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Abstract

Creativity seems mysterious; when we experience a creative spark, it is

difficult to explain how we got that idea, and we often recall notions like

“inspiration” and “intuition” when we try to explain the phenomenon. The

fact that we are clueless about how a creative idea manifests itself does not

necessarily imply that a scientific explanation cannot exist. We are unaware

of how we perform certain tasks, such as biking or language understanding,

but we have more and more computational techniques that can replicate and

hopefully explain such activities. We should understand that every creative

act is a fruit of experience, society, and culture. Nothing comes from noth-

ing. Novel ideas are never utterly new; they stem from representations that

are already in mind. Creativity involves establishing new relations between

pieces of information we had already: then, the greater the knowledge, the

greater the possibility of finding uncommon connections, and the more the

potential to be creative. In this vein, a beneficial approach to a better under-

standing of creativity must include computational or mechanistic accounts

of such inner procedures and the formation of the knowledge that enables

such connections. That is the aim of Computational Creativity: to develop

computational systems for emulating and studying creativity. Hence, this

dissertation focuses on these two related research areas: discussing computa-

tional mechanisms to generate creative artifacts and describing some implicit

cognitive processes that can form the basis for creative thoughts.
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Chapter 1

Introduction

As a multidisciplinary research field of Artificial Intelligence (AI), Com-

putational Creativity (CC) has two main goals: (i) to build computers capa-

ble of human-level creativity or to assist humans in this process, and (ii) to

better understand human creativity, formulating an algorithmic perspective

on creative behavior in humans. The former is mostly a common concern

of AI, while the latter is the main aim of Computational Psychology or

Cognitive Science. In CC research, the latter venue is poorly explored. In

fact, within the CC perspective, the efforts to investigate creativity as a hu-

man phenomenon are focused more on theoretical accounts (or philosophical

framework) and definitions of creativity, instead of investigating creative hu-

man mechanisms on a more empirical basis. Computational approaches are

adopted by psychologists who build their computational models following the

experiments they carry out (from disciplines like Computational Psychology

or Cognitive Science, indeed). Moreover, research on creativity is hampered

by two main issues in the field: (i) lack of standardized, shared assessment

and (ii) the implicit dimension of creativity; people often cannot verbalize

how they came up with their creative solution.

This thesis puts forward a computational approach, but from a cognitive

standpoint, focusing on implicit aspects of creativity. It aims to provide in-

sights into the interplay, strengths, and limitations of adopting both AI and

1



2 1. Introduction

cognitive approaches in creativity research. In doing so, several computa-

tional, and practical implications, are considered.

After surveying some of the definitions and dimensions of creativity, some

computational mechanisms for creative generations are first explored. Then,

a computational model for creative generations is proposed, that also ad-

dresses some human implicit learning mechanisms, discussing the cognitive

aspects emulated by the model. Finally, the potential of this interdisciplinary

approach is discussed, also introducing further possible explorations.

1.1 Problem Domain and Approach

The presented research is concerned with the modeling of cognitive and

computational processes in the (implicit) learning and generation of cre-

ative sequences.

Within the computational perspective, the problem studied is one of se-

quential learning: the goal is to learn the hidden structure, or the rules,

governing the ordered succession of discrete events in the sequence. The

problem, in other words, is that of grammar induction. That is, learning

a language from a set of examples. In cognitive psychology, the general

phenomenon is also known as sequential behavior or behavior sequencing.

There exist two broad categories of sequence learning: explicit and implicit.

Recently, especially in language acquisition, it has been studied as a form

of Implicit Statistical Learning (ISL)–providing also a compelling example

of nonconscious learning of a complex cognitive task. Other forms of im-

plicit sequence learning include motor sequence learning, temporal sequence

learning, and associative sequence learning. This kind of learning involves

mechanisms such as segmentation and chunking and, more importantly, the

computation of Transitional Probabilities (TPs).

On the other hand, the problem of sequence generation (similar to pre-

diction) is a sub-problem of sequence learning. The goal is to reconstruct,

step-by-step, a sequence “in the way it naturally occurs”. However, contrary
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to prediction, the problem of generation depends on the definition of the cri-

teria used to steer the process itself. In the creative domain, defining these

criteria is problematic because, again, it requires stating some explicit utility,

thus establishing what is creative (and what is not).

To summarize, the emphasis of this computational creativity approach

is not on performance or quality attained by the system (as in applied CC

works) but rather on the explanation of the psychological processes leading

to artificial and human creativity and the reproduction of behavioral data

collected in psychology experiments. That is, we focused on computational

and cognitive learning methods that allow constructing a representation of

the sequence of events in the learner’s memory of the form of a symbolic

hierarchical network and on processes that, starting from this knowledge,

produce creative sequences with the same intrinsic structure. To this end,

this dissertation explores some mechanisms and possibilities to address these

issues in both domains.

1.2 Context, Aims and Motivations

In the literature, the efforts to investigate creativity as a human phe-

nomenon are focused more on theoretical accounts instead of investigating

creative human mechanisms on a more empirical basis. This thesis starts

within AI but extends towards cognitive science (or computational psychol-

ogy) trying to achieve a more comprehensive and unitary perspective on

creativity. To achieve this, we tried to address both the main aims of CC:

(i) to explore computational techniques for simulating creative behavior or

to build products (applied CC) and (ii) to model human creativity using

computational mechanism (cognitive CC).

Specifically, this dissertation focuses on computational models for per-

sonal creativity (Boden’s P-creativity [21]) and its implicit processes to build

models both for brain mechanisms comprehension and enhanced robot be-

haviors in Human-robot and social interaction. The broader vision is towards
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embodied creative cognition (and cognitive robotics, in general) where com-

putational accounts are necessary for mechanistic insights into the creative

process. In doing this, the hope is to add to this gulf between the develop-

ment of computational models of sequential learning in CC research and their

application to the understanding of cognitive processing in implicit learning

and creative generation. Therefore, the seminal idea is conceiving a modeling

support for interdisciplinary studies, which has to be adaptable to various

contexts, shareable, and explainable. The point we want to stress here is

that computational models at this level are tools aiding research: more ori-

ented toward open science (i.e., reproducibility, particularly in psychology)

or educational perspectives, as well as toward more understandable human

behaviors for AI, human-machine interaction and robot-related contexts. At

the same time, computational models were born for robotics, dealing more

with physical and environmental constraints for the realization, or repro-

duction, of the behavior of the intended model. Then, placed at this edge,

computational models are the glue for connecting theories with real-world,

embedded, experiments and their applications (see Figure 1.1).

Therefore, the general aim of this thesis is to give a computational account

of ISL and CC (as the creative mechanisms stemming from implicit knowl-

edge), emphasizing the importance of computational modeling in cognitive

science and psychology [131, 63, 86]. We wanted to test the potential ISL

has to learn structured information from languages. We made use of artificial

grammars to analyze the potential of ISL in segmentation and chunking. In

this respect, Artificial Grammar Learning (AGL) is a compelling case espe-

cially because it involves the tasks of rule-learning and language acquisition

(i.e., sequence learning) which are fields where many of the debates and is-

sues reflect those in cognitive science at large [234]. The other goal, indeed,

is to test, in this way, the generality of such an approach to model various

phenomena (namely, movements, music, language). As a general mechanism,

and one of the most basic mechanisms of the brain, we believe ISL is the right

approach to model many different phenomena, in particular for creativity. In
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Figure 1.1: Areas affected by the ISL modeling in this dissertation (in blue)

and followup explorations (light blue)

the end, the goal is to give an account of the implicit processes involved in

creative productions. We opted for a symbolic approach because ISL is a gen-

eral mechanism of the brain (with modality-specific peculiarities) that deals

with transitions, so sequential modeling of events (or sequences in general).

The symbolic approach allows the model to abstract away from the nature of

the input and allows for hybridization with sub-symbolic approaches (such

as that of transducers), leading to more grounded and sophisticated imple-

mentations.

In doing this, we also envisioned collecting results on the performances

of ISL on various language complexities (used grammars in literature and

for different modalities), reviewing some of the exploitable statistical cues,

to test ISL potential (segmentation, chunking, and associative mechanisms)

and to discuss some metrics for evaluating language complexities.
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1.3 Research Questions and Objectives

The discussed context and motivations can be summarized by the follow-

ing research questions.

RQ1 What are the basic computational mechanisms necessary for modeling

personal creativity?

RQ2 What mechanisms are involved in the processes of human implicit learn-

ing and generation, within the task of encoding sequentiality (sequential

learning)?

RQ3 What minimal, understandable framework, or approach, could fairly

address both cognitive behavioral investigations and the development

of a system for creative sequence generation with consequent compu-

tational simulations?

RQ4 How can a computational model account for various domains (e.g., In-

formation Theory, Psychology, Neuroscience) to foster interdisciplinary

and an ecological/holistic understanding of creative behavior?

In an effort of answering these questions, we also pursued some desiderata

as useful design criteria, such as modularity, compositionality, and explain-

ability, to favor interdisciplinarity. For the same reason, we decided to refrain

from modeling explicit, domain-related, socio-cultural factors. Moreover, we

decided to use simple functions to analyze the interplay between basic mech-

anisms; we wanted to address the problem at a computational/functional

level rather than discussing the physical implementational details. In partic-

ular, we believe ISL is a good candidate to fulfill such criteria. In addition,

ISL helps respond to RQ2 and provides the basis for RQ3 and RQ4.

To achieve the stated aims and to respond to the research questions, the

idea is to conceive an unsupervised, incremental, simple, modular, open-

ended, parameterized (to allow tuning to different modalities and contexts),
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understandable (representational transparency) model for creativity and learn-

ing, capable of generating robot choreographies, machine musical improvisa-

tion and even capable of emulating language implicit acquisition. This could

be summarized by the following objectives:

• Investigating the role of value, novelty and surprise in creative genera-

tions

• Implementing a process-oriented, symbolic model for implicit sequence

learning and generation

• Accounting human implicit learning mechanisms (ISL) to build the

agent knowledge (or expertise)

• Designing a model, for enabling interdisciplinary approaches and dis-

semination for the mechanisms involved in implicit statistical learning

and creative generation of sequences

1.4 Structure of the Thesis

After this introductory chapter, the remainder of this manuscript is or-

ganized as follows.

Chapter 2 introduces the main concepts and the theories around which

this thesis revolves. In particular Computational Creativity and Implicit Sta-

tistical Learning as they form the theoretical background of this work. Then

the last section briefly discusses some of the aspects involved with the com-

putational modeling of cognitive functions. Specifically, it introduces Tran-

sitional Probabilities, as the central tenet of this work, the Markov Models

used, and the motivations for adopting the symbolic approach.

Chapter 3 describes the carried research under a computational perspec-

tive and the applications to the conceived systems in movements and music.

Some generative methods are discussed and some key computational mech-

anisms of creativity are explored.
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Chapter 4 describes, on the other hand, the resulting cognitive model and

the ISL mechanisms it reflects, which is the main contribution of this thesis.

With a particular focus on segmentation, chunking, attention, generaliza-

tion, and the generational procedure that exploits the learned knowledge for

producing creative output.

Chapter 5 contains conclusions and discussions on the potential of this

interdisciplinary approach, also introducing further possible explorations.



Chapter 2

Background

The content of this dissertation builds upon several topics studied by dif-

ferent disciplines other than AI and CC. In particular on sequential, gram-

mar, implicit, and statistical learning (Computational Psychology, Cognitive

Science). Therefore, this chapter briefly introduces the key aspects and the

background theories that are useful for understanding the content of the

thesis. First, the context and a brief historical background of Computa-

tional Creativity are introduced, summarizing the essential aspects and the

characterizations that followed. Then, the principal tenet is presented, ex-

plaining the involved mechanisms. That is Implicit Statistical Learning: the

paradigm upon which this work rests. Finally, the last section examines the

role of Computational Models and AI tools: discussing some aspects of In-

formation Theory, Markov Models, and the symbolic approach that helped

to explore the cognitive phenomena of learning and generating sequences.

2.1 Computational Creativity

As a research topic, Computational Creativity is gaining ever more inter-

est from various disciplines, especially in Cognitive Science, Robotics, and

9



10 2. Background

Human-Machine Interaction1 . However, the literature is vast. Therefore this

section covers only the main concepts and those factors concerned with this

dissertation. After a brief historical background, this section analysis those

details useful for a working, viable definition. In particular, the characteri-

zations explored and the theory for a process-based model of Creativity.

2.1.1 Historical Background

Creativity is a compelling but heterogeneous phenomenon. While the

term is commonly used in everyday life, giving a precise definition of this

concept is not trivial. In fact, how societies have perceived creativity has

changed throughout history, as the term itself. In ancient Roman and Greek

cultures, for example, creativity was assigned to Gods, Demons, or Muses, as

Plato’s thoughts on poetry summarize: “The works of poets are entirely the

invention of the Muses, who possess the poets and inspire them...Art could

be beautiful only if it descended from God”. In the 1550s, Giorgio Vasari

wrote “Lives of the Most Excellent Painters, Sculptors, and Architects” Re-

naissance artists not as mere artisans, but as the individuals themselves who,

with personal skills, experiences and characteristics, come up with new ideas.

However, even when considered a human ability, Creativity has long been as-

cribed only to gifted people; attempts trying to demystify it started appearing

rather recently.

Only in the 20th century the efforts to describe creativity became more

scientific and methodological. In 1926, Wallace’s model of thought provided

the famous four stages of creative thinking: preparation, incubation, illu-

mination, and verification. In the 1950s, Guilford [184] started researching

Creativity as a scientific field, suggesting that it can be studied objectively.

In 1961, Rhodes [178] introduced the concept of the 4Ps: Person, Process,

Product, Press. Guilford, in 1967, drew the distinction between convergent

and divergent thinking [87].

1As an example, see https://site.unibo.it/performingrobots/en or https://

www.frontiersin.org/research-topics/14181/creativity-and-robotics

https://site.unibo.it/performingrobots/en
https://www.frontiersin.org/research-topics/14181/creativity-and-robotics
https://www.frontiersin.org/research-topics/14181/creativity-and-robotics
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The advent of Computational Creativity is probably signed by the work

of Boden [22, 21], in the 1990s. Starting from the premise that creativity

is not a magical process, she devised some useful definitions and dimensions

for creativity, sustaining that computers and AI have the potential to give

us a much greater understanding of the human mind. She defined creativity

as the ability to come up with ideas that are new, surprising, and valuable.

She distinguished a psychological (or personal) and a historical dimension of

creativity, highlighting the difference between what is novel for the individual

and what is novel for the entire society, culture, or world. Furthermore, she

introduced the notion of conceptual space, used to identify the three forms

of creativity acting on it (combinational, exploratory, and transformational),

described as the three roads to surprise, and she also addressed the key

issue of creativity itself: that is, value has potentially infinite meanings and

crucially, it changes over time. Since then (about the mid-1990s), interest in

creativity from an AI perspective (that is, CC) has begun to blossom. All this

led us to have a much better understanding of this phenomenon these days.

Creativity is no longer some mystical gift that is beyond scientific study but

rather something that can be investigated, simulated, and harnessed for the

good of society.

Currently, CC studies are pushing the limits of AI: investigating concepts

like autonomy and intentionality [226], and linking creativity also to emotion

and cognition [85]. It has been studied from numerous perspectives, includ-

ing philosophy, neuroscience, economics, and of course the arts. Nevertheless,

unlike many phenomena in science, there is no single perspective, viewpoint,

or standardized measurement technique. Creativity involves aesthetic, cul-

tural, and subjective values. As an aspect of human intelligence in general,

creativity is conceived as an individual’s ability to generate novel alternatives

that in turn may be used to solve problems and complete everyday tasks [39]

(little-c Creativity), contrary to the creativity limited to the rare minds or

geniuses, as was conceived in Plato’s days (big-C Creativity).

As a result, we ended with a conspicuous number of conceptualizations.
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The shared, relevant and fundamental traits of Creativity emerging from its

various dimensions are those of novelty, value (and surprise). However, as

said they involve multiple characterizations and interpretations; hence, the

next section present in more details the considerations adopted throughout

this thesis.

2.1.2 Domains of Creativity

Creativity research is broadly considered a low-consensus domain [208]. In

this context, it is not clear who is assessing creativity: is it the creator itself,

or a general, consensual agreement is required? While in a high-consensus

domain, such as Mathematics, these two perspectives may correspond, this

is not the case in the arts [24], for example. Hence, the most logical con-

clusion is to split creativity assessment into the personal and the collective,

under the assumption that they may not correspond [206]: this discrepancy,

for instance, is also highlighted by Boden’s distinction of novelties (men-

tioned above). In this view, the agent starts with some subjective judgment

based on their intrinsic motivations before looking for a consensual evalu-

ation. Once the artifact or idea has survived personal assessment, then it

has to deal with implementation, sociocultural factors, and domain-related

constraints (such as communication, or audience reception and appreciation),

which entail processes that are no longer related to individual creativity [136].

Another important distinction could be drawn, also, between implicit and

explicit domains in the agent’s mind. For instance, implicit processes are of-

ten thought to generate hypotheses that are explicitly assessed later on [96]:

this argument falls under the broader subject of dual-process theories of

thought and cognition [212, 94, 62]. Even if not new, in recent decades, this

perspective of thinking about the role of these implicit forms giving rise to

more structured, generalized, and even conscious knowledge has been increas-

ingly studied [90, 61, 78, 77]. For instance, some empirical studies have shown

that sleep promotes creativity, helping extract statistical regularities, solve

problems [172], and restructure associative memories [120]. In this spirit,
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using generalization or analogy among learned behaviors is a notable source

of creativity [116, 55, 99]. More importantly, the structure of the internal

representation (e.g., the links connecting nodes in a network representation)

strongly influences its ability to give rise to creative solutions [22]. From a

computational perspective, Creativity and the creative mechanisms coming

from explicit knowledge can be described accurately, and are available for

introspection. So they lend themselves well to direct implementation; this

is the realm of explicit theories and a fruitful scenario for applied CC. On

the other hand, it has been suggested that there is a substrate of implicit

processes which form the basis for cognition, thought, and creativity, where

computational models are beneficial for algorithmic investigations [95, 34,

125].

PRESS
(environment)

PROCESS     

PERSON

PRODUCT

IMPLICIT

Figure 2.1: Area of investigation of this dissertation (white), using Rhodes’s

taxonomy.

This thesis focuses on the psychological (or personal) dimension of cre-

ativity and its involved implicit processes. Using Rodhes’s taxonomy, this

research deals with the Process dimension [178], see Figure 2.1, and more

specifically with some of those processes that animate the intermediate stages
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of the creative process according to Wallas [186], those that do not require the

conscious presence of the agent: such as Incubation, Intimation, and Illumi-

nation. In particular, the focus is on the role of novelty, value, and surprise,

their divergent/convergent interplay, and the role of implicit knowledge and

its generalization (as a form of knowledge restructuring in incubation, sleep

or mind wandering). Hence, before going further, we need to clarify how

these definitions are construed throughout this thesis.

2.1.3 Novelty, Value, and Surprise

Concerning Boden’s definition [21] and broadly across the literature, the

necessary factors suggested for creativity (and even more importantly for this

thesis, for personal creativity [206])) are novelty, value, and surprise [208].

Still, these terms are often conflated with various meanings [190], hindering

research in this field. Trying to favor cross-pollination and interdisciplinarity

in this context, this section describes the practical connotations of these

factors and the theoretical choices for modeling the interested processes.

Value The issue of value [91] is perhaps the most complex and vexing one

in this context. While novelty and surprise are objective quantities, value

is not. Value has potentially infinite meanings that depend on aesthetic,

cultural, societal, and historical preferences; it has an ever-changing nature.

As stated earlier, this issue hinders creativity research.

Even in this case, two dimensions can be distinguished for the utility: an

internal, intrinsic one and an external, explicit one. In the former case, I’m

talking of the utility of intrinsically motivated agents; in the latter, I’m refer-

ring to environmental or context utilities. In intrinsically motivated agents,

for example, this utility comes from various theorized formulations such as

reduction in uncertainty, reduction of free energy, or curiosity–related to the

information gain obtained by the model for choosing that outcome. In this

case, theoretical formulations often exploit Bayesian Models or Information

Theory to estimate this quantity. This choice has theoretical and practical
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implications, which are not addressed in this thesis. The objective is to model

implicit processes at a computational level, so we wanted to stop here, where

implicit and explicit events start blending (e.g., the Illumination step). The

point here, sufficient for our objectives, is just the presence of a utility. This

issue is one of the first that needs to be explored with follow-up studies; i.e.,

what kind of utilities can guide the process at this implicit level? In particu-

lar, we want to explore another possibility: the interaction between implicit

and explicit, factual personal knowledge (of the agent) in idea verification.

Novelty As stated, we focused on personal creativity, so the adopted defini-

tion of novelty herein falls under this category, contrary to historical novelty

(see [21]). It is worth noting that we assumed that all creative sequences

are composed of previously known elements; that is, no pure novelty can

be generated. Without entering the philosophical debate [230], we assumed

that Ex nihilo nihil fit. In addition to this, our focus is on “sequential nov-

elty”; namely, we consider the novelty in the serial, sequential combination

of units. So we can safely proceed behind this debate. However, throughout

the thesis, various realizations have been investigated. In particular, two

characterizations for novelty were explored:

• dissimilarity : dealing with symbolic sequence, a first incarnation of

novelty is given by the inverse of string similarity. A similar version

has been also conceived to evaluate the novelty of a sequence respect to

a set of samples (as an average dissimilarity between the subject and

all the elements in the set), and for integer arrays, where this metric

translate into a Euclidean Norm.

• originality : a more cognitive interpretation of novelty, using a prob-

abilistic, connectionist model (i.e., Markov Chains), is represented by

the inverse of the probability that sequence has to be generated by the

model (what Simonton called the response strength)

It is worth noting the difference here. In the first case, novelty represents
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something different from the input material and distinct from the other gen-

erated artifacts as a form of diversity concerning the material (of the input

corpus or generated). In the second case–when ISL is introduced and so the

personal, probabilistic knowledge–novelty assumes the meaning of original-

ity concerning the learned internal knowledge of the individual; that is, it is

based on the ”capacity” of the individual to generate that outcome.

Surprise If within the two-factor definition surprise is not present (or often

absorbed within novelty definition) [190], for a personal account of creativity,

we need three factors, and we need to distinguish surprise from novelty as

we will see. Surprise comes into play when we introduce ISL and the agent’s

knowledge. However, in this framing (that of Simonton), surprise needs

utility. Surprise is fundamentally different from novelty; it is specified as the

variation in beliefs about the utility [206]. In other words, the uncertainty

the agent has on the utility (tested later on) of that outcome; that is, it

measures the effects of knowing the value of the produced artifacts.

2.1.4 A Process Theory of Personal Creativity

One of the most compelling theoretical approaches for modeling personal

creativity has been put forth by Simonton, working upon Campbell’s Blind

Variation and Selective Retention (BVSR) theory [204, 29]. The BVSR the-

ory is a two-step process–as much as the convergent/divergent2 thinking [87]–

the first step is that of blind or unsighted generation of idea alternatives; the

second stage is that of selecting and retaining the most useful ones. Si-

monton proposed a blind-sighted continuum along which creative ideas may

lie [207]. He posits that creativity is something that is not only novel and

useful, but it should also involve an element of surprise. In other words, blind

means unsighted or unplanned or something which is not expected before-

hand. Namely, something that surprises us with a meaningful result. Thus

blindness exists to ensure surprisability; there is no creativity if we already

2two basic opposed mechanisms for exploring and reducing/selecting solutions
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know the outcome. Variation means recombination or transformations: it is

the mechanism for generating new and novel variants. That is, it serves nov-

elty or originality. Selection necessitates utility. It means separating suitable

and meaningful ideas from those that are novel but inappropriate or not use-

ful, based on either internal/external or subjective/objective criteria. Finally,

retention means developing, validating, and implementing the selected idea.

More importantly, while the first three elements may work unconsciously,

retention deals with domain-related, specific, and explicit, conscious actions,

so it is not relevant to the creative process and, as said earlier, to this thesis.

Several criticisms have arisen about creativity as BVSR: a debated issue,

for example, regards whether creativity is a blind or sighted process, e.g.,

contrasting hindsight or foresight ([229, 74] are only few examples). Centrally

here, these scholars have suggested that although individuals cannot foresee

the entirety of their final ideas at the start of the creative process, they may

have a rough vision for what their initial ideas could become, enabling them

to predict the potential creativity of their initial solutions with some degree

of accuracy [16].

Within the current approach, we give an interpretation that could shed

light on this argument, showing that blind (at least in our case) means ”im-

plicitly guided”: namely, it involves randomness guided by implicit experi-

ence.

2.2 Implicit Statistical Learning

Implicit Statistical Learning (ISL) refers to the general, implicit and ubiq-

uitous ability of the brain to encode temporal and sequential phenomena,

and more generally, to grasp the regularities in the environment, in an au-

tonomous and unsupervised way, often without awareness [198]. This ap-

proach results from the recent attempt to unify two research venues in psy-

chology and cognitive science, namely Implicit Learning (IL) and Statistical

Learning (SL) [160, 32], manifesting the existence of various interpretation
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for the same set of phenomena [159]. Implicit Learning refers more in gen-

eral to mechanisms and knowledge, in the brain, that are unconscious [172].

Statistical Learning, on the other hand, was initially introduced for language

acquisition, and it is now invoked in various domains of psychology and

neuroscience to account for the human ability to detect and use statistical

regularities present in the environment [188]. Importantly, the central tenet

of SL involves the detection of transitional probabilities (TPs). Seminal ex-

periments, exploring this phenomenon in the acquisition of spoken language,

showed that infants are sensitive to TPs of syllables in a continuous speech

stream [187]. It has been shown also that these mechanisms could be ac-

count not only in developmental phases of children, but also for large-scale,

more real languages [67]. Furthermore, it is not specific to a domain or

modality only, contrarily evidence has revealed similarity and differences in

SL across the senses [37]. Moreover, SL is studied over species too [189]:

many animals are sensitive to distributional statistics, which suggests that

learning from distributional statistics is a domain-general ability rather than

a language-specific one [5]. A number of studies have suggested that these

are basic, robust, and general mechanisms important especially in develop-

ment and rule-learning [36], social interactions [70] and even for conscious

awareness [61, 84].

By now ISL is considered a cornerstone of cognition [103] and it has

become an important building block of virtually all current theories of infor-

mation processing, encompassing a complex suite of computations [71]. It

has been recently suggested that incidental and automatic learning of tem-

poral transitions between adjacent regularities does not depend on the use

of prediction errors; instead, it may be a direct function of the amount of

exposure, taking place at any time in our life in a variety of our daily activi-

ties (e.g., motor learning, social interactions) [146]. Moreover, it seems that

the independence from prediction errors enables learning of additional con-

tingencies which might otherwise not be learned. At the computational level,

such learning mechanism is compatible with chunking models of statistical
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learning [162], which may be implemented in functionally specific areas [36].

More remarkably, it has been suggested that improvisational musical cre-

ativity is mainly formed by implicit knowledge. The brain models music—

and other sequential phenomena such as language or movements—as a hier-

archy of dynamical systems encoding probability distributions and complex-

ity [42]. ISL also plays a role in the production of sequences (e.g. notes or

actions); from a psychological perspective, transitional probability distribu-

tions sampled from music may refer to the characteristics of a composer’s

implicit knowledge: a high-probability transition may be one that a com-

poser is more likely to predict and choose, compared to a low-probability

transition corresponding more to an unusual variation [45].

Even more important to what is being discussed, creativity is mainly

formed by implicit knowledge [233] and the effects of ISL are related also to

acquisition of expertise in music [163] and movements [153].

Inspired by these extensive literature, which reflects the pervasiveness of

ISL, especially regarding computational approaches like [133], we adopted

this framework for emulating implicit sequential learning and creativity. An-

other motivation is that, although some models of ISL are present in litera-

ture (e.g., PARSER [162], SRN [57], or TRACX [68]), at present there is little

experimental evidence regarding learning performance of complex streams,

and what the underlying mechanisms and computations for such learning

might be [71].

Perceptual and Semantic Chunking The main issue of ISL revolves

around the formation of chunks, or, more extensively, cognitive units [159].

However, the literature on chunking comprises diverse areas of research. As

a consequence, the concept of chunk has different meanings [79]. A number

of works argue that there is a basic perceptual or sensorimotor chunking

that groups sequential stimuli during sequence processing [80, 216]. This

differs from the traditional Miller’s notion of chunking [138], central concept

of cognitive psychology, which involves a conceptual or semantic re-coding



20 2. Background

of information. It is essentially defined as a strategy to enhance memory by

grouping items in terms of varying semantic attributes. Perceptual chunking,

on the other hand, is an automatic perceptual process that is domain-general

and that creates groups in sequential stimuli. Such grouping is commonly

observed in sequence learning tasks [76]. For the sake of clarity, in this thesis

we always refer to perceptual chunking in serial processing, unless explicitly

stated.

2.2.1 Chunking and Segmentation

As mentioned, ISL comes from the union of two research venues that fa-

vor different interpretations for chunk formation: IL focuses on the selection

of chunks meanwhile SL focuses on the computation of transitional probabil-

ities aimed at discovering chunk boundaries. On the one hand, chunk learn-

ing has been widely considered to drive the implicit acquisition of cognitive

and motor skills [80], suggesting that implicit learning can result from chunk

learning–where a sequence is perceived as short segments, and the concatena-

tion of these segments leads to the acquisition of the sequence. On the other

hand, implicit sequence learning can arise from statistical learning: that is,

the ability to extract the statistical regularities of sensory input across time

or space [12]. In literature, the other two terms used to explain the difference

between these approaches are clustering and bracketing. Clustering mech-

anisms rely upon merging high-frequency co-occurring elements as a single

unit; bracketing (or boundary-finding) mechanisms work by identifying low-

frequency co-occurring elements that correspond to the boundaries between

discrete units [170]. Nevertheless, both approaches result in the acquisition

of unsegmented input streams. Throughout this thesis, we generally refer

to them as chunking and segmentation: by referring to the memorization of

the joined units and the statistical boundary discovery mechanism used to

discern them, respectively.

In any case, it remains unclear what are the roles of these mechanisms

that underlie this type of learning and how they interact. [53] suggested
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that the initial acquisition of implicit sequences may arise from (first-order)

statistical learning rather than chunk learning. Similarly, [1] demonstrated

that statistical learning and chunking are two successive stages in implicit

sequence learning with chunks inferred from prior statistical computations.

However, in [160], the authors described three possible scenarios. The first

case is that statistical computations and chunk formation are independent

processes (with the premise that chunk formation is responsible for conscious

knowledge, and statistical computation for improved performance in implicit

tasks [137, 103, 102]). The second possibility is that statistical computa-

tions and chunk formation are two successive steps in the learning process.

Chunks would derive from prior statistical computations. Typically, chunk

boundaries are defined as the points where the predictability of successive,

or spatially contiguous, elements is the lowest. The third possibility is that

chunking is the only effective process and that sensitivity to the statistical

structure is its byproduct.

Nevertheless, there is another possibility. Namely that the computation

of statistics and chunking are parallel components, working together during

learning. An example of this is the Chunk-Based Learner (CBL [133]) model.

2.2.2 Attentional and Memory Mechanisms

Perhaps the most paradigmatic example of chunking is represented by

PARSER [162]. This model shows how the sensitivity to statistical regu-

larities can arise from the extraction of chunks. In particular, how parsing

emerges as a consequence of the attentional processing of the input and essen-

tial laws of memory and associative learning; initial segmentation is supposed

to depend on various cognitive-perceptual factors (such as prior experience,

vigilance, or saliency) but not on the computation of transitional probabili-

ties, as instead has been suggested since Saffran’s studies [187]. This method

exploits a memory-based approach in which chunks emerge from the inter-

play between attention, decay, and interference. In particular, correct units

originate from attention and decay, and the sensibility to (forward and back-
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ward) TPs arises from interference. In conceiving PARSER, authors have

suggested that correct parsing emerges as a consequence of the organization

of the cognitive system. That is due to the interplay of two principles: (i)

perception shapes internal representations, and (ii) internal representations

guide perception. The result is that perception builds internal representa-

tions that, in turn, guide subsequent perception. The relevant units emerge

through a natural selection process because forgetting and interference lead

the human processing system to select the repeated units among all the

other parts initially generated by the chunking of the material but no longer

encountered. The second principle ensures the convergence of the process

toward an optimal parsing solution.

2.2.3 Generalization and Abstraction

Another compelling aspect originating from the discussions around ISL

regards the extension of learned statistical structure to unseen stimuli. In the

literature, it is mentioned as the generalization, the abstraction, or the trans-

fer of learned knowledge [3]. A distinction across the three terms, however,

exists. While the broader term “transfer” refers more to the application of

learned patterns to novel domains and modalities [72], the difference between

’abstraction’ and ’generalization’ is more subtle. Often abstraction is used to

refer to two different but often related concepts. On the one end, it describes

the process by which individual details of an episode are lost (resulting in

representations separated from the underlying perceived elements). On the

other hand, it represents the accumulation of information across individual

learning episodes that gives rise to knowledge that, although not necessarily

contained within any episode, captures (statistical) regularities across those

episodes. In [218] it is called “integration”, and is studied, for example, in

humans during sleep [83, 101]. Again, for clarity, we use the term “general-

ization” throughout this dissertation as we discuss mechanisms more similar

to the latter case.

Thus, generalization in ISL is often driven by local stimulus properties and
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similarity: rather than by the extraction of abstract rules [72]. Primarily in

language acquisition [188, 8], but also elsewhere [116], scholars have suggested

that statistical computations are exploited for generalization purposes. In

particular, using distributional statistics, learners could grasp higher-order

relations that lead to the discovery of categories (e.g., form classes in language

acquisition [219, 7]). In [8], the authors showed that learners’ tendency to

generalize depended on the degree of overlap among word contexts in the

input: the consistency of contextual cues leads learners to generalize rules to

novel strings; their inconsistency keeps learners from generalizing and thus

treats some strings as exceptions. The intriguing point put forward in these

studies is that, from this viewpoint, statistical learning and rule learning are

not different mechanisms [154]; that is, distributional statistics (i.e., how the

context cues are distributed across the input) determine whether forming a

rule or learning specific instances [6, 174]. According to these hypotheses,

statistical learning is a single mechanism whose outcome applies either to

elements or to generalization beyond them, and importantly this trade-off is

accomplished without instruction, depending on the structure of the input

itself.

2.3 Computational and Cognitive Models

This section briefly discusses some aspects involved with the computa-

tional modeling of cognitive functions. In particular, the importance of com-

putational models for cognitive studies [49], the roles of Statistical Learning

and Transition Probabilities–as the central tenets of this thesis–and the mo-

tivations for the symbolic approach adopted.

Marr’s (three levels of) analysis already highlighted the importance of

computational models for cognitive science [132]. For Marr, referring to

computational or “functional” means addressing what a complex system is

doing at a higher level to find out how then, at lower levels, it accomplishes

that task. In other words, we often need to know the function of the analyzed
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system to understand what aspects to look at in the lower implementational

or physical details (neural or other). In this view, computational models offer

two main advantages to cognitive science. First, they force the researcher to

thoroughly specify all the required assumptions: thus, including all of the

otherwise overlooked aspects. Secondly, they can produce the same sort of

data as human subjects. Namely, the same statistical analysis can be con-

ducted on both the observed data and the data from the model. These are

salient features for cognitive science [213] and can be attained only if the func-

tional architecture of the model and operations are readable, interpretable,

and transparent.

More importantly, computational approaches help demystify human cre-

ativity favoring insights into the underlying mechanisms and their character-

istics [134]. Furthermore, as stated in [34], they play a central role also in

the investigation of implicit learning paradigms: (i) by making predictions

comparable between models; and (ii) by making it possible to explore how

specific mechanistic principles can offer unitary accounts of the data.

Additionally, in these respects, the use of robot systems introduces phe-

notypic and environmental constraints similar to those that living beings

have to deal with; this is in line with modern brain theories [2, 164], which

emphasize the importance of closing the perception-action loop between the

agent and the environment [182]. Conversely, on the AI side, these kinds of

embodied cognitive approaches could favor the study of symbol emergence

in robotics [215, 214].

In conclusion, to build socially intelligent robots and favor the mutual

pollination between AI and cognitive science, joining forces across these dis-

ciplines is paramount [232] and computational models are the appropriate

means to do this.

2.3.1 Transitional Probabilities and Markov Models

In ISL literature, Transitional Probabilities (TPs) represent a type of

sequential statistics found between words’ parts (e.g., syllables) that predict
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the occurrence of the next (or the previous) unit [92]. Thus, the probability

that one syllable followed another within a word or phrase. Initially, by using

the term Statistical Learning (SL) to describe this phenomenon, Saffran and

colleagues [187] showed that infants were able to compute these probabilities

in a continuous stream (generated by an artificial grammar) to discover word

boundaries. The gist is that artificial language, as natural languages, are

statistically structured [165]: the TPs between syllables composing a given

word (like ”on-ce” or ”up-on”) were higher than those overlapping two words

(like “ce-up”), hence making TPs a reliable cue for sequence segmentation.

TPs are the conditional probabilities of the next element given the pre-

ceding element, like the transition probabilities investigated by Markov that,

in turn, are rooted in the context of Information Theory [128]3. Due to

their sequential nature, Markov Models (MMs) are well fit to describe the

succession of events in a sequence (e.g., notes, moves, words). Throughout

this dissertation, we explored mainly high-order and variable-order Markov

chains: so we refer to them generally as Markov Models, also referred to as

n-gram models in Computational linguistics [26]. In representing transitional

probabilities, they lend themselves well to modeling ISL and sequential phe-

nomena. Markov chains are easy to analyze/understand (they eliminate the

label bias problem, for example) and their underlying theory is sound and

elegant. They can also form the basis for more sophisticated frameworks

(Bayesian analysis/inference, for example). In addition, they are genera-

tive and powerful inference tools. As a result, plenty of works used MMs

in music [197] and many other sequential domains. Furthermore, in MMs,

the same statistical principles are used both for producing sentences and for

evaluating the probability that a given sentence could have been produced

by the model. That is an essential capability for language models [117], for

instance.

3Shannon made great use of Markov chains. However, he went beyond Markov’s work

with his information theory application.
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2.3.2 The Symbolic Approach

The ongoing debate between symbolic and connectionist approaches rep-

resented one of the fundamental discussions in AI: see [81] for some recent,

related considerations. Importantly, there was a misleading perceived asso-

ciation between symbolic rule processing with conscious mental processing,

on the one hand, and the computations of NNs (or other sub-symbolic ap-

proaches) with intuitive/nonconscious cognitive processes on the other [123].

Hence, this section motivates the choice of using a mostly-symbolic approach.

However, it is worth noting that we made no strong assumptions on this,

aiming at making the least possible number of hypotheses. On the contrary,

we believe these two paradigms are complementary: in this sense, the re-

cent developments of hybrid approaches (e.g., neuro-symbolic AI or Markov

Graphs [98]) favor this perspective. For instance, connectionist approaches

(e.g., autoencoders or transformers) can be exploited at the perceptual level

for elaborating the signal coming from different sensors (e.g., mapping and

classification). Then, a symbolic model such as the present one could be

employed to investigate the relations between those classified signals coming

from the lower sub-symbolic level.

In addition, the symbolic approach fits well with this specific context (and

aims) since chunking arises naturally within symbolic models of cognition,

where atomic elements of information are combined into single units [79].

Furthermore, using symbolic models for cognitive tasks brings other generic

advantages. They have clear syntactic structures, the results are easy to un-

derstand, and they can be represented explicitly as production rules. All

this allows for further additions of processes and integrations of the acquired

knowledge with other (implicit and explicit) knowledge and modules [124].

On the other hand, artificial neural networks require parameters to be set,

including the network structure, the initial weights, the number of hidden

units, the number of layers, the learning rate, or when to stop training; this

strategy intrinsically involves making assumptions. In addition, the trained

networks are usually hard to understand. It is also hard to imagine how the
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acquired knowledge, stored in weights, can be integrated into higher-level

modules. Within a symbolic approach, incremental, unsupervised, cognitive

approach instead, the parameters used in the model are those variables that

have to be probed with followups experiments of the model (e.g., parameters

for decay, interference, propensity to generalize) [123]

Moreover, the statistical learning mechanism modeled throughout this

thesis is intrinsically ubiquitous in the brain, and domain-general, working

on different kinds of information at various levels, or areas, of the hierarchy

of brain processes [12]. These features make one refrain from using NNs for

their lack of modularity and generality.
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Chapter 3

Computational Generations

As stated in the introduction, the most general interpretation of creativity

involves at least two main traits: novelty and value. Nonetheless, these two

terms contain various meanings and characterizations: the former involves

unexpectedness, unpredictability, surprise, and originality meanwhile the lat-

ter stands for usefulness, quality, appropriateness, and meaningfulness [190].

For instance, similarity is not the same as quality, usefulness, or appropri-

ateness (it is the actual use of the artifacts that validates its usefulness), and

novelty is not the same as surprise (the former involves artifacts, the latter

is related to the individual).

This is an important point here. Keeping in mind that we want to model

personal and implicit creative processes, we need to distinguish between what

comes before and what comes after the actual assessment, what happens in-

side the agent and what happens externally, and what are the different driv-

ing forces in these steps. Concerning personal creativity (P-creativity), the

actual usefulness and quality of an artifact are assessed after the agent had

come up with that brilliant but drafted idea, and implemented it, putting

effort into its realization: thus, involving processes that have nothing to do

with creativity. Moreover, this kind of quality is often judged externally, by

other agents (for H-creativity). In addition, even within the personal realm

of creativity, there is at least another distinction: namely, the difference be-

29
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tween implicit and explicit (processes and) knowledge. An agent can use

its explicit, factual knowledge to (mentally) validate hypotheses, however,

the illumination (the insight, the ”ah-ha” moment) comes out in a flash

just because an idea was generated implicitly, without explicit awareness of

the agent, and so the forces driving the internal, implicit processes must

have nothing to do with external or explicit utility. This point reflects the

approach and motivations of the dissertation: in fact, our last effort ends

where explicit or external utility must be invoked to reach applied, practical

creativity (see the next chapter). For these reasons, we decided to employ

similarity and novelty as domain-general, utility-independent forces for sim-

ulating convergent and divergent behaviors, respectively.

Within these assumptions, the first studies were carried out with a focus

on computational aspects to investigate the role of some of these fundamental

mechanisms for CC. The objective was to explore essential dynamics rising

by the interplay of the mentioned basic components of creativity. The roles

that deserve particular attention are those of: (i) similarity and novelty in

the divergent/convergent process, as they form two core processing states

in creative thinking and problem-solving; (ii) TPs at different orders, for

investigating ISL; (iii) generalization, as an important source of creativity.

We studied these factors exploring some CC applications in artistic con-

texts where creativity and implicitness are pervasive: (robot) movements (or

choreographies) and (artificial) music.

To summarize, adopting a purely exploratory, algorithmic perspective, we

conducted some simulations on computational methods for generating (sym-

bolic) creative sequences in evolutionary art settings and then built the first

experiments on the relations between novelty and similarity. Afterward, we

exploited statistical information to enhance both similarity assessment and

the generative procedure and to explore the possibility of an adaptive nov-

elty search for this framing. Finally, a generalization step was introduced,

acting on the learned statistical model, and investigated its effects on pro-

duced sequences. These computational investigations produced a series of
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algorithms for sequence generation (NohGenerator1, NohGen22, NohGen33)

and the essential elements to conceive the psychologically-inspired model of

the next chapter.

In the following, the computational steps and the results of these ex-

periments are discussed. The cognitive model, and its psychological-related

features, will be presented in the next chapter.

3.1 Robot Moves: Similarity and Novelty

We started investigating the relationship between similarity and novelty,

trying to comprehend their functions in the creative process and their distinc-

tions from the perspective of the individual and implicit processes involved.

With these assumptions, we decided as an interdisciplinary research group

to explore the generation of robot choreographies for the Nō theatre, a tradi-

tional form of classical Japanese musical drama. We conceived a novel fitness

function for evolutionary art, which generates sequences of movements—i.e.,

robot choreographies—based on similarity to an inspiring repertoire. The

convergent behavior induced by similarity is, in turn, counterbalanced by

a novelty mechanism, which makes it possible to sample unexplored areas

of the choreography space. Part of this work was published in [9]. In the

following, this approach is discussed together with the achieved results.

3.1.1 Materials and Methods

Genetic algorithms are powerful tools for searching in unknown prob-

lem spaces. According to BVSR principles of creativity, creative ideas must

be generated without full prior knowledge of their utility values [205, 206].

Herein, genetic algorithms offer a natural setting for the blinded-divergent

and selective-convergent mechanisms involved in the creative process, terms

1https://github.com/mattia-barbaresi/NohGenerator
2https://github.com/mattia-barbaresi/NohGen2
3https://github.com/mattia-barbaresi/NohGen3

https://github.com/mattia-barbaresi/NohGenerator
https://github.com/mattia-barbaresi/NohGen2
https://github.com/mattia-barbaresi/NohGen3
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of diversification and intensification [19]. The evolutionary approach is itself

an exploratory process: the combination of two individuals from the popula-

tion pool is a combinational process, but the use of a fitness function guides

the exploration toward promising areas of the conceptual space, which is

bounded and defined by the genetic encoding of the individuals. Losing the

fitness function, or having one unable to guide the exploration effectively, re-

verts the mechanism to pure combinational creativity, where elements of the

conceptual space are joined and mutated, hoping to find interesting unex-

plored combinations. We conceived a genetic algorithm (GA) which, starting

from a given inspiring repertoire and a set of unitary moves, generates sym-

bolic sequences of movements (i.e., choreographies) exploiting similarity with

the repertoire combined with the novelty search approach [228]. The idea

was to start from a simple, basic system that includes primitive but essential

mechanisms for creative generation, then increasingly add features that en-

hance the creative potential of the generative system to evaluate the effects

these modifications have on the metrics used for the assessment.

To do this, we conceive a fitness function that evaluates the average sim-

ilarity of an individual from the samples in the inspiring set. The entire

generation process is guided by the novelty search approach described in

[228]. These choreographies are performed by a (virtual) Nao robot4 using

CoppeliaSim5 environment.

Encoding

We represent a choreography as a sequence of basic moves (i.e., figures or

poses). Each figure is stored as a single keyframe (from motion capture data)

that specifies the position of each captured joint and is encoded as a symbol.

Therefore, in our representation, choreographies are sequences of symbols.

Hence, the GA generates strings (symbol sequences) mapped to keyframe

series (sequences of joint angle sets). The actual movement of the robot is

4Softbank Robotics: http://doc.aldebaran.com/2-1/home_nao.html
5Coppelia Robotics: https://www.coppeliarobotics.com

http://doc.aldebaran.com/2-1/home_nao.html
https://www.coppeliarobotics.com
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produced by the transition from one keyframe to another. Only steady poses

are encoded, and we assume that the transition between stable moves is also

stable, taking advantage of the typical gentle style of Nō movements. This,

in general, represents a limitation for robot movements in real applications

(e.g., some moves or transitions could make the robot fall) but runs well for

our purpose.

Inspiring Set and Similarity

In general—but especially when dealing with artistic problem modelization—

it is not trivial to conceive a (fitness) function that fully captures all the

problem objectives. What is valuable? And how a choreography can be

judged as more valuable than another? Note that in this case, we use the

term value as a synonym of typicality or membership. The value, the quality,

of an artifact will usually be assessed by other agents’ (humans) judgment

and will be based on cultural experience and knowledge, and hence are likely

to reflect historical comparisons of the artifacts. These aspects refer more

to the H-creativity [22] and will be addressed in future work. To model this

aspect in this first attempt, the idea is to take a sample repertoire and eval-

uate each individual through its similarity to such a given set. The inspiring

set represents choreographies that the robot, or the dancer, knows about a

particular style or repertoire, which is the knowledge from which the artist

pursues its style and creates new pieces. As a first step, we created the reper-

toire by manually encoding typical sequences of moves (kata) that have been

performed by a Nō expert.6

Therefore, the fitness function evaluates sequences using string similarity

between individuals and this repertoire. In formulas:

fitness(x) =
1

card

card∑
n=1

similarity(repertoire[n], x) (3.1)

similarity(x, y) = 1− JW (x, y) + Jacc(x, y)

2
(3.2)

6https://site.unibo.it/performingrobots/en/project/activities



34 3. Computational Generations

where card = |repertoire| is the cardinality of the repertoire (i.e., the num-

ber of sequences forming the repertoire), repertoire[n] is the nth element of

that inspiring set and where the similarity is formulated as the combination

of Jaro-Winkler and Jaccard [118] string distances, respectively JW (x, y)

and Jacc(x, y) in equation 3.2. Similarity can be thought of as the conver-

gent process in the generation that constrains the resemblance of generated

artefact to given samples.

Novelty Search

Convergent/divergent thinking is a characteristic of creativity; to model

these dynamics, we include a novelty search mechanism that guides the gener-

ation in the opposite way with respect to similarity. The novelty mechanism

is inspired by the work of Vinhas et al. [228]. The main goal of this algorithm

is to generate a more diverse set of individuals than the set that would be

created by a traditional fitness based evolutionary algorithm. The method

evolves individuals according to two criteria: (i) look for the best individ-

uals according to the fitness function and (ii) take novelty and fitness as

two different objectives to be maximised using a Pareto optimization. This

bi-objective optimization is performed considering the number of individuals

of the current generation that have a fitness above a given threshold. It uses

also an archive to store the most novel individuals. The novelty score is then

calculated as

novelty(x) =
1

k

k∑
j=1

dissim(x, j) (3.3)

where dissim(x, j) is a dissimilarity metric, between the individual being

evaluated and a set of k neighbours chosen from the population and the

archive. We implemented the dissimilarity metric by complementing the

similarity function.
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3.1.2 Results

We tested the algorithm by varying several parameters, among which

the size of the repertoire, and we compared the results of the combined use

of similarity and novelty with simple fitness-based GA results and random

search—which may represent a naive way of producing a divergent process.

As expected, the overall similarity slightly decreases with the size of the

repertoire, meaning that the search process achieves a similarity balance

between the generated individuals and the ones in the repertoire. The drift

imposed by novelty turns out to be effective, as the best choreographies

generated are usually sensibly different among themselves, considerably more

diverse than those generated at random. Some samples of the choreographies

can be found here: https://github.com/ste93/NaoNohVideos.

3.1.3 Discussion

In this section, we examined the role of novelty and similarity in a divergent-

convergent thinking scenario as the driving factors for sequence production.

We tried to tackle the problem of using metrics that are general enough but

effective for this task. This strategy is fruitful since GAs, combined with a

symbolic approach, provided a good testbed for these explorations: there are

no learning-related problems since the procedure works in a batch mode, and

the mechanisms for variation it uses are domain-general (string mutation and

recombination).

The similarity with the repertoire, seen as typicality or membership, en-

sures a certain grade of convergence toward input samples, and novelty, as

originality, is the explorative/divergent drive for creativity, more than ran-

dom that has no direction; novelty aims at finding dissimilar samples from

the known and selected ones. This type of force operates as the (learning-

oriented) case of curiosity in literature: to explore unknown, non-conventional

alternatives.

Currently, we are performing a quantitative assessment of the choreogra-

https://github.com/ste93/NaoNohVideos
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phies by applying information theory and complexity measures. These met-

rics make it possible to capture relevant features of the choreographies that

can be used both for identifying their peculiarities and differences (and pos-

sibly comparing the fingerprint provided by the metrics with human evalua-

tion) and derive some heuristics for improving the generation process. This

approach is analogous to that recently proposed for swarm robotics [181].

Among the metrics we are currently applying, we mention the Normalized

Compression Distance [122]—which is an alternative to similarity and is

based on Kolmogorov complexity—and the Set-based Complexity [75], which

is aimed at reckoning the heterogeneity of an ensemble of non-random strings.

3.2 Evolutionary Music: entering ISL

Some works have suggested that musical creativity is mainly formed by

implicit knowledge. The hypothesis is that the brain models music as a

hierarchy of dynamical systems encoding probability distributions and com-

plexity [42]. These distributions sampled from musical pieces may refer to

the characteristics of a composer’s implicit (statistical) knowledge: a high-

probability transition may be one that a composer is more likely to predict

and choose, compared to a low-probability one corresponding more to an un-

usual variation [45]. Based on these assumptions and aiming at engineering

more human-like and creative computational procedures, in this study, we

combined implicit-knowledge mechanisms with novelty search in a genetic

algorithm to emulate an agent’s effort to produce novel and appealing se-

quences of actions (musical pieces). The resulting series have to be, at the

same time, both familiar (concerning the knowledge initially provided) and

novel. Using Markov chains, we have integrated implicit statistical knowledge

extracted from music corpora with an adaptive novelty search mechanism.

Part of this work was published in [10]. The reminder of this section de-

scribes the algorithm along with the main design choices. Results are shown

in two distinct musical contexts: Irish music and counterpoint compositions.
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3.2.1 Related Work

The applications of Markov chains in music have a long history dating

back to the 1950s [167]: for detailed reviews on AI methods in music, or other

examples and techniques, see [30, 143, 97, 126, 64]. Similarly, evolutionary

computation has been used for generating music since long [100, 18], and

there are currently several systems that produce music through evolutionary

techniques [17, 144, 126].

From our perspective, however, music generation is just a case study: we

focus on modeling a general (context-independent) method for generating

sequences (not limited to music) based on implicit mechanisms. In addi-

tion, the search towards creative potential represents a different approach in

contrast to the more common optimization practice, as the objective func-

tion tries to capture several, somehow subjective, features of the piece of art

produced. However, some of the latest and most comparable approaches to

this work are perhaps those in [155, 56, 106]. Continuator is an interactive

music performance system that accepts partial input from a human musi-

cian and continues in the same style as the input [155]. The system utilizes

various Markov models to learn from the user input. It tries to continue

from the most-informed Markov model (higher-order), and if a match is not

found with the user input, the system continues with the less-informed ones.

In [56] the authors describe a method of generating harmonic progressions

using case-based analysis of existing material that employs a variable-order

Markov model. They propose a method for a human composer to specify

high-level control structures, influencing the generative algorithm based on

Markov transitions. In [106] the authors propose to capture phrasing struc-

tural information in musical pieces using a weighted variation of a first-order

Markov chain model. They also devise an evolutionary procedure that tunes

these weights for tackling the composer identification task between two com-

posers. Another work is that of GenJam [18]. It uses a genetic algorithm to

generate jazz improvisations, but it requires a human to judge the quality of

evolved melodies. Finally, GEDMAS is a generative music system that com-
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poses entire Electronic Dance Music (EDM) compositions. It uses first-order

Markov chains to generate chord progressions, melodies, and rhythms [4].

3.2.2 Materials and Methods

In the work presented in the previous section, we conceived a genetic al-

gorithm (GA) which, starting from a given inspiring repertoire and a set of

unitary moves, generates symbolic sequences of movements (i.e., choreogra-

phies) exploiting similarity with the repertoire combined with the novelty

search approach. In this work, we discuss an adaptive genetic algorithm

combined with Markov chains—built up from a corpus of music excerpts.

The algorithm evolves the parameters (weights) of a constructive procedure

that acts on the model and produces new pieces of music that are intended

to be novel variations upon familiar music. In addition, the model is used

also for evaluating the similarity (the objective function) of generated se-

quence to the starting knowledge: in this case, the unbiased model was used,

that is, without using weights. In this contribution, we build upon the nov-

elty approach and we make it adaptive to make it independent from specific

ranges of the functions involved in the algorithm. When the objective func-

tion stagnates for several consecutive iterations, novelty search is applied

to move away from that local minimum. On the other hand, when novelty

causes the fitness to diverge–more than a certain amount from the last best

value found–novelty is turned off. Algorithm 1 shows the main loop, and

Algorithm 2 shows such a procedure.

Markov model: chains and score

Markov chains allow us to grasp the statistical structure of sequential phe-

nomena (i.e., music, movements) but also statistical learning and knowledge

in humans [46]. It has been observed that transitional probabilities sampled

from music (based on Markov models) may also refer to the characteristics

of a musician’s statistical knowledge and capture expertise and temporal in-

dividual preferences in playing music [44]. We consider here sequences of
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symbols from a finite alphabet, which can represent e.g. melodies. To model

this implicit knowledge, we computed the Markov chains with memory m

(or Markov chain of order m) up to the m = 5 order7 starting from a set

of musical pieces. For each order m, transitional probabilities are computed

for each excerpt as frequency ratios: P (y|xm) = #xmy
#xm

, given a symbol y

and a (sub-)sequence xm (the past) of length m, where xm → y is the in-

spected transition. Thus a transition matrix is calculated for each order,

where rows are the contexts (pasts, or memories) and columns are the next

inferred/emitted symbol. Every matrix has a variable dimension since the

number of rows changes with the number of contexts (ngram) found in each

model order. Columns instead are fixed since feasible symbols are those of

the 0th-order (thus, no context) model; that is, the number of symbols the

model has ever seen and that it knows. This model is used with (evolved)

weights to generate sequences (phenotype) and without weights (in its orig-

inal form) to evaluate the similarity of the generated sequence and, indeed,

the inspiring corpus. The role of the GA is to bias the model (in fact, its

production) toward a trade-off between already-known sequences and new,

novel ones. As we increase the context size, the probability of the alphabet

becomes more and more skewed, which results in lower entropy. The longer

the context, the better its predictive value.

Objective function

The objective function captures the familiarity (or the membership, the

similarity) of a sequence with respect to the Markov model resulting from

the (inspirational) musical corpus. So given a sequence X = x0x1...xn the

Markov score is defined as the product of TPs of symbols in the sequence

score(X) = P (x0)× P (x1|x0)× P (x2|x0x1)× ...× P (xn|xn−m...xn−1) (3.4)

7In the data we used, orders higher than 5 are not “expressive” because of the data

limits and structure: at some point, higher orders contain about the same information

held in the previous ones.
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where xn−m...xn−1 is the (past) sequence of length m up to the (n − 1)th

symbol. For a given chain, it might happen that a transition (past→ symbol)

does not exist. If that actual past does not match a transition in that current

order, we shorten the past (xn−m...xn−1 becomes xn−m+1...xn−1) and move

down an order (i.e., a chain), looking at shorter contextual information to

guide the generation. Finally, we apply the negative logarithm to the Markov

score and turn the GA objective into a minimization problem:

minimize
X

: − log(score(X)) (3.5)

Encoding

The GA manipulates the parameters of a randomized constructive proce-

dure that acts on the Markov model. The genotype is an array of 6 decimal

elements—that sum up to 1— representing the weights to assign to each

computed chain in the Markov model. Namely a weight i for each ith-order

Markov chain (i.e., a categorical distribution for the chain choice), as in

Table 3.1. Every positional value of the array weights the probability of

Table 3.1: Example of an individual

w0 w1 w2 w3 w4 w5

0.0 0.3 0.05 0.4 0.2 0.05

the corresponding order in the model when generating a sequence. Notably,

these arrays weigh a Monte Carlo process that selects, for each symbol to

be emitted in the generation, the order–i.e., the Markov chain–to look at

when looking for the transitions to produce it. The phenotype indeed is rep-

resented by all sequences generated by the model with that given array of

weights (the individual of the GA).

Adaptive Novelty Search

To steer the generation towards novel productions, we followed the novelty

search already explored in [9]. This algorithm is applied to compensate for
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a lack of diversity concerning the best individuals already found. It consists

of a bi-objective optimization activated when the main objective (e.g. the

fitness) stagnates. The novelty is computed as the mean L2 norm between a

genotype (weight vector) and an archive of past genotypes.

Using the Markov model, there is no explicit boundary for the objective

function since the Markov score depends on the length of the sequence being

evaluated. To tackle this problem, we conceived an adaptive mechanism

for the activation of novelty, unrelated to the specific range of values of the

objective function, based on the results obtained in previous iterations. At

each iteration, the algorithm stores the best result obtained. If such value

does not change for a given number of iterations, somehow the algorithm is

stuck at a minimum. In such a case, a selection mechanism intervenes to

take into account novelty values in a Pareto optimization with the objective

function. The algorithm starts to look at the novelty of individuals. When

novelty search has moved the score away of a certain amount from the last

best value found, it is turned off and the regular evolution with the Markov

score is resumed. See Equation 3.6.if bestF it ≃ prevF it, for k times, switch to bi-objective

if |lastAvg − bestAvg| ≃ stdevLast, switch to mono
(3.6)

As well as for the objective function, we applied the negative logarithm to

novelty too. Thus the bi-objective optimization is intended to minimize both

the main objective and the novelty of individuals.

minimize
X

: − log(novelty(X)) (3.7)

We remark that biasing towards novelty does not mean just adding random-

ness, but rather diversifying with respect to the best solutions found.

Archive assessment For the assessment of the archive, we followed the

approach used in [228] except for one aspect; we did not consider a threshold

for the individual in order to be added to the archive. Instead, we considered,
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at each iteration of the genetic algorithm, the individuals of the elite, from

the elitism process. For these individuals, we calculate the dissimilarity as

in the mentioned work.

3.2.3 Results

The most suitable musical contexts in which our technique can be applied

are those in which improvisation plays an important role; yet, we also need

structure to some degree, in such a way that the implicit (soft) constraints

imposed by the style can be detected. This way, the music resulting from

our method has some amount of novelty, yet still in the style of the exam-

ples provided. For our experiments we chose two notable musical contexts:

traditional Irish tunes and Orlande de Lassus’ Bicinia [89]. In this section,

we first introduce these cases, and subsequently, we present a selection of the

typical results achieved by our technique.

Irish songs and Bicinia

Traditional Irish music is strongly characterized by its melodies: most old

tunes are just melodic (see e.g. [225]) or they are the result of an improvi-

sation upon a given ground, i.e., a bass line providing also a harmonic base

(see e.g. [169]). In any case, the melodic part of a traditional Irish music is

currently the most important component, and melodies are usually played

with variations, improvising upon a given melodic structure. A large corpus

of traditional Irish airs is available in abc notation,8 which makes it possible

to extract melodies as sequences of symbols, each representing both note and

duration. A typical traditional Irish air is shown in Figure 3.1. From these

airs, we extracted all the ones in the key of G and assigned one symbol to

each ⟨note, duration⟩ pair.
The second musical context we have chosen is that of two voices coun-

terpoint, which is one of the simplest and oldest forms of polyphony [185].

8http://www.norbeck.nu/abc/
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Figure 3.1: Score of a well known traditional air titled “The south wind”.

In origin, a voice was superimposed to a given one, called cantus firmus, in

improvisational settings. This original impromptu spirit was subsequently

substituted by a more elaborated compositional approach, leading to mar-

velous multi-voices counterpoints, such as the ones composed by Gesualdo

da Venosa. The main technical characteristic of two voices counterpoint can

be summarized in a small set of rules involving the intervals, i.e. the distance

in semitones, between the upper and the lower voice. For example, the dis-

tance between C and F (above C) is 5 semitones. Obviously, these are not all

hard constraints, but some are rather preferences, and they have also been

subject to change across the years according to different musical aesthetics.

In fact, rules emerge from the performance practice and are subsequently

systematized. We focus here on two voices XVI century counterpoint, char-

acterised by rules such as the ones listed in the following:

- no parallel fifths or octaves are allowed (e.g. C-C cannot move to E-E,

C-G cannot move to D-A);

- fifths and octaves should be intercalated by imperfect consonances, i.e.

thirds and sixths (e.g. an allowed sequence is C-G, C-A, D-A);

- dissonances, i.e. seconds, fourths and sevenths, should be prepared and

then resolve to a consonant interval by descending (e.g. D-B, C-B,

C-A).

These rules constitute a core around which further indications can be

added, depending on the specific musical context and taste. However, the
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rules listed above can be considered the essential syntactic nucleus of two

voices counterpoint of the XVI century.

Figure 3.2: Excerpt of bicinium no. 1, “Te deprecamus”, by de Lassus. Score

extracted from https://imslp.org/wiki/Category:Lassus,_Orlande_de.

In our tests, we have taken all the twelve two voices counterpoint com-

positions, called bicinia, by Orlande de Lassus, which are available as MIDI

files.9 In Fig. 3.2 we show an excerpt of a bicinium by de Lassus. This second

context was chosen to assess to what extent our method is able of identifying

recurrent patterns and rules typical of a music genre. In this case, we have

encoded the twelve MIDI bicinia as sequences of intervals (i.e. distances in

semitones between upper and lower voice). As the two voices have in general

different durations, we have sampled the music at steps of duration 1/32

and taken the intervals in semitones, deleting repetitions. This provides the

repertoire on which the Markov models are computed. A typical result from

our system is a sequence of integer numbers representing intervals in semi-

tones which can be used as a guideline for composing the upper voice upon

a given cantus firmus.

Experimental settings

Differently from usual optimization contexts, in our case a good perfor-

mance does not correspond to the one that leads to the overall best objective

function values, but rather to a good balance between similarity (Markov

score) and novelty. Therefore, we tuned the parameters of the algorithm

trying to attain an effective interplay between score and novelty. The results

9http://icking-music-archive.org/ByComposer1/Lasso.php.

https://imslp.org/wiki/Category:Lassus,_Orlande_de
http://icking-music-archive.org/ByComposer1/Lasso.php
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we present have been obtained with a population of 100 individuals, uniform

crossover with probability 0.5, Gaussian mutation (µ = 0, σ = 0.3) with both

chromosome and gene probability equal to 0.35, and 200 generations. The

novelty is activated after 5 idle generations (the best score spop in the current

population is stored, along with the standard deviation of the populations

scores σpop) and deactivated when the difference between the score of current

best individual and spop is greater than σpop/3. The plot of score and novelty

of a typical run is shown in Figure 3.3.

Figure 3.3: Plot of score and novelty of a typical run. Both the functions

are to be minimized and novelty is activated, adaptively, only when diversi-

fication is needed. The number of individuals in the archive, involved in the

calculation of novelty [9], is also plotted.

We can observe that the score oscillates: whenever the algorithm stag-

nates, novelty is activated so as to increase diversification. When this latter is

high enough, only the Markov score is kept as objective function. In a sense,

we can describe the dynamics of the algorithms as a biased exploration of
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local minima, as typically done by Iterated Local Search techniques [19].

Musical results

The generation of melodies inspired to traditional Irish airs has been eval-

uated by sampling some weight vectors from the final populations and using

them to generate actual music. By analyzing the results both through visual

inspection and by listening to them, we observed that the music generated is

similar to the repertoire provided but with variations and recombinations of

patterns. A couple of excerpts are shown in Figure 3.4, where we can observe

variations of typical Irish melodic and rhythmic patterns: the characteristic

run (i.e., a fast sequence of notes, typically in a scale) in bars 4, 5 of the first

example and the syncopated and composite rhythm in the second one.

Figure 3.4: Two typical excerpts of automatically created Irish music.

The second test case concerns de Lassus’ Bicinia. The main result at-

tained is that it was able to discover the basic rules that characterize two

voices counterpoint. In particular the rules extracted that have more strength

are: incipit with a perfect consonance (unison, octave or fifth), no consecutive

octaves or fifths, and dissonant intervals followed by consonant ones—both

perfect and imperfect. In Figure 3.5 we show an excerpt of the counterpoint

produced by applying one of the sequences generated by our algorithm to a

given cantus firmus (Chanson CXXVI from manuscript Bibl. Nat. Fr 12744

published by G. Paris). As the algorithm returns a sequence of intervals, it

could be used as a tool that assists composers by suggesting feasible note

choices, once one of the two voices (cantus firmus) is given.

In conclusion, for both contexts, the algorithm was able to identify the
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Figure 3.5: An example of a two voices counterpoint. The lower voice is

the cantus firmus, while the upper voice has been generated by applying a

sequence of intervals generated by our algorithm.

core regularities and elaborate around them. The calibration of the param-

eters is important to achieve a good balance between the tendency of just

recombining the patterns learned and the exploration of new possibilities.

However, the choice of parameter values does not seem critical, because the

combined use of a stack of Markov models of varying orders and novelty

search makes it easier to achieve this trade-off.

In general, switching on and off the novelty search throughout iterations,

in the GA, produces more variety (in terms of variance and peaks of the

score) than using the Pareto between score and novelty from the start to the

end of evolution.

3.2.4 Discussion

The algorithm we have presented has proven to be able to generate novel,

yet somehow familiar, melodies. An interesting perspective is creating non-

homogeneous repertoires, maybe just including music the user likes, without

any genre restriction. This way, our system can produce music that merges

some of the peculiar features that meet the user’s tastes.

Future work will focus on quantitatively assessing the properties of the

generated sequences employing information theory measures, such as block

entropies [196] and complexity measures like set-based complexity [75]. Some

of these measures can also be introduced in the generative process, to limit
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human evaluation as much as possible. In addition, some metrics can also

be used to assess the distance between sequences or cluster them [33].

As the proposed technique is general and can be applied whenever the goal

is to produce sequences of actions, we plan to explore multimodal automatic

generation by combining Markov models from two different contexts, e.g.,

music and text.

3.3 Machine Improvisation: ISL and Gener-

alization

According to the Grove Music Online [147], improvisation is “The cre-

ation of a musical work, or the final form of a musical work, as it is being

performed. It may involve the work’s immediate composition by its perform-

ers, or the elaboration or adjustment of an existing framework, or anything

in between. To some extent every performance involves elements of improvi-

sation, although its degree varies according to period and place, and to some

extent every improvisation rests on a series of conventions or implicit rules.”.

We emphasize here that the notion of improvisation involves the extempo-

raneous creation of sequences of notes (i.e., pitches and durations, including

dynamic and agogic expressions) performed according to shared, implicit and

explicit, conventions and rules. Another important property that character-

izes improvisation is risk, i.e., “ the need to make musical decisions on the

spur of the moment, or moving into unexplored musical territory with the

knowledge that some form of melodic, harmonic, or ensemble closure will be

required.” [147]. Therefore, the act of improvising requires the capability of

balancing the adherence to the rules that have been learned and an ingenious

exploration outside their boundaries.

Recent works address musical improvisation in the context of statisti-

cal learning [44, 43]. Inspired by these studies, we developed a model for

emulating implicit sequential learning and creativity. Here, we took the op-

portunity to show, in particular, the effects of generalization on produced
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sequences. In this work, published in [11], we illustrate an ISL mechanism

that creates melodic improvisations by performing a stochastic walk on a

generalized graph of TPs. The use of the generalized graph makes it possi-

ble to combine both the adherence to a given set of implicitly learned rules

and a cautious exploration outside those conventions. In Section 3.3.1, we

describe the model and the creative algorithm, while results are illustrated

in Section 3.3.2. We conclude by discussing further improvements and future

perspectives on this approach.

3.3.1 Materials and Methods

Initial acquisition of implicit sequences may arise from ISL [53]. In ad-

dition, previous studies suggested that implicit knowledge governs music ac-

quisition [180]. Drawing upon these perspectives, we wanted to grasp the

implicit aspects of a creative process in a minimal model capable of learn-

ing and generating (musical) sequences. Hence, the basic idea is to exploit

the implicitly learned knowledge to produce novel musical strings. In addi-

tion, we also provided a generalization step from this implicit knowledge, to

acquire structured information from the context.

INPUT
words

(chunks)
NEW

SEQUENCES

TPs

graph

generalized

graph

LEARNING GENERALIZATION GENERATION

segmentation attention nodes sim-rank MonteCarlo walkchuncking

Figure 3.6: Sketch of the process: focus on the discussed generalization step

The algorithm proceeds through three subsequent phases: learning, gener-

alization, and generation (Figure 3.6). In the learning phase, we introduced

TPs at two specific levels: between symbols, as a cue for segmenting the

incoming input into small segments (or chunks), and between these formed
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chunks. According to the view that the role of TPs might be (i) to prepare, or

aid, learners to memorize recurring items (as cues) [58] or (ii) between formed

chunks for distributional computations [219]. After the learning phase, the

graph of TPs between chunks undergoes a generalization phase. This phase

draws on the distributional learning hypothesis [176, 140] which argues that

people use statistical learning to acquire grammatical categories from the

input (i.e., the contextual information surrounding words). Indeed, by rely-

ing solely on distributional information (i.e., contextual information in the

graph), this mechanism exploits node similarity (SimRank) to reveal these

categories (namely, form classes in language).

Finally, this new generalized graph is employed to generate novel, struc-

tured sequences using a Monte Carlo walk.

Learning

The learning phase consists of two mechanisms: tracking the transitional

probabilities between symbols (second order TPs) to be used as cues to seg-

ment the input into words (or units, chunks), and tracking TPs between

those words (first order TPs) to form a graph made of transitions between

chunks [219].

Following the approach of PARSER, at each iteration a random integer

(in [1,3]) is chosen to determine the number of disjunctive, embedded units

to be perceived: namely, the size of the next percept10.

At each perception cycle, TPs between the observed symbols are stored.

Initially, the algorithm tries to use stored TPs to find a drop in the transitions

between symbols that would determine the boundary of a word. On the

other hand, if no TPs cue is found, a syllable is perceived (two consecutive

symbols). The segmentation strategy used in this work is one of the simplest

where a boundary is detected if the transitional probability of the upcoming

symbol drops under a certain threshold, so if TPi > TPi+1+ϵ. In the present

10This for simulating the effects of the other various factors which modify the boundaries

of the actual attentional window, such us the listener’s state of vigilance.
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study, we used ϵ = 0.2 as an empirically selected threshold. However, various

strategies could be exploited (see next chapter, or [41] for an old but detailed

analysis): recent studies, for example, suggest the use of backward TPs [159,

188], but this is out of scope here.

After segmentation, TPs between the resulting ordered units are recorded.

Note that this per se represents an abstraction intended to grasp the dynam-

ics, the transitions, between formed words—not between symbols.

At the end of each perception cycle, decay and interference are applied.

The interference mechanisms is simulated by decreasing the weights of the

units involved in the currently processed percept. Instead the decay mech-

anism, contrary but in accordance to PARSER, has been implemented with

the following formula (3.8):

D = (exp−∆T
S )/C (3.8)

In the formula above, D represents the amount of decay for each involved unit

at each percept cycle, ∆T represent the amount of time (discrete, in number

of steps) passed since the percept was perceived and stored in memory, S 11

represent the stability of decay, that is the decay of decay (grater the number,

more steady is the decay), and C is a parameter for choosing the initial value

of decay (i.e., the initial strength).

Generalization

The output of the learning phase is a graph where nodes represent units

(chunks, words), and edges represent transitional probabilities between words.

To construct the generalized graph, the procedure first computes the form

classes, using similarity between nodes, and then generates some sequences

(with the TPs graph) that are parsed to build the higher-level graph. The

similarity between nodes is computed using a SimRank [104] measure over

inward and outward edges. SimRank is a graph-theoretic measure that says

11In all the experiments and simulations, we kept a high value for this parameter, S =

1000, for simulating a constant decay similar to that used in PARSER.
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“two objects are considered to be similar if they are referenced by similar ob-

jects”. In this case, we used a slightly modified version where “two objects

are considered to be similar if they are referenced by similar objects . . . and

refer to similar objects”. That is, nodes are grouped if they have similar

inward and outward edges, so if they have a similar neighborhood. Pre-

cisely, we group nodes with both inward and outward SimRank greater than

a threshold value γ. In this case, we used γ = 0.5 as, in our experiments, it

provided convincing similarity values over known samples. So for each node

i we calculate FCi = {Ii ∩Oi} where, for each node j:

Ii = {Nj : SimRankIN(Nj, Ni) ≥ γ}

Oi = {Nj : SimRankOUT (Nj, Ni) ≥ γ}

The formed groups represent what in language acquisition is called form

classes [195]. Once calculated, the form classes are used to parse some gener-

ated sequences (using the TPS graph), and the new generalized graph is then

built. Transitional probabilities between formed (form) classes are computed

as well, counting transitions over the parsed sequences.

Generation

The generalized graph is then used to produce novel sequences. In the

present experiment, we opted for a simple Monte Carlo choice over the edge

probabilities to traverse the graph. At each visited node, as in general it may

contain words that can be used in the same position in the construction, a

word is picked randomly (the nodes that contain alternative words are called

here choice nodes). Another possibility for selecting a word is to use the

weights (the frequencies) of the words to employ another Monte Carlo choice

at each node. However, we have preferred random sampling to emulate a

more analogical selection: by modeling the transitions between classes, in

each choice node, there are ’equivalent’ words, which are related to each

other, thus enabling this possibility.



3.3 Machine Improvisation: ISL and Generalization 53

3.3.2 Results

A prominent context for improvisation is of course music. Since the sys-

tem we developed is mainly focused on sequences of symbols, we opted for

melodic pieces of music. Therefore, we provided the system a set of melodies

belonging to a given style (e.g. Irish music) upon which the TPs graph and

the generalized graph can be built. The latter provides then the basis for the

generation of new melodies in the style of the given repertoire, but with vari-

ations and explorations in the implicit boundaries set by the examples. The

resulting melodies are characterized by improvisation flavor, as they have not

the structure of a complete piece of music, but capture the main stylistic fea-

tures of the original compositions, like a musician making extemporaneous

explorations around a given style.

To test the system we chose two different styles: Irish melodies and the

six preludes from solo cello sonatas by J.S. Bach. Irish melodies have been

retrieved from Henrik Norbeck’s abc tunes [88]. All the 136 melodies in the

key of G have been gathered (including variations of the same song) and

the abc notation symbols, which encode the music in textual form, have

been directly used as sequence symbols. The second repertoire of melodic

music, instead, has been retrieved in MIDI format from David J. Grossman’s

J.S. Bach page [40]; the MIDI files have been converted to an intermediate

textual representation by means of PyPianoroll [52] and transposed to the

same key, so as to have sequences composed of symbols representing the

intervals from a common base note. In both the corpora of examples, a

symbol in a sequence represents both pitch and duration.

44             
Figure 3.7: An example of the options for melodic segments in a choice node

of the generalized graph.

We are interested here in the features of the generalized graph and the
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characteristics of the melodies it produces. The number of nodes contain-

ing alternative choices and the number of choices estimate the amount of

“controlled exploration” around the musical style learned. For example, a

typical choice node in the generalized graph of Irish music may have the fol-

lowing alternatives: B A B A G G3 | F G2 G2 | G B A A G G2 | c A G2

G A, represented in Figure 3.7 in score notation. In general, the segments

differ in start and end note, as well as total duration; therefore, they do not

represent equivalent alternatives, but rather different sub-paths that can be

used to compose a new path which is likely to combine fragments of melodies

in an original way, yet keeping the flavor of the melodies in the repertoire.

The generalized graph built from Irish music has 151 nodes, of which 19

are choice nodes. The choices in each node are distributed between 2 and

8, with a median of 3. The resulting melodies are similar to the ones in

the repertoire, but characterized by a considerable degree of originality. The

interested reader can find audio excerpts and score transcriptions at [145].

The generalized graph of Bach preludes for cello solo substantially differs

from the one related to Irish music, as it it composed of a greater number of

nodes (526) and a lower number of choice nodes (10), all with just 2 choices

except one with 4 choices. Another remarkable difference with respect to the

previous case is that the melodic segments in each choice node are longer.

The musical difference between the two repertoires is wide and this has of

course strong impact on the properties of the generalized graph. Irish tradi-

tional music is characterized by simple elements: almost all the notes used

belong to the scale of G major and the maximal difference in pitch is about

two octaves. Moreover, the melodies are often composed of long sequences

of notes at small intervals and few large steps (e.g. of an octave or a fifth).

Conversely, the preludes for cello solo by Bach span a wider range of pitches

and the use of chromatisms is extremely common. In addition, the examples

available are much less than the Irish ones, so the probability of overlaps

between portions of melodies is much lower. The features of the two graphs

reflect the musical properties of the two styles in that the richness of Bach’s
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style and, above all, the hierarchical structure of his compositions limit the

adjustable interchangeability of melodic segments which is expressed by the

generalized graph. However, the musical result of artificial improvisations in

the style of Bach’s cello preludes is appreciable (audio and score excerpts are

available at [145]).

3.3.3 Discussion

We presented a generative model that uses a stochastic walk on a topolog-

ical generalization of variable Markov Chains (TPs graph), to produce novel

musical sequences. The presented work is intended to be a basic module of

a more extensive system conceived for emulating the learning of implicit se-

quences. It is intentionally domain-general and symbolic since it is intended

to model various phenomena: from music and language to movements and

social interactions [142]. This learning system assimilates implicit knowledge

that becomes the basis for modeling implicit, automatic behaviors. In these

regards, we envision adding a short memory module, to model higher-level

phenomena such as attention, for example. However, even if in this case the

focus was on the learned material and the effects of generalization on pro-

ductions, the ultimate goal is, in fact, that of producing creative outputs. In

this perspective, the next step will be to use an ad hoc, creative Monte Carlo

walk in place of the simpler stochastic one, that is, to give the model the

ability to explore creative paths instead of the most (or the least) probable

ones. We believe a model built in this way could also provide a place, an

environment, for simulating and studying a variety of behaviors in cognitive

science and creativity.

3.4 Summary and Discussion

This chapter presented three applicative examples for generating creative

symbolic sequences. However, these experiments served also to investigate

the potential processes underlying creativity. In particular, the importance
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of convergent and divergent phases, respectively, to exploit and explore the

given conceptual space (represented by the input corpora), the role of TPs

(studied via Markov Chains), and finally, the components for an ISL model,

and the effects of generalization on produced sequences.

From a pure computational perspective, we analyzed the quality of the

sequences generated by the algorithms, as the ultimate goal of applied CC is

the creation of novel and engaging artifacts. Initially, we exploited (string)

similarity and novelty approach through a genetic algorithm for generating

robot movements. Then, we introduced variable-order Markov models to en-

hance both the similarity assessment and the production (also introducing

an ad-hoc procedure for generating musical pieces) and improved the novelty

approach by making it adaptive. Finally, in the last section, we presented

a mechanism reflecting ISL that grasps the inner structure of the sequences

and generalizes the learned knowledge to discover new, higher-order relation-

ships over the elements found in the sequences. The explorations performed

on the latter approach widen the range of possible investigations and ap-

plications, for computational but also for psychological research on learning

and creativity. Contrary to the other two approaches, the last one is online

and unsupervised, and parses the input incrementally, emulating perception

and learning as in [162] and in [133]. Moreover, the generalization step is

conceived for reflecting the distributional learning ability observed in humans

by the psychological studies conducted on language acquisition [26]. How-

ever, the issue of learning could also be faced from another perspective. It

is worth noting that the ISL model retains transition probabilities between

elements so expectations of the next future. Therefore, another testable hy-

pothesis, for example, is that distributional learning (or learning in general)

is error-driven [152]. Contrary to the other two approaches, the latter has

the potential to be used not only as a system for generating sequences but

also as a computational tool for carrying out experiments and exploration in

cognitive research. For these reasons, we decide to turn our attention to the

cognitive aspects it models. The next chapter concerns these explorations.



Chapter 4

A Production-Oriented ISL

Model

Following the psychological studies on language acquisition, we aimed to

construct a fully incremental, online model for sequence learning that uses

the same chunk information and distributional statistics to perform both

learning and production. The model’s inner workings approximate compre-

hension by learning chunks and statistics and by using them to segment

input sequences into related groups of words (such as shallow processing),

and production, using the same learned material to produce new outcomes.

We hypothesized that both problems could be tackled, to a large extent, by

recognition-based processing tied to chunks, discovered through sensitivity

to transitional probabilities between units.

Hence, this chapter focuses on the ISL paradigm, introducing another ma-

jor factor for creativity: namely, surprise. This resulted in the formulation

of a creative Monte Carlo walk, using (and discussing) Simontons’ princi-

ples, for the generation. Adopting ISL, we explored, computationally, some

of the cognitive mechanisms involved in the implicit formation of sequential

knowledge in humans, using the latter to generate ever more human-like pro-

ductions. As a result, we came up with a minimal computational toolkit;

a psychologically-inspired computational model for implicit sequence learn-

57
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ing and creative generations. Thus, this chapter introduces CREATIVITiPS

(creativity + TPs + tips: just a words pun for referring to the model and its

code1, also abbreviated as TiPS) from the perspective of the cognitive mech-

anism it implements: in particular segmentation, chunking, and attentional

memory mechanism, as well as generalization and the dynamics of creative

production.

Various simulations were conceived to evaluate learning and production

and to demonstrate the potential of the proposed framework for the study of

creativity. Several experiments have been conducted to evaluate the model’s

sensitivity to its main parameters. Moreover, the model has been successfully

compared to similar approaches in developmental psycholinguistic findings

spanning a range of phenomena.

4.1 Overview

Cognitive and computational approaches, focusing on the process side, try

to describe brain functions and behaviors for creative thinking. Such propos-

als help demystify human creativity by offering insights into the underlying

mechanisms and their characteristics. As said, this is also the purpose of CC.

Thus, following the principles of [36], we propose a psychologically-oriented

account for expertise acquisition in sequential learning and subsequent cre-

ative generation. The model reflects some aspects (i) of Implicit Statistical

Learning (ISL) in Sequential Learning, using simple associative, memory,

and attention-dependent mechanisms, (ii) abstraction, and (iii) of creative

production, exploiting the implicit, learned knowledge.

On one hand, we applied our model to a series of different languages trying

to cover various sequence complexities: to investigate the role of Transitional

Probabilities, chunking, and attentional mechanisms for sequential learning,

and to see the amount of (structured) information this simple model could

grasp and generalize. On the other hand, we wanted to investigate some

1https://github.com/mattia-barbaresi/creativitips

https://github.com/mattia-barbaresi/creativitips
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implicit factors related to the creative process. As it has been suggested,

creativity is mainly formed by implicit knowledge [233](cf., insight, the “a-

ha” or the “eureka” moments). Therefore, we wanted also to exploit this

knowledge for creative productions. Using Campbell’s and Simonton’s prin-

ciples of creativity, we give an account of the exploitation of this implicitly

learned knowledge to come up with novel generations.

We begin by introducing the model and its inner workings. Then results

are reported on the acquisition together with the simulation of some of the

related psychological experiments on children’s sentence processing. Finally,

we show some applications of this model that extends beyond language to

cover the acquisition of different kind of sequential processes, for example,

music. Our ultimate goal is embedding this model as a controller for hu-

manoid robots to investigate these implicit aspects in robot movements and

social interactions [142].

4.1.1 Segmentation and Chunking

Across the ways suggested for integrating chunking and statistical com-

putations, previously discussed in Section 2.2.1, we explored the fourth pos-

sibility, stressing their interplay and their reciprocal influence. If the ISL

mechanism is ubiquitous, TPs could serve as statistical cues for identifying

chunks and also as relations within multiword segments (chunk relations) as

suggested in [218, 47]. Hence, we consider the sensibility to statistical regular-

ities as a general component, as well as the chunking mechanism, ubiquitous

in brain functioning. In the case of segmentation of sequential input, many

cues could be used to learn underlying structural relations and to gain exper-

tise [20] (e.g., learn to play an instrument). In this sense, transitional proba-

bilities are just one of these exploitable cues to find segmentation boundaries.

However, if we consider the more general issue regarding the sequence en-

coding of order and sequentiality in the brain [48], the learned statistics can

serve as building blocks for more elaborate codes: for instance, in language

acquisition, learning the TPs between syllables seems to be the basis on top
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of which words and syntactic tree structures are built [130]. This issue gains

particular value for sequence production, inference/prediction, and space-

time structure learning, for example as it is in social interaction [82] and

intuition [148].

4.1.2 Attentional and Memory Mechanisms

Other than TPs, we wanted to model also chunking and some basic mem-

ory mechanisms. Hence, drawing upon the approach of PARSER [162], we

devised a short-term memory to implement decay, interference, and a basic

attentional module. This component stores the recent segments found while

reading the input sequence; then, due to forgetting, if a chunk is not reoc-

curring in the future, it is gradually forgotten. On the other hand, when

perceived again, its weight is enforced. In these terms, it acts like a sieve,

an access door to TPs between chunks, that helps filter out unwanted units

(noise or spurious information). Therefore, it serves to ease the statistical

computations of the ISL process. Moreover, this straightforward mechanism

allows us to emulate attention because active elements (those above a thresh-

old) in memory can shape the perception of the input and can consequently

facilitate the acquisition.

At an implementational level, this module is kept as a separate component

from the TPs graph; in this way, it is possible to model diverse decay and

interference rates for memory and TPs, for instance. Another advantage

concerns the independence of the TPs module that, in this form, can be

applied to diverse input streams at various levels of abstraction. However,

another possibility is embedding this short-term memory mechanism directly

on the learned graph (c.f. [151, 149]): as TPs are calculated between chunks,

the nodes in the TPS graph are the same units transited in memory.



4.1 Overview 61

4.1.3 Generalization

Generalization refers, in general, to extension of learned statistical struc-

ture to unseen stimuli within the same modality domain and has been demon-

strated in ISL studies [72]. Evidence for sensitivity to distributional informa-

tion in language acquisition comes mainly from the phenomenon of general-

ization behavior: categories defined by highly variable input distributions are

more readily extended to novel tokens [7]. While these results support the

idea that input distributions matter [31], they provide only a rudimentary

understanding of the mapping between these distributions and the acquired

category representations. Hence, we introduced a generalization phase that

acts on the learned graph and exploits distributional properties (nodes neigh-

borhood) to discover higher-order categories, called form classes, in the lan-

guage acquisition domain.

There is a link between abstraction and creativity, which relies on the for-

mation of new structures, and the discovery or definition of new relationships

between existing entities. Abstraction could therefore foster high creativity.

This phase could be assimilated to the incubation step, or mind wandering

(and dreaming, to a large extent), and it could facilitate the emergence of

remote or hidden associations [156]. Moreover, it could serve for enabling, or

enhancing, the other brain mechanisms for sequence coding [48]. In a multi-

modal input perspective, for example, applied over the features of perceived

entities, this mechanism could lead to another kind of statistical, distribu-

tional modeling such as that in long-term memory behavior (i.e., concept

formation [23, 139]) and, from another perspective, forming broader classes

or concepts, it could also enable or enhance analogical reasoning mechanisms,

such as bisociations [115] and analogies [99].
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4.1.4 Generation

Psychological theories of creativity typically involve (1) a divergent stage

that predominates during idea origination (for a review see [183]), and (2) a

convergent stage that predominates during the refinement, implementation,

and testing of an idea. Divergent thought is characterized as intuitive and

reflective; also, it involves the generation of multiple discrete, often uncon-

ventional possibilities. A measure of divergent thinking ability is fluency,

or the number of new, innovative ideas that can be generated. Conversely,

convergent thinking involves selecting or tweaking the most promising pos-

sibilities resulting from a critical and evaluative analysis. Campbell [29]

argued for a single generic process that could account for creative thought

and “other knowledge processes”, namely, Blind Variation and Selective Re-

tention (BVSR). The basic idea is that the most effective way to discover

something new—whether an invention, discovery, or adaptation—is through

experimentation, trial-and-error, or generation-and-test procedure. In con-

trast, if one knows in advance that some ideas are useful or suitable, then the

person has merely engaged in reproductive rather than productive thinking:

confirming what is already known rather than exploring the unknown [202].

Starting from an implicitly formed graph (and a generalized one) that repre-

sents the learned knowledge of the agent, we can now discuss the generation

phase. This phase undergoes the BVSR (or divergent/convergent) and could

be also conceived as the problem-solving phase. Moreover, in [95], the au-

thors concluded that creativity encompasses both conscious and unconscious

incubation and insight, so we hypothesized a creative generational BVSR as

an implicit process within these phases.

As said, we wanted to model the individual, implicit dimension of cre-

ativity, mainly with two motivations: to exclude the explicit and external

variables influencing the creativity of an agent, and to understand it from the

basis. In particular, covering those processes of the incubation/illumination

stages. That is, we wanted to investigate the possible reasons for that sen-

sation that comes right before the idea pops up to the conscious awareness
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of the agent: when there is that feeling that a solution is coming. In other

words, the preconscious activity that leads to the “Eureka!” moment. Ac-

cording to Sadler-Smith [186], expertise helps a creative person progress to

the inspiration stage (in Rhodes 4Ps) by unconsciously evaluating their un-

conscious ideas. Domain expertise forms the cognitive substrate for creativ-

ity. In addition, Dijksterhuis and colleagues have proposed an Unconscious

Thought Theory that also resonates with Wallas’ incubation stage as it pro-

poses that “contrary to conventional wisdom”, unconscious thought has a

“generative power” concerning creative cognition and complex decision mak-

ing [51]. With sufficient incubation, the creator may have an insight, eureka,

or “ah-ha” experience in which a solution flashes to mind [95]. Yet, because

such inspirations are by no means guaranteed to work, this illumination phase

must be followed by the verification phase in which the idea is directly tested

and evaluated, whether externally or internally (cf. [50]). If this test fails to

confirm the utility of that solution, then the cycle will continue in the hope

that an effective solution is finally found [201].

Therefore, from this standpoint, we implemented a model for “expertise

acquisition”, where an agent incrementally, implicitly learns the material to

which it is exposed and then tries to generate feasible solutions. Following

this reasoning, the generalization phase, conceived as a period where the

agent incubates the learned information and ruminates on it, produces more

elaborated, abstract knowledge that could influence production. However,

even if expertise and experience influence learning, divergent and convergent

thinking [38, 220, 66, 227] stages, its role in these diverse phases has to

be fully unveiled yet; this work also discusses some computational aspects

related to this issue.
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4.2 Related Work

Given the interdisciplinary approach, we took inspiration from theoreti-

cal works spanning ISL literature, cognitive science, and Computational Cre-

ativity. From a computational perspective, we opted for a Markov Chains

modelization. Statistical Learning is about transitions’ conditional informa-

tion, and Markov Models are a natural choice to model such aspects. From

a cognitive perspective, the Chunk-Based Learner is the most similar related

work found in the literature. IDyOT is another approach that investigates

SL, but with slightly diverse viewpoints and aims. Finally, PARSER and

Edelman’s models are studies from which the present model draws the var-

ious cognitive mechanisms it implements: respectively, attentional-memory

perception and generalization. In the remainder of this section, we introduce

these studies and the main aspects that differ from the present model.

Chunk-Based Learner The Chunk-Based Learner (CBL) of language

learning [133] is the most similar approach. In the same vein as the learning

model of the present work, CBL learns in an unsupervised, incremental, on-

line way. In this model, the initial formation of chunks relies on computations

aimed at locating boundaries in the dips of the backward TPs distribution.

As well as the proposed model does with forward TPs. However, the au-

thor focused on the usage-based approach to language acquisition, and their

model does not account for attention, generalization, or implicit creative

mechanisms. Contrary to the CBL model, we conceived the chunking and

the statistical module as separated and independent but interleaved mech-

anisms. In particular, we consider tracking TPs as a modular mechanism

complementary to chunking and segmentation [15]. Moreover, the computa-

tion of TPs is considered an ubiquitous mechanism in the brain. So we used

them at two specific levels: a more perceptual way, where TPs between sym-

bols are computed to aid segmentation, and the other, where TPs are used

for encoding sequentiality at the level of chunks (that is, between them).
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ADIOS and U-MILA For pattern extraction and structured generaliza-

tion, two processes that have been implicated in language acquisition, we

took inspiration from Edelman’s approach (ADIOS [211] and U-MILA [117]).

The authors conceived a procedure to discover higher relations in an oriented

graph. That is, to reveal the grammar implicitly represented in the given

graph. In particular, they look at the inward and outward streams of every

path in the graph for each start-end node pair and use their ratio to cluster

sub-paths. In the present case, inspired by their approach, the conceived

algorithm groups nodes by analyzing their similarity based on their inward

and outward edges. However, we wanted to exploit the similarity of the con-

nections of the nodes (e.g., the neighborhood) instead of analyzing longer

paths in the graph. Again, our focus is more on the role of the generalization

step than the effectiveness of the implemented function.

PARSER PARSER [162] is the approach followed for realizing chunk-

memory mechanisms such as memory decay (forgetting) and interference.

The primary motivation of PARSER is to account for optimal segmentation

in terms of simple and ubiquitous psychological processes. Starting from

the observation that, in humans, attentional coding naturally segments the

ingoing information into small and disjunctive parts of variable length, the

model encodes the input as a succession of provisional units comprising a

random number of components (between 1 and 3). These units are stored

in a lexicon and are subject to ubiquitous laws of memory: they are rein-

forced whenever they reoccur in the input, and, conversely, their strength

vanishes as a consequence of decay and interference with the processing of

similar material. Therefore, the selection of relevant units for the language

structure (compared to the irrelevant ones) emerges as a natural consequence

of these memory laws. Decay eliminates those units that do not occur often

enough, while interference makes the model sensitive to statistics, such as the

bi-directional transitional probabilities between the unit components [161].

Because perception is guided by internal representations, the learned chunks
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become new primitives: thus, making the system able to build chunks whose

components were not initially perceived in a single attentional focus. How-

ever, the PARSER model uses random choices to decide the length of per-

ceived chunks and works with syllables. We tried to circumvent this issue

using TPs as a cue for the segmentation.

In conclusion, our memory component differs from PARSER in three fun-

damental ways: (i) our memory (Percept Shaper in PARSER) starts empty

instead of encoding all the possible syllables; (ii) we used a logarithmic in-

stead of a linear decrement (to combine an initial rapid decay with the long

term persistence) to model more complex situations; and (iii) we exploited

TPs between symbols as a cue to alleviate the use of random segmentation.

IDyOT IDyOT by Wiggins is more a theoretical framework intended as a

cognitive architecture explaining the proposed theory. While, in IDyOT, cre-

ativity is equated more with prediction, in this thesis creativity is intended in

the sense of Campbell’s BVSR: it requires a blind variation of learned knowl-

edge to create novel (selected) combinations of stimuli while prediction finds

known items [54]. In this sense, our approach is more like BrainGene [166].

Moreover, there is a fundamental difference in scope: we want to focus more

on the processes, trying to account for (in a computational and operational

fashion) psychological and neuroscientific findings instead of trying to con-

ceive a whole theory of creativity and consciousness.

4.3 Materials and Methods

The model draws upon works on Implicit Statistical Learning which sug-

gest that the initial acquisition of sequences (in implicit sequence learning,

such as in language or movement acquisition) is based on the ability of the

brain to implicitly grasp the statistical regularities of the processed input, in

particular exploiting Transition Probabilities [53]. The computational model

used for these experiments is the same introduced in Section 3.3.1(see Ap-
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pendix for the function pseudocode), where it was applied to music for ex-

ploring preliminary effects of generalization on learned knowledge and thus

on productions: aiming to combine the observance of implicitly learned rules

with a guided exploration of them. However, this chapter discusses the same

mechanisms more in detail and from a more holistic cognitive perspective.

The general workings of the algorithm proceed through learning, generaliza-

tion, and generation, as for the previously discussed computational model,

with the additional creative walk conceived for experiments on the conver-

gent (task-oriented) phase (Figure 4.1). The model proceeds incrementally,

parsing the sequences percept after percept. Every percept is formed by

the union of (i,e. chunking) up-to-three perceived units. These perceived

units are picked using attentional cues (matching active units in memory),

by analyzing TPs between symbols (n-grams), or randomly if the other two

mechanisms could not be exploited. Once these units are perceived, another

TPs module stores the transitions between these chunks.

Then, the graph of TPs between chunks undergoes a generalization phase,

which draws on the distributional learning hypothesis [176, 140] that argues

people use statistical learning to acquire grammatical categories from the con-

textual information surrounding words. Finally, this new generalized graph

is employed to generate novel, structured sequences using mainly two modes

of generation: a stochastic one, more suitable for divergent thinking, and a

second one for convergence, task-oriented production.

Through adjustment of the model’s parameters, some diverse scenarios

could be studied. In addition, the model can be applied both on unsegmented

and segmented corpora.

4.3.1 Learning

The symbolic computational model learns in a purely unsupervised and

incremental fashion. It is based on the online processing of transitional prob-

abilities (TPs) and chunking. Its design reflects some simple psychological

mechanisms and can address general aspects of ISL and structure learning.
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Figure 4.1: Sketch of the entire process: in addition to the MonteCarlo walk,

a creative one has been added

Therefore it is not specific to language. The model combines a Statistical

Learning module, that tracks TPs between symbols and formed chunks, and

a memory-based chunking model (PARSER). It is intended to be as sim-

ple as possible and modular to accommodate any future modification and

less implicit modules (e.g., improved attention mechanisms, explicit knowl-

edge, algebraic module and inference, analogies). Algorithm 3 shows the

pseudocode for such a procedure.

A pivotal issue in the ISL realm concerns TPs when they are exploited as

statistical cues: we know that the brain has this sensibility, what is not clear

is to what type (e.g., forward, backward TPs o Mutual Information) and in

what manner this statistical information is used [41]. We employed Forward

TPs in this dissertation, yet we explore some methods to detect boundary

cues: in particular, the Brent technique [25], that is, a word boundary is in-

serted when the probability of a bigram is lower than those of its neighboring

bigrams (previous and the next), thus using the context in which it occurs

(Equation 4.1), and other two, newly conceived mechanisms that involve the

use of a TPs average computed over a sliding time-window proximal to the

current transition. One uses this average in a way similar to the Brent tech-

nique (Equation 4.2), and the other one simply takes a dip under the average

as a boundary for segmentation (Equation 4.3). Even if straightforward, this

last method does not suffer the problem of the other two: a trough-based
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approach, like the first two, is not capable of extracting unigram words, since

such words would require two adjacent transitions. In particular, given the

sub-sequence ..kwxyz.. a boundary is placed between x e y, due to the used

method, if:

BRENT : TP (x|w) > TP (y|x) < TP (z|y) (4.1)

AVG : TP (x|w) > avg > TP (y|x) (4.2)

FTPAVG : TP (y|x) < avg (4.3)

with TP (a|b) expressed as the conditional probability of a given b, and

avg calculated as the average of all the transitions in wxyz (i.e, TP (w|k),
TP (x|w), TP (y|x), TP (z|y)). Above, the three equation uses first-order

transitional probabilities. However, these formulas can be easily extended to

higher-order TPs simply considering pasts of increasing length; throughout

this thesis, we used second-order TPs [177], so the transition between x e y,

in the examples above is calculated as TP (y|wx).

4.3.2 Generalization

Distributional information provides a powerful cue to syntactic category

membership, which can be exploited by many simple, psychologically plau-

sible mechanisms [173]. Many researchers have suggested that distributional

learning mechanisms play a major role during grammatical category acqui-

sition since linguistic (form-) classes (like nouns and verbs) are primarily

defined by the ways lexical items are distributed in syntactic contexts [175,

14, 28]. These perspectives suggested that, at the core of language acquisi-

tion (and more), there are some general-domain cognitive processes: such as

categorization, chunking, analogy, and cross-modal association. Even in this

case, we adhere to these perspectives. Moreover, as suggested in [7], we be-

lieve that acquiring specific structure from linguistic input, and generalizing

beyond that input to novel exemplars, represent a single mechanism. The

abstraction mechanism learns classes/abstractions as well as the higher-level

structures and relations. As said, we believe that this kind of computational
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approach for language is general and could be echoed in many other domains.

Also in this case, an induction phase was conceived to discover higher-level

relations (i.e., form classes) based solely on the distributional information

learned, and so available, in the TPs graph. That is the transitional proba-

bilities between formed chunks.

Hence, we conducted some experiments based on the number of sequences

generated to form this generalized graph, to test if they facilitate the emer-

gence of remote or hidden associations. Algorithm 4 describes the steps of

this phase.

4.3.3 Generation

The generalized graph is then used to produce novel sequences. The

previously described stochastic Monte Carlo walk is employed for divergent

production, and a new procedure is conceived that concerns a utility value

for the convergent task. Then the model potential is tested in both phases.

The outcome of learning is a bag of words in short term memory and a

graph representing transitions between those learned words, forming a prob-

ability distribution among them. So the learned model yields the information

for Simonton’s originality parameter (1-p). It’s worth noting that the model

offers the knowledge after learning so it can be seen as the starting implicit

knowledge an agent has at the time that it first start thinking about the

creative generation problem.

Simonton’s formulation of creativity [206] suggests three parameters for

characterizing a potentially creative thought: the idea’s initial probability

(p), the final utility (u), and the creator’s prior knowledge of that utility (v).

The three parameters then lead to a three-criterion multiplicative definition

of (personal) creativity, namely, c = (1 − p)u(1 − v), where u represents

the idea’s final utility, the first factor indicates originality (1 − p) and the

third factor surprise (1− v)–that is how much new knowledge an agent gain

once the idea is generated and evaluated. Creativity takes continuous values

(0 ≤ c ≤ 1): if c = 0, then creativity is nil, but if c = 1, creativity is maximal.
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A fascinating feature of this multiplicative definition is that whenever u and

(1 − v) are held constant at nonzero values, then c maximizes as p goes to

zero so that (1 − p) goes to one. Once two parameter values are given, the

remaining parameter value is usually constrained: If u = v = 1, then it

should follow that p = 1, but if u = 0 and v = 1, then it should follow that

p = 0. In other words, among useful and surprising ideas, the most highly

creative ideas are those that require an incubation period before the insight

appears. An idea that comes to mind without engaging in such incubation

can still be creative, but it will be less so to the degree that p exceeds zero.

To generate new sequences, such creativity values are used, at each edge,

to perform a Monte Carlo walk through the generalized graph. Initially the

graph has only probabilities (p), so it does not know anything about the

utility for a given sequence. However, within each cycle, utility (u) and

prior knowledge(v) are updated. So the algorithm starts looking for just

uncommon sequences. At each step, the generated sequence is subject to an

evaluation using the specified utility. Having the utility value, the u and v

values of each edge visited for generating that sequence are then updated.

The utility value is an overall judgment of the sequences. Thus, to assign a

value for each edge we had to deal with a sort of Credit Assignment Problem:

in these experiments, we defined utility u as the average calculated from the

newly assigned utility value and the old one, and the prior knowledge v as a

sort of online variance of the utility.

What follows are the formulas used for the update:

unew = (uold + uactual)/2 (4.4)

vnew = 1−
√

(uold − uactual)2 (4.5)
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4.4 Illustrative Simulations

In this section, we discuss, from a computational point of view, some of

the mechanisms related to known issues in ISL and Computational Creativity

literature. Our aim is that of discussing, by giving computational interpre-

tations of, these issues more than trying to find biological or neurological

foundations for these behaviors. The hope is to provide functional insights

regarding these mechanisms and their interplay.

4.4.1 Segmentation or Chunking

In the ISL realm, chunking and segmentation are two distinct mechanisms

over which the debate on their roles and interplay is unsettled yet [159]. Here,

we don’t want to discuss this particular issue, instead, we want to draw some

computational reflections about the generic case of sequence learning. For

our purpose, however, we wanted to investigate at the computational level

the benefit of both mechanisms. The first consideration is about the effect

of chunking: in Figure 4.2a and Figure 4.2b the entire percept, formed by

units, is stored as well, causing longer words (in fact, joint words) to be

remembered better then effective words. Another point regards the limit

of assuming syllables as atomic units: in Figure 4.2b, sequences, as well

as words, have odd lengths. Thus, a key aspect regards the potential of ISL

(compared to pure chunking methods) to aid segmentation, achieving similar

or better performance in chunk recognition too.

This experiment is the simplest one to demonstrate the effects of TPs

used as cues instead of relying on syllables (bi-gram only) in a PARSER,

language-like scenario. In their paper, the authors used languages composed

of syllabic words (i.e., even-length words) for their experiments: this is an

impractical and simplifying assumption for modeling other, general real-life

scenarios and languages such as music or movements. Contrarily, TPs as cues

are a more general and robust mechanism for this purpose (note that TPs

vary with language complexities and transitions). To explain this difference,
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we choose another well-studied artificial grammar used to explore whether

learners can use transitional probability as a cue to phrase structure [219].

The language is formed by 6 classes (A, B, C, D, E, F), each comprising three

(a) PARSER for ABCDEF (b) PARSER for ABCDE

(c) TPs + memory, for ABCDEF (d) TPs + memory, for ABCDE

Figure 4.2: Memory of PARSER and (TPs + memory) for ABCDE and

ABCDEF languages. TPs + memory does not use chunking: that is, per-

ceived units are stored separately, without storing the joined percept

words formed with the pattern consonant–vowel–consonant (so of length 3,

in contrast to Saffran even-length words). To stress further the concept of

even-length words, we applied both models also on a slightly modified version

of the language where sequences are composed using the ABCDE pattern

instead of the ABCDEF one.
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In Figure 4.2 are shown the active units in memory at the end of learning.

The PARSER memory is compared against the memory formed with TPs

and the same attentional mechanism. As said, PARSER relies on grouping

together syllables and on frequent chunks meanwhile TPs rely on segmen-

tation, i.e., finding chunk boundaries. However, if PARSER, as a chunking

module, uses only simple mechanisms, such as associative learning, track-

ing requires a more sophisticated one (tracking at least bi-grams and uni-

grams to calculate transitional frequencies). Nevertheless, using TPs (with

attentional-memory mechanisms) seems more appropriate for a general do-

main class of phenomena (not only language). Moreover, this TPs approach

supports the hypothesis of [73], which suggests that people could simulta-

neously acquire knowledge about concrete chunks and abstract structures of

the temporal sequence, meanwhile chunking mechanisms do not account for

temporal structure.

4.4.2 TPs and Memory: A Matter of Complexity

In this example, we wanted to show a straightforward scenario involving

memory usage (active chunks) compared to the exploitation of statistical

cues. For doing this, the action taken by the algorithm are plotted at each

cycle in the learning phase. As could be expected the system relies on memory

whenever the language to learn is a simple one. With more complex languages

(in structure and vocabulary) the units in memory continue swapping, as a

result of decay and interference interplay, and the chunks are no longer a

reliable resource. In this case, the exploitation of TPs appears to be a more

reliable mechanism. However, relying on memory depends most on chunk

frequencies in the short term, not on the dynamics of transitions.

It is worth noting that we are considering the differences in relying on

memory instead of segmenting the input. This scenario is similar to the

exploit-explore scenario: that is, whatever the system has to rely on memory

(exploiting) or explores novel information in the input (segmentation, TPs).

This could be related also to the dual-route view of imitation [217]: supposing
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Figure 4.3: Perception mechanisms used at each cycle in learning ABCDEF

language (4.3a), irish songs (4.3b) and Bach’s preludes (4.3c).

that what could be in (short-term) memory (compared to long-term, proce-

dural, TPs) is also related to retrieval (and also rehearsal) mechanism, so re-

lated to known information. Typically imitation and other implicit sequence

learning tasks involve Reaction Times (RTs) to measure implicit learning.

The latter, as for other more sophisticated indicators (e.g., ERPs), could be

compared, for example, with the present computational model behavior, aid-

ing to more clear statements and precise experiments in such contexts. As

a hypothesis to test, which supports this human behavior, shifts in one way

or the other could be reflected in the use between memory and statistical

computation modules, respectively.

4.4.3 The Generalization Mechanism

This step is inspired by studies on incubation: a time when unconscious

behavior takes over, which allows for unique connections to be made without

consciously trying to make logical order out of the problem. Taking as an ex-

ample the language used in the previous section, we discuss the effects of the

abstraction step. Figure 4.4 shows the learned TPs and the graph yielded

after this step for an archetypal scenario. Building from what is grasped

by the learning procedure, which contains words and transition probabili-

ties, the generalization phase looks at node similarity to compute the form

classes. Then it parses the generated sequences to build the new generalized
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Figure 4.4: The effect of abstraction. (a) The learned graph (TPs graph),

and (b) the generalized one (GG) where the nodes represents the classes of

the grammar: ABCDEF

graph that outputs form classes and transitions between them. Of course,

this is an oversimplified example: where the grammar of the language learned

is straightforward. In more real-world cases, the learning procedure yields

errors (i.e., it grasps non-words) that propagate throughout generalization.

Nevertheless, there are many possible solutions to this issue: reiterating the

generalization procedure (e.g., as successive incubation steps) to refine the

generalized graph, which also relates to simulating replay mechanisms [231,

127, 121], or using more explicit knowledge, or using task-driven or error-

driven procedures [141, 150], for example. While generalization is convenient

in the learning phase to grasp higher-level relations–such as relations between

classes of chunks–its effect on productions is twofold: i) it brings errors, as

the generalized graph encodes new possible, and might unfeasible, transi-

tions (and combination) between elements of the created classes, ii) it brings
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structure to produced sequences. If with (i) it allows for new possibilities at

the cost of making errors, with (ii) it allows for the potential discovery of new

higher constraints that could also reflect on the evaluation of creativity: if

one considers this higher-level knowledge, some variations would have no cre-

ativity because not all nodes have multiple outgoing edges in the graph, and

so the probability of that single edge (representing the variation) is maximal

(1.0), that is, it’s constrained, and this means that it brings no novelty. This

mechanism is like thinking about a particular production (idea or solution)

from another (higher) perspective.

4.5 Experiments

While the previous section discussed some pivotal issues by showing ex-

emplifying scenarios, in this case, the focus is on the cognitive aspects the

model entails. In the end, the ultimate goal of this dissertation is to develop

an approach that can be useful not only for robotics but also for psychologi-

cal and social studies, in line with the CC philosophy. Hence, here we discuss

some experiments concerning: (i) the divergent and (ii) convergent abilities

of the model, on a typical language used in psychological tests conceived for

language acquisition; and then, (iii) the comparison with a psychological,

related prototype for language learning. In particular, for convergent and di-

vergent phases, we used a language generated by the grammar of Table A.1,

used in [219], where we explored the role of the previously introduced mech-

anisms and the effects of generalization. Then, the comparison is carried

out in the shallow parsing task of mother-child speech corpora, considering

two other models, CBL and CogComp Chunker–as the comparison and the

baseline model, respectively–in the same vein as the experiment conducted

in [133].
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4.5.1 Divergence

To explore the divergent characteristics of the system, in this section, we

discuss two experiments where, more than on the quality of solutions, the

focus is on the number of variations the model can produce. In particular,

we tested three different methods for boundary detection, diverse decay pa-

rameters for the memory, and the effect of the incubation period, seen as the

number of sequences created (with the TPs graph) to obtain the generalized

graph. Even if the chunking mechanism in memory is the primary drive for

word discovery, the effects of its interplay with the ISL module are not trivial:

the segmented units and the method used for boundary detection influence

the attentional mechanism in memory, that in turn affects the encoding of

the successive transitions between chunks. Another important investigated

factor, mainly for generalization, is the role of context. For these reasons,

we decided to use two similar grammars using the words and classes in Ta-

ble A.1: the first language is built using the ABCDEF structure, and the

latter using ABCDEF + ABCD + ABEF + CDEF (also called hereafter the

full grammar). Then we discuss the differences between the TPs graph and

the generalized one. The hypotheses, as stated in Section 4.4.3, are various.

In particular, the generalized graph should be able, at least in the divergent

phase, to produce more alternatives, with the additional hypothesis that the

“incubation period” should be more effective for convergent behavior than

the divergent one. Moreover, given that the language is quite simple, the sys-

tem will be relying more on memory; thus, memory decay should have a role

also in the divergent phase (a light forgetting implies, in chunking, the mem-

orization of multi-unit words, encoded, in turn, in the graphs, constraining

generalization and, in general, variations). Finally, given the intricate in-

terplay between the two modules, even if the system had to rely more on

memory, the method used for boundary discovery should influence learning

and, as a consequence, production.
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Experiment 1

In this experiment, we wanted to evaluate the potential the divergent

mechanism has, to reach unknown solutions. Given the focus on sequentiality,

creativity should be in how units are ordered. Therefore, from the corpora of

generated languages, we removed all the sequences that contain the specific

subsequence “neb-rel-sot”. Accordingly, we removed 30 sequences from the

ABCDEF + ABCD + ABEF + CDEF corpora (972 in total), resulting in

a training set of 942 strings, and 27 sequences from the ABCDEF corpora

(729 sequences in total), resulting in the second training set composed of

702 elements. Using these two training sets, we explored diverse decays (C

in Equation 3.8, where tested values are: 20, 50, 100, 500, 1000), the three

different formulas (equations 4.1, 4.2, and 4.3) for boundary discovery, and

a different number of sequences produced to construct the generalized graph

(called repetitions: 10, 100, 500, 1000, 5000, 10000). For each training

set, once learned, we use the TPs graph to generate a variable number of

repetitions to build the generalized one. Finally, we generated 1000 output

sequences, with each graph, counting the number of produced strings that

contain the sub-sequence “nebrelsot” (the number of hits). Extensive results

are shown in the tables of Section A.3, which report the number of hits.

Results As expected, the decay parameter plays an important role. For

these two simple languages, the values for decay that maximize the number

of hits are 20 and, to a lesser extent, 50, as shown in Figure 4.5a. The lesser

the decay, the greater the length of recognized words: this steers the system

to store multi-words and the TPs module to store transitions between them

(instead of between actual words) that, in turn, constrains the generation.

Moreover, as expected, the generalized graphs yield better divergent re-

sults than the TPs one, confirming that generalization could be useful for

reaching unexplored areas of the given solution (or conceptual) space: see

Figure 4.5b. However, contrary to predictions, the incubation period, simu-

lated with the number of sequences used in the generalization step, does not
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Figure 4.5: Results for divergence Experiment 1. (a) Aggregate number of

hits for memory values for each grammar. (b) Aggregate number of hits for

graph types (TPs graph and the various generalized ones) for each grammar.

influence the generation of novel sequences. An explanation for this behavior

may lie in the (low) complexity of the two languages: in both cases, few rep-

etitions are enough (for generalization) to improve the results and saturate

the solution space. Perhaps for the same reason, even if slight differences

could be noted, the structure of the language seems to be not so influential

for the divergent generation of such solutions. One hypothesis is that a less

structured language needs a longer incubation period for discovering specific

structures; this is observable in the ABCDEF language, in Figure 4.5b, where

the difference between the incubation period of 10 sequences and the others

is evident. However, in the more structured (full) language, generalization

has a discernible effect on the divergence.

Experiment 2

Given the results of the first experiment, we conceived a second trial

were we focused on smaller set of parameters values. Moreover, if in the

previous experiment we tested the ability of the model to find a novel specific

combination respect to the given corpora, in this simulation we want to
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explore the general divergent potential of the model to find novel sequences.

It is worth noting that in the previous test we did not account for unfeasible

solutions: in that case, even a ungrammatical sequence that contains the

“nebrelsot” subsequence counted as an hit. In other words, in this case the

task is conceived for a broader exploration of the actual solution space. Thus,

we built the training set (547 sequences) using only the ABCDEF structure

from which we have randomly removed 1/4 of the sequences for the test set

(182 sequences); therefore, an hit is counted whenever the system produced

a sequence of the test set.

Results Complete results are shown in the tables of Section A.4, where

the number of hits are shown: averaged (H), the hit rate calculated as the

number of distinct hits (i.e., sequences) divided by the total number of hits

(HR), maximum (M), and minimum (m). In Figure 4.6 we show the average

number of hits (x axis) and hit ratios (y axis) of the TPs graph and three

generalized graphs (GG) obtained with 10, 100, and 1000 repetitions. As it

can be noted, the methods for boundary founding yields different behaviors.

The BRENT technique have the highest number of hits (on average) but

a scarce hit ratio: this means that it yields feasible solutions but tends to

produce always the same strings. On the other hand, the FTPAVG seems to

have the best hit ratio that means this method produces a set of more diverse

solutions but struggles more in producing acceptable ones. Therefore, from

these results, the AVG method seems to yield the best balance between the

number of acceptable solutions and their diversification.
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Figure 4.6: Results for divergence Experiment 2. The three methods for

boundary discovery are shown for each used graph.
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4.5.2 Convergence

In the convergence process, the utility certainly plays a key role as it de-

fines the solution space, and it is seldom easy to specify one that assures the

expected results; this is particularly true in artistic and creative contexts.

For these tests, we used the ABCDEF grammar of the experiment in Sec-

tion 4.5.1 (without the sequences containing the substring “nebrelsot”) as the

training set. We remind that the test set comprises all the feasible sequences

containing “nebrelsot”. Then we conceived a utility function that assigns

1.0 if the generated solution matches a sequence in the test set, or, other-

wise, returns a value that represents the halved similarity with “nebrelsot”,

as follows:

utility(s) =

1.0 if s in test set

similarity(s, “nebrelsot”) otherwise
(4.6)

where similarity(s, “nebrelsot”) uses the Levenshtein Distance to compute

the ratio of the most similar substring in s compared to “nebrelsot”, divided

by 2. In this manner, even if the sequence is not in the test set, we reward

solutions that contain the searched substring. As an example to clarify the

second case, if s=“nebrelsot” or s=“xxxnebrelsotyyyy”–two solutions that

are not in the test set–the utility value for both is 0.5. This choice is be-

cause this utility is more precise than, for example, the value calculated as

the similarity with the entire test set (cf. Section 3.1), and it rewards also

divergent behavior.

As previously discussed, it has been suggested that creativity is not only

a combination of novelty and value but also involves a third factor: surprise.

It is worth noting that the definition of a creative artifact requires that it had

never been produced (and seen) before. Thus, each creative solution should

be viewed as such only the first time it occurs; that is, an idea, or product,

can not be surprising, novel, and thus creative, two times. From this perspec-

tive, the hypotheses for the role of surprise are manifolds. While it is fairly

accepted as an element of evaluation of the creative artifact –paying attention
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in discerning it from novelty–its role in the creative process is less clear. For

this reason, we conceived two diverse functions for evaluating creativity, used

to generate novel sequences: one is Simonton’s formula, comprising surprise

(1− v), and the other one is the standard formulation of creativity without

this third element.

Simonton’s creativity : (1− p) ∗ u ∗ (1− v) (4.7)

standard creativity : (1− p) ∗ u (4.8)

These functions compute the creativity of the edges in the graph; these values

represent the weights of the Monte Carlo walk that passes through the graph

to generate new sequences. Therefore, we examined (i) their roles during

the generation process and (ii) their efficacy as measures for convergence,

analyzing, as done in the previous section, the number of final hits they led

to. Following BVSR, we employ these formulas in a generation-and-test (or

trial-and-error) routine. In Simonton’s formulation, the v value takes the

form of sightedness, and its counterpart, (1 − v) is what is called blindness.

Stated in this manner it should be more clear that the Blind in BVSR is not

randomness [202, 203]; following Simonton, as a consequence of blindness,

the creative process should exhibit nonmonotonicity, seen as deviations from

gradual improvement.

The procedure employs 1000 iterations, where for each iteration, the TPs

graph and the generalized ones (considering repetitions) are used to generate

100 sequences (using the Equations 4.7 and 4.8). Then, these sequences

are evaluated using the utility (Equation 4.6), and finally, the parameters

of the edges (u and v) are updated, for each graph. This is a noteworthy

aspect: if utility–and surprise, defined as the blindness on that utility– are

known only in the moment of evaluation of the entire sequence, how can we

model the creative choice along the train of decisions, that ends up with that

solution? Trying to model this aspect, even if the utility applies on the entire

sequence, the update procedure acts on each edge using formulas 4.4 and 4.5:

thus, especially for v parameter, this factor introduces a nonobvious aspect

of variability.
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Results

The displayed results are obtained using the AVG method (Equation 4.2)

and averaged over memory decays (C = 20, 50, 100, 500). Note that the

figures show the creative value of solutions (C) using Simonton’s formula

(Equation 4.7). However, in this case, what is evaluated is the final artifact:

that is the generated sequence, instead of the single edge. Hence, the p and v

of a sequence, are calculated respectively as the product of the probabilities

(p) and the average of sightedness (v) of the edges–in the graph–traversed to

produce it.
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Figure 4.7: Results for convergence with TPs graph, using Simonton’s for-

mula for creativity.

The first detectable effect of using surprise within the generative process

is to enhance exploration, as it penalizes already seen solutions (both good

and bad ones). The variability of the max value, and especially, of the



86 4. A Production-Oriented ISL Model

mean in each generation is more evident in the process using v. However,

the best creative values seem to be yielded by the standard formulation

(without v), which exploits the utility in the choice at each node and can

exploit each edge multiple times. These aspects are noticeable comparing the

figures 4.7 and 4.8 that show the creativity values (C, using Equation 4.7)

of sequences generated by the TPs graph using the two diverse creativity

formulations in the generate-and-test phase. In Figure 4.7, the expected

behavior of Simonton’s formula is evident: a peak of creativity, caused by the

initial exploitation of creative paths, is followed by a subsequent decrement

caused by the exploration (induced by v) of other paths.
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Figure 4.8: Results for convergence with TPs graph, using the standard for-

mula for creativity.

Although less visible, the same trend is also noticeable in the case em-

ploying generalized graphs (in figures 4.9 and 4.10, see also figures in A.5).



4.5 Experiments 87

Nonetheless, in the generalized graph, the stochastic (or the analogical) de-
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Figure 4.9: Results for convergence with generalized graph with 100 repeti-

tions, using Simonton’s formula for creativity.

cision made at each choice node, which are not affected at all by the utility,

should have the same effect: that of favoring exploration. This variability

induced by the ”surprise” factor (1− v), contrarily to prediction, is reflected

also in the number of appropriate, feasible solutions produced (i.e., final

hits). However, this trend is favored by the utility. In particular, the second

term, similarity(s, “nebrelsot”), rewarding “divergent” solutions, increases

the utility value of those sequences that are not in the test set but that con-

tain a subpath similar to “nebrelsot”. From Figure A.2 in Section A.5, the

more steady behavior produced by the standard formula is visible, and this

steadiness is manifested also across generalization.

Another important aspect involves the use of surprise as an explorative
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Figure 4.10: Results for convergence with generalized graph with 100 repe-

titions, using the standard formula for creativity.

factor compared to the role of decay and generalization. In Figure 4.11 are

plotted the results of using the model with decay factors C = 20 and C =

50. In the case of C = 50, the memory stores composite (multi-) words that

constrain the generation (see the effect on the results using the more conver-

gent standard creativity formula). However, both generalization and surprise

seem to ameliorate this tendency. In particular, surprise has opposite effects:

where actual, right words are stored (C = 20), its effect is counterproductive

(since negates the exploitation of good but already seen edges) while, in the

case of C = 50, it solicits exploration of alternatives.

In conclusion, the effect of surprise, in the generative process, is to en-

hance exploration of the whole solution space (both the feasible and the

unfeasible). However, its role is different from that of novelty (that deals
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Figure 4.11: Comparison between models with diverse memory decays. Ag-

gregate number of hits with (a) C = 20 and (b) C = 50.

with the similarity between produced artifacts, cf. Section 3.2) since surprise

deals with the agent’s knowledge about the utility of that solution.

On the other hand, generalization, which enables analogies, maintains a

”natural” rate of variability regardless of the formula used in the process

(Simonton’s or standard). However, the effect of incubations, so the number

of repetitions used to build the graph, has a twofold effect, similar to surprise:

they enhance exploration that is useful in some cases but vain in other more

exploitative ones. These aspects, however, need more in-depth studies and

experiments.

4.5.3 Shallow Parsing

It has been suggested that in language acquisition humans form repre-

sentations which are merely “good enough” for the communication task at

hand [65]. That study, which analyzed event-related potentials, suggested

that sentence meaning is constructed using simple heuristics arguing that

this approach to language comprehension is similar to the use of heuristics

for decision-making. In [133] the author maintain that shallow processing
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based on local information is a pervasive and widespread phenomenon in

psycholinguistic research and the computational model devised in that work,

the Chunk Based Learner, was made to emulate this behavior in children. As

said, the CBL model2 is the most similar one to the present approach, so we

compared the two model in the shallow parsing task using the CHILDES [129]

database,3, which collects transcribed dialogues between mother and child;

from the database we took Belfast, Lara, Manchester and Thomas transcripts

(a total of 1236 files) and we used the CogComp Chunker [110], considered in-

stead as the reference model, i.e., the baseline4. To mimic the constant decay

of the PARSER memory used in [133] for comparisons, in these simulations,

we use S = 1000 and C = 1000 in the formula 3.8.

Results

Figure 4.12 shows the result obtained. We calculated the F-Score using

the formula in [133], for each model, taking the results of CogComp Chunker

as the ground truth, where we considered: a true positive when the model

placed a boundary in the right position, a false positive as a boundary placed

when there should be not, and a false negative as a boundary not placed

where there should be.

The major issue concerns applying the model to unsegmented or seg-

mented data: that is, processing a stream of symbols in contrast to processing

a sequence of words. The problem resides in how PARSER works (exploiting

syllables as minimal units to be concatenated to form words). When neither

memory nor TPs are exploitable for input processing, a random number of

units is taken to parse (and to chunk) the input. However, this particular

mechanism is conceived more for unsegmented data, especially within the

shallow parsing task. This workaround is conceived to address all the other

phenomena that may take part in this process (e.g., the agent’s vigilance)

2Available at: https://github.com/StewartMcCauley/CBL
3Available at: https://childes.talkbank.org/
4urlhttps://github.com/CogComp/cogcomp-nlp/tree/master/chunker

https://github.com/StewartMcCauley/CBL
https://childes.talkbank.org/
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Figure 4.12: Shallow parsing results for CBL and TiPS

but it plays a role in the behavior of the system. See for instance Figure A.1

that shows the results obtained with the same set of parameters as those in

Figure 4.12, but where instead of randomly picking a number in [1,3], a single

unit (in this case a word) is chosen. Thus, this issue must be investigated

more deeply.

Min 1st Qu. Median Mean 3rd Qu. Max

CBL 0.0 0.701 0.732 0.686 0.745 0.776

TiPS 0.4 0.527 0.539 0.542 0.553 0.848

Table 4.1: Summary results for CBL and TiPS

In addition, the two models are moderately inversely correlated (Pearson

correlation coefficient = -0.5). Therefore, in general, they have a good per-

formance in different cases (even if to varying degrees). The graph of sorted

values (Figure 4.13) confirms these observations (see Min. and Max. columns
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in Table 4.1) and shows that TiPS follows the trend of CBL. In conclusion,

TiPS does not perform badly, but in some respects, it may be preferable to

or at least combined with, the CBL mechanism, to cover those cases where

CBL fails.
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Figure 4.13: Performance of TiPS compared to CBL. F-Scores correlations

(a) and sorted values (b).

4.6 An Application on Irish Songs

This section concerns a possible application of the previously discussed

model as an instance to explore its potential in creative realms. Again,

we have chosen the context of music: besides representing a more complex

language (with respect to the previously investigated ones) in the creative

domain, it is a compelling area of investigation for Statistical Learning and

cognitive research. In addition, for this fulfillment, we introduce and discuss

two utility functions to steer the generation toward the desired character-

istics. Moreover, this is an example of how to use a utility unrelated to

human or expert judgment. It is based on the intervals between adjacent
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notes, computed as a numerical difference in semitones, and calculates the

frequency of these differences. For Irish music, used as the learning corpus,

these intervals do not exceed an octave, so their probability distribution, in

the input set, represented using histograms, remains in the range [-12,+12]

(see Figure 4.14a).
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Figure 4.14: Histograms of Irish music: note intervals distribution for Irish

input corpora (a) and allowed one by the utility function(b)

With the conceived utility, we want to induce a distribution of inter-

vals different from that of the source corpus; specifically, in this case, we

decided to favor melodies containing thirds (both minor and major) and

sixths (major). To this aim, we take a reference histogram characterized by

low frequencies for all the intervals, except for thirds and sixths (see Fig-

ure 4.14b). We defined two utilities: one as the similarity between the two

vectors of interval frequencies using Euclidean distance, and the other using

Kullback–Leibler divergence (KL) [105] by interpreting these histograms as

probability distributions.

4.6.1 Results

The model used to generate the results employ the AVG method for

boundary discovery and C = 1000 for memory decay. The generalized graph
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was obtained using 1000 repetitions for its construction. The resulting his-

tograms in Figure 4.15 and Figure 4.16 show that the KL utility works better

because it has a more comprehensive view; with Euclidean distance, there is

compensation between the various elements, while the KL one distinguishes

these features.

(a) Simonton’s C + euclidean U (b) Simonton’s C + KL U

(c) standard C + euclidean U (d) standard C + KL U

Figure 4.15: Result for TPs graph with euclidean (a, c) and KL utilities (b,

d), using Simonton’s (a, b) or standard creativity (c, d).

Concerning the quality of productions, a higher similarity to the mu-

sical structures of the original corpus is perceived in the music generated

with the generalized graph (Figure 4.16). From the obtained histograms, a

greater ability to approach the reference histogram is observed when Simon-

ton’s creativity is employed: this is most likely because surprise introduces
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diversification in the search.

(a) Simonton’s C + euclidean U (b) Simonton’s C + KL U

(c) standard C + euclidean U (d) standard C + KL U

Figure 4.16: Result for TPs graph with euclidean (a, c) and KL utilities (b,

d), using Simonton’s (a, b) or standard creativity (c, d).

In conclusion, the surprise (1-v), in Simonton’s formula, helps to diversify

search, a characteristic of divergent behavior typical of creativity. However,

even in such controlled experiments, the dynamics and interplay of surprise

and utility, the effect of generalization, and their role in both the divergent

and convergent phases that lead to creativity, are intricate. Hence, further

extensive and in-depth studies will be needed to confirm this hypothesis.
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4.6.2 Representative Examples

Below are shown the most creative sequences, one for each model and for

each of the two functions of creativity (Simonton’s and standard). These Irish

series are generated using the KL function because it yields more significative

values for the designed utility than the Euclidean one. We can observe that,

at varying degrees across the generating graphs and creativity function, all

the melodies contain arpeggios by thirds and a considerable amount of (both

ascending and descending) thirds and sixths.

  44                                
(a)

 44                         
(b)

  44                            
(c)

44                        

(d)

Figure 4.17: Representative examples of Irish songs produced with KL utility,

using the TPs graph (a, b) and the generalized one with 500 repetitions (c, d).

Both formulas of creativity were employed: Simonton’s (a, c), and standard

(c, d).
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4.7 Discussion and Future Work

In this chapter, we presented the cognitive aspects related to the conceived

computational model. We confronted and tested the present model with a

related psychological model on a well-studied task on language acquisition

in the literature. In addition, we tested the potential the model has in

generating new sequences: both in the task of producing variations and novel

solutions, and in the opposite one, to converge to task-appropriated ones.

Finally, we applied this model to Irish music, discussing the produced quality

of the model, and its potential in an artistic domain. Further experiments

with human evaluation are planned to assess the quality of the pieces of music

produced and to estimate to what extent evaluation by means of a creativity

function correlates with human evaluation.

Compelling aspects regard mainly the role of surprise and that of gener-

alization. These experiments highlighted also the role of short-term memory.

That is, to facilitate the acquisition and subsequent computation of learned

material, as well as that of attention. Moreover, besides chunk formation,

ISL is essential for encoding sequentiality and could be the basis for more ab-

stract and explicit knowledge formation: we explored some aspects of these

mechanisms with the studies on generalization. These suggested continu-

ing to investigate those cognitive aspects from a computational perspective

meanwhile enhancing the model following these brain capacities (cf. [48]).

Despite considering cognitive issues, the present studies focused on com-

putational analyses. This approach highlighted some aspects, at an algo-

rithmic level, that could shed light and suggest refinements of the compu-

tational hypotheses that regard ISL, the formation of chunks, the conver-

gent/divergent phases, and the role of surprise and generalization on creative

generation. In the hope that these discussed aspects could favor cognitive re-

search and interdisciplinary approaches to creativity, further computational

experiments will continue following this vision.
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Chapter 5

Final Remarks

The presented model could be useful in several ways, and it is general

enough to lend itself well to many domains by construction. This charac-

teristic is inherited mainly from the ISL mechanism it implements, which,

in turn, is based on TPs computation. For instance, it can model sub-

jectivity, and, even more importantly, developmental mechanisms, as the

model is unsupervised and learns online and incrementally, so its evolution

depends on the input (environmental) material. Moreover, ISL and TPs are

being ever extensively studied in neuroscience and psychology; ISL mech-

anism is related to the hippocampus and other brain areas activity [191,

107]. It had been investigated via Reaction Rimes (RTs) and two-alternative

forced choice (2-AFC) tasks [111, 224], and through Event-Related Poten-

tials (ERPs), Electroencephalography (EEG) and magnetoencephalography

(MEG) analyses [210, 112, 209, 113, 114], for example. In these respects,

and besides the applicative realm, one ultimate end of this model is also

that of being a cognitive-modeling tool for better understanding (or sharing

research on) and simulating neurocognitive mechanisms (c.f., [36]). Hence,

before wrapping up and concluding, the remainder of this chapter discusses

ongoing work, further developments, and the possible connection to other

major recent approaches in the cognitive literature.

99
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5.1 Ongoing Work

A major challenge in the research field of robotics is developing robots

that can engage in long-term human interaction. Therefore, a robot ought to

be able to learn languages (e.g., spoken, movements, or implicit interactions)

in an unsupervised manner and to be able to produce them, similarly, to

become integrated with society. Therefore, it is crucially important to com-

putationally understand how humans can learn and obtain skills through

their autonomous development and (multimodal) interactions with the en-

vironment, in order to develop a robot that can emulate those behaviors.

Hence, it is fundamentally important to understand systems that change dy-

namically in a constructive manner and build, and shape, their subjective

experience.

Thus, besides the cognitive realm–which requires in-depth, structured

experiments and resources–the aim is also to explore IT metrics both to

analyze cognitive mechanisms–seeing the brain as an information processor–

and to automatize these behaviors on robots or machines, for aiding machine

creativity. These measures, as for TPs and ISL, are related to brain activity

and a the same time are easily employable in robots.

5.1.1 IT Metrics Exploration

We are conducting more in-depth analyses on the possible exploitation

of the metrics from Information Theory (IT) to validate and investigate–but

also to computationally enhance– the creative production (e.g., Set-Based

Complexity and Normalized Compression Distance). From a computational

perspective, these metrics help automatize the processes of learning, gener-

ation, and validation (assessment) for creativity. For instance, they provide

the means to apply Ritchies’s criteria [179]: for attributing creativity to a

computer program, or, on the other hand, if embedded in the program itself,

to confer to the agent more (computational) autonomy.

Furthermore, IT provides a convenient framework to model brain activity,
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cognition, and consciousness [221, 35, 69]. For example, entropy has been

recently adopted to associate brain activities with divergent thinking [199].

Furthermore, neurophysiological studies have revealed that musical sequences

with higher entropy are learned through higher-order TPs, while series with

lower entropy are learned by using lower-order TPs, and that certain brain

regions perform entropy computations independently of TPs [43, 44, 45].

Essentially, these measures constitute a functional substrate to evaluate

surprise, uncertainty, free energy, and other information-related metrics ap-

plicable (cf. KL-divergence), for example, to assist the choice of what cue is

the more helpful or what mechanism (chunking or statistical computation)

to adopt depending on the case. The same metrics could be employed to

evaluate, in the same fashion, the complexity of the input and to describe

the chosen behavior followed.

5.1.2 Robots at Theatre

We are currently embedding the model in a controller for humanoid robots

(e.g., the Nao robot) to acquire, reproduce (imitate), and create sequences of

movements (creativity). The entire pipeline includes the acquisition of hu-

man poses using Google MediaPipe, the use of inverse kinematics (IK), and

motion planning software (MoveIt) to control the robot’s movements, based

on the (spatial) position of its end-effectors, acquired from the camera. The

overall goal is to exploit the presented model for the learning and produc-

tion of captured movements. With such a model, the robot, in addition to

memorizing, can also learn the internal structure of these sequences (i.e.,

movements): discovering internal patterns and dependencies. Moreover, the

identification of “constituent elements” enables the robot to recombine them

and thus generate new sequences (through creative recombination). The goal

is to test the robot on a theater stage in a two-stage process: first, improvis-

ers are allowed to perform some movements in front of the robot to acquire

such choreographies, then the robot is allowed to create new material for

the actors to judge so that the robot learns aesthetic judgments to improve
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the creative outcome. Again, the goal has been twofold: in addition to the

creative realm, these experiments are intended as a proof of concept for the

more general context of implicit interactions in social robotics.

5.2 Further Developments

In this dissertation, we explored some essential mechanisms for encoding

sequentially and discovering structured information employed by the brain

for learning procedural knowledge. The aim was to describe a general-enough

computational approach that should be able to account for computational,

creative applications (conceived to be embedded in robots’ controllers) and

for computational investigations of brain functioning. However, every aspect

mentioned throughout this work deserves more in-depth analyses, especially

considering the related cognitive factors.

From a computational perspective, for example, the parameters of the

model touched upon in the thesis could be subjected to adaptive procedures,

such as Machine Learning algorithms that might exploit IT metrics (related

to the input streams, or the complexity of the built graphs) to conceive

systems that can work alongside humans (and artists). This relation accounts

for another creative modality: the one emerging from the interaction between

the human and the machine.

5.2.1 Enhancing the Sequential Module

Chunking mechanisms as PARSER, are sufficient to account for word

discovery; the present studies confirmed the literature [159]. However, these

results are true in language acquisition, where the structure of natural lan-

guages themselves follow a Zipfian distribution that facilitates the emergence

of frequent words favoring chunking [119]; this is probably not true for all

the sequential phenomena that could be addressed by this model (i.e., music

and movements). In addition, the major tenet of this thesis is the encoding

of sequentiality and the search for structure and hierarchical organization
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in sequential phenomena and broadly referring to human abilities, of pro-

cedural knowledge (i.e., knowing ”how” not ”what”). For this reason, TPs

gain a fundamental role here: they represent the constituent part [27] for

the emergence of sequential knowledge at increasing degrees of abstraction.

Therefore, the aim is to enhance the (cognitive) mechanisms used to encode

sequential phenomena: thus, following [48], the next step features the im-

plementation of an algebraic module. If the generalization helped discover

(form) classes, this step will enable a very powerful kind of abstraction that

lead to pattern discovery of consecutive perceived stimuli, to capture the

relationships between successive stimuli or stimulus categories. Consider,

for instance, experiencing the succession of (symbolic) events such as —“to-

tobu” “mimika” “paparo”—. It has been studied that few minutes of such

exposure appears sufficient for a baby to recognize that all such sequences

obey a similar pattern that may be denoted as AAB. When this pattern is

violated, e.g., by an ABB item, the baby perceives this change [48]. As one

can imagine, this module allows the implementation of a series of new mech-

anisms for creativity (and cognition) that leads to analogies, bisociations,

and the discovery of new (higher-order and hidden) constraints on the given

conceptual space. Moreover, as for generalization, all this reified knowledge

(i) could serve as new attentional cues, (ii) could be used in other domains or

conceptual spaces (cf. transfer of knowledge), and (iii) can be applied over

features as well, in a multimodal scenario.

5.2.2 Attentional Mechanisms and Cues

A compelling aspect regards the exploitation of learned statistical cues in

perception, which represented another motivation we had to add the memory

mechanisms in our model. In the same way learned TPs could be used as cues

for boundary-finding and segmentation, and in general, to discover structure

in the input, several alternatives could be explored. In doing this, we envisage

at least two possible scenarios. An option is exploiting TPs in a retrieval

mode: with the current perceived chunk as a ”retrieval cue” or, in the same



104 5. Final Remarks

way, following the traced, perceived path with TPS, the next expected unit

could be ”loaded” in memory (or using PARSER definition: the perception

shaper) to enhance memory hits. That is a diverse approach, for example,

to the other conventional possibility: that is, adopting an inferential, error-

driven approach, where this mechanism could serve to generate expectations

instead of attentional cues (see Section 5.3.2).

5.2.3 Effects of Generalization on Learning

In this dissertation, the efforts to investigate generalization had been fo-

cused more on the production side. However, they could be influential also

for the learning phase in several ways. As stated above, the generalized entity

and associations could be exploited by the attentional memory mechanism,

in a retrieval or inferential mode. In addition, this higher-order, discov-

ered information could be employed internally, by the agent, to (”mentally”)

evaluate or compare newly created sequences: as a utility function or as

a different model (concerning the learned TPs) useful for comparisons–and

potentially discover new constraints or patterns.

5.2.4 Segmented vs Unsegmented Input

The model can be applied both on unsegmented and segmented cor-

pora. In the literature, however, there is a lack of computational experiments

that address differences and similarities between segmented and unsegmented

data; for instance, CBL currently works only on segmented input. Neverthe-

less, even if the underlying mechanisms might be the same (using chunking

and statistical computations), the experiments conducted in this thesis sug-

gest that the way (and the parameters) in which they could be applied seems

very different. In this scenario, also the roles of TPs between symbols or

between learned chunks (and their interplay) gain particular importance.

One hypothesis is that there could be some kind of additional adaptational

mechanisms underlying this behavior. For example, when multiple cues were
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available, infants’ looking behavior seemed to track with the strength of the

strongest one [59]: this is in line with theories that suggest the brain acts to

reduce uncertainty and to reduce error, as in predictive brain theories and

Free Energy Principle (see Section 5.3.2).

5.2.5 Embracing Multimodality

An enthralling development, especially for the quality of the produced

artifacts, concerns modeling multimodal (or multi-features) input. Even if

ISL is considered a domain-general approach, some studies revealed modality

and stimulus specificity [72]. These investigations raised the question of

how statistical learning mechanisms could also account for these aspects.

In particular, this issue concerns the differences in ISL between different

modalities (audio, visual, sensorimotor) and between diverse stimuli in the

same modality: for example, in music (auditory), the distinction between

tone, pitch, or timbre.

Instead, within the computational perspective (applied CC), the model-

ing of multimodality enriches the possibilities for creative generations and

their quality. Moreover, this approach is interesting for engineering applica-

tions in another creative context: that is, that of multimodal translation. In

particular, by integrating statistical models derived from different contexts:

i.e., stories and movements, which are specifically interesting for Noh drama.

5.2.6 Behavioural and Neuroscientific Experiments

A compelling experimental scenario of this model regards also the inves-

tigation of creativity in humans. There is, in fact, an ever-growing interest

in the cognitive science of Creativity [13], yet, it is in an early stage, and

research endeavors have often been undertaken separately by researchers of

isolated sub-disciplines (e.g., neuroscience, psychology, education) [223]. The

idea is to introduce novel experimental paradigms, building upon the stud-

ies in the literature that investigate ISL and combining behavioral, electro-
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physiological, and (most importantly) computational methods to examine

human behavior along with the neural correlates of creativity, as, for ex-

ample, in [233]. In this perspective, Computational models at least favor

interdisciplinary collaborations, as recently reported in [232].

Moreover, if one considers embedding the model in robots or apps (e.g.,

for tablets), these studies (and applications) could also be carried out in

educational (e.g., for cognitive enhancement) settings for humans [168]. For

example, following the principles in [135], two unexplored possibilities (also

in literature) refer to the use of these models to support learning-by-teaching

tasks or serious games. All in all, this model is a generative system capable

of unsupervised learning.

5.3 Connections to Other Approaches

TPs computation forms the basis for all the other statistical approaches.

One of the main reasons, as stated previously, is the possibility to turn this

recognition-based approach into an inference-based (or error-driven) one.

The other key factor is how these TPs are computed: that is, through

incrementally counting associations, and based solely on perceived occur-

rences (in contrast with batch descriptive statistics). Particularly, the re-

lation to the free-energy principle and Schmidhuber’s curiosity or intrinsic

motivation [192, 194, 193], is in the use of information gain and other IT-

related quantities (e.g., uncertainty, risk) in selection steps (features, cues,

and learned higher-order knowledge) as attentional mechanisms, for instance,

aiming at discovering ”less-uncertain models” for encoding perceived phe-

nomena. The exploration of various mechanisms gives the chance to learn

and compare different aspects (using Bayesian model comparison, for exam-

ple) of the phenomenon which is being learned, favoring the abstraction of

the knowledge.
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5.3.1 The Bayesian Approach

Under the veil of CC, the Bayesian approach provides a compelling op-

tion to address several aspects (e.g., surprise, commonsense, preferences, and

beliefs) and represents an option to investigate statistical learning [200, 157,

60]. Moreover, unlike more traditional statistical inference, it preserves un-

certainty and allows hypothesis testing. In a broad sense, if the present model

and ISL account for the ”how”, the Bayesian framework could tell us what

it requires and why it works [158]. If ISL models assume that the learner is

passive and implicitly learns in an associative way in reaction to stimuli deliv-

ered by the environment, Bayesian models, on the other hand, describe how

the learner should actively probe the environment to learn optimally. Along

these lines, ISL and TPs recognition (using Markov Chains) form the proper

basis to enable Bayesian approaches: that is, they could also be combined

to represent different mechanisms (see [93] for an old but gold proposal).

If TPs are learned implicitly with practice or exposition (like procedural

memory), they could represent the prior knowledge for Bayesian modeling.

Moreover, sequences can be stored at several levels of detail [48]: currently,

the presented model build three levels of encoding. That is, it forms three

levels of probability distributions: (i) TPs between symbols, learned from

raw input; (ii) TPs between chunks, learned from segmented input that had

passed through the memory; (iii) TPs between (form) classes, learned from

the generalization phase. Therefore, a compelling case regards the employ-

ment of Bayesian models for overhypothesis [109]1 operating on those learned

distributions. Moreover, this enables the distinction and combination of im-

plicitly learned statistics (experience) with (more explicit) subjective belief

and commonsense, for example. Thus, in this way, the Bayesian approach

could enable Creative MetaCognition, which refers to the combination of

self-knowledge and contextual knowledge used to make decisions about an

1Even if Goodman’s definition of “overhypothesis” is more precise, we use the term

more generally, as in the cited paper, to refer to any form of abstract knowledge that

forms a hypothesis space (i.e., probability distributions) at a less abstract level.
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agent’s creative efforts and accomplishments [108] (cf. autonomy and inten-

tionality in creativity [226]), representing a promising way to achieve genuine

transformational (or meta-) creativity.

5.3.2 The Predictive Brain

Even if not considered, the present model is a solid math base for studying

inference mechanisms. From this perspective, the brain not merely relies on

bottom-up information but also adds expectations (cf. the Bayesian frame-

work, discussed above). Several empirical studies have provided evidence for

a brain that predicts its sensory input [171]. This perspective builds upon

the notion that attention is not only a selective process necessary to avoid

sensory overload but rather a mechanism that assigns weights to predictions

and prediction errors [69]. Similarly, long-term memory, traditionally viewed

as a device that stores past information, has been reconsidered as a sys-

tem that provides the prerequisites for the simulation of future events [222].

Even in this case, sequence learning and ISL are two underlying processes

for procedural learning [209], and procedural (implicit) memory is a type

of long-term memory (involved in the performance of different actions and

skills). In this perspective, the learned TPs graph stands for the long-term

procedural memory learned from experience that could serve to explore such

approaches.



Conclusions

In this dissertation, we explored computational mechanisms for gener-

ating creative sequences and investigating the cognitive basis of sequence

learning and creative productions. In particular, the role of TPs as statisti-

cal means to favor interdisciplinarity, which enables cognitive studies in AI

and CC settings. We explored some applications in evolutionary and artifi-

cial arts for robot movements and music. Then we discussed the cognitive

mechanisms implemented, and we tested the model on characteristic tasks

in language acquisition, which is the paradigmatic context for TPs for ad-

dressing human (and animal) learning and behavior. Finally, we discussed

possible enhancements of the presented model that could improve creative

procedures, on the one hand, and could aid the research of human behav-

iors, on the other. The last section described the connections with related

cognitive approaches at the forefront of the literature.

In conclusion, we have presented some computational ideas on the nature

of creativity in sequential processing as an ensemble of many different con-

tinuous processes combining the notions of experience, surprise, contextual

value, novelty, and generalization. We believe this may open new possibilities

for research on creativity in the domain of cognitive science. The benefits of

adopting such an interdisciplinary approach are the positive implications for

a broader cross-pollination across learning, robotic, and brain behaviors.
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Appendix A

Supplementary Material

A.1 Thompson and Newport grammar

Classes

A B C D E F

kof hox jes sot fal ker

daz neb rel zor taf nav

mer lev tid lum rud sib

Table A.1: Thompson and Newport’s grammar. Sequences can have

ABCDEF (baseline), ABCD, ABEF, and CDEF structure.
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A.2 Algorithms

Algorithm 1: Pseudo code for GA

eval← mono

for #iters do

eval(pop)

offspring, elite ← pop

offspring crossover and mutation

pop ← offspring + elite

eval← select objective(pop)

archive← archive assessment(elite)

Algorithm 2: Pseudo code for select objective() function

eval =

mono // the Markov Score

biobjective // Pareto(MarkovScore(), Novelty())

prevF it← bestF it

bestF it← selBest(pop)

if eval == mono then

if prevFit ≃ bestFit then

counter ← counter - 1

if counter == 0 then

reset(counter)

lastAvg ← avg(pop)

eval← biobjective

else
restart(counter)

else

bestAvg ← avg(pop)

if lastAvg ≃ bestAvg then
eval← mono
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Algorithm 3: Pseudo code for the learning algorithm

foreach input sequence s do

units to perceive ← rnd(1,3)

while len(s) > 0 do

units list ← [] while len(s) > 0 & units to perceive > 0 do

active mem ← select unit above threshold in memory

if s starts with a unit u in active mem then

// memory shaped perception

next unit ← u

else if TPs founds a boundary in s at pos i then

// found TPs cue

next unit ← s[0 : i]

else

// random segmentation

next unit ← s[0 : rnd(1, 3)]

s ← s[0:len(next unit)]

units to perceive ← units to perceive - 1

append next unit to units list

whole percept ← join(units list)

encode units list and whole percept in memory

encode TPS between symbols in whole percept

encode TPS between chunks in units list

apply decay and interference
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Algorithm 4: Pseudo code for the generalization step

initialize ggraph

form classes ← cluster nodes using (in- and out-) SimRank for each

pair of nodes in the graph of TPs between chunks

gen paths ← generate n sequences with the graph of TPs between

chunks

foreach gen paths do

start node ← ’start’

foreach chunk in gen paths do

end node ← form classes[chunk]

if the arch (start node, end node) in ggraph then

add 1 to weight of ggraph(start node, end node)

else
add (start node, end node) arch to ggraph

start node ← end node

normalize the weight of outgoing edges for each node

return ggraph
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A.3 Alternative results of shallow parsing

cbl tips

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F-score for TiPs and CBL

Figure A.1: Shallow parsing results for CBL and TiPS selecting a single word

instead of employing a random choice.
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Tables for divergent tests 1

C = 20

GG
graph: G

10 100 500 1000 5000 10000

ABCDEF + ABCD + ABEF + CDEF

BRENT 13 6 14 18 15 13 15

AVG 14 42 43 43 35 39 38

FTPAVG 8 6 8 7 6 7 7

ABCDEF

BRENT 16 6 22 15 15 16 16

AVG 18 19 22 25 24 25 25

FTPAVG 16 12 14 11 16 10 14

Table A.2: Results for C=20. Number of generated sequences that contain

the sub-sequence “nebrelsot”

C = 50

GG
graph: G

10 100 500 1000 5000 10000

ABCDEF + ABCD + ABEF + CDEF

BRENT 8 4 14 15 14 12 11

AVG 12 6 17 18 17 14 13

FTPAVG 10 15 20 17 20 19 19

ABCDEF

BRENT 12 8 18 18 14 12 15

AVG 13 24 10 15 18 17 18

FTPAVG 11 4 13 20 18 16 18

Table A.3: Results for C=50. Number of generated sequences that contain

the sub-sequence “nebrelsot”
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C = 100

GG
graph: G

10 100 500 1000 5000 10000

ABCDEF + ABCD + ABEF + CDEF

BRENT 2 5 5 6 9 5 8

AVG 5 23 14 12 14 16 16

FTPAVG 3 10 15 12 13 19 20

ABCDEF

BRENT 9 11 6 6 6 5 8

AVG 11 21 18 14 14 17 19

FTPAVG 12 9 7 6 10 11 12

Table A.4: Results for C=100. Number of generated sequences that contain

the sub-sequence “nebrelsot”

C = 500

GG
graph: G

10 100 500 1000 5000 10000

ABCDEF + ABCD + ABEF + CDEF

BRENT 3 2 6 8 5 5 4

AVG 3 39 14 9 10 9 10

FTPAVG 3 8 9 11 12 11 10

ABCDEF

BRENT 2 2 4 5 5 6 6

AVG 5 14 18 13 16 17 14

FTPAVG 3 9 10 8 8 8 8

Table A.5: Results for C=500. Number of generated sequences that contain

the sub-sequence “nebrelsot”
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C = 1000

GG
graph: G

10 100 500 1000 5000 10000

ABCDEF + ABCD + ABEF + CDEF

BRENT 4 2 4 4 6 5 6

AVG 3 5 12 9 10 9 6

FTPAVG 2 26 9 12 10 9 10

ABCDEF

BRENT 3 9 10 9 7 7 7

AVG 3 8 10 14 12 13 12

FTPAVG 3 10 8 11 12 8 8

Table A.6: Results for C=1000. Number of generated sequences that contain

the sub-sequence “nebrelsot”

A.4 Tables for tests on divergent tests 2

TPs graph

C: 20 50 100

H HR M m H HR M m H HR M m

BRENT 229 0.57 243 219 223 0.57 241 212 201 0.6 214 183

AVG 239 0.55 252 231 214 0.58 222 200 186 0.6 207 158

FTPAVG 101 0.73 127 68 188 0.6 210 162 191 0.6 208 165

Table A.7: Results for TPs graph.
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Generalized Graph (GG) with rep=10

C: 20 50 100

H HR M m H HR M m H HR M m

BRENT 157 0.33 249 92 160 0.11 253 98 218 0.08 260 168

AVG 138 0.4 244 63 179 0.17 225 138 126 0.3 186 63

FTPAVG 89 0.31 169 32 238 0.09 365 136 109 0.29 188 48

Table A.8: Results for generalized graph built with 10 repetitions.

Generalized Graph (GG) with rep=100

C: 20 50 100

H HR M m H HR M m H HR M m

BRENT 152 0.62 185 130 168 0.51 206 116 153 0.49 198 83

AVG 145 0.63 240 82 185 0.52 205 145 96 0.67 114 75

FTPAVG 84 0.72 132 52 176 0.49 201 160 121 0.64 156 67

Table A.9: Results for generalized graph built with 100 repetitions.

Generalized Graph (GG) with rep=500

C: 20 50 100

H HR M m H HR M m H HR M m

BRENT 149 0.66 193 104 176 0.59 207 134 143 0.6 190 120

AVG 147 0.68 262 79 175 0.58 206 145 115 0.63 145 83

FTPAVG 81 0.76 112 48 182 0.59 199 159 147 0.66 186 84

Table A.10: Results for generalized graph built with 500 repetitions.
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Generalized Graph (GG) with rep=1000

C: 20 50 100

H HR M m H HR M m H HR M m

BRENT 164 0.61 199 134 169 0.62 190 124 115 0.68 130 99

AVG 147 0.66 253 83 182 0.58 228 124 134 0.66 200 100

FTPAVG 75 0.74 104 48 179 0.61 192 173 167 0.61 208 137

Table A.11: Results for generalized graph built with 1000 repetitions.

Generalized Graph (GG) with rep=10000

C: 20 50 100

H HR M m H HR M m H HR M m

BRENT 155 0.64 193 117 185 0.6 243 121 146 0.67 182 120

AVG 136 0.65 227 86 185 0.59 217 133 126 0.69 158 91

FTPAVG 79 0.77 125 55 178 0.61 191 161 124 0.68 181 61

Table A.12: Results for generalized graph built with 10000 repetitions.

A.5 Additional results for convergence
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Figure A.2: Aggregate number of hits of both formulas for creativity
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Figure A.3: Additional results of convergence tests for generalized graphs

with repetitions (10,100,1000,10000) using Simonton’s creativity to steer the

generation
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Figure A.4: Additional results of convergence tests for generalized graphs

with repetitions (10,100,1000,10000) using standard creativity to steer the

generation
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[15] L. Benjamin, A. Fló, M. Palu, S. Naik, L. Melloni, and G. Dehaene-

Lambertz. Tracking transitional probabilities and segmenting audi-

tory sequences are dissociable processes in adults and neonates. Biorxiv,

2021.

[16] J. M. Berg. When silver is gold: forecasting the potential creativity of

initial ideas. Organizational Behavior and Human Decision Processes,

154:96–117, 2019.

[17] J. Biles. Improvizing with genetic algorithms: genjam. In Evolutionary

Computer Music, pages 137–169. Springer, 2007.

[18] J. Biles et al. Genjam: a genetic algorithm for generating jazz solos.

In ICMC, volume 94, pages 131–137, 1994.

[19] C. Blum and A. Roli. Metaheuristics in combinatorial optimization:

overview and conceptual comparison.ACM computing surveys, 35(3):268–

308, 2003.

[20] M. Boden. Artificial intelligence and natural man. Synthese, 43(3),

1980.

[21] M. A. Boden. Creativity in a nutshell. Think, 5(15):83–96, 2007.

[22] M. A. Boden. The creative mind: Myths and mechanisms. Routledge,

2004.

[23] C. R. Bowman, T. Iwashita, and D. Zeithamova. Tracking prototype

and exemplar representations in the brain across learning. elife, 9,

2020.

[24] A. Brandt. Defining creativity: a view from the arts. Creativity Re-

search Journal, 33(2):81–95, 2021.

[25] M. R. Brent. An efficient, probabilistically sound algorithm for seg-

mentation and word discovery. Machine Learning, 34(1):71–105, 1999.

[26] P. F. Brown, V. J. Della Pietra, P. V. Desouza, J. C. Lai, and R. L.

Mercer. Class-based n-gram models of natural language. Computa-

tional linguistics, 18(4):467–480, 1992.



126 Bibliography

[27] I. Bybee. Sequentiality as the basis. The evolution of language out of

pre-language, 53:109, 2002.

[28] J. Bybee. Language, usage and cognition. Cambridge University Press,

2010.

[29] D. T. Campbell. Blind variation and selective retentions in creative

thought as in other knowledge processes. Psychological review, 67(6):380,

1960.
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[113] A. Kóbor, Á. Takács, Z. Kardos, K. Janacsek, V. Csépe, and D.
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