
Alma Mater Studiorum · Università di Bologna

DOTTORATO DI RICERCA IN

COMPUTER SCIENCE AND ENGINEERING

Ciclo XXXV

A Formal Analysis of Blockchain Consensus

Presentata da:

Adele Veschetti

Supervisore:

Prof. Cosimo Laneve

Coordinatore Dottorato: Prof.ssa Ilaria Bartolini

Settore Concorsuale: 01/B1 - Informatica

Settore Scientifico Disciplinare: INF-01 - Informatica

Esame finale anno 2023

A Brenno e Margot.

Abstract

Blockchain systems are distributed ledgers that records transactions on multiple com-

puters. Each blockchain system uses a consensus protocol to secure the network and

validate transactions. Bitcoin is the most famous blockchain system whose consensus

protocol is the proof of work. Hybrid Casper blockchain is a proposed improvement of

the Ethereum blockchain that uses a combination of proof-of-work and proof-of-stake as

consensus protocol.

In this thesis, we analyse these protocols using PRISM+, our extension of the prob-

abilistic model checker PRISM with blockchain types and operations upon them. This

allows us to model the behaviour of key participants in the protocols and describe the

protocols as a parallel composition of PRISM+ processes.

Through our analysis of the Bitcoin model, we are able to understand how forks

(where different nodes have different versions of the blockchain) occur and how they

depend on specific parameters of the protocol, such as the difficulty of the cryptopuzzle

and network communication delays. Our results corroborate the statement that consid-

ering confirmed the transactions in blocks at depth larger than 5 is reasonable because

the majority of miners have consistent blockchains up-to that depth with probability of

almost 1. We also study the behaviour of the Bitcoin network with churn miners (nodes

that leave and rejoin the network) and with different topologies (linear topology, ring

topology, tree topology and fully connected topology).

PRISM+ is therefore used to analyse the resilience of Hybrid Casper when chang-

ing various basic parameters of the protocol, such as block creation rates and penalty

determination strategies. We also study the robustness of Hybrid Casper against two

known attacks: the Eclipse attack (where an attacker controls a significant portion of

i

the network’s nodes and can prevent other nodes from receiving new transactions) and

the majority attack (where an attacker controls a majority of the network’s nodes and

can manipulate the blockchain to their advantage).

The thesis includes the analysis of related works and elaborates on possible future

research directions.

ii

Acknowledgements

First and foremost, I want to begin by expressing my gratitude to my supervisor, Cosimo

Laneve, for consistently making himself available to engage in discussions and provide

guidance regarding our research, as well as my personal life.

I am also grateful to Einar Broch Johnsen and Massimo Bartoletti for spending time

on reviewing this thesis.

In the last four years, I shared wonderful moments with my colleagues and friends. So,

a special thanks goes to Luca, Angelo, Federico, Francesco, Ivan, Andrea, Ken, Delfina.

Thank you for all the lunch breaks, the aperitivi and the uncountable coffees.

I would like to highlight also the exceptional people from TU Darmstadt. A special

thanks to Reiner Hähnle and Richard Bubel for hosting me during my period abroad

and for giving me the opportunity to be a part of their project. Thanks also to my

german colleagues and friends. You have always made me feel so welcomed, without you

Darmstadt would not feel like home.

I also need to thank my incredible friends that supported me throughout this journey.

Thanks to Vittoria. Even if we have been long distance friends for many years, I know

that you are always there for me, on Facetime, ready to share both the joy of the beautiful

moments and the weight that sometimes life makes us carry on our shoulders.

Thanks to i Balotti, lifelong friends. They have been my constant through all this.

I would also thank Mirella and Daniele for loving me as their daughter.

Finally, but the most importantly, I would like to thank my family. Thanks to my

mother, Emanuela, for being the strongest woman I have ever met. Thanks to my little

sister, Diana, who is my biggest cheerleader and who is a pillar of strength to me when

life gets harder. Thanks to my father, Brenno, who was not able to see the end of this

iii

journey, but taught me the importance of studying hard and dedicated his whole life to

ensure us a better future. Thanks also to Reki and Margot, who never left me alone.

My final thank goes to my husband Alessandro, I would not have finished my PhD

without him. Thank you for being my strength, for pushing me when I needed it and

for always supporting my decisions. Thank you for making me laugh no matter what.

iv

Contents

Abstract i

Symbols 5

I Background 7

1 Introduction 9

1.1 Research Method . 12

1.2 Outline of the Thesis . 16

2 Blockchain Systems 19

2.1 A Blockchain Overview . 20

2.1.1 Blockchain Forks . 22

2.1.2 Blockchain Classification . 23

2.2 Blockchain Consensus Protocols . 24

2.2.1 Proof of Work . 24

2.2.2 Proof of Stake . 26

2.3 Blockchain Attacks . 29

3 Model Checking and PRISM 33

3.1 Continous Time Markov Chains . 34

3.1.1 Continuous Stochastic Logic (CSL) 38

3.1.2 CSL Model Checking . 39

3.2 Statistical Model Checking . 41

1

2 CONTENTS

3.3 The Model Checker PRISM . 43

II Contributions 47

4 PRISM+ 49

4.1 The Modelling Language . 49

4.2 Our Extension . 52

4.2.1 The Data Types . 53

4.2.2 The Operations . 59

4.2.3 Auxiliary Data Types . 65

5 The Bitcoin Protocol 69

5.1 Definition of the Models . 70

5.2 Coherence of the Model . 78

5.3 Variation of Cryptopuzzle Difficulty . 82

5.4 Churn Nodes . 85

5.5 Different Topologies . 87

6 A Formal Analysis of the Bitcoin Protocol 89

6.1 Honest Miners . 89

6.2 Double Spending Attack . 99

7 The Hybrid Casper Protocol 103

7.1 Definition of the Models . 103

7.2 Coherence of the Model . 111

7.3 Hybrid Casper Stress Tests . 116

7.4 Attacks . 120

7.5 Comparison with Bitcoin . 123

8 Related Works 125

8.1 Formal Methods Applied in Blockchain 125

8.2 Proof of Work Blockchains . 128

8.3 Proof of Stake Blockchains . 132

CONTENTS 3

8.3.1 Hybrid Casper Related Works . 133

9 Conclusions 135

List of Figures 140

List of Codes 142

References 143

Symbols

rb exponential parameter modelling communication la-

tency of the network

mR exponential parameter modelling the time needed to

create a block

lR exponential parameter modelling the time needed to

not create a block

hRi hashing power percentage owned by the i-th node

s seconds needed to create a block

rC exponential parameter modelling how often a valida-

tor should vote

ri,j rates for the time needed by a churn node to

leave/join the network

N number of nodes

T bound time for experiments (seconds)

γ percentage of the increased/decreased stake

lenepoch epochs length

Pkfork probability of a fork of length k

Pk just probability that a checkpoint is justified within k

epochs

Pk fin probability that a checkpoint is finalised within k

epochs

5

Part I

Background

7

Chapter 1

Introduction

Blockchain has revolutionised the way individuals and companies exchange digital assets

without the control of a central authority. This technology has been successfully exploited

in different contexts, e.g., the management of cryptocurrencies (Bitcoin being the most

famous one [62]), running decentralised applications (Ethereum smart contracts [18]),

the implementation of voting systems [14], and Decentralised Finance [64].

Blockchain’s main novelty is to enable a dynamic and asynchronous network of peer-

to-peer nodes to maintain a distributed ledger that globally records the occurrence of

certain events. Nodes contain a local copy of the ledger that is updated upon reception

of special messages, called transactions. Due to the inherent asynchrony of the network,

the main difficulty that a blockchain system must address is the consistency of the ledger

upon updates performed by different nodes. In particular, it may happen that two or

more ledgers differ and this situation is called a state of fork. To overcome this problem,

which has been demonstrated unsolvable in 1985 [36], these systems rely on consensus

protocols with probabilistic approaches. Traditionally, following the seminal work by

Nakamoto [62], these protocols have been based on a probabilistic mechanism called

Proof of Work (PoW) whereby nodes can update the ledger by creating new blocks –

mining – only if they solve a moderately hard computational problem. Additionally,

to further reduce the probabilities of inconsistencies in the copies of the ledger, Bitcoin

guarantees the so-called eventual consistency whereby the various replicas may be tem-

porarily inconsistent in at most the last m blocks. In particular, Bitcoin considers as

9

10 1. Introduction

“confirmed” (and therefore “can be paid”) every block that is at depth greater than

5 [42].

The Bitcoin protocol is complex and many researchers are actively involved in study-

ing its properties and its criticalities. Clearly, understanding the details of the protocol

is of paramount importance because overlooking some of them might introduce vulner-

abilities and pave the way to attacks. For example, forks may be used for rewriting the

transaction histories and for letting the blockchain evolve to a wrong state. A typical

example of a wrong state is a state where a transaction is paid twice – called a double

spending attack.

However, because of the hardness of the computational problem, PoW has the sub-

stantial shortcoming of requiring a very large amount of computational resources and

energy [3]. For this reason, new proposals have been emerging, the most popular being

Proof of Stake (PoS) where nodes can update the ledger with a probability that is pro-

portional to the quantity of cryptocurrency they invested to be part of the network – the

stake. One of these protocols – the Casper Protocol [19] – has already been adopted by

Ethereum. Before the adoption, to ensure a smooth transition with minimal impact on

the users, Ethereum developers deployed a hybrid version of Casper – the Hybrid Casper

Protocol – that uses both PoW and PoS [21]. In particular, Hybrid Casper speeds up

block creation through a less expensive PoW than Bitcoin (block creation occurs every

14 seconds in Hybrid Casper [21], while it takes 600 seconds in Bitcoin [27]) and uses a

voting mechanism to select the blocks to append to the blockchain.

Votes are expressed by suitable nodes of the network that own a stake, called valida-

tors, and for certain blocks, called checkpoints.1 These checkpoint blocks pass through

two stages: the first is when the checkpoint is justified, which means that it has received

at least 2/3 of the validators’ votes in terms of stake; the second is when it is finalised,

which means that it is justified and its child checkpoint is justified as well. Finalisation

guarantees the consistency of the corresponding blockchains in the distributed ledger.

In this thesis, we analyse the probabilistic behaviour of Bitcoin and Hybrid Casper

by using formal methods.

Following the approaches of [68, 42], we use an abstract model that defines the

1Checkpoints are blocks whose block number/height is a multiple of 64, which is called epoch length.

11

network of nodes as the parallel composition of processes and the time needed to mine

a block and to broadcast a message as exponential distributions with a rate parameter

associated to process actions. As done in [12, 33, 85], we use Continuous Time Markov

Chains (CTMCs) for providing a probabilistic model of our processes.

We started our research by defining the Bitcoin model through a stochastic calculus

and, by analysing the transition system, we computed the probability of having a fork

of length m. We have therefore computed the probability of devolving into a “larger

inconsistency”, e.g. transiting from a state with a fork of length m to a state with a fork

m+1 and to formulate a theorem stating how this probability changes. We also applied

the same technique for studying an attack to Bitcoin that has been already discussed

in [62]: the presence of hostile nodes mining new blocks in positions that are different from

the correct one (blocks are not inserted at maximal depth). The foregoing work required

a time-consuming analysis of the stochastic transition system and, for this reason, we

decided to model Bitcoin by using a model checker to perform automatic analyses and

of examining the correctness of the protocol in different settings. As stochastic model

checker, we committed to PRISM [52] because it allows us to perform stochastic model

checking and, in particular, to analyse CTMC models. Actually, in order to have a

more precise encoding, the model checker we considered is an extension of PRISM with

blockchain data types – PRISM+. The software package is available online [38] and can be

used to model and study the quantitative properties of generic PoW and PoS protocols.

We, then, modelled the Bitcoin protocol in PRISM+ as a parallel composition of n

miner processes, n hasher processes and a process network. As an initial step, we assess

the coherence of our model by verifying that the probabilities of mining a new block

within a given amount of time and the probability of having a fork are both in full

agreement with the values available from the literature [27]. We also study the trade-off

between the security guarantees and the difficulty of the cryptopuzzle. More precisely,

we analyse the variability of the probability of reaching fork states when the speed of

the mining process increases, that is when the difficulty of the cryptopuzzle decreases.

We also study a network with churning nodes, i.e. nodes that can leave and rejoin the

network. In particular, we analyse how the presence of this kind of node affects the

probability of mining new blocks and, consequently, the probability of forks. Moreover,

12 1. Introduction

we consider several network topologies (linear topology, ring topology, tree topology and

fully connected topology) and analyse them in order to estimate how the connections

between nodes can affect the likelihood of a fork.

Furthermore, we modelled Hybrid Casper as a PRISM+ process and verified that

the model was compliant with the results shown in [21] when the rate of actions are

the same. We give a stochastic characterisation of the safety and liveness properties

proposed in [21] and we verify that they hold even when changing the time needed

to deliver a block. We verify that increasing the rate of creation severely impacts on

the justification/finalisation of blocks and we analyse different penalty strategies, by

studying different quotas of penalty in case of misbehaviours of validators. Finally, we

compute the probabilities of misbehaviours of Hybrid Casper against two well known

attacks. First, we consider the Eclipse attack, where an adversary obstructs the delivery

of messages to some nodes of the network, and force them to work on an untruthful

view of the blockchain. Then, we focus on the majority attack where an attacker (or

a coalition of attackers) controls the majority of the network and works on creating a

separate blockchain.

1.1 Research Method

The main goal of my research has been to model and analyse the main blockchain

consensus protocols. The idea was to formalise the main properties of the selected

consensus protocols and their vulnerabilities and, by means of a probabilistic analysis,

to verify them. The general properties we decided to study are:

(i) which is the probability of reaching a state of fork;

(ii) how this probability changes by varying some fundamental parameters (e.g. the

latency of the network, the time needed to create a new block, etc.).

We analysed the Bitcoin protocol and the Hybrid Casper protocol, and it is worth notic-

ing that, in both the models, we suppose that

(i) the proof of work is negligible: we model the overall effect of creating a new block

through an ad-hoc action and we ignore the algorithmic process of mining;

1.1 Research Method 13

(ii) blocks are black boxes : we omit any informations that is not relevant for the con-

sensus, such as transactions.

This has been possible because of we wanted to study properties that were not influenced

by these aspects.

Moreover, in order to abstract out the solution of the cryptopuzzle of the proof of

work and the time needed to deliver new blocks within the network we use exponentially

distributed rates, obtaining Continuous-time Markov chains models. This is in line with

the literature:

(i) the time spent by a node i to mine a block in a proof of work blockchain can

be described by an exponential distribution 1 − e−λmi t, where the parameter λmi

depends on the miner hashing power and the difficulty level of the crytopuzzle (see

Nakamoto [62]);

(ii) the communication delay across the network can be also approximated by an ex-

ponential distribution [27].

Comparison With Other Approaches

Assessing the security of a distributed system is a fundamental activity, which is even

more stringent for blockchain systems that manage crypto-assets of a high economic

value. Since the security of such systems strictly depends on the consensus protocol

that is used, it is essential to assess which properties this protocol enjoys. As already

explained, we decided to analyse the main blockchain consensus protocols by using a

formal verification approach. In particular, the main goal was to detect potential vul-

nerabilities of the models we considered and being able to analyse different settings by

changing few parameters. In this section we overview the automatic techniques that

have been proposed in the literature and position our approach. Additional details can

be found in Chapter 8. There are three mainstream approaches for automatic analysing

consensus protocols: testing, simulation and formal verification.

Testing. In this approach, the system under test runs in a virtual network or a sim-

ulated environment under varying configurations that resemble as much as possible the

14 1. Introduction

production environment. Usually, the goal is to evaluate how the system behaves under

different values of the parameters such as network conditions, workloads, and attacks.

To perform this evaluation, testers require generating the network traffic, simulating the

attackers, and implementing mechanisms that measure the properties of interest. For

example, the test net used in Buterin [21] tests the behaviour of Ethereum protocols

in scenarios that are similar to the final one. It is frequent that test nets spot bugs,

but it also happens that bugs may remain uncaught and displayed by the final system.

The testing approach usually imposes a severe burden on testers that have to set up an

actual distributed infrastructure, generate the relevant network traffic, and simulate the

attackers. The deployment of a large-scale distributed computing test net is often te-

dious, time-consuming, and costly. For these reasons, testers hardly reproduce a precise

deployment environment due to limited financial and timing resources.

Simulation. The second approach uses simulators [69], which implement the proto-

cols by ad-hoc modules that try to reconstruct the overall behaviour on a single ma-

chine [35]. These implementations rely on simulation models, which are stochastic in the

case of blockchains, e.g. continuous Time Markov Chain, Markov Decision Process, etc.

Blockchain simulators allow designers to reproduce real-world processes in a low cost

manner, such as network latency and bandwidth. Additionally, by changing parameters

of the simulation, the system can be analysed without the need to re-implement it. So,

simulators allow users to quickly test a blockchain system using different settings and

parameters, to study its behaviour under various operational scenarios and to choose the

proper configuration settings. For example, Gervais et al. [40] introduce a quantitative

model based on Markov chains to compare PoW blockchains. The model allows them

to reason about optimal adversarial strategies while taking into account the adversarial

mining power, the impact of eclipse attacks, block rewards, and real world network and

consensus parameters. The system is however different from the original implementation

and simulations only highlight particular executions. In general, the development of sim-

ulators is complex. Most simulators can realistically reproduce only one or few aspects

of the (blockchain) system leaving the other ones simplified, or even skipped entirely.

1.1 Research Method 15

Automatic Formal Verification. The third approach, which is the one implemented

in our technique, for verifying distributed protocols relies on formal verification using an

automatic tool, therefore its application requires no supervision or expertise in mathe-

matical reasoning and covers almost all possible behaviours of the system. Among the

various techniques, model checking has been widely applied to consensus protocols [29,

54, 83, 53]. With respect to testnets, model checking has the advantage that it is rel-

atively cheap (no network infrastructure nor the relevant network traffic is needed to

be generated) and it is relatively fast to stress-test the protocol under different settings

and conditions because it suffices to adjust model’s parameters. With respect to simula-

tions, model checking has the advantage to undertake a (more) complete analysis of the

possible executions.

However, model checking has some drawbacks. The first one is that one analyses an

abstract model rather than the actual implementation of the protocol. Thereforesome

precision is necessarily lost. Additionally, the definition of the abstract model takes time

since it is essential to understand the modelling language and the protocol (in our case,

the process of defining the model took us around a couple of weeks). The second drawback

is that the analyses are time-consuming due to the state explosion problem (the whole

model, or an approximation of it, must be completely generated). For example, in our

experiments, verifying a network with eight nodes takes around four hours, while it takes

around seven days when the nodes are sixteen. In particular, to bound our analyses, we

ran the experiments till the results stabilise, which occurred when nodes are in between

12 and 16. (For this reason, 16 has been the maximal size of our networks). The third

one is that, to further reduce the state explosion, one resorts to approximations of model

checking, such as the so-called statistical model checking that compromises testing and

classical model checking techniques, which will be presented in Chapter 3.2.

Overall, we think that every automatic analysis approach has pros and cons. When

using testing in a toy scale real scenario, we know we will be able to spot bugs that would

be impossible to find with any other approach. At the same time, we have to accept the

fact that even this scaled down scenario would require a huge computational effort.

When using simulation, we have the power to truly recreate and represent even the

tiniest details of the network (e.g. the network latency), but, on the other hand, it would

16 1. Introduction

be hard to claim that a simulation could faithfully represent the system as a whole.

When using formal verification, and in particular model checking, we clearly high-

lighted the unique possibility to formally prove a specific and interesting property of the

system. Meanwhile, we have to admit that given the necessity to reproduce all the states

of evolution of the system, the required time to explore all the possibile states can be

really burdensome.

Therefore, we can claim that even in our field of study, a deep and comprehensive

study of blockchain consensus protocols, there is not such a thing as one-size-fits-all

approach. However, it is reasonable to use them all together. Clearly, this integrated

approach is yet to be implemented, but in light of the studies mentioned in this section

and the ones presented in Chapter 8, we can say this would be useful and desirable. An

integrated usage of the previously mentioned techniques would lead us to the opportunity

to spot a large number of bugs at the early stages of software development. In this view,

we think that our approach adds a new axis to the analysis of blockchain protocols that

may complement the other techniques. Finally, we think that this integrated approach

would be of major interest given that, as we discussed before, pros and cons of these

methods are mostly complementary. Therefore, using them together would grant us to

get the best out of each.

1.2 Outline of the Thesis

The thesis is organised as follows. Chapter 2 is an overview about the blockchain sys-

tem and the consensus protocols, while Chapter 3 provides a quick introduction about

model checking and the model checker PRISM. The description of the PRISM+ extension

with the data types and the operations is detailed in Chapter 4. The Bitcoin PRISM+

model is presented in Chapter 5. The chapter also presents the analyses made for the

Bitcoin protocol. Chapter 6 shows the results obtained by analysing the Bitcoin pro-

tocol considering of the stochastic transition system of the model, discussing both the

results obtained in a system with honest nodes and the ones obtained in presence of an

attack. The Hybrid Casper model is detailed in Chapter 7, we also present the results

obtained testing our model. Chapter 8 compares our proposal with the literature and

1.2 Outline of the Thesis 17

gives a general overview of the techniques used to analyse blockchain protocols and in

Chapter 9 we draw some conclusions and discuss possible future works.

Chapter 2

Blockchain Systems

Blockchain is revolutionising the way individuals and companies exchange digital assets

without the control of a central authority. It has been introduced in 1990 by Haber and

Stornetta [43] and its main novelty is to enable a dynamic and asynchronous network of

peer-to-peer nodes to maintain a distributed ledger that globally records the occurrence

of certain events. Since its introduction, it has evolved to become a powerful tool for

securely and transparently recording transactions in a decentralised network.

One of the key features of blockchain is that it is a distributed ledger technology,

meaning that it is maintained by a network of peer-to-peer nodes rather than a central

authority. This allows for a high degree of autonomy and decentralisation and can reduce

points of weakness in systems where there may be too much reliance on specific actors.

Another important aspect of blockchain is that it enables the recording of events in a

global and asynchronous manner, meaning that transactions can be recorded at different

times and locations and still be registered on the ledger. Blockchains can be applied in a

wide range of applications, from financial transactions to supply chain management and

digital identity verification. This section provides an overview of blockchain technology

and the most commonly used consensus protocols in the field.

19

20 2. Blockchain Systems

2.1 A Blockchain Overview

A blockchain is a distributed database that maintains a continuously growing list of or-

dered records, called blocks, connected through cryptographic functions. Each block in

the blockchain is identified by a hash, created using the SHA256 algorithm, and con-

tains a reference to the previous block in the form of the ”previous block hash” field in

the header. This creates a chain of blocks linked by hashes, with the first block being

the genesis block. This means that if the parent block is modified in any way (such as

by changing the transactions stored within it), the parent’s hash will also change, and

the ”previous block hash” pointer in the child block must also be updated accordingly.

This change to the child block’s hash will then require the grandchild block’s hash to

be updated, and so on, creating a cascade effect where all subsequent blocks must be

recalculated. This makes it extremely difficult to alter the deep history of a blockchain,

as it would require a massive amount of computation to recalculate all of the subse-

quent blocks. This immutability of the blockchain’s history is an important aspect of its

security.

Figure 2.1: A simplified example of how blocks are chained to form a blockchain.

Each block also stores a timestamp and transaction data, generally represented as a

Merkle tree. Merkle trees are binary trees containing cryptographic hashes and they are

used for efficiently summarising and verifying the integrity of large sets of data. Each

block contains a timestamp, a unique serial number, which is used to determine the exact

moment when the block was mined and validated by the network. It ensures that the

transaction data existed at the time the block was created.

In this thesis, a ledger is denoted as L, L’, . . . and formally defined as follows.

2.1 A Blockchain Overview 21

Definition 2.1. The ledger datatype is a pair L = ⟨T;p⟩ where T is a tree of blocks

and p is the pointer to the last valid leaf block, called the handle of L.

Figure 2.2: A ledger and the handle in green arrow.

Essentially, the handle represents what individual nodes accept as the last valid block,

which varies depending on the protocol. For the purpose of this thesis, which concentrates

on proof of work protocols, the handle indicates the leaf block located at the greatest

depth. Worth of notice is that, with this definition, for any block on the chain, there

is exactly one backwards path from the handle to the genesis block. The chain of valid

blocks (i.e. those blocks whose transactions will be payed) – the blockchain – is the chain

from the handle to the genesis block. Formally:

Definition 2.2. Given a ledger L=⟨T;p⟩, the blockchain of L, noted L ↑, is the sequence

(p0,p1,p2, . . .) such that p0 is the handle of L. For every i, pi+1 is the parent of pi and

pn is the genesis block.

In Figure 2.3, the blocks in the blockchain are those in blue. The blocks that are not

included in the blockchain (grey) are considered garbage.

Figure 2.3: A ledger and the corresponding blockchain (blue blocks).

22 2. Blockchain Systems

2.1.1 Blockchain Forks

Because the blockchain is a distributed data structure, it may happen that different

copies of it are not always consistent. The condition of having different blocks at the

same height is called (temporary) fork. In a blockchain, a fork occurs when different

blocks are discovered almost simultaneously by different nodes, and multiple child blocks

temporarily refer to the same parent block. As a result, the network can temporarily

split into different branches, with each branch containing a different valid block.

During a fork, only one of the child blocks will eventually become part of the

blockchain, while the others will be discarded. The process of resolving a fork and

choosing which block becomes part of the blockchain depends on the type of protocol

being used. In a proof-of-work protocol, such as the one used by the Bitcoin blockchain,

the block with the most proof-of-work (i.e., the block that required the most computa-

tional effort to produce) is typically chosen. In a proof-of-stake protocol, such as the

one proposed for the Hybrid Casper blockchain, the block chosen may be based on the

stake (i.e., the amount of cryptocurrency held by the node) of the node who produced it.

Moreover, some blockchain consensus protocols guarantee fork free systems [57]. Overall,

Figure 2.4: Two ledgers in a state of fork of length 1.

forks are a normal part of the blockchain process and are resolved through the protocol’s

consensus mechanism. They allow the blockchain to continue functioning even when

there are temporary disagreements about the state of the network. However, on the

other hand, forks may be used for rewriting the transaction histories and for letting the

blockchain evolve to a wrong state. A typical example of a wrong state is a state where

a transaction is paid twice – called a double spending attack. Formally, it is possible to

define a fork as follows.

2.1 A Blockchain Overview 23

Definition 2.3. Let L1 = ⟨T1;p1⟩ and L2 = ⟨T2;p2⟩ be two ledgers and let

• m1 be the length of L1 ↑,

• m2 be the length of L2 ↑,

• h be the length of the maximal common suffix of L1 ↑ and L2 ↑.

We say that L1 and L2 have a fork of length k, where k = max(m1 − h,m2 − h).

To better understand Definition 2.3, consider the two ledgers in Figure 2.4. These ledgers

have a fork of length 1 because they differ in the handles, i.e., the blocks pointed by the

green arrow.

2.1.2 Blockchain Classification

Blockchain systems can be classified into two main categories based on permissions:

permissioned and permissionless.

• Permissionless blockchains, also known as public blockchains, do not require explicit

permission for participation. This kind of network is open to anyone, allowing

them to participate in various activities such as sending and receiving transactions,

operating a node, viewing and contributing to the code, and taking part in the

consensus process. Examples of permissionless blockchains include Ethereum [32]

and Bitcoin [15].

• Permissioned blockchains have restricted access, controlled by a specific entity or

group. Access to these networks is granted through permission and participants

are usually required to pass a screening process before being allowed to participate

in the activities of the network. Permissioned blockchains are often used in private

or consortium settings, where the focus is on increased security and control over

who can participate in the network. An example of a permissioned blockchain is

Quorum [74].

24 2. Blockchain Systems

There are also public-permissioned blockchains. These networks combine the permission-

ing from private consortiums with a decentralised governance model, trying to achieve

the best properties of both models.

Blockchains can also be classified based on other parameters such as their application

domain (e.g., financial, supply chain, healthcare), the protocols they use (e.g., proof-of-

work, proof-of-stake), and their consensus mechanism (e.g., centralised, decentralised).

Other kinds of classifications are not covered since they are not relevant to our purposes.

2.2 Blockchain Consensus Protocols

A consequence of the fact that a blockchain is a distributed digital ledger used to record

transactions is that these transactions need to be verified by nodes participating in

the network before they can be added to the chain. This system helps to protect the

blockchain from fraudulent activity by its peers.

To ensure that all participants (nodes) in a blockchain network have the same under-

standing of the history, blockchain networks use a consensus mechanism. This is a set of

protocols that enables a network of nodes to agree on the state of the blockchain. There

are several types of consensus protocols, such as proof of work, proof of stake, proof of

authority, etc.

In the next sections we will discuss the protocols we will analyse in the remaining part

of the thesis: the Bitcoin proof of work protocol [62], the Proof of Stake protocol and

the Hybrid Casper protocol [21], which is an hybrid version between the first two.

2.2.1 Proof of Work

In a proof of work blockchain the nodes in the system are called miners. According to

PoW, miners can add a block only if they solve a computational problem. Technically,

the problem consists of finding a number (a nonce) that is inserted into the block header.

The block header is then hashed and if the numerical value of the hash is less than a

predefined condition, which is called target, then the miner is said to have mined the

block. The only way to find such a nonce is through an exhaustive search. The finding

2.2 Blockchain Consensus Protocols 25

of suitable nonce values can be modelled as a Bernoulli trial with a probability of L/2256

of being successful, where L is the target. The time needed to mine a new block depends

on the difficulty of the PoW and the hashing power of the miners. Clearly, the faster

miners are, that is the more computational power they own, the higher the probability

of forks and, thus, the more likely the inconsistency between miners.1

The Bitcoin Protocol

Bitcoin uses the proof of work consensus protocol. As explained by Nakamoto [62], the

time it takes miner i to solve a block problem is exponential with parameter λmi
. The

parameter λmi
is determined by the miner’s individual computing power, or hash power,

hRi, and by the difficulty of the mining task set by the network protocol, D. Thus, one

can obtain:

λmi
=

hRi

D

In this work, we will consider the parameter mR as 1
D
, thus, the time needed by the i-th

miner to create a block will be approximated by the exponential parameter

λmi
= hRi ×mR.

The difficulty is set by the protocol so that the expected time between two block solutions

is targeted to a constant, in Bitcoin this time is set around to 10 minutes, which means

that the parameter mR can be set to 600 seconds.

Once a block has been mined, the miner (i) adds the block to its own ledger (therefore

the depth of the ledger increases and the handle is updated); and (ii) broadcasts it to

all the connected nodes of the network. Every node receiving the new block updates its

local copy of the ledger by inserting the block in the right position and, if necessary, it

also updates its own handle. If the block cannot be connected to the ledger (because,

due to network delays, a previous block has not been delivered) then it is added to the

local set of the miner and will be inserted afterward (orphan blocks).

As previously mentioned, because of asynchrony, it may happen that two nodes

1The probability of a fork is affected also by other factors such as the block size, the latency of the
network and the difficulty of the puzzle.

26 2. Blockchain Systems

mine and broadcast a block almost concurrently, yielding different ledgers with different

handles, i.e. a situation of a fork. This phenomenon is at the core of the inconsistencies

in Bitcoin and, proof of work is used in order to overcome this problem. For this reason,

the Bitcoin PoW difficulty is determined by a moving average targeting a certain number

of blocks per hour. If they are generated too (slowly) rapidly, the difficulty is (decreased)

increased as shown by Nakamoto [62]. The current protocol modulates PoW in order to

have 6 blocks per hour on average. To further reduce the probability of inconsistencies,

Bitcoin also uses the so-called eventual consistency (also known as n-consistency [68]).

This is a weak version of consistency, according to which the protocol considers consistent

those ledgers with the corresponding blockchains equal up to the last few blocks. In

particular, Bitcoin considers both transactions and miners’ rewards in blocks at a depth

greater than 5 as confirmed [5]. This number is called confirmation and represents the

number of blocks that have been added to the blockchain after a specific transaction has

been made and has been accepted by the Bitcoin network. However, it may still happen

that there are several leaf blocks at maximal depth. In this case, in Bitcoin, a miner

chooses the valid block as the first received leaf at maximal depth, precisely following

the description of the protocol presented by Nakamoto [62].

2.2.2 Proof of Stake

PoW comes together with an enormous energy demand [55, 37]. This has made blockchain

enthusiasts and researchers think of alternatives for PoW.

One of the main candidates between the proposed alternatives is the Proof of Stake

(PoS) in which validators (the nodes that can create the next block) are chosen based on

the amount of cryptocurrency they hold or ”stake” in the network. The more cryptocur-

rency a validator has staked, the more likely they are to be chosen to create new blocks

and earn transaction fees. In the simplest case, stake is the amount of currency, but it

can also be (for example) the age of the coin that a node holds. The validator receives

the opportunity to append to the branch that they select a new block and simultaneously

collect a block reward.

This protocol succeeds in reducing energy expenditure to negligible levels and there

are several mainstream blockchains that feature PoS consensus protocols [41, 70, 16, 66].

2.2 Blockchain Consensus Protocols 27

The Hybrid Casper Protocol

Ethereum [18] is one of the most famous blockchain systems and has switched from the

PoW to the PoS protocol in September 2022. In order to do so and to ensure a smooth

transition with minimal impact on the users between the two, implemented an hybrid

version using both the PoW and the PoS mechanisms.

Hybrid Casper [21] is a protocol for Ethereum that keeps the ledgers consistent by

using two consensus techniques: it exploits PoW as block proposal mechanism and PoS

to choose a stable blockchain. As usual in PoW, nodes have to solve a computational

problem to add new blocks, whose difficulty is set so that a solution is found within

14 seconds.2 Additionally, the protocol uses a voting mechanism to select the blocks to

append to the blockchain. We overview the protocol by highlighting the main features

in different paragraphs.

The Hybrid Casper smart contract. The PoS protocol is implemented through

a special smart contract stored on the Ethereum blockchain that records the current

set of active nodes and manages their stakes and the voting process. The nodes of the

network that own a stake are called validators and they can vote for certain blocks. In

particular, nodes willing to become validators create a stake by locking 32 ether (the

cryptocurrency of Ethereum), which is performed by calling a deposit function of the

smart contract. Conversely, a validator may exit from the active validator set by invoking

a logout function (validators need to wait a minimum period after depositing before being

allowed to withdraw).

Justifications and finalisations. The goal of the voting process is to justify and

finalise checkpoints, which are blocks whose height is multiple of an epoch3 in the ledger:

a checkpoint is justified if it is voted by validators that own at least 2/3 of the stake

of the overall network; when two consecutive checkpoints are justified, the older one

becomes finalised. (The root block of the ledger, the genesis block, is both justified and

2See the GitHub implementation at https://github.com/ethereum/eth2.0-specs
3An epoch is the contiguous sequence of blocks between two checkpoints, including the first but

not the latter. We denote the length of an epoch with lenepoch and we set it to 64 as in the GitHub
implementation.

https://github.com/ethereum/eth2.0-specs

28 2. Blockchain Systems

finalised by definition.) This mechanism ensures that a finalised block together with all

its ancestors belong to the valid chain, and thus, can be considered as permanent (and

the transactions linked to the block are permanently recorded on the blockchain). Once

a checkpoint is finalised, the validators are paid, and their payment is proportional to

the deposited stake.

The fork choice rule. During the vote, validators follow the fork choice rule to select

the next checkpoint: the next checkpoint is the block at maximum height that the validator

received first. When a set of validators are incorrect, that is deviate from the protocol

(e.g. the chosen block is not the one at maximum height that has been received first or

more than one block is voted) a fork between different justified checkpoints may occur.

Penalties. To prevent validators from misbehaving, the protocol relies on economic

incentives and penalties: validators who voted correctly during an epoch are rewarded,

while validators who did not are penalised. This is achieved by adjusting validators’

stakes according their own voting behaviour: when a checkpoint is finalised the stakes of

validators who voted for it is increased by a positive interest rate r (see Section 7.3 for

details), whereas the stakes of validators who voted for other checkpoints are shrunk. The

penalties grow in proportion of non-voting validators. If epochs fail to be finalised for a

long time, the penalties become more and more severe. When a validator engages in clear

misbehaviour, e.g. by voting for conflicting checkpoints, then its deposit can be reduced

as a form of punishment. Incorrect votes are not punished as harshly as conflicting votes,

as there are protocol behaviours that can cause a validator to fail to produce a valid vote.

Note that the deposits of validators are updated only after checkpoints get finalised.

Properties of Hybrid Casper. Standard attacks to PoS protocols include the nothing-

at-stake attack and the class of long range attacks, such as the posterior corruption [23],

which will be all detailed in Section 2.3. In the nothing-at-stake, the attacker generates

multiple conflicting blocks to maximise its benefit without risking its stake. This kind of

attack is irrational in Hybrid Casper by design because of its penalisation mechanism:

misbehaving validators are discouraged to generate conflicting blocks by the loss of stake.

In the posterior corruption attack, the attacker creates a new branch that originates from

2.3 Blockchain Attacks 29

an earlier block, with the goal of surpassing the main blockchain and rewrite the history

of the blockchain. In Hybrid Casper the blockchain up to the most recently finalised

checkpoint will never be reverted guaranteeing that a posterior corruption attack can

not be successful. In simple terms, a revision fork that finalises blocks older than the

last finalised block will be ignored, because all clients will have already seen a finalised

block at that height and will refuse to revert it. Another assumption made is that each

client will log in the system and gain a complete view of the updated chain at some

regular frequency [19].

2.3 Blockchain Attacks

While blockchain technology is often touted for its security, privacy, and immutability, it

is not immune to attacks. Several types of attacks can be launched against blockchains.

In this section, we will discuss the principal attacks for both proof of work and proof of

stake blockchains.

Double spending is a critical issue that blockchain technology aims to address since its

inception. It refers to the scenario where an attacker attempts to spend the same digital

currency multiple times by first making a transaction, waiting for it to be approved,

then reversing it and spending the same currency in another transaction. This is not

possible with physical currency, as it is a physical object, and can only be spent once. In

a blockchain, double spending can be achieved by presenting a conflicting transaction,

possibly in a different branch, to the network.

A Sybil attack is a type of attack in which an adversary creates and uses multiple

identities to manipulate a network’s decision-making process or influence its opinion. In

the context of blockchains, this can lead to various problems such as finalising a block

(for example in Hybrid Casper), branching the blockchain, or electing validators.

For a PoW system, the attacker would have to own various identities with sufficient

computational power to have substantial influence in the system. The consensus protocol

directly defeats this argument as the attacker would have to split his computational power

in smaller pieces. This would not be a benefit for the attacker because an attacker’s

computing power will not be increased by distributing it among multiple identities. In

30 2. Blockchain Systems

fact, it will either stay the same if all identities mine the same block or decrease if each

identity mines a different block. The attacker will still need to have a significant amount

of computing power, regardless of whether it is concentrated in one entity or spread

among multiple ones.

Similarly, in PoS systems, the attacker is also hindered by the consensus protocol, as

the validator selection process and voting power are determined by the amount of stake

held. The attacker’s voting power will not be increased by distributing their stake among

multiple identities, it would remain the same as if the attacker holds all the stake in one

identity.

Race attack is usually considered as an implementation issue and relies on the exis-

tence of probabilistic finality. In blockchains where finality is not guaranteed, a certain

number of confirmations are required before a transaction is considered complete. Typ-

ically, a recommended number is established within the network, but in some cases, a

merchant or user may use a more conservative number at their discretion. Transactions

handling a considerable amount of funds might require a greater number of confirmations

before being accepted as valid. It is possible that a service is not configured correctly and

does not wait for the recommended number of confirmations for that specific blockchain.

In that case, a double spending attack is possible. An attacker could create a fork of the

blockchain that meets the minimal requirements of a service, obtain the goods or benefits

of that “weakly”-verified transaction, and then redirect their computing power back to

the main branch of the blockchain. This way, the “weakly”-verified transaction will be

soon lost in a branch of the blockchain and will not be valid for any node following the

main chain. This 51% attacks are a threat to any consensus protocol.

In a PoW blockchain system, the entity with the most hashing power at a certain point

in time can control the entire blockchain by creating a fork and mining on their own

branch. Over time, this branch will overtake the original chain and become the new

main chain. In those systems, there is a probability of multiple branches being created,

but as the percentage of hashing power controlled by an entity increases past 51%, the

likelihood of conflicting branches diminishes. However, even if the adversary controls the

main chain, there may still be instances of branches being reversed. Additionally, miners

often work together by joining mining pools to increase their chances of generating blocks

2.3 Blockchain Attacks 31

and receiving rewards. Mining pools allow nodes with low computing power to receive

rewards from block rewards, but they can also inadvertently lead to 51% attacks. When

a single mining pool reaches a high level of computational power, the miner community

may shift to other pools in order to stabilise the network and prevent accidental 51%

attacks.

In PoS protocols this attack is still viable but with a slightly different impact. In a

Byzantine Fault Tolerant proof-of-stake blockchain, it is possible for a single validator

or group of validators to control more than 34% of the total stake on the blockchain.

In this case, a majority attack can impact the blockchain by performing finality rever-

sion, where an already finalised block is being challenged by finalising another competing

block, causing Liveness Denial or Censorship attack. Currently, there is no concrete so-

lution to this problem, but it is mitigated by BFT-based Proof of Stake protocols with

the use of absolute finality. When a 51% attack occurs, it will usually be notified by the

nodes, and a community-driven fork will take place to re-establish the honest chain as

the main chain.

For proof of stake protocols, however, the most effective attacks are the so-called

long-range attacks. If successful, these attacks can lead to the takeover of the main

chain and could result in partial or complete rewriting of the blockchain’s transaction

history. A long-range attack is an attack scenario where the adversary goes back to

the genesis block and forks the blockchain. The attacker creates a new branch of the

blockchain that has a different transaction history than the main chain. This attack is

successful when the attacker’s branch becomes longer than the main chain and overtakes

it, replacing the original history. Long-Range attacks can be categorised into three types:

Simple, Posterior Corruption, and Stake bleeding. These attacks are similar to selfish

mining attacks in PoW protocols, as the attacker in both cases is adding blocks that they

keep hidden. However, selfish mining attacks in PoW protocols cannot go back to the

genesis block due to the high computational effort required, thus limiting their impact.

Both attacks involve creating a fork of the main chain, where the attacker attempts to

add forged blocks with potentially altered transactions. We are not going into details of

this kind of attacks because they will be not be covered in the next chapters.

Chapter 3

Model Checking and PRISM

Model checking is an automatic technique for verifying correctness properties of a sys-

tems. It can be performed automatically and has the advantage of being able to analyse

all possible states of the system. This makes it a useful tool for identifying potential

issues that may not be detected through other methods, such as simulation or testing.

A model checker is a tool that examines all possible states of a system by performing an

exhaustive search of its finite state space. This method is used to verify whether a spe-

cific property or specification holds true or false for a given system model. It allows for

determining whether a system model satisfies a particular property or not. If a system

does not meet the desired properties, a model checker will produce a counterexample

that shows the incorrect behaviour. This faulty trace can help to identify the cause of

the failure and provide clues for resolving the issue. With enough resources, the model

checker will always complete its execution and give a results in terms of yes/no. More-

over, it can be implemented by algorithms with reasonable efficiency. Model checking is

typically used to check for properties that are qualitative in nature, such as: Is the gen-

erated result OK?, Can the system reach a deadlock situation?, etc. Therefore, for model

checking to be effective, the properties being examined must be clearly and specifically

defined.

This chapter presents Continuous Time Markov chains in Section 3.1, and, since

model checking suffers from the state-space explosion problem and a proposed solution

in using statistical model checking, this is discussed in Section 3.2. Section 3.3 gives an

33

34 3. Model Checking and PRISM

overview of the model checker PRISM.

3.1 Continous Time Markov Chains

A continuous-time Markov Chain (CTMC) is a stochastic process in which the condi-

tional probability of the future state at time t+ s is given the present state at s and all

past states depends only on the present state and is independent of the past. In particu-

lar, when dealing with CTMC, we assume that transitions between states are measured

by rates that correspond to separate exponential distributions that are independent,

rather than independent probabilities. Formally:

Definition 3.1. A continuous-time Markov chain (CTMC) is defined by a set of states

S and a transition rate matrix R : S × S → R≥0 where R(s, s′) is the rate of making a

transition from state s to s′.

The interpretation is that the probability of moving from s to s′ within t ≥ 0 time

units is 1 − e−R(s,s′)·t. Thus, the transition rate matrix R assigns rates to each pair of

states in the CTMC, which are used as parameters of the exponential distribution.

Example 3.1. A valid rate matrix for a CTMC could be the following

R =


0 3 1

0 0 2

1 1 0


with the associated CTMC shown in Figure 3.1.

s0 s1

s2

3
1

2

1

1

Figure 3.1: A three state CTMC.

3.1 Continous Time Markov Chains 35

Typically, in a state s, there is more than one state s′ for which R(s, s′) > 0. This is

known as a race condition. The first transition to be triggered determines the next state

of the CTMC. The time spent in state s, before any such transition occurs, is:

E(s) =
∑
s′∈S

R(s, s′)

E(s) is known as the exit rate or sojourn time of state s and represents the mean time

the system will be in the state s. The sojourn time is exponentially distributed with rate

E(s) and, thus, the higher the rate E(s), the shorter the average residence time in s. It is

also possible to define the average sojourn time of state s as 1
E(s)

. We can determine the

actual probability of each state s′ being the next state to which a transition is made from

state s independent of the time at which this occurs; this probability is called embedded

probability.

Definition 3.2. Given a CTMC with transition rate matrix R : S × S → R≥0 and

∀s ∈ S, let E(s) be the sojourn time, it is possible to define the embedded probability

as follows

Pemb(C)(s, s′) =


R(s,s′)
E(s)

if E(s) ̸= 0

1 if E(s) = 0 and s = s′

0 otherwise

(3.1)

Moreover, we can define the probability to move from a state s to a particular state s′

within t time units. In particular, we have:

Pemb(C)(s, s′, t) =
R(s, s′)

E(s)
(1− eE(s)·t)

We also define the infinitesimal matrix:

Q(s, s′) =

 R(s, s′) if s ̸= s′

−
∑

s′′ ̸=s′ R(s, s′′) otherwise

36 3. Model Checking and PRISM

s0

empty

s1 s2

full
2

1
4

3

3
2

2

Figure 3.2: The three state CTMC C1.

Example 3.2. Consider the following CTMC: Figure 3.2 shows a simple example of a

CTMC C1, with three states s0 (which is the initial state), s1 and s2. The transitions

are labelled with rates. The sojourn times are:

E(s0) =
9

4
, E(s1) =

9

2
, E(s2) = 2.

The matrices are the following:

R =


0 2 1

4

3
2

0 3

0 2 0

 , Pemb(C) =


0 8

9
1
9

1
3

0 2
3

0 2 0

 , Q =


−9

4
2 1

4

3
2

−9
2

3

0 2 −2


An infinite path of a CTMC is a sequence s0t0s1t1.. whereR(si, si+1) > 0 and ti ∈ R≥0

for all i. Equivalently, a finite path is a sequence s0t0 . . . sk−1tk−1sk. For both cases, the

time ti represents the amount of time spent in each state si. For an infinite path σ,

σ [i] = si represents the (i+ 1)-th state of σ and δ(σ, i) = ti defines the time spent in si.

Note that for a finite state it is only defined for i < k.

In order to define the probabilities, it is necessary to give some notations. We call ω(i)

the i-th state of a path (si) and path
C

(s) the set of all paths of the CTMC C starting

from the state s. We also define ω@t as the state occupied at the time t.

Definition 3.3. Let s0, s1, . . . , sn be a sequence of states where R(si, si+1) > 0 for i < n

and I0, I1, . . . , In−1 be a sequence of non empty intervals of R≤0. Then, we can define a

3.1 Continous Time Markov Chains 37

cylinder set C(s0, I0, . . . , In−1, sn) as the set consisting of all paths σ ∈ path
C

(s0) such

that, for i ≤ k:

σ [i] = si and δ(σ, i) ∈ Ii

Consider now Σpath
C

(S), the smallest σ−algebra on path
C

(S) which contains all the

cylinder sets C(s0, I0, . . . , In−1, sn) where s0, s1, . . . , sn range over all sequences of states

with s0 = s and R(si, si+1) > 0 for 0 ≤ i < n and I0, . . . , In−1 range over all sequences

of non-empty intervals in R≥0.

The probability over path
C

(S) can be defined inductively (Prs on Σpath
C

(S)) as the unique

measure such that

• Prs(C(s)) = 1 and

• for any cylinder C(s, I, . . . , In−1, sn, I
′, s′), Prs(C(s, I, . . . , In−1, sn, I

′, s′)) is

Prs(C(s0, I0, . . . , In−1, sn)) ·Pemb(C)(sn, s
′)(e−E(sn) inf I′ − e−E(sn) sup I′)

We present an example to better understand the above definitions, for further details

about Continuous Time Markov Chains see [9].

Example 3.3. Consider the CTMC C1 from Figure 3.2 and the sequence s0, I0, s1 with

I0 = [0, 1]. Using the probability measure Prs0 over (path
C1

(s0),Σpath
C

(s0)) for the cylinder

set C(s0, [0, 2] , s1), we obtain:

Prs0(C(s0, [0, 2] , s1)) = Prs0(Cs0) ·P
emb(C1)
1 (s0, s1) · (e−E(s0)·0 − e−E(s0)·2)

= 1 · 8
9
· (e− 9

4
·0 − e−

9
4
·2)

= 8
9
· (1− e−

9
2) ≈ 0.879

Intuitively, this means that the probability of leaving the initial state s0 and moving to

state s1 within the first 2 time units of operation is 0.879.

38 3. Model Checking and PRISM

3.1.1 Continuous Stochastic Logic (CSL)

Continuous Stochastic Logic (CSL) was originally developed in [7] and later extended

in [9]. It is based on the temporal logics CTL [25] and PCTL. It provides means to

express properties on CTMCs that refer to steady-state and transient behaviours, i.e.

the probability of being in each state of the chain at a particular instant in time or in

the long-run, respectively. The syntax of CSL is [8]:

Φ ::= true | a | ¬Φ | Φ ∧ Φ | P∼p [ϕ]

ϕ ::= X Φ | Φ U≤IΦ
(3.2)

where a is an atomic proposition, ∼∈ {<,≤, >,≥}, p ∈ [0, 1] and I is an interval of R≥0.

CSL formulae are interpreted over the states of a CTMC. We say that a state s ∈ S

satisfies a CSL formula if Φ (s |= Φ), if the formula is true for s.

The operators ¬ and ∧ are the basic logical operators of negation and conjunction,

respectively. From them it is possible to derive other basic logical operators:

false: false ≡ ¬true

disjunction: false ≡ ¬true

implication: ϕ1 ⇒ ϕ2 ≡ ¬ϕ1 ∧ ϕ2

The operator P∼p [ϕ] indicates that the probability of the path formula ϕ being satisfied

from a given state meets the bound ∼ p. Moreover, the operator X Φ represents the

”next” operator, which requires the property Φ to be satisfied in the next step. The

last operator is U≤I which is the time-bounded until operator. Given the path formula

Φ1U
≤IΦ2, the property holds if Φ1 is satisfied at some time instant in the interval k and

Φ2 holds at all preceding time instants, where I is an interval of R≥0.

From the CSL syntax presented in (3.2), it is also possible to define the eventually

operator F as an operator indicating that the property ϕ is eventually true. Formally:

Fϕ ≡ true U ϕ

3.1 Continous Time Markov Chains 39

The time-bounded version of the eventually operator is F≤I and states that the property

ϕ becomes true in the interval I:

ϕ ≡ true U≤I ϕ

Examples of usage of these properties will be detailed in Section 3.3.

3.1.2 CSL Model Checking

We consider a model checking algorithm for CSL over CTMCs. The inputs to the al-

gorithm are a labelled CTMC C and a CSL formula Φ. The output is a set of states

States(Φ) = {s ∈ S | s |= Φ}. The algorithm first constructs the parse tree of the for-

mula Φ and, working upwards towards the root of the tree, it recursively computes the

set of states satisfying each subformula. At the end, the algorithm determines whether

each state in the model satisfies Φ or not. For the operator P∼p [·] the model checking

is not straightforward and it will be briefly covered below by analysing the different set-

tings, for further details see [9].

P∼p [XΦ]. In this situation, the probability is determined only by the probability of

transitioning to the next immediate state. As a result, it can be verified using PCTL

algorithms by incorporating the embedded probability Pemb(C). This requires the prob-

abilities of the immediate transitions from s. We define the vector Prob(XΦ) as follows:

Prob(XΦ) = Pemb(C) · Φ

where Ψ is a state-indexed column vector defined as

Φ(s) =

{
1 if s ∈ States(Φ)

0 otherwise

Example 3.4. Considering the CTMC in Figure 3.2, and the CSL formula P≥0.5 [X full].

40 3. Model Checking and PRISM

The column vector is Φ(s) = (0, 0, 1)T because only in s2 the property Φ (full) is verified.

Thus, we calculate the probability in the following way:

ProbC1(XΦ) = Pemb(C1) · Φ =

=


0 8

9
1
9

1
3

0 2
3

0 2 0

 ·


0

0

1

 =
[
1
9

2
3

0
] (3.3)

Thus, since the probability is not greater or equal of 0.5 for any state of the CTMC, we

can conlude that the formula is not true.

P∼p

[
Φ1 U

≤I Φ2

]
For this operator, we need to determine the probabilities ProbC(s,Φ1 UΦ2)

for all the states s and with I an interval. It is important to differentiate between three

distinct scenarios, but we only analyse the case in which I = [0, t] with t ∈ R≥0. In

this scenario, calculating the probabilities involves finding the minimal solution for the

following set of integral equations:

ProbC(s,Φ1U
[0,t]Φ2) = 1 if s ∈ States(Φ2)

ProbC(s,Φ1U
[0,t]Φ2) = 0 if s ∈ States(¬Φ1 ∧ ¬Φ2)

ProbC(s,Φ1U
[0,t]Φ2) =

=
∫ t

0

∑
s′∈S P

emb(C)(s, s′) · E(s) · e−E(s)·x · ProbC(s′,Φ1U
[0,t−x]Φ2)dx otherwise

We now define C[Φ] = (S, s,R[Φ], L) where R[Φ] = R(s, s′) if s |= Φ and 0 otherwise (L

represents the set of the lables of the CTMC C). Hence, we have that:

ProbC(s,Φ1U
[0,t]Φ2) =

∑
s′|=S

π
C[¬Φ1∨Φ2]
s,t (s′)

where πC
s,t is the transient probability defined as πC

s,t = Prs{ω ∈ path
C

(s) | ω@t}. Since a

path in a CTMC cannot exit a state satisfying Φ2 once it reaches one, and will never be

able to reach a state satisfying Φ2 if it enters one satisfying ¬Φ1 ∧ ¬Φ2, the probability

of the path formula Φ1 U
[0,t]Φ2 being satisfied in CTMC C is equivalent to the transient

3.2 Statistical Model Checking 41

probability of being in a state satisfying Φ1 at time t in CTMC C[¬Φ1 ∨ Φ2]. Then, we

have:

ProbC(s,Φ1U
[0,t]Φ2) =

+∞∑
i=0

(γi,q·t · (Puniff(C[¬Φ1∨Φ2]))i) · Φ2)

where Puniff(C) = I + Q
q
is called uniformised matrix and q ≥ max{E(s) | s ∈ S} is the

uniformisation rate.

3.2 Statistical Model Checking

Model checking suffers from the state-space explosion problem. This is particularly true

when the system is composed of multiple subsystems or dynamic data types are used.

An alternative method to avoid the need to explore the entirety of the state-space of a

model is to use statistical model checking, which has been proposed as a solution [76].

The basic concept of statistical model checking is to simulate the system, observe

it, and then use statistical analysis to determine if the system satisfies a property to

a certain level of confidence. This approach balances between testing and traditional

model checking techniques. Simulation-based methods are less demanding in terms of

memory and time compared to exhaustive methods and are often the only viable option.

Stochastic model checking only requires that the system to be analysed can be simulated

using discrete-event simulation and that there is a probability space on executions of the

system and is directly applicable to systems whose behaviour can modelled by a Discrete

Time Markov Chain (DTMC) or Continuous Time Markov Chain (CTMC) [84].

Formally, statistical model checking is a method that uses simulation-based tech-

niques to analyse a stochastic system (S, T) and determine if it satisfies a specific prop-

erty (ϕ). It can be used to answer two types of questions:

(a) Qualitative: Is the probability that (S, T) satisfies ϕ greater or equal to a certain

threshold?

(b) Quantitative: What is the probability that (S, T) satisfies ϕ?

The quantitative question can be answered by using probability estimation techniques

that are based on the Chernoff-Hoeffding bound [24, 47]. It mainly involves calculating

42 3. Model Checking and PRISM

an estimate probability of the actual probability that the system S satisfies the property

(ϕ). The qualitative question is mainly addressed through a hypothesis testing approach,

which will not be discussed since in our work we focus only on quantitative properties.

The core idea is to estimate the probability one wants to calculate using a statistical

estimator based on a limited number of events from the random space, in particular,

a number N of runs (or paths) of the model. One benefit of this approach is that we

can obtain these paths directly from the model without the need to construct the graph.

This step is referred to as generation. Once the paths have been obtained, the prob-

ability is estimated by testing the property on each of them – this is the verification

step. In particular, we compute n
N
, where n is the number of paths which validate the

property. The estimator we use asymptotically approaches the true probability, so using

a limited number of runs does not provide a guarantee of the result. It is important

to understand the reliability of the experiment for a certain number of runs. This re-

liability characterises three different methods to perform statistical model checking for

quantitative properties:

• CI (Confidence Interval)

• ACI (Asymptotic Confidence Interval)

• APMC (Approximate Probabilistic Model Checking)

Since in our analyses we will apply the CI methods, the other two approaches will not

be detailed.

Confidence Interval (CI). A confidence interval (CI) is an interval of a certain width

2w, i.e. an interval of the form [Y − w, Y + w], which is estimated such that, when the

estimation is repeated several times, the true probability (say X) of the query P=? [ϕ]

falls within this interval 100× (1− α)% of the time, where α is the level of confidence.

In particular, the width of the interval w can be determined for a given α and number

of paths N by using the formula:

w = q ×
√

v

N

3.3 The Model Checker PRISM 43

where q is a quantile (for a probability of 1−α/2) from the Student’s t-distribution with

N − 1 degrees of freedom, and v is an estimation of the variance for X. Similarly, the

number of iterations required can be determined from w and α as:

N =
(v × q2)

w2

where q and v are as previously defined.

3.3 The Model Checker PRISM

PRISM [52] is a probabilistic model checker that, given a formal description of a system,

called the model, computes the likelihood of the occurrence of certain events. The model

checker supports different kinds of probabilistic formalism which give semantics to the

model. We refer to [51] for a full account of PRISM.

A PRISM system is a parallel composition of interacting modules, where each module

represents a (sequential) agent/process. The internal state of a module is determined by

the values assigned to its variables, whereas the overall state of a system is determined

by the internal states of all its modules. The behaviour of a module is defined by a

set of commands that specify how and under which conditions the module performs a

transition and updates its internal state. The syntax of a command is

[a] guard -> rho1:update1+...+rhon:updaten;

where a is called action and may be omitted; guard is a predicate over the state variables

of the module and those of other modules; updatei defines the changes of module’s

internal state, i.e., a list of assignments to its state variables; and rhoi is the rate

at which updatei is executed. The meaning of the above command is the following:

when guard is true, the module chooses a transition (the operator + denotes a choice)

according to the rate rhoi associated to that update.

PRISM semantics constrains modules retaining actions with the same name to syn-

chronise with the corresponding commands, i.e. the modules execute the commands with

44 3. Model Checking and PRISM

action a at the same time. The example in Listing 3.1, taken from the documentation,1

helps understand the semantics of modules. It models an N-place queue of jobs and a

server that removes jobs from the queue and processes them.

1 const int N = 10;

2 const double mu = 1/10;

3 const double lambda = 1/2;

4 const double gamma = 1/3;

5

6 module queue

7 q : [0..N];

8

9 [] q<N -> mu:(q’=q+1);

10 [] q=N -> mu:(q’=q);

11 [serve] q>0 -> lambda:(q’=q-1);

12 endmodule

13

14 module server

15 s : [0..1];

16

17 [serve] s=0 -> 1:(s’=1);

18 [] s=1 -> gamma:(s’=0);

19 endmodule

Listing 3.1: A PRISM specification modelling a N-place queue and a server.

The modules queue (line 6 to 12) and server (line 14 to 19) synchronise on the action

serve. Module queue has an integer variable q (defined in line 7) representing its size

(the constant N defines the capacity of the queue). Transitions describe the operations

on the queue. The first one (line 9) inserts a new element with rate mu, if the queue is

not full (q<N); the insertion is modelled by increasing the value of q. Note that PRISM

uses the prime notation to denote the new value of a variable, in our case q’ = q + 1.

The second command (line 10) says that no new element is inserted when the queue is

1http://www.prismmodelchecker.org/manual/ThePRISMLanguage/Example2

http://www.prismmodelchecker.org/manual/ThePRISMLanguage/Example2

3.3 The Model Checker PRISM 45

full. The last command (line 11) removes an element, and it is performed provided that

the server can consume an element; for this reason it has the action name serve that

constrains server to perform a transition with the same name. In the module server,

the boolean variable s (line 15) defines whether the server is busy or not. When it is

idle, the command at line 17 allows the server to synchronise with queue through the

action serve. After this synchronisation the server updates its state to busy (s’=1).

The rate of the synchronisation is the product of the two individual rates (in this case,

lambda×1). The second command (line 18) of server states that a busy server (s=1)

may complete its task with rate gamma.

As already explained, in this thesis we focus on Continuous Time Markov Chains

(CTMC) models that are transition systems (as the one above) where each transition

is labeled by a positive real number, called rate. In particular, we are interested in

the probability of reaching states with a given property within a certain time. A basic

property of Markov chains is that the events are independent from the previous events

in the history – the Markov property. Therefore, the above probability is a function of

the product of the probabilities in the intermediate states (this function is not simple

because one has to consider all the possible partitions of t and all the possible paths to

reach the state from the initial step).

In the PRISM framework, properties of CTMC models are expressed in CSL. In

particular, the formulas we use in this paper have always the form

P=?[F<=T property]

and express the probability that property is eventually true in a state of the model

within t time units (starting from the initial state). In particular, eventuality is expressed

by the operator F of CSL logic; the operator ? asks the model checker to produce a nu-

meric value for the probability. For example, consider the following code that implement

a two-items queue

1 module C

2 x : [0..2] init 0;

3

4 [] x=0 -> 2 : (x′ = 1);

5 [] x=1 -> 3 : (x′ = 2);

46 3. Model Checking and PRISM

6 [] x=1 -> 5 : (x′ = 0);

7 [] x=2 -> 2 : (x′ = 1);

8

9 endmodule

10

11 label "full" = x = 2;

12 label "empty" = x = 0;

where the variable x can assume three possible values: 0 (the queue is empty), 1 (the

queue has one element) and 2 (the queue is full, i.e. it has two elements). According

to lines 5 and 6, from state x=1 the system can evolve either in x=2 with rate 3 and in

x=1 with rate 5. The probability that the two-items queue is “full” within 10 time units

is denoted by the CSL formula

P=?[F<=10 "full"].

To actually compute this probability, PRISM performs statistical model checking.

Part II

Contributions

47

Chapter 4

PRISM+

The formal model for defining the blockchain protocols is an extension of PRISM [52].

PRISM has been chosen for two reasons. First, because it is a simple process calculus with

formal stochastic semantics that uses rates of actions as parameters of an exponential

distribution, which is a standard feature of Bitcoin actions of mining and broadcast-

ing [12, 85, 33, 17]. Secondly, because PRISM has a tool for analysing stochastic systems

that can be used for complementing our theoretical results with practical simulations.

However, as it is, PRISM falls short to model faithfully blockchain protocols because it

misses the datatypes of blocks and ledgers. Therefore, following the description in [62],

we have defined the values of blocks, sets, maps, and ledgers and the corresponding

operations.

This chapter presents the modelling language and our extension of PRISM, PRISM+.

4.1 The Modelling Language

To define PRISM+ we use a set of action names A, ranged over a, b, . . . , a set of module

names ranged over M, M1, . . . , and a set of variables, ranged over by x, y, z. Let α ranges

over A ∪ {ε}, where ε indicates no-action; let also ρ range over reals (called double).

49

50 4. PRISM+

A PRISM+ program P is a parallel composition of modules, that is

P = M1 | . . . | Mn

where m | M′ is the parallel composition of modules M and M′ synchronising only on

actions appearing in both M and M′. Let actions(M) be the set of actions in A that occur

in M. A module M is defined by the syntax

M ::= module M : D C endmodule

D ::= T x = v; | T x = v;D

T ::= integer | double | bool | block | ledger | set

| map

That is, a module has a name, a sequence D of local variable declarations with initial-

isations and a set of commands C. It is assumed that pairwise different modules in a

PRISM+ program have different names and have also different local variables names.

Sets of commands C are written c1; . . .;cm, where every c has the form:

c ::= [α] e →
∑

i∈I ρi : updatei

upd ::= ε | x′ = e N upd

e ::= v | x | e op e | !e

v ::= true | false | integers | doubles | ledgers | set

| blocks | maps

op ::= − | + | ∗ | = | ≠ | N

In a command [α] e →
∑

i∈I ρi : updi, α may be either empty or an action, e, called

guard, is a boolean expression over all the variables in the program (including those

belonging to other modules), and the right hand-side of the arrow describes a transition.

In particular, when α is empty, if e is true then one of the corresponding updates may be

performed. Each update is defined by giving new values of the variables in the module,

possibly as a function of other variables. Each update has also a rate, which will be

given to the corresponding transition. Updates are written with the prime symbol:

4.1 The Modelling Language 51

x′ = e means that, if v is the value of e in the current state then the value of x in the

next state is v. We assume that, in an update x1
′ = e1 N . . . N xn

′ = en, left hand-side

variables are all different.

When α is an action then the transition must be performed simultaneously with

the other modules in parallel that have the same action (i.e. the modules synchronise).

This is the standard CSP parallel composition [46]. The rate of the overall transition is

equal to the product of the individual rates. Since the product of rates does not always

meaningfully represent the rate of a synchronised transition, PRISM uses the technique

to make exactly one action active, with a generic rate, and all the others passive, with

rate 1. The rate of a synchronisation is therefore defined by the unique active action.

Semantics. The semantics of a PRISM+ program is defined as a transition system

whose states s are maps [x1 7→ v1, . . . , xn 7→ vn] where {x1, . . . , xn} is the set of local

variables of the program’s modules. The transition relation uses the following auxiliary

definitions:

• s[x 7→ v] is the state

(s[x 7→ v])(y)
def
=

{
v if y = x

s(y) otherwise

• JeK(s) returns the value of an expression e in the state s. The value is computed by

replacing the variables with their values in s and evaluating the operations. The

formal definition is omitted because standard.

• JupdK(s) returns the state s′ defined as follows:

Jx1
′ = e1 N . . . N xn

′ = enK(s)
def
= s[x1 7→ Je1K(s), . . . , xn 7→ JenK(s)]

The transition relation of PRISM+ is defined in Table 4.1 where we let M range

over parallel compositions of modules and we assume | to be commutative. We use the

judgment P ⊩ s
α,ρ−−→ s′ meaning that the program P transits from s to s′ with an action

α and rate ρ. The auxiliary judgment M ⊩ s
α,ρ−−→ upd collects all the updates in the

52 4. PRISM+

synchronising modules in M (according to our assumptions, different updates modify

different variables). Rule [Upd] defines the semantics of a command. We write c ∈ M if

[Upd]

[α] e →
∑

i∈I ρi : updi ∈ M JeK(s) = true

M ⊩ s
α,ρi−−→ updi

[Sync]

M ⊩ s
a,ρ−→ upd M ′ ⊩ s

a,ρ′−−→ upd′

M | M ′ ⊩ s
a,ρ×ρ′−−−→ updN upd′

[Nosync]

M ⊩ s
α,ρ−−→ upd α /∈ actions(M)

M | M ⊩ s
α,ρ−−→ upd

[Program]

M1 | · · · | Mn ⊩ s
α,ρ−−→ upd P = M1 | · · · | Mn

P ⊩ s
α,ρ−−→ JupdK(s)

Table 4.1: The semantics of the PRISM+ language.

M = module M : D C endmodule and c ∈ C. If e is true, then an update updi is enabled

with rate ρi and label α. The update updi is a set of evaluated variables expressed as

a conjunction of assignments. Rule [Sync] collects commands of synchronising modules.

We notice that the rate is the product of the rates of every single transition, which is

actually the one of the unique active transition. Rule [Nosync] enables the interleaving

of transitions (because of commutativity of |, it also covers the symmetric rule). A

PRISM+ program is a parallel composition of modules; its semantics is described in

[Program].

4.2 Our Extension

PRISM+ extends PRISM by adding a native support for expressing and manipulating data

types such as lists and trees and data types specifically designed for modelling blockchain

protocols such as block and ledger. The goal of our extension is to provide a generic

set of primitives that can be used to model and analyse different kinds of blockchain

4.2 Our Extension 53

protocols. This section describes the data types and the operations of PRISM+ and their

prototype implementation.

4.2.1 The Data Types

PRISM has not been designed to be extended with plugins. Therefore, to implement our

data types and operations we had to modify the PRISM source code and provide a new

software package that includes our extensions1,2.

In particular, we have extended the syntax of the PRISM model checker by upgrading

the parser (the file PrismParser.jj). The supported expression in PRISM are literal

values (12, 3.141592, true, false, etc.), identifiers (corresponding to variables, constants,

etc.) and some operators. Thus, the extension of PRISM expressions with the new types

has led to extending the PRISM abstract class Expression. In particular, the data

types that have been implemented in PRISM+ are block, ledger, set, and map and

the operations between them. In the rest of the section, we will cover the main aspects

of the implementation of each data type.

Blocks

The first data type we will discuss is the block data type. In our model, we simplify the

concept of a blockchain block by only requiring that it has a unique name. We do not

consider the specific information items such as transactions, nonce, timestamp, Merkle

root, and parent pointer, as we assume all blocks and transactions are valid. For this

reason, our blocks are terms of the form {m,n; ρ}, where

• m, n, called name, is such that m is a creator’s name and n is a unique numeric

label. In particular, n is a personal counter of each node which is incremented

every time the node creates a new block;

• the term ρ, called parent, is the name of the parent block to which {m,n; ρ} points.

1https://github.com/adeleveschetti/bitcoin-analysis
2https://github.com/adeleveschetti/casper-analysis

https://github.com/adeleveschetti/bitcoin-analysis
https://github.com/adeleveschetti/casper-analysis

54 4. PRISM+

For instance, {m3,0;m4,7} denotes a block named (m3, 0), (which is the first block

created by the node m3), and whose parent is the block named (m4, 7) (which is the

seventh block created by the node m4). The block genesis, called genesis block is the

root of every ledger and is represented as {genesis,0;genesis,0}.

1 public class ExpressionBlock extends Expression{

2

3 private ExpressionString module = null;

4 private ExpressionLiteral value = null;

5 private ExpressionString moduleParent = null;

6 private ExpressionLiteral valueParent = null;

7 private int height = 0;

8

9 public ExpressionBlock(ExpressionString m1, ExpressionLiteral v1,

↪→ ExpressionString m2, ExpressionLiteral v2, int h)

10 {

11 module = m1;

12 value = v1;

13 moduleParent = m2;

14 valueParent = v2;

15 type = new TypeBlock();

16 height = h;

17 }

18 }

Listing 4.1: The ExpressionBlock fields and constructor.

The implementation is straightforward, the field module represents the name of

the node that has created this block, while the value is the counter. The fields

moduleParent and valueParent represent, respectively, the name of the node that

created the parent block and the node’s counter. Additionally, a block in our model

has a field that indicates its position or height in the ledger, height. The methods

implemented for the ExpressionBlock class are the standard getters and setters.

4.2 Our Extension 55

Ledgers

As previously outlined, our abstraction of a ledger is a tree of blocks (see Section 4.2.3),

with its blockchain being the sequence of blocks starting from the leaf block at the

maximum depth and leading to the genesis block. To represent the whole ledger we use

the auxiliary data structure TreeList (which will be discussed later on) and the ledger

class contains the informations about the leaf block at maximal depth and, in the case

of the Hybrid Casper protocol, also the last justified block and the last finalised block.

1 public class ExpressionBlockchain extends Expression{

2 private String name;

3 private int length;

4 private TreeList<ExpressionBlock> blocks;

5 private ExpressionBlock lastFinalized;

6 private ExpressionBlock lastJustified;

7

8 public ExpressionBlockchain(ExpressionBlock b){

9 name = null;

10 blocks = new TreeList<ExpressionBlock>();

11 blocks.addHead(b);

12 length = blocks.size();

13 lastFinalized = b;

14 lastJustified = b;

15 lastAdded = b;

16 }

17 }

Listing 4.2: The ExpressionBlockchain fields and constructor.

Since, the genesis block is the only block that all nodes are aware of at time zero,

in our models a blockchain is always initialised as containing only the genesis block.

Thus, the constructor reported in Listing 4.2 is used with the input parameter b ≡
{genesis,0; genesis,0}. In this way, a new tree of blocks is instantiated and the

last finalised block, the last justified block and the last added are all set to the genesis

block, following the definitions of the literature [19, 21].

56 4. PRISM+

Besides the setters and the getters, the ExpressionBlockchain class is packed

also with the method addBlock, shown in Listing 4.3. This method adds the block

taken as parameter in the ledger, also updating the lastAdded field.

1 public ExpressionBlockchain addBlock(Expression block) {

2 this.blocks.addLeaf((ExpressionBlock) block);

3 lastAdded = this.blocks.getHead();

4 return this;

5 }

Listing 4.3: The ExpressionBlockchain method addBlock.

Sets

Sets are collections of blocks. In PRISM+, we model them as ExpressionSet which

is data structure that can be approximated as a list of blocks without repetitions.

1 public class ExpressionSet extends Expression{

2

3 private String name;

4 private int length;

5 private List<ExpressionBlock> blocks;

6

7 public ExpressionSet(){

8 name = null;

9 blocks = null;

10 length = 0;

11 }

12 }

Listing 4.4: The ExpressionList class.

We ensure that there are no duplicates in the set by verifying every time a new block is

added using the method addBlock reported in Listing 4.5. In particular, if the set is

null, a new set is created and the block is added to it. If the set already exists, the

block is checked for duplicates before being added to the set.

4.2 Our Extension 57

1 public ExpressionSet addBlock(Expression operand2) {

2 if(this.blocks==null) {

3 this.blocks = new ArrayList<ExpressionBlock>();

4 this.blocks.add((ExpressionBlock) operand2);

5 length = blocks.size();

6 lastAdded = (ExpressionBlock)operand2;

7 }

8 else {

9 if(!this.blocks.contains((ExpressionBlock) operand2)) {

10 this.blocks.add((ExpressionBlock) operand2);

11 lastAdded = (ExpressionBlock)operand2;

12 }

13 }

14 return this;

15 }

Listing 4.5: The ExpressionList class.

Maps

In the Hybrid Casper model, maps are utilised to keep track of the stakes of validators

and the votes for each checkpoint.

1 public class ExpressionMap extends Expression{

2 private String name;

3 private int length;

4 private List<Pair> votedBlocks;

5 private Pair lastModified;

6 public ExpressionMap(){

7 name = null;

8 votedBlocks = null;

9 length = 0;

10 lastModified = null;

11 }}

Listing 4.6: The ExpressionMap class.

58 4. PRISM+

Maps are represented by means of the ExpressionMap data structure and are used to

store votes for each block. In particular, a map is composed by a name, a length of the

list, a list of pairs and the last modified pair.

1 public ExpressionMap addVotedBlock(Expression block, int index, int stake) {

2 boolean flag = false;

3 int j = 0;

4 if(this.votedBlocks!=null) {

5 for(int i=0; i<this.votedBlocks.size(); i++) {

6 if(this.votedBlocks.get(i).getBlock().equals((ExpressionBlock) block)) {

7 flag = true;

8 j = i;

9 }

10 }

11 }

12 if(!flag this.votedBlocks==null) {

13 if(this.votedBlocks==null) {

14 this.votedBlocks = new ArrayList<Pair>();

15 }

16 Pair newPair = new Pair ();

17 newPair.setBlock((ExpressionBlock) block);

18 newPair.setVote(stake,index);

19 this.votedBlocks.add(newPair);

20 this.lastModified = newPair;

21 length = votedBlocks.size();

22 }

23 else {

24 this.votedBlocks.get(j).setVote(stake,index);

25 this.lastModified = this.votedBlocks.get(j);

26 }

27 return this;

28 }

Listing 4.7: The addVotedBlock method.

4.2 Our Extension 59

The auxiliary data type pair (block, votes) consist of a block and the list of votes

received for that block. The method ”addVotedBlock” (as shown in Listing 4.7) is used

to add a block and its corresponding vote to the map. It takes in the block, the index of

the voting validator and the validator’s stake as parameters. The method checks if the

block the validator is voting for is already in the map or not. If it is present, the new

vote is added to the correct index. If it is not, a new pair with the new block is created

and added to the map.

4.2.2 The Operations

After extending the data types in our model, we realised that we also needed new oper-

ations to analyse and modify our data structures. Therefore, we added new operations

to the existing PRISM tool by extending the ExpressionFunc class, which defines

the built-in operations. With these additions, PRISM+ now supports a variety of opera-

tions in addition to the standard ones defined in PRISM (such as min(..), max(..),

floor(..), ceil(..), round(..), pow(..), mod(..)). The following section

lists the newly introduced operations, organised by the main data type they work on.

The operations on blocks are:

• createB(block, blockchain, int) creates and returns a new block as a

child of the last valid block of this blockchain. The integer represents the number

of blocks created by that specific node of the network and it is used to make the

name of the block unique;

• getHeight(block) returns the height of the block taken as parameter.

The operations implemented on ledgers are:

• canBeInserted(blockchain,block) returns true if the block taken as pa-

rameter can be inserted in the ledger, false otherwise. We recall that a block

can be inserted if the father of the block is already in the ledger;

• addBlock(blockchain,block) inserts the block in the blockchain and returns

the updated ledger (precondition: canBeInserted(..)=true). The function

also updates the lastAdded field if the block is the a leaf at maximal depth;

60 4. PRISM+

• diffCheckpoints(blockchain, int) checks if there are conflicting check-

points at the given height in the blockchain. It is used to check the consistency of

the ledgers in the Hybrid Casper protocol. To make the function as versatile as

possible, an additional integer parameter is required which represents the length

of the epoch in the current system.

1 private Object evaluateDiffChekpoints(EvaluateContext ec) throws

↪→ PrismLangException

2 {

3 ExpressionBlockchain B = getOperand(0).evaluateBlockchain(ec);

4 int epoch = getOperand(1).evaluateInt(ec);

5 ArrayList<ExpressionBlock> blocks = B.getBlocks().getNodes();

6 int fork = 0;

7 for(int i=0; i<blocks.size(); i++) {

8 ExpressionBlock b1 = blocks.get(i);

9 for(int j=i; j<blocks.size(); j++) {

10 ExpressionBlock b2 = blocks.get(j);

11 if(b1.getHeight()%epoch==0NNb2.getHeight()%epoch==0 b1.

↪→ getHeight()==b2.getHeight()) {

12 if(!b1.equals(b2)) {

13 fork++;

14 }

15 }

16 }

17 }

18 return fork;

19 }

Listing 4.8: The implementation of diffCheckpoints operation.

The function takes all the blocks in the ledger with the operation getNodes() of

the class TreeList, not considering the different paths leaf-genesis block. Thus,

if two blocks are both checkpoints (their height is a multiple of the length of the

epoch) and they have the same height, then there is a fork of checkpoints. The

4.2 Our Extension 61

function returns the length of this kind of fork;

• calcFork(blockchain,..., blockchain) returns the length of the fork

between the blockchains (Listing 4.9).

1 private Object evaluateCalcFork(EvaluateContext ec) throws

↪→ PrismLangException{

2 ExpressionBlockchain B0 = getOperand(0).evaluateBlockchain(ec);

3 ArrayList<ExpressionBlockchain> bchains = new ArrayList<

↪→ ExpressionBlockchain> ();

4 bchains.add(B0);

5 int n = getNumOperands();

6 ExpressionBlockchain tmpB ;

7 for (int i = 1; i<n; i++) {

8 tmpB = getOperand(i).evaluateBlockchain(ec);

9 bchains.add(tmpB);

10 }

11 ArrayList<ArrayList<ExpressionBlock>> mainChains = new ArrayList

↪→ <ArrayList<ExpressionBlock>> ();

12 ArrayList<ExpressionBlock> tmpChain;

13 ArrayList<Integer> lenghts = new ArrayList<Integer> ();

14 int maxLen = 0;

15 for(int i = 0; i<n; i++) {

16 tmpChain = bchains.get(i).getMainChain();

17 mainChains.add(tmpChain);

18 lenghts.add(tmpChain.size());

19 if(lenghts.get(i)>maxLen) {maxLen = lenghts.get(i);}

20 }

21 ArrayList<ArrayList<ExpressionBlock>> toCalc = new ArrayList<

↪→ ArrayList<ExpressionBlock>> ();

22 for (int i = 0; i<n; i++) {

23 if(mainChains.get(i).size() == maxLen) {

24 toCalc.add(mainChains.get(i));

25 }

62 4. PRISM+

26 }

27 int diff = toCalculate(toCalc,maxLen);

28 return diff;

29 }

Listing 4.9: The implementation of calcFork operation.

The function collects all the blockchains into a single array and passes it to the

toCalculate(..) function (shown in Listing 4.10). This function computes

the length of the fork recursively by comparing the elements at height len-1,

where len is decreased with each call of the function. It is worth noting that the

implementation ensures that if there are at least two different blockchains, a fork

exists.

1 private int toCalculate(ArrayList<ArrayList<ExpressionBlock>> list,

↪→ int len) {

2 if(len==1) { return 0; }

3 else {

4 int diff = 0;

5 ExpressionBlock b = list.get(0).get(len-1);

6 for(int i=1; i<list.size(); i++) {

7 if(!list.get(i).get(len-1).equals(b)) {

8 diff = 1;

9 }

10 b = list.get(i).get(len-1);

11 }

12 return diff+toCalculate(list,len-1);

13 }

14 }

Listing 4.10: The implementation of toCalculate auxiliary function.

• updateFin(blockchain, block) updates the field lastFinalised of the

corresponding blockchain with the block taken as parameter;

4.2 Our Extension 63

• updateJust(blockchain, block) is similar to the previous function, the

only distinction is that it updates the lastJustified field.

For what concerns the set data type, the operations are almost standard:

• extractCheckpoint(set,block) returns the block taken as parameter if it

is contained in the set, the genesis block otherwise. This function is used for the

process of voting in the Hybrid Casper protocol;

1 private Object evaluateExtractCheckpoint(EvaluateContext ec) throws

↪→ PrismLangException

2 {

3 ExpressionSet list = getOperand(0).evaluateList(ec);;

4 ExpressionBlock block = getOperand(1).evaluateBlock(ec);

5 ExpressionBlock retBlock = null ;

6 if(list.getBlocks()!=null NN list.getBlocks().size()>0) {

7 if(!list.getBlocks().contains(block)) {

8 retBlock = list.getBlocks().get(0);

9 }

10 else {

11 boolean flag = false;

12 for(int i=0; i<list.getBlocks().size()-1 NN !flag; i++) {

13 if(list.getBlocks().get(i).equals(block)) {

14 flag = true;

15 retBlock = list.getBlocks().get(i+1);

16 }

17 }

18 }

19 }

20 return retBlock;

21 }

Listing 4.11: The implementation of extractChecpoint operation.

• addBlockSet(set,block) adds the block and returns the set updated;

64 4. PRISM+

• removeBlock(set,block) delete the block from the set, the function also

returns the set;

• isEmpty(set) returns true if the set is empty, false otherwise;

• extractBlock(set) returns a block extracted from the set, the block is not

removed from it.

Finally, we also implemented three functions for the map data type:

• updateS(map, block, double, int, int, int) returns the updated stake

of the corresponding validator (index is passed as an integer parameter) with re-

wards and penalties applied based on whether they voted correctly for the block or

not. The techniques for rewarding and penalizing validators are described in [21].

The function takes a double parameter representing the epoch for which the sys-

tem is checking the votes, as well as the current state of the validator and the total

stake of the system;

• calcVotes(map, block) returns the sum of the votes the block has received;

• addVote(map, block, int) returns an updated version of the map where the

vote for the block has been recorded. The operation first checks if the map storing

the votes for the block is empty. If it is not, it adds the stake of the validator who

is voting to the corresponding index of the array. If the map is empty or the block

the validator is voting for is not present in the map, it adds the block and the vote

to the map.

1 private ExpressionMap addVote(ExpressionMap table, ExpressionBlock

↪→ block, String validator){

2 int j = 0;

3 boolean found = false;

4 for(int i = 0; i<validator.length() and !found; i++) {

5 if(Character.isDigit(nameTmp.charAt(i))) {

6 j = i;

7 found = true;

8 }

4.2 Our Extension 65

9 }

10 String nameTmp2 = validator.substring(j);

11 int whichMiner = 0;

12 if(found) {whichMiner = Integer.parseInt(nameTmp2);}

13 boolean flag = false;

14 if(table.getVotedBlocks()!=null) {

15 for(int i = 0; i<table.getVotedBlocks().size(); i++) {

16 if(table.getVotedBlocks().get(i).getBlock().equals(block))

↪→ {

17 flag = true;

18 table.addVote(i,whichMiner,stake);

19 }

20 }

21 if(!flag) {

22 table.addBlock(block,whichMiner,stake);

23 }

24 }

25 else {

26 table = new ExpressionMap();

27 table.addBlock(block,whichMiner,stake);

28 }

29 return table;

30 }

Listing 4.12: The implementation of addVote operation.

4.2.3 Auxiliary Data Types

To model our data types in PRISM+, we created auxiliary data types. Specifically, we

needed the TreeList data type to model the blockchain structure and a Pair to store

the votes for the checkpoints in the Hybrid Casper protocol.

66 4. PRISM+

TreeList

The TreeList class is a proper ledger data structure since it represents the tree of

blocks with all the informations needed. The fields of a TreeList are:

• head: the leaf block at maximal depth of the tree;

• lastAdded: the last block added to the blockchain;

• lists: the actual tree data structure (a list of list of blocks);

• nodes: the list containing all the blocks in the ledger in no particular order.

Like the ExpressionBlockchain, this data structure is always initialised with the

genesis block as first element.

1 public class TreeList<T> {

2

3 private ExpressionBlock head;

4 private ExpressionBlock lastAdded ;

5 private ArrayList<ArrayList<ExpressionBlock>> lists = new ArrayList<

↪→ ArrayList<ExpressionBlock>>();

6 private ArrayList<ExpressionBlock> nodes = new ArrayList<

↪→ ExpressionBlock>();

7

8 public TreeList(ExpressionBlock head) {

9 this.head = head;

10 this.lastAdded = head;

11 nodes.add(head);

12 ArrayList<ExpressionBlock> tmp = new ArrayList<ExpressionBlock> ();

13 tmp.add(head);

14 lists.add(tmp);

15 }

Listing 4.13: The TreeList class.

4.2 Our Extension 67

Pair

The data type Pair is used to store the votes for each checkpoint in the Hybrid Casper

protocol. It is a couple composed by a block and the array containing the votes for the

block, which are represented by integers (block, array of integers).

1 public class Pair {

2

3 private ExpressionBlock block;

4 private ArrayList<Integer> votes = new ArrayList<Integer>();

5

6 public Pair(){

7 block = null;

8 }

Listing 4.14: The Pair class.

The votes are stored in such a way that the position of the array corresponds to the

index of the voting node in the system.

1 public void setVote(int vote, int index) {

2 if(index>=votes.size()) {

3 for(int i=votes.size(); i<index; i++) {

4 votes.add(i,0);

5 }

6 votes.add(index,vote);

7 }

8 else {

9 votes.set(index,vote);

10 }

11 }

Listing 4.15: The setVote method.

The method setVote takes as parameters the index of the voting validator and the

validator’s stake (vote). If the index of the validator is greater than the size of the

array, the array is filled with zeros because it means that not all validators with an index

68 4. PRISM+

less than the current one have already voted. Then, the vote of the current validator is

stored in the correct index.

Chapter 5

The Bitcoin Protocol

This chapter discusses the models and results of analyses in PRISM+ for the Bitcoin

protocol. In Section 5.1, the general model of the Bitcoin system is presented, with the

assumption that all nodes function properly. Then, the PRISM+ model of a network

with churning nodes (nodes that can leave and rejoin) is defined. Additionally, different

network topologies (linear, ring, tree, and fully connected) are considered.

Then, we present the results of our analyses and compare the results we obtain when

considering each setting. The first analysis, in Section 5.2, compares the model to the

real Bitcoin network. The second one studies the trade-off between the security and the

efficiency/scalability of the network, i.e. in Section 5.3 we study the interdependence be-

tween the probability of reaching a fork of length k and the difficulty of the cryptopuzzle.

The last two analyses study the time needed to mine a new block and the probability

of reaching a fork of length k for a network with churn miners and in networks using

different kinds of topologies and are presented in Section 5.4 and 5.5, respectively.

In this chapter, for our analyses, we assume that all miners act honestly and do not

engage in any malicious behaviour, such as double spending attacks or block withholding

attacks [33].

69

70 5. The Bitcoin Protocol

5.1 Definition of the Models

In our model, a Bitcoin system is the result of the parallel composition of n Miner

processes, n Hasher processes and a process called Network. Hasher processes model

the attempts of the miners to solve the cryptopuzzle, while the Network process model

the broadcast communication among miners.

Figure 5.1: The Bitcoin model architecture.

At the beginning, we assume that miners are connected through a network guarantee-

ing broadcast. Later on, we shall consider other topologies (see Section 5.1); the actual

architecture is illustrated in Figure 5.1. The abstraction also uses an auxiliary process,

called Global, that computes the length of forks, see Section 5.2. As already said, in

order to abstract out the solution of the cryptopuzzle and the broadcast of new blocks,

we use rates.

General Model

For the sake of clarity, we present a simplified version of the PRISM+ code implement-

ing our processes. The actual abstraction, the analysed properties with tests and the

instructions for the use of the library are available on the online repository1.

1https://github.com/adeleveschetti/bitcoin-analysis

https://github.com/adeleveschetti/bitcoin-analysis

5.1 Definition of the Models 71

1 module Hasheri

2 Hasher_STATEi : 0;

3

4 [win_i] (Hasher_STATEi=0) ->mR : Hasher_STATEi’=0 ;

5 [lose_i] (Hasher_STATEi=0) ->lR : Hasher_STATEi’=0 ;

6 endmodule

Listing 5.1: Simplified model of an Hasher.

A Hasher process is defined in Listing 5.1. It represents the PoW algorithm performed

by miners: those miners who want to solve the cryptopuzzle synchronise with the Hasher

which “answers” telling them if they succeeded or not.

The Hasher consists of two transitions: the first one with action [win i] and rate

mR is triggered when the synchronising miner finds a solution for the PoW (mR is taken

such that 0 < mR < 1); the second one with action [lose i] and rate lR (lR = 1−mR)

is triggered when the synchronising miner does not find a solution to PoW. In both cases

the Hasher process makes a silent action.

A Miner, described in Listing 5.2, has a ledger, called Li, a set containing the blocks

to be added to the ledger, called setMineri, a block bi and a integer ci. The variable

bi is used to store the block the Miner creates and to store the newly extracted block

from the set. The integer ci is a counter whose value ranges between 0 and 100 (initially

is zero) and which keeps track of the number of blocks created by the Miner, so that we

can assign unique names to blocks.

The Network process is defined in Listing 5.3. It contains a set of blocks seti for

each Mineri that represents the messages to be delivered to the miner. The set Ni, in

the case of the broadcast topology, is equal to {0, · · · , i − 1, i + 1, · · · , n − 1}, e.g. the

indexes of the miners to whom a block must be sent (line 7). Also, the Network process

contains a transition for each Miner to model sending and receiving messages. More

precisely, the Network synchronises with the Miner who won the PoW (in the winner

state) using the addB i action. As a result of this synchronisation, Network updates

the sets of blocks of the miners contained in the set Ni.
2

2Actually, the set Ni is not present in the PRISM+ model. The actions are replicated for all the
Miners without the for loop.

72 5. The Bitcoin Protocol

1 module Mineri

2 STATEi : [Mine,Winner,Lost,Add,Move] init Mine;

3 bi : block {Mineri,0;genesis,0};

4 Li : ledger ⟨{genesis,0;genesis,0}⟩;

5 ci : [0..100] init 0;

6 setMineri : set [];

7

8 [win_i] (STATEi=Mine) ->

9 hRi : (bi
′=createB(Mineri,ci,Li))N(ci

′=ci+1)N(STATEi
′=Winner);

10 [lose_i] (STATEi=Mine) -> hRi : (STATEi
′=Lost);

11 [addB_i] (STATEi=Winner) -> 1 :(Li’=addBtoL(Li,bi))N(STATEi’=Mine);

12 [] (STATEi=Lost) N !isEmpty(seti) -> 1 : (bi’=receive(seti))N(STATEi’=Move);

13 [] (STATEi=Lost) N isEmpty(seti) -> 1 : (STATEi’=Mine);

14 [] (STATEi=Lost) N !isEmpty(setMineri) ->

15 1 : (bi’=receive(setMineri))N(STATEi’=Add);

16 [] (STATEi=Lost) N isEmpty(setMineri) -> 1 : (STATEi’=Mine);

17 [removeB_i] (STATEi=Move) ->

18 1 : (setMineri’ = add(setMineri, bi))N(STATEi’=Mine);

19 [] (STATEi=Add)N(canBeIns(Li,bi)) ->

20 1 : (Li’=addBtoL(Li,bi)N(setMineri’=remove(setMineri,bi))N(STATEi’=Mine);

21 [] (STATEi=Add)N(!canBeIns(Li,bi)) -> 1 : (STATEi’=Mine);

22 endmodule

Listing 5.2: Simplified model of a Miner.
1 module Network

2 n : numberOfMiners

3 for i from 0 to n-1:

4 seti : set [];

5 Ni : set [];

6 for i from 0 to n-1:

7 [addB_i] -> rb : foreach k in Ni { setk’=add(setk,bi); };

8 for i from 0 to n-1: [removeB_i] -> 1 : seti’ = remove(seti,bi);

9 endmodule

Listing 5.3: Simplified model of the Network.

5.1 Definition of the Models 73

Below we describe in detail how our processes abstract the Bitcoin protocol. As the

reader can observe from the code in Listing 5.2, Miner’s state is initially set to Mine.

In this state it can synchronise with Hasheri using either the win i or lose i actions.

As already said, this synchronisation abstracts the cryptopuzzle solution. Note that the

time needed for the creation of a new block at miner i is a random number sampled from

an exponential distribution with rate proportional to the ratio of the difficulty of the

PoW problem and the hashing power of the miner. Therefore, the chosen action, win i

or lose i, depends on the difficulty of the problem (represented by the hasher values

mR and lR) and on the hashing power of the miner (represented by hRi). Since the rate

of a synchronisation is equal to the product of the rates of the two actions, the rate of

mining a new block is mR×hRi, which corresponds to the parameter λmi
introduced in

Section 2.2.1. Whereas the rate of losing the competition is lR×hRi.

If the miner wins, it changes its status in Winner (lines 8 and 9), updates its ledger

and sends the new block to the Network (action addB i at line 11) in order to forward it

to the other miners (i.e. updating other miners’ sets with the new block). This action is

taken with a certain rate rb, which simulates the latency of the network and corresponds

to the product between the rate 1 (for the action of the Miner) and the rate rb of the

Network action (line 7 of Listing 5.3). If the system is in a state of fork, the Miner will

always create the new block following the longest chain rule: by choosing the chain with

the most work (in our implementation, it is always the longest chain).

If the miner loses, its status becomes Lost (line 10) and it checks for new blocks in

the Network process.

If there are new blocks, the miner chooses randomly one of them (with the operation

extractBlock()). This random choice simulates the delay due to the topology of the

network. In our model, the rate rb and the random selection of blocks from the sets

simulate the communication delay of messages in the Bitcoin network.

Then, the state of the Miner becomes Move and the Miner adds to its local set

setMineri the block bi (lines 17 and 18). Moreover, the Miner synchronises with the

process Network with action removeB i. The Network removes the block bi from the

set of the Miner seti. Then the state of the Miner becomes Mine.

Otherwise, the Miner can try to pick a block from its local set (lines 14-15) and, in

74 5. The Bitcoin Protocol

this case, a block is randomly extracted from the local set setMineri. If the block

taken from the local set can be added in the ledger (which means that the function

canBeIns(Li,bi) returns True), the Miner adds the block to its ledger and removes

it from the local set (lines 19-20). Finally, its status is set to Mine and the process

starts again. Otherwise, the block is not removed from the local set and the process

starts again (line 21). If both the local set and the set stored in the Network process are

empty, the Miner does nothing and its status returns Mine (lines 13 and 16). The time

spent in performing these actions is simulated by the rate 1. This rate is much higher

than the other rates (which are numbers in the [0, 1] interval) because it corresponds to

local management operations of the Miner. Therefore, the probability that a Miner tries

to add a received block in its ledger is higher than the probability of receiving or mining

a new block.

It is worth noticing that a block is added in the correct position of the ledger, even

if it is a stale block. In our model stale blocks are represented as valid blocks which are

not part of the blockchain. In contrast, an orphan block is modelled as a block received

by a miner, but that does not have its entire ancestry (yet) in the local ledger and thus

cannot be added. So an orphan block is not added to the ledger and is left in the local

set setMineri.

Churn Nodes

Nodes that may leave the Bitcoin network and rejoin after some time are called churn

nodes. As described in [61, 60], while a node is away from the network, other active nodes

continue processing transactions, mining and adding blocks to their respective ledgers.

When a node rejoins the network, its ledger is out of date and needs to be updated before

the node can take part in network activities. Therefore, the first action to be taken after

rejoining is to download all blocks that were added to the set of the Network during

its sleep. When the blocks have been downloaded, the miner can start adding them

to the ledger. In the model of Listing 5.2, this is performed by transiting to the state

Mine. In order to model churn miners, we define a controller process that awakes and

shuts down miners following a given policy explained below. The uncertainty is modelled

by rates and the controller consists of a sequence of states that alternate awake and

5.1 Definition of the Models 75

sleep synchronisations with the corresponding miner. Listing 5.4 shows a controller

Controlleri for a miner Mineri with 11 states. Note that the controller is a finite

state system that, when the number of states are even, will leave the corresponding miner

active forever; when the number is odd, it will leave the miner inactive forever. It is easy

to define alternative controller with cyclic behaviours.

1 module Controller_i

2 Controller_STATEi : [s0,s1,. . . , s10] init s0;

3

4 [sleep_i] (Controller_STATEi = s0) -> ri0 : Controller_STATEi’ = s1 ;

5 [awake_i] (Controller_STATEi = s1) -> ri1 : Controller_STATEi’ = s2 ;

...

12 [sleep_i] (Controller_STATEi = s8) -> ri8 : Controller_STATEi’ = s9 ;

13 [awake_i] (Controller_STATEi = s9) -> ri9 : Controller_STATEi’ = s10 ;

14 endmodule

Listing 5.4: Model of a controller with 11 states.
1 module Mineri

2 STATEi : [Mine,Winner,Lost,Add,Move,Update,MoveUpdate,Sleep] init Mine;

3 bi : block {Mineri,0;genesis,0};

4 Li : ledger ⟨{genesis,0;genesis,0}⟩;

5 ci : [0..100] init 0;

6 setMineri : set [];

7

8 [sleep_i] (STATEi = Mine) -> 1 : (STATEi’ = Sleep);

...

32 [addB_i] (STATEi=Update) N !isEmpty(seti) ->

33 1 : (bi’=receive(seti))N(STATEi’=MoveUpdate);

34 [removeB_i] (STATEi=MoveUpdate) ->

35 1 : (setMineri’=add(setMineri, bi))N(STATEi’=Update);

36 [] (STATEi=Update) N isEmpty(seti) -> 1 : STATEi’= Mine ;

37 [awake_i] (STATEi = Sleep) -> 1 : (STATEi’ = Update);

38 endmodule

Listing 5.5: Simplified model of a dynamic miner.

76 5. The Bitcoin Protocol

The churn miner of Listing 5.5 extends the one of Listing 5.2 with three additional

states: Sleep, MoveUpdate, and Update.

As before, the initial state of this Miner is Mine where, in addition, it may synchronise

with the controller (action sleep i) and, after a certain amount of time, modelled by

the exponential parameter ri0, the Miner state becomes Sleep (line 8). In this state,

the miner may synchronise with the controller again (action awake i) and its state

becomes Update (line 32).

In the Update state, the Miner synchronises with the Network process and extracts

all the blocks from the corresponding set in Network by moving them into its local set

setMineri (lines 34-35). When seti becomes empty (line 36) the Miner state is set

to Mine and the Miner can resume its standard behaviour, which is the one defined in

Section 5.1 in Listing 5.2 (lines 8-21).

In our simulations we consider three controllers: one with four states (so sleep-awake-

sleep synchronisations, the first sleep has a very high rate, therefore the corresponding

miner goes asleep immediately), the second with two states (one sleep synchronisation

only: when the miner shuts down, it will be down forever) and the third one with five

states (sleep-awake-sleep-awake synchronisations). Additional experiments with larger

number of churn miners and with cyclic behaviour are left to future work.

Network Topologies

We modelled several kinds of network topologies and analysed how they affect the like-

lihood of a fork. Network topology refers to how nodes are connected with each other

and transmit new blocks.

We study three different network topologies: the ring topology, the tree topology

and the linear topology. The three topologies have been modelled by changing only the

Network process; Hasher and Miner are those defined in Section 5.1. Listing 5.6 shows

the modified code for the Network process. As the reader can observe, the code is the

same as of the one presented in the Section 5.1, except for line 10. In particular, we

modified the set Ni containing, for each node, the set of nodes to whom the new blocks

have to be forwarded. When a Miner extracts a block received by the Network, the block

is forwarded to the nodes contained in the set Ni. This set is defined according to the

5.1 Definition of the Models 77

topology as follows:

• Linear topology (Figure 5.2a): Ni contains the previous node and the next one

(except for the terminal nodes where Ni are singletons). For instance, for miner

Mineri:

Ni = {Mineri−1,Mineri+1} if i ̸= 0,n

N0 = {Miner1}

Nn = {Minern−1}

• Ring (Figure 5.2b): the set Ni contains the previous and the next node for each

miner. Thus, for every miner

Ni = {Miner((i−1)%n),Miner((i+1)%n)}.

• Tree topology (Figure 5.2c): every Ni contains the parent node and the children

node, except for the root of the tree and the leaves. Roots have only children

nodes; leaves have only the parent.

1 module Network

2 n : numberOfMiners

3 for i from 0 to n-1:

4 seti : set [];

5 Ni : set [];

6 for i from 0 to n-1:

7 [addB_i] -> rb : foreach k in Ni { setk’=add(setk,bi); };

8 for i from 0 to n-1:

9 [removeB_i] -> 1 : seti’ = remove(seti,bi)

10 N foreach k in Ni { setk’=add(setk,bi); };

11 endmodule

Listing 5.6: Simplified model of the Network.

78 5. The Bitcoin Protocol

(a) Linear topology.

(b) Ring topology. (c) Tree topology.

Figure 5.2: Network topologies.

The three topologies have been selected because they are the simplest to realise in

practice. The goal is to compare the resilience to forks of these topologies with respect to

the broadcast topology (where every miner forwards the block to all the other miners).

Henceforth, one can choose the best topology according to the preferred trade-off between

risks of forks and connection costs.

5.2 Coherence of the Model

As previously explained in Section 3.3, in order to analyse the system and check the

properties we want to study, we define in PRISM+ the properties of interest in the

stochastic temporal logic CTL. For example, the formula

P=?[F<=T "winner"]

defines the probability that some miner mines a new block within the first T time units.

Thus, when checking the above property, PRISM+must check whether F<=T "winner"

5.2 Coherence of the Model 79

is true for each path. This is the formula we use to assess the coherence of our model

with respect to Bitcoin – see Section 5.2 – since it allows us to study the probability of

creating a new block by varying the time.

Another example is the formula that checks the occurrence of forks between the

blockchains in the network. To formalise this formula we introduced in our model a

suitable module to compute forks, called Global, whose code is reported in Listing 5.7.

1 module Global

2 difference : [0..100] init 0;

3

4 [] (STATE1 = Add) | . . . | (STATEn = Add) ->

5 1 : (difference’ = calculateFork(L1, . . ., Ln));

6 endmodule

Listing 5.7: The Global process.

The process Global computes the difference between the blockchains of the system ev-

ery time a ledger is modified, e.g. when the Mineri changes its state to Add, using

the PRISM+ operation calculateFork (see Section 4.2.2). The value returned by

calculateFork is stored in the variable difference. Therefore, the probability of

reaching a state of fork of length k within the first T time units is defined as:

P=?[F<=T difference = k]

The complete definition of the considered properties can be accessed in the on-line repos-

itory [13]. For sake of completeness, we point out that all the analyses presented in the

following sections and in Chapter 7 have been carried out on a Virtual Machine with 8

VCPU and 64 GB RAM.

To validate our model with respect to Bitcoin, we take some well-known values of the

protocol from the literature and we compare them with the results of our simulations.

We begin by studying mining rates. According to the hash rate distribution of Bitcoin

mining pools on May 2020, the probability that a block is mined in Bitcoin within 600

seconds is about 63% (or 1− e−1). In 30 minutes (1800 seconds) a block has about 95%

80 5. The Bitcoin Protocol

Figure 5.3: Hashrate distribution of Bitcoin mining pools on May 2020. Source: https:
//www.blockchain.com

chance of being found and in 3000 seconds the probability that someone has found the

block is close to 1 3. In our system, we have a model with 13 miners. Thus, we decided

that each miner corresponds to the hashing power distribution of (the main) Bitcoin

pools as illustrated in Figure 5.3. With these values, we obtain a probability of mining

a new block which varies over time as shown in Figure 5.4.

Figure 5.4: Probability of mining a block.

In particular, Figure 5.4 displays the probability that some miner in the system has

mined a new block and, as discussed before, this analysis is a sanity check to verify that

3https://en.bitcoin.it/wiki/Confirmation

https://www.blockchain.com
https://www.blockchain.com
https://en.bitcoin.it/wiki/Confirmation

5.2 Coherence of the Model 81

our model is coherent with Bitcoin.

The plot shows two important facts:

(i) the probability of mining a new block has an exponential behaviour as expected

from the literature;

(ii) the timings are in line with those of the protocol: indeed, the probability that a

block is mined in 3000 seconds is almost 1. Similarly, the probabilities at 600 and

1800 seconds are coherent with the protocol.

If the first fact is not surprising for how we built the model, the second one makes us

confident that the results obtained by our experiments below are meaningful, because

these probabilities are coherent with what presented in the literature.

Then, we study the probability of reaching a state with a fork of length 1 by varying

the communication delay. The expected output is that the higher is the rate for the

communications (which means the faster is the communication between the nodes of the

network), the lower should be the probability of the fork.

Figure 5.5: Probability of reaching a fork of length 1 by varying the broadcast delay; the
bound time T is set to 600 seconds.

In fact, this is what Figure 5.5 highlights. In particular, with the analysis reported

in Figure 5.5, the goal was to check if the probability of reaching a state of fork obtained

in our model was coherent with the one presented in the literature and, moreover, if the

exponential parameter was coherent with the one that can actually model the network

delay in Bitcoin. From Figure 5.5 what can be seen is that, when the communication

82 5. The Bitcoin Protocol

rate is rb = 1/12.6 = 0.08, we obtain results in line with Bitcoin, as presented in [27],

since the probability is 0.0175. Moreover, the parameter that allows us to obtain this

result, is in line with what happens in the reality. In fact, from the literature, we know

that the time needed for a block to be received by all the miners in the network can be

approximated as an exponential distribution with parameter 1/12.6.

Thus, as a last analysis for validating our model, we study the probability of having

forks of increasing length (forks of length k > 1) when the broadcast rate is fixed to

rb = 0.08. The results of our simulations are in Figure 5.6. The reader can observe

Figure 5.6: Probability of a fork of length k; the bound time T is set to k ∗ 600 seconds.

that the probability to have a fork of length 5 is of the order of 10−8, whereas it is

approximately zero when the length of the fork reaches 6. This is a key result because

blocks at depth 6 are considered as confirmed in Bitcoin and therefore paid and, having

a fork of length 6 so unlikely, means that the confirmation time guarantees the security

of the transactions.

5.3 Variation of Cryptopuzzle Difficulty

In this section, we start our study of the resilience of the Bitcoin protocol to relevant

changes of the rates by changing the rates of creating blocks.

We begin by analysing the probability of having a fork while varying the difficulty of

the cryptopuzzle (in Bitcoin this difficulty is adjusted with respect to the computational

power of the miners, in order to have a new block on average every 10 minutes). Figure 5.7

5.3 Variation of Cryptopuzzle Difficulty 83

highlights the relationship between the probabilities of mining a block within a specific

amount of time with two two different average mining rates, denoted with 1/τ in the

figure. The comparison is between a system with Bitcoin average mining rate (1/600)

Figure 5.7: Probability of mining a block within 600 seconds.

and a system where a new block is produced every 12 seconds (1/12). Of course, the

probability that a miner finds a new block in the second system is much higher than

Bitcoin. In particular, after 100 seconds the probability that a miner mines a new block

is 1 when the average mining rate is 1/12; on the contrary, with the Bitcoin rate, the

probability is less than 0.2. Figure 5.8 shows the relationship between the length of the

Figure 5.8: Probability of a fork of length k; the bound time T is set to 600 seconds.

forks and the average mining rates. In this case, the probability of reaching a fork of

length 6 with average mining rate 1/12 is greater than 0, whereas it becomes zero with

the average mining rate of Bitcoin. This is due to the fact that if it is way easier to create

84 5. The Bitcoin Protocol

a new block, then it is more likely that two or more miners create a block at the same

time. Of course, a system with a mean time of creating a block of 12 seconds should

choose a higher number of confirmations, otherwise the system would not guarantee the

safety of the transactions.

Finally, we study how the time required to mine a block varies when we consider

different cryptopuzzle difficulties. Since the difficulty of the cryptopuzzle is inversely

proportional to the rate of the mining process, one might be interested in studying the

trade-off between speed and security.

Figure 5.9: Probability of mining a block within 3000 seconds.

The results of the simulations in Figure 5.9 are straightforward and confirm that the

easier the cryptopuzzle is, the faster the entire system mines a new block. This follows

from the fact that the average time τ required to mine a new block is given by

τ =
232D

H

where D is the cryptopuzzle difficulty and H is the global hash rate. Figure 5.10 displays

how the probability of reaching a fork of length 1 varies depending on different average

mining intervals. Obviously, the probability decreases while the parameter D increases.

Our results show that a good balance between speed and safety can be obtained with

a mining rate equal to 1/500 per second. Indeed, with this rate, the process of mining

a block is faster than in Bitcoin (1/600), but the probability of reaching a state of fork

is not much higher. Even if this is a theoretical result, it shows that a better trade-off

5.4 Churn Nodes 85

Figure 5.10: Probability of a fork of length 1 versus the average mining interval; the
bound time T is set to 600 seconds.

between the rate of the mining process and the security of the network can be obtained

and can be measured. Of course, changing this trade-off may impact the behaviour of

Bitcoin in different aspects. Since mining is a energy consuming task, one may expect

that speeding up the process may lead to some energy savings in practice. Although this

seems reasonable in theory, actually, it also depends on the behaviour and strategies of

miners, e.g., they may decide to invest more in mining since it is now “easier” to mine

new Bitcoins. It is not easy to predict with certainty how this change impacts miners’

strategies. We leave studying this problem as a future work. A related aspect concerns

understanding how the value of Bitcoins in the market varies, when the cryptopuzzle

difficulty changes. Actually, a recent study [34] seems to suggest that the hash rate is

not useful in predicting the Bitcoin price on its own. However, we believe that the change

could affect the fees that miners receive for their work, so impacting their strategies. Also,

studying this problem is left as a future work.

5.4 Churn Nodes

In this section, we focus on the simulations of a system using the broadcast topology

(see the Network process in Listing 5.3) but with three churn nodes. As anticipated in

Section 5.1, our model consists of 13 “static” miners and three churn miners. The first

miner goes asleep as soon as the process starts and then awakes after a while. The other

two miners, at the beginning, participate at the mining process, but shut down after a

86 5. The Bitcoin Protocol

given amount of time. The difference between the two is the fact that one of them, when

it shuts down, does it forever, whereas the other awakes again after a while. A churn

miner impacts on the Bitcoin protocol because, when a node leaves or joins the network,

the overall hashing power changes [59, 60, 61].

Figure 5.11: Probability of mining a block within 3000 seconds.

This remark is confirmed by Figure 5.11, which compares the time needed to mine

a new block with the presence of churn nodes to the time needed in the Bitcoin system

with only static nodes. Since in the dynamic system, there are less nodes trying to solve

the cryptopuzzle, the probability that some miner wins is lower. Also the probability of

reaching a state of fork is lower as reported in Figure 5.12. This is due to the fact that

there are less miners and, in this setting, each miner is connected to every other, thus

the presence of churning nodes does not lead to message losses.

Figure 5.12: Probability of a fork of length k, the bound time T is set to k ∗600 seconds.

5.5 Different Topologies 87

Finally, we study the latency of a churn miner when it rejoins the network because

it has to download all the blocks that were mined during its absence. In particular, we

assume that the mean node sleep rate ranges from 2 to 10 hours, as suggested in [61,

60]. Our experiments highlight that the synchronisation process requires little time, as

the reader can observe from Figure 5.13 which shows the probability that a node (with

different sleep rates) synchronises the missing blocks within a minute after rejoining the

network.

Figure 5.13: Probability that the node can synchronise in a minute with mean sleep time
ranging from 2 to 10 hours.

Clearly, the longer the nodes are down the lower the probability that it quickly synchro-

nises because the number of blocks mined during its sleeping period increases.

5.5 Different Topologies

In Section 5.1, we described the models of different topologies. The results of our exper-

iments are presented thereafter. Please note that the rates rb presented in Section 5.1

are set to 1 in the simulations of linear, tree and ring topologies. This is because we

no longer need to approximate the network latency, and we want to understand the be-

havior of the system when the nodes are not fully connected. In this setting, we do not

model the latency of the network using rates, but rather use the set of connected nodes.

Specifically, we set rb to 1 to consider it as an instantaneous action (compared to other

actions with lower rates).

In Figure 5.14 we show that the probability of mining a block is not affected by

88 5. The Bitcoin Protocol

changing the network topology. This outcome is trivial because we are changing how the

Figure 5.14: Probability of mining a block within 3000 seconds.

nodes receive and send the new blocks and it does not affect the time needed to create

a new block, which remains unchanged.

It turns out that the main difference between topologies is the probability of reaching

a fork of length k. When a new block is mined, if it is not distributed to all nodes but

Figure 5.15: Probability of a fork of length k, the bound time T is set to k ∗ 600 seconds.

only a subset, the likelihood of forks increases. Figure 5.15 compares the four topologies:

broadcast, linear, ring, and tree topologies. Our results show that the smaller the subset

of nodes that receive the block per miner, the higher the probability of a fork.

Chapter 6

A Formal Analysis of the Bitcoin

Protocol

The purpose of this chapter is to show the results obtained by analysing the Bitcoin

protocol through a stochastic transition system. The PRISM+ system allows us to com-

pute the probability of devolving into a ”larger inconsistency”, e.g. transiting from a

state with a fork of length m to a state with a fork of length m + 1. This work, which

has required a time-consuming analysis of the stochastic transition system, has given a

formula that is parametric with respect to the number of nodes, their hashing power and

the latency of the network.

In Theorem 6.1, we compute the probability that ledgers turn into a state with more

severe inconsistencies, e.g. with longer forks, under the assumption that messages are not

lost and nodes are not hostile. Moreover, in Theorem 6.2, we study how the presence of

hostile nodes trying a double spending attack mining blocks in wrong positions impacts

the consistency of the ledgers.

6.1 Honest Miners

The main goal of this chapter is to compute the probability of the Bitcoin system defined

in Listing 5.2 to devolve into states of fork by analysing the transition system. In order

89

90 6. A Formal Analysis of the Bitcoin Protocol

to ease our arguments, among the possible states of the stochastic transition system

obtained from the model, we select those where the blocks have all been delivered, we

call it a completed state.

Definition 6.1. A state of a Bitcoin system is called completed when there is no block

to deliver (every seti in the Network process is empty) and the blocks in the local sets

of Mineri have already been inserted in the corresponding ledgers (every setMineri in

Mineri is empty).

This scenario is usual in Bitcoin because the rate of block delivery is much higher

than the one of mining. For example, the nodes that have not yet received the last block

after 40 seconds are less than 5%, whilst blocks are mined every 10 minutes [27]. If the

system is in a completed state, it follows that if the paths from the last valid leaf to the

genesis block of two ledgers differ, it means that the system is in a state of fork. We

can formalise that with the following proposition, recalling the definition of the handle

(Definition 2.1).

Proposition 6.1. Let L1=⟨T1;p1⟩ and L2=⟨T2;p2⟩ be two ledgers of different nodes.

Therefore, if L1 ̸= L2 and T1 = T2 then handle(L1) ̸= handle(L2).

An inconsistent state of the ledgers can be expressed as the maximum number of

blocks that differ between two (or more) blockchains, as presented in Definition 2.3. We

now have everything we need to go into the details of our theorem. For the sake of

simplicity, in the rest of the chapter:

• we shorten mR×hRi into rwi
;

• the rate rb represents the time needed to deliver a block within the network;

• the rate r that corresponds to local management operations by miners is approxi-

mated to 1 because the other rates are in the interval [0, 1].

6.1 Honest Miners 91

Theorem 6.1. Let S be a completed state of a Bitcoin system consisting of n miners

with ledgers L1=⟨T1;p1⟩, . . ., Ln=⟨Tn;pn⟩, respectively, such that L1 = . . . = Lk and

Lk+1 = . . . = Ln and L1 ̸= Lk+1. Let L1 and Lk+1 have fork of length m. Then the

probability P(m+1)fork to reach a completed state with fork of length m+1 is smaller than

∑
1≤i≤n

H⊂{1,...,n}\{i}
i≤k ⇒ j∈{k+1,...,n}\H
i>k ⇒ j∈{1,...,k}\H

Θ(i, |H|, j) (6.1)

where R =
∑n

j=1 rwj
and

Θ(i, ℓ, j) =
rwi

R

rwj

(R + (n− 1− ℓ)rb)

∏
1≤h≤ℓ

h rb

R + (n− h)rb

∏
1≤a≤2n−2−ℓ

a rb

R + a rb
.

Before going into the details of the actual proof, we give just a hint of how it works.

To explain the probability, assume to have a fork of length 1 due to miners having equal

ledgers (since the state is completed) and two different handlers. Let 1, . . . , k be the

nodes with one blockchain and k + 1, . . . , n be the nodes with the other blockchain. At

this point, we must consider four distinct categories of events and, correspondingly, four

probabilities.

I. Assume that a node 1 ≤ i ≤ k mines a new block; the probability will be
rwi

R
.

II. The new block is then communicated to a set H of nodes that immediately add it

to the local ledger. This operation happens with probability(∏
1≤h≤|H|

h rb

R + (n− h)rb

)
.

III. At this point, in order to obtain a fork of length 2, a node j ∈ {k + 1, . . . , n} \H

92 6. A Formal Analysis of the Bitcoin Protocol

must mine a block as well. The probability of this operation is

rwj

R + (n− 1− ℓ)rb
.

IV. Finally, every node receives the two mined blocks, this process has probability(∏
1≤a≤2n−2−ℓ

a rb

R + arb

)
.

It is straightforward that the same result can be obtained if the first node that mines a

block belongs to the other partition (j ∈ {k + 1, . . . , n}). Henceforth, the probability to

reach a completed state with fork of length 2 from the initial state is

∑
1≤i≤k

H⊂{1,··· ,n}\{i}
j∈{k+1,··· ,n}\H

Θ(i, |H|, j) +
∑

k+1≤j≤n

H⊂{1,··· ,n}\{j}
i∈{1,··· ,k}\H

Θ(j, |H|, i)

which is exactly what stated in the theorem. In the first part of the proof, it is shown

that the formula is less than 1. In the second part, it is established that the formula is

an upper bound for P(m+1)fork .

Proof. Part 1: the formula (6.1) is smaller than 1. The formula (6.1) can be

rewritten ∑
1≤i≤k

H⊂{1,··· ,n}\{i}
j∈{k+1,··· ,n}\H

Θ(i, |H|, j) +
∑

k+1≤j≤n

H⊂{1,··· ,n}\{j}
i∈{1,··· ,k}\H

Θ(j, |H|, i) (6.2)

We analyse the first addend and we demonstrate that it is smaller than 1/2. Since H

is every possible subset of n − 2 indices, then, letting ℓ = |H|, there are
(
n−2
ℓ

)
different

6.1 Honest Miners 93

possible sets H. Picking j ̸∈ H, we can rewrite the first addend of (6.2) as:

∑
1≤i≤k

rwi

R

∑
0≤ℓ≤n−2

(
n− 2

ℓ

) ∏
1≤h≤ℓ

h rb
R + (n− h)rb

×

×
∑

k+1≤j≤n, j ̸∈H

rwj

R + (n− 1− ℓ)rb

∏
1≤a≤2n−2−ℓ

a rb
R + a rb

(6.3)

First observe that a rb
R+a rb

≤ 1; therefore
∏

1≤a≤2n−2−ℓ
a rb

R+a rb
≤ 1, as well. Henceforth

(6.3) can be over-approximated as

∑
1≤i≤k

rwi

R

∑
0≤ℓ≤n−2

(
n− 2

ℓ

) ∏
1≤h≤ℓ

h rb
R + (n− h)rb

∑
k+1≤j≤n, j ̸∈H

rwj

R + (n− 1− ℓ)rb
(6.4)

Moreover, since 1
R+(n−h)rb

≤ 1
(n−h)rb

≤ 1, then

∏
1≤h≤ℓ

h rb
R + (n− h)rb

≤
∏

1≤h≤ℓ

h rb
(n− h)rb

≤ ℓ! rℓb
(n− 1) . . . (n− ℓ)rℓb

.

Thus, we obtain that (6.4) is less than or equal to:

∑
1≤i≤k

rwi

R

∑
0≤ℓ≤n−2

(
n− 2

ℓ

)
ℓ!

(n− 1) . . . (n− ℓ)

∑
k+1≤j≤n, j ̸∈H

rwj

R + (n− 1− ℓ)rb

≤
∑
1≤i≤k

rwi

R

∑
0≤ℓ≤n−2

(n− 2)!

ℓ!(n− 2− ℓ)!

ℓ!

(n− 1) . . . (n− ℓ)

∑
k+1≤j≤n, j ̸∈H

rwj

R + (n− 1− ℓ)rb

≤
∑
1≤i≤k

rwi

R

∑
0≤ℓ≤n−2

(n− 2) . . . (n− 1− ℓ)

(n− 1) . . . (n− ℓ)

∑
k+1≤j≤n, j ̸∈H

rwj

R + (n− 1− ℓ)rb

≤
∑
1≤i≤k

rwi

R

∑
0≤ℓ≤n−2

n− 1− ℓ

n− 1

∑
k+1≤j≤n, j ̸∈H

rwj

R + (n− 1− ℓ)rb
(6.5)

The sum of rwj
terms with j /∈ H can be over-approximated by the sum of all the terms

94 6. A Formal Analysis of the Bitcoin Protocol

of the second partition, i.e.

∑
k+1≤j≤n, j ̸∈H

rwj
≤

∑
k+1≤j≤n

rwj
.

As a consequence, (6.5) can be over-approximated as follows:

∑
1≤i≤k

rwi

R

∑
0≤ℓ≤n−2

n− 1− ℓ

(n− 1)(R + (n− 1− ℓ)rb)

∑
k+1≤j≤n

rwj

=
1

R

∑
1≤i≤k

rwi

∑
k+1≤j≤n

rwj

∑
0≤ℓ≤n−2

n− 1− ℓ

(n− 1)(R + (n− 1− ℓ)rb)

≤ 1

R

∑
1≤i≤k

rwi

∑
k+1≤j≤n

rwj

∑
0≤ℓ≤n−2

n− 1− ℓ

(n− 1)((n− 1− ℓ)rb)

≤ 1

R rb

∑
1≤i≤k

rwi

∑
k+1≤j≤n

rwj

∑
0≤ℓ≤n−2

n− 1− ℓ

(n− 1)(n− 1− ℓ)

≤ 1

R rb

∑
1≤i≤k

rwi

∑
k+1≤j≤n

rwj

∑
0≤ℓ≤n−2

1

n− 1

≤ 1

R rb

∑
1≤i≤k

rwi

∑
k+1≤j≤n

rwj

since
∑

0≤ℓ≤n−2
1

n−1
≤ n−1

n−1
= 1. Furthermore, we have that

∑
1≤i≤k

rwi

∑
k+1≤j≤n

rwj
≤
∑

1≤i≤n

rwi

∑
1≤i≤n

rwi
= R2,

then it follows that

1

R rb

∑
1≤i≤k

rwi

∑
k+1≤j≤n

rwj
≤ R2

R rb
≤ R

rb
≤ 1

2
.1

1The inequality R
rb

≤ 1
2 is verified ∀ rb such that rb ≥ 2 R. In particular, we know that the

approximated time for a block to be delivered in a Bitcoin system is 12.6 seconds (see [27]), thus
rb = 1/12.6, and we have defined R such that R =

∑
i rwi

=
∑

i(mR × hRi). Thus, we can state that,
in our analyses, the inequality is verified.

6.1 Honest Miners 95

Thus, for every n > 2:

∑
1≤i≤k

H⊂{1,··· ,n}\{i}
j∈{k+1,··· ,n}\H

Θ(i, |H|, j) ≤ 1

R rb

∑
1≤i≤k

rwi

∑
k+1≤j≤n

rwj
≤ 1

2

The same approach can be taken when considering the second addend of the equation

(6.2). In this case we obtain, for every n > 2:

∑
k+1≤j≤n

H⊂{1,··· ,n}\{j}
i∈{1,··· ,k}\H

Θ(j, |H|, i) ≤ 1

R rb

∑
1≤i≤k

rwi

∑
k+1≤j≤n

rwj
≤ 1

2

Therefore, it follows that:

∑
1≤i≤k

H⊂{1,··· ,n}\{i}
j∈{k+1,··· ,n}\H

Θ(i, |H|, j) +
∑

k+1≤j≤n

H⊂{1,··· ,n}\{j}
i∈{1,··· ,k}\H

Θ(j, |H|, i)) ≤ 2

R rb

∑
1≤i≤k

rwi

∑
k+1≤j≤n

rwj
≤ 1 (6.6)

Part 2: the formula (6.1) is P(m+1)fork . The probability is computed by analysing the

states of the transition system in detail. To illustrate the technique we first focus on the

simple case that nodes 1 and k+1 mine before any forwarding of messages. So assume to

be in a state S1,k+1 where such minings have already occurred. From S1,k+1 it is possible

to reach a completed state of fork m + 1 with computations of length 4n − 4 (because

there are two blocks to be delivered and added to n − 1 nodes). The probability that

96 6. A Formal Analysis of the Bitcoin Protocol

one of these computations is chosen is

∏
1≤a≤2n−2

rb

R + a rb
.

Furthermore, since the rate of adding the new block to the local ledger is way higher, we

can suppose that when a miner receives a new block, it immediately adds it to its ledge;

this action is represented by the rate r. The probability of the corresponding transition

is
r

R + (a− 1) rb + r
.

Next, we notice that there are 2(2n− 2)! different computations that reach a completed

state of fork m+ 1. Therefore the upper bound of the whole probability is

∏
1≤a≤2n−2

a rb

R + a rb

r

R + (a− 1) rb + r
≤

∏
1≤a≤2n−2

a rb

R + a rb
.

This is due to the fact that every node eventually will receive the blocks and add them

to the local ledger and r > rb. In general, we may write this probability as a function

Ψ(u, v) =
∏

1≤a≤2u−2−v

a rb

R + a rb

where u is the number of nodes of the system and v is the number of nodes that have

received the first block (v ≤ n − 2 because otherwise we do not have forks). Since the

probability to reach S1,k+1 from the initial state is

rw1

R

rwk+1

R + (n− 1)rb

then the probability to reach a completed state of fork m + 1 starting from the initial

6.1 Honest Miners 97

state and traversing S1,k+1 is

rw1

R

rwk+1

R + (n− 1)rb
Ψ(n, 0) .

We notice that there is a symmetric state in the system, where node k + 1 mines before

node 1. The composite probability of these two states is therefore

2×
rw1

R

rwk+1

R + (n− 1)rb
Ψ(n, 0) .

We are in place to compute the probability that the two nodes that mine are i and j,

where 1 ≤ i ≤ k and k + 1 ≤ j ≤ n. This probability is

2×
∑

1≤i≤k,k+1≤j≤n

rwi

R

rwj

R + (n− 1)rb
Ψ(n, 0) .

The general case is when

1. a node i ∈ {1, · · · , k} mines,

2. the new block is communicated to a set of nodes H and

3. a node in {k + 1, · · · , n} \H mines.

The probability of this case is Θ(i, |H|, j):

rwi
rwj

R (R + (n− 1− |H|)rb)

(∏
1≤h≤|H|

h rb

R + (n− h)rb

)
Ψ(n, |H|)

where the factor (∏
1≤h≤|H|

h rb

R + (n− h)rb

)

is the probability of nodes in H to receive and immediately add to the local ledger the

first block mined. Henceforth, the probability to reach a perfect state with fork m + 1

98 6. A Formal Analysis of the Bitcoin Protocol

from the initial state is

∑
1≤i≤k

H⊂{1,··· ,n}\{i}
j∈{k+1,··· ,n}\H

Θ(i, |H|, j) +
∑

k+1≤j≤n

H⊂{1,··· ,n}\{j}
i∈{1,··· ,k}\H

Θ(j, |H|, i)

which is exactly what stated in the theorem.

The statement of Theorem 6.1 can be generalised to the most general case by sup-

posing that every miner has its own view of the ledger. In this scenario, the proof is

more straightforward compared to Theorem 6.1 because every node may mine after the

first one.

Corollary 6.1. Let S be a completed state of a Bitcoin system consisting of n miners

having ledger L1 ̸= . . . ̸= Ln. Then the probability P(m+1)fork to reach a completed state

with fork of length m+ 1 is smaller than

∑
1≤i≤n

H⊂{1,...,n}\{i}
j∈{1,...,n}\H

Θ(i, |H|, j)

where R =
∑n

j=1 rwj
and

Θ(i, ℓ, j) =
rwi

rwj

R (R + (n− 1− ℓ)rb)

∏
1≤h≤ℓ

h rb

R + (n− h)rb

∏
1≤a≤2n−2−ℓ

a rb

R + a rb
.

Remark. The same method as Corollary 6.1 can be used to calculate the likelihood that

a Bitcoin system, which is currently in a consistent state where all nodes have the same

ledger, will deteriorate into an inconsistent state, i.e. the probability of a fork of length

1. The upper bound for the probability will be the same, because, also in this case, every

miner can mine after the first one.

6.2 Double Spending Attack 99

6.2 Double Spending Attack

In this section, we model and analyse an attack on Bitcoin that has been described

in [62], namely a hostile miner tries to create an alternate chain faster than the honest

one. This scenario admits that an attacker can be convinced that a transaction has been

accepted and then create a new branch of the chain, longer than the valid one, with some

other transaction spending the same money (double spending attack).

Let MinerHack be the dishonest miner; technically, its behaviour differs from Mineri

because it mines on a block bHack that is not the correct block (e.g. the handle of the

ledger). In particular, the code of the MinerHack is the one presented in Listing 5.2,

except for the fact that the newly created block is not the child of the handle of the

ledger. This means that the operation

bHack = createB(MinerHack,ci,LHack)

returns a block child of an ad hoc block in the ledger.

Following the same pattern of Section 6.1, we obtain a theorem to calculate the

probability that the attacker can create an alternate chain faster than the rest of the

network. Note that rwHack
= mR×hRHack where hRHack is the hashing power owned by

the attacker.

Theorem 6.2. Let S be a completed state of a Bitcoin system of nminers with exactly one

that is hostile and let rwHack
its mining rate. The probability P (Sm) to reach a perfect

state where the hostile miner has created an alternate chain longer than the honest one

from m, m ≥ 1, blocks behind is smaller than

∑
k≥1

[
Φ(rwHack

, rb, R)k
(∑
1≤j≤n−1

Φ(rwj
, rb, R)

)k−1]m

where R =
∑n

j=1 rwj
and Φ(rw, rb, R) =

rw

R

∏
1≤a≤n−1

a rb

R + (n− a)rb
.

As for Theorem 6.1, the technique used for demonstrating the above statement con-

sists of analysing the stochastic transition system. To explain the probability, assume

100 6. A Formal Analysis of the Bitcoin Protocol

to be in a completed state and compute the probability to reach a completed state in

which the dishonest node has created an alternate chain from m blocks behind. We start

by computing the probability that the dishonest node MinerHack has caught up by one

block. This kind of attack succeeds if MinerHack mines one block and this happens with

probability
rwHack

R
. It may also happen that honest nodes mine k blocks and MinerHack

mines k + 1 blocks in the same amount of time. The formal proof is given below.

Proof. Assume to be in a completed state in which every node has the same ledger, i.e.

Li = Lj, ∀i, j ∈ {1, . . . , n}. We want to compute the probability to reach a perfect state

in which the dishonest node has created an alternate chain from m blocks behind. We

start by computing the probability that the dishonest node MinerHack has caught up

by one block. This kind of attack succeeds if MinerHack mines one block and all the

other nodes receive the block, i.e. the probability is:

rwHack

R

n−1∏
i=1

i r

R + (n− i)r

Otherwise, it succeeds also in the case the honest nodes mine k blocks and MinerHack

mines k + 1 blocks in the same amount of time. Thus, we obtain the formula

+∞∑
k=1

(rwHack

R

n−1∏
i=1

i r

R + (n− i)r

)k(n−1∑
j=1

rwj

R

n−1∏
i=1

i r

R + (n− i)r

)k−1

Now, it is trivial to prove that the probability that MinerHack creates an alternative

chain one block longer than the original chain from m blocks behind is

[+∞∑
k=1

(rwHack

R

n−1∏
i=1

i r

R + (n− i)r

)k(n−1∑
j=1

rwj

R

n−1∏
i=1

i r

R + (n− i)r

)k−1]m

Finally, we have to prove that P (Sm) is less than one. By observing that
∏

1≤i≤n−1
i r

R+(n−i)r
≈

1, we can show that P (S1) ≤ 1 and then, since P (Sm) = P (S1)
m, we are able to prove

6.2 Double Spending Attack 101

the statement. In particular:

P (S1) =
∑

k≥1

(rwHack

R

∏
1≤i≤n−1

i r

R + (n− i)r

)k(∑
1≤j≤n−1

rwj

R

∏
1≤i≤n−1

i r

R + (n− i)r

)k−1

≈
∑+∞

k=1

(rwHack

R

)k(∑
1≤j≤n−1

rwj

R

)k−1

=
∑

k≥1

(rwHack

R

)k(
1−

rwHack

R

)k−1

=
∑

k≥1

(
rwHack

R

)k(
1−

rwHack
R

)k

1−
rwHack

R

=
∑

k≥1

(
rwHack

R
−

r2wHack
R2

)k

1−
rwHack

R

=
R

R− rwHack

∑+∞
k=1

(rwHack

R
−

r2wHack

R2

)k

This is a geometric series with common ratio ρ =
rwHack

R
− r2wHack

R2 ∈
[
0, 1) because by

hypothesis hHack, R ∈ [0, 1] and rwHack
= hHack R. Thus, we have

R

R− rwHack

∑+∞
k=1

(rwHack

R
−

r2wHack

R2

)k
=

R

R− rwHack

(
1

1− rwHack

R
+

r2wHack

R2

− 1

)

=
R

R− rwHack

rwHack
R

(1−
rwHack

R
)

1−
rwHack

R
+

r2wHack
R2

=
rwHack

R

1−
rwHack

R
+

r2wHack
R2

=
rwHack

R

R2 − rwHack
R + r2wHack

=
hHack R2

R2 − hHack R2 + h2
Hack R2

=
hHack

1− hHack + h2
Hack

≤ 1, ∀hHack ≥ 0

Since P (S1) ≤
rwHack

R

R2−rwHack
R+r2wHack

≤ 1, it immediately follows that

P (Sm) = P (S1)
m ≤

(rwHack
R

R2 − rwHack
R + r2wHack

)m
≤ 1 .

102 6. A Formal Analysis of the Bitcoin Protocol

It is worth to notice that this technique is different from the one in [62], where

Nakamoto assumed a priori that the ratio between the blocks mined by the attacker and

those mined by the honest miners is the expected value of a Poisson distribution. In par-

ticular, we do not assume that miners’ behaviour can be described by a certain statistical

model, therefore our context is less restrictive. We also notice that Poisson distribution

expresses the probability of a certain event occurs in a time period, independently of the

time since the last event. Moreover, Nakamoto models the attack counting the number

of minings of the attacker in an interval of time, assuming that the probability for success

does not change during the experiment. In our case, the probability is computed as the

attacker was a standard node and the attacker’s mining activity was in competition with

the same process of the other nodes.

Chapter 7

The Hybrid Casper Protocol

This chapter presents the PRISM+ model for the Hybrid Casper protocol. The general

model is outlined first, followed by a specific model that includes an attacker, which is

detailed in Section 7.1.

From Section 7.2, the results obtained from the protocols are presented. To validate

the model, a comparison to literature [20, 21] on Hybrid Casper is made in the first step.

The resilience of Hybrid Casper to changes in different protocol parameters is analysed

in Section 7.3, and the protocol’s ability to withstand well-known attacks is studied in

Section 7.4.

7.1 Definition of the Models

We model Hybrid Casper in PRISM+ as the parallel composition of n Validator

modules and the modules Vote Manager, Network and Global. The architecture of

our model is in Figure 7.1.

The module Vote Manager stores the tables containing the votes for each check-

point and calculates the rewards/penalties at the end of each epoch; the module Network

implements the broadcast communication mechanism among validators; Global is the

auxiliary module that computes the length of forks already presented in the previous

chapter (see Listing 5.7 for the definition). We note that the management of votes

103

104 7. The Hybrid Casper Protocol

Figure 7.1: The Ethereum PoS model architecture.

is centralised in Vote Manager, which corresponds to the smart contract of Hybrid

Casper [21].

In our model and in the analyses presented in next sections we overlook some details of

Hybrid Casper that are not relevant for the properties we are interested in. In particular,

since our goal is to study the behaviour of the protocol to changes of basic parameters,

such as the rate of creating new blocks and the percentages in the penalties system, we

assume that the network consists of validators that also create new blocks.

For clarity sake, also in this case we present a sugared version of the PRISM+ code;

the online repository1 contains the actual implementation, the verified properties with

the data of our analyses and the instructions for the use of the tool. We present below

the PRISM+ modules for validators, network and vote manager.

The Validator process

The code for the Validatormodule is reported in Listing 7.1. A Validator is defined

as a state machine with seven states. The current state is recorded in the variable STATEi

defined at line 2. The actions of Validator are guarded by STATEi and update this

variable when executed.

1https://github.com/adeleveschetti/casper-analysis

https://github.com/adeleveschetti/casper-analysis

7.1 Definition of the Models 105

1 module Validatori

2 STATEi : [Start,Create,Receive,Move,Vote,Check,Fin] init Start;

3 bi : block {Validatori,0;genesis,0};

4 Li : ledger ⟨{genesis,0;genesis,0}⟩;

5 ci : [0..1000] init 0;

6 lastJi : block init (genesis0;genesis0;0);

7

8 [] (STATEi=Start) ->

9 mR : (bi
′=createB(Validatori,ci,Li))N(ci

′=ci+1)N(STATEi
′=Create);

10 [] (STATEi=Start) ->lR : (STATEi
′=Receive);

11 [] (STATEi=Start) ->rC : (bi
′=lastCP(Li))N(STATEi

′=Check);

12 [addB_i] (STATEi=Create)N!isCP(bi) ->

13 1 : (Li
′=addBtoL(Li,bi))N(STATEi

′=Start);

14 [addB_i] (STATEi=Create)NisCP(bi) ->

15 1 : (Li
′=addBtoL(Li,bi))N(STATEi

′=Vote);

16 [voteB_i] (STATEi=Vote) ->1 : (STATEi
′=Start);

17 [] (STATEi=Receive)N!isEmpty(seti) ->

18 1 : (bi
′=receive(seti))N(STATEi

′=Move);

19 [] (STATEi=Receive)NisEmpty(seti) -> 1 : (STATEi
′=Start);

20 [removeB_i] (STATEi=Move)NcanBeIns(Li,bi)NisCP(bi) ->

21 1 : (Li
′=addBtoL(Li,bi))N(STATEi

′=Vote);

22 [removeB_i] (STATEi=Move)NcanBeIns(Li,bi)N!isCP(bi) ->

23 1 : (Li
′=addBtoL(Li,bi))N(STATEi

′=Start);

24 [] (STATEi=Move) N !canBeIns(Li,bi) -> 1 : (STATEi
′=Start);

25 [] (STATEi=Check)NisJust(bi,Votes,Stakes)NlastJi=lastboCP(bi,Li) ->

26 1 : (lastJi
′=bi)N(STATEi

′=Fin);

27 [] (STATEi=Check)NisJust(bi,Votes,Stakes)NlastJi!=lastboCP(Li) ->

28 1 : (lastJi
′=bi)N(STATEi

′=Start);

29 [] (STATEi=Check)N!isJust(bi,Votes) ->1 : STATEi
′=Start;

30 [finB_i] (STATEi=Fin) ->1 : STATEi
′=Start;

31 endmodule

Listing 7.1: Pseudocode of a Validator.

106 7. The Hybrid Casper Protocol

In the initial state Start, the validator may either create a new block and transit to

Create state (line 9), or receive a new block from the network and transit to Receive

(line 10), or check whether a checkpoint can be justified and transit to Check (line 11)

only if at the end of an epoch.

Since these operations consume time, they are associated with the rates mR, lR, and

rC, respectively. The rates mR are defined as 1/s, where s is the number of seconds

needed to create a new block, since s = 14 in Hybrid Casper [21], then mR = 1/14.

The rates lR are complementary to mR, therefore they are defined as lR = 1− mR (the

rational behind this choice is that a validator is more likely not to create a block rather

than to create one). The rates rC represent how often a validator should check for new

justified/finalised blocks. According to [21], this happens at the end of each epoch, thus

rC = 1/(lenepoch × s).

When the module Validator creates a new block, it updates its ledger and sends

the newly created block to the process Network (see action addB i at lines 12 and 14)

to forward it to the other validators. The rate of this action is determined by the

companion action in Network (i.e. 1 × rb), which expresses the communication latency

of the network (c.f. line 7 of Listing 7.2). In our model, we set rb to either 1/12.6,

which is the broadcast delay of the Bitcoin network [27] or to 1/7, which is the so-called

(1/2)-network synchrony – the time to deliver messages is 1/2 of the time to create a

block [20]. If the new block is a checkpoint (the height of the block is a multiple of the

epoch length), Validator transits to Vote state, otherwise it returns to Start state.

In the state Vote, Validator votes by synchronising with Vote Manager through

the action voteB i; this synchronisation causes the addition of the vote to the table

Votes (c.f. line 16).

When Validator tries to receive a new block – state Receive – it verifies whether

Network has blocks to deliver (lines from 17 to 19), and, if it does, the Validator tran-

sits to the state Move; otherwise, it returns to Start. In the state Move, Validator

verifies whether the block can be inserted in its own ledger (with the function canBeIns,

lines from 20 to 23). If this is the case and the block is a checkpoint, Validator votes

for it, otherwise, returns to the initial state (line 24).

From the initial state Start, a validator can also transit to the state Check (line 11)

7.1 Definition of the Models 107

with the rate rC, only when it is at the end of an epoch. In this state, Validator

verifies whether the last checkpoint, say CL, has received the majority of the votes (i.e. CL

has been justified) and whether the last but one checkpoint in the blockchain of CL, say

CA, is also justified. If this is the case, CA becomes finalised and CL becomes justified –

in lines 25-26 this is performed by storing CL in lastFi and updating the last finalised

block of Li to lastJi. If CA is not justified then CL is stored in lastJi (lines 27-28).

In any case, Validator goes to Start state and the process starts again.

The Network process

The module Network is defined in Listing 7.2 where the variable N represents the number

of validators in the system. For each Validatori, where 1 ≤ i ≤ N, the internal state of

Network contains (i) the set of blocks seti that represents the messages to be delivered

to Validatori; and (ii) the set Ni that records the nodes to which the Validatori is

connected to.

1 module Network

2 for i from 0 to N:

3 seti : set [];

4 Ni : set [];

5 for i from 0 to N:

6 [addB_i] -> rb: foreach k in Ni{ setk
′=add(setk,bi); }

7 for i from 0 to N:

8 [removeB_i] -> 1 : seti
′=remove(seti,bi);

9 endmodule

Listing 7.2: Pseudocode of the Network.

In this section, we assume that validators are totally connected, therefore Ni is always

equal to {1, · · · ,i− 1,i+1, · · · ,n}. Network module synchronises with Validatori

who creates a block by synchronising on the action addB i. When this happens,

Network updates the sets of blocks of the validators contained in Ni (line 7). When

a block has been added to the local ledger of Validatori, by synchronising with the

action removeB i, Network removes the block from the corresponding set (line 8).

108 7. The Hybrid Casper Protocol

The Vote Manager process

The module Vote Manager is reported in Listing 7.3. As already explained, the main

feature of this process is to store the votes for each checkpoint and calculate the rewards

for the validators every time a checkpoint is finalised. The Vote Manager process

includes several fields such as an integer field called epoch that keeps track of the longest

epoch in which a checkpoint has been finalised, a map field called stakes that stores

the stake of each validator, and a map field called voted that records the validators

who have voted for a specific checkpoint.

1 module Vote_Manager

2 stakes : map {} ;

3 votes : map {};

4 epoch : [0..1000] init 0;

5

6 for i from 0 to N:

7 stakes[validatori] : [0..MAX_STAKE] init STAKEi;

8 for i from 0 to N:

9 [voteB_i] ->1 : votes′=addVote(votes,bi,Validatori);

10 [finB_i] (height(lastF(Li)) > epoch) ->

11 1: epoch′=height(lastF(Li))Nstakes′=updateS(stakes,votes,lastF(Li));

12 [finB_i] (height(lastF(Li)) <= epoch) -> 1: ;

13 endmodule

Listing 7.3: Pseudocode of the Vote Manager.

The module synchronises with the i-th validator on actions voteB i and finB i.

The synchronisation on voteB i adds the vote for the block that is stored in bi to the

map Votes, i.e. the name Validatori is added to the list of bi (line 9). Specifically,

the name of the validator who voted is added to the list associated with the block, where

the block is the key in the map. The synchronisation on finB i is used to compute

the rewards and penalties for each validator when a block is finalised. In particular, this

happens when the first validator finalises a block b because, in this case, the height of b

is higher than the value epoch. (This is our modelling of Hybrid Casper′s epochs.) It is

7.1 Definition of the Models 109

worth noticing that the last finalised block is returned by the function lastF(Li). In

this case, both stakes and epoch are updated with the new stakes and height(b),

respectively (lines 10–11). If the validator is not the first to finalise then no update

occurs.

The Eclipse Attack

In the Eclipse attack, an adversary attempts to obstruct message delivery at the level of

the peer-to-peer network causing nodes to work on a corrupted or distorted snapshot of

the blockchain [44, 28].

1 module Network

2 for i from 0 to N:

3 seti : set [];

4 Ni : set [];

5 Victims : set [];

6 [comm] ->1 : foreach k in Ni∖Victims{ setk
′=add(setk,bi); }

7 foreach i in Victims:

8 [addB_i] (attack=true) ->rb: foreach k in Victims{ setk
′=add(setk,bi); }

9 foreach i Ni∖Victims:

10 [addB_i] (attack=true) ->rb: foreach k in Ni∖Victims{ set′
k=add(setk,bi); }

11 for i from 0 to N:

12 [addB_i] (attack=false) ->rb: foreach k in Ni{ setk
′=add(setk,bi); }

13 for i from 0 to N:

14 [removeB_i] ->1 : seti
′=remove(seti,bi);

15 endmodule

Listing 7.4: Pseudocode of the Network in presence of an Attacker.

The underlying idea of this attack is that an adversary controls all the incoming

and outgoing connections of a victim to prevent it from receiving new blocks from the

network. In this way, victims receive new blocks only from the attacker and from other

victims. The attacker waits until the blocks created by victims are likely to be justified

by the rest of the network. Then, the attacker stops eclipsing and publishes the private

110 7. The Hybrid Casper Protocol

chain to the network. The attack succeeds when a block created by the victims or by

the attacker is either justified by the network or the honest validators start using the

corrupted chain.

This attack is modelled in PRISM+ as a participant that runs in parallel with honest

validators. In particular, we have modified the Network code in Listing 7.2 – the new

code is in Listing 7.4 – and we use the code in Listing 7.5 for the attacker.

The attacker collects the blocks created by the victims in the set setAtti. The

attacker also counts both the blocks created by the victims and the ones created by the

rest of the network, storing these numbers in nBlocksAttack and nBlocks, respec-

tively. Since the victims are isolated from the rest of the network, they can communicate

only between them and with the attacker. As a result, in the Network’s code, we have

altered the sets of blocks that validators and victims can submit (lines 7-8 of Listing 7.4).

As soon as the attacker notices that the blocks created by the victims are more than

those created by the rest of the network (line 12 of Listing 7.5), the attacker makes them

available to the rest of the network (line 18 of Listing 7.5).

The attack is successful when a block created by the attacker or by one of the

victims becomes justified. To define this property, we introduce the boolean variable

eclipseAtti in every validator; this variables is set to true when the validator is

about to justify a block created by a victim or by the attacker (lines 30-31). As soon as

the attacker publishes all the blocks, the attack is considered over and all the validators

can communicate again between each other (lines 11-14 of Listing 7.4).

1 module Attacker_i

2 STATEi : [Start,Create,Receive,Move,Vote,Check,Fin,Comm] init Start;

3 setAtti : set [];

4 attack : bool init true;

5 nBlocksAttack : [0..1000] init 0;

6 nBlocks : [0..1000] init 0;

7 eclipseAtti : bool init false;

...

8 [] (STATEi=Start) ->

9 mRi : (nBlocksAttack’=nBlocksAttack+1)N(b′
i=createB(Validatori,ci,Li))

10 N(ci
′=ci+1)N(STATEi

′=Create);

7.2 Coherence of the Model 111

11 [] (STATEi=Start)N(nBlocksAttack>nBlocks)N(!isEmpty(setAtti)) ->

12 1 : (attack’=false)N(STATEi
′=Comm)N(bi

′=receive(setAtti));

...

14 [addB_i] (STATEi=Create)N!isCP(bi)N(attack=true) ->

15 1 : setAtti
′=add(setAtti,bi)N(Li

′=addBtoL(Li,bi))N(STATEi
′=Start);

16 [addB_i] (STATEi=Create)NisCP(bi)N(attack=true) ->

17 1 : setAtti
′=add(setAtti,bi)N(Li

′=addBtoL(Li,bi))N(STATEi
′=Vote);

...

18 [comm] (STATEi=Comm) ->(setAtti’=remove(setAtti,bi))N(STATEi
′=Start);

19 [removeB_i] (STATEi=Move)NcanBeIns(Li,bi)NisCP(bi)NfromVictim(bi) ->

20 1 : (nBlocksAttack’=nBlocksAttack+1)N(setAtti
′=add(setAtti,bi))

21 N(Li
′=addBtoL(Li,bi))N(STATEi

′=Vote);

22 [removeB_i] (STATEi=Move)NcanBeIns(Li,bi)N!isCP(bi)NfromVictim(bi) ->

23 1 : (nBlocksAttack’=nBlocksAttack+1)N(setAtti
′=add(setAtti,bi))

24 N(Li
′=addBtoL(Li,bi))N(STATEi

′=Start);

25 [removeB_i] (STATEi=Move)NcanBeIns(Li,bi)NisCP(bi)N!fromVictim(bi) ->

26 1 : (nBlocks’=nBlocks+1)N(Li
′=addBtoL(Li,bi))N(STATEi

′=Vote);

27 [removeB_i] (STATEi=Move)NcanBeIns(Li,bi)N!isCP(bi)N!fromVictim(bi) ->

28 1 : (nBlocks’=nBlocks+1)N(Li
′=addBtoL(Li,bi))N(STATEi

′=Start);

...

29 [] (STATEi=Check)NisJust(bi,Votes,Stakes)NlastJi=lastboCP(bi,Li)

30 NfromVictim(bi) ->

31 1 : (lastJi
′=bi)N(STATEi

′=Fin)N(eclipseAtti
′=true);

32 endmodule

Listing 7.5: Pseudocode of an Attacker.

7.2 Coherence of the Model

In this section we report the analyses assessing the coherence of the model. It’s worth

noting that the systems we are studying have a fixed number of validators, specifically

n = 6, 8, 10, 12, 14, 16 and we run the experiments until we observe stability in the results.

112 7. The Hybrid Casper Protocol

Usually with networks larger than 10-12 validators, the differences between the outputs

of the analyses are in the order of 10−3. This is due to the fact that we use mean rates to

describe the latency of the network (which are taken from the literature) therefore the

number of nodes has little impact on the broadcast of blocks. In particular, we strongly

believe that our conclusions obtained with, say 14-16 validators, are meaningful also for

larger networks. Therefore, the following analyses have been carried out by considering

14 validators, because it was a valid trade off between the error percentage and the time

needed by PRISM+ for the analyses.

Before starting analysing different settings for our model, we want to validate it by

comparing our results with the one presented in the literature. For this purpose, we set

the basic parameters of the model as follows:

(i) lenepoch = 64, i.e. checkpoints are validated every 64 blocks;

(ii) all validators start with the same amount of stake in the initial state and work

honestly, i.e. they never vote maliciously nor do they create blocks in the wrong

position;

(iii) the rate mR of creating new blocks is 1/14.

Our model may be easily updated to analyse validators (or pools of validators) with dif-

ferent mining rates: it suffices to set the constants mR to the corresponding values. Since

there are not many works on the Hybrid Casper protocol and there are not real values

and parameters because it has been used to guaranteed a smooth transition between the

proof of work and the proof of stake Ethereum protocol, we compare our results with

the ones showed in [20] where the authors present the protocol.

We start by computing the probabilities for creating a new block. Figure 7.2 reports

these probabilities, which are calculated by letting PRISM+ to analyse the property:

P=?[F<=T "someCreated"]

where someCreated is a label that identifies all the states in which a validator is in the

state Create. In Figure 7.2 and in Figure 7.3, the broadcast delay rb is set to 1/7. The

reason behind this choice is the fact that in [20] the authors analyse the protocol with

7.2 Coherence of the Model 113

Figure 7.2: Probability of creating a block.

the assumption that the time to deliver messages is 1/2 of the time to create a block,

c.f. (1/2)-network synchrony.

The results we obtain are coherent with the ones in the literature [20]; in particular,

the probability of creating a block within 14 seconds is 0.6 and the one of creating a block

within 50 seconds is 1. To verify the occurrence of forks in ledgers, we use the module

Global already defined in Chapter 5.2 (Listing 5.7). The only difference between the

two modules is the fact that the one used in the Hybrid Casper model computes the

difference between the ledgers of the system every time the Validatori changes its

state to Start, instead of when the node goes into the Add state. Therefore, the

probability of reaching a state with a fork of length k within the first T time units is

defined by the same exact formula.

Figure 7.3: Probability of having a fork of length k.

Figure 7.3 shows how the probability of having a fork of length k, with 1 ≤ k ≤ 10,

114 7. The Hybrid Casper Protocol

varies over the time. We run the analysis by considering k∗14 as bound time. Our results

show that the probability of a fork of length 1 is higher than 0.9, while the probability

decreases as the k increases, and it is 0.009 for forks of length 10.

Figures 7.4 and 7.5 report, respectively, the probabilities of justification and finalisa-

tion within k epochs. These probabilities are computed by PRISM+ using the formulas

P=?[F<=T "someJustified"] P=?[F<=T "someFinalised"]

where someJustified and someFinalised are the labels that identify all the states

in which a validator is in the state Check and the block is justified and finalised, re-

spectively (lines 25-28 of Listings 7.1).

Figure 7.4: Probability of justification within k epochs.

Figure 7.5: Probability of finalisation within k epochs.

The experiments reported in Figures 7.4 and 7.5 have been run with two different

broadcast delays: the standard broadcast delay of Bitcoin, i.e. rb = 1/12.6 ([27]) and

7.2 Coherence of the Model 115

the (1/2)-network synchrony delay rb = 1/7.

It turns out that, when rb = 1/12.6, the probability of justifying within 1 epoch is

0.389 while it is 0.672 when rb = 1/7. This is because, in the first case, a checkpoint

needs more time to reach all the nodes in the network. Therefore, as the voting process

becomes longer, the probability when rb = 1/12.6 becomes smaller. It is also worth to

notice that, when the epochs are 5, the probability is greater than 0.96 with both values

of rb, which is in accordance with [20] where this probability is stated to be greater than

0.5 in one epoch. We finally notice that the probability of justifying a block is lower

when rb is equal to the rate of Bitcoin.

In Figure 7.5 we report the probability of finalisation within k epochs that have been

computed in [20] (the red curve in the figure) and we compare these results with those

computed by PRISM+ with the two broadcast values of rb = 1/12.6 and rb = 1/7. Our

results are coherent with the literature but a little lower for k < 7. We also notice that

the probabilities obtained with rates rb = 1/12.6 and rb = 1/7 grows in a similar way

and are almost the same for k > 7 (for example, when k = 20, the probability is 0.9994

with rb = 1/12.6, while it is 0.99999 with rb = 1/7).

Finally, in [20] the authors proved properties of safety and liveness for Hybrid Casper.

In particular, they define a protocol to be

• safe when two (or more) conflicting finalised checkpoints cannot occur;

• live when the set of finalised blocks always grows.

Figure 7.6: Safety property.

116 7. The Hybrid Casper Protocol

Figures 7.6 and 7.7 show the analyses of safety and liveness in PRISM+ with respect to

the broadcast delay rb. In these analyses we embrace the setting adopted in [20], and

we suppose that all the validators vote correctly, i.e. they vote only for one checkpoint

at the same height. According to our results, the probability of finalising two conflicting

checkpoints is always 0 (Figure 7.6) and the probability of finalising a new checkpoint is

always greater than 0.85 when rb ≥ 1/100 (it is almost 1 with rb ≥ 1/12.6).

Figure 7.7: Liveness property.

7.3 Hybrid Casper Stress Tests

The resilience of Hybrid Casper to the changes of different parameters of the protocol is

verified in this section.

First, we analyse how the probabilities of forks and justifications change by varying

the rate mR of creating new blocks. In the following experiments, the broadcast rate

rb is set to 1/7 (we assume it depends on technological constraints of the network;

therefore we adhere to the (1/2)-network synchrony assumption). Next, we analyse how

the percentage of penalties may affect the behaviour of malicious validators. Hereafter,

we will assume that all the mR are equal and we generically denote them with mR.

Different rates of creating blocks. We study the resilience of the protocol when the

time for creating blocks is lower than the standard one (14 seconds in Ethereum). More

precisely, we consider the cases where the rates are mR = 1/14, 1/8, 1/7, 1/6, respectively,

7.3 Hybrid Casper Stress Tests 117

i.e. blocks are created within 14, 8, 7 and 6 seconds, and the length of epochs is 64.

The results in Figure 7.8 show that the probability of a fork of length k for mR =

1/8, 1/7, 1/6 is higher than the one for mR = 1/14 (we run the analyses by considering

k*1/mR as bound time).

Figure 7.8: Probability of a fork of length k with mR = 1/4, 1/8, 1/7, 1/6.

In particular, the probability of a fork of length 7, i.e., P7fork , is 0.25 for mR = 1/6;

whereas it is around 0.06 when we consider the other rates. This may result in a lower

probability of justifying a block, because there is a higher probability of having two

different checkpoints at the same height. As expected, when mR = 1/8, 1/7, 1/6, a block

must wait for more epochs to be justified, see Figure 7.10. In particular, with a creation

rate mR ≤ 1/7, a block cannot be justified within one epoch, but after two epochs, the

probability rapidly increases. Even when mR ≤ 1/8 the probability of justifying a block

within 1 epoch is lower since the analysis shows that P1 just = 0.134.

Figure 7.9: Probability of justification within k epochs.

118 7. The Hybrid Casper Protocol

Figure 7.10: Probability of finalisation within k epochs.

Figure 7.10 reports the probability Pk fin of finalisation within k epochs. The results

are in line with what we expect, in fact, the slower is the system to create a block the

lower is the probability of finalisation within 2 epochs. This is due to the fact that also

the probability of justification is very low. Moreover, with mR = 1/6, Pk fin starts to

increase after 9 epochs, becoming 0.915 after 20 epochs.

Variation of the penalties. We analyse how the stakes change when the penalties

for misbehaving validators vary. In Hybrid Casper, to incentivate correct behaviours, a

bonus is given to validators when they vote checkpoints that are finalised; on the contrary

a penalty is given to those that clearly misbehave.

In the following analyses, we studying how the stakes of malicious validators changes.

A validator is malicious when it votes for more than a checkpoint at the same height.

To illustrate the technique, we define a stochastic process that misbehaves with a rate of

1/2. (Other strategies can be easily implemented by changing the code.) In particular,

the stake of validator j at epoch i is defined by stakej(i)

stakej(0)
def
= 10ETH

stakej(i+ 1)
def
=

{
stakej(i) + γ · stakej(i) if the validator votes correctly

stakej(i)− γ · stakej(i) otherwise

that increases or decreases stakes according to a parameter γ. In our experiments (Figure

7.3 Hybrid Casper Stress Tests 119

7.11 and Figure 7.12) we consider three values for γ: 20%, 30% and 40%.

Figure 7.11: How the stake of the malicious validator varies while epochs increase.

In Figure 7.11, we report how the stake of the malicious validator varies while epochs

increase. It points out that the less the penalty is in percentage, the slower the stake

decreases (there are necessary more than 125 epochs to become 0 when γ is 20%).

Figure 7.12: The number of times a validator misbehaves with respect to the epochs.

The number of times a validator misbehaves with respect to the epochs is reported

in Figure 7.12: the higher the penalty, the lower the number. In particular, when γ = 20

the validator misbehaves 8 times after 20 epochs, while when γ = 30 only 6 times.

When γ = 40 the validator misbehaves 3 times at 20 epochs and this number does not

grow anymore since its stake becomes 0. This confirms that the malicious behaviour is

discouraged when the penalty is high.

We remark that in our model it is always possible to reach a state of fork due to

multiple blocks being mined at the same time. Thus, if a honest validator v that follows

120 7. The Hybrid Casper Protocol

the fork choice rule, votes for a block b that will not be voted by the majority (simply

because v received b first), v’s stake will be shrunk. To illustrate this, we report in

Figure 7.13 the updates of the stake of a validator (since we want to highlight the

ongoing behaviour of a validator, we have chosen the simulator option in PRISM+). As

Figure 7.13: How changes the stake of a validator.

the reader can observe, at epoch 16 the stake of the validator decreases, that is due to

the fact that it voted for the wrong checkpoint. The same stake increases because the

validator voted correctly afterwards.

7.4 Attacks

The purpose of this section is to study the robustness of Hybrid Casper to two attacks

that have been studied in the literature [28, 45]. It is worth noticing that all these

analyses have been done with little efforts (by manually changing the PRISM+ settings

of the protocol), which is a benefit of our technique.

Eclipse Attack. In the Eclipse attack, an adversary attempts to obstruct message

delivery at the level of the peer-to-peer network causing nodes to work on a corrupted

or distorted snapshot of the blockchain [44, 28]. This attack is modelled in PRISM+ as a

participant that runs in parallel with honest validators, the code is presented in Listing

7.5. The honest validators may reach a consensus on this new chain after checking its

7.4 Attacks 121

validity. The probability of a successful attack by one attacker and an increasing number

of victims (from 2 to 5) is computed by the formula

P=?[F<=T "eclipseAttack"]

where eclipseAttack means that at least one of the miners’ boolean variables

eclipseAtti is true.

Figure 7.14: The probability of a successful attack by varying the rate of creating new
blocks.

Figure 7.14 shows the probability of a successful attack by varying the rate of cre-

ating new blocks. In every case, this probability increases with the number of victims.

Additionally, when blocks are created faster than the standard ones, then the probability

Figure 7.15: How the stake of the victims decreases with respect the number of epochs
increases.

of a successful attack is much lower. In particular, when mR ≤ 1/8, the system appears

to be more resilient to this attack.

122 7. The Hybrid Casper Protocol

In a simpler version of this attack, the attacker aims to reduce the stake of the victims.

Figure 7.15 reports how the stake of the victims decreases as the length of the epochs

changes for different values of mR. It turns out that these results are in line with those

of Figure 7.14, that is the attacker does not succeed when mR ≤ 1/8.

Majority Attack. In a PoS system a majority attack consists of one validator or a

coordinated set of validators that own more than 34% of the overall stake. When this

is the case, a majority attack can impact the blockchain by performing finalisation and

justification, since checkpoints can now receive the majority of the votes.

Figure 7.16: Analysis in presence of a majority attack.

Figure 7.16 displays the results obtained by our analysis of the majority attack by

changing the total stake owned by the attacker and the rate of creating new blocks. In

this case, the code for the attacker is the one reported in Listing 7.1 with the unique

difference being the percentage of the stake owned by the attacker.

Our results show that the probability of justifying a block decreases when the per-

centage of the stake owned by the attacker increases. This is due to the fact that, if the

attackers decide to perform a majority attack, the honest part of the network cannot

justify (and finalise) new blocks and, thus, the whole system is affected. Additionally,

the probability decreases with respect to the rate of creating a new block. This is in line

with the idea that the less time is needed to create a block, the faster is the attacker.

However, due to the slashing conditions, the majority attack is so costly that it is unlikely

that one will ever be launched against this protocol in practice. Thus, in the light of

7.5 Comparison with Bitcoin 123

our results above and considering how fast the stake of a malicious validator decreases,

it should not be a problem if one decides to use a faster rate to create new blocks.

7.5 Comparison with Bitcoin

In this section we do a summary to compare the results obtained with the two different

protocols with PRISM+ and the ones obtained using Theorem 6.1 presented in Chapter

6 for the Bitcoin protocol.

Figure 7.17: Probability of having a fork of length 1 by varying the delay.

In Figure 7.17, we compare the probability of having a fork of length 1 by varying

the delay of the network. The probability simulated with the model in PRISM+ and the

one calculated using the Theorem 6.1 are very close to each other and, as expected, the

theorem gives an upper bound for the probability. For the Hybrid Casper protocol, the

probability is way higher and this depends on the fact that the time needed to create a

new block is way less. In fact, since a block is created every 14 seconds, it is more likely

that two or more nodes create a block at the same time.

Figure 7.18 shows the results of a comparison between the two different blockchain

protocols with respect to the probability of forking. In particular, the figure displays

the probability of reaching a fork of a certain length k in the presence of a network

delay of 14.6 seconds. Also in this case it is worth noticing that the values obtained

using Theorem 6.1 are a precise upper bound for the probability of forking in the case

of the Bitcoin protocol, as confirmed by PRISM+ simulations. As expected, the Hybrid

124 7. The Hybrid Casper Protocol

Figure 7.18: Probability of having a fork of length k by varying the delay.

Casper protocol has a higher probability of forking compared to Bitcoin. However,

it is important to note that Hybrid Casper includes additional mechanisms, such as

finalisation and justification processes, that ensure the security of the protocol despite

its higher likelihood of forking. These mechanisms are designed to prevent malicious

actors from manipulating the blockchain, even in the presence of forks.

Chapter 8

Related Works

The purpose of this section is to present some of the existing techniques and the state-

of-the-art for the formal methods and blockchain area and the main approaches used in

literature. In this chapter, we report a comprehensive analysis of all the formal method

techniques that have been used to secure blockchain systems. The chapter is organised

in three main parts: in Section 8.1 we discuss the broadly classified formal techniques

and how they are used in blockchains. Then, we go more into the details of the state

of the art concerning the proof of work and proof of stake protocols. In particular, in

Section 8.2 we present the works done for the formal analysis of the proof of work and

Bitcoin protocol while Section 8.3 focuses on the presentation of the literature about the

Hybrid Casper protocol and, more in general, on the proof of stake.

8.1 Formal Methods Applied in Blockchain

Blockchain technology has many implications as a decentralised and distributed frame-

work for maintaining and securing a shared ledger. With the increasing use of blockchain

in different fields, formalising and verifying its safety and security features is becoming

crucial. Formal methods, which include systematic procedures and formal approaches

for system development, can result in software that is bug-free, has minimal defects, is

accurate, and is guaranteed to be correct. Due to this, many researchers have decided to

125

126 8. Related Works

use formal methods to model and analyse blockchain systems. In the following sections,

we will discuss the various formal techniques that have been used to analyse blockchain

systems.

Process Algebra

Process Algebras are mathematically rigorous languages with well defined semantics that

permit describing and verifying properties of concurrent communicating systems. They

can be seen as models of processes, regarded as agents that act and interact continuously

with other similar agents and with their common environment.

In [48], the authors present the first outcome of Ouroboros [49] formalisation effort:

the ♮-calculus (pronounced ”natural calculus”), which is a process calculus that they use

both as specification and implementation language. They present the language and its

semantics. The latter is unique in that it uses a stack of two labeled transition systems

to treat phenomena like data transfer and the opening and closing of channel scope in a

modular fashion. Since the operational semantics of the ♮-calculus is defined using two

transition systems, they have developed an abstract theory of transition systems to treat

concepts like bisimilarity.

Communicating sequential processes (CSP) is a formal language that is used to de-

scribe patterns of interaction in concurrent systems, it is used to model the behaviour

of blockchain systems in [2] by using analytical methods to assess system availability

against malicious miner denial-of-service attacks. The research also uses queuing theory

to determine the average waiting time for client blockchain transactions when malicious

miners are slowing the system down. CSP and queuing theory are used together to test

the blockchain’s ability to make progress even when malicious miners are present.

Transition System

A transition system is a notion in theoretical computer science that is used to investigate

computation. It’s a term used to explain how separate systems might behave. It is made

up of states and transitions between states that can be labelled with labels from a list; the

same label can appear on many transitions. There are various state-transition techniques

8.1 Formal Methods Applied in Blockchain 127

and in this section we will discuss how they are used to model and secure blockchain

systems.

Petri Nets. A novel approach, based on a Petri Net model to parse the blockchain is

presented in [71]. Petri Net is an oriented graph, made of two types of nodes, place and

transitions, where each node can be connected only with a node of the other type. Thus,

they modelled the Bitcoin blockchain as an oriented graph, made of two types of nodes,

addresses and transactions. Their purpose was to define a single useful model in which

all main informations about transactions and addresses are represented. Collecting the

first 180 thousand blocks, they were able to associate a place for each address and a

transition for each Bitcoin transaction. Their Petri net includes pre and post-incidence

matrices where all links between addresses and transactions are modelled. The model

allowed also to identify a set of behaviours typical of Bitcoin owners, like that of using

an address only once, and to reconstruct chains for this behaviour together with the rate

of firing.

A similar technique is used in [77], where the authors modelled the most common

attacks on blockchains using Petri nets. Their main goal, however, was to analyse the

vulnerabilities of blockchains and how quantum computing will affect these or other new

attacks in the future.

Markov Decision Processes. Markov decision processes (MDP) model decision mak-

ing in discrete, stochastic, sequential environments. The essence of the model is that a

decision maker, or agent, inhabits an environment, which changes state randomly in re-

sponse to action choices made by the decision maker. So, they provide a mathematical

framework for modelling decision making.

In [79], the authors applied the Markov decision processes to find the optimal selfsh-

mining strategy, in which four actions: adopt, override, match and wait, are introduced

in order to control the state transitions of the Markov decision process.

The optimal adversarial strategies for double-spending and selfish mining attacks are

modelled through MDP in [40]. They also take into account real world constraints such

as network propagation, different block sizes, block generation intervals, information

propagation mechanism, and the impact of eclipse attacks. With their technique they

128 8. Related Works

are able to show that selfish mining is not always a rational strategy and that the higher

the block reward of a blockchain the more resilient it is against double-spending, as well

as other results concerning how the block size impacts security and how block rewards

and confirmation time are related.

A similar approach is taken in [75], where the goal in this paper is to better under-

stand the conditions under which Bitcoin is resilient to selfish mining attacks. They

provide an efficient algorithm that computes an optimal selfish mining policy and they

evaluate different protocol modifications that were suggested as countermeasures for self-

ish mining. They show that in a model that accounts for the delay of block propagation

in the network, attackers of any size can profit from selfish mining. They also discuss

the interaction between selfish mining attacks and double spending attacks. The work

presented in [79] uses these techniques to analyse optimal double spending strategies.

In particular, they present a variety of different interpretations of the security of a sin-

gle transaction in the Bitcoin system, and matching advice regarding the number of

confirmations merchants should await in order to properly secure their transactions.

A framework of block-structured Markov processes for blockchain systems is the main

contribution of [56]. They are also able to provide an effective method for computing the

average transaction–confirmation time of any transaction in a more general blockchain

system.

8.2 Proof of Work Blockchains

The blockchain protocol was introduced by Haber and Stornetta [43] and only in the last

few years, because of Bitcoin, the problem of analysing the consistency of the ledgers has

attracted the interest of several researchers. The discussion of the mainstream blockchain

consensus algorithms and the way the classic Byzantine consensus can be revisited for

the blockchain context is presented in a paper [42], where the Bitcoin and Ethereum

consensus algorithms are described and the behaviour of each process involved in the

system is illustrated through pseudo-code. They discuss proof-of-work consensus and

illustrate the differences between the Bitcoin and the Ethereum proof-of-work consen-

sus algorithms. Based on these definitions, they warn about the dangers of using these

8.2 Proof of Work Blockchains 129

blockchains without understanding precisely the guarantees their consensus algorithm of-

fers. In particular, they survey attacks against the Bitcoin and the Ethereum consensus

algorithms. Then, they also discuss the advantage of the recent Blockchain Byzantine

consensus definition over previous definitions, and the promises offered by emerging con-

sistent blockchains. In [39] the authors prove the correctness of the protocol when the

network communications are synchronous and focusing on persistence and liveness. Per-

sistence states that once a transaction goes more than k blocks ”deep” into the blockchain

of one honest player, then it will be included in every honest player’s blockchain with

overwhelming probability, and it will be assigned a permanent position in the ledger. On

the other hand, liveness says that all transactions originating from honest account hold-

ers will eventually end up at a depth more than k blocks in an honest player’s blockchain,

and hence the adversary cannot perform a selective denial of service attack against hon-

est account holders. For both the properties, the authors require an honest majority of

nodes. The extension of this analysis to dynamic asynchronous networks with bounded

delays can be found in [68]. There, the authors also provide an abstract model of the

Bitcoin protocol that ignores all irrelevant implementation details. The abstract model

enables them to formally study the behaviour of the protocol and to detect where there

is room for improvement.

The authors in [73], instead, propose a formalisation of blockchain consensus with a

proof of its consistency mechanised in a proof assistant. They present an operational

model that provides an executable semantics of the system and prove a form of eventual

consistency focusing on the notion of global system safety.

Similarly to these papers, we propose an abstract model of Bitcoin where we ignore

all the implementation details which do not affect the properties of interest. The main

difference between these contributions and our work is that we formalise the blockchain

protocol as a stochastic system (with exponential distribution of duration) and prove its

properties by using the PRISM+ model checker.

An empirical analysis of the announcement and spread of blocks that result in the

forking of the Bitcoin blockchain is conducted in [65]. The authors examine the time

differences in the publication of competing blocks and found that the delay in block

propagation among miners is similar to the delay experienced by the average Bitcoin

130 8. Related Works

user. Moreover, they show that the longer a block has been published before a competing

block appears, the higher the probability that it will become part of the main chain. The

authors also observe a high frequency of short block intervals between two consecutive

blocks mined by the same miner after a fork, which could be due to selfish mining or

other causes. Finally, they note that the propagation speeds of competing blocks vary

greatly, in addition to the time difference in their publication. The authors operated

two monitor nodes that establish connections to all reachable peers of the Bitcoin P2P

network so they have been able to observe reale measurements of the Bitcoin network,

on the contrary we model the Bitcoin protocol as a parallel composition of processes and

we use model checking techniques to analyse those properties.

A theoretical approach is presented in [78], where the authors provide a theoretical

model for performance modelling and analysis of the Bitcoin network using an Erdös-

Rényi random graph model. In particular, they investigate the cause and length of

forks for the Bitcoin network considering affecting variables such as block propagation

delay, network bandwidth, and block size. They show that the impact of how nodes are

connected in the network is very minimal in terms of blockchain forks, on the contrary

this value is affected in a significant way by the network delay and the fork probability

increases proportionally to the block size. The technique used in this article differs from

our approach, however the results are in line with the analyses presented in Chapter 5.

There are few works in the literature that have followed a research line similar to

ours, i.e. studying the properties of the Bitcoin protocol using a probabilistic model

checker. The articles [30, 22] use UPPAAL [11, 26]. The former studies the security of

the proof of work consensus when the network has an adversary miner that leverages

the selfish mining strategy introduced in [33]. In particular, their experiments show the

effectiveness of selfish mining against various deployment parameters. They show how to

model the protocol using the Statistical Model Checking UPPAAL, and identify concrete

security properties of the protocol. They also use the model to demonstrate how design

decisions can impact different concrete backbone protocol properties in different ways,

in a manner that is not obvious from prior asymptotic analysis and it is possible only by

doing model checking.

The authors in [22] analyse the probability of success of a double spending attack in

8.2 Proof of Work Blockchains 131

the Bitcoin protocol. They show that double spending can be achieved if the parties in

the Bitcoin protocol behave maliciously. In these two works, the main goal is to verify

the resilience of Bitcoin by analysing the probability of a successful attack. In contrast,

we also study the properties of the protocol under different circumstances and settings.

Another difference is that the foregoing works do not model churning nodes and only

consider the case in which a block is broadcast to all the other nodes in the system. In

our analyses, we also modelled different kinds of topologies and, thus, we cover a more

general case.

The work presented in [10] uses PRISM to analyse the so-called 51%-attacks (a pool

can attack the network as soon as it reaches a substantial percentage of hash power) in an

extension of the Bitcoin protocol (the two phase proof of work). The author proves that

the extension of Bitcoin is effective at preventing the 51%-attacks. As in our work, each

miner is modelled as a module in the PRISM language; however the work focuses on the

actual cryptographic problem and does not implement blocks and the blockchain data

structures. In particular, in our study, every cryptographic detail that does not affect

our analysis is ignored, but we analyse what actually happens inside the blockchains.

This is possible because we extended the model checker PRISM.

Some papers propose stochastic models to analyse specific parts of blockchain sys-

tems. In [12], the authors focus on miners and propose a game-theoretic approach to

analyse the strategies miners can adopt and the kind of equilibrium these strategies can

lead to in blockchain dynamics. Overall, the paper argues that the blockchain protocol

is essentially a coordination game with several potential outcomes. There are multiple

equilibria, some of which involve forks that cause orphaned blocks and sustained diver-

gence between chains. Additionally, the authors show that the occurrence of forks can be

triggered by factors such as delays in information processing and updates to the software.

A similar approach is adopted by in [86] which proposes a formal mathematical

framework, to model the core concepts in blockchain-enabled economies. The authors

illustrate the dynamics of the blockchain economies simulating and testing two different

block reward strategies. The main difference with respect to our work is that their

analyses focus on economic aspects. In fact, we do not model miners’ strategies and we

do not consider the rewards obtained by the miners when they mine a valid block. Their

132 8. Related Works

main goal is to understand what the economic forces at the root of forks are; our analysis

instead focuses on the security and integrity aspects of the system.

Moreover, the authors [72] propose a basic stochastic model for the blockchain pro-

tocol to capture the block creation and broadcasting process. They model blocks as

abstract objects with just the necessary information to analyse the ledger evolution.

They also propose a framework to ease the tuning of the model and exploit Monte Carlo

simulations to obtain probabilistic results on consistency of the ledgers. In contrast with

our purpose, their main goal is to check the ability to detect and prevent double-spending

attacks of blockchain protocols.

8.3 Proof of Stake Blockchains

For what concerns proof of stake, to the best of our knowledge, there are few papers

that use formal methods to study the properties of the consensus protocols. Here, we

first discuss contributions about PoS protocols in general and then we focus on the

contributions about the Hybrid Casper protocol.

In [58], the authors conducted a study on Tendermint [81] which is a proof of stake

consensus algorithm. They verify that the consensus protocol is deadlock-free and is able

to reach consensus when at least 2/3 of the network is in agreement. They also prove

that a minority set of nodes that compose more than 1/3 of the network is enough to

censor the majority of the network and prevent the network from reaching consensus

and conclude that the algorithm has some shortcomings on availability. The network of

nodes is modelled as a parallel composition of processes and the system is verified by

means the PAT model checker [80], which is neither stochastic nor probabilistic.

A first machine checked proof that guarantees both safety and liveness for a consen-

sus algorithm is presented in [82]. They verify a Proof of Stake (PoS) Nakamoto-style

blockchain protocol, using the foundational proof assistant Coq. In particular, they con-

sider a PoS NSB in a synchronous network with a static set of corrupted parties. They

define execution semantics for this setting and prove chain growth, chain quality, and

common prefix. The chain growth property states that that the length of the best chain

of an honest party increases over time. Chain quality says that within a sufficiently

8.3 Proof of Stake Blockchains 133

large consecutive number of blocks of a main chain, some of them must be honest. The

fact that there is a common prefix between the main chains of the honest nodes of the

network is guaranteed by the common prefix property. These three properties together

imply both safety (all honest parties reach the same decision) and liveness (a decision is

reached eventually).

Coq has been also used to verify the Algorand PoS protocol [41]. Its correctness,

i.e. two different blocks can never be certified in the same round even when the adversary

completely control the network (asynchronous safety), is also demonstrated taking into

account network delays, timing issues, and malicious nodes.

A PoS protocol with rigorous security guarantees is Ouroboros [49], where persis-

tence and liveness properties are thoroughly studied. In that context, persistence means

that, once an honest node declares a given transaction as “stable”, then all the other

honest nodes will agree on that choice; liveness means that once an honestly generated

transaction has been made available to the network then it will become eventually sta-

ble. The authors prove that Ouroboros enjoys these properties in presence of adversaries

through a manual proof. In our work we considered a probabilistic version of the safety

and liveness property for Hybrid Casper and we proved them automatically through a

model checker. We are confident that we can adopt our methodology to study similar

properties of Ouroboros as well.

8.3.1 Hybrid Casper Related Works

The initial contribution of Hybrid Casper by Buterin et al. [21] also addresses the anal-

ysis of few properties. In particular, it is proved that the incentive mechanisms entail

liveness and provide safety guarantees for the protocol. They also discuss issues related

to parametrisation, funding, throughput and network overhead, and point out poten-

tial limitations of the protocol. The properties are analysed by means of numerical

arguments on the states of possible computations. Our technique is different: we use

statistical model checking to analyse the infinite-state blockchain model. By means of

this model, we automatically verify quantitative properties, in particular those regarding

the reachability of certain states of the network, and we can check them with different

setting of protocol parameters. Moreover, it is possible to grasp other properties with

134 8. Related Works

slight changes of the model, e.g. we need blocks structured as a sequence of transactions

and a mechanism to count transactions therein.

Safety of Casper has been formally proved using the Isabelle proof assistant [63]

and in the Coq theorem prover [67] by verifying basic properties about the ordering of

messages, of justifications, and the state transitions. Similarly to these papers, our model

overlooks the implementation details that do not affect the properties of interest (such

as the process of creating new blocks). However, in the foregoing contributions, relevant

properties, such as accountable safety and (a form of) liveness are demonstrated in the

case when the set of validators is dynamic and at least 2/3 of them behave honestly [4]. In

that case, different settings require completely new proofs. On the contrary, our analysis

can be easily adapted to different settings of the protocol by changing basic parameters

such as the network delay or adding/removing parallel processes acting as attackers. As

said above, in our setting, safety and liveness have been proved in a probabilistic version.

Chapter 9

Conclusions

In this dissertation, we have discussed our efforts to enhance the PRISM model checker,

resulting in the development of PRISM+, as well as our formal modelling and analysis

of the Bitcoin Proof of Work protocol and the Hybrid Casper Ethereum protocol.

With the extension of PRISM we obtained a model checker able to analyse blockchain

protocols. In particular, this has been possible thanks to the introduction of dynamic

data types and the operations upon them.

For the Bitcoin protocol, we have studied and formalised with a theorem the probability

that the ledger may devolve inconsistent copies because of forks. Two cases have been

analysed: the first one is when the system consists of honest miners; the second one

is when the system has a hostile node that mines blocks in the wrong positions. Our

probabilities are parametric with respect to the number of nodes, their hashing power

and the latency of the network.

Moreover, after defining the model in PRISM+, we performed some probabilistic analyses

covering different features of the protocol. The first analysis was instrumental to assess

the coherence of our model by verifying that the probability of mining a new block within

a given amount of time and that of reaching a fork correspond to those of the real Bitcoin

system and coincide with the values available in the literature. The second analysis was

concerned with the trade-off between security and the difficulty of the cryptopuzzle. It

has been observed that a slight decrease of the difficulty level of the cryptopuzzle leads

to a significant increase in the speed of mining at the cost of an almost irrelevant increase

135

136 9. Conclusions

in the probability of a fork. We also modelled and analysed networks with churn nodes,

which provide a more realistic account of the behaviour of this complex platform. In

particular, we pointed out that in the scenarios that we investigated, churn nodes have

a strong impact on the way the mining intervals vary with time: indeed, when a node

leaves the network frequently, there is an immediate consequence on how the hashing

power is distributed in the network. Finally, we simulated the Bitcoin protocol taking

into account different kinds of network topologies. The driving question was checking

whether the considered alternative topologies have resistance to forks equal to or greater

than the original one of Bitcoin. The results of our simulations pointed out that the

fewer the nodes are connected, the higher the probability of reaching a state of fork.

Moreover, our result made evident that the dynamic participation of nodes affects the

process of data propagation in the network. Namely, when a node disconnects, all of

its connections are deactivated and network connectivity is reduced and this leads to an

increase in the mean number of hops required for a block of transactions to propagate

across the network.

For what concerns the Hybrid Casper protocol, we proved our model coherent with

respect to the results presented in [20]. Also in this case, we have exploited the automatic

verification machinery of PRISM+ to perform several probabilistic analyses and to study

the protocol behaviour in different settings of the basic parameters, such as rate of

creation of blocks and penalty strategies. Our results have shown that increasing the rate

of creation severely impacts on the justification/finalisation of blocks and have confirmed

that higher is the penalty over the stake, lower is the rate of misbehaviour. We have also

studied the behaviour of Hybrid Casper against two well known attacks: the eclipse and

the majority attacks. Our results confirm that the protocol is robust against these two

attacks when the original Hybrid Casper parameters are considered.

The abstraction of the adversary used in this dissertation to model the attack towards

the Bitcoin blockchain is not the best one an adversary can implement, but the analysis

of further strategies is left to future work. An interesting topic of future research could

be the combination of the churn nodes model and different kinds of topologies to analyse

how this could affect the likelihood of a fork. In future research, we also plan to study

security issues by considering both peer-to-peer network-based attacks and mining-based

137

attacks. The first type of attacks, e.g. Eclipse attack [44] and Sybil attack [31], can

be modelled by changing the behaviour of the network process, whereas the second

one, e.g. 51% attack, can be analysed by introducing malicious miner processes. Our

current PRISM+ model renders validators as pure stochastic processes and abstracts

away the fact that they are actually rational agents that compete with each other to

maximise a given utility function. Therefore, their behaviour is not only driven by the

protocol but also by a given strategy that they follow when finalising blocks. In such a

competitive setting, the strategy of a validator may also depend on the ones of others and

validators may group themselves in coalitions that may collaborate to achieve a common

goal. We plan to investigate these scenarios by extending the model with strategies

and possible collaborative behaviours. Presumably, this will require the formalisation

of utility functions [50] and will require particular care because PRISM (and PRISM+)

manifests scalability issues when there are a lot of processes running in parallel (which

is the case when coalitions are modelled). Since the maximum block size indirectly

defines the maximum number of transactions carried within a block, large blocks may

cause slower propagation speeds, which in turn increases the stale block rate. Thus, it

could be interesting to extend our model to take into account the block size and verify

how different sizes impact the security of the system. Moreover, we plan to apply our

approach to the current Casper protocol. More specifically, we plan to study the random

validation mechanism, which Casper uses to select the validator who can propose a new

block [19]. This mechanism seems to be a perfect test-bed for our technique: the rapid

analysis of the random protocol may help in taking the right decisions. For example,

the simple technique where the hash of the previous block functions is used as a random

seed for leader selection on the next round has been already proven to be vulnerable

to attacks [1]. It is also on our agenda the comparison of Hybrid Casper and Casper

to quantify which one provides a better trade-off between security and performance and

to estimate their resilience to possible attacks. We finally plan the analysis of other

recent Byzantine fault tolerant protocols such as Algorand [41] and Tendermint [58] and

quantitatively compare them to (Hybrid) Casper.

Consensus protocols are important for ensuring the security and reliability of

blockchain systems, but they are not the only way to achieve this goal. Since we studied

138 9. Conclusions

the smart contract implemented in Hybrid Casper, we realised that one of the key fea-

tures of blockchain systems is their ability to store and execute smart contracts. These

contracts, which are agreements between different parties, are used to codify the ex-

change of resources and are becoming increasingly important for storing security-critical

assets. However, smart contract languages can be difficult to understand and smart

contracts are vulnerable to unexpected attacks [6]. Therefore, it is crucial to ensure the

comprehensibility and security of smart contracts in order to achieve trustworthiness

and prevent vulnerabilities and attacks, such as the DAO attack. In this context applies

our proposed solution to these challenges and our current theme of research consists of

a language-independent modelling framework for smart contracts. The high abstraction

level inherent in a modelling language fosters comprehensibility and, therefore, validation

of the behaviour of smart contracts. The proposed modelling language features succinct

abstractions of the concepts underlying many of the distributed ledger technologies based

on blockchains. Moreover, a modelling language permits to abstract away from low-level

concerns, which makes it possible to formally prove and certify the absence of several

classes of attacks with a high degree of automation. The correctness of properties of smart

contracts will be expressed relative to a formal operational semantics. Our approach will

permit the verification of datacentric correctness properties (functional correctness), but

also security properties of the modelled smart contracts. The main goal is to obtain

an executable smart contract modelling language that is equipped with an operational

formal semantics, sufficiently flexible and modular to represent security relevant phe-

nomena, such as reentry or state reverting operations, and provides a consolidated and

unified view on the fundamental language concepts that constitute blockchain-based dis-

tributed ledgers. We are working on a translator that converts existing legacy smart

contracts into models (and vice versa). The plan is to obtain a deductive verification

framework and static analysis tool to prove the absence of relevant classes of security

vulnerabilities and functional correctness of the smart contracts.

List of Figures

2.1 A simplified example of how blocks are chained to form a blockchain. . . 20

2.2 A ledger and the handle in green arrow. 21

2.3 A ledger and the corresponding blockchain (blue blocks). 21

2.4 Two ledgers in a state of fork of length 1. 22

3.1 A three state CTMC. 34

3.2 The three state CTMC C1. 36

5.1 The Bitcoin model architecture. 70

5.2 Network topologies. 78

5.3 Hashrate distribution of Bitcoin mining pools on May 2020. Source:

https://www.blockchain.com . 80

5.4 Probability of mining a block. 80

5.5 Probability of reaching a fork of length 1 by varying the broadcast delay;

the bound time T is set to 600 seconds. 81

5.6 Probability of a fork of length k; the bound time T is set to k ∗ 600 seconds. 82

5.7 Probability of mining a block within 600 seconds. 83

5.8 Probability of a fork of length k; the bound time T is set to 600 seconds. 83

5.9 Probability of mining a block within 3000 seconds. 84

5.10 Probability of a fork of length 1 versus the average mining interval; the

bound time T is set to 600 seconds. 85

5.11 Probability of mining a block within 3000 seconds. 86

5.12 Probability of a fork of length k, the bound time T is set to k ∗ 600 seconds. 86

139

https://www.blockchain.com

140 LIST OF FIGURES

5.13 Probability that the node can synchronise in a minute with mean sleep

time ranging from 2 to 10 hours. 87

5.14 Probability of mining a block within 3000 seconds. 88

5.15 Probability of a fork of length k, the bound time T is set to k ∗600 seconds. 88

7.1 The Ethereum PoS model architecture. 104

7.2 Probability of creating a block. 113

7.3 Probability of having a fork of length k. 113

7.4 Probability of justification within k epochs. 114

7.5 Probability of finalisation within k epochs. 114

7.6 Safety property. 115

7.7 Liveness property. 116

7.8 Probability of a fork of length k with mR = 1/4, 1/8, 1/7, 1/6. 117

7.9 Probability of justification within k epochs. 117

7.10 Probability of finalisation within k epochs. 118

7.11 How the stake of the malicious validator varies while epochs increase. . . 119

7.12 The number of times a validator misbehaves with respect to the epochs. . 119

7.13 How changes the stake of a validator. 120

7.14 The probability of a successful attack by varying the rate of creating new

blocks. 121

7.15 How the stake of the victims decreases with respect the number of epochs

increases. 121

7.16 Analysis in presence of a majority attack. 122

7.17 Probability of having a fork of length 1 by varying the delay. 123

7.18 Probability of having a fork of length k by varying the delay. 124

Listings

3.1 A PRISM specification modelling a N-place queue and a server. 44

4.1 The ExpressionBlock fields and constructor. 54

4.2 The ExpressionBlockchain fields and constructor. 55

4.3 The ExpressionBlockchain method addBlock. 56

4.4 The ExpressionList class. 56

4.5 The ExpressionList class. 57

4.6 The ExpressionMap class. 57

4.7 The addVotedBlock method. 58

4.8 The implementation of diffCheckpoints operation. 60

4.9 The implementation of calcFork operation. 61

4.10 The implementation of toCalculate auxiliary function. 62

4.11 The implementation of extractChecpoint operation. 63

4.12 The implementation of addVote operation. 64

4.13 The TreeList class. 66

4.14 The Pair class. 67

4.15 The setVote method. 67

5.1 Simplified model of an Hasher. 71

5.2 Simplified model of a Miner. 71

5.3 Simplified model of the Network. 72

5.4 Model of a controller with 11 states. 75

5.5 Simplified model of a dynamic miner. 75

5.6 Simplified model of the Network. 77

5.7 The Global process. 79

141

142 LISTINGS

7.1 Pseudocode of a Validator. 105

7.2 Pseudocode of the Network. 107

7.3 Pseudocode of the Vote Manager. 108

7.4 Pseudocode of the Network in presence of an Attacker. 109

7.5 Pseudocode of an Attacker. 110

Bibliography

[1] Mansoor Ahmed and Kari Kostiainen. “Don’t Mine, Wait in Line: Fair and Efficient

Blockchain Consensus with Robust Round Robin.” In: arXiv: Cryptography and

Security (2018).

[2] Amani Altarawneh et al. “Availability analysis of a permissioned blockchain with a

lightweight consensus protocol.” In: Computers N Security 102 (2021), p. 102098.

issn: 0167-4048. doi: https://doi.org/10.1016/j.cose.2020.102098.

url: https://www.sciencedirect.com/science/article/pii/

S0167404820303710.

[3] Cambridge Center for Alternative Finance. Cambridge Bitcoin Electricity Con-

sumption Index. https://cbeci.org/. (last access 2021). 2021.

[4] Musab A. Alturki et al. Verifying Gasper with Dynamic Validator Sets in Coq.

Tech. rep. 2020.

[5] Andreas M Antonopoulos and Gavin Wood. Mastering ethereum: building smart

contracts and dapps. O’reilly Media, 2018.

[6] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. “A Survey of Attacks on

Ethereum Smart Contracts (SoK).” In: Principles of Security and Trust - 6th Inter-

national Conference, POST 2017, Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,

2017, Proceedings. Ed. by Matteo Maffei and Mark Ryan. Vol. 10204. Lecture Notes

143

https://doi.org/https://doi.org/10.1016/j.cose.2020.102098
https://www.sciencedirect.com/science/article/pii/S0167404820303710
https://www.sciencedirect.com/science/article/pii/S0167404820303710
https://cbeci.org/

144 BIBLIOGRAPHY

in Computer Science. Springer, 2017, pp. 164–186. doi: 10.1007/978-3-662-

54455-6_8. url: https://doi.org/10.1007/978-3-662-54455-

6_8.

[7] Adnan Aziz et al. “Verifying Continuous Time Markov Chains.” In: vol. 1102.

Lecture Notes in Computer Science. Springer. Computer Aided Verification, 8th

International Conference, CAV ’96., 1996, pp. 269–276. doi: 10.1007/3-540-

61474-5_75. url: https://doi.org/10.1007/3-540-61474-5_75.

[8] C. Baier et al. “Model-checking algorithms for continuous-time Markov chains.”

In: IEEE Transactions on Software Engineering 29.6 (2003), pp. 524–541. doi:

10.1109/TSE.2003.1205180.

[9] Christel Baier et al. “Model Checking Continuous-Time Markov Chains by Tran-

sient Analysis.” In: Computer Aided Verification. Ed. by E. Allen Emerson and Ar-

avinda Prasad Sistla. Springer Berlin Heidelberg. Berlin, Heidelberg, 2000, pp. 358–

372. isbn: 978-3-540-45047-4.

[10] Martijn Bastiaan. “Preventing the 51%-Attack: a Stochastic Analysis of Two Phase

Proof of Work in Bitcoin.” In: 2015.

[11] Johan Bengtsson et al. “UPPAAL—a Tool Suite for Automatic Verification of Real-

Time Systems.” In: Proceedings of the DIMACS/SYCON Workshop on Hybrid

Systems III: Verification, Control: Verification, and Control. New Brunswick, NeW

Jersey, USA: Springer-Verlag, 1996, 232–243. isbn: 354061155X.

[12] Bruno Biais et al. “The blockchain folk theorem.” In: The Review of Financial

Studies 32.5 (2019), pp. 1662–1715.

[13] Stefano Bistarelli et al. PRISM+ software package, supporting material, and ad-

ditional experiments. 2022. url: https://github.com/adeleveschetti/

bitcoin-analysis (visited on 12/06/2022).

https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/3-540-61474-5_75
https://doi.org/10.1007/3-540-61474-5_75
https://doi.org/10.1007/3-540-61474-5_75
https://doi.org/10.1109/TSE.2003.1205180
https://github.com/adeleveschetti/bitcoin-analysis
https://github.com/adeleveschetti/bitcoin-analysis

BIBLIOGRAPHY 145

[14] Stefano Bistarelli et al. “End-to-End Voting with Non-Permissioned and Permis-

sioned Ledgers.” In: J. Grid Comput. 17.1 (2019), pp. 97–118. doi: 10.1007/

s10723-019-09478-y. url: https://doi.org/10.1007/s10723-019-

09478-y.

[15] Bitcoin. https://bitcoin.org/en/.

[16] Blackcoin. https://blackcoin.org/.

[17] R. Bowden et al. “Block arrivals in the Bitcoin blockchain.” In: CoRR

abs/1801.07447 (2018).

[18] Vitalik Buterin. Ethereum White Paper. https://github.com/ethereum/

wiki/wiki/White-Paper. 2013.

[19] Vitalik Buterin and V. Griffith. “Casper the Friendly Finality Gadget.” In: ArXiv

abs/1710.09437 (2017).

[20] Vitalik Buterin et al. “Combining GHOST and Casper.” In: CoRR abs/2003.03052

(2020).

[21] Vitalik Buterin et al. “Incentives in Ethereum’s hybrid Casper protocol.” In: In-

ternational Journal of Network Management 30.5 (2020), e2098.

[22] Kaylash Chaudhary et al. “Modeling and Verification of the Bitcoin Protocol.” In:

vol. 196. EPTCS. MARS. 2015, pp. 46–60.

[23] Huashan Chen et al. “A Survey on Ethereum Systems Security: Vulnerabilities,

Attacks, and Defenses.” In: ACM Comput. Surv. 53.3 (2020). issn: 0360-0300.

doi: 10.1145/3391195. url: https://doi.org/10.1145/3391195.

[24] Herman Chernoff. “A Measure of Asymptotic Efficiency for Tests of a Hypothe-

sis Based on the sum of Observations.” In: Annals of Mathematical Statistics 23

(1952), pp. 493–507.

https://doi.org/10.1007/s10723-019-09478-y
https://doi.org/10.1007/s10723-019-09478-y
https://doi.org/10.1007/s10723-019-09478-y
https://doi.org/10.1007/s10723-019-09478-y
https://bitcoin.org/en/
https://blackcoin.org/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1145/3391195
https://doi.org/10.1145/3391195

146 BIBLIOGRAPHY

[25] E. M. Clarke, E. A. Emerson, and A. P. Sistla. “Automatic Verification of Finite-

State Concurrent Systems Using Temporal Logic Specifications.” In: ACM Trans.

Program. Lang. Syst. 8.2 (1986), 244–263. issn: 0164-0925. doi: 10.1145/5397.

5399. url: https://doi.org/10.1145/5397.5399.

[26] Alexandre David et al. “Uppaal SMC Tutorial.” In: Int. J. Softw. Tools Technol.

Transf. 17.4 (Aug. 2015), 397–415. issn: 1433-2779. url: https://doi.org/

10.1007/s10009-014-0361-y.

[27] Christian Decker and Roger Wattenhofer. “Information propagation in the Bitcoin

network.” In: 13th IEEE International Conference on Peer-to-Peer Computing,

IEEE P2P 2013, Trento, Italy, September 9-11, 2013, Proceedings. IEEE, P2P

2013. 2013, pp. 1–10. doi: 10.1109/P2P.2013.6688704. url: https:

//doi.org/10.1109/P2P.2013.6688704.

[28] Evangelos Deirmentzoglou, Georgios Papakyriakopoulos, and Constantinos Pat-

sakis. “A Survey on Long-Range Attacks for Proof of Stake Protocols.” In: IEEE

Access 7 (2019), pp. 28712–28725. doi: 10.1109/ACCESS.2019.2901858.

[29] Giorgio Delzanno, Michele Tatarek, and Riccardo Traverso. “Model Checking

Paxos in Spin.” In: Proceedings Fifth International Symposium on Games, Au-

tomata, Logics and Formal Verification, GandALF 2014, Verona, Italy, September

10-12, 2014. Ed. by Adriano Peron and Carla Piazza. Vol. 161. EPTCS. 2014,

pp. 131–146. doi: 10.4204/EPTCS.161.13. url: https://doi.org/10.

4204/EPTCS.161.13.

[30] Max DiGiacomo-Castillo et al. “Model Checking Bitcoin and other Proof-of-Work

Consensus Protocols.” In: 2020 IEEE International Conference on Blockchain

(Blockchain). 2020, pp. 351–358. doi: 10.1109/Blockchain50366.2020.

00051.

https://doi.org/10.1145/5397.5399
https://doi.org/10.1145/5397.5399
https://doi.org/10.1145/5397.5399
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1109/P2P.2013.6688704
https://doi.org/10.1109/P2P.2013.6688704
https://doi.org/10.1109/P2P.2013.6688704
https://doi.org/10.1109/ACCESS.2019.2901858
https://doi.org/10.4204/EPTCS.161.13
https://doi.org/10.4204/EPTCS.161.13
https://doi.org/10.4204/EPTCS.161.13
https://doi.org/10.1109/Blockchain50366.2020.00051
https://doi.org/10.1109/Blockchain50366.2020.00051

BIBLIOGRAPHY 147

[31] John R. Douceur. “The Sybil Attack.” In: vol. 2429. Lecture Notes in Computer

Science. Springer, IPTPS 2002. Peer-to-Peer Systems, First International Work-

shop, IPTPS 2002., 2002, pp. 251–260. doi: 10.1007/3-540-45748-8_24.

url: https://doi.org/10.1007/3-540-45748-8_24.

[32] Ethereum. https://www.ethereum.org/.

[33] Ittay Eyal and Emin Gün Sirer. “Majority is Not Enough: Bitcoin Mining is Vul-

nerable.” In: Commun. ACM 61.7 (June 2018), pp. 95–102. issn: 0001-0782. doi:

10.1145/3212998. url: http://doi.acm.org/10.1145/3212998.

[34] Dean Fantazzini and Nikita Kolodin. “Does the Hashrate Affect the Bitcoin Price?”

In: Journal of Risk and Financial Management 13.11 (2020). issn: 1911-8074. doi:

10.3390/jrfm13110263. url: https://www.mdpi.com/1911-8074/

13/11/263.

[35] Carlos Faria and Miguel Correia. “BlockSim: Blockchain Simulator.” In: 2019 IEEE

International Conference on Blockchain (Blockchain). 2019, pp. 439–446.

[36] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. “Impossibility of Dis-

tributed Consensus with One Faulty Process.” In: J. ACM 32.2 (1985), pp. 374–

382. doi: 10.1145/3149.214121. url: https://doi.org/10.1145/

3149.214121.

[37] Ulrich Gallersdörfer, Lena Klaaßen, and Christian Stoll. “Energy consumption of

cryptocurrencies beyond bitcoin.” In: Joule 4.9 (2020), pp. 1843–1846.

[38] Letterio Galletta et al. PRISM+ software package, supporting material, and addi-

tional experiments. 2022. url: https://github.com/adeleveschetti/

casper-analysis (visited on 03/05/2022).

[39] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. “The Bitcoin Backbone

Protocol: Analysis and Applications.” In: vol. 9057. Lecture Notes in Computer

Science. Springer. Advances in Cryptology - EUROCRYPT 2015 - 34th Annual

https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-45748-8_24
https://www.ethereum.org/
https://doi.org/10.1145/3212998
http://doi.acm.org/10.1145/3212998
https://doi.org/10.3390/jrfm13110263
https://www.mdpi.com/1911-8074/13/11/263
https://www.mdpi.com/1911-8074/13/11/263
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://github.com/adeleveschetti/casper-analysis
https://github.com/adeleveschetti/casper-analysis

148 BIBLIOGRAPHY

International Conference on the Theory and Applications of Cryptographic Tech-

niques., 2015, pp. 281–310. doi: 10.1007/978-3-662-46803-6_10. url:

https://doi.org/10.1007/978-3-662-46803-6_10.

[40] Arthur Gervais et al. “On the Security and Performance of Proof of Work

Blockchains.” In: IACR Cryptol. ePrint Arch. (2016), p. 555. url: http://

eprint.iacr.org/2016/555.

[41] Yossi Gilad et al. “Algorand: Scaling Byzantine Agreements for Cryptocurrencies.”

In: SOSP. ACM, 2017, pp. 51–68.

[42] Vincent Gramoli. “From blockchain consensus back to Byzantine consensus.” In:

Future Gener. Comput. Syst. 107 (2020), pp. 760–769. doi: 10.1016/j.future.

2017.09.023. url: https://doi.org/10.1016/j.future.2017.09.

023.

[43] Stuart Haber and W. Scott Stornetta. “How to Time-Stamp a Digital Docu-

ment.” In: vol. 537. Lecture Notes in Computer Science. Springer. CRYPTO.,

1990, pp. 437–455. doi: 10.1007/3- 540- 38424- 3_32. url: https:

//doi.org/10.1007/3-540-38424-3_32.

[44] Ethan Heilman et al. “Eclipse Attacks on Bitcoin’s Peer-to-Peer Network.” In:

24th USENIX Security Symposium, USENIX Security 15, Washington, D.C., USA,

August 12-14, 2015. Ed. by Jaeyeon Jung and Thorsten Holz. USENIX Associa-

tion, 2015, pp. 129–144. url: https://www.usenix.org/conference/

usenixsecurity15/technical-sessions/presentation/heilman.

[45] Ethan Heilman et al. “Eclipse Attacks on Bitcoin’s Peer-to-Peer Network.” In:

Proceedings of the 24th USENIX Conference on Security Symposium. SEC’15. USA:

USENIX Association, 2015, 129–144. isbn: 9781931971232.

[46] Charles Antony Richard Hoare. “Communicating sequential processes.” In: Com-

munications of the ACM 21.8 (1978), pp. 666–677.

https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
http://eprint.iacr.org/2016/555
http://eprint.iacr.org/2016/555
https://doi.org/10.1016/j.future.2017.09.023
https://doi.org/10.1016/j.future.2017.09.023
https://doi.org/10.1016/j.future.2017.09.023
https://doi.org/10.1016/j.future.2017.09.023
https://doi.org/10.1007/3-540-38424-3_32
https://doi.org/10.1007/3-540-38424-3_32
https://doi.org/10.1007/3-540-38424-3_32
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman

BIBLIOGRAPHY 149

[47] Wassily Hoeffding. “Probability Inequalities for sums of Bounded Random Vari-

ables.” In: The Collected Works of Wassily Hoeffding. Ed. by N. I. Fisher and

P. K. Sen. New York, NY: Springer New York, 1994, pp. 409–426. isbn: 978-

1-4612-0865-5. doi: 10.1007/978- 1- 4612- 0865- 5_26. url: https:

//doi.org/10.1007/978-1-4612-0865-5_26.

[48] Wolfgang Jeltsch. “A Process Calculus for Formally Verifying Blockchain Consen-

sus Protocols.” In: Declarative Programming and Knowledge Management - Con-

ference on Declarative Programming, DECLARE 2019, Unifying INAP, WLP, and

WFLP, Cottbus, Germany, September 9-12, 2019, Revised Selected Papers. Ed. by

Petra Hofstedt et al. Vol. 12057. Lecture Notes in Computer Science. Springer,

2019, pp. 24–39. doi: 10.1007/978-3-030-46714-2_2. url: https:

//doi.org/10.1007/978-3-030-46714-2_2.

[49] Aggelos Kiayias et al. “Ouroboros: A Provably Secure Proof-of-Stake Blockchain

Protocol.” In: Advances in Cryptology - CRYPTO 2017 - 37th Annual International

Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings,

Part I. Ed. by Jonathan Katz and Hovav Shacham. Vol. 10401. Lecture Notes in

Computer Science. Springer, 2017, pp. 357–388. doi: 10.1007/978-3-319-

63688-7_12. url: https://doi.org/10.1007/978-3-319-63688-

7_12.

[50] Marta Kwiatkowska, David Parker, and Clemens Wiltsche. “PRISM-Games: Verifi-

cation and Strategy Synthesis for Stochastic Multi-Player Games with Multiple Ob-

jectives.” In: 20.2 (Apr. 2018), 195–210. issn: 1433-2779. doi: 10.1007/s10009-

017-0476-z. url: https://doi.org/10.1007/s10009-017-0476-z.

[51] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. “PRISM 4.0: Verifica-

tion of Probabilistic Real-Time Systems.” In: vol. 6806. Lecture Notes in Computer

Science. Springer. Computer Aided Verification - 23rd International Conference,

https://doi.org/10.1007/978-1-4612-0865-5_26
https://doi.org/10.1007/978-1-4612-0865-5_26
https://doi.org/10.1007/978-1-4612-0865-5_26
https://doi.org/10.1007/978-3-030-46714-2_2
https://doi.org/10.1007/978-3-030-46714-2_2
https://doi.org/10.1007/978-3-030-46714-2_2
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/s10009-017-0476-z
https://doi.org/10.1007/s10009-017-0476-z
https://doi.org/10.1007/s10009-017-0476-z

150 BIBLIOGRAPHY

CAV 2011., 2011, pp. 585–591. doi: 10.1007/978-3-642-22110-1_47.

url: https://doi.org/10.1007/978-3-642-22110-1_47.

[52] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. “Probabilistic Sym-

bolic Model Checking with PRISM: A Hybrid Approach.” In: Lecture Notes in

Computer Science 2280 (2002), pp. 52–66. doi: 10.1007/3-540-46002-0_5.

url: https://doi.org/10.1007/3-540-46002-0_5.

[53] Marta Z. Kwiatkowska, Gethin Norman, and Roberto Segala. “Automated Verifi-

cation of a Randomized Distributed Consensus Protocol Using Cadence SMV and

PRISM.” In: Computer Aided Verification, 13th International Conference, CAV

2001, Paris, France, July 18-22, 2001, Proceedings. Ed. by Gérard Berry, Hu-

bert Comon, and Alain Finkel. Vol. 2102. Lecture Notes in Computer Science.

Springer, 2001, pp. 194–206. doi: 10.1007/3- 540- 44585- 4_17. url:

https://doi.org/10.1007/3-540-44585-4_17.

[54] Leslie Lamport. “Fast Paxos.” In: Distributed Comput. 19.2 (2006), pp. 79–103.

doi: 10.1007/s00446-006-0005-x. url: https://doi.org/10.1007/

s00446-006-0005-x.

[55] Jingming Li et al. “Energy consumption of cryptocurrency mining: A study of elec-

tricity consumption in mining cryptocurrencies.” In: Energy 168 (2019), pp. 160–

168.

[56] Quan-Lin Li et al. “Markov Processes in Blockchain Systems.” In: CoRR

abs/1904.03598 (2019). arXiv: 1904.03598. url: http://arxiv.org/abs/

1904.03598.

[57] Zhiqiang Liu et al. “Fork-free hybrid consensus with flexible Proof-of-Activity.”

In: Future Generation Computer Systems 96 (2019), pp. 515–524. issn: 0167-

739X. doi: https://doi.org/10.1016/j.future.2019.02.059.

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/3-540-46002-0_5
https://doi.org/10.1007/3-540-46002-0_5
https://doi.org/10.1007/3-540-44585-4_17
https://doi.org/10.1007/3-540-44585-4_17
https://doi.org/10.1007/s00446-006-0005-x
https://doi.org/10.1007/s00446-006-0005-x
https://doi.org/10.1007/s00446-006-0005-x
https://arxiv.org/abs/1904.03598
http://arxiv.org/abs/1904.03598
http://arxiv.org/abs/1904.03598
https://doi.org/https://doi.org/10.1016/j.future.2019.02.059

BIBLIOGRAPHY 151

url: https://www.sciencedirect.com/science/article/pii/

S0167739X18326256.

[58] Wai Yan Maung Maung Thin et al. “Formal Analysis of a Proof-of-Stake

Blockchain.” In: 2018 23rd International Conference on Engineering of Complex

Computer Systems (ICECCS). 2018, pp. 197–200. doi: 10.1109/ICECCS2018.

2018.00031.

[59] Saeideh Gholamrezazadeh Motlagh, Jelena V. Misic, and Vojislav B. Misic. “An

analytical model for churn process in Bitcoin network with ordinary and relay

nodes.” In: Peer-to-Peer Networking and Applications 13.6 (2020), pp. 1931–1942.

doi: 10.1007/s12083-020-00953-y. url: https://doi.org/10.1007/

s12083-020-00953-y.

[60] Saeideh Gholamrezazadeh Motlagh, Jelena V. Misic, and Vojislav B. Misic. “Im-

pact of Node Churn in the Bitcoin Network.” In: IEEE Trans. Netw. Sci. Eng. 7.3

(2020), pp. 2104–2113. doi: 10.1109/TNSE.2020.2974739. url: https:

//doi.org/10.1109/TNSE.2020.2974739.

[61] Saeideh Gholamrezazadeh Motlagh, Jelena V. Misic, and Vojislav B. Misic. “Mod-

eling of Churn Process in Bitcoin Network.” In: International Conference on Com-

puting, Networking and Communications, ICNC 2020, Big Island, HI, USA, Febru-

ary 17-20, 2020. IEEE. 2020, pp. 686–691. doi: 10.1109/ICNC47757.2020.

9049704. url: https://doi.org/10.1109/ICNC47757.2020.9049704.

[62] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://

bitcoin.org/bitcoin.pdf. 2008.

[63] R. Nakamura, T. Jimba, and D. Harz. “Refinement and Verification of CBC

Casper.” In: 2019 Crypto Valley Conference on Blockchain Technology (CVCBT).

2019, pp. 26–38. doi: 10.1109/CVCBT.2019.00008.

https://www.sciencedirect.com/science/article/pii/S0167739X18326256
https://www.sciencedirect.com/science/article/pii/S0167739X18326256
https://doi.org/10.1109/ICECCS2018.2018.00031
https://doi.org/10.1109/ICECCS2018.2018.00031
https://doi.org/10.1007/s12083-020-00953-y
https://doi.org/10.1007/s12083-020-00953-y
https://doi.org/10.1007/s12083-020-00953-y
https://doi.org/10.1109/TNSE.2020.2974739
https://doi.org/10.1109/TNSE.2020.2974739
https://doi.org/10.1109/TNSE.2020.2974739
https://doi.org/10.1109/ICNC47757.2020.9049704
https://doi.org/10.1109/ICNC47757.2020.9049704
https://doi.org/10.1109/ICNC47757.2020.9049704
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/CVCBT.2019.00008

152 BIBLIOGRAPHY

[64] E. Napoletano and John Schmidt. Decentralized Finance Is Building A New Fi-

nancial System. https://www.forbes.com/advisor/investing/defi-

decentralized-finance/. (last access 2021). 2021.

[65] Till Neudecker and Hannes Hartenstein. “Short Paper: An Empirical Analysis

of Blockchain Forks in Bitcoin.” In: Financial Cryptography and Data Security -

23rd International Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, Febru-

ary 18-22, 2019, Revised Selected Papers. Ed. by Ian Goldberg and Tyler Moore.

Vol. 11598. Lecture Notes in Computer Science. Springer, 2019, pp. 84–92. doi:

10.1007/978-3-030-32101-7_6. url: https://doi.org/10.1007/

978-3-030-32101-7_6.

[66] Nxt. https://www.jelurida.com/nxt.

[67] Karl Palmskog et al. “Verification of Casper in the Coq Proof Assistant.” In: 2018.

[68] Rafael Pass, Lior Seeman, and Abhi Shelat. “Analysis of the Blockchain Protocol

in Asynchronous Networks.” In: vol. 10211. Lecture Notes in Computer Science.

Springer. EUROCRYPT., 2017, pp. 643–673. doi: 10.1007/978- 3- 319-

56614-6_22. url: https://doi.org/10.1007/978-3-319-56614-

6_22.

[69] Remigijus Paulavicius, Saulius Grigaitis, and Ernestas Filatovas. “A Systematic

Review and Empirical Analysis of Blockchain Simulators.” In: IEEE Access 9

(2021), pp. 38010–38028. doi: 10 . 1109 / ACCESS . 2021 . 3063324. url:

https://doi.org/10.1109/ACCESS.2021.3063324.

[70] Peercoin. https://www.peercoin.net/.

[71] Andrea Pinna et al. “A Petri Nets Model for Blockchain Analysis.” In: Comput.

J. 61.9 (2018), pp. 1374–1388. doi: 10.1093/comjnl/bxy001. url: https:

//doi.org/10.1093/comjnl/bxy001.

https://www.forbes.com/advisor/investing/defi-decentralized-finance/
https://www.forbes.com/advisor/investing/defi-decentralized-finance/
https://doi.org/10.1007/978-3-030-32101-7_6
https://doi.org/10.1007/978-3-030-32101-7_6
https://doi.org/10.1007/978-3-030-32101-7_6
https://www.jelurida.com/nxt
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1109/ACCESS.2021.3063324
https://doi.org/10.1109/ACCESS.2021.3063324
https://www.peercoin.net/
https://doi.org/10.1093/comjnl/bxy001
https://doi.org/10.1093/comjnl/bxy001
https://doi.org/10.1093/comjnl/bxy001

BIBLIOGRAPHY 153

[72] Pierre-Yves Piriou and Jean-Francois Dumas. “Simulation of Stochastic Blockchain

Models.” In: 14th European Dependable Computing Conference, EDCC 2018, Iaşi,

Romania, September 10-14, 2018. IEEE Computer Society, EDCC 2018. 2018,

pp. 150–157. doi: 10.1109/EDCC.2018.00035. url: https://doi.org/

10.1109/EDCC.2018.00035.

[73] George P̂ırlea and Ilya Sergey. “Mechanising blockchain consensus.” In: ed. by June

Andronick and Amy P. Felty. CPP 2018, Proceedings of the 7th ACM SIGPLAN

International Conference on Certified Programs and Proofs, Los Angeles, CA, USA,

January 8-9, 2018. 2018, pp. 78–90. doi: 10.1145/3167086. url: https:

//doi.org/10.1145/3167086.

[74] Quorum. https://consensys.net/quorum/.

[75] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. “Optimal Selfish Min-

ing Strategies in Bitcoin.” In: Financial Cryptography and Data Security - 20th In-

ternational Conference, FC 2016, Christ Church, Barbados, February 22-26, 2016,

Revised Selected Papers. Ed. by Jens Grossklags and Bart Preneel. Vol. 9603. Lec-

ture Notes in Computer Science. Springer, 2016, pp. 515–532. doi: 10.1007/

978-3-662-54970-4_30. url: https://doi.org/10.1007/978-3-

662-54970-4_30.

[76] Koushik Sen, Mahesh Viswanathan, and Gul Agha. “Statistical model checking of

black-box probabilistic systems.” In: International Conference on Computer Aided

Verification. Springer. 2004, pp. 202–215.

[77] Md. Atik Shahriar et al. “Modelling Attacks in Blockchain Systems using Petri

Nets.” In: 19th IEEE International Conference on Trust, Security and Privacy in

Computing and Communications, TrustCom 2020, Guangzhou, China, December

29, 2020 - January 1, 2021. Ed. by Guojun Wang et al. IEEE, 2020, pp. 1069–1078.

https://doi.org/10.1109/EDCC.2018.00035
https://doi.org/10.1109/EDCC.2018.00035
https://doi.org/10.1109/EDCC.2018.00035
https://doi.org/10.1145/3167086
https://doi.org/10.1145/3167086
https://doi.org/10.1145/3167086
https://consensys.net/quorum/
https://doi.org/10.1007/978-3-662-54970-4_30
https://doi.org/10.1007/978-3-662-54970-4_30
https://doi.org/10.1007/978-3-662-54970-4_30
https://doi.org/10.1007/978-3-662-54970-4_30

154 BIBLIOGRAPHY

doi: 10.1109/TrustCom50675.2020.00142. url: https://doi.org/

10.1109/TrustCom50675.2020.00142.

[78] Yahya Shahsavari et al. “A Theoretical Model for Analysis of Firewalls Under

Bursty Traffic Flows.” In: IEEE Access 7 (2019), pp. 183311–183321. doi: 10.

1109/ACCESS.2019.2926925. url: https://doi.org/10.1109/

ACCESS.2019.2926925.

[79] Yonatan Sompolinsky and Aviv Zohar. “Bitcoin’s Security Model Revisited.” In:

CoRR abs/1605.09193 (2016). arXiv: 1605.09193. url: http://arxiv.org/

abs/1605.09193.

[80] Jun Sun et al. “PAT: Towards Flexible Verification under Fairness.” In: Computer

Aided Verification. Ed. by Ahmed Bouajjani and Oded Maler. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2009, pp. 709–714.

[81] Tendermint. https://tendermint.com/.

[82] Søren Eller Thomsen and Bas Spitters. “Formalizing Nakamoto-Style Proof of

Stake.” In: CoRR abs/2007.12105 (2020). arXiv: 2007.12105. url: https:

//arxiv.org/abs/2007.12105.

[83] Tatsuhiro Tsuchiya and Andre Schiper. “Model Checking of Consensus Algorit.”

In: 2007 26th IEEE International Symposium on Reliable Distributed Systems

(SRDS 2007). 2007, pp. 137–148. doi: 10.1109/SRDS.2007.20.

[84] Hrakan LS Younes and Reid G Simmons. “Probabilistic verification of discrete

event systems using acceptance sampling.” In: International Conference on Com-

puter Aided Verification. Springer. 2002, pp. 223–235.

[85] Alexei Zamyatin et al. “Flux: Revisiting Near Blocks for Proof-of-Work

Blockchains.” In: IACR Cryptology ePrint Archive 2018 (2018), p. 415.

https://doi.org/10.1109/TrustCom50675.2020.00142
https://doi.org/10.1109/TrustCom50675.2020.00142
https://doi.org/10.1109/TrustCom50675.2020.00142
https://doi.org/10.1109/ACCESS.2019.2926925
https://doi.org/10.1109/ACCESS.2019.2926925
https://doi.org/10.1109/ACCESS.2019.2926925
https://doi.org/10.1109/ACCESS.2019.2926925
https://arxiv.org/abs/1605.09193
http://arxiv.org/abs/1605.09193
http://arxiv.org/abs/1605.09193
https://tendermint.com/
https://arxiv.org/abs/2007.12105
https://arxiv.org/abs/2007.12105
https://arxiv.org/abs/2007.12105
https://doi.org/10.1109/SRDS.2007.20

BIBLIOGRAPHY 155

[86] Zixuan Zhang, Michael Zargham, and Victor M. Preciado. “On modeling

blockchain-enabled economic networks as stochastic dynamical systems.” In: Appl.

Netw. Sci. 5.1 (2020), p. 19. doi: 10.1007/s41109- 020- 0254- 9. url:

https://doi.org/10.1007/s41109-020-0254-9.

https://doi.org/10.1007/s41109-020-0254-9
https://doi.org/10.1007/s41109-020-0254-9

	Abstract
	Symbols
	I Background
	Introduction
	Research Method
	Outline of the Thesis

	Blockchain Systems
	A Blockchain Overview
	Blockchain Forks
	Blockchain Classification

	Blockchain Consensus Protocols
	Proof of Work
	Proof of Stake

	Blockchain Attacks

	Model Checking and PRISM
	Continous Time Markov Chains
	Continuous Stochastic Logic (CSL)
	CSL Model Checking

	Statistical Model Checking
	The Model Checker PRISM

	II Contributions
	PRISM+
	The Modelling Language
	Our Extension
	The Data Types
	The Operations
	Auxiliary Data Types

	The Bitcoin Protocol
	Definition of the Models
	Coherence of the Model
	Variation of Cryptopuzzle Difficulty
	Churn Nodes
	Different Topologies

	A Formal Analysis of the Bitcoin Protocol
	Honest Miners
	Double Spending Attack

	The Hybrid Casper Protocol
	Definition of the Models
	Coherence of the Model
	Hybrid Casper Stress Tests
	Attacks
	Comparison with Bitcoin

	Related Works
	Formal Methods Applied in Blockchain
	Proof of Work Blockchains
	Proof of Stake Blockchains
	Hybrid Casper Related Works

	Conclusions
	List of Figures
	List of Codes
	References

