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ABSTRACT 

Multiple Myeloma (MM) is a hematologic cancer with a heterogeneous and complex genomic 

landscape, that includes multiple types of genetic alterations. In particular, Copy Number Alterations 

(CNAs) play a key role in the pathogenesis and prognostic stratification of the disease. For this reason, 

it is of particular biological and clinical interest to study the temporal occurrence of early alterations 

over the developmental history of MM. This, in order to identify specific altered chromosomal regions 

or genes, which play a disease "driver" function by deregulating key tumor biological pathways. A 

correct identification of such alterations is especially important for the future development of a 

“personalized medicine” approach, which is aimed at identifying and targeting the specific biological 

"driver" alterations that characterize each individual tumor. 

In this study, the researcher presents and discuss the development of an innovative suite of five 

bioinformatics tools (BOBaFit, RemasterCNA, RAPH, ComphyNumber and TestClonality) created 

for the purpose of harmonizing Copy Number data and tracing the origin of CNAs throughout the 

evolutionary history of MM. To this aim, the largest available cohorts of newly diagnosed MM 

(NDMM) and Smoldering-MM (SMM) were aggregated, encompassing in total 1582 MMs and 282 

SMMs collected from four different cohorts. This result was made possible by the collaboration of 

Prof. Irene Ghobrial's laboratory from the Dana-Farber Cancer Institute of Boston.  

The suite of tools developed in this study enables the harmonization of Copy Number data as 

obtained from multiple different genomic analysis platforms (e.g. WGS, WES, SNParray) in such a 

way that samples from the different cohorts can be merged and consequently a high statistical power 

of analysis can be obtained. By doing so, the high numerosity of those cohorts was harnessed for both 

1) the identification (through the optimized use of the GISTIC tool) of novel of genes characterized as 

focal "driver" alterations in MM (including NFKB2, NOTCH2, MAX and EVI5 and MYC-ME2-

enhancer genes), and 2) the generation of an innovative timing model based on the Bradley-Terry 

approach, but implement with the introduction of a statistical method to introduce statistical confidence 

intervals in the analysis of CNAs. This innovative model was developed after a careful review of the 

existing scientific literature in the field of temporal analysis of cancer, and it is capable of tracing 

quantitatively, in a confident and precise way, the events considered as "early" or primary in the 

evolutionary history of cancers.  

By applying this model on both NDMM and SMM disease phases, it was possible to identify 

specific CNAs (amplification 1q(CKS1B), deletion 13q(RB1), amplification 11q(CCND1) and deletion 

14q(MAX)) and categorize them as "early" and "driver" events with a high precision and confidence. 

This level of precision was guaranteed by the narrow confidence intervals in the timing estimates 

obtained. Thus, the identified CNAs were proposed as critical MM alterations, which play a 

foundational role in the evolutionary history of both SMM and NDMM. Importantly, among the 

identified events amp CKS1B and del RB1 were previously poorly characterized from an evolutionary 

point of view and uncertainly classified between primary and secondary events, while del MAX 

represent a completely new discovered MM driver alteration. Finally, a stepwise backward-forward 

Cox Regression survival model was able to optimally identify all the independent genomic alterations 

with the greatest effect on patients’ outcomes (Progression Free Survival and Overall Survival), 

including deletion of RB1, amplification of CKS1B, amplification of MYC, amplification NOTCH2 and 

deletion-mutation of TRAF3.  

In conclusion, the alterations that were identified as both "early-drivers” and correlated with 

patients’ survival were proposed as new biomarker candidates that, if included in wider multivariate 

survival models, could provide a better disease stratification and an improved patient prognosis 

definition. 
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1 INTRODUCTION 

1.1 MULTIPLE MYELOMA  
Multiple myeloma (MM) is a lymphoproliferative disease that affects plasma cells, a type of white 

blood cell, in the bone marrow. It is characterized by the production of M-protein (also known as 

monoclonal immunoglobulin or paraprotein) and can lead to organ dysfunction, including high 

levels of calcium in the blood, kidney problems, anemia, and destruction of the bones. 1 

Unlike other cancers that spread to the bone, MM does not cause new bone growth in the osteolytic 

bone lesions it produces. These lesions are the main cause of morbidity in MM and can be detected 

using imaging techniques, such low-dose whole body computed tomography (WB-CT), fluoro-

deoxyglucose (FDG) positron emission tomography/computed tomographic scans (PET/CT), or 

magnetic resonance imaging (MRI). Other major symptoms of MM include anemia, high levels of 

calcium in the blood, kidney failure, and an increased risk of infections. Approximately 1-2% of 

patients have extramedullary disease (disease outside the bone marrow) at the time of diagnosis, 

while 8% develop EMD during the course of the disease. 2 

1.1.1 Frequency and epidemiology 

MM is relatively rare, accounting for only 1% of all neoplastic diseases, but is the second most 

common hematological cancer in high-income countries, with an annual incidence of 4.5-6 cases 

per 100,000 people, typically occurring in people around the age of 70. The incidence of MM is 

higher in western Europe, North America, and Australasia compared to Asia and sub-Saharan 

Africa, potentially due to differences in diagnosis. From 1990 to 2016, the global incidence of MM 

increased by 126% due to population growth, an aging population and increased age-specific 

incidence rates. 1 

1.1.2 Risk factors  

Risk factors for MM include obesity, chronic inflammation, and exposure to pesticides, organic 

solvents, or radiation. Inherited genetic factors may also play a role in the development of MM. 

Additionally, both inherited and societal influences are identified to contribute to racial and ethnic 

disparities in the incidence and outcomes of MM and related conditions. 1  

1.1.3 Disease pathogenesis and diagnosis 

The causes of MM initiation are complex and associated with intra-clonal tumor heterogeneity. 3,4 

This complexity highlights the need for further research on the biology of the disease, particularly 

on the genetic and the molecular aspects of MM. 5 Most MM cases develop from asymptomatic 

conditions, known as monoclonal gammopathy of undetermined significance (MGUS) and 

smoldering multiple myeloma (SMM) (Fig. 1). SMM is a diverse stage of the disease, with some 

patients having a mild form similar to MGUS (about 30%), some having an intermediate course, 

and others having an aggressive form known as "early myeloma" (20-30%). 6,7 Individuals with 

early myeloma SMM were reclassified as having overt MM if they meet the myeloma-defining 
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events that were added to the International Myeloma Working Group clinical criteria for 

classification. 8 Myeloma-defining events include clonal bone marrow plasma cell infiltration of 

≥60% or a serum-free light chain ratio of ≥100 or >1 focal lesion in the skeleton on MRI analysis. 

These criteria extend the definition of overt MM onset prior to end-organ damage from 

hypercalcemia, renal insufficiency, anemia and bone lesions (CRAB features) in an effort to 

capture MMs at an earlier stage for therapy (Fig. 1). 8,9 Despite the extensive knowledge of clinical 

criteria defining disease stages throughout MM development, the precise genomic changes 

associated with the progression of MGUS or SMM subgroups to MM remain poorly understood. 

1.1.4 Heterogeneity of genetic alterations in MM and their role as risk factors 

The onset of conditions that precede MM in a developing B cell clone can be attributed to specific 

common genetic events, which result in two different types of MM: non-hyperdiploid and 

hyperdiploid. The non-hyperdiploid group of MM is characterized by specific genetic alterations, 

including translocations of the immunoglobulin heavy chain (IGH) locus, with the most common 

being t(11;14), t(4;14), t(14;16), t(6;14) and t(14;20). These alterations occur in 15-20%, 6-15%, 

5%, 1-2% and 1% of MM patients, respectively. Hyperdiploidy, on the other hand, refers to the 

presence of more than 48 chromosomes, and in MM, it is associated with trisomy of chromosomes 

Figure 1: Continuum of progression of MM. Multiple myeloma (MM) develops from the precursor stages of 

monoclonal gammopathy of undetermined significance (MGUS) and smouldering MM (SMM). Although these 

precursor states are considered asymptomatic, they are currently not precisely defined by clinical parameters 

alone. Thus, the disease stages of MM can be considered as being on a continuum.7 



8 

 

 

3, 5, 7, 9, 11, 15, 19 and/or 21. This benign condition is relatively common, with an estimated 

prevalence of 3-5.1% among individuals over 50 and 5% among those over 70 (Fig. 1).7,10 

The use of NGS in MM has greatly expanded our understanding of the genetic diversity, crucial 

mutations, and evolution of the disease. Several large-scale studies using samples from patients 

with MM or its precursor stages have shown that MM is characterized by intraclonal heterogeneity 

and evolutionary changes, with different populations of plasma cells carrying various mutations 

and the dominance of different clones changing as the disease progresses.  

Given the MM genomic alterations heterogeneity it becomes important to distinguish between 

“passenger” and “driver” genomic alterations:  

• Driver genomic alterations: genetic changes that are believed to actively contribute to the 

development and progression of cancer. These changes can include mutations, 

amplifications, and translocations that occur in oncogenes (genes that promote cell growth 

and survival) or tumor suppressor genes (genes that normally help to prevent the growth 

of cancer cells). Examples of driver genomic alterations in cancer include mutations in the 

KRAS gene in that confers proliferative advantage and deletions of the TP53 gene that 

confers resistance to apoptosis. 11 

• Passenger genomic alterations: the remaining alterations are termed passenger. They 

show a poorly understood molecular consequences and fitness effects on the tumor growth 

and emerge simply as victims of genomic instability, occurring as a result of cancer 

progression. 11 

Driver mutations in genes such as KRAS, NRAS, BRAF, TP53, DIS3, or TENT5C (also known 

as FAM46C) confer a growth advantage to certain plasma cell clones, leading to their outgrowth 

and development into MM. The genetic landscape of MM is now well-described, with around 80 

driver mutations identified to date.4,12,13 (Fig. 2).This genetic diversity is a major contributor to the 

varied outcomes of MM patients and a significant obstacle to finding a single cure.  

Studies in patients with high-risk SMM have revealed that specific genomic risk factors can predict 

progression to MM, such as mutations in MAPK pathway genes (KRAS and NRAS), DNA repair 

pathway genes (deletion of 17p and TP53 and ATM mutations), and MYC (translocations and 

copy-number variants).14 

Whole-genome sequencing (WGS) of MM samples has provided additional insights into the 

disease biology compared to previous methods such as whole-exome sequencing (WES). For 

instance, WGS can reveal mutational features such as CNA, structural events, and APOBEC 

activity that can be used to classify patients into different biological groups.15 

Furthermore, WGS analyses of NDMM within the CoMMpass study have revealed genomic 

alterations, including 11 candidate non-coding drivers, IGL light chain locus translocations 

(t(IGL)) conferring high risk, and complex structural variations, such as chromothripsis and 

templated insertions, which are key drivers that affect the plasma cell genome (Fig. 2).15–17 
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A comprehensive analysis and understanding of these genomic alterations and their biological 

implications is crucial for selecting appropriate clinical strategies. Additionally, even rare genetic 

characteristics of MM can help predict survival and treatment outcomes. 

 

 

1.1.5 Disease evolution trajectories 

In patients with MM, PCs are characterized by a high intra-clonal heterogeneity, with multiple 

sub-clones defined by the presence of different genomic alterations, competing for the access to 

the limited resources available in the BM. In accordance to the Darwinian evolutionary model, the 

sub-clonal genomic architecture and spatial heterogeneity both change during the progression of 

the disease19,20 throughout at least two evolutionary trajectories4,21: 1) linear trajectory, in which 

the tumor cells population tends to sequentially accumulate genomic alterations 22; 2) branched 

trajectory, in which the cells population tends to differentiate into several independent evolutionary 

lines, each one characterized by different genomic alterations4,22. Regardless of the evolutionary 

trajectory, it is well-accepted that at least 6-7 genomic hits are required for the neoplastic 

transformation of a healthy cell. These genomic hits can be modeled as stochastic events that can 

occur over either a short or a long time-span23. 

Figure 2: Circos-plot that recapitulates all the main somatic genomic alterations observed in MM by using WGS 

technologies. 18 
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1.1.6 Therapy, survival, and response assessment 

The use of new drugs and/or therapeutic strategies, such as proteasome inhibitors, 

immunomodulatory drugs, and antibodies targeting cell surface molecules, as well as high-dose 

therapy and autologous stem cell transplantation (ASCT) in younger patients, has significantly 

improved the prognosis for patients with MM. The median overall survival for patients eligible for 

ASCT is about 10 years, compared to 4-5 years for those who are not eligible. Most patients with 

MM experience multiple relapses of their disease, with each subsequent remission becoming 

progressively shorter until the disease or treatment-related complications ultimately lead to death.1 

Until the early 2000s, the therapeutic armamentarium for MM was limited to steroids, alkylating 

agents (such as melphalan and cyclophosphamide) and ‘traditional’ chemotherapies. 

Subsequently, several classes of therapeutic agents have been introduced for the treatment of MM, 

including immunomodulatory agents, proteasome inhibitors, histone deacetylase inhibitors, and 

monoclonal antibodies. In addition, several new classes of therapeutics are currently being 

evaluated in clinical trials24, including venetoclax (an inhibitor of apoptosis regulator BCL2 and 

selinexor (an inhibitor of exportin 1). Adoptive cell transfer using chimeric antigen receptor (CAR) 

T cells targeting B cell maturation protein (BCM) has also shown promise in early-stage clinical 

trials.25 

 

The evaluation of response to treatment in patients with MM has traditionally relied on the 

quantification of monoclonal protein (a term that refers to the levels of monoclonal antibodies in 

serum) and on the assessment of residual MM cells within the bone marrow (Minimal Residual 

Disease, MRD). The effectiveness of treatments has improved over time, and the achievement of 

deeper responses has become a reality; thus, approaches to disease assessment have also evolved. 

In the past 2 years, the use of sensitive flow cytometry and/or next generation sequencing based 

approaches to MRD assessment has been reported to enable the detection of up to 1 residual plasma 

cell in 10-6 bone marrow cells.26  

MRD detection has also been combined with imaging approaches such as PET to provide a more 

accurate assessment of therapeutic effectiveness. The revised IMWG response criteria incorporate 

MRD assessment.27   

MRD negativity has been demonstrated to be one of the most important prognostic factors in 

patients with MM, according to the results of a metaanalysis published in 2017 showing that MRD 

negativity is associated with improved progression free- (PFS) and overall survival (OS).26  

According to currently available data 28, MRD negativity can be an excellent surrogate end point 

for PFS, and potentially OS, and should therefore be incorporated into clinical trials. The clinical 

utility of MRD negativity as a decisionmaking tool needs further study, as this parameter seems 

to be a function of both disease biology and the treatment regimen used. Prospective clinical trials 
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are currently examining whether changing treatment according to MRD status can affect survival 

outcomes.29 

 

1.2 GENOMIC ALTERATIONS TIMING ANALYSIS IN CANCER 
Recently, it has been shown that the integrated use of high-throughput genome analysis 

technologies (such as whole-exome sequencing (WES), whole-genome sequencing (WGS) or 

high-resolution SNP arrays) and bioinformatics procedures allows for the tracing of the temporal 

evolution of single genomic alterations in a tumor. This is accomplished by analyzing the cancer 

cell fraction (CCF) of the numerous somatic mutations (SNVs and InDels) and CNAs scattered 

throughout the genome, based on the fact that subclonal (or “late”) alterations must occur after 

clonal (or “early”) alterations in any given observed tumor sample (fig. 3). This analysis is often 

performed in bulk-sequencing samples; however, a more precise approach is to analyze the 

genomic alterations in cancer at the single-cell level (scWGS). This solution is significantly more 

expensive and technically challenging but allows for an extremely precise identification of 

subclonal genomic alterations (fig 3).30–32 

 

 

 

Figure 3: Cartoon depicting the evolutionary history of two tumors. By using bioinformatic methods it’s possible to 

reconstruct the temporal evolution of the specific genomic alterations in tumors. Clonal alterations which are present 

in all the tumor cells (e.g. red and orange alterations in patient 1), occurs earlier than sub-clonal alterations that are 

present only in a fraction of the tumor cells (e.g. yellow, blue and purple alterations in Patient 1). 
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To trace the temporal evolution of single genomic alterations, four main bioinformatics strategies 

can be used: 

1. Duplication timing: in a single tumor sample, in which it is assumed that mutational 

processes are active and cause a constant incidence of SNVs over time (or "passenger" 

mutations), the ratio between duplicated and non-duplicated SNV observed in duplicated 

genomic regions can inform about the "mutational time" of the given duplicated genomic 

region32,33 (Fig. 4); 

 

 
  
  

Figure 4: Timing analysis of gain and LOH 
events using point mutations (SNV). The 
relationship between the SNVs and 
chromosomal events can be used to infer 
the relative time of the chromosomal 
alteration. a. Timing of a LOH event: the 
mutations highlighted in blue occurred 
before the LOH event, the mutations in 
orange occurred after the LOH event. The 
relationship between the quantity of the 
two types of mutations allows to derive a 
relative "mutational time" of the event. b. 
Timing of an allele gain event. In this case 
a further level of complexity is added and 
it is necessary to normalize the 
calculation, taking into account that the 
mutations in single copy can reflect both 
the mutations that occurred after the 
gain (orange), and those on the non-
duplicated allele (yellow).  
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2. Cohort timing / League model: in a cohort of tumor samples, the cross-aggregation of 

coupled temporal estimates of genomic alterations (e.g. clonal vs sub-clonal alterations) 

can inform on the relative chronology of the tumor’s genomic events, throughout the 

application of specific statistical and probabilistic algorithms (e.g. Bradley-Terry model)33–

35 (Fig. 5); 

 

 
 
 
 
 
 
 

Figure 5: Aggregation of the relative 

timing of events between multiple 

patients of the same tumor type. Once 

the timing of events in individual 

patients has been established, individual 

orders can be cross aggregated over the 

cohort of tumor samples to determine a 

probabilistic sequence of events. a. 

Examples of phylogenetic trees 

representing the orders of acquisition of 

events in individual tumor samples. 

Mutations A-B-C-D are represented 

near the top or bottom of the trees based 

on their clonal or sub-clonal status, 

respectively. b. The results of all the 

coupled comparisons between the A-B-

C-D events within each tumor sample. In 

these comparisons the most clonal event 

is considered as the "winner". 

Comparisons marked as "NA" indicate 

cases in both events are present, but it is 

not possible to establish a relative 

timing between the two as they have the 

same clonality level. c. Final order: 

Events A and C are estimated to be the 

most ancestral ones, as they have often 

“won” against the other two events B 

and D (however the confidence interval 

of A is narrower as it won more 

comparisons). Next, B event has an 

intermediate temporal order: it often 

won against D event, but always lost 

against C and A events. Finally, D is 

estimated to be the event that occurs 

later, because it has never won a 

competition, except once (in Tumor1). 
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3. Mutational signatures: the use of stable clock-like mutations characterizing the age-

dependent mutational processes allows to transform the relative chronology of events (and 

the concept of "mutational time") into real years: using linear regression models, it is 

possible to assess the relationship between the patients age and the mutational burden of 

age-dependent mutational signatures (SBS1 and SBS5). Thus, it is possible to obtain 

quantifiable and measurable time coordinates, enabling to enumerate in years the actual 

ancestrality of genomic alterations. This makes possible to develop time maps of each 

driver event that can be studied within a specific tumor type31,34 (Fig. 6).  
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Figure 6: Chronological maps of different types of cancer studied in the PCAWG pan-cancer project. Each map 

represents the length of time, in years, between the "fertilized egg" (precursor cell at the origin of tumor evolution) 

and the median age at diagnosis for each type of cancer. Point estimates for relevant events are used to define 

different "phases" (early, intermediate, late and subclonal) of tumor clonal evolution, in a chronological real time. 

Driver alterations are shown associated with each tumor phase according to their own specific timing, defined by 

the relative chronological order of the alterations in the tumor. 
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4. Multi-sample phylogeny: by interpreting quantitatively the frequency (CCF) of clonal and 

subclonal SNVs, it is possible to deduce the existence of linear or branching evolutionary 

trajectories, tracing specific onco-phylogenetic trees for individual patients by employing 

algorithms based on the pigeonhole rule (i.e., the sum of CCFs of sibling clones cannot 

exceed the parent clone’s CCF) (Fig. 7).36,37 

 

In conclusion, the ancestrality of "driver" events (i.e., events underlying tumor malignancy 

characteristics) has already been demonstrated in several cancers, suggesting that these events may 

precede diagnosis by years or even decades. 38,39. The possibility to analyze the genomic 

heterogeneity of a tumor on a chronological basis is of great interest in the field of bioinformatic 

analysis of tumor genomes; in fact, prognosis and response to therapy might depend on both the 

level of evolution and the degree of tumor heterogeneity, as well as on the presence or absence of 

certain "driver" events. For this reason, information on the temporal stage of tumor clone(s) might 

allow to attribute a biological significance to the genomic alterations and to the observed tumor 

heterogeneity.  

Figure 7: Schematics of the reconstruction of subclones and phylogeny performed by PhylogicNDT tool 36. In the 

upper part, timing of acquisition of alterations (early vs. late) and their phylogenetic relationships in a single 

patient sample. In the bottom part, generation of most plausible developmental trajectory and its associated 

phylogenetic tree in a patient with multiple available samples. 
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1.2.1 Genomic timing analysis in MM: state of the art 

In MM, the timing analysis of genetic alterations has been carried out in two pioneering studies in 

recent years. In particular, in the first study15, a cohort of 30 patients analyzed through WGS, the 

order and the time window of acquisition of the typical MM odd-numbered chromosomes 

hyperdiploidy was analyzed through the previously illustrated "Duplication timing" method. In 

addition, on the same cohort, a Bradley-Terry model was generated to perform a timing analysis 

of all CNA with the "League Model" method in order to reconstruct the temporal trend of 

acquisition of different alterations on the entire cohort. Finally, for each patient, a phylogenetic 

tree was generated using serial samples of the same patient through the "multi-sample phylogeny" 

timing method, thus allowing to investigate the chronological order of all alterations, including 

SNV, CNA and structural events such as chromothripsis and translocations 15. In this study, it has 

been possible to identify different time windows for multiple acquisitions of hyperdiploid 

chromosomes, which do not always occur at the same time during tumor evolution. Furthermore, 

despite the small patient cohort, it has been possible to confirm that hyperdiploidy (in particular 

the amplification of chromosome 11) is an ancestral event compared to other CNA events, 

followed by amplification of chromosome 1q and deletion of chromosome 1p and 13q (Fig. 8).15 

 

 

 

Figure 8 Chronological order of acquisition of CNA events in the onset of MM, computed using the Bradley-Terry 

model on a cohort of 30 WGS samples. Earliest event appears on the left while late occurring events appears on the 

right. 95% Confidence intervals are represented by black lines.15 
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In the second study40, the CNA events’ acquisition order was investigated employing a novel 

timing method, similar to the "league model," on a cohort of 336 NDMM analyzed by SNP arrays 

(Fig. 9). Critically, the timing model used in this study was not the canonical "Bradley-Terry" 

model, but on the contrary a model that computed the temporal estimation of alterations by 

carrying out a direct comparison (with 1000 iterations bootstrapping) between the level of clonality 

of the various observed CNA events. The clonality levels were previously defined in 5 ordered 

categories ranging from "low subclonal event" to "completely clonal event" according to the Tukey 

HSD statistical test (a test capable of identifying significant differences between groups of events 

with different measures)40. Despite this different timing model, the results obtained in this study 

were comparable to those obtained by Maura et al., identifying hyperdiploidy, amplification of 

chromosome 11 and 1q, and deletion of chromosome 13 as ancestral events in the evolutionary 

history of MM. (Fig. 9) Furthermore, another fundamental and critical feature of this study was 

that the timing analyses for the two main categories of MM, namely: hyperdiploid and non-

hyperdiploid, were considered apart.  

In conclusion, these pioneering studies on the temporal evolution of genomic alterations in the 

history of MM, provided solid evidence to the role of CNA events’ chronological order in the onset 

of MM, by defining the most ancestral/"early" alterations as MM driver events. However, the low 

samples size in the first study and the use of a non-canonical bioinformatic method in the second 

one, both not fully disclose the real and precise chronological order of individual CNA alterations 

occurring throughout the MM evolutionary history. This is evident by observing the wide 95% 

confidence intervals of the temporal events estimates, showed in Fig. 8 and Fig. 9, which overlap 

in most cases. Moreover, the chronological order of either rare or focal events (i.e. involving 

individual genes and not entire chromosome arms) which were not included in these studies still 

remains of interest. 
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Figure 9: Chronological order of acquisition of CNA events in the onset of MM, computed using an original 

statistical timing model on a cohort of 336 SNP array samples. Earliest event appears on the left while late 

occurring events appears on the right. 95% Confidence intervals are represented by green bars. The patient cohort 

was divided in two sub-cohorts for this analysis: Hyperdiploid MM and Non-Hyperdiploid MM.40 
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1.3 COPY NUMBER ALTERATION ANALYSIS 
Copy Number Alterations (CNAs) refer to changes in the number of copies of a particular section 

of DNA within a genome. These changes can range from small losses or gains of a few base pairs, 

to large deletions or duplications of entire chromosomes. CNAs are a common feature of cancer, 

as they can disrupt the normal regulation of genes and contribute to the development and 

progression of the disease. There are several bioinformatic tools and algorithms that can be used 

for the genomic analysis of CNAs in cancer.41 

1.3.1 Array based platforms 

Array Comparative Genomic Hybridization (aCGH) is one of the most commonly employed 

method to detect CNAs. This method uses DNA microarrays to compare the CN of genomic 

regions between a normal sample and a tumor sample. The microarray contains probes that 

hybridize to specific regions of the genome, and the fluorescence signal generated by these probes 

is used to infer the CN of the regions. aCGH can detect CNAs at a resolution of several kilobases 

and is useful for identifying large-scale CNAs, such as whole chromosome gains or losses. 

However, aCGH is limited in its resolution and cannot detect small CNAs or structural variations. 
41 

Single Nucleotide Polymorphism (SNP) array analysis is another popular method, microarray-

based as well, that can be used for the detection of CNAs. This method uses SNP markers instead 

of genomic regions as probes on the microarray. The genotype of each SNP marker is determined 

by comparing the fluorescence signal generated by the probe to a known reference. By analyzing 

the genotype of thousands of SNP markers across the genome, SNP arrays can detect CNAs at a 

resolution of several hundred base pairs. This method also has the advantage of detecting CNAs 

and genotyping simultaneously. 41,42 

1.3.2 Sequencing based platforms 

Next-Generation Sequencing (NGS)-based methods represent another common approach; in 

particular, whole-genome sequencing (WGS) or targeted sequencing (exome sequencing, panel 

sequencing) have become increasingly popular for the detection of CNAs. These methods can 

provide a more comprehensive view of the genome than microarray-based methods and can detect 

CNAs at a higher resolution. WGS and targeted sequencing can detect CNAs as small as single 

nucleotide changes and can also detect structural variations such as inversions, translocations, and 

insertions. However, these methods also require a large amount of computational resources and 

analytical expertise. The resolution of the analysis is also limited by the depth of the sequencing 

and, consequently the sequencing costs. Many bioinformatic approaches can be applied to CNAs 

identification. So far, the NGS based CNAs detection methods can be categorized into four 

different strategies illustrated in Figure 10 43,44. 
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1.3.3 Bioinformatics tools used to analyze CNAs 

One popular bioinformatic algorithm used to analyze CNAs in cancer is the circular binary 

segmentation (CBS) algorithm. The algorithm was first described in the paper by Olshen et al in 

2004, 45 and it is implemented in the R package DNAcopy 46, which is widely used in tools for the 

analysis of CN in genomics. For example, the packages Rawcopy (analysis of SNP arrays from 

Affymetrix), cnvkit 47 and CapSeg 48 (analysis of NGS data) ultimately refer the segmentation of 

the count data that they generate from sequences to to DNAcopy, and thus to the CBS algorithm. 

The CBS algorhitm segments the genome into regions of constant CN and identifies breakpoints 

where CN changes occur. CBS uses a recursive algorithm to divide the genome into smaller 

segments and then test for changes in CN within each segment. This algorithm is particularly useful 

for identifying regions of recurrent CNAs across multiple samples. 46,49 

Another commonly used algorithm is GISTIC (Genomic Identification of Significant Targets in 

Cancer), which uses a significance threshold to identify recurrent CNAs across a large number of 

samples 50. GISTIC uses a sliding window approach to identify regions of the genome that are 

recurrently altered in a significant number of samples. GISTIC2 works by first identifying all the 

genomic regions that are recurrently altered across a set of samples. These regions are called "peak 

regions". Next, GISTIC2 identifies regions of the genome that are likely to be "driver" regions, 

which are regions that are likely to be directly involved in the development of cancer, as opposed 

Figure 10: Four approaches to detect CNAs from NGS short reads. Read depth (RD)-based approach detects CNAs 

by counting the number of reads mapped to each genomic region. In the figure, reads are mapped to three exome 

regions. B. Split read (SR)-based methods use incompletely mapped read from each read pair to identify small 

CNAs. C. Paired-end mapping (RP) strategy detects CNAs through discordantly mapped reads. A discordant 

mapping is produced if the distance between two ends of a read pair is significantly different from the average insert 

size. D. Assembly (AS)-based approach detects CNAs by mapping contigs to the reference genome. 43,44 
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to "passenger" regions, which are regions that are altered in cancer but are not likely to be directly 

involved in cancer development. This algorithm is particularly useful for identifying CNAs that 

are likely to be important drivers of cancer 50,51. 

In conclusion, CNAs are a common feature of cancer and several bioinformatic tools and 

algorithms are available, that can be used to analyze them. Array-based methods, like aCGH and 

SNP arrays, as well as NGS-based methods, can be used for the detection of CNAs. Algorithms 

like CBS and GISTIC can be used to identify and interpret CNAs in cancer and are particularly 

useful for identifying recurrent CNAs on driver genes across multiple samples. 

1.4 ROLE OF CNAS IN MULTIPLE MYELOMA 
In MM, CNAs can affect the function of tumor suppressor genes, which normally help to prevent 

the growth of cancer cells, as well as oncogenes, which promote the growth and survival of cancer 

cells. CNAs are not the only genetic changes that occur in multiple myeloma, in fact other genetic 

alterations, such as mutations and translocations, can also contribute to the development and 

progression of the disease. However, CNAs are some of the most clinically relevant genetic 

changes and show can be used as biomarkers to guide treatment decisions and predict patient 

outcomes. 25,52 

Relevantly, when analyzed in big cohorts of WGS samples, it was shown that CNAs along with 

IgH-translocations are the strongest determinants of the structure of the global genomic 

heterogeneity observable in MM.  Thus, they may play a critical role in the genomic classification 

of different biological sub-types of MM. 15,53 

1.4.1 Relevant MM CNAs 

Almost all NDMMs harbor CNAs in their genome; among them, few have been shown to be 

particularly relevant to define the biology and/or prognosis of the disease: 

• Deletion of TP53: one of the most relevant CNAs in MM is the deletion of the tumor 

suppressor gene TP53. This gene plays a key role in regulating cell growth and death and 

its deletion can lead to the uncontrolled growth of cancer cells. Studies have shown that 

deletion of TP53 is associated with a higher risk of relapse and shorter overall survival in 

MM patients.54 Moreover, the clonality level threshold used to define the TP53 deletion 

was shown to be critical to reliably describe the impact of this alteration on patients’ 

survival. (Fig. 2) 55 

• Gain of chromosome 1q: gain of chromosome 1q (gain1q) is another common CNA in 

MM. It is one of the most recurrent cytogenetic abnormalities in MM, occurring in 

approximately 40% of newly diagnosed cases (Fig. 2). Although it is often considered a 

poor prognostic marker in MM, gain1q has not been uniformly adopted as a high-risk 

cytogenetic abnormality in guidelines. A major controversy concerns the importance of 

gain1q copy number, as well as whether gain1q is itself a driver of poor outcomes or merely 

a common passenger genetic abnormality in a biologically-unstable disease, such as MM. 

Although the identification of a clear pathogenic mechanism driven by gain1q remains 
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elusive, many genes included in the 1q21 locus have been proposed to cause early 

progression and resistance to anti-myeloma therapy. The plethora of potential drivers 

suggests that gain1q is not only a causative factor or poor outcomes in MM but may be 

targetable and/or predictive of response to novel therapies.  52 

• MYC amplification: gain of MYC oncogene is another important CNAs in MM, 

commonly caused by structural aberrations involving the MYC locus (e.g. translocations) 

(Fig. 2). MYC is a transcription factor that regulates the expression of a wide range of 

genes involved in cell growth and metabolism, and its amplification and/or the 

amplification of one of the enhancers adjacent to MYC, is considered a poor prognostic 

factor, associated with aggressive disease and shorter survival.56  

• Deletion of chromosome 13q: chromosome 13q deletion (del13) is present in 

approximately 50% of patients with newly diagnosed MM. However, despite being the 

most common copy-number change, its association with prognosis has been debated (Fig. 

2). Initially, del13 was associated with a poor outcome, but further study of high-risk 

abnormalities that co-occur with del13, such as t(4;14), led to the conclusion that it is not 

associated with poor prognosis. 57 In MM, the main genes of interest on chromosome 13 

have been the cell-cycle regulator RB1 and the exonuclease DIS3. RB1 is infrequently 

mutated but is more frequently bi-allelically deleted (6%), especially in high-risk groups. 

In contrast, DIS3 is one of the most frequently mutated genes in MM (10%), and biallelic 

abnormalities are associated with poor outcome. However, due to the high frequency of 

whole-arm deletion of chromosome 13, and infrequent mutations of the genes contained 

within, it has been difficult to determine a minimally altered region on this chromosome. 
57 

 

1.4.2 Comparison between MGUS, SMM and NDMM Copy Number landscape 

The CNAs landscape of myeloma precursor condition (MGUS and SMM) is not significantly 

different from that of NDMM; in fact, the same recurrent CNAs regions were found in the different 

disease stages (Fig. 11) 56,58. However, some of these alterations were observed at lower prevalence 

in asymptomatic disease stages as compared to MM, suggesting they may confer higher risk of 

progression. Although to a lesser degree than the fully malignant counterpart, the genomic CNAs 

landscape of MGUS and SMM is still complex and heterogeneous, with significant differences in 

the frequency of CNAs between SMM and MM, providing support with their role as drivers.14,59   

In studies that included longitudinal samples, focusing at investigating the SMM-MM interface, it 

has been shown that the majority of CNAs present at progression were already present at the SMM 

stage. However, copy number events in SMM have a strong driving potential and can eventually 

become clonal when acquired during progression to MM through clonal evolution processes.14,59 

Overall, these observations suggest that precursor conditions are in general genetically “mature” 

entities, whereby most driver genetic alterations have already occurred. Furthermore, specific 

alterations as univocal driver lesions predictive of the transition to overt MM have not yet been 
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defined, since the study of SMM genomics is still in its infancy, and advances in this regard are 

conceivable by continuous research in this field. 58 

 

  
Figure 11: the genomic Copy Number landscape of NDMM (in red), SMM (in blue) and MGUS (in black). Even if 

the recurrent regions of alterations are not significantly different, the frequency and clonality of the alterations 

differs between the different disease phases. 
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2 AIMS OF THE STUDY 

This study aims to aggregate Copy Number profiles data, obtained by high-throughput genomic 

analyses performed in the largest NDMM and SMM cohorts of patients available so far, by 

generating a bioinformatic pipeline designed to harmonize and correct all possible methodological 

biases observed in the different genomic data collections. 

This will support the main objective of the study, that is to generate a timing analysis of MM 

genomic aberrations, finally generating temporal maps of MM evolutionary history with 

unprecedented resolution and precision. This will be pursued by using the "League Model" 

approach. 

Secondary objectives of the study will be to implement the procedures currently used in the 

"League Model" with new developed statistical features, able to 

1) improving the definition of "driver" events in MM 

2) adding the dimension of "error modeling" to the CNA analysis (calculating 95% 

confidence intervals for CNA alteration estimates), which in previous studies has been 

considered very rarely. 

At bioinformatic level, the various functions and tools employed to set up the developed 

bioinformatic pipelines will be designed by R packages published in official repositories (e.g. 

BioConductor) or in private repositories, accessible on request (e.g. "GitHub"). This will allow to 

make available for the scientific community both the data harmonization and the "error modeling" 

pipelines, whose novelty mainly reside in the current absence of informatic tools specifically 

devoted to Copy Number data analysis in tumors. 

A final objective of the study will be to identify either "driver" or ancestral alterations and to 

correlate the presence of ancestral alterations with survival data (OS and PFS) of patients included 

in the different cohorts. This will allow to identify the role of the presence of ancestral alterations 

in the stratification and the prognosis of the disease. 
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3 PATIENTS AND METHODS 

3.1 PATIENTS AND COHORTS 
In this study the researcher was able to aggregate four different cohorts of patients, collected at 

different disease phases (NDMM and SMM), were aggregated, leading to a final dataset including 

1867 patients, with genomic profile. 

The two cohorts of NDMM samples included the Bologna (BO) cohort, collected at the “L. & A. 

Seragnoli” Institute of Hematology (IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy) 

and the CoMMpass (CoMM) cohort, a widely used public database of MM patients with associated 

genomic and clinical data, available online by request. 

The two cohorts of SMM samples were included in this study thanks to the collaboration with the 

Irene Ghobrial Laboratory at the “Dana-Farber Cancer Institute” of Boston (BUS cohort and SU2C 

cohort). (Table 1) 

 

Cohort name Patients Phase Platform Alteration types available Origin 

CoMM 832 NDMM WGS CNA + Mutations CoMMpass 

BO 750 NDMM SNP arrays CNA Bologna 

BUS 171 SMM Exomes CNA DFCI Ghobrial Lab 

SU2C 114 SMM WGS CNA + Mutations DFCI Ghobrial Lab 

Table 1: summary of the four cohorts of patients included in this study. Two disease phases (NDMM and SMM) were 

analyzed, every phase includes two different cohorts, for a total of 1582 NDMM patients and 285 SMM patients. In 

this study three different genomic platforms were employed to analyze the patients’ samples. 

 

3.1.1 Bologna NDMM cohort 

Patients: This cohort included 750 newly diagnosed MM patients, whose CD138+ cell fractions 

were available at the time of diagnosis. The cohort included 370 and 70 patients previously 

enrolled in the EMN02/HO9524 and in the GIMEMA MM-BO200525 clinical trials, respectively, 

as well as 310 patients consecutively treated in our Institution in the context of the daily clinical 

practice. Median progression free survival (PFS) and overall survival (OS) with respective Inter 

Quartile Range (IQR) were expressed in months.  For the whole cohort of patients, they were 

respectively 43 (IQR:17-67) and 63 months (IQR: 31-78). Patient baseline clinical characteristics 

are summarized in Table 2. All patients provided signed consent for the genomic analyses. 
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Table 2: All the clinical and baseline variables available to describe the “BO dataset” were included in this study. 

The number and percentage of patients’ data available for any given variable, along with the median value and 

inter-quantile range (IQR) are showed here, broken down for each of the three cohorts that composes the dataset 

(“Daily practice BO”, “EMN02” and “BO2005”). Fisher's exact test p-values for frequency comparisons of each 

variable among the three cohorts are shown in the last column. 
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Experiments: 750 bone marrow (BM) aspirates were obtained during standard diagnostic 

procedures. Mononuclear BM cells were obtained by Ficoll-Hypaque density gradient 

centrifugation. An immunomagnetic beads-based strategy (MACS system, Miltenyi Biotec, 

Auburn, CA) was employed to isolateCD138+ plasma cells. The purity of positively selected 

plasma cells was assessed by flow cytometry using a conventional antibody panel. Total genomic 

DNA was isolated using Maxwell®16 LEV Blood DNA kit (Promega, Madison, WI) and 

quality/quantity checked by Nanodrop. SNP array profile experiments were carried out according 

to the manufacturer’s protocols (Cytoscan HD Genome-wide Human Gene Chip, Affymetrix, 

Santa Clara, CA).  

3.1.2 CoMMpass NDMM cohort 

Download/access: In this study, we used the WGS and WES data obtained from the Multiple 

Myeloma Research Foundation (MMRF)  CoMMpass (Relating Clinical Outcomes in MM to 

Personal Assessment of Genetic Profile) trial (NCT01454297) database (Interim Analysis 19) 

(https://themmrf.org/finding-a-cure/our-work/the-mmrf-commpass-study/ ), which includes 

whole genome/ exome sequencing data of over 1000 newly diagnosed MM patients with enriched 

tumor and matched constitutional samples. Somatic CN profiles for the definition of CNAs in MM 

were generated from 752 NDMM patients from the CoMMpass study, by low coverage long-insert 

WGS (median 4-8x). SEG files and mutations table were downloaded from the CoMMpass portal, 

under access request (available at: https://research.themmrf.org/ ).  

Patients: The MMRF CoMMpass study accrued patients from clinical sites in Canada, Italy, Spain 

and the United States. All patient samples were shipped to one of three biobanking operations: 

Van Andel Research Institute (VARI) in Grand Rapids, Michigan for all samples collected in 

Canada or the United States; Salamanca for samples collected in Spain; and Torino for samples 

collected in Italy (Fig. 12). 

Figure 12: Overview of the MMRF CoMMpass Study. The CoMMpass study aimed to enroll 1000 NDMM  patients. 

BM and PB samples were collected and characterized at diagnosis. Patients must have received either an IMiD based, 

PI based, or combination IMiD and PI based regimen as their first line of therapy. BM and PB samples were also 

collected and characterized at each progression event, with the aim of collecting data for 800 progression events. 

Clinical parameters were also collected every 3 months for a minimum 8 year observation period. 

 

https://themmrf.org/finding-a-cure/our-work/the-mmrf-commpass-study/
https://research.themmrf.org/
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Experiments: The BM samples were gently syringed through a 0.72 mm needle to break up any 

bony debris and were aliquoted 5 ml at a time into 50 ml conical tubes. Red cell lysis was 

performed by adding 10-15 volumes of sodium citrate to each tube. The samples and lysis buffer 

were mixed by inverting the tubes, and lysis was allowed to continue for 15 minutes at room 

temperature. White blood cells were collected by centrifugation at 1250 rpm for 10 minutes at 

25°C after which the supernatant was aspirated off and the pellet suspended in 15 ml of lysis buffer. 

An aliquot of the cells was removed for n automated cell count on a Coulter AcT diff Analyzer. 

The remaining cell suspension was filtered through a filter mesh into a 15 ml conical tube and the 

cells were pelleted at 1250 rpm for 10 minutes at 25°C after which the supernatant was removed 

by aspiration. The pelleted cells were suspended in80 μl of AutoMACS Running Buffer (Miltenyi 

Biotec) with 20 μl of anti-CD138 MicroBeads (Miltenyi Biotec) per 2 x 10 7 total cells and were 

incubated at 4°C for 15 minutes. To wash the cells, 15 ml of AutoMACS Running Buffer was 

added and, after mixing by inversion, the cells were collected by centrifugation at 1250 rpm for 10 

minutes after which the supernatant was removed by aspiration. The cell pellet was suspended in 

1 ml of AutoMACS Running Buffer and filtered through a wire mesh before magnetic sorting. 

Magnetic sorting was performed using an AutoMACS Separator (Miltenyi Biotec) and the positive 

cell fraction was collected using the appropriate program based on the brightness of CD138 

expression and percentage of CD138 + cells, as determined by flow cytometry. The positive 

fraction count was determined using a Coulter AcT diff Analyzer and aliquots were created for 

purity analysis along with independent DNA and RNA isolations, as outlined by the North 

American Biobank. The purity of each enriched CD138 + fraction was determined by flow 

cytometry using anti-CD138 PE, and only samples with at least 90% positive cells were used. 

Fractions destined for DNA and RNA extraction were aliquoted into 1.5 ml eppendorf tubes and 

the cells were collected by centrifugation at 1500 rpm for 5 minutes at 25°C. Supernatants from 

the DNA fractions were aspirated, and the dry cell pellets were stored at -80°C. Cells designated 

for DNA extraction were stored as dry pellets at -80°C and extracted with the Qiagen Gentra 

Puregene Tissue Kit (Qiagen, #158667). DNA pellets were dissolved in Qiagen buffer ATE and 

stored at -20°C. DNA was quantified by Nanodrop spectrophotometric analysis, as well as by 

fluorescence using the Qubit 2.0 to determine dsDNA content. Sample quality was determined by 

agarose gel or Agilent Tapestation Genomic tape. Samples with at least 500 ng of dsDNA were 

sent to TGen for NGS. The WGS assay used 200 ng of DNA that is fragmented to a target size of 

900 bp. LI-WGS libraries were constructed using the Kapa Hyper Prep Kit (Kapa Biosystems, 

#KK8504). Library molecules were separated on a 1.5% agarose gel. Molecules between 950-

1050 bp were either extracted automatically from a Sage Science Pippin Prep 1.5% gel (Sage 

Science, #CSD1510) or hand punched from a 1.5% agarose gel. One cycle of PCR amplification 

pre size selection, followed by 6 cycles of amplification post size selection, was performed. 

Sequencing was performed on Illumina HiSeq2000 or HiSeq2500 instruments at TGen using 

Illumina HiSeq v3 or v4 chemistry. Diluted library pools with 1% PhiX control libraries were 

clustered on Illumina cBOT instruments as recommended by the manufacturer. In all cases, 

sequencing assays utilized a paired-end sequencing format of at least 82x82 nucleotide reads. 
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3.1.3 Irene Ghobrial’s Lab SMM SU2C cohort 

Patients: 114 Bone marrow samples were prospectively collected from the Dana-Farber Cancer 

Institute Observational Precursor Crowd (PCROWD) study (NCT02269592). All patients 

provided written informed consent for the research use collection of BM samples. Plasma cells 

were selected with AutoMACS and CD138+ magnetic beads (Miltenyi Biotec).  

Experiments: Sorted samples underwent DNA purification (Thermo Fisher PicoPure DNA 

Isolation Kit) and library preparation using the NEBNext Ultra II FS DNA Library Prep Kit (New 

England Biolabs) with unique dual index adapters (NEBNext Multiplex Oligos) according to the 

manufacturer's instructions. Final library fragment sizes were assessed using the BioAnalyzer 2100 

(Agilent Technologies),with yields quantified by a Qubit 3.0 fluorometer (Thermo Fisher 

Scientific) and qPCR (KAPA Library Quantification Kit). Final sample libraries were normalized 

and pooled before WGS was performed on Illumina NovaSeq 6000 flowcells, 300 cycles paired-

end reads, at the Genomics Platform of the Broad Institute of MIT and Harvard, targeting 60X 

genomic coverage for tumor fraction and 30X for matched germline. 

3.1.4 Irene Ghobrial’s Lab SMM BUS cohort 

Patients: A next generation sequencing technology approach was used to study 171 patients with 

SMM at time of diagnosis. Whole exome sequencing was performed (WES) on 77 matched tumor-

normal samples (mean target coverage 109X), and WES on 94 tumor-only samples (with mean 

coverage 174X). Samples were collected at Dana-Farber Cancer Institute, University College 

London, Mayo Clinic, and the University of Athens in Greece, in addition to multiple centers in 

the US and Europe participating in clinical trial NCT02316106. Paired tumor and normal germline 

DNA were obtained from cases with smoldering multiple myeloma at time of presentation with 

disease. After approval of the study protocols by the institutional review boards and ethics 

committees of the participating institutions, samples were obtained after written informed consent. 

All patients provided signed consent for the genomic analyses. 

Experiments: Tumor DNAs were extracted from CD138+ cells from patients’ bone marrow. For 

germline control (normal), DNA was obtained from either buccal mucosa (saliva), or peripheral 

blood mononuclear cells. Genomic DNA was extracted using QIAamp DNA mini kit (QIAGEN) 

according to the manufacturer’s protocols, and double-stranded DNA concentration was quantified 

using PicoGreen dsDNA Assay kit (Life Technologies). Libraries were prepared by Agilent 

SureSelect XT2 Target Enrichment kit. To capture the coding regions, we used the SureSelect XT2 

V5+UTR capture probes (Agilent). All sequencing was performed on the Illumina HiSeq 4000 

platform at the Broad Institute. For tumor only samples (n= 94), libraries were prepared and 

hybridized using Agilent SureSelect XT2 V5 capture probes (Agilent). 

  



31 

 

 

3.2 METHODS 

3.2.1 Genomic data processing and data availability 

BO cohort: A raw CEL files was generated for every SNP array experiment. The genomic 

segments profiles (SEG files) were generated using Rawcopy R package and CBS algorithm, using 

the reference human genome GRCh37 / hg19. The significance threshold for segmentation (alpha 

parameter of the CBS algorithm) was set at 10−7.  

Data availability: For this study, only SEG files were available to analyze. 

CoMMpass cohort: The analysis of all sequencing data is performed at TGen on a high-

performance computing system using the automated, “JetStream”, analysis system. The workflow 

supports the analysis of human sequencing samples against the GRCh38 reference genome using 

ensembl version 98 gene models. The workflow details can be found at: 

https://github.com/tgen/phoenix . 

Data availability: For this study BAM files and SEG files from long insert low-coverage WGS 

samples  were available to analyze. Also, mutational tables from WES samples were downloaded 

from the CoMMpass web-portal and were available to analyze. 

BUS cohort: The output from  Illumina software was processed by the Picard data processing 

pipeline to yield BAM files containing well-calibrated, aligned reads. The Getz Lab CGA WES 

Characterization pipeline (https://github.com/broadinstitute/CGA_Production_Analysis_Pipeline 

) developed at the Broad Institute was utilized to call, filter and annotate somatic mutations and 

copy number variation. The pipeline employs the following tools:  MuTect, ContEst, Strelka, 

Orientation Bias Filter, DeTiN, AllelicCapSeg, MAFPoNFilter, RealignmentFilter, ABSOLUTE, 

GATK, PicardTools, Variant Effect Predictor, Oncotator.  

Data availability: for this study, only SEG files from both tumor-only and matched tumor-normal 

samples were available to analyze. 

SU2C cohort: Short insert paired-end reads/FASTQ files were aligned to the reference human 

genome (GRCh37) using Burrows–Wheeler Aligner,BWA (v0.5.9). Picard was applied for post-

alignment procedures as sorting, indexing, and marking duplicates. The alignments were submitted 

to base quality score recalibration (BQSR) by using the Genome Analysis Toolkit (GATK) version 

4. MuTect and GATK (Haplotype Caller) were used for the single nucleotide variant calling. 

GATK variants were filtered with the Variant Quality Score Recalibration tool following the best 

practices on the GATK website. GATK performs the variant calling and filtration in the normal 

and tumor samples independently, thus the subtraction between the tumor and the normal variants 

resulted in our first set of candidate somatic variants. To ensure the somatic classification of the 

SNVs called by GATK, we adapted the Mutect algorithm and applied its LODN classifier after the 

GATK variant calling and filtering. The LODN is a Bayesian classifier that compares the likelihood 

of two models: (1) the mutation does not exist in the normal sample and all non-reference bases 

are explained by sequencing noise, and (2) the mutation truly exists in the normal sample as a 

germ-line heterozygous variant. The ratio of these two likelihoods is called LOD (Log Odds) score 

https://github.com/tgen/phoenix
https://github.com/broadinstitute/CGA_Production_Analysis_Pipeline


32 

 

 

and when it exceeds a decision threshold, the mutation can be classified as somatic. For this 

filtering, we considered only sites that had total read depth greater or equal than 8 in the normal 

sample and greater or equal than 14 in the tumor sample. Our final candidate list consisted in the 

union of MuTect and GATK-LODN results. The variants were annotated by ANNOVAR, with the 

Ensembl Gene annotation database for human genome build 38 (http://www.ensembl.org/), and 

searched for matches in the dbSNP151 and 1000 Genomes data. We selected exonic single 

nucleotide variants (SNVs) that were non-synonymous, splicing variants or gain or loss of stop 

codon. Variants present in dbSNP151 and 1000 Genomes with minor allele frequency (MAF) 

greater than 0.05 were removed. Pathogenic variants were identified by selecting only the variants 

annotated in clinical databases, such as CLINVAR or COSMIC.  

Data availability: for this cohort all the generated FASTQ, BAM files, VCF files and SEG files 

were available to analyze. 

 

3.2.2 Existing bioinformatic tools  

 

3.2.2.1 GISTIC2 

 in order to extract focal significant regions of known and novel CNA in the MM genomic 

landscape, the researcher applied the GISTIC 50 (Genomic Identification of Significant Targets in 

Cancer) v2 tool on the NDMM SEG files samples. Thanks to the high number of samples in the 

BO and CoMM cohorts, the researcher was able to maximize the GISTIC analysis resolution and 

the statistical power (especially for a confident identification of rare MM CNA events) of the 

analysis. In fact, GISTIC is a computational algorithm that is used to statistically identify and 

interpret regions of the genome that are recurrently altered in cancer. GISTIC takes as input a 

matrix of copy number data from a set of samples, where each element in the matrix represents the 

copy number of a specific genomic interval in a specific sample (SEG files). The algorithm then 

identifies regions of the genome that are recurrently altered across the set of samples, and assigns 

a significance score (G-score) to each region based on the frequency and magnitude of the 

alterations. The algorithm consists of several steps: 1) The input matrix of copy number data is 

processed to identify regions of the genome that are altered in at least a certain percentage of the 

samples. 2) The algorithm then assigns a score to each region based on the frequency and 

magnitude of the alterations, taking into account the underlying copy number variation. 3) The 

algorithm then identifies recurrently altered regions by applying a threshold on the score, and 

clusters the regions into "amplification" and "deletion" groups. These regions are called "peak 

regions". 4) The algorithm then refines the boundaries of the regions by considering the strength 

and spatial continuity of the alterations. 5) Finally, the algorithm assigns a significance score to 

each region based on the frequency and magnitude of the alterations, and the background copy 

number variation. In particular, it assigns a "q-value" to each peak region, which is a measure of 

the statistical significance of the alteration in that region. The q-value is a measure of false 

discovery rate (FDR) and ranges between 0 and 1, with lower q-values indicating more significant 

regions. 50 
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GISTIC is used to identify genomic regions that are recurrently altered in cancer, which can help 

in identifying potential targets for cancer therapy. The algorithm is widely used in cancer genomics 

studies and has been applied to multiple types of cancer, including breast, lung, prostate, and colon 

cancer.50 

Multiple iterations of GISTIC analysis, with different parameters were tested in order to archive 

an optimal resolution on both the BO and CoMM cohorts analysis. The final GISTIC analysis was 

performed employing the following input parameters: Join_segments_size = 50, 

Focal_lenght_cutoff = 0.25, Q-value = 0.01, arm_peel = YES, sample_centering = NO. All the 

other input parameters were selected as default. In order to correct the false-positives generated by 

the germline CNVs present in the SNP arrays samples, a list of regions to filter out in the analysis 

was created by using the DGV (Database of Genomic Variants) version 107 database (available at 

http://dgv.tcag.ca/dgv/app/home) and selecting for all the region reported in the database in at least 

100 samples, across at least 2 different studies which show a reported MAF > 5% in the human 

population. This filter file was used as input to the GISTIC analysis for the BO cohort analysis. 

 

3.2.2.2 ABSOLUTE 

for the task of extracting purity solutions in the cohorts where BAM files were available (SU2C 

and CoMMpass) the ABSOLUTE 60 tool was employed with default parameters. The purpose of 

ABSOLUTE is to extract purity and ploidy data from the admixed population of cancer and normal 

cells in the sample. This process begins by generation of segmented copy number data (SEG files), 

which is input to the ABSOLUTE algorithm together with pre-computed models of recurrent 

cancer karyotypes and, optionally, allelic fraction values for somatic point mutations. The output 

of ABSOLUTE then provides re-extracted information on the absolute cellular copy number of 

local DNA segments and, for point mutations, the number of mutated alleles.  

In this way, the researcher obtained a total of 1172 ABSOLUTE solutions, which were manually 

inspected in order to select the most appropriate one. This manual review is particularly critical 

and suggested in samples presenting a complex karyotype, where the ABSOLUTE algorithm 

outputs low-confident solutions. 

 

3.2.2.3 BradleyTerry2 

The Bradley-Terry model 61, also known as the Bradley-Terry-Luce model, is a statistical model 

used to analyze paired comparison data.62 It’s implemented in R statistical language by the 

BradleyTerry2 package.63 This model assumes that in a “contest” between any two “players”, say 

player i and player j (i, j ∈ {1, . . . , K}), the odds that i beats j are αi/αj , where αi and αj are positive-

valued parameters which might be thought of as representing “ability”.  

A general introduction can be found in Bradley (1984)64 . Applications are many, ranging from 

experimental psychology to the analysis of sports tournaments to genetics (for example, the allelic 

transmission/disequilibrium test of Sham and Curtis 1995 65 is based on a Bradley-Terry model in 

which the “players” are alleles). In typical psychometric applications the “contests” are 

comparisons, made by different human subjects, between pairs of items. Finally, this model was 

http://dgv.tcag.ca/dgv/app/home
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also recently applied in the field of genomic alterations timing in cancers.33 In this context, the 

“players” are represented by the different genomic alterations, which can be compared in 

subclonality “contests”. Given the fact that clonal alterations happen earlier then sub-clonal ones, 

in a Bradley-Terry genomic timing model an alteration “wins” if it is found to be more clonal than 

another one (showing a higher CCF).  

 The Bradley-Terry can alternatively be expressed in the logit-linear form: 

logit[pr(i beats j)] = λi − λj 

where λi = log αi for all i. Thus, assuming independence of all contests, the parameters {λi} can be 

estimated by maximum likelihood, using standard software for generalized linear models with a 

suitably specified model matrix. In fact, the Bradley-Terry model is typically fitted to the data 

using maximum likelihood estimation (MLE), which finds the values of the abilities that maximize 

the likelihood of the observed data given the model. Once the abilities are estimated, they can be 

used to make predictions about the outcomes of future pairwise comparisons between the items. 

The primary purpose of the BradleyTerry2 package, implemented in the R statistical computing 

environment, is to facilitate the specification and fitting of such models and some extensions. 

Since the Bradley-Terry model employs a 'reference' or 'base' player, on which all the other player 

abilities are computed. A problem known as the “reference category problem” arises.66  In order 

to resolve this problem and to enable the direct comparison between all the players abilities, the 

BradleyTerry2 package computes Quasi-Variances (and corresponding quasi-Standard Errors) 

associated to the Bradley-Terry players abilities, computed by using the qvcalc function. 67 

 

3.2.3 Newly developed bioinformatic tools  

 

RemasterCNA: the RemasterCNA analysis to correct CN profiles for hypersegmentation bias 

were performed by adapting the parameters to the resolution and mean sequencing quality (MAD 

or MAPD) of the specific cohorts:  

• focalDef (Width in Mbp of regions to consider as small / focal noise) = 1 Mbp for CoMM 

and BUS cohorts, 0.5 Mbp for BO and SU2C cohorts,  

• jump_definition (minimum CN distance required to define a confident breakpoint) = 

median MAD /MAPD of the cohort (BO = 0.15, CoMM = 0.12, SU2C = 0.08, BUS = 0.15) 

 

BoBaFIT: the BoBaFIT analysis to correct for the baseline region bias were performed using the 

standard pipeline of the two functions (computeNormalChromosomes and DRrefit) with default 

parameters as described in the paper.68  

DRrefit parameters:  

• maxCN = 6 
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• clust_method = "ward.D2" 

computeNormalChromosomes parameters:  

• tolerance_val = 0.15 

• maxCN = 6 

• min_threshold = 1.6  

• max_threshold = 2.4 

 

RAPH: the RAPH analysis to correct for the purity bias were performed using the standard 

parameters for all the cohorts, as following: 

• clust_type (clustering algorithm of choice) = "DBclust", 

• dbs_eps (DBscan minimum search distance) = 0.08, 

• dbs_min (DBscan minimum points in a cluster) = 1, 

• minimum_region (minimum width of chromosome regions considered as independent 

observations) = 5*10^6, 

• min_purity (minimum purity of the sample) = 0.20 

 

3.2.4 Clinical and statistical analysis 

All the analyses were conducted using R language and environment for statistical computing (R 

Foundation for Statistical Computing, Vienna, Austria) version 4.2. The analysis was performed 

with a significance level of at least 0.05 and all variables objected of inference were reported 

together with their 95% confidence intervals (CI). Classifications between samples and patients 

were explored by comparing characteristics between groups with non-parametric methods such as 

Kruskal-Wallis's test on the medians (or the parametric t-test on means). For the parametric 

correlations tests the Pearson’s test was employed, while for non-parametric correlations tests 

Spearman's rho was employed. 

PFS was measured in months, from the start of therapy to the event of first progression of the 

disease or death. OS considered death as outcome/event and was measured from the same 

landmark.  Univariate survival analysis on both PFS and OS were performed by the Kaplan-Meier 

method, as for drawing the survival curves. Semi-parametric Cox regression analysis was adopted 

to estimate hazard ratios (HR) with an 95% CI between predefined possible prognostic groups. 

Multivariate analysis was performed again by Cox regression analysis to identify the abnormalities 

independently affecting the prognosis with their HR and 95%. 
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4 RESULTS  

4.1 DEVELOPMENT OF A BIOINFORMATIC PIPELINE FOR MULTI-PLATFORM 

HARMONIZED CN ANALYSIS AND COHORT-TIMING. 

4.1.1 PHASE 1: Data cleaning and harmonization  

To perform a reliable timing of CNA alterations in MM and generating comparable timing 

estimates across the various cohorts included in this study, the integration and the harmonization 

of copy number data deriving from the 4 cohorts and generated using different genomic platforms 

was considered a  critical requirement. 

The harmonization of genomic data is an important and critical issue frequently faced both in 

bioinformatics and in translational research. In fact, in the era of big-data, the need to integrate 

data generated by multiple studies and public datasets in order either to create validation cohorts 

for hypotheses to be proven or to enrich the main study cohort by obtaining greater statistical 

power, is increasingly present and evident. 

At a bioinformatic level, the harmonization should start from the "raw files". In the simplest and 

most common case, where all data are generated by NGS, raw files are represented by FASTQ 

(raw sequences) files, or by BAM (aligned sequences) files (Fig. 13). However, in practice, this 

type of harmonization is rarely feasible, due to the following technical difficulties: 

1. high files’ dimensions, which, in the case of medium coverage WGS (30x), might reach 

storage sizes of about 100 GigaBytes per sample (100 TeraBytes for 1000 samples)69, 

whose management requires very high economic budget to get storage servers or cloud 

storage services (about 2000,00$/ month, in the case of raw data storage of the CoMMpass 

dataset on Amazon AWS S3 Standard bucket). 70  

2. Computational power and times required for preliminary analyses: only high-performance 

computing (HPC) systems or workstations would be able to process pipelines for raw data 

analysis, often requiring several hours to complete the analysis of a single WGS sample.69  

3. Data privacy and security: Integrating raw data from different studies might raise concerns 

about data privacy and security, as the FASTQ/BAM files contains sensitive information 

about genetic variants (potentially disease-associated SNPs) of individuals. 

Furthermore, when data from different platforms should be harmonized and merged, as in the 

present study (e.g. NGS platform and SNP array platform), it is not possible to start the analysis 

from raw files, since the original raw data structures are different. 

For these reasons, in the present study, a different strategy was identified, in order to harmonize 

the Copy Number data, as detailed below: 

1. use the first intermediate files that show a common data structure among the analysis 

pipelines of the different platforms as starting copy number data: these files are the SEG 
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files, since they have the same structure, and are produced by both the NGS and SNP arrays 

pipelines (Fig. 13); 

2. analyze and correct the data downstream the platform-specific pipelines, using and/or 

developing a series of ad-hoc bioinformatics tools and packages that identify the quality of 

the starting data and correct the identified methodological and technical biases; 

3. merge the harmonized copy number data, enabling the use of a multi-platform dataset for 

performing further analysis (including Copy Number timing analysis). 

In general, starting the copy number analysis from SEG files is a very convenient strategy in order 

to obtain a data harmonization, since all genomic platforms’ pipelines are able to generate this type 

of file: not only SNP arrays and WGS/WES, but also Ultra-Low-Pass WGS and targeted-Seq (from 

off-target reads) (Fig. 13).  

 

Additionally, since SEG files, similarly to VCF files, are just simple .tsv or .csv text tables, with 

one row per chromosome segment (usually no more than a few hundered rows, depending on the 

complexity of the karyotype) they have the advantage of very small file size (usually about 100 

KiloBytes per sample - in comparison to WGS FASTQ/BAM files they are 1 million time smaller), 

which enable a simple and fast processing and transferring, even in standard desktop computers. 

They can be easily loaded and visualized using the popular genomic browser IGV (Integrative 

Genomic Browser - available at https://igv.org/app/) and uploaded on cloud version-control 

platforms (such as GitHub or GitLab), facilitating the reproducibility of the analysis. 

However when harmonizing SEG files from different platforms, is necessary to note that, since 

they have been generated by different bioinformatic tools, the algorithm performing the actual 

Figure 13: the process of generation of the SEG file, starting from all platforms capable to produce genomic Copy 

Number information. NGS based platforms and tools are colored in yellow, while microarray based platforms and 

tools are colored in green. 

 

https://igv.org/app/
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segmentation could be different: even if the most popular algorithm is Circular Binary 

Segmentation (CBS), other algorithms exists, such as the Piecewise Constant Fitting algorithm 

(used in the ASCAT R package) of the Fused Lasso Regression algorithm (implemented in 

cghLasso R package).71  Importantly, since the use of different segmentation algorithms can 

introduce methodological biases in the data integration process, all the SEG files that need to be 

harmonized should be segmented by a tool that employs the same algorithm. This check was 

performed for the data included in the present study, ensuring that the CBS algorithm was 

employed to generate all the four SEG files of the samples’ cohorts to harmonize (Table 3). 

 

 

In the first phase (phase 1) of the developed multi-platform CN pipeline (Fig. 14) the input SEG 

files were subjected to a data-cleaning and harmonization procedure consisting in 4 steps. Each 

step is associated to a specific identified bias (Table 4) that can potentially affect the CN data 

quality and, consequently, the downstream CNAs calls and timing analysis. Therefore, in order to 

correct the data for each bias, four different bioinformatic tools were developed. 

  

COHORT PLATFORM SEGMENTATION 

TOOL 

 SEGMENTATION 

ALGORITHM 

BO SNP arrays Rawcopy 45  Circular Binary 

Segmentation 

COMM WGS (low coverage) Allelic CapSeg 48  Circular Binary 

Segmentation 

BUS WES Cnvkit 47  Circular Binary 

Segmentation 

SU2C WGS Allelic CapSeg 48  Circular Binary 

Segmentation 

Table 3: The different platforms and segmentation tools used in each cohort to generate the Copy Number profiles 

(SEG files) used in this study as input starting data. 
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IDENTIFIED BIAS 
TYPE OF 

BIAS 
DESCRIPTION 

EXISTING 

TOOL 

NEW 

DEVELOPED 

TOOL 

HYPERSEGMENTATION 

BIAS 
Technical 

Too many 

artificial 

segments in the 

CN profile, due 

to poor DNA 

quality or bad 

wet-lab 

processing. 

/ RemasterCNA 

BASELINE REGION 

BIAS 
Technical 

Bad 

mathematical 

centering of the 

baseline region 

of the CN 

profile. 

/ BOBaFIT 

TUMOR PURITY BIAS Biological 

Sub-optimal 

enrichment of 

the tumor 

sample, normal 

cells 

contamination. 

ABSOLUTE 

ASCAT 

SEQUENZA 

R.A.P.H. 

ERROR ESTIMATION 

BIAS 
Methodological 

Not considering 

the platform 

resolution, not 

computing 

confidence 

intervals for CN 

estimates in each 

segment. 

ABSOLUTE ComphyNumber 

 

Table 4: four different identified biases in CN data which can possibly affect the data quality in the study. In order 

to correct for some of these biases (i.e. tumor purity and error estimation) some bioinformatic tools already exist 

(e.g. ABSOLUTE), while for other biases no tools are currently available to the knowledge of the researcher. In 

order to perform a full harmonized bias correction process on CN data, four new different bioinformatic tools were 

developed, each one aimed to correct a specific different CN data bias. 
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4.1.2 RemasterCNA: a tool to correct the hypersegmentation bias in CN profiles 

 

RemasterCNA is a noise-reduction algorithm created to resolve the “hypersegmentation” bias in 

CN profiles. The observed «Hypersegmentation phenomenon» is defined as an abnormally high 

number of segments in a SEG file (usually thousands instead of hundreds), and it is probably 

generated by a poor starting DNA quality or caused by technical artifacts due to wet-lab sample 

processing. 72 Additionally it’s also possible that a suboptimal parameters choice in the 

segmentation algorithms might cause a higher number of segments then expected (e.g. the alpha 

parameter used in DNAcopy that regulates the significance levels for the test to accept a breakpoint 

between two different segments46 ). This highly-skewed number of segments in SEG files have 

the possible effect of disturbing the constant signal of the CN profiles, thus leading to false CNAs 

calls. (Fig. 16) 

Importantly, this bad-quality effect is hidden and not captured by the standard quality metrics 

commonly used to assess copy number quality (MAD or MAPD), since it does not affect the 

log2ratio of probes or bins where those quality metrics are computed, but only the segments 

subsequently computed from the log2ratios signals. To date, no algorithm or bioinformatic tool is 

able to solve this type of bias, and commonly bad-segmented copy number profiles are excluded 

from or not detected in studies involving copy number analysis. 

In this study we identified the samples with highly-skewed number of segments by analyzing the 

distribution of the number of segments in the four cohorts. First, a scree plot was generated for 

each cohort, then an elbow in each distribution was identified (Fig. 15). In this way it has been 

possible to detect 3.7%, 0.6%, 0% and 2.7% of samples in the BO, CoMM, Bus, and SU2C 

respectively, that showed an abnormal number of segments when compared to the base cohort 

distribution. 



42 

 

 

 

Figure 15: scree plots that describe the number of segments of the samples included in each of the four cohorts of the 

study. The red line shows the selected elbow of the distribution. 

 

Even if number of hypersegmented samples is quite low, instead of discarding those samples, a 

new tool has been developed, able to correct the SEG files for this bias. In fact, the aim of this 

study is to gather the biggest cohort of samples as possible, especially given the scarcity and the 

value of copy number profiles available in the SMM cohorts. The tool was implemented in a R 

function (that will be published in a R package) and was named remasterCNA. This function uses 

as input the SEG file that the user aims to correct, and it outputs a new hypersegmentation-
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corrected SEG file. Its functioning relies on a “dynamic programming approach”, that is, solving 

a problem by breaking it down in simpler subproblems. In fact, remasterCNA consists of 3 sub-

algorithms aimed to resolve 3 different subproblems: 

• FocalCleaner: Cleans the «focal-noise» generated by the presence of extremely small 

segments. The maximum segment size of such small segments is based on the user defined 

parameter “width”, which can be easily defined based on the resolution of the platform that 

generated the input SEG file. 

• BreakPointDetector: Identifies confident breakpoints, based on the absolute CN distance 

between every pair of two adjacent segments. If the distance is larger than the user defined 

parameter “jump” a confident breakpoint is generated. The “jump” parameter can be easily 

defined based on MAD or MAPD dispersion value (quality metric) of the SEG file. 

• Legolizer: finally, the algorithm compacts all the cleaned segments between the previously 

defined confident breakpoints in new “blocks”. The CN value of the new blocks is 

computed by using a weighted-mean approach (where the weight is the length of the 

segments in the block, and the value is the CN of the segments).  
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By using remasterCNA on the previously defined bad-quality samples, it has been possible to 

reduce the number of segments, homogenizing the number of segments according to the mean of 

the cohorts, while also preserving the Copy Number information required to call CNAs event, as 

shown in Figure 16. 

  
Figure 16: remasterCNA anecdotal results on three example samples which show the hypersegmentation 

phenomenon in their CN profile. Both pre-correction CN profile (orange track) and post-correction CN profile 

(blue track) are visible and overlapped in the plots. As it’s possible to notice, in all three samples the number of 

segments is evidently heavily reduced, while the global CNAs structure is preserved. 
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4.1.3 BOBaFIT: a published R package to refit the baseline region of CN profiles 

 

Another independent bias that was identified by visually inspecting the Copy Number profiles of 

all the cohorts in this study is the “baseline region bias”. This bias is caused by segmentation tools 

that use the standard “median-centering” normalization method to estimate the baseline region 

(usually the region with ploidy = 2), assuming that the average value corresponds to the theoretical 

”2”, thus they might erroneously estimate the regions with diploid CN.73 This might happen 

particularly in samples with a complex CN profile, either carrying several and/or large 

chromosomal aberrations. When tumors display complex karyotypes, this “median-centering” 

approach could fail the baseline region estimation and consequently cause errors in generating the 

CNAs profile (SEG file). To overcome this issue, we designed and published in the widely known 

bioinformatic repository “BioConductor” 

(https://bioconductor.org/packages/devel/bioc/html/BOBaFIT.html ) an innovative R-package, 

named BoBafit, able to check and, eventually, to adjust the baseline region, according to both the 

tumor-specific alterations' context and the sample-specific clustered genomic lesions. Several 

databases have been chosen to set up and validate the designed package, thus demonstrating the 

potential of BoBafit to adjust copy number (CN) data from different tumors and analysis 

techniques. A scientific paper describing this package in detail was also published on the journal 

“Computational and Structural Biotechnology” and available online on PubMed on 2022 July 3 

(Fig. 17). 68 

 

Figure 17: Graphical abstract describing the main features and functionalities of BoBaFIT 

https://bioconductor.org/packages/devel/bioc/html/BOBaFIT.html
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The principal function of BoBaFIT is named “DRrefit”: throughout a tumor and sample-specific 

approach it adjusts the CN values of the input SEG file. In addition, BoBafit contains a secondary 

function “ComputeNormalChromosome” that generates the starting chromosome list (S-CL), 

important input of DRrefit and cornerstone of the tumor-specific strategy (Fig.18). 

To create a tumor and sample-specific method aimed at checking and adjusting the tumor CN 

profile, DRrefit uses two inputs: (1) the SEG file, and (2) the S-CL. This latter is a tumor-specific 

list of chromosomal arms considered “normal”, as being commonly not affected by structural 

CNAs (e.g. “losses” and “gains” of single chromosomes or chromosome segments) in that specific 

tumor. The S-CL is used as tumor-specific reference for the possible re-adjustment of the baseline 

region. Since the S-CL might change according to the tumor type and/or subtypes, DRrefit allows 

accurate and specific control of the CN profiles call, even when obtained from different molecular 

platforms. To define S-CL, a specific function has been designed, named 

ComputeNormalChromosome. 

The algorithm performs the following steps for each sample (Fig. 18): 
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1. Calculation of the CN value for each arm: the algorithm selects all segments of the same 

chromosomal arm, then calculates the global arm CN, as the mean of the segments’ CN 

weighted on the segments’ length. The weighted mean is calculated for all chromosomal 

arms, excluding the X and Y chromosomes as they are not always diploid and therefore 

not helpful to the analysis. We have chosen to perform this simplification step, as it allows 

to reduce the CN segments profile to a simpler data structure, which results easier and 

faster to be computationally handled, in particular for the following clustering step. 

Additionally, providing most CN events happen either on whole chromosomes or on whole 

chromosomes’ arms74, this weighted mean approach consistently approximates the global 

chromosomal arm’s CN. 

 

2. Clustering of chromosomal arms: in order to cluster the chromosomal arms according to 

their similarities in terms of CN value, DRrefit takes advantage of NbClust 75, an R package 

that defines the best number of clusters resuming the overall chromosome distribution, 

according to the selected clustering method (e.g., either ward.D2, or complete, or average 

clustering methods). According to this clustering process, two possible outcomes can be 

obtained: either a reference list refinement or no reference list change. 

 

3. Comparison to the S-CL: (a) The clustering process succeeds, and the clusters are 

compared to S-CL. The cluster that best matches with S-CL (i.e. the one that has the highest 

number of chromosomal arms in common with S-CL, Fig. 18), is chosen as the “winner 

cluster” and it becomes the “final chromosome list” (F-CL). This step defines the “sample-

specific refinement” (Fig. 18) of the S-CL, taking into account the intra-tumor 

heterogeneity phenomenon, as the “winner cluster” includes the baseline and clonal 

chromosomal arms of the analyzed sample. This is shown by the plot included in Fig. 1. 

The plot also shows the correspondence between clusters and the different clonal or sub-

clonal CN states. (b) Due to the failure of some statistical indices used by NbClust, see the 

vignette of the package 75, for a small proportion of samples the chromosome clustering 

Figure 18: BoBafit package workflow. The diagram shows how to organize a BoBafit analysis and DRrefit 

algorithm steps. 0) First of all, from the SEG file, the tumor specific chromosome list has to be obtained by 

ComputeNormalChromosome function; 1) Next, the CN mean, weighted on the segments’ length, is calculated for 

each chromosomal arm, thus obtaining the global arm CN. 2) NbClust package perform the clustering procedure 

based on CN of chromosomal arm. 3a) The clusters, obtained from the previously step, are compared to the S-CL, 

determining the “winner cluster” and the following F-CL. A plot, outputted by a BoBafit function, is used to 

illustrate how the comparison works. 3b) If NbClust fails the clustering, any cluster is available for the comparison 

and the S-CL remains the reference list. The S-CL directly becomes the F-CL. 4) At this point, the CR can be 

estimated as the difference between the old baseline region (usually CN = 2 or 4) and the median CN value of F-

CL (new baseline region). Again, a plot shows the difference between the two baseline regions. 5) The segments CN 

values are corrected applying the Correction faction (CR), it returns three outputs: the “Report of clustering”, 

where all information about the clustering procedure is reported; “Segments corrected”, a data frame with the 

correct CN values of segments; and a sample plot where is possible to visualize the shift of the baseline region after 

the correction. 6) The CR value defines three class of profiles: No changes, Recalibrated and Refitted. That 

information is reported in the Report of clustering data frame. 
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process fails. In this case, the sample will not present clusters and the sample-specific 

refinement will not be performed. As a consequence, the S-CL directly becomes the F-CL. 

In these rather infrequent situations (about 6.8% of samples, depending on segmentation 

quality) the baseline region adjustment is only tumor-specific, and the report of the sample 

gains a “failed clustering” label. 

 

4. Definition of a correction factor: From F-CL, a correction factor (CR) is calculated. The 

CR highlights the differences between the baseline region assessment before and after 

DRrefit calculation and corresponds to the difference between 2 (the theoretical diploid 

value) and the median CN value of F-CL (Fig. 18).  

 

5. Samples correction: all segments’ CN are corrected for the CR, moving the CN profile to 

the most likely CN state of that specific sample. The resulting CN profile is shown both in 

the CN profile plot (Fig. 1) and in the two data frames outputted by DRrefit, described in 

the BoBafit package vignette. The function returns either one of two possible plots, 

according to the effective repositioning of the samples’ CN profiles and its CR absolute 

value: (1) the “CR > 0.1” plot, with either green or red colored segments, highlighting 

segments’ distance (Fig.19B and 19C); (2) the “CR ≤ 0.1” plot (Fig. 19A), with 

overlapping segments. 
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Consequently, all the SEG files from the four cohorts of this study were corrected using BoBaFIT 

to control for the baseline region bias. Frequency of corrections were approximately the same 

among all the four cohorts: NO CHANGES = 73.5% on average (range 63.1 – 85.4%), 

RECALIBRATED = 19.5 % on average (range 14.6 – 34.0%), REFITTED = 3.2% on average 

(range 0.9 - 6.1%) (Fig. 19). 

  

Figure 19: DRrefit CN profile plots of three samples, labeled with class identified by the function. In the panel are 

showed the tree DRrefit classes and how they are plotted. The x-axis reports the chromosomes with their genomic 

position and the y-axes the copy number value. The plots with CR ≤ 0.1 show that the new segments and the old 

segments are orange and red colored, respectively; on the contrary, the plots with CR > 0.1 show that the new 

segments and the old segments are green and red colored, respectively. a) No Changes class with CR 0.0077; b) 

Recalibrated class with CR 0.2; c) Refitted class with CR −0.688. On the right, the frequency of the three classes 

are reported for the samples included in the four cohorts of this study and corrected with BoBafit. 
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4.1.4 RAPH: an easy-to-apply and universal purity estimation tool 

 

RAPH (Rapid Assessment of Purity-estimates by Heuristics) is a R function (currently in 

development to become a R package) and a web-app tool created to resolve the purity bias in SEG 

files, and consequently to adjust the CN signal relatively to the inferred purity level and the 

technology platform used for generating the SEG file. 

The purity bias is due to non-tumor cell contamination in tumor samples. In fact a correct 

measurement of the precise level of CNAs subclonality is complicated by the fact that tumors 

samples often contain multiple populations of both tumor and non-tumor cells (normal cells). In 

MM, this might be due a not-optimal quality of the plasma cell enrichment procedure, performed 

prior to sequencing (i.e. enrichment of human tumor cells from primary specimens using cell 

isolations technologies, for example the Magnetic Activated Cell Sorting (MACS) instrument in 

this study), or, in solid tumors, to an imperfect biopsy. 

The two most popular and widely used tools able to compute the purity level of tumor samples and 

to correct the CN profile for the purity bias are ABSOLUTE 60 and ASCAT 76. Even if both tools 

are able to analyze both NGS and SNParrays samples, they employ different statistical and 

computational approaches to assess purity, depending on the sample’s platform. In fact, ASCAT 

is available in two different versions: ASCAT2 (for SNP arrays) where the input BAF track is 

provided by the user, and ascatNGS (for NGS) where the BAF track is automatically generated 

from the input BAM file. On the contrary, ABSOLUTE relies on both mutations data (MAF file) 

and CN data (SEG file) for purity estimation in the NGS version, while relies only on CN data in 

the SNP array version (Table 5). 

In the context of the present study, the harmonization between the purity solutions obtained among 

all the platforms was intrinsically difficult, since:  

a) in an ASCAT scenario, the BAM files were not available for all the samples for the NGS 

version (no BUS cohort BAM), and the BAM files of the CoMMpass cohort show a very 

low coverage (4-8X) not sufficient to generate a high quality BAF track (not comparable 

to the superior quality of BAF tracks generated by SNP arrays).  

b) in an ABSOLUTE scenario, two different computational strategies would be used to 

generate purity solutions for either NGS and SNP arrays, that is using mutational and CN 

data for the former, while using only CN data for the latter, introducing in this way a 

methodological bias and invalidating the aim of this part of this study. 

 

Since neither of the two tools could be homogenously applied to all the samples included in the 

cohorts, we sought to develop a hybrid strategy to harmonize the purity estimates among all the 

samples, as follows: 1) Apply the tool of choice (ABSOLUTE) on the cohorts were the samples’ 

raw data was available (SU2C and CoMMpass), 2) Develop a new tool, (RAPH), capable of 

computing purity solutions starting from the samples’ SEG files, available for the platforms in this 

study. 3) Validate the RAPH computed purity solutions comparing them to the ABSOLUTE 
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computed solutions in the cohorts where both tools can be applied (SU2C and CoMMpass). 4) 

After a satisfying validation, compute the purity solution with RAPH in the cohorts where 

ABSOLUTE can’t be applied 

 

Purity 

estimation tool 
Input required 

Supported 

platform 

unique 

solutions 

Automatic 

identification of 

challenging 

samples 

ability to 

review 

solutions 

Speed of analysis 

ABSOLUTE 

(NGS and 

SNP array 

versions) 

SEG file  

(+ MAF file in 

NGS version) 

WGS, 

WES, 

SNP array 

No No Yes 

~5-10 min per sample 

(depending on computing 

power) + manual review 

ASCAT 

 

(NGS and 

SNP array 

versions) 

LogR file + 

BAF file (in 

SNP array 

version) or  

BAM file (in 

NGS version) 

WGS, 

WES, 

SNP array 

Yes No No 

~5-30 min per sample 

(depending on computing 

power) 

RAPH SEG file 

WGS, 

WES, 

SNP array, 

CGHarray, 

ULP-WGS, 

Targeted-Seq 

Yes Yes 

Yes (with 

RAPH-

Graph) 

1-3 seconds per sample on 

standard Desktop Computer 

 

Table 5: comparison between the main features of ABSOLUTE and ASCAT (the two most used tools for purity 

estimation in tumor samples) and RAPH. The main advantage of RAPH is the ability to be applied on samples 

generated by every platform that produce a CN profile, since it just requires a SEG file as input. Additionally, since 

the SEG files are extremely lightweight, the computing process is extremely fast (requiring only a few minutes to 

analyze thousand samples), facilitating in this way the analysis of big cohorts and the reproducibility of the analysis. 

 

The RAPH tool development started from CN events clustering issue, similarly to what happens 

in the previously described BoBaFIT algorithm. The CN events in RAPH are computed at the 

chromosome-arm level, similarly to BoBaFIT. The difference in RAPH lies in the CN events 

measuring here a “deviation from the baseline” metric, measured in CN units (figure 20). For 

example, a deletion CN value of 1.2 (that is 0.8 units of deviation from the baseline level of CN = 

2) is measured like an amplification CN value of 2.8, since it also has 0.8 units of deviation from 

the baseline level of 2. This choice was motivated by the fact that both deletion and amplification 

events contribute to generate clusters of CNAs events in the deviation from baseline space. The 

key observation is that those clusters correspond to the various clonal and/or subclonal states 

present in the tumor, similarly to what happens when analyzing clonal and subclonal mutations 

clusters in the CCF space (see ABSOLUTE methods and output plots 60).  
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Importantly, the identification of the particular “clonal cluster”, among all the defined CNAs 

clusters in the deviation from baseline space, is very important for the purity estimation task, since:  

A) if the sample is perfectly pure (100% purity) the deviation from baseline of the clonal 

cluster of amplifications and deletions would be = 1,  

B) on the contrary, if the sample is affected by normal cells contamination, the purity of 

the tumor sample would be equal to the deviation from the baseline of the clonal cluster 

of amplifications and deletions. This is because the deviation is less evident the more 

normal cells contaminate the sample (in the extreme case that a sample would be 

completely contaminated, the deviation of the clonal cluster would be equal to 0). For 

example, a sample with a 50% tumor purity and 50% normal cells contamination will 

show a clonal cluster deviation of 0.5, while a sample with a 80% tumor purity and a 

20% normal cell contamination will show a clinal cluster deviation of 0.8.  

In conclusion, in order to compute a purity value starting from a SEG file it is necessary to 

accomplish two tasks: 1) reliably cluster the CNAs events in the deviation from baseline space, 2) 

reliably identify the “clonal cluster” among all the identified clusters. 

Regarding the first task, similarly to the previously described BoBaFIT algorithm, RAPH uses a 

NBclust-based clustering approach, in order to identify the various levels of CN events the sample 

CN profile. The CN events are computed at the chromosome arm level, similarly to BoBaFIT. This 

clustering method is already proven to be capable of reliably identifying the clonal structure, as 

previously described.68 

Regarding the second task, we developed a set of three simple logical rules, based on our empirical 

experience in reviewing purity solutions, which can be implemented in a decision-tree algorithm 

in order to identify the “clonal cluster”. The three rules can be applied on the list of all the clusters 

present in any given sample, annotated with information on the numerosity and the distance to the 

integer CN for each cluster in the list (figure 20). 

• RULE A: The “big-cluster” of alterations is chosen as clonal cluster. Here, a “big” cluster 

is defined as a cluster showing at least 2 times more CN events then the median of all the 

clusters (without considering the baseline region cluster), or showing at least 4 events in 

different chromosomes including both an amplification and a deletion event (figure 20A). 

• RULE B: If multiple big-clusters are detected, or no big-clusters are detected, the (big-

)cluster with the minimum distance to the integer CN is chosen as the clonal cluster (figure 

20B). 

• RULE C: Purity adjusted CN profiles cannot biologically have negative CN values. If the 

chosen clonal cluster defines a purity that generate negative CN values, it must be wrong. 

In this case, exclude the chosen cluster from the clusters list and start over with rules A and 

B.  

 



53 

 

 

In addition to the purity solutions and the purity-corrected SEG files, RAPH outputs also a table 

containing the clustering quality statistics of the analyzed samples. This allows to automatically 

detect complex samples (i.e. samples in which the purity solution is challenging to assign 

confidently, due to a particularly complex karyotype that reflects to an uncommonly high number 

of clusters (>6) or to a bad cluster dispersion quality metric (Standard Deviation of CN events in 

cluster > 0.05)). In order to resolve the purity value of these challenging cases, we developed a 

Shiny web-application77 named “RAPH-Graph” (freely and openly available at: 

https://shirke019.shinyapps.io/RAPH_Graph/) that enables a manual review of any given CN 

profile. The RAPH-Graph allows to upload the user SEG files directly on the web-app. Next, after 

sample selection, the CN profile of the sample is plotted, and a simple point-and-click interface 

facilitates the choice of the purity value identified by the user. The operation can be repeated for 

every sample included in the SEG file. The solutions can be downloaded in the web interface. 

Figure 21 show a screenshot of RAPH-Graph and illustrates the procedure for selecting the purity 

for one example CoMMpass sample. 

Figure 20: the functioning of the RAPH rules for identifying the clonal cluster, and the purity of the sample. CN 

events are measured in CN units of deviation from baseline, and clustered by using the same approach used in 

BoBaFIT. A) By using the “rule A” the green cluster is chosen as the clonal cluster, since it shows at least 2 times 

the median number of CN events among all the clusters (excluding the baseline region cluster, in grey). B) Both 

yellow and blue clusters are defined as big-clusters by the “rule A”, so by using the “rule B” the big-cluster with the 

minimum distance from the integer CN (the yellow cluster with a distance of 0.4) is chosen as the clonal cluster. 

https://shirke019.shinyapps.io/RAPH_Graph/
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Figure 21: a screenshot of the developed web-application “RAPH-Graph”. This tool enables a fast and easy 

visualization of the uploaded SEG file. The user can select of a purity solution (highlighted in the plots with a 

orange line) by clicking on the CN profiles plots (blue = amplificated segments, red = deleted segments, green = 

normal segments). The obtained solutions can be both annotated and then downloaded by using a button in the web 

interface (grey button at the bottom of the web page). The screenshot shows the purity selection for the sample 

MMRF_1030_1 of the CoMMpass cohort (purity = 0.85, chosen by clicking on the big cluster of hyperdiploid blue 

chromosomes). 
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In order to validate the RAPH and purity solutions, a validation cohort was defined (SU2C cohort) 

in which both RAPH and ABSOLUTE tools could be best applied. The comparison, showed in 

figure 22A, between the purity solutions generated by both tools indicates a very good overall 

concordance of the solutions (Pearson’s R = 0.87, p<0.0001), indicating a nice quality of RAPH 

solutions when compared with a state-of-the-art widely used tool. In particular, the few discordant 

samples highlighted with labels in figure 22A,B, are due to the ABSOLUTE selection of a purity 

solution based on the mutation information, which is not available in the SEG file and thus not 

exploitable by RAPH for computing a purity solution. This was demonstrated by comparing 

ABSOLUTE with manually reviewed purity solutions just by using the CNA information: the 

same samples were found to be discordant between ABSOLUTE and the CNA-based manually 

reviewed solutions (figure 22B), confirming that RAPH can correctly identify the right purity 

solutions when based on the available CN information in the SEG file (figure 22C) (Pearson’s R 

= 0.98, p<0.0001) . 

 

 

Furthermore, we sought to demonstrate the ability of RAPH in correctly assessing the purity 

solution just by using CN information. To this aim we performed a comparison between RAPH 

solutions and manually reviewed solutions from CN profiles, in a cohort of the first 250 samples 

from the CoMMpass cohort (figure 23A). This comparison showed an extremely good 

concordance (Pearson’s R = 0.94, p<0.0001), with the only discordant samples being associated 

to a complex karyotype (figure 23B blue points), as defined by the RAPH’s output clustering 

statistics. This result further demonstrated the potential of RAPH in extracting the correct purity 

solution when analyzing the CN profile contained in the SEG file. 

 

Figure 22: validation of RAPH purity solutions. Comparison between RAPH and ABSOLUTE solutions on the 

validation SU2C cohort. A) The direct comparison between the two tools shows a great overall concordance. B) A 

comparison between ABSOLUTE and the purity solutions generated by reviewing CN profiles shows that the discordant 

samples were not due a wrong estimation of the CN profiles, but due to the ability of ABSOLUTE to infer purity also 

from mutations data. C) The comparison between RAPH and the purity solutions generated by reviewing CN profiles 

shows an almost perfect concordance. 
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According to this validation and thanks to the very good concordance between RAPH and 

ABSOLUTE, the newly developed tool was applied to the cohorts where it was not possible to 

apply ABSOLUTE, namely BO and BUS. This allowed to get the best harmonized purity solutions 

and to correct all the samples in the four cohorts from the normal cell contamination / purity bias. 

 

 

 

  

  

  

Figure 23: comparison between RAPH solutions and manually reviewed purity solution in the first 250 samples 

from the CoMMpass cohort. A) RAPH shows an extremely good concordance with only 5 underestimated samples 

and 1 overestimated sample. B) The discordant sample are due complex karyotypes in the CN profiles, as defined by 

the label “multiple solutions” in the RAPH clustering quality output (blue points). 
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4.1.5 ComphyNumber: a tool to compute confidence intervals to CN estimates 

 

The last step of the harmonization pipeline is to correct the CN profiles for the error estimation 

bias. This methodological bias arises by the fact that, except for ABSOLUTE, all the existing CN 

computing tools (to our knowledge) do not consider the specific platform resolution, when 

generating CN segments, and therefore do not compute the confidence intervals (95% confidence 

intervals referred as “95CI”) along with the point estimates of CN or Log2R for each segment of 

the CN profile. Even ABSOLUTE, even though it assigns a 95CI to every generated segment, does 

not always compute the correct 95CI, since it employs a default and unchangeable resolution value, 

instead of dynamically adjusting this parameter to the proper platform resolution.60 

The segments generated from different platforms or at different seq-coverage can present a (very) 

different resolution, for example the Affymetrix CytoscanHD SNParray have a resolution of 1 

probe every ~1 kB, whereas ULP-WGS have a resolution of 1 probe (bin) every ~2000 kB. In the 

era of cheap low-resolution platforms for the generation of CN profiles (such as ULP-WGS or 

targeted-seq) the assignment of a specific 95CI is particularly critical, since the low resolution of 

the platforms implies large bin sizes (> 1 or 2 MB), hence a low confidence in the assignment of 

CN values, especially for small segments that contain only few probes. This can cause a high 

uncertainty when calling the exact subclonality level of CNAs, since the point estimate CN call of 

segments with a low number of probes is rarely precise and could actually range from a minimum 

to a maximum, depending on the number of probes (considered as statistical observations) 

contained in each segment (Fig.24). 

 

Figure 24: Two CN profiles generated by two different tools (upper profile: Rawcopy, lower profile CopywriteR). 

The two profiles show an extremely different resolution, that can be noticed by the evident difference in the number 

of probes (black dots) that form the log2R track of the profiles. None of the two tools output a confidence interval 

for the segments they generate (green segments in the upper profile show a elevate number of probes per segment, 

red segments in the lower profile show a way smaller number of probes per segment), despite being extremely 

popular and widely used tools. 
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Therefore, a new R function was developed, named ComphyNumber, in order both to resolve the 

confidence interval bias and to implement the CNAs calls of this study with a precise error 

estimation, required later in this study to statistically compare the subclonality level between 

CNAs with a high precision, thus enhancing in this way the timing results precision. 

In order to compute confidence intervals for a SEG file CN point estimates, the following approach 

was employed. The approach starts from the statistical textbook definition of Confidence Interval 

(Eq. 1), where x̄ is the sample mean, z is the z-score for the chosen confidence interval, s is the 

sample standard deviation and n is the sample size. 

 
𝐶𝐼 =  𝑥 ̄ ± 𝑧

𝑠

√𝑛
 Eq. 1 

 

Next, it’s possible to observe that in the minimum required information included by every CN 

segmentation tool that generate a SEG file (i.e. chromosome, start position, end position, CN or 

log2ratio point estimate and number of probes (or bins) in the segment, Table 6), notably, some of 

the required information necessary to compute a 95CI for each segment in already available in the 

SEG file itself:  

• The parameter x̄ of eq. 1 corresponds to the CN mean, or CN point estimate, which is a 

mandatory feature of a CN SEG file (fourth column of Table 6). 

• The parameter n of eq. 1 corresponds to the number of probes included in a segment, which 

is also a mandatory feature of a SEG file (fifth column of Table 6). 

Then, since the aim is to obtain 95% confidence intervals, the z parameter of eq. 1 is set to a value 

of 1.959 (Z-score for this confidence level). 

Finally, the only missing parameter in eq. 1 required to compute 95CI is s, the standard deviation 

of the sample. Given that this specific statistic is very rarely computed in the sample quality scores 

of the CN tools, it is possible to derive it from other more common sample statistics often computed 

by CN segmentations tools. These statistics are the MAPD (mean absolute pairwise deviation, 

usually computed by SNParray segmentation tools, such as Rawcopy, Figure 24) or the MAD 

Table 6: example of a standard SEG file with CN information. Five fields are mandatory and found in all SEG file 

generated by every CN segmentation tool, namely: chromosome, start position, end position, CN or log2ratio point 

estimate and number of probes (or bins) in the segment 
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(mean absolute deviation, usually computed by NGS segmentation tools, such as CopywriteR, 

figure 24). Given that the MAD is a consistent estimator the standard deviation of a normal 

distribution (Eq.2), under minor deviations of the normal distributions its asymptotic variance is 

smaller than that of the sample standard deviation.78  Thus, the standard deviation (SD) can be 

computed from the MAD or the MAPD as in Eq. 2.  

 

𝑆𝐷 ≅  
𝑀𝐴𝐷

√2
𝜋⁄

 
Eq. 2 

 

Finally, both eq. 1 and eq. 2 were implemented in a customized R function, named 

ComphyNumber. The function is able to take as an input a SEG file, and generates an output 

consisting of a new SEG file which includes a “95CI” variable, corresponding to the 95% 

confidence intervals of the CN point estimate values for all the segments included in the input SEG 

file. Thus, by applying this function to all SEG files in the four cohorts of this study, it was possible 

to correct them for the error estimation bias. 
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4.1.6 PHASE 2: CNA calling 

In the second phase of the pipeline for multi-platform harmonized Copy Number analysis, the goal 

is to generate homogeneous CNAs calls from the harmonized SEG files outputted from the phase 

1 of the pipeline (Figure 14). In order to do so, the researcher judged an appropriate choice to 

distinguish between “Broad level” or chromosome-arm level CNAs, and “focal level” or gene level 

CNAs. This reasoning was inspired by the GISTIC algorithm functioning, which also perform a 

similar discrimination in its computation of CNAs present in the samples.50  It’s also proven that 

the specific biological mechanisms that generate CNAs can be various and different in nature. 

Each mechanism generates CNAs of typical sizes and type depending on the specific biological 

process involved (e.g. mitotic non-disjunction mechanism generate large “broad level” CNAs, 

while fusion-bridge-amplifications generates small “focal level” CNAs). 79 

4.1.6.1 Broad alteration calls  

In order to compute CNA calls for broad level (or chromosome-arm level) alteration events, a 

specific strategy implemented in a R script was developed. This script executes the broad CNA 

call procedure, as described in the following pseudo-code: 

 

Pseudo-code for extracting broad CN calls from SEG files 

Input: SEG files of samples, containing CN values, CN deviation, chromosome arms and 95CI. 

Output: list of broad-level CN calls, including the associated 95CI.    

For each sample s in cohort do: 

 pur ← Extract the purity value of the sample s 

cutoff ← Define a dynamic CN cutoff based on the sample purity: 𝑐𝑢𝑡𝑜𝑓𝑓 =   0.1/𝑝𝑢𝑟  

for each chromosome-arm arm in s do: 

AltSeg ← filter segments in arm with a CNA event: CN deviation > cutoff   

if number of AltSeg > 0 do: 

wmCN ← Compute the (size)weighted-mean of the CN values in AltSeg 

wmCI ← Compute the (size)weighted-mean of the 95CI values in AltSeg  

Save wmCN and wmCI in the output list 

end if 

end for 

end for 
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4.1.6.2  

By applying this script to all the SEG files of the samples, it was possible to generate broad-level 

CN calls with included 95% Confidence Interval. A total of 39 CN calls per sample were computed 

in this way (figure 25). 

 

 

 

 

4.1.6.3 Focal alteration calls 

In order to compute CNA calls for focal level (or gene level) alteration events, a specific strategy 

implemented in a R script was developed. This script, in addition to the SEG files, uses as an input 

a pre-computed BED files that describe the specific genomic loci of interest that the user want to 

extract. The loci should be annotated with the information: Chromosome, start position and end 

position. Of note, it is critical that the positions must be coherent with the reference genome used 

for generating the SEG files (usually hg19 or hg38 for the human genome). 

This script executes the focal CNA call procedure, as described in the following pseudo-code: 

 

 

 

 

Figure 25: Human autosomic chromosomes ideogram (schematic representation of chromosomes). For each 

autosomic chromosome arm (p and q arms) a broad-level CN call was produced. The 13q, 14q, 15q, 21q, 22q 

chromosome arms were not included. A total of 39 CN calls per samples were generated in this way. 



62 

 

 

Pseudo-code for extracting focal CN calls from SEG files 

Input: SEG files of samples, containing CN values and 95CI. 

 

Input: list of genomic loci defining the focal regions of interest (BED file). 

Output: list of focal-level CN calls, including the associated 95CI.    

For each sample s in cohort do: 

 pur ← Extract the purity value of the sample s 

cutoff ← Define a dynamic CN cutoff based on the sample purity: 𝑐𝑢𝑡𝑜𝑓𝑓 =   0.1/𝑝𝑢𝑟  

for each genomic locus gene in s do: 

geneSeg ← filter segments in s that overlaps with gene locus 

if number of geneSeg > 1 do: 

compute the % of overlap of each segment in geneSeg with gene 

sel_gene_Seg ← select the single segment that has the highest % overlap 

focalCN ← extract the CN value of sel_gene_Seg 

focalCI ← extract the 95CI value of sel_gene_Seg  

Save focalCN and focalCI in the output list 

  else if number of geneSeg = 1 do: 

focalCN ← extract the CN value of geneSeg  

focalCI ← extract the 95CI value of geneSeg 

Save focalCN and focalCI in the output list 

end if 

end for 

end for 

 

By applying this script to all the SEG files of the samples, it was possible to generate focal-level 

CN calls with included 95% Confidence Interval. A total of 15 focal CN calls per sample were 

computed in this way, relatively to the GISTIC-defined 10 focal loci for deletions events and 5 

focal loci for amplifications events (see results chapter “A GISTIC2 analysis to discover new genes 

targeted by focal CNA in MM” for more detail about the loci identification). 
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4.1.7 PHASE 3: Timing Analysis 

 

The third phase of the pipeline for multi-platform harmonized Copy Number Alterations timing, 

consist in the actual generation of a timing league-model (or “cohort-timing”) to estimate the 

“ancestrality” of the CNAs alterations (defined as a measure of how much a given alteration is 

likely to be a primary/founder event in the evolutive history of MM) as obtained in the phase 2 of 

the pipeline (both focal and broad CNAs calls). 

To the knowledge of the researcher, two different approaches were already developed and used by 

other research groups in order to compute league-models in the field of cancer alteration timing: 

the PhylogicNDT league-model module (PLM) and the Bradley-Terry league model. 

• The PLM approach is part of a more general suite of cancer alteration timing tools provided 

by the PhylogicNDT package. 36,80 In particular, the input required by PLM consists in the 

output of the previous module of the PhylogicNDT pipeline, the SinglePatientTiming 

module. SinglePatientTiming, in turn, requires as input the sequencing BAM files 

generated by either WGS or WES experiments, and it generates the order and relative 

timing of the patient’s somatic events in a probabilistic manner by using copy number and 

mutation data together to infer the relative ordering of somatic events (Fig. 26).36 

In particular, the PLM module analyze the probabilistic data for single patients generated 

in this previous module in a very similar fashion to what happens in the Bradley-Terry 

algorithm (see methods section). In fact, as described in the “results” section of the 

PhylogicNDT paper, the PLM workflow consists in the following steps: 

1) First, PLM integrates the single patients’ information into a pairwise event contingency 

table, this table represents the probability that a random patient (from the cohort) that 

harbors a specific pair of events, will have the first event in the pair earlier, later or at 

a similar / indetermined time as the other event.  

2) This dataset is then sampled in such a way that all individual events play a “sports 

season” against each other with “matches” played between pairs of events, where the 

outcome of the “match” is decided by sampling from the pairwise probabilities.  

3) Finally, the method then calculates the odds ratio of events occurring early or late 

during tumour development (figure 26). 

Unfortunately, no additional information about the specific functioning of PLM could be 

found by the researcher, due to the fact that, at time, the package documentation is still in 

development on the GitHub PhylogicNDT public repository.80 Moreover, the 

PhylogicNDT paper is still only available on the BioRxiv repository (not published yet in 

a peer-reviewed journal) and publicly available PDF document is still missing the specific 

“online method” section that illustrates the more detailed functioning of the PLM module.36 
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• Instead, the Bradley-Terry approach consists in a more general and open workflow: in this 

approach the user can directly and freely define the “pairwise event contingency table” 

(also used by PhylogiNDT) with a method of choice. This table is used next as input to the 

actual Bradley-Terry algorithm, which assumes that individual events (or “players”) in the 

table play a “sports season” against each other with “matches” played between pairs of 

events (also similarly to what happens in PylogicNDT). Finally, by applying a Maximum 

Likehood estimation (MLE) model, the Bradley-Terry algorithm computes the specific 

ability values of all the “players” that played those “matches”. Importantly, in the context 

of cancer alteration timing the matches are played by the alteration events by using a 

“clonality contest” criterium, in which the more clonal/early events “wins” against the 

more sub-clonal/late events. Thus, in this scenario the computed ability of the players can 

be interpreted as “timing estimates”.33 

Figure 26: infographic of the complete workflow of the PylogicNDT package. The league-model module is computed 

based on the output of previous modules, which requires CNAs and mutations data, thus NGS generated data.   
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In addition, in the supplementary material of Gerstung M. et al., 2020 38 a direct comparison 

between the performance of the PLM and Bradley-Terry approaches in the timing of cancer 

alterations was performed on the PCAWG datasets, which includes 27 different types of cancers 

(Figure 27). This analysis showed a very good correlation and concordance between the two 

methods, which could be expected due to both methods relying approximately on the same 

methodological framework and the same conceptual reasoning. 
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Figure 27: Bradley-Terry timing analysis versus PylogicNDT League-Model (PLM) timing analysis. The analysis 

was performed on 27 different cancer types included in the PCAWG dataset. The correlation between the two 

methods timings are remarkably high, since the Spearman rho is shown to be > 0.70 in 24/27 tumors types, and > 

0.80 in 20/27 tumor types.   
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After carefully considering all those information, the researcher decided that the application of the 

Bradley-Terry approach for cohort timing analysis in this study was the most appropriate choice 

due to the following reasons: 

1) The Bradley-Terry approach is the more versatile and controllable approach: this method 

allows the user to freely define how to build the pairwise event contingency table required 

for building the model. Additionally the user can fully control how the actual matches 

between the clonality levels of the alterations are performed (deciding for example how 

many points will be assigned to the “winner” of each match). 

2) The PLM approach, despite being a method included in a solid and compact timing analysis 

framework (PylogicNDT), can only analyze samples profiled with NGS platforms (WGS 

or WES), thus it can’t be applied to the whole cohort of samples in this study as it’s not 

usable on SNP arrays samples. Additionally, it was not possible to investigate the specific 

functioning of this method, since the actual bioinformatic tool is still in development and 

the methods section of the paper that describes it is not yet publicly available.    

3) It was demonstrated by Gerstung M. et al. (2017) that the analysis generated by the two 

methods are highly similar in the task of cohort-timing many different cancer types. 

Therefore, neither approach is clearly superior, or different, from the other. 

   

4.1.7.1 TestClonality: a function to statistically compare and match the clonality 

between pairs of alterations 

  

In order to generate the pairwise event contingency table required as input to the Bradley Terry 

model, it was necessary to process all the harmonized CNAs calls generated by the phase 2 in a 

specific way. This table is formatted with the objective to describe and summarize the aggregated 

“matches” results between all the “players” in every “tournament”, where the matches are 

represented by clonality contests, the players are represented by genomic alterations and the 

tournaments are represented by the tumor samples (Figure 28). The researcher followed the 

instructions described in the vignette of the BradleyTerry2 R package, with some modifications, 

in order to generate such a table. 
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Figure 28: Examples of “pairwise event contingency tables” required as input for the Bradley-Terry model. On the 

left (in yellow) a table that can be used for computing the different abilities of soccer teams, based on how many times 

they have won against each other in a sport match. On the right (in green) a table that can be used for computing the 

different abilities (timing estimates) of genomic alterations, based on how many times they have won against each 

other in a clonality contest match. 

 

Since the complex nature of the clonality data, some modifications to the actual procedure for 

matches computation were need in this context. In particular, it can be noticed that the clonality 

value of a given alteration consists in both a point estimate, defined by the deviation from the 

baseline value of the CNA event (e.g. a CN = 2.8 consists in an amplification with clonality = 0.8 

and a CN = 1.5 consists in a deletion with clonality = 0.5, with reference to a diploid baseline) and 

also the associated error estimation, that is the 95% Confidence Interval included in the CNA call. 

In this scenario, when performing a clonality contest between a given pair of alterations, the 

determination of the winner is not a trivial task, since the error in the clonality measurement must 

be taken into account in the match. This problem, names “matching clonality problem” is visually 

illustrated in figure 29, and arises when trying to determine if a statistical difference exist between 

two measurements when only their 95% CI is available. 

 

Figure 29: The “matching clonality problem”. A and B measurements (Ma and Mb) are associated with 95%CI 

error bars (Wa and Wb). In this case determining if Mb is actually different, and superior, to Mb is a statistical 

challenging task. 
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To this aim the TestClonality R function was developed. This function can statistically compare 

and match the clonality between pairs of alterations. To this aim two different solutions are used: 

1) The “eye inference” solution: this approach was inspired by the Cumming & Finch (2005) 
81 method. This method provides a practical “rule of thumb” useful to assess if two 

measurements Ma and Mb, with associated 95%CI Wa and Wb are statistically different. 

Critically, This rule is valid only if Wa and Wb magnitude does not differ more than a 

factor of 2. The procedure, reported here, was demonstrated by the authors of the paper 

using simulations and empirical analysis.  

 

a. First, the overlap measure between the two 95%CI is computed as follows in Eq. 

3: 

 
𝑂𝑣𝑒𝑟𝑙𝑎𝑝 = {

(𝑀𝑏 + 𝑊𝑏) − (𝑀𝑎 −  𝑊𝑎) ;    𝑖𝑓 𝑀𝑎 >  𝑀𝑏 
 (𝑀𝑎 +  𝑊𝑎)  −  (𝑀𝑏 −  𝑊𝑏) ;    𝑖𝑓 𝑀𝑏 >  𝑀𝑎  

 Eq. 3 

 

b. Second, the ProportionOverlap statistic is computed as follows in Eq. 4 (Fig. 30A):  

 
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 =  

𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝑚𝑒𝑎𝑛(𝑊𝑎, 𝑊𝑏)
 Eq. 4 

 

c. Finally, if the computed ProportionOverlap value is < 0.5, also the p-value of the 

comparison is typically <  0.05, so the difference between the two measurements is 

significant under the canonical p-value threshold (Fig. 30B). 

 

Figure 30: graphical illustration of the “eye inference” rule-of-thumb approach developed by Cumming 

& Finch (2005), implemented in the TestClonality R function. 
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2) The “Summarized t-test” solution. The researcher observed that a standard statistical 2-

sample t-test can be both computed from raw observations, but can also be computed from 

the summarized statistics of those raw observation, that are the Mean / point estimate µ, 

and the Standard Deviation σ. 82 This possibility is implemented in R by the tsum.test 

function included the package BSDA (Basic Statistics and Data Analysis).83  The only 

limitation of this solution is that Standard Deviation information is missing, but if assuming 

normality (when the sample size N is > 100) it can be estimated indirectly by using the 

following equation (Eq. 5): 

 
σ =  √𝑁 × (

𝑢𝑝𝑝𝑒𝑟𝐶𝐼 − 𝑙𝑜𝑤𝑒𝑟𝐶𝐼

3.92
) Eq. 5 

 

Where N is the sample size. In fact, if N is large (bigger than 100 for both events), the 

normality can be assumed, and the 95% confidence interval is 3.92 standard errors wide  

(2 × σ = 3.92). 

 

In this case the sample size is represented by the number of sequencing reads for mutation 

data and the number of bins/probes for CN segments data (which is a information present 

in the SEG file). 

 

By means of TestClonality function, all the clonality matches between alterations could be 

computed in a formal statistical fashion (Figure 31). In particular, among the two possible 

TestClonality modes the “summarized t-test solution” was preferred, but in the cases when it was 

not possible to meet the assumption of the underlying t-test (normality, or sample size > 100) the 

“eye inference” solution was used instead to perform the match. All the matches results computed 

in this way were used to generate the pairwise event contingency table required as input for the 

final computation of the Bradley-Terry model.  
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Importantly, the score assigned to the winner of each statistically significant match was not = 1 as 

in standard Bradley-Terry models, but instead the score was proportional to the difference between 

the clonality point estimates of the paired alterations. This specific score-assignment strategy was 

chosen to maximally exploit the timing information from the inferred by the clonality difference 

between alterations. At the same time, the non-statistically significant matches were considered as 

ties, regardless of their difference in clonality point estimates. 

 

4.1.7.2 Bradley-Terry models generation and calculation of timing estimates 

 

Finally, after computing the pairwise event contingency tables, the actual Bradley-Terry models 

could be generated from those tables. The model were computed by using the BTm function from 

the BradleyTerry2 R package, as detailed in Methods. Quasi-variances and relative Quasi-standard 

errors (qSE) associated to the computed abilities were extracted by using the qvcal function. 

Critically, in addition to the table, the model also requires the prior definition of a specific player 

/ alteration event to which is assigned an ability equal to zero by default: in this way all the other 

players / events abilities are computed relatively to the ability of the predefined player. Since this 

choice is critical for a posterior correct interpretation of the abilities / timing estimates generated 

by the model, the researcher found appropriate to set the predefined “0 ability” player to the 

HyperDiploidy event since this event is well-known to represent a real ancestral event in the 

evolutive history of MM, as demonstrated by multiple previous MM timing studies (see 

introduction chapter “Genomic timing in MM: state of the art”).  

Figure 31: example of three matches performed by pairs of alterations (“players”) using the TestClonality R 

function. In the first match the t-test assumption is met (N reads / sample size > 100 for both events) so the match 

was performed using the “summarized t-test” mode. In the second and third matches the “Eye inference” mode was 

used instead, since the t-test assumption are not met: the second match is not significant while the third match is 

significant, since the proportion overlap parameter is < 0.5. 
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In this way, it was possible to obtain the raw estimates (and qSE) of the “players” (CNAs 

alterations) included in the model. An example of the raw output of the BTm and qvcal funcions 

can be visualized in Figure 32. 

 It’s also important to note that in the case a given alteration didn’t play any matches (due to the 

fact that it was never detected in the dataset) this alteration was excluded by the model output. 

This was the case for extremely rare alterations (such as the deletions of the typically amplificated 

chromosomes) in the small cohorts of this study with a relatively small number of available 

samples (the SU2C and BUS cohorts). Since these alterations were not found to be “early” / 

ancestral events in the other big cohorts (BO and CoM) included in the study this issue does not 

represent a problem for the specific aims of this study.  

Finally, the ability estimates generated by the model were subject to the “opposite” mathematical 

transformation: -f(x) (i.e. negative values were converted to positive values, and positive values 

were converted to negative values), thus generating the definitive “Timing Estimates” (TE) 

parameter that was used as a the main timing metric in all this study. This choice was made in 

order to facilitate the later interpretation and visualization of the TE, in fact by applying this 

procedure and considering the previously described definition of the Bradley-Terry abilities, the 

TE can be interpreted as follows: 

Timing Estimate (TE) = number of units of “molecular time” after the HyperDiploidy reference 

event, after which a given alteration event occurs. 

 

 

Figure 32: example of raw output generated by the Bradley-Terry model. In this bar-plot the ability estimates of the 

players are shown on the Y axis and the different players are show on the X axis. Bars represent the quasi-standard 

errors associated with each ability estimate. The abilities are measured relatively to a predefined player, to which is 

assigned an ability = 0 by default (last point in the plot).    
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4.2 A GISTIC2 ANALYSIS TO DISCOVER NEW GENES TARGETED BY FOCAL CNA 

IN MM 
 

As described in Methods section, the GISTIC v2 bioinformatic tool was employed in order to 

define a confident list of focal loci of interest that are statistically targeted by “driver” CNAs, in 

the MM genomic CNAs landscape. Since the MM patient’s genome is extensively affected by 

CNAs events and given that their CN profile often present a complex karyotype, this type of task 

is not trivial, due to the high number of “passenger” CNAs that introduce an elevate level of 

background noise that confounds the correct identification of focal driver CNAs. Despite the 

availability of a high number of publicly available MM CN profiles (CoMMpass dataset), and 

despite the popularity of the GISTIC tool, to date there is no published study that specifically 

applied the GISTIC algorithm for the identification of focal driver CNAs in MM. 

Based on the specific GISTIC algorithm functioning (described in the methods section) this is 

probably due to the following reasons:  

A. GISTIC requires a high number of samples in order to significantly identify rare and small 

focal CNAs: in the case the sample cohort is too small (let’s say less than 100-200 samples) 

it becomes difficult for the algorithm to statistically distinguish true focal alterations from 

the background noise consisting of random “passenger” CNAs. This happens because the 

signal of the “drivers” CNAs is too diluted in the “background” noise. Having a big cohort 

of tumor samples can logically resolves this issue (at least >400-500 samples, depending 

on the level of genomic instability of the cancer) since with the increase of the observations 

the signal becomes stronger while the noise becomes weaker. In MM, such big cohorts of 

CN profiled samples become publicly available only recently from the CoMMpass study.  

B. GISTIC requires a high CN profiling platform resolution to correctly identify the small size 

CN events: if the platform that analyzed the CN profiles of the samples shows a low 

resolution (let’s say 1 or 2 Mb, as in the case of ULP-WGS) focal events with a size smaller 

than the platform resolution can’t be materially detected. In MM a good quality GISTIC 

analysis of the CoMMpass CN profiles is dataset is challenging due to the low resolution 

(low-coverage) of the WGS samples of the study. In addition, a non-optimal setting of the 

segmentation algorithms parameters can also introduce uncertainty in the analysis 

resolution since it influences the number of CN breakpoints (e.g. the alpha parameter of 

the CBS algorithm, which influence the segmentation p-value). In particular, a too 

“stringent” segmentation procedure even if it can produce nice and clean CN profiles, can 

also introduce false-negatives in the called CNAs segments, while on the contrary, a too 

“aggressive” segmentation procedure can introduce many false-positives in the CNAs 

segments called. 

C. An effective and formal GISTIC analysis requires at least two different datasets of CN 

profiles of big and equal size, profiled with different genomic platforms: one dataset is 

used for the main analysis while the second one is used as a validation dataset. This is in 

order to exclude possible platform-specific bias which could generate false focal CNAs in 
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the main dataset. In MM, apart from the CoMMpass dataset, no other sufficiently big public 

datasets are available to this aim.  

 

Starting from this reasoning, the researched proposed that only the BO dataset collected in this 

study can function as the main dataset needed for a formal GISTIC analysis, since it satisfy both 

the A) and B) requirements, while the CoMM cohort only satisfy the A) requirement. In this case, 

the CoMM dataset can instead function as the validation cohort needed for the C) requirement, 

since even if the low-resolution of the dataset does not allow a “de-novo” confident identification 

of small CNAs, it could at least enable the validation of their identification from another high-

resolution dataset (BO dataset). 

Figure 33: GISTIC analysis results on the main BO dataset. On the left (red track) and on the right (blue track) are shown 

the significant deletion and amplifications “peaks”, respectively. The peaks are identified by a significative value of the G-

score (cutoff q-value < 0.01, as highlighted by the green vertical line). The MM cancer-associated genes included within 

each peak are annotated near the peaks 
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Following this reasoning, the researcher performed two different GISTIC analysis (more details in 

the Methods section) on the BO (main / high-resolution) dataset and the CoMM (validation / low-

resolution) dataset. Results obtained by the analysis of the main BO dataset are presented in Figure 

33 and Table 7.  

This analysis generated 29 GISTIC-defined peaks in the BO dataset (11 amplification peaks and 

18 deletion peaks), which were all subsequently investigated and annotated with the genes 

included within each of the peaks’ boundaries (Fig. 33). Next, after a careful review, the researched 

was able to pinpoint 15 specific focal CNAs event (5 amplifications and 10 deletions) among all 

the discovered peaks, which were proposed as “driver” focal CNAs in the MM CNAs landscape 

(Table 7). The selection of those events was carried out according to the following criteria: a) the 

peak must include a gene already reported as “driver” in MM, b) the peak must include a new 

onco-gene or tumor suppressor gene which is involved in a commonly reported deregulated 

pathway in MM. By using this procedure a total of 5 events were found to be hypothetical novel 

“focal” CNAs drivers in MM (NOTCH2, MYC ME2-enhancer, EVI5, MAX, NFKB2). The 

detection of all these events in the BO dataset were validated by performing another GISTIC 

analysis in the validation CoMM dataset and ensuring that the peaks identified in BO overlapped 

with peaks identified in the CoMM dataset analysis (Fig. 35). Of note, the only event that could 

not be validated in this way was the MYC ME2-enhancer amplification, this was probably caused 

by the high complexity of the MYC region, which is affected by multiple types of translocations 

in MM. The abundance of structural events in the cohort consequently generates a lot of “noise” 

in the region, which could in turn confound the GISTIC algorithm, especially when considering 

the low-resolution of the CoMMpass dataset. The validation of this region was thus performed by 

a literature review on MYC enhancers (“the MYC enhancer-ome”), which revealed that this 

specific region is usually amplified in Acute Myeloid Leukemia, another hematological 

malignancy (Fig. 34). 84 
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Peak n. Focal gene CNA type NEW Chrom Position hg19 Position hg38 

1 CCND1 amplification NO 11 69455855 - 69469242 69641156 - 69654474 

2 CKS1B amplification NO 1 154947129 - 154951725 154974653 - 154979251 

3 MYC amplification NO 8 128747680 - 128753674 127735434 - 127742951 

4 NOTCH2 amplification YES 1 120454176 - 120612240 119911553 - 120100779 

5 
MYC ME2-

enhancer 
amplification YES 8 129240986 - 129276648 128228740 - 128264402 

6 BIRC2 deletion NO 11 102217942 - 102249401 102347211 - 102378670 

7 CDKN2C deletion NO 1 51426417 - 51440305 50960745 - 50974634 

8 CYLD deletion NO 16 50775961 - 50835846 50742050 - 50801935 

9 EVI5 deletion YES 1 92974253 - 93257961 92508696 - 92792404 

10 FAM46C deletion NO 1 118148556 - 118170994 117606048 - 117628389 

11 MAX deletion YES 14 65472892 - 65569413 65006174 - 65102695 

12 NFKB2 deletion YES 10 104153867 - 104162281 102394110 - 102402524 

13 RB1 deletion NO 13 48877887 - 49056122 48303744 - 48599436 

14 TP53 deletion NO 17 7565097 - 7590856 7661779 - 7687538 

15 TRAF3 deletion NO 14 103243813 - 103377837 102777449 - 102911500 

Table 7: the focal region “peaks” identified by the BO GISTIC analysis which were selected to be relevant events in 

MM. The selection identified the genes already reported to be driver in MM (column NEW = NO), or novel 

oncogenes / tumor suppressor genes involved in pathways reported to be driver in MM (column NEW = YES, in 

yellow). 
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Figure 34: The “MYC Enhancer-ome” as reported in Lancho O, et al. (2018).84  
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In conclusion, the peak boundaries of those 15 validated focal MM “drivers” were used to generate 

the BED file required for the Focal-level call step in the multi-platform harmonized CN analysis 

pipeline used in this study (see Results, “PHASE 2: CNAs calling” chapter). 

 

 

4.3 TIMING ANALYSIS OF CNA EVENTS AT NDMM AND AT SMM PHASES 
After the complete development and finalization of the multi-platform harmonized CN analysis 

and timing pipeline, the complete pipeline was executed on the SEG files derived from each of the 

four cohorts of samples included in the study, namely: 1) the BO cohort of 750 SNP arrays samples 

from NDMM patients, 2) the CoMM cohort of 832 low-coverage WGS samples from NDMM 

patients, 3) the BUS cohort of 171 WES samples from SMM patients and 4) the SU2C cohort of 

114 WGS samples from SMM patients.  

4.3.1 Timing maps of the single cohorts 

A total of four full “runs” of the pipeline were carried out in this study. Each run resulted in a 

different Bradley-Terry Timing model, describing the order of acquisition of broad-level and focal 

level CNAs in the evolutive history of both NDMM and SMM disease phases. For each model an 

associated “time map” plot was created, that is a bar-plot-like visual representation of the Bradley-

Terry timing model in which all the alteration events with corresponding Timing Estimates (TE) 

values can be visualized.    

One main important result of this study is the fact of having achieved very narrow confidence 

intervals (quasi-standard errors) in the definition of TE for the various events (Fig. 36, 37, 38, 39), 

as compared to the confidence intervals previous timing analysis in MM (see Introduction, 

“Genomic timing analysis in MM: state of the art” chapter). This ensured an high quality and 

precision in the ranking of CNAs events 79and in the estimation of associated TEs. This observed 

high resolution of the analysis is due to having provided a lot of information to the Bradley-Terry 

models, in the form of summarized matches scores (pairwise events contingency tables). This 

generated a high statistical power for the model computation. 

In fact, the matches scores information used by the Bradley-Terry models in this study was 

particularly abundant thanks to two main features of the study:  

1) the high number of samples included in the cohorts (BO and CoMM in particular) which, 

in turn, logically generated a high number of matches between alterations (important 

especially for rare CNAs events).  

Figure 35: Validation of the novel selected focal “drivers” of MM. Four IGV (Integrative Genomic Viewer) 

screenshots show the overlapping GISTIC peaks between the BO dataset analysis and CoMM dataset analysis, BO 

peaks are represented by orange rectangles, CoMM peaks are represented by green rectangles. Black zoom 

windows are plotted under the peaks of interest to show the specific genes (circled in red). Chromosome 1 shows the 

validation of EVI5 deletion and NOTCH2 amplification. Chromosome 8 shows MYC and the MYC enhancer peaks. 

Chromosome 10 shows the validation of NFKB2 deletion, Chromosome 14 shows the validation of MAX deletion 



80 

 

 

2) The score-assignment strategy (see Results, “TestClonality” chapter) which enabled a 

maximization of the score (timing information) extracted from each clonality match. 

Thanks to this elevate statistical power, the generated time-maps were able to confidently 

“resolve” the correct timing order of most of the analyzed CNAs, as can be observed by the not-

overlapping confidence intervals in Figure 36, 37, 38, 39. 

 

4.3.1.1 Bologna (BO) cohort NDMM timing map 

In the BO cohort the top early occurring events (as compared to Hyperdiploidy) were: amp 

11q(CCND1), del 13q(RB1), amp 1q(CKS1B), del 1p(EVI5), and del 11q(BIRC2), as shown by 

the BO time-map in Figure 36. The amp 11q(CCND1) is an event that deregulates the CCND1, a 

common “driver” of MM that deregulate the cell cycle pathway thus enhancing the tumor plasma 

cell proliferation. Its deregulation is renown to be an early event in MM since the CCND1 is also 

the target of the t(11;14) translocation, another well-known early event in MM pathogenesis. Next, 

del 13q(RB1), amp 1q(CKS1B) are two very frequent alterations that were often, but not always, 

considered as early alterations in the MM evolutive history. Their role as “drivers” or primary 

lesions is thus controversial 25,85, but recent studies further validated their role as drivers.15 They 

both also deregulate the cell cycle pathway, an early and unifying early event in MM.86 Del 

1p(EVI5) is one of the three deletion peaks identified on chr 1p, EVI5 has been described as being 

involved in both cell cycle and cell migration regulation: in particular it has a role in the completion 

of cytokinesis and the safeguarding of genomic integrity during cell division; thus, deletions of 

EVI5 can results in cell-cycle deregulations. 87  Finally, del 11q(BIRC2) is a well-known CN event, 

both mutations and deletions of this gene are frequently reported and contribute to carcinogenesis 

through activation of the noncanonical NF-κB signaling pathway. The NF-kB pathway is reported 

to play seminal role in the pathogenesis of MM, and its deregulation is widely considered an early-

occurring event. 88 

Other interesting observations are the early TE associated with amp of chr 18, which is an event 

very frequently observed in association with Hyperdiploidy, even though its frequency is not as 

high as the frequency of the odd-numbered chromosomes typically used to call the hyperdiploidy 

event in MM.89  Given the early observed TE of this alteration, in line with the Hyperdiploidy TE, 

it’s possible to speculate that this event could represent an additional amplification that could be 

included in the Hyperdiploidy definition in MM, but due to its relatively low frequency it was not 

included to the standard guidelines. Another interesting observation is the different TEs observed 

for the three focal deletions localized on chromosome 1p. Even if they show a similar alteration 

frequency (around ~20%), the different observed TEs reveal that they may happen in different 

time points during the MM evolutive history. In particular the EVI5 deletion is the most ancestral 

one, followed by TENT5C/FAM46C and CDKN2C. This is particularly interesting since it’s 

possible to imagine that the most relevant “driver” alteration on chr 1p is the EVI5 deletion, and 

not the commonly studied CDKN2C deletion (used as a proxy for del 1p by FISH studies). 
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Of note, in figure 36 is possible to notice that the correlation between the TEs and the frequencies 

of the various alterations is high (R=0.83, p<0.001, data not shown). But while this is true, some 

outliers exist, such as del 11q(BIRC2), amp 11q(CCND1), amp 18p and 18q. This is particularly 

important since the frequency of alterations were historically used as a proxy to define their timing 

of occurrence in the MM evolutive history, following the simple rationale that a high frequent 

alteration correspond to a early alteration.25 The timing data obtained in this study show that, while 

this rationale is generally true, some exceptions emerge when analyzing the timing with a more 

elaborated method. These exceptions can be of particular interest due to the fact that may represent 

newly discovered early event in the evolutive history of MM.   

 

Figure 36: timing map of the broad and focal CNAs in the NDMM BO cohort. On the left, the Timing Estimates (TE) of 

both amplifications (in red) and deletions (in blue) are showed with their associated quasi-standard errors (black bars). 

On the right the frequencies of the various CNAs are shown.   
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4.3.1.2 CoMMpass (CoMM) cohort NDMM timing map  

In the CoMM cohort the top early occurring events (as compared to Hyperdiploidy) were: amp 

11q(CCND1), del 13q(RB1), amp 6p, del 14q(MAX), amp chr 18, del 14q(TRAF3), amp 

1q(CKS1B) and del 1p(EVI5), as shown by the CoMM time-map in Figure 37. While most of 

these events are in common with the early events detected in the BO cohort, thus validating their 

ancestrality status, some additional events can be identified in this dataset. In fact, differences in 

TEs can be due the intrinsic diversity of the patients included in the cohorts, which can influence 

the TEs, especially in the rarer events. In particular the amp 6p was found to be an extremely early 

occurring event in the CoMM cohort. While, in the BO cohort, even if it was not found to be a top 

early occurring event, it was ranked among the earliest occurring alterations (13th rank order). This 

event is interesting since chromosome 6p includes the CCND3 gene, a paralog gene of the Cyclin 

D gene together with CCND1 and CCND2. This gene is widely known for being targeted by early-

occurring translocation t(6;14) in MM, which causes the overexpression of this gene. 25 On the 

basis of the obtained timing data it’s possible to speculate that the early amplification of chr 6p 

might represent an alternative mechanism that cause the early high expression of the CCND3 gene 

in MM.  

Next, two event localized on chromosome 14q were found to be very ancestral events in the CoMM 

cohort: del 14q(MAX) and del 14q(TRAF3). Both of them were ranked quite early in the BO 

cohort as well (10th and 15th rank order, respectively). The del 14q(MAX) event involves MAX 

(MYC associated factor X), a proposed tumor suppressor “driver” gene in MM, as proposed by 

recent data.90 However the recent studies were based only on the inactivating mutations affecting 

this gene, thus the del 14q(MAX) may represent a novel mechanism by which this important 

tumor-suppressor gene is inactivated in the early phase of the disease. 

Finally, also in the CoMM cohort it’s possible to observe that some outliers can be identified when 

correlating the TEs with the frequencies of events: both amp of chromosome 2(p and q) and amp 

of chromosome 10 (p and q) were found to be early occurring but rare events. As illustrated in the 

BO cohort for chromosome 18, they may represent additional rare amplifications associated to the 

early occurring Hyperdiploidy event, but not detected frequently enough to be included in the 

guidelines for Hyperdiploidy definition. 
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Figure 37: timing map of the broad and focal CNAs in the NDMM CoMM cohort. On the left, the Timing Estimates (TE) 

of both amplifications (in red) and deletions (in blue) are showed with their associated quasi-standard errors (black 

bars). On the right the frequencies of the various CNAs are shown.   
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4.3.1.3 BUS cohort SMM timing map 

In the single SMM cohorts (BUS and SU2C) a precise selection of specific top early events is 

challenging, due to the limited sample sizes of the cohorts (BUS = 171 and SU2C = 114) that could 

introduce a sampling bias effect when analyzed singularly. Despite this complication, a list of top 

early occurring events (as compared to Hyperdiploidy) detected in the BUS cohort could be 

identified, they were: amp 1q(CKS1B), del 13q(RB1), del chr 19, del 14q(MAX), del 11q(BIRC2), 

amp chr 18 and del 14q(TRAF3), as shown by the BUS time-map in Figure 38. As showed by the 

data, it was evident that most of the early occurring alterations in the NDMM disease phase can 

be also defined as early event even when analyzed at the SMM disease phase. This result further 

supports the notion that SMM is predominantly a genomically “mature” disease at time of 

diagnosis, since most of the “driver” genomic lesions already happened in the tumor genome at 

time of SMM diagnosis. 14,58,59 

However, one important difference could be observed when comparing the top early event of this 

cohort with the ones observed in the NDMM cohorts: that is the absence of chromosome 1p 

deletions events (EVI5, TENTC5, CDKN2C) in the top early events in SMM. In fact, all three 

events in this cohort were ranked way later then in the two NDMM cohorts (Figure 46), suggesting 

an important difference between the timing in the two phases. One possible intriguing explanation 

is that del 1p could represent an early event in NDMM but, on the contrary, a late event in SMM. 

This suggests that this alteration could frequently happen in the SMM/MM interface, thus playing 

a critical role for the progression to active MM.  

Another interesting observation is the presence of del 19 in the top early events of this cohort. 

However, since no currently known driver genes are located on this chromosome, this fact is 

possibly due to a stochastic sampling bias that may have caused an overrepresentation of clonal 

alterations of this rare event (only found in N = 15, 8.6% samples) in this relatively small cohort 

of samples (tot samples = 171). Another possible explanation is that the deletion of this particular 

chromosome might represent a founder event for the development of the SMM disease clone, but 

subsequently this clone tends to be lost at time of progression to active MM (since in the NDMM 

it is found to be a late occurring event). This explanation would be possible if this chromosome 

deletion implies an indolent disease phenotype clone, and, as a result of clonal competition 

phenomenon which is known to happen at the SMM/MM interface, this clone gets extinct at time 

of disease progression. 
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4.3.1.4 SU2C cohort SMM timing map 

Finally, in the smallest cohort out of the four, a precise selection of specific top early events is 

even more challenging. Nevertheless, the top early occurring events (as compared to 

Hyperdiploidy) in this cohort were: del 14q(MAX), del 13q(RB1), del 14q(TRAF3), del 1p(EVI5), 

amp 11q(CCND1) and amp 6p (Fig. 39). 

Again, all the early events found in this cohort were found as early events also in the NDMM 

cohorts, validating their “driver” status once again. Here the main difference consists in the 

absence of amp 1q(CKS1B) among the top early events, the intermediate timing of the three 

deletions of chromosome 1p, and the late deletion of 11q(BIRC2). However, given the relatively 

small sample size as compared to the other cohort, here is not possible to exclude a sampling bias 

Figure 38: timing map of the broad and focal CNAs in the SMM BUS cohort. On the left, the Timing Estimates 

(TE) of both amplifications (in red) and deletions (in blue) are showed with their associated quasi-standard 

errors (black bars). On the right the frequencies of the various CNAs are shown.   
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that introduced either an overrepresentation or underrepresentation of clonal alterations affecting 

those chromosomes, affecting in turn the rank order of this SMM cohort evolution history. 

  

Figure 39: timing map of the broad and focal CNAs in the SMM SU2C cohort. On the left, the Timing Estimates (TE) of 

both amplifications (in red) and deletions (in blue) are showed with their associated quasi-standard errors (black bars). 

On the right the frequencies of the various CNAs are shown. 
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4.3.2 Timing Maps of the aggregated cohorts 

Next, after the creation of timing models and maps for every specific cohort included in the study, 

the researcher sought to aggregate the samples belonging to the two different disease phases (SMM 

and NDMM) together, thus generating two new aggregated-cohorts: the “NDMM-cohort” 

consisting of BO and CoMM samples, and the “SMM-cohort” consisting of BUS and SU2C 

samples. These aggregated/cohorts were able to provide even more statistical power for aim of a 

confident detection of true “driver”/early event. This is particularly important in the case of the 

SMM disease phase, due to the fact that the single BUS and SU2C SMM cohorts alone showed a 

low sample size and statistical power, not sufficient for the identification of real early events with 

the same confidence obtainable in the NDMM cohorts, as illustrated before.  

In order to do so, a direct comparison between the TE obtained from the cohorts to merge together 

was required before merging. This comparison was performed as a quality control step, in order to 

check the concordance between the TEs obtained from the different cohorts (Figure 40, 42). In 

fact, a low concordance between the TE estimates would indicate the presence of cohort-specific 

methodological bias during the process of TEs computation, which is what the researcher would 

have wanted to exclude by applying the developed CN harmonization pipeline. In addition, 

possible individual discordant alterations in these TEs comparison could indicate cohort-specific 

sample selection biases. 

 

4.3.2.1 NDMM-cohort (aggregation of BO and CoMM cohorts) 

A correlation analysis between the TEs of the alterations of the BO and CoMM cohorts was 

performed before merging the two cohorts together, as a quality control check (Figure 40). The 

correlation revealed a significative concordance between TEs, with a good level of concordance 

(R=0.59, p<0.0001). This ensures that no big methodological bias was present in the TEs 

computation process, validating empirically in this way the data harmonizing capabilities of such 

pipeline. The only outlier of the comparison, as defined by a residual analysis of the fitted linear 

model (data not shown) consists in the del 19p event, which even if it is found to be a late event 

both in BO and CoMM, is significantly more late in the CoMM cohort (p<0.05). 
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Next, after merging the two cohorts together a new Bradley-Terry model was generated, and a new 

time map for the complete NDMM cohort was created, as shown in Figure 41. In the NDMM 

cohort the top early occurring events (as compared to Hyperdiploidy) were: amp 11q(CCND1), 

del 13q(RB1), amp 1q(CKS1B), del 1p(EVI5), del 14q(MAX), amp chr 18 and amp 6p. This 

aggregated cohort result further confirms that those events, previously detected and characterized 

as early events in the single cohort timing result chapter, are indeed early alterations by means of 

the TE classification.  

Figure 40: Correlation analysis between BO and CoMM timing estimates (TE). Deletion events are represented by 

blue points, amplification events are represented by red points. The size of the points represents the number of total 

events observed. Grey lines around the points represent the quasi-standard errors associated to the TEs. The black 

line indicates the perfect correlation. A linear model was fitted to study the correlation (blue line). 
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Figure 41: timing map of the broad and focal CNAs in the aggregated NDMM cohort. On the left, the Timing 

Estimates (TE) of both amplifications (in red) and deletions (in blue) are showed with their associated quasi-

standard errors (black bars). On the right the frequencies of the various CNAs is shown, colored by original cohort. 
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4.3.2.2 SMM-cohort (aggregation of BUS and SU2C cohorts) 

A correlation analysis between the TEs of the alterations of the BUS and SU2C cohorts was 

performed before merging the two cohorts together, as a quality control check (Figure 42). The 

correlation revealed a significative concordance between TEs, with a medium level of concordance 

(R=0.39, p=0.0012). The lower concordance level in comparison to the NDMM analysis is 

expected, due to the lower number of samples of the SMM cohorts, which logically introduces 

more noise in the SMM TEs correlation. This second check ensured that no big methodological 

bias was present in the TEs computation process of either these cohorts. The outliers of the 

comparison, as defined by a residual analysis of the fitted linear model (data not shown) consists 

in the following events: del 11p, amp 16q, amp10p, amp16p (p<0.05), which are probably caused 

by a sample selection bias in one of the two cohorts. 

Figure 42: Correlation analysis between BUS and SU2C timing estimates (TE). Deletion events are represented by 

blue points, amplification events are represented by red points. The size of the points represents the number of total 

events observed. Grey lines around the points represent the quasi-standard errors associated to the TEs. The black 

line indicates the perfect correlation. A linear model was fitted to study the correlation (blue line). 
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Then, after merging the two cohorts together a new Bradley-Terry model was generated, and a 

new time map for the complete SMM cohort was created, as shown in Figure 43. In the SMM 

cohort the top early occurring events (as compared to Hyperdiploidy) were: amp 11q(CCND1), 

del 13q(RB1), amp 1q(CKS1B), del 14q(MAX) and del chr 19. This aggregated cohort result 

confirms that amp 11q(CCND1), del 13q(RB1), amp 1q(CKS1B), del 14q(MAX), that were 

identified as top early events even in the NDMM cohort, are indeed early alterations even at the 

SMM disease phase. The identification of those events at both disease phases strongly supports 

their role as early initiators and “drivers” of the disease pathogenesis. 

Additionally, in the aggregated SMM cohort the three deletions of chromosome 1p were confirmed 

to be late occurring events only at the SMM phase, deepening the hypothesis that these critical 

alterations (or one of those) could play an important role at the SMM/MM interface. 

Intriguingly, the deletion of chr 19, continued to be top early occurring event even in the 

aggregated SMM cohort, consisting in the event with the biggest difference between the NDMM 

and the SMM timings, even if it’s an extremely rare alteration (N = 19 events, 6.6% in the 

aggregated SMM cohort).  
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4.4 VALIDATING THE CNAS TIMING ESTIMATES WITH MUTATION DATA 
After obtaining the CEs of the different CNAs events among all the cohorts, in order to further 

validate their timing classification, it was possible to generate two more Bradley-Terry models 

also including mutations data, for the cohorts where such data was available (CoMM and SU2C). 

The aim of this analysis was to compare the CNAs TEs with some specific mutations TEs which 

are known to be early events of MM (e.g. somatic hypermutation mutations, mutations reported 

with an elevate CCF in other studies) and validate in such a way the early status of the CNAs with 

a low TE. This “orthogonal” validation was possible since also mutation data, as provided by the 

MAF file computed by the ABSOLUTE tools, includes 95%CI error estimations and clonality 

point estimates for each mutation. Consequently, they could be included in the pipeline without 

Figure 43: timing map of the broad and focal CNAs in the aggregated NDMM cohort. On the left, the Timing 

Estimates (TE) of both amplifications (in red) and deletions (in blue) are showed with their associated quasi-

standard errors (black bars). On the right the frequencies of the various CNAs is shown, colored by original cohort. 
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any problem, by adding them in the callset used by the TestClonality function in order to perform 

the clonality contest matches (see Results, “Phase 3: timing analysis” for more details). Specific 

mutations selected for this analysis consist in the “pathogenic” mutations targeting the top 80 genes 

more frequently mutated in MM (see methods for more details). After implementing the mutations 

data in the pipeline, two new Bradley-Terry model and time maps were generated (Figure 44 and 

45). The results of this validation analysis show that the IGLL5 mutations were ranked as top early 

events both in CoMM and SU2C cohorts. IGLL5 is the immunoglobulin light-chain lambda gene, 

which is usually mutated during the somatic hypermutation process, an event that happens very 

early in the plasma cell development process. Because of this, this mutation can be considered as 

a proxy of a true early event. The closeness between the IGLL5 mutations and Hyperdiploidy TEs 

confirmed that the CNAs reference event was correctly timed. Additionally, also DUSP2 

mutations, CCND1 mutations and HIST1H1E were classified as top early occurring events, in line 

with the high CCF level observed by recent molecular characterization studies that imply an early 

event status.13 
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On the contrary, TP53 mutations, KRAS and NRAS mutations which represent the most frequent 

mutations in MM, are commonly reported in literature to be subclonal events that happens in a 

later phase of the evolutive history of MM. 13 This is coherent with the TP53, KRAS and NRAS 

mutations TEs results. In fact those events are ranked approximately in the middle of the generated 

timing map, further supporting the validation of the CNAs ranking. 

 

Figure 44: timing map of the broad and focal CNAs, with the addition of mutational data, in the CoMM cohort. On 

the left, the Timing Estimates (TE) of amplifications (in red), deletions (in blue) and mutations (in green) are 

showed with their associated quasi-standard errors (black bars). On the right the frequencies of the various 

alterations is shown. 

Figure 45: timing map of the broad and focal CNAs, with the addition of mutational data, in the SMM SU2C cohort. 

On the left, the Timing Estimates (TE) of amplifications (in red), deletions (in blue) and mutations (in green) are 

showed with their associated quasi-standard errors (black bars). On the right the frequencies of the various 

alterations are shown. 
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4.5 COMPARING MM AND SMM TIMING TO STUDY THE DISEASE’S EVOLUTIVE 

HISTORY 
 

Finally, to investigate the evolutive history of MM in multiple disease phases, the researcher 

sought to formally compare all the CNAs TEs obtained from the two aggregated cohorts previously 

generated. This comparison is not a trivial task, given that in order to perform a formal timing 

comparison between the SMM cohort versus the NDMM cohort, the significant disparity between 

the number of samples included in the two different cohorts must be taken into account. This means 

that the numerosity difference, in addition to the noise introduced by the smaller SMM cohort, also 

causes different scales in the TEs measures (i.e. the Bradley-Terry model computes events abilities 

(TEs) with more precision in cohorts with many samples, thus potentially generating bigger ability 

values since more matches are available). For this reason, in order to ensure a correct mathematical 

comparison between the two aggregated cohorts’ timings a scaling normalization transformation 

of the TEs in both cohorts was performed prior to performing a correlation analysis. This was 

executed by subtracting the mean and dividing by the Standard Deviation the TEs values (the base 

scale R function was used for this operation). The timing comparison between the scaled TEs 

values of SMM and NDMM is shown in figure 46.  
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This final analysis showed that the amp 11q(CCND1), amp 1q(CKS1B), del 13q(RB1) and 

del14(MAX), were confirmed as top early occurring events in both NDMM and SMM disease 

phases, further validating their role as MM disease driver alterations.  

In addition, in order to identify the significative outliers in this comparison, which might represent 

key events with different timings in the SMM/MM interface, a Z-score was computed for each 

alteration. In this way events with significative (p<0.05) Z scores were identified:  

• Early events in NDMM but late event in SMM (Figure 46, upper triangle): including del 

1p(CKS1B) and amp8q(MYC enhancer). These events represent genomic alterations 

which might happen in proximity to the SMM/MM interface, thus potentially contributing 

to the transition from the asymptomatic SMM phase to the active MM disease phase. 

• Late events in NDMM but early event in SMM (Figure 46, lower triangle): including del 

chromosome 19, amplification of chromosome 20 and del chromosome 17. These events 

might represent founder events for the development of the SMM disease, however the 

SMM clones carrying those lesions subsequently tend to be lost at time of progression to 

active MM. 

In any case, it’s important to specify once again that these hypothesis on the discordant timing 

alterations’ significance are based on a comparison performed on two very different cohorts, in 

terms of numerosity. Although a very important effort was made to aggregate the biggest possible 

cohort of SMM samples, this numerosity difference (NDMM = 1582 samples, SMM = 285 

samples) inevitably introduces a substantial intrinsic noise in this final comparison. For this reason, 

additional studies are required to further integrate the databases of genomic alterations available 

for SMM. This would be very valuable in order to generate new timing models of equal statistical 

power, able to elucidate with higher definition the events truly happening during the SMM/MM 

interface. 

  

Figure 46: timing comparison between NDMM and SMM scaled Timing Estimates (sTE). Deletion events are 

represented by blue points, amplification events are represented by red points. The size of the points represents the 

number of total events observed. Grey lines around the points represent the quasi-standard errors associated to the TEs. 

The black line indicates the perfect correlation. Significative outliers in the comparison are highlighted with black labels. 

The top early occurring events are highlighted with red labels. 
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4.6 CORRELATIONS OF TIMING RESULTS WITH SURVIVAL DATA 
 

Next, a statistical survival analysis was performed in order to evaluate the clinical significance of 

the studied genomic events, including the ones which were defined as “drivers” of MM by means 

of the timing analysis performed in this study. The survival analysis could be performed in all the 

cohorts where clinical data of patients was available (Overall Survival, OS and Progression Free 

Survival, PFS), that are the BO and the CoMM cohorts. All the genomic events identified in this 

study (focal CNAs, broad CNAs and mutations) were tested first in a univariate analysis, including 

Kaplan-Meier curves and log-rank tests (Figure 47 and 48). Next, all the variables which were 

found to be significant from the univariate analysis were then included in a multivariate Cox-

Proportional Hazard model, automated by a stepwise “backward-forward” variable selection 

strategy, which was able to optimally identify all the genomic covariates independently associated 

with outcome (survival) of the patients (Figure 49). 

Importantly, among all the identified covariates by this multivariate analysis, the only ones which 

intersected with the top early events detected in the previous timing analysis were amp 1q(CKS1B) 

and del13(RB1). On the basis of those results, it is then possible and intriguing to propose that 

these two alterations represent not only “driver” early alterations in the MM evolutive history, but 

also important clinical biomarkers, capable of significantly stratify the prognosis of the patients 

carrying those genomic lesions. Thus, patients with amp 1q(CKS1B) and del13(RB1) might 

represent a novel biological and clinical entity in MM, which could be integrated and compared 

with other systems currently used for MM patients’ classification. 
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Figure 47: Kaplan-Meier curves in the CoMM cohort for the amp 1q(CKS1B) and del 13q(RB1) genomic events. 

OS curves on the right column and PFS curves on the left column. Every curve shows the associated log-rank test p-

value. 
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Figure 48: Kaplan-Meier curves in the BO cohort for the amp 1q(CKS1B) and del 13q(RB1) genomic events. OS curves 

on the right column and PFS curves on the left column. Every curve shows the associated log-rank test p-value. 



100 

 

 

 

  

Figure 49: Forests plots representing the Multivariate Cox Proportional Hazard models results obtained for both the 

CoMM and BO cohorts. OS models in the left column, PFS models in the right column. 
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5 DISCUSSION 

 

5.1.1.1 Multi-platform CN harmonizing pipeline   

In this study, an innovative pipeline for harmonizing copy number data generated by different 

genomic platforms has been designed and developed. This pipeline is particularly useful for 

harmonizing data produced by different genomic platforms, in particular NGS and SNP arrays, 

which represent the two most used platforms for the generation of CN profiles. The development 

of this pipeline is particularly important in the era of "big data" in bioinformatics, where it is 

increasingly crucial to effectively integrate data deriving from new prospective studies with those 

coming from retrospective ones or from other public studies. This pipeline consists of a suite of 

bioinformatic tools that are interconnected to identify and correct specific biases present in the CN 

data, including the "baseline-level" bias resolved by the tool BoBaFIT, the "Hypersegmentation" 

bias resolved by the tool RemasterCNA and the "purity" bias resolved by the tool RAPH. Notably, 

unlike conventional data harmonization approaches, this pipeline does not act on raw data but on 

secondary standard files (SEG files, or segmentation files), generated by all the existing platforms 

while producing CN data. This unconventional approach has the advantage of saving both a huge 

amount of storage space (reducing the data size of a factor of about 1 million) and a lot of time 

and computational power in the process of harmonizing CN data. Additionally, the download of 

raw files is not always feasible, due to their huge size and to the storage costs, whereas, on the 

contrary, all the main public repositories of tumor genomic data (e.g., GDC Data Portal, EGA 

archieve) make SEG files readily available and easily accessible. Therefore, the SEG files can be 

considered as alternative convenient starting points for harmonizing CN data. One important limit 

of this approach is that the SEG files must be generated by the same segmentation algorithm, in 

the case of this study the CBS algorithm. This is often not a problem due to the extreme diffusion 

of the use of CBS algorithm in the tools that generate SEG files. 

The pipeline designed in the present study has been applied to harmonize the SEG files generated 

from three different genomic platforms in four different sample cohorts. Whenever possible, all 

the obtained results have been validated by performing a comparison with other orthogonal 

methods, such as with FISH data in the case of results obtained by BOBaFit, or with the popular 

tool ABSOLUTE in the case of results obtained by RAPH. Furthermore, the quality of 

harmonization was empirically demonstrated downstream the analysis, by cross-comparing the 

timing results obtained from different cohorts and from different platforms. This comparison 

demonstrated good correlation between the Timing Estimates obtained from different platforms 

and cohorts, thus confirming the quality of harmonization. This is particularly relevant because 

Timing Estimates rely on the quality of CNAs calls from which they are generated, both in terms 

of events’ presence or absence (qualitative information) and in terms of event’s clonality 

(quantitative information). 

The value represented by the suite of tools proposed in this study is double; in fact its modular and 

versatile structure allows to apply either one or multiple tools of choice, in order to correct 
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particular biases detected in CN data, regardless of the data's original platform. In addition, the 

entire suite of tools can be applied as a whole to the SEG files generated by different platforms, in 

order to obtain fully harmonized CN data across those platforms. To facilitate the use and the 

accessibility of the suite of tools, all the packages and functions are publicly available on the main 

bioinformatic repositories (GitHub and soon BioConductor) and freely downloadable upon 

request. 

 

5.1.1.2 League-model improvement using ComphyNumber and implementation 

using a GISTIC analysis 

Another important milestone achieved in this study was the implementation and improvement of 

the "league-model" approach, commonly used for calculating the timing of tumor alterations in 

the evolutionary history of tumors. 31,34 This development has resulted in a better identification of 

specific "driver" alterations present in the genomic landscape of MM, and an increase in the 

precision of the timing of CNA alterations in MM compared to previously developed models 

present in literature to date. 

Specifically, the improvement of the timing model involved the introduction of confidence 

intervals in the calculation of CNA events (by using the ComphyNumber tool developed in this 

study), which were then subsequently considered and utilized when generating "clonality 

contests", or matches, within the Bradley-Terry model. These matches, in fact, have the 

particularity of implementing a statistical ad-hoc analysis to establish the winning event of every 

match, based on the confidence intervals of the events that have to be compared in the comparison. 

In this way, it has been possible to formally ensure that the data used by the Bradley-Terry model 

for timing analysis were truthful and of high quality. 

Secondly, the implementation of the timing model involved the introduction of focal CNAs events, 

that have never been considered in previous MM timing models 15,40, but that have been shown to 

be present and crucial in various types of cancer79. In this regard, a formal analysis was 

accomplished by using the GISTIC tool for the precise identification of "driver" focal events within 

the genomic landscape of MM. The analysis was conducted on the highest resolution dataset 

available (BO cohort) and the results obtained were subsequently confirmed on a secondary 

validation dataset (CoMM cohort). This analysis allowed the identification of 15 focal regions of 

CNAs (10 deletions and 5 amplifications) categorized as "driver" through an in-depth biological 

interpretation of the genes contained within the regions, including: CKS1B, MAX, BIRC2, 

TRAF3, NFKB2, CDKN2C, TP53, RB1, CCND1, MYC, MYC ME2-enhancer, CYLD, EVI5, 

TENT5C and NOTCH2. 

In conclusion, these developments in the timing model have allowed a comprehensive analysis of 

CNA alterations, including both broad and focal alterations. The improved model has also been 

able to generate extremely precise timing estimates. This precision was demonstrated by the 

observation that the obtained confidence intervals of the temporal estimates almost never 

overlapped, and the intervals were extremely smaller, as compared to the confidence intervals 
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obtained in the previous timing studies of MM. 15,40 The potential of this improved and 

implemented Bradley-Terry timing model opens the way for the analysis of timing of other types 

of tumors using the same approach, in order to significantly improve the resolution of analysis. 

The GISTIC analysis of "driver" focal alterations is also of great relevance for the study and 

interpretation of the biological mechanisms underlying the development of MM, as this analysis 

was not only able to correctly identify all the main known targets of "driver" CNAs alterations 

(e.g. TP53, CKS1B, MYC, RB1) but also to identify new potential targets, including genes 

involved in pathways of great importance in MM, such as: EVI5 on chromosome 1p (involved in 

the cell-cycle pathway), NFKB2 on chromosome 10q (involved in the NF-kB pathway), MAX on 

chromosome 14q (involved in the Myc-signaling pathway), and NOTCH2 (involved in the 

NOTCH-signaling pathway). 

5.1.1.3 Timing analysis 

Finally, regarding the ultimate timing aim of the study, by using the harmonization pipeline and 

the Bradley-Terry model developed, four different timing analyses were generated for each of the 

cohorts studied. In each cohort, the top early-occurring events were identified, including 

amplifications of 11q (CCND1), 13q (RB1), 1q (CKS1B), 14q (MAX) and deletion of 1p (EVI5) 

in the NDMM (BO and CoMM) cohorts. In particular, CCND1 is a known “driver” of MM that 

deregulate the cell cycle pathway thus enhancing the tumor plasma cell proliferation. Its 

deregulation is renown to be an early event in MM since the CCND1 is also the target of the 

t(11;14) translocation, another well-known early event in MM pathogenesis. Next, del 13q(RB1), 

amp 1q(CKS1B) are two very frequent alterations that were often, but not always, considered as 

early alterations in the MM evolutive history. Their role as “drivers” or primary lesions is thus 

controversial 25,85, but recent studies further validated their role as drivers.15 They both also 

deregulate the cell cycle pathway, an early and unifying early event in MM.86 Del 1p(EVI5) is one 

of the three deletion peaks identified on chr 1p, in particular EVI5 was described as being involved 

in both cell cycle and cell migration regulation: in particular it has a role in the completion of 

cytokinesis and the safeguarding of genomic integrity during cell division; thus, deletions of EVI5 

can results in cell-cycle deregulation as well. 87 Finally, del 14q(MAX) involves MAX (MYC 

associated factor X), a proposed tumor suppressor “driver” gene in MM, as proposed by a recent 

study.90 However the study data were based only on the inactivating mutations affecting this gene, 

thus the del 14q(MAX) may represent a novel mechanism through which this important tumor-

suppressor gene is inactivated during the early phase of the disease development. Instead, in the 

SMM cohorts (SU2C and BUS), the top early-occurring events identified were: amp 11q(CCND1), 

del 13q(RB1), amp 1q(CKS1B), del 14q(MAX) and del chr 19. The same timing analyses were 

also performed on the "aggregate cohorts", that is the NDMM cohort composed of BO and CoMM, 

and the SMM cohort composed of BUS and SU2C. The aggregate analyses allowed on the one 

hand to increase the statistical power of the analyses by increasing the sample size in the Bradley-

Terry models, and on the other hand to demonstrate the quality of the previously developed data 

harmonization pipeline, since the timing of the alterations in the cohorts to be aggregated showed 

a good and significant statistical correlation. Ultimately, the aggregate analyses also confirmed 

with greater confidence the identification of the same previously described top early-occurring 
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events for both stages of the disease. Of note, the effective timing estimates precision and accuracy 

in the correct measurement of early alterations was validated by generating two additional Bradley-

Terry models in which true “early” early mutations (e.g. IGLL5 mutations generated during the 

early somatic hypermutation process) events were included as a control. This validation analysis 

confirmed that the timing estimates were coherent with the expected mutation timings, further 

supporting the validity of the developed timing models used in this study. 

Next, the NDMM timing was compared to the SMM timing, this final analysis showed once again 

that amp 11q(CCND1), amp 1q(CKS1B), del 13q(RB1) and del14(MAX), were confirmed as top 

early occurring events in both NDMM and SMM disease phases, further validating their role as 

MM disease driver alterations. However, the analysis also highlighted events with a significant 

difference in timing estimates between the two disease phases, including del 1p(CKS1B) which 

was found as an early event in NDMM but as a later event in SMM. Consequently, it might be 

speculated that this event might represent a genomic alteration occurring close to the SMM/MM 

interface, thus potentially contributing to the transition from the asymptomatic SMM to the active 

MM disease phase. Other events with a significant different timing included deletion of 

chromosome 19, amplification of chromosome 20 and deletion chromosome 17. Which were 

found as late events in NDMM but early event in SMM. A possible explanation for this might be 

that these events might represent founder early events for the development of the SMM disease, 

however the SMM clones carrying those lesions subsequently tend to get extinct at time of 

progression to active MM, appearing as subclonal/late after the disease progression. In any case, 

it is important to note that the conclusions drawn about the significance of these alterations 

showing a different timing are based on a comparison between two very different groups of 

patients, in terms of sample size. Despite efforts to increase the sample size of the SMM cohort, 

the difference (1582 samples for NDMM vs 285 samples for SMM) introduced significant noise 

in the comparison. Therefore, more research is needed to expand the available genomic data for 

SMM and thus creating more precise comparisons between timing models from different disease 

phases. 

Finally, a statistical survival analysis was performed in order to evaluate the clinical significance 

of the identified top early-occurring events. The survival analysis found that both amp 1q(CKS1B) 

and del13(RB1) which were identified as the earliest "drivers" of MM in the timing analysis also 

had a significant and independent impact on patient survival, both on OS and PFS. 

Based on the results obtained, it is plausible to suggest that amp 1q(CKS1B) and del13(RB1) not 

only play a significant role in the evolution of MM, but also represent significant biomarkers 

capable of significantly impact the prognosis of the patients carrying those genomic lesions. Thus, 

the presence of those genomic alterations could potentially define a new biological and clinical 

subgroup within MM which would be interesting to integrate and/or compare with other 

classification systems currently used for MM patients’ stratification. 
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6 CONCLUSION 

This study aimed to achieve three main goals: 1) to develop a multi-platform data harmonization 

pipeline for CN data in order to harmonize the genomic profiles belonging to four different patient 

cohorts in two MM disease phases (two NDMM cohorts and two SMM cohorts), 2) to improve 

and develop existing MM genomics timing models, and 3) to finally generate a new timing model, 

capable of confidently and accurately identifying "driver"/early events in the evolutive history of 

MM. The identification of such events is crucial since they are able to deeply define the biology 

and genetics of the disease biological mechanisms. However, their identification has always been 

a challenging and complicated task due to the presence of a multitude of "passenger" events that 

introduce noise in the genomic landscape of MM. To this aim, timing analysis represent an 

innovative approach, as it is capable to reliably identify “driver” events among the genomic noise.  

In this study, five new bioinformatics tools were developed for CN profile harmonization, each 

with the specific goal of identifying and correcting a different potential bias in CN data. These five 

tools can be used either individually or integrated together in a suite, which can be downloaded 

publicly and freely from main bioinformatics repositories. The harmonized data produced by the 

suite of tools was used to develop an innovative Bradley-Terry timing model, improved with a 

novel statistical approach which increases the confidence and the quality of results, and 

implemented by the introduction of focal CNAs events identified through a formal GISTIC 

analysis. Indeed, the GISTIC analysis performed in this study revealed unexpected relevant results, 

such as the identification of novel MM “driver” genes alterations previously not discovered, but 

strongly implicated in MM tumor biology. Some of these alterations consists in deletion of NFKB2 

on chromosome 10q, amplification of NOTCH2 on chromosome 1p and deletion of MAX on 

chromosome 14q. Finally, this innovative timing model was used to generate and validate temporal 

maps in both the NDMM and SMM phases. This analysis allowed the identification of specific 

"top early-occurring events" among both disease phases, including amp 1q(CKS1B), del 

13q(RB1), amp 11q(CCND1) and del 14q(MAX). These events were validated as primary and 

ancestral events in the evolutionary history of MM by means of a comparison with early-mutation 

events used as timing controls. Among these four identified top-early events, it is important to note 

that the classification of del14(MAX) as an ancestral event of MM is an innovative discovery, as 

this event has never been detected nor considered as an MM driver before this study. Importantly 

the survival analysis to characterize the clinical impact of these driver events revealed that amp 

1q(CKS1B) and del 13q(RB1) can also play a role as important MM biomarkers, since they are 

capable of strongly predict the patients’ survival outcomes. 

This study significantly contributes to the advancement of the discovery of the true the biological 

alterations underlying the development and progression of cancer, by defining a method to 

precisely characterize the precise timing at which CNAs events occur. Additionally, this study 

contributes to the development of the bioinformatics CN analysis field, by introducing a 

completely novel suite of tools that can easily be applied in other projects where CN harmonization 

or data bias-cleaning is required. Finally, the importance of this study relies in the identification 

of new, previously unknown, MM-driving genetic alterations and the validation of them as early 
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events in the disease chronology, also demonstrating the clinical utility of some of them as strong 

biomarkers. 

 

This study remains open to further implementations, including the possibility of introducing in the 

timing model different event types, such as structural events, translocations, and complex 

structural events (e.g. chromothripsis and chromoplexity). Even though this would be of extreme 

interest, the implementation is not an easy task due to the technical difficulties in establishing 

precisely the exact clonality of this type of alterations. Additionally, the study leaves open the 

possibility of applying the same timing pipeline to CNAs and mutations in other types of cancer. 

Finally, the future developments of this study will involve the search and aggregation of larger 

SMM sample cohorts, in order to further improve the obtainable timing precision in this crucial 

stage of the disease, improving in such a way the timing estimates and making them even more 

comparable to those calculated in NDMM phase. Another possible future development will 

involve the search and aggregation of a sufficiently powerful cohort of relapsed MM samples to 

introduce in the timing study of a third temporal point, thus improving even more the potential of 

analysis of the timing model that can be generated. 
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