training samples x with labels y, we denote by Np the instance predicted by NetSpace when
the input instance is Nt, and by t = Nt(x) and p = Np(x) the logits computed by the target

Chapter 4. Learning the Space of Deep Models 46

and predicted instances, respectively. We then realize Lpred as in [156]:

Lpred = KL(softmax(p/T), softmax(t/T)) · T2 (4.1)

where KL denotes the Kullback–Leibler divergence averaged across the samples. As in [156],
the softmax functions used in Lpred have inputs divided by a temperature term T.

A second scenario deals with networks sharing the same architecture that are trained
to fit different signals. In particular, recent works [25, 27, 22, 24] have shown that it is
possible to build neural representations of signals by training MLPs to regress such signals.
In this scenario, each instance of the same MLP architecture is trained to represent a different
signal. Given one of such instances, the objective of NetSpace is to predict weights capable of
regressing the same signal. To achieve this goal, NetSpace can be trained with a loss term that
directly compares the outputs of the predicted instance to those computed by the target one,
thereby, also in this case, distilling the knowledge of the target instance into the predicted
one. In this scenario, then, Lpred becomes simply:

Lpred = MSE(yp, yt) (4.2)

i.e., the Mean Squared Error (MSE) between the outputs from the predicted instance (yp) and
those from the target instance (yt) when queried by the same inputs. In particular, in the
experiments we consider MLPs trained to regress the Signed Distance Function (SDF) of a 3D
shape (e.g., [25]).

We found that, in both scenarios, using a distillation loss is more effective than using a
weights reconstruction loss, as the latter would aim just at mimicking on average the weights
of the target instances, which we found not implying similar predictions. Furthermore, a
distillation loss allows for using each target instance to create many training examples for
NetSpace by simply varying the input data.

4.3.3 Multi-Architecture Setting

In the Multi-Architecture setting, we investigate on how to embed in a common space
instances having different architectures. Thus, we consider instances trained to solve an
image classification task with the best performances allowed by their architecture. NetSpace
is trained to process such instances and to predict weights that reproduce their good per-
formances. In order to ease NetSpace task, we take advantage of the complete Knowledge
Distillation described in [156]. Denoting by N∗ a teacher network with good performances in
the task at hand and by t∗ its logits for a batch of images x, we define the loss with respect to
it as:

L∗pred = KL(softmax(p/T), softmax(t∗/T)) · T2 (4.3)

Chapter 4. Learning the Space of Deep Models 47

Then, as in [156], we introduce an additional term Ltask which, in combination with L∗pred,
defines the complete Lkd:

Ltask = CE(softmax(p), y) (4.4)

Lkd = α · L∗pred + (1− α) · Ltask (4.5)

where CE denotes the Cross Entropy loss averaged across the samples of the batch and α is a
hyperparameter used to balance the two terms in Lkd.

As far as the possibility of handling different architectures is concerned, we identify each
architecture uniquely with a categorical ClassId. In this configuration, NetSpace is trained
to predict an instance with the same architecture as the target. Even if this information is
available at training time from the target instance itself, we would also like to explore by
means of interpolation or optimization the latent space learnt by NetSpace after having
trained it, without feeding input instances to the framework. Thus, we wish to be able to
extract the architecture information directly from the embedding. To achieve this objective,
we modify the architecture presented so far by adding a softmax classifier on top of the
embedding in order to predict the ClassId of the target instance (details on this variant of
the framework are reported in Appendix B.1). Consequently, we complement the learning
objective introduced in Eq. (4.5) with an additional Lclass term. Given a target instance Nt and
the embedding e produced by NetSpace encoder for it, we denote by ct the ClassId associated
to the architecture of Nt and by cp the logits predicted by the architecture classifier from e.
Lclass is then defined as the Cross Entropy loss between the predicted and target ClassId:

Lclass = CE(softmax(cp), ct). (4.6)

The initial experimental results highlighted that NetSpace was clustering the latent space
according to the architecture ClassId only. We judge such organization of the embedding
space as not satisfactory, as it would allow, perhaps, to sample new instances within a cluster
by proximity or interpolation, but there would be no simple technique to navigate from one
cluster to the others. Rather, we aim at endowing the embedding space with a structure
enabling exploration along meaningful directions, i.e., directions somehow correlated to a
specific characteristic, such as number of parameters or performance. Thus, a more amenable
organization would consist in clusters showing up aligned, rather than scattered throughout
the space, and possibly also sorted w.r.t. a given characteristic of interest.

Should such organization of the embedding space be possible, given two boundary em-
beddings (i.e., representing two instances with the smallest and the largest value of the
characteristic of interest), it could be possible to move across the aligned clusters by simply
interpolating the boundaries and obtain along the way representations of ready-to-use in-
stances with increasing values of the characteristic of interest. To further investigate along

Chapter 4. Learning the Space of Deep Models 48

NetSpace
encoder

ClassId K

ClassId K + 2

NetSpace
latent space

NetSpace
decoder

ClassId K + 1

ICPR 2022

FIGURE 4.3. NetSpace latent space interpolation. An example of interpolation in the latent space
learnt by NetSpace in the Multi-Architecture scenario.

this path, we shall consider first that it is possible to assign ClassIds to a pool of architectures
so as to sort them accordingly to a characteristic of interest. For instance, in our experiments,
ClassIds K and K + 1 will denote two architectures such that the latter has more parameters
than the former.

Therefore, we introduce a new loss, denoted as Lγ (Interpolation Loss), whose objective
is to impose the desired ordered alignment of clusters in the latent space. Given training
instances belonging to boundary architectures (i.e., those with the smallest and largest Clas-
sId), we first use NetSpace encoder to obtain their embeddings. Then, we interpolate such
embeddings according to a given factor γ, and constrain the interpolated embedding to
belong to the architecture whose ClassId is interpolated between the boundaries according to
the same factor γ. Fig. 4.3 presents an example of the procedure described in this paragraph.

Formally, given boundary embeddings eA and eB of target instances NA
t and NB

t with
ClassIds cA and cB, we define the interpolated embedding eγ = (1− γ) · eA + γ · eB. Then,
considering the logits cγ

p predicted by the ClassId classifier for eγ and the interpolated ClassId
cγ

t = (1− γ) · cA + γ · cB, we define Lγ
class to impose the consistency of the interpolation

factor for ClassId as:

Lγ
class = CE(softmax(cγ

p), cγ
t). (4.7)

Moreover, considering the instance Nγ
p predicted by NetSpace from eγ, we denote by pγ

the logits predicted by such instance for a batch of images and define Lγ
kd as:

Lγ
pred = KL(softmax(pγ/T), softmax(t∗/T)) · T2 (4.8)

Lγ
task = CE(softmax(pγ), y) (4.9)

Lγ
kd = α · Lγ

pred + (1− α) · Lγ
task (4.10)

Chapter 4. Learning the Space of Deep Models 49

with the objective of distilling the teacher network N∗ also in the interpolated instances.
Finally, we define the total interpolation Lγ as:

Lγ = Lγ
class + L

γ
kd (4.11)

In our framework, we use Lγ with different interpolation factors γ, whose values are
computed according to the number of considered architectures. More precisely, considering
A architectures, γ can be computed as:

γ =
i

A− 1
i ∈ {1, 2, ..., A− 2}. (4.12)

Given a batch of instances, we compute Lkd and Lclass on each of them. Then, we apply
Lγ, with γ values obtained from Eq. (4.12), on all the pairs composed of instances with the
minimum and maximum ClassId. The final loss, thus, is the sum of Lkd, Lclass for each
instance of the batch and Lγ for each pair of boundary instances.

4.4 Experiments

We test NetSpace with networks trained on image classification and 3D SDF regression.

4.4.1 Datasets and Architectures

For what concerns image classification, we report results on Tiny-ImageNet (TIN) [157]
and CIFAR-10 [158] datasets. The target architectures for our experiments are LeNetLike,
a slightly modified version of the lightweight CNN introduced in [159], VanillaCNN, a
sequence of standard convolutions followed by a fully connected layer, and two variants of
ResNet [160], namely ResNet8, and ResNet32. As far as 3D SDF regression is concerned, we
consider MLPs trained to overfit a selection of ∼ 1000 chairs from the Shapenet dataset [161].
Each MLP has a single hidden layer with 256 nodes and uses periodic activation functions as
proposed in [22]. Additional details are available in Appendix B.2.

4.4.2 Single-Architecture Image Classification

As a first experiment, we test NetSpace in the Single-Architecture setting with the image
classification task on CIFAR-10 and TIN. We create a dataset of 132 randomly initialized
ResNet8 instances, training them for a different numbers of epochs, to collect instances with
different performances. Then we randomly select 100 instances for training, 16 for validation,
and 16 for testing. Fig. 4.4a and Fig. 4.4c compare the accuracy achieved on TIN and CIFAR-10
test sets by target and predicted instances. The target instances belong to the test sets and

Chapter 4. Learning the Space of Deep Models 50

0.0 2.5 5.0 7.5 10.0 12.5 15.0
target instance id

20

25

30

35

40

ac
cu

ra
cy

target
predicted

(A) TIN test set

0.0 0.2 0.4 0.6 0.8 1.0
interpolation factor

0

10

20

30

40

ac
cu

ra
cy

lat. space interp.
weights interp.

(B) TIN interp.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
target instance id

65

70

75

80

85

ac
cu

ra
cy

target
predicted

(C) CIFAR10 test set

0.0 0.2 0.4 0.6 0.8 1.0
interpolation factor

20

40

60

80

ac
cu

ra
cy

lat. space interp.
weights interp.

(D) CIFAR10 interp.

FIGURE 4.4. Single-Architecture results for ResNet8. (a) and (c): Accuracy achieved on the test
set by target and predicted instances. Target instances are sorted w.r.t. their performances on the
test set. (b) and (d): Accuracy achieved on the test set by instances predicted from interpolated
embeddings.

were never seen by NetSpace at training time. We can see that, beside few outliers, our
framework is effective in predicting new instances that emulate the behavior of the target
ones, both on CIFAR10 and on the larger and more varied TIN. It is remarkable that NetSpace
is able to reconstruct an instance which follows the input one in terms of performance in spite
of the huge compression it introduces. Indeed, the embedding size is a fraction of the number
of parameters of the instances it can reconstruct, e.g., it is 4096 for TIN, only ∼ 3.18% of the
parameters of ResNet8. The key information about the behaviour of a neural net seems to
live in a low dimensional space. Indeed, as shown by the visualization of PReps provided in
Appendix B.6, the predicted instance is very different from the target one: NetSpace captures
the essential information to reproduce the behaviour of the target network, it does not merely
learn to reproduce it.

After training, NetSpace has learnt to map target instances to fixed-sized embeddings.
Thus, we can use NetSpace frozen encoder to obtain the embeddings of two anchor instances
and linearly interpolate between them in order to study the representations laying in the
space between the two anchors. To this aim, we decode every interpolated embedding to
generate a new instance with NetSpace frozen decoder and compute the accuracy of this
ready-to-use instances on the images in the test sets. As a baseline, we consider the possibility
of interpolating directly the weights of the anchor instances. Results are reported in Fig. 4.4b
and Fig. 4.4d for TIN and CIFAR-10, respectively. Interestingly, along the multi-dimensional

Chapter 4. Learning the Space of Deep Models 51

FIGURE 4.5. Interpolation of 3D shapes. Top two rows: results obtained by interpolating
NetSpace embedding space. Bottom row: the same linear interpolation applied to MLPs weights.

line that connects the anchor embeddings we find representations corresponding to instances
whose performances grow almost linearly with the interpolation factor, while interpolating
directly the weights of the anchors yields unpredictable performances everywhere. This
result suggests that the embedding space learnt by our framework can be organized to have
meaningful dimensions, that are not exhibited in the instances weights space. In fact, the loss
function used in the Single-Architecture training concerns performance and our framework
learns naturally a latent space that, at least locally, can be explored along a direction strictly
correlated with performance.

4.4.3 Single-Architecture SDF Regression

As a second Single-Architecture experiment, we train NetSpace to learn a latent space of
MLPs that represent implicitly the SDF of chairs from the ShapeNet dataset. We train our
framework on a dataset of ∼ 1000 MLPs: each of them has been trained to overfit a different
3D shape, starting from a different random initialization. The goal of this experiment is to
assess if NetSpace is capable of learning a meaningful embedding of 3D shapes, which can
then be explored by linear interpolation. Thus, after training NetSpace, we obtain two anchor
embeddings by processing two input MLPs with NetSpace frozen encoder. Then, we obtain
new embeddings by interpolating the anchors and we predict new MLPs with NetSpace
frozen decoder. The results of this experiment are reported in Fig. 4.5. The top two rows show
interpolation results obtained from NetSpace latent space, while the bottom row presents
results obtained by interpolating directly the weights of the anchor MLPs. We can notice that

Chapter 4. Learning the Space of Deep Models 52

0 10 20 30 40 50 60
target instance id

20

30

40

50

ac
cu

ra
cy

target
predicted

0.00 0.33 0.66 1.00
interpolation factor

0

20

40

60

ac
cu

ra
cy

17.44 22.8

39.97
52.13interp. instance

0.00 0.33 0.66 1.00
interpolation factor

0

20

40

60

ac
cu

ra
cy

17.19 21.79

38.24
52.75interp. instance

0 10 20 30 40 50 60
target instance id

70

80

90

ac
cu

ra
cy

target
predicted

0.00 0.33 0.66 1.00
interpolation factor

60

80

100

ac
cu

ra
cy

64.45
72.28

82.03
87.43interp. instance

0.00 0.33 0.66 1.00
interpolation factor

20

40

60

80

100

ac
cu

ra
cy 67.95 72.34

82.92 86.53interp. instance

FIGURE 4.6. Results of the Multi-Architecture setting on TIN (top) and CIFAR10 (bottom). Left:
target instances from test set, instances are sorted w.r.t. their ClassId. Center: interpolation with all
architectures available at training time. Right: interpolation with only variants of LeNetLike and
ResNet32 seen at training time. In all figures, color represent architecture: red-LeNetLike, blue-
VanillaCNN, green-ResNet8, fuchsia-ResNet32. Circles correspond to interpolation boundaries.
Stars denote instances obtained with the discrete interpolation factors used in Lγ.

direct interpolation in the MLPs weights space yields catastrophic failures, while NetSpace
embedding space enables smooth interpolations between the boundary shapes. This shows
its ability to distill the core content of a trained model into a small-size embedding abstracting
from the specific values of weights, and also its flexibility: when the loss concerns fitting of
shapes, the latent space of models naturally organizes to have dimensions correlated with the
shapes traits.

4.4.4 Multi-Architecture

In the Multi-Architecture setting we train NetSpace to embed four architectures: LeNet-
Like, VanillaCNN, ResNet8 and ResNet32. To build the dataset, we train many randomly
initialized instances for each architecture, collecting multiple instances with good perfor-
mances (100 for training, 16 for validation and 16 for testing). We collect in total 400 instances
for training, 64 for validation and 64 for testing. We adopt a ResNet56 with high perfor-
mance as the teacher network in Eq. (4.3) and Eq. (4.11) and set α to 0.9 in Eq. (4.5). We
observe that supervision is not the same for different architectures: instances with lower
performances receive a stronger signal from the Lkd and Lγ provides additional supervision
for non-boundary architectures. We alleviate this issue modifing the training set so as to
include a different number of instances for each architecture: we include 60 LeNetLike, 50
VanillaCNN, 60 ResNet8 and 100 ResNet32 instances. Fig. 4.6 left shows the results of this
experiment: NetSpace successfully embeds instances of multiple architectures in highly com-
pressed representations with all the information needed to a) predict correctly the architecture

Chapter 4. Learning the Space of Deep Models 53

of the target instance and b) reconstruct an instance of such architecture whose behavior
mimics that of the target one.

4.4.5 Multi-Architecture Embedding Interpolation

As we defined the ClassIds of architectures according to their increasing number of
parameters, we expect their latent representations to be sorted w.r.t. this characteristic thanks
to our interpolation loss Lγ. In this experiment, we explore the latent space by observing the
classification accuracy achieved by instances obtained when interpolating one embedding
of LeNetLike and one of ResNet32, while moving with smaller steps than those defined in
Eq. (4.12). Notably, as shown in Fig. 4.6 center, NetSpace learns an embedding space where
architectures vary according to their number of parameters along an hyper-line. Moreover, it
organized the space to place best performing embeddings for every class around the positions
on which Lγ was computed.

4.4.6 Sampling of Unseen Architectures

We perform a new Multi-Architecture experiment by using a training set composed only
of LeNetLike and ResNet32 instances. We collect 40 instances for LeNetLike and 80 for
ResNet32, with the same balancing strategy discussed above. By not showing to NetSpace
encoder any instance of VanillaCNN and ResNet8, we deny it the possibility to learn directly
a portion of the embedding space dedicated to them. However, Lγ shapes it indirectly: for
instance, given two embeddings elenet and er32 of, respectively, a LeNetLike and ResNet32, it
forces the embedding eγ = 0.33 · elenet + 0.66 · er32 to represent an instance of ResNet8 (unseen
during training). After training, we perform an interpolation experiment and report results
in Fig. 4.6 right: we find that the latent space learnt by NetSpace trained on a reduced set
of architectures exhibits the same properties as the space learnt by training with all of them,
allowing to draw by interpolation instances with good performance of the unseen architectures
VanillaCNN and ResNet8.

4.4.7 Latent Space Optimization

Here we consider to obtain NetSpace embeddings by latent space optimization (LSO). In
order to do so, we take NetSpace encoder and decoder obtained by a Single-Architecture
Image classification experiment, freezing their parameters. Then, we obtain an initial latent
code by embedding one ResNet8 instance from the test set with the frozen encoder. We then
use the frozen decoder to perform an iterative optimization of the initial embedding. In each
step of the optimization, the embedding is processed by the frozen decoder, which predicts a
PRep that is loaded into a ResNet8 instance. The resulting network is then used to produce

Chapter 4. Learning the Space of Deep Models 54

Single-Architecture Multi-Architecture

ResNet8 LeNetLike VanillaCNN ResNet8 ResNet32

initial 25.73% 17.44% 22.89% 38.81% 52.17%
optimized 35.72% 18.55% 24.17% 42.07% 53.13%

TABLE 4.1. Accuracy on TIN test set achieved with LSO. The accuracy obtained by a given
neural network can be increased by exploring NetSpace latent space with gradient descent.

predictions on a batch of training images from TIN. We apply Lkd on these predictions using
a ResNet56 as teacher network, to guide NetSpace in the search of a high performing instance
in the learnt latent space. As the decoder is frozen, we compute the gradient of the loss
w.r.t. the embedding, so as to explore the latent space by gradient descent. Furthermore,
we perform a similar experiment starting from NetSpace encoder and decoder taken from
a Multi-Architecture training experiment. Also in this case, we use the frozen encoder to
obtain initial embeddings from four instances belonging to different architectures. Then,
we process each embeddings with the frozen decoder, which predicts a PRep and a ClassId.
We use the predicted ClassId to select the architecture where the predicted PRep is loaded,
building an instance which we use to produce predictions on a batch of training images from
TIN. In addition to Lkd, in this case we apply also Lclass on the predicted ClassId, to guide
the embedding towards the area of the latent space that corresponds to the desired class. In
Tab. 4.1 we report the performances obtained by the optimizations (second row), together
with the performances of the instances used to obtain the initial embeddings (first row).
Remarkably, the results show that it is actually possible to improve the performances of the
input instances by exploring the NetSpace embedding space via latent space optimization.

4.5 Conclusion and Future Work

NetSpace introduces a framework to learn the latent space of deep models. We have shown
that the embedding space learnt by NetSpace can be organized according to meaningful
traits and ready-to-use instances with predictable properties can be obtained by means of
linear interpolation or latent space optimization. Furthermore, our experiments provide
evidence that fixed-size embeddings can represent effectively instances of several different
architectures.

We believe that these findings are non-obvious and definitely worth communicating to
the community, as they may open up new research directions and foster the identification of
new potential applications. As a matter of fact, in the next chapter we build on top of such
findings and present a framework where implicit neural representations of 3D shapes are
squeezed into compact embeddings, which are then processed to perform several tasks.

55

Chapter 5

Deep Learning on Implicit Neural
Representations of Shapes

5.1 Introduction

Since the early days of computer vision, researchers have been processing images stored
as two-dimensional grids of pixels carrying intensity or color measurements. But the world
that surrounds us is three dimensional, motivating researchers to try to process also 3D
data sensed from surfaces. Unfortunately, representation of 3D surfaces in computers does
not enjoy the same uniformity as digital images, with a variety of discrete representations,
such as voxel grids, point clouds and meshes, coexisting today. Besides, when it comes to
processing by deep neural networks, all these kinds of representations are affected by peculiar
shortcomings, requiring complex ad-hoc machinery [162, 122, 163] and/or large memory
resources [164]. Hence, no standard way to store and process 3D surfaces has yet emerged.

Recently, a new kind of representation has been proposed, which leverages on the possibil-
ity of deploying a Multi-Layer Perceptron (MLP) to fit a continuous function that represents
implicitly a signal of interest [20]. These representations, usually referred to as Implicit Neural
Representations (INRs), have been proven capable of encoding effectively 3D shapes by fitting
signed distance functions (sdf) [25, 28, 33], unsigned distance functions (udf) [26] and occupancy
fields (occ) [27, 43]. Encoding a 3D shape with a continuous function parameterized as an
MLP decouples the memory cost of the representation from the actual spatial resolution,
i.e., a surface with arbitrarily fine resolution can be reconstructed from a fixed number of
parameters. Moreover, the same neural network architecture can be used to fit different
implicit functions, holding the potential to provide a unified framework for 3D shapes.

Due to their effectiveness and potential advantages over traditional representations, INRs
are gathering ever-increasing attention from the scientific community, with novel and striking
results published more and more frequently [32, 29, 28, 31]. This lead us to conjecture that,
in the forthcoming future, INRs might emerge as a standard representation to store and
communicate 3D shapes, with repositories hosting digital twins of 3D objects realized only as
MLPs becoming commonly available.

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 56

An intriguing research question does arise from the above scenario: beyond storage and
communication, would it be possible to process directly INRs of 3D shapes with deep learning
pipelines to solve downstream tasks as it is routinely done today with discrete representations
like point clouds or meshes? In other words, would it be possible to process an INR of a 3D
shape to solve a downstream task, e.g., shape classification, without reconstructing a discrete
representation of the surface?

Since INRs are neural networks, there is no straightforward way to process them. Ear-
lier work in the field, namely OccupancyNetworks [27] and DeepSDF [25], fit the whole
dataset with a shared network conditioned on a different embedding for each shape. In such
formulation, the natural solution to the above mentioned research problem could be to use
such embeddings as representations of the shapes in downstream tasks. This is indeed the
approach followed by contemporary work [165], which addresses such research problem
by using as embedding a latent modulation vector applied to a shared base network. How-
ever, representing a whole dataset by a shared network sets forth a difficult learning task,
with the network struggling in fitting accurately the totality of the samples (as we show in
Sec. 5.6.1). Conversely, several recent works, like SIREN [22] and others [34, 166, 167, 168,
30] have shown that, by fitting an individual network to each input sample, one can get
high quality reconstructions even when dealing with very complex 3D shapes or images.
Moreover, constructing an individual INR for each shape is easier to deploy in the wild,
as availability of the whole dataset is not required to fit an individual shape. Such works
are gaining ever-increasing popularity and we are led to believe that fitting an individual
network is likely to become the common practice in learning INRs.

Thus, in this chapter, we investigate how to perform downstream tasks with deep learning
pipelines on shapes represented as individual INRs. However, a single INR can easily
count hundreds of thousands of parameters, though it is well known that the weights of a
deep model provide a vastly redundant parametrization of the underlying function [141,
140]. Hence, we settle on investigating whether and how an answer to the above research
question may be provided by a representation learning framework that learns to squeeze
individual INRs into compact and meaningful embeddings amenable to pursuing a variety
of downstream tasks.

Our framework, dubbed inr2vec and shown in Fig. 5.1, has at its core an encoder designed
to produce a task-agnostic embedding representing the input INR by processing only the INR
weights. These embeddings can be seamlessly used in downstream deep learning pipelines,
as we validate experimentally for a variety of tasks, like classification, retrieval, part segmen-
tation, unconditioned generation, surface reconstruction and completion. Interestingly, since
embeddings obtained from INRs live in low-dimensional vector spaces regardless of the
underlying implicit function, the last two tasks can be solved by learning a simple mapping
between the embeddings produced with our framework, e.g., by transforming the INR of a

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 57

INRs provide an unified
representation for 3D shapes

inr2vec:
Embedding INRs

into compact latent codes

inr2vec embeddings
can be fed

to downstream tasks

Point
Cloud

Triangle
Mesh

Voxel
Grid

<INR0

<INR2

<INR3

<INR4

PART SEGMENTATION

UNCONDITIONED
GENERATION

SURFACE
RECONSTRUCTION

CLASSIFICATION

RETRIEVAL

COMPLETION

<INR1

INR

INR INR INR

FIGURE 5.1. Overview of our framework. Left: INRs hold the potential to provide an unified
representation for 3D shapes. Center: Our framework, dubbed inr2vec, produces a compact
representation for an input INR by looking only at its weights. Right: inr2vec embeddings can be
used with standard deep learning machinery to solve a variety of downstream tasks.

ud f into the INR of an sd f . Moreover, inr2vec can learn a smooth latent space conducive to
interpolating INRs representing unseen 3D objects.

Our contributions can be summarised as follows:

• we propose and investigate the novel research problem of applying deep learning
directly on individual INRs representing 3D shapes;

• to address the above problem, we introduce inr2vec, a framework that can be used to
obtain a meaningful compact representation of an input INR by processing only its
weights, without sampling the underlying implicit function;

• we show that a variety of tasks, usually addressed with representation-specific and
complex frameworks, can indeed be performed by deploying simple deep learning
machinery on INRs embedded by inr2vec, the same machinery regardless of the INRs
underlying signal.

5.2 Related Work

Deep learning on 3D shapes. Due to their regular structure, voxel grids have always been
appealing representations for 3D shapes and several works proposed to use 3D convolutions
to perform both discriminative [164, 169, 170] and generative [171, 172, 173, 174, 175, 176] tasks.
The huge memory requirements of voxel-based representations, though, led researchers to
look for less demanding alternatives, such as point clouds. Processing point clouds, however,
is far from straightforward because of their unorganized nature. As a possible solution, some
works projected the original point clouds to intermediate regular grid structures such as
voxels [177] or images [178, 179]. Alternatively, PointNet [16] proposed to operate directly

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 58

on raw coordinates by means of shared multi-layer perceptrons followed by max pooling
to aggregate point features. PointNet++ [162] extended PointNet with a hierarchical feature
learning paradigm to capture the local geometric structures. Following PointNet++, many
works focused on designing new local aggregation operators [180], resulting in a wide
spectrum of specialized methods based on convolution [181, 182, 183, 184, 185, 186, 187],
graph [188, 189, 122], and attention [190, 191] operators. Yet another completely unrelated set
of deep learning methods have been developed to process surfaces represented as meshes,
which differ in the way they exploit vertices, edges and faces as input data [163]. Vertex-based
approaches leverage the availability of a regular domain to encode the knowledge about
points neighborhoods through convolution or kernel functions [192, 193, 194, 195, 196, 197,
198, 199]. Edge-based methods take advantages of these connections to define an ordering
invariant convolution [200], to construct a graph on the input meshes [201] or to navigate the
shape structure [202]. Finally, Face-based works extract information from neighboring faces
[203, 204, 205, 206]. In this work, we explore INRs as a unified representation for 3D shapes
and propose a framework that enables the use of the same standard deep learning machinery
to process them, independently of the INRs underlying signal.

Deep learning on neural networks. Few works attempted to process neural networks
by means of other neural networks. For instance, [207] takes as input the weights of a
network and predicts its classification accuracy. [208] learns a network representation with
a self-supervised learning strategy applied on the N-dimensional weight array, and then
uses the learned representations to predict various characteristics of the input classifier.
[209, 210, 155] represent neural networks as computational graphs, which are processed
by a GNN to predict optimal parameters, adversarial examples, or branching strategies for
neural network verification. All these works see neural networks as algorithms and focus
on predicting properties such as their accuracy. On the contrary, we process networks that
represent implicitly 3D shapes to perform a variety of tasks directly from their weights, i.e.,
we treat neural networks as input/output data. To the best of our knowledge, processing 3D
shapes represented as INRs has been attempted only in contemporary work [165]. However,
they rely on a shared network conditioned on shape-specific embeddings while we process
the weights of individual INRs, that better capture the underlying signal and are easier to
deploy in the wild.

5.3 Learning to Represent INRs

The research question we address in this chapter is whether and how can we process
directly INRs to perform downstream tasks. For instance, can we classify a 3D shape that
is implicitly encoded in an INR? And how? As anticipated in Sec. 5.1, we propose to rely
on a representation learning framework to squeeze the redundant information contained in

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 59

embedding

hidden layers

linear transforms:
• Weights
• Biases

Stack of weights and
biases

M
ax

 p
o

o
lin

g

sh
ar

ed

sh
ar

ed

sh
ar

ed

sh
ar

ed

inr2vec ENCODER

LINEAR
+

BATCH NORM
+

ReLU

=

FIGURE 5.2. inr2vec encoder architecture.

the weights of INRs into compact latent codes that could be conveniently processed with
standard deep learning pipelines.

Our framework, dubbed inr2vec, is composed of an encoder and a decoder. The encoder,
detailed in Fig. 5.2, is designed to take as input the weights of an INR and produce a compact
embedding that encodes all the relevant information of the input INR. A first challenge in
designing an encoder for INRs consists in defining how the encoder should ingest the weights
as input, since processing naively all the weights would require a huge amount of memory
(see Appendix C.4). Following standard practice [22, 34, 166, 167, 168], we consider INRs
composed of several hidden layers, each one with H nodes, i.e., the linear transformation
between two consecutive layers is parameterized by a matrix of weights Wi ∈ RH×H and a
vector of biases bi ∈ RH×1. Thus, stacking Wi and bi

T, the mapping between two consecutive
layers can be represented by a single matrix Pi ∈ R(H+1)×H. For an INR composed of L + 1
hidden layers, we consider the L linear transformations between them. Hence, stacking all the
L matrices Pi ∈ R(H+1)×H, i = 1, . . . , L, between the hidden layers we obtain a single matrix
P ∈ RL(H+1)×H, that we use to represent the INR in input to inr2vec encoder. We discard the
input and output layers in our formulation as they feature different dimensionality and their
use does not change inr2vec performance, as shown in Appendix C.8.

The inr2vec encoder is designed with a simple architecture, consisting of a series of linear
layers with batch norm and ReLU non-linearity followed by final max pooling. At each stage,
the input matrix is transformed by one linear layer, that applies the same weights to each
row of the matrix. The final max pooling compresses all the rows into a single one, obtaining
the desired embedding. It is worth observing that the randomness involved in fitting an
individual INR (weights initialization, data shuffling, etc.) causes the weights in the same
position in the INR architecture not to share the same role across INRs. Thus, inr2vec encoder
would have to deal with input vectors whose elements capture different information across
the different data samples, making it impossible to train the framework. However, the use
of a shared, pre-computed initialization has been advocated as a good practice when fitting
INRs, e.g., to reduce training time by means of meta-learned initialization vectors, as done in

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 60

inr2vec: training

Linears
& Max Pool

Implicit
Decoder

unsigned distance function

INR

Linears
& Max Pool

inr2vec: inference

INR
(unseen)

FIGURE 5.3. Training and inference of our framework. Left: We consider shapes represented as
INRs. As an example, we show an INR fitting the udf of a surface. Center: inr2vec encoder is
trained together with an implicit decoder to replicate the underlying 3D signal of the input INR.
Right: At inference time, the learned encoder can be used to obtain a compact embedding from
unseen INRs.

MetaSDF [34] and in the contemporary work exploring processing of INRs [165], or to obtain
desirable geometric properties [33]. We empirically found that following such a practice, i.e.,
initializing all INRs with the same random vector, favours alignment of weights across INRs
and enables convergence of our framework (see also Sec. 5.4).

In order to guide the inr2vec encoder to produce meaningful embeddings, we first note
that we are not interested in encoding the values of the input weights in the embeddings
produced by our framework, but, rather, in storing information about the 3D shape repre-
sented by the input INR. For this reason, we supervise the decoder to replicate the function
approximated by the input INR instead of directly reproducing its weights, as it would be
the case in a standard auto-encoder formulation. In particular, during training, we adopt
an implicit decoder inspired by [25], which takes in input the embeddings produced by the
encoder and decodes the input INRs from them (see Fig. 5.3 center). More specifically, when
the inr2vec encoder processes a given INR, we use the underlying signal to create a set of 3D
queries pi, paired with the values f (pi) of the function approximated by the input INR at
those locations (the type of function depends on the underlying signal modality, it can be
ud f in case of point clouds, sd f in case of triangle meshes or occ in case of voxel grids). The
decoder takes in input the embedding produced by the encoder concatenated with the 3D
coordinates of a query pi and the whole encoder-decoder is supervised to regress the value
f (pi). After the overall framework has been trained end to end, the frozen encoder can be
used to compute embeddings of unseen INRs with a single forward pass (see Fig. 5.3 right)
while the implicit decoder can be used, if needed, to reconstruct the discrete representation
given an embedding.

In Fig. 5.4 we compare 3D shapes reconstructed from INRs unseen during training with
those reconstructed by the inr2vec decoder starting from the latent codes yielded by the

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 61

INPUT
INR

inr2vec
OUTPUT

P
O
IN
TS

M
ES
H

V
O
X
EL
S

INPUT
INR

inr2vec
OUTPUT

INPUT
INR

inr2vec
OUTPUT

FIGURE 5.4. inr2vec reconstructions. Comparison between discrete shapes reconstructed from
the INRs presented in input to inr2vec (“INPUT INR”) and the ones reconstructed from inr2vec
embeddings (“inr2vec OUTPUT”).

P
O
IN
TS

M
ES
H

V
O
X
EL
S

0 1interpolation factor

FIGURE 5.5. inr2vec latent space interpolation. Given two inr2vec embeddings obtained from
two input INRs, it is possible to linearly interpolate between them, producing new embeddings
that represent unseen INRs of plausible shapes.

encoder. We visualize point clouds with 8192 points, meshes reconstructed by marching
cubes [211] from a grid with resolution 1283 and voxels with resolution 643. We note that,
though our embedding is dramatically more compact than the original INR, the reconstructed
shape resembles the ground-truth with a good level of detail. Moreover, in Fig. 5.5 we linearly
interpolate between the embeddings produced by inr2vec from two input shapes and show
the shapes reconstructed from the interpolated embeddings. Results highlight that the latent
space learned by inr2vec enables smooth interpolations between shapes represented as
INRs. Additional details on inr2vec training and the procedure to reconstruct the discrete
representations from the decoder are in the Appendices.

5.4 Using the Same Initialization for INRs

The need to align the multitude of INRs that can approximate a given shape is a challeng-
ing research problem that has to be dealt with when using INRs as input data. We empirically

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 62

0.30

0.25

0.20

0.15

0.10

0.05

0.00

10

20

30

10 20 30

FIGURE 5.6. L2 distances between inr2vec embeddings. For each shape, we fit 10 INRs starting
from the same weights initialization (40 INRs in total). Then we plot the L2 distances between the
embeddings obtained by inr2vec for such INRs.

found that fixing the weights initialization to a shared random vector across INRs is a viable
and simple solution to this problem.

We report here an experiment to assess if order of data, or other sources of randomness
arising while fitting INRs, do affect the repeatability of the embeddings computed by inr2vec.
We fitted 10 INRs on the same discrete shape for 4 different chairs, i.e., 40 INRs in total. Then,
we embed all of them with the pretrained inr2vec encoder and compute the L2 distance
between all pairs of embeddings. The block structure of the resulting distance matrix (see
Fig. 5.6) highlights how, under the assumption of shared initialization and hyperparameters,
inr2vec is repeatable across multiple fittings.

Seeking for a proof with a stronger theoretical foundation, we turn our attention to the
recent work git re-basin [212], where authors show that the loss landscape of neural networks
contain (nearly) a single basin after accounting for all possible permutation symmetries
of hidden units. The intuition behind this finding is that, given two neural networks that
were trained with equivalent architectures but different random initializations, data orders,
and potentially different hyperparameters or datasets, it is possible to find a permutation
of the networks weights such that when linearly interpolating between their weights, all
intermediate models enjoy performance similar to them – a phenomenon denoted as linear
mode connectivity.

Intrigued by this finding, we conducted a study to assess whether initializing INRs with
the same random vector, which we found to be key to inr2vec convergence, also leads to
linear mode connectivity. Thus, given one shape, we fitted it with two different INRs and
then we interpolated linearly their weights, observing at each interpolation step the loss value
obtained by the interpolated INR on the same batch of points. For each shape, we repeated
the experiment twice, once initializing the INRs with different random vectors and once

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 63

0.5 0.5

Interpolation Factor

Lo
ss

0 1

Interpolation Factor

Lo
ss

0 1

Interpolation Factor

Lo
ss

0 1

Interpolation Factor

Lo
ss

0 1

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

FIGURE 5.7. Linear mode connectivity study. Each plot shows variation of the loss function over
the same batch of points when interpolating between two INRs representing the same shape. The
red line describes the interpolation between INRs initialized differently, while the blue line shows
the same interpolation between INRs initialized from the same random vector. The yellow stars
represent the loss value of the boundary INRs.

initializing them with the same random vector.
The results of this experiment are reported for four different shapes in Fig. 5.7. It is possible

to note that, as shown by the blue curves, when interpolating between INRs obtained from
the same weights initialization, the loss value at each interpolation step is nearly identical to
those of the boundary INRs. On the contrary, the red curves highlight how there is no linear
mode connectivity at all between INRs obtained from different weights initializations.

[212] proposes also different algorithms to estimate the permutation needed to obtain
linear mode connectivity between two networks. We applied the algorithm proposed in their
paper in Section 3.2 (Matching Weights) to our INRs and observed the resulting permutations.
Remarkably, when applied to INRs obtained from the same weights initialization, the re-
trieved permutations are identity matrices, both when the target INRs represent the same
shape and when they represent different ones. The permutations obtained for INRs obtained
from different initializations, instead, are far from being identity matrices.

All these results favor the hypothesis that our technique of initializing INRs with the same
random vector leads to linear mode connectivity between different INRs. We believe that the
possibility of performing meaningful linear interpolation between the weights occupying
the same positions across different INRs can be interpreted by considering corresponding
weights as carrying out the same role in terms of feature detection units, explaining why the
inr2vec encoder succeeds in processing the weights of our INRs.

This intuition can be also combined with the finding of another recent work [213], that
shows how the expressive power of SIRENs is restricted to functions that can be expressed as
a linear combination of certain harmonics of the first layer, which thus serves as basis for the
space of learnable functions.

As stated above, the evidence of linear mode connectivity between INRs obtained from
the same initialization leads us to believe that the weights of the first layer extract the same
features across different INRs. Thus, we can think of using the same random initialization as
a way to obtain the same basis of harmonics for all our INRs. We argue that this explains why
it is possible to remove the first layer of the INRs presented in input to inr2vec (as empirically

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 64

proved in Appendix C.8): if the basis is always the same, it is sufficient to process the layers
from the second onwards, that represent the coefficients of the basis harmonics combination,
as described in [213].

5.5 Deep Learning on INRs

In this section, we first present the set-up of our experiments. Then, we show how several
tasks dealing with 3D shapes can be tackled by working only with inr2vec embeddings as
input and/or output. Additional details on the architectures and on the experimental settings
are in Appendix C.5.

5.5.1 General Settings

In all the reported experiments, we convert 3D discrete representations into INRs featuring
4 hidden layers with 512 nodes each, using the SIREN activation function [22]. We train
inr2vec using an encoder composed of four linear layers with respectively 512, 512, 1024 and
1024 features, embeddings with 1024 values and an implicit decoder with 5 hidden layers with
512 features. The baselines are trained using standard data augmentation (random scaling
and point-wise jittering), while we train both inr2vec and the downstream task-specific
networks on datasets augmented offline with the same transformations.

5.5.2 Point Cloud Retrieval

We first evaluate the feasibility of using inr2vec embeddings of INRs to solve tasks usually
tackled by representation learning, and we select 3D retrieval as a benchmark. We follow the
procedure introduced in [161], using the euclidean distance to measure the similarity between
embeddings of unseen point clouds from the test sets of ModelNet40 [176] and ShapeNet10
(a subset of 10 classes of the popular ShapeNet dataset [161]). For each embedded shape,
we select its k-nearest-neighbours and compute a Precision Score comparing the classes of
the query and the retrieved shapes, reporting the mean Average Precision for different k
(mAP@k). Beside inr2vec, we consider three baselines to embed point clouds, which are
obtained by training the PointNet [16], PointNet++ [162] and DGCNN [122] encoders in
combination with a fully connected decoder similar to that proposed in [214] to reconstruct
the input cloud. Quantitative results, reported in Tab. 5.1, show that, while there is an average
gap of 1.8 mAP with PointNet++, inr2vec is able to match, and in some cases even surpass,
the performance of the other baselines. Moreover, it is possible to appreciate in Fig. 5.8 that
the retrieved shapes not only belong to the same class as the query but present also the
same coarse structure. This finding highlights how the pretext task used to learn inr2vec
embeddings can summarise relevant shape information effectively.

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 65

ModelNet40 ShapeNet10 ScanNet10
Method mAP@1 mAP@5 mAP@10 mAP@1 mAP@5 mAP@10 mAP@1 mAP@5 mAP@10

PointNet [16] 80.1 91.7 94.4 90.6 96.6 98.1 65.7 86.2 92.6
PointNet++ [162] 85.1 93.9 96.0 92.2 97.5 98.6 71.6 89.3 93.7

DGCNN [122] 83.2 92.7 95.1 91.0 96.7 98.2 66.1 88.0 93.1
inr2vec 81.7 92.6 95.1 90.6 96.7 98.1 65.2 87.5 94.0

TABLE 5.1. Point cloud retrieval quantitative results.

1-NNQUERY 2-NN 3-NN 4-NN
M
o
d
el
N
et
4
0

Sh
ap
eN

et
1
0

FIGURE 5.8. Point cloud retrieval qualitative results. Given the inr2vec embedding of a query
shape, we show the shapes reconstructed from the closest embeddings (L2 distance).

5.5.3 Shape Classification

We then address the problem of classifying point clouds, meshes and voxel grids. For
point clouds we use three datasets: ShapeNet10, ModelNet40 and ScanNet10 [137]. When
dealing with meshes, we conduct our experiments on the Manifold40 dataset [163]. Finally,
for voxel grids, we use again ShapeNet10, quantizing clouds to grids with resolution 643.
Despite the different nature of the discrete representations taken into account, inr2vec allows
us to perform shape classification on INRs embeddings, augmented online with E-Stitchup
[215], by the very same downstream network architecture, i.e., a simple fully connected
classifier consisting of three layers with 1024, 512 and 128 features. We consider as baselines
well-known architectures that are optimized to work on the specific input representations of
each dataset. For point clouds, we consider PointNet [16], PointNet++ [162] and DGCNN
[122]. For meshes, we consider a recent and competitive baseline that processes directly
triangle meshes [202]. As for voxel grids, we train a 3D CNN classifier that we implemented
following [164] (Conv3DNet from now on). Since only the train and test splits are released for
all the datasets, we created validation splits from the training sets in order to follow a proper
train/val protocol for both the baselines and inr2vec. As for the test shapes, we evaluated all
the baselines on the discrete representations reconstructed from the INRs fitted on the original
test sets, as these would be the only data available at test time in a scenario where INRs are
used to store and communicate 3D data. We report the results of the baselines tested on
the original discrete representations available in the original datasets in Appendix C.7: they
are in line with those provided here. The results in Tab. 5.2 show that inr2vec embeddings
deliver classification accuracy close to the specialized baselines across all the considered

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 66

Point Cloud Mesh Voxels
Method ModelNet40 ShapeNet10 ScanNet10 Manifold40 ShapeNet10

PointNet [16] 88.8 94.3 72.7 – –
PointNet++ [162] 89.7 94.6 76.4 – –

DGCNN [122] 89.9 94.3 76.2 – –
MeshWalker [202] – – – 90.0 –
Conv3DNet [164] – – – – 92.1

inr2vec 87.0 93.3 72.1 86.3 93.0

TABLE 5.2. Results on shape classification across representations.

2048 16K 32K 64K

Number of points

10 3

10 2

10 1

100

101

In
fe

re
nc

e
tim

e
(s

ec
)

-lo
g

sc
al

e- PointNet
PointNet++
DGCNN
inr2vec

FIGURE 5.9. Time required to classify INRs encoding udf. For point cloud classifiers, the time
to reconstruct the discrete cloud from the INR is included in the chart.

datasets, regardless of the original discrete representation of the shapes in each dataset.
Remarkably, our framework allows us to apply the same simple classification architecture
on all the considered input modalities, in stark contrast with all the baselines that are highly
specialized for each modality, exploit inductive biases specific to each such modality and
cannot be deployed on representations different from those they were designed for.

Furthermore, while presenting a gap of some accuracy points w.r.t. the most recent
architectures, like DGCNN and MeshWalker, the simple fully connected classifier that we
applied on inr2vec embeddings obtains scores comparable to standard baselines like PointNet
and Conv3DNet. It is also worth highlighting that, should 3D shapes be stored as INRs,
classifying them with the considered specialized baselines would require recovering the
original discrete representations by the lengthy procedures described in Appendix C.2. Thus,
in Fig. 5.9, we report the inference time of standard point cloud classification networks
while including also the time needed to reconstruct the discrete point cloud from the input
INR of the underlying ud f at different resolutions. Even at the coarsest resolution (2048
points), all the baselines yield an inference time which is one order of magnitude higher than
that required to classify directly the inr2vec embeddings. Increasing the resolution of the
reconstructed clouds makes the inference time of the baselines prohibitive, while inr2vec, not
requiring the explicit clouds, delivers a constant inference time of 0.001 seconds.

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 67

INR

PART SEGMENTATION
DECODER

(A) Method.

INR

inr2vec DECODER
(RECONSTRUCTION)

inr2vec DECODER
(PART SEGMENTATION)

(B) Qualitative results.

FIGURE 5.10. Point cloud part segmentation.

Method in
st

an
ce

m
Io

U

cl
as

s
m

Io
U

ai
rp

la
ne

ba
g

ca
p

ca
r

ch
ai

r

ea
rp

ho
ne

gu
it

ar

kn
if

e

la
m

p

la
pt

op

m
ot

or

m
ug

pi
st

ol

ro
ck

et

sk
at

eb
oa

rd

ta
bl

e

PointNet [16] 83.1 78.96 81.3 76.9 79.6 71.4 89.4 67.0 91.2 80.5 80.0 95.1 66.3 91.3 80.6 57.8 73.6 81.5
PointNet++ [162] 84.9 82.73 82.2 88.8 84.0 76.0 90.4 80.6 91.8 84.9 84.4 94.9 72.2 94.7 81.3 61.1 74.1 82.3

DGCNN [122] 83.6 80.86 80.7 84.3 82.8 74.8 89.0 81.2 90.1 86.4 84.0 95.4 59.3 92.8 77.8 62.5 71.6 81.1
inr2vec 81.3 76.91 80.2 76.2 70.3 70.1 88.0 65.0 90.6 82.1 77.4 94.4 61.4 92.7 79.0 56.2 68.6 78.5

TABLE 5.3. Part segmentation quantitative results. We report the IoU for each class, the mean
IoU over all the classes (class mIoU) and the mean IoU over all the instances (instance mIoU).

5.5.4 Point Cloud Part Segmentation

While the tasks of classification and retrieval concern the possibility of using inr2vec
embeddings as a compact proxy for the global information of the input shapes, with the task
of point cloud part segmentation we aim at investigating whether inr2vec embeddings can
be used also to assess upon local properties of shapes. The part segmentation task consists
in predicting a semantic (i.e., part) label for each point of a given cloud. We tackle this
problem by training a decoder similar to that used to train our framework (see Fig. 5.10a).
Such decoder is fed with the inr2vec embedding of the INR representing the input cloud,
concatenated with the coordinate of a 3D query, and it is trained to predict the label of the
query point. We train it, as well as PointNet, PointNet++ and DGCNN, on the ShapeNet Part
Segmentation dataset [216] with point clouds of 2048 points, with the same train/val/test
of the classification task. Quantitative results reported in Tab. 5.3 show the possibility of
performing also a local discriminative task as challenging as part segmentation based on the
task-agnostic embeddings produced by inr2vec and, in so doing, to reach performance not
far from that of specialized architectures. Additionally, in Fig. 5.10b we show point clouds
reconstructed at 100K points from the input INRs and segmented with high precision thanks
to our formulation based on a semantic decoder conditioned by the inr2vec embedding.

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 68

N
O
IS
E

GENERATOR

DISCRIMINATOR

TRAINING
N
O
IS
E

GENERATOR

INFERENCE

SP
-G
A
N

O
C
C
N
ET

i
n
r
2
v
e
c

i
n
r
2
v
e
c

2xFC

2xFC

2xFC

(A) Method.

N
O
IS
E

GENERATOR

DISCRIMINATOR

TRAINING
N
O
IS
E

GENERATOR

INFERENCE

SP
-G
A
N

O
C
C
N
ET

i
n
r
2
v
e
c

i
n
r
2
v
e
c

2xFC

2xFC

2xFC

(B) Qualitative results.

FIGURE 5.11. Learning to generate shapes from inr2vec latent space.

5.5.5 Shape Generation

With the experiments reported above we validated that, thanks to inr2vec embeddings,
INRs can be used as input in standard deep learning machinery. In this section, we address
instead the task of shape generation in an adversarial setting to investigate whether the
compact representations produced by our framework can be adopted also as medium for
the output of deep learning pipelines. For this purpose, as depicted in Fig. 5.11a, we train
a Latent-GAN [217] to generate embeddings indistinguishable from those produced by
inr2vec starting from random noise. The generated embeddings can then be decoded into
discrete representations with the implicit decoder exploited during inr2vec training. Since
our framework is agnostic w.r.t. the original discrete representation of shapes used to fit
INRs, we can train Latent-GANs with embeddings representing point clouds or meshes
based on the same identical protocol and architecture (two simple fully connected networks
as generator and discriminator). For point clouds, we train one Latent-GAN on each class
of ShapeNet10, while we use models of cars provided by [27] when dealing with meshes.
In Fig. 5.11b, we show some samples generated with the described procedure, comparing
them with SP-GAN [218] on the chair class for what concerns point clouds and Occupancy
Networks [27] (VAE formulation) for meshes. Generated examples of other classes for point
clouds are shown in Sec. 5.6.5. The shapes generated with our Latent-GAN trained only
on inr2vec embeddings seem comparable to those produced by the considered baselines,
in terms of both diversity and richness of details. Additionally, by generating embeddings
that represent implicit functions, our method enables sampling point clouds at any arbitrary
resolution (e.g., 8192 points in Fig. 5.11b) whilst SP-GAN would require a new training for
each desired resolution since the number of generated points must be set at training time.

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 69

TR
A

N
SFER

INR

INFERENCE

PAIRED inr2vec LATENT SPACES

TRANSFER

TRAINING

IN
C

O
M

P
LE

TE
(i

n
p

u
t)

C
O

M
P

LE
TE

(o
u

tp
u

t)
P

C
D

(i
n

tp
u

t)
M

ES
H

(o
u

tp
u

t)

8
xFC

8xFC

(A) Method.

TR
A

N
SFER

INR

INFERENCE

PAIRED inr2vec LATENT SPACES

TRANSFER

TRAINING

IN
C

O
M

P
LE

TE
(i

n
p

u
t)

C
O

M
P

LE
TE

(o
u

tp
u

t)
P

C
D

(i
n

tp
u

t)
M

ES
H

(o
u

tp
u

t)

8
xFC

8xFC

(B) Point cloud completion.

TR
A

N
SFER

INR

INFERENCE

PAIRED inr2vec LATENT SPACES

TRANSFER

TRAINING

IN
C

O
M

P
LE

TE
(i

n
p

u
t)

C
O

M
P

LE
TE

(o
u

tp
u

t)
P

C
D

(i
n

tp
u

t)
M

ES
H

(o
u

tp
u

t)

8
xFC

8xFC

(C) Surface reconstruction.

FIGURE 5.12. Learning a mapping between inr2vec latent spaces.

5.5.6 Learning a Mapping Between inr2vec Embedding Spaces

We showed that inr2vec embeddings can be used as a proxy to feed INRs in input to deep
learning pipelines, and that they can also be obtained as output of generative frameworks.
In this section we move a step further, considering the possibility of learning a mapping
between two distinct latent spaces produced by our framework for two separate datasets of
INRs, based on a transfer function designed to operate on inr2vec embeddings as both input
and output data. Such transfer function can be realized by a simple fully connected network
that maps the input embedding into the output one and is trained by a standard MSE loss (see
Fig. 5.12a). As inr2vec generates compact embeddings of the same dimension regardless of the
input INR modality, the transfer function described here can be applied seamlessly to a great
variety of tasks, usually tackled with ad-hoc frameworks tailored to specific input/output
modalities. Here, we apply this idea to two tasks. Firstly, we address point cloud completion
on the dataset presented in [219] by learning a mapping from inr2vec embeddings of INRs
that represent incomplete clouds to embeddings associated with complete clouds. Then, we
tackle the task of surface reconstruction on ShapeNet cars, training the transfer function to
map inr2vec embeddings representing point clouds into embeddings that can be decoded
into meshes. As we can appreciate from the samples in Fig. 5.12b and Fig. 5.12c, the transfer
function can learn an effective mapping between inr2vec latent spaces. Indeed, by processing
exclusively INRs embedding, we can obtain output shapes that are highly compatible with
the input ones while preserving the distinctive details, like the pointy wing of the airplane in
Fig. 5.12b or the flap of the first car in Fig. 5.12c.

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 70

Method train set
CD (mm) ↓ F-Score ↑

OccupancyNetworks 0.8 0.44
DeepSDF 11.1 0.14

LatentModulatedSiren 0.7 0.37
Individual INRs 0.3 0.50

(A) Train set.

Method test set
CD (mm) ↓ F-Score ↑

OccupancyNetworks 1.3 0.39
DeepSDF 6.6 0.25

LatentModulatedSiren 1.9 0.28
Individual INRs 0.3 0.49

(B) Test set.

TABLE 5.4. Individual INRs vs. shared network frameworks. Comparison between discrete
meshes reconstructed from individual INRs and from shared network frameworks on Manifold40.

5.6 Additional Results and Ablation Studies

5.6.1 Individual INRs vs. Shared Network Frameworks

In this section we aim at comparing the representation power of individual INRs (i.e., one
network for each data point) with the one of frameworks adopting a single shared network
for the whole dataset, like DeepSDF [25], OccupancyNetworks [27] or [165]. The important
difference between such approaches and our method relies in the fact that in shared network
frameworks, the shared network and the set of latent codes are the implicit representation,
whose reconstruction quality is negatively affected by using a single network to represent the
whole dataset. In our framework, instead, we decouple the representations (INRs) from the
embeddings used to process them in downstream tasks (yielded by inr2vec). The quality of
the representation is then entrusted to the individual INRs and inr2vec does not influence it.

To compare the representation quality of individual INRs with the one of share network
frameworks, we fitted the SDF of the meshes in the Manifold40 dataset with Occupan-
cyNetworks [27], DeepSDF [25] and LatentModulatedSiren (i.e., the architecture used by the
contemporary work that addresses deep learning on INRs [165]). Then, we reconstructed
the training discrete meshes from the three frameworks and we compared them with the
ground-truth ones, performing the same comparison using the discrete shapes reconstructed
from individual INRs. To perform the comparison, we first reconstructed meshes and then
we sampled dense point clouds (16,384 points) from the reconstructed surfaces, doing the
same for the ground-truth meshes. We report the quantitative comparisons in Tab. 5.4, using
two metrics: the Chamfer Distance as defined in [214] and the F-Score as defined in [220].

The comparison reported in the Tab. 5.4a shows that both OccupancyNetworks and
LatentModulatedSiren cannot represent the shapes of the training set with a good fidelity,
most likely because of the single shared network that struggles to fit a large number of shapes
with high variability (∼10K shapes, 40 classes). At the same time, DeepSDF obtains really
poor scores, highlighting the difficulty of training an auto-decoder framework on a large and
varied dataset. Individual INRs, instead, produce reconstructions with good quality, even if
we adopted a fitting procedure with only 500 steps for each shape.

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 71

Moreover, the approaches based on a conditioned shared network tend to fail in represent-
ing unseen samples that are out of the training distribution. Hence, in the foreseen scenario
where INRs become a standard representation for 3D data hosted in public repositories, lever-
aging on a single shared network may imply the need to frequently retrain the model upon
uploading new samples which, in turn, would change the embeddings of all the previously
stored data. On the contrary, uploading the repository with a new shape would not cause
any sort of issue with individual INRs, where one learns a network for each data point.

To better support our statements, in Tab. 5.4b we report the comparison between shape
reconstructed from OccupancyNetworks, DeepSDF, LatentModulatedSiren and individual
INRs, using shapes from the test set of Manifold40, i.e., shapes unseen at training time. The
numbers show that both OccupancyNetworks and LatentModulatedSiren present a drop
in the quality of the reconstructions, indicating that both frameworks struggle to represent
new shapes not available at training time. Surprisingly, DeepSDF produces better scores on
the test set w.r.t. the results on the train set but still presenting a quite poor performance in
comparison with the other methods. Conversely, the problem of representing unseen shapes
is inherently inexistent when adopting individual INRs, as shown by the numbers in the last
row of Tab. 5.4b, which are almost identical to the ones presented in Tab. 5.4a.

We report in Fig. 5.13 and Fig. 5.14 the comparison described above from a qualitative
perspective. It is possible to observe that the visualizations confirm the results posted in
Tab. 5.4, with shared network frameworks struggling to represent properly the ground-truth
shapes, while individual INRs enable high fidelity reconstructions.

We believe that these results highlight that frameworks based on a single shared network
cannot be used as medium to represent shapes as INRs, because of their limited representa-
tion power when dealing with large and varied datasets and because of their difficulty in
representing new shapes not available at training time.

5.6.2 Ablation on INRs Size

Fig. 5.15 reports a study that we conducted to determine the size of the INRs adopted
throughout our experiments. More specifically, we considered three alternatives of SIREN,
all featuring 4 hidden layers but different number of hidden features, namely 128, 256 and
512 respectively.

In the figure we show how the three SIREN variants perform in terms of being able of
representing properly the underlying signal, which in this example is the orange plane on the
left. Since we needed to create datasets comprising a huge number of INRs, we considered
both the quality of the representation as well as the number of steps of the fitting procedure,
with the goal of finding the best trade-off between quality and fitting time.

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 72

GT Individual INRS OccNet DeepSDFLMS

FIGURE 5.13. Individual INRs vs. shared network frameworks (train shapes). Qualitative
comparison of meshes from Manifold40 reconstructed from individual INRs or from shared
network frameworks, when dealing with training shapes. OccNet stands for OccupancyNetworks,
LMS stands for LatentModulatedSiren.

GT Individual INRS OccNet LMS DeepSDF

FIGURE 5.14. Individual INRs vs. shared network frameworks (test shapes). Qualitative
comparison of meshes from Manifold40 reconstructed from individual INRs or from shared
network frameworks, when dealing with shapes unseed during training. OccNet stands for
OccupancyNetworks, LMS stands for LatentModulatedSiren.

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 73

GT

Number of
hidden features

Fitting
steps200 400 600 800 1000

12
8

25
6

51
2

FIGURE 5.15. Comparison between different hidden sizes for INRs. We report the fitting steps
needed to obtain a good representation for INRs featuring different number of hidden features.

The results presented in the figure highlight how a SIREN with 512 hidden features can
learn to represent properly the input shape in just 600 steps, while the other variants either
take longer (as in the case of 256 hidden features) or not obtain at all the same quality (when
using 128 hidden features).

This experiment enabled us to draw the conclusion that a SIREN with 4 hidden layers
and 512 hidden features is the proper tool to obtain a good quality INR in short time.

5.6.3 Deep Learning on DeepSDF Latent Codes

In Sec. 5.6.1 we show that frameworks that adopt a shared network to produce INRs
struggle to obtain a good representation quality, while individual INRs do not suffer of this
problem by design. In this section we goes one step further and consider the possibility of
peforming downstream tasks on the latent codes produced by DeepSDF [25].

In particular, we trained DeepSDF to fit the UDFs of our augmented version of Mod-
elNet40, composed of ∼100K point clouds. For a fair comparison, we set the dimension
of DeepSDF latent codes to 1024 – i.e., the same used for inr2vec embeddings. Then we
performed the experiments of shape retrieval and classification using DeepSDF latent codes,
with the same settings presented in Sec. 5.5 for our framework.

The results reported in Tab. 5.5 highlight that the poor representation quality obtained
with DeepSDF – and shown to be an intrinsic problem with shared network frameworks in
Sec. 5.6.1 – has a detrimental effect on the quantitative results, proving once again that INR
frameworks based on a shared network cannot be deployed as tool to obtain and process
INRs effectively.

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 74

ModelNet40
Method mAP@1 mAP@5 mAP@10

PointNet [16] 80.1 91.7 94.4
PointNet++ [162] 85.1 93.9 96.0

DGCNN [122] 83.2 92.7 95.1
inr2vec 81.7 92.6 95.1

DeepSDF 69.8 85.4 89.8

ModelNet40
Method Accuracy

PointNet [16] 88.8
PointNet++ [162] 89.7

DGCNN [122] 89.9
inr2vec 87.0

DeepSDF 64.9

TABLE 5.5. Comparison between inr2vec and DeepSDF. We report results in shape retrieval (left)
and shape classification (right) when using standard baselines, inr2vec embeddings or DeepSDF
latent codes.

5.6.4 Shape Generation: Additional Comparison

In Fig. 5.11b we show a qualitative comparison between shapes generated with our
framework (see Sec. 5.5) and with competing methods, i.e., SP-GAN [218] for point clouds
and OccupancyNetworks [27] for meshes.

In Fig. 5.16 we extend this comparison, by presenting samples obtained with our for-
mulation applied to the voxelized chairs of ShapeNet10 and comparing them with samples
produced by two additional methods that learn a manifold of individual INRs, namely GEM
[221] and GASP [222], for which we used the original source code released by the authors.
To generate the figure, despite the sampled shapes being voxel grids, we adopt the same
procedure used by GEM and GASP and reconstruct meshes by applying Marching Cubes to
extract the 0.5 isosurface.

Fig. 5.16 show that all the considered methods can generate samples with a good variety
in terms of geometry. However, it is possible to observe how the qualitative comparison
favors the shape generated with inr2vec, that appear smoother than the ones generated by
GASP and less noisy that the samples produced by GEM.

5.6.5 Additional Qualititative Results

We report here additional qualitative results. In Fig. 5.17, Fig. 5.18 and Fig. 5.19 we
show some comparisons between the discrete shapes reconstructed from input INRs and
the ones reconstructed from inr2vec embeddings. Fig. 5.20, Fig. 5.21 and Fig. 5.22 present
smooth interpolations between inr2vec embeddings. In Fig. 5.23 and Fig. 5.24 we propose
additional qualitative results for the point cloud retrieval experiments. Fig. 5.25 shows
qualitative results for point cloud part segmentation for all the classes of the ShapeNet Part
Segmentation dataset. Fig. 5.26, Fig. 5.27 and Fig. 5.28 report shapes generated with Latent-
GANs [217] trained on inr2vec embeddings. Finally, Fig. 5.29 and Fig. 5.30 present additional
qualitative results for the experiments of point cloud completion and surface reconstruction,
tackled by learning a mapping between inr2vec latent spaces.

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 75

G
EM

G
AS

P
in
2v
ec

FIGURE 5.16. Shape generation: qualitative comparison. We show samples generated with
GEM [221], GASP [222] and with our method.

INPUT
INR

inr2vec
OUTPUT

INPUT
INR

inr2vec
OUTPUT

INPUT
INR

inr2vec
OUTPUT

FIGURE 5.17. inr2vec reconstructions when dealing with INRs fitted on point clouds. Compar-
ison between discrete shapes reconstructed from the INRs presented in input to inr2vec (“INPUT
INR”) and the ones reconstructed from inr2vec embeddings (“inr2vec OUTPUT”).

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 76

INPUT
INR

inr2vec
OUTPUT

INPUT
INR

inr2vec
OUTPUT

INPUT
INR

inr2vec
OUTPUT

FIGURE 5.18. inr2vec reconstructions when dealing with INRs fitted on meshes. Comparison
between discrete shapes reconstructed from the INRs presented in input to inr2vec (“INPUT
INR”) and the ones reconstructed from inr2vec embeddings (“inr2vec OUTPUT”).

INPUT
INR

inr2vec
OUTPUT

INPUT
INR

inr2vec
OUTPUT

INPUT
INR

inr2vec
OUTPUT

FIGURE 5.19. inr2vec reconstructions when dealing with INRs fitted on voxel grids. Compari-
son between discrete shapes reconstructed from the INRs presented in input to inr2vec (“INPUT
INR”) and the ones reconstructed from inr2vec embeddings (“inr2vec OUTPUT”).

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 77

0 1interpolation factor

FIGURE 5.20. inr2vec latent space interpolation. Given two inr2vec embeddings obtained from
INRs fitted on point clouds, it is possible to linearly interpolate between them, producing new
embeddings that represent unseen INRs of plausible shapes.

0 1interpolation factor

FIGURE 5.21. inr2vec latent space interpolation. Given two inr2vec embeddings obtained
from INRs fitted on meshes, it is possible to linearly interpolate between them, producing new
embeddings that represent unseen INRs of plausible shapes.

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 78

0 1interpolation factor

FIGURE 5.22. inr2vec latent space interpolation. Given two inr2vec embeddings obtained from
INRs fitted on voxel grids, it is possible to linearly interpolate between them, producing new
embeddings that represent unseen INRs of plausible shapes.

1-NNQUERY 2-NN 3-NN 4-NN

FIGURE 5.23. Point cloud retrieval (ModelNet40). Qualitative results of the point cloud retrieval
experiment conducted on inr2vec latent space. We show the discrete shape reconstructed from the
query INR on the left and the discrete clouds reconstructed from the closest inr2vec embeddings
in the columns 2-5.

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 79

1-NNQUERY 2-NN 3-NN 4-NN

FIGURE 5.24. Point cloud retrieval (ShapeNet10). Qualitative results of the point cloud retrieval
experiment conducted on inr2vec latent space. We show the discrete shape reconstructed from the
query INR on the left and the discrete clouds reconstructed from the closest inr2vec embeddings
in the columns 2-5.

FIGURE 5.25. Point cloud part segmentation. Qualitative results of the part segmentation
experiment conducted with our segmentation decoder conditioned on inr2vec embeddings.

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 80

B
AT
H
TU

B
B
ED

B
O
O
KS
H
EL
F

C
A
B
IN
ET

C
H
A
IR

LA
M
P

FIGURE 5.26. Shape generation (point clouds). We show point clouds reconstructed from
embeddings generated by a Latent-GAN trained on inr2vec embeddings (one model for each
class).

TA
B
LE

SO
FA

P
LA
N
T

M
O
N
IT
O
R

FIGURE 5.27. Shape generation (point clouds). We show point clouds reconstructed from
embeddings generated by a Latent-GAN trained on inr2vec embeddings (one model for each
class).

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 81

FIGURE 5.28. Shape generation (meshes). We show meshes reconstructed from embeddings
generated by a Latent-GAN trained on inr2vec embeddings.

FIGURE 5.29. Point cloud completion. Qualitative results of the point cloud completion experi-
ment conducted with a transfer network that learns a mapping between inr2vec latent spaces.

FIGURE 5.30. Surface reconstruction. Qualitative results of the surface reconstruction experiment
conducted with a transfer network that learns a mapping between inr2vec latent spaces.

Chapter 5. Deep Learning on Implicit Neural Representations of Shapes 82

5.7 Conclusion

We have shown that it is possible to apply deep learning directly on individual INRs
representing 3D shapes. Our formulation of this novel research problem leverages on a
task-agnostic encoder which embeds INRs into compact and meaningful latent codes without
accessing the underlying implicit function. Our framework ingests INRs obtained from
different 3D discrete representations and performs various tasks through standard machinery.
However, we point out two main limitations: i) Although INRs capture continuous geometric
cues, inr2vec embeddings achieve results inferior to state-of-the-art solutions ii) There is no
obvious way to perform online data augmentation on shapes represented as INRs by directly
altering their weights.

Future works may investigate these shortcomings as well as apply inr2vec to other input
modalities like images, audio or radiance fields. Another interesting direction for future work
concerns exploring weight-space symmetries [223] as a different path to favour alignment of
weights across INRs despite the randomness of training.

We reckon that our work may foster the adoption of INRs as a unified and standardized
3D representation, thereby overcoming the current fragmentation of discrete 3D data and
associated processing architectures.

83

Chapter 6

Final Remarks

In this thesis, we have investigated the possibility of adopting neural representations
(NR) as a way of representing continuous signals in different scenarios. The first part of this
manuscript deals with deploying NR as the only medium to represent data in two different
contexts.

In Chapter 2 we showed extensively how NR can model accurately the open surfaces of
garments, by approximating their unsigned distance function (UDF). The use of UDF allows
for representing open surfaces of any geometry and topology in a fully differentiable manner.
Moreover, our approach leads to a continuous latent space of garments, that could be used to
sample brand-new items and explored by means of gradient descent.

The main problem in our method is the reliance on a single neural network to represent a
whole dataset of garments. The limited capacity of the network could entail a loss in accuracy,
especially for clothing items that deviate from the dataset geometric priors. A possible
solution for this would be representing each garment with a separate (small) neural network, a
solution that we showed being superior to shared network frameworks in Sec. 5.6.1. However,
this solution would also make it more difficult to obtain the latent space of garments described
above. An alternative solution could feature a single shared network trained to represent
local patches of the garments surfaces, instead of their whole surfaces. This approach has
been shown to be effective in improving the representation accuracy [224] and it would
preserve the possibility of obtaining an explorable latent space.

In Chapter 3 we presented a simple yet effective scan station that enables the creation of a
Neural Twin® of a given object in a few minutes, by training a fast variant of NeRF [24] on
the collected images. This scenario highlights a clear advantage in adopting NR: the Neural
Twin® obtained with ScanNeRF provides an extremely compact representation of the object,
entailing the possibility of rendering an infinite number of novel views without the need of
storing such images.

One issue in using NeRF concerns the slow training process, which however has been
already drastically reduced by works such as [32, 79, 78] and is actively tackled by many re-
searchers. Another limitation in adopting NeRF concerns the difficulty in modeling reflectant
and transparent surfaces, a problem that is still open at the time of writing. Finally, being

Chapter 6. Final Remarks 84

able of recovering an accurate 3D model of the underlying object from a NeRF model would
be of interest to many applications, but doing that is still far from being trivial.

The second part of the thesis is focused on processing NR, i.e., on using NR as input/output
data to solve given tasks that are usually tackled by processing discrete representations of
the signals – e.g., grid of pixels for images. Since sampling the underlying signal from a NR
typically involves cumbersome procedures, we aim at the possibility of processing directly
the weights of the NR, to exclude completely the sampling overhead.

Thus, we first presented NetSpace in Chapter 4, a framework that we designed to prove
that the weights of a neural network form a redundant parametrization of the function
approximated by the network. Indeed, with NetSpace we show that it is possible to squeeze
the weights of a neural network into a low-dimensional embedding and that such embedding
contains all the information needed to restore the input network.

In Chapter 5 we build on top of the findings from NetSpace and present inr2vec, a
framework that allows for processing implicit neural representations (INR) of 3D shapes by
only looking at the networks weights. More specifically, inr2vec has at its core an encoder
which squeezes the weights of an input INR into a compact embedding, that can be processed
with standard deep learning machinery to tackle a great variety of tasks.

While we believe the results that we presented show that it is possible to consider a
future where NR are used as standalone representations for continuous signals, several
shortcomings still need to be addressed before such future could become a reality. First, NR
are typically obtained with slow fitting procedures starting from discrete samplings of the
target signal, an obstacle that could discourage the deployment of NR at a large scale. Then,
one must consider that, given the NR of a signal, it is extremely difficult or even impossible
to perform some kind of manipulation of the signal by acting exclusively on the NR weights.
For instance, given the INR of a 3D point cloud, it is not possible to apply a certain rotation by
modifying directly the weights of the INR. Furthermore, while we consider the results from
inr2vec really promising, our solution to perform deep learning directly on the INR weights
shows inferior performance to the algorithms developed in the past decades, that have been
carefully designed to work only on certain discrete representations of signals. Finally, it must
be remembered that NR are an approximation of the represented signals and that obtaining
an accurate approximation is not always trivial, especially when dealing with signals that
feature high-frequency details. In such cases, more than often, the accuracy of NR is still not
satisfying.

However, we are thrilled to see that at the time of writing many researchers are exploring
new ways to overcome the shortcomings listed above [225, 226, 227, 228, 229] and we still
argue that NR have the potential to become a standalone representation for continuous signal.

In conclusion, we believe that this thesis provides useful insights on the possibility of
deploying and processing NR of signals, considering them as first-class representations.

85

Part III

Appendices

86

Appendix A

Modeling Garments with Unsigned
Distance Functions

A.1 Network Architectures and Training

A.1.1 Garment Generative Network: Encoder

To encode a given garment into a compact latent code, we first sample P points from its
surface and then we feed them to a DGCNN [122] encoder, detailed in Fig. A.1. The input
point cloud is processed by four edge convolution layers, which project the input 3D points
into features with increasing dimensionality – i.e., 64, 64, 128 and finally 256.

Each edge convolution layer works as follows. For each input point, the features from
its K neighbours are collected and used to prepare a matrix with K rows. Each row is the
concatenation of two vectors: fi − f0 and f0, fi and f0 being respectively the feature vector of
the i-th neighbour and the feature vector of the considered point. Each row of the resulting
matrix is then transformed independently to the desired output dimension. The output
feature vector for the considered point is finally obtained by applying max pooling along the
rows of the produced matrix.

The original DGCNN implementation recomputes the neighborhoods in each edge convo-
lution layer, using the distance between the feature vectors as metric. This can be explained by
the original purposes of DGCNN, i.e., point cloud classification and part segmentation. Since
we are interested in encoding the geometric details of the input point cloud, we compute
neighborhoods only once based on the euclidean distance of the points in the 3D space and
reuse this information in every edge convolution layer. We set K = 16 in our experiments.

The feature vectors from the four edge convolutions are then concatenated to form a single
vector with 512 elements, that is fed to a final linear layer paired with batch normalization
and leaky ReLU. Such layer projects the 512 sized vectors into the final desired dimension,
which is 32 in our case. The final latent code is obtained by compressing the feature matrix
with shape P× 32 along the first dimension with max pooling.

Appendix A. Modeling Garments with Unsigned Distance Functions 87

𝑧

𝑃×
3

𝑃×
64

𝑃×
64

𝑃×
12
8

𝑃×
25
6

𝑃×
32

ED
G

E
CO

N
V

ED
G

E
CO

N
V

ED
G

E
CO

N
V

ED
G

E
CO

N
V

CO
N

CA
T

LI
N

 +
 B

N
+

LR
EL

U

K-
N

N

M
AX

PO
O

L

𝒇! − 𝒇" 𝒇"
𝒇# − 𝒇" 𝒇"

… …

𝒇$ − 𝒇" 𝒇"
Point 𝒙" ∈ ℝ%.

𝐾 neighbours 𝒙& ∈ ℝ%, 𝑖 ∈ {1, 2,… ,𝐾}.
Features 𝒇 ∈ ℝ', 𝐷 ∈ 3, 64, 64, 128 .

𝐾
2𝐷

LI
N

 +
 B

N
+

LR
EL

U

𝐾×𝐷()*

M
AX

PO
O

L

𝐷()*

Aggregated features with
shape 𝐾×2𝐷.

Output feature vector
for 𝒙", 𝐷()* ∈

{64, 64, 128, 256}.

𝒙", 𝒇"

𝒙!, 𝒇!

𝒙#, 𝒇#

𝒙$, 𝒇$

…

EDGE CONV

FIGURE A.1. DGCNN point cloud encoder. We adopt DGCNN [122] as the point cloud encoder
of our garment generative network. The input cloud is passed through four edge convolutions,
which gather features of local neighborhoods of points to project them into higher dimensional
spaces. The features from all the layers are then concatenated and projected to the final desired
dimension. Max pooling is finally used to obtain the latent code z for the input cloud. CONCAT
stands for features concatenation, while LIN + BN + LRELU represents a linear layer followed by
batch normalization and leaky ReLU.

positional
encoding

𝒙
∈
ℝ
!

𝜸
∈
ℝ
"!

+
𝑜𝑢
𝑡
∈
ℝ

3D
 q

ue
ry

𝒛
∈
ℝ
!#

G
ar

m
en

tc
od

e

5x

LI
N

EA
R

ℝ
"!
→
ℝ
$%
#

LI
N

EA
R

ℝ
$%
#
→
ℝ
$%
#

LI
N

EA
R

ℝ
$%
#
→
ℝ
$%
#

LI
N

EA
R

ℝ
$%
#
→
ℝ

CB
N

Re
LU

CB
N

Re
LU

CB
N

Re
LU

SI
G

M
O

ID

𝑢𝑑
𝑓(
𝒙)
∈
ℝ

𝑜𝑢
𝑡
∈
ℝ

*

Clipping distance 𝛿

From output to UDF

FIGURE A.2. UDF decoder. Given a 3D query and a garment latent code, the decoder of our
garment generative network is trained to predict the UDF of the input query w.r.t. the surface
of the garment. The latent code is used to condition the prediction by the means of Conditional
Batch Normalization (CBN) [123]. Since we trained the decoder with the binary cross-entropy
loss, its outputs need to be converted to UDF values by applying the sigmoid function and then
scaling the result with the UDF clipping distance δ.

Appendix A. Modeling Garments with Unsigned Distance Functions 88

A.1.2 Garment Generative Network: Decoder

The garment generative network features an implicit decoder that can predict the unsigned
distance field of a garment starting from its latent code. More specifically, the decoder is a
coordinate-based MLP that takes as inputs the garment latent code and a 3D query. Using
the latent code as condition, the decoder predicts the unsigned distance from the query to the
garment surface.

Our UDF decoder, shown in Fig. A.2, is inspired by [27]. The input 3D query is first
mapped to a higher dimensional space (R63) with the positional encoding proposed in [24],
which is known to improve the capability of the network to approximate high frequency
functions. The encoded query is then mapped with a linear layer to R512 and then goes
through 5 residual blocks. The output of each block is computed as fout = fin + ∆f, where
fin is the input vector and ∆f is a residual term predicted by two consecutive linear layers
starting from fin. The size of the feature vector is 512 across the whole sequence of residual
blocks. The output of the last block is mapped to the scalar output out ∈ R with a final linear
layer.

All the linear layers but the output one are paired with Conditional Batch Normalization
(CBN) [123] and ReLU activation function. CBN is used to condition the MLP with the input
latent code z. In more details, each CBN module applies standard batch normalization [230] to
the input vectors, with the difference that the parameters of the final affine transformation are
not learned during the training but are instead predicted at each inference step by dedicated
linear layers starting from z.

As a final remark, we recall that our generative network is trained with the binary cross-
entropy loss. Thus, the output of the decoder must be converted to the corresponding UDF
value by first applying the sigmoid function and then scaling the result with the UDF clipping
distance δ, which we set to 0.1 in our experiments. Such procedure is indeed the dual of the
one applied on the UDF ground-truth labels during training to normalize them in the range
[0, 1].

A.1.3 Garment Generative Network: Surface Sampling

We sample supervision points with a probability inversely proportional to the distance to
the surface: 30% of the points are sampled directly on the input surface, 30% are sampled
by adding gaussian noise with ε variance to surface points, 30% are obtained with gaussian
noise with 3ε variance, and the remaining ones are gathered by sampling uniformly the
bounding box in which the garment is contained. Since in our experiments, the top and
bottom garments are normalized respectively into the upper and lower halves of the [−1, 1]3

cube, we set ε = 0.003.

Appendix A. Modeling Garments with Unsigned Distance Functions 89

A.1.4 Draping Network

The networksW(x) ∈ R24 and ∆x(x, β) ∈ R3 that predict blending weights and coarse
displacements are implemented by a 9-layer multilayer perceptron (MLP) with a skip con-
nection from the input layer to the middle. Each layer has 256 nodes except the middle
and the last ones. ReLU is used as the activation function. The body-parameter-embedding
module B(β, θ) ∈ R128 and the displacement-matrix moduleM(x, z) ∈ R128×3 for ∆xref are
implemented by a 5-layer MLP with LeakyReLU activation in-between. Each layer has 512
nodes except the last one. ∆xIS uses the same architecture as ∆xref.

A.1.5 Training Hyperparameters

The generative models (top/bottom ones) are trained on the 600/300 neutral garments for
4000 epochs, using mini-batches of size B = 4. Each item of the mini-batch contains an input
point cloud with P = 10, 000 points and N = 20, 000 random UDF 3D queries. The dimension
of the latent codes is set to 32 for both top and bottom garments, and we set λg = 0.1 in

Lgarm = Ldist + λgLgrad . (A.1)

The draping networks are trained for 250K iterations with mini-batches of size 18, where
each item is composed of the vertices of one garment paired with one body shape and pose.
We set λ = 0.1 for Lpin and γ = 0.5 for Llayer.

Both the generative and the draping networks are trained with Adam optimizer [231] and
learning rates set to 0.0001 and 0.001 respectively.

A.2 Loss Terms and Ablation Studies

A.2.1 Lpin for Bottom Garments

To determine V, the set of bottom garment vertices that need to be constrained by Lpin,
we first find the closest body vertex vB for each bottom garment vertex v. If vB locates in the
body trunk (cyan region as shown in Fig. A.3), v is added to V.

In Fig. A.4, we show the draping results of bottom garments by using different values
for λ in Lpin. When λ equals 0 or 1, the deformations along the X and Z axes are not natural
because no constraints or too strong constraints are applied, while it is not the case when
λ = 0.1, which is our setting.

Appendix A. Modeling Garments with Unsigned Distance Functions 90

FIGURE A.3. Body region (marked in cyan) used to compute Lpin.

𝜆 = 0 𝜆 = 0.1𝜆 = 1

FIGURE A.4. Comparison between different values for λ of Lpin. To restrict the deformation
mainly along the vertical direction (Y axis) and produce natural deformations along other direc-
tions, λ has to be a positive value smaller than 1. We use λ = 0.1 for our training.

Appendix A. Modeling Garments with Unsigned Distance Functions 91

w/o ℒ𝑙𝑎𝑦𝑒𝑟 w/ ℒ𝑙𝑎𝑦𝑒𝑟

FIGURE A.5. Comparison: draping without and with Llayer. Without it, the top and bottom
garments intersect with each other.

A.2.2 Llayer for Top-bottom Intersection

To determine C, the set of body vertices covered by both the top and bottom garments,
we first subdivide the SMPL body mesh for a higher resolution, and then we compute Ctop

the set of closest body vertices for the given top garment, and Cbottom the set of closest body
vertices for the bottom. C is derived as the intersection of Ctop and Cbottom.

In Fig. A.5 we compare the results of models trained without and with Llayer. We can
observe that without Llayer, the top tank can intersect with the bottom trousers, while it is not
the case when using Llayer. This indicates the efficacy of Llayer to avoid intersections between
garments.

A.2.3 Physics-based Refinement

After recovering the draped garment GD from images by the optimization of Eq. (2.12),
we can apply the physics-based objectives of Eq. (2.7) to increase its level of realism

L(∆G) =Lstrain(GD + ∆G) + Lbend(GD + ∆G)

+ Lgravity(GD + ∆G) + Lcol(GD + ∆G) ,
(A.2)

where ∆G is the per-vertex-displacement initialized to zero. For the recovery from 3D
scans, we apply the following optimization which minimizes both the above physics-based

Appendix A. Modeling Garments with Unsigned Distance Functions 92

The watertight mesh
reconstructed by SDF.

The mesh refined by
physics-based objectives.

FIGURE A.6. Applying post-refinement procedure to watertight mesh. Left: the watertight
mesh reconstructed by DIG [111]. Right: the same mesh after being refined with physics-based
objectives (Eq. (A.2)). Physics-based refinement is not compatible with inflated garment meshes,
and leads to many self-intersections.

objectives and the Chamfer Distance d(·) to the input scan SG

L(∆G) =Lstrain(GD + ∆G) + Lbend(GD + ∆G)

+ Lgravity(GD + ∆G) + Lcol(GD + ∆G)

+ d(GD + ∆G, SG) .

(A.3)

This refinement procedure is only applicable to open surface meshes, and our UDF model is
thus key to enabling it. Applying Eq. (A.2) or Eq. (A.3) to an inflated garment (as recovered
by SMPLicit [110], ClothWild [127] and DIG [111]) indeed yields poor results with many
self-intersections as illustrated in Fig. A.6. This is because inflated garments modelled as
SDFs have a non-zero thickness, with distinct inner and outer surfaces whose interactions
are not taken into account in this fabric model. Note that this is the case for most garment
draping softwares [106, 114, 232, 233, 98] to expect single layer garments. Modeling garment
with UDFs is thus a key feature of our pipeline for its integration in downstream tasks.

Both the optimizations of Eqs. (2.12) and (2.13) and Eqs. (A.2) and (A.3) are done with
Adam [214] but with different learning rates set to 0.01 and 0.001 respectively.

Appendix A. Modeling Garments with Unsigned Distance Functions 93

A.3 Additional Results and Considerations

A.3.1 Garment Encoder/Decoder Latent Space Optimization (LSO)

After training the garment generative network, we obtain a latent space that allows us to
sample a garment latent code and to feed it to the implicit decoder to reconstruct the explicit
surface. We study here the possibility of exploring the garment latent space by the means
of LSO. To do that, given a target 2D silhouette or a sparse 3D point cloud of a garment, we
optimize with gradient descent a latent code – initialized to the training codes average – so
that the frozen decoder conditioned on it can produce a garment which fits the target image
or point cloud.

Given the silhouette S of a target garment, we can retrieve its latent code z by minimizing

L(z) = LIoU(R(G),S) ,

G = MeshUDF(DG(·, z)) ,
(A.4)

where LIoU is the IoU loss [130] in pixel space measuring the difference between 2D silhouettes
, R(·) is a differentiable silhouette renderer for meshes [131], and G is the garment mesh
reconstructed with our garment decoder using z.

In the case of a target garment provided as a point cloud P , the garment latent code z can
be obtained by minimizing

L(z) = d(ps(G),P) ,

G = MeshUDF(DG(·, z)) ,
(A.5)

where d(a, b) is the Chamfer distance [214] between point clouds a and b, and ps(·) represents
a differentiable procedure to sample points from a given mesh [131].

In both cases, we run the optimization for 1000 steps, with Adam optimizer [231] and
learning rate set to 0.01.

In Fig. A.7 and Fig. A.8 we present some results of the LSO procedures here described,
showing that the latent space learned by the garment generative network can be explored
effectively with gradient descent to recover the codes associated with the target garments.

A.3.2 Draping Network: Euclidean Distance is not a Good Metric

In Fig. A.9, we show an example of bottom garment where our result is more realistic than
the competitors DeePSD [119] and DIG [111] despite having the highest Euclidean distance.
This demonstrates again that Euclidean distance is not able to measure the draping quality.

Appendix A. Modeling Garments with Unsigned Distance Functions 94

TA
RG

ET
RE
SU

LT
TA
RG

ET
RE
SU

LT

FIGURE A.7. Generative network: latent space optimization (top garments). After training, we
can explore the latent space learned by the garment generative network with gradient descent, to
recover target garments from 2D silhouettes (top) or 3D point clouds (bottom).

TA
RG

ET
RE
SU

LT
TA
RG

ET
RE
SU

LT

FIGURE A.8. Generative network: latent space optimization (bottom garments). After training,
we can explore the latent space learned by the garment generative network with gradient descent,
to recover garments from 2D silhouettes (top) or 3D point clouds (bottom).

Appendix A. Modeling Garments with Unsigned Distance Functions 95

Ours
ED=56.1mm

DIG
ED=12.9mm

DeePSD
ED=20.2mm

GT

FIGURE A.9. Comparison between DeePSD, DIG and our method. Our result is more realistic
than the others despite having the highest Euclidean distance (ED) error.

Top Strain ↓ Bending ↓ Gravity ↓ Total ↓
DeePSD 7.22 0.01 0.98 8.21

DIG 6.32 0.01 1.05 7.38

Ours 0.43 0.01 1.05 1.81

Bottom Strain ↓ Bending ↓ Gravity ↓ Total ↓
DeePSD 8.46 0.02 0.90 9.38

DIG 7.48 0.01 0.90 8.39

Ours 0.41 0.01 0.86 1.28

TABLE A.1. Draping unseen garment meshes. Quantitative comparison in physics-based energy
between DeePSD, DIG and our method. “Strain”, “Bending” and “Gravity“ denote the membrane
strain energy, the bending energy and the gravitational potential energy, respectively.

A.3.3 Draping Network: Physics-based Energy Evaluation

In Tab. A.1, we report the physics-based energy of Strain, Bending and Gravity as proposed
by [108] on test garment meshes when draped by DeePSD, DIG and our method. These
energy terms are used as training losses for our garment network (Eqs. (2.7) and (2.8)). For
the gravitational potential energy, we choose the lowest body vertex as the 0 level. Generally,
our results have the lowest energies, especially for the Strain component. Since DeePSD
and DIG do not apply constraints on mesh faces, their results exhibit much higher Strain
energy. This indicates that our method can produce results that have more realistic physical
properties.

A.3.4 Inference Times

We report inference times for the components of our framework, computed on an NVIDIA
Tesla V100 GPU. The garment encoder, which needs to be run only once for each garment,

Appendix A. Modeling Garments with Unsigned Distance Functions 96

FIGURE A.10. Recovered garments of SMPLicit from 3D scans. Figures are extracted from [110].

takes ∼25 milliseconds. The decoder takes ∼2 seconds to reconstruct an explicit garment
mesh from a given latent code, including the modified Marching Cubes from [42] at resolution
2563.

The draping network takes ∼5 ms to deform a garment mesh composed of 5K vertices.
Since it is formulated in an implicit manner and is queried at each vertex, its inference time
increases to ∼8 ms for a mesh with 8K vertices, or ∼53 ms with 100K vertices.

A.3.5 Fitting SMPLicit to 3D Scans

In Fig. A.10 we show results of fitting the concurrent approach SMPLicit [110] to 3D
scans of the SIZER dataset [103]. We can observe that they are not as realistic as ours
shown in Fig. 2.13. Since we have no access to their code and not enough information for a
re-implementation, we directly extract this figure from [110].

A.4 Human Evaluation

In Fig. A.11 we show the interface and instructions that were presented to the 187 re-
spondents of our survey. These evaluators were volunteers with various backgrounds from
the authors respective social circles, which were purposely not given any further detail
or instruction. We collected collected 3738 user opinions in total, each user expressing 20
opinions on average.

Appendix A. Modeling Garments with Unsigned Distance Functions 97

FIGURE A.11. Interface of our qualitative survey. The garment is draped with our method, DIG,
and DeePSD, in a random order.

98

Appendix B

Learning the Space of Deep Models

B.1 ClassId Classifier

In Sec. 3 (Multi-Architecture Setting) of the main paper we introduce the need to extend
NetSpace architecture to the Multi-Architecture setting. In this setting, in fact, we ask our
framework to extract the ClassId of the predicted instances from the embeddings. To achieve
this goal, we extend the architecture of our framework with a softmax classifier, which
takes in input the embeddings generated by NetSpace encoder and is trained to predict
the correct ClassId with Lclass. The classifier is a lightweight neural network, composed
of one convolutional layer and one fully connected layer, interleaved by the LeakyReLU
activation function. The outputs of the classifier are transformed into probabilities by the
softmax function. Fig. B.1 presents an overview of the version of NetSpace used in the
Multi-Architecture case, including the ClassId classifier.

B.2 Network Architectures

Image Classification. Fig. B.2 and Fig. B.3 present the architecture of the neural networks
used in our experiments dealing with image classification, i.e., LeNetLike [159], VanillaCNN

embeddings

C
O

N
V

 1
X

3

C
O

N
V

 1
X

3

LE
A

K
Y

R
EL

U

LE
A

K
Y

R
EL

U

M
A

X
 P

O
O

LI
N

G

C
O

N
V

 3
x1

LE
A

K
Y

R
EL

U

C
O

N
V

 3
x1

M
A

X
 P

O
O

LI
N

G

LE
A

K
Y

R
EL

U

PRep

PRep

PRep

PRep

PRep

PRep

PRep

PRep

PRep

PRep

C
O

N
V

 3
X

3

LE
A

K
Y

R
EL

U
R

ES
H

A
P

E

C
O

N
V

 3
X

3

LE
A

K
Y

R
EL

U
R

ES
H

A
P

E

C
O

N
V

 3
X

3

LE
A

K
Y

R
EL

U
R

ES
H

A
P

E

C
O

N
V

 3
X

3

R
ES

H
A

P
E

LI
N

EA
R

 S
C

A
LE

LEAKY RELU

SOFTMAX

CONV 3X3

FC

Arch. 0 Arch. 1 Arch. 2 Arch. 3

FIGURE B.1. NetSpace architecture for the Multi-Architecture experiments. An additional
component is trained to predict the ClassId of the input instance from the embedding.

Appendix B. Learning the Space of Deep Models 99

CONV (in 3, out 6, k 5, s 2, p 0)

Leaky ReLU

CONV (in 6, out 16, k 5, s 2, p 0)

Leaky ReLU

FC (in 400, out 120)

Leaky ReLU

FC (in 120, out 84)

Leaky ReLU

FC (in 84, out 10)

Flatten

LeNetLike (CIFAR-10)

CONV (in 3, out 8, k 3, s 2, p 1)

Leaky ReLU

CONV (in 8, out 8, k 3, s 1, p 1)

Leaky ReLU

CONV (in 8, out 32, k 3, s 2, p 1)

Leaky ReLU

CONV (in 32, out 64, k 3, s 1, p 1)

Leaky ReLU

CONV (in 64, out 64, k 3, s 2, p 1)

Leaky ReLU

Flatten

FC (in 1024, out 10)

VanillaCNN (CIFAR-10)
CONV (in 3, out 8, k 3, s 2, p 1)

Leaky ReLU

CONV (in 8, out 16, k 3, s 2, p 1)

Leaky ReLU

CONV (in 16, out 32, k 3, s 2, p 1)

Leaky ReLU

CONV (in 32, out 64, k 3, s 2, p 1)

Leaky ReLU

CONV (in 64, out 64, k 3, s 2, p 1)

Leaky ReLU

Flatten

FC (in 256, out 200)

VanillaCNN (Tiny-ImageNet)

LeNetLike (Tiny-ImageNet)

CONV (in 4, out 8, k 5, s 2, p 0)

Leaky ReLU

CONV (in 8, out 16, k 5, s 2, p 0)

Leaky ReLU

FC (in 400, out 120)

Leaky ReLU

FC (in 120, out 84)

Leaky ReLU

FC (in 84, out 200)

Flatten

CONV (in 3, out 4, k 5, s 2, p 2)

Leaky ReLU

CONV (in 3, out 16, k 3, s 1, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Leaky ReLU

CONV (in 16, out 16, k 3, s 1, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Leaky ReLU

CONV (in 16, out 16, k 3, s 1, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Add

Leaky ReLU

CONV (in 16, out 32, k 3, s 2, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Leaky ReLU

CONV (in 32, out 32, k 3, s 1, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Add

Leaky ReLU

C
O
N
V

1
x
1

CONV (in 32, out 64, k 3, s 2, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Leaky ReLU

CONV (in 64, out 64, k 3, s 1, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Add

Leaky ReLU
C
O
N
V

1
x
1

Average Pooling (k 8, s 8)

Flatten

ResNet8

FC (in 256, out 200)FC (in 64, out 10)

FIGURE B.2. Architectures used in our experiments dealing with image classification. Top left:
LeNetLike, bottom left: VanillaCNN, right: ResNet8.

and ResNet8/32/56 [160]. Each convolutional layer is presented in the form CONV (in I, out
O, k K, s S, p P), where I, O, K, S and P represent input channels, number of filters, kernel
size, stride and padding, respectively. Fully Connected layers, instead, are reported in the
form FC (in I, out O), where I and O stand for input and output units, respectively . Average
pooling is shown as Average Pooling (k K, s S), where K is kernel size and S is stride. Finally,
CONV 1×1 represents a convolutional layer with kernel size 1 used to adapt feature maps in
residual connections.

3D SDF Regression. As far as 3D SDF regression is concerned, we use simple Multilayer
Perceptrons (MLPs) composed of a single hidden layer with 256 nodes. Following [22], we
use a periodic activation function between the input layer and the hidden layer and between
the hidden layer and the output layer. No activation function is applied instead on the final
outputs.

Appendix B. Learning the Space of Deep Models 100

CONV (in 3, out 16, k 3, s 1, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Leaky ReLU

CONV (in 16, out 16, k 3, s 1, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Leaky ReLU

CONV (in 16, out 16, k 3, s 1, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Add

Leaky ReLU

CONV (in 16, out 32, k 3, s 2, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Leaky ReLU

CONV (in 32, out 32, k 3, s 1, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Add

Leaky ReLU

C
O
N
V

1
x
1

CONV (in 32, out 64, k 3, s 2, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Leaky ReLU

CONV (in 64, out 64, k 3, s 1, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Add

Leaky ReLU

C
O
N
V

1
x
1

Average Pooling (k 8, s 8)

5

Leaky ReLU

CONV (in 32, out 32, k 3, s 1, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Leaky ReLU

CONV (in 32, out 32, k 3, s 1, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Add

4

Leaky ReLU

CONV (in 64, out 64, k 3, s 1, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Leaky ReLU

CONV (in 64, out 64, k 3, s 1, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Add

4

ResNet32

FC (in 256, out 200)FC (in 64, out 10)

Flatten

CONV (in 3, out 16, k 3, s 1, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Leaky ReLU

CONV (in 16, out 16, k 3, s 1, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Leaky ReLU

CONV (in 16, out 16, k 3, s 1, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Add

Leaky ReLU

CONV (in 16, out 32, k 3, s 2, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Leaky ReLU

CONV (in 32, out 32, k 3, s 1, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Add

Leaky ReLU

C
O
N
V

1
x
1

CONV (in 32, out 64, k 3, s 2, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Leaky ReLU

CONV (in 64, out 64, k 3, s 1, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Add

Leaky ReLU

C
O
N
V

1
x
1

Average Pooling (k 8, s 8)

Flatten

9

Leaky ReLU

CONV (in 32, out 32, k 3, s 1, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Leaky ReLU

CONV (in 32, out 32, k 3, s 1, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Add

8

Leaky ReLU

CONV (in 64, out 64, k 3, s 1, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Leaky ReLU

CONV (in 64, out 64, k 3, s 1, p 1)

Batch Norm (eps 1e-5, momentum 0.1)

Add

8

ResNet56

FC (in 256, out 200)FC (in 64, out 10)

FIGURE B.3. Architectures used in our experiments dealing with image classification. Left:
ResNet32, right: ResNet56.

Appendix B. Learning the Space of Deep Models 101

B.3 Image Classification: Experiment Details

Images Datasets. To test our general framework in image classification, we make use
of the CIFAR-10 [158] and Tiny-ImageNet [157] datasets. CIFAR-10 is composed of 60K
32× 32 colour images, 50K for training and 10K for test, categorized in 10 classes. For our
experiments we obtain a validation set by splitting the training set in 40K images for training
and 10K for validation, while we keep unchanged the test set. Tiny-ImageNet consists of
100K colour images with resolution 64× 64, categorized in 200 different classes. We split
the training set in 80K images for training and 20K images for validation and use the 10K
images of the provided validation set for testing. With both datasets, we follow a standard
data augmentation regime [234] and use a batch size of 128.

Nets Datasets. In the Single-Architecture setting, we train the instances in input to
NetSpace with the Adam optimizer [231] and constant learning rate set to 0.0001 for a number
of epochs that vary from 1 to 600 epochs, obtaining instances with weights and performances
varying smoothly across the training iterations. Then we use 100 instances for training,
16 for validation and 16 for test. In the Multi-Architecture setting, we aim at embedding
only instances with high performances. Accordingly, we found it more effective to train
models with the SGD optimizer for 300 epochs and setting momentum and weight decay
to 0.9 and 5e-4, respectively. We set the initial learning rate to 0.05 and decay it by 0.1 at
epochs 150, 180 and 210. As discussed in the main paper in Sec. 4, for the Multi-Architecture
setting we define a training dataset with 60 LeNetLike instances, 50 VanillaCNN instances, 60
ResNet8 instances and 100 ResNet32 instances, while for the experiment "Sampling of Unseen
Architectures" we use a training set composed of 40 LeNetLike instances and 80 ResNet32
instances. In both Multi-Architecture settings, the validation and test sets are composed of 16
instances of the architectures available during training. In Tab. B.1 we report the accuracy
achieved by the trained models on the CIFAR-10 and the Tiny-ImageNet test sets, alongside
with the number of parameters of each architecture.

Framework Training. To train NetSpace in the Single-Architecture and in the Multi-
Architecture settings, we use the Adam optimizer and a learning rate value of 0.0001, we
train for around 1K epochs, and then we use the model with the highest performance on
the validation set. The temperature term used in Lkd and in Lγ is set to 4, while the size
of the meta-batch of instances is set to 8 and to 2 in the Single-Architecture and in the
Multi-Architecture settings, respectively. The Latent Space Optimization experiments are
conducted by training NetSpace with the Adam optimizer and constant learning rate 0.0001,
stopping the training when the accuracy achieved by the optimized network doesn’t show
any additional improvement.

Computational Time and Resources. For our experiments we used several Nvidia RTX
3090 GPUs. Training the networks to populate the datasets requires approximately 600

Appendix B. Learning the Space of Deep Models 102

CIFAR-10
Net ClassId Acc. (Adam) Acc. (SGD) # Params

LeNetLike 0 - 70.87 % 62,006
VanillaCNN 1 - 79.77 % 68,818

ResNet8 2 82.79 % 87.13 % 78,042
ResNet32 3 - 92.70 % 466,906
ResNet56 - - 92.85 % 855,770

Tiny-ImageNet
Net ClassId Acc. (Adam) Acc. (SGD) # Params

LeNetLike 0 - 22.13 % 79,612
VanillaCNN 1 - 31.32 % 112,856

ResNet8 2 40.51 % 44.38 % 128,792
ResNet32 3 - 54.81 % 517,656
ResNet56 - - 56.93 % 906,520

TABLE B.1. Models used in our experiments. We show classification accuracies on the CIFAR-10
(top) and Tiny-ImageNet (bottom) test sets alongside the number of parameters for each architec-
ture. For the Single-Architecture setting (Adam optimizer), we report the accuracy achieved by
the best performing network between the trained ones, while for the Multi-Architecture setting
(SGD optimizer), we report the average accuracy of the networks that compose the training set.

GPU hours, while training NetSpace with Tiny-ImageNet requires around 84 GPU hours in
the Multi-Architecture setting and around 48 GPU hours in the Single-Architecture setting.
Training over CIFAR-10, instead, requires less time, with less then 48 and 36 GPU hours
respectively in the Multi-Architecture and in the Single-Architecture settings. Finally, the
Latent Space Optimization experiments require few GPU hours, but it’s possible to observe
good improvements over the initial performance already after few minutes of training.

B.4 3D SDF Regression: Experiment Details

3D Shape Dataset. To test NetSpace with networks dealing with 3D SDF regression, we
use the ShapeNet dataset [161]. In particular, we use ShapeNetCore, a subset of the full
ShapeNet dataset which covers 55 common object categories with about 51,300 unique 3D
models. We conduct our experiments on a small subset of ShapeNetCore, consisting of 1000
3D objects from the chair category.

MLP Dataset. The MLP dataset used in our experiments contains 1000 MLP. Each of
them is obtained by training a randomly initialized MLP to fit the SDF of a single chair,
whose ground-truth is computed with the code provided with [25]. The fitting procedure
consists in 10,000 gradient descent steps: at each step the MLP is queried on 20,000 random
3D coordinates and is asked to regress the SDF value for each of them. Then, the parameters
of the MLP are optimized by Adam [231], using as loss function the mean squared error

Appendix B. Learning the Space of Deep Models 103

between the predictions and the ground-truth. The learning rate is initially set to 0.0001 and
multiplied by 0.9 every 1000 steps.

Framework Training. NetSpace is trained on the 1000 MLPs with the protocol described
in Sec. 3 of the main paper, using Adam [231] with learning rate set to 0.0001. During training,
we evaluate the performance of NetSpace by comparing directly the predictions of the output
MLPs with those of the input MLPs: by querying input and output MLPs with the same
random coordinates, we can compute the percentage of predictions of the output MLPs that
are sufficiently close to the values predicted by the input MLPs. We monitor this metric and
stop the training when it reaches the value 0.8. The results reported in the main paper are
obtained by training for 4000 epochs.

Computational Time and Resources. We adopted Nvidia RTX 3090 GPUs also in the
experiments involving SDF regression. The creation of the MLP dataset requires approxima-
tively 20 GPU hours, while training NetSpace requires around 48 GPU hours.

B.5 Fusing Batch Norm and Convolutions

To be able to process architectures including batch norm layers, e.g., ResNet in our
experiments, without changing the PRep structure, we decided to fuse batch norm layers
with convolutional layers, which is always possible for a trained model since batch norm
becomes a frozen affine transformation at test time. Therefore, when processing ResNet
instances in our experiments, we first prepared a dataset of instances trained with batch norm
to achieve the best performances and then, by the process described below, we transformed
such instances into equivalent ones featuring only plain convolutional layers without batch
norm.

If we consider a feature map F with shape C× H ×W, at inference time its batch normal-
ized version F̂ is obtained by computing at each spatial location i, j:

F̂1,i,j

F̂2,i,j
...

F̂C,i,j

 = WBN ·


F1,i,j

F2,i,j
...

FC,i,j

+ bBN (B.1)

with

WBN =



γ1√
σ̂2

1+ε
γ2√
σ̂2

2+ε

. . .
γC√
σ̂2

C+ε

 (B.2)

Appendix B. Learning the Space of Deep Models 104

bBN =



β1 − γ1
µ̂1√
σ̂2

1+ε

β2 − γ2
µ̂2√
σ̂2

2+ε
...

βC − γC
µ̂C√
σ̂2

C+ε


(B.3)

where µ̂c, σ̂2
c , βc and γc (c = 1, 2, . . . , C) are respectively the mean, variance and batch

norm parameters computed during training for the channel c of the feature map. From this
formulation, we can see that batch norm can be implemented as a 1× 1 convolution and
therefore, when batch norm comes after another convolution as in ResNet, we can fuse these
two convolutions into a single one.

We can express a convolutional layer with kernel size k processing the Cprev × k × k
volume at the spatial location (i, j) of a feature map Fprev with Cprev channels to produce the
feature map F̃ with C output channels as an affine transfomation

f̃i,j = Wconv fi,j + bconv, (B.4)

where Wconv ∈ RC×(Cprev k2), bconv ∈ RC and fi,j represents the area of size Cprev× k× k around
cell (i, j) reshaped as a (Cprev k2)-dimensional vector.

If the batch norm defined by WBN ∈ RC×C and bBN ∈ RC presented in Eq. (B.2) and
Eq. (B.3) comes after such convolutional layer, the normalized values f̂i,j ∈ RC at cell (i, j) of
its output feature map can be computed as

f̂i,j = WBN f̃i,j + bBN

= WBN (Wconv fi,j + bconv) + bBN.
(B.5)

Hence, it is possible to replace every convolutional layer (with weights Wconv and bconv)
followed by a batch norm layer (whose weights can be shaped in WBN and bBN as described
above) with a single convolutional layer whose parameters W and b can be computed as:

W = WBN Wconv (B.6)

b = WBN bconv + bBN (B.7)

B.6 Visualizing Networks as Images

As in our framework network instances are represented as PRep tensors, they can be
visualized as images. Thus, in this section we highlight some properties of NetSpace by
visualizing input and output instances as images. In particular, following the ResNet8 Single-
Architecture (Image classification) and ResNet32 Multi-Architecture trainings, we take some

Appendix B. Learning the Space of Deep Models 105

instances from the test set and obtain their PReps along with those of the corresponding
instances predicted by NetSpace. Such representations are 2D matrices, that we reshaped to
obtain images of form factors amenable to clear visualization. Then, as shown in Fig. B.4 and
Fig. B.5, we represent parameters according to a standard colormap.

From these results we can highlight some interesting properties about our framework.
Firstly, we observe that PReps predicted by NetSpace are significantly different w.r.t. the
input ones: as we did not use any reconstruction loss in the learning objective, NetSpace
learnt to predict instances which behave like the input ones but that are different in terms of
parameter values. Secondly, we can see that PReps corresponding to different instances can
indeed be visualized as different images, which suggests that, perhaps, in future work these
images may be used as proxies for neural networks instances, so that training or fine-tuning
or distillation may be realized by learning to generate images.

Appendix B. Learning the Space of Deep Models 106

0.4

0.2

0.0

0.2

0.4

0.4

0.2

0.0

0.2

0.4

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

FIGURE B.4. Networks as images. Visualization of the PRep of a ResNet8 instance in the Single-
Architecture setting (Image classification): top, CIFAR-10, bottom, Tiny-ImageNet. The target
PRep on the left is given in input to NetSpace, that produces the predicted PRep on the right.

0.4

0.2

0.0

0.2

0.4

0.4

0.2

0.0

0.2

0.4

0.2

0.1

0.0

0.1

0.2

0.2

0.1

0.0

0.1

0.2

FIGURE B.5. Networks as images. Visualization of the PRep of a ResNet32 instance in the Multi-
Architecture setting: top, CIFAR-10, bottom, Tiny-ImageNet. The target PRep on the left is given
in input to NetSpace, that produces the predicted PRep on the right.

107

Appendix C

Deep Learning on Implicit Neural
Representations of Shapes

C.1 Obtaining INRs from 3D Discrete Representations

In this section, we detail the procedure used when fitting INRs to create the datasets
used in this work. Given a dataset of 3D shapes we train a set of the same number of
MLPs, fitting each one on a single 3D shape. Every MLP is thus trained to approximate a
continuous function that describes the represented shape, the nature of the function being
chosen according to the discrete representation in which the shape is provided. We adopt
MLPs with multiple hidden layers of the same dimension as done in [22, 34, 166, 167, 168],
interleaved by the sine activation function, as proposed in [22], to enhance the capability of
the MLPs to fit the high frequency details of the input signal.

In its general formulation, an INR can be used to fit a continuous function f : Rin → Rout.
To do so, a training set composed of N points xi ∈ Rin with i = 1, 2, ..., N, paired with values
yi = f (xi) ∈ Rout, is exploited to find the optimal parameters θ∗ for the MLP that implements
the INR, by solving the optimization problem:

θ∗ = arg min
θ

1
N

N

∑
i=1

`(yi, fθ(xi)), (C.1)

where fθ represents the function f approximated by the MLP with parameters θ and ` is a
loss function that computes the error between predicted and ground-truth values.

The output value fθ(xi) is computed as a series of linear transformations, each one
followed by a non-linear activation function (i.e., the sine function in our case), except
the last one. Considering a MLP m, the mapping between its layers L− 1 and L consists
in a linear transformation that maps the values hL−1

m ∈ RDL−1 from the layer L − 1 into
the values hL

m = φ(WL
mhL−1

m + bL
m) ∈ RDL of the layer L, with WL

m being the matrix of
weights ∈ RDL×DL−1 , bL

m being the biases vector ∈ RDL , and φ(·) the non-linearity [22]. If
we now consider M MLPs used to fit M different INRs and the mapping between the layers

Appendix C. Deep Learning on Implicit Neural Representations of Shapes 108

L − 1 and L, we can easily compute such mapping simultaneously for all the MLPs on
modern GPUs thanks to tensor programming frameworks. The mapping consists indeed
in a straightforward tensor contraction operation, where the values hL−1 ∈ RM×DL−1 of the
layer L − 1 are mapped to the values hL = WLhL−1 + bL ∈ RM×DL of the layer L, with
WL ∈ RM×DL×DL−1 and bL ∈ RM×DL . Extending this formulation to all the layers of the
chosen MLP architecture allows to fit multiple INRs in parallel.

In the following, we describe how we train MLPs to obtain INRs starting from point
clouds, triangle meshes and voxel grids.

Point clouds. The INR for a 3D shape represented by a point cloud P encodes the unsigned
distance function (ud f) of the point cloud P . Given a point p ∈ R3, the value ud f (p) is defined
as minq∈P ‖p− q‖2, i.e., the euclidean distance from p to the closest point q of the point
cloud. After preparing a training set of N points xi ∈ R3 with i = 1, 2, ..., N, coupled with
their ud f values yi ∈ R, the INR of the underlying 3D shape is obtained by training a MLP to
regress correctly the ud f values, with the learning objective:

Lmse =
1
N

N

∑
i=1

(yi − fθ(xi))
2, (C.2)

that consists in the mean squared error between ground-truth values yi and the predictions
by the MLP fθ(xi). An alternative objective is converting the ud f values yi into values ybce

i
continuously spanned in the range [0, 1], with 0 and 1 representing respectively the predefined
maximum distance from the surface and the surface level set (i.e., distance equal to zero).
Then, the MLP optimizes the binary cross entropy between such labels and the predicted
values, defined as:

Lbce = −
1
N

N

∑
i=1

ybce
i log(ŷi) + (1− ybce

i)log(1− ŷi), (C.3)

where ŷi = σ(fθ(xi)), with σ representing the sigmoid function. In our experiments, we
found empirically that this second learning objective leads to faster convergence and more
accurate INRs, and we decided to adopt this formulation when producing INRs from point
clouds.

Triangle meshes. Triangle meshes are usually adopted to represent closed surfaces. This
provides an additional information compared to the point clouds case, since the 3D space can
be divided into the portion contained inside and outside the closed surface. Thus, the INR of a
closed 3D surface represented by a triangle mesh can be obtained by fitting the signed distance
function (sd f) to the surface defined by the mesh. Given a point p ∈ R3, the value sd f (p) is
defined as the euclidean distance from p to the closest point of the surface, with positive sign
if p is outside the shape and negative sign otherwise. Similarly to the point clouds case, an

Appendix C. Deep Learning on Implicit Neural Representations of Shapes 109

INR for a 3D shape represented by a triangle mesh can be obtained by pursuing the learning
objective presented in Eq. (C.2), using a training set composed of 3D points paired with their
sd f values. However, it possible to adopt a learning objective based on the binary cross
entropy loss reported in Eq. (C.3) also for triangle meshes, and we empirically observed the
same benefits. Hence, we adopt it also when fitting INRs on meshes. In this case, the sd f
values yi are converted into values ybce

i ∈ [0, 1], with 0 and 1 representing respectively the
predefined maximum distance inside and outside the shape, i.e., 0.5 represents the surface
level set.

Voxel grids. A voxel grid is a 3D grid of V3 cubes marked with label 1, if the cube is
occupied, and label 0 otherwise. In order to fit an INR on voxels, it is possible to learn to
regress the occupancy function (occ) of the grid itself. The training set, in this case, contains
V3 3D points that corresponds to the centroids of the cubes that compose the voxel grid.
Being each of such points xi associated to a 0-1 label yi, it is straightforward to use a binary
classification objective to train the MLP that implement the desired INR. More specifically,
we adopt the learning objective defined as:

L f ocal = −
1
N

N

∑
i=1

α(1− ŷi)
γyilog(ŷi) + (1− α)ŷγ

i (1− yi)log(1− ŷi), (C.4)

where ŷi = σ(fθ(xi)), while α and γ are respectively the balancing parameter and the focusing
parameter of the focal loss proposed in [235]. We deploy a focal loss to alleviate the imbalance
between the number of occupied and empty voxels.

C.2 Reconstructing Discrete Representations from INRs

In this section we discuss how it is possible to sample 3D discrete representations from
INRs, which could be necessary to process the underlying shapes with algorithms that
need an explicit surface (e.g., Computational Fluid Dynamics [236, 237, 238]) or simply for
visualization purposes.

Point clouds from ud f . To sample a dense point cloud from an INR fitted on its ud f , we
use a slightly modified version of the algorithm proposed in [26]. The basic idea is to query
the ud f with points scattered all over the considered portion of the 3D space, projecting such
points onto the isosurface according to the predicted ud f values. In order to do that, let us
define fθ as the ud f approximated by the INR with parameters θ. Given a point p ∈ R3, it
can be projected onto the isosurface by computing its updated position ps as:

ps = p− fθ(p) ·
∇p fθ(p)∥∥∇p fθ(p)

∥∥ . (C.5)

Appendix C. Deep Learning on Implicit Neural Representations of Shapes 110

This can be intuitively understood by considering that the negative gradient of the ud f
indicates the direction of maximum decrease of the distance from the surface, pointing
towards the closest point on it. Eq. (C.5), thus, can be interpreted as moving p along the
direction of maximum decrease of the ud f of a quantity defined by the value of the ud f
itself in p, reaching the point ps on the surface. One must consider, though, that fθ is only
an approximation of the real ud f , which leads to two considerations. On a first note, the
gradient of fθ must be normalized (as done in Eq. (C.5)), while the gradient of the real ud f
has norm equal to 1 everywhere except on the surface. Secondly, the predicted ud f value can
be imprecise, implying that p can still be distant from the surface after moving it according
Eq. (C.5). To address the second issue, the 3D position of ps is refined repeating the update
described in Eq. (C.5) several times. Indeed, after each update, the point gets closer and closer
to the surface, where the values approximated by fθ are more accurate, implying that the last
updates should successfully place the point on the isosurface. Given an INR fitted on the ud f
of a point cloud, the overall algorithm to sample a dense point cloud from it is composed of
the following steps. Firstly, we prepare a set of points scattered uniformly in the considered
portion of the 3D space and we predict their ud f value with the given INR. Then we filter
out points whose predicted ud f is greater than a fixed threshold (0.05 in our experiments).
For the remaining points, we update their coordinates iteratively with Eq. (C.5) (we found 5
updates to be enough). Finally, we repeat the whole procedure until the reconstructed point
cloud counts the desired number of points.

Triangle meshes from sd f . An INR fitted on the sd f computed from a triangle mesh
allows to reconstruct the mesh by means of the Marching Cubes algorithm [211]. We refer the
reader to the original paper for a detailed description of the method, but we report here a
short presentation of the main steps, for the sake of completeness. Marching Cubes explores
the considered 3D space by querying the sd f with 8 locations at a time, that are the vertices of
an arbitrarily small imaginary cube. The whole procedure involves marching from one cube
to the other, until the whole desired portion of the 3D space has been covered. For each cube,
the algorithm determines the triangles needed to model the portion of the isosurface that
passes through it. Then, the triangles defined for all the cubes are fused together to obtain the
reconstructed surface. In order to determine how many triangles are needed for a single cube
and how to place them, for each pair of neighbouring vertices of the cube, their sd f values are
computed and one triangle vertex is placed between them if such values have opposite sign.
Considering that the number of possible combinations of the sd f signs at the cube vertices is
limited, it is possible to build a look-up table to retrieve the triangles configuration for the
cube starting from the sd f signs at its eight vertices, combined in a 8-bit integer and used as
key for the look-up table. After the triangles configuration for a cube has been retrieved, the
vertices of the triangles are placed on the edges connecting the cube vertices, computing their
exact position by linearly interpolating the two sd f values that are connected by each edge.

Appendix C. Deep Learning on Implicit Neural Representations of Shapes 111

INR embedding
(1024 values)

sh
ar

ed

LIN/BN/ReLU

LIN/BN/ReLU

LIN/BN/ReLU

sh
ar

ed

LIN/BN/ReLU

LIN/BN/ReLU

LIN/BN/ReLU

sh
ar

ed

LIN/BN/ReLU

LIN/BN/ReLU

LIN/BN/ReLU

sh
ar

ed

LIN/BN/ReLU

LIN/BN/ReLU

LIN/BN/ReLU

C
o

lu
m

n
-w

is
e

M
ax

 p
o

o
lin

g

FIGURE C.1. inr2vec encoder. With a series of linear transformations and a final column-wise max
pooling, the encoder maps the input weights matrix into a compact embedding. LIN/BN/ReLU
stands for a linear transformation, followed by batch normalization and ReLU activation function.

Voxel grids from occ. In order to reconstruct voxel grids from INRs, we adopt a straight-
forward procedure. Each INR has been trained to predict the probability of a certain voxel to
be occupied, when queried with the 3D coordinates of the voxel centroid. Thus, a first step to
reconstruct the fitted voxels consists in creating a grid of the desired resolution V. Then, the
INR is queried with the V3 centroids of the grid and predicts an occupancy probability for
each of them. Finally, we consider as occupied only voxels whose predicted probability is
greater than a fixed threshold, which we set to 0.4, as we found empirically that it allows for
a good trade-off between scattered and over-filled reconstructions.

C.3 inr2vec Encoder and Decoder Architectures

In this section, we describe the architecture of inr2vec encoder, along with the one of the
implicit decoder used to train it (see Sec. 5.3).

Encoder. inr2vec encoder, detailed in Fig. C.1, consists in a series of linear transformations,
that maps the input INR weights into features with higher dimensionality, before applying
max pooling to obtain a compact embedding. More specifically, the input weights are
rearranged in a matrix with shape L(H + 1)× H, where H is the number of nodes in the
hidden layers of the MLP that implements the input INR and L is the number of linear
transformations between such hidden layers (i.e., the MLP has L + 1 hidden layers). The
matrix is obtained by stacking L matrices (one for each linear transformation), each one
with shape (H + 1)× H, being composed of a matrix of weights with shape H × H and a
row of H biases. In our setting, each MLP has 4 hidden layers with 512 nodes: the final
matrix in input to inr2vec encoder has shape 3 · (512 + 1)× 512 = 1539× 512. In the current
implementation, the four linear mappings of the encoder transform each row of the input
matrix into features with size 512, 512, 1024 and 1024, obtaining, at each step, features matrices
with shape 1539× 512, 1539× 512, 1539× 1024 and 1539× 1024. Finally, the encoder applies
column-wise max pooling to compress the final matrix into a single compact embedding
composed of 1024 values. Between the linear mappings of the encoder, we adopt 1D batch
normalization and ReLU activation functions.

Appendix C. Deep Learning on Implicit Neural Representations of Shapes 112

IN
R

 e
m

b
ed

d
in

g

LI
N

EA
R

R
eL

U

LI
N

EA
R

R
eL

U

LI
N

EA
R

R
eL

U

LI
N

EA
R

R
eL

U

LI
N

EA
R

R
eL

U

LI
N

EA
R

+

positional
encoding

FIGURE C.2. inr2vec decoder. Our framework is trained with an implicit decoder, that maps an
INR embedding concatenated with a 3D query into the value of the implicit function at the query
coordinates.

Decoder. The implicit decoder that we adopt to train inr2vec is presented in Fig. C.2. We
designed it taking inspiration from [25], since we need a decoder capable of reproducing
the implicit function of input INR when conditioned on the embedding obtained by the
encoder. Thus, the decoder takes in input the concatenation of the INR embedding with the
coordinates of a given 3D query. We adopt the positional encoding proposed in [24] to embed
the input 3D coordinates into a higher dimensional space to enhance the capability of the
decoder to capture the high frequency variations of the input data. The query 3D coordinates
are mapped into 63 values that, concatenated with the 1024 values that compose the INR
embedding, result in a vector with 1087 values as input for inr2vec decoder. Internally, the
implicit decoder is composed of 4 hidden layers with 512 nodes and of a skip connection that
projects the input 1087 values into a vector of 512 elements, that are summed to the features
of the second hidden layer before being fed to the transformation that bridges the second
and the third hidden layers. Finally, the features of the last hidden layer are mapped to a
single output, which is compared to the ground-truth associated with the input 3D query to
compute the loss. Each linear transformation of the decoder, except the output one, is paired
with the ReLU activation function.

C.4 Motivation Behind inr2vec Encoder Design

We designed inr2vec encoder with the goal of obtaining a good scalability in terms of
memory occupation. Indeed, a naive solution to process the weights of an input INR would
consist in an MLP encoder mapping the flattened vector of weights to the embedding of
the desired dimension. However, such approach would require a huge amount of memory
resources, since an input INR of 4 layers of 512 neurons would have approximately 800K

Appendix C. Deep Learning on Implicit Neural Representations of Shapes 113

INR hidden dim. INR #layers INR #params #params inr2vec encoder #params MLP encoder
512 4 ∼800K ∼3M ∼800M
512 8 ∼2M ∼3M ∼2B
512 12 ∼3M ∼3M ∼3B
512 16 ∼4M ∼3M ∼4B

1024 4 ∼3M ∼3.5M ∼3B
1024 8 ∼7M ∼3.5M ∼7.5B
1024 12 ∼11M ∼3.5M ∼12B
1024 16 ∼15M ∼3.5M ∼16B

TABLE C.1. Number of parameters of inr2vec encoder. Comparison between the number of
parameters of inr2vec encoder and the number of parameters of a generic MLP encoder.

parameters. Thus, an MLP encoder going from 800K parameters to an embedding space of
size 1024 would already have a totality of∼800M parameters. We report in Tab. C.1 a detailed
analysis of the parameters of our encoder w.r.t. the ones of an MLP encoder by varying the
input INR dimension. As we can notice the MLP encoder does not scale well, making this
kind of approach very expensive in practice, while inr2vec encoder scales gracefully to bigger
input INRs.

C.5 Experimental Settings

We report here a detailed description of the settings adopted in our experiments.
INRs fitting. In every experiment, we fit INRs on 3D discrete representations using

MLPs having 4 hidden layers with 512 nodes each. We implement MLPs using sine as
a periodic activation function, as proposed in [22]. The procedure adopted to fit a single
MLP consists in querying it with 3D points sampled properly in the space surrounding the
underlying shape. The MLP predicts a value for each query and it’s trained by computing a
loss function between the predicted value and the ground-truth value of the fitted implicit
function (i.e., ud f for point clouds, sd f for meshes and occ for voxels). The set of training
queries is prepared according to different strategies, depending on the nature of the discrete
representation being fitted. For voxel grids, the set of possible queries consists of the 3D
coordinates of all the centroids of the grid. For point clouds and meshes, instead, queries
are sampled with different densities in the volume containing the fitted shape: indeed, for
each shape, we prepare 500K queries by taking 250K points close to the surface, 200K points
at a medium-far distance for the surface, 25K far from the surface and other 25K scattered
uniformly in the volume. The queries coordinates are computed by adding gaussian noise
to the points of the fitted point cloud or to points sampled uniformly from the fitted mesh
surface. More precisely, close queries are computed with noise sampled from the normal
distribution N (0, 0.001), medium-far queries with noise from N (0, 0.01), far queries with
noise from N (0, 0.1). The uniformly scattered queries are just computed by sampling each
of their coordinates from the uniform distribution U (−1, 1), being the considered shapes

Appendix C. Deep Learning on Implicit Neural Representations of Shapes 114

normalized in such volume. As for the ground-truth values, for voxels they consist simply
in the occupied/empty label of the voxel associated to the query. For point clouds, for each
query we compute its ud f value by building a KDTree on the fitted point cloud and looking
for the closest point to the considered query (we used the Pytorch3D [131] implementation of
the KDTree algorithm). For meshes, finally, we compute the sd f of queries with the functions
provided in the Open3D library [239]1. For each of the considered modalities, at each step
of the fitting procedure, we randomly sample 10K pairs of queries/ground-truth values
from the precomputed ones, performing a total of 500 steps for each shape. Thanks to the
procedure detailed in Appendix C.1, we are able to fit up to 16 multiple MLPs in parallel,
using Adam optimizer [231] with learning rate set to 1e-4. On a final note, we fixed the
weights initialization of the MLPs to be always the same, as we observed empirically this to
be key to convergence of inr2vec. This choice poses no limitation to the practical use of our
framework and has also been adopted in recent works [33, 34].

inr2vec training. According to what is described in Sec. 5.3, during training our frame-
work takes in input the weights of a given INR and is asked to reproduce the implicit function
fitted by the INR on a set of predefined 3D queries. Such queries are prepared with the
same strategies described in the previous paragraph and, similarly to what is done while
fitting INRs, at each step the training loss for inr2vec is computed on 10K queries randomly
sampled from a set of precomputed ones. In every experiment, we train inr2vec with AdamW
optimizer [240], learning rate 1e-4 and weight decay 1e-2 for 300 epochs, one epoch corre-
sponding to processing all the INRs that compose the considered dataset, processing at each
training step a mini-batch of 16 INRs. During training, we select the best model by evaluating
its reconstruction capability on a validation set of INRs. When training on INRs obtained
from point clouds, we compare the ground-truth set of points with the ones reconstructed
by inr2vec decoder. For voxels, we compare the input and the output grid by comparing
the point clouds composed by the centroids corresponding to occupied voxels. As for what
concerns meshes, we compare the clouds containing input and output vertices. In all cases,
the reconstruction quality is evaluated by computing the Chamfer Distance between ground-
truth and output point clouds, as defined in [214]. See Appendix C.2 of this document for
details on how to sample discrete 3D representations from the implicit functions fitted by
INRs and that inr2vec is trained to reproduce.

Shape classification. The classifier that we deploy on inr2vec embeddings is composed of
three linear transformations, mapping sequentially the input embedding with 1024 features
to vectors of size 512, 256 and, finally, to a vector with a number of values corresponding to
the number of classes of the considered dataset. The final vector is then transformed to a
probability distribution with the softmax function. We use 1D batch normalization and the
ReLU activation function between the classifier linear transformations. In all experiments,

1http://www.open3d.org/docs/latest/tutorial/geometry/distance_queries.html

http://www.open3d.org/docs/latest/tutorial/geometry/distance_queries.html

Appendix C. Deep Learning on Implicit Neural Representations of Shapes 115

LI
N

EA
R

R
eL

U

LI
N

EA
R

R
eL

U

LI
N

EA
R

R
eL

U

LI
N

EA
R

R
eL

U

LI
N

EA
R

R
eL

U

LI
N

EA
R

PA
R

T
SE

G
M

EN
TA

TI
O

N
 L

O
G

IT
S

+

positional
encoding

IN
R

 e
m

b
ed

d
in

g

cl
as

s
o

n
e-

h
o

t
en

co
d

in
g

FIGURE C.3. Part segmentation decoder. We train a decoder to predict the part segmentation
label of a given 3D query when conditioned on the embedding of the input INR and on the
one-hot encoding of the INR class.

the classifier is trained for 150 epochs, with AdamW optimizer [240] and weight decay 1e-2.
The learning rate is scheduled according to the OneCycle strategy [241], with maximum
learning rate set to 1e-4. At each training step, the classifier processes a mini-batch counting
256 embeddings. During training, we select the best model by computing the classification
accuracy on a validation set of embeddings. The best model is used after training to compute
the classification accuracy on the test set, obtaining the numbers reported in the tables.

Point cloud part segmentation. In order to tackle point cloud part segmentation starting
from inr2vec embeddings, we adopt a decoder similar to the one that we use for reconstruction
during inr2vec training. The part segmentation decoder, depicted in Fig. C.3, is fed with the
positional encoding of a 3D query together with the embedding of an input INR and predicts
a K-dimensional vector of segmentation logits for the given query, with K representing the
total number of parts of all the C available categories. Moreover, as done in previous work
[16, 162, 122], we concatenate an additional C-dimensional vector to the input of the part
segmentation decoder, conditioning the output of our decoder with the one-hot encoding of
the input INR class. We conduct our experiments on the ShapeNet Part Segmentation dataset
[216], that presents 16 categories labeled with two to five parts, for a total of 50 parts (i.e., C=16
and K=50). According to a standard protocol [16, 162, 122], during training we compute the
cross-entropy loss function on all the K logits predicted by our decoder, while, at test time, the
final prediction is obtained considering only the subset of parts belonging to the specific class
of the input INR. The part segmentation decoder is trained with the original point clouds
available in the ShapeNet Part Segmentation dataset, where part labels are provided for
each point of each cloud. At test time, though, we test both our decoder and the considered

Appendix C. Deep Learning on Implicit Neural Representations of Shapes 116

competitors on the point clouds reconstructed from the input INRs, since we want to simulate
the scenario of 3D shapes being available exclusively in the form of INRs. Thus, the protocol
to obtain a segmented point cloud starting from an input INR consists in reconstructing
the cloud first (see Appendix C.2) and then in assigning a part label to each point of the
reconstructed shape with our part segmentation decoder. When ground-truth labels are
required to compute quantitative results, we obtain them by comparing the reconstructed
cloud with the original one and assigning to each point of the reconstructed shape the part
label of the closest point in the original cloud. Our part segmentation decoder is trained for
250 epochs with AdamW optimizer, OneCycle learning rate scheduling with maximum value
set to 1e-4, weight decay equal to 1e-2 and mini-batches composed of 256 embeddings, each
one paired with 3D queries from the original point clouds during training and from the ones
reconstructed from the input INRs at test time. During training, we compute the class mIoU
on the validation split and save the best model in order to compute the final metrics on the
test set.

Shape generation. We perform unconditional shape generation by training Latent-GAN
[217] to generate embeddings indistinguishable from the ones produced by inr2vec on a
given dataset. This approach allows us to train a shape generation framework with the
very same architecture to generate embeddings representing INRs with different underlying
implicit functions, such as ud f for the point clouds of ShapeNet10 and sd f for the models
of cars provided by [27]. We conducted our experiments using the official implementation2,
setting all the hyperparameters to default. The generator network is implemented as a fully
connected network with two layers and ReLU non linearity, that map an input noise vector
with 128 values sampled from the normal distribution N (0, 0.2) to an intermediate hidden
vector of the same dimension and then to the predicted embedding with 1024 values (we
removed the final ReLU present in the original implementation). The discriminator is also a
fully connected network, with three layers and ReLU non linearity. The first layer maps the
embedding produced by the generator to a hidden vector with 256 values, which are then
transformed by the second layer into a hidden vector with 512 values, that are finally used
by the third layer, together with the sigmoid function, to predict the final score. According
to the original implementation, we trained one separate Latent-GAN for each class of the
considered datasets, using the Wasserstein objective with gradient penalty proposed in [242]
and training each model for 2000 epochs.

Learning a mapping between inr2vec embedding spaces. The transfer function between
inr2vec embedding spaces is implemented as a simple fully connected network, with 8 linear
layers interleaved by 1D batch norm and ReLU activation functions. All the hidden features
produced by the linear transformations present the same dimension of the input embedding,
i.e., 1024 values. The final linear layer predicts the output embedding, which is compared

2https://github.com/optas/latent_3d_points

https://github.com/optas/latent_3d_points

Appendix C. Deep Learning on Implicit Neural Representations of Shapes 117

with the target one with a standard L2 loss. We train the transfer network with AdamW
optimizer, constant learning rate and weight decay both set to 1e-4, stopping the training upon
convergence, which we measure by comparing the shapes reconstructed by the predicted
embeddings with the ground-truth ones on a predetermined validation split. Such validation
metrics are used also to save the best model during training, which is finally evaluated on
the test set.

C.6 Implementation, Hardware and Timings

We implemented our framework with the PyTorch library, performing all the experiments
on a single NVIDIA 3090 RTX GPU. We created an augmented version of each considered
dataset, in order to obtain roughly ∼100K INRs, whose fitting requires around 4 days in the
current implementation. Training inr2vec requires another 48 hours, while all the networks
adopted to perform the downstream tasks on inr2vec embeddings can be trained in few
hours.

C.7 Testing on Original Discrete 3D Representations

In the experiments “Shape classification” and “Point cloud part segmentation”, we evalu-
ated the competitors on the 3D discrete representations reconstructed from the INRs fitted
on the test sets of the considered datasets, since these would be the only data available at
test time in a scenario where INRs are used to store and communicate 3D data. For com-
pleteness, we report here the scores achieved by the baselines when tested on the original
discrete representations, without reconstructing them from the input INRs. Such results
are presented in Tab. C.2 for shape classification and in Tab. C.3 for part segmentation. We
report in the tables also the results obtained with our framework: they are the same reported
in Tab. 5.2 for what concerns shape classification, since our classifier processes exclusively
inr2vec embeddings, while they are different for part segmentation, as we use as query points
for our segmentation decoder those from the discrete point clouds reconstructed from input
INRs in Tab. 5.3 while we use those from the original point clouds in the experiment reported
here, as done for the competitors. The results reported in the tables show limited differences,
either positive or negative, with the ones presented in Sec. 5.5, mostly within the range of
variations due to the inherent stochasticity of training. There are few larger differences, like
DGCNN on ModelNet40 (+1.7 when tested on the original discrete representations) or on
ScanNet (-1.1 when tested on the original discrete representations), whose difference in sign
however suggests neither of the two settings is clearly superior to the other.

Appendix C. Deep Learning on Implicit Neural Representations of Shapes 118

Point Cloud Mesh Voxels
Method ModelNet40 ShapeNet10 ScanNet10 Manifold40 ShapeNet10

PointNet [16] 88.8 94.7 72.8 – –
PointNet++ [162] 91.0 95.2 76.3 – –

DGCNN [122] 91.6 94.0 75.1 – –
MeshWalker [202] – – – 90.6 –
Conv3DNet [164] – – – – 92.5

inr2vec 87.0 93.3 72.1 86.3 93.0

TABLE C.2. Shape classification results. We report here shape classification results when testing
on the original discrete representations of the test sets instead of reconstructing them from the
input INRs.

Method in
st

an
ce

m
Io

U

cl
as

s
m

Io
U

ai
rp

la
ne

ba
g

ca
p

ca
r

ch
ai

r

ea
rp

ho
ne

gu
it

ar

kn
if

e

la
m

p

la
pt

op

m
ot

or

m
ug

pi
st

ol

ro
ck

et

sk
at

eb
oa

rd

ta
bl

e

PointNet [16] 83.0 78.8 80.5 77.9 78.3 74.4 89.0 68.3 90.1 82.2 80.7 94.7 63.1 91.7 79.3 58.2 72.7 81.0
PointNet++ [162] 84.4 82.8 81.7 86.5 85.2 78.6 90.2 77.9 91.2 84.4 83.2 95.4 72.0 94.6 83.3 64.2 75.6 80.9

DGCNN [122] 84.3 81.4 81.6 82.2 80.9 75.7 90.7 80.9 90.2 86.9 82.6 94.8 64.8 92.8 81.0 60.6 74.7 81.8
inr2vec 80.5 71.1 79.5 72.9 72.3 70.7 87.4 64.1 89.4 81.6 76.5 94.5 59.3 92.4 78.4 53.5 67.5 77.3

TABLE C.3. Part segmentation results. In this table we present part segmentation results when
testing on the original discrete representations of the test sets instead of reconstructing them from
the input INRs. We report the IoU for each class, the mean IoU over all the classes (class mIoU)
and the mean IoU over all the instances (instance mIoU).

C.8 Alternative Architecture for inr2vec

As reported in Sec. 5.3, inr2vec encoder takes in input the weights of an INR reshaped in
a suitable way, discarding the parameters of the first and of the last layers. In this section
we consider the possibility of processing all the weights of the input INR, including the
input/output ones. To this end, one must properly arrange the input/output parameters
since they feature different dimensionality from the ones of the hidden layers and cannot be
seamlessly stacked together with them. More specifically, the first layer of an INR consists
in a matrix of weights Win ∈ RH×D and in a vector of biases bin ∈ RH×1, with H being the
dimension of the hidden features of the INR and D being the dimension of the inputs (i.e., 3
in our case of 3D coordinates). The output layer, instead, is responsible of transforming the
final vector of hidden features to the predicted output, which is always a single value in the
cases considered in our experiments (i.e., ud f , sd f and occ). Thus, the last layer presents a
matrix of weights Wout ∈ R1×H and single bias bout. In order to include the input/output
parameters in the matrix P presented in input to inr2vec encoder (see Sec. 5.3), Win needs to
be transposed, obtaining a matrix with shape 3× H, bin is transposed as done also for the
biases of all the other layers, Wout doesn’t need any manipulation and we decided to repeat
the single-valued bout H times. In this section, we compare the formulation presented in
Sec. 5.3 (reported as “hidden layers”) with the one proposed here (reported as “all layers”),
looking at the reconstruction capabilities of the two variants of our framework when trained

Appendix C. Deep Learning on Implicit Neural Representations of Shapes 119

Architecture F-Score ↑ CD (mm) ↓
hidden layers 57.41 3.1

all layers 56.76 3.1

TABLE C.4. Quantitative comparison between alternative inr2vec architectures. We compare
the reconstruction capability of inr2vec when processing only the weights of the hidden layers
(“hidden layers”) or all the weights (“all layers”) of the input INRs.

inr2vec
«hidden layers»

OUTPUT

INPUT
INR

inr2vec
«all layers»
OUTPUT

FIGURE C.4. Qualitative comparison between alternative inr2vec architectures. We compare
the reconstruction capability of inr2vec when processing only the weights of the hidden layers
(“hidden layers”) or all the weights (“all layers”) of the input INRs.

on ModelNet40. In Tab. C.4, we report both the F-score [220] and the Chamfer Distance (CD)
[214] between the clouds used to obtain the INRs presented in input to inr2vec and the ones
reconstructed from inr2vec embeddings, while in Fig. C.4 we show the same comparison
from a qualitative perspective. Results show that processing all the INR weights doesn’t
produce any significant difference w.r.t. ingesting only the weights of the hidden layers.
However, the latter variant provides a slight advantage in terms of F-score, simplicity and
processing time, motivating our choice to adopt it as formulation for inr2vec.

C.9 t-SNE Visualization of inr2vec Latent Space

We provide in Fig. C.5 the t-SNE visualization of the embeddings produced by inr2vec
when presented with the test set INRs of three different datasets. Fig. C.5a shows this
visualization for INRs representing the point clouds from ModelNet40, Fig. C.5b for INRs

Appendix C. Deep Learning on Implicit Neural Representations of Shapes 120

(A) ModelNet40 (points) (B) Manifold40 (meshes) (C) ShapeNet10 (voxels)

FIGURE C.5. t-SNE visualizations of inr2vec latent spaces. We plot the t-SNE components of the
embeddings produced by inr2vec on the test sets of three datasets, ModelNet40 (left), Manifold40
(center) and Shapenet10 (right). Colors represent the different classes of the datasets.

representing meshes from Manifold 40, and Fig. C.5c for INRs obtained from the voxelized
shapes in ShapeNet10.

The supervision signal adopted during the training of our framework does not entail
any kind of constraints w.r.t. the organization of the learned latent space. Indeed, this was
not necessary for our ultimate goal – i.e., performing downstream tasks on the produced
embeddings. However, it is interesting to observe from the t-SNE plots that inr2vec favors
spontaneously a semantic arrangement of the embeddings in the learned latent space, with
INRs representing objects of the same category being mapped into close positions – as shown
by the colors representing the different classes of the considered datasets.

C.10 INR Classification Time: Extended Analysis

We report here the extended analysis of the inference times reported in Fig. 5.9, where we
present the classification inference time needed to process ud f INRs by standard point cloud
baselines – PointNet [16], PointNet++ [162] and DGCNN [122] – and by inr2vec encoder
paired with the fully-connected network that we adopt to classify the embeddings (see
Sec. 5.5).

The scenario that we had in mind while designing inr2vec is the one where INRs are the
only medium to represent 3D shapes, with discrete point clouds not being available. Thus,
in Fig. 5.9 for PointNet, PointNet++ and DGCNN we report the inference time including
the time spent to reconstruct the discrete cloud from the input INR. In Fig. C.6 and Tab. C.5,
for the sake of completeness, we report also the baselines inference times assuming the
availability of discrete point clouds, stressing however that this is unlikely if INRs become a
standalone format to represent 3D shapes.

Appendix C. Deep Learning on Implicit Neural Representations of Shapes 121

2048 16K 32K 64K

10 2

100

In
fe

re
nc

e
tim

e
(s

ec
)

-lo
g

sc
al

e-

w/out pcd reconstruction

2048 16K 32K 64K

10 2

100

w/ pcd reconstruction

PointNet
PointNet++
DGCNN
inr2vec

Number of points

FIGURE C.6. Time required to classify INRs encoding udf. We plot the inference time of
standard baselines and of our method, both considering the case in which discrete point clouds
are available (left) and the one where point clouds must be reconstructed from the input INRs
(right).

Inference Time (seconds)
Method 2048 pts 16K pts 32K pts 64K pts
PointNet 0.001 0.002 0.003 0.007
PointNet* 0.171 1.315 2.609 5.230

PointNet++ 0.013 0.026 0.034 0.036
PointNet++* 0.185 1.293 2.672 5.287

DGCNN 0.158 1.285 4.788 19.26
DGCNN* 0.325 2.612 7.426 24.436

inr2vec 0.001 0.001 0.001 0.001

TABLE C.5. Time required to classify INRs encoding udf. All the times are computed on a gpu
NVidia RTX 2080 Ti. * indicates that the time to reconstruct the discrete point cloud from the INR
is included.

The numbers plotted in Fig. C.6 and reported in Tab. C.5 show clearly that our framework
presents a big advantage w.r.t. the competitors. Indeed, by processing directly INRs – where
the resolution of the underlying signal is theoretically infinite – inr2vec can classify INRs
representing point clouds with different number of points with a constant inference time of
0.001 seconds.

The considered baselines, instead, are negatively affected by the increasing resolution
of the input point clouds. While the inference time of PointNet and PointNet++ is still
affordable even when processing 64K points, DGCNN gets drastically slow already at 16K
points. Furthermore, if point clouds need to be reconstructed from the input INRs, the
resulting inference time become prohibitive for all the three baselines.

122

Bibliography

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. “An image is worth 16x16 words: Transformers for image recognition
at scale”. In: arXiv preprint arXiv:2010.11929 (2020).

[11] J. Redmon and A. Farhadi. “YOLOv3: An Incremental Improvement”. In: arXiv
Preprint. 2018.

[12] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig
Adam. “Encoder-decoder with atrous separable convolution for semantic image
segmentation”. In: Proceedings of the European conference on computer vision (ECCV).
2018, pp. 801–818.

[13] Sen Wang, Ronald Clark, Hongkai Wen, and Niki Trigoni. “Deepvo: Towards end-to-
end visual odometry with deep recurrent convolutional neural networks”. In: 2017
IEEE international conference on robotics and automation (ICRA). IEEE. 2017, pp. 2043–
2050.

[14] Jakob Engel, Vladlen Koltun, and Daniel Cremers. “Direct sparse odometry”. In: IEEE
transactions on pattern analysis and machine intelligence 40.3 (2017), pp. 611–625.

[15] Zhiyuan Zhang, Yuchao Dai, and Jiadai Sun. “Deep learning based point cloud regis-
tration: an overview”. In: Virtual Reality & Intelligent Hardware 2.3 (2020). 3D Visual
Processing and Reconstruction Special Issue, pp. 222–246. ISSN: 2096-5796. DOI: https:
//doi.org/10.1016/j.vrih.2020.05.002. URL: https://www.sciencedirect.com/
science/article/pii/S2096579620300383.

[16] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. “Pointnet: Deep learning on
point sets for 3d classification and segmentation”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2017, pp. 652–660.

[17] Caner Hazirbas, Lingni Ma, Csaba Domokos, and Daniel Cremers. “Fusenet: Incorpo-
rating depth into semantic segmentation via fusion-based cnn architecture”. In: Asian
conference on computer vision. Springer. 2016, pp. 213–228.

[18] Houssam Halmaoui and Abdelkrim Haqiq. “Computer graphics rendering survey:
From rasterization and ray tracing to deep learning”. In: International Conference on
Innovations in Bio-Inspired Computing and Applications. Springer. 2021, pp. 537–548.

https://doi.org/https://doi.org/10.1016/j.vrih.2020.05.002
https://doi.org/https://doi.org/10.1016/j.vrih.2020.05.002
https://www.sciencedirect.com/science/article/pii/S2096579620300383
https://www.sciencedirect.com/science/article/pii/S2096579620300383

Bibliography 123

[19] Kilian Kleeberger, Richard Bormann, Werner Kraus, and Marco F Huber. “A survey on
learning-based robotic grasping”. In: Current Robotics Reports 1.4 (2020), pp. 239–249.

[20] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan,
Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. “Neural
Fields in Visual Computing and Beyond”. In: arXiv preprint arXiv:2111.11426 (2021).

[21] David Gargan and Francis Neelamkavil. “Approximating reflectance functions using
neural networks”. In: Eurographics Workshop on Rendering Techniques. Springer. 1998,
pp. 23–34.

[22] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon
Wetzstein. “Implicit neural representations with periodic activation functions”. In:
Advances in Neural Information Processing Systems 33 (2020), pp. 7462–7473.

[23] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. “Neural scene flow fields
for space-time view synthesis of dynamic scenes”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2021, pp. 6498–6508.

[24] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. “Nerf: Representing scenes as neural radiance fields for view
synthesis”. In: European conference on computer vision. Springer. 2020, pp. 405–421.

[25] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. “Deepsdf: Learning continuous signed distance functions for shape repre-
sentation”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2019, pp. 165–174.

[26] Julian Chibane, Gerard Pons-Moll, et al. “Neural unsigned distance fields for implicit
function learning”. In: Advances in Neural Information Processing Systems 33 (2020),
pp. 21638–21652.

[27] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and An-
dreas Geiger. “Occupancy networks: Learning 3d reconstruction in function space”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2019, pp. 4460–4470.

[28] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek
Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. “Neural geomet-
ric level of detail: Real-time rendering with implicit 3D shapes”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, pp. 11358–11367.

[29] Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro,
and Gordon Wetzstein. “ACORN: Adaptive coordinate networks for neural scene
representation”. In: ACM Trans. Graph. (SIGGRAPH) 40.4 (2021).

Bibliography 124

[30] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Ragha-
van, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. “Fourier
features let networks learn high frequency functions in low dimensional domains”. In:
Advances in Neural Information Processing Systems 33 (2020), pp. 7537–7547.

[31] Hsueh-Ti Derek Liu, Francis Williams, Alec Jacobson, Sanja Fidler, and Or Litany.
“Learning Smooth Neural Functions via Lipschitz Regularization”. In: arXiv preprint
arXiv:2202.08345 (2022).

[32] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. “Instant Neural
Graphics Primitives with a Multiresolution Hash Encoding”. In: ACM Trans. Graph.
41.4 (July 2022), 102:1–102:15. DOI: 10.1145/3528223.3530127. URL: https://doi.
org/10.1145/3528223.3530127.

[33] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. “Implicit
Geometric Regularization for Learning Shapes”. In: International Conference on Machine
Learning. PMLR. 2020, pp. 3789–3799.

[34] Vincent Sitzmann, Eric Chan, Richard Tucker, Noah Snavely, and Gordon Wetzstein.
“Metasdf: Meta-learning signed distance functions”. In: Advances in Neural Information
Processing Systems 33 (2020), pp. 10136–10147.

[35] T. Lewiner, H. Lopes, A. W. Vieira, and G. Tavares. “Efficient Implementation of
Marching Cubes’ Cases with Topological Guarantees”. In: Journal of Graphics Tools.
2003.

[36] E. Remelli, A. Lukoianov, S. Richter, B. Guillard, T. Bagautdinov, P. Baque, and P. Fua.
“Meshsdf: Differentiable Iso-Surface Extraction”. In: Advances in Neural Information
Processing Systems. 2020.

[37] M. Atzmon, N. Haim, L. Yariv, O. Israelov, H. Maron, and Y. Lipman. “Controlling
Neural Level Sets”. In: Advances in Neural Information Processing Systems. 2019.

[38] I. Mehta, M. Chandraker, and R. Ramamoorthi. “A Level Set Theory for Neural
Implicit Evolution under Explicit Flows”. In: 2022.

[39] F. Zhao, W. Wang, S. Liao, and L. Shao. “Learning Anchored Unsigned Distance Func-
tions with Gradient Direction Alignment for Single-View Garment Reconstruction”.
In: Conference on Computer Vision and Pattern Recognition. 2021.

[40] R. Venkatesh, T. Karmali, S. Sharma, A. Ghosh, R. V. Babu, L. A. Jeni, and M. Singh.
“Deep Implicit Surface Point Prediction Networks”. In: International Conference on
Computer Vision. 2021.

[41] M. Kazhdan and H. Hoppe. “Screened Poisson Surface Reconstruction”. In: ACM
Transactions on Graphics (2013).

https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127

Bibliography 125

[42] B. Guillard, F. Stella, and P. Fua. “Meshudf: Fast and Differentiable Meshing of Un-
signed Distance Field Networks”. In: European Conference on Computer Vision. 2022.

[43] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas
Geiger. “Convolutional occupancy networks”. In: European Conference on Computer
Vision. Springer. 2020, pp. 523–540.

[44] Matan Atzmon and Yaron Lipman. “Sal: Sign agnostic learning of shapes from raw
data”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. 2020, pp. 2565–2574.

[45] M. Atzmon and Y. Lipman. “SALD: Sign Agnostic Learning with Derivatives”. In:
International Conference on Learning Representations. 2020.

[46] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. “Stereo
magnification: learning view synthesis using multiplane images”. In: ACM Trans.
Graph. (2018).

[47] John Flynn, Michael Broxton, Paul E. Debevec, Matthew DuVall, Graham Fyffe, Ryan
S. Overbeck, Noah Snavely, and Richard Tucker. “DeepView: View Synthesis With
Learned Gradient Descent”. In: CVPR. 2019.

[48] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz Cayon, Nima Khademi Kalantari,
Ravi Ramamoorthi, Ren Ng, and Abhishek Kar. “Local light field fusion: practical
view synthesis with prescriptive sampling guidelines”. In: ACM Trans. Graph. (2019).

[49] Pratul P. Srinivasan, Richard Tucker, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng,
and Noah Snavely. “Pushing the Boundaries of View Extrapolation With Multiplane
Images”. In: CVPR. 2019.

[50] Zhengqi Li, Wenqi Xian, Abe Davis, and Noah Snavely. “Crowdsampling the Plenoptic
Function”. In: ECCV. 2020.

[51] Richard Tucker and Noah Snavely. “Single-View View Synthesis With Multiplane
Images”. In: CVPR. 2020.

[52] Stephen Lombardi, Tomas Simon, Jason M. Saragih, Gabriel Schwartz, Andreas M.
Lehrmann, and Yaser Sheikh. “Neural volumes: learning dynamic renderable volumes
from images”. In: ACM Trans. Graph. (2019).

[53] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein,
and Michael Zollhöfer. “DeepVoxels: Learning Persistent 3D Feature Embeddings”.
In: CVPR. 2019.

[54] Tong He, John P. Collomosse, Hailin Jin, and Stefano Soatto. “DeepVoxels++: Enhanc-
ing the Fidelity of Novel View Synthesis from 3D Voxel Embeddings”. In: ACCV.
Ed. by Hiroshi Ishikawa, Cheng-Lin Liu, Tomás Pajdla, and Jianbo Shi. 2020.

Bibliography 126

[55] Nelson L. Max. “Optical Models for Direct Volume Rendering”. In: IEEE Trans. Vis.
Comput. Graph. (1995).

[56] Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang, Matthew Tancik, Ben Mildenhall,
and Jonathan T. Barron. “NeRV: Neural Reflectance and Visibility Fields for Relighting
and View Synthesis”. In: CVPR. 2021.

[57] Xiuming Zhang, Pratul P. Srinivasan, Boyang Deng, Paul E. Debevec, William T.
Freeman, and Jonathan T. Barron. “NeRFactor: Neural Factorization of Shape and
Reflectance Under an Unknown Illumination”. In: arxiv CS.CV 2106.01970 (2021).

[58] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T. Barron, Ce Liu, and Hendrik
P. A. Lensch. “NeRD: Neural Reflectance Decomposition from Image Collections”. In:
ICCV. 2021.

[59] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien Bouaziz, Dan B. Goldman,
Steven M. Seitz, and Ricardo Martin-Brualla. “Deformable Neural Radiance Fields”.
In: ICCV. 2021.

[60] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer, Christoph
Lassner, and Christian Theobalt. “Non-Rigid Neural Radiance Fields: Reconstruction
and Novel View Synthesis of a Deforming Scene from Monocular Video”. In: ICCV.
2021.

[61] Guy Gafni, Justus Thies, Michael Zollhöfer, and Matthias Nießner. “Dynamic Neural
Radiance Fields for Monocular 4D Facial Avatar Reconstruction”. In: CVPR. 2021.

[62] Atsuhiro Noguchi, Xiao Sun, Stephen Lin, and Tatsuya Harada. “Neural Articulated
Radiance Field”. In: ICCV. 2021.

[63] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T. Barron, Sofien Bouaziz,
Dan B. Goldman, Ricardo Martin-Brualla, and Steven M. Seitz. “HyperNeRF: A
Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields”.
In: arxiv CS.CV 2106.13228 (2021).

[64] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey
Dosovitskiy, and Daniel Duckworth. “NeRF in the Wild: Neural Radiance Fields for
Unconstrained Photo Collections”. In: CVPR. 2021.

[65] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer.
“D-NeRF: Neural Radiance Fields for Dynamic Scenes”. In: CVPR. 2021.

[66] Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil Kim. “Space-Time Neural
Irradiance Fields for Free-Viewpoint Video”. In: CVPR. 2021.

[67] Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang. “Dynamic View Synthesis
from Dynamic Monocular Video”. In: ICCV. 2021.

Bibliography 127

[68] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-
Brualla, and Pratul P. Srinivasan. “Mip-NeRF: A Multiscale Representation for Anti-
Aliasing Neural Radiance Fields”. In: ICCV. 2021.

[69] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. “GRAF: Generative
Radiance Fields for 3D-Aware Image Synthesis”. In: NeurIPS. 2020.

[70] Eric R. Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein.
“Pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image
Synthesis”. In: CVPR. 2021.

[71] Adam R. Kosiorek, Heiko Strathmann, Daniel Zoran, Pol Moreno, Rosalia Schneider,
Sona Mokrá, and Danilo Jimenez Rezende. “NeRF-VAE: A Geometry Aware 3D Scene
Generative Model”. In: ICML. 2021.

[72] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. “pixelNeRF: Neural
Radiance Fields From One or Few Images”. In: CVPR. 2021.

[73] Julian Chibane, Aayush Bansal, Verica Lazova, and Gerard Pons-Moll. “Stereo Radi-
ance Fields (SRF): Learning View Synthesis from Sparse Views of Novel Scenes”. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. June 2021.

[74] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi Yu,
and Hao Su. “MVSNeRF: Fast Generalizable Radiance Field Reconstruction from
Multi-View Stereo”. In: ICCV. 2021.

[75] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P. Srinivasan, Howard Zhou,
Jonathan T. Barron, Ricardo Martin-Brualla, Noah Snavely, and Thomas A. Funkhouser.
“IBRNet: Learning Multi-View Image-Based Rendering”. In: CVPR. 2021.

[76] Yuan Liu, Sida Peng, Lingjie Liu, Qianqian Wang, Peng Wang, Christian Theobalt,
Xiaowei Zhou, and Wenping Wang. “Neural Rays for Occlusion-aware Image-based
Rendering”. In: arxiv CS.CV 2107.13421 (2021).

[77] Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ramanan. “Depth-supervised
NeRF: Fewer Views and Faster Training for Free”. In: arxiv CS.CV 2107.02791 (2021).

[78] Alex Yu and Sara Fridovich-Keil, Matthew Tancik, Qinhong Chen, Benjamin Recht,
and Angjoo Kanazawa. Plenoxels: Radiance Fields without Neural Networks. 2021. arXiv:
2112.05131 [cs.CV].

[79] Cheng Sun, Min Sun, and Hwann-Tzong Chen. “Direct Voxel Grid Optimization:
Super-fast Convergence for Radiance Fields Reconstruction”. In: arXiv preprint arXiv:2111.11215
(2021).

[80] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. “Neural
Sparse Voxel Fields”. In: NeurIPS. 2020.

https://arxiv.org/abs/2112.05131

Bibliography 128

[81] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. “KiloNeRF: Speeding
up Neural Radiance Fields with Thousands of Tiny MLPs”. In: ICCV. 2021.

[82] Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon Yenphraphai, and Supasorn
Suwajanakorn. “NeX: Real-time View Synthesis with Neural Basis Expansion”. In:
CVPR. 2021.

[83] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. “PlenOc-
trees for Real-time Rendering of Neural Radiance Fields”. In: ICCV. 2021.

[84] Stephan J. Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien P. C.
Valentin. “FastNeRF: High-Fidelity Neural Rendering at 200FPS”. In: ICCV. 2021.

[85] Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall, Jonathan T. Barron, and Paul E.
Debevec. “Baking Neural Radiance Fields for Real-Time View Synthesis”. In: ICCV.
2021.

[86] D. Baraff and A. Witkin. “Large Steps in Cloth Simulation”. In: ACM SIGGRAPH. 1998,
pp. 43–54.

[87] T. Liu, S. Bouaziz, and L. Kavan. “Quasi-newton methods for real-time simulation of
hyperelastic materials”. In: ACM Transactions on Graphics (2017).

[88] Xavier Provot et al. “Deformation constraints in a mass-spring model to describe rigid
cloth behaviour”. In: Graphics interface. 1995.

[89] X. Provot. “Collision and self-collision handling in cloth model dedicated to design
garments”. In: Computer Animation and Simulation. 1997.

[90] M. Tang, R. Tong, R. Narain, C. Meng, and D. Manocha. “A GPU-based streaming
algorithm for high-resolution cloth simulation”. In: 2013.

[91] T. Vassilev, B. Spanlang, and Y. Chrysanthou. “Fast cloth animation on walking
avatars”. In: Computer Graphics Forum. 2001.

[92] C. Zeller. “Cloth simulation on the gpu”. In: ACM SIGGRAPH. 2005.

[93] Nvidia. Nvcloth. 2018.

[94] Optitext Fashion Design Software. https://optitex.com/. 2018.

[95] Nvidia. NVIDIA Flex. https://developer.nvidia.com/flex. 2018.

[96] M. Designer. https://www.marvelousdesigner.com. 2018.

[97] E. Gundogdu, V. Constantin, A. Seifoddini, M. Dang, M. Salzmann, and P. Fua. “Gar-
net: A Two-Stream Network for Fast and Accurate 3D Cloth Draping”. In: International
Conference on Computer Vision. 2019.

https://optitex.com/
https://developer.nvidia.com/flex
https://www.marvelousdesigner.com

Bibliography 129

[98] E. Gundogdu, V. Constantin, S. Parashar, A. Seifoddini, M. Dang, M. Salzmann, and P.
Fua. “Garnet++: Improving Fast and Accurate Static 3D Cloth Draping by Curvature
Loss”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 22.1 (2022),
pp. 181–195.

[99] Q. Ma, J. Yang, A. Ranjan, S. Pujades, G. Pons-Moll, S. Tang, and M. J. Black. “Learning
to Dress 3D People in Generative Clothing”. In: Conference on Computer Vision and
Pattern Recognition. 2020.

[100] C. Patel, Z. Liao, and G. Pons-Moll. “Tailornet: Predicting clothing in 3d as a function
of human pose, shape and garment style”. In: Conference on Computer Vision and Pattern
Recognition. 2020.

[101] I. Santesteban, M. A. Otaduy, and D. Casas. “Learning-Based Animation of Clothing
for Virtual Try-On”. In: Computer Graphics Forum (Proc. of Eurographics) 33.2 (2019).

[102] Y. Shen, J. Liang, and M.C. Lin. “Gan-based garment generation using sewing pattern
images”. In: European Conference on Computer Vision. 2020.

[103] G. Tiwari, B. L. Bhatnagar, T. Tung, and G. Pons-Moll. “Sizer: A Dataset and Model for
Parsing 3D Clothing and Learning Size Sensitive 3D Clothing”. In: European Conference
on Computer Vision. 2020.

[104] R. Vidaurre, I. Santesteban, E. Garces, and D. Casas. “Fully Convolutional Graph
Neural Networks for Parametric Virtual Try-On”. In: Computer Graphics Forum. 2020.

[105] T. Y. Wang, D. Ceylan, J. Popovic, and N. J. Mitra. “Learning a Shared Shape Space for
Multimodal Garment Design”. In: ACM SIGGRAPH Asia. 2018.

[106] R. Narain, A. Samii, and J.F. O’brien. “Adaptive anisotropic remeshing for cloth
simulation”. In: ACM Transactions on Graphics (2012).

[107] G. Pons-Moll, S. Pujades, S. Hu, and M.J. Black. “Clothcap: Seamless 4D Clothing
Capture and Retargeting”. In: ACM SIGGRAPH 36.4 (2017), pp. 731–7315.

[108] I. Santesteban, M.A. Otaduy, and D. Casas. “SNUG: Self-Supervised Neural Dynamic
Garments”. In: Conference on Computer Vision and Pattern Recognition. 2022.

[109] H. Bertiche, M. Madadi, and S. Escalera. “PBNS: Physically Based Neural Simulation
for Unsupervised Garment Pose Space Deformation”. In: ACM Transactions on Graphics
(2021).

[110] E. Corona, A. Pumarola, G. Alenya, G. Pons-Moll, and F. Moreno-Noguer. “Smplicit:
Topology-Aware Generative Model for Clothed People”. In: Conference on Computer
Vision and Pattern Recognition. 2021.

[111] R. Li, B. Guillard, E. Remelli, and P. Fua. “DIG: Draping Implicit Garment over the
Human Body”. In: Asian Conference on Computer Vision. 2022.

Bibliography 130

[112] Y. Li, M. Habermann, B. Thomaszewski, S. Coros, T. Beeler, and C. Theobalt. “Deep
physics-aware inference of cloth deformation for monocular human performance
capture”. In: International Conference on 3D Vision. 2021.

[113] J. Liang, M. Lin, and V. Koltun. “Differentiable Cloth Simulation for Inverse Problems”.
In: Advances in Neural Information Processing Systems. 2019.

[114] R. Narain, T. Pfaff, and J.F. O’Brien. “Folding and crumpling adaptive sheets”. In:
ACM Transactions on Graphics (2013).

[115] B. L. Bhatnagar, G. Tiwari, C. Theobalt, and G. Pons-Moll. “Multi-Garment Net:
Learning to Dress 3D People from Images”. In: International Conference on Computer
Vision. 2019.

[116] B. Jiang, J. Zhang, Y. Hong, J. Luo, L. Liu, and H. Bao. “Bcnet: Learning body and cloth
shape from a single image”. In: European Conference on Computer Vision. 2020.

[117] I. Santesteban, N. Thuerey, M. A. Otaduy, and D. Casas. “Self-Supervised Collision
Handling via Generative 3D Garment Models for Virtual Try-On”. In: Conference on
Computer Vision and Pattern Recognition. 2021.

[118] X. Pan, J. Mai, X. Jiang, D. Tang, J. Li, T. Shao, K. Zhou, X. Jin, and D. Manocha.
“Predicting loose-fitting garment deformations using bone-driven motion networks”.
In: ACM SIGGRAPH. 2022.

[119] H. Bertiche, M. Madadi, E. Tylson, and S. Escalera. “DeePSD: Automatic Deep Skin-
ning and Pose Space Deformation for 3D Garment Animation”. In: International Con-
ference on Computer Vision. 2021.

[120] I. Zakharkin, K. Mazur, A. Grigorev, and V. Lempitsky. “Point-based modeling of
human clothing”. In: International Conference on Computer Vision. 2021.

[121] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M.J. Black. “SMPL: A Skinned
Multi-Person Linear Model”. In: ACM SIGGRAPH Asia 34.6 (2015).

[122] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin
M Solomon. “Dynamic graph cnn for learning on point clouds”. In: Acm Transactions
On Graphics (tog) 38.5 (2019), pp. 1–12.

[123] H. De Vries, F. Strub, J. Mary, H. Larochelle, O. Pietquin, and A.C. Courville. “Modulat-
ing Early Visual Processing by Language”. In: Advances in Neural Information Processing
Systems. 2017.

[124] Y. Duan, H. Zhu, H. Wang, L. Yi, R. Nevatia, and L. J. Guibas. “Curriculum DeepSDF”.
In: European Conference on Computer Vision. 2020.

[125] H. Bertiche, M. Madadi, and S. Escalera. “CLOTH3D: Clothed 3D Humans”. In: 2020,
pp. 344–359.

Bibliography 131

[126] N. Mahmood, N. Ghorbani, N. F. Troje, G. Pons-Moll, and M. J. Black. “AMASS:
Archive of Motion Capture as Surface Shapes”. In: International Conference on Computer
Vision. 2019, pp. 5442–5451.

[127] G. Moon, H. Nam, T. Shiratori, and K.M. Lee. “3D Clothed Human Reconstruction in
the Wild”. In: European Conference on Computer Vision. 2022.

[128] Yu Y. Rong, T. Shiratori, and H. Joo. “Frankmocap: Fast monocular 3d hand and body
motion capture by regression and integration”. In: International Conference on Computer
Vision Workshops. 2021.

[129] L. Yang, Q. Song, Z. Wang, M. Hu, C. Liu, X. Xin, W. Jia, and S. Xu. “Renovating
parsing R-CNN for accurate multiple human parsing”. In: European Conference on
Computer Vision. 2020.

[130] R. Li, M. Zheng, S. Karanam, T. Chen, and Z. Wu. “Everybody Is Unique: Towards
Unbiased Human Mesh Recovery”. In: 2021.

[131] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin
Johnson, and Georgia Gkioxari. PyTorch3D. https://github.com/facebookresearch/
pytorch3d. 2020.

[132] A. Davydov, A. Remizova, V. Constantin, S. Honari, M. Salzmann, and P. Fua. “Adver-
sarial Parametric Pose Prior”. In: Conference on Computer Vision and Pattern Recognition.
2022.

[133] Ayush Tewari, O Fried, J Thies, V Sitzmann, S Lombardi, Z Xu, T Simon, M Nießner,
E Tretschk, L Liu, et al. “Advances in Neural Rendering”. In: ACM SIGGRAPH 2021.
ACM. 2021, pp. 1–320.

[134] Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren, Lei Zhou, Tian Fang, and
Long Quan. “BlendedMVS: A Large-Scale Dataset for Generalized Multi-View Stereo
Networks”. In: CVPR. 2020.

[135] Henrik Aanæs, Rasmus Ramsbøl Jensen, George Vogiatzis, Engin Tola, and Anders
Bjorholm Dahl. “Large-scale data for multiple-view stereopsis”. In: International Journal
of Computer Vision 120.2 (2016), pp. 153–168.

[136] Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone, Patrick
Labatut, and David Novotny. “Common objects in 3d: Large-scale learning and
evaluation of real-life 3d category reconstruction”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2021, pp. 10901–10911.

[137] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and
Matthias Nießner. “Scannet: Richly-annotated 3d reconstructions of indoor scenes”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017,
pp. 5828–5839.

https://github.com/facebookresearch/pytorch3d
https://github.com/facebookresearch/pytorch3d

Bibliography 132

[138] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. “Tanks and temples:
Benchmarking large-scale scene reconstruction”. In: ACM Transactions on Graphics
(ToG) 36.4 (2017), pp. 1–13.

[139] Carsten Moenning and Neil A Dodgson. “Fast marching farthest point sampling for
implicit surfaces and point clouds”. In: Computer Laboratory Technical Report 565 (2003),
pp. 1–12.

[140] Tejalal Choudhary, Vipul Mishra, Anurag Goswami, and Jagannathan Sarangapani.
“A comprehensive survey on model compression and acceleration”. In: Artificial
Intelligence Review 53.7 (2020), pp. 5113–5155.

[141] Jonathan Frankle and Michael Carbin. “The lottery ticket hypothesis: Finding sparse,
trainable neural networks”. In: arXiv preprint arXiv:1803.03635 (2018).

[142] G. E. Hinton and R. R. Salakhutdinov. “Reducing the Dimensionality of Data with
Neural Networks”. In: Science 313.5786 (2006), pp. 504–507. ISSN: 0036-8075. DOI:
10.1126/science.1127647. eprint: https://science.sciencemag.org/content/
313/5786/504.full.pdf. URL: https://science.sciencemag.org/content/313/
5786/504.

[143] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu,
Simon Osindero, and Raia Hadsell. “Meta-learning with latent embedding optimiza-
tion”. In: arXiv preprint arXiv:1807.05960 (2018).

[144] Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu
Maji, Charless C Fowlkes, Stefano Soatto, and Pietro Perona. “Task2vec: Task embed-
ding for meta-learning”. In: Proceedings of the IEEE International Conference on Computer
Vision. 2019, pp. 6430–6439.

[145] David Ha, Andrew Dai, and Quoc V Le. “Hypernetworks”. In: arXiv preprint arXiv:1609.09106
(2016).

[146] David Krueger, Chin-Wei Huang, Riashat Islam, Ryan Turner, Alexandre Lacoste,
and Aaron Courville. “Bayesian hypernetworks”. In: arXiv preprint arXiv:1710.04759
(2017).

[147] Christos Louizos and Max Welling. “Multiplicative normalizing flows for variational
bayesian neural networks”. In: Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org. 2017, pp. 2218–2227.

[148] Luca Bertinetto, João F Henriques, Jack Valmadre, Philip Torr, and Andrea Vedaldi.
“Learning feed-forward one-shot learners”. In: Advances in neural information processing
systems. 2016, pp. 523–531.

[149] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool. “Dynamic filter net-
works”. In: Advances in Neural Information Processing Systems. 2016, pp. 667–675.

https://doi.org/10.1126/science.1127647
https://science.sciencemag.org/content/313/5786/504.full.pdf
https://science.sciencemag.org/content/313/5786/504.full.pdf
https://science.sciencemag.org/content/313/5786/504
https://science.sciencemag.org/content/313/5786/504

Bibliography 133

[150] Jonathan Lorraine and David Duvenaud. “Stochastic hyperparameter optimization
through hypernetworks”. In: arXiv preprint arXiv:1802.09419 (2018).

[151] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. “Smash: one-shot
model architecture search through hypernetworks”. In: arXiv preprint arXiv:1708.05344
(2017).

[152] Seung Hyun Lee, Dae Ha Kim, and Byung Cheol Song. “Self-supervised Knowledge
Distillation Using Singular Value Decomposition”. In: Proceedings of the European
Conference on Computer Vision (ECCV). 2018, pp. 335–350.

[153] Oscar Chang and Hod Lipson. “Neural network quine”. In: Artificial Life Conference
Proceedings. MIT Press. 2018, pp. 234–241.

[154] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. “Once-for-
all: Train one network and specialize it for efficient deployment”. In: arXiv preprint
arXiv:1908.09791 (2019).

[155] Jingyue Lu and M. Pawan Kumar. “Neural Network Branching for Neural Network
Verification”. In: International Conference on Learning Representations. 2020. URL: https:
//openreview.net/forum?id=B1evfa4tPB.

[156] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a neural
network”. In: arXiv preprint arXiv:1503.02531 (2015).

[157] Ya Le and Xuan Yang. “Tiny imagenet visual recognition challenge”. In: CS 231N 7
(2015), p. 7.

[158] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features from
tiny images”. In: Tech Report (2009).

[159] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-based
learning applied to document recognition”. In: Proceedings of the IEEE 86.11 (1998),
pp. 2278–2324.

[160] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning for
image recognition”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 770–778.

[161] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,
Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. “Shapenet: An
information-rich 3d model repository”. In: arXiv preprint arXiv:1512.03012 (2015).

[162] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. “Pointnet++: Deep
hierarchical feature learning on point sets in a metric space”. In: Advances in neural
information processing systems 30 (2017).

https://openreview.net/forum?id=B1evfa4tPB
https://openreview.net/forum?id=B1evfa4tPB

Bibliography 134

[163] Shi-Min Hu, Zheng-Ning Liu, Meng-Hao Guo, Jun-Xiong Cai, Jiahui Huang, Tai-Jiang
Mu, and Ralph R Martin. “Subdivision-based mesh convolution networks”. In: ACM
Transactions on Graphics (TOG) 41.3 (2022), pp. 1–16.

[164] Daniel Maturana and Sebastian Scherer. “Voxnet: A 3d convolutional neural network
for real-time object recognition”. In: 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2015, pp. 922–928.

[165] Emilien Dupont, Hyunjik Kim, SM Ali Eslami, Danilo Jimenez Rezende, and Dan
Rosenbaum. “From data to functa: Your data point is a function and you can treat it
like one”. In: International Conference on Machine Learning. PMLR. 2022, pp. 5694–5725.

[166] Emilien Dupont, Adam Goliński, Milad Alizadeh, Yee Whye Teh, and Arnaud Doucet.
“Coin: Compression with implicit neural representations”. In: arXiv preprint arXiv:2103.03123
(2021).

[167] Yannick Strümpler, Janis Postels, Ren Yang, Luc Van Gool, and Federico Tombari. “Im-
plicit Neural Representations for Image Compression”. In: arXiv preprint arXiv:2112.04267
(2021).

[168] Yunfan Zhang, Ties van Rozendaal, Johann Brehmer, Markus Nagel, and Taco Cohen.
“Implicit Neural Video Compression”. In: arXiv preprint arXiv:2112.11312 (2021).

[169] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and Leonidas J
Guibas. “Volumetric and multi-view cnns for object classification on 3d data”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 5648–
5656.

[170] Shuran Song and Jianxiong Xiao. “Deep sliding shapes for amodal 3d object detection
in rgb-d images”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 808–816.

[171] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese.
“3d-r2n2: A unified approach for single and multi-view 3d object reconstruction”. In:
European conference on computer vision. Springer. 2016, pp. 628–644.

[172] Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Abhinav Gupta. “Learning a
predictable and generative vector representation for objects”. In: European Conference
on Computer Vision. Springer. 2016, pp. 484–499.

[173] Danilo Jimenez Rezende, SM Eslami, Shakir Mohamed, Peter Battaglia, Max Jaderberg,
and Nicolas Heess. “Unsupervised learning of 3d structure from images”. In: Advances
in neural information processing systems 29 (2016).

[174] David Stutz and Andreas Geiger. “Learning 3d shape completion from laser scan data
with weak supervision”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2018, pp. 1955–1964.

Bibliography 135

[175] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. “Learn-
ing a probabilistic latent space of object shapes via 3d generative-adversarial model-
ing”. In: Advances in neural information processing systems 29 (2016).

[176] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. “3D ShapeNets: A deep representation for volumetric shapes”.
In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015,
pp. 1912–1920.

[177] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang, and
Hongsheng Li. “Pv-rcnn: Point-voxel feature set abstraction for 3d object detection”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020, pp. 10529–10538.

[178] Haoxuan You, Yifan Feng, Rongrong Ji, and Yue Gao. “Pvnet: A joint convolutional
network of point cloud and multi-view for 3d shape recognition”. In: Proceedings of the
26th ACM international conference on Multimedia. 2018, pp. 1310–1318.

[179] Lei Li, Siyu Zhu, Hongbo Fu, Ping Tan, and Chiew-Lan Tai. “End-to-end learning local
multi-view descriptors for 3d point clouds”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2020, pp. 1919–1928.

[180] Ze Liu, Han Hu, Yue Cao, Zheng Zhang, and Xin Tong. “A closer look at local
aggregation operators in point cloud analysis”. In: European Conference on Computer
Vision. Springer. 2020, pp. 326–342.

[181] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. “Pointwise convolutional neu-
ral networks”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018, pp. 984–993.

[182] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao. “Spidercnn: Deep learning
on point sets with parameterized convolutional filters”. In: Proceedings of the European
Conference on Computer Vision (ECCV). 2018, pp. 87–102.

[183] Matan Atzmon, Haggai Maron, and Yaron Lipman. “Point Convolutional Neural
Networks by Extension Operators”. In: ACM Transactions on Graphics 37.4 (2018).

[184] Wenxuan Wu, Zhongang Qi, and Li Fuxin. “Pointconv: Deep convolutional networks
on 3d point clouds”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2019, pp. 9621–9630.

[185] Siqi Fan, Qiulei Dong, Fenghua Zhu, Yisheng Lv, Peijun Ye, and Fei-Yue Wang. “SCF-
Net: Learning spatial contextual features for large-scale point cloud segmentation”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2021, pp. 14504–14513.

Bibliography 136

[186] Mutian Xu, Runyu Ding, Hengshuang Zhao, and Xiaojuan Qi. “Paconv: Position adap-
tive convolution with dynamic kernel assembling on point clouds”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, pp. 3173–
3182.

[187] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François
Goulette, and Leonidas J Guibas. “Kpconv: Flexible and deformable convolution for
point clouds”. In: Proceedings of the IEEE/CVF international conference on computer vision.
2019, pp. 6411–6420.

[188] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. “Deepgcns: Can gcns
go as deep as cnns?” In: Proceedings of the IEEE/CVF international conference on computer
vision. 2019, pp. 9267–9276.

[189] Lei Wang, Yuchun Huang, Yaolin Hou, Shenman Zhang, and Jie Shan. “Graph at-
tention convolution for point cloud semantic segmentation”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, pp. 10296–10305.

[190] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and
Shi-Min Hu. “Pct: Point cloud transformer”. In: Computational Visual Media 7.2 (2021),
pp. 187–199.

[191] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. “Point
transformer”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2021, pp. 16259–16268.

[192] Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst.
“Geodesic convolutional neural networks on riemannian manifolds”. In: Proceedings of
the IEEE international conference on computer vision workshops. 2015, pp. 37–45.

[193] Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael Bronstein. “Learning
shape correspondence with anisotropic convolutional neural networks”. In: Advances
in neural information processing systems 29 (2016).

[194] Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkhouser, Matthias Nießner, and
Leonidas J Guibas. “Texturenet: Consistent local parametrizations for learning from
high-resolution signals on meshes”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2019, pp. 4440–4449.

[195] Yuqi Yang, Shilin Liu, Hao Pan, Yang Liu, and Xin Tong. “PFCNN: Convolutional
neural networks on 3D surfaces using parallel frames”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2020, pp. 13578–13587.

[196] Niv Haim, Nimrod Segol, Heli Ben-Hamu, Haggai Maron, and Yaron Lipman. “Sur-
face networks via general covers”. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. 2019, pp. 632–641.

Bibliography 137

[197] Jonas Schult, Francis Engelmann, Theodora Kontogianni, and Bastian Leibe. “Dualconvmesh-
net: Joint geodesic and euclidean convolutions on 3d meshes”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, pp. 8612–8622.

[198] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda,
and Michael M Bronstein. “Geometric deep learning on graphs and manifolds using
mixture model cnns”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 5115–5124.

[199] Dmitriy Smirnov and Justin Solomon. “HodgeNet: learning spectral geometry on
triangle meshes”. In: ACM Transactions on Graphics (TOG) 40.4 (2021), pp. 1–11.

[200] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel
Cohen-Or. “Meshcnn: a network with an edge”. In: ACM Transactions on Graphics
(TOG) 38.4 (2019), pp. 1–12.

[201] Francesco Milano, Antonio Loquercio, Antoni Rosinol, Davide Scaramuzza, and Luca
Carlone. “Primal-dual mesh convolutional neural networks”. In: Advances in Neural
Information Processing Systems 33 (2020), pp. 952–963.

[202] Alon Lahav and Ayellet Tal. “Meshwalker: Deep mesh understanding by random
walks”. In: ACM Transactions on Graphics (TOG) 39.6 (2020), pp. 1–13.

[203] Chunfeng Lian, Li Wang, Tai-Hsien Wu, Mingxia Liu, Francisca Durán, Ching-Chang
Ko, and Dinggang Shen. “Meshsnet: Deep multi-scale mesh feature learning for end-
to-end tooth labeling on 3d dental surfaces”. In: International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer. 2019, pp. 837–845.

[204] Yutong Feng, Yifan Feng, Haoxuan You, Xibin Zhao, and Yue Gao. “Meshnet: Mesh
neural network for 3d shape representation”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 33. 2019, pp. 8279–8286.

[205] Xianzhi Li, Ruihui Li, Lei Zhu, Chi-Wing Fu, and Pheng-Ann Heng. “DNF-Net: A deep
normal filtering network for mesh denoising”. In: IEEE Transactions on Visualization
and Computer Graphics 27.10 (2020), pp. 4060–4072.

[206] Amir Hertz, Rana Hanocka, Raja Giryes, and Daniel Cohen-Or. “Deep Geometric
Texture Synthesis”. In: ACM Trans. Graph. 39.4 (2020). ISSN: 0730-0301. DOI: 10.1145/
3386569.3392471. URL: https://doi.org/10.1145/3386569.3392471.

[207] Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, and Ilya O. Tol-
stikhin. “Predicting Neural Network Accuracy from Weights”. In: arXiv abs/2002.11448
(2020).

https://doi.org/10.1145/3386569.3392471
https://doi.org/10.1145/3386569.3392471
https://doi.org/10.1145/3386569.3392471

Bibliography 138

[208] Konstantin Schürholt, Dimche Kostadinov, and Damian Borth. “Self-Supervised Rep-
resentation Learning on Neural Network Weights for Model Characteristic Predic-
tion”. In: Advances in Neural Information Processing Systems. Ed. by A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan. 2021. URL: https://openreview.net/
forum?id=F1D8buayXQT.

[209] Boris Knyazev, Michal Drozdzal, Graham W. Taylor, and Adriana Romero. “Parameter
Prediction for Unseen Deep Architectures”. In: Advances in Neural Information Process-
ing Systems. Ed. by A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan.
2021. URL: https://openreview.net/forum?id=vqHak8NLk25.

[210] Florian Jaeckle and M Pawan Kumar. “Generating adversarial examples with graph
neural networks”. In: Uncertainty in Artificial Intelligence. PMLR. 2021, pp. 1556–1564.

[211] William E Lorensen and Harvey E Cline. “Marching cubes: A high resolution 3D sur-
face construction algorithm”. In: ACM siggraph computer graphics 21.4 (1987), pp. 163–
169.

[212] Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. “Git re-basin:
Merging models modulo permutation symmetries”. In: arXiv preprint arXiv:2209.04836
(2022).

[213] Gizem Yüce, Guillermo Ortiz-Jiménez, Beril Besbinar, and Pascal Frossard. “A Struc-
tured Dictionary Perspective on Implicit Neural Representations”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, pp. 19228–19238.

[214] Haoqiang Fan, Hao Su, and Leonidas J Guibas. “A point set generation network for
3d object reconstruction from a single image”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017, pp. 605–613.

[215] Cameron R Wolfe and Keld T Lundgaard. “E-Stitchup: Data Augmentation for Pre-
Trained Embeddings”. In: arXiv preprint arXiv:1912.00772 (2019).

[216] Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu,
Qixing Huang, Alla Sheffer, and Leonidas Guibas. “A Scalable Active Framework for
Region Annotation in 3D Shape Collections”. In: SIGGRAPH Asia (2016).

[217] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. “Learning
representations and generative models for 3d point clouds”. In: International conference
on machine learning. PMLR. 2018, pp. 40–49.

[218] Ruihui Li, Xianzhi Li, Ka-Hei Hui, and Chi-Wing Fu. “SP-GAN: Sphere-guided 3D
shape generation and manipulation”. In: ACM Transactions on Graphics (TOG) 40.4
(2021), pp. 1–12.

https://openreview.net/forum?id=F1D8buayXQT
https://openreview.net/forum?id=F1D8buayXQT
https://openreview.net/forum?id=vqHak8NLk25

Bibliography 139

[219] Liang Pan, Xinyi Chen, Zhongang Cai, Junzhe Zhang, Haiyu Zhao, Shuai Yi, and
Ziwei Liu. “Variational relational point completion network”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, pp. 8524–8533.

[220] Maxim Tatarchenko, Stephan R Richter, René Ranftl, Zhuwen Li, Vladlen Koltun, and
Thomas Brox. “What do single-view 3d reconstruction networks learn?” In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, pp. 3405–
3414.

[221] Yilun Du, Katie Collins, Josh Tenenbaum, and Vincent Sitzmann. “Learning signal-
agnostic manifolds of neural fields”. In: Advances in Neural Information Processing
Systems 34 (2021), pp. 8320–8331.

[222] Emilien Dupont, Yee Whye Teh, and Arnaud Doucet. “Generative models as distribu-
tions of functions”. In: arXiv preprint arXiv:2102.04776 (2021).

[223] Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. “The Role
of Permutation Invariance in Linear Mode Connectivity of Neural Networks”. In:
International Conference on Learning Representations. 2021.

[224] Tianyang Li, Xin Wen, Yu-Shen Liu, Hua Su, and Zhizhong Han. “Learning deep
implicit functions for 3D shapes with dynamic code clouds”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, pp. 12840–12850.

[225] Vishwanath Saragadam, Daniel LeJeune, Jasper Tan, Guha Balakrishnan, Ashok Veer-
araghavan, and Richard G Baraniuk. “WIRE: Wavelet Implicit Neural Representa-
tions”. In: arXiv preprint arXiv:2301.05187 (2023).

[226] Chenxi Lola Deng and Enzo Tartaglione. “Compressing explicit voxel grid representa-
tions: fast nerfs become also small”. In: Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision. 2023, pp. 1236–1245.

[227] Verica Lazova, Vladimir Guzov, Kyle Olszewski, Sergey Tulyakov, and Gerard Pons-
Moll. “Control-nerf: Editable feature volumes for scene rendering and manipulation”.
In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.
2023, pp. 4340–4350.

[228] Decai Chen, Peng Zhang, Ingo Feldmann, Oliver Schreer, and Peter Eisert. “Recov-
ering Fine Details for Neural Implicit Surface Reconstruction”. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision. 2023, pp. 4330–4339.

[229] Petros Tzathas, Petros Maragos, and Anastasios Roussos. “3D Neural Sculpting
(3DNS): Editing Neural Signed Distance Functions”. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. 2023, pp. 4521–4530.

Bibliography 140

[230] S. Ioffe and C. Szegedy. “Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift”. In: International Conference on Machine Learning.
2015.

[231] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
In: ICLR. 2015.

[232] T. Pfaff, R. Narain, J.M. De Joya, and J.F. O’Brien. “Adaptive tearing and cracking of
thin sheets”. In: ACM Transactions on Graphics 33.4 (2014), pp. 1–9.

[233] M. Tang, T. Wang, Z. Liu, R. Tong, and D. Manocha. “I-Cloth: Incremental Colli-
sion Handling for Gpu-Based Interactive Cloth Simulation”. In: ACM Transactions on
Graphics. 2018.

[234] Yonglong Tian, Dilip Krishnan, and Phillip Isola. “Contrastive representation distilla-
tion”. In: arXiv preprint arXiv:1910.10699 (2019).

[235] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. “Focal loss for
dense object detection”. In: Proceedings of the IEEE international conference on computer
vision. 2017, pp. 2980–2988.

[236] Pierre Baque, Edoardo Remelli, Francois Fleuret, and Pascal Fua. “Geodesic convo-
lutional shape optimization”. In: International Conference on Machine Learning. PMLR.
2018, pp. 472–481.

[237] David JJ Toal and Andy J Keane. “Efficient multipoint aerodynamic design optimiza-
tion via cokriging”. In: Journal of Aircraft 48.5 (2011), pp. 1685–1695.

[238] Nobuyuki Umetani and Bernd Bickel. “Learning three-dimensional flow for interactive
aerodynamic design”. In: ACM Transactions on Graphics (TOG) 37.4 (2018), pp. 1–10.

[239] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. “Open3D: A Modern Library for 3D
Data Processing”. In: arXiv:1801.09847 (2018).

[240] Ilya Loshchilov and Frank Hutter. “Decoupled weight decay regularization”. In: arXiv
preprint arXiv:1711.05101 (2017).

[241] Leslie N Smith and Nicholay Topin. “Super-convergence: Very fast training of neural
networks using large learning rates”. In: Artificial intelligence and machine learning for
multi-domain operations applications. Vol. 11006. International Society for Optics and
Photonics. 2019, p. 1100612.

[242] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. “Improved training of wasserstein gans”. In: Advances in neural information
processing systems 30 (2017).

	Abstract
	Publications
	Acknowledgments
	Introduction
	Neural Representations of Signals
	Implicit Neural Representations for 3D Shapes
	Neural Radiance Fields
	Content of the Thesis
	Deploying NR of Signals
	Processing NR of Signals

	I Deploying NR of Signals
	Modeling Garments with Unsigned Distance Functions
	Introduction
	Related Work
	Method
	Garment Generative Network
	Garment Draping Network
	Draping Generic Garments
	Self-Supervised Training

	Experiments
	Datasets, Settings and Metrics
	Garment Parametrization
	Garment Draping
	Fitting Observations

	Conclusion

	ScanNeRF: a Scalable Benchmark for Neural Radiance Fields
	Introduction
	Related Work
	The ScanNeRF Benchmark
	Scan Station Setup
	Dataset Filtering
	Background Masking
	Dataset Organization and Splitting
	Scan Time and Number of Objects

	Experiments
	Evaluated Frameworks and Settings
	Experiments on Evenly Distributed Acquisitions
	Experiments on Densely Localized Acquisitions

	Conclusion

	II Processing NR of Signals
	Learning the Space of Deep Models
	Introduction
	Related Work
	Method
	Framework
	Single-Architecture Setting
	Multi-Architecture Setting

	Experiments
	Datasets and Architectures
	Single-Architecture Image Classification
	Single-Architecture SDF Regression
	Multi-Architecture
	Multi-Architecture Embedding Interpolation
	Sampling of Unseen Architectures
	Latent Space Optimization

	Conclusion and Future Work

	Deep Learning on Implicit Neural Representations of Shapes
	Introduction
	Related Work
	Learning to Represent INRs
	Using the Same Initialization for INRs
	Deep Learning on INRs
	General Settings
	Point Cloud Retrieval
	Shape Classification
	Point Cloud Part Segmentation
	Shape Generation
	Learning a Mapping Between inr2vec Embedding Spaces

	Additional Results and Ablation Studies
	Individual INRs vs. Shared Network Frameworks
	Ablation on INRs Size
	Deep Learning on DeepSDF Latent Codes
	Shape Generation: Additional Comparison
	Additional Qualititative Results

	Conclusion

	Final Remarks
	III Appendices
	Modeling Garments with Unsigned Distance Functions
	Network Architectures and Training
	Garment Generative Network: Encoder
	Garment Generative Network: Decoder
	Garment Generative Network: Surface Sampling
	Draping Network
	Training Hyperparameters

	Loss Terms and Ablation Studies
	Lpin for Bottom Garments
	Llayer for Top-bottom Intersection
	Physics-based Refinement

	Additional Results and Considerations
	Garment Encoder/Decoder Latent Space Optimization (LSO)
	Draping Network: Euclidean Distance is not a Good Metric
	Draping Network: Physics-based Energy Evaluation
	Inference Times
	Fitting SMPLicit to 3D Scans

	Human Evaluation

	Learning the Space of Deep Models
	ClassId Classifier
	Network Architectures
	Image Classification: Experiment Details
	3D SDF Regression: Experiment Details
	Fusing Batch Norm and Convolutions
	Visualizing Networks as Images

	Deep Learning on Implicit Neural Representations of Shapes
	Obtaining INRs from 3D Discrete Representations
	Reconstructing Discrete Representations from INRs
	inr2vec Encoder and Decoder Architectures
	Motivation Behind inr2vec Encoder Design
	Experimental Settings
	Implementation, Hardware and Timings
	Testing on Original Discrete 3D Representations
	Alternative Architecture for inr2vec
	t-SNE Visualization of inr2vec Latent Space
	INR Classification Time: Extended Analysis

	Bibliography

