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Abstract

The Many-Body-Perturbation Theory (MBPT) approach is among the most successful the-
oretical frameworks for the study of excited state properties. It represents the current state-
of-the-art approach for the calculation of accurate electronic structures beyond the known
limits of Density Functional Theory and allows to describe the excitonic interactions, which
play a fundamental role in the optical response of insulators and semiconductors.

The first part of the thesis focuses on the study of the quasiparticle, optical and excitonic
properties of bulk Transition Metal Oxide (TMO) perovskites using a G0W0+Bethe Salpeter
Equation (BSE) approach. TMO perovskites are an extensively studied class of materials
with interesting physical and chemical properties and promising technological applications. A
representative set of 14 compounds has been selected, including 3d (SrTiO3, LaScO3, LaTiO3,
LaVO3, LaCrO3, LaMnO3, LaFeO3 and SrMnO3), 4d (SrZrO3, SrTcO3 and Ca2RuO4) and
5d (SrHfO3, KTaO3 and NaOsO3) perovskites. An approximation of the BSE scheme, based
on an analytic diagonal expression for the inverse dielectric function ϵ−1

G,G, is used to compute
the exciton binding energies and is carefully bench-marked against the standard BSE results.
In 2019 an important breakthrough has been achieved with the synthesis of ultrathin SrTiO3

films down to the monolayer limit. This allows us to explore how the quasiparticle and
optical properties of SrTiO3 evolve from the bulk to the two-dimensional limit. The electronic
structure is computed with G0W0 approach: we prove that the inclusion of the off-diagonal
self-energy terms is required to avoid non-physical band dispersions. The excitonic properties
are investigated beyond the optical limit by calculating the energy loss function at finite
momentum.
Lastly a study of the under pressure optical response of the topological nodal line semimetal
ZrSiS is presented, in conjunction with the experimental results from the group of Prof. Dr.
Kuntscher of the Augsburg University.

The second part of the thesis discusses the implementation of a workflow to automate
G0W0 and BSE calculations with the VASP software. The workflow adopts a convergence
scheme based on an explicit basis-extrapolation approach [J. Klimeš et al., Phys. Rev.B 90,
075125 (2014)] which allows to reduce the number of intermediate calculations required to
reach convergence and to explicit estimate the error associated to the basis-set truncation.
These developments open the way for performing High-Throughput screening calculations
using the G0W0 schemes within the VASP ab-initio software.
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Chapter 1

Introduction

This thesis focuses on the optical response of condensed matter systems, both in the bulk
and two-dimensional structures, with a particular attention on their excitonic properties.
Excitons are correlated electron–hole excitation states that can be modeled as electrically
neutral quasiparticles. Intuitively, they can be created during an absorption process, from
the (screened) interaction between an electron excited into the conduction band and the
corresponding electron hole in the valence band. Electron-hole pairs were first conceived
and introduced by Frenkel in 1931 [1, 2]. The Wannier-Mott model, describing large-radius
weakly bound excitons, was first proposed in 1937 [3, 4] and subsequently observed in 1951 in
copper oxide by Gross and Karryev [5]. Excitonic effects profoundly alter and dominate the
low-energy region of optical and loss spectra in semiconductors and insulators [6], and have
an important role in many technological applications such as photocatalysis or photovoltaics.
Many-Body Perturbation Theory (MBPT) is the state-of-the-art ab-initio formalism for pre-
dicting spectroscopic responses and excitonic properties in the condensed matter field. The
MBPT approach is founded on the concept of quasiparticle, introduced by Landau [7, 8, 9, 10]
: in this approximation the excited states of the many-body system are described as weakly
interacting particles with renormalized masses and weak effective interactions associated to
electric screening effects. Nowadays the so-called GW approximation, first proposed by Hedin
in 1965 [11], is the standard and most used approach to characterize quasiparticle energies
and orbitals. It’s interesting to note that the seminal Density Functional Theory (DFT)
papers were published in the same years [12, 13]; However, while DFT quickly become one
of the most important and widespread formalism in the field of computational science, we
have to wait until 1980s [14, 15, 16] for the first GW applications. The GW scheme is
implemented in many ab-initio codes, such as VASP [17, 18], Yambo [19, 20], Abinit [21],
WEST [22] and BerkeleyGW [23]. The success of the method can be ascribed to the very
good agreement with experimental data for what regards band-structures and in particular
band-gaps [24, 25, 26, 27], one of the most notorious deficiencies of DFT.
The excitonic properties are determined through the solution of the Bethe-Salpeter Equation
(BSE), which takes into account the electron-hole coupling. In order to obtain a reliable
estimation of the optical gap and of the interband transitions, an accurate evaluation of the
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QP energies is essential; in this sense a GW bandstructure is typically employed as a starting
point. The theoretical GW and BSE formalisms are introduced and discussed in chapters 3, 4.

The GW method presents however different important drawbacks. First of all, the com-
putational complexity of the most common implementations scales as O(N4) with N equal
to the number of electrons [28, 29], which makes calculations an order of magnitude more com-
putationally expensive than the DFT counterparts. For non-self consistent GW calculations,
the starting point dependence can strongly influence the accuracy of the final results [30].
Furthermore, the convergence of the QP energies requires a complex procedure with several
hindrances. On the one hand, the inter-dependence of several computational parameters
represents a critical point, which has been documented to cause unreliable results if not ac-
curately controlled. On the other hand, the self-energy and polarizability expressions display
a slow convergence with respect of the basis set dimension, absent in DFT or Hartree-Fock
formalisms, which can lead to underconverged energies.
In this regard, several authors [31, 28, 32] recently proposed procedures to handle the nu-
merical convergences in a systemic and efficient way, without incurring in the most common
pitfalls. Among them, Klimeš and coworkers [33] developed an alternative scheme based on
an extrapolation to the infinite-basis-set limit. The scheme is founded on a formal derivation
of the asymptotic behavior of quasiparticle energies, and is outlined in chapter 5. It has been
validated on molecules [34] and bulk solids [35, 36] and has been employed by Ergönenc and
coworkers [37] to accurately estimate the band gap of a dataset formed by fourteen Transition
Metal Oxide (TMO) perovskites. Chapter 6 follows and broadens the work of Ergönenc et al.
and describes an in-depth study of the optical and excitonic properties of the dataset using
the G0W0+BSE approach. The electron-hole coupling coefficients are analysed to determine
the origin of the main features of the spectra and to investigate how transitions between the
band manifolds determine the dominating contributions.

Recently an important breakthrough has been achieved by Ji et al. through the first syn-
thesis o freestanding 2D perovskites SrTiO3 and BiFeO3 films with thicknesses reaching the
monolayer limit [38]. Their work proves that TMO perovskites films can be realized with
thicknesses below the critical limit previously proposed as necessary for crystalline order sta-
bility [39]. Chapter 7 thus extends the study of SrTiO3 quasiparticle and excitonic properties,
already discussed in the bulk dataset, to the monolayer limit. SrTiO3 possesses a prototypical
role between the TMO perovskites: it’s one of the most studied compounds and its conduct-
ing, magnetic and optical properties has been widely investigated [40, 41, 42, 43, 44].

Chapter 8 presents a computational and experimental study of the optical response of ZrSiS
under pressure. This material can be considered as a paradigmatic example of topological
nodal line semimetal [45, 46]. The electronic structure of this class of materials exhibits a
peculiar diamond-shaped line of Dirac nodes and linear dispersing bands close to Fermi level.
The optical conductivity is determined through the G0W0+BSE approach and is compared
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with the in-plane and out-of-plane optical experimental response at ambient pressure and
high quasi-hydrostatic pressure. The work was carried out in collaboration with the groups
of Prof. Dr. Kuntscher of the Augsburg University and Prof. Kuneš of the Technische Uni-
versität Wien.
Lastly, chapter 5 discusses the implementation of the extrapolation scheme derived by Klimeš
et al. [33] as an automatized workflow (i.e. without need of manual user control) for High-
Throughput G0W0 calculations. The workflow is based on the AiiDA platform [47, 48] and
the AiiDA-VASP plugin and aims to prepare, submit and perform error handling of the G0W0

calculations in VASP with minimal user intervention. This work was realized in collaboration
with the THEOS-MARVEL Group (where I spent a visiting period of three months) and with
the main AiiDA-VASP plugin developers (E. Flage-Larsen, A. Togo, J. Chico and B. Zhu).
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Chapter 2

Density Functional theory

1 Kohn-Hohenberg theorems
The Density Functional Theory (DFT) is one of the most popular formalisms in the field
of condensed matter physics, frequently adopted to investigate the ground stated electronic,
magnetic and structural properties of solids and molecules. The foundations of the theory
are the two Kohn-Hohenberg theorems [12], that we present below1.

Theorem 1 For any system of interacting particles in a given external potential vext(r),
the potential itself is determined uniquely (within an additive constant) by the ground state
particle density n0(r).

The first theorem asserts the existence of the injective map vext → n0 [51, p. 10][52, p. 232].
If we restrict to the densities determined by a given vext the map can be inverted: the ground
state density n0 therefore becomes the fundamental variable of the formalism and, at the
same time, vext becomes a unique functional of n0.
This implies that (i) the many-body wavefunctions of the system are determined by n0 and
thus (ii) the expectation values of all operators ultimately depend on the density:

ψ(r1, r2, .., rN) = ψ[n0(r)] =⇒
〈
Ô
〉
= ⟨ψ[n0(r)]|Ô|ψ[n0(r)]⟩

The energy can hence be written (iii) as a functional of n0 E = E[n0(r)]. It can be proved
that the energy expression can be expanded as:

E[n0(r)] =
〈
T̂ [n0(r)]

〉
+ ⟨vext[n0(r)]⟩+ ⟨Vee[n0(r)]⟩ (2.1)

1The theorems will be presented without proof, which can be found in most computational physics
books. [6, 49, 50, 51, 52]
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where T̂ is the kinetic energy and V̂ee the term associated to the electron-electron interaction.
This equation can be reorganized by defining the so called Hohenberg-Kohn functional FHK :

FHK [n0(r)]
def
=

〈
T̂ [n0(r)]

〉
+⟨Vee[n0(r)]⟩ → E[n0(r)] = FHK [n0(r)]+

∫
drvext(r)n0(r) (2.2)

Theorem 2 Let vext(r) be the external potential of a specific system with exact ground state
density n0(r). The exact ground state energy of the system is the global minimum value of
the functional E[n(r)], and the density that minimizes the functional is n0(r).

The second theorem defines a variational principle: if FHK is known the exact ground state
density can be determined by minimizing the total energy of the system with respect to
variation of the density n(r). However, the analytical expression of FHK is in general not
known, and thus approximations must be introduced.

2 Kohn-Sham Equations
The popularity of Density Functional Theory has been largely associated to the approach
pioneered by Kohn and Sham [13]. Their formulation is based on the assumption that for
each ground state density of the interacting system n0 there exists an auxiliary independent-
particle system with the same density nKS

0 , i.e. nKS
0 (r) = n0(r). The non-interacting density

can be therefore expanded in terms of single particle wavefunctions:

n0 = nKS
0 (r) =

∑
σ

∑
i:particles

∣∣ψKS
i,σ

∣∣2
This is referred as non-interacting V-representability, and we will assume its validity. The
Kohn-Hohenberg theorems moreover state that the two systems are associated to the same
external potential vext.
Now the ground state energy functional can be rewritten through the single-particle states:

E[n] =Tip[n] +

∫
drvext(r)n(r) + EH [n] + Exc[n]

Tip[n] = −1

2

∑
σ

N∑
i=1

〈
ψKS
i,σ

∣∣∇2
∣∣ψKS

i,σ

〉
=

1

2

∑
σ

N∑
i=1

|∇ψKS
i,σ |2

EH [n] =
1

2

∫
drdr′

n(r)n(r′)
|r − r′|

(2.3)

Tip is the independent-particle kinetic energy and EH is the Hartree Energy.; the exchange-
correlation functional Exc contains all many-body effects of exchange and correlation, and
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can be formally defined as:

Exc[n]
def
= FHK [n]− (Tip[n] + EH [n]) =

〈
T̂
〉
− Tip[n] + ⟨Vee⟩ − EH [n] (2.4)

Exc is a functional of the density since all the variables on the right-hand side are functional
of it; moreover, it’s a universal functional in the same sense of FHK .
Finally the auxiliary hamiltonian can be written:[

−1

2
∇2 + vext(r) + VH(r) + Vxc(r)

]
ψKS
i (r) = ϵKS

i ψKS
i (r) (2.5)

with Vxc determined by the functional derivative of exchange-correlation term Vxc
def
= δExc/δn(r).

2.1 Exchange and correlation functionals

The formalism discussed above does not provide any explicit form of the exchange-correlation
functional: we have to resort to approximations.
The simplest one available is the Local Density Approximation (LDA), where Exc is considered
only locally dependent on the charge density, and it’s determined from the homogeneous
electron gas exchange-correlation energy density ϵHEG

xc :

ELDA
xc [n]

def
=

∫
drn(r)ϵHEG

xc (n) (2.6)

A refinement of the LDA is the so-called Generalized Gradient approximation (GGA), where
Exc is assumed dependent on n and also on ∇n(r) (functionals of this type are called semilo-
cal):

EGGA
xc [n]

def
=

∫
drf (n(r),∇n(r))) (2.7)

The most popular GGAs are PBE (proposed in 1996 by Perdew, Burke and Ernzenhof [53])
and BLYP (the combination of Becke’s 1988 exchange functional [54] with the 1988 correla-
tion functional by Lee, Yang and Parr [55]).
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3 DFT implementation in VASP
The solution of the Kohn-Sham equation requires the expansion of the wavefunction over
a basis-set. One of the most common choices is the plane-wave (PW) basis set, which is
adopted by both codes used in this work (VASP [18, 17] and Yambo [19, 20]). This basis set
allows to expand a generic wavefunction ψ for a material with translationally symmetry as:

ψnk(r) = unk(r)eik·r =
1√
Ω

∑
G

Cnk(G)ei(k+G)·r (2.8)

k is restricted to the first Brillouin Zone (BZ), G is a reciprocal lattice vector and Ω is the
volume of the unit cell.
The numerical implementation of the expansion over the basis set can include only a finite
number of basis vectors; therefore a cutoff (represented by the ENCUT flag in VASP) is imposed
on the energy:

ψnk(r) =
1√
Ω

1
2
|k+G|2<ENCUT∑

G

Cnk(G)ei(k+G)·r (2.9)

Furthermore, integrals over the Brillouin Zone in reciprocal space are reduced to a weighted
sum over a finite set of points (called k-point grid or k-point mesh):

1

ΩBZ

∫
ΩBZ

dkf(k) ≃
∑
k

ωkf(k)

The Projector Augmented-Wave method (PAW)

In order to reduce the computational cost associated with the solution of the Schrödinger
equation many ab-initio codes (including VASP) adopt the pseudopotential approximation.
First of all, the electrons of the systems are partitioned in the valence and core groups. The
electrons belonging to the atoms’ inner shells do not contribute significantly to the chemical
properties and bounds of the compounds, which are essentially determined by the outermost
(valence) electrons. The fundamental idea is hence to neglect the explicit treatment of core
electrons and introduce an effective potential (the pseudopotential) to approximate the po-
tential felt by valence electrons [56, 57, 58].

The VASP software [18, 17] implements the Projector Augmented Wave Method (PAW ) [59],
a generalization of the augmented wave methods [60] and the pseudopotential methods [58].
Let’s start by defining a core region with radius rc (called augmentation region) around each
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atom. Two different wavefunctions are taken into account: the all electron wavefunctions
|ψnk⟩ and pseudized

∣∣∣ψ̃p
nk

〉
ones. The pseudized wavefunctions are identical (by construction)

the all-electron one outside the sphere rc and represents only a simplified approximation to
true orbitals inside. Both wavefunctions are expanded over a basis of partial waves inside the
augmentation region:

|ψe⟩ =

{∑
i ci |ϕe

i ⟩ r < rc

|ψe⟩ r ≥ rc

∣∣∣ψ̃p
〉
=

{∑
i ci

∣∣∣ϕ̃p
i

〉
r < rc

|ψe⟩ r ≥ rc
(2.10)

The relation between |ψnk⟩ and
∣∣∣ψ̃p

nk

〉
is given by the expression:

|ψe⟩ =
∣∣∣ψ̃p

〉
+
∑
i

[
|ϕe

i ⟩ −
∣∣∣ϕ̃p

i

〉]〈
p̃i

∣∣∣ψ̃p
〉

(2.11)

where ci =
〈
p̃i

∣∣∣ψ̃p
〉

are called projectors functions. The pseudo partial waves are determined
by the equation:[

− h̄2

2m
∇2 + ṽeff +

∑
i,j

∣∣∣ϕ̃p
i

〉
Dij

〈
ϕ̃p
i

∣∣∣] ∣∣∣ϕ̃p
i

〉
= ϵi

[
1 +

∑
i,j

∣∣∣ϕ̃p
i

〉
Dij

〈
ϕ̃p
i

∣∣∣] ∣∣∣ϕ̃p
i

〉
(2.12)

with Qij =
〈
ϕe
i

∣∣ϕe
j

〉
−

〈
ϕ̃p
i

∣∣∣ϕ̃p
j

〉
, Dij =

〈
ϕe
j

∣∣ h̄2

2m
∇2 + veff

∣∣ϕe
j

〉
−

〈
ϕ̃p
j

∣∣∣ h̄2

2m
∇2 + veff

∣∣∣ϕ̃p
j

〉
.
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Chapter 3

The GW Approximation

1 Interacting and non-interacting Green functions
For a system composed by N electrons the hole and electron propagators G<, G> can be
defined:

G<(r1, t1, r2, t2)
def
= +i

〈
ψN
0

∣∣ψ̂†(r2, t2)ψ̂(r1, t1)
∣∣ψN

0

〉
(3.1)

G>(r1, t1, r2, t2)
def
= −i

〈
ψN
0

∣∣ψ̂(r1, t1)ψ̂†(r2, t2)
∣∣ψN

0

〉
(3.2)

where ψ̂†(r2, t2) and ψ̂(r1, t1) are the creation and annihilation field operators in the Heisen-
berg picture,

∣∣ψN
0

〉
is the ground-state wavefunction of the interacting system. We note that

the equation 3.1 is valid also for a non-interacting system: in that case the expectation value
is evaluated using the non-interacting ground state wavefunction.
This definition also offers a direct qualitative interpretation: ψ̂†(r2, t2)

∣∣ψN
0

〉
adds an electron

to the ground state at time t2 and position r2; this (N + 1) state propagates from t2 to t1
under the action of the interacting hamiltonian (comprised in the Heisenberg picture of the
operators). The Green function is equal to the overlap between the propagated state and
the (N + 1) state obtained by creating an electron at (r1, t1): in this sense G represents the
transition amplitude associated to the propagation of the test electron from (r2, t2) to (r1, t1).
The two Green functions can be combined in the one-particle casual or time-ordered Green
function is defined as:

G(r1, t1, r2, t2)
def
= −i

〈
ψN
0

∣∣T̂ [
ψ̂(r1, t1)ψ̂†(r2, t2)

]∣∣ψN
0

〉
(3.3)

= G<(r1, t1, r2, t2)θ(t2 − t1) +G>(r1, t1, r2, t2)θ(t1 − t2)
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where T̂ is the time-ordering operator defined as:

T̂
[
ψ̂(r1, t1)ψ̂†(r′2, t2)

]
def
= ψ̂(r1, t1)ψ̂†(r2, t2)θ(t1 − t2)− ψ̂†(r2, t2)ψ̂(r1, t1)θ(t1 − t1)

Moreover, by considering the definitions of the field operators

ψ̂(r, t) def
=

1√
Ω

∑
α

ϕα(r)ĉα(t) ψ̂†(r, t) def
=

1√
Ω

∑
α

ϕα(r)ĉ†α(t)

the Green function can be ri-expressed in terms of creation and annihilation operators:

G(r1, t1, r2, t2) = −i
∑
α1,α2

ϕα1(r1)ϕα2(r2)
〈
ψN
0

∣∣T̂ [
ĉα1(t1)ĉ

†
α2
(t2)

]∣∣ψN
0

〉
(3.4)

Fourier transforms of the Green functions

In the following sections we will often manipulate the Fourier transform of the Green func-
tions, which we briefly elaborate. It’s possible to define [7, p. 62] the Fourier transforms with
respect to space variables r1, r2 and time variables as:

G(r1, t1, r2, t2) =
1

Ω

∑
k1,k2

G(k1, t1,k2, t2)e
ik1·r1e−ik2·r2 (3.5)

G(k1, t1,k2, t2) =
1

2π

∫∫
dω1dω2G(k1, ω1,k2, ω2)e

−iω1t1eiω2t2 (3.6)

If the Hamiltonian is translationally invariant, it can be proved that G(r1, t1, r2, t2) depends
only on the r1 − r2: G(r1, t1, r2, t2) = G(r1 − r2, t1, t2); this in turn implies that the Green
Function [7, p. 124] becomes diagonal in k1,k2 : G(k1, t1,k2, t2) = δk1,k2G(k1, t1, t2).
A similar argument can be made if the Hamiltonian is time-independent: in this case G holds
G(k1, t1,k2, t2) = G(k1,k2, t1 − t2) and it becomes diagonal in the frequencies ω1, ω2:

G(k, t− t′) =
1

2π

∫
dωG(k, ω)e−iω(t−t′) (3.7)

In the following discussion we’ll assume a time-independent and translationally invariant
hamiltonian.
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1.1 Lehmann representation of the Green function

Let’s start the completeness relation of the Fock space (where
∣∣ψN

m

〉
denotes the m-th eigen-

state of a system with N particles):

1̂ = |vac⟩ ⟨vac|+
∑
m≥0

∣∣ψ1
m

〉 〈
ψ1
m

∣∣+ ..+
∑
m≥0

∣∣ψN
m

〉 〈
ψN
m

∣∣+ ..

and insert it into the Green function definition

G<(k, t1 − t2) = + i
∑
m≥0

|
〈
ψN−1
m

∣∣ĉ†k∣∣ψN
0

〉
|2e+

i
h̄

[
E

(N−1)
m −E

(N)
0

]
(t1−t2)

G>(k, t1 − t2) =− i
∑
m≥0

|
〈
ψN+1
m

∣∣ĉ†k∣∣ψN
0

〉
|2e−

i
h̄

[
E

(N+1)
m −E

(N)
0

]
(t1−t2)

where we have used the fact that scalar products between wavefunctions with a different
number of particles are equal to zero. From the integral representation of the step function
the so-called Lehmann representation of the Green function is obtained:

G(k, ω) = lim
η→0+

∑
m≥0

|
〈
ψN+1
m

∣∣ĉ†k∣∣ψN
0

〉
|2

ω − 1
h̄

(
E

(N+1)
m − E

(N)
0

)
+ iη

+
∑
m≥0

|
〈
ψN−1
m

∣∣ĉk∣∣ψN
0

〉
|2

ω + 1
h̄

(
E

(N−1)
m − E

(N)
0

)
− iη

(3.8)

G(r1, r2, ω) = lim
η→0+

∑
m≥0

ΨN+1
m (r1)ΨN+1

m
∗
(r2)

ω − 1
h̄

(
E

(N+1)
m − E

(N)
0

)
+ iη

+
∑
m≥0

ΨN−1
m (r1)ΨN−1

m
∗
(r2)

ω + 1
h̄

(
E

(N−1)
m − E

(N)
0

)
− iη

(3.9)

where ΨM
m (r) is defined as ΨM

m (r) =
〈
ψM
m

∣∣ψ̂†(r)
∣∣ψN

0

〉
. To obtain eq. 3.12 the Fourier trans-

form formula and the definition of field operator using a plane-wave basis set have been
employed. From these expressions we note that the interacting Green function has poles at
the exact excitation energies, defined as the addition or removal energies and involving the
exact eigenvalues of the N and N + 1 system.
Through the definition of the two spectral functions A+, A− the Green function G(k, ω) can
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be reformulated as:

A+(k, ω)
def
=

∑
m≥0

|
〈
ψN+1
m

∣∣ĉ†k∣∣ψN
0

〉
|2δ

[
ω − 1

h̄

(
E(N+1)

m − E
(N)
0

)]
(3.10)

A−(k, ω)
def
=

∑
m≥0

|
〈
ψN−1
m

∣∣ĉk∣∣ψN
0

〉
|2δ

[
ω +

1

h̄

(
E(N−1)

m − E
(N)
0

)]
(3.11)

G(k, ω) = lim
η→0+

∫ +∞

−∞
dω′

[
A+(k, ω)
ω − ω′ + iη

+
A−(k, ω)
ω + ω′ − iη

]
(3.12)

The A− and A+ functions are real, positive and equal to zero for ω < 0. Their sum A(k, ω) def
=

A+(k, ω) + A−(k, ω) satisfies the sum rule:∫ ∞

0

dωA(k, ω) = 1 (3.13)

Due to the two properties above, A(k, ω) can be formally interpreted as a probability density.
It’s possible to derive a similar expression for the non-interacting Green function G0 [61]:

G0(k, t− t′) = −ie−iE(k)(t−t′)/h̄ [θ(t− t′)θ(k − kF )− θ(t′ − t)θ(kF − k)] (3.14)
⇓

G0(k, ω) = lim
η→0+

θ(k − kF )

ω − 1
h̄
E(k) + iη

+
θ(kF − k)

ω − 1
h̄
E(k)− iη

(3.15)

The spectral functions for a non-interacting G0 are therefore [62, p. 175]:

A+(k, ω) =θ(k − kF )δ
(
ω − 1

h̄
E(k)

)
(3.16)

A−(k, ω) =θ(kF − k)δ
(
ω − 1

h̄
E(k)

)
2 The Dyson equation and the Quasiparticle concept
In the previous sections we have studied several relevant properties of the interacting Green
function; but, given that the interacting ground state

∣∣ψN
0

〉
is not known, we haven’t yet

determined a way to calculate it.
The Dyson equation connects the unknown interacting Green function to the non-interacting
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one [61]:

G(r1, r2, ω) = G0(r1, r2, ω) +
∫∫

dr3dr4G0(r1, r3, ω)Σ(r3, r4, ω)G0(r4, r2, ω) (3.17)

Although the expression in momentum and frequency space is more common:

G(k, ω) = G0(k, ω) +G0(k, ω)Σ(k, ω)G(k, ω) (3.18)

It can be solved with respect to the interacting G:

G(k, ω) =
G0(k, ω)

G0(k, ω)− Σ(k, ω)
(3.19)

which can be written explicitly by substituting the known G0 expression:

G(k, ω) =
1

h̄ω − Ek + iη − Σ(k, ω)
(3.20)

associated to a spectral function [63, 64]:

A(k, ω) ∝ |ImΣ(k, ω)|
[h̄ω − Ek −ReΣ(k, ω)]2 + [ImΣ(k, ω)]2

(3.21)

We can now discuss the Quasiparticle concept and start from the following question: under
which conditions we can consider the additional state as a separate particle that propagates
in the system?. In other words, the physical intuition behind this idea is to approximate the
interacting system with a weakly interacting description composed by particles with different
properties (for example different effective masses).
In order to describe the system in an (almost) free particle way, it should be possible to
approximate G as:

G(k, t) ≈ −iZke
−iẼ(k)t/h̄e−Γkt +Gincoherent(k, t) (3.22)

where e−Γkt indicates that this approximation holds only for a finite time interval (ĉ†kψ
N
0 is

not an eigenstate of the interacting system).
The question can be restated in terms of spectral functions. In the previous section we have
seen that the non-interacting spectral functions (eq. 3.16) are proportional to Dirac delta; to
preserve an expression like 3.22 therefore A(k, ω) must be similar to the non-interacting one
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(see also Figure 3.1):

A(k, ω) ≈ Zk
Γk

(h̄ω − Ek −∆Ek)
2 + Γ2

k
+ Aincoherent(k, ω) (3.23)

where Zk is the renormalization factor and the energies E(k)−∆E(k) are renormalized with
respect to the non-interacting ones; the width of peak Γk is equal to the inverse lifetime of
the quasiparticle.
Let’s compare it with equation 3.21: if the imaginary part of the self energy ImΣ(k, ω) is
much smaller than the other terms at the denominator the spectral function will possess a
dominant peak at E(k) +ReΣ(k, ω) (with a broadening equal to Γk = ImΣ(k, ω)).

Figure 3.1: Qualitative picture of the spectral function: recognize the peak over an inco-
herent background.
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3 The Hedin equations
In a seminal paper published in 1965 [11] Lars Hedin determined a set of five coupled integral
equations which represents the starting point for the calculation of the self-energy and the
interacting Green function:

G(1, 2) = G0(1, 2) +

∫
d(3, 4)G0(1, 3)Σ(3, 4)G(4, 2) (3.24)

Σ(1, 2) = i

∫
d(3, 4)G(1, 3)Γ(3, 2, 4)W (4, 1+) (3.25)

W (1, 2) = v(1, 2) +

∫
d(3, 4)v(1, 3)P (3, 4)W (4, 2) (3.26)

P (1, 2) = −i
∫
d(3, 4)G(1, 3)G(4, 1+)Γ(3, 4, 2) (3.27)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
d(4, 5, 6, 7)

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3) (3.28)

where we used the notation 1 = (r1, σ1, t1), 1+ = (r1, σ1, t1 + δ) with δ positive infinitesimal.
The physical quantities involved in the Hedin equations are:

1. The self-energy Σ and the interacting Green function G, connected by the Dyson equa-
tion 3.24 already cited in the previous section.

2. The effective screened interaction W , which includes the screening of the bare Coulomb
potential v present in a polarizable system. The connection between W and bare v is
provided by the inverse dielectric function W = ϵ−1v.

3. The irreducible polarizability P , which can be defined as the variation of the density
δn upon a small perturbation of the total potential δvtot [6]:

P (1, 2)
def
= −iδG(1, 1

+)

δvtot(2)
=

δn(1)

δvtot(2)

4. the vertex function Γ

Γ(1, 2, 3) =
δG−1(1, 2)

δvtot(3)

which accounts for two-particle effects in the polarizability P .
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This set of equations is exact and must be solved self-consistently; however they are not
tractable for any system of interest, and thus a simplification is required. The most used,
the GW approximation, assumes:

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) (3.29)

which in turn implies:

G(1, 2) = G0(1, 2) +

∫
d(3, 4)G0(1, 3)Σ(3, 4)G(4, 2) (3.30)

Σ(1, 2) = iG(1, 2)W (1+, 2) (3.31)

W (1, 2) = v(1, 2) +

∫
d(3, 4)v(1, 3)P (3, 4)W (4, 2) (3.32)

P (1, 2) = −iG(1, 2)G(2, 1+) (3.33)
Γ(1, 2, 3) = δ(1, 2)δ(1, 3) (3.34)

In this approximation the GW self-energy can be written as a convolution in frequency space:

ΣGW (r1, r2, ω1) =
i

2π

∫
dω2e

iω20+G(r1, r2, ω1 + ω2)W (r1, r2, ω2) (3.35)

and that the polarizability term in eq. 3.33 is formally equal to the RPA expression [65,
p. 618][66, p. 41] and results in turn in an explicit expression equal to the independent-
particle polarizability χ0:

PGW
q (G1,G2, ω) =

1

Ω

∑
n,m

∑
k

(fnk − fmk−q) (3.36)

⟨n,k|q + G1|m,k − q⟩ ⟨m,k − q|−(q + G2)|n,k⟩
ω + Em,k−q − En,k + iηsgn(Em,k−q − En,k)

= χ0
q(G1,G2, ω)

4 The Quasiparticle equation
We start from the equation of motion for the one-particle Green function[

ih̄
∂

∂t1
+

h̄

2me

∇2
r1 − Vion(r1)

]
G(1, 2)−

∫
d3Σ(1, 3)G(3, 2) = δ(1− 2) (3.37)
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where we have used the compact notation 1 = r1, t1 and
∫
d1 =

∫
dr1

∫
dt1; the notation 1+

is equal to limη→0 r1, t1− iη and v is the Coulomb potential v(1−2) = e2|r1 − r2|−1δ(t1− t2).
This expression can be derived [67] from the equation of motion of the field operator in the
Heisenberg picture:

i
∂

∂t
ψ̂ = {ψ̂, Ĥ}

From the equation of motion the so-called Quasiparticle equation can be determined:

[
− h̄2

2m
∇2 + vext(r) +

1

2

∫
dr′

n(r′)
|r − r′|

]
Ψm(r) +

∫
dr′Σ

(
r, r′,

ϵm
h̄

)
Ψm(r′) = ϵmΨm(r) (3.38)

The equation is non-linear in the energies (it requires a self-consistent solution) and possesses
a structure similar to the Kohn-Sham equation. This analogy can provide a physical insight
into the self-energy: Σ is the so-called irreducible self-energy, a non-local, non-hermitian
and frequency dependent operator which implicitly contains all many-body exchange and
correlation interactions.
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5 GW Technical implementations

5.1 Calculation of χ and Σ from the spectral representation in VASP

The calculation of the RPA polarizability within the spectral method starts by calculating
the spectral representation of the polarizability [68, 69]:

χS
q(G1,G2, ω

′) =
1

Ω

∑
n,m

∑
k

δ(ω′ − (Enk − Emk−q))sgn(ω
′)(fnk − fmk−q) (3.39)

⟨n,k|q + G1|m,k − q⟩ ⟨m,k − q|−(q + G2)|n,k⟩

where the notation ⟨u|G|o⟩ ≡ ⟨u|eiG◦r|o⟩ is used. The spectral function is evaluated for ω′

defined on the same grid used for ω (formally {ωi} = {ω′
j}).

The presence of δ(ω′−(Enk−Emk−q)) implies that contributions from states n,k and m,k−q
is non-zero only for frequencies ω′ = Enk − Emk−q. The polarization is calculated on a
discrete grid, and Shishkin et al. [68] (as implemented in VASP) approximates the δ with
a triangular function which is non-zero only for frequencies closest to Enk − Emk−q, i.e.
ωi < Enk−Emk−q < ωi+1. This introduces a significant speedup with respect to the standard
independent particle polarizability

χ0
q(G1,G2, ω) =

1

Ω

∑
n,m

∑
k

(fnk − fmk−q) (3.40)

⟨n,k|q + G1|m,k − q⟩ ⟨m,k − q|−(q + G2)|n,k⟩
ω + Em,k−q − En,k + iηsgn(Em,k−q − En,k)

because χ0
q inherently exhibits a linear scaling with respect to the number of frequencies (i.e.

each sum term nk , mk− q contributes to all frequencies), while the cost for the evaluation
of χS is twice that required for static calculation (the term nk , mk− q contributes only to
two frequencies ωi, ωi+1).
The spectral function is related to the polarizability by χS

q(G1,G2, ω) = π−1Im[χ0
q(G1,G2, ω)].

The Hilbert (or Kramers-Kronig) transform can be applied to retrieve the polarizability:

χ0
q(G1,G2, ω) =

∫ ∞

0

dω′χS
q(G1,G2, ω

′)

(
1

ω + ω′ + iη
− 1

ω − ω′ + iη

)
(3.41)

Where we stress than ω and ω′ are evaluated using the same discrete frequency grid. The
Transform can be expressed as a summation over the frequency grid {ωj} as∑

ω′
j
t(ωi, ω

′
j)χ

S
q(G1,G2, ω

′
j) with weights t(ωi, ω

′
j) (see Shishkin et al. [68] for more details).
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Let’s briefly outline now the procedure used for the evaluation of the self energy diagonal
elements, which follows a similar blueprint:

⟨nk|Σ(ω)|nk⟩ = 1

Ω

i

2π

∑
q

∑
G1,G2

∑
m:all

∫
dω′Wq(G1,G2, ω

′)× (3.42)

⟨n,k|q + G1|m,k − q⟩ ⟨m,k − q|−(q + G2)|n,k⟩×[
1

ωm,k−q + ω′ + iηsgn(En,k−q − µ)
+

1

ωm,k−q − ω′ + iηsgn(En,k−q − µ)

]
with the notation ωm,k−q = ω − Em,k−q.
⟨k|Σ(ω)|nk⟩ can be evaluated in three different steps [68]. The first step performs the Hilbert
Transform of Wq:

C±
q (G1,G2, ωn,k) =

i

2π

∫ ∞

0

dω′Wq(G1,G2, ω
′)

(
1

ωm,k−q + ω′ ± iη
+

1

ωm,k−q − ω′ ± iη

)
(3.43)

To reduce the computational time an approximation is introduced: C±
q (G1,G2, ωn,k) is eval-

uated on the same frequency grid of ω, which means dropping the dependence of ω on the
eigenvalues Enk. This implies that for a single q the Hilbert transform of Wq is evaluated
once for each points of the frequency grid; the dependence of ω on Enk would require a
complete recalculation over the entire {ωi} grid for each Enk.

The second step consists in the contraction over the G1,G2 indexes:

S±
nk,mk−q(ω) =

1

Ω

∑
G1,G2

C±
q (G1,G2, ω) ⟨n,k|q + G2|m,k − q⟩ ⟨m,k − q|−(q + G2)|n,k⟩

(3.44)
The variables S±

nk,mk−q are called screened two-electron integrals. In the third step the ex-
pectation value of the self-energy operator can be calculated directly from these screened
two-electron integrals:

⟨nk|Σ(ω = Enk)|nk⟩ =
∑
m

∑
q

sgn(Enk − Enk−q)S
sign
nk,mk−q(|Enk − Emk−q|) (3.45)

where we used the notation sign = sgn(Enk − µ)sgn(Enk − Emk−q).
Both C±

q (G1,G2, ω) and the screened two-electron integrals are evaluated on the same fre-
quency grid {ωi}. However in order to calculate ⟨nk|Σ(Enk)|nk⟩ the values of S±

nk,mk−q
evaluated at |Enk−Emk−q| need to be computed. A linear interpolation of S±

nk,mk−q between
the two closest frequency points ωi < |Enk − Emk−q| < ωi+1 is hence performed.
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This is turn means that, similarly to χS, the contribution of the terms nk, mk − q to the
sum of ⟨nk|Σ(ω = Enk)|nk⟩ depends only on the two frequencies ωi < |Enk−Emk−q| < ωi+1:
Again this implies that the computational cost is basically independent of the frequency grid
dimension and twice that of a static calculation. The downside of this approach is that the
response function must be allocated in memory for all frequencies {ωi}, which significantly
increases the memory requirements.

5.2 G0W0 and the solution of the quasiparticle equation

The standard numerical implementation of G0W0 method relies on the Quasiparticle Equa-
tion (eq. 3.38) and exploits different approximations:

1. The interacting Green function in the self-energy Σ = GW is approximated by the non-
interacting one; both the Green Function and the screened potentials are calculated
from the one-particle states and eigenvalues: Σ ≈ G0W0.

2. The single-particle orbitals are not updated and kept at starting point level (which is
typically a DFT calculation): ψGW ≈ ψKS.

Figure 3.2: Graphical representation of the solution of the Quasiparticle approximation.
The orange line represents ω − EKS, the blue line is proportional to the self-energy and the
black line the linear approximation of the self-energy. The intersection between orange and
blue lines represent the solution of the QPE, while the intersection between orange and blue
line is the solution of the linearized equation.
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3. The updated eigenvalues are determined by solving the Quasiparticle Equation (QPE):

EQP
i = Re

[ 〈
ψKS
i

∣∣T + Vext + VH + Σ(EQP
i )

∣∣ψKS
i

〉]
(3.46)

The self-energy term is in general complex; however Im[Σ] is typically small for fre-
quencies around EQP

i in the quasiparticle approximation and thus can be neglected [30].

4. The QPE in eq. 3.46 must be solved self-consistently (Σ depends on EQP
i ). From the

expansion at first order of the self-energy around EKS
nk the update equation can be

obtained:

Σ(r, r′, EQP
i ) = Σ(r, r′, EKS

i ) +
(
EQP

i − EKS
i

) ∂Σ(r, r′, ω)
∂ω

∣∣∣∣∣
EKS

i

+O
(
(EQP

i − EKS
i )2

)
(3.47)

which can be used to reach a closed expression for EQP
i :

EQP
i − EKS

i = Zi

〈
ψKS
i

∣∣Σ(EKS
i )− Vxc

∣∣ψKS
i

〉
(3.48)

where Zi is the renormalization factor, and measures how much spectral weight the
quasiparticle peak carries:

Zi =

1− ∂Σ(r, r′, ω)
∂ω

∣∣∣∣∣
ω=EKS

i

−1

(3.49)

The graphical solution to eq. 3.48 is illustrated in Figure 3.2.

5.3 GW with the inclusion of off-diagonal terms: fully self-consistent
GW in VASP

The G0W0 schemes discussed until now iterate only the eigenvalues and keep the single-
particle orbitals fixed at DFT level; in order to iterate also the orbitals the off-diagonal
self-energy terms ⟨i|Σ(ω)|j⟩ must be included in the calculation. The scheme employed in
VASP, often labeled QSGW, is a variation of the method introduced by van Schilfgaarde et
al. [70, 71]:

1. We start from a mean-field (typically DFT) starting point {E(0)
i ,

∣∣∣ψ(0)
i

〉
}; from these

starting wavefunctions the scheme determines the full self energy matrix (beyond the di-
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agonal approximation) in the mean-field orbital basis
〈
ψ

(0)
i

∣∣∣Σ(ω)∣∣∣ψ(0)
j

〉
. From the self-

energy operator Σ̃(ω) =
∑

ij

∣∣∣ψ(0)
i

〉 〈
ψ

(0)
i

∣∣∣Σ(ω)∣∣∣ψ(0)
j

〉〈
ψ

(0)
j

∣∣∣ a non-linear one-electron
Schrödinger equation is constructed:[

T + vext + Vh + Σ̃(E
(1)
i )

] ∣∣∣ψ(1)
i

〉
= E

(1)
i

∣∣∣ψ(1)
i

〉
(3.50)

2. (1°approximation) To avoid a non-linear problem, the self-energy is linearized around
E

(0)
i :

Σ(E
(1)
i ) = Σ(E

(0)
i ) +

∂Σ(E
(0)
i )

∂E
(0)
i

(E
(1)
i − E

(0)
i ) (3.51)

By rearranging the terms a generalized linear (but non Hermitian) problem is obtained:

[
h0 + Σ̃(E

(0)
i )− ξ(E

(0)
i )E

(0)
i

]
︸ ︷︷ ︸

H(E
(0)
i )

∣∣∣ψ(1)
i

〉
= E

(1)
i

[
1− ξ(E

(0)
i )

]
︸ ︷︷ ︸

S(E
(0)
i )

∣∣∣ψ(1)
i

〉
(3.52)

with the notations ξ(E(0)
i ) =

∂Σ̃(E
(0)
i )

∂E
(0)
i

and S(E(0)
i ) = 1− ξ(E

(0)
i ) (called overlap matrix).

3. (2° approximation) The GW self-energy is non Hermitian [72]: this implies that the
eigenvalues of eq. 3.52 are complex, the eigenstates are not guaranteed to be orthogonal
and one should distinguish between left and right eigenvectors. To recover a Hermitian
expression for the self energy operator, Σ̃ is approximated by

⟨i|Σ̃herm|j⟩ = 1

2

[
Re[

〈
ψ

(0)
i

∣∣∣Σ(E(0)
i )

∣∣∣ψ(0)
j

〉
] +Re[

〈
ψ

(0)
j

∣∣∣Σ(E(0)
j )

∣∣∣ψ(0)
i

〉
]
]

(3.53)

where Re() indicates the Hermitian part. The overlap matrix is approximated in an
similar way.
This approximation was justified by van Schilfgaarde et al. [70] as the expression which
determines a static hamiltonian H0 as close as possible to the dynamical hamiltonian
H(ω) = T + vext + Vh + Σ̃(ω), in the sense that minimizes the difference ∆V (ω) =
H(ω) − H0. Furthermore, Shishkin et al. [73] attests that this expression provides
band gaps with an accuracy of 1% of those associated with the right-hand eigenvectors
of the linearized non-Hermitian problem plus a successive reorthogonalization of the
eigenstates.
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4. The generalized hermitian problem is finally solved:

Sherm−1/2
HhermSherm−1/2

U = UΛ (3.54)

where U is a unitary matrix and Λ is the diagonal matrix composed by the eigenvalues.
The new orbitals are determined by rotating the old wavefunctions through the U
matrix ψ(1)

i =
∑

j Ujiψ
(0)
j .

The inclusion of non-diagonal Σ elements allows QSGW to achieve independence from the
starting point, one of the most problematic aspects of perturbative diagonal G0W0. The
advantage is particularly evident for materials where the DFT description (one of the most
common starting points) is particularly flawed, such as small-gap semiconductors for which
DFT predicts a metallic behaviour. In these cases diagonal G0W0 results are strongly af-
fected by the metallic starting point, while QSGW strongly improves the description of the
electronic structure [72]. Other typical examples are very large gap semiconductors such as
diamond, MgO, CaO [74]: DFT strongly underestimates the experimental band gap (which
in turn causes an underestimation of G0W0 results) while QSGW reaches a better agreement
with experimental data.
Besides these outlier cases, it’s however well documented in literature [74, 75, 76, 77, 78, 79]
that iterating QSGW beyond the one-shot approach (and hence beyond G0W0 with the inclu-
sion of the off-diagonal elements) produces a systematic overestimation of the experimental
gap. This effect can be explained by looking at the screening term W , usually calculated
in the RPA approximation. On the one hand the polarizability, and thus the screening is
roughly inversely proportional to the band gap; hence a DFT starting point causes an over-
estimation of the screening. On the other hand, the neglect of electron-hole interaction in
the RPA screened potential introduces an underestimation of the screening [73, 80]. The ac-
curacy of the G0W0 approximation stems therefore from a cancellation of these two opposite
errors [81, 82, 83]. Self-consistency (including recalculating W at each iteration) does not ex-
ploit this error cancellation, and the resulting underscreening causes an overestimation of the
experimental gaps. In this sense, van Schilfgaarde and coworkers found that by empirically
rescaling W by ∼ 0.8 factor results were consistently improved [84, 85]. It has been argued
that introducing the vertex corrections in the self-consistence calculation [73, 86] restores an
accurate agreement with experimental data.

Beyond the gap, QSGW is able to provide a correct description of wavefunction orbital char-
acters for materials wrongly characterized by DFT. For example, Bruneval et al. [75] found
that for Silicon or Argon the overlap between LDA and QSGW orbitals

〈
ψLDA

∣∣ψQSGW
〉

is
greater than 99.9% for valence states at k-points with strong symmetry constraints such as Γ;
however also for such classical materials the overlap is lowered for conduction states outside
high symmetry k-points (up to ∼ 95%). Recently, Salas-Illanes et al. [74] discussed how for
the ionic materials LiF and MgO the QSGW clearly modifies the electronic charge density
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(with respect to LDA densities) in the vicinity of the ions.
For materials where the orbitals character characterization by DFT is qualitatively wrong
(such as in topological insulators [87, 88, 89] and materials with strong p-d hybridiza-
tion [90, 91, 92, 93]), the inclusion of the off-diagonal Σ elements has proved able to restore
the correct description. Significant changes of the band curvature due to the introduction
of off-diagonal elements have also been noted for bulk GaAs and Argon [74]; in particular
the LDA picture of Argon (wrongly) predicts an indirect bandgap, while QSGW describes a
direct one.

5.4 Calculation of χ and Σ from Plasmon Pole model

An efficient way to calculate the integral over frequencies in the self energy expression is to
approximate the frequency dependence of ϵ−1 and Wq with a single pole function [20, 94, 30,
95]. The approximation is called Plasmon Pole Model (PPM): two main variants exist (the
Godby-Needs PPM [96, 97] and Hybertsen-Louie one [98]), though other versions have been
developed (such as the Linder-Horsch [99] and Engel-Farid [100] PPMs).
Godby-Needs and Hybertsen-Louie PPMs define ϵ−1 as:

Im[ϵ−1
G1,G2

] =1−
AG1,G2(q)ω̄2

G1,G2
(q)

ω2 − ω̄2
G1,G2

(q)
(3.55)

Re[ϵ−1
G1,G2

] =AG1,G2(q) [δ(ω − ω̄G1,G2(q))− δ(ω + ω̄G1,G2(q))]

where the second expression is computed by the Kramers-Kronig transform. AG1,G2(q) and
ωG1,G2(q) are parameters of the model and represent respectively the plasmon frequency and
the effective peak amplitude. They can be determined by enforcing specific constraints:

1. Godby-Needs PPM reproduces exactly ϵ−1 at ω = 0 and at the plasmon frequency
ω = iωp.

2. The Hybertsen-Louie PPM imposes a generalized f -sum rule.

The great advantage of PPMs is that the self-energy integral over the frequencies is greatly
simplified and can be performed analytically [101]:

⟨nk|Σ(ω)|nk⟩ ∝
∑
m

∑
q

∑
G1,G2

ω̄G1,G2(q)v(q,G1,G2)ρnm(k,q,G1)ρ
∗
nm(k,q,G2)

ω − Em,k−q + (ω̄G1,G2(q)− iη)sgn(µ− Em,k−q)
(3.56)

with v(q,G1,G2) = 4π/|q + G1||q + G2| and ρnm(k,q,G) = ⟨n,k|q + G|m,k − q⟩.

The Plasmon Pole Approximation (in the Godby-Needs version) was employed in calculations
using the Yambo software [19, 20] for the SrTiO3 monolayer.
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5.5 Implementation details: checkpointing feature for G0W0 runs
in VASP

Figure 3.3: Example implementation
of a simple Workchain class, which re-
ceives a single input argument (the geo-
metric structure of a materials) and re-
turns its energy. The workchain exe-
cutes two methods sequentially.

The application of G0W0 schemes notoriously re-
quires large computational resources. These cal-
culations would benefit from a checkpointing logic
which supports a stop-resume behavior: such fea-
ture would allow the user to split a single G0W0

run in multiple, smaller, calculations. This would
in turn help managing lengthy runs on cluster
with small wall-time limits or modest resources
and offer the possibility of creating mid-run back-
ups.
The last public version of VASP (version 6.3.1) does
not however currently support such feature; we
therefore implemented it for the spectral method
in the G0W0 scheme (ALGO = EVGW0 ; NELMGW = 1
flags). This feature was employed during the con-
vergence studies of monolayer SrTiO3 (see chap-
ter 7).

We will briefly outline here the strategy used. The
spectral method discussed in section 5.1 is imple-
mented through a series of cycles (see Fig. 3.3). The
outer level cycle loops over all q in the Irreducible
Brillouin Zone. Before this cycle the main vari-
ables (the screened two-electron integrals and the
response function) one plus several support vari-
ables are initialized to zero. For each q the screened potential at that q (for all frequencies
and G vectors) is calculated; then all contributions deriving from that Wq are accumulated
into the screened two-electron integral variable. In other words each iteration of the q cycle
determines the contributions to Snk,mk−q(ω) for all n,m,k, ω at that fixed q.
Saving at each cycle Wq(G1,G2, ω) was considered not efficient: for large cells saving Wq
for all frequencies would require an exceedingly large storage due to the sizable dimension of
the G basis set. For example, a single Wq for the SrTiO3 monolayer discussed in chapter 7
would require around ∼ 88 GB of storage in the production setup (a vacuum size of 40 Å,
96 frequency points and a cutoff of 325 eV).
The solution we adopted involves saving to disk, at the end of each q iteration, the screened
two-electron integral variable. The great advantage of this approach is that Snk,mk−q requires
a smaller storage dimension because G1,G2 are already contracted and are not indexes of S.
The implementation of the checkpointing feature required different steps; the first was the
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addition of INCAR flags to control the feature, which we document below:

1. The flags LKCHI and LKTOTCHI allow to run the outer q-point cycle over a selection of
the IBZ q-points; the indexes of the selected q-points should be passed as an array to
LKTOTCHI. The introduction of these flags have been developed in collaboration with
PhD. Pietro Maria Forcella of the University of L’Aquila.

2. The flags LCHI_READ and LCHI_WRITE activate the possibility of respectively reading
and writing on disk the screened two electron integrals.

If activated this feature initializes the screened two-electron variable (before the q cycle) by
loading it from disk and distributing it to all MPI-tasks and Snk,mk−q is saved to disk at the
end of each q cycle.

The current method currently does not support GW schemes with the inclusion of off-diagonal
self-energy term (the scheme is defined as ALGO=QPGW in VASP and discussed in section 5.3).
In a QSGW run a supplementary variable is calculated during the q cycle (in addition to Wq
and the screened two-electron integrals):

∑
G1,G2

C±
q (G1,G2, ω) ⟨n,k|ei(q+G1)·r|m,k − q⟩ ⟨m,k − q| e−i(q+G2)·r

This expression is subsequently used to construct the hamiltonian. This variable must be
first collected and correctly merged from all MPI threads then saved to disk; after a restart,
VASP should re-load it and redistribute correctly to all MPI threads. Implementation is
currently in progress: support of the checkpointing for QSGW is presently only preliminary
and still requires extensive testing.
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Chapter 4

The Bethe-Salpeter Equation

It’s well documented in literature that excitonic effects should be taken into account in order
to reproduce the optical properties of semiconductors [6]. In order to describe the electron-
hole interaction we start by the definition of the two-particle Green function:

G(1, 2, 3, 4) = (−i)2
〈
ψN
0

∣∣T̂ [
ψ(1)ψ(2)ψ†(3)ψ†(4)

]∣∣ψN
0

〉
(4.1)

from the two-particle Green function the 4-particle reducible polarizability can be defined:

L(1, 2, 3, 4) = L0(1, 2, 3, 4)−G(1, 2, 3, 4) (4.2)

where the uncorrelated part associated to the independent particle polarizability L0(1, 2, 3, 4) =
iG(1, 3)G(4, 2) has been subtracted from the Green function. L describes the independent
(without interaction) propagation of two particles. We note that by setting 3 = 1, 4 = 2 L0

describes the (non-interacting) propagation of an electron-hole pair: this corresponds to the
expression introduced in eq. 3.33.
The reducible polarizability satisfies a Dyson-like equation [65, 102], the famous Bethe-
Salpeter Equation (BSE):

L(1, 2, 1′, 2′) = L(1, 2, 1′, 2′) +

∫
d(3, 4, 3′, 4′)L0(1, 2, 3

′, 4′)K(3, 4, 3′, 4′)L(3′, 4′, 1′, 2′) (4.3)

The kernel K(3, 4, 3′, 4′) describes the effective interaction between the two particles, and can
be written as:

K(3, 4, 3′, 4′) = δ(3, 4)δ(3′, 4′)v(3, 3′) + i
δΣxc(3, 3

′)

δG(4, 4′)
(4.4)
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Up to now we have not specified the functional form of Σxc; however to solve explicitly the
equation a choice must be taken:

1. If the non-local and dynamic Σxc(3, 3
′) is approximated with the (local and non-

dynamic) Kohn-Sham exchange-correlation potential Σxc(3, 3
′) ≈ δ(3, 3′)vxc(3) and the

non-interacting Kohn-Sham Green function GKS
0 is used the linear response screening

equation of Time-Dependent DFT (the Casida equation) is reached. One of the main
advantages of this approach is the lower computational cost: the two-particle equation
is reduced to a single particle one [103].

2. By approximating Σxc(3, 3
′) with the non-local (but still non-dynamic) Fock exchange

the linear response time-dependent Hartree-Fock [104] is obtained.

3. From the GW self-energy Σxc = iG(1, 2)W (1, 2) the derivative can be written as:

δΣGW (3, 3′)

δG(4, 4′)
= iδ(3, 4)δ(3′, 4′)W (3, 3′) +G(3, 4)

δW (3, 4)

δG(4′, 3′)
(4.5)

At this point a first approximation is introduced: the second term in eq. 4.5 is neglected. This
term contains the derivative δW/δG, which describes the variation of the screening potential
with respect to G [105, 106]. The approximation is physically motivated by the fact that,
while the first term in eq. 4.5 is first order in W, the second one contains only higher orders
in W:

δW (3, 4)

δG(4′, 3′)
∝ [W (3, 4)W (4′, 3′) +W (1, 4′)W (4, 3′)]G(4′, 4) (4.6)

This result can be proven [63, chap. 18] by starting from the inversion relation:

δW

δG
= W

δW−1

δG
W

(determined by deriving both terms of WW−1 = 1). The Dyson equation for W is the
starting point for evaluating δW−1/δG:

W (1, 1′) = v(1, 1′) +

∫
d(3, 4)v(1, 3)P (3, 4)W (4, 1′)
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approximate P ≈ P0 and use
∫
d2G(1, 2)G−1(2, 1′) =

∫
d2G−1(1, 2)G(2, 1′) = δ(1, 1′) for:

W−1(1, 1′) = v(1, 1′) +G(1, 1′)G(1′, 1)

(this can be proven by multiplying both sides by G−1
0 G−1 with indexes chosen in order to

isolate L0). The derivative is therefore equal to:

δW−1(1, 1′)

δG(2, 2′)
= [δ(1, 2)δ(1′, 2)G(1′1) +G(1, 1′)δ(1, 2′)δ(1′, 2)]

The approximation has been tested and validated for bulk silicon [107]. The following kernel
is therefore obtained:

K(3, 4, 3′, 4′) = δ(3, 4)δ(3′, 4′)v(3, 3′)− δ(3, 3′)δ(4, 4′)W (3, 4) (4.7)

The two terms are respectively called exchange and direct term.
At this point a second approximation is typically introduced. Due to the presence of W in
eq. 4.7, the BSE is frequency dependent; however, similarly to the COHSEX approximation
in the GW approach, this frequency dependence is neglected. The static approximation is
equivalent to consider the interaction between the two particles (electron and hole) instan-
taneous as W (1, 2) = W (r1, r2)δ(t1 − t2).

In this section the Bethe-Salpeter equation has been derived starting from the two-particle
Green function. We note that other starting points are possible, such as including vertex
corrections in the self energy; for more details see Onida et al. [65].

1 Solution of the BSE: diagonalization of an effective two
particle Hamiltonian

The most common approach to solve the Bethe-Salpeter equation involves mapping the equa-
tion onto an effective two-particle hamiltonian which can be diagonalized with standard al-
gebra techniques.
The first step is expanding L and L0 over a basis set composed by products of single particle
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orbitals ψn(r) called transition space:

L(1, 2, 1′, 2′) =
∑
n1n2

∑
n′
1n

′
2

Ln1′n2′
n1n2

ψ∗
n1
(r1)ψn2(r2)ψn1′

(r1′)ψ∗
n2′

(r2′) (4.8)

Ln1′n2′
n1n2

=
〈
ψ∗
n1
(r1)ψn2(r2)

∣∣∣L(1, 2, 1′, 2′)∣∣∣ψ∗
n1′

(r1′)ψn2′
(r2′)

〉
(4.9)

where ni is a compact notation for band and k-point indexes. The advantage of this formu-
lation is that L0 (here written in frequency domain in its Lehmann representation):

L0(1, 2, 1
′, 2′, ω) =

∑
n1n2

(fn2 − fn1)
ψn1(r1)ψ∗

n2
(r2)ψ∗

n1
(r1′)ψn2(r2′)

En2 − En1 − ω − iη

is diagonal in transition space:

L0
n1′n2′
n1n2

= (fn2 − fn1)
δn1,n1′

δn2,n2′

En2 − En1 − ω − iη
(4.10)

The Bethe-Salpeter eq. 4.3 can be rewritten for the matrix elements:

Ln1′n2′
n1n2

= L0
n1′n2′
n1n2

+ L0
n3n4
n1n2

Kn5n6
n3n4

Ln1′n2′
n5n6

(4.11)

this Dyson-like equation can be rewritten as (see Onida et al. [65] for a complete derivation):

L = [1− L0K]−1 L0 = L−1
0

[
L−1
0 − L0K

]−1
L0 =

[
L−1
0 − L0K

]−1 (4.12)

In order to determine the polarizability L an inversion of an (effective) two-particle hamilto-
nian must be therefore performed:

Ln1′n2′
n1n2

=
[
H2p − Iω

]−1n1′n2′

n1n2

(
fn1′

− fn2′

)
(4.13)

H2pn1′n2′
n1n2

def
= (En2 − En1) δn1,n1′

δn2,n2′
+ (fn1 − fn2)K

n1′n2′
n1n2

(4.14)
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where the kernel elements Kn1′n2′
n1n2 = 2v

n1′n2′
n1n2 −W

n1′n2′
n1n2 are defined as:

vn2n2′
n1n1′

=
〈
ψn1(r)ψ

∗
n1′

(r)
∣∣∣v(r, r′)∣∣∣ψ∗

n2′
(r′)ψn2(r

′)
〉

(4.15)

=

∫
drdr′ψ∗

n1
(r)ψn1′

(r)v(|r − r′|)ψ∗
n2′

(r′)ψn2(r
′)

W n1′n2′
n1n2

=
〈
ψn2(r)ψ

∗
n′
2
(r)

∣∣∣W (r, r′)
∣∣∣ψ∗

n1′
(r′)ψn1(r

′)
〉

(4.16)

=

∫
drdr′ψ∗

n2
(r)ψn2′

(r)W (r, r′)ψ∗
n1′

(r′)ψn1(r
′)

(4.17)

Most ab-initio codes avoid a direct inversion of [H2p − Iω], which would be computationally
prohibitive, and employ its spectral representation [108]:

L =
∑
λ1,λ2

|λ1⟩S−1
λ1λ2

⟨λ2|
Eλ1 − ω − iη

(4.18)

Ln1′n2′
n1n2

=
[
H2p − Iω

]−1n1′n2′

n1n2
=

∑
λ1,λ2

Aλ1
n1n2

S−1
λ1λ2

Aλ2∗
n1′n2′

Eλ1 − ω − iη
(4.19)

where |λ⟩ and Eλ are the eigenvectors and eigenvalues of H2p, while Aλ
n1n2

are the coupling
coefficients of the BSE eigenvectors over the transition space basis |λ⟩ =

∑
n1n2

Aλ
n1n2

|n1⟩ |n2⟩.
Sλλ′ is the overlap matrix defined as Sλ1λ2

def
=

∑
n1n2

Aλ1
n1n2

Aλ2
n1n2

. The effective eigenvalue
equation can be written for |λ⟩ and An1n2

λ :

H2p |λ⟩ = Eλ |λ⟩ (4.20)∑
n1′n2′

H2pn1′n2′
n1n2

Aλ
n1′n2′

= EλAλ
n1n2

(4.21)

This expression is also valid for a generic non-hermitian matrix; however, if H2p is non-
Hermitian its eigenvectors are in general not orthogonal and thus Sλλ′ differs from the identity.

Once obtained an explicit procedure to calculate L, the dielectric function ϵM(q, ω) can
be determined from the contraction of the 2-particle polarizability [65, 109]:

χ(1, 2) = −iL(1, 2, 1+, 2+) ⇒ ϵM(q, ω) = 1− v(q)
∫
dr1dr2eiq·(r1−r2)L(r1, r1, r2, r2, ω)

(4.22)
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By exploiting the expansion over the transition space basis (eq. 4.8) and the spectral repre-
sentation of its matrix elements (eq. 4.18) can be reached:

ϵBSE
M (q, ω) = 1− v(q)

∑
n1n2

∑
n′
1n

′
2

Ln1′n2′
n1n2

⟨n2|eiqr|n1⟩ ⟨n′
1|e−iqr|n′

2⟩

= 1− v(q)
∑
λ1λ2

S−1
λ1λ2

Eλ − ω − iη

[∑
n1n2

⟨n2|eiqr|n1⟩Aλ1
n1n2

]
×∑

n′
1n

′
2

⟨n′
1|e−iqr|n′

2⟩A
λ2∗
n′
1n

′
2

 (4.23)

2 Structure of the excitonic hamiltonian and the Tamm-
Dancoff approximation

In this section we discuss explicitly the structure of the effective excitonic hamiltonian in the
optical limit (transferred momenta q → 0); For a more detailed treatment we refer to the
books of Bechstedt [63] or Martin, Reining and Ceperley [6]. We consider gapped systems at
zero temperature with conservation of single-particle spin.
In a non-metal a T=0 K, due to the occupation factors (fn1 − fn2) in H2p (eq. 4.13) only
interband transitions provide non-zero matrix elements to the hamiltonian. In light of this
we slightly change the notation: instead of n1, n2, n

′
1, n

′
2 we use v1, v2 for the valence bands

and c1, c2 for the unoccupied bands; the k-point index is dropped for simplicity (in the optical
limit all transitions involved conserve momentum).
H2p has a block matrix structure, as visible in eq. 4.24:

H2p =

[
H2pv2c2

v1c1
H2pc2v2

v1c1

H2pv2c2
c1v1

H2pc2v2
c1v1

]
=

[
Hresonant Kcoupling

−
(
Kcoupling

)∗ − (Hresonant)
∗

]
(4.24)

The resonant term H2pv2c2
v1c1

is equal to :

H2presonant = H2pv2c2
v1c1

= (Ec1 − Ev1)δc1,c2δv1,v2 + 2vv2c2v1c1
−W v2c2

v1c1
(4.25)

and contains only transition corresponding to direct excitations (v1 → c1, v2 → c2). The so
called antiresonant term H2pc2v2

c1v1
is equivalent to

H2pantiresonant = H2pc2v2
c1v1

= −
(
H2pv2c2

v1v1

)∗
= −

(
Hresonant

)∗ (4.26)
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Figure 4.1: Graphical representation of the various components of the effective two-particle
hamiltonian matrix elements.

and contains only de-excitation transitions.
The kernel elements of the resonant block are equal to 2vv2c2v1c1

−W v2c2
v1c1

and are defined as:

vv2c2v1c1
=

∫
dr1dr2ψ∗

v1
(r1)ψc1(r1)v(|r1 − r2|)ψ∗

c2
(r2)ψv2(r2) (4.27)

= 2
∑

G1,G2

v(G1) ⟨v1|eG1r|c1⟩ ⟨c2|e−G2r|v2⟩

W v2c2
v1c1

=

∫
dr1dr2ψ∗

c1
(r1)ψc2(r1)W (r1, r2)ψ∗

v2
(r′2)ψv1(r2) (4.28)

= 2
∑

G1,G2

W (G1,G2) ⟨v1|eG1r|c2⟩ ⟨v2|e−G2r|v1⟩

(4.29)

The resonant term is thus composed by three different contributions:

1. (Ec1 −Ev1)δc1,c2δv1,v2 contains the difference between the valence and conduction band
energies; represents the independent particle transitions. If we neglect the following
kernel terms and retain only this term, we recover the Independent Particle Approxi-
mation.

2. The second term vv2c2v1c1
includes the unscreened interaction; it stems from the variation of

the Hartree potential, but it’s called exchange term because the indexes are connected
in an exchange-like manner [65]. The term provides a positive contribution and leads
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to a blueshift in the transition energies.

3. The third term W v2c2
v1c1

includes the screened potential and is labeled as the direct term
(even if it originates from the variation of the exchange-correlation potential). It rep-
resents an attractive interaction, and thus causes a redshift of the transition energies.

To get physical insights into the components of the resonant block we can follow the suggestion
of Martin et al. [6] and consider a BSE matrix formed by a single valence and conduction
bands (a two-level system). In this case the kernel terms reduce to:

vccvv =

∫
dr1dr2ρ∗vc(r1)v(r1 − r2)ρvc(r2) (4.30)

W cc
vv =

∫
dr1dr2ρ∗vv(r1)W (r1, r2)ρcc(r2) (4.31)

with ρvc = ψ∗
v(r)ψc(r). We can see that vccvv describes an interaction between two dipoles,

while W cc
vv is an interaction between the charge densities of an electron and a hole.

The Tamm-Dancoff approximation
The off-diagonal terms mix excitations and de-excitations, that is transitions with positive
and negative energies. Neglecting these terms makes the BSE matrix Hermitian (and of
half-size) - this approximation is called the Tamm-Dancoff approximation [109, 110]. It has
been successfully tested and validated for bulk semiconductors and insulators [108], but it’s
considered less justified for finite systems [111].
Inside the Tamm-Dancoff approximation H2p is hermitian, which implies that the excitonic
states becomes orthogonal Sλ1,λ2 = δλ1,λ2 . The macroscopic dielectric function ϵM(q, ω) in
eq. 4.23 reduces to:

ϵBSE−TD
M (q, ω) = 1− v(q)

∑
λ

∣∣∣∑v,c

∑
k ⟨vk − q|e−iqr|ck⟩A(vk)(ck)

λ

∣∣∣2
Eλ − ω − iη

(4.32)

It’s instructive to compare this expression with ϵ(q, ω) in the Independent Particle Approxi-
mation (IPA):

ϵIPA
M (q, ω) = 1− v(q)

∑
v,c

∑
k

∣∣∣ ⟨vk − q|e−iqr|ck⟩
∣∣∣2

(Eck−q − Evk)− ω − iη
(4.33)
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ϵM is defined as a sum of Lorentzian peaks ((Eck − Evk+q)− ω − iη)−1 with broadening
defined by η in both expressions1. In the IPA approximation each independent particle tran-
sition Eck−q −Evk provides its Lorentzian contribution to ϵIPA

M , with amplitude equal to the
square module of the transition dipole moment | ⟨vk − q|e−iqr|ck⟩|2.
The contributing Lorentzians in ϵBSE−TD

M are instead defined at the BSE exciton eigenvalues,
and their amplitudes (commonly defined in literature as oscillator strengths) are proportional

to
∣∣∣∑v,c

∑
k ⟨vk − q|e−iqr|ck⟩A(vk)(ck)

λ

∣∣∣2. This term can be interpreted as a mix of indepen-
dent particle transitions with weights equal to the coupling coefficients Aλ

n; because Aλ
n are

in general complex variables, constructive or destructive superposition effects can be found
and have been discussed in literature [112, 113].

1The broadening is controlled by the CSHIFT flag in VASP. The default value, which is adopter for all
calculations discussed in this thesis, is equal to 0.1 eV.
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Chapter 5

Development of an AiiDA workflow for
the G0W0 extrapolation method

The fast advancements in computational power and the maturation of ab-initio codes have
opened the possibility of creating large databases of electronic and thermodynamic prop-
erties through automated procedures. These databases can be screened in search of novel
materials with desiderable properties or utilized as training set for machine learning-derived
approaches [114, 115, 116]. In fact in the last decades the computational High-Throughput
approach (HT) has emerged, following the previous example of experimental HT ones, and
large repositories like Materials Project [117], AFLOW [118, 119] or Materials Cloud [120]
have been developed.
One of the essential elements of any HT project is the so-called Workflow Management Sys-
tem (WMS). A workflow can be defined as the sequence of different operations (ab-initio
calculations or data manipulation), with some degree of interdependence; the role of the
WMS is to automatize and streamline the preparation, submission and management of these
simulations and their eventual parallelization.

Another crucial point in the computational science field is data reproducibility, which al-
lows the validations of data and ensures reliable and reusable data in accordance with the
FAIR principles [121] (Findable, Accessible, Interoperable, Reusable).
In order to guarantee reproducibility it should be possible to trace back all steps that led to
data creation: a WMS should therefore not only store the data generated by also preserve
the connections between results of different ab-initio calculations. The so-called provenance
of the data produced should be therefore accurately documented, in order to guarantee re-
producibility. This is especially true for results requiring complex chains of interconnected
calculations, such as Quasiparticle and optical properties. In particular, the provenance
should be handled by the WMS in order to comply with two different constraints:

• Scalability : given the large dimension of databases created in HPC (High-Performance
Computing) environments, the provenance manager should be suitably robust in order
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to handle and query efficiently sizable databases.

• Complexity and flexibility : material science workflows often require the implementation
of multi-step and interdependent procedures, such as error-correcting and convergence
sub-routines. The WMS should hence be able to handle and document dynamic work-
flows (a workflow is labeled as dynamic if it allows for changes at runtime level, such
as inserting additional steps or logical branches depending on intermediate results).
Most WMS however uses static markup languages (such as XML [122] or the Common
Workflow Language[16]) which deny the possibility of any run-time logic.

The Workflow Management System employed in this work is AiiDA [47, 48], a robust open-
source framework successfully deployed in High-Throughput [123, 124, 125, 126, 127, 128]
and computational studies [129, 124].

As discussed in section 3, the state-of-the-art approach for accurately reproducing and pre-
dicting bandstructures is the many-body GW scheme. This method significantly outperforms
DFT for what regards the description of excited state properties and represents an effective
starting point for the calculation of excitonic and optical properties. The GW approach
however possesses two main drawbacks with respect to standard DFT, namely:

1. The demanding computational cost and poor scaling with respect to system size: the
standard implementation scales with the fourth power of the basis set dimension and
the second power of the k-point mesh dimension, with a large prefactor.

2. The large number of numerical parameters which should be controlled, which requires
a reliable procedure to assess convergence and avoid erroneous results.

Due to these complications the application of GW schemes to advanced materials was typi-
cally possible only for very experienced users, capable of accurately tuning the parallelization
parameters and able to avoid convergence errors.
The ever-increasing availability of computational power in HPC center together with the in-
troduction of low-scaling GW schemes [29, 130, 131] and optimized approximations [132, 133,
134, 135, 136], has made it possible to apply the High Throughput (HT) approach to GW
schemes for the first time [137, 28, 31, 32, 35]. The High-Throughput implementation of GW
methods requires however reliable and standardized convergence procedures; in this regard
several schemes to systematize the convergence of the GW numerical parameters have been
proposed in recent years [28, 31, 32, 35]. The present chapter describes an alternative scheme,
introduced by Klimeš et al. [33] and Ellinger et al. [35, 36] and documents its development
as a workflow in the AiiDA-VASP framework. The AiiDA-VASP plugin did not originally
support post-DFT algorithms; hence an extension of the plugin to include GW/BSE support
has been developed in parallel and it’s discussed in section 4.
The workchain is fully available online and we plan to include it in a future release of the
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AiiDA-VASP official plugin1.

1 The AiiDA framework
The AiiDA WMS is composed by two main subsystems: the engine (that controls the exe-
cution, storage and communication with the clusters) and the user interface libraries. These
libraries allow the user to write workflows in the standard Python language, without the need
of additional markup languages.
The compatibility with ab-initio codes is ensured via plugins that can be downloaded and in-
stalled separately2; the AiiDA-VASP plugin is used thorough this work [141].

class Workchain_example(Workchain):

define():

spec.input(structure, type=StructureData)

spec.output(energy, type=Float)

spec.outline(

cls.prepare_parameters(),

cls.submit_calculation(),

)

def prepare_parameters(self):

[..]

def submit_calculation(self):

[..]

Figure 5.1: Example implementation
of a simple Workchain class, which re-
ceives a single input argument (the geo-
metric structure of a materials) and re-
turns its energy. The workchain exe-
cutes two methods sequentially.

Structure of an AiiDA workflow
The Workchain class is the central component
of workflow development in AiiDA. Each work-
flow is structured in different steps, each as-
sociated with a specific class method. These
methods can leverage the standard scientific
Python libraries, such as numpy or scipy to
process data. In order to prevent data
loss, progresses are saved in a checkpoint
to the database by the engine after each
step. This allows to continue the work-
flow from the last checkpoint in case of fail-
ures.

The main information of a workflow are encoded in
a particular method, labeled define(), which acts
effectively as a process specification. The method
declares the workchain inputs and outputs (includ-
ing information about their types and whether they
are required or optional) using the spec.input and spec.output keywords. The manda-
tory spec.outline() method encodes the internal logic of the workflow, i.e. the sequence
of class methods composing the workchain and the order of execution. Each method called
inside outline() represents a step that will be executed sequentially by the AiiDA engine.
Conditional constructs (including while and if/else statements) can be included inside
outline() to introduce flow control. As a simple example, the workchain in Figure 5.1

1The workflow as well as a patch for the extension of AiiDA-VASP can be found in https://github.
com/lorenzovarro/GW-VASP-workflow.

2Others important plugins are AiiDA-Quantum Espresso [138], AiIDA-Yambo [139] and AiiDA-
Abinit [140].
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executes only two class methods: it starts by calling prepare_parameters() and after its
execution continues with submit_calculations().
The AiiDA workchains are self-documenting by design, in the sense that through an inspec-
tion of the define() method a user can understand the workflow’s interface, main logic and
eventual exit modes.

Variables returned by or passed to the workchains possess specific types defined by the AiiDA
libraries. These types extend the standard Python types (Float, Dict, Int) or encompass
material-science related data (KpointsData, BandsData, StructureData). These types in-
clude additional information about the data stored, such as the software that created them,
creation and last modification times, a label and a unique identifier.

AiiDA-VASP main workflow
The AiiDA-VASP plugin provides an interface between AiiDA and VASP, and allows AiiDA
to run, control and inspect VASP simulations. The plugin defines a special workflow, called
VaspWorkChain, which performs the low level interactions with the VASP executable: it
automatically constructs the input files from the parameters passed (INCAR, POSCAR, etc.),
inspects the calculation for any problems (i.e. unfinished or crashed runs) and calls the
correct parsers after the execution. In this sense it acts as an abstraction layer, allowing
the user to manipulate AiiDA variables such as KpointsData and StructureData (instead
of employing the specific KPOINTS or POSCAR syntaxes). All user workchains, including
the G0W0 workchains described in this chapter, call VaspWorkChain as main entry point for
executing VASP calculations.

2 Convergence procedures

2.1 Importance of Convergence

The essential parameters which must be converged in the GW schemes are:

• Number of bands included in the self energy expression 3.35 NΣ
b .

• Number of bands included in the calculation of the response function 3.36 Nχ
b .

• Energy cutoff of the plane wave basis set Ecut.

• Energy cutoff of the plane wave basis used for the response function Eχ
cut, which defines

the number of G vectors included in the response function χ0
q(G1,G2, ω) and inverse

dielectric matrix ϵ−1
q (G1,G2, ω).

• The k-point mesh.
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Note that VASP assumes NΣ
b = Nχ

b , and we will maintain this assumption for the following
discussion. Moreover, to avoid ambiguities, we remark that the Eχ

cut cutoff does not control
the expansion of the wavefunctions inside the transitions matrix elements ⟨nk|e−i(q+G)◦r|mk + q⟩;
the energy cutoff on the dipole elements is still controlled by Ecut.
In VASP syntax NΣ = Nχ corresponds to the NBANDS flag, Eχ

cut to ENCUTGW and Ecut to
ENCUT3.
All schemes discussed in this chapter rely on the premise that the convergence of the energy
cutoffs and of the total number of bands NΣ

b are coupled together and that they are decoupled
from the k-point mesh. In this context it means that, for example, the converged NΣ

b value
depends on the employed Eχ

cut and Ecut parameters (and vice-versa).
A first insight on the physical explanation behind the premise can be found by inspecting
the static limit of the standard GW self-energy [142, 143]:

ΣCOH(r, r′) =
1

2
δ(r − r′) [W (r, r′, ω = 0)− v(r − r′)]

=
1

2

[∑
nk

ψnk(r)ψ∗
nk(r

′)

]
[W (r, r′, ω = 0)− v(r − r′)] (5.1)

where we have applied the completeness relation for the eigenvector basis. The terms inside
the summation can be identified with virtual transitions caused by the charge fluctuations
induced by a quasiparticle [142].
The expectation value of the static Coulomb Hole operator can be written in reciprocal space
as:

⟨nk|ΣCOH |nk⟩ = 1

2

∑
mq

∑
G1G2

Mmn
k,q (G1)M

mn
k,q

∗(G2)
[(
ϵ−1
G1,G2

(q, 0)− δG1,G2

)
v(q + G1)

]
(5.2)

with Mmn
k,q (G) = ⟨nk|ei(q+G)◦r|mk − q⟩. A reduced cutoff on G1,G2 will damp and thus

prevent contributions from high energy unoccupied bands in ΣCOH sum; for this reason, un-
dervalued cutoffs will cause a false convergence with the respect to the number of unoccupied
bands [145, 146, 143, 135]. The coupled variables must therefore be considered simultane-
ously and a multidimensional parameter space must be explored in the convergence scheme.
This topic will be discussed in details later in the chapter.

Another crucial point which should be handled by convergence schemes is the particularly
slow convergence with respect to the number of bands included in the self energy contri-

3in VASP version 6.3 and later releases an additional cutoff flag is introduced, ENCUTGWSOFT, which allows
to truncate the Coulomb kernel (inside the ϵ−1 calculation routines) slowly between the energy specified by
ENCUTGWSOFT and ENCUTGW using a cosine window function. To maintain consistency with previous
version we use ENCUTGWSOFT=ENCUTGW.
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butions [142, 143, 147, 148, 30, 149, 150, 151]. This aspect becomes particularly critical
when localized d orbitals have an important role in the physics of the compound, such as
MgO, ZnO [149, 143, 152] or transition metal oxides perovskites [144, 145, 153]. These
materials might require up to thousands of bands to obtain well-converged results. This
numerical constraint is one of the reasons behind the comparatively limited number of many-
body study of large systems [135, 154, 29, 155, 156, 157, 158] or 4d and 5d magnetic per-
ovskites [144, 159, 160, 161, 162, 163, 164, 165]. This behavior becomes even more problematic
in applications where absolute energies (and not just transitions between valence and conduc-
tion bands) should be accurately estimated (such as interfaces studies, molecular electronics
or photovoltaic applications) [166].
The computational expense associated to this convergence over empty bands has led to the de-
velopment of alternative GW formulations that avoid the summation over unoccupied states,
such as the ones based on optimal basis sets [131] or on the Steinheimer equation [130].

Figure 5.2: Representation
of the conventional method
convergence for the QP gap
with respect to the number
of bands and cutoff. Adapted
from [144].

An insight into the cause of this behavior can be found
by looking again at the COH operator (eq. 5.2): the ma-
trix elements Mmn

k,q (G) exhibit a slow decay with respect
to energy difference between n and m bands, which im-
plies that even virtual transitions to high energy bands
may provide non-negligible contributions to the summa-
tion [142].
Moreover studies in the quantum chemistry commu-
nity [167, 168, 169] have related the slow convergence
of the RPA correlation energy (defined as ERPA

c =∫
dωTr [ln (1− χ0(iω)v) + χ0(iω)v]) to the electron-electron

cusp in the many-electron wavefunction [170, 171]. The
RPA correlation energy is closely related to GW meth-
ods, as these usually employ the RPA response func-
tion.

Two different convergence schemes will be discussed in this
section: the conventional one, which can be considered as the
standard and most common procedure [28], and the basis-set
extrapolation of Klimeš et al. and Ellinger et al., which is the
one implemented in the AiiDA workflow.

2.2 Conventional method

The so-called conventional method (illustrated in fig. 5.2) attempts to converge the QP
bandgap by an iterative approach:

• Eg is calculated as a function of the bands number Nb for a fixed energy cutoff value
E1

cut; the converged number of bands at that cutoff is labeled as Nb(E
1
cut).
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• The cutoff value must also be optimized; however due to the Ecut − Nb coupling the
converged Nb values for different cutoffs may be in principle different (i.e. Nb(E

1
cut) ̸=

Nb(E
2
cut)). Therefore the bands convergence at fixed E1

cut is repeated for different cutoff
values E2

cut, E3
cut.

• The convergence in the Ecut − Nb space is performed on a low-density k-points mesh.
Due to the decoupling of the k-mesh from the Ecut−Nb parameters, it can be assumed
that the convergence performed at low-density k-point mesh holds also on more dense
k-point meshes.
Conversely, the k-points convergence is performed adopting under-converged (and less
computationally expensive) Ecut and Nb.

• A final GW calculation is performed with the optimized parameters.

This procedure can achieve satisfactorily converged QP gaps with error below 100 meV [144].
Moreover, extrapolations to the infinite-basis-set limit based on different fitting schemes have
been applied in literature [153, 172, 173, 28] on top this convergence procedure to further
reduce the error.
There are however two main downsides:

1. On the one hand this scheme requires a comparatively large number of GW calculations
in order to explore the two dimensional Ecut −Nb parameter space.

2. On the other hand it lacks a rigorous mathematical foundation [144, 33]: to the best
of our knowledge there is no analytic proof that guarantees that this approach yields
correct converged properties. Its validity is based on a heuristic argument, in the sense
that is based on extensive tests and comparison with experimental data.

2.3 Basis extrapolation method

The main results of the scheme derived by Klimeš et al. [33] is that, under the hypothesis of
complete basis, the leading order error (due to truncation of the bands summation) on the
QP energy of a ψm state close to the Fermi energy scales asymptotically with the inverse of
the plane waves number:

∆Em ∝ 1

G3
cut

∑
g

ρm(g)ρ(−g) ∝ 1

Nb

∑
g

ρm(g)ρ(−g) (5.3)

where g = G1 −G2 (with G1,G2 reciprocal lattice vectors of the cell of volume Ω), ρ is the
total density component in reciprocal space, ρm the density of the m orbital ψm and Gcut is
the reciprocal vector cutoff associated to Ecut. Their derivation assumes a complete basis set
for a given energy cutoff Ecut, meaning that the total number of (occupied plus unoccupied)
orbitals included is determined by the Ecut choice, and corresponds to all orbitals that the
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plane-wave basis set allows to calculate.
The protocol is illustrated in Figure 5.3 and can be summarized as:

• A set of three G0W0 calculations with different cutoffs E1
cut, E

2
cut, E

3
cut is performed.

These simulations should satisfy two constraints: on the one hand the complete orbital
basis for a given cutoff must be taken into account, which translates to setting Nb

(NBANDS) equal the maximum number of plane waves (labeled respectively N1
b , N

2
b

and N3
b )4. On the other hand Eχ

cut should be set to a fixed ratio5 of the corresponding
cutoff Ecut (in order to avoid false convergences [33]).
This scheme, similarly to the conventional one, takes advantage of the decoupling be-
tween Nb, Ecut and the number of k-points employed: the three calculations are hence
performed on a low k-point density mesh (labeled nk).

• The asymptotic limit of the gap with respect to the bands number E∞
g (nk, N

∞
b ) is

determined by fitting a 1/Nb+offset curve to the results and extrapolating to Nb → ∞
limits.

• The cutoffs employed by Klimeš et al. are chosen as the 1×, 1.25×, 1.587× the maxi-
mum energy provided in the pseudo-potential (which correspond to an increase of the
total number of bands of respectively 1.4× and 2×). Ellinger et al. [35] introduced
and tested a variant of this protocol with lower cutoffs (0.75×, 1×, 1.25× the maximum
energy provided in the pseudo-potential).

• A single G0W0 calculation on a dense k-point mesh (labeled Nk) is performed using the
E1

cut cutoff. The extrapolated correction computed on nk is then added to account for
the band convergence correction:

E∞
g (Nk, N

∞
b ) = Eg(Nk, N

1
b ) +

[
E∞

g (nk, N
∞
b )− Eg(nk, N

1
b )
]︸ ︷︷ ︸

correction

(5.4)

Validation and alternatives
This scheme has been extensively tested and validated on bulk solids (including challenging
materials such as transition metal oxide perovskites) by Ellinger et al. [35, 36] and Ergönenc
et al. [144]. Ellinger and coworkers applied the extrapolation scheme to a set of 70 binary
compounds; Ergönenc et al. applied the scheme to the same dataset studied in chapter 6
and compared the extrapolated results to experimental data and values obtained with the

4The precise value is printed out by VASP in the OUTCAR file of the corresponding ground state calcu-
lation.

5VASP automatically sets Eχ
cut equal to 2/3 of Ecut; Ellinger and coworkers [35, 36] tested a version of

the workflow where Eχ
cut is equal to 1/2Ecut. It’s essential however to keep the value constant along the

workflow.
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Figure 5.3: Adapted from [144]. Schematic representation of the basis-set extrapolation as
defined in equation 5.4.

conventional method. The Mean Absolute Error (MAE) with respect to the experimental
data obtained by the extrapolation method is 0.20 eV, versus a MAE of 0.25 eV for the
non-extrapolated conventional method.
Maggio et al. [34] adopted the scheme to study a set of 100 closed shell molecules (the so
called GW100 set) and compared the results with data obtained from local basis set codes
(including extrapolation with respect to the local basis). VASP extrapolated HOMOs are
in excellent agreement with local basis set data, with a mean absolute error of less than 60
meV. Analogous results for the GW100 set were obtained by Govoni and Galli [174].

The protocol introduced by Klimeš et al. represents a complementary approach to conver-
gence accelerators based on the resolution of identity [175] or on effective energy denominator
techniques [133, 132]. The cited methods allow to reduce the number of empty states with
respect to standard GW while retaining a very similar accuracy; a conventional convergence
study is still required in order to avoid false convergences (and to explore the Ecut −Nb cou-
pling), but the convergence curves with respect to the band number are strongly accelerated.
Klimeš’ scheme instead explicitly estimates the error due to truncation of high energy plane
wave components in the response function, and extrapolates the results to the infinite basis
set limit.
Furthermore, the assumption of a complete basis set (i) averts completely the risk of false
convergences and (ii) adopts a clear relation between Ecut and Nb: this in turn avoids the
need of optimizing Ecut and Nb separately and of exploring the 2-dimensional parameter
space. The scheme therefore enables a more streamlined procedure and allows to reduce the
total number of calculations required for convergence. These are the main advantages of the
basis extrapolation method.
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Derivation of equation 5.3 and further considerations
In this section a review of the main steps needed to prove eq. 5.3 will be given as described
by Klimeš et al. [33]; the derivation allows to further explain and illustrate the properties of
the Ecut −Nb convergence discussed above.
Let’s start by approximating the screened interaction W to second order W = v + vχ0v,
which implies Σ = GW ≈ G0v +G0vχ0v. The first order G0v is the Fock exchange part and
the second term represents the correlation part.
The second order term vχ0v can be written for large G (implying |q + G|2 ≈ G2) as:

vχ0v(G1,G2) =
2

Ω

4π

G2
1

4π

G2
2

∑
o:occ

∑
u:unocc

⟨o|−G1|u⟩ ⟨u|G2|o⟩
w + (Eo − Eu) + iη

− ⟨u|−G1|o⟩ ⟨o|G2|u⟩
w − (Eu − Eo)− iη

(5.5)

⟨u|G2|o⟩ is a compact notation for the overlap density term ⟨u|G|o⟩ ≡ ⟨u|eiG◦r|o⟩, where
the o index spans the occupied states and u the unoccupied ones.
We initially assume that the orthonormal orbital basis is complete (all infinite unoccupied
states are included), thus u spans all empty orbitals.

The self energy contribution to the QP energy is obtained from eq. 3.35:

⟨m|Σ(ω)|m⟩ ∝ 1

Ω

∑
q

∑
G1,G2

∑
n:all

∫
dω′Wq(G1,G2, ω

′)× (5.6)

⟨m,k|q + G1|n,k − q⟩ ⟨n,k − q|−(q + G2)|m,k⟩
ω − ω′ − En,k−q + iη sgn(En,k−q − µ)

where η is a positive infinitesimal and sgn is the sign function.
Let’s focus on the correlation part developed at second order by substituting W2order ≈ vχ0v.
The

∫
dω′ integral can be calculated using the standard contour integration technique by

closing the contour in the lower half of the complex plane (including only the set of poles
with negative η). The first set of contributing poles derives from the denominator of the
non-interacting Green function, which provides poles at ω′ = ω′−En,k−q− iη for n belonging
to all occupied states (the empty states have a positive iηsgn(En,k−q − µ) = iη, which locate
them in the upper plane). The related contribution contains:

∑
n:occ

⟨m,k|q + G1|n,k − q⟩ ⟨n,k − q|−(q + G2)|m,k⟩ (5.7)

Let’s introduce now two assumptions: (1) since we are interested in the asymptotic limit, we
assume large G reciprocal lattice vectors and (2) we study only the QP corrections for the
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m states close to the Fermi energy. Under these two hypothesis it holds (see Appendix A):

⟨n ∼ occ.|G|m ∼ EF ⟩ ≈ 0 (5.8)

Where the k and q indexes have been suppressed for brevity; therefore this contribution at
large G is negligible.
The second contribution comes instead from the poles of W2order located at the transition
energies ω′ = Eu − Eo − iη and reads as:

⟨m|ΣCOH(ω = Em)|m⟩ ∝ 1

Ω2

∑
G1,G2

4π

G2
1

4π

G2
2

∑
n:all

⟨m|G1|n⟩ ⟨n|−G2|m⟩ (5.9)

∑
o:occ

∑
u:unocc

⟨o|−G1|u⟩ ⟨u|G2|o⟩
Em + (Eo − Eu)− En

The COH labels derives from Klimeš et al.
Let’s now study the terms inside the

∑
G1,G2

sum of eq. 5.9, and introduce a new approxi-
mation (3) by allowing the u index to range over all states instead of only the empty ones:

⟨m|ΣCOH |m⟩ (G1,G2) ∝
1

Ω2

4π

G2
1

4π

G2
2

∑
o:occ

∑
n,u:all

⟨m|G1|n⟩ ⟨n|−G2|m⟩× (5.10)

⟨o|−G1|u⟩ ⟨u|G2|o⟩
Em + (Eo − Eu)− En

At this point two other key approximations are introduced: (4) the high energy empty
states can be approximated with plane waves as ψu(r) ≈ Ω−1/2eiGu·r and energy Eu ≈ G2

u/2
(the intuition is that at high energies the kinetic term is the dominant contribution to the
Hamiltonian) and (5) the expansions over plane waves of the occupied Bloch orbitals below
the Fermi energy have predominantly components at small G vectors. The first consequence
of these approximations is that

⟨m|G1|n⟩ ⟨n|−G2|m⟩ >> 0 only if Gn ≈ −G1 and Gn ≈ −G2 (5.11)
⟨o|−G1|u⟩ ⟨u|G2|o⟩ >> 0 only if Gu ≈ −G1 and Gu ≈ −G2

where we remind that we have previously assumed that m runs over states close to the Fermi
energy. Since the only terms contributing significantly to the sum are the ones defined by
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eq. 5.11, a further simplification is possible in the denominator:

Em + Eo − (Eu − En) ≈ Em + Eo −
1

2

(
G2

1 + G2
2

) Eu,En>>Eo,Em≈ −1

2

(
G2

1 + G2
2

)
(5.12)

thus:

⟨m|ΣCOH |m⟩ (G1,G2) ∝
1

Ω2

1

G2
1

1

G2
1

(4π)2

G2
1 + G2

2∑
o:occ

∑
n,u:all

⟨m|G1|n⟩ ⟨n|−G2|m⟩ ⟨o|−G1|u⟩ ⟨u|G2|o⟩ (5.13)

Now let’s use the resolution of identity
∑

u |u⟩ ⟨u| = 1̂ with respect to indexes n, u:

⟨m|ΣCOH |m⟩ (G1,G2) ∝
1

Ω2

1

G2
1

1

G2
1

(4π)2

G2
1 + G2

2

∑
o:occ

⟨m|G1 − G2|m⟩ ⟨o|G2 − G1|o⟩ (5.14)

⟨o|G|o⟩ is the Fourier component of the charge density of the ψo occupied state ⟨o|G|o⟩ =
Ω−1

∫
drψ∗

o(r)ψo(r)eiG·r = ρo(G). The Fourier component of the total charge density is
therefore ρ(G) =

∑
o:occ ρo(G), which implies:

⟨m|ΣCOH |m⟩ (G1,G2) ∝
1

G2
1

1

G2
1

(4π)2

G2
1 + G2

2

ρm(G1 − G2)ρ(G2 − G1) (5.15)

The error committed by introducing a cutoff Gcut can be estimated as:

∆Em =
∑

|G1|>Gcut

∑
|G2|>Gcut

⟨m|ΣCOH |m⟩ (G1,G2) (5.16)

By performing a change of variables (g = G1 − G2 , Gc = (G1 + G2)/2) and considering
Gc >> g (consequence of assumption (1)) we obtain:

∆Em ∝ (4π)2
∑
g

ρm(g)ρ(−g)
∑

|Gc|>Gcut

1

G6
c

(5.17)
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By summing up the terms |Gc| > Gcut we find:

∆Em ∝ 1

G3
cut

∑
g

ρm(g)ρ(−g) (5.18)

There are two different ways to introduce a cutoff on G1,G2: The first is to define a cutoff
Gχ

cut on the response function χ0 and the screened interaction W (G1,G2, ω
′). The second

one is introduced by limiting the number of empty states: due to approximation (4) limiting
the indexes u,n is equivalent to imposing a cutoff Gb

cut on the Gu,Gv vectors, and due to
the constraint elucidated in eq. 5.11 a restriction on Gu,Gv imposes a restriction on the
non-negligible G1,G2 term. The final cutoff is therefore determined as:

Gcut = min
(
Gb

cut, G
χ
cut

)
(5.19)

This proof offers an alternative explanation to the Ecut−Nb coupling and to the false conver-
gence behaviors discussed before. In fact only the lower cutoff between Gb

cut, G
χ
cut determines

the final effective value, and hence keeping fixed the lower one and further increasing the
other one leaves Gcut unchanged.
Moreover, we note that the adoption of a complete band basis implies Gb

cut = Gχ
cut: the as-

sumption is therefore required to avoid false convergences. By assuming Gb
cut = Gχ

cut we can
retrieve the main result:

∆Em ∝ 1

G3
cut

∑
g

ρm(g)ρ(−g) ∝ 1

Nb

∑
g

ρm(g)ρ(−g) (5.20)

where Nb can be also calculated as the number of plane waves in the cutoff sphere with radius
Gcut.

Lastly, this result provides another insight on the reason behind the slow convergence with
respect to the number of band: eq. 5.8 establishes that large G1,G2 do not contribute di-
rectly to the occupied density (that is ρo(G1) = ⟨o|G1|o⟩ ∼ 0). Eq. 5.20 tells us that they
compare only as differences, i.e. they are folded back in to wave-vectors g with small norms
(|g| ≈ 0), and ρo(g ≈ 0) = ⟨o|g ≈ 0|o⟩ are in general not negligible.
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3 G0W0 Convergence workflow
In order to discuss the workflow structure we
first briefly revise the different steps needed to
run a successful G0W0 calculation in VASP:

1. As discussed in section 5.2, G0W0 is a per-
turbative approach which requires single-
particle wavefunctions and energies as a
starting point; in the following workflow
a DFT basis set fulfills this role. The first
step is therefore a calculation of the ground
state Kohn-Sham eigenstates and eigenval-
ues.

2. The accurate determination of the GW
self-energy require a substantial number of
empty orbitals (see section 2.1), which are
calculated with a second DFT step. The
number of bands employed is determined
by the complete basis set condition.

Figure 5.4: Flowchart of a single
G0W0 calculation in VASP.

In the same calculation the matrix elements of orbitals derivative with respect to k〈
ψn1k

∣∣Ŝ∣∣ ∂
∂kψn2k

〉
are calculated (these elements are employed within the k ◦ p pertur-

bation theory to build the head and wings of ϵq(G1,G2, ω), see reference [176]).
While in theory the first two steps could be performed in a single DFT run, splitting
them in two separate calculations results in a more computationally efficient procedure.

3. The third step is the perturbative single-shot G0W0 calculation, which introduces a QP
correction to the Kohn-Sham eigenvalues and adopts the wavefunctions retrieved from
the second step as starting point.

To further clarify the computation details a brief review of the relevant VASP flags of each
step is discussed below. First step (DFT calculation):

• Guassian smearing is selected, with a small σ value in order to avoid partial occupancies.
(SIGMA=0 ; SIGMA=0.05). These values are employed also in the following steps.

• A very accurate break condition on the self-consistent electronic iteration is adopted
(EDIFF=1E-8).

Second step:

• A direct optimization algorithm is adopted (ALGO=All).

• The flag LOPTICS=.TRUE. is introduced to print out the matrix elements
〈
ψn1k

∣∣Ŝ∣∣ ∂
∂kψn2k

〉
to file (called WAVEDER).
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Third step:

• The spectral method for calculating χ0
q is activated (LSPECTRAL = .TRUE.), since it

greatly reduces the computational workload.

• Prec=Normal is used instead of Prec=Accurate to reduce to memory requirements.

• The number of frequency points ω used to describe the response function χ0
q(G1,G2, ω)

is fixed at NOMEGA=96.

• ENCUTGW (Eχ
cut variable of section 2.1) is kept fixed at the default value of 2/3 ENCUT

(Ecut).

• The main parallelization options included in VASP for GW routines are MAXMEM (which
defines a threshold for the maximum allocated memory), KPAR (which defines the num-
ber of k-points calculated in parallel) and NCSHMEM (which activates memory sharing
for response function routines).
Version 6.x of VASP (unlike the previous versions) automatically tries to estimate an
effective MAXMEM value for each calculation - and our tests indicate that the chosen val-
ues are usually close to the optimal ones.
K-point parallelization is activated, while the shared memory option for the response
routines is deactivated by setting NCSHMEM=1 (since previous tests indicated that, de-
pending on the MPI libraries used, this option might become a source of execution
errors).

3.1 General workflow architecture

In this section an overview of the basis extrapolation workflow is given, starting from a
description of its general architecture. The convergence scheme has a modular structure,
composed by a main workflow and two secondary (lower-level) sub-workflows:

1. The sub-workflows workchain_DFTgroundState and workchain_DFTvirtualBands_GW
encode the different steps listed above. they can be understood as a wrapper of the
intermediate DFT and G0W0 steps: they provide a higher-level and code-independent
interface to the upper level logic, requiring only generic AiiDA types input arguments
such as the material structure, k-points mesh, bands number and cutoff values. The
definition of the VASP INCAR parameters and the assembly of the necessary VASP
inputs from these arguments are handled internally, as well as the outputs elaboration
(including the extraction of gaps and bandstructures).

2. The upper level workflow workchain_ExtrapolationScheme implements the basis ex-
trapolation scheme described in section 2.3. The workflow determines the Ecut − Nb

parameters under the complete basis hypothesis for each G0W0 calculation and submits
them by calling workchain_DFTvirtualBands_GW (each call of workchain_DFTvirtualBands_GW
corresponds to a single G0W0 simulation). The resulting bandgap energies are collected
and extrapolated in order to determine E∞

g (nk, N
∞
b ).
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The purpose of this modular organization is to have two lower-level classes that include
code-specific implementations and internally handle VASP technical details (such as INCAR
definition and automatic parameter tuning), while workchain_ExtrapolationScheme is an
almost code-independent class which performs the convergence logic.
The main workflow and the sub-workflows introduced above will be now presented in more
detail by discussing their inputs, outputs and internal routines, starting by the lower level
workchain_DFTgroundState and workchain_DFTvirtualBands_GW.

workchain_DFTgroundState

Figure 5.5: Principal inputs, outputs and routines (as called inside outline()) of the sub-
workflow workchain_DFTgroundState. Int, Float, ArrayData, RemoteData and BandsData
are all native AiiDA types.

In addition to the inputs variables inherited from the AiiDA-VASP main workchain VaspWorkChain
(parser and MPI settings, pseudopotentials and k-point mesh) the subworkflow has several
supplementary inputs arguments which can be used to override the default INCAR parame-
ters. More precisely, kpar can be used to specify a custom value for the k-point parallelization;
if magMom is set a spin-polarized calculation is performed with the atoms’ magnetic moments
initialized from the array’s values. If magMom is not passed, a non spin-polarized calculation
is performed.
The workflow executes three different methods in sequence:

• The first routine defines the parameters required by the INCAR, specifies the parser
settings and copy the WAVECAR from the input restartFolder path (if present) to
the current calculation’s folder.
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• run_VASP_workchain submits the actual VASP calculation (by calling the VaspWorkChain
workchain defined inside the AiiDA-VASP) using the parameters defined in the previous
routine.

• The last routine checks for failures during the VASP run, extracts the bands and gap
and returns the output variables.

The output arguments ENMAXarray, NGarray and maximumPwNumber (parsed from the OUT-
CAR) will be used to determine E1

cut, E
2
cut, E

3
cut and the corresponding N1

b , N
2
b , N

3
b under the

complete basis set hypothesis. More specifically, ENMAXarray contains the default ENCUTs of
all species involved (as defined inside the pseudopotential files), NGarray the FFT mesh used
by VASP and maximumPwNumber the number of plane waves contained in the complete basis
for the cutoff value employed during the calculation.

workchain_DFTvirtualBands_GW

Figure 5.6: Principal inputs, outputs and routines (as called inside outline()) of the
subworkflow workchain_DFTvirtualBands_GW.

Each iteration of the while loop performs a sequence of two calculations: a DFT run (step 2
of the procedure described in section 3) plus G0W0 calculation. A first DFT + G0W0 itera-
tion is always performed; after their execution the perform_GW routine inspects the resulting
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calculation nodes in search of errors or crashes; in case of failure it modifies the parameters
and restarts another sequence of DFT + G0W0 simulations.
prepare_calc_DFTvb and prepare_calc_G0W0 set up the inputs of the respective calcula-
tions, including:

• The parser and MPI settings, pseudopotentials and k-point mesh inputs (inputs inher-
ited from the AiiDA-VASP main VASP workchain).

• INCAR parameters using the cutoff and number of bands supplied through encut and
nbands.

• The default values can be overridden using the optional input arguments. More specif-
ically ncshmem, kpar, maxmem control the parallelization options and lreal determines
the LREAL VASP flag (which defines the method for the projection operators evaluation;
the real space optimization reduces the memory occupation for large cells). nbands_GW
and nomega override the VASP INCAR NBANDSGW and NOMEGA parameters.

• If magMom is passed a spin-polarized calculation is performed with the atoms’ magnetic
moments initialized from the arrays’ values (instead of the standard non-spin polarized
setting).

run_VASP_workchain submits the actual VASP calculation (by calling the VASP standard
workchain defined inside AiiDA-VASP) using the parameters defined in the previous prepare_calc
routine.
The last method elaborate_results extracts the bands and gaps and returns the output
variables. The variables remoteFolder_DFT, remoteFolder_GW represent the folders contain-
ing the calculations on the remote cluster.

workchain_Extrapolation_scheme

As a first step workchain_Extrapolation_scheme runs a single DFT ground state calcu-
lation (workchain_DFTgroundstate). This calculation has two purposes: providing the or-
bitals for the DFT continuation run and returning the FFT mesh employed by VASP for this
structure.
Why the FFT mesh? the maximum orbitals number that a basis set with a given cutoff Ecut

allows to calculate is defined as the total number of the (reciprocal) vectors {G} of the finite
FFT grid satisfying |q + G|2 < Ecut. The FFT mesh adopted must be therefore known in
order to determine N1

b , N
2
b and N3

b . VASP includes advanced routines that automatically
choose the optimal FFT mesh for a given cell structure; the mesh is parsed from the DFT
ground state calculation and taken into account in the workflow.

The role of the determine_completeBasis_encutNband routine is to compute the cutoffs-
bands pairs under the complete basis hypothesis. Klimeš et al. proposed to adopt E1

cut, E
2
cut, E

3
cut

57



Figure 5.7: Principal inputs, outputs and routines (as called inside outline()) of the
subworkflow workchain_Extrapolation_scheme.

equal to respectively 1.0×, 1.25×, 1.5× the maximum energy cutoff provided in the pseudo-
potentials, while Ellinger et al. introduces a memory conserving variant based on the 0.75×,
1.0× and 1.25× factors. Both versions are available in the current workflow and can be
selected through the mode flag.
As cited above, the calculation of Nb for a given cutoff takes into account the finite FFT mesh.
However it’s of paramount importance to consider a parallelization constraint introduced by
VASP: Nb has to be an integer multiple of (total number of MPI threads)/KPAR. If the
supplied bands number breaks this condition, VASP forcibly increases the parameter to the
closest multiple. If not correctly taken into account, this behavior breaks the correct Ecut-Nb

relation, in the sense that the total number of bands does not coincide anymore with the
complete basis defined by Ecut. The solution adopted here improves over the idea introduced
by Ellinger et al.:

1. The standard pairs E1
cut-N1

b , E
2
cut-N2

b , E
3
cut-N3

b are computed. It’s expected that as-is
N1

b , N
2
b and N3

b might break the parallelization constraint.

2. A new set of (N1
b )

corr
, (N2

b )
corr and (N3

b )
corr are calculated as the values closest to the

original N1
b , N

2
b and N3

b that satisfy the condition stated above.

3. The original Ecut − Nb pairs are fitted using a polynomial function; the relation is in-
verted to determine the (E1

cut)
corr

, (E2
cut)

corr and (E3
cut)

corr values associated to (N1
b )

corr,
(N2

b )
corr and (N3

b )
corr.
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Once the pairs (Ecut)
corr − (Nb)

corr are established, the prepare_run_wc_DFTvb_GW routine
submits in parallel three instances of the subworkflow workchain_DFTvirtualBands_GW, one
for each pair.

The last task of the workchain is to collect the G0W0 gaps and Quasiparticle corrections and
perform the extrapolation; the resulting value is the output argument G0W0_gap_extrapolated.
The nbands_correction_pairs and encut_nbands_pairs arguments contains the G0W0

gaps used for the 1/Nb fit alongside the (Ecut)
corr − (Nb)

corr pairs.

4 Implementation details: Contributions to the plugin
development

AiiDA-VASP native core routines, parser and workchains allow the execution of DFT cal-
culations only; therefore, as a part of this project, support for G0W0 and BSE calculations
was added and tested. The AiiDA-VASP plugin delegates the parsing of the output files
to an external python package, called Parsevasp, developed by the same community6. The
package is composed by a main class and several specialized parser classes associated with
specific output files (one for OUTCAR, one for vasprun.xml, etc.). The original parser classes
do not include the possibility of beyond-DFT runs, and would therefore fail and return an
error state if such calculations were submitted. An extension of Parsevasp in order to sup-
port GW and BSE calculations (and solve these errors) has been developed and implemented.

The specialized classes have also been expanded to parse additional quantities:

• Added support in the OUTCAR parser for extraction of the FFT mesh and of the
maximum number of plane waves at DFT level; added support for G0W0 OUTCARs.

• Added support in the vasprun.xml parser for the BSE oscillator strengths and dielectric
functions, using the library xml.etree.ElementTree.

• Modified the AiiDA-VASP main workchain to add the corresponding flags between the
input settings.

• Modified the AiiDA-VASP core and error checking routines.

Both AiiDA-VASP core routines have been modified to add support for G0W0 calculations.
Lastly, the AiiDA-VASP main workchain does not support the copy of arbitrary files from two
different calculations. This feature is needed for workchain_DFTvirtualBands_GW, due to
the WAVEDER file required by GW calculations, and has been developed. All modifications
will be included in a future release of the plugin.

6The Parsevasp package can be found at https://github.com/aiida-vasp/parsevasp
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5 Conclusions
In this chapter we presented the implementation of the convergence method derived by Klimeš
et al. as an automated workflow based on the AiiDA and AiiDA-VASP plugins. The scheme
defines a procedure to extrapolate Quasiparticle energies to the infinite-basis-set limit and
was validated on molecules and bulk solids. Its main advantages are the reduced number of
calculations required to achieve extrapolated results and the assumption of a complete basis
set, which by design averts the risk of false convergences. In the second part of the chapter
the general logic of the workflow, its various components and their technical aspects have
been documented.
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Chapter 6

Optical and excitonic properties of bulk
transition metal oxide perovskites

The study of transition metal oxide (TMO) perovskites has brought to light a wide array of
physical and chemical properties, including colossal magnetoresistance [177, 178], multifer-
roicity [179], metal-insulator transitions [180], superconductivity [181, 182], two dimensional
electron gas [40] and spin and charge ordering [183]. In the last decades the 4d and 5d TMO
perovskites have gained increasing interest due to the discovery of novel electronic and mag-
netic quantum states of matter arising from the coupling between spin-orbit interaction and
other active degrees of freedom [184, 185, 186, 187].
Up to now, few theoretical studies have investigated the role of excitonic effects on the opti-
cal spectra of TMO perovskites [159, 188, 164, 189, 190]. These works have proved that the
Independent Particle Approximation (IPA) is able to reproduce the experimental data only
to a limited extent and that the inclusion of electron-hole (e-h) interaction is often pivotal
to achieve a satisfying account of the optical transitions [188, 164, 189].

This work attempts to extend the study of excitonic effects from individual compounds
towards a larger representative dataset, aiming to contribute to a comprehensive under-
standing of the role of the electron-hole interaction in TMO perovskites and perform a sys-
tematic investigation of its importance. Following the work of He et al. [191] and Ergörenc
et al. [144], a representative dataset of fourteen TM perovskites is selected, including 3d
(SrTiO3, LaScO3, LaTiO3, LaVO3, LaCrO3, LaMnO3, LaFeO3 and SrMnO3), 4d (SrZrO3,
SrTcO3 and Ca2RuO4) and 5d (SrHfO3, KTaO3 and NaOsO3) perovskites. The dataset in-
cludes compounds with different electronic, structural, magnetic and dielectric properties, as
summarized in Table 6.1 and in Refs. [144]. Specifically: (i) insulating gaps ranging from
0.1 eV to 6 eV; (ii) 3d, 4d and 5d TM-based perovskites with different orbital occupancy;
(iii) non-magnetic and differently ordered AFM patterns; (iv) various crystal structures with
different types of internal structural distortions (e.g. with and without Jahn-Teller instabili-
ties); (v) macroscopic dielectric constant from 1 to 10.
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An accurate estimation of the fundamental bandgap and of Quasiparticle energies are re-
quired in order to predict reliable interband optical transition energies. Density Functional
Theory is usually considered not suitable in this regard; it commonly underestimates fun-
damental gaps and does not provide a reliable account of the excited state properties [70].
This task is instead successfully achieved by the G0W0 approximation [192, 193, 194], which
provides a good description of the insulating gaps and band dispersions for the TMO per-
ovskites [144, 165, 195, 161, 160].
In order to compute the optical properties, we solve the Bethe-Salpeter equation (BSE) [65,
108].
This chapter is extracted from a dedicated publication: L. Varrassi, P. Liu, Z. Ergönenc
Yavas, M. Bokdam, G. Kresse and C. Franchini, Optical and excitonic properties of transi-
tion metal oxide perovskites by the Bethe-Salpeter equation, Phys. Rev. Materials 5, 074601
(2021)

Crystal
Structures

Electronic
Configs.

Magnetic
Orderings

Epw Npw Nω NO NC

SrTiO3 C-Pm3̄m 3d0 NM 600 512 96 12 10
SrZrO3 C-Pm3̄m 4d0 NM 650 1972 64 12 12
SrHfO3 C-Pm3̄m 5d0 NM 650 2304 96 12 13
KTaO3 C-Pm3̄m 5d0 NM 500 896 96 12 12
LaScO3 O-Pnma 3d0 NM 500 1280 64 32 32
LaTiO3 O-Pnma 3t12g G-AFM 500 448 64 34 34
LaVO3 M-P21/b 3t22g G-AFM 500 448 64 30 30
LaCrO3 O-Pnma 3t32g G-AFM 500 448 64 32 32
LaMnO3 O-Pnma 3t32ge1g A-AFM 500 448 64 26 26
LaFeO3 O-Pnma 3t32ge2g G-AFM 500 448 96 34 34
SrMnO3 C-Pm3̄m 3t32g G-AFM 500 448 64 29 29
SrTcO3 O-Pnma 4t32g G-AFM 500 512 64 30 30

Ca2RuO4 O-Pnma 4t32ge1g AFM 500 512 64 30 37
NaOsO3 O-Pbca 5t32g G-AFM 500 448 64 30 30

Table 6.1: Material dataset and main computational parameters. The first column lists the
considered compounds. The second set of columns collects the crystal structures (C=cubic,
O=orthorombic, M=monoclinic), electronic configurations of the transition metal d shell and
ground state magnetic orderings (NM=non-magnetic and different types of anti-ferromagnetic
spin configurations [191]). The last set of columns lists the relevant computational param-
eters: plane-wave energy cutoff (Epw, in eV), number of bands (Npw), number of frequency
points used for the G0W0 calculation (Nω). NO and NC refer to the number of occupied and
conduction bands included in the BSE.
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1 Computational procedure and details

El. PAW rs rp rd rf Epw

O GW-US 1.2 1.5 1.6 1.4 434
GW-NC 1.0 1.1 1.1 765

Na GW-US 1.6 2.0 2.2 260
K GW-US 1.7 2.0 2.5 249
Ca GW-US 1.6 1.9 2.2 281
Sc GW-US 1.7 1.7 1.9 2.0 379
Ti GW-US 1.7 1.7 2.0 2.0 384

GW-NC 0.9 1.4 1.9 1.9 785
V GW-US 1.8 1.7 1.9 2.0 382
Cr GW-US 2.8 2.5 2.5 2.8 219
Mn GW-US 1.6 1.7 1.9 1.9 385
Fe GW-US 1.5 1.7 1.9 2.0 388
Sr GW-US 1.7 2.1 2.5 2.5 225

GW-NC 1.1 2.0 2.3 2.1 543
Zr GW-US 1.3 1.8 2.0 2.1 346
Tc GW-US 1.5 1.8 2.2 2.3 318
Ru GW-US 1.5 1.8 2.2 2.3 321
La GW-US 1.6 1.8 2.2 2.5 314
Hf GW-US 1.5 1.9 2.2 2.5 283
Ta GW-US 1.5 1.9 2.2 2.5 286
Os GW-US 1.5 1.8 2.2 2.3 319

Table 6.2: List of radial cutoff parame-
ters (core radii, in atomic units) for each
angular quantum number and default Epw

in eV for all potentials employed.

All ab initio calculations were performed us-
ing the Vienna ab initio Simulation Package
(VASP) [17, 18] with the augmented wave
method (PAW) [59]. The potential types
are listed in Table 6.2; the GW versions of
all PAW potentials were used. The ultra-
soft (US) versions of the potentials were used
for all materials except for Sr and Ti in
SrTiO3, for which the norm-conserving (NC)
versions were used, consistently with Ergörenc
et al. [144].

In order to determine the QP bandstucture we
employ a G0W0 calculation from a DFT starting
point. For LaTiO3 and LaVO3 PBE alone is not
able to open the gap - therefore a small effective
onsite Hubbard Ueff= 2 eV [144] was added, us-
ing the DFT+U formulation of Dudarev [196].
The spin-orbit coupling (SOC) is included for
NaOsO3 [197].
The convergence with respect to the number of
bands and to the cutoff energy of the dataset
is discussed in Ergönenc et al. [144]; their work
also determines the basis-extrapolation correc-
tions with respect to the number of bands/-
cutoff energy for the dataset (employing the
scheme described in section 2.3). Our re-
sults include the basis set corrections determined
through the extrapolation: a scissor operator
equal to the correction is applied to the unoc-
cupied bands.

The Bethe-Salpeter equation is solved through a direct diagonalization scheme, which of-
fers direct access to excitonic wavefunctions and allows for a more transparent interpretation
of the main features of the optical spectra.
The exciton binding energies Exb are computed as the difference between the first bright BSE
transition and the fundamental G0W0 gap. The optical results will be interpreted in section
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2.1 in terms of the joint density of states (JDOS) defined as:

JDOS(ω) = 2
∑
v,c,k

wkδ (Ec(k)− Ev(k)− h̄ω) ,

where Ec(k) and Ev(k) are the G0W0 eigenvalues; the Dirac δ is approxi-
mated by a normalized Gaussian function with a broadening parameter of 0.10 eV.
The application of said G0W0+BSE procedure to
TMO is computationally challenging: on the one
hand, both G0W0 and BSE are notoriously com-
putationally expensive, with an unfavorable scal-
ing (The employed VASP implementations ex-
hibit at least quartic scaling in the system size
and quadratic in the number of k-points [198]).
On the other hand to obtain reliable results in
particular with respect to the k-point mesh, a pre-
cise convergence procedure is needed [108, 199].
In order to manage the computational cost asso-
ciated to dense k-point mesh, alternative schemes
have been proposed from shifted [198, 200] or
hybrid k-point meshes [201] to interpolation
schemes [202, 203, 200] or methods based on den-
sity matrix perturbation theory [204].
In order to mitigate these limitations and to
achieve converged and reliable exciton binding
energies for all compounds in the dataset, we
adopted two different strategies: (i) a model-BSE
approximation (which uses a parametrized model
for the dielectric screening [205, 164]) and (ii) a
k -averaging procedure.

Converged
k-mesh

k-point density
(kpts/Å−3)

SrTiO3 20× 20× 20 1920
SrZrO3 20× 20× 20 2240
SrHfO3 20× 20× 20 2240
KTaO3 20× 20× 20 2040
LaScO3 10× 10× 6 640
LaTiO3 10× 10× 6 600
LaVO3 10× 10× 6 580
LaCrO3 10× 10× 6 570
LaMnO3 10× 10× 6 590
LaFeO3 10× 10× 6 590
SrMnO3 8× 8× 4 230
SrTcO3 9× 9× 6 480
Ca2RuO4 8× 8× 4 370
NaOsO3 9× 9× 6 430

Table 6.3: Converged k-point grids and
k-points densities for the listed materials.
The k-point density is calculated as the to-
tal number of k-points divided by the Bril-
louin zone volume.

The mBSE scheme is used to perform the convergence tests and to determine the Exb val-
ues, while the k -averaging technique (using the standard BSE scheme in the Tamm-Dancoff
approximation [206]) is employed to calculate the optical conductivity spectra σ(ω).
In the next sections these strategies will be discussed in detail.

K-point convergence

It is well known that optical properties exhibit a strong dependence on k-point sampling and
generally very dense k-point meshes are required to obtain well converged optical conduc-
tivities [199, 200, 201, 207, 208, 108, 199]. A too sparse k-point mesh may in fact introduce
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spurious artifacts [209, 210] or incorrect estimations of the exciton binding energy [201, 205].
The criteria here employed for the k-point convergence is based on the accurate estimation of
the first BSE eigenvalue EΛ: a k-point mesh is considered converged when the first non-dark
BSE eigenvalue is determined within an accuracy of 5 meV. The k-point grids that ensure
the required Exb accuracy are presented in Table 6.3 and range from 8×8×4 to 20×20×20,
depending on the system.
We note that the cubic (C-Pm3̄m) perovskites require considerably denser k-meshes than the
magnetic compounds.

Nevertheless, even a 20 × 20 × 20 mesh does not yield a fully converged σ(ω) over the
entire energy range (see for example SrTiO3 and KTaO3 in Fig. 6.1).
In contrast, a fully converged σ(ω) has been obtained for all remaining perovskites, and even
sparser k-point meshes are able to reproduce the spectra (see Fig. 6.1).

This behavior can be traced back to the different degree of localization of the first non-
dark BSE eigenvectors AΛ

cvk, illustrated as contour-plots of the squared modulus
∑

v,c

∣∣AΛ
cvk

∣∣2
in k-space for selected examples in Fig. 6.2. The cubic compounds exhibit an excitonic wave-
function strongly localized around the Γ point in the BZ. This in turn imposes the necessity
of very dense k-point meshes to correctly describe AΛ

cvk [211, 209] and to avoid spurious arti-
ficial confinement effects [212]. The remaining perovskites show excitonic wavefunctions that
span a larger portion of the BZ and thus require a less dense BZ sampling.

Figure 6.1: Convergence tests for the mBSE-derived σ(ω) (top panels) and exciton binding
energies Exb (lower panels) with respect to the number of k-points. The optical conductivities
are expressed in 103Ω−1cm−1.
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Figure 6.2: Contour plots of the squared modulus
∑

v,c

∣∣AΛ
cvk

∣∣2 of the first non-dark exciton
for SrTiO3, KTaO3, LaTiO3 and LaMnO3 along the ka − kb plane (kc=0) in the Brillouin
zone. The eigenvectors are calculated with the BSE scheme on a 8×8×8 k-mesh for SrTiO3

and KTaO33 and on a 6× 6× 4 for LaTiO3 and LaMnO3.

Model-BSE

The mBSE approach [201, 205] introduces two approximations to the standard BSE scheme:

1. Model dielectric screening approximation: the RPA dielectric function calculated in the
G0W0 step is approximated by an analytic model [205]:

ϵ−1
G,G(k) = 1− (1− ϵ−1

∞ )exp

[
−|k + G|2

4λ2

]
, (6.1)

where ϵ∞ is the static ion-clamped dielectric function and λ the range separation pa-
rameter, which is determined by fitting ϵ−1

G,G(k) to the RPA calculated one. The off-
diagonal elements of the inverse dielectric function are neglected implying a diagonal
(G = G′)screened Coulomb kernel. This analytical model has proven to be a good
approximation to the full dielectric function [213].

2. The QP energies are approximated through the application of a scissor operator to the
DFT one-electron energies (such that the resulting band gap matches the G0W0 one).

This approach reduces the overall computational cost and was successfully applied to halide
perovskites [205, 214], iridates [164], 3d TMO [83, 189], and it has been shown to correctly
reproduce the full BSE spectrum up to 6 eV for SrTiO3 [189]. All scissor operators used,
along with λ and ϵ−1

∞ , are detailed in Appendix C.

k-averaging

A k -averaging procedure was adopted to calculate the full BSE spectra [109, 164]. This
averaging procedure includes two steps: in the first step all L irreducible k-points k̃1,..,L from
a Γ-centered n × n × n grid are generated; in the second step L independent G0W0+BSE
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calculations are executed. Each calculation is based on a m × m × m grid, shifted by the
corresponding k̃1,..,L. The final dielectric function is therefore attained by averaging over the
previous results:

ϵ(ω) =
1

W

L∑
p=1

wk̃p
ϵk̃p

(ω), W =
L∑

p=1

wk̃p
, (6.2)

where ϵk̃ is the dielectric function calculated on the mesh shifted by k̃. The final result,
which includes all k-points of a regular (n ·m)× (n ·m)× (n ·m) calculation, is denoted by
m×m×m|n× n× n.
This k -averaging scheme implicitly involves an approximation [109]: the long-range part
of the Coulomb kernel is truncated at ∼ m times the unit cell size and consequently may
cause spurious artifacts for extended real-space exciton wavefunctions. The cubic (C-Pm3̄m)
compounds, in particular, possess a (first non-dark) exciton wavefunction strongly localized
around Γ, which corresponds to a delocalized real-space wavefunction and requires therefore
careful testing. The magnetic TMO perovskites are instead less affected by the risk of spurious
artifacts due to a more delocalized exciton wavefunction in reciprocal space.
The choice (m = 4, n = 5) does not introduce artificial artifacts in SrHfO3, SrZrO3 and
KTaO3; however to avoid a spurious peak suppression inside the SrTiO3 optical spectrum, a
larger m = 7 value is needed (see Appendix for more details B).

2 Electronic and optical properties
The discussion of the results is divided into three sections, each focusing on a specific subset
of perovskites:

1. cubic non-magnetic perovskites (SrTiO3, SrZrO3, SrHfO3 and KTaO3)

2. Lanthanum series (LaScO3, LaTiO3, LaVO3, LaCrO3, LaMnO3 and LaFeO3)

3. Ca2RuO4, NaOsO3, SrMnO3, and SrTcO3

2.1 Cubic Perovskites

Comparison between BSE and IPA spectra

The optical conductivity σ(ω) obtained through the k -averaging procedure for all cubic com-
pounds is shown in Fig. 6.3. All spectra exhibit a similar lineshape characterized by two
main structures (designated by their most intense peaks p1 and p2) caused by the crystal
field splitting of the TM-d states into t2g and eg subsets.
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Figure 6.3: Optical conductivity σ(ω) calculated within the IPA (blue line), BSE approach
(red line) and experimental data. All curves are obtained through a 5 × 5 × 5|4 × 4 × 4
k -averaging, except for SrTiO3 which employed a 7 × 7 × 7|4 × 4 × 4. The main two peaks
of the BSE spectra of each structure are labeled as p1 and p2.

We note that the very sharp peak observed in SrTiO3 at ≈ 6.4 eV has no analogues in the
other cubic materials. Its origin has been examined by Ref. [188, 189] and has been related
to transitions to (low dispersing) localized Ti-eg states along the Γ-X direction in the BZ.
Sponza et al. [188] discussed the neglect of coupling terms (i.e. electron-phonon interaction
or the dynamical screening) of the standard BSE approach as a possible reason behind the
exceedingly strong intensity of the peak, which does not appear in the experimental data.
The BSE improves considerably upon IPA the quantitative agreement with the experimental
data, in particular for what concern the intensities and energy positions of the first structures.
The differences between the experimental centers of mass (CoM) of the p1 structures and the
BSE CoM are strongly reduced, with a mean absolute error of 0.24 eV compared to 1.00 eV
for the IPA curves (see Fig. 6.4).
Small residual discrepancies between BSE and measured curves are visible at the onset,
especially for SrHfO3 and SrZrO3. Significant contributions to these discrepancies origi-
nate from differences between the experimental and G0W0 predicted gaps [144], equal to
0.30 eV (SrTiO3, SrZrO3) and 0.40 eV (SrHfO3). The BSE-induced redshift of the p1
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k-mesh SrTiO3 SrZrO3 SrHfO3 KTaO3

BSE 11× 11× 11 0.205 0.321 0.319 0.230
mBSE 11× 11× 11 0.195 0.308 0.293 0.215
% error 5 4 8 7

mBSE 20× 20× 20 0.149 0.275 0.258 0.160

ϵ−1
∞ 0.165 0.231 0.242 0.195
λ 1.463 1.457 1.448 1.420

Table 6.4: Exciton binding energies Exb in eV for the cubic materials, calculated through
the BSE and mBSE approaches. The third row summarizes the percentage errors between
the BSE reference values and the mBSE ones. The employed k-point meshes are specified in
the second column. The calculated inverse static dielectric constants and screening length
parameters λ (Å−1) used for the mBSE (Eq. (6.1)) are given.

structures (evaluated as the difference between the IPA and BSE spectra at the onset at
σ(ω) ∼ 1 × 103Ω−1cm−1) varies from 0.80 eV (KTaO3) to 1.20 eV (SrTiO3); significant
spectral weight transfers are thus visible, signaling strong excitonic contributions for the con-
sidered cubic systems.
The onsets for the p2 structure are instead systematically underestimated by about 1-2 eV;
for SrTiO3 this deviation was attributed to excessively strong excitonic effects [188]. The
mean absolute error between the BSE CoM of the p2 structures and the experimental ones
(see Fig. 6.4) is equal to −0.75 eV.

Figure 6.4: Centers of mass (CoM) of the two
main structures in the cubic compounds spectra.

The exciton binding energies Exb for dif-
ferent k-meshes are listed in Table 6.4: the
converged Exb range between ≈ 150 and
250 meV. The use of mBSE for the Exb

estimation is justified by a direct compar-
ison with the BSE prediction on a reduced
11× 11× 11 mesh: the BSE reference val-
ues are very well reproduced by the mBSE,
with an error varying from 4% (SrZrO3) to
8% (SrHfO3).
Our BSE calculated Exb for SrTiO3 (205
meV) is consistent with previous BSE pre-
dictions of Begum et al. [189] (246 meV,
determined from a SCAN starting point)
and Sponza et al. [188] (220 meV, deter-
mined from a LDA starting point).
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Figure 6.5: Optical conductivity σ(ω) in the IPA (blue shadow background), along with
the Joint Density of States associated with transitions to the first three conduction bands
c1− c3 (black lines) and to conduction bands c4− c9 (red lines). All curves are obtained with
a 11× 11× k-point mesh.

We note lastly that the choice of the k-point mesh has a paramount effect on the final values;
the change of Exb between the 11×11×11 and the (converged) 20×20×20 mesh is between
0.056 eV (SrZrO3) and 0.088 eV (KTaO3), see Table 6.4.

Origin and character of main optical transitions

We start the analysis of the transitions from the Joint Density of States (JDOS), visible in
Fig. 6.5, which provides a measure of the number of allowed optical transitions between initial
and final states. Here and in the following the discussion of the optical transitions is given
in terms of the band labeling shown in Fig. 6.6, where the conduction bands are denoted as
cn with n = 1 for the first conduction band and so on.
The octahedral crystal field that causes the splitting of the d states is the dominant factor for
the formation of the observed two-structure spectra. For KTaO3 and SrTiO3 the first struc-
tures (around peak p1) are almost completely determined by transitions from the occupied
oxygen manifold to the first three conduction bands (denoted as c1 − c3), i.e. O-2p→ c1 − c3
(the higher c4− c9 conduction bands almost do not contribute to the first structures’ JDOS).
For these two compounds the c1−c3 manifolds have a main TM−t2g character, with a limited
O−p hybridization away from the Γ point (between 5% and 15% for SrTiO3 and between 2%
and 20% for KTaO3).

The analysis of SrHfO3 and SrZrO3 optical transitions is complicated by the presence of
bands entanglement between the c1− c3 manifold and the upper c4− c9 manifold, not present
in KTaO3 and SrTiO3 (where these two sets of bands are separated in energy, see Fig. 6.6).
In fact the JDOS related to the two manifolds exhibit a significant overlap in Fig. 6.5.
Similarly to SrTiO3 and KTaO3, the c1 − c3 bands possess a main TM−t2g character, which
however is not uniform in the Brillouin zone and exhibits a significant hybridization with
O−p states (up to 27% for SrZrO3 and 31% for SrZrO3). Due to this bands entanglement
the JDOS shows some contributions to the p1 structures from transitions to bands c4 − c9
(see Fig. 6.5).
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To ascertain the actual importance of these transitions and the relative significance of the
c1 − c3 and c4 − c9 more quantitatively we list in Table 6.5 the BSE eigenvectors relative to
the p1 peak for each material in terms of the amplitude distribution (i.e. the total square am-
plitude) associated with transitions to bands c1 − c3 (DΛ

c1−c3
=

∑
k

∑
v∈O−2p

∑
c∈c1−c3

∣∣AΛ
kvc

∣∣2)
and bands c4 − c9 (DΛ

c1−49
=

∑
k

∑
v∈O−2p

∑
c∈c4−c9

∣∣AΛ
kvc

∣∣2). The eigenvalues listed in Ta-
ble 6.5 are chosen as the transitions with the highest oscillator strength close to the p1 peaks.
Taking into account that AΛ

kvc is normalized (
∑

k,v,c

∣∣AΛ
kvc

∣∣2 = 1), the data in Table 6.5
indicate that transitions to c1 − c3 provide ∼ 90% of the total spectral weight in SrZrO3

and SrHfO3, about 9% lower than the corresponding amplitudes in SrTiO3 and KTaO3.

SrTiO3 SrZrO3 SrHfO3 KTaO3

DΛ
c1−c3 0.99 0.89 0.88 0.99

DΛ
c4−c9 0.01 0.11 0.12 0.01

EΛ (eV) 4.400 7.178 7.513 4.883

Table 6.5: Comparison between
BSE amplitude distributions DΛ re-
lated to the final states c1-c3 (DΛ

c1−c3
=∑

k

∑
v∈O−2p

∑
c∈c1−c3

∣∣AΛ
kvc

∣∣2) and c4-c9
(DΛ

c1−49
=

∑
k

∑
v∈O−2p

∑
c∈c4−c9

∣∣AΛ
kvc

∣∣2).
EΛ represent the corresponding BSE eigenval-
ues: the analysed transitions are associated
with the p1 peaks. The data are obtained using
a 11× 11× 11 k-point mesh.

Additional insights on the character of the
dominant optical transitions can be ex-
tracted by the fat band analysis of the BSE
eigenvectors. This is displayed in Fig. 6.6
for the first non-dark excitons as well as
for AΛ

vck with the highest oscillator strength
close to the p1 peaks and p2 peaks.
As a general feature, common to all cubic
materials, the contributions to

∣∣AΛ
vck

∣∣ are
predominantly localized at Γ (in particular
for the first excitations, from the top of the
valence band to the bottom of the conduc-
tion band) and, less intensively, along the
Γ−X direction. The fat band plots sup-
port the association of the p1 peak with the
transitions from the occupied O− p bands
(blue) to t2g (red, c1 − c3).
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Figure 6.6: Fat band pictures: each circle radius corresponds to the contribution
∣∣AΛ

kvc

∣∣2
at that k-point. The left panels refer to the first non-dark eigenvector of each material; the
middle and right panels picture the AΛ

kvc associated to the p1 and p2 peaks. The colors of the
band-structures are associated with the orbital characters: blue for O−p, red for TM−t2g
and green for TM−eg.



2.2 La series

Comparison between BSE and IPA spectra

Figure 6.7: σ(ω) within the IPA (blue line), BSE approach (red line) and experimental
data (from Arima et al. [215]; the dashed line for LaVO3 represents the optical conductivity
measurement from Miyasaka et al. [216]). All curves are obtained through a 5×2×5|2×2×2
k -averaging, except for LaScO3, for which a 5× 5× 3|2× 2× 2 mesh was used. The p1 labels
denote the first (low intensity) BSE structures.

The optical conductivity spectra for the La-based perovskites are collected in Fig. 6.7. All
members of the La series exhibit a qualitatively similar σ(ω) (with the exception of LaScO3),
characterized by two main different features: a low intensity structure at low energies and a
second peak at higher energies, broader and more intense.
The low intensity peak is mainly associated with a Mott-Hubbard type (MH) d-d fun-
damental gap, while the second is typically associated with a charge-transfer (CT) type
gap [215, 191, 144]. LaCrO3 in particular can be better described by a mixed MH/CT state,
where the first peak is essentially merged with the CT transitions [191]. The band insulator
LaScO3 does not obviously show any Mott-like d− d transition.

The transition energies related to the first excitation are well reproduced already at the IPA
level. The systematic redshifts produced by the excitonic effects (evaluated at σ(ω) ∼ 0.3×
103Ω−1cm−1) are reduced compared to the cubic compounds and vary from 0.3 eV (for LaTiO3

and LaMnO3) to 0.5 eV (LaCrO3 and LaFeO3) and 0.7 eV (LaVO3). Therefore, when com-
pared to the experimental curves, the BSE approach produces an underestimation of the first
transition energies for almost all compounds. The only exception is LaTiO3, where the optical
gap is overestimated as a consequence of the corresponding overestimation of the experimental
gap (0.1 eV) [215] obtained at G0W0 level (≈ 0.5 eV, as described by the non-extrapolated case
of [144]).
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k-point
mesh

LaTMO3

Sc Ti V Cr Mn Fe

BSE 6× 6× 4 0.324 0.130 0.434 0.166 0.147 0.202
mBSE 6× 6× 4 0.292 0.145 0.273 0.200 0.181 0.162
% error 10 12 37 20 23 20

mBSE 10× 10× 6 0.189 0.134 0.263 0.171 0.160 0.116

ϵ−1
∞ 0.201 0.120 0.122 0.147 0.107 0.103
λ 1.462 1.349 1.420 1.393 1.335 1.336

Table 6.6: Exciton binding energies Exb in eV for the La series compounds, calculated by
mBSE and BSE approaches. Conventions used are the same as in Table 6.4.

Figure 6.8: Comparison
between the (a) experimental
data for LaVO3 reproduced from
Miyasaka et al. J. Phys. Soc.
Jpn., Vol. 71, No. 9,(2002) [216]
and the ab-initio results (b).

The sources of the above deviations are discussed be-
low for each compound. This involves both theoret-
ical arguments and aspects of the experimental mea-
surements (for instance, the available experimental data
were obtained by different techniques at different tem-
peratures, making a consistent comparison with compu-
tational data achieved at 0 K difficult, see Table S1 in the
SM).
The second structure, located at 7 − 8 eV, dominates
the spectra and exhibits stronger excitonic effects, with
redshifts (evaluated at σ(ω) ∼ 3 × 103Ω−1cm−1) be-
tween 0.6 eV (LaCrO3 and LaFeO3) and 1.0 eV (LaVO3).
An improvement over the IPA is observed only for
LaTiO3, LaVO3 and LaCrO3; the quality of the agree-
ment with the experimental curves is overall material de-
pendent.

The (p→d) band insulator LaScO3 follows a trend dissim-
ilar to the picture described above: it presents a single,
wide and intense peak with a rather strong excitonic red-
shift of 0.9 eV (evaluated at σ(ω) ∼ 0.3 × 103Ω−1cm−1).
The disagreement between the measured and calculated
spectrum should be traced back to the difference between
the G0W0 and the experimental gap (≈ 1 eV [144]), which
has been attributed to difficulties in measuring the long
tail in the bottom part of the spectrum [144].
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The exciton binding energies (listed in Table 6.6) fall within the 120 meV - 190 meV range
and are overall smaller than their cubic non-magnetic counterparts (with the exception of
LaVO3). The predicted higher Exb for LaVO3 is consistent with the larger experimental
value of Lovinger et al. [217] (∼ 0.6 eV). Recent experimental optical conductivity mea-
surements [216] also highlight a splitting of the low-energy structure (visible as an addi-
tional shoulder at lower temperatures, see Figure 6.8) which has been related to excitonic
effects [217, 218, 219] and is correctly reproduced by the BSE data - but completely absent
in the IPA curve.

Compared to the full BSE, mBSE introduces an error ranging between 10% (LaScO3) and
37% (LaVO3), with a mean absolute error of 0.20 eV. The mBSE scheme therefore performs
less satisfactorily for this subset than for the cubic non-magnetic perovskites; LaVO3 exhibits
the larger discrepancy both in absolute and percentage values of the whole set.

To gain insight on the cause of the larger error observed for LaVO3, we completed a se-
ries of tests:

1.

Figure 6.9: Comparison between
the IPA ϵ−1

G,G(k) and the analytic ex-
pression determined from eq. 6.1.

A mBSE calculation on top of the G0W0 band
structure (while keeping the k-mesh, µ and λ
fixed at the values of Table 6.6) was performed
as a first step. In this manner the scissor opera-
tor is not required and we can isolate and gauge
the effect of the model dielectric function ap-
proximation alone. The resulting mBSE@G0W0

exciton binding energy is only slightly increased
with respect to the mBSE value (0.299 eV vs.
0.273 eV), and is still much smaller than EBSE

xb =
0.434 eV. This in turn implies that the disagree-
ment mostly arises from the model dielectric
function approximation.

2. The analytic expression for the diagonal terms G = G’ from eq. 6.1 reproduces satis-
factorily the IPA curve as visible from Figure 6.9.

3. Is the neglect of non-diagonal terms the source of the error? To test this hypothesis
an additional standard BSE@G0W0 calculation (within the Tamm-Dancoff approxima-
tion) retaining only the diagonal elements of the screened exchange kernel was per-
formed. The resulting binding energy is EBSE−diag only

xb = 0.322 eV, much closer to the
mBSE@G0W0 value of 0.299 eV than to EBSE

xb with the full (diagonal+off diagonal)
screened exchange kernel (0.434 eV).

This proves that including off-diagonal elements in the inverse dielectric function and in the
screened kernel is essential for accurately describing the excitonic properties of LaVO3 and
explains the limits of the model dielectric screening approximation for this material.
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Origin and character of main optical transitions

We decode the character of the optical transition by analysing the excitonic eigenvectors also
for this series of compounds. Fig. 6.12 presents the fat band pictures related to the first non-
dark excitation and to the most intense oscillator strength of the p1 peaks (as indicated in
Fig. 2.2). The character of the excitonic wavefunction is closely connected to the electronic
nature of the insulating state (band insulator, MH, CT and mixed MH/CT) [191, 215].

Figure 6.10: Fat band picture for Akvc

associated with the third peak of LaFeO3.
The two main transition categories con-
tributing to the eigenvector are distin-
guished by different colors.

For the band-insulator LaScO3 (top-left) the di-
rect transitions at Γ dominate the excitonic wave-
functions (only minor contributions can be seen
along the Γ-X direction) which involve O − p to
Sc− d excitations.
The first (lowest) set of optical excitations for MH
insulators LaTiO3 (top-right), LaVO3 (middle-
left) and LaMnO3 (bottom-left) are determined
by d-d transitions exclusively involving the two
MH sub-bands, whose states have a predominant
TM−d character [191, 165, 220, 221]. We note
that contributions to eigenstates AΛ

vck at Γ are
almost negligible. This can be explained by re-
calling that d → d transitions are dipole forbid-
den at k-points with a small point group equal
to the full point group of the crystal, like the Γ
point [222, 223]. However, the remaining region
of the BZ has a small point group with a lowered
symmetry, thus allowing the d → d transitions
determining the Mott peaks. The second main structures (for energies approximately larger
than 4 eV) are instead determined by p− d transitions from the valence O−p bands (laying
below the occupied MH subband) to the conduction MH subband; at higher energies transi-
tions to La−d states are also involved (not shown).

For LaCrO3 and LaFeO3 optical experiments reported the coexistence of MH/CT-type exci-
tations at the fundamental gap [215]. This was later confirmed by first principles analyses
which indicate a sizable admixture of O-p (≈ 20%/30% for LaCrO3 and LaFeO3 respectively)
and TM-d (≈ 80%/70%) [144, 165, 191, 224]. This mixed CT/MH nature of the optical ex-
citations in LaFeO3 is well captured by the BSE eigenvectors shown in the fat band plots of
Fig. 6.12
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Figure 6.11: Comparison between LaCrO3

G0W0+BSE spectra and fat band pictures cal-
culated from the PBE functional and from the
hybrid functional (with an exchange fraction of
0.15). The p1 peak of each spectra is labeled.
The fat band pictures are associated with the
first non-dark transitions.

.
Moreover, the optical spectrum of LaFeO3

exhibits a peculiar third intense peak at ∼
3 − 4eV, whose contributions are analysed
in Figure 6.10. Transitions from the mixed
O−p/Fe−d subband near the Fermi energy
to the Fe−d states located at ∼ 4 eV pro-
vide the majority of the total square ampli-
tude (

∑
k

∑
v∈O-p/Fe-d

∑
c∈Fe-d∼4eV

∣∣AΛ
kvc

∣∣2 ∼
0.59) and are particularly intense at the X
and T points. A secondary contribution
emerges from valence O−p states at ∼ −2
eV to the conduction bands at ∼ 2 eV (with
a ∼ 30% total square amplitude).
For LaCrO3 the coexistence of MH/CT-type
transitions at the optical gap is associated
with an overlapping of the Mott and CT
excitations in the spectrum [215] and has
been explained in terms of a significant mix-
ing of Cr-t2g and O-p at the valence band
top [165, 191, 224]. The optical conductivity
in Figure 6.7 only partially agrees with this
picture: the energy separation between the
p1 peak and the CT structure is significantly
overestimated and the optical gap possesses
a dominant d−d character. This reduced mixed CT/MH character is due to a low O-p orbital
character of the LaCrO3 valence band maxima [144] (with an O-p percentage of 17%−20%).
Considering the perturbative nature of the G0W0 scheme, this apparent discrepancy could
originate from the PBE starting point. To test this hypothesis we performed an addi-
tional G0W0+BSE calculation starting from hybrid functional orbitals (following the setup
of Ref. [191], with an exchange fraction α = 0.15). The results, shown in Figure 6.11, lead
to an improved agreement with the experimental data. The oxygen character of the top of
the valence band increases from ∼ 20% to ∼ 30%, restoring the MH/CT mixed nature of
the optical gap. The O-p valence bands below the MH subband are shifted towards higher
energies, producing a reduction of the energy separation between the p1 and CT peaks. How-
ever G0W0 on top of Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional overestimates the
experimental optical gap by ∼ 0.6 eV (with BSE optical gap of 3.89 eV versus the experi-
mental value of 3.30 eV [215]). Conversely, the calculations based on G0W0@PBE (on the
same k-mesh) predicts a smaller optical gap of 2.74 eV.
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2. ELECTRONIC AND OPTICAL PROPERTIES 78

Figure 6.12: Fat band plots for members of the La series (LaTiO3, LaVO3, LaCrO3,
LaMnO3, LaFeO3 and LaScO3). For each compound we show two panels: the left one refers
to the first non-dark eigenvector whereas the right one is related to the eigenvector with the
highest oscillator strength close to the p1 BSE structures (see Fig. 6.7). Color codings and
labelings are similar to those adopted in Fig. 6.6: blue for O−p, red for TM−d and green for
La−d.



2.3 Ca2RuO4, NaOsO3 and SrTMO3 (TM=Mn, Tc)

Comparison between BSE and IPA spectra

Figure 6.13: σ(ω) within the IPA (blue line), BSE approach (red line) and experimental
data (from Arima et al. [215]; the dashed line for LaVO3 represents the optical conductivity
measurement from Miyasaka et al. [216] ). All curves are obtained through a 5×2×5|2×2×2
k -averaging, except for LaScO3, for which a 5× 5× 3|2× 2× 2 mesh was used. The p1 labels
denote the first (low intensity) BSE structures.

We complete the discussion of the results by reporting the analysis of the optical transi-
tions for the remaining compounds: Ca2RuO4, NaOsO3, SrMnO3, and SrTcO3 (the computed
σ(ω) are collected in Fig. 6.13). For these compounds, a comparison with the measured opti-
cal conductivity is limited to NaOsO3 [225] and Ca2RuO4 [226] (to the best of our knowledge,
we are not aware of any experimental spectra for SrMnO3 and SrTcO3). For those materials
only a qualitative agreement between theory and experiment is achieved.

The experimental spectrum of Ca2RuO4 exhibits three distinct peaks: 2 weak shoulders
labeled α and β (following the nomenclature of Jung et al. [226]) and a third intense one
at ∼ 3 eV designated as γ. These peaks are correctly identified by both IPA and BSE ap-
proaches, despite the lower intensities. σIPA(ω) underestimates the experimental onset, and
the BSE slightly aggravates this discrepancy with a redshift of ∼ 0.2 eV. The α and β peaks
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predicted by BSE exhibit a slightly more pronounced redshift (respectively ∼ 0.3 eV and
∼ 0.4 eV).

Despite retaining a transition metal of the same group, SrMnO3 and SrTcO3 exhibit rather
different spectra. The 3d SrMnO3 perovskite displays a wide and multi-peaked structure be-
tween 2 eV and 4 eV. The excitonic corrections are prominent, with a significant enhancement
of the peak at 2.8 eV associated with a redshift of ∼ 0.6 eV (evaluated at σ ∼ 2×103Ω−1cm−1).
For the 4d perovskite SrTcO3 BSE does not substantially modify the peaks intensity, but leads
to a sizable redshift of about 0.4 eV for the first peak (evaluated at σ ∼ 2× 103Ω−1cm−1).
The 5d compound NaOsO3 exhibits the highest ϵ∞ within the dataset (suggesting a strong
electronic screening) and the lowest excitonic redshift among all considered systems (∼ 0.1
eV). This is reminiscent of the BSE prediction for other 5d systems (e.g. iridates [164, 187]),
indicating relatively weak excitonic effects in extended 5d orbitals.

The calculated exciton binding energies, along with the parameters used for the constructing
the model screening functions, are listed in Table 6.7. For this subset of materials, mBSE
reproduces rather well the BSE binding energies Exb.

k-mesh SrMnO3 SrTcO3 Ca2RuO4 NaOsO3

BSE
4× 4× 2 0.199
5× 5× 3 0.081 0.104 0.059

mBSE
4× 4× 2 0.165
5× 5× 3 0.077 0.106 0.051

% error 5 2 17 14

mBSE 8× 8× 4 0.034 0.118
9× 9× 6 0.057 0.024

ϵ−1
∞ 0.088 0.071 0.087 0.031
λ 1.340 1.329 1.225 1.109

Table 6.7: Exciton binding energies Exb in eV for Ca2RuO4, NaOsO3 and STMO3 (TM=Mn,
Tc), calculated through the mBSE and BSE approaches. Conventions used are the same as
in Table 6.4.

Origin and character of main optical transitions

We discuss the nature of the main transitions based on the fat bands analysis shown in
Fig. 6.15. Similar to the previous cases, we focus our analysis on the first non-dark excita-
tions and on the main peaks in the first part of the optical spectra.
For SrTcO3 both the optical gap and the sharp peak at 1.4 eV exhibit a clear Mott char-
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acter. Although the greater contributions to the AΛ
kvc originate from the Z − T direction,

the excitonic wavefunctions themselves are delocalized in the BZ and their amplitudes are
suppressed at the Γ point, as expected from Mott-type d − d transitions (see discussion for
the La series).
As already mentioned, SrMnO3 displays marked differences: the uppermost valence bands
exhibit a strong admixture of O−p and Mn−d (with a O−p percentage varying between 18%
along the Γ-X direction and 46% along M-R) indicating an intermediate CT/MH nature of
the optical gap [144]. The associated wavefunction is more localized than the one calculated
for SrTcO3, with strong contributions only around the Γ-X direction.

The low-energy electronic structure of Ca2RuO4 has been widely studied and discussed [227,
226, 228, 229, 230, 231, 232, 233, 234, 231]. The 4d electrons occupy the t2g orbitals, with
the eg states well separated in energy and completely empty. Our G0W0 data, in agreement
with previous computational studies [226, 235], describes a t2g manifold subjected to a fur-
ther splitting, with the dxy dominantly occupied and the dxz/dyz mixed and partially filled.
The t2g splitting has been associated with different mechanisms, including the rotation and
tilting of the RuO6 octahedra [228], spin-orbit interaction [229], c-axis contraction and crys-
tal field stabilization [230, 231]. The O−p percentage varies between 14% and 25% for the
highest valence band and between 20% and 24% for the lowest conduction band, indicating
an admixture of p and d states with a predominantly MH d− d optical gap [144]. Our data
suggest that the α peak is determined by transitions between filled and empty t2g bands,
more specifically between filled dxy states and conduction dxz/dyz states. The β peak at
∼ 1.5 eV can be assigned to transitions between the splitted dxz/dyz manifolds, whereas the
γ peak at 2.2 eV is established by excitations from dxy orbitals just below the Fermi energy

Figure 6.14: Fat band picture for Akvc related to the first three BSE peaks of Ca2RuO4.
Green color for Ru−dxy, red for mixed Ru−dxz/dyz, blue for Ru−eg.
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Figure 6.15: Fat band pictures for SrMnO3, SrTcO3, Ca2RuO4 and NaOsO3. The left
column refers to the first non-dark eigenvector of each material; the right column to the
eigenvectors associated with the highest peaks in the first structures. Color codings and
labelings are analogous to those adopted in Fig. 6.12: blue for O−p, red for TM−t2g and
green for Sr/Ca/Na−d.

to Ru-eg states > 2 eV above the Fermi energy (see Fig. 6.14). The wide structure around 3
eV in the BSE spectrum is determined by excitations from the O−p bands near −3 eV under
the Fermi energy towards the conduction dxz/dyz orbitals.

3 Conclusions
A systematic investigation of the optical and excitonic properties of a selected set of TMO
perovskites was presented in this chapter by ab-initio G0W0 + BSE. The fourteen compounds
were selected in order to constitute a minimal dataset representative of the variety of struc-
tural and electronic properties characteristic of this class of perovskites.
The solution of the Bethe Salpeter equation proves to be decisive to reach a quantitative
agreement between the theoretical and experimental spectra for the cubic perovskites SrTiO3,
SrHfO3, SrZrO3 and KTaO3. A pronounced spectral weight transfer is visible in their optical
conductivity profiles (with an average redshift at the onset of 1.03 eV) due to excitonic ef-
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fects. This confirms and extends the previous studies on SrTiO3. To investigate the origin of
the main structures of the spectra we analysed the e-h coupling coefficients associated with
the most intense oscillator strengths. The contributions from transitions toward different
conduction band manifolds are examined, and the role of band overlapping in SrZrO3 and
SrHfO3 is discussed.

Comparisons with the reference experimental data have been discussed for the La series,
NaOsO3, and Ca2RuO4. The main features of the La series experimental spectra are cor-
rectly identified in both IPA and BSE approaches with similar line shapes. The excitonic
corrections for this subset can be summarized as a redshift of the entire spectra, with an
average value of 0.5 eV and reduced peak enhancements (with LaFeO3 as partial exception).
The BSE approach, however, consistently underestimates the experimental onset by 0.3˘1.0
eV. Furthermore the DFT results unable to account for the mixed MH/CT nature of LaCrO3

optical gap, which can be instead correctly described by hybrid functionals.
A model-BSE (mBSE) approach was also employed to calculate the excitonic binding energies
for this subset. The model-BSE scheme introduces two approximations: a scissor operator
to mimic the Quasiparticle shifts and a model dielectric function to determine the dielectric
screening. To assess the validity of this approach, we bench-marked the mBSE-calculated
Exb against the G0W0+BSE values obtained with the same k-point mesh. The BSE val-
ues are very well reproduced for the cubic subset [with a mean absolute percentage error
(MAPE) of 6%] and for SrMnO3, SrTcO3, Ca2RuO4, and NaOsO3 (with a MAPE of 9%).
The discrepancies for the La series are larger, with a MAPE of 20%; the largest outlier is
LaVO3primarily due to the diagonal dielectric screening approximation. The overall agree-
ment with experimental data is satisfactory, also considering the technical difficulties that
hamper a precise measurement of optical spectra for TMO perovskites, and the tendency of
this class of materials to be subjected to chemical defect (e.g., oxygen vacancies or presence
of TM impurities).
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Chapter 7

Excitonic and Quasiparticle properties of
freestanding monolayer SrTiO3

In the last decades low-dimensional materials have attracted increasing attention due to
their remarkable physical properties resulting from quantum confinement and reduced di-
mensionality effects, which strongly differentiate them from bulk phases. In particu-
lar two-dimensional monolayer structures have been intensely studied due to their op-
tical and excitonic physics: the enhanced electron-hole interaction results in strongly
bound excitons which dominate the optical response and the charge transfer proper-
ties [113, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245].
Recently an important advance has been achieved by Ji et al. [38] through the first experimen-
tal synthesis of freestanding perovskites SrTiO3 and BiFeO3 films with a thickness reaching
the monolayer limit (see Figure 7.1). Their work constitutes a major breakthrough and repre-
sents an experimental evidence that TMO perovskites films can be realized with thicknesses
below the critical limit previously proposed as necessary for crystalline order stability [39].
A year later freestanding PbTiO3 films were fabricated with thicknesses down to four unit
cells by Han et al. [246].
Recent theoretical works [112, 37, 188, 189] (as also discussed in section 6) analysed the role
of electronic correlations and localized d states in the optical response of bulk SrTiO3, and
highlighted how including an explicit description of electron-hole interaction is necessary to
achieve a satisfactory agreement with the experimental data. The experimental synthesis of
freestanding TMO perovskites monolayers opens therefore the possibility of extending these
analyses to the two-dimensional phase. To the best of our knowledge studies of excitonic
effect on this compound have been confined to thin films, bulk phases or on heterostructures
with other oxides and do not comprise structures near the monolayer limit.

In this chapter we present therefore a first principle study of the Quasiparticle and exci-
tonic properties of freestanding monolayer SrTiO3. The electronic structure is determined
through the G0W0 approach; the role and effect of the inclusion of non-diagonal self energy
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Figure 7.1: Figure reproduced from Ji et al. [38]. High-angle annular dark field (HAADF)
image (a) and plan-view HAADFT images (c) of ultrathin freestanding SrTiO3 films of
various unit-cell thicknesses.

terms is discussed in section 3. The Bethe-Salpeter equation is solved in order to determine
the optical properties (see section 4). Excitonic effects significantly alter the spectra, with
the appearance of new bound exciton sharp peaks and a considerable enhancement of exciton
binding energies. Through the analysis of the coupling components of the BSE eigenstates
we show that the most intense peaks mix transitions to the Titanium localized d states in
continuity to the bulk picture; however transitions to the in plane Ti−dxy orbitals and the
remaining Ti−dxz/dyz form separate excitation channels with different roles and contribu-
tions to the main features in the spectra. The exciton dispersion beyond the long wavelength
limit is investigated by calculating the energy loss function at finite momentum.

This work is extracted from a paper currently ready for submission: L. Varrassi, P. Liu
and C. Franchini, Quasiparticle and excitonic properties of freestanding monolayer SrTiO3.

1 Computational procedure and details
Results from two different GW schemes are discussed in this chapter: in the first the QP ener-
gies are computed from a perturbative correction calculated with the diagonal approximation
of the self energy - we label this scheme G0W0

diag. This method corresponds to the standard
and most common GW scheme, which we employed in the other chapters of this Thesis. In
the second approach the QP orbitals and eigenvalues are updated through the diagonaliza-
tion of an Hamiltonian constructed from the full dynamic self-energy matrix Σ (which takes
into account the off-diagonal terms) [73, 70, 71, 247], as described in section 5.3; we label
this scheme as G0W0

full in order to distinguish it from the previous one. When required,
we denote the starting point with the notation G0W0@starting point, as G0W0

diag@PBE or
G0W0

full@PBE.
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Unless otherwise stated, all GW calculations were carried with VASP version 6.2.1 and
6.3.1; the Yambo software (version 5.0.4) [19, 20], was employed for the bands number con-
vergence, as discussed below. The norm conserving versions of the Sr, Ti and O VASP
PAW PBE potentials [59] were adopted, as recommended by Ergönenc et al. [144]; more
precisely the Sr_sv_GW_nc 17Jun2013, Ti_sv_GW_nc 17Jun2013, O_h_GW 22May2013 POT-
CARs were used for all GW results. For Yambo the Optimized Norm-Converving Vanderbilt
pseudopotential of the SG15 dataset were used [248], in particular Sr_ONCV_PBE-1.2.upf,
Ti_ONCV_PBE-1.2.upf and O_ONCV_PBE-1.2.upf.
The GW production VASP simulations were performed with 96 frequency points (Nω = 96,
NOMEGA flag), an energy cutoff of 600 eV and a cutoff of the response function (ENCUTGW flag)
of 325 eV. To reduce the computational load a less dense FFT grid for the exact exchange
part of the self-energy was used (PRECFOCK=Fast), after careful testing.

The basis extrapolation method was discarded for this 2D material due to computational
constraints: due to the large vacuum required to prevent interactions between periodic im-
ages, the number of plane waves in the complete basis is exceedingly large (∼ 22250 plane
waves for a vacuum size of 40Å and a cutoff of 600 eV1).
The convergence study of the Quasiparticle (QP) direct and indirect gaps with respect to
the vacuum size was carried out at G0W0

diag level: a vacuum size of 40Å guarantees a con-
vergence of 0.04 eV2. We point out a limitation of the employed setup: the current VASP
implementation of the GW and BSE procedures does not provide the option of truncating
the Coulomb interaction in low-dimensional materials. This feature has often played a very
significant role in achieving accurate quantitative convergences [244, 239].
A k-mesh of 20× 20× 1 guarantees a convergence of the QP gap and of the optical (direct)
gap of 0.06 eV3 (see Figure 7.2 (c)). The BSE matrix employed the Tamm-Dancoff approxi-
mation and included 6 conduction and 6 valence bands.
These two sets of convergence calculations were performed with the diagonal-only G0W0

diag

approximation, but the converged values were double-checked also for the G0W0 routines
with the inclusion of the off-diagonal self-energy terms. The checkpointing feature described
in section 5.5 was employed during the G0W0

diag convergence studies.

The last step is the convergence study of the QP and optical gaps with respect to the energy
cutoff and to the number of bands (which is often critical in GW calculations, see section 2.1).
More than 1100 bands and a cutoff of 600 eV were required to reach a convergence threshold
of 0.10 eV on the QP gaps, while ∼ 2000 bands were required to achieve a convergence of

1The large vacuum size implies a unit cell with a sizable volume, which in turn implies a large FFT grid.
The number of plane waves in a complete basis set depends on the FFT mesh, as described in section 4.

2The study was performed on a 8× 8× 1 k-mesh, with 600 eV cutoff energy and 192 bands included; the
vacuum size was increased during the convergence study at steps of 5Å.

3The calculations composing the convergence study with respect to the k-mesh were performed with a
vacuum size of 40 Å, 600 eV energy cutoff and 192 bands.
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Figure 7.2: Convergence studies for the Quasiparticle gap with respect to (a) bands number,
(b) vacuum size, (c) k-mesh divisions.

0.02 eV. The study was performed by running diagonal-only G0W0
diag simulations on a very

sparse k-mesh of 3× 3× 1, which included the k-points determining the direct and indirect
gaps (Figure 7.2 (a)).
Given the available resources, the computational cost of running a G0W0

full simulation,
(with the calculation of the full Σ matrix) with such converged parameters would have been
prohibitive; we therefore adopted a different strategy:

1. In order to determine the QP gaps and bands a G0W0
full calculation (with VASP) was per-

formed with 192 bands, and the resulting bandstructure was corrected by a scissor operator
which accounted for bands convergence. The scissor value was determined by subtracting
the QP gap values obtained by performing two different G0W0

diag calculations, one with the
converged bands number and one with 192 bands. The GPU version of Yambo software was
used for the calculations required for computing the scissor operator. The GPU acceleration
of GW routines, available in Yambo but still in development for the VASP software, allowed
a considerable speedup. hese calculations employed the Plasmon Pole model; in general the
accuracy of the PPM can be strongly influenced and reduced for materials whose electronic
properties are affected by transition metals’ d level, such as ZnO or SnO2 [249, 152]. There-
fore as a first step we tested its validity for this particular material by comparing the PPM
results with standard real axis integration ones within the Yambo code. The differences be-
tween the direct and indirect QP gaps from the two approaches are less than 0.04 eV. These
tests were carried out on a reduced k-point mesh and a lower band number (respectively a
10× 10× 1 k-mesh and 480 bands).

2. The scissor corrected G0W0
full eigenvalues and orbitals were employed for the BSE step.

However the RPA static screened kernels Wq(ω = 0,G1,G2) were recalculated separately
with the converged number of bands. The q-point selection feature (part of the check-
pointing feature described in section 5.5) was used for splitting the computational load in
separate runs.
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2 Relaxed structure and polarization

Figure 7.3: The lattice structures of mono-
layer SrTiO3. a) describes the top view (iden-
tical for bot lattices), while b) and c) represent
the non-relaxed and the relaxed structures re-
spectively. green atoms are Sr, red Ti and blue
Oxygens.

The one-unit-cell (001) for SrTiO3 was de-
termined through a structural optimiza-
tion starting from the relaxed cubic bulk
phase. The monolayer consists of two
(nominally neutral) atom planes; the op-
timization results in a distortion along
the z axis (see Figure 7.3), in agree-
ment with previous works [250, 251]: The
Ti and Sr atoms are displaced toward
the inner side, with a larger displace-
ment associated to the Sr atom (0.29
Å versus the 0.18 Å for Ti). The
optimization has been carried out using
the generalized gradient approximation of
Perdew–Burke–Ernzerhof (PBE) as imple-
mented in VASP, a cutoff of 900 eV, a k-point
mesh of 10× 10× 1 and a vacuum size of 40
Å.

The distortion gives rise to a polarization perpendicular to the monolayer plane [251], which
is equal to 0.069 |e|Å for the fully relaxed structure (determined through the evaluation of the
Berry phase expressions). We note that the evaluation of the polarization using the approxi-
mated expression Ptot =

∑
i ∆RiZ

∗
i (where ∆Ri are the atomic displacements perpendicular

to the monolayer plane and Zi the Born effective charges) provides a value of 0.062 |e|Å close
to the one determined by Berry phase formula.

3 Electronic properties: nonphysical dispersions
We start by examining the Quasiparticle bandstructures determined by the GW approaches
for the relaxed and non-relaxed structures. The bandstructures at G0W0

diag level for the
relaxed structure are displayed in in Figure 7.4, while the different character contributions
to the orbitals are visible in Figure 7.5. The GW schemes use a DFT (PBE) starting point.
Contrary to the bulk case, the QP corrections introduced by G0W0

diag are not limited to
a (almost constant) energy shift but are strongly band- and k-point dependent, and result
in multiple band crossings and highly dispersive conduction bands at Γ-X and Γ-M (see
Figure 7.4). The minima of the lowest conduction band at Γ and around Γ-X and Γ-M also
possess a clear hybridization (with a reduced Ti-d contribution, between 55% and 65%, see
Fig. 7.5). This is a clear difference from the PBE picture, where the lowest conduction bands
are dominantly contributed by Ti-d. The valence band shapes are instead almost unchanged
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Figure 7.4: Orbital projected band structures for the relaxed structure. The zero of the
energy scale is set at the top of the valence band for both PBE and G0W0 results. In the
G0W0

diag and G0W0
full subfigures the DFT bandstucture is plotted for comparison as grey

lines.

0

Figure 7.5: Orbital projected wavefunction character of the G0W0
diag electronic bands for

the relaxed monolayer. The character is determined as ⟨Y α
lm|ψnk⟩, where Y α

lm is the spherical
harmonic centered on ion α with l,m angular and magnetic moments. For Ti only the
contributions over the d states are displayed.

and the corrections are limited to a small stretching.
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A comparable bandstructure for the relaxed structure was obtained from Yambo [19, 20]
(see Appendix D), a different ab-initio software aimed at the study of excited state and
Quasiparticle properties with many-body methods. The agreement between the two codes
validates VASP data and suggests that this spurious behavior of the QP corrections is not
imputable to the specific VASP implementation of the GW routines or to VASP pseudopo-
tentials.
Yambo results were also employed to inspect the linear approximation of Σ(ω) close to the
band crossings at Γ-X, in order to further validate the procedure. Figure 7.6 shows that for
these states the linearization of the self-energy is very accurate: the feature described above
cannot be therefore associated to a breakdown of this approximation.

Figure 7.6: Graphical solution of the Quasiparticle equation for the first and second con-
duction bands near Γ-X. The orange line indicates ω−EKS, while the black line is the linear
approximation. The intersection between the blue and orange line represents the solution
to the QP equations, while the intersection between orange and black indicates the solution
given by the linear approximation to the self energy.

Moreover, both VASP and Yambo allow to go beyond the linear approximation of the self-
energy, either by using a non-linear iterative method based on the Secant scheme (Yambo,
secant solver option) or through a Padé approximation of Σ and Brent method (as imple-
mented in VASP for the low-scaling GW approach [29]). We compared the QP energies
determined through the linerization and the non-linear iterative methods, and the differences
for the first conduction bands are lower than 50 meV.

To clarify this subtle behavior it is instructive to compare the G0W0
diag data with

the QP energies produced by the G0W0
full approach. The G0W0

full@PBE results
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show markedly different conduction bands shapes with respect to the ones yielded by
G0W0

diag@PBE: the bands crossings involving the lowest unoccupied bands and the un-
physical bands dispersions around Γ-X and Γ-M are not visible anymore (see Fig. 7.4).

Direct (eV) Indirect (eV)

BSE@G0W0
full(Exb) 3.473 (1.04) 3.299 (0.59)

G0W0
full 4.514 3.888

G0W0
diag 4.774 4.114

Table 7.1: Direct and indirect quasiparticle (QP)
and optical gaps for the relaxed monolayer, including
the exciton binding energies Exb of the first excitonic
state. The QP gaps are displayed for both G0W

full
0

and G0W
diag
0 schemes; the optical gaps and Exb are

computed from the resolution of Bethe-Salpeter equa-
tion starting from G0W

full
0 results. All energies are in

eV.

Moreover, the G0W0
full conduction

manifolds exhibit a more pronounced
hybridization with respect to the
G0W0

diag@PBE reference; in partic-
ular the lowest G0W0

full conduc-
tion band possesses a sizable mix-
ture with O states and secondarily Sr
states at Γ. We note again that the
conduction states character is com-
pletely different from the PBE de-
scription.
The unreliable description of G0W0

diag

is associated with two different fac-
tors: the first is the well known start-
ing point dependence [65, 30, 252, 81,
253] of the diagonal G0W0 approxi-
mation. The incorrect orbital character description of the DFT calculations causes erroneous
QP corrections and hence the G0W0

diag unphysical band dispersions.
On the other hand, G0W0

diag neglects non-diagonal self-energy elements: due to the absence
of these terms the coupling that could hybridize the single particle states is missing. The
inclusion of the off-diagonal Σ terms in the G0W0

full scheme is in fact able to correctly cou-
ple the single particle Kohn-Sham orbitals and restore the correct hybridization. As cited in
section 5.3, similar behaviors were also observed in topological insulators [87, 88, 89] and
materials with strong p-d hybridization [90, 91, 92, 93].
We note moreover that a hybrid starting point is not able to correct the unphysical disper-
sions (see Appendix D): the G0W0

diag@HSE06 bandstructure exhibits partially similar band
crossings and dispersions.

The fundamental Quasiparticle bandgaps are summarized in Table 7.1. The DFT bandgap
for the relaxed structure is indirect, with the valence band maximum (VBM) at M and the
Conduction Band minimum (CBm) at Γ, while the direct gap is defined at Γ. Despite the
strong effect on orbitals of Quasiparticle corrections, the G0W0

full indirect and direct gaps
are opened between the same k-points (Γ − M and Γ), and are equal to 3.888 eV and 4.514
eV respectively.

91



Figure 7.7: a) Imaginary dielectric function with excitonic effects (BSE) and in the In-
dependent Particle Approximation (IPA) for the relaxed structure. The vertical dashed line
represents the fundamental direct gap. The BSE eigenvalue spectrum is visible in b), with an
insert zooming over the bound exciton region. The colors indicate the associated oscillator
strength; the maximum of the scale is related to Λ2.

4 Optical and excitonic properties
The optical response of the monolayer is dominated by excitonic effects. The direct optical
gap is associated to a large excitonic binding energy of ∼ 1.0 eV (see Table 7.1). Previ-
ous studies on the bulk phase estimated a corresponding binding energy at Ebulk

xb ∼ 0.2
eV [37, 188, 189]; the larger value compared to bulk is a typical consequence of the screening
environment of 2D materials [245, 254, 244]. The indirect optical bandgap is located at M
(as the fundamental QP bandgap), and we obtain a (indirect) binding energy of ∼ 0.6 eV for
the lowest-energy exciton.

The BSE imaginary dielectric function in Fig. 7.7 is dominated by two very intense and
narrow peaks, in marked contrast with the long absorption tail of the Independent Particle
curve. The first one is located in the bound exciton region and is determined by the excitonic
state Λ1. A low-intensity feature is also visible at the optical direct gap and can be associated
to the lowest bound exciton Λ0, with a considerable redshift at the onset at around ∼ 1.8
eV. Λ0 is related to a bright exciton, albeit with a very weak oscillator strength, less than
5% of Λ1. The continuum region displays a single prominent structure, in the form of sharp
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Figure 7.8: Upper panels: fatband pictures for the |AΛ
kvc|2 of Λ0, Λ1 and Λ2 states, asso-

ciated to the optical gap and to the main spectra features. The fatbands are proportional
to the square amplitude of the of the electron-hole coupling coefficients |AΛ

kvc|2 relative to
the marked transitions. For Λ2 the O-p → Ti-dyz – Ti-dxz channel, discussed in the text, is
highlighted with a different color. Lower panels: Distribution of the BSE eigenvectors in the
Brillouin Zone for the corresponding excitons. The plotted values corresponds to

∑
v,c |AΛ

kvc|2.

peak (determined by Λ2 exciton eigenstate and related to strongest oscillator strength) plus
a shoulder.
We turn now to the analysis of the bound excitons fine structure in Fig. 7.8. The lowest
state Λ0 is double-degenerate and weakly optically active, with a modest oscillator strength.
The contributions to the excitonic wavefunction AΛ0 , are predominantly localized at Γ and
mix transitions from the valence O-p states the lowest conduction band. The low oscillator
strength can be explained in terms of the character of the lowest conduction orbitals: as
discussed in the previous section, the CBm retains a substantial O-p and Sr hybridization
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(around 40% and 20% respectively) - in particular the Sr hybridization at Γ is mainly com-
posed by Sr−s and Sr−p character. This in turn is associated to a partial suppression of the
optical matrix elements between valence O-p states and the CBm.
The Λ1 exciton is strongly bound, with an EΛ1

xb ∼ 1.2 eV; the binding energies of Λ1 and the
following excitons are defined as the difference between the BSE eigenvalue and the interband
transition with the strongest contribution in the excitonic eigenstate, as previously proposed
in literature [255, 256]. The major AΛ1

kvc terms correspond to interband transitions localized
near Γ from the two highest valence bands formed by O−px/py states (twofold degenerate at
Γ), to the second conduction band of Ti−dxy character.
The BSE eigenstate AΛ2

kvc in the continuum mixes the O-px/py → Ti-dxy channel at Γ with a
second channel (highlighted with a different color in Fig. 7.8), from the O-pz valence states
to the flat-non dispersive conduction bands in the two regions around Γ − X and Γ − M at
∼ 5.9 eV determined by Ti-dyz/Ti-dxz states (with negligible hybridization, less than 12%).
The high intensity of the Λ2 feature can be associated on one hand to the localization of the
d states in the non-dispersive regions at ∼ 5.9 eV. We note moreover that all O-p valence
orbitals involved in Λ1 and Λ2 originate from oxygen atoms situated in the Ti plane. Due to
particular screening environment of 2D compounds we expect that orbitals perpendicular to
the monolayer plane (as the ones involved in the O-pz → Ti-dyz/Ti-dxz channel) experience
a reduced screening with respect to plane confined ones [255]; this effect concurs to explain
the large ∼ 2.4 eV redshift of the Λ2 peak.

The investigation of the exciton band structure and dispersion at finite q, beyond the op-
tical limit, allows to further characterize and discriminate the excitonic properties in 2D
systems [242, 129, 240, 257, 238]. The excitonic dispersion can be accessed experimentally by
means of electron energy loss spectroscopy (EELS) or resonant inelastic x-ray spectroscopy
(RIXS) [242]. In particular in the EELS technique the cross-section depends on the Loss
function L(q, ω) = −Im (ϵ−1(q, ω)).
The Loss functions for various q is plotted in Figure 7.9 along Γ-M direction (which corre-
sponds to the indirect gap direction).
The double-degenerate lowest excitonic state Λ0, which gives rise to a low-intensity feature
for q → 0, becomes completely optically inactive along Γ-M. Furthermore, the analysis of
its exciton dispersion (Fig 7.9) shows that the Λ0 degeneracy is splitted away from Γ, and
the two resulting excitonic bands reach their minimum at q = M, in correspondence of the
indirect QP bandgap. The lowest (dark) exciton band shows a parabolic dispersion, with an
associated binding energy at M equal to ∼ 0.6 eV.
Upon increasing momentum transfer, the peak associated with the Λ1 state disperses to
higher energies and progressively merges with the high-intensity structure at ∼ 5.5 eV (iden-
tifiable with the Λ2 transition). At large q a new feature appears at transition energies ∼ 4.1
eV, originating from interband transitions from the three highest valence bands to the lowest
conduction band. In particular, for q = M a non negligible contribution to its BSE eigenstate
Avck(q = M) (up to ∼ 30% of the total spectral weight) is determined by transitions from
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Figure 7.9: Loss function for transferred momenta along the symmetry direction Γ-M, from
q = M/8 to q = M. Each curve is multiplied by q2, following Cudazzo and coworkers [242,
129]. In the insert the excitonic bandstructures for the two lowest excitonic states along
X →M→ Γ are displayed; the zero of the scale is set at the eigenvalues minimum at q =M.

valence O-pz states (involved also in the Λ2 excitonic transition).

5 Comparison with the non-relaxed structure
In order to understand the effect of the structural relaxation on the electronic and optical
properties we briefly compare the previous results with the band-structure and the spectra
determined on the non-relaxed structure.
The QP corrections display a strong variation along the BZ; the lowest conduction band
near Γ is not pushed up as strongly as the other conduction states (which instead possess
a reduced mixing and a higher Ti-d contribution, as visible from Fig. 7.10 and 7.11). The
same band is involved in two band crossings near X and M, associated to an orbital character
swap (from hybridized Ti−d/Sr character (with ∼ 55% Ti-d) to a prevalent Ti-d one).
In complete analogy con the relaxed structure picture, the inclusion of non-diagonal Σ el-
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Figure 7.10: Orbital projected band structures for the non-relaxed structure. The zero of
the energy scale is set at the top of the valence band for both PBE and G0W0 results. In the
G0W0

diag and G0W0
full subfigures the DFT bandstructure is plotted for comparison as grey

lines.

Figure 7.11: Calculated orbital projected wavefunction character of the electronic G0W0
diag

bands for the non-relaxed structure. The character is determined as ⟨Y α
lm|ψnk⟩, where Y α

lm is
the spherical harmonic centered on ion α with l,m angular and magnetic moments. For Ti
only the contributions over the d states are displayed.

ements restores the correct hybridization between single-particle orbitals and corrects the
unphysical dispersions, removing the band crossing and character swap at Γ-X.

96



Figure 7.12: (a) Imaginary dielectric function with excitonic effects(BSE) and in the
Independent Particle Approximation (IPA) for the non-relaxed structure, together with the
BSE eigenvalue spectra. The colors indicate the associated oscillator strength; the maximum
of the scale is related to Λ2. (b) Comparison between the imaginary dielectric function
between the two structures.

The BSE spectra of the non-relaxed structure (Figure 7.12) exhibits very similar features
to the relaxed one: two main peaks plus a shoulder to the second one. In this sense, the
relaxation of the structure introduces only slight changes to the main spectra features. The
first peak (associated to transitions Λ1), is redshifted from the relaxed Λ1 analogue by 0.39
eV, while the Λ2 BSE eigenvalue exhibits a larger shift of 0.82 eV.

6 Conclusions
In this chapter we have investigated the excitonic and Quasiparticle properties of freestanding
monolayer SrTiO3, using an ab-initio approach based on Many Body Perturbation Theory.
Inclusion of off-diagonal self-energy elements in the G0W0 scheme has proved crucial to cor-
rectly describe the strong hybridization of the lower conduction bands (which is wrongly
accounted for by DFT) and hence to prevent the appearance of unphysical dispersions.
The excitonic properties have been studied through the solution of the Bethe-Salpeter equa-
tion both in the optical limit q → 0 (by calculating the imaginary part of the dielectric
function) and at finite momentum for the relaxed structure (by computing the electron en-
ergy loss spectra). The spectra of the relaxed structure at q → 0 is dominated by excitonic
effects, with a binding energy of ∼ 1.04 eV at the direct optical gap. The analysis of the
BSE coupling components has shown that the most intense peaks are determined by O-p→
Ti-d interbands transitions, in continuity with the bulk description. In particular transitions
between the in-plane O → Ti−dxy orbitals and between O-pz → Ti-dxz/dyz form separate
excitation channels, which allows us to distinguish and differentiate the two peaks. At finite
q the lowest exciton state becomes inactive with a parabolic dispersion around the transition
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minimum at q =M, located at lower energy than the direct optical gap.
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Chapter 8

Pressure-Induced Excitations in the
Out-of-Plane Optical Response of the
Nodal-Line Semimetal ZrSiS

Figure 8.1: Crystal struc-
ture of ZrSiS (side and top
views). The blue atoms are
Si, the yellow S and the green
Zr.

ZrSiS can be considered a paradigmatic example of the topo-
logical nodal-line semimetals (NLSM), a class of materials
that has recently attracted increasing attention due to their
very interesting physical properties [45]. The compound crys-
tallizes in the PbFCl-type structure (see Fig. 8.1) with a
tetragonal P4/nmm space group [258, 259]. A peculiar fea-
ture of the structure are the 2D square nets of Si atoms paral-
lel to the a-b plane, with S and Zr layers sandwiched between
nets of Si atoms. In short, the structure can be thought as
square nets in the stacking sequence Si-Zr-S-S-Zr-Si.
The electronic structure of ZrSiS is characterized by linear
dispersing bands crossing EF along specific lines [45, 46]. The
linear dispersion of these bands, which extends over an en-
ergy range of ∼ 0.5 eV, has been associated to the square net
structural motif cited above [45, 259, 46]. As a matter of fact
the computed bandstructure of ZrSiS (see Figure 8.2) exhibits
several Dirac crossings at the Fermi energy level located at
Γ-X, Γ-M and slightly shifted from EF along Z-R and Z-A.
No other bands except these linear dispersing states cross the
Fermi energy.
A second group of Dirac band crossings located away from
the Fermi level (±0.7 eV) is visible at the high symmetry k-
points X and R.
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Figure 8.2: ZrSiS DFT and G0W0 band structures at ambient and high (7 GPa) pressures.
The zero of the energy scale is set at Fermi energy.

The crossings create a diamond-shaped Fermi surface within the (kx, ky) plane which is
strongly dispersive along kz and overall quasi 2D-dimensional [260, 261, 262]. Intuitively,
the electrons belonging to the nodal lines bands live in a two-dimensional space, despite Zr-
SiS being a bulk three-dimensional material. The nodal line features were also detected in
the closely related compounds ZrGeS, ZrGeSe, ZrSiSe and ZrSiTe [260, 263, 264, 265, 266];
these materials also share the square-net layered PbFCl-structure. The Spin-Orbit Coupling
(SOC) is able to open a small gap at the Dirac crossings at EF ; low-frequency optical mea-
surements determined an experimental upper bound on the opening of 30 meV [267]. At the
same time, SOC does not influence or play any role on the optical conductivity beyond the
low frequency limit [260]. It should be noted that the crossings of the second group (at X
and R) are protected by non-symmorphic symmetry [45, 263, 268] against gap opening due
to SOC.

The peculiar features of ZrSiS electronic structure close to the Fermi energy offer an
ideal platform to study nodal-line physics and explore the properties of Dirac electrons
[269, 270, 271, 272]. This work, written in collaboration with the groups led by Prof. Dr.
Kuntscher of the Augsburg University and Prof. J. Kunes of Technische Universität Wien,
investigated (both experimentally and through ab-initio calculations) the in- and out-of-plane
optical response at ambient and high pressures. The related publication is attached at the
end of the chapter. My contribution, summarized below, concerned the calculations of the
Quasiparticle bandstructure and of the optical properties (with the inclusion of excitonic
effects) through the solution of the Bethe-Salpeter equation.
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Figure 8.3: DFT energies vs Quasi-
particle G0W0 eigenvalues for the 7
GPa structure.

In Figure 8.2 the G0W0 and DFT bandstructures
at ambient and high pressure (7 GPa) are compared.
The effect of Quasiparticle corrections is limited to a
stretching of the valence bands (see also Figure 8.3),
and the band topology is conserved. Furthermore the
corrections show a very limited band- or k-point- de-
pendence in the [−2, 3] eV energy window, with very
small deviations from a linear dependence on the en-
ergy.
The G0W0 bandstructure was obtained using the ab-
initio VASP software. An energy cutoff of 650 eV (plus
a cutoff for the response function of 430 eV) was em-
ployed, with 512 total bands, a frequency grid com-
posed by 96 points and a 10×10×8 Gamma-centered
k-point mesh.
We now discuss the main properties of the in-plane and out-of-plane1 optical conductivities at
ambient pressure (see Figure 8.5). The Bethe-Salpeter results are calculated from the G0W0

bandstructure and RPA screened interaction, within the Tamm-Dancoff approximation and
including 8 valence and 8 conduction bands. The validity of the Tamm-Dancoff approxima-
tion has been tested by comparing the spectra obtained within the approximation versus a
full BSE calculation (the two simulations were run on a sparser k-point mesh 8× 8× 8); the
two σ(ω) curves coincide in the studied energy window. The converged k-mesh employed
is equal to 25 × 25 × 15; in order to reduce the computational weight, the averaging proce-
dure described in chapter 1 has been employed. In brief, a set of independent calculations is
performed on m1 ×m2 ×m3 k-meshes shifted off Γ; the shifts are defined as the irreducible
k-points of a n1 × n2 × n3 mesh. The connection of all k-meshes reproduces the point of a
regular (n1 ·m1)× (n2 ·m2)× (n3 ·m3) k-mesh, and the dielectric function is thus calculated
as:

ϵ(ω) =
1

W

∑
p

wpϵp(ω) W =
∑
p

wp

where wp is the k-point weight. We employed n1 × n2 × n3 = 5 × 5 × 3, m1 ×m2 ×m3 =
5 × 5 × 5 through this work. The results at ambient pressure are in good agreement with
previous experimental and theoretical works [267, 260, 261, 273]; we summarize below the
main features of the spectra.

1The in-plane/out-of-plane definitions indicate an incident radiation E aligned parallel and perpendicularly
to the ZrSiS layers.
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Figure 8.5: Comparison between ambient and high pressures (7 GPa) interband optical
conductivities for a) E||ab and b) E||c respectively. The filled curves are determined with the
G0W0+BSE approach, while the dotted curves are computed within the Independent Particle
Approximation (IPA). c), d) show the comparison between the BSE and experimental data
for E||ab and E||c.

Figure 8.4: Contributions of differ-
ent band combinations to the joint
density of states JDOS for E∥c at
IPA level. Inset: electronic band
structure at ambient pressure.

Both experimental and ab-initio results display a dis-
tinct anisotropy that has been associated to the lay-
ered structure of ZrSiS. At ω = 0 the spectra is dom-
inated by the Drude term, consistent with the metal-
lic character of the material [274]. Beyond the Drude
term σ(ω) is determined almost entirely by transi-
tions between the linear dispersing band close to the
Fermi energy, as clearly visible from the Joint Den-
sity of States (JDOS) (see Fig. 8.4). In particular,
the linear dispersion of these bands gives origin to
a characteristic broad and almost constant curve fol-
lowing an initial onset; this particular profile is visible
also in the related nodal-line semimetal ZrSiTe [260].
For energies ∼ 0.7 − 0.8 eV additional contributions
to the JDOS and to the optical conductivity appear;
these contributions have been associated to transi-
tions between parallel bands close to the X and R
Dirac crossings [260, 261, 275].
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The in-plane optical response exhibits only limited changes under pressure. The main ef-
fect is a blueshift of the peak at 1.5 eV due to the compression of the crystal lattice. In
marked contrast the experimental out-of-plane σ(ω) shows strong changes under pressure,
with the appearance of two new pronounced peaks (labeled F1 and F2); in particular the F1
excitation at ∼ 0.7 eV dominates the spectra at high pressure.
Several authors [276, 277, 278] suggested that ZrSiS undergoes a condensation of inter-layer
(zero momentum) excitons due to moderately strong electronic correlations and high degree
of electron-hole symmetry of the electronic bandstructure. This in turn could lead to the
formation of a pseudogap and the appearance of distinct excitations in the conductivity spec-
trum. An ab-initio Bethe-Salpeter calculation was therefore performed in order to inspect
the effect of electron-hole interaction on the spectra at high pressure (7 GPa) and test this
hypothesis. However excitonic effects on σ(ω) are very limited and the curve is overall similar
to the Independent Particle Approximation one. Therefore excitonic effects, as captured by
the Bethe-Salpeter equation, cannot explain the emergence of the F1 peak.
We note that the ab-initio optical calculations were carried out only in the optical limit
(q → 0); possible more complex mechanisms, which are not ruled out by the present calcula-
tion, might include the creation of finite-momentum excitons accompanied by other quasipar-
ticles. The first step to investigate this scenario would be the mapping of the finite-momentum
excitonic bandstructure and spectra.
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The anisotropic optical response of the layered, nodal-line semimetal ZrSiS at ambient and high
pressure is investigated by frequency-dependent reflectivity measurements for the polarization along and
perpendicular to the layers. The highly anisotropic optical conductivity is in very good agreement with
results from density-functional theory calculations and confirms the anisotropic character of ZrSiS.
Whereas the in-plane optical conductivity shows only modest pressure-induced changes, we found strong
effects on the out-of-plane optical conductivity spectrum of ZrSiS, with the appearance of two prominent
excitations. These pronounced pressure-induced effects can neither be attributed to a structural phase
transition according to our single-crystal x-ray diffraction measurements, nor can they be explained by
electronic correlation and electron-hole pairing effects, as revealed by theoretical calculations. Our findings
are discussed in the context of the recently proposed excitonic insulator phase in ZrSiS.

DOI: 10.1103/PhysRevLett.127.076402

Topological nodal-line semimetals (NLSMs) with linearly
dispersing electronic bands, which cross along a line in
reciprocal space, host two-dimensional (2D) Dirac fermions
and are currently extensively investigated due to their exotic
and highly interesting physical properties [1,2]. The layered
material ZrSiS is considered as the prototype NLSM, where
the linearly dispersing bands extend over a large energy
range ∼2 eV around the Fermi energy EF, without the
presence of topologically trivial bands in the vicinity of EF,
and the corresponding nodal lines form a three-dimensional
cagelike structure [3–6]. There are additional Dirac crossings
at the X and R point of the Brillouin zone located ∼0.5 eV
above and below EF, which are protected by nonsymmor-
phic symmetry against gapping due to the spin-orbit
coupling. The unconventional mass enhancement of quasi-
particles in ZrSiS [6] suggests the importance of electronic
correlations, which could potentially drive the material
toward an excitonic insulator phase or a quantum critical
region close to it [7–9].
The exceptional electronic band structure of ZrSiS and

related materials ZrXY, where X is a carbon group element
(X ¼ Si, Ge, Sn) and Y is a chalcogen element (Y ¼ S, Se,
Te) [10], is mainly due to the 2D square nets of Si atoms

parallel to the ab plane, which are the main structural motif
besides the square nets of Zr and chalcogen atoms, stacked
perpendicular to the ab plane [see inset of Fig. 1(b)].
Further interesting properties of ZrSiS include high charge
carrier mobility and exceptionally large magnetoresistance
due to electron-hole symmetry [11–13]. Also, the electro-
dynamic properties of ZrSiS are unusual, with a nearly
frequency-independent optical conductivity σ1 for frequen-
cies from 250 to 2500 cm−1 (30–300 meV) [14]. This
rather flat behavior of σ1 is followed by a U-shaped profile
between 3000 and 10 000 cm−1 (0.37–1.24 eV), which was
ascribed to transitions between the linearly crossing bands
of the nodal line close to EF, and a peak located at
∼11 800 cm−1 (∼1.46 eV), associated with transitions
between parallel bands of the Dirac crossings protected
by nonsymmorphic symmetry [15].
All previous experimental studies on the electrodynamic

properties of ZrSiS focused on the in-plane optical
response, i.e., for the polarization E of the incident
electromagnetic radiation aligned along the layers in the
ab plane [see inset of Fig. 1(b)]. In this Letter, we report on
the out-of-plane optical conductivity of ZrSiS, as obtained
by frequency-dependent reflectivity measurements for E
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directed perpendicular to the layers, i.e.,Ekc. Furthermore,
we studied the in-plane and out-of-plane optical conduc-
tivity of ZrSiS under external, quasihydrostatic pressure,
combined with pressure-dependent single-crystal x-ray
diffraction (XRD) measurements. In the out-of-plane opti-
cal response, two new excitations appear under pressure,
which cannot be reproduced by density-functional theory
(DFT) calculations at the generalized gradient approxima-
tion [16] level or even by including electronic correlations
at GW level and electron-hole pairing effects. Our findings
add yet another interesting facet to the exceptional proper-
ties of ZrSiS.
Ambient-pressure reflectivity spectra of ZrSiS for the

polarization along (Ekab) and perpendicular (Ekc) to the
layers are depicted in Fig. 1(a). (See the Supplemental
Material [17] for a description of sample preparation,
experimental details, and analysis of reflectivity data.)
For both polarization directions, the reflectivity is high
at low energies and shows a distinct plasma edge, indicat-
ing the metallic character consistent with recent resistivity
measurements [38,39]. The anisotropic character of ZrSiS
is manifested by the polarization-dependent energy posi-
tion of the plasma edge, which is shifted toward lower
energies for Ekc compared to Ekab. Consistently, the
intraband plasmon peak in the loss function defined as
−Imð1=ϵ̂Þ, where ϵ̂ is the complex dielectric function,

appears at lower energy, ≈0.47 eV, for Ekc as compared to
≈1.07 eV for Ekab [inset of Fig. 1(a)]. The anisotropic
optical response is also seen in the real part of the optical
conductivity spectrum σ1, displayed in Fig. 1(b). For both
directions, σ1 consists of a Drude term at low energies due
to itinerant charge carriers. From the spectral weight
analysis of the Drude contribution, we obtain a plasma
frequency ωp of 3.17 eV for Ekab and 1.08 eV for Ekc,
in agreement with the results of first-principles calculations
[40]. The ratio of dc conductivities σab=σc amounts to ∼16,
i.e., it falls in the 8–30 range reported in previous studies
[38,39], respectively. Obviously, the intra-layer charge
transport dominates over the inter-layer one.
Also, the profile of the optical conductivity spectrum is

strongly polarization dependent [Fig. 1(b)], in very good
agreement with the theoretical results of Refs. [39,41]. For
Ekab, the low-energy σ1 spectrum consists of a Drude term
and a rather flat region up to ∼3000 cm−1 followed by a
U-shape frequency dependence, which is bounded by a
rather sharp peak at high frequencies [14,15]. This sharp
peak (called L4 in the following) is associated with
transitions between parallel bands of the Dirac crossings,
which are protected by nonsymmorphic symmetry against
gapping [15]. The profile of the Ekc optical conductivity
is markedly different: It is rather featureless, namely,
besides the Drude peak it shows only an absorption
peak at ∼2400 cm−1 and a monotonic increase above
∼6000 cm−1, which originates from transitions between
Dirac bands and states further away from EF. Compared to
Ekab, the out-of plane momentum matrix elements exhibit
substantially weaker k− and band dependence, and thus the
Ekc optical conductivity reflects the behavior of the
particle-hole (joint) density of states (divided by frequency)
[15]. For both directions, the optical conductivity and
reflectivity spectra can be well fitted with the Drude-
Lorentz model (see Fig. 1). The obtained Drude and
Lorentz contributions at ambient pressure are shown in
Figs. 2(a) and 2(b) for Ekab and Ekc, respectively. For
comparison with the results of DFT calculations (see the
Supplemental Material [17] for details), we subtracted the
Drude term from the total σ1 spectrum and obtained
the contributions from the interband transitions σ1;interband.
The interband conductivity spectra agree well with the
corresponding theoretical spectra [see inset of Fig. 2(a)].
In the following, the main focus will be on the optical

response of ZrSiS under external pressure. The experimen-
tal in-plane and out-of-plane σ1 spectra are depicted for
selected pressures in Figs. 2(a) and 2(b), respectively. First,
we discuss the results for the in-plane optical response. One
notices that the induced changes forEkab are only modest,
and the characteristic profile of the optical conductivity
with its U-shape is unchanged up to 7 GPa. A detailed
analysis reveals a slight increase of σ1 below ∼3000 cm−1
and a shift of the L4 peak to higher energies with increasing
pressure. A comparison between the experimental and

FIG. 1. Optical response functions of ZrSiS at ambient con-
ditions for polarization directions Ekab and Ekc: (a) reflectivity
spectra and (b) real part of the optical conductivity σ1. Inset of (a):
loss function −Imð1=ϵ̂Þ, where ϵ̂ is the complex dielectric
function. Inset of (b): crystal structure of ZrSiS with Si square
nets parallel to the ab plane.
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theoretical interband optical conductivity from DFT cal-
culations for Ekab is given in Fig. 3(a) for two selected
pressures (2.0 and 7.0 GPa). Similar to the experimental
spectra, the U-shape of the theoretical spectrum is retained
up to the highest measured pressure and the L4 peak at
the high-energy bound of the U-shape is blueshifted.
According to the behavior of the L4 peak, pressure induces
a shift of the nonsymmorphic symmetry protected Dirac
crossings away from EF, as a result of the compression of
the crystal lattice.
Consistently, the thermal contraction of the crystal lattice

during cooling causes a blueshift of the L4 peak [see
Fig. 3(c)] [42]. A comparison between the effect of cooling
and pressure on the energy position of the L4 peak is given
in Fig. 3(d), whereby for the latter both experimental and
DFT results are displayed [43]. To conclude, tensile strain,
instead of compressive strain, would be needed to push the
nonsymmorphic symmetry protected Dirac nodes in ZrSiS
toward EF, in order to study the expected distinct physics
related to these 2D Dirac fermions [45].
Next, we will discuss the pressure-induced effects on the

out-of-plane optical conductivity [see Fig. 2(b)]. Starting
from the lowest applied pressure (2 GPa), drastic changes
occur in the profile of the Ekc σ1 spectrum: in addition to
the pressure-induced increase below ∼5000 cm−1, two new

excitations labeled F1 and F2 appear, which gain spectral
weight with increasing pressure [46]. Similar to the in-
plane optical response, a Drude-Lorentz model was applied
for fitting the experimental spectra. As an example, we
depict in Fig. 3(b) the experimental interband conductivity
σ1;interband at 7 GPa, where the Drude term was subtracted
from the total σ1, together with the Lorentz contributions.
Each of the two new excitations F1 and F2 can be well
described by one Lorentzian term. With increasing pressure,
the energy position of excitation F2 is almost unchanged,
whereas F1 first shifts slightly to lower energies for
pressures up to ∼4 GPa, and for pressures above 4 GPa,
this redshift gets more pronounced [Fig. 3(e)]. The oscillator
strength of F1 and F2 slightly increases with increasing
pressure up to 4 GPa and increases strongly above ∼4 GPa
[inset of Fig. 3(e)] due to a transfer of spectral weight from
the energy range above ∼1.9 eV. In Fig. 3(b), we compare
the experimental Ekc σ1;interband spectrum for two selected
pressures, 2.0 and 7.0 GPa, with the corresponding DFT
results. Interestingly, the theoretical interband conductivity
for Ekc is basically unchanged upon pressure application,
in strong contrast to the experimental results. In particular,
the two excitations F1 and F2 are not reproduced in the
pressure-dependent theoretical spectra. Thus, the excitations
F1 and F2 should be attributed to effects that are not
included in the band structure calculations, and hence the
role of beyond-DFT effects might be relevant, as dis-
cussed below.
For an interpretation of our findings, we performed a

high-pressure XRD study on a ZrSiS single crystal (see the
Supplemental Material [17] for details). With increasing
pressure, the lattice parameters a and c monotonically
decrease, resulting in a monotonic volume decrease [see
Fig. 3(f)]. Further investigation of the reciprocal space up to
maximum measured pressure (6.9 GPa) does not reveal
the formation of additional or superstructural Bragg reflec-
tions [17]. Hence, our diffraction data do not provide any
hint for a structural phase transition up to at least ∼7 GPa,
in agreement with Refs. [47,48]. This finding is in contra-
diction with results of powder XRD experiments,
which suggested a structural phase transition at elevated
pressures [44]. We fitted the volume V with the second-
order Murnaghan equation of state (EOS) [49] according to
VðpÞ ¼ V0 · ½ðB0

0=B0Þ · pþ 1�−1=B0
0 , where B0 is the bulk

modulus, B0
0 is its pressure derivative, which is fixed to 4,

and V0 is the volume, all at P ¼ 0 GPa. From the fitting,
we obtain the value B0 ¼ 144� 5 GPa, consistent with
earlier reports [44,50].
Based on the results of our high-pressure XRD study, we

can discuss the optical data in more detail. First, it has been
proposed that the distance of the nonsymmorphic Dirac
crossings from EF is inversely proportional to the distance
between the Si atoms in the Si-Si square nets [51] and
hence inversely proportional to the lattice parameter a.
Accordingly, the energy position of the related L4 peak in

FIG. 2. Pressure-dependent optical conductivity σ1 with the
Drude-Lorentz fitting and the corresponding contributions at
0 GPa for (a) Ekab and (b) Ekc. Arrows mark the most
pronounced pressure-induced changes in the spectra. Inset of
(a): comparison between the experimental and both DFTand BSE
calculated interband conductivity σ1;interband at 0 GPa.
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the Ekab σ1 spectrum should scale with 1=a. However,
based on our pressure-dependent optical data, we cannot
confirm such a behavior. Second, the experimental optical
data show an anomaly at ≈4 GPa in the shift of the F1
excitation and in the oscillator strength of the F1 and F2
excitations. Since our pressure-dependent XRD results do
not provide any evidence for a structural phase transition,
this anomaly arises from purely electronic behavior, like in
pressurized ZrSiTe [52,53]. The origin of the excitations F1
and F2, which appear under pressure in the experimental
Ekc optical conductivity, remains, however, unclear.
It is interesting to note that, based on calculations for a

bilayer square lattice model, Rudenko et al. [7] suggested
that ZrSiS undergoes a condensation of interlayer zero-
momentum excitons due to electronic correlations and a
high degree of electron-hole symmetry of the electronic
band structure, which gives rise to an excitonic insulator
state at low temperature. In this weak-coupling scenario
(formally similar to BCS superconductivity), a gap opens
at EF in the excitonic insulator state, which leads to a
spectral weight transfer and appearance of Hebel-Slichter–
like peaks [7,54]. Transitions between these peaks could, in
principle, lead to distinct excitations in the conductivity
spectrum [55]. However, the signatures of the exciton
instability have not been experimentally observed in

ZrSiS until now, in particular, no pseudogap was observed
in photoemission spectra. The observation that the F1 peak
draws its spectral weight from the high- rather than the low-
energy part of the spectrum also contradicts this scenario.
To inspect the role of zero-momentum excitons in the

formation of the F1 and F2 peaks, we have computed the
interband optical spectra by solving the Bethe-Salpeter
equation (BSE) with quasiparticle energies calculated at
GW level, also testing the impact of the coupling between
the resonant and antiresonant excitations. The results,
depicted in the insets of Figs. 2(a), 3(a), and 3(b), show
that the optical conductivity is only marginally affected by
the electronic correlation and excitonic effects: the BSE σ1
spectra are very similar to the DFT spectra and do not
exhibit any evident pressure dependence. Formation of a
single exciton thus cannot explain our experimental results.
A more complex possibility would be the creation of a
finite-momentum exciton accompanied by a phonon or
another exciton, in order to ensure the momentum con-
servation. A first step in analysis of such a scenario would
be extending the BSE analysis to finite-momentum transfer.
Another scenario was proposed recently [9], suggesting

that ZrSiS should be located in a quantum critical region
between the NLSM and excitonic insulator phases,
which could explain the observed quasiparticle mass

FIG. 3. (a),(b) Comparison between the experimental and DFT interband conductivity σ1;interband at 2.0 and 7.0 GPa, with the total
fitting curve and the fitting contributions for the experimental σ1;interband at 7.0 GPa, for Ekab and Ekc, respectively. Insets of (a),(b):
comparison between DFT and BSE theoretical results and experimental interband conductivity σ1 at 7.0 GPa for Ekab and Ekc,
respectively. (c) Temperature-dependent high-energy optical conductivity for Ekab. The arrow marks the temperature-induced shift of
the L4 peak. (d) Comparison between the temperature (T) and pressure (P) dependence (both experimental and theoretical) of the
frequency position of the L4 peak. (e) Pressure-dependent frequency position and oscillator strength (osc. str., inset) of the peaks F1 and
F2. (f) Volume V of the unit cell and lattice parameters a and b as a function of pressure. The error bars represent three times the
estimated standard deviation. The solid line is a fit with a Murnaghan-type EOS (see text).
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enhancement [6] in the absence of a pseudogap, consistent
with reported photoemission spectra and our optical data.
Nevertheless, both the excitonic insulator and quantum
critical scenarios are at odds with our observation of
pressure-insensitive in-plane response σab and with our
theoretical predictions. We note that a purely electronic
excitonic insulator phase with permanent out-of-plane
electric dipole moments arranged in an antiferroelectric
pattern was recently proposed in bulk MoS2 under pressure
[56], which might be relevant for pressurized ZrSiS as well.
In conclusion, according to our reflectivity study, the

optical response of the NLSM ZrSiS is highly anisotropic.
The polarization-dependent optical conductivity at ambient
pressure is in very good agreement with the results of DFT
calculations. The in-plane optical response shows only
modest changes under pressure, consistent with theoretical
predictions. In stark contrast, the out-of-plane optical
conductivity undergoes strong changes under pressure,
with the appearance of two pronounced peaks. The
observed pressure-induced changes can neither be attrib-
uted to a structural phase transition according to our single-
crystal XRD data, nor can they be explained by electronic
correlation effects and single exciton formation according
to our theoretical calculations.
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Conclusions

The present thesis investigated the Quasiparticle properties and optical responses of a series
of bulk and two-dimensional structures, with a particular focus on the class of Transition
Metal Oxide (TMO) perovskites.

The optical and excitonic properties of a perovskite dataset containing 3d, 4d, and 5d
transition metals have been described with the ab-initio G0W0+BSE approach. A special em-
phasis was placed on the evolution of the spectra and excitonic properties along the LaTMO3

3d1 → 3d6 series and along the 3d0 → 5d0 cubic non-magnetic series (SrTiO3, SrHfO3, SrZrO3

and KTaO3). The main features of the spectra have been discussed through the analysis of
the BSE coupling coefficients in terms of transitions between the Quasiparticle electronic
bands. The theoretical predictions are systematically compared with the available exper-
imental data and an overall satisfactory agreement is reached. An approximation of the
standard BSE scheme (model-BSE) is bench-marked on the dataset, resulting in a very ac-
curate performance for the cubic series and providing larger deviations for the La Series and
the remaining materials.
For what regards two-dimensional systems, an in-depth study of the freestanding monolayer
structure of SrTiO3 has been performed. The inclusion of the off-diagonal self-energy ele-
ments in the G0W0 schemes has proved to be essential to reach a correct description of the
strong hybridization of the conduction bands. The excitonic properties have been character-
ized in the optical limit and for finite momentum: the spectra is dominated by electron-hole
effects, with intense peaks associated to bound excitons.

The G0W0 +BSE approach has been also employed to study the optical response of the
topological nodal line semimetal ZrSiS. These results are part of a combined experimental
and computational study of the in-plane and out-of-plane optical conductivity under pressure.
The agreement with experimental data is satisfactory for what regards the optical response
at ambient pressure; moreover the anisotropy between the in-plane and out-of-plane profiles
is correctly reproduced. However experimental out-of-plane data at high pressure indicates
the emergence of an intense peak which cannot be accounted by the electron-hole interaction
in the optical limit as described by the Bethe-Salpeter Equation.

Lastly, a section of the thesis has been dedicated to the development of a workflow to
perform in an automated way the basis-set extrapolation scheme for G0W0 calculations with
VASP. The scheme performs an extrapolation of the QP-energies to the infinite-basis-set limit
and it’s specifically designed in order to avoid false convergences. Its implementation relies

110



on the AiiDA framework and the AiiDA-VASP plugin, which I extended in order to support
GW and BSE simulations. The workflow includes error detection/handling features for the
most common problems and automatically tunes the optimization flags.
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Appendix A

Proof of ⟨n ∼ occ.|G|m ∼ EF ⟩ ≈ 0

Let’s start by summarizing the different approximations:

1. we assume large G reciprocal lattice vectors.

2. n states are occupied orbitals, m states are assumed close to the Fermi energy.

Therefore:

⟨n|G|m⟩ =
∫
Ω

dr

[
1√
Ω

∑
Gn

CGnne
i(Gn+k)r

]∗

eiGr

[
1√
Ω

∑
Gm

CGmme
i(Gm+k)r

]

=
1

Ω

∑
Gn

∑
Gm

C∗
GnnCGmm

∫
Ω

dre−i(Gn+k)reiGrei(Gm+k)r

≈ [approx.2] ≈ 1

Ω

∑
Gn

∑
Gm

C∗
GnnCGmm

∫
Ω

dre−iGnreiGreiGmr

=
∑
Gn

∑
Gm

C∗
GnnCGmmδ(Gm−Gn)+G

Only the terms satisfying the condition (Gm − Gn) + G = 0 contributes to the sum; the
condition implies that only states containing significant components CGnn at high frequency
plane waves Gn = Gm+G ≈ G contributes to the sum. However occupied orbitals or states
close to the Fermi energy have negligible component at G >> 0.
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Appendix B

k-averaging for bulk SrTiO3

In Fig. B.1 we compare the spectra associated with two different k-averaging specifications to
standard (single) BSE one to illustrate the presence of spurious peak artifacts (associated to
the Coulomb kernel truncation approximation discussed in [109]). The m = 5, n = 4 exhibits
a clear suppression of the 6.4 eV sharp and narrow peak with respect to the standard BSE
calculation, which is restored by the m = 7, n = 4 curve.

Figure B.1: SrTiO3 BSE spectra calculated for different k-averaging parameters n, m of
m × m × m|n × n × n and compared with a standard BSE calculation on a 11 × 11 × 11
k-mesh.
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Appendix C

Model-BSE parameters for bulk
perovskites dataset

In this section the parameters and the k-point meshes used for the model-BSE calculations
of the exciton binding energies Exb are collected:

k-mesh ϵ−1
∞ λ Scissor.op

SrTiO3 20× 20× 20 0.1654 1.4629 1.645
SrZrO3 20× 20× 20 0.2309 1.4573 0.9439
SrHfO3 20× 20× 20 0.2419 1.4478 1.9131
KTaO3 20× 20× 20 0.1946 1.4200 1.3946
LaScO3 10× 10× 6 0.2013 1.4621 1.7000
LaTiO3 10× 10× 6 0.1202 1.3491 0.3674
LaVO3 10× 10× 6 0.1220 1.4201 0.3275
LaCrO3 10× 10× 6 0.1468 1.3931 1.6057
LaMnO3 10× 10× 6 0.1068 1.3353 0.8497
LaFeO3 10× 10× 6 0.1031 1.3362 1.0644
SrMnO3 8× 8× 4 0.0875 1.3404 1.2873
SrTcO3 9× 9× 6 0.0713 1.3292 0.6018
Ca2RuO4 8× 8× 4 0.0870 1.2247 0.4796
NaOsO3 9× 9× 6 0.0308 1.1092 0.2601

Table C.1: Parameters for the model-BSE calculations of the converged exciton binding
energies. The inverse static dielectric constants and screening lengths λ (Å−1) used for
the model dielectric function are given; Scissor.op stands for the scissor operator needed to
approximate the G0W0 band structures.
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Appendix D

Additional results for monolayer SrTiO3

We report two additional results regarding the bandstructure of SrTiO3 monolayer. In
Figure D.1 the G0W0

diag@HSE06 bandstructure is presented; the calculation employed a
10× 10× 1 k-mesh, a wavefunction cutoff of 650 eV, Nω = 96, 192 bands and a vacuum size
of 24 Å.
The calculation in Figure D.2 uses the Yambo code, with different parameters: a 10× 10× 1
k-point mesh, 480 bands (with terminators for χ and G), a cutoff of 800 eV and a vacuum
size of 20 Å. A Plasmon Pole Model is used for in the G0W0 algorithm, together with the
Coulomb Truncation and the RIM integration method. Both calculations show the DFT
bands as a grey background.
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Figure D.1: G0W0
diag bandstructure of the

relaxed SrTiO3 structure determined from a
hybrid HSE06 starting point.

Figure D.2: G0W0
diag bandstructure of the

relaxed SrTiO3 structure determined from a
DFT (PBE) starting point using the Yambo
code [19, 20].
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