Investigation of organic semiconductor/water interfaces for optobioelectronic devices

Bondi, Luca (2023) Investigation of organic semiconductor/water interfaces for optobioelectronic devices, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Nanoscienze per la medicina e per l'ambiente, 35 Ciclo.
Documenti full-text disponibili:
[img] Documento PDF (English) - Accesso riservato fino a 31 Dicembre 2024 - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (6MB) | Contatta l'autore


The thesis investigates the potential of photoactive organic semiconductors as a new class of materials for developing bioelectronic devices that can convert light into biological signals. The materials can be either small molecules or polymers. When these materials interact with aqueous biological fluids, they give rise to various electrochemical phenomena, including photofaradaic or photocapacitive processes, depending on whether photogenerated charges participate in redox processes or accumulate at an interface. The thesis starts by studying the behavior of the H2Pc/PTCDI molecular p/n thin-film heterojunction in contact with aqueous electrolyte. An equivalent circuit model is developed, explaining the measurements and predicting behavior in wireless mode. A systematic study on p-type polymeric thin-films is presented, comparing rr-P3HT with two low bandgap conjugated polymers: PBDB-T and PTB7. The results demonstrate that PTB7 has superior photocurrent performance due to more effective electron-transfer onto acceptor states in solution. Furthermore, the thesis addresses the issue of photovoltage generation for wireless photoelectrodes. An analytical model based on photoactivated charge-transfer across the organic-semiconductor/water interface is developed, explaining the large photovoltages observed for polymeric p-type semiconductor electrodes in water. Then, flash-precipitated nanoparticles made of the same three photoactive polymers are investigated, assessing the influence of fabrication parameters on the stability, structure, and energetics of the nanoparticles. Photocathodic current generation and consequent positive charge accumulation is also investigated. Additionally, newly developed porous P3HT thin-films are tested, showing that porosity increases both the photocurrent and the semiconductor/water interfacial capacity. Finally, the thesis demonstrates the biocompatibility of the materials in in-vitro experiments and shows safe levels of photoinduced intracellular ROS production with p-type polymeric thin-films and nanoparticles. The findings highlight the potential of photoactive organic semiconductors in the development of optobioelectronic devices, demonstrating their ability to convert light into biological signals and interface with biological fluids.

Tipologia del documento
Tesi di dottorato
Bondi, Luca
Dottorato di ricerca
Settore disciplinare
Settore concorsuale
Parole chiave
Photocathode, Photoelectrochemistry, Wireless, Biocompatible, Phototransductor, Organic Semiconductor, in-vitro, Photovoltage, Nanoparticles, Photocathode, Hydrogen Peroxide, ROS, Angiogenesis
Data di discussione
23 Giugno 2023

Altri metadati

Gestione del documento: Visualizza la tesi