Novel asymmetric geopolymer membranes for oil/water emulsions separation

Filipponi, Alessandro (2023) Novel asymmetric geopolymer membranes for oil/water emulsions separation, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Ingegneria civile, chimica, ambientale e dei materiali, 35 Ciclo.
Documenti full-text disponibili:
[img] Documento PDF (English) - Accesso riservato fino a 31 Aprile 2026 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Creative Commons Attribution Non-commercial No Derivatives 4.0 (CC BY-NC-ND 4.0) .
Download (10MB) | Contatta l'autore

Abstract

In this study, it was investigated the possibility of using a geopolymeric membrane as an alternative to the expensive ceramic ones. The goal was to synthesise a low-cost membrane made entirely of geopolymer that can perform equally to commercial membranes. This study initially investigated the feasibility of preparing a microporous support suitable for microfiltration through casting and pressing techniques. Subsequently, a selective geopolymeric layer was developed and deposited on the support, with the capability to operate within the microfiltration range and to effectively separate oil from oil-water emulsions. In order to evaluate the performance, the properties of the geopolymeric supports obtained through pressing were carefully evaluated during the experimentation phase investigating the effect of varying parameters such as sodium silicate content, water content, and applied pressure. The results obtained from these evaluations showed that it is possible to produce supports with excellent porosity and highly controlled narrow pore size distributions. The most promising geopolymeric pressed support was then used for the deposition of a selective layer on its surface. Following physical characterization, it was confirmed that the resulting geopolymer membrane was suitable for use in the microfiltration range. Subsequently, the membrane was tested for its ability to separate oil from water using various emulsions prepared with different surfactants at different concentrations and pH. The results revealed that the fluxes were highly dependent on the electrostatic interaction between the membrane and the emulsion, with best results being obtained with emulsions prepared using anionic surfactants. The rejection rate of the membrane was also found to be extremely high, with values over 95%, comparable to a commercial ceramic membrane. This suggests that geopolymer membranes are suitable alternatives to ceramic membranes, offering the added benefits of lower cost and reduced environmental impact during production.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Filipponi, Alessandro
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Geopolymer; membrane; microfiltration; oil/water emulsions
URN:NBN
Data di discussione
16 Giugno 2023
URI

Altri metadati

Gestione del documento: Visualizza la tesi

^