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Sommario

L’interesse per i monitoraggi a lungo termine sta stabilmente crescendo grazie alla ril-
evante quantità di informazioni scientifiche e ingegneristiche che forniscono. Questo
è dovuto alla crescita costante della capacità di immagazzinare e alla potenza com-
putazionale della tecnologia per elaborare grandi quantità di dati. In questo scenario,
il machine learning (ML) fornisce un’ampia famiglia di metodi statistici basati sui
dati per processare ampi database. I metodi basati su ML permettono di identificare
ed esplorare schemi complessi all’interno dei dati. Le analisi riguardanti il ML pos-
sono riguardare la ricerca di relazioni fra le caratteristiche e le etichette dei dati o fra
le caratteristiche stesse. Le tecniche statistiche avanzate stanno raccogliendo atten-
zioni in molte branche dell’acustica. La possibilità di ottenere informazioni accurate
attraverso questi nuovi metodi sta generando innovazioni nella pratica tecnica come
le analisi del campo sonoro in spazi chiusi, l’identificazione del rumore generato
da impianti tecnologici, lo studio del soundscape, e le nuove tendenze riguardanti
le smart cities e la loro rete di sensori. Dunque, queste tecniche e le loro relative
applicazioni nel campo dell’acustica rappresentano uno strumento innovativo per
ottenere analisi del campo sonoro più accurate e robuste. Al giorno d’oggi la prassi
comune delle misurazioni fonometriche si limita alla descrizione dei contesti sonori
da un punto di vista energetico. Il livello equivalente Leq rappresenta la metrica
principale con il quale definire un ambiente acustico. Analisi più sofisticate possono
prendere in considerazione i livelli statistici. Tuttavia, l’uso dei percentili acustici è
basato su assunzioni temporali non sempre attendibili. L’approccio convenzionale
non fornisce nessun dettaglio del fenomeno misurato. La necessità di andare oltre il
Leq è stata particolarmente affrontata dalle tecniche di monitoraggio acustico passivo.
Ad esempio, studi riguardanti l’ecologia o l’acustica marina hanno stimato i livelli
di rumore ambientale attraverso l’uso della densità di potenza spettrale. La capacità
di valutare i contributi di diverse sorgenti di rumore porterebbe molteplici dettagli
all’analisi degli ambienti acustici. Questa abilità migliorerebbe il monitoraggio,
la diagnosi, e la progettazione in molteplici circostanze portando alla creazione di
spazi acustici più confortevoli. Un approccio statistico, basato sullo studio delle
occorrenze dei livelli di pressione sonora, porterebbe prospettive diverse nell’analisi
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dei monitoraggi a lungo termine. Pochi lavori riguardanti l’acustica architettonica
hanno indagato la possibilità di descrivere un contesto sonoro attraverso un’analisi
statistica. L’illustrare una scena sonora attraverso il più probabile livello di pressione
sonora, piuttosto che con porzioni di energia, ha fornito molte informazioni utili
per la comprensione delle attività svolte durante le misurazioni. L’andamento delle
mode statistiche delle occorrenze può catturare i comportamenti tipici di specifiche
tipologie di sorgenti sonore. Infatti, la separazione non supervisionata delle sorgenti
sonore è un argomento di forte interesse nel ML. Il presente lavoro vuole proporre
un metodo basato su ML per identificare, separare e misurare sorgenti sonore in
condizione di coesistenza in scenari reali. Tale metodo è basato su monitoraggi a
lungo termine ed è indirizzato a tutti gli acustici che lavorano sull’analisi del rumore
ambientale in molteplici contesti. Il metodo presentato è basato sull’analisi dei
gruppi o cluster analysis. Lo scheletro principale di questo processo per analizzare
l’attività in diversi spazi è costituito da due algoritmi: il Modello di Mistura Gaus-
siana e il K-means clustering. Il metodo è stato applicato di due contesti differenti:
le aule universitarie e gli uffici. Nelle aule universitarie l’approccio statistico è volto
a identificare la quantità di chiacchiericcio fra gli studenti, la student activity. Questa
può essere ritenuta una metrica per valutare il grado di attenzione degli studenti
durante le lezioni. Diverse lezioni sono state monitorate prima e dopo i lavori di
ristrutturazione. La student activity è stata misurata attraverso tutti i metodi presenti
in letteratura, oltre che con il metodo proposto nel presente lavoro. Il confronto fra
i metodi evidenzia la differenza fra l’approccio convenzionale e quello proposto.
Quest’ultimo descrive coerentemente gli andamenti delle funzioni di ripartizione e
di densità di probabilità. Al contrario, i livelli equivalenti e percentili non mostrano
alcuna corrispondenza con le caratteristiche percepibili delle curve. Inoltre, lo stu-
dio dell’effetto Lombard riscontrato dagli insegnanti e dagli studenti prima e dopo
i lavori di ristrutturazione dimostrano un cambiamento nel comportamento degli
studenti durante le lezioni. In questo caso il metodo proposto ha permesso un’analisi
oggettiva, condotta tramite metriche oggettive, di comportamenti soggettivi. Dunque,
può rappresentare una connessione fra le analisi condotte attraverso parametri ogget-
tivi e quelle soggettive basate su sondaggi. Negli uffici il metodo è stato utilizzato
per monitorare il rumore ambientale all’interno degli spazi di lavoro. L’analisi mira a
separare i contributi di rumore dovuti all’attività umana da quelli dovuti agli impianti
meccanici o al traffico. In questo contesto, la metrica più rappresentativa per val-
utare il comfort degli impiegati è l’intelligibilità del parlato, più specificatamente
lo Speech Transmission Index. Quest’ultimo è principalmente influenzato da due
fattori: le proprietà acustiche della stanza e il rumore di fondo. I risultati evidenziano
l’importanza della separazione delle sorgenti sonore nei monitoraggi a lungo ter-
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mine per valutare l’influenza del rumore di fondo in scenari reali. Approfondimenti
preliminari circa l’affidabilità del metodo sono stati ottenuti valutando i differenti
approcci fra i due algoritmi attraverso tecniche di spectral matching e analisi statis-
tiche. Inoltre, lo studio delle caratteristiche descrittive dei modelli statistici utilizzati
ha permesso la proposta di nuove metriche per la valutazione del grado di dinamicità
del contesto misurato. Infine, una validazione qualitativa del metodo proposto è stata
condotta attraverso un’analisi duale attraverso tecniche di machine e deep learning.
Un autoencoder variazionale è stato utilizzato per ricavare una rappresentazione
latente di un’intera giornata di lavoro all’interno di un ufficio ed ha dimostrato la
capacità di una parametrizzazione gaussiana di riconoscere differenti tipologie di
sorgenti sonore. Le considerazioni finali spiegano perché il Modello di Mistura
Gaussiana rappresenta l’algoritmo migliore per separare le sorgenti sonore attraverso
misurazioni fonometriche. Infine, la presente tesi vuole rappresentare la proposta
dettagliata ma preliminare di un metodo statistico per analizzare monitoraggi a lungo
termine. Studi futuri dovrebbero focalizzarsi sull’analisi quantitativa dei risultati, la
determinazione delle incertezze del metodo, e la definizione di intervalli di valori
di riferimento per identificare numericamente il tipo di sorgente misurato. Nonos-
tante i casi studio presentati mostrino risultati preliminari, il metodo proposto si
è dimostrato robusto ed affidabile nelle sue applicazioni e può rappresentare un
importante strumento analitico per i tecnici acustici. La conoscenza dettagliata di
una scena sonora ottenuta attraverso un approccio statistico permette diagnosi e
progettazioni più accurate e affidabili per ottenere ambienti acustici più confortevoli.





Abstract

Long-term monitoring of acoustical environments is gaining popularity thanks to the
relevant amount of scientific and engineering insights that it provides. The increasing
interest is due to the constant growth of storage capacity and computational power to
process large amounts of data. In this perspective, machine learning (ML) provides
a broad family of data-driven statistical techniques to deal with large databases.
ML-based methods allow to detect and explore complex patterns in data. Analyses
can concern the discovery of relationships between features and data labels or among
features themselves. Advanced statistical techniques are focusing attention on many
acoustical branches. The chance of achieving accurate information through these
new approaches is leading to innovations in technical practices such as the analysis
of the sound field in enclosed spaces, the detection of noise due to technological
systems, the study of the soundscapes, or the new tendencies concerning the smart
cities and their sensor networks. Therefore, these techniques and their applications in
acoustics represent an innovative tool to obtain a more accurate and valuable analysis
of the sound fields.

Nowadays, the common praxis of sound level meter measurements limits the
global description of a sound scene to an energetic point of view. The equivalent
continuous level Leq represents the main metric to define an acoustic environment,
indeed. Finer analyses involve the use of statistical levels. However, acoustic
percentiles – i.e., the sound pressure levels exceeded for a certain percentage of
the measurement time – are based on temporal assumptions, which are not always
reliable. The energetic approach does not provide any real detail of the measured
phenomenon. The urge to move beyond the Leq has been addressed, particularly in
passive acoustic monitoring. Studies concerning ecology or underwater acoustics
used the probability density of the power spectral density to estimate ambient noise
levels, for example. The ability to evaluate noise contributions of different sources
would bring greater details to the analysis of acoustic environments. This skill would
enhance monitoring, diagnosis, and design in plenty of circumstances, leading to the
creation of more comfortable spaces.
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A statistical approach, based on the study of the occurrences of sound pressure
levels, would bring a different perspective to the analysis of long-term monitoring.
Few works in room acoustics investigated the chance to describe the sound context
through statistical analyses. Depicting a sound scene through the most probable
sound pressure level, rather than portions of energy, brought more specific informa-
tion about the activity carried out during the measurements. The statistical mode
of the occurrences can capture typical behaviors of specific kinds of sound sources.
Blind source separation is a current ML relevant subject, indeed.

The present work aims to propose an ML-based method to identify, separate and
measure coexisting sound sources in real-world scenarios. It is based on long-term
monitoring and is addressed to acousticians focused on the analysis of environmental
noise in manifold contexts. The presented method is based on clustering analysis.
Two algorithms, Gaussian Mixture Model and K-means clustering, represent the
main core of a process to investigate different active spaces monitored through sound
level meters. The procedure has been applied in two different contexts: university
lecture halls and offices.

In university lecture halls, the statistical approach aimed to identify the student
activity, i.e. the chatting among students. The latter can be deemed a metric to
assess to what extent the students are focused during lectures. Several lessons
were monitored before and after renovation works measuring the student activity
through all the methods used in the literature and the proposed one. The comparison
among methods highlights the difference between the conventional and the proposed
approaches. The latter describes consistently the tendencies of both cumulative and
probability density functions. On the contrary, equivalent and statistical levels do not
correspond to any detectable feature of the cumulative curve obtained from a sound
level meter monitoring. Moreover, the study of the Lombard effect experienced by
teachers and students before and after the acoustic treatments of the halls showed
how the students’ behavior changed. Thus, the proposed method provided detailed
results through objective metrics to assess a subjective trend. It can represent a
connection between measurable criteria and surveys.

In offices, the method was used to monitor the environmental noise of active
workplaces. The analysis aims to separate the noise contributions of human activity
from mechanical or traffic noise. Here, the main metric to evaluate the acoustic
comfort of employees is represented by intelligibility, in the specific case the Speech
Transmission Index. This is affected by two factors: the acoustic properties of the
space and the background noise. Results highlighted the importance of blind source
separation in long-term monitoring to assess the noise’s influence on the intelligibility
in active scenarios. Further, spectral matching and statistical discussions concerning
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the different approaches of the two algorithms brought preliminary insights into the
reliability of the proposed method, besides the proposal of features as metrics to
assess the extent of the dynamic of the acoustical context. Finally, the qualitative
validation of the proposed method was carried out through a dual analysis via
machine and deep learning. A variational autoencoder learned a latent representation
of the whole working day inside an office and proved the ability of a Gaussian
parametrization to recognize the different kinds of sources. Final remarks explain the
reasons why the Gaussian Mixture Model represents the best algorithm to perform a
blind source separation through sound level meters.

Finally, the present thesis is intended as a detailed but preliminary proposal
of a statistical method to analyze long-term monitoring. Further studies should
deepen the quantitative analysis of the results, the determination of the method’s
uncertainty, and the definition of ranges of values to identify numerically the type
of source. Despite the case studies presented here provide only preliminary results,
the proposed method shows robust and reliable results in describing the acoustic
scenario and it could represent an important analytical tool for acousticians. Detailed
knowledge of the sound scene gained through a statistical approach would allow
more accurate and reliable diagnoses and designs for more comfortable acoustic
scenarios.
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Introduction

In the era of big data, the appeal of artificial intelligence (AI) has been rapidly
growing. The increase of computational power allows to exploit complex algorithms
to accomplish different tasks, like classification and regression. Nowadays, AI
represents a thriving field with several real-world applications and research topics. A
subfield of AI is represented by machine learning (ML). One of its several definitions
is [102]:

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E.

E, that gives to the program the ability to improve its P, is given by data. ML
is data-driven and is able to explore and find more complex relationships within
data than classical methods. AI history is notorious to be made by boom-and-bust
cycles [150]. Its principles are not new and the advances are linked to breakthroughs
during the years. For instance, the principal component analysis (PCA), one of
the most common algorithms used to perform a dimensionality reduction in large
datasets, was invented by Pearson in 1901 and developed by Hotelling in 1930s
[110, 65, 53]. The computational model for neural networks (NNs) was developed in
1943 [96]. Then, the perceptron algorithm, the first artificial NN, was introduced in
1958 by Rosenblatt [125]. However, its interest decreased until the backpropagation
algorithm was introduced [127]. In the time of this writing, AI is in a “third wave”
begun in 2006 with the greedy layer-wise pretraining introduced by Hinton [50, 58].

In this new wave, ML has been leading advances in several fields, either human-
istic or scientific. Progresses concern acoustics too, especially in signal processing
methods where performances overcome traditional techniques [8]. Common limita-
tions for many ML methods concern the need for large amounts of data to test and
train the algorithms and the lack of interpretability of the resulting model, especially
when the analysis deals with deep learning [78].

The main advances of ML in acoustics concern: source localization in reverberant
and ocean environments, bioacoustics, blind source separation, and the classification



2 Introduction

of environmental sounds. Each problem is addressed with different approaches.
In fact, one of the basic rules in ML workflows concerns the no free-lunch theo-
rem (NFL). It states that, within certain constraints, over the space of all possible
problems, every optimization technique will perform as well as every other one on
average [149]. Since ML can be outlined as an optimization problem, the theorem
has its implications in the use of these algorithms. The most important is that there
is no one optimum ML technique. Thus, there is no one model that works best for
every kind of problem. NFL also affects typical criteria for what makes a “good”
ML model, like avoiding overfitting or selecting the simplest reliable model. Given
that there is not a single machine learning algorithm that works well for all potential
prediction applications, both new algorithms and a deeper understanding of existing
ones must be developed. NFL also proves that several machine learning methods
should be tested for a particular predictive modeling problem. However, the conse-
quences of the theorem are founded on the assumption that the algorithms choice is
based on zero knowledge of the problem being solved. Thus, being familiar with the
problem pave the way for the most effective algorithm selection.

Most ML techniques are often classified as either supervised or unsupervised
learning [102]. With labeled input and output pairs, the goal of supervised learning
is to learn a predicted mapping from inputs to outputs. These methods are the most
popular type of learning. Examples of supervised algorithms are: linear regression,
support vector machines, nearest-neighbor classifiers, neural networks. Without
labelled data, the goal of unsupervised learning is to find meaningful patterns in the
data. Data visualization, exploratory data analysis, anomaly detection, and feature
learning are just a few of the practical applications of this type of learning [78].
Examples of unsupervised algorithms are: K-means clustering, Gaussian Mixture
Model, principal component analysis, autoencoders. Unsupervised techniques are
used also as a support tool to improve performances of supervised frameworks.

Cluster analysis, which looks for patterns in the data population based on similar-
ity, is the most popular type of unsupervised learning. These algorithms frequently
use iterative processes starting by guessing a set of clusters and then updating the
subdivision to enhance both the diversity among clusters and the similarity within
the same cluster. The way the similarity is measured depends on the algorithm used;
it could be based on well-known definitions, e.g. Euclidean distance, or bespoke
metrics. As seen from the NFL theorem, the problem’s knowledge to solve allows to
choose the best solution based on the task to accomplish.
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Thesis motivations and objectives

Nowadays, the common technical praxis among acousticians is based on the energetic
description of a sound context. Sound level meter measurements are used to collect
different energetic metrics. The most common parameter used is the equivalent level
Leq, i.e. the root mean square level averaged over the whole recording time. However,
being an energy average, only the highest levels affect significantly the results. Leq is
used to assess long-term sound exposure during representative measurement periods,
such as activities to monitor. To eliminate the influence of the measurement duration,
the sound exposure level SEL is used. Instead of averaging over the measurement
period, a reference duration equal to 1 s is considered. Leq is proportional to the
average sound power, SEL indicates the total sound energy. Finer analyses are
carried out through statistical sound pressure levels. Acoustical percentiles LN are
defined as the sound pressure levels exceeded for the N% of the measurement time,
where N is the respective percentage to consider. For instance, L90 is the sound
pressure level exceeded for the 90% of the period measured.

The current state-of-the-art does not allow technicians to carry out investigations
about noise contributions of each kind of sound sources in real-world scenarios
monitoring. It is common practice to associate different contributions with statistical
levels. For instance, L90 is often associated with background noise in many contexts.
However, this approach relies on temporal assumptions impossible to prove. The
ability to evaluate different contributions would lay the foundations for more accurate
acoustical diagnoses and designs in manifold scenarios.

Several works investigated different methods to separate sound sources in long-
term monitoring. The most successful approaches used statistical methods rather than
the conventional use of energetic metrics. The management of sound pressure levels
as random variables enables the use of statistical models to describe the acoustical
contexts. Thus, the scenario would be represented by the most probable sound
pressure level. This would not be in contrast with the use of Leq, which describes
different characteristics of the measured phenomenon. Applications of statistical
approaches were made in classrooms to separate the speech levels of teachers from
the students chatting and the ventilation system noise [62, 128, 27]. Further, similar
techniques were used to investigate the environmental noise in offices and hospitals
[37, 56].

The present work proposes a measurement method to improve the ability of
acousticians to identify and separate noise contributions from several coexisting
sources in long-term monitoring. The analysis is based on real-world applications
of clustering algorithms on sound pressure levels data. Based on the problem
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to address, two unsupervised algorithms – the Gaussian Mixture Model and the
K-means clustering – were selected to investigate the statistical features of long-
term monitoring in complex environments. The performance comparison of both
algorithms showed that the Gaussian Mixture Model is the best method to carry out
statistical analyses of acoustical contexts. Finally, a variational autoencoder was
useful in validating qualitatively all the assumptions at the basis of the unsupervised
analysis.

Overview of the thesis

The thesis is made up of four chapters. The dissertation starts by presenting the
theoretical background needed to address the whole work. Then, the developed
method is proposed in a general description and applied in different real-world
acoustical contexts for the evaluation of its reliability. Final remarks sum up all the
insights obtained by the applications of the method and the open issues to address
through future works.

Chapter 1

Chapter 1 contains an overview of the theoretical background of the present work.
Unsupervised algorithms, i.e. Gaussian Mixture Model and K-means clustering, are
outlined focusing on characteristics that are useful for the applications described in
the following chapters. The relationship between the two algorithms is provided.
Further, the model selection metrics are briefly presented to give a satisfactory
overview of their different approaches to defining similarity among clusters. Hints
about how neural networks work are provided to supply a basic idea of deep learning.
Finally, the variational autoencoder is presented limitedly to what concern its use in
the present work for the qualitative validation of the proposed method.

Chapter 2

Chapter 2 describes the method proposed in this work. Detailed descriptions provide
each step to accurately reproduce the workflow. Starting from the data acquisition,
the narrative provides explanations and recommendations about the setting of the
sound level meter, the algorithms, and the meaning of the results. The method is
generally presented and it can be used in any kind of context requiring a sound level
meter measurement. Figures are based on the Gaussian Mixture Model because it is
the recommended method. It is also easier to visualize.
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Chapter 3

Chapter 3 shows the first applications of the proposed method in classrooms. Based
on the literature, all the techniques to detect the student activity were used. Besides
the Gaussian Mixture Model and the K-means clustering, the Peak detection was
compared with the equivalent and statistical levels commonly used in praxis. Con-
siderations about the differences among results are provided. Further studies were
made after acoustical treatments made in the same lecture halls. Here, the change of
the students’ behavior was assessed through the measurement of the student activity
before and after the renovation works. Active and passive treatments are described
to provide a comprehensive context to understand the results.

Chapter 4

Chapter 4 provides details concerning the applications of the proposed method in
offices. In this context, the analysis has been mainly focused on the method and its
reliability. The first study investigates the source separation during working hours
identifying the human and the mechanical noise components. Statistical and spectral
insights about the results provide preliminary considerations about the reliability of
the method. Then, a survey is presented over three further case studies to evaluate
the adaptability of the analysis in different spaces. Moreover, preliminary insights
about the use of the overlapping areas as acoustical features are provided. The last
case study focuses on a dual analysis to validate the assumptions underlying the
cluster analysis proposed by the method. A semi-supervised analysis via a variational
autoencoder was carried out to assess the reliability of the unsupervised analysis.
Final remarks explain why the Gaussian Mixture Model seems to be the most reliable
algorithm among the others.

Main contributions

The main contributions of this thesis are:

• The proposal of a rigorous method to evaluate the different noise contributions
of coexisting sound sources in real-world conditions. The goal is pursued by
analyzing the accuracy of the outcomes from a quantitative and qualitative
point of view (Chapters 2, 3, 4).

• The comparison among all the techniques used in literature to monitor student
activity. Pros and cons of each method are reported (Chapter 3).
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• The relationships and differences among conventional and proposed approaches
describing the link between the probability and the cumulative density func-
tions. The detection of the most probable sound pressure level corresponds to
the zeros of the second derivative of the cumulative density function (Chapter
3).

• The analysis of the change of subjective human behavior as a consequence of
acoustical treatments through objective metrics. The proposed method can be
used as an objective tool to assess subjective attitude through the change of
Lombard effect’s slopes and correlations among occupancy and sound pressure
levels (Chapter 3).

• The in-depth analysis of the statistical features of the speech signal, the me-
chanical noise, and the traffic noise through the variations of their standard
deviations (Chapter 3, 4).

• A thorough analysis of the difference between the two unsupervised methods,
i.e., Gaussian Mixture Model and K-means clustering, in long-term monitoring.
Details about the meaning of using a hard or fuzzy algorithm to manage sound
pressure levels are provided (Chapter 3, 4).

• The assessment of the Speech Transmission Index in real-word conditions. The
analysis about to what extent the intelligibility is affected by the background
noise is provided either the sound pressure levels are evaluated according to
the conventional or the proposed approach (Chapter 4).

• The proposal of the overlapping areas as a metric to assess the amount of
collaborative work according to ISO 22955. This has been conducted through
a preliminary survey among different offices (Chapter 4).

• The latent representation of long-term monitoring conducted through a sound
level meter. A deep clustering analysis to assess an entire working day was
presented (Chapter 4).

• A comprehensive analysis about the ability of carrying out a measurement
through a deep learning approach. Limitations about the accuracy of measure-
ments and the pre-processing workflow needed for a deep learning analysis
are provided. Further, explanations concerning the spectral uncertainties due
to the latent representation of long-term monitoring are described (Chapter 4).



Chapter 1

Theoretical background

The method proposed in the present thesis is based on statistical analyses over
long-term monitoring carried out through sound level meters. Data populations
are represented by large amounts of sound pressure levels measured during the
monitoring. Thus, data have no labels. The proposed method aims to find latent
structures in data and corresponding insights to describe the physical characteristics
of different coexisting sound sources. Because labels are not available in the database,
the analysis is focused on unsupervised learning problems. These can involve cluster
analysis, density estimation, or dimensionality reduction.

Cluster analysis is the general task of looking for patterns in data [9]. Data are
gathered in different groups basing on their similarity. This kind of process is very
useful when a great amount of unlabelled data is available. The task of clustering
is finding useful properties of the data, called features, which allow the data to be
labelled. Different algorithms use different criteria to find similarity in data, i.e.
shaping groups called clusters. Main algorithms can be categorized in [1]:

Feature selection algorithms: used to remove noisy and irrelevant features
in data.

Model-based algorithms: the basic concept is modelling data from a gen-
erative process. Once the generative process is chosen, the Expectation-
Maximization algorithm estimates the model’s parameters.

Distance-based algorithms: can be in turn divided in flat and hierarchical.
The first use distance function and partitioning representative to shape clusters.
The second use dendrograms to represent hierarchically the partitions.
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Density- and grid-based algorithms: the amount of data points in a prede-
termined volume of the locality or a smoother kernel density estimate are two
ways in which the density at any given position in the data space is defined.

Dimensionality reduction algorithms: given a matrix of data, these methods
try to cluster rows and columns simultaneously to reduce the dimensionality
of representation.

The choice of the algorithm depends on the data domain and the problem scenario.
In this chapter, the theoretical background is limited to what concerns the tools used
in the applications of the proposed method. All sections aim to provide the basic
information to understand the details and the choices in the background of the present
work. Section 1.1 describes the Gaussian Mixture Model and the K-means clustering
method. These are the two main algorithms used to assess the proposed method
in the present thesis. The qualitative validation of the method has been carried out
through a variational autoencoder. Thus, some basic hints about how neural networks
operate are provided in Section 1.3 to lay the foundations for understanding the
variational inference used for the validation.

1.1 Unsupervised algorithms

1.1.1 Gaussian Mixture Model

The Gaussian Mixture Model (GMM) is a model-based clustering technique [97]. A
probabilistic model – known as mixture distributions – recovers the original structure
of the initial data superimposing a linear combination of Gaussian distributions. The
accuracy of the approximation to the initial data, i.e. the general distribution, is
adjusted through the means, the covariances, and the weights of each component of
the mixture. Given a set of N independent observations x = {x1, ...,xN}, the mixture
of Gaussians f (x) is expressed as:

f (x) =
K

∑
k=1

πkN(x|µk,Σk) (1.1)

where K is the number of components, µk are the means, Σk are the covariances, and
πk are the mixing proportion or weights of each component. After normalizing the
density f (x) and each Gaussian component, integrating Equation 1.1 with respect to
x, then:

K

∑
k=1

πk = 1. (1.2)
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Since both f (x) and N(x|µk,Σk) are non-negative quantities, it is deduced that πk ≥ 0.
Thus, combining the latter implication with Equation 1.2:

0 ≤ πk ≤ 1 (k = 1, ...,K). (1.3)

The most common approach to fit mixtures of distributions is represented by the
maximum likelihood estimation (MLE). The likelihood function L of a mixture of
univariate normal distributed heteroscedastic components is defined as:

L(x) =
n

∏
i=1

K

∑
k=1

πkN(xi|µk,Σk) =
n

∏
i=1

K

∑
k=1

πk
1√

2πσ2
e
(xi−µk)

2

2σ2
k . (1.4)

A Gaussian mixture can be formulated in terms of discrete latent variables. To
do this it is needed to introduce z, a K-dimensional binary random variable, in which
a particular element zk is equal to 1 and all other elements are equal to 0. This
scheme is called 1 - of - K representation. Thus, zk ∈ {0,1} and ∑k zk = 1. The
joint distribution f (x,z) is defined in terms of a marginal distribution f (z) and a
conditional distribution f (x|z). The marginal distribution can be written as:

f (z) =
K

∏
k=1

π
zk
k . (1.5)

The conditional distribution can be defined in the form:

f (x|z) =
K

∏
k=1

N(x|µk,Σk)
zk . (1.6)

The joint distribution is obtained by f (z) f (x|z). The marginal distribution of x is
given by summing the joint distribution over all possible states of z. Thus, using
Equations 1.5 and 1.6:

f (x) = ∑
z

f (z) f (x|z) =
K

∑
k=1

πkN(x|µk,Σk). (1.7)

Hence, the marginal distribution of x has been written as a Gaussian mixture of the
form seen in Equation 1.1. It follows that, since f (x) = ∑z f (x,z) for a given set
of N observations x = {x1, ...,xN}, for every data point xn there is a corresponding
latent variable zn.
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Fig. 1.1 Example of iterations carried out via the EM algorithm. From Bishop Pattern
recognition and machine learning (p.437) [9].

The conditional probability of z given x can be defined using Bayes’ theorem:

γ(zk) = f (zk = 1|x) = f (zk = 1) f (x|zk = 1)

∑
K
j=1 f (z j = 1) f (x|z j = 1)

=
πkN(x|µk,Σk)

∑
K
j=1 π jN(x|µ j,Σ j)

. (1.8)

Thus, γzk is the posterior probability after x has been observed. It is possible to
represent the responsibilities values γ(znk) per each data point xn as well.

The formulation in terms of discrete latent variables allows us to work with a
joint distribution f (x,z) and motivate the use of the Expectation-Maximization (EM)
algorithm [38]. This is a method used in the present work to find the local MLE.
Defining Nk as the number of points assigned to cluster k, the EM algorithm is an
iterative process, outlined as follows:

1. Initialize the hyperparameters: means µk, covariances Σk, and mixing coeffi-
cients πk. Evaluate the initial value of the log-likelihood.

2. E step. Evaluate the conditional probabilities via Equation 1.8.

3. M step. Re-estimate the hyperparameters using the current conditional proba-
bilities γ(zk).

4. Evaluate the log-likelihood log(L(x)) and check for convergence. If it is not
satisfied, return to step 2.



1.1 Unsupervised algorithms 11

Figure 1.1 shows an example of iterations carried out via the EM algorithm. The
first plot 1.1(a) shows the dataset in green and two Gaussian components as blue and
red circles. Plot 1.1(b) shows the initial E step where the conditional probabilities
are calculated. Here, the same colors correspond to the relative cluster, i.e. red or
blue. Shaded dots indicate data with significant probabilities of belonging either to
the blue or the red cluster. Plot 1.1(c) shows the M step. Here, Gaussian means are
moved to the means of the data. Plots from 1.1(d) up to 1.1(f) show 2, 5, and 20 EM
iterations, respectively. Algorithm 1 shows the EM process in pseudocode.

Algorithm 1: EM algorithm for GMM.
Input: x = {x1, ...,xN} data observation, K number of clusters
Output: π = {π1, . . . ,πk},µ = {µ1, . . . ,µk},Σ = {Σ1, . . . ,Σk}

1 Initialize π , µ , Σ

2 // E-step
3 repeat
4 for m = 1 : M do
5 for n = 1 : N do
6 for k = 1 : K do
7 γ(zk) = f (zk = 1|x) = f (zk=1) f (x|zk=1)

∑
K
j=1 f (z j=1) f (x|z j=1)

= πkN(x|µk,Σk)

∑
K
j=1 π jN(x|µ j,Σ j)

;

8 end
9 end

10 // M-step
11 for k = 1 : K do
12 µk =

∑
N
n=1 γ(zk)x

∑
N
n=1 γ(zk)

;

13 Σk =
∑

N
n=1 γ(zk)(x−µk)(x−µk)

M

∑
N
n=1 γ(zk)

;

14 πk =
1
N ΣN

n=1γ(zk);
15 end
16 end
17 until log(L(x)) = ∑

N
n=1 ln{∑

K
k=1 πkN(xn|µk,Σk)} convergence is met;

1.1.2 K-means clustering

K-means clustering (KM) is a non-probabilistic and distance-based clustering tech-
nique [1]. The standard algorithm was proposed by Lloyd to address the pulse-code
modulation [90]. The optimization is focused on a distance metric. As a conse-
quence, KM shapes a number of K clusters partitioning the data space into Voronoi
cells.

Given a set of independent observations x= {x1, ...,xN} of a random D-dimensional
Euclidean variable x. The goal is to find both an assignment of data points to clusters
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and a set of vectors {ck}, called centroids, minimizing the squares of the distances
of each data point to its closest centroid. Then, it is important to define rnk ∈ {0,1}
where k = 1, . . . ,K. This is a set of binary indicator variables describing to which
cluster the datapoint xn has been assigned. Thus, if xn has been assigned to the cluster
k, then rnk = 1 and rn j = 0 for j ̸= k. Then, the objective function can be defined as:

J =
N

∑
n=1

K

∑
k=1

rnk||xn − ck||2. (1.9)

Equation 1.9 shows the sum of the distances’ squares of each datapoint to its
assigned vector of centroids {ck}. As stated above, the goal is to minimize J. This is
made first through the determination of rnk. This term can be equal to 1 for whichever
value of k corresponding to the closest centre. Thus:

rnk =

1 if k = argmin j||xn − c j||2

0 otherwise.
(1.10)

Keeping rnk fixed, J can be minimized setting its derivative with respect to ck to
0:

2
N

∑
n=1

rnk(xn − ck) = 0 (1.11)

which is solved for ck. Thus:

ck =
Σnrnkxn

Σnrnk
. (1.12)

KM is a greedy algorithm. The minimization of the objective function J is known
to be an NP-hard problem. Thus, it can converge to local minima through an iterative
process. Figure 1.2 shows the same dataset seen in Figure 1.1 analyzed via KM. The
first plot 1.2(a) shows the dataset in green and the initial choices for centroids c1

and c2 with blue and red crosses. Plot 1.2(b) shows the assignment of datapoints to
the closer centroid. After the assignment, the centroids are recalculated as shown
in 1.2(c). Plots from 1.2(d) to 1.2(i) show the subsequent iterations. Magenta lines
indicate the boundaries of the Voronoi cells. Algorithm 2 describes the steps of the
process.

After the first step, steps 2 and 3 are repeated until convergence [75]. Mathemati-
cal details about the proof of the convergence are described in [131].
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Fig. 1.2 Example of iterations carried out via the KM algorithm. From Bishop
Pattern recognition and machine learning (p.426) [9].

Algorithm 2: K-means clustering
Input: x = {x1, ...,xN} set of N data observations, K number of clusters
Output: Set of K clusters

1 Selection of an initial partition of data into K clusters;
2 repeat
3 Generation of a new partition by assigning each data xki to its closest

cluster center cki;
4 Compute new clusters centres cki .
5 until convergence criterion is met;

1.1.3 Relationship between Gaussian Mixture Model and K-means

The EM algorithm for GMM and the KM algorithm are very similar when compared
[9, 94]. The EM algorithm performs a soft assignment based on the posterior
probability, in contrast to the KM approach, which does a hard assignment in which
each data point is assigned to a single cluster. In reality, the KM may be derived as
an example of an EM limit for Gaussian mixtures as follows.
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Given a Gaussian Mixture Model with the components’ covariance matrices
defined by εI, where ε is a variance parameter shared among all components and I
is the identity matrix. Thus:

f (x|µk,Σk) =
1

(2πε)1/2 e−
1

2ε
||x−µk||2 . (1.13)

Considering the EM algorithm for a Gaussian mixture with ε as a fixed constant
instead of a parameter to be re-estimated, the posterior probability from Eq. 1.8 is:

γ(znk) =
πke

−||xn−µk ||2
2ε

∑ j π je
−||xn−µ j ||2

2ε

. (1.14)

Considering the limit ε → 0 and πk ̸= 0 , the denominator will go to zero more
slowly than the numerator. Thus, since γ(znk)→ rnk, the assignment of data becomes
hard, as in KM. Each data point is assigned to its closest mean. The re-estimation of
µk made by EM and explained in Algorithm 1 reduces to the KM result. Moreover,
the re-estimation of πk comes down to setting the mixing coefficients equal to the
portion of data points belonging to the cluster.

In conclusion, in the considered limit, the maximization of the expected log-
likelihood becomes equivalent to the minimization of the distortion measure J for
KM :

Ez[ln f (x,z|µ,Σ,π)]→−1
2

N

∑
n=1

K

∑
k=1

rnk||xn − ck||2 + const. (1.15)

In this specific case, giving the GMM back the same results ok KM, the covari-
ance matrices are not considered. Thus, clusters have a spherical shape.

1.2 Model selection metrics

An important issue in data clustering concerns the optimal number of clusters in
data. For some classes of algorithms, such as GMM and KM, the number of clusters
has to be specified before running the iterative process. Estimating the number of
clusters is an open problem [1]. Several metrics allow to find the most likely number
of clusters with different approaches. Here, four metrics were used to assess the
models’ number of components, i.e. sound sources, in the collected data.
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1.2.1 Calinski-Harabasz

The Calinski-Harabasz index measures the similarity of data points in clusters
through the ratio between the separation and the cohesion of the model [22]. It is
also know as variance ratio criterion. The separation SSB is measured through the
inter-cluster dispersion, i.e. the weighted sum of the Euclidean squared distances
between the centroids of a clusters and the centroid of the whole dataset. It is defined
as:

SSB =
K

∑
i=1

nki||cki −C||2 (1.16)

where nki is the number of observations in the cluster ki, cki is the centroid of the
cluster ki, and C is the centroid of the whole dataset.

The cohesion SSW is measured through the intra-cluster dispersion, i.e. the sum
of the Euclidean squared distances between each observation and the centroid of the
same cluster. It is defined as J(K):

SSW = J(K) =
K

∑
i=1

∑
xki∈cki

||xki − cki||2 (1.17)

where xki is a data point in the cluster ki.
Then, the Calinski-Harabasz index CH is defined as:

CH =
SSB

SSW

N −K
K −1

(1.18)

The optimal model is represented by the highest value obtained from Equation 1.18.

1.2.2 Davies-Bouldin

The Davies-Bouldin index assesses similarity among clusters through the ratio of
within- and between-cluster distances [32].

The within-to-between cluster distance ratio for the clusters ki and k j is defined
as:

Di, j =
d̄xki

+ d̄xk j

dcki ,ck j

(1.19)

where
d̄xki

=
1

nki
∑

xki∈ki

|xki − cki| (1.20)

is the average distance between each point in the cluster ki and its centroid and nki

is the size of the cluster. Similarly, d̄xk j
is defined for the cluster k j. The Euclidean
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distance between the centroids of both clusters is:

dcki ,ck j
= (|cki − ck j |2)1/2. (1.21)

Then, with K as the number of clusters, the Davies-Bouldin index DB is defined
as:

DB =
1
K

K

∑
i=1

max j ̸=i{Di, j}. (1.22)

The optimal model is represented by the smallest value obtained from Equation 1.22.

1.2.3 Silhouette coefficient

The silhouette coefficient is a graphical quantitative evaluation of the degree of
separation among clusters [126]. Given two data points xki and xki′ in the cluster ki,
the within-cluster mean distance, i.e. the similarity, between xki and the other xki′ th
points in the same cluster is defined as:

a(i) =
1

|nki|−1 ∑
xki ,xki′∈ki

dxki ,xki′
. (1.23)

The dissimilarity between xki and the other xk j th points belonging to the cluster k j,
is defined as the mean distance between xki and xk j . Hence, the shortest distance
between xki and the other points of other clusters is defined as:

b(i) = min
1

|nk j | ∑
xki∈ki,xk j∈k j

dxki ,xk j
. (1.24)

The cluster with the lowest dissimilarity is defined as "neighbor” and represents the
second best choice for ki. The silhouette value s(i) is defined as:

1−a(i)/b(i) if a(i)< b(i),

0 if a(i) = b(i),

b(i)/a(i)−1 if a(i)> b(i).

(1.25)

It can be deduced that −1 ≤ s(i)≤ 1. Thus, xki is deemed properly clustered if s(i)
is close to 1, and wrongly clustered if close to -1. In case s(i) is close to 0, either ki

or k j represent a good choice for xki . If ¯s(i) is the mean of each s(i), the silhouette
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coefficient SC can be defined as:

SC = max
K

s̄(K) (1.26)

where K is the number of clusters. The SC is defined only for a number of clusters
K > 1. The optimal model is represented by the highest value obtained from Equation
1.26.

1.2.4 Gap statistic

Gap statistic was introduced by Tibshirani et al. and formalizes the "elbow” method
[138]. The latter is a common empirical approach to find the best number of clusters
by visualizing and assessing the highest decrease of the error measurement among
models. The Gap criterion estimates the elbow by finding the largest gap value
between the within-cluster dispersion of the model and the expected within-cluster
dispersion of a reference distribution.

Let dxki ,xk′i
be the distance between observations xki and xk′i

belonging to the same
cluster ki. The within-cluster dispersion is defined as:

WK =
K

∑
i=1

1
2nki

Dki (1.27)

where nki is the number of data in the cluster ki, and Dki is:

Dki = ∑
xki ,xki′∈ki

dxki ,xki′
. (1.28)

the pairwise distances of all points in the cluster ki.
Then, the Gap value is defined as:

Gap(K) = E∗
r{log(WK)}− log(WK). (1.29)

where E∗
r is the expectation under a sample size r from the reference distribution. In

the present study, the expected within-cluster dispersion of the reference distribution
is evaluated via Monte Carlo sampling. The reference distribution is represented
by a uniform distribution. The optimal model is represented by the highest value
obtained from Equation 1.29.
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1.3 Neural networks

A neural network (NN) is a group of connected nodes, called neurons. The simplest
type of NN is represented by the feed-forward NNs, i.e. there are no loops in the
network. This kind of NN is used here to present the basic elements that constitute a
deep learning algorithm. A set of numerical input values is mapped by the single
neuron into a single output value. A neuron is essentially a multi-input linear
regression function. The major distinction is represented by the activation function,
i.e., a function in which the output of the multi-input linear regression is passed
through. The most important property of activation functions is that they map the
output through non-linear functions. The non-linearity introduced in the process
allows NNs to learn more complex relationships. One more fundamental element
of NNs is represented by the weights. Each neuron has a weight associated with its
connection and the weight is applied on the input received before the result is pushed
in the activation function.

Figure 1.3 shows the architecture of a simple feed-forward fully connected NN.
The organization of a NN is outlined by layers. The network shown in the picture
is made by three layers: input, hidden layer, and output indicated in yellow, green
and red, respectively. Labels Wi, j on each connection indicate the weights applied on
single neurons. Fully connected means that each neuron is connected to all neurons
of the subsequent layer. If the NN has more hidden layers than one, the NN is called
deep NN.
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z2

z3
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Wx1,z2
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Fig. 1.3 Example of feed-forward fully connected NN.
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The training of a NN aims to find the best weights for the network’s connections.
The adjustment of weights improves the accuracy in accomplishing the task. This is
made by minimizing the error between predicted and expected values. The evaluation
of the minimization process is made by means of a loss function. As long as the loss
decreases, the learning keeps going.

Based on the architecture shown in Figure 1.3, the basis function of a NN in the
hidden layer (1) can be expressed as:

z j = h(
N

∑
i=1

w(1)
ji xi +w(1)

j0 ) (1.30)

where j = 1, . . . ,M is the number of linear combinations of the inputs x= {x1, . . . ,xn};
w ji and w j0 are the weights and biases, respectively.

At the start of the training, the algorithm assigns random weights to the connec-
tions. Then, the backpropagation algorithm allows the weights to be updated in each
neuron starting from the output layer and going back through the network [127]. The
update does not aim to remove the error in training but to reduce it. This is due to
the intent of generalizing the training on new instances.

As stated in the beginning of this chapter, a feed-forward fully connected NN has
been presented as an example for introducing some basic concepts of deep learning.
However, many other kinds of networks have been developed. One of the most
popular architectures is the convolutional NN (CNN) [85, 86].

Convolutional layers

CNNs became very popular in computer vision for their ability to perform image
recognition or classification. Since a spectrogram is defined by a matrix, it can
be handled like an image. Hence, CNN achieved popularity in acoustics, too. A
classical CNN architecture is constituted by two blocks: the feature learning and the
classification.

Figure 1.4 shows an example of CNN. Grey blocks show the feature learning
blocks. Here, the convolution layers learn the features through the kernels, indicated
in light blue in the figure. A kernel is a matrix that slides over the input data. It
performs an element-wise multiplication with the part of the input considered and
then it sums up to obtain a single output. Kernel is the core of the convolutional
operation. Given a 2D matrix as input data, every area the kernel slides over is
subjected to this same procedure, which results in the creation of a second 2D matrix
of features. In essence, the output features are the weighted sums of the input features
that are roughly placed in the same area as the output pixel on the input layer (the
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Fig. 1.4 Example of a CNN architecture. Grey blocks indicate the convolutional
layers, green blocks the fully connected layers. Yellow and red boxes indicate input
and output, respectively.

weights are the values of the kernel itself). As example, consider the computation of
the discrete convolution between the 5x5 input feature map shown in the blue matrix
of Figure 1.6 and the 3x3 kernel of values shown in Figure 1.5.

Fig. 1.5 Example of a 3x3 kernel of a convolutional layer. From “A guide to
convolution arithmetic for deep learning”, by V. Dumoulin and F. Visin [42].

It is worth to notice how the size of the kernel determines the number of input
features that are combined to produce the output features map. The convolutional pro-
cess limits significantly the number of parameters of the model and, consequently, the
computational requirements. CNNs typically reduce the number of multiplications
in comparison to fully connected NNs of a factor equal to 100.

Besides the input and the kernel sizes, the output size of a convolutional operation
can be influenced by two properties that can be used in shaping the layer architecture:
the stride s and the zero padding p. The first is the distance between two consecutive
positions of the kernel. The second is the number of zeros concatenated at the
extremes of the axes. These can be considered as hyperparameters of a CNN.
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Fig. 1.6 Example of the computation of the discrete convolution between an input
feature map and the 3x3 kernel shown in Figure1.5. From “A guide to convolution
arithmetic for deep learning”, by V. Dumoulin and F. Visin [42].

Figure 1.7 shows a convolutional operation with s = 2 and p = 1. It is noticeable
how the output size in Figure 1.6 is smaller than the input map. Applying both s and
p, the output size is equal to the input matrix. Thus, the output can be calculated as
follows:

Oheight =
Iheight − kheight +2p

s
+1, (1.31)

where the subscript height indicates the height of the output O, the input I, and the
kernel k, respectively. The same can be done for the width if matrices or kernels are
rectangular.

1.3.1 Variational Autoencoder

The variational autoencoder (VAE) is a way to realize inference and learning in
probabilistic models and was introduced by Kingma and Welling [79]. From a deep
learning perspective, a VAE has the same architecture of autoencoders. Thus, it is
made by an encoder and a decoder. Both are connected by a latent space. One of the
most important qualities of VAEs concerns their ability of describing observations
through a probabilistic approach in the latent space. Like classical autoencoders, a
VAE tries to reconstruct output from input. Thus, it learns a latent variable model for
its input data. Figure 1.8 shows a general outline of a VAE’s architecture.
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Fig. 1.7 Example of the computation of the discrete convolution between an input
feature map and the 3x3 kernel shown in Figure1.5 with s = 2 and p = 1. From “A
guide to convolution arithmetic for deep learning”, by V. Dumoulin and F. Visin
[42].

The encoder is represented by a neural network. Its aim is to output a latent
hidden representation z of the input x with weights and biases θ . Typically, the
latent space has a lower dimension in comparison to the input size. Thus, it can
be deduced that the encoder learns a compressed representation of the input data
according to the distribution qθ (z|x). In the present study, the input is x ∈ Rm1×m2

and its latent representation is z ∈ Rn. The distribution qθ (z|x) is represented by a
Gaussian probability density.

The decoder is a neural network as well. Typically, it has a mirrored architecture
of the encoder. Its aim is to reconstruct the input sampling only from the compressed
representation of the latent space z. Thus, it outputs parameters to the probability
distribution of data with weight and biases φ . The decoder process is denoted by
the distribution pφ (x|z). The latter is represented by a standard Normal distribution
N (0,1) with mean 0 and variance 1.

The whole process is assessed by the evidence lower bound (ELBO) loss function.
For a datapoint xi, it is defined as:

li(θ ,φ) =−Ez∼qθ (z|xi)[logpφ (xi|z)]+DKL(qθ (z|xi)||pφ (z)) (1.32)
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Fig. 1.8 General architecture of a VAE.

where the first term is called reconstruction loss and it is represented by the expected
negative loglikelihood of the ith datapoint. It describes the amount of information
lost through the whole process. The expectation is calculated with respect to the
encoder’s distribution over the representations. The second term is called regularizer
term and it is represented by the Kullback-Leibler divergence between the two
distributions qθ and pφ . Thus, it describes how close the two distributions are to
each other. Quantity ∑

N
i=1 li is the total loss evaluated over the whole dataset of N

datapoints. Algorithm 3 shows the ELBO’s optimization process.

Algorithm 3: Stochastic optimization of the ELBO [80].
Input: D:Dataset
qθ (z|x): Inference model
pφ (x|z): Generative model
Output: φ ,θ : Learned parameters

1 Initialize (φ ,θ ) while Stochastic gradient descent (SGD) not converged do
2 M∼D (Random minibatch of data)
3 ε ∼ p(ε) (Random noise for every datapoint in M)
4 Compute L̄φ ,θ (M,ε) and its gradients ∇φ ,θ L̄φ ,θ (M,ε)
5 Update φ and θ using SGD optimizer
6 end





Chapter 2

Method

The present chapter describes the method proposed in the present work. The disserta-
tion aims to generalize the method that will be detailed in further chapters where each
case study will be addressed. Thus, this section represents the core of the present
work and the common thread of each analysis carried out in different contexts. The
method proposed would like to pave the way for a deep statistical processing of the
data obtained through a sound level meter.

The flow of this chapter will show each detail of the method. Algorithm 4 shows
the whole procedure in the form of a pseudocode at the end of this introduction.
Each step will bring the data from its acquisition during the measurement up to their
categorization to a specific sound source. Paragraphs follow the algorithm’s steps
with visual examples to better explain the process. Plots refer for the most to the
Gaussian Mixture Model (GMM) despite the work concerning K-means clustering
(KM) too. This has been done for two reasons: the first is that, based on the kind
of data managed, GMM is visually easier to understand; the second is that, in the
present work, GMM is the best algorithm to implement this method.

The entire procedure exploits SPLs and their occurrences during long-term
monitoring. Thus, the method can be used with any kind of filter applied to the
measurements. Algorithm 4 can be used with equivalent SPLs, band-filtered (one
octave, third octave, etc.), and any kind of weights (A, B, C, D, or Z). All this
processing on the data does not affect the aim of the method, i.e. finding patterns in
realistic contexts to separate sound sources. The ability to exploit any kind of data
obtained through a sound level meter would allow technicians to look for different
results in different contexts.

The method presented here focuses only on the processing of SPLs. In one of
the next case studies, a deep learning approach through a variational autoencoder
will be used. However, the aim of measuring and not only classifying sound sources
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and the use of digital audio recording does not make the deep learning an appealing
tool for the technical applications presented here. Details about all these limits will
be discussed in the corresponding case study. For these reasons, the deep learning
approach will not be covered in the method section but will be used as a qualitative
validation tool for the unsupervised analysis carried out via GMM and KM.

Algorithm 4: the method proposed in the present work.
1 % CA clustering algorithm
2 % CM candidate models
3 % SM selected models
4 % CH Calinski-Harabasz index
5 % DB Davies-Bouldin index
6 % SC Silhouette coefficient
7 % GS Gap statistic
8 % BM best model

Input: xi short-time sound pressure levels, f (xi) target distribution
Output: Lk, k = {1, . . . ,N} set of N clusters

9 Initialize CA hyperparameters
10 Initialize Lk =−∞

11 // first step
12 for k = 1 : N do
13 repeat
14 set CA hyperparameters;
15 until convergence criterion is met;
16 CM(k,xi)

17 end
18 // second step
19 for k = 1 : N do
20 CH(CM(k,xi));
21 DB(CM(k,xi));
22 SC(CM(k,xi));
23 GS(CM(k,xi));
24 end
25 SM(k̄) = {CH(k̄), DB(k̄), SC(k̄), GS(k̄)};
26 BM = mode(SM(k̄));
27 // third step
28 BM(k̄);
29 for j = 1 : k̄ do
30 if labelling condition is satisfied then
31 LN̄;
32 end
33 end
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2.1 Data acquisition

Regardless of the context of the application, the proposed method is based on the
acquisition of large amounts of SPLs. Thus, one or more microphones can be placed
in the environment to carry out long-term monitoring. The sensors’ placement can
be based on the context, the activity, the geometry of the room, and the acoustical
properties of the space. All these factors can influence the quantitative results
obtained through the measurements and are at the discretion of the operator. A sound
level meter with a calibrated class 1 microphone represents the most accurate way to
measure SPLs. This kind of microphones was used in each case study addressed in
the present work.

One of the first applications of a statistical management of SPLs from a sound
level meter, in the meaning of exploiting the occurrences of SPLs, was proposed
by Hodgson et al. [62]. In that work, several university lectures were recorded to
measure the active sound sources: the ventilation noise, the student activity – i.e. the
chatting among students –, and the speech levels of the teacher.

2.1.1 Time interval

The method proposed in the present work is based on the intuition of Hodgson.
Different sources have different temporal variations. For instance, the speech has
brakes among words and syllables. At the same time, the ventilation system is a
quasi-steady noise and fills the pauses of the speech. Thus, an acquisition time frame
faster than the speech allows to measure SPLs belonging to the background noise
due to the ventilation system.

Figure 2.1 shows how a short acquisition time is able to catch different SPLs
associable with different sound sources. In Figure 2.1a a 5-minutes long time history
is shown. The recording was made during a university lecture through a sound level
meter with an acquisition time of 0.1 seconds. Hence, it can be hypothesized that at
least two sound sources were measured: the background noise and the speech of the
teacher. A red dashed square in Figures2.1a, 2.1b, and 2.1c shows the time frame
stretched and shown in the following figure. Thus, in these figures the time history
is stretched from 5 minutes up to 1 second. In Figure 2.1d it is easy to notice how
the sound level meter measured a lot of sound fluctuations. Differences between the
maximum peak and the lowest values are about 10 dB. More in general, during a
long-term monitoring carried out with an acquisition time that is short enough, any
sound source can be detected through differences in temporal evolution, speed, and
phase.
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(a) (b)

(c) (d)

Fig. 2.1 Example of a SPLs time history recorded through a sound level meter. The
recording was made during a university lecture. From the top left, a 5-minutes long
recording (2.1a), 1-minute long close-up (2.1b), 30-seconds long close-up (2.1c),
1-second long close-up (2.1d). The red dashed squares indicate the frame zoomed in
the following figure.

Understanding to what extent a time interval could be deemed as short enough
is one of the issues to address in the development of the method. Hodgson used
different time intervals depending on the frequency band. This was possible because
he recorded an audio file. The acquisition time was set as ten cycles at the lowest
frequency of interest. For instance, the time interval of the 50 Hz band was equal
to 200 ms. Increasing the frequencies he decreased the length of the intervals up
to 1 ms, corresponding to ten cycles of the 8 kHz band. This method optimizes the
amount of data to manage.

The method proposed here wants to avoid audio recordings. Privacy is one of the
most debated issues in machine learning applications. If technicians deal only with
sound level meters and SPLs as outputs, then any sensitive information recording is
prevented. Thus, the integration time used in each application of this work is equal
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(a) (b)

Fig. 2.2 Example of time history and temporal frequency distribution of SPLs in a
classroom. On the left, a idealized lecture. On the right, a more realistic lecture.
From “Measurement and prediction of typical speech and background-noise levels
in university classrooms during lectures”, by M. Hodgson, R. Rempel, S. Kennedy
[62].

to 100 ms. This value represents a usual period of time to measure a detailed sound
scene catching sounds varying in time and impulsive events [142].

2.1.2 Length of the measurement

Besides understanding how short the time interval should be, it is important to
understand how long the monitoring should be. Working with a statistical analysis,
it is perceivable that the more data are obtained the better the analysis is made.
However, it is important to get useful insights about the minimum length to make the
obtained amount of data significant. As stated by Hodgson, considering a theoretical
time history in which two sound sources emit each one a particular SPL with a
sufficiently high background noise, the respective time history and the associated
frequency – in a statistical meaning – distribution are shown in Figure 2.2a. In this
case, the occurrences have two spikes. In a more realistic case, all the temporal
variations of the sound sources ensure that the occurrence distributions have two
different peaks but with non-zero widths, as shown in Figure 2.2b.

As stated in the introduction of the present work, machine learning deals with
large amounts of data. Hence, many ML algorithms for processing data are based
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on statistics. The ML-based analysis proposed here starts with the visualization of
data to identifying the best approach to manage the obtained distribution. Datasets
of long-term sound level meter monitoring are constituted by SPLs, i.e. 10 times
the logarithm of the squared ratio of a given sound pressure to the reference sound
pressure. Thus, the dB can be considered as a log-transformation of the sound
pressure. As a consequence, it is expected that a SPL has a Normal tendency [14]. It
follows that SPLs of a single sound source will follow a normal distribution as long
as the monitoring lasts enough for the central limit theorem to hold. Based on the
considerations above, the use of Gaussian distributions to fit the occurrences curve
of a single sound source is consistent with the kind of data [62].

(a) (b)

(c) (d)

Fig. 2.3 Example of the occurrences collected during a long-term monitoring of a
university lecture. From the top left, the occurrences distribution collected after
1 minute (2.3a), 10 minutes (2.3b), 30 minutes (2.3c), and 60 minutes (2.3d) of
recording.

Figure 2.3 shows how the length of the monitoring affect the shape of the
occurrence curve. Histograms are created with bins around 0.5 dB, which is about
the uncertainty of a class 1 microphone. The recorded event is represented by a
university lecture. Thus, it is expected to have at least two peaks represented by
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the background noise on lower SPLs and the teacher’s speech with higher SPLs.
Figure 2.3a shows the occurrences obtained after a recording 1-minute long. Then,
Figures 2.3b, 2.3c, and 2.3d show the occurrence curves recorded after 10, 30 and
60 minutes. Based on the intuition described above, it is possible to notice how 1
minute is enough to only achieve a preliminary idea on the tendency of the teacher’s
speech. The background noise becomes noticeable after 10 minutes and more clear
after 30 minutes. The last plot shows how the occurrences related to the background
noise increase. It is interesting to notice how the speech levels density decreases but
the peak remains on the same x values. The peaks are one of the most important
features of this curve because they are related to the corresponding SPL of the sound
source. Moreover, long-term monitoring allows to ignore any kind of impulsive
noise because, being an outlier, it would not affect the shape of the curve until it
becomes continuous enough in time.

2.2 Data processing

The previous section discussed the way to collect as more data as possible through
a sound level meter in a realistic environment. The aim is to achieve the best
temporal resolution using the shortest time interval. Under the assumptions that
single sound sources have Gaussian distributions, we expect an occurrence curve
which is asymmetrical with different peaks. Any kind of skewness of the curve
suggests the presence of moer sound sources with a low signal-to-noise ratio with
respect to the visible peak. The higher the background noise is, the more distant the
peaks are.

Starting from the Gaussian assumption, the present work investigates two differ-
ent algorithms: the Gaussian Mixture Model (GMM) and the K-means clustering
(KM). The reason for investigating two different algorithms lies in the homoscedas-
ticity, i.e. the homogeneity of variance. As seen in Section 1.1.3, the GMM can be
considered as a generalization of KM for small variances [94].

2.2.1 Step 1: Occurrence curve and candidate models

The data processing follows a few steps, which are presented here through visual
examples. The first step concerns the collection of the occurrences. Figure 2.4
shows an example of occurrences. Here, the measured SPLs are shown in pale blue.
The bins’ visualization is enough for KM because it is a distance-based algorithm.
Concerning the GMM, after collecting the SPLs, it is important to draw the envelope
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of the distribution, i.e. the probability density function. This is shown with a blue
line.

Fig. 2.4 Example of the occurrences collected from a long-term monitoring of an
active office and the corresponding occurrence curve obtained.

In ML, a supervised problem, i.e., with labelled data, has a target that the model
tries to predict. Knowing the target and exploiting the labels it possible to infer
accuracy metrics to assess the goodness of the prediction. As stated in the previous
chapter, GMM and KM perform unsupervised learning, i.e., data are not labelled.
Hence, the aim is to look for patterns in the data. However, the number of clusters K
has to be set before running the algorithms.

In this regard, to understand effectively how many clusters are in the data, the
following step concerns the setting of the so-called candidate models. GMM and KM
are run different times with a different number of clusters K. Both algorithms are
set to repeat the iterative process multiple times using different set of initial values.
This option prevents the algorithms for being trapped in undesirable local maxima.
Further, the covariance type of GMM has to be set to let the components independent
to adopt any position and shape [97]. Figure 2.5 shows different GMM candidate
models. Starting from the upper left, the same occurrence curve shown in Figure
2.4 is processed via GMM with different values K from 2 up to 5. Each number of
clusters represents the number of possible sound sources. The same procedure is
followed with KM.

2.2.2 Step 2: Model selection

At this point, it is needed to choose the best model among candidates. As seen in
the previous paragraph, an unsupervised analysis via GMM and KM cannot exploit
an accuracy metric. Thus, it is needed to look for other types of measurements as
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(a) K = 2 (b) K = 3

(c) K = 4 (d) K = 5

Fig. 2.5 Example of candidate models of active office long-term monitoring. The
occurrence curve of Figure 2.4 has been processed via GMM for different numbers
of clusters K. From the top left K = 2 (2.5a), K = 3 (2.5b), K = 4 (2.5c), K = 5
(2.5d).



34 Method

indicators of performance. In cluster analysis, the most common way to assess the
performance of the algorithm is to measure either the distinctiveness or the similarity
between the clusters obtained. These two clusters’ properties are commonly defined
as the cohesion within each cluster and the separation among different clusters. In
the present work, the selection of the best model is made through 4 different metrics:
the Calinski-Harabasz index (CH), the Davies-Bouldin index (DB), the Silhouette
coefficient (SC), and the Gap statistic (GS). The theoretical approaches of each of
these metrics are described in Section 1.2.

(a) (b)

(c) (d)

Fig. 2.6 Example of model selection. The candidate models shown in 2.5 have been
evaluated via the Calinski - Harabasz index (2.6a), the Davies - Bouldin index (2.6b),
the Silhouette coefficient (2.6c), and the gap statistic (2.6d). Red dots indicate the
best model selected by the metric.

Considering that all these metrics assess the models in different ways, the best
model is chosen according to the majority rule among the metrics. In case of a tie,
the results of the model selection should be compared among all the spectral data.
Achieving an optimal number of clusters different in only one third/octave band
would refer to a masked source with a predominant energy contribution in that band.
Thus, the most frequent model selected by the different criteria will be considered as
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(a) (b)

Fig. 2.7 Example of selected clusters obtained via the GMM (2.7a) and the KM
(2.7b). Dots and arrows indicate respectively means and standard deviations for the
GMM, and centroids and average intra-cluster distances for KM.

the best model. Figure 2.6 shows the evaluation performed by means of the 4 metrics
over the candidate models shown in Figure 2.5. The x-axes indicate the number of
possible sound sources, i.e. the different candidates, and the red dot shows the best
model according to that metric. CH gives back K = 3 (Figure 2.5b) as the best model
among candidates, whereas DB, SC, and GS indicate that the best model is made by
two clusters (Figure 2.5a). Thus, according to majority rule, the best model is K = 2.

2.2.3 Step 3: Labelling and spectra reconstructions

After the best model has been selected, it is possible to investigate the results of
the clustering analysis. Following the example shown so far, the best model is
represented by K = 2. Assuming that the same result has been achieved for KM, too,
Figure 2.7 shows the best model selected via GMM and KM.

Concerning the GMM, on the left, the two Gaussian curves, i.e. the two clusters,
represent the two sound sources found through the iterations of the EM algorithm.
The use of well-known distributions is fundamental in unsupervised techniques.
A Gaussian curve is univocally defined by two parameters: mean and variance.
Through these parameters is possible to describe the clusters obtained via GMM,
i.e., the sound sources. After starting from a bunch of unlabelled data, i.e. SPLs, it is
possible at this point to characterize different groups with identifiable properties. In
Figure 2.7a, for each Gaussian curve, we show its mean and standard deviation. The
first are indicated with dots and the projection on the x-axis through a dashed line;
the second are identified by arrows.
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The two clusters obtained via KM are represented in pale blue and orange in
Figure 2.7b. Despite their theoretical relationship shown in the previous chapter,
GMM and KM have different foundations. GMM is a model-based algorithm with the
model represented by the Gaussian distribution; KM is a distance-based algorithm,
i.e. clusters are shaped optimizing specific distance metrics. Specifically, in this
work, the metric chosen is the squared Euclidean distance. However, the features
obtained via KM can be deemed as similar in comparison to means and standard
deviations obtained via GMM. Keeping the analogy, it is possible to compare the
mean to the so-called centroid, i.e. the centre of gravity of the cluster. The standard
deviation is compared to the average intra-cluster distance (AICD), i.e. the average
distance of each point-to-centroid belonging to the same cluster. On the x-axis
of Figure 2.7b, the dots and the arrows indicate respectively the centroids and the
AICDs of the two clusters.

Means and standard deviations are the features used to label the clusters obtained
via GMM, centroids and AICDs are the features obtained via KM. Means and
centroids represent whole clusters with values in dB. Thus, we can deem means
and centroids as the representative SPLs of each sound source. Similarly, standard
deviations and AICDs represent the temporal variability of a sound source. Tight
Gaussian curves or short distances mean a high repeatability of a source’s sound
emission, e.g. mechanical noise due to a ventilation system. Next chapters will
address in details the dB thresholds of standard deviations and AICDs to label
mechanical, traffic, or human sources. More generally, these two quantities represent
statistical – s.d. – and metrical – AICD – properties useful to understand and label
the type of sound source measured. Table 2.1 sums up the features that is it possible
to extract via GMM and KM.

Table 2.1 Features obtained via GMM and KM to label different sound sources.

Algorithm Feature Physical meaning

GMM
Mean SPL of a sound source
Standard deviation Extent of randomness of a sound source

KM
Centroid SPL of a sound source
Average intra-cluster distance Extent of randomness of a sound source

At this point the analysis is complete. However, it is not straightforward to
understand whether a sound source could be a mechanical system or the traffic only
assessing the standard deviation or the AICD. Moreover, technicians often work in
the frequency domain. Thus, it becomes important to understand how this method
works in frequency. As outlined in the introduction of this chapter, the method
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Fig. 2.8 Octave band occurrence curves of a long-term monitoring inside an active
office processed via GMM from 125 Hz (on the top left) up to 4 kHz (on the bottom
right). Dots indicate the means per each cluster.
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Fig. 2.9 Example of spectra reconstructed inside an active office. Red and blue lines
show respectively the spectra obtained via GMM and KM. Dashed and solid lines
show respectively the tendencies of source no.1 and source no.2.

proposed in this work can be used with any kind of SPL obtained through a sound
level meter. Hence, it is possible to repeat the whole method per each frequency
band under study. The end of the analysis will give back different SPLs and standard
deviations or AICDs. Noticing similar feature values, it is possible to find a common
thread across frequencies. Thus, it is possible to associate each SPL with the same
source and reconstruct the spectrum.

Figure 2.8 shows the occurrence curve octave-band filtered and processed via
GMM from 125 Hz up to 4 kHz. Blue lines represent the occurrence curves, the
orange and yellow Gaussian distributions represent the two clusters obtained via
GMM, source no.1 and source no.2. The dashed lines show the projections of the
means on the x-axes. To simplify the visualization of the curves, the scales on both
axes change. Looking at the curves, it is possible to notice how there are similarities
among all the orange curves: low SPLs and small standard deviations. Moreover,
the occurrence density remains high up to 500 Hz and starts to decrease in mid-high
frequencies. All these clues suggest a mechanical behavior of the component in each
octave band. Thus, sound source no.1 could be labelled as an example of mechanical
source. Yellow curves are all similar as well: high SPLs and large standard deviations
with an almost constant density of occurrences, about 0.03. These features represent
a pretty random source with high temporal variations. Thus, sound source no.2
could be labelled as human voice. Collecting all SPLs per each octave band per
each sound source it is possible to reconstruct both spectra. Figure 4.12 shows
the reconstructions. Red and blue lines show, respectively, the results obtained via
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GMM and KM. Dashed and solid lines show respectively the trends of source no.1
and source no.2. At first glance, the deductions about the mechanical and human
voice seem to be confirmed by the tendencies of the spectra. However, details about
spectral tendencies, values, and uncertainties are discussed in next chapters where
different case studies are presented.





Chapter 3

Applications in classrooms

Keywords: student activity, speech intelligibility, classroom acoustics, PA design.

Classrooms and university lecture halls represent the first context in which test
the statistical method. The reason lies in the need for realistic monitoring of the
sound environment. In fact, acoustical comfort in learning space is the basic con-
dition to provide an effective and successful learning process [81, 98]. Students
comfort is strongly related to the acoustic condition of the environment. The com-
munication quality allows students to be more focused during lectures and affects
their cognitive tasks, besides improving the teachers’ comfort as well decreasing
their vocal effort [115, 20].

Speech is the main method of communication in learning spaces. Thus, the
learning process broadly involves the speech intelligibility, i.e. the rating of the
proportion of speech that is understood [69]. Basically, the intelligibility issue can
be influenced by different factors:

• the frequency response of the room;

• the sound energy distribution throughout the space;

• the sound pressure level of emission;

• the background noise;

• if available, the frequency response and directivity of the public address (PA)
system.

More generally, the speech signal is degraded by the path or the transmission
channel between source and receiver. The assessment of speech intelligibility can
be made through different metrics [18]. One of the most common way to measure
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Fig. 3.1 Modulation transfer function – input/output comparison. Parameters m1 and
m2 are the modulation depths of respectively input and output signals; Ī1 and Ī0 are
the input and output intensities. From IEC 60268 (2020). Sound System Equipment
– part 16: Objective rating of speech intelligibility by speech transmission index [69].

is the Speech Transmission Index (STI), described in IEC 60268-16 standard [69].
Introduced and developed by Houtgast and Steeneken, the STI is an objective method
to assess the quality of the communication channel that may be affected by several
acoustic and electro-acoustical distortions. The speech is outlined as a signal that
fluctuates in time and in the intensity envelope of the sound. Slower fluctuations of
the envelope describe word and sentence boundaries, faster fluctuations correspond
to individual phonemes within words. Phonemes are considered as the unit element
of the speech and connected discourse. Thus, the preservation of the intensity
envelope results in achieving high intelligibility. STI assesses to what extent the
intelligibility is preserved through a value between 0 and 1. Its calculation involves
weighted contributions from seven octave frequency bands where the speech energy
is significant. Summing, a modulation transfer function determines the degradation
of the intensity envelope and the signals’ fluctuations due to the transmission channel
[67, 134, 135]. The STI model describes an ideal situation in which a talker with a
standardised male speech spectrum is speaking with good articulation, i.e. with at a
nominal word rate of about 3 to 4 syllables per second, and assumes listeners have
normal hearing. However, humans alter the way they speak and hear according to
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many factors, like the age, gender, native language and social relationship between
talker and listener. Speech intelligibility may also be affected by pathologies such as
speech and hearing disorders. For non-native speakers/listeners and for listeners with
hearing loss it is possible to bring corrections according to IEC. Figure 3.1 shows
how the speech signal is affected by the acoustic properties of the space. The upper
part of the picture shows the input position in the room with a cross and the receiver
with a circle. In the lower part, the modulation transfer function is evaluated for each
modulation frequency in each octave band.

The signal-to-noise ratio (SNR) is the difference in dB between the signal and
the background noise. Assuming that the signal is loud enough to neglect the SPL of
emission, the intelligibility problem can be outlined as influenced by two factors: the
acoustic properties of the room and the background noise [62]. In this view, the sound
context of a learning space is represented by the SNR between the speech SPL of the
teacher (SL) and the background noise. The latter is made up of several contributions:
the mechanical systems, the traffic, the activities carried out in neighbouring spaces,
and the noise generated by the students, called the student activity (SA) [62]. In
some cases of lecture halls with high attendance, the SA overwhelms other noise
contributions. Hence, the SNR is reduced to the difference between SL and SA.

The measurement of SA during lectures has been broadly debated among schol-
ars. One of the first approaches concerned the assumption of the SL equal to the
equivalent level Leq and SA equal to the 90th statistical level L90, i.e. the SPL
exceeded the 90% of the measurement time [95, 83, 132, 13]. Hodgson et al. in-
troduced the statistical assumption and the use of GMMs without considering the
model selection step. The number of clusters to look for was chosen through a visual
data exploration [62]. In the present chapter, the GMM with no model selection
step has been called Peak Detection (PD). The same technique was used by Sato
to evaluate the noise inside elementary classrooms. Here, there is no distinction
between background noise and SA. Both sources were gathered in the same Gaussian
curve [128]. Choi used PD as well to measure SAs, SLs, and SNRs in 15 different
lectures in 11 university classrooms [27]. More recently, unsupervised algorithms
used in machine learning improved the ability to investigate long-term monitoring.
Besides the case studies presented in the next sections of this chapter, Wang and
Brill used the K-means clustering algorithm to detect whether K-12 classrooms were
active or not [147]. All these studies are summarized in Table 3.1. Here, as much
information as possible about previous studies is shown, such as the school’s grade,
the hall type, the number of lessons and positions used during the measurements, the
potential presence of a PA, the resulting SNRs and the standard deviations (s.d.), and
the time interval.
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The Lombard effect links the behavior of speakers, i.e. teachers, and students.
This effect is a psychoacoustic involuntary tendency of speakers to increase the
volume of their voice in noisy contexts [91]. This change includes not only loudness
but also other acoustic features such as pitch, rate, and duration of syllables [136]. In
learning spaces, all the sound sources and noise contributions are linked. With a high
background noise due to the ventilation system, students could increase their levels
of SA. Thus, teachers increase their SLs, i.e. their vocal effort [2]. All these reasons
prove the need for a method to separate the different contributions of sound sources.

An SNR higher than 15 dB is considered necessary to neglect the influence of
the background noise on the intelligibility [16, 62, 5, 59]. Beyond this value no
improvements in quality occurred. However, in case of cognitive disabilities the
advised SNR is equal to 20 dB [104, 45]. The use of a PA system represents one
of the most common ways to ensure the achievement of these values, especially
in large lecture halls. Nevertheless, the introduction of a PA does not override the
need of a proper acoustic design of the space, even though it could help in avoiding
the Lombard effect when used [148, 112]. Moreover, high occupations reduce the
reverberation time because of the absorption of the students. Thus, it can be assumed
that in large university lecture halls with low reverberation time, the intelligibility
can depend only on SNR.

This chapter shows two applications of the method described in the previous
sections. The main focus of the discussion concerns the measurement of SA. The
understanding to what extent students are distracted during lectures can be deemed
as a metric of the goodness of the rooms’ acoustical properties. The first case
study addresses the measurement of SA through different methods: equivalent and
statistical levels – this method will be named PL – , PD, GMM, and KM. Preliminary
discussions about the method will provide first insights about the difference among
the techniques used by scholars. The SA can be considered as an objective metric
to assess a subjective behavior of an entire group, i.e. the students. For this reason,
the second case study will use SA as the main metric to evaluate the effectiveness
of acoustic treatments in lecture halls. SA was measured in two of the three halls
shown in the first case study before and after acoustic treatments and the PA redesign.
Measurements were made only via GMM and KM and further discussions will
address differences between methods and correlations among all the active sound
sources during lectures besides spectral detailed studies.
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3.1 Comparison among methods to measure student
activity

3.1.1 Description of the halls

The first case study is represented by 3 historical lecture halls of the School of
Literature and Philosophy of the University of Bologna. Students and teachers
changed after each lesson. The halls were chosen because of their high occupancy
and variability of lessons during the whole day. Hall I and Hall II are historical rooms
with an amphitheater geometry and a volume equal to 1000 and 900 m3 respectively;
they have plastered walls and wooden seats and benches able to host up to 250 and
200 students respectively. Hall III has an approximately regular shoe-box shape with
a volume of 850 m3, except for the overhead coupled volumes between the ceiling
and the false ceiling; its surfaces are plastered while seats are movable and made
of plastic with a maximum occupancy of 170 students. Hall III hosts occasionally
non-traditional teaching activity, like theatre rehearsal.

A preliminary measurement campaign was carried out in the halls under study
aimed at qualifying the acoustical properties in empty state. Measurements were
carried out following procedures and equipment according to ISO 3382-2 standard
[72]. Monaural impulse responses were acquired with an Exponential Sine Sweep
signal with a length of 512 K and sampled at 48 kHz. A high-SPL dodecahedron
was used as the omnidirectional sound source [41]. The source was calibrated in
the reverberation room according to ISO 3741 [74]. The variable occupancy by
the students influence the total absorption area in the halls [26]. To consider the
influences of students, the reverberation times in occupied condition were evaluated
using the equation [139]:

Tocc =
Tunocc

1+ TunoccCN∆A1p
0.16V

(s) (3.1)

where N is the maximum occupancy of the hall and C is the percentage of occupancy
(C = 1 means a full occupied hall, C = 0.8 means an occupancy of 80%). ∆A1p is
the increase of the equivalent absorption area due to one person in m2 Sabine. Values
of ∆A1p are taken from Appendix C of the Italian acoustic regulation for classrooms
UNI 11532-2 [139]. Figure 3.2 shows pictures and plans of the lecture halls under
study. Besides the graphical scale to give the proportions among geometries, the
positions of source-receivers pairs is shown.

Table 3.2 shows a general overview of the properties of the halls. It shows both
geometrical data – i.e. shape type, volume, maximum occupancy, and seating area –
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(a) Hall I (b) Hall I – plan

(c) Hall II (d) Hall II – plan

(e) Hall III (f) Hall III – plan

Fig. 3.2 Pictures and plans of the three university lecture halls under study: Hall I
(3.2a, and 3.2b), Hall II (3.2c, and 3.2d), and Hall III (3.2e, and 3.2f). Plans show
sources and receivers positions.
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and the reverberation in different occupancy configurations – i.e. unoccupied, 30%,
80%, and 100% of the maximum occupancy.

Table 3.2 Data overview of the lecture halls and ISO 3382-2 measurements re-
sults [72]; where: “V” is the volume, “N” the maximum occupancy, “SA” is the audi-
ence area, “TM,unocc” is the reverberation time in unoccupied condition, “TM,occ 30%”
is the reverberation time in occupied condition at 30%, “TM,occ 80%” is the reverbera-
tion time in occupied condition at 80% and “TM,occ 100%” is the reverberation time in
occupied condition at 100%. The subscript “M” means a value averaged over all the
receivers in the octave bands of 500−1000 Hz. From “Measuring the speech level
and the student activity in lecture halls: Visual-vs blind-segmentation methods” by
D’Orazio et al [43].

Hall Type V (m3) N SA (m2) TM, unocc (s) TM, occ 30% (s) TM, occ 80% (s) TM, occ 100% (s)

I Amphitheater 1000 250 100 1.70 1.27 0.90 0.80
II Amphitheater 900 200 100 1.72 1.34 0.95 0.90
III Shoe-box 850 170 81 2.54 1.88 1.22 1.19

3.1.2 Measurement methods

The SA measurement method, as mentioned in the introduction of this chapter, is
debated among scholars. To compare each method used in literature,12 university
lectures were measured in 3 different halls. Two sound level meters were placed in
the middle of the audience area on either side at a height of 1.2 m, i.e. the height
of ears of a seated person. The positions were chosen maintaining a distance of at
least 1 m from any surrounding surface. An operator attended the recorded lectures
to report the activities and notice potential peculiarities in the dataset, e.g. peaks due
to unexpected sounds. A-weighted short-time SPLs were recorded with an interval
time of 100 ms.

Each lesson lasted about 90 minutes. Breaks and intervals among lectures were
cut to focus the analysis only on the active lesson time. Thus the post-processing
started from the selection of the active time from the time history. Figure 3.3 shows
an example of selection of the active time after the lessons were recorded.

After cutting the time history, SPLs were collected in different datasets, one per
each lesson. According to the literature, each dataset was explored with four methods
categorized as visual or blind. Visual methods exploit the observations made by the
operator during lessons to analyze the time history; blind methods look for patterns
in data without any knowledge of the realistic environment. The categorization of the
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Fig. 3.3 Sample of the time history measured during a university lecture. Differ-
ent shades of grey show the portions deemed as pause and lesson times. From
“Measuring the speech level and the student activity in lecture halls: Visual-vs
blind-segmentation methods” by D’Orazio et al [43].

methods, recollecting their assumptions through a brief description, can be outlined
as:

Visual methods

◦ Percentile levels (PL): SA and SL are directly extracted from the sound
level meter. The A-weighted equivalent level LA,eq is associated with
the teachers’ SL, and the acoustical 90th percentile level L90 with the
SA. The term acoustical percentile refers to a different use of statistical
levels in acoustics with respect to the traditional statistical language.
The difference lies in the definition of percentile. In acoustics, a n-th
percentile level is the SPL exceeded for the n% of the measurement time.
In statistical terms it corresponds to the 100− n statistical percentile.
For instance, the 90th acoustical percentile L90 corresponds to the 10th
statistical percentile of the data distribution. Percentile levels are obtained
from the whole dataset collected through the long-term monitoring.

◦ Peak detection (PD): skipping the model selection step typical of data
clustering, it is possible to assume a certain number of Gaussian curves
to fit the original distribution of data. In this work, the multi-peak anal-
ysis and corresponding curve fitting was made via OriginLab software.
Through the graphical interface it is possible to detect geometrical bound-
aries, i.e. peaks. With this approach the algorithm is forced to fit the data
with Gaussian curves having the means nearby the given peak.
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PL and PD use two different data distributions to perform calculations. The
first uses the cumulative distribution function (cdf) of the measured SPLs,
and the second uses the probability distribution function (pdf). For discrete
variables, cdf and pdf are linked. The pdf can be expressed as the derivative
of a cdf [49, 9]. Generally, the probability that x lies in the interval (−∞,z) is
given by the cdf and is defined as:

P(z) =
∫ z

−∞

p(x)dx. (3.2)

The statistical rank r of a percentile q of N data observations is defined as:

r(q) =
q

100
(N +1). (3.3)

Assuming that N is large enough, the acoustical percentile level Lq is equal to
the rank of 100−q. Defining f (x) as the pdf of the observations, the value q
can be expressed as:

q = P(x > Lq) =
∫

∞

r(100−q)
f (x)dx. (3.4)

Thus, according to Equation 3.2 and considering that acoustical percentile
means doing a backward integration of the pdf, the cdf g(x) can be expressed
as:

g(x) =
∫ x

∞

f (x′)(−dx′) =
∫

∞

x
f (x′)dx′ = 1−

∫ x

−∞

f (x′)dx′. (3.5)

Blind methods

◦ Gaussian Mixture Model (GMM): a model-based algorithm that de-
scribes a generic distribution as a sum of Gaussian curves. An iterative
probabilistic process via Maximum Likelihood assigns data to each clus-
ter. The Expectation-Maximization algorithm maximizes the likelihood
function through iterations [38]. Each datapoint is assigned to clusters
with probability weights. Clusters are defined by Gaussian curves and are
shaped when convergence is reached. Theoretical details are described
in Section 1.1.1.

◦ K-means clustering (KM): a distance-based algorithm that shapes clus-
ters grouping the closest points. In this work, an iterative process mini-
mizes the squared Euclidean distance among data and centroids, i.e. the
center of gravity of the cluster. Each iteration updates the redistribution
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of data towards the nearest mean among data within the same cluster. The
process is repeated until convergence is reached, i.e. when the centroids
are no longer updated. Theoretical details are described in Section 1.1.2.

Figure 3.4 shows graphically the different approaches. Figure 3.4a shows the cdf
indicated as g(x). The equivalent level Leq corresponds to the SL and is highlighted
by the line that divides the two patch areas. The 90th statistical level corresponds
to the SA highlighted by the dotted line. The Leq divides the energy of the plot in
two areas: the cross and diagonal patches. The energies within these two areas are
equal. Thus, the PL’s approach can be considered energetic-based and completely
different from the other methods. PD, GMM, and KM use SPLs as random variables,
indeed. However, despite the basic difference, PL is compared with others because
it represents the common standard used by the technicians praxis. Figures 3.4b,
3.4c, and 3.4d show the PD, GMM, and KM approaches where the original pdf is
indicated as f (x). Concerning the PD, empty diamonds indicate the geometrical
boundaries where the fitting is constrained. Figures 3.4c and 3.4d show the same pdf
analyzed via GMM and KM.

The statistical levels used in PL were extracted using the post-processing com-
mercial software 01 dB dBTrait. Supervised PD was made through the OriginPro
software. Concerning the GMM, the maximum likelihood estimates of the param-
eters were derived via the EM algorithm, by using the Mclust function from the
homonym R package. The algorithm to implement KM was the kmeans function of
the stats R library.

3.1.3 Results and discussions

Each lesson lasted about 90 minutes and was managed individually. Thus, each
dataset had an average of 52k samples. Half of the lectures were conducted by males
and the other half by females. Hence, teachers’ gender was not influential on the
average values.

Figure 3.3 shows why it is important, even for blind techniques, to cut pauses
during post-processing. The lack of SL brings students to raise their voice flattening
the dynamic of the recording. This could result in influencing the statistics and
results of a single lecture for two reasons. First, the recorded SPLs are quite high
and they do not refer to SL, they are not consistent with the analysis. Secondly, the
babble noise being more temporally steady, it could have a masking effect on the
background noise to be recorded among sentences.
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(a) Statistical levels (PL) (b) Peak detection (PD)

(c) Gaussian Mixture Model (GMM) (d) K-means clustering (KM)

Fig. 3.4 Methods to measure student activity (SA): Statistical levels (3.4a); Peak
detection (3.4b), Gaussian Mixture Model (3.4c), K-means clustering (3.4d). From
“Measuring the speech level and the student activity in lecture halls: Visual-vs
blind-segmentation methods” by D’Orazio et al [43].
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SA and SL values

Each dataset obtained from each sound level meter was processed via PL, PD, GMM,
and KM. In regards to blind methods, the model selection step was skipped and the
number of clusters was set equal 2 to easily compare the results among techniques.
Then, SA and SL values were averaged over the two receivers to get one single value
per each lesson. Table 3.3 shows all the results per each lesson and methods. Besides
SA and SL values, the number of students during the lesson, the relative percentage
over the maximum occupancy, and the corresponding hall where the lecture was
conducted are shown. Standard deviations refer to the diffusion of results between
the two receivers.

Almost all the lessons were conducted in a traditional way, i.e. with the teacher
speaking from the desk. Lectures carried out differently from the traditional way
were kept in the analysis basically for two reasons: they are representative of a
different use of these spaces; they broaden the analysis of pros and cons of the
different techniques.

In Hall I for most of the lessons, PL returns the lowest SA values and always the
highest SLs. KM gives back always the highest SAs and GMM the lowest SLs for
the majority of lectures. In Hall II, PD and GMM return the lowest SAs whereas PL
the highest. GMM and PL produce the lowest and the highest SLs as well. In Hall
III, the lowest SAs were measured by PD whereas the highest by KM. PD measured
the lowest SLs too, whereas KM, PD, and PL measured the highest SLs. Mean
tendencies show that PD and KM measured the lowest (51.0 dBA) and the highest
(53.1 dBA) SAs, respectively; GMM and PL measured the lowest (67.2 dBA) and
the highest SLs (70.5 dBA), respectively.

Following, three lessons are discussed since they were the “less traditional”
among all. Lesson C was a meeting for internships. More persons talked from the
desk point and the discussions were highly interactive with students. The measured
SA involves the intentional speaking and the non-intentional speaking. However,
only the latter type concerns to what extent it is possible to assess the focus of
students. Figure 3.8 shows the four graphical results of lesson C. It could be assumed
that intentional speaking of students does not overlap with the SL: teacher’s speech
from PA and intentional speaking from students are not simultaneous. This condition
is quite crucial: it brings significant differences among the results of each technique.
If students and the teacher speak at the same time, the higher level overcomes the
lower one. One more factor that could influence the results concerns the students’
proximity to the receivers. Considering a sound level meter 1.2 m height to simulate
what a student perceives, the chatting nearby the microphone would record high
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(0.8)
J

110
(65%

)
III

50.3
(2.1)

63.3
(2.3)

46.9
(2.0)

59.9
(2.3)

53.0
(2.0)

61.6
(2.2)

53.3
(2.2)

63.6
(2.4)

K
80

(50%
)

III
47.5

(2.0)
67.8

(2.3)
50.4

(1.2)
68.2

(2.1)
50.6

(1.5)
67.6

(1.9)
50.6

(2.1)
67.7

(1.3)
L

175
(105%

)
III

51.5
(1.8)

65.1
(1.7)

48.8
(2.3)

62.7
(2.4)

51.1
(2.4)

63.1
(2.4)

53.8
(1.8)

64.7
(2.2)

M
ean

52.3
(3.8)

70.5
(4.1)

51.0
(1.6)

67.3
(2.7)

51.9
(1.2)

67.2
(2.5)

53.1
(1.2)

68.5
(2.4)
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(a) Statistical levels (PL) (b) Peak detection (PD)

(c) Gaussian Mixture Model (GMM) (d) K-means clustering (KM)

Fig. 3.5 Lesson C analyzed via PL (3.5a), PD (3.5b), GMM (3.5c), and KM (3.5d).
From “Measuring the speech level and the student activity in lecture halls: Visual-vs
blind-segmentation methods” by D’Orazio et al [43].

(a) Statistical levels (PL) (b) Peak detection (PD)

(c) Gaussian Mixture Model (GMM) (d) K-means clustering (KM)

Fig. 3.6 Lesson D analyzed via PL (3.6a), PD (3.6b), GMM (3.6c), and KM (3.6d).
From “Measuring the speech level and the student activity in lecture halls: Visual-vs
blind-segmentation methods” by D’Orazio et al [43].
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(a) Statistical levels (PL) (b) Peak detection (PD)

(c) Gaussian Mixture Model (GMM) (d) K-means clustering (KM)

Fig. 3.7 Lesson H analyzed via PL (3.7a), PD (3.7b), GMM (3.7c), and KM (3.7d).
From “Measuring the speech level and the student activity in lecture halls: Visual-vs
blind-segmentation methods” by D’Orazio et al [43].

SPLs not belonging to SL. Nevertheless, it is reasonable to assume that the students
chatting close to the receivers is not quantitatively proportional to the amount of SL
over the whole lesson. Interactions between students and teacher may result in wider
SL curves. During Lesson D a digital medium was streamed for a long portion of
the lecture. It was transmitted through the PA as well as the voice of the teacher.
Thus, the time history had fewer pauses and the detected SL was more continuous
in time. Looking at the values of Table 3.3, SL values differ less than SA, indeed.
PD and GMM return similar values of SA, whereas KM returns a higher value and
PL a lower one. Figure 3.6 shows the four graphical results of lesson D. Teacher
and students had a lot of interactions during lesson H. This led to higher attention
paid by students, confirmed by the high SNRs values for each method. In this case,
PL returns an SA value higher than the other methods. When the students’ chatting
is high, as seen in lesson D, PL seems to underestimate the SA; when the students
are more quiet, the PL method seems to overestimate the SA. This could be linked
to the different management of SPLs. PL treats SPLs as energy whereas the other
methods as random variables. High standard deviations between sound level meters
highlight the need for a more diffuse sound field, especially in Hall I. This confirms
the complaints received by students and teachers about the acoustics of the halls
under study. In the following sections, the impact of the acoustic treatments will be
analyzed through the SA.
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Differences among techniques

SA is spread throughout the space because the whole audience area contributes to
it. Thus, it varies in time and space. However, considering the whole lesson time, it
could be considered and treated as homogeneously distributed across the halls. As
a consequence, low s.d. between the two sound level meters should confirm this
assumption and give back homogeneous SA values. Table 3.3 shows PD, GMM and
KM returning low s.d. values of SA, indeed. This is not true about PL, that seems to
give back more diffusion between the two sound level meters.

The measurement of the teacher’s voice is affected by the use of the microphone,
too, i.e. distance and directivity. The voice may be heard as louder or higher in pitch
depending on the PA coverage and its frequency response related to the acoustical
characteristics of the space. Thus, due to the differences of the PA coverage, the SLs
standard deviations (s.d) can be comparable only for the lessons carried out in the
same lecture hall. According to the assumption above, SL values should have higher
s.d. differences between the two sound level meters. In Hall I, SL measured high
s.d. in a total range of 3.9 - 4.9 dBA. In Hall II, PL measured high s.d. for both SA
(range 5.4 - 9.5 dBA) and SL (3.6 - 7.1 dBA). This behavior is not detected by the
other methods that measured s.d. in the range 0.0 - 1.9 dBA for SAs and 0.8 - 1.8
dBA for SLs. Recalling that Hall I and Hall II are geometrically similar because of
their amphitheatre shape (see 3.2, it seems that PL gives back more uncertainty with
respect to the sound level meter placement throughout the space. In Hall III, which
has a shoe-box shape, s.d. are quite similar among all the methods.

However, the PL technique is recognized as the technical praxis, so it is the
most used among scholars [95, 83, 13, 132]. Figure 3.8 graphically shows the
difference between the conventional approach of PL and the statistical one of the
others. KM is slightly an exception because it does not exploit properly a probability
distribution function. Given the same recording, Figure 3.8a shows the probability
density function f (x) and the relative dashed Gaussian curves obtained via GMM.
Means of each component are highlighted by the two dots. Figure 3.8b shows the
corresponding cumulative distribution function g(x). The solid vertical lines are
the projections of the means obtained in pdf. The dotted vertical lines highlight
the 90th acoustical level L90 and the equivalent level Leq. Here, the arrows and the
dashed areas indicate the gap between the calculated means and statistical levels. It
is interesting to notice that the two means correspond exactly to the inflection points
of g(x). This is confirmed by looking at the zeros of the numerical second derivative
of g(x) shown in Figure 3.8c.
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(a) Probability density function f (x)

(b) Cumulative distribution function g(x)

(c) Second derivative of cdf g′′(x)

Fig. 3.8 Relationship between the probability density function f (x), the cumulative
distribution function g(x), and its numerical second derivative g′′(x). Solid lines
show the projection of the means obtained via GMM over all the three plots. Dotted
lines and dashed area in 3.8b show the 90th acoustical level L90 and the equivalent
level Leq. From “Measuring the speech level and the student activity in lecture halls:
Visual-vs blind-segmentation methods” by D’Orazio et al [43].
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As mentioned in previous sections, GMM and KM give back the same outcomes
only if the homoscedasticity, i.e. the same data variance, is fulfilled [94]. Although
no probability assumption is usually mentioned, KM can be derived as maximum
likelihood estimator of a fixed partition model of Gaussian clusters with equal within-
cluster variances. According to such a model, x1; . . . ;xn are independently drawn
from N(µxi∈ck ;σ2), i = 1, . . . ,n, where µxi∈ck ,k = 1, . . . ,K are parameters given the
cluster membership of xi. This can be guessed by the results of Table 3.3. The
gap between methods increases when the variances between the sound level meters
are high for SL and low for SA, e.g. for lessons G and I. Moreover, the random
initialization could lead to different local maxima solutions.

SNR and Lombard effect

Table 3.3 shows the mean SA and SL values measured over all the lessons and halls.
Consequently, it is possible to extract the corresponding mean SNRs. PL measured
about +18 dBA, PD about +16 dBA, and GMM and KM about +15 dBA. The last
two are close to what was measured by Shield [132]. However, that work used the
PL technique instead of GMM and KM. Thus, higher values can be attributed to the
use of PA, unlike most of the earlier cited works (see Table 3.1). With respect to the
studies where the PA was used [112, 83], it is important to notice that measurements
were made in small classrooms in elementary grades instead of large university
lecture halls.

Figure 3.9 shows the correlation between SA and SL. Thus, the trend of SNR.
Different types of lines show the linear regressions for each method. PL, PD, GMM,
and KM regressions are indicated by dotted, dash-dotted, solid, and dashed lines,
respectively. Blind methods, i.e., GMM and KM, show similar tendencies. The
offset between the two methods can be associated with reasons explained in the
previous section about the differences among techniques, i.e., random initialization
and heteroscedasticity. As assumed and expected, SA returned lower standard
deviations. SL is strongly dependent on the PA. PL and PD show different slopes. It
could be deemed that students set their own speech levels to not disturb the listening
process and exploit the maximum intelligibility achievable in the space. In fact,
regardless of the different approaches, the lowest measured SNR is equal to +15 dBA,
the threshold above which the intelligibility is not affected by the background noise.
This psychoacoustic behavior could be considered a sort of “inverse” Lombard effect
[12]. With the slope values less than one, this inverse effect is more evident at low
SA values and at high SA values.
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Fig. 3.9 Relationship between student activity (SA) and speech level (SL) measured
during lessons. Each marker indicates a single lesson analyzed with the respective
method. Regression lines refer to the whole dataset of lessons analyzed via each
method. From “Measuring the speech level and the student activity in lecture halls:
Visual-vs blind-segmentation methods” by D’Orazio et al [43].

Linking these results to the students’ behavior, it is possible to notice that students
are quieter at the beginning of the lesson and immediately after the break; they are
noisier right before the break and at the end of the lesson. With the context being
university halls, students are prone to listen the lesson because they are adults and
the attendance is often non-mandatory. Earlier works show lower SNRs especially in
lower grades, such as elementary or secondary schools (see Table 3.1). However, it
can be because of non-acoustic reasons. Moreover, here the attendance is mandatory
and the lessons are conducted in the same classroom for the entire day. Low SNR
values in universities can be attributed to the size of classrooms – smaller than the
present study, the HVAC noise turned on unlike the present study –, and the different
interactions between teachers and students in university courses. All these reasons
may influence the listening effort, increasing the student activity [93].

3.2 Design of active and passive acoustic treatments

Lecture halls need periodical renovations, even to meet local standard updates [4].
The enhancement of acoustic environments involves both objective and subjective
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aspects. It has been shown that students prefer renovated spaces [111]. Despite
the subjective impression and the listening effort depending more on reverberation
than intelligibility besides other factors like sentence complexity, age, and linguistic
abilities, the location of improvements is fundamental to properly increase the acous-
tic quality of classrooms [11, 144, 115]. In fact, in spaces with high intelligibility
scores, high comprehension by the students is achieved even for low signal-to-noise
ratios [28]. Teachers and students experienced and complained an acoustic discom-
fort in Hall I and Hall II, despite these rooms having been designed for learning
purposes. Thus, active and passive acoustic treatments were designed. The goal was
to increase the speech intelligibility according to the Italian standard UNI 11532-2
[139]. Improvements were designed based on the different shape, acoustical char-
acteristics and specific use of each lecture hall. Designs involved both passive and
active treatments. Recalling Table 3.2, Hall I has a rectangular plan, wooden and
terraced seats that produce a typical amphitheatre space, reflective surfaces, and an
articulated false ceiling. The volume is about 1000 m3 and a maximum occupancy
of about 250 students. Hall II has a rectangular plan, wooden and terraced seats,
reflective surfaces, and a flat false ceiling. The volume is about 900 m3 and the
maximum occupancy is about 200 students. They vary essentially by the shape of
the false ceilings, besides an extra volume at the rear part of the room in Hall I.

3.2.1 Passive treatments

Passive acoustic treatments were designed to achieve the requirements provided by
the national standard UNI 11532 [139]. Thus, the optimal reverberation time in
occupied state was calculated. The revers formula allows to calculate the needed
equivalent absorption area A, i.e. the amount and the properties of sound absorbing
panels to introduce in each lecture hall. Nevertheless, adding the adequate A isn’t
enough to obtain a good speech intelligibility. The placement of the surfaces plays
a key role in controlling the sound reflections to enhance the sound clarity and the
sound energy distribution throughout the space. The placement could affect the
early-to-noise ratio C50 with variations up to 4 dB, and the received speech levels
with variations up to 3 dB values [118]. European standards guidelines suggest
how to optimize the placement of the absorbing surfaces [139, 21, 39]. The ceiling
should be kept reflecting enhancing the early reflections. It is possible to introduce
absorbing material on the ceiling only along its edges. The rear wall represents the
ideal area to absorb the late reflections.

Due to their high geometrical similarity, the design of treatments was the same
for both halls. The passive treatments were made by means of wooden slat panels
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Table 3.4 Absorption coefficients α of the passive acoustic treatments in octave
bands from 125 up to 4000 Hz. From “Effectiveness of acoustic treatments and PA
redesign by means of student activity and speech levels” by De Salvio et al [35].

Material α

125 Hz 250 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz

Wooden slat wall panels 0.03 0.33 0.73 0.89 0.85 0.77

with an air cavity 10 cm depth from the walls. They were placed on the rear wall
of each hall and the overhanging beams and pillars, as shown in Figure 3.10. The
corresponding absorption coefficients are shown in Table 3.4. After the renovation
works, further measurements according to ISO 3382 [72] were carried out to assess
the improvements achieved.

(a) Hall I (b) Hall II

Fig. 3.10 Passive acoustic treatments in Hall I and II: placement of the sound
absorbing panels.

Monoaural receivers were used to acquire Exponential Sine Sweep – 512 K length
sampled at 48 kHz – signals sent from an omnidirectional source. The latter was
a high SPL custom dodecahedron calibrated in a reverberation chamber according
to ISO 3741 [74]. Two source positions, one on the axis in the middle of the room
behind the desk, and the other asymmetrical near the desk were used. Receivers
were located homogeneously in the seating area. The same source-receiver positions
were used before and after the restoration. The reverberation time in an unoccupied
state has been decreased from 1.7 to less than 1.4 s for both halls. The early-to-late
ratio C50 was improved of about +1.5 dB in both halls, the STI of +0.03 and +0.07
respectively for Hall I and II. All these data are summarized in Table 3.5.
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Table 3.5 General and acoustic data of the halls under study before and after the
restoration, respectively indicated as “before” and “after”. Besides the shape of the
inner space, it shows the volume “V”, the maximum occupancy “N”, the reverberation
time in unoccupied state “T”, the early-to-late index “C50”, the Speech Transmission
Index STI and the equivalent absorption area A0 of the lecture halls in unoccupied
state. The subscript “M” states a value averaged over all the receivers in the octave
bands of 500−1000 Hz, whereas “3” over the octave bands of 500−2000 Hz. From
“Effectiveness of acoustic treatments and PA redesign by means of student activity
and speech levels” by De Salvio et al [35].

Hall Shape Volume (m3) Occupancy TM (s) C50,3 (dB) STI A0,M (m2)

V N Before After Before After Before After Before After
I Amphitheater 1000 250 1.70 1.37 -2.8 -1.4 0.49 0.52 94 117
II Amphitheater 900 200 1.72 1.38 -2.4 -1.0 0.47 0.54 84 105

Fig. 3.11 Placement of the line array system. This was the same for Hall I and II.
Colored squares indicate the receiving SPL over the audience area.

3.2.2 Active treatments

The PA (Public Address) system represents a crucial element for speech intelligibility,
especially in large lecture halls. It is not possible to achieve an STI equal to 0.6 only
with passive treatments and without a speech reinforcement system in such high
volumes. The passive treatments and the intelligibility parameters obtained after
works were assessed through numerical models made in Odeon Room Acoustics
Software. However, all the values were considered precautionary because: the source
was set as omnidirectional; the numerical model did not consider the PA system but
only the teachers’ voice as a source.
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(c) Hall II – Reverberation time T30
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Fig. 3.12 Room acoustic properties of the two halls before and after the renovation
works. On the left, the reverberation time as function of frequency octave band are
shown. On the right, the normalized sound pressure levels (SPL) as function of the
source-receiver distance is shown. Values of SPL have to be taken only qualitatively
because they do not refer to an omnidirectional source when PA is considered.
The reference level of the normalized SPLs is the position 4 meters far from the
omnidirectional source before the renovation. At this distance the cylindrical wave
of the line array is shaped. The subscript “M” states a value averaged over all the
receivers in the octave bands of 500− 1000 Hz. From “Effectiveness of acoustic
treatments and PA redesign by means of student activity and speech levels” by De
Salvio et al [35].

The PA systems have been replaced with line arrays (L-Acoustic Syva) located
behind the teachers’ desk and supplementary loudspeakers (L-Acoustic 5XT) as
fillers for the first and the last rows of the audience area. Choosing line arrays means,
from a theoretical point of view, to exploit a cylindrical wave throughout the space.
Thus, the decay with respect to an omnidirectional source is lower doubling the
source-receiver distance.
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The orientation of the fillers behind the desk was optimized to increase the
self-monitoring of teachers, too. The high similarity of the halls allowed to design
the same treatments for both. Due to the different sensitivity of the loudspeakers,
the gain and the time delays between line arrays and fillers were set to reach a
homogeneous coverage of the direct sound in the seating area with the help of a
further numerical model made in Soundvision software. Here, the high directivity
– vertical axis 25°, horizontal axis 130-140° in the range 250 - 2000 Hz – of line
arrays was considered, unlike in Odeon, to assess a more realistic sound diffusion
obtained over the audience. The goal of the PA design is to achieve an adequate
coverage over the audience, with SPL differences among seats of less than 3 dB. The
first rows have been underestimated because they can rely on the direct speech from
teachers. Figure 3.11 shows the diffusion degree obtained with the line array system.

After the placement of the new PA, further measurements were carried out to
assess the reliability of the acoustic design. Figure 3.12 shows the frequency behavior
of reverberation time T30 and the spatial decay of normalized sound pressure levels
(SPL) before and after the treatments for each hall. Besides the dodecahedron, the
SPL decay has been evaluated using the PA as source. Passive treatments have a
small influence on the spatial decay of a spherical sound source, i.e. the natural voice
or traditional loudspeaker; hence, it should be noted that a line array shows a lower
slope compared to a dodecahedron. SPLs measurements confirm the homogeneous
coverage over the audience area. However, while a small dependency on the distance
is observed (students seated in the first and the last rows receive similar useful
energy), there are significant variations of SPLs on the same row of the audience due
to the horizontal directivity of the line arrays. This specific coverage influences the
placement of the sound level meters used for SA and SL measurements, as discussed
in the following sections.

3.3 Measurement of student activity and speech lev-
els before and after acoustic treatments

After the renovation works, 9 lessons in Hall I and II were monitored with the same
setting and method seen in Section 3.1.2. Receivers were placed in the same position
as before the works to minimize the differences between the two measurements. It is
important to notice that all the lectures were measured in a pre-COVID19 scenario.
Results were compared and shown with 9 lessons measured before the renovation in
Table 3.6. Both measurements, before and after treatments were carried out with two
sound level meters. Thus, the results shown are averaged over the two receivers.



66 Applications in classrooms

Lectures from A to I in the upper part of the Table refer to previous outcomes
obtained in [43] and were measured before the restoration; lectures from J to R refer
to the measurements carried out after the works. The means are shown at the end of
each series of lectures. As seen in Table 3.3, the standard deviations of the outcomes
obtained by the two receivers are shown in brackets.

The measured A-weighted SA and SL values before the treatments lie respectively
in the range of 47.5 – 61 dB and 63.3 – 75.5 dB for GMM, 48.8 – 56.5 dB and 64.2 –
76 dB for KM, 45.8 – 61.6 dB and 64.8 – 79.2 dB for percentile and equivalent levels.
The measured SA and SL levels after the treatments lie respectively in the ranges
47.2 – 53.9 dB and 59 – 72.1 dB for GMM, 49.7 – 54.1 dB and 61.2 – 72.7 dB for
KM, 45.9 – 53.3 dB and 61.1 – 74.4 dB for percentile and equivalent levels. Before
the restoration work, the standard deviations between the two receivers, respectively
for SA and SL, lie in the ranges 0 – 2 dB and 0.8 – 4.6 dB for GMM, 0 – 1.9 dB and
0.8 – 4.5 dB for KM, 0.5 – 9.5 dB and 3.6 – 7.1 dB for percentile and equivalent
levels. Concerning the measured s.d. of SA and SL after the treatments, values lie
respectively in the ranges 0.3 – 3.1 dB and 0.1 – 1.9 dB for GMM, 0.2 – 1.5 dB and
0.1 – 2.1 dB for KM, 0.4 – 1.1 dB and 0 – 3 dB for percentile and equivalent levels.
The measured A-weighted mean values of SA and SL and their standard deviations
in brackets before the treatments are respectively 52.1 (1.0) dB and 68.3 (2.6) dB for
GMM, 53.3 (0.8) dB and 69.6 (2.5) dB for KM, 53.1 (4.4) dB and 72.2 (4.7) dB for
percentile and equivalent levels. The same parameters measured after the treatments
are respectively 50.8 (1.0) dB and 65.6 (0.8) dB for GMM, 51.7 (0.8) dB and 67.6
(1.1) dB for KM, 50 (0.7) dB and 67.8 (1.1) dB for percentile and equivalent levels.

Hodgson measured in Canadian university classrooms and lecture halls SA and
SL values in the range of 30 – 50.2 dB and 43 – 59 dB with average values of 41.9
dB and 50.8 dB, respectively [62]. Choi did not detect SA in Korean university
classrooms. However, average values of noise and SL were 43.7 dB and 51.4 dB,
respectively [27]. However, all the lessons measured in the cited previous works
were conducted without the support of the PA. Also, the volumes of Hall I and II
– 1000 and 900 m3, respectively – are bigger than the average of the cited works,
ranging from 110 to 957 m3 [62] and from 188 to 343 m3 [27]. Without considering
the outliers, the occupancy in the halls can be deemed similar before and after the
treatments.

3.3.1 Signal-to-noise ratio and evaluations of the renovation works

The intelligibility problem can be outlined as made up by two main factors: the
acoustical properties of the space, specifically the reverberation time, and the signal-
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Fig. 3.13 Lesson G (on top) and lesson D (on bottom). On the left, the Gaussian
mixtures and the respective components are shown. The solid lines indicate the
probability density function recorded during the lecture. The dotted and the dashed
lines show respectively the Gaussian curves associated to the student activity (SA)
and speech level (SL). On the right, the recorded SPLs are shown as a function of
their occurrence distribution. The SA and SL clusters are shown respectively in dark
and light grey. Markers indicate the mean values (for GMM) and the centroids (for
KM) which identify the SPL of each sound source. From “Effectiveness of acoustic
treatments and PA redesign by means of student activity and speech levels” by De
Salvio et al [35].

to-noise ratio (SNR), i.e. the difference between the signal to understand and the
background noise. During lectures both of these factors change, the first is influenced
by the occupancy, the second by SA and SL fluctuations. As mentioned before, in
lecture halls with high attendance, the signal-to-noise ratio SNR can be defined as
the difference between SA and SL, indeed.
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Comparing the techniques, the SA and SL means decreased after the treatments
per each methods. It could be assumed that a quieter environment has been achieved,
in particular for teachers. The average SL decreases by about 2.3 dB for the unsu-
pervised methods, GMM and KM, and about 4.4 dB for the Leq. The SA decreased,
respectively by an average of about 1.4 dB for the unsupervised methods and 3.1 dB
for L90. Concerning the analysis after the restoration works (lessons from J to R), it
is noticeable that, in most lectures, KM gives back higher SA values whereas the
L90 the lower ones. Concerning SL, Leq returns the highest values in most lectures,
whereas the GMM is the lowest in all cases. Thus, the comparison among techniques
seems to confirm the results obtained in previous sections. Equivalent continuous lev-
els return the highest SL, statistical levels return the lowest SA after the works. This
could mean that the human chatter does not fit with the 90th acoustical percentile of
exceeded time.

It was proved that GMM and KM converge to the same results only if the
homoscedasticity is reached, i.e. all random variables have the same variance [94, 6].
This condition cannot be fulfilled, in particular in the case of human noise which
has a high temporal variability. Inside classrooms, SA shows a larger statistical
distribution than SL, especially when teachers use a PA. The amplification chain -
from microphone to loudspeakers - can provide tools that compress the dynamic of
the voice, reducing the variance of SL close to its mean value.

Further considerations can be found in the initial hypotheses of the two algo-
rithms. The mean difference between GMM and KM regards the cluster distribution
of data. In GMM, a single datapoint can belong to more than one cluster with an
assigned probability whereas in KM this is not possible. In this latter technique a
single datapoint can be assigned only to one cluster. The ability to assign one point
to one or more clusters is the difference between hard and soft clustering [8].

The two factors, homoscedasticity and the hard/soft clustering assumption, are
visualized in Figure 3.13. In Figures 3.13a and 3.13c, solid lines show the recorded
probability density functions and the two Gaussian components - dotted for SA
and dashed for SL - for two lessons (G and D). The data points belonging to the
fuzzy borders, i.e. the data in common between the two clusters weighted by an
assigned probability, are highlighted with the dashed patch. The overlapping area
is a function of the number of clusters and the variances of the Gaussian curves;
thus the larger the variance, the larger the area is. Noticing the shape of the SA
curve, it can be seen how large its variance is, unlike the SL curve; thus it shows
the effect of heteroscedasticity on the mean values. On the right, in Fig. 3.13b and
3.13d, the same lessons are plotted after being post-processed via KM. The clusters
associated with SA are in dark grey, whereas those associated with SL are in light



70 Applications in classrooms

grey. Here, the distinction of the clusters is sharp, each data point belongs to one
and only one cluster. On the y-axis the bin count is shown rather than the density to
preserve the shape of the total distribution. The consequences of the fuzzy borders
and the heteroscedasticity of the clusters are particularly evident in lesson G. Here,
the SA difference between GMM and KM is about 5.3 dB. Conversely, it is worth
noting that the difference of SL of the same lesson for both GMM and KM is 0.6 dB.
Concerning lesson D, the difference of SA calculated via GMM and KM is 3.1 dB
and is 1.8 dB regarding SL.

Concerning the standard deviations, their means are quite different, especially
for L90 and Leq, which shows an SA decrease of 3.7 dB and 3.6 dB for SL. The
means obtained by the unsupervised methods measured lower decreases but just
for SL, respectively of 1.8 dB for GMM and 1.4 dB for KM. However, looking at
the single lessons, it is clear how the s.d. of SA are lower after the works. The
lack of difference of the mean values is due to the outliers, indeed. The decrease of
s.d. may suggest that the sound field after the renovations is more diffuse and more
homogeneous coverage is achieved with the redesign of PA.
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Fig. 3.14 Relationship between student activity (SA) and speech level (SL) measured
values via GMM and KM. Empty and solid markers indicate respectively before and
after acoustic treatments. Each marker refers to a whole lesson. From “Effectiveness
of acoustic treatments and PA redesign by means of student activity and speech
levels” by De Salvio et al [35].

Figure 3.14 shows the correlation between SA and SL before and after works.
The trends measured before the works are shown with dotted and dashed black
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lines for GMM and KM, respectively. Despite the R-squared coefficients, higher
for GMM (R2 = 0.75) and lower for KM (R2 = 0.49), tendencies are very similar.
After the renovation works, the correlation decreased, showing less dependency
between the noise (SA) and the signal (SL). Looking at the R-squared values, 0.15
for GMM and 0.05 for KM respectively, it is possible to notice how measured data
are more homogeneous, unlike before the works. The difference can be ascribed to
the different spread of the sound energy between a traditional PA and a line array,
i.e. the use of a cylindrical wave. The energy emitted by a traditional PA decreases
significantly with the distance. This means that the first rows are exposed to higher
sound levels than the last. Thus, it is likely to have different SA levels throughout
the audience area. A high-performance system, such as a line array, provides high
dynamical speech signals. This can bring either improvements or impairments to the
comprehension of the students. Nevertheless, the dynamic can be controlled through
compressors or limiters to keep the speech levels in a short range. Thus, an optimal
criterion to set a homogeneous SL in the hall may be thought to control the rise of
SA.

When the rooms are equipped with a PA, teachers can experience feedback of
their own voice or not. It depends on both the acoustic properties of the environment
and the coverage of the loudspeakers. The latter, because of their position, act as
monitors for teachers without triggering a Larsen effect. Moreover, in the halls under
study, two supplementary fillers cover the area near the teacher to reach an adequate
self-monitoring level.

A recent paper on unsupervised methods in K-12 classrooms stated that these
measured values could not be reliable to make considerations about the Lombard
effect [147]. In this case, due to the lack of dosimeters, proximity effects between
teachers’ mouth and microphone and variations of gains of the PA are ignored. Thus,
for the same reasons, remarks about the Lombard effect are avoided. Further studies
may address the repetition of this kind of analysis, including dosimeters on teachers
and varying the thresholds and the ratio of compressors and the levels of limiters.
Nevertheless, since the signal-to-noise ratios are always measured between 10 and
20 dB, it is reasonable to assume a sort of self-adjustment of noise levels by students.

3.3.2 Effects of occupancy on the acoustics of a lesson

The occupancy plays a key role in the dynamical context of the acoustics of a
lesson. Generally in school grades, the amount of students is fixed in each room. In
universities, it continuously varies during lectures. Thus, the equivalent absorption
area within university lecture halls changes during the day. The absorption area in
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occupied condition, i.e. during the lecture, is one of the main features affecting all
the parameters proposed by Hodgson et al in their predictive model for SA [62].
Moreover, the influence of the students depends, besides the acoustical properties
of the room, by their distribution through space [25, 26]. The sound absorption
provided by people is higher if the room has chairs made by reflective materials,
e.g., wood. Thus, students seated heterogeneously in the audience area could create
different absorption concentrations throughout the space. Closer or larger seats
influence the exposure of people surfaces providing less or more sound absorption.
However, Hall I and II have the seats distributed as terraces. Hence, the exposed area
of each person does not depend by the percentage of occupancy and their spatial
distribution. The importance of attendance in each lesson is highlighted by the ratio
between the equivalent absorption areas in the occupied and empty state in Table 3.6.
In large lecture halls, the presence of students can double the absorption area in some
cases, strongly affecting the reverberation time instead of small classrooms, such as
in secondary school [23].

The drop of correlation between SA and SL shown in Figure 3.14 has led
the analysis to focus on the relationships among the occupancy, the SNR, and its
components, SA and SL, respectively. These are shown in Figure 3.15. As already
noticed, similar occupancies were measured before and after the works, barring
the outliers. White and black lines represent the tendencies before and after the
restoration in all plots, respectively. Starting from the top, the relationship between
occupancy and the signal-to-noise ratio is shown. The enhancement of the acoustic
conditions of the halls seems to have made the correlation more sensitive. The SNR
increases linearly with the occupancy, indeed. This could mean either that the bigger
the audience, the quieter the environment or the bigger the audience, the higher the
speech level used by the teacher. It is well known that a SNR equal or greater to 15
dB does not affect the intelligibility scores and values around 20 dB are considered
as “ideal” targets in classrooms [17, 10, 61]. Before the works, the SNR did not seem
to correlate with the occupancy, and it is confirmed by the R-squared coefficients.
After the works, the relationship has become clearer but not so tight. However, it can
be deduced that SNR is more dependent on the number of students. Moreover, an
occupancy of about 120 students seems to be a sort of threshold for the behaviour of
listeners after the works. Crowded lectures seem to trigger a psychoacoustical effect
which leads the students to achieve the best SNR without affecting the intelligibility.
Lower occupancies keep the SNR lower than 15 dB whilst higher occupancies reach
SNR values greater than 15 dB. In correspondence with the occupancy of about 120
people, the records are more variable, and the measured SNRs span from about 9 to
20 dB. None of the recorded lessons exceeds the value of 20 dB, as expected for the
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Fig. 3.15 Relationship between occupancy and signal-to-noise ratio (SNR), student
activity (SA), and speech level (SL) measured values via GMM and KM. Empty
and solid markers indicate respectively before and after acoustic treatments. Each
marker refers to a whole lesson. From “Effectiveness of acoustic treatments and PA
redesign by means of student activity and speech levels” by De Salvio et al [35].
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above reasons. Results suggest that in large lecture halls, despite the optimal acoustic
characteristics, a PA is necessary to easily achieve an SNR of +15 dB, especially in
the back of the room [59, 60].

In the middle of Fig. 3.15, the plot shows the relationship between occupancy
and SA. After the acoustic treatments, the SA seems to keep a constant tendency
regardless of the number of students attending the lectures. Thus, it seems that
the SA is independent of the occupancy. This is particularly true for GMM, less
for KM, which preserves a descending tendency as measured before the treatment,
even though with different slopes and smaller R-squared coefficients. Thus, it could
mean that before the works, students control their noise depending on their number.
Quieter environments as a result of acoustic treatments of classrooms were measured
by Oberdörster and Tiesler in primary school [106].

On the bottom, Fig. 3.15 shows the relationship between occupancy and SL. Here,
the acoustical treatments seem to have achieved the greatest effect. The tendencies
changed directions, indeed. This means that teachers tend to increase their voice
levels with rising occupancy. However, it could not be related to a vocal effort
because all lectures were carried out with a PA system. The reasons to explain this
behaviour could be various. High occupancies before the restoration helped to reach
lower reverberation, more similar to values obtained after the treatment. Furthermore,
SA tendencies before the works decreased with respect to the occupancy (shown in
the middle of Fig. 3.15). Thus, combining reverberation and noise conditions, the
more crowded the room the quieter the environment was. Before and after tendencies
of the relationship between SL and occupancy cross each other in correspondence
with an occupancy of about 150 students. The main differences between before and
after states are noticeable below this value. Tendencies after works change slopes
mainly because lower SL values were measured with half-empty halls. Nevertheless,
the R-squared coefficients are not high enough to state a tight correlation between
the two parameters. However, it is interesting to notice how the SNR depends more
from SL than SA after works.

Furthermore, it should be noted that the direct field emitted by a traditional
loudspeaker drops in a few meters compared to the early and late reflections. A line
array allows the direct field to reach the back of the hall instead. This means that
the early reflections are almost absent because of the high directivity of the source,
whereas the late reflections are the same, regardless of the system’s technology. This
could justify the increase of SL after the PA redesign in Figure 3.15. Before the PA
redesign, SL decreased with occupancy maybe because the absorption increased,
especially on the late reflections. After the installation of the line array, most of
the speech energy in highly occupied conditions is in the direct contribution. Thus,
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the absorption due to the occupancy has a greater impact on SL values before the
renovation than after. The ratio between the equivalent absorption area in occupied
and empty state has a higher average value before (Aocc/A0 =1.82) than after
(Aocc/A0 =1.52) the works, as shown in Table 3.6.

3.3.3 Spectral analysis of the measured sources

Spectral analysis can bring further insights about the way the clustering works. It is
expected to achieve two speech signals during lectures, one associate with SA and the
other with SL. The aid of the PA turned out to be very useful in assessing the spectral
distribution of the clusters. Indeed, it is expected to have an SL spectrum more
anechoic-like, being made almost totally of direct energy, and thus very similar to the
reference standards [69, 3, 73]. To obtain the spectra, the clustering was broadened
over the octave bands 125 - 4000 Hz range. Figure 3.16 shows the average relative
spectra over all the measured lessons. On the left, the plot presents the outcomes of
SA (dashed line) and SL (solid line) obtained before the renovation. On the right, the
plot shows the results obtained after the works. Relative spectra were evaluated by
setting the 1 kHz octave band equal to 0 dB. According to the standard tendencies,
the spectra obtained are associable to the speech. Being produced by a single source
focused in a particular point – i.e. the loudspeakers positions –, SL has a sharp trend
in agreement with [62] and [147]. SA is slightly different. This is expected because
it is more spread and affected by the noise which modifies the shape, especially in
the low frequencies where the greatest uncertainties are [87, 124].

Different results regard the spectra obtained after the works. They are more
flattened even for SL, as shown on the right of Fig. 3.16. It is worth recalling that
treatments regarded the redesign of the PA besides the surfaces; thus, SL seems to
be deeply affected by the equalization of the new loudspeakers. However, the most
interesting result concerns the shape of SA from the middle to the high frequencies
1-4 kHz. In fact, despite the differences underlined above about the PA, the shapes of
the spectra from 125 up to 500 Hz are quite similar before and after the treatments.
From 1 kHz up, the behaviour of SA is not as expected since the PA like SL cannot
influence it. In these frequencies, the clustering seems to be less reliable. The
reasons why this happened could be speculated on multiple levels. On the side of
the algorithms, if the peaks of the occurrence curves are not so clear, it may be
difficult to characterize the difference between the two sources. On the side of the
renovation works, the treatments regarded mainly the absorption of mid and high
frequencies (see Table 3.4). It may be possible that the formants of the speech are
more affected losing more energy by the treatments than the fundamentals. On the
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Fig. 3.16 Average relative spectra of student activity (SA) and speech levels (SL)
obtained via GMM and KM. On the left SA and SL obtained before the acoustic
treatments of the halls are shown, on the right the values obtained after works. Values
are averaged over all measured lectures. From “Effectiveness of acoustic treatments
and PA redesign by means of student activity and speech levels” by De Salvio et al
[35].

side of the students’ behaviour, it has been noticed in previous sections how quieter
environments have been achieved; thus it could mean that the detection of SA is
more difficult.

3.3.4 Variations of SA and SL during lectures

A power analysis allowed to increase the statistical significance of the study. First,
each lesson has been analyzed by slots of 15 minutes, increasing the sample size up
to 45. Then, the huge effect size of about 3.8 calculated for SA and SL populations
allows the analysis to reach a significance level of p < 0.001 and statistical power of
100%.

The data sample augmentation led to the analysis of the temporal fluctuations
of SNR during lectures. Irrelevant speech noise, i.e. SA in this case, can affect
speech intelligibility with informational or energetic masking [19, 116]. Thus, it is
important to consider to what extent the SNR varies during lessons [133].

The temporal trends of each lecture before and after the treatments for GMM
and KM are shown in Fig. 3.17. SL are shown with solid lines, SA with dashed
lines. The results between the methods seem to be quite consistent with similar
tendencies. Exceptions are represented by lesson G before the treatments and lesson
O after the restoration. Differences in this kind of analysis are strictly related to
the shape of the occurrence curve and the consequent variance of data, as seen in
Figure 3.13a. In these two lessons – G and O – the occurrence curves are particularly
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Fig. 3.17 15-minutes samples of student activity (SA) and speech level (SL) for each
lecture and each algorithm before and after the acoustic treatments of the halls. SA
and SL are indicated respectively with dashed and solid lines. From “Effectiveness
of acoustic treatments and PA redesign by means of student activity and speech
levels” by De Salvio et al [35].
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Table 3.7 Correlation matrix among the main parameters of this study before and
after the acoustic treatments of the halls. The main parameters are: the global, i.e.
evaluated on the Leq occurrences, student activity (SA) and speech level (SL) for both
methods GMM and KM, occupancy N, and equivalent absorption area in occupied
state Aocc. Before and after correlations are indicated respectively in regular and
bold. From “Effectiveness of acoustic treatments and PA redesign by means of
student activity and speech levels” by De Salvio et al [35].

Correlation coefficients - Before/After

SA - GMM SA - KM SL - GMM SL - KM N Aocc

SA - GMM 1 - - - - -
SA - KM 0.85/0.66 1 - - - -

SL - GMM 0.85/0.61 0.65/0.21 1 - - -
SL - KM 0.81/0.57 0.71/0.29 0.97/0.98 1 - -

N -0.48/0.13 -0.52/-0.54 -0.32/0.34 -0.36/0.14 1 -
Aocc -0.44/0.07 -0.38/-0.54 -0.31/0.33 -0.32/0.16 0.90/0.99 1

skewed. This results in a SA curve with a high variance and a heteroscedasticity
broadly pronounced. The small differences obtained for lesson O in Table 3.6 can
be due to the average calculated on the whole recording and the smaller standard
deviation measured between the two sound level meters after the acoustic treatments.
Despite both techniques producing similar results, the KM seems to be less sensitive
to variations. This stability may be due to the sharp borders of the KM algorithm.

Correlation coefficients before and after the renovation have been evaluated
between SA and SL for both unsupervised methods besides occupancy and equivalent
absorption area in occupied state. Table 3.7 shows the correlation matrix. Before and
after correlations are indicated in regular and bold, respectively. The first interesting
results concern the decrease of the correlation among SA and SL for both techniques
GMM and KM. This is particularly evident for KM, which lowers the correlation
from 0.71 to 0.29 whereas for GMM from 0.85 to 0.61. The drop of the coefficient
states that SA and SL keep on having a growing and related tendency but weaker. The
matrix points out as GMM and KM calculate SA differently. The acoustic treatments
affect deeply the anti-correlation between Aocc and SA, which is completely lost
for GMM and strengthen for KM. Concerning SL, despite its weak correlation with
Aocc, it is worth noting how the regression slope changes for both GMM and KM
as seen in Fig. 3.15. More in general, Aocc loses its anti-correlation with almost all
parameters except for SA calculated via KM.
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Summary

The present chapter shows some applications of the proposed method in university
lecture halls. An acoustic discomfort in educational spaces causes different draw-
backs, like the Lombard effect, listening and vocal efforts of students and teachers,
respectively. In such spaces, where communication is the main activity, the ability to
identify the sound contribution of each source is needed. The analyses conducted are
focused on the detection of the student activity (SA), i.e., the chatting made among
students during lectures. SA can be deemed as a metric to assess the focus extent of
students. The chapter is basically divided into two parts.

In the first part of the chapter, the methodology to detect SA is discussed. Based
on the literature, different techniques are compared: two visual methods, i.e., the
conventional praxis, called PL, and a conditioned GMM, called PD; two blind
methods, i.e., the Gaussian Mixture Model, called GMM, and the K-means clustering,
called KM. Results show similarities between PL and KM and between PD and
GMM. The main reason lies in the difference between hard and soft clustering
performed by the algorithms. The first assigns a single data point to only and only
one cluster. The second could assign a single data point to more than one cluster
based on probabilities weights. KM is a hard algorithm. PD and GMM are both
soft clustering algorithms that perform a Gaussian mixture fitting with different
boundary conditions. PD performs the fitting according to constraints decided by
the operator, and GMM does it via the Expectation-Maximization algorithm. PL is
not an iterative algorithm but describes the acoustic scene through the equivalent
continuous level and the 90th acoustical percentile of the entire SPL population
collected during the monitoring. Hence, it is highlighted how PL relies on strong
assumptions, not always fulfilled. Visible peaks of the occurrence curves and flex
points of the cumulative curves are detected by both GMM and KM. Blind methods
prove to be methodologically more robust and consistent with the features of the
curves obtained by the measurement.

The second part of the chapter analyzes the behavioral changes of students
after acoustical renovation works in two of the lecture halls shown in the first part.
After a comprehensive overview of the treatments, both active and passive, the
SA is analyzed only through blind methods, i.e., GMM and KM. However, the
comparison with the conventional praxis, the PL, is kept. Results show a decrease in
the regression curves concerning the correlation between SA and the other metrics,
i.e., the teachers’ speech levels and the occupancy during lectures. Spectral analyses
show the reliability of the methods to reconstruct the spectra of each source measured
simultaneously. Further discussions prove how SA is a reliable and measurable
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metric to assess the comfort and the behavior of the students and their relationship
with the acoustical context.



Chapter 4

Applications in offices

Keywords: speech intelligibility, background noise, mechanical noise, human noise.

The method proposed in this work has been deeply studied and tested in offices. The
acoustic environment of workspaces represents a complicated and sensitive context
to address. Workplaces are one of the most lived-in spaces by people. Offices can
have different shapes, volumes, acoustical properties, and intricate characteristics
to monitor. This complexity deals with the need of an appropriate acoustic comfort
experienced by workers. Noises can affect deeply the individual perception basing
on personal factors, tasks to accomplish, and the nature of the noise itself [46, 15, 82].
In such a challenging context, the acoustic comfort results to be a function of the
task to perform, the architectural setting of workstations, and the balance needed
between the ease of communication and concentration [113].

The short-term memory is strictly bound up with attention. This was proved
in several psychological cognitive experiments that showed how irrelevant sounds
disrupted the ability to accomplish tasks by participants. Besides different kinds
of sounds, also speech signals were used [77, 47]. Thus, the understanding of
colleagues’ speech, when not involved in the conversation, is one of the most
distracting noises in offices [64, 15].

The acoustic comfort in workspaces raised the attention in last years because
of the increase of open-plan offices. Here, different activities are carried out by
workers simultaneously. However, activities could be acoustically contradictory,
e.g. speech communication and the need of quiet to focus on individual works.
Further, a certain extent of speech privacy has to be provided per each employee.
Thus, the design of open-plan offices involves accurate considerations concerning the
layout of workstations and mutual arrangement of teams or workgroups. Acoustical
performance in such complex spaces regards sound absorption, background noises,
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height of screens and placement of furnitures and desks considering their mutual
distances.

The reverberation time is commonly used as the main indicator of the acoustical
properties of spaces. In some cases it could result as relevant to outline the charac-
teristics of an office. In other cases it is not enough to describe the performance of
rooms designed for different and simultaneous acoustical purposes. Spatial decay of
SPLs, STI, and background noise levels must be considered as metrics for a more
complete evaluation.

Two ISO standards are focused on the measurement, characterization, and design
of open-plan offices: the ISO 3382-3 and the ISO 22955 [73, 71]. The ISO 3382-3
defines the metrics needed to accurately describe the performance of offices. Besides
the spatial decay rate of speech D2,S and the A-weighted SPL of speech at a distance
of 4 m Lp,A,S,4m, most of the metrics are STI-related. Thus, it is confirmed that the
intelligibility represents one of the most effective workers’ performance metrics [64].
Figure 4.1 shows to what extent the STI affects the performance of cognitive tasks
according to four different models. The x-axis shows the STI and the y-axis the
percentage of performance’s decrease [52]. The relationship describes the change
in performance, not the magnitude. Different tasks could be more or less affected
by the irrelevant speech, e.g. intensive concentration tasks are more influenced by
intelligibility than routine tasks. The negative effects of speech on work performance
begin to vanish when the STI is about below 0.50 for most of the models. Therefore,
the distraction distance metric rD described in the ISO has been set at the distance
where STI reaches 0.50. The negative effects of speech on work performance
disappear when the STI is below 0.20. Therefore, the privacy distance metric rP

described in the ISO has been set at the distance where STI reaches 0.20.
The strong relationship between workers’ performance and well-being and the

intelligibility highlights the importance of the perceived noise levels at workstations.
Background noise assumes a key-role, indeed. According to the considerations
mentioned above, the amount of noise experienced by employees during working
hours represents a balancing factor for the design of workspaces. Low SNRs disrupt
the speech signal decreasing the intelligibility. Thus, theoretically speaking, high
levels of noise are useful to prevent the distraction due to the irrelevant speech. At
the same time, quiet places are needed to boost the focus abilities. As a consequence,
noise should be high enough to disrupt the intelligibility but low enough to allow
the concentration [130, 40]. However, the ISO 3382-3 states that the STI should
be evaluated ignoring the noise produced by the human activity. This assumption
leads to underestimate the real acoustic environment experienced in the office [55].
Moreover, it implies that the worst distracting scenario is represented by a single
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Fig. 4.1 Comparison of models about the relationship between the speech transmis-
sion index (STI) and the decrease in performance (DP). From “The relation between
the intelligibility of irrelevant speech and cognitive performance—A revised model
based on laboratory studies”, by A. Haapakangas, V. Hongisto, A. Liebl [52].

talker and not by a multi-talker context [153, 151]. The ISO 22955 focuses on
containing speech propagation [71]. Its purpose is to limit the disturbance among
adjacent workstations but also to optimize the comfort within short-distance conver-
sations. The most important contribution of the standard is the assessing noise levels
at workstations depending on the activity carried out within the space. Also, Annex
D provides surveys to subjectively rate the annoyance of noises in the office. Table
4.1 shows the kinds of activities considered and the respective A-weighted target
values.

The combined approach of the two ISO standards deeply affect the acoustical
design of workspaces, not only the open-plan type [54]. The contribution of the
human activity broadens the analysis towards the assessment of a dynamic context
where persons are considered no longer as passive receivers but also as active sound
sources [119, 120]. The STI can be corrected in post-processing with more accurate
background noise values. This means that the measurement of noise is crucial and
can be performed in an accurate way [123, 44]. Different criteria, like the liveliness
and percentile levels differences, were proposed to assess the impact of persons in the
acoustical environment and the corresponding comfort and productivity [141, 121].

This chapter shows two real-world applications in two different offices of the
method under study. The main focus of the discussions concerns the separation,
identification, and measurement of the main kinds of sound sources in active offices.
Based on the requirements described in ISO 22955 to measure the workstation noise



84 Applications in offices

Table 4.1 ISO 22955:2021: target values for workspaces and workstations depending
on the activity conducted.

Activities in its own space

Activity Target values (dBA)

Activity mainly focusing on outside of the room communication 55
Activity mainly based on collaboration between people at the nearest workstation 52
Activity mainly based on a small amount of collaborative work 48
Activity can involve receiving public 55

Workstation noise levels assumed for different types of activity

Receiver space type Target values (dBA)

Informal meetings (open plan) 48
Outside of the room communication (phone) 48
Collaborative 45
Non-collaborative 42
Focused phone 42
Focused individual work 40

levels LAeq,T, SPLs monitoring long at least 4 hours and with an occupancy of at
least 80% were performed in two offices. In this context, the analyses concerned
the most extensive generalization as possible of the method. The aim is to separate
the human contribution from the other sources, e.g. mechanical noises or traffic.
The ability of performing this kind of separation would represent a step forward for
the technical praxis used in measurements and designs of workplaces at the time
of writing. The first case study involved the unsupervised analysis of long-term
monitoring carried out via GMM and KM, called Algorithm 1 and Algorithm 2. The
results were compared with the common metrics used by scholars and standards, i.e.
the continuous equivalent Leq and the statistical levels L90, L50, L10. Preliminary
considerations about the features – means and standard deviations – were conducted
according to literature. Further remarks about the reconstructed spectra and the
influence of a realistic measurement on the STI were made in [34]. The second case
study shows the same analysis, improved in some steps, to assess its reliability in
a different environment. Besides the clustering analysis presented in [34], a dual
analysis was carried out through a deep clustering approach. Thus, both machine
and deep learning approaches were used to conduct cluster analyses on two different
datasets of the same event. In this case, the sound level meter recorded both SPLs
and the digital audio of the whole working day in one office. Then, SPLs were
processed via GMM and KM, whereas 1-second length spectrograms of the digital
audio were used as input of a variational autoencoder (VAE). A semi-supervised
analysis of the VAE’s latent space was used to assess the ability of a neural network
to recognize patterns between the two different active sound sources in the office.
Discussions concerned the spectra reconstructed via GMM and KM, hints about the
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Table 4.2 Reverberation time T30 measured in the office under study. Results are
shown in octave bands from 125 up to 4000 Hz.

Frequency octave band (Hz)
125 250 500 1000 2000 4000

T30 0.41 0.45 0.40 0.47 0.49 0.53

influence of the room’s frequency response on the measurements, and the use of the
VAE as a validation tool for the proposed unsupervised machine learning method.

4.1 Active sources in active office

4.1.1 Case study

To assess the proposed methods, an office with four workstations was chosen as case
study. The room is placed in a building outside the city, far away from road traffic
too. Thus, the noise expected during working hours is made only by the “inner”
sources: the human activity, and the mechanical noise due to the HVAC system and
the electronic equipments, e.g. computer fans, printers, etc. During the inspection
conducted to set the sound level meter, the room was measured according to ISO
3382-2 to evaluate its T30 [72]. The office has a treated ceiling and, consequently, a
low reverberation time. Hence, the room can be considered as a “dead” environment.

Fig. 4.2 Plan of the office under study. Numbers from 1 up to 4 indicate the
measurement positions according to ISO 3382-2. SLM indicates the position of the
sound level meter used for the long-term monitoring. From “Unsupervised analysis
of background noise sources in active offices” by De Salvio et al [34].
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The office under study is made by 4 workstations and a meeting table. Despite the
small size of the space, the meeting table is far enough from the workstations. Figure
4.2 shows the plan of the office. The workstations are indicated with the letters A, B,
C, and D. Numbers from 1 up to 4 show the positions used for the measurements.
Table 4.2 shows the measured T30. The SLM point shows the position of the sound
level meter used for the long-term monitoring of the activities.

4.1.2 Long-term monitoring of the activities

An entire working day was monitored through a sound level meter. According to
ISO 22955, the recording was long enough to obtain a significant SPL statistical
population [71]. Short-time equivalent levels were acquired with a 100 ms interval
time. Octave-band filtered SPLs were obtained from 125 up to 4000 Hz. The
dataset obtained has been processed via GMM and KM, according to the procedure
described in Chapter 2. Briefly, an outline of the three-step method is described:

• The first step concerns the preparation of the candidate models. Here, candi-
dates were evaluated via GMM and KM from a number of clusters K from 2
up to 6.

• The model selection metrics evaluate the “best” among the candidate models:
Silhouette coefficient (SC), Davies-Bouldin index (DB), Calinski-Harabasz
coefficient (CH), and Gap statistic (GS). The best model is chosen according
to the majority rule, i.e. the most frequent result obtained among the metrics.

• The features, means and standard deviations, are collected per each sound
source described by the model selected. Temporal and metric features –
i.e. standard deviation (s.d.) and the average intracluster distance (AICD),
respectively – were used to label the sources as human or mechanical.

In offices, the human sound source can be deemed totally described by the speech,
the most relevant human activity. Thus, previous studies about the speech s.d. can be
useful to set the threshold to identify the human clusters. Concerning this, Bottalico
and Astolfi studied vocal doses of elementary male and female teachers. They found
an uncertainty of the SPL mean of about 4 dB [13]. Olsen measured a s.d. of the
speech in the range of 4-6 dB [107]. Iannace et al. measured the mechanical system
noise within an open-plan office in three operating conditions: two different speeds
and the background noise with the HVAC system off. The s.d. in the first two cases
were about 1 dB, in the third it was of about 4 dB [68]. Leonard and Chilton reported
the measured ambient noise levels of previous studies in open-plan offices. It is
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Table 4.3 Model selection step for the office under study. Results are shown for both
GMM and KM algorithms. Each metric has been evaluated per each octave band
from 125 up to 4000 Hz.

Gaussian Mixture Model
Frequency octave band (Hz)

Metric
125 250 500 1000 2000 4000

Silhouette 2 2 2 2 2 2
Davies-Bouldin 2 2 2 2 2 2
Calinski-Harabasz 3 6 6 4 4 6
Gap Statistic 2 2 2 2 6 2
Best 2 2 2 2 2 2

K-means clustering
Frequency octave band (Hz)

Metric
125 250 500 1000 2000 4000

Silhouette 2 2 2 2 2 2
Davies-Bouldin 6 3 4 4 6 2
Calinski-Harabasz 6 6 6 6 6 6
Gap Statistic 2 2 2 2 2 2
Best 2 2 2 2 2 2

shown how the difference between minima and maxima SPLs spans between 5 and
and 11 dB [114]. Based on this literature, it is possible to set a preliminary threshold
of about 5 dB. A cluster obtained via GMM is labelled as human if the s.d. is greater
than 5 dB, otherwise it is assumed as mechanical.

Concerning the KM, there is no literature about the AICD of acoustical measure-
ments. Thus, the classification follows the one made via GMM. Qualitatively, low
values of AICDs are associated to mechanical clusters, otherwise to the human ones.

Further considerations can be made about the proportions of data contained in
the clusters with respect to the total dataset size. Thus, the cluster mixing proportions
for GMM and the percentage of data over the total size for KM were collected.
These parameters can be deemed as temporal information about the activity of each
source during the monitoring. To preliminary assess the reliability of the results and
compare with previous studies, the equivalent levels Leq and the statistical levels L90,
L50, L10 were collected [121].

Table 4.3 shows the results of the candidate model selection step for GMM and
KM, respectively. Each metric has been evaluated per each octave band. The selected
model are shown in the last row named “Best”. Results show that K = 2 is the best
number of clusters in the collected data for both algorithms. This is consistent with
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the expectations about the number of active sound sources in the office, i.e. human
and mechanical.

Table 4.4 shows the results of the models obtained via GMM and KM with K = 2.
Results are associated with each cluster, human or mechanical. Spectra have been
reconstructed from 125 up to 4000 Hz. In brackets, s.d. and mixing proportions are
shown for GMM, AICD and the percentage of the cluster size over the whole dataset
is shown for KM. Besides the clustering results, the equivalent levels Leq and the
statistical levels L90, L50, L10 are shown.

4.1.3 Statistical insights about the active sound sources

The labelling step is strongly based on the SPLs variation within the same cluster.
Concerning the GMM the s.d. is used to evaluate the size of clusters, whereas the
AICD is used for KM. The intuition is the same for both algorithms. The larger the
cluster, the more random the source is. High SPLs variations mean that the source
varies in time, like the human activity. By contrast, low temporal SPLs variations
suggest a mechanical cycle. This is confirmed by Table 4.4, where the tendencies of
s.d. and AICDs are proportional. Consistent results have been obtained concerning
the mixing proportions in GMM and the size of clusters in percentage in KM, where
the larger clusters regard the mechanical noise, as expected. The only exception is
represented by the 2000 Hz octave band for GMM. Here, the human cluster has a
mixing proportion equal to 0.56. This could be due to the low contribution of the
mechanical noise and the significant speech energy in that octave band.
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Fig. 4.3 Coefficient of variation of mechanical and human sources. From “Unsu-
pervised analysis of background noise sources in active offices” by De Salvio et al
[34].
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As seen in Section 1.1.3, GMM and KM can be related. In fact, GMM can be
described as a generalization of KM for small variances [94]. This is confirmed by
the results in Table 4.4. Mechanical clusters have similar means, especially in low
frequencies where HVAC systems have higher power. Thus, the higher the variances,
the larger the differences between GMM and KM are. As a consequence, the data
homoscedasticity is not fulfilled.

To deepen the understanding of the dispersion of data in clusters, the coefficient
of variation (CV) has been investigated. CV is also called “relative standard deviation”
and is defined as the ratio between the s.d. and the mean of a population. Figure
4.3 shows the CV of both sources, human and mechanical, per each octave band
obtained via GMM. The tendencies seem to be proportionally equal for both sources
up to 500 Hz. Then, the behavior changes increasing the frequency. The spread of
the human clusters increases up to the 2 kHz octave band. In this range the human
activity randomness grows showing a higher dynamical behavior. This is consistent
with the expectations since from 500 up to 2000 Hz most of the formants of the
speech occur; hence, the biggest part of the energy of the speech. In general, the
trend of CV confirms the assumption of identifying the human activity with the
larger clusters.

4.1.4 Spectral insights about the active sound sources

Further investigations to confirm the assumptions made to conduct the unsupervised
analysis concerns the spectral matching. Since there is no a reference spectrum
for HVAC noises, the analysis is focused on the speech cluster. The sound power
levels of the speech shown in ISO 3382-3 were contextualized in the office under
study. Values were averaged between male and female speakers and for a normal
voice effort. Thus, the SPLs of the speech were calculated using the diffuse field
hypotheses and the reverberation time in-situ measurements [73, 63]. The diffuse
field can be assumed because all the distances among the workstations are greater
than the critical radius. A talking time of about the 20% of the whole monitoring
time was considered.

The background noise levels measured in the office never exceed 45 dB. Thus,
the Lombard effect is not triggered and it is possible to use a constant value of speech
power level [114]. Previous studies showed how the speech spectrum changes in
noisy environments, especially in lower bands [87, 124]. This is observable in
the results with an increase of 6 and 3 dB in the 125 and 250 Hz octave bands,
respectively. The spectra obtained via GMM and KM are compared with spectral
equivalent levels Leq. Figure 4.4a shows the reconstructed and the expected spectra.
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Fig. 4.4 Reconstructed spectra via GMM, KM, Leq, and L90. Figure 4.4a shows the
spectral matching between the expected spectra calculated in the room under the
assumptions of a diffuse sound field (dashed line) and the human clusters calculated.
Figure 4.4b shows the inferred values of mechanical noise per each method. The
dotted line shows the lowest detectable limit of the equipment used. From “Unsu-
pervised analysis of background noise sources in active offices” by De Salvio et al
[34].
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The first is indicated with markers, the second with a dashed line. Algorithm 1 and 2
refer to GMM and KM, respectively.

The qualitative results confirm the assumptions: the human cluster is comparable
with the speech, the main detectable human activity. However, differences have been
achieved among methods. GMM gives back lower values with respect to the other
techniques. The gap could be associated with the different way of the algorithms to
cluster data. GMM performs a soft clustering process unlike KM which performs
a hard clustering. Data points in GMM could belong to more than one cluster
with an assigned probability. This does not happen in KM where each data point
belongs to one and only one cluster [129]. Thus, the overlap area between two
Gaussian curves obtained via GMM could affect the corresponding means. On the
other hand, hard clustering seems to obtain results similar to the expected and Leq

tendencies. However, it should be noted that Leq levels are strongly affected by low
SNRs. This is confirmed by the flat trend of the speech spectra in low frequencies.
The high contribution due to the HVAC system influences the speech energy that
in 125 and 250 Hz octave bands is represented only by the formants. Nevertheless,
the flat tendency at the low frequencies falls within the uncertainties mentioned
above. Moreover, as also seen in Figure 4.3, the coherent tendencies of CV, noted
for both sources, confirm the challenge to separate the human and the mechanical
contributions when both have high energies.

Further proof about the reliability of the proposed method can be found in the size
of clusters. The average percentage over all the octave band is of about 21% of the
monitoring time. This can be assumed, in a first approximation, as the percentage of
speech occurrence in the office during work hours. Thus, KM gives back tendencies
more similar to the energy model, since it is near the expected curve of the speech
for the 20% of the whole monitoring time. Short gaps of the mechanical noise
especially in the frequencies where the most of the energy lies, i.e. from 125 up to
500 Hz, obtained via GMM and KM confirm that the heteroscedasticity condition is
fulfilled. High differences between measured spectra and L90 seem to highlight how
the common praxis to assume the mechanical noise as a percentage of the exceed
time is not robust.

An unforeseen tendency can be noted in the 4 kHz octave band in both spectra,
mechanical and speech. In fact, a strong decrease of these values is expected for both
sources. The dotted line represents the lowest detectable limit of the sound level
meter used. Considering the quiet environment of the office, the growth of the levels
in the 4000 Hz band of the mechanical spectrum, as well as the small decrease of
this octave band in the speech spectrum, can be attributed to the intrinsic error of the
instrument.
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4.1.5 Influence of background noise on STI evaluation

Raytracing simulations of the office allowed to assess a more realistic scenario of the
intelligibility among workstations. The 3D model was created using SketchUp and
imported into ODEON Room Acoustic software. The geometry and the modelling
pipeline follows the recommendations of the state-of-the-art [145]. All the surfaces
were modelled up to the size of 0.35 m and the sound absorption coefficients were
supplied by the scientific literature [29, 145, 31]. Since the software describes
the sound through rays, the wave nature of the phenomenon is ensured by the
introduction of scattering coefficients [122]. The layers were managed dividing the
elements with high absorption and scattering coefficients from reflective and smooth
elements. The model was deemed calibrated when the differences of the measured
and simulated T20 lie within the range of the just noticeable difference (JND).

The intelligibility was evaluated through the STI and corrected with different
values of background noise. The first was STI∞, i.e. without any contribution from
the background noise. Then, the mechanical contribution was added, and finally the
sum of both sources was considered. Figure 4.5 shows a gray scale variations of
the STI matrix with the different contributions explained above. The scale varies
from 0.5 (in black), i.e. the minimum STI detected, up to 1 (in white), the maximum
intelligibility achievable when source and receiver are in the same workstation.
Algorithm 1 and 2 refer to GMM and KM, respectively.

Focusing on the rows of the matrix, slight differences are noticeable between the
first two matrices, i.e. the STI∞ and the contribution of the mechanical noise. Only
in the third matrix, when both the types of noise are considered, the shades are darker.
Results highlight the importance of a detailed analysis of the background noise to
evaluate the intelligibility in a more realistic scenario, avoiding the overestimation
of this fundamental metric. Measuring the privacy condition considering only the
mechanical noise, as currently required by the standards, is not sufficient to assess
the effective privacy environment of the office, which is significantly affected by the
social context [117].

When the active noise masking is used, the speech privacy can be assumed as
quite constant over the working areas. In other cases, like the one under study, the
privacy fluctuates dynamically in time. The results obtained with the procedure
presented in this work allow to assess different scenarios, thus broadening the char-
acterization of privacy criteria of ISO 3382-3. Further analyses could be done with
these unsupervised Algorithms with longer monitoring times, in order to investigate
the existence of more significant correlations with percentile levels [121].
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Fig. 4.5 Matrices of the STI values among the workstations in the office under study.
The source has been set at the “normal” speech level. On each row, going from
the left to right, the STI is presented first without background nose (indicated as
LN = −∞), then corrected with the background noise levels obtained through the
unsupervised analysis. First adding the mechanical contribution only (indicated
as LN = Lmech), then summing up the human contribution as well (indicated as
LN = Lmech +Lhuman). The sidebar on the right represents the legend of the STI
values. On the axis of the matrix are reported the source-receiver positions (1 – 4)
corresponding to the three workstations and the meeting table (see Figure 4.2). From
“Unsupervised analysis of background noise sources in active offices” by De Salvio
et al [34].
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4.2 Offices short survey

The proposed method has been tested in three offices to broaden its application and
collect more data. The activities carried out are different in each case study and have
been identified according to ISO 22955 [71] (see Table 4.1). Here, a brief description
of the three offices is presented:

Office A - Open plan with 8-12 workers. The amount of employees can vary
during the day. This is a sales office. Hence, the activity is mainly focused on
outside of the room communication.

Office B - Open plan with 10-12 workers. The amount of employees can vary
during the day. This is a design office. Hence, the activity can be more or less
collaborative.

Office C - Small office with a maximum of 2 workers. The amount of employ-
ees can vary during the day. The activity carried out has a small amount of
collaborative work.

This study was conducted after COVID19. Thus, besides the occupancy’s varia-
tions, all offices were treated with screens 120 cm height.

Activity in two different days within three different offices was measured through
a sound level meter. Sound pressure levels (SPLs) were recorded each 0.1 seconds
to reach a high resolution monitoring. Such a short acquisition time allows to record
SPLs even in the pauses among syllables of the speech [146]. About 430k samples
for each day were collected in octave bands from 125 to 4000 Hz besides the global
A-weighted average levels. The arrays obtained by the time series represent the
database for the application of the two algorithms, GMM and KM.

The procedure used in the present study follows the analysis described so far.
Thus, in a nutshell, the optimal number of cluster is obtained according to the
majority rule among the model selection metrics: DB, CH, SC, GS. After the best
model is picked, the next step labels the sound source as mechanical or human.
The means and the standard deviations for GMM and the centroid and the average
intra-cluster distance (AICD) for KM represent the feature used to assign the labels.
The logic behind the labelling is based on two assumptions. The first concerns the
sound pressure levels of the sources. The mechanical noise should be lower than
the speech, indeed. Thus, the lower mean and the lower centroid will be assigned
to the mechanical sources. Higher values will be assigned to the human noise. The
second assumption regards the variance of the SPLs source. A mechanical process
should measure similar SPLs because of the mechanical cycles, while the speech
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does not follow always the same rhythm. Thus, lower s.d. and lower AICD will be
assigned to the mechanical sources. Higher values will be assigned to the human
noise. Preliminary analyses found a value of s.d. equal to 5 dB as a good threshold
to separate mechanical from human sources [89].

Numerical models allow to deepen the context analyzing the acoustic properties
of the spaces under study. In this work, one or two metrics were used to describe
the spaces. For all the offices the reverberation time T60 is considered. For the
biggest offices A and B, the spatial decay of the A-weighted level of speech doubling
the distance from the source D2,S was also taken into account. Following, a brief
summary of the simulated parameters:

Office A - T60 = 0.7 s; D2,S = 2.4 dB;

Office B - T60 = 0.7 s; D2,S = 3.0 dB;

Office C - T60 = 1.3 s.

Concerning the model selection, the majority rule gave back an optimal number
of clusters equal to 2 for both GMM and KM. This means that we can consider
the sound context within the measured office made by two main sound sources:
mechanical (air systems, electronic devices, ...) and human noise (speech).

Table 4.5 shows the results of the clustering analysis carried out over all of-
fices. Values are shown for the octave bands from 125 to 4000 Hz and the global
A-weighted average levels. Differences between the two algorithms are deemed
as a consequence of the heteroscedasticity and the respective soft/hard clustering
assignment, as already discussed in the previous case studies. It is worth noting that
human noise obtained via KM has similar values to the A-weighted average levels.
Differences are less than 1 dB for offices A and B. Office C shows differences of 1.3
and 2.2 dB. It can be correlated to the type of activity carried out in this office. The
small amount of collaborative work can affect the occurrence curve of the human
cluster. It is noticeable by the higher AICD measured in this office with respect to A
and B.

Spectral tendencies confirm the type of sources as shown in previous section.
Figure 4.6 shows the decay of the STI with respect to the distance. Three curves
are shown: the ST IIn f without background noise, the ST IMech considering only the
mechanical noise obtained by the clustering, and the ST IHum considering all the
sound sources inside the offices. The plots show how the ability of separate sound
sources provides deeper insights of the spaces under study.
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(a) Office A

(b) Office B

(c) Office C

Fig. 4.6 Relationship between STI and distance. Blue lines show the STI evaluated
without background noise. Orange and gray lines show the STI considering the
HVAC and HVAC combined with the human noise contributions, respectively. From
“Assessing human activity noise in workspaces using machine learning and numerical
models” by De Salvio et al [36].
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4.2.1 Overlapping areas

A soft clustering algorithm allows to evaluate data with a more realistic assignment,
closer to the human perception [56]. GMM assigns data points to each cluster with a
probability weight. Thus, each data point can belong to more than one cluster. As
a consequence, GMM can have overlapped areas among the components, i.e. the
Gaussian curves. Under the assumption that the mechanical component does not
change during long-term monitoring, it may be deduced that the overlapped area
depends on the speech component. Thus, it depends on the extent of the collaboration
among workers.

On the basis of these considerations, the overlapping value (OvA) of the two
components is proposed as a metric to assess the amount of collaboration among
employees according to the ISO 22955. Measuring the overlapping areas between
clusters is an important issue in the machine learning field. Hence, several algorithms
were proposed [105, 137]. In the present analysis, the OvA value lies in the range
[0,1]. OvA is equal to 0 when the two Gaussians do not have any overlapping and is
equal to 1 when the two components are the same, i.e. totally overlapped.

Table 4.6 Results of the overlapping areas OvA for each combination of office and
day. Values are shown for data population obtained per each octave band from 125 to
4000 Hz and the overall A-weighted average level. From “Assessing human activity
noise in workspaces using machine learning and numerical models” by De Salvio et
al [36].

Office - Day Frequency octave band
125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz LA,eq

A - 1 0.307 0.154 0.067 0.119 0.179 0.256 0.086
A - 2 0.286 0.166 0.098 0.164 0.212 0.310 0.115
B - 1 0.208 0.194 0.122 0.203 0.216 0.291 0.158
B - 2 0.244 0.187 0.113 0.172 0.186 0.256 0.144
C - 1 0.277 0.288 0.365 0.365 0.232 0.082 0.276
C - 2 0.272 0.208 0.233 0.357 0.309 0.218 0.263

Table 4.6 shows the results obtained by the evaluation of the OvA. The values
achieved for the average A-weighted levels show small differences between the
days of each office but large differences among the case studies. Both results seem
reasonable. The activity inside the space can vary day by day but globally, the
fluctuations remain in small intervals. At the same time, the offices show different
average OvAs. This result may be influenced by the number of workers in the office
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(a) Office A - Day 1 (b) Office A - Day 2

(c) Office B - Day 1 (d) Office B - Day 2

(e) Office C - Day 1 (f) Office C - Day 2

Fig. 4.7 Overlapping areas per each office and each day. Blue Gaussian curves
represent mechanical sources, red Gaussian curves represent human sources. The
overlapping areas are highlighted in orange. From “Assessing human activity noise
in workspaces using machine learning and numerical models” by De Salvio et al
[36].

besides the collaboration among them. Offices A and B, both containing an average
of 10 people, show a similar scale of values. This does not happen in office C that
contains 2 people at most.

Figure 4.7 shows the plots of the components obtained via GMM. The consid-
erations made above can be visualized here. The overlapping areas are highlighted
in orange. Blue and red lines indicate respectively the mechanical and the human
sources.

Preliminary results show how the OvA can be considered as a promising feature
to measure the amount of activity within the offices. Increasing the database among
further difference offices and corresponding correlation analyses will provide more
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robust insights about this feature. The calculation of OvA over normalized probability
density functions allows exploratory comparisons among different kinds of offices.

4.3 Qualitative validation through dual analysis

As seen in previous applications, the common metric for sound monitoring is rep-
resented by the A-weighted continuous equivalent level LA,eq. Deeper statistical
representations of acoustic monitoring are provided by percentile levels, i.e., the 95%
SPL [152]. However, the LA,eq does not show any detail about the acoustic scene
[51]. Further, the assessment of background noise levels through percentiles relies
on temporal assumptions. The need of going beyond the LA,eq has been addressed
especially in passive acoustic monitoring. In works concerning ecology and under-
water acoustics, for instance, the assessment of the ambient noise levels is carried
out through the probability density of the power spectral density [109, 99, 100]. The
separation of sound sources would allow more detailed analyses of sound contexts.
This ability can improve monitoring and design of several contexts resulting in the
achievement of more comfortable spaces.

Blind source separation is a major issue addressed not only in machine learning
but in deep learning, too. This is a type of machine learning based on artificial
neural networks that learns representations of data with multiple levels of abstraction
[84]. Inspired by the cocktail party effect, i.e. the ability of humans to focus the
auditory attention to one speaker filtering other stimuli [19], the need of extracting
the single source from a mixture of signals lies in many useful applications such
as speech, music, and environmental audio processing [143]. In the framework
of the acoustic source separation, the concept of deep clustering was introduced.
Deep clustering refers to the ability of performing clustering through deep learning
algorithms [57]. One of the most popular category to perform this kind of analysis
is represented by the autoencoders. These kinds of networks perform a non-linear
mapping of the data through an encoder and a decoder. The first maps the function to
be trained, the second learns how to reconstruct the original data [101]. Applications
of autoencoders in acoustics have been in the field of speech enhancement and
clustering of geophysical data [92, 76, 108].

In this work, variational inferences were used to perform a deep clustering
analysis. A variational autoencoder is a deep generative model that forces the
latent code of autoencoders to follow a predefined distribution [101]. It has the
same architecture of autoencoders, high-dimensional data are encoded into a low-
dimensional latent space [79]. The ability of parametrizing data through a probability
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distributions gained broad attention in the deep learning community. Variational
autoencoders have been successfully applied to speech enhancement, blind source
separation, and sound source localization in reverberant spaces [88, 103, 7].

The present section, based on the methods shown in previous sections, proposes a
dual analysis of the same phenomenon. A sound level meter recorded both the sound
pressure levels and the digital audio of the working activity inside an office. Then,
two clustering analyses were performed. The first exploited the two machine learning
algorithms earlier mentioned, i.e. the Gaussian Mixture Model and the K-means
clustering; the second performed a deep clustering analysis through a variational
autoencoder. The goal is to identify and separately measure the main sound sources
experienced by workers during the activity with both approaches.

4.3.1 Case study

A small office with 3 workers place in 3 different workstations was selected as the
case study for the dual analysis. It is worth noting that measurements were made
during the COVID-19 emergency. Thus, persons wore face masks during the day.
According to ISO 22955, the activity carried out among workers is collaborative (see
Table 4.1).

The whole working day was monitored through a sound level meter placed
similarly far from each workstation. Figure 4.8 shows the plan of the office and the
placement of workstations and sound level meter.

Fig. 4.8 Plan of the office under study. The arrangement of workstations and the
placement of the sound level meter are shown. From “Blind source separation by
long-term monitoring: a variational autoencoder to validate the clustering analysis”
by De Salvio et al [33].

The same event was recorded to collect two different datasets:

1. Octave-band filtered SPLs from 125 up to 4000 Hz obtained with an interval
time equal to 0.1 s;
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2. Digital audio recording obtained with a sample rate equal to 51.2 kHz and a
depth equal to 32 bit.

The two datasets represent the raw data used to conduct the two analyses. The sound
level meter collected about 6 hours of working activity in the office. Figure 4.9 shows
a 10-minute length example of time history that provides the two different databases.
The waveform on the top represents a 10-minute recording, the time series of SPLs
in the middle is used in the machine learning approach, the spectrograms on the
bottom are exploited for the deep learning process.

Fig. 4.9 Example of the raw data used in this study. On the top, a sample of 10
minutes recording. In the middle, the sound pressure levels obtained in the same
sample. This constitutes one of the databases for the machine learning approach. On
the bottom, the spectrograms obtained by the same sample used for the deep learning
approach. From “Blind source separation by long-term monitoring: a variational
autoencoder to validate the clustering analysis” by De Salvio et al [33].

The air system was turned off during the measurement and the window is exposed
towards a highly busy road. Thus, the sound environment can be described as
created by two kinds of sound sources: the traffic and the speech. The room has
a volume of about 60 m3 with no acoustic treatments and can be considered as a
“live” environment. To better understand the acoustic context in which the working
activities were conducted, the reverberation time T20 and the façade insulation D2m,nT

were measured according to the precision method described in the ISO 3382-2 and
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the global method of the ISO 16283-3 [72, 70], respectively. Figure 4.10 shows the
measurements’ results. Solid and dashed lines show the T20 and D2m,nT tendencies
in octave bands from 125 up to 4000 Hz, respectively.

Fig. 4.10 Acoustical properties of the office under study. The reverberation time T20
is shown on the left axis, the façade insulation D2m,nT on the right axis. From “Blind
source separation by long-term monitoring: a variational autoencoder to validate the
clustering analysis” by De Salvio et al [33].

The office has a reverberation time averaged in the mid frequencies of 500-1000
Hz of about 0.72 s. The environment can be deemed as “live" because there are no
acoustic treatments. There is a reverberation drop in the 500 Hz band maybe due to
two steel closets. The façade has an average insulation of about 22 dB on the mid
frequencies of 500 and 1000 Hz. The drop of the D2m,nT in the 1 kHz band is due to
the glass coincidence effect of the window.

4.3.2 The dual analysis

Machine learning approach

The machine learning approach consists of the same analysis carried out in previous
case studies, regardless whether it involved classrooms or offices. Details about
the method are referred to the previous sections. Here, just a brief summary of the
process is shown to recall the main steps:

Following, a brief summary of the procedure:

Step 1: Clustering analysis performed over several candidate models.

Step 2: Selection of the best model among candidates.

Step 3: Spectral analysis and source labelling according to statistical or
distance metrics.
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Step 2, the selection step, evaluated candidate models with a number of clusters
from 2 up to 10 components. Spectral data were analyzed in the octave band from
125 up to 4000 Hz. The same analysis has been carried out for GMM and KM.

Labelling the sound sources, i.e. linking the spectra to the corresponding clusters
obtained, is basically depending on the temporal characteristics of the sound source.
Dense clusters represent continuous noises, while spread data refer to a random
source. The machine learning approach being an unsupervised analysis, this step is
performed after the optimal model is selected and depends on the clusters’ features
given by the algorithm. Concerning the GMM, a cluster’s standard deviation s.d.
equal or greater than 5 dB refers to a speech source. Lower values of 5 dB describe a
mechanical or more in general a more or less steady source. Comparing preliminary
studies, this value is considered to be a good threshold to separate continuous sound
sources from human-related noises [107, 89]. Regarding the KM, the temporal
properties of the sound sources are described by the square root of the average
intra-cluster Euclidean distance AICD of data points. Similarly to the s.d., lower
values are associated to continuous noises, otherwise to human noises.

Deep learning approach

The digital audio recording has been divided in 1-second length samples to obtain
the dataset for the analysis through the VAE. Spectrograms of each segment were
used as input for the network. A pre-processing flow has been carried out before
feeding the encoder, briefly described below:

• The audio has been resampled at 11025 Hz to make the input comparable to
the octave band range (125-4000 Hz) used in the machine learning approach.
Moreover, observing the spectrograms, no useful information was found above
5 kHz.

• Short-time Fourier Transforms (STFT) with a segment length of NFFT = 256
and an overlap area of 50% were used to obtain the spectrograms. With these
values each audio chunk is processed with an FFT with a physical length of
about 20 ms. Thus, it can be inferred that in each FFT only one sound source
is detected.

• MinMAX normalization has been applied to each spectrogram to have all the
amplitude values in the [0,1] range.

Overall, the dataset contained about 23k samples.
Samples of 1-second length can be easily listened. Then, the dataset has been

manually labelled listening each sample of the recording in three classes: traffic,



106 Applications in offices

Input
C
onv1

C
onv2

C
onv3

C
onv4

Flatten

R
eshape

FC
µ

FC

C
onvT1µ

C
onvT1σ

C
onvT2σ

C
onvT3σ

C
onvT4σ

O
utput

C
onvT2µ

C
onvT3µ

C
onvT4µ

FC
σ

Fig.4.11
A

rchitecture
ofthe

VA
E.The

encoderis
constituted

by
fourconvolutionallayers,show

n
in

lightblue.The
latentspace

is
show

n
in

red
and

the
decoderis

represented
by

the
yellow

blocks.From
“B

lind
source

separation
by

long-term
m

onitoring:a
variationalautoencoder

to
validate

the
clustering

analysis”
by

D
e

Salvio
etal[33].



4.3 Qualitative validation through dual analysis 107

speech, and unclassified sounds. The latter category was useful to label all the
samples where the main listened sound was represented by impulsive noises, like
slammed doors. It is worth noting that, during the labelling process, audio chunks
containing only whispers were labelled as speech. This choice can create uncertain-
ties on how the VAE learns to recognize the labels. At the end of the labelling process,
the dataset had more than 12k traffic samples and about 10.5k speech samples. Only
139 samples were labelled as unclassified. The dataset can be considered balanced.
The 80% of the dataset was used for the training set, the remaining 20% for the test
set.

The VAE was built in Pytorch. The spectrograms’ input size is 128×87. The
encoder is made by four strided convolutional layers (stride = 2). Then, a flatten
layer links the convolutional layers to the fully connected layers. A VAE maps
the input to a multivariate latent distribution. The distribution used in the present
analysis is the Gaussian distribution. Thus, each input is mapped through means and
variances. As a consequence, the fully connected layer of the encoder is doubled.
Here, the inputs are processed into the 30-dimensional latent space. The Pyro library
was used to perform the stochastic variational inference. To sample inputs from the
latent space according a Normal distribution, Pyro requires means and variances.
Thus, the decoder is made by four strided transposed convolutional layers (stride = 2)
for both parameters [7]. Then, spectrograms are reconstructed reshaping the output
of mean and variances obtained by the two sections of the decoder. Non-linearities
are activated through ReLU functions for all layers except for the output parameters.
The decoder is parametrized according a standard Normal distribution N(0,1). Thus,
a Tanh activation function is used for the output of means and a Sigmoid activation
function for the the output of variances. The VAE was trained using a batch size
of 32, the Adam optimizer and θ and φ weights were updated with a learning rate
equal to 1×10−5. Figure 4.11 shows a graphical scheme of the VAE’s architecture.
The light blue and yellow layers represent, respectively, the encoder and the decoder.
Both are linked by the latent space represented with the red fully connected layer.
Details about the architecture of the whole network are listed in Table 4.7. Here, the
type, the input size, the number of filters, the kernel size, the activation functions,
and the output size are shown for each layer. Training stopped after 400 epochs since
not relevant improvements of the loss function on the test dataset were detected.

4.3.3 Clustering results

First, the results of the clustering analysis carried out via GMM and KM are shown.
Table 4.8 shows the results of model selection. Silhouette (SC), Davies-Bouldin
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Table 4.8 Model selection step for the measured SPLs. Results are shown per each
metric, octave band from 125 up to 4000 Hz, and the continuous A-weighted level
LA,eq. Metric abbreviations refer to silhouette (SC), Davies-Bouldin (DB), Gap
statistic (GS), and Calinski-Harabasz (CH) coefficients. Majority rule’s row show
the most likely number of clusters used to run both GMM and KM algorithms.
From “Blind source separation by long-term monitoring: a variational autoencoder
to validate the clustering analysis” by De Salvio et al [33].

GMM

Metric
Frequency octave band (Hz)

LA,eq125 250 500 1k 2k 4k
SC 2 2 2 2 2 2 2
DB 2 2 2 2 2 2 2
GS 5 2 2 2 2 2 2
CH 2 2 4 2 2 5 2

Majority rule
No. Sources 2 2 2 2 2 2 2

KM

Metric
Frequency octave band (Hz)

LA,eq125 250 500 1k 2k 4k
SC 2 2 2 2 2 2 2
DB 2 2 2 2 2 2 2
GS 2 2 2 2 2 2 2
CH 6 6 6 6 6 6 6

Majority rule
No. Sources 2 2 2 2 2 2 2

(DB), Gap statistic (GS), and Calinski-Harabasz (CH) coefficients were used to
assess the most likely number of clusters for each octave band (125-4000 Hz) and
the A-weighted continuous level LA,eq. Concerning GMM, the model selection
metrics found that the optimal number of clusters is equal 2 according to the majority
rule. This is true for SC and DB for each octave band and LA,eq. Different results
were found only for GS in the 125 Hz octave band and for CH in the 500 and 4000
Hz octave bands. The same analysis was carried out for KM. Here, SC, DB, and GS
found an optimal number of clusters equal to 2 for each occurrences curve analyzed.
Completely different results were shown by CH that found 6 clusters in each octave
band and LA,eq as the best model.

Overall, comparing all metrics, the number of active sources in the office is
2. These results are consistent with the expectations. The main sound sources
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experienced during a common working day by employees were speech and traffic,
indeed.

Figure 4.12 shows the reconstructions of the spectra of both sound sources. Then,
the plots in the middle and on the bottom show the relative spectra compared with
selected references from standards. Blue lines show the results for GMM, red lines
for KM. In the relative analyses plots, yellow lines refer to the reference spectra.
To compare the reconstructed with references, each measured spectrum is shifted
by setting the 1 kHz octave band to 0 dB. Table 4.9 shows the quantitative results
obtained via clustering analysis.

Both algorithms showed very similar qualitative results. Spectra have the same
tendencies, indeed. The most noticeable difference concerns the peak of the speech
spectra. It is detected in the 500 Hz octave band for KM while in the 250 Hz octave
band for GMM. With respect to previous case study described in Section 4.1.4, low
frequencies seem to be easier separated for both algorithms. This may be due to
the different background noise, the traffic outside the office instead of a mechanical
noise inside the same space.

Concerning the traffic noise, the reference is represented by the normalized
traffic spectrum shown in EN 1793-3 [48]. It is worth noting that the reference
spectrum refers to free field conditions. Thus, acoustical properties of the room and
the facade’s insulation can affect the trend of the results. The shape of the traffic
spectra seem to be very similar. The most noticeable difference concerns the 500 Hz
octave band. However, both low-frequencies emitted at slow speeds and the 1 kHz
frequencies emitted at free-flow speed seem to be accurately detected [24].

The ISO 3382-3 shows the reference speech spectrum of a directional source at
a distance of 1 m in free field from the speaker [73]. This is the reference for the
speech source; the related spectra obtained via clustering have similar tendencies as
shown on the bottom of Figure 4.12. Differences can be referred to several factors.
The first concerns the influence of the acoustical properties of the room. As noticed
for the traffic noise, the ISO spectrum is evaluated at a distance of 1 m from the
source in free field. As opposed to previous work, slight differences concern low
frequencies for speech sources. However, as seen in the above-mentioned previous
section, these can be due to the change of the spectrum in noisy environments and
the measurement uncertainty at low frequencies, especially in the 125 and 250 Hz
octave bands [124, 87]. Directivity of the source can affect spectra tendencies too.
In the present study, there are 3 speakers in 3 different positions. Thus, the overall
directivity of the measured source cannot be considered neither the same as the
reference, nor omnidirectional. Moreover, at low frequencies, modal effects could
have affected the results since the sound level meter was used only in one position.
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Fig. 4.12 Results of the clustering analyses. On the top: reconstruction of the spectra
from 125 up to 4000 Hz. Blue and red lines represent the spectra reconstructed
respectively via GMM and KM. Dashed and solid lines represent respectively the
traffic and the speech spectra. In the middle and on the bottom: relative spectra of
traffic and speech spectra compared with references curves. Traffic reference is taken
from EN 1793-3, speech reference is taken from ISO 3382-3 [48, 73]. From “Blind
source separation by long-term monitoring: a variational autoencoder to validate the
clustering analysis” by De Salvio et al [33].
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Table 4.9 SPLs of each sound source obtained via GMM and KM. Standard deviations
s.d. for GMM and average intra-cluster distance AICD for KM are reported. From
“Blind source separation by long-term monitoring: a variational autoencoder to
validate the clustering analysis” by De Salvio et al [33].

Source
Frequency octave band (Hz)

LA,eq125 250 500 1k 2k 4k
GMM

Traffic 42.0 39.0 36.0 39.5 35.0 24.3 42.5
s.d. 3.0 3.0 3.3 4.3 4.0 3.7 3.5

Speech 50.5 54.7 54.9 52.0 48.3 37.7 57.5
s.d. 5.8 7.1 9.1 8.9 8.5 8.7 7.8

KM
Traffic 42.2 40.0 37.5 39.7 35.6 25.6 43.3
AICD 2.9 3.7 4.5 4.2 4.2 4.3 4.0
Speech 53.1 57.5 59.0 56.2 52.3 42.5 60.8
AICD 4.1 5.2 6.4 6.3 6.1 6.3 5.8

Overall, concerning the relationship between the acoustical properties of the
space and the spectra obtained, the tendencies of measurements’ results in Figure
4.10 may bring preliminary insights about the comparison of measured and reference
spectra shown in Figure 4.12. Traffic and speech spectra seem to be related to the
tendency of the T20. The drop in the 500 Hz octave band is visible in both sources,
indeed. Further, the reverberation time has its minimum value in the same band, as
well as one of the highest values of the façade insulation. The combination of both
T20 and D2m,nT seems to affect the energy of both sources in the 4 kHz octave band.
Thus, a preliminary analysis of the room’s acoustics seems to give further reliability
to the results obtained through the machine learning approach. The drop in high
frequencies may be explained considering that these can be strongly affected by their
interactions with surfaces and furnitures in the room.

Further considerations can be made regarding the size of the clusters. This is
described by the s.d. and the AICD; both are shown in brackets in Table 4.9. The
physical meaning associated to s.d. and AICD is the temporal randomness of the
source. Mechanical sources produce the same SPLs occurrences depending on their
mechanical cycle, indeed. This results in low s.d. for continuous sources because
the corresponding Gaussian curve will be narrow. On the contrary, a human-related
noise produce higher s.d.. The traffic noise can be deemed in the middle of these two
categories of noise sources. It does not have the same continuity of a mechanical
device but it has specific spectral properties. Moreover, the road has to be busy to be
detected in a long-term monitoring because the occurrences curve has to be affected
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by the noise source. Thus, traffic can be deemed more continuous than the speech
but not like a mechanical source. These considerations are confirmed by the results
obtained. Traffic s.d. lie in the range 3.0 - 4.3 dB for each octave band. Previous
case studies in several offices showed mechanical s.d. due to the HVAC system in
the range 0.9 - 3.9 dB. Thresholds analyses deserve detailed studies in future works.
However, all non-human sound sources were confirmed to be under the threshold of
5 dB.

The absolute spectra shown on the top of Figure 4.12 point out differences
between SPLs of the two methods that can be related to the homoscedasticity of data,
i.e. constant variances of data. This is shown in Table 4.9. SPLs are the same for
GMM and KM when s.d. and AICD are almost equal, e.g. in the 125 and 1000 Hz
octave bands of the traffic source. This result confirms that AICD can be deemed as
a reliable metric to assess the shape of the cluster.

4.3.4 Deep clustering results

Latent representation of the working day

The clustering analysis carried out through the machine learning approach is totally
unsupervised. Thus, considerations about its results have been based on assumptions
and spectral matching. The discussions of these evidences depend on the operators’
knowledge. Hence, it is useful to find an objective method to either confirm or not
the quality of using the proposed method via GMM and KM. A semi-supervised
analysis via deep learning allows the results to be directly evaluated. This is possible
because the audio recording can be listened to. Further, the latent space of a VAE
is able to perform a clustering analysis. Thus, the deep and the machine learning
approaches can be compared. The difference between the two approaches is due
to the labelling step. In the machine learning analysis it was made at the end of
the process, in the deep learning analysis data were previously labelled. Thus, the
latent space of the VAE aims to be a qualitative tool to assess the machine learning
approach.

Figures 4.13a and 4.13b show the latent distributions of the untrained and trained
network, respectively. Because the dimension of the latent space is equal to 30, a
2D t-stochastic neighbor embedding (t-SNE) visualization was used [140]. This is a
dimensionality reduction technique commonly used to visualize high-dimensional
data. The t-SNE algorithm evaluates the similarity between pairwise instances in
both high and low dimensional space. Then, through a cost function, the similarities
are optimized. Figures 4.13a and 4.13b are obtained with a perplexity equal to 30,
which resulted to be a stable value for the configuration obtained.
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(a) Untrained network

(b) 400 epochs training

Fig. 4.13 Latent space of the untrained 4.13a and trained 4.13b VAE. Histograms
show the x- and y- axes projections of the density distributions of the data. Blue and
orange dots and histograms represent respectively the traffic and the speech data.
From “Blind source separation by long-term monitoring: a variational autoencoder
to validate the clustering analysis” by De Salvio et al [33].
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Data in the latent space are represented based on their categorical label, i.e.
blue dots refer to traffic spectrograms, orange dots to the speech. The untrained
latent space in Figure 4.13a shows a circular distribution of data since it is perfectly
described by a Gaussian distribution [30]. However, there is no categorical separation
among data, i.e. blue and orange dots are mixed up. Figure 4.13b shows the results
of the training. After the network has learnt the latent representation of the input
data, the latent space shows a clear separation of the two categories. Clusters are
well-defined. On the sides, histograms show the 1D projection of the plot along the
main axes. These distributions help to assess whether the two clusters in the 2D plot
overlap or not. Hence, histograms of the trained network prove that the two clusters
are close but do not overlap. Thus, clusters are well-separated, too. The VAE is
able to identify and separate the two sound sources through a Gaussian latent space.
Different densities within clusters may refer to further properties, e.g., timbre, not
considered in the categories taken into account in this study. Uncertainties on data
distributions, i.e., speech frames in the traffic cluster and vice versa, can be attributed
to the manual labelling. For instance, whispers can be manually labelled as speech
but classified by the network as traffic.

Measuring through deep clustering

The aim of the proposed method is focused on measuring different sound sources
in real-world contexts. Through a deep learning approach this is possible recon-
structing the audio samples. Frames of each class can be selected from the latent
space and post-processed through octave-band filters to achieve sound level meter
measurements. An example of the comparison between the original input and its
reconstruction obtained via VAE is shown in Figures 4.14a and 4.14b. The recon-
struction is blurred and this is common in VAEs [103]. The blur does not allow a
quantitative analysis through the audio recording. From an energy point of view,
the reconstruction has lost resolution in the frequency domain, especially in low
frequencies, where the fundamental frequencies of the speech lie. At the same time,
low energy areas in the mid and high frequencies (around 3000 and 4000 Hz) show
higher amplitudes in the reconstruction with respect to the original spectrogram.
Reconstructed samples are highly noisy. Thus, it is easy to deduce that a reconstruc-
tion of the sound level meter measurement through the reconstructed spectrograms
would not be reliable. However, this loss of information concerns not only the
reconstructed data but the original, too. The heavy preprocessing needed to obtain
a fast network results in low resolution audio samples that cannot be considered
reliable for a sound level meter measurement. In other words, the pre-processing
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step itself adds further uncertainty to the results. VAEs can identify underlying

(a) Untrained network

(b) 400 epochs training

Fig. 4.14 Example of original 4.14a and reconstructed 4.14b magnitude spectrograms
obtained through the VAE. From “Blind source separation by long-term monitoring:
a variational autoencoder to validate the clustering analysis” by De Salvio et al [33].

structures of data. With respect to standard autoencoders, they push the latent code
to follow a predefined distribution [101]. In the present study, the VAE uses an
isotropic Gaussian distribution as prior. The Gaussian representation of the two
sound sources is the common thread among GMM, KM, and VAE. The ability of
identifying the two sound sources through all the methods used in this work leads to
deem reasonable to describe sound sources in long-term monitoring with Gaussian
distributions. This represents additional confirmation to the considerations about the
use of Gaussian distributions for long-term monitoring data made in Chapter 2.

Based on all the results and considerations made in the present chapter, clustering
techniques, GMM and KM, seem to provide more reliable methods than the VAE.
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This is mainly due to two factors. The first concerns the ability of GMM and KM
to perform blind source separation without particular pre-processing steps on the
measured data. Analyses are carried out directly on the SPL occurrences. The
second factor concerns the need of a deep learning approach for recording audio in
work contexts. This can lead to privacy issues, one of the most important aspects
on the application of big data approaches in real contexts [78]. On the contrary,
clustering techniques provide simple and smooth applications on measuring sound
environments. It is worth to recall that GMM can be considered as a generalization
of KM. Thus, the GMM can be deemed as the most reliable method to perform blind
source separation on sound level meter data for these reasons: the better performance
in the method’s flow, e.g., the results concerning the optimal number of clusters;
the ability to explore more in details the results obtained, e.g., the OvA application;
and the convenience of using an underlying well-known probabilistic model and the
resulting features to use.

Summary

The present chapter shows some applications of the proposed method in offices.
The nature of a sound source inside workspaces can affect in different ways the
employees’ productivity. The most annoying sound for a worker is represented
by irrelevant speech, i.e., colleagues’ conversations. The understanding of others’
speech deeply affects the cognitive tasks of a worker. Thus, intelligibility represents
the most delicate issue in offices and depends mainly on two factors: the acoustical
properties of the space and the background noise. High reverberation and low signal-
to-noise ratios drop the understanding of the speech. Thus, mechanical continuous
noises, like HVAC or air change systems, increase the background noise disrupting
intelligibility. It follows that the ability to separate the noise contribution of each
kind of source inside offices is essential. The chapter is divided into three parts.

The first part investigates the proposed method in a small office with four worksta-
tions. The monitoring lasted for the entire day. The aim is to separate the contribution
of the speeches and the mechanical noises, e.g., HVAC and computer fans. The
analysis follows the same methodology of classroom applications, i.e., besides the
Gaussian Mixture Model (GMM), the separation is carried out via the K-means
clustering (KM) and the conventional praxis. Results show the ability of both GMM
and KM to identify two different spectra. A preliminary spectral matching through
standards proves the reliability of the reconstructions. Discussions about the sta-
tistical insights of the active sources explore the possible features of the clusters



118 Applications in offices

obtained to label the sound sources more efficiently. Means and standard deviations
for GMM, centroids and average intra-clusters distances for KM represent the basic
couple of parameters to describe the nature of a sound source. Then, the coefficient
of variation, i.e., the relative standard deviation, shows further insights to distinguish
the different sources. Further remarks through STI evaluation matrices show how the
intelligibility assessment changes taking into account each sound source separately.

The second part of the chapter applies the proposed method in three different
offices. In these cases, the monitoring lasted for two days. Evaluations of the
similarities of results between the two days in the same office show the repeatability
of the method. Then, a study proposes a further parameter to measure the amount
of collaboration among colleagues according to ISO 22955: the overlapping area.
Preliminary outcomes seem to be consistent with the kinds of activities carried out
in the offices and the ISO categories.

The third and last part of the chapter shows a comprehensive study of the val-
idation of the unsupervised proposed method. Both machine and deep learning
approaches are used to assess the sound context of the same office. The machine
learning approach follows the same method of the previous studies reconstructing
two different spectra: speech and traffic. The deep learning approach exploits the
audio recording of the entire day as the database to train and test a variational au-
toencoder (VAE). The whole database has been segmented into frames 1 second
long and manually labelled as speech or traffic. Thus, the semi-supervised analysis
via the VAE provides the lack of labels of the unsupervised analysis via the GMM
and KM. The comparison between the machine and the deep learning approaches
is made through the latent space of the VAE. Here, it is possible to check how the
encoder successfully separated the two clusters. In this case study, the encoder maps
the input to a multivariate latent Gaussian distribution. Thus, the use of a Gaussian
distribution to obtain the latent space of the VAE and recalling that the GMM can be
considered as a generalization of KM, it is possible to validate the proposed method
and state that the GMM seems to be the best algorithm to perform a source separation
through a sound level meter.
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Summary

In recent years, the increasing attention on ML applications strongly influenced
many research fields, acoustics included. The ability to exploit data-driven methods
has led to advances in manifold acoustics topics, like sound source separation and
localization in free-field and reverberant environments, signal processing, underwater
acoustics, and scene classification. Despite the limitations due to the need for large
amounts of data, ML techniques provide encouraging results in many scenarios.
The whole work of this thesis lies in this context and aims to propose a method to
measure the noise contributions of different coexisting sound sources in real-world
environments. The purpose is to provide an unsupervised training-free workflow to
deepen the analysis of complex scenes.

Nowadays, the technical praxis handled by acousticians underlies strong assump-
tions to measure different portions of energy due to noise components. A statistical
approach over long-term monitoring provides tools to analyze different acoustic
contexts. A representative sample of case studies shows preliminary results of the
applications of the proposed methods in two active environments: university lecture
halls and offices.

An exhaustive summary of the main topics provides a suitable starting point to
understand the context at the beginning of the manuscript. The motivations and
objectives of the present work frame the current state-of-the-art and point out the lack
that needs to be compensated. A comprehensive theoretical description, but limited
to the focus of the work, gives the proper awareness about the mathematical and
statistical properties of the tools used to build the method. Links and relationships
between each metric and algorithm, either machine or deep learning, have particular
attention. These represent a fundamental step allowing the comparison of the results
and performances of each algorithm.

Details and motivations describe the reasons underlying each step of the proposed
method, spanning from the data acquisition to the labelling step. The framework’s
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setting allows technicians and researchers to use the procedure in any scenario
measurable through a sound level meter. The basic knowledge of the problem to
address leads the operator to set the workflow properly.

The first applications of the proposed method are shown in university lecture
halls. Here, the measurement of the student activity during lectures represents the
main goal. The quantification of the chatting among students permits the evaluation
of the extent to which students stay focused on teachers’ speech. Thus, a statistical
approach, rather than the conventional one, can bring further insights into the sound
context. The cumulative distribution function of SPLs shows how the conventional
energy-based approach works. It assesses the acoustic scene without considering
how the distribution is shaped by the monitored activity. Percentiles and equivalent
levels do not correspond to any feature of the statistical population. On the contrary,
peaks and points of inflections of both probability and cumulative curves seem to
provide a more consistent readability of the acoustic environment. In the specific
case of university lecture halls, it has been shown how an objective measurement
carried out through the proposed method describes a change in subjective behaviors
by students. This result represents the ability of a statistical approach to conduct
analyses between the objective – room criteria and energetic noise levels – and
subjective – surveys and soundscape analyses – evaluations.

The detailed refinement of the method concerned the application of the procedure
in offices. Unlike the learning context, the monitoring of active workplaces does not
involve the measurement of a specific metric but the assessment of the entire acoustic
scene. Thus, a model selection step ensures a preliminary overview of the number of
type sources. Controlling each noise contribution allows technicians to evaluate the
acoustic comfort in offices through intelligibility. Both the statistical features of each
cluster and the basic knowledge of the problem permit the inference of the nature
of the measured sound source. The broadening to other case studies pointed out
the chance of creating additional metrics to assess the extent of collaborative work
according to ISO 22955. However, this is possible only through a fuzzy algorithm.
Thus, the overlapping areas between Gaussian curves represent a promising way to
classify the dynamic cooperation among colleagues.

The deep learning analysis, exploiting the audio recording, represents an impor-
tant tool to assess the assumption underlying the proposed method, especially in the
labelling step. A latent representation of an entire working day obtained through a
variational autoencoder confirms the ability of a Gaussian parametrization to rec-
ognize different kinds of sound sources in long-term monitoring. The underlying
gaussianity among unsupervised algorithms and variational autoencoder validates
the hypotheses partially confirmed by spectral matching.
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The variational autoencoder performs a model-based deep clustering. Thus, it
is possible to generate from the latent space, according to the parametrized model,
the original measured samples and reconstruct the sound level meter. However,
the latent representation is obtained through the dimensionality reduction of the
inputs, i.e., loss of information. As a result, the decoder adds uncertainties to the
reconstructions reproducing noisy spectrograms making the variational autoencoder
incapable of being used for accurate measurements. The K-means clustering is a
heuristic algorithm and tends to find clusters of comparable spatial extent. It can be
compared to the Gaussian Mixture Model only if the homoscedasticity is fulfilled
and performs a hard subdivision. As a result, K-means does not provide features
such as the overlapping area. All these cons do not affect the Gaussian Mixture
Model, which resulted to be the most flexible and appropriate algorithm to analyze
sound level meter long-term monitoring. It provides features to univocally label the
sound sources and the dynamics of the acoustical context. It is model-based, i.e., the
measurements are described through statistical models. Moreover, using SPLs as
input, no pre- or post-processing is required on the data.

Resulting remarks on sound level meter measurements

Noise descriptors used in the conventional approach are represented by the equiva-
lent sound level Leq, and statistical levels, i.e., percentiles. The latter indicate the
sound pressure levels exceeded for a certain percentage of time indicated by their
subscripts. The most used are L10, L50, and L90. Since Leq is defined in energy and
statistical levels are numerical, their relationship is not straightforward. Moreover,
the physical meaning of statistical levels is not always accurate, except for L90, which
usually referred to the background noise without the investigated source. However,
some rules of thumb allow technicians to assess noise environments through these
parameters. In little fluctuating contexts, Leq will be close to L50. On the contrary,
with high fluctuations, Leq will be closer to L10 and will exceed L90 by 10 or more
dB. Generally, Leq is between L50 and L10 with the latter about 3 dB above Leq.

All these considerations about the sound environment are general and lack in
details. A statistical approach would dig deeper into data describing the whole
phenomenon that shaped the occurrences obtained by means of long-term moni-
toring. To visualize better the difference between the two approaches, 6 different
cases of ideal mixtures with 2 components have been created and shown in Figure
4.15. All the plots show the means of each component – i.e., the corresponding
sources’ SPLs according to the statistical approach – the Leq and the 10, 50, and 90
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.15 Synthetic cases of Gaussian mixtures with different signal-to-noise ratios
(SNR) and standard deviations. Means of each component, and the corresponding
Leq, besides the 10, 50, 90 statistical levels of each distribution are shown.
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statistical levels of the corresponding synthetic distributions. The cases represent
ideal situations with the mixing proportions of each Gaussian component equal to
0.5. Thus for simplification, the fluctuations of a source are considered only through
the component’s standard deviation.

Cases 1, 3, and 5 show a signal-to-noise ratio (SNR) between the two sources
equal to 15 dB. Cases 2, 4, and 6 show an SNR equal to 5 dB. Narrow and large
standard deviations (s.d.) have been used in different cases to simulate more steady
and random sources, respectively. According to the literature and the case studies
presented in this work, Leq and L90 are assumed, in the conventional method, to have
the same physical meaning as Mean2 and Mean1. In all cases, it is possible to notice
how Leq is more or less close to Mean2, i.e., the SPL of the highest sound source.
Leq is higher than Mean2 in all the cases except cases 1 and 2, where the s.d. of both
sources are low. L90 is always lower than Mean1. Differences, as seen for Leq and
Mean2, are less noticeable when the s.d. is low. More than the SNR, the s.d. seems
to affect the results, especially for L50.

In summary, synthetic ideal distributions show how neither Leq nor L90 is able to
adequately measure the SPL of a sound source. Leq and statistical levels result to
being useful in describing the extent of noise fluctuations and depicting a general
overview of the sound environment. However, they do not seem accurate enough to
measure a sound source in a mixture. The combination of the conventional approach
and the proposed one shows how few features would bring a lot of information to
technicians to analyze a sound context.

Outlook and future work

At the end of the present dissertation, many open issues remain to be debated and
investigated. The use of SPLs in the present work is strictly connected to the need
of acousticians to measure each noise source in complex scenarios. Standards and
requirements rely on clear thresholds, intervals, or single values to satisfy. Thus,
the proposed method aims to obtain a source separation and the interpretation of
real contexts only through SPLs. Thus, the phased data are lost but they are not
used in standard measurements. As seen in the chapter concerning the application
of the method in offices, this could mean preserve privacy. However, information
is lost and it represents one of the limits of the method, indeed. Other drawbacks
and limits concern the possible future scenarios of the acoustic monitoring. The use
of short-term equivalent levels as input data of the method allows fast and efficient
calculations preserving huge storage spaces with respect to audio data. Hence, a noise
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monitoring station could implement in the software the computation of mixtures or
wireless transfers very easily. At the same time, the lost of raw audio signals makes
some possible applications, like the implementation in devices that exploit speech
recognition or similar technologies, less versatile.

Another important step is the need to increase the number of case studies. A
larger database of applications of the proposed method can provide further and more
accurate insights into the physical meaning of the results. The outcomes presented
here can constitute a preliminary analysis of the method’s assessment. Once the
method has been used in different environments for a number of case studies that
is large enough, the statistical behavior of the results can be traced. The features
represent the framework to assess the reliability of the procedure. Thus, the analysis
of each characteristic useful to identify, separate, and label a sound source paves the
way for the accurate estimation of the acoustical context.

First, the standard deviation ranges play a key role in understanding the ran-
domness of a sound source. Cross-checks between s.d. in their spectral tendencies
and several case studies could outline a robust way to label different kinds of
sources. Monitoring over an extended period of time in active contexts gathers all
interferences, masking effects, and other interactions between the sources’ energy.
Considering how complex the interactions of sound waves with the environment
can be, the coefficient of variation constitutes a valuable feature to compare similar
sources in different contexts. The relative standard deviation tendency could be
the most accurate feature to verify similarities among different occurrence curves,
especially for the tightest clusters, i.e., mechanical sources.

Second, the overlapping areas could constitute an objective metric to evaluate
the dynamic of complex scenarios. In the present work, it has been introduced in
office applications. However, it could become useful in each context where the sound
sources have significant differences in temporal evolution.

Moreover, a quantitative validation experiment would provide preliminary in-
sights about the influence of reverberation on the occurrences curve. Differences
between long-term monitoring in anechoic and reverberant environments could point
out to what extent SPLs vary in different contexts.

Lastly, the physical interpretation of the mean needs to be deepened. It is the
most important feature since it represents the SPL of the sound source. Here lies the
main difference between the conventional and the proposed approach. Sound power
levels measured in controlled environments – reverberation or anechoic chambers –
identify a sound source univocally. Measuring SPLs (sound pressure levels) means
considering complex interactions between the emitted sound and the surrounding
environment, even at the closest distances. The same source can emit different SPLs
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in the free field or in enclosed spaces. Dealing with the measurement of sound
sources in realistic and complex scenarios means associating a specific SPL to a
single source. Even in a long-term measurement of a sound source much higher
than the background noise, the Leq would not describe that source accurately. The
conventional approach is strongly influenced by the highest level. Thus, each outlier,
i.e., high SPLs, would affect the result. The proposed approach avoids the influence
of outliers because only the most probable SPL is considered to be the representative
metric of the source.

The present work aims to provide an additional method to acousticians for
measuring sound sources in complex acoustic scenarios. The ability to identify,
separate, and label different coexisting sound sources would bring more accurate
diagnoses and design proposals improving the acoustic comfort in manifold contexts.
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