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Abstract 

The most widespread work-related diseases are musculoskeletal disorders 

(MSD) caused by awkward postures and excessive effort to upper limb muscles 

during work operations. The use of wearable IMU sensors could monitor the 

workers constantly to prevent hazardous actions, thus diminishing work injuries. 

In this thesis, procedures are developed and tested for ergonomic analyses in a 

working environment, based on a commercial motion capture system (MoCap) 

made of 17 Inertial Measurement Units (IMUs). An IMU is usually made of a tri-

axial gyroscope, a tri-axial accelerometer, and a tri-axial magnetometer that, 

through sensor fusion algorithms, estimates its attitude. Effective strategies for 

preventing MSD rely on various aspects that are all analyzed in this thesis: firstly, 

the accuracy of the IMU, depending on the chosen sensor and its calibration; 

secondly, the correct identification of the pose of each sensor on the worker’s 

body; thirdly, the chosen multibody model, which must consider both the accuracy 

and the computational burden, to provide results in real-time; finally, the model 

scaling law, which defines the possibility of a fast and accurate personalization of 

the multibody model geometry on the worker’s body. Moreover, the MSD can be 

diminished using collaborative robots (cobots) as assisted devices for complex or 

heavy operations to relieve the worker's effort during repetitive tasks. All these 

aspects are considered to test and show the efficiency and usability of inertial 

MoCap systems for assessing ergonomics evaluation in real-time and 

implementing safety control strategies in collaborative robotics. Validation is 

performed with several experimental tests, both to test the proposed procedures 

and to compare the results of real-time multibody models developed in this thesis 

with the results from commercial software. As an additional result, the positive 

effects of using cobots as assisted devices for reducing human effort in repetitive 

industrial tasks are also shown, to demonstrate the potential of wearable 

electronics in on-field ergonomics analyses for industrial applications. 
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Introduction 

In an advanced society, the health of every citizen should be ensured and 

safeguarded through regulations that firstly guarantee health and safety at work. 

It is estimated by the European Agency for Safety and Health at Work that three 

out of five workers report musculoskeletal disorders (MSD) annually [1].  

Uncontrolled tasks, such as excessive loads on the back and upper limbs, extended 

and prolonged awkward postures, or excessive movement repetitions increase the 

risk of injuries for workers and cause chronic and dysfunctional diseases. The 

reduction of MSD has not only ethical but also economic implications. Injuries at 

work are of dominant concern in many industrial fields because MSDs account for 

one-third of all workers' compensation costs. Effective prevention strategies 

reduce absenteeism and sick leaves, increase productivity, and save insurance and 

legal costs. However, the workers’ health is the most important motivation for 

prevention and one of the most robust investments for the company's future. In 

general, MSD could be prevented or largely reduced by designing an ergonomic 

workplace [2] where human physical conditions are at least as important as 

productivity. Implementing a health and safety strategy in the workplace helps to 

identify potential risks and significant hazards and to activate powerful risk 

reduction and prevention strategies [3].  

In this context and within the paradigm of Industry 4.0, innovative technologies 

integrated into sensorized systems are powerful tools for monitoring humans and 

safeguarding their health. In this sense, the widespread of lightweight, accurate, 

and stable sensors can be used as passive tools to provide continuous measures 

of the risk of possible disorders for the workers in real-time or, at least, with fast 

and frequent evaluations. Furthermore, the ongoing growth of the collaborative 

robotics market is pushing the use of cobots in industrial scenarios, where humans 

work in strict collaboration with robotics systems without any protective fences. 

For example, the workers can manually guide the cobot to perform a specific task, 

while the robotic systems reduce human overload. Otherwise, the cobot can help 

humans for moving and lift excessive weights. Apart from advantages in the 

production, a safe human-robot collaboration could also favor the reduction of 
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MSD, but it requires the continuous monitoring of the distance between the 

human and the cobot, ensuring that no unintentional contact or dangerous 

situation could occur. In this case, new sensors can be used as active tools to 

devise new control strategies that minimize the risk for the worker during human-

robot interaction. 

Motion Capture (MoCap) systems are measuring devices for recording human 

motion. The most used MoCap system to define safety control strategies relies on 

markerless or marker-based systems. While the first group exploits RGBD or deep 

cameras for determining the shapes and the motion of humans, in marker-based 

systems, infrared cameras measure the 3D position of optoelectronic markers 

positioned in specific anatomical landmarks. The major drawbacks of these 

systems are that the detection fails when external objects obstruct the camera’s 

field of view, or if the surrounding lights are too bright or gloomy. Moreover, they 

work only in a restricted volume where the camera maintains good visibility. As an 

alternative, wearable inertial sensors are gaining growing interest for their high 

portability, small dimension, lightweight, and reduced cost [4], [5]. The peculiarity 

of these sensors is that they are directly positioned over the body to determine 

the joint angles, they do not suffer from occlusion and light problems, and they 

are usable both indoors and outdoors. Conversely, they must be light, soft, and 

safe and specifically designed to be comfortable for humans. The ideal would be a 

completely flexible system without cables that do not interfere in any sense with 

the working task, thus being easily acceptable by the workers for safeguarding 

their health.  

 Examples are inertial MoCap systems, where an Inertial Measurement Unit 

(IMU) is associated with each body segment. An IMU is made by a tri-axial 

gyroscope, a tri-axial accelerometer and, most of the time, by a tri-axial 

magnetometer. Through sensor fusion algorithms, the IMUs output their 

orientation in an earth coordinate frame [6]–[8]. Then, the attitude of each body 

segment is estimated by the IMU orientation signals. Generally, only orientation 

is determined from the measures, thus it is necessary to associate a biomechanical 

model to compute the position of the segments' motion. As a consequence, the 

goodness of human body tracking depends on the accuracy of the sensors' 

attitude estimation and on the fidelity of the biomechanical model used [4].  

The thesis' objective is to evaluate the potentiality of using IMU MoCap 

systems, in conjunction with musculoskeletal modelling, as the principal actors to 
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study and improve safety at work. The most impactful advantage of these MoCap 

systems is that they can work online. This characteristic can be used to estimate if 

the workers are assuming awkward postures or performing repetitive motions 

that could be dangerous for their health. Alternatively, the IMU data can be used 

within the robot control system to inform the robot about the pose of the human 

[9]. 

Moreover, if inertial MoCap systems are integrated with a measure of the loads 

exerted by the worker, for instance using additional force and torque sensors or 

an estimate based on a preliminary load evaluation, a musculoskeletal model of 

the worker can estimate the joint and muscle loads and detect if overloads occur, 

causing possible injuries. The limits for joints' angles and moments are defined by 

ergonomics standards, which gather different indices and protocols to perform a 

preventive risk assessment of the work and reduce musculoskeletal disorders. 

Thus, comparing the online estimation of posture and force applied to the human 

body with the standards' limits allows the determination of potentially dangerous 

situations in real time. In this case, the constant tracking of the workers' behaviour 

could be a promising and effective method to assess prevention risk strategy by 

warning the workers with visual or auditive feedback. 

As already noted above, an effective strategy for preventing musculoskeletal 

disorders with wearable inertial sensors depends on different aspects: 1) the 

accuracy of the measuring system, i.e., the quality of the sensor and, in particular, 

of its calibration [10]; 2) the correct identification of the pose of the sensor on the 

subject, i.e., the so-called sensor-to-segment calibration [11], [12]; 3) the choice 

of the multibody model, which cannot only take into account the accuracy, but 

also the time required by each simulation and the possibility of providing results 

in real time; 4) the scaling law, which defines the possibility of a fast and accurate 

personalisation of the model geometry starting from a reduced set of measures 

on the subject. These points are important also for the second application 

considered here, related to the human-robot interaction with cobots. This Thesis 

will analyse and deal with all these aspects. 

In particular, as for the choice of the model (point 3 above), while the calculous 

of joint angles and corresponding body poses are relatively straightforward to 

assess with IMU MoCap systems, the determination of joint moments and muscle 

effort is more complex. The resolution of human dynamics is intricate and an 

open-research topic in biomechanics. Usually, through global and static 
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optimization resolution, commercial multibody software estimates the angle 

joints and muscle effort of complete and detailed musculoskeletal models[13], 

[14]. They represent the standard to perform both kinematic and dynamic 

evaluations of given motion tasks and are gaining growing interest in ergonomics 

assessments. However, these general models cannot work in real-time, thus they 

could have important limitations in some of the applications considered here. On 

the contrary, real-time simulations can be obtained using very simplified and 

custom models [15], [16] whose accuracy could be similar to the more complex 

and complete general models, if defined for the specific application. Thus, to 

evaluate the potentiality of both types of multibody models, both a commercial 

offline model [17] and a custom fast online model are tested for ergonomics 

assessment, in the same collaborative robotics scenario. In this way, the 

advantages of both approaches are described to guide the choice of the best 

solution for a specific application.  

As for point 4 above, the goodness of the simulation results depends on the 

similarity between the simulated musculoskeletal model and the property of the 

subject human body analysed. The standard model has to be scaled and modified 

to respect the actual anthropometric measures, joint kinematic motion, and 

muscle and tendon characteristics of the subject. It has been shown that subject-

specific musculoskeletal models, defined by specific joint geometry through MRI 

images or by sophisticated joint models, describe human motion behaviour and 

peculiarities better[18], [19]. However, a full personalisation of the model is 

unfeasible in real industrial scenarios. Thus, defining an automatic scaling law to 

identify musculoskeletal models with advanced joints characteristic is an 

interesting topic for increasing the overall accuracy of the considered applications.  

Thus, this thesis has multiple objectives, which are treated individually in each 

chapter. 

In the first chapter, an extensive study of the working principle of the IMU 

evaluates the strategies and the current methods to obtain a drift-less and noise-

less computation of the attitude. One of the possible causes of errors is the 

accelerometer and gyroscope's noisy or incorrect output. A precise accelerometer 

and gyroscope output depend on the goodness evaluation of the mathematical 

terms that describe the possible errors over the sensor output. The sensor 

calibration identifies those values. Since commercial calibration methods require 
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expensive equipment, a low-cost accelerometer and gyroscope calibration 

method is proposed and validated. 

The second chapter describes the IMU MoCap algorithm implemented. For 

accurate motion estimation, the anthropometric model has to be very similar to 

the subject, and the orientation of each IMUs with respect to the attached bodies 

has to be determined precisely. In this chapter, a novel sensor-to-segment 

calibration procedure is proposed and tested.  

The third chapter gathers the ergonomics assessments. After a detailed 

literature review on the use of wearable inertial sensors in ergonomics and the 

differences between standards, a collaborative robotics scenario is described. The 

operator hand guides the cobot in the drilling position and performs the drilling 

task with the help of the cobot. The IMU MoCap system tracks human motion, 

while a force and torque sensor measures the forces of interaction between the 

cobot and the subject. Thus, the multibody software simulates the physical 

human-robot interaction. The OCRA index, an ergonomic parameter that 

considers the motion range and the muscle effort and fatigue of shoulder, elbow, 

and wrist muscle in repetitive tasks, is calculated with commercial multibody 

software to mathematically estimate the advantages of using collaborative 

robotics in industrial applications for reducing musculoskeletal disorders. 

Moreover, an algorithm for estimating the upper-limbs human joint wrenches in 

real-time is defined and validated with the results obtained with the commercial 

software.  

The fourth chapter, instead, evaluates the usability of IMUs for commanding 

the collision avoidance strategy of a redundant robot in the null space. The test 

wants to demonstrate the validity of the integration of IMU MoCap algorithms and 

the robot controller for safety purposes.  

Finally, the fifth chapter describes the works made in collaboration with the 

University of Ottawa about automatic methods for scaling advanced and subject-

specific knee joint models using PCA. The idea is to define a robust dataset to 

predict the knee kinematic features using the position of four markers during a 

static acquisition. The results of the proposed method are promising, even if we 

expect that more populated datasets will improve the estimation.  
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Chapter 1 

Inertial Measurements Units 

The development of micro-electro-mechanical systems (MEMS) has enabled 

low-cost, low-power, light, and small-sized sensors, spreading their use in several 

applications. An example is MEMS Inertial Measurement Units (IMUs), sensors 

able to estimate their poses. Their first use was for aerial vehicles' attitude 

estimation, but nowadays, their use has spread to automotive, robotics, body 

motion tracking, rehabilitation, medicine, and clinical navigation industries. For 

example, automotive industries use single MEMS gyroscopes for car electronic 

stability control, and smartphone and drone companies use MEMS 

accelerometers as inclinometers for pose estimation. Healthcare industries utilize 

IMU for measuring clinically relevant motion patients' outcomes or as supportive 

devices in orthopaedics and laparoscopic surgery. 

In fact, the small dimensions and lightness of MEMS IMUs have promoted their 

use in wearable networks of sensors for Motion Capture (MoCap) systems, which 

identifies the discipline that digitally tracks and records the movements of objects 

or living beings in spaces [1]. The biggest challenge in motion tracking is to reach 

high accuracy with non-invasive sensors in an unlimited workspace, such as to 

measure body motion in complex and various environments without losing 

accuracy. The most common MoCap devices are camera-based systems, divided 

into marker-based or marker-less solutions. The first group relies on infrared (IR) 

cameras, which triangulate the locations of retroreflective markers attached to 

the targeted subjects. The second one exploits the potentiality of depth-sensitive 

cameras that project light toward the objects and estimate its depth based on the 

time delay from light emission to backscattered light detection, or more common 



I n e r t i a l  M e a s u r e m e n t s  U n i t s  |  

 

9 

 

RGB cameras. The major drawbacks of these systems are time-consuming and 

frequent calibration, a restricted working area, and light and occlusion problems. 

Conversely, IMUs' MoCap can be used outdoors and indoors and represent 

validated instrumentation for measuring human movements in clinical, video 

games, and entertainment. In the last few years, it has become an enabling 

technology for several industrial applications, such as localization, human-robot 

interaction, rehabilitation, and ergonomics. This development is due to the 

increasing number of manufacturing companies, such as General Electric 

Company (U.S.), Bosch GmbH (Germany), Xsense (Netherlands), or start-ups that 

manufacture and sell IMU as a single sensor or as an integrated MoCap system 

with its specific software. Figure 1 shows a commercial MoCap wearable suit and 

a single IMU.  

An IMU consists of a tri-axial accelerometer and a tri-axial gyroscope, 

sometimes integrated with a tri-axial magnetometer. A gyroscope measures the 

angular velocity, whereas the accelerometer senses the linear acceleration 

including gravity. A magnetometer measures the geomagnetic field vector to 

gather information about its orientation with respect to the north pole. The 

sensitive axes of these three sensors are aligned together and define a technical 

coordinate system (TCS) physically attached to the IMU case. The gravity vector in 

TCS estimates the pitch angle, while the magnetic field vector assesses the 

orientation with respect to the yaw axis. Mathematically, the gyroscope signals 

integration provides a first estimation of the sensor pose, corrected by the 

acceleration after subtraction of the gravity vector [2]–[4]. Since both the 

gyroscope and accelerometer suffer from time-varying biases and noise, their 

integration implicates drifting, mitigated by magnetometer estimation.  

Figure 1 Commercial IMU MoCap system and a single IMU sensor 
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The literature collects several sensor fusion techniques for the attitude 

assessment from all the signals gathered. In most cases, the filters adopted are 

complementary and Kalman filters: the attitude is calculated in discrete settings 

at successive time steps based on previous time step estimation and current time 

step measures [5]. Researchers have proposed several filter formulations with 

different mathematical orientation representations, various filter designs, or 

distinct strategies to fuse signal information. Despite the number of papers that 

compare sensor fusion algorithms in testing scenarios [6]–[10], it is difficult to 

identify the “best” algorithm and filtering approach [11]. Moreover, the results of 

the same sensor fusion algorithms differ between different studies due to various 

experimental conditions (rotation rates, acceleration magnitude, ferromagnetic 

disturbances, types of motion, etc.). The IMU orientation output has been 

compared with the one obtained with optical markers positioned on the human 

body [8], in a gimbal table [6], pendulum [9], or differently using robotic systems 

[7] that can control and replicate frequency and initial orientation of the IMU. The 

latter experimental setup proves that absolute accuracy in attitude estimation 

depends on aptitude, frequency, and motion direction. Differences in 

performance are evident with rotation against and along the gravity axis. In these 

cases, the correction effect of the magnetometer fails to reduce the drifting error. 

There are no statistically significant differences between several sensor fusion 

algorithms; however, appropriate filter parameters and tuning set selection are 

fundamental for incrementing accuracy [11]. Deep knowledge of the sensors' 

output parameters, such as noise distribution or bias, is necessary for increasing 

the goodness in modelling the sensor estimation and tuning the sensor fusion 

algorithms. One of the methods for determining the sensors ‘characteristics is 

calibration. The raw sensor data, usually voltage signals proportional to the sensed 

physical dimension, are compared with known reference outputs for determining 

the parameters that transform the raw data into meaningful values. The more the 

calibration can fully describe the model parameters, the more the sensor output 

is noise and bias-free. This fact reduces the drifting error caused by signal 

integration and produces a more stable and correct attitude estimation. Thus, a 

rigorous calibration procedure permits to have IMUs more performing for 

evaluating human motion and, consequently, safety at work.  

This chapter gives an overview of the IMU sensors in a general sense: it explains 

the working principle and the most common sensor error model of 

accelerometers, gyroscopes, and magnetometers. Sensor calibration is necessary 
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to estimate the values that accurately describe each sensor’s output, such as bias, 

noise, and scale factors. Since commercial calibration instrumentations are 

expensive, we propose a low-cost calibration method for gyroscopes and 

accelerometers, exploiting the free fall motion of a pendulum. Results and the 

sensitivity analysis of this approach are described in the last section.  

1.1 Working principle 

1.1.1 Gyroscope 

A gyroscope is a device mounted on a 3D frame able to sense angular velocity 

components along each axis. The first pioneering instrumentation to accomplish 

the scope measured the torque necessary to change the orientation of a spinning 

body rotating about its axis. A second version was introduced in 1852 by the 

physicist Léon Foucault, who installed the spinning disc on a gimbal allowing it to 

navigate freely in the three directions. When the spinning axis rotates, it maintains 

its spin axis direction fixed regardless the orientation of the outer frame, according 

to the conservation of the angular momentum. Later the spinning body was 

substituted by a vibrating element to miniaturize the system. Therefore, a MEMS 

gyroscope is built using silicon micro-machining techniques and consists of a mass, 

𝑚, driven to vibrate along an axis with a given frequency. The in-plane velocity 𝑣 

of the mass is dependent of the frequency and its cosine. The mass can move only 

in one direction and is tethered to a polysilicon frame. When an angular velocity 

𝜔 is applied to the sensor, a secondary vibration is induced perpendicular to the 

vibrating axis due to the Coriolis force, which is equal to:  

𝐹𝑐 = −2𝑚(𝜔 ∧ 𝑣)  (1) 

Figure 2 Schematic representation of the gyroscope working principle 
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The polysilicon frame is attached to a substrate with springs positioned 

perpendicular to the vibrating axis and is free to move. An external frame contains 

sense fingers that measure the displacement due to the motion through capacitive 

transducers in response to the force exerted by the mass. Figure 2 shows a 

schematic representation of the gyroscope. If the entire structure rotates, the 

resonating mass and the frame move under the Coriolis acceleration. As the rate 

of rotation increases, so do the displacement due to the Coriolis force and the 

signals captured. However, the Coriolis acceleration is so little to produce small 

capacitance changes, thus must be amplified by an integrated circuit.  

Ideally, a gyroscope would be sensitive only to rotation rate, but in practice, it 

is sensitive to acceleration due to asymmetry of its mechanical designs and 

micromachining inaccuracies. 

The errors in the gyro output influence the accuracy of the angle 

reconstruction. The performance factor of the gyroscope can be classified into five 

parameters [12]: 

1. Angles Random Walk (ARW) defines the broadband white noise present in 

the gyro output due to thermo-mechanical noise. It is caused by the 

constant vibration of the mass and noises over the detection electronics, 

which fluctuates at a rate much greater than the sensor sampling rate [13]. 

It is evaluated through the Allan variance technique. 

2. Bias Offset Error defines the error in the nonzero output when the rotation 

is null. It is dependent on different temperatures but fixed for each of 

them. Thus, it can be easily individuated and corrected. 

3. Bias Instability describes the instability over temperatures of Bias Offset 

Error. Its effect is impactful in long measurement periods and thus is 

difficult to calibrate. Allan variance technique identifies this error. 

4. Temperature Sensitivity describes the negative effect of temperature on 

the gyro sensor. 

5. Shock and Vibration Sensitivity identify the noise and bias offset 

degradation under vibration and shock input. 

Finally, “calibration errors” [13] describe those errors strictly dependent on the 

calibration procedure: scale factors and alignment factors. While the scale factor 

converts the raw sensor signals in standard metric systems, the alignment factors 

identify the possible micromachining non-orthogonality errors between the 
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sensitive axes. These errors, which noise the sensor outputs, accumulate during 

the integration procedure comporting an additional drift but can be mitigated by 

an effective calibration procedure.    

1.1.2 Accelerometer 

The MEMS accelerometers are sensors able to detect linear acceleration along 

the three axes. They can be divided into two distinct classes depending on the 

sensing modality [14]. In one case, the output depends on the displacement of a 

proof mass supported by a hinge or flexure, whereas in the other case, the linear 

acceleration is related to a change in the frequency of a vibrating mass element. 

The first case comprehends the popular pendulous-mass accelerometers, which 

consist of a silicon substrate. When an external motion determines a sensor's 

acceleration, specific electrodes measure the movements between the proof mass 

and the substrate. According to the working principle exploited to measure this 

gap variation, MEMS accelerometers can be divided into piezoresistive, 

piezoelectric, capacitive, tunnel, resonant, electromagnetic, thermocouple, 

optical, inductive, etc. [15]. Since the mass value, the hinge's elastic constant, and 

the displacements due to the motion are known, the linear acceleration of the 

system perpendicular to the plane is obtained through the Hooke law and the 

second principle of dynamics. Usually, three perpendicular pendulum-mass 

accelerometers compose the three-axial MEMS accelerometer. The advantage is 

its versatility of being packed in small electronic devices, and as for gyroscopes, 

they are small, low-power, and light. Figure 3 shows an example of MEMS 

accelerometer. 

Similar to gyroscope the error characteristics are [13]: 

1. The constant bias, which is estimable knowing the precise orientation of 

the device with respect to the gravity vector averaging long-term outputs. 

2. Velocity Random Walk which is influenced by the electronic noise of the 

sensor. 

3. Bias instability that causes the bias to wander over time.  
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4. Temperature effect that, like the gyroscope, causes fluctuation in the bias 

of output signal and depends specifically on the devices and is often highly 

nonlinear. 

Then calibration is necessary to identify both the scale factor and axis 

misalignment and will be described in the section 2. 

1.1.3 Magnetometer 

The convection currents of a mixture of molten iron and nickel in the Earth's 

core, due to the natural process of the geodynamo, create a magnetic field that 

makes the Earth a magnetic dipole. The magnitude of the magnetic field varies on 

the Earth's surface ranging from 25 to 65 μT. Its direction is described with the 

declination and the inclination angles, which are the angle with the north-south 

geographic axis and the Earth's surface, respectively.  

MEMS magnetometers are devices that measure the strength and direction of 

a magnetic field and are classified into two main groups: sensors exploiting the 

force generated by the response of ferromagnetic materials deposited on top of 

the silicon structures [16], and sensors based on the Lorentz-Force principle. Here 

a low-resistivity silicon structure is suspended over the glass substrate by torsional 

beams, fixed by anchors bonded onto the substrate. An excitation coil with a 

known length is above the silicon structure and activated by a direct current. If a 

magnetic field perpendicular to it is present, the Lorenz forces generated 

perpendicular to the two planes cause movements of the suspended mass, which 

can be sensed in multiple ways, such as capacitive, piezoresistive, and optical [17].  

The Lorenz force is generated by the sum of the Earth's magnetic field and any 

local fields present in the sensor proximity. The latter are due to ferromagnetic 

materials, electric motors, payload instruments, and attitude control torquers 

Figure 3 MEMS accelerometer 
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[18]. A performing calibration procedure allows estimation of the local fields and 

their compensation.  

The main magnetometer error characteristics are: 

1. The constant Bias Error that, differently from the gyroscope, seems to 

remain constant for the entire lifespan of the sensor [19]. 

2. The non-orthogonality error, which is the misalignment between the 

direction of each sensitive axis. 

3. Cross Axis Sensitivity errors that cause a variation of the magnitude 

sensed by each axis, varying the scale factors. 

4. Sensor noise is due to the noise over the electronics and is a stochastic 

process. 

5. Temperature dependence of the calibration parameters. 

6. Magnetic Field Specific Errors due to the magnetic perturbation, and it is 

divided into: 

- Hard Iron effect, resulting from permanent magnets and magnetic 

hysteresis of the sensor components. 

- Soft Iron effect, due to the interaction with ferromagnetic compounds 

that induces external magnetic fields that changes both the intensity and 

the direction of the sensed field. 

If we rotate a perfectly calibrated magnetometer not surrounded by any 

ferromagnetic materials, it will sense a constant magnetic field. Output lies on a 

sphere centred at the origin of the reference system. The soft iron effect distorts 

the sphere that becomes an ellipsoid, while the hard iron effects offset the 

ellipsoid centre from the origin. Thus one of the most used algorithms to calibrate 

the magnetometer and identify the magnetic disturbances in a specific field relies 

on an ellipsoid fitting problem over the theoretical sphere[19]–[21]. The benefits 

of using this approach are that the ellipsoid fitting problem is widely studied in the 

literature, and the movement is easy to implement and perform. It is sufficient to 

fit a sphere over the magnetometer output sensed by performing roughly 360° 

sensor rotations. This process should be done during the setting phase of the 

magnetometer in a new environment for detecting and correcting all external 

disturbances.   
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1.1.4 Sensor fusion algorithm 

Data from the gyroscope, accelerometer, and magnetometer are fused to 

determine the sensor attitude through the sensor fusion algorithm. Usually, 

rotation matrices, Euler angles, and director cosine express spatial orientation. 

However, recently almost all algorithms rely on unit quaternion representation, 

which parametrizes the rotation with four variables and, compared to the other 

parametrizations, does not suffer from the gimbal lock problem, thus avoiding 

singularities [22], and reducing computational costs. Moreover, the quaternion 

derivative is easily defined and used to represent angular velocity. 

The objective of sensor fusion algorithms is to use the information gathered 

from all the available sensors and express the orientation of the sensor's technical 

frame (TCS), defined by its sensitive axes, in the Earth coordinate system (ECS). 

The latter is a universal reference frame commonly used in navigation practices, 

characterized by an axis pointing to the north pole, one along the gravity direction, 

and the last composing the right-handed triad. The quaternion derivative ( 𝒒̇𝑇𝐶𝑆
𝐸𝐶𝑆 ), 

describing the rate of change of the sensor's TCS orientation in ECS ( 𝒒𝑇𝐶𝑆
𝐸𝐶𝑆 ), is 

correlated with the gyroscope output with [2]: 

𝒒̇𝑇𝐶𝑆
𝐸𝐶𝑆 = 

1

2
𝒒𝑇𝐶𝑆

𝐸𝐶𝑆  ⊗ 𝝎𝑠 =
1

2
𝒒𝑇𝐶𝑆

𝐸𝐶𝑆  ⊗ [0 𝜔𝑥
𝑠 𝜔𝑦

𝑠 𝜔𝑧
𝑠]  (2) 

where ⊗ identifies the Hamiltonian product among quaternions, and 𝝎𝑠 the 

angular velocity sensed by the gyroscope. Knowing the initial condition, this term 

can be numerically integrated to obtain the orientation of the sensor in the earth 

frame. Since the numerical integration of noisy signals suffers from drift, this first 

estimation is corrected using the information gathered from accelerometers and 

magnetometers. How these sensors are fused mostly differentiates the sensor 

fusion algorithms. Many methods exploit complementary filters: a “low 

frequency” attitude is estimated from the acceleration due to gravity and from the 

magnetometer through optimization resolution [3], [23]  and fused with specific 

weights with the gyroscope attitude estimation. Most works ignore the effect of 

linear acceleration because it is much lower than the gravity vector, but others 

[24] add some kinematic constrain estimating the linear acceleration and 

subtracting it from the accelerometer signal. The most used algorithms rely on 

TRIAD [25], [26] and QUaternion ESTimation (QUEST) [27]. Both create triads from 

the accelerometer and magnetometer output and determine the suboptimal 
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orientation estimation between the two systems with, respectively, a 

mathematical cross-product and minimization of a loss function. The latter two 

are very popular for their easy implementation and efficiency in real-time 

scenarios. Moreover, among sensor fusion algorithms, the Kalman filter [28]–[30], 

or the improved Extended Kalman filter [4], that deal with nonlinearities, are 

widely used. However, the number of works that treat sensor fusion algorithms is 

high, and they will not be discussed here. An excellent literature review is made 

by Filippeschi et al. [5], with a focus on the algorithm used for motion tracking of 

the upper limbs. As mentioned in the introduction of this chapter, it is difficult to 

assess which is the best strategy to fuse the information gathered by the IMUs, 

because the results are strongly dependent on experimental conditions. Firstly, it 

depends on the disturbances present in the environments: temperature variation, 

types of motion, and ferromagnetic perturbation. Secondly, it depends on the type 

of test performed: a rotation aligned to the gravity vector will reduce the 

gyroscope drift correction from the accelerometer output.  

Research continues to investigate how to obtain robust attitude estimation 

working on several fronts: development of more stable sensor and electronic 

circuits able to reduce noise and temperature dependencies, improvement of the 

calibration procedure and mathematical sensor models that better describe the 

signal, implementation of new sensor fusion algorithm able to better estimate the 

attitude, and finally by integrating other sensors, such as GPS or cameras [31], [32], 

for correct the position calculation in 3D space.  

1.2 Commercial IMU systems 

Companies that sell IMUs generally use their algorithms with specific tuning 

parameters obtained during the calibration phase to estimates the sensor 

attitudes. Usually, they don’t specify the algorithm used, and they output the 

gyroscope, accelerometer, and magnetometer signals, as well as the attitude 

estimations in the forms of quaternion, Euler angles, or rotation matrices. In this 

way, the use of commercial IMU is dual: the raw sensor signals are proper to study 

and develop proprietary sensor fusion strategies; alternatively, the use of self-

estimated sensor attitudes of several IMUs is fundamental for motion tracking 

implementation. 

In this project, we studied and compared two commercial motion tracking 

systems: the Shadow® Mocap Suit (2022 Motion Workshop, USA) and the 
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ShowmotionTM (NCS Company SpA, ITA). The principal difference between the 

two systems is that Showmotion has wireless IMUs that transfer sensor data to a 

laptop with proprietary software. Differently, the IMUs of the Shadow Mocap Suit 

are connected by cable to a portable controller that hosts a Wi-Fi network. Each 

system provides raw data (accelerometer, magnetometer, and gyroscope) and the 

orientation represented in rotation matrix, Euler Angles, and quaternions. 

The sensor fusion algorithm is unknown in both commercial systems. 

• Showmotion IMU contains two accelerometers to augment the sensor 

redundancy and reduce noise and the drifting problem over the orientation 

estimation. Each IMU is positioned on the body through tapes and elastic 

bands after a set-up phase needed to connect each IMUs wirelessly to a 

USB antenna connected to the laptop. Frequency is dependent on the 

number of sensors and type and dimension of data transferred: for 

instance, for a typical upper limb and shoulder setup, 5 IMUs are needed, 

and, with standard data, frequency is 60 Hz [33]. Each IMU is equipped with 

LiPo batteries with a capacity of 240 mAh, which, if fully charged, has a run-

time of 2.5-3 hours, depending on the data rate and temperature.   

• Shadow system comprehends 17 IMUs and a pair of pressure insoles. A 

series of pockets sewn into a t-shirt fix the sensors of the body core, while 

elastic bands hold the IMUs over the limbs. The portable Wi-fi hub gathers 

five cables, each connecting 3 or 4 IMUs in series. The sampling rate can 

reach 1000 Hz if a single IMUs is used or 400 Hz if all the 17 sensors are 

connected. The output data can be treated in two ways: they can be saved 

and imported using proprietary software or with the Motion Software 

Development Kit (SDK). It is an open-source collection of classes in C++, C#, 

Java, and Python that provides real-time access to the sensor's output to 

Figure 4 ShomotionTM system (https://ncs-company.com) and Shadow Mocap Suit 
(https://www.motionshadow.com) 

https://ncs-company.com/
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simplify the development of third-party applications. The portable 

controller mounts the Motion Service that exports real-time data streams 

over TCP socket connections and sends the current output data to the 

client as soon as it becomes available. It is possible to choose the type of 

output depending on the application. For example, one could consider only 

raw sensor data, orientation estimates, or body position analysis captured 

with the biomechanical model and kinematic chains defined in the 

software. The SDK is a powerful tool because it allows the easy import of 

the IMU outputs inside other pipelines, such as a robot controller, as it will 

be done in this Thesis.  

The main characteristics of the IMU of the two systems are listed in Table 1.  

As well as for all wearable devices, one of the main drawbacks of these systems is 

soft tissue artifacts and corresponding movements of the sensors over the skin. 

Each IMUs has to be fixed as much straight as possible to the body. During the 

calibration, the orientation of the IMU over the segment is captured and then 

subtracted from the measured output during the experimentation phase. The 

relative motion between bones and sensors changes the orientation and leads to 

inaccuracies in rigid body poses and kinematics analysis. 

It is then fundamental to fix the IMU as much as possible to the body without 

creating discomfort or interfering with natural human movements. However, the 

MEMS IMU sensors are rigid cases with a size of approximately 50 x 60 x 30 

mm and a weight of 70 grams. Despite their size, it is not always comfortable and 

easy to fix them firmly to the body, ensuring no movements during the analysis. 

That is why a new promising research topic is the development of textile sensors 

that integrate the MEMS chips inside the fabric, thus reducing the size and 

discomfort to the human[34]–[36]. Textile sensors are a promising new version of 

traditional MEMS in wearable electronics, not only because they exploit the 

properties of flexible materials but also because they have the advantages of low 

cost, good conformality, comfort, and wearability. However, they present 

technological issues such as balancing good electrical conductivity and air 

permeability, poor durability, and improved integration of active materials and 

fabric. 
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Table 1 Commercial IMU characteristics (NOTE: Showmotion data refers to the system used in this study, but 
a full body set with 10 IMUs is also available) 

1.3. Low-cost gyroscope and accelerometer calibration 

A proper IMU calibration procedure estimates the causes of errors in outputs, 

thus reducing drifting in signal integration and increasing attitude estimate 

accuracy. The raw MEMS outputs consist of a tension proportional to the 

corresponding measured physical quantity: calibration is the process of 

determining those coefficients which relate the raw sensor outputs to known 

reference data over a wide range of values. Generally, gyroscope and 

accelerometer calibrations rely on mechanical platforms, which rotate the sensor 

about controlled axes at a known rotational velocity. This highly automated 

equipment guarantees high accuracy but is expensive. It is not economical to use 

costly equipment that expenses many times more than low-cost MEMS sensors, 

especially if the numerosity is low, like in the case of an end-user who wants to 

recalibrate his IMU system. This can be the typical scenario of an industrial 

application, where the calibration would be performed occasionally to improve 

the accuracy of the overall system, like for the applications presented in this 

Thesis. In the next section, a low-cost method based on the free-falling motion of 

a planar pendulum is described, which can be easily implemented in practice also 

in industry. The physical parameters of a theoretical motion model of the 

pendulum are identified and used to generate the reference signals of the 

calibration.  

1.4 Sensor error model 

The sensor error model has the scope to mathematically describe the error 

characteristic of the sensor, thus, finding those parameters that better describe 

the output and mitigate their negative effect. The simplest error model considers 

only a scale factor and a constant offset along the three axes. However, even if the 

manufacturing process is precise and highly automatized, the sensor sensitivity 

Name 
Sensors range Max 

Data rate 

IMU’s 

number 

Connection 

Accelerometer  Gyroscope Magnetometer 

Shadow ±8 g ±4000 °/s ±800 μT 400 Hz 17 Cable 

Showmotion ±8 g ±3000 °/s ±1600 μT 60 Hz 5 Wireless 
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axes are usually not mutually orthogonal. This error component is called non-

orthogonality misalignment, and it is become a common practice to include it in 

the sensor error model [37]–[40]. Some researchers consider also adding noise 

[41], [42] temperature effect [43] or propose nonlinear time-varying model [44]. 

Nonlinear time-varying models with many parameters offer better accuracies at 

the expense of complexity, which requires too costly iterative numerical solvers 

than the benefits brought to the solution. The effect of higher-order nonlinearities 

is often very mild, particularly when compared to the magnitude of the other 

noises. On the contrary, it is worth noting that the gyroscope’s scale factor and 

bias change with temperature [45]. Yang and co. [43] calibrate the gyroscope 

along a range of -40 – 50 °C and prove that scale factors have a linear relationship 

with temperature, whereas the bias change with temperature with a no-

mathematical describing law. Therefore, some companies have integrated a 

temperature sensor into the IMU sensor.  

In our application, IMU sensors composing the MoCap systems are worn by 

workers who are supposed to work indoors or in industrial settings with a 

controlled temperature of around 20° C. Therefore, the temperature effect over 

the bias can be ignored, thus reducing the number of unknowns and the 

complexity of the sensor model. Similarly, since the purpose is to propose a low-

cost and easily implementable calibration procedure for gyroscopes and 

accelerometers with a simple mathematical model, the non-linearities depending 

on the noise are not considered. The sensor error model depends on nine 

unknown parameters equal to scale factors, bias, and non-orthogonality 

misalignment for both the accelerometer and gyroscope. Supposing that the latter 

error is small, it is possible to project the measured quantities from non-

orthogonal to orthogonal axes using an upper diagonal matrix T, such as [38]:  

𝑻−1 = [
1 −𝜃𝑦𝑧 𝜃𝑧𝑦

0 1 −𝜃𝑧𝑥

0 0 1

] (3) 
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where the x axes of the non-orthogonal (Xn-o) and orthogonal system (Xo) are 

aligned, and the y axis of the non-orthogonal system lies (Yn-o) in the x-y plane of 

the orthogonal system. Figure 5 represents the non-orthogonality misalignments. 

Here 𝜃𝑖𝑗 is the rotation of the i-th non-orthogonal axis about the j-th orthogonal 

axis. 

By adding the parameters for the bias and scale factors, the complete error 

model of the gyroscope and accelerometer is: 

𝐚𝑠 = (𝑲𝑻)−1𝐚0 + 𝐛 (4) 

where: 𝐚𝑠 is the sensor’s real output in the non-orthogonal system; 𝐚0 is the 

theoretical output in the orthogonal system; K is a diagonal matrix with the 3 scale 

factors kx, ky and kz on the main diagonal; b is a column vector with 3 biases, bx, by 

and bz. The 9 unknowns are collected in the vector x for the calibration.  

1.5 Pendulum Model   

1.5.1 Methods 

The proposed calibration procedure counts on the free fall motion of a physical 

pendulum. It consists of two separate steps: firstly, an identification of the 

pendulum parameters, and secondly, the correlation of the raw sensor output 

with the angular velocity and linear acceleration reference signals derived from 

the pendulum models. The pendulum is made by a cylindrical mass hanging from 

a metallic threaded rod and fixed at a pivot point by a revolute joint. Through a 3D 

printed structure, the sensor is attached to the distal extremity of the pendulum, 

in a structure that is easily disassemble for quickly changing the sensor orientation 

during the experiment. The moment of inertia, I, about the revolute joint axis and  

Figure 5 Representation of non-orthogonality misalignment 
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Table 2 Pendulum parameters 

 

 

 

 

 

 

 

 

 

the centre of mass position along the cylinder axis, 𝑧𝑔, are calculated from the 

pendulum parameters listed in Table 2. The total mass, denoted as 𝑚𝑡, is the sum 

of all the pendulum masses. 

The physical parameters of the theoretical motion model of the pendulum are 

identified by fitting the angular motion of a real pendulum measured by an 

incremental encoder over the revolute joint (Trinamic TMCS-28). With respect to 

similar methods [46], the pendulum motion model includes both the kinetic (ρ) 

and viscous (η) friction terms.  

A widely used model for kinetic friction is the dry friction or Coulomb friction. 

The model is valid for dry surfaces, or those surfaces covered by a thin lubricant 

film that does not prevent contact. The kinetic term depends on the material 

properties and the characteristics of the surfaces of the contacting bodies, the 

amount and type of fluid between the contacting points, and temperature. 

Friction force opposes the motion and the resistive moment due to this term (𝑀𝑓𝑘) 

is equal to: 

𝑀𝑓𝑘 = −𝜌 𝑟‖𝒇𝒏‖sign(𝜔) (5) 

where ‖𝒇𝒏‖ is the magnitude of the normal reaction force at the revolute joint, 

with radius 𝑟 (5 mm). The reaction forces depend on the weight forces 𝐟𝒘 and the 

inertial forces 𝐟𝑰 (see Figure 6). For the second-Newton law, the resistive force is 

equal to: 

‖𝒇𝒏‖
2 = (𝑚𝑡𝑧𝑔(𝜔

2s(𝜃) + 𝜔̇c(𝜃)))2+(𝑚𝑡(𝜔̇𝑧𝑔s(𝜃) − 𝑔 − 𝜔2𝑧𝑔c(𝜃)))2    (6) 

Parameters Value 

Cylinder mass 0.358 Kg 

Cylinder diameter  50 mm 

Cylinder high 25 mm 

Pivot diameter 10 mm 

Threaded rod mass 0.102 Kg 

Threaded rod 
diameter 

8 mm 

Threaded rod length 286 mm 

IMU case mass 0.05 Kg 

IMU case dimension 41 x 34 x 20 mm 
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where c(𝜃) and s(𝜃) stands for cos(𝜃) and sin(𝜃) respectively; 𝜔 is the pendulum 

angular velocity; 𝜔̇ is the angular acceleration and g is the gravity acceleration. 

The analysis of the amplitude of all components in Eq. 6 shows that the terms 

including 𝜔̇ are negligible with respect to the other terms and can be ignored. 

Thus, the 𝑀𝑓𝑘 can be simplified as:  

𝑀𝑓𝑘 = −𝜌 𝑟√(𝑚𝑡𝑔)2 + (𝑚𝑡𝑧𝑔𝜔2)
2
+ (2𝑚𝑡

2𝑔𝑧𝑔𝜔2c(𝜃))
2
  tanh(

𝜔

𝜔0
)   

 

(7) 

where ρ is the friction coefficient, which for metal and plastic materials is 

between 0.1 and 0.3. The function tanh(∙) approximates the sign function with a 

continuous function, to allow a robust integration of the pendulum dynamic 

model. The value 𝜔0 is a tuning parameter used both to make the tanh argument 

dimensionless and to tune the differences between the tanh and sign functions. 

Here we assumed 1 𝜔0⁄ =10 s/rad since it showed to be the optimal compromise 

between approximation and computational stability in preliminary tests. 

For the moment equilibrium about the centre of the revolute joint, the motion 

equation of the pendulum is: 

                           𝐼𝜔̇ +  𝜂𝜔 + 𝑚𝑡𝑔𝑧𝑔s(𝜃) + 𝑀𝑓𝑘 = 0    
 

(8) 

Figure 6 left) pendulum parameters scheme - middle) real pendulum – right) force representation 
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The test consists of recording the angle data with the encoder while the 

pendulum performs a dynamic planar free-fall motion starting from a known static 

initial angle. Here, the free fall motion starts from an angle of 𝜋 2⁄ , but could be 

an arbitrary value that produces a pendulum motion with a wide range of angular 

velocity and acceleration values.   

The parameters ρ, η and 𝑧𝑔 are estimated using the Matlab function nlgreyest 

(Matlab R2020a). It estimates the parameters of a nonlinear grey-box model, by 

considering the system’s initial state and by fitting Eq. 8 solution to the encoder 

data. The other model parameters are not optimized. 

The identification of the pendulum model is performed using six different 

encoder datasets. To quantify the advantages of using this complete pendulum 

model, it is compared to the traditional pendulum model that considers only a 

friction term dependent on 𝜔: 

𝐼𝜔̇ +  𝜂𝜔 + 𝑚𝑡𝑔𝑧𝑔s(𝜃) = 0  (9) 

The mean squared error (MSE) between the reconstructed and the measured 

angles are evaluated in both cases and compared.  

1.5.2 Results 

The Matlab function estimates the parameters from 200 data sample of the 

encoders, which measures with a frequency of 100 Hz. In order to test the validity 

of the results, six different tests are performed. Both the mean values and the 

standard deviation among the test are reported in Table 3. Results shows a low 

variability and are congruent with standard values of kinetic and viscous friction.  

             Table 3 Pendulum parameter results 

Parameters Value 

ρ 0.13 ± 0.03 

η [Nms] (23.8 ± 5) 10-6 

zg [mm] 234 ± 3 
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The dynamic pendulum model described in this study shows better results than 

a traditional pendulum model, which considers only one friction term dependent 

on 𝜔. As shown in Figure 7, the mean squared error (MSE) of the response of our 

model compared to the encoder measurement data has a lower value than the 

model with only the viscous term. The model proposed has a MSE equal to 0.003, 

compared to 0.005 for the model containing only the friction term. As expected, 

the major discrepancies are visible at low velocity where the contribution of non-

modelled friction terms are more effective.  

1.6 Calibration method 

Several algorithms have been used for identifying the sensor error model 

unknown parameters from experimental data, from Kalman filtering techniques 

[41], [44], [47], [48], especially for real-time applications. However optimization 

algorithms are a widespread and suitable method for sensor calibration [39]. Both 

Newton method [37], [38], or non-linear least square algorithms [42] are 

proposed: the cost function minimizes the difference between the pendulum 

model results and the experimental sensor output. Since it can reach several local 

optima, the definition of the initial starting values has to be determined carefully. 

Moreover, it is fundamental to provide more data points than the number of 

parameters to determine, such as to avoid unconsidered conditions in the 

reachable sensor range. 

Similarly, our approach is based on the Matlab function lsqcurvefit, which 

solves nonlinear curve-fitting problems in the least-square sense. The Trust-

Figure 7 Comparison between the pendulum’s angle measured by the encoder and the one obtained by the dynamic 
model with and without kinetic friction over 5 seconds 
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Region-Reflective Least Squares have been used in [49], [50]. The unknown 

calibration parameters of the accelerometer and gyroscope, collected in 

the x vector, are defined by minimizing the error function describing the deviation 

of the sensor output from the magnitude of the corresponding measure estimated 

by the pendulum model. Defined h as the function which, for any sensor output, 

relates 𝐚𝑠 with 𝐚0, from Eq. 4 results: 

𝐚0 = 𝐡(𝐚𝑠, 𝐱) = 𝑲𝑻(𝐚𝑠 − 𝐛) (10) 

Since each axis has to be considered, the measure is performed by placing the 

IMU at three different positions i =1,2,3, to align the three corresponding x, y and 

z gyroscope’s sensitive axes along the pendulum rotation axis. Thus, the 

optimization problem becomes:  

min
𝐱

{∑∑‖𝐡(𝐚𝑗
𝑠 , 𝐱)

𝑖
− 𝐩(𝜃𝑗 , 𝜔𝑗 , 𝜔̇𝑗)𝑖‖

2
𝑁

𝑗=1

3

𝑖=1

} (11) 

where p denotes the reference signal derived by the pendulum model; j = 1,…,N 

with N equal to the number of measures.  

To obtain the first guess for the optimization, we perform a standard 6-

positions calibration, firstly described in [51]. It consists of placing the sensor on a 

plane perpendicular to the gravity in up (𝑎𝑖,𝑢𝑝
𝑠 ) and down (𝑎𝑖,𝑑𝑜𝑤𝑛

𝑠 ) positions for 

each sensitive axis and performing a static measure. The raw static signals from 

the accelerometer and gyroscope are averaged throughout 1 s to reduce noise. 

Since the accelerometer always measures gravity, bias (𝑏𝑖) and scale factors 

(𝑘𝑖) for each axis can be estimated using the average sensor raw output over the 

entire static measure [38]: 

𝑘𝑖 = 
𝑎𝑖,𝑢𝑝

𝑠 − 𝑎𝑖,𝑑𝑜𝑤𝑛
𝑠

2𝑔
  (12) 

𝑏𝑖 = 
𝑎𝑖,𝑢𝑝

𝑠 + 𝑎𝑖,𝑑𝑜𝑤𝑛
𝑠

2
  (13) 
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Differently, for the gyroscope, the bias is estimated as in Eq. 13, and the scale 

factors are chosen equal to the ratio between the maximum value of ω from the 

model and the i-th gyroscope axis during dynamic tests. For both sensors, the first 

guess for all misalignment angles is zero. 

After the static calibration, the sensor is positioned at the pendulum extremity 

in 3 different positions to align each gyroscope axis with the angular velocity 

vector. A 3d printed structure holds the case within the IMU case, whose 

reposition is performed manually with no sophisticated instruments. This fact 

could implicate a misalignment of the sensor axis about the pendulum frame that 

could reduce the calibration procedure accuracy.  

Thus, an additional orientation error is considered and evaluated during this 

phase. The latter can be due to 1) a rotation of the sensor within the IMU case and 

2) a misalignment of the case respecting the pendulum axis. The so-called matrix 

𝑹𝒕
𝒔 accounts for both errors, which involve two different possible scenarios. If the 

first error is present, the error sensor model should contain an additional 

misalignment matrix that describes the angle between the three-sensor axis and 

the external cover case. This parameter identification is possible only with a 

rigorous orientation of the IMU case about the pendulum, thus, ignoring the 

influence of error 2. On the contrary, if error 1 is negligible, the positioning of the 

Figure 8 Static 6-poses calibration 

Figure 9 Three poses of the dynamic calibration  
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IMU case could be less accurate, thus simplifying the calibration procedure. In this 

context, we consider the second scenario and identify the positioning 

misalignment error through an optimization problem. By choosing an XYZ Euler 

angle parametrization of ξ, β and γ angles, the matrix 𝑅𝑡
𝑠 can be written as: 

𝑹𝒕
𝒔  = [

1 0 0
0 c(𝜉) − s(𝜉)

0 s(𝜉) c(𝜉)
] [

c(𝛽) 0 s(𝛽)
0 1 0

−s(𝛽) 0 c(𝛽)
] [

c(𝛾) − s(𝛾) 0

s(𝛾) c(𝛾) 0
0 0 1

] (14) 

While 𝑹𝒕
𝒔

 describe the positioning error, the experimental orientation of the 

sensor with respect to the pendulum model is the rotation matrix 𝑹𝒑
𝒕  defines the 

theoretical orientation of the IMU-sensitive axes with respect to the pendulum 

motion plane (YZ-plane) in the 3 different experimental alignments.  

Both the matrices correct the sensor raw output, namely the angular velocity 

𝛚∗ for the gyroscope and the linear acceleration 𝛂∗ for the accelerometer. Then, 

the reference gyroscope signal 𝐩𝑔 and the reference accelerometer signal 𝐩𝑎  are 

given by 

𝐩𝑔(𝜃𝑗 , 𝜔𝑗)𝑖  = 𝛚𝑖,𝑗
∗ = 𝑹𝒕,𝑖

𝒔  𝑹𝒑,𝑖
𝒕 [

𝜔𝑗

0
0

] (15) 

and 

𝐩𝑎(𝜃𝑗 , 𝜔𝑗 , 𝜔̇𝑗)𝑖  = 𝛂𝑖,𝑗
∗ = 𝑹𝒕,𝑖

𝒔  𝑹𝒑,𝑖
𝒕  ([

1 0 0
0 c(𝜃𝑗) s(𝜃𝑗)

0 − s(𝜃𝑗) c(𝜃𝑗)

] [
0
0

−𝑔
] + [

0
−𝐿𝜔̇𝑗

−𝐿𝜔𝑗
2
]) (16) 

where L represent the IMU position along the cylinder axis. The three error 

angles 𝜉, β and γ are found before sensor calibration, by minimizing Eq. 11-12 over 

the error angles. 

A sensitivity analysis quantifies to which extent the calibration procedure is 

robust. It compares the calibration parameters over several experiments with 

controlled changes in mounting angles. The calibration procedure is robust when 

the sensor parameters are the same with different external assembling conditions, 

such as high position misalignment errors. 
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 An additional test is performed using the Franka Emika Panda robot (FRANKA 

EMIKA GmbH, DE) to test the goodness of the calibration results. A 3D-printed 

connection interface fixes the sensor to the end-effector, which rotates about its 

axis with an angular velocity of 0.2 rad/s. The angular velocity obtained with the 

sensor error model terms resulting from the calibration optimization process is 

compared with the robot one and the gyroscope output made with the calibration 

performed by the company.  

1.7 Results 

Both the accelerometer and gyroscope are calibrated starting from the 16-bit 

signed integer raw sensor data, using the angular velocity and linear acceleration 

reconstructed by the pendulum parameters model. The sensor error parameters 

obtained with different calibration tests, performed with a controlled IMU 

mounting positioning are listed in Table 3. These values correspond to the mean 

of each sensor error model parameters over the 3 results and their corresponding 

standard deviation (SD). The sensitivity analysis showed that the proposed 

calibration algorithm is robust since calibration parameters are almost insensitive 

up to orientation errors of about 10°. The SD is low (<2%) and demonstrates that 

the algorithm for correcting the mounting misalignments doesn’t influence the 

goodness of calibration.  The only exception is the value of the Y-axis bias of the 

accelerometer that shows a higher SD (>20%). This could be due to some non-

modelled additional noise over that specific sensor axis, which thus require some 

reasonable attention in mounting the IMU on the pendulum. 

Figure 10 left) Picture of the IMU misalignment over the pendulum for the 
sensitivity analysis right) set-up for the test with the robot 
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Table 4 Calibration results of gyroscope and accelerometers 

 

Parameters Value 

kx 487 ± 4 

ky 483 ± 1 

kz 465 ± 4 

bx [°/s] 14 ± 0.06 

by[°/s] 1 ± 0.5 

bz [°/s] -6 ± 0.17 

θyz [rad] (-7 ± 1) 10-5 

θzy [rad] (4 ± 0.8) 10-4 

θzx [rad] (8 ± 2) 10-4 
 

Parameters Value 

kx 470 ± 4 

ky 431 ± 5 

kz 433 ± 0.3 

bx [m/s2] 211 ± 4 

by[m/s2] 299 ± 67 

bz [m/s2] 15 ± 2 

θyz [rad] (3 ± 0.15) 10-2 

θzy [rad] (-5 ± 0.05) 10-2 

θzx [rad] (1 ± 0.4) 10-2 

 Since all the other values have a small variability over the test, we can consider 

the proposed low-cost calibration methods a good compromise between costs 

and performance, especially for companies or institutions where the numerosity 

of IMU to calibrate is low. Moreover, is a simple method to test the goodness, 

stability and range of the sensors. This method requires acceptable attention 

during assembly, and the setup is easy to build and implement without using 

sophisticated and expensive instrumentation. 

Figure 11 shows that the custom-calibrated gyroscope signal reproduces 

accurately the angular velocity of the end-effector, removing some inaccuracies in 

the gyroscope output obtained using only the company calibration.  

Figure 11 Comparison between the angular velocity imposed by the robot and the 
corresponding measures obtained using the same sensor, with the company (left) and proposed 
(right) calibration. 
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The sensor error model used in this work better describes the gyroscope output 

for low dynamics than the one used by the company. In addition, this procedure 

is suitable for implementing more sophisticated sensor error models, which 

consider other parameters such as noise distribution. For the bias instability term 

implementation, it is however necessary to perform the calibration in a oven with 

controlled temperature at the expense of the system cost.  

The major drawback of this approach is that the sensor's acquisition frequency 

has to be high enough to map and detect the free-fall pendulum motion. The 

pendulum estimation of the friction terms increases the accuracy in defining the 

reference signals during the first 20 seconds of free falling. However, the 

movement reconstruction could be less accurate in the last period when the 

angular velocity is low. The calibration is rigorous in the first phase of pendulum 

free-falling motion, but a low sensor data rate could not map sufficient data points 

to assess a complete and high variable dataset for calibration. A possible solution, 

where reasonable, is to increment the length L of the pendulum thus diminishing 

the natural pendulum motion and its frequency.   

In conclusion, the proposed calibration method is low-cost and easy to 

implement and represents a valid alternative to the expensive and complex 

instrumentation used for gyroscope and accelerometer calibration. 
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Chapter 2 

Motion Tracking System 

A good estimation of the IMU sensor attitude is insufficient for obtaining an 

accurate motion-tracking analysis for two main reasons: inaccuracies in the 

biomechanical model definition and errors in the identification of the IMU position 

on the body segments. Moreover, the effects of these errors increment with the 

number of bodies considered and the type of analysis performed. A standard 

position analysis, i.e. the determination of the joint angles of the subject, useful 

for ergonomics or rehabilitation purposes, is affected by errors on the IMUs 

outputs, by noise on attitude estimation, and by inaccuracies on the choice of the 

anthropometric model. Indeed, since IMUs generally output only their attitude, 

the pose of each segment of the body is generally obtained by driving a multibody 

model of the subject with the IMUs data, but it is necessary to attribute correct 

lengths to segments and proper joint connections. In addition, the errors increase 

if the absolute position of a moving subject is needed. The latter can be estimated 

only with additional sensors, such as pressure insoles, cameras, or proximity 

sensors, that reduce the overall drifting errors in position estimation. Precisely, 

during simple gait, the absolute position is estimated by adding the exact location 

of the contact points of the foot during different steps. Thus, even little errors in 

the segments' length definition or in the angles cause a rapid propagation of errors 

only after several steps. In our application, when we talk about body position, we 

mean the localization of the segments in space but not the body's absolute 
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position in a specific area, since the main interest is on the biomechanics activity 

in the workplace, or independently from the position in the working area. 

The human body is schematized as a group of kinematics chains connected to the 

trunk. The position of the distal body segments stands on the location of the 

previous bodies composing the kinematic chain. It depends on the orientation and 

the lengths of all the preceding bodies. The chance of having higher errors 

increases with the number of bodies considered. 

Each joint angle is estimated using two consecutive IMUs, one in the distal and 

one in the proximal segments. The joint angle would be the relative orientation of 

one sensor with respect to the other, expressed in the coordinate system used by 

the sensor fusion algorithm. Considering the impossibility to impose a precise 

location of each IMU on the body and considering also the relative IMU-bone 

motion due to soft-tissue artifact, this definition does not have a physiological and 

anatomical meaning, and cannot be used as a standard approach for clinical 

practice. Thus, it is necessary to express the joint rotation in an anatomical sense 

by performing a calibration that assesses the pose of IMUs on each body. This 

calibration is called sensor-to-segment calibration. For the workers’ safety in 

industrial applications, which is the object of this Thesis, it is particularly important 

that also this calibration is performed accurately. 

This chapter present a sensor-to-segment calibration procedure. More in general, 

the whole framework which reconstructs the entire body motion using 17 IMUs is 

presented, starting from the choice of the biomechanical models and the type of 

calibration performed. For those applications which require a real-time evaluation 

of biomechanical data, the anthropometric model is chosen among those 

proposed in the literature, and then specialised for the specific application. For 

instance, for the ergonomics and collaborative robotics applications considered in 

this Thesis, since we need to define an algorithm able to compute the body pose 

in real-time (100 Hz) for human safety, we propose a sensor-to-segment 

calibration using only the sensor's attitude data and not the signal from the 

gyroscope and accelerometer. This fact reduces the number of packets to stream 

to the robot controller. The validity of the proposed procedure is tested and 

compared with the motion analysis performed by an optoelectronic system, and 

the last section of this chapter lists the results obtained.  
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2.1 Anthropometric model  

The definition of the kinematic biomechanical model is essential for capturing 

human body motion, especially with inertial sensors. The model can differ 

primarily by the type of mechanical joints and by the specific length of each body. 

In general, the simplest biomechanical model consists of rigid bodies connected 

by spherical joints. Five kinematic chains model the entire human body: 

1. From pelvi to head 

2. From thorax to right or left arm 

3. From pelvis to right or left foot 

Each body is expressed in its own body coordinates system (BCS), generally 

defined as a right-handed Cartesian coordinate system. The International Society 

of Biomechanics proposed a standard definition for body and joint coordinate 

systems of lower [1] and upper [2] limbs. According to this standardization, the 

body axes are defined through specific bone landmarks that are either palpable or 

identifiable from X-rays. Body motion is expressed in a Global coordinate system 

(GCS) equal to a right-handed orthogonal triad fixed in the ground with the +Y axis 

upward and parallel with the gravity vector, the +X axis corresponds to the 

principal direction of travel or work, and the +Y perpendicular to the two. In 

general, the BCS is a triad fixed at the segmental centre of mass with the +X axis 

anterior, +Y axis proximal, and +Z defined by the right-hand rule [3]. The joint 

coordinate system (JCS) is established for each of the two adjacent body segments, 

and the relative orientation is often parameterised using the Grood and Suntay’s 

[4] or a similar convention. The latter is conceptual and easily communicable to 

clinicians and includes the calculations of clinically relevant joint rotations and 

translations. 

The ISB describes how to define the BCS using the markers positioned on 

anatomical points, but it does not specify any general rules for IMU MoCap 

systems. It is up to the researcher to choose the anatomical system definition and 

the biomechanical model that best meets the needs. Similarly, there is no standard 

to follow for scaling the segment length and individuating the position of the 

centre of mass.  

However, an approach for developing biomechanical models for IMU MoCap 

evaluation is based on statistical anthropometric models. These models describe 

human body size and shape using measurable features, such as body heigh and 
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weight. Even though body parameters are significantly influenced by body build, 

age, sex, ethnic origin, and diseases, some researchers gathered enough data to 

build statistical significance scaling laws for determining the inertia parameters 

and dimensions of each body segment.  Some examples are the Drillis and Contini 

[5] and De Leva [6] models. Both individuate the value of segment length, the 

position of the centre of mass, mass, and moment of inertia from the body's total 

mass and height. Figure 1 shows the Drillis and Contini anthropometric model, 

where H is the to total height of the subject. It is the simplest model in the 

literature, in fact the De Leva models requires as input the length between two 

shoulders and the two hips, the foot length and width and the ankle position with 

respect to the ground floor.  

Since there are no ISB recommendations specifically for the biomechanical model 

to use with IMUs, commercial IMU systems and software all use different models. 

One of the more impactful drawbacks is the difficulty of defining a systematic and 

robust protocol for evaluating the angle movements and comparing the motion 

results with other commercial systems and musculoskeletal models. Differences 

in the BCS and CCS definition and body inertial properties among different 

biomechanical systems causes miscalculation both in the kinematic and dynamics 

results. For example, XSens [7] claims to combine the Drillis and Contini model 

with measured body dimensions, such as arm span and foot size, for scaling the 

biomechanical models. Differently, the Shadow software proposes two different 

skeletal models, only dependent on human height. 

Figure 1 Drillis and Contini model [5]  
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It is not clear which anthropometric model better describes the length of each 

segment thus we developed a simple study for choosing the model to use in our 

motion tracking algorithm. 

2.1.1 Comparison between anthropometric models 

Three subjects (2 male and 1 female) with an average height of 1.714 m, are 

selected for the study. The objective is to compare the length values obtained by 

the different anthropometric models and comparing with the true values 

measured manually with a calibre. Small square tapes are fixed to the subject’s 

anatomical points, as shown in Figure 2. The distances between all those are 

measured and set as reference. 

The anthropometric models compared are Drillis and Contini, De Leva, and one of 

the two models implemented inside the Shadow Motion Software. It scales all the 

segments with the total height as input. Table 1 reports the percentage of error 

over the length of 8 principal segments as: 

 where 𝑙𝑚𝑒𝑎𝑠 is the measured segment ‘s length and 𝑙𝑚𝑜𝑑𝑒𝑙 is the estimated one. 

 

 

𝐸 =   
𝑙𝑚𝑒𝑎𝑠 − 𝑙𝑚𝑜𝑑𝑒𝑙

𝑙𝑚𝑒𝑎𝑠
∙ 100  

(1) 

Figure 2 Pictures of the three subjects for the anthropometric study 
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The mean of the percentage of error over the eight segments' is the last value of 

table 1. It shows that the model that better represents the lengths over the three 

subjects is the Drillis and Contini model, with an average error of 6%. The De Leva 

model has a mean value of about 8.9%, lower than the one estimated by the 

Shadow model, which is less performative. The Drillis and Contini model shows the 

highest errors in estimating the arm length, whereas the De Leva presents one of 

the lowest errors in that specific segment. However, the variability over the body 

segments varies among the three subjects. It depends on the individual 

characteristics of the bodies, which are difficult to detect by a model that 

considers only the height as an input parameter. Drillis and Contini's model uses 

the same scaling law for men and women. Conversely, the De Leva model differs 

in the values among different sex. However, the latter makes worst predictions in 

estimating the segment length for the woman subject (number 2) than the other 

two. Thus, this sex differentiation seems not to improve the overall estimation. 

One reason could be that the De Leva model comprehends a dataset based mostly 

on the Russian population, composed of Caucasian (white) individuals. The height 

of our female subject is 1.59 meters and could be lower than the average 

population datasets. Thus, the Drillis and Contini model definition is the most 

suitable for our application. It is implemented for the application from now on. 

However, it is clear that residual errors in length will affect the position analysis of 

IMU MoCap systems. A more performing protocol would measure manually the 

segment length and correct the anthropometric model. Nevertheless, this 

implicates a more time-consuming calibration phase which is not always feasible 

Table 4 Percentage of error E in the estimation of segment’s length for different anthropometric models 

 

 Subject 1 Subject 2 Subject 3 

 Drillis De Leva Shadow Drillis De Leva Shadow Drillis De Leva Shadow 

Head 4.50 17.24 25.70 11.00 21.00 30.08 0.50 9.68 21.08 

Trunk 2.30 8.59 3.60 1.00 4.31 6.80 2.70 8.92 3.30 

Thigh 7.70 14.35 11.50 8.80 26.36 12.60 7.40 14.52 11.20 

Leg 0.60 1.31 3.60 10.80 12.26 7.50 10.70 9.44 13.40 

Foot 5.10 3.08 15.70 4.50 9.54 16.30 2.00 4.39 21.40 

Arm 10.50 3.90 9.00 12.30 4.20 7.50 16.10 1.00 4.40 

Forearm 1.70 8.24 4.50 0.50 3.83 2.20 8.20 2.85 5.70 

Hand 2.50 4.98 3.30 5.10 12.15 10.40 8.00 6.29 13.30 

Mean 4.36 7.71 9.61 6.75 11.71 11.67 6.95 7.14 11.72 
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in industrial applications. A possible solution would be to estimate the subject's 

lengths with external equipment, such as cameras. Supposing to develop an IMU 

suit integrated with reflective markers to be placed on joints, the distance 

between them could be estimated using the phone camera in a relatively short 

time. In this direction, we perform a simple study by implementing in Matlab, an 

image processing procedure that automatically estimate the number of pixels 

between successive markers positioned over the joints. By knowing the “pixel-

centimetre” scale factor is possible to estimate the segment lengths. These values 

define a subject-specific anthropometric model reducing the overall error in 

segment position estimation. 

2.2 IMU Motion tracking algorithm  

Sophisticated motion tracking systems must respond to two main requests: 

quantify the joints' kinematics to allow the identification of healthy and 

pathological motion parameters for rehabilitation, medicine, sports, or 

ergonomics, and be a flexible instrument device with a short set-up phase to 

facilitate its practical use. As already presented, this is particularly true for the 

applications presented in this Thesis, where real-time IMU MoCap algorithms have 

to run in real time to evaluate ergonomics indices or to interact with the robot 

controller. 

As mentioned in chapter 1, the sensible axes of the sensors composing an IMU 

should be aligned together and define a technical reference frame TRF. The 

orientation of the sensor in space is the TRF attitude with respect to an earth-base 

coordinates system (ECS) in the form of unit quaternion, rotation matrices, or 

Euler angles. The direction of ECS depends on the sensor fusion algorithm 

implemented and can vary among different commercial hardware solutions. For 

example, the Shadow MoCap system defines an orthonormal ECS with the x-axis 

pointing to the south, the y-axis pointing against gravity, and the z-axis pointing to 

the west. Conversely, the NCS output follows the NED (North-East-Down) 

convention, where the x-axis is along to the north, the y-axis points to the east, 

and the z-axis to down according to the gravity direction. 

In motion tracking, several IMUs are positioned on each human segment to 

analyse. Usually, for the analysis of the total human body motion, seventeen 

different IMUs are used. From now on, the attitude of the i-th IMU TRF with 

respect to ECS is denoted as 𝒒𝐸𝐶𝑆
𝑇𝑅𝐹

𝑖
. The human body segment attitude is the 
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orientation of the corresponding BCS. Thus, for computing the kinematic, each BCS 

is associated to the TRF of the corresponding IMUs. The relative orientation of the 

IMU with respect to the body is necessary to correlate the sensor output with the 

segment motion and is estimated with the sensor-to-segment calibration. Once 

the calibration is assessed, the human joint angle is equal to the relative rotation 

between two consecutive segments BCS and is easily identifiable.  

Since the IMU’s outputs depend on the ECS definition, another virtual coordinate 

system (VCS) is determined during the calibration phase. This reference frame is 

initially similar to the previously defined GCS, fixed on the pelvis position. It is 

necessary to eliminate the residual angle between the body and the north-axis 

direction. This coordinate system will be discussed in the next paragraphs. 

2.2.1 Sensor-to-segment calibration 

Though no standard procedures are universally accepted to calibrate the sensors 
over the body segments, different methods have been proposed in the current 
literature, differing by complexity and tasks performed. Sensor-to-segment 
calibrations mostly divide into four groups [8]–[10]: 

1. Manual calibration: one axis of the IMU’s TRF is aligned manually with 

one axis of the corresponding BCS [11], [12]. It is not a straightforward 

procedure because it requires high user expertise to position the IMUs 

correctly aligned.   

2. Static calibration: the subject maintains specific poses while the IMU 

misalignment is computationally estimated. Usually, the acceleration 

output, compared to the gravity vector, defines its relative orientation 

with respect to the segment attitude in that specific pose. By performing 

different poses, the complete tern is calculated [13], [14]. The accuracy 

of the entire calibration relies on the ability to hold a given posture 

precisely for a specific time, depending on the human performance. 

Adding external constraints, such as the one obtained by making the 

subject seating in a seat [15], reduces the variability over the posture and 

can be performed by people with reduced mobility. Another possibility is 

to utilize directly the IMU orientation instead of the accelerometer 

signals [16]. For example, [17] performs 23 different static poses, 

collecting the quaternions of all the IMUs and finding the final calibration 

matrices with mean and linear regression among all the experimental 
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poses. Static calibration is straightforward, easy, and fast and is usually 

the starting point for more complex types of calibration. 

3.  Dynamic calibration: the subject performs different types of movements 

of variable complexity, such as elbow or knee flexion-extension of leg 

squats. The oldest and more common approach computes the axis of 

rotation of a specific joint from gyroscope output integration [18], [19]. 

Other procedures use more sophisticated algorithms, such as PCA, to 

estimate the principal axis of calibration [20]. The base of this approach 

is that the movements have to be performed accurately and strictly in an 

anatomical plane so as to calculate from the gyroscope signals an axis 

orthogonal to that plane. With two complementary movements over the 

same joint, an anatomical plane is normal to two functional axes' 

directions [21]. This procedure is more similar to the standards for 

optoelectronic systems for estimating anatomical reference frames.  

Another approach is to exploit kinematic constraints of the joints during 

functional movements through Gauss-Newton algorithms. It has been 

implemented for 1 DOF joint of knees [22]–[24], and for 2 DOF elbow 

joints [25]. This method is particularly adapted to hinge joints and less for 

spherical joints that require motion mostly around all three axes, thus 

resembling the classical functional methodology [26]. 

4. CAST protocol: the examiner uses a device, such as cameras and markers, 

placed on the IMUs, to locate anatomical landmarks or a segment axis 

respecting the IMU’s TRS[27], [28]. This protocol is quite old, bulky, and 

costly due to the usage of an external device. It is preferred for 

ambulatory or clinical analysis where very high accuracy is requested, but 

it is not suitable for other types of applications.  

Quite often, these different methods are combined to use all advantages of 

the different techinques into a unique solution that better describes the 

sensor orientation over the body [29]–[31]. Additionally, the Xsens company 

(Xsens Technologies, NED), which is one of the leader in the field, claims to 

fuse, during the calibration phase, the information of 2 static poses with the 

one obtained during a normal-speed walking through a machine learning 

algorithm [7].  

A more complete review of the different types of calibration perfomed and 

an extensive list of works can be find in [8], [10], [32].  
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Moreover, some researchers compared sensor-to-segment calibrations for 

upper limbs [33], lower leg [26], and full-body [34]. The three studies 

compare angle joints resulting from IMUs kinematics after different 

calibration techniques, with angle joints measured with optoelectronic 

systems, considered the gold standard in biomechanics. However, this 

comparison method can suffer from systematic errors: firstly, all BCS defined 

with marker instrumentation follow a precise protocol, and the joint angle 

axis can differ from the one obtained with inertial sensors. These small 

misalignments could affect the joints' results, especially for non-planar 

movements and complex joint anatomy. Moreover, both the technology 

used suffers from soft tissue artifacts problems due to the motion of the 

wearable sensors over the body. The effect of these errors is different among 

the two systems, is stochastic, and not predictable, and the numerical 

identification in terms of general accuracy is difficult to estimate in advance. 

These could alter the "true" angle joints estimation and add noise to the 

comparison of the systems. However, at this moment, this is the only 

plausible setup for comparing and studying human motion kinematics. 

Regarding static poses, Robert-Lachaine et al. [34] compared two common 

single-pose calibrations (N-pose and T-pose) pointing out that, for the total 

body kinematics, single T-pose is more accurate than N-pose. However, 

Lebleu et al. [26] confirmed that for lower leg kinematics, the results are 

more accurate by applying functional calibration movements. Instead, 

Bouvier et al. [33], for upper limb kinematics, do not find significant 

differences between static poses by adding some calibration movements to 

the protocol.  

More investigation needs to be done to assess and validate the best sensor-

to-segment algorithm. It is challenging for the high variability due to the IMU 

performances (magnetic disturbances or less performing sensor fusion 

algorithms), the type of biomechanical model used, the movements and 

experimental protocol to perform, and finally, for the comparison method 

with a gold standard MoCap system. 

2.2.2 Proposed IMU MoCap system calibration 

To summarize, the coordinate systems involved in the sensor-to-segment 

calibration are: 
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- TRF: Technical Reference Frame attached to the case of each IMU 

- ECS: Earth Coordinates System in which the IMU's output is expressed. 

- BCS: Body Coordinate System of each human body segments 

- VCS: Virtual Coordinate System in which the human motion has to be 

expressed. 

Figure 3 shows these reference systems.  

Thus, the i-th body orientation is expressed into VCS for each time t 

(𝒒𝑉𝐶𝑆
𝐵𝐶𝑆

𝑖
(𝑡)) through: 

𝒒𝑉𝐶𝑆
𝐵𝐶𝑆

𝑖
(𝑡) = 𝒒𝐸𝐶𝑆

𝑉𝐶𝑆∗
⊗ 𝒒𝐸𝐶𝑆

𝑇𝑅𝐹(𝑡)𝑖 ⊗ 𝒒𝑇𝑅𝐹
𝐵𝐶𝑆

𝑖
 (2) 

where ⊗ denotes the quaternion multiplication and * the conjugate of the 

quaternion. Moreover, 𝒒𝑇𝑅𝐹
𝐵𝐶𝑆

𝑖
is the relative orientation between the i-th BCS and 

the corresponding TRF estimated with the sensor-to-segment calibration, 

𝒒𝐸𝐶𝑆
𝑇𝑅𝐹(𝑡)𝑖  is the quaternion output of the i-th IMU, and 𝒒𝐸𝐶𝑆

𝑉𝐶𝑆 is the misalignment 

between the VCS and the ECS and is equal for each IMUs. Since the first 

assumption is that the sensors are rigidly attached to the body, both the 𝒒𝑇𝑅𝐹
𝐵𝐶𝑆

𝑖
and 

𝒒𝐸𝐶𝑆
𝑉𝐶𝑆 are assumed constant during all MoCap analyses and are defined during the 

calibration phase.  

The formalism of the relative orientation between VCS and ECS introduced here is 

useful to express the motion in a well-known reference system and overcome the 

Figure 3 Coordinates systems identified by the RGB triad (red: x-axis, green: y-axis, blue: z-axis) 
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dependencies of the output with the ECS, which is hard to evaluate and define, 

especially when the motion-tracking algorithms work in combination with other 

external systems, such as robots. Usually, in pure motion tracking algorithms, the 

orientation of the subject with respect to the north pole is detected during the 

calibration phase, and the human reconstruction starts by rotating the virtual 

skeleton of that specific value. Thus, after the sensor-to-segment calibration, the 

relative angles between two subsequent segments are calculated to drive the 

motion of the virtual human model. Conversely, in our approach, the dependence 

on the ECS is overcome by pre-multiplicating the sensor output with a specific 

rotation, thus tracking the body initially in a reference frame with the same 

orientation as the bodies at calibration. This approach is particularly succesfull 

when the position and orientation estimated by the IMU MoCap systems have to 

be referenced to another external reference frame, such as the robot coordinates 

systems.Thus, it is sufficient to define the relative position and orientation 

between the subject's initial pose and the external reference frame for integrating 

the two different environments. In this way, it is not necessary to use an external 

device such as in the work of [16], thus reducing the overall cost and redundancy 

of sensors. Even if the formalization of VCS is simple and it is common practice for 

marker-based MoCap system protocols, is new for IMU MoCap application. 

Moreover, with this definition, this misalignment is easily definable and will be 

discussed further in the chapter relating to the IMU MoCap system integration 

with collaborative robots. 

The value of 𝒒𝐸𝐶𝑆
𝑉𝐶𝑆 is determined during the calibration phase and depends on the 

orientation of the sensor with respect to the VCS, which is equal to the BCS of each 

segment, at the first instants. In particular, it is a right-handed orthogonal triad 

fixed in the midpoint between the hips with the +Z axis upward and parallel with 

the gravity vector, the +X axis points anteriorly, and the +Y is perpendicular to the 

two. It can be calculated with the output of each IMU, whose orientation on the 

body is fixed and known. In the proposed calibration procedure, all IMUs can be 

placed with a random attitude except the one used for the 𝒒𝐸𝐶𝑆
𝑉𝐶𝑆 definition. We 

usually consider the IMU placed on the hips when we track the motion of the 

complete human body, or the one on the scapula, when we record only the upper 

limbs, supposing that those are fewer subjects to involuntary movements than the 

other IMUs during the recording sessions. For example, the IMU over the pelvis is 

usually positioned with its TRF’s z-axis and the x-axis aligned with the VCS’s y-axis 

and z-axis, respectively. Thus, the relative orientation between the two-reference 
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frames over the hips (𝒒𝑇𝑅𝐹
𝑉𝐶𝑆

ℎ𝑖𝑝𝑠
) is easily estimable. Hoverer, it is complex to align 

one TRF axis with the gravity vector direction since the body anatomy is variable and 

not rigid. Thus, its misalignment with respect to the vertical is estimated with the 

accelerometer output and used to correct the first estimation of 𝒒𝑇𝑅𝐹
𝑉𝐶𝑆

ℎ𝑖𝑝𝑠
. Then the 

relative rotation between the virtual frame and the Earth frame is equal to: 

𝒒𝐸𝐶𝑆
𝑉𝐶𝑆 = 𝒒𝐸𝐶𝑆

𝑇𝑅𝐹
ℎ𝑖𝑝𝑠

(0∗) ⊗ 𝒒𝑇𝑅𝐹
𝑉𝐶𝑆

ℎ𝑖𝑝𝑠
 (3) 

where t=0∗ indicates the instant of calbration that last 3 seconds. The sensor 

quaternion output 𝒒𝐸𝐶𝑆
𝑇𝑅𝐹

ℎ𝑖𝑝𝑠
  is averaged in a 3 seconds range to reduce the overall 

noise. The average among quaternions is found with the algorithm described in 

[35].  

Once the rotation between the ECS and VCS is defined, the sensor-to-segment 

calibration can be executed. The logic is to perform several static poses and 

average the results obtained by the three. Moreover, this calibration orientation 

estimation is corrected by performing specific functional movements of joints. This 

paragraph describes the logic behind static and dynamic calibration, but the actual 

experimentation will be discussed in the next section. 

Static sensor-to-segment calibration 

The BCS of each segment is defined while the subject performs the T-pose. It is a 

standing position with arms horizontally with the palms pointing downward. 

Differently from the ISB standards detailed in Section 2.1, the BCS in the T-pose 

has the +Z pointing up along the gravity direction, the +X axis pointing forward in 

the sagittal plane, and the +Y axis forms a right-handed system. This definition is 

like the ISB, with the difference that the Y and Z axes are switched together. During 

the T-pose, all BCSs have identical orientations that are also identical to the VCS 

frame definition. Then, 𝒒𝑉𝐶𝑆
𝐵𝐶𝑆 is equal to the unit quaternion for each IMU: 

𝒒𝑉𝐶𝑆
𝐵𝐶𝑆

𝑖
(0∗) = 𝒒𝐸𝐶𝑆

𝑉𝐶𝑆∗
⊗ 𝒒𝐸𝐶𝑆

𝑇𝑅𝐹(0∗)𝑖 ⊗ 𝒒𝑇𝑅𝐹
𝐵𝐶𝑆

𝑖
= [1 0 0 0]  (4) 

Then, from (3) the value of 𝒒𝑡 𝑇𝑅𝐹
𝐵𝐶𝑆

𝑖
 of each i-th IMU at T-pose is obtained: 

𝒒𝑡 𝑇𝑅𝐹
𝐵𝐶𝑆

𝑖
= 𝒒𝐸𝐶𝑆

𝑇𝑅𝐹(0∗)𝑖
∗
⊗ 𝒒𝐸𝐶𝑆

𝑉𝐶𝑆  (5) 

During the N-pose, the subject is asked to stand straight with the two arms along 

the body with the palms pointing internally. Compared to the T-pose, there is a 
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rotation of about 90° on the anteroposterior shoulder axis. Then, by supposing 

that the motion is a pure revolution on the frontal plane for both the arms, the 

relative orientation of their BCSs with respect to the fixed and previously defined 

VCS is equal to a pure rotation of ± 90°, depending on the arm considered, along 

the VCS x-axis. Then, in the N-pose, the 𝒒𝑉𝐶𝑆
𝐵𝐶𝑆

𝑖
 of the arms is: 

𝒒𝑉𝐶𝑆
𝐵𝐶𝑆

𝑖
(0∗) = 𝒒𝐸𝐶𝑆

𝑉𝐶𝑆∗
⊗ 𝒒𝐸𝐶𝑆

𝑇𝑅𝐹(0∗)𝑖 ⊗ 𝒒𝑇𝑅𝐹
𝐵𝐶𝑆

𝑖
= 

[
𝜋
4 ±

𝜋
4 0 0]

‖[
𝜋
4 ±

𝜋
4 0 0]‖

 (6) 

Then the 𝒒𝑛 𝑇𝑅𝐹
𝐵𝐶𝑆

𝑖
 is equal to:  

𝒒𝑛 𝑇𝑅𝐹
𝐵𝐶𝑆

𝑖
=

{
 
 

 
 
𝒒𝐸𝐶𝑆

𝑇𝑅𝐹(0∗)𝑖
∗
⊗ 𝒒𝐸𝐶𝑆

𝑉𝐶𝑆  ⊗
[
𝜋
4 ±

𝜋
4 0 0]

‖[
𝜋
4 ±

𝜋
4 0 0]‖

  𝑖 = 𝑎𝑟𝑚𝑠

𝒒𝐸𝐶𝑆
𝑇𝑅𝐹(0∗)𝑖

∗
⊗ 𝒒𝐸𝐶𝑆

𝑉𝐶𝑆                                               𝑖 ≠ 𝑎𝑟𝑚𝑠

 (7) 

The T-pose and N-pose are standard poses, usually implemented in most static 
calibration procedures. We propose a new pose dependent on the length of the 
arms and shoulders. In the so-called C pose, the subject, starting from the T-pose, 
closes the hand in front of his chest, maintaining both the arm as much straight as 
possible and the palms pointing downward. Figure 5 shows the proposed position.  

Thus, the angle of the arms with the front plane is equal to: 

𝜃 =  𝜋 − 𝑐𝑜𝑠−1
|𝒑𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 − 𝒑𝑡ℎ𝑜𝑟𝑎𝑥|

|𝒑ℎ𝑎𝑛𝑑 − 𝒑𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟|
 

(8) 

Figure 4 Skeleton representation of T-pose, N-pose, and C-pose 
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where the argument of the arc cosine is the ratio between the shoulder and arm 
length. Specifically, vector 𝒑 indicates the position vector of the anatomical part. 

Thus, the 𝒒𝑉𝐶𝑆
𝐵𝐶𝑆

𝑖
(0∗) during the C-pose can be supposed to be a rotation about the 

VCS z-axis equivalent to: 

𝒒𝑉𝐶𝑆
𝐵𝐶𝑆

𝑖
(0∗) = 𝒒𝐸𝐶𝑆

𝑉𝐶𝑆∗
⊗ 𝒒𝐸𝐶𝑆

𝑇𝑅𝐹(0∗)𝑖 ⊗ 𝒒𝑇𝑅𝐹
𝐵𝐶𝑆

𝑖
= 

[cos
𝜃
2 0 0 ± sin

𝜃
2
]

‖[cos
𝜃
2 0 0

𝜃
2
]‖

 (9) 

Then the corresponding 𝒒𝑐 𝑇𝑅𝐹
𝐵𝐶𝑆

𝑖
 is: 

𝒒𝑐 𝑇𝑅𝐹
𝐵𝐶𝑆

𝑖
=

{
 
 

 
 
𝒒𝐸𝐶𝑆

𝑇𝑅𝐹(0∗)𝑖
∗
⊗ 𝒒𝐸𝐶𝑆

𝑉𝐶𝑆  ⊗
[cos

𝜃
2 0 0 ± sin

𝜃
2
]

‖[cos
𝜃
2 0 0

𝜃
2
]‖

  𝑖 = 𝑎𝑟𝑚𝑠

𝒒𝐸𝐶𝑆
𝑇𝑅𝐹(0∗)𝑖

∗
⊗ 𝒒𝐸𝐶𝑆

𝑉𝐶𝑆                                                       𝑖 ≠ 𝑎𝑟𝑚𝑠

 (10) 

 

Technically, the quaternions obtained with the three different calibrations of 

each i-th IMUs should be equal since they defined the orientation of the sensor’ 

TRS over the corresponding BCS. However, they slightly differ due to inaccuracies 

in estimating the sensor attitude in different known poses. Thus, the overall noise 

is reduced by geometrically averaging the results obtained from different static 

calibration poses. The geometric average is the algorithm cited previously. In this 

contest, only the sensors’ orientations over the bodies' coordinate systems are 

assessed. The IMU is rigidly attached to the segment body in a fixed position near 

the corresponding distal joints. This position has been suggested in other works 

regarding IMU MoCap systems. However, the effects of different IMU positioning 

in final joint angle estimation are not systematically clarified.  

Figure 5 Top-view of the skeleton in C-pose 
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Dynamic sensor-to-segment calibration 

The most common approach for dynamic calibration is the one described in [18], 

where the orientation of the IMU with respect to the forearm is found by elbow 

pronation-supination movements, assuming that the angular velocity during the 

motion is in the direction of the joint axis. This axis, in combination with the results 

of other movements, is then used to define a triplet specifically for that specific 

IMUs and the corresponding joints. Since it is fundamental for our application to 

develop an IMU MoCap strategy able to run in real-time (100 Hz), we study the 

capability of substituting the calculous of the axis performed with gyroscope 

signals with a similar computation using the quaternion. Thus, the data to stream 

to the robot controller consist of the solo quaternion output and not the 

gyroscope's raw data, reducing the total number of packages to transmit. 

According to the movement axis, the vector axis is defined, for each instant t of 

the calibration phase, by the numerical quaternion derivative: 

𝑋𝑚(𝑡) =  
𝜔𝑚

|𝜔𝑚|
=  

2 𝐼𝑚 (𝒒𝐸𝐶𝑆
𝑇𝑅𝐹(𝑡)𝑖

∗
 ⊗ 𝒒𝐸𝐶𝑆

𝑇𝑅𝐹(𝑡 + 1)𝑖) 

|2 𝐼𝑚 (𝒒𝐸𝐶𝑆
𝑇𝑅𝐹(𝑡)𝑖

∗
 ⊗ 𝒒𝐸𝐶𝑆

𝑇𝑅𝐹(𝑡 + 1)𝑖)|
 (11) 

The direction of the axis is the vector average of the results of three controlled 

repetitive movements. However, these axis directions computed in each instant 

have opposite directions, according to the motion performed. Then, the classic 

mathematical mean can output a value null. Thus, the geometric mean is 

calculated similarly to the average quaternion formulation. Considering n vectors 

𝒗, the matrix 𝑴 corresponds to: 

𝑴 = ∑𝒗𝑖𝒗𝑖
𝑇

𝑛

𝑖=1

 (12) 

Then the average vector 𝒗̅ is equal to: 

𝒗̅ = argmax
𝒗∈𝑆3

(𝒗𝑇𝑴𝒗) (13) 

which is the eigenvector of M corresponding to the maximum eigenvalues.  

2.2.3 Motion algorithm  

Once the calibration is over, the actual motion algorithm takes part. The joint 

quaternion  𝒒𝑖,𝑗
𝐽𝑜𝑖𝑛𝑡(𝑡) is the relative orientation between the i-th and j-th 

subsequent segments. For each instant t:  
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 𝒒𝑖,𝑗
𝐽𝑜𝑖𝑛𝑡(𝑡) =  𝒒𝑉𝐶𝑆

𝐵𝐶𝑆
𝑖
(𝑡)∗ ⊗ 𝒒𝑉𝐶𝑆

𝐵𝐶𝑆
𝑗
(𝑡) =

= 𝒒𝑇𝑅𝐹
𝐵𝐶𝑆

𝑖

∗
⊗ 𝒒𝐸𝐶𝑆

𝑇𝑅𝐹
𝑖
(𝑡)∗ ⊗ 𝒒𝐸𝐶𝑆

𝑇𝑅𝐹
𝑗
(𝑡) ⊗ 𝒒𝑇𝑅𝐹

𝐵𝐶𝑆
𝑗
 

(14) 

This term is independent of ECS and VCS both and is advantageous for performing 

ergonomics studies and biomechanical analysis. This equation is calculated 

recursively along each body chain, starting from the root of all the chains. The 

orientation of the first joint is calculated through the complete equation: 

𝒒𝑉𝐶𝑆
𝐵𝐶𝑆

1
(𝑡) = 𝒒𝐸𝐶𝑆

𝑉𝐶𝑆∗
⊗ 𝒒𝐸𝐶𝑆

𝑇𝑅𝐹
1
(𝑡) ⊗ 𝒒𝑇𝑅𝐹

𝐵𝐶𝑆
1
 (15) 

The first joint position is equal to zero, coincident with the origin of VCS. The 

positions of the other joints 𝒑⃑⃑ 𝑗(𝑡) is calculated recursively, with respect to VCS, by 

summing the position of the previous i-th joints with the segment vector 𝒗⃑⃑ 𝑖,𝑗,  

connecting the i-th joints with the j-th, rotated by the corresponding angle 

joint 𝒒𝑖,𝑗
𝐽𝑜𝑖𝑛𝑡(𝑡). Mathematically, it is equal to: 

𝑞 (𝒑⃑⃑ 𝑗(𝑡)) = 𝑞(𝒑⃑⃑ 𝑖(𝑡)) +  𝒒
𝑖,𝑗
𝐽𝑜𝑖𝑛𝑡(𝑡) ⊗ 𝑞(𝒗⃑⃑ 𝑖,𝑗) ⊗  𝒒

𝑖,𝑗
𝐽𝑜𝑖𝑛𝑡(𝑡)∗  (16) 

where 𝑞(∙) is the pure quaternion representation of the 3D vector.  

2.3 Comparison between sensor-to-segment algorithms 

Similar to other works that compare several sensor-to-segment algorithms [26], 

[32], [33], we tested the effectiveness of our formalizations by comparing the 

angle joints obtained with the one measured by an optoelectronic system which 

is considered a gold standard in biomechanics. The objective is to define a fast, 

simple, and reliable calibration methodology that can be performed by the 

operator without using any external equipment in a relatively short time. This 

approach is based on first performing static poses and then correcting the first 

estimation with dynamic calibration. In particular, we focus our attention on the 

elbow and wrist for the upper limbs and on the knee and ankle for the lower limbs. 

For each of these joints, two functional movements are performed, whose axes 

define the rotation matrix representing the orientation of the IMU over the body 

segment. This matrix contains the 3 unit vectors of the i-th body segment axes 

(BCS) with respect to the corresponding IMU coordinate systems (TRF): 

𝑹𝑇𝑅𝐹
𝐵𝐶𝑆

𝑖
= [𝑥𝑇𝑅𝐹

𝐵𝐶𝑆
𝑖

 𝑦𝑇𝑅𝐹
𝐵𝐶𝑆

𝑖
𝑧𝑇𝑅𝐹

𝐵𝐶𝑆
𝑖]  

(17) 
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The quaternion 𝒒𝑇𝑅𝐹
𝐵𝐶𝑆

𝑖
corresponds to the latter rotation matrix. The next section 

describes the methodologies to define those axes for each joint. Then the 

experimental setup and the results will be discussed. 

2.3.1 Joints functional movements 

Elbow motion: 

For the elbow, two different motions are performed: 1) the elbow flexion 

extension and 2) elbow pronation-supination. For each test, the body is 

maintained in the N-pose with all the body segments static and moving only the 

forearm with precise and constant movements. Figure 6 shows a schematic 

representation of the motion. The axes are estimated from the quaternion output 

by the IMU positioned on the forearm during all the instants of three repetitions, 

using Eq. 11. Specifically, the axis defined by the elbow flexion-extension is 𝑱𝑒𝑙𝑏𝑜𝑤
𝑓𝑙𝑒𝑥

 

, and the one obtained by the pronation-supination is 𝑱𝑒𝑙𝑏𝑜𝑤
𝑠𝑢𝑝 . The direction of this 

axis is chosen to be in the same direction as the corresponding axis defined by the 

quaternion 𝒒𝑇𝑅𝐹
𝐵𝐶𝑆

𝑒𝑙𝑏𝑜𝑤
 computed with the static T-pose. Since the flexion-

extension of the elbow is a simpler and more controlled movement, the axes of 

the rotation matrix are defined as: 

𝒛𝑇𝑅𝐹
𝐵𝐶𝑆

𝑒𝑙𝑏𝑜𝑤
= 𝑱𝑒𝑙𝑏𝑜𝑤

𝑓𝑙𝑒𝑥

𝒙𝑇𝑅𝐹
𝐵𝐶𝑆

𝑒𝑙𝑏𝑜𝑤
= 𝑱𝑒𝑙𝑏𝑜𝑤

𝑠𝑢𝑝 ∧ 𝒛𝑇𝑅𝐹
𝐵𝐶𝑆

𝑒𝑙𝑏𝑜𝑤

𝒚𝑇𝑅𝐹
𝐵𝐶𝑆

𝑒𝑙𝑏𝑜𝑤
=  𝒛𝑇𝑅𝐹

𝐵𝐶𝑆
𝑒𝑙𝑏𝑜𝑤

∧ 𝒙𝑇𝑅𝐹
𝐵𝐶𝑆

𝑒𝑙𝑏𝑜𝑤

 (18) 

Wrist motion: 

With an identical approach to the elbow motion, the axes of the wrist are defined 

by the output of the IMU positioned on the hands, with 1) flexion-extension 

movements 𝑱𝑤𝑟𝑖𝑠𝑡
𝑓𝑙𝑒𝑥

 and 2) abduction and adduction movements 𝑱𝑤𝑟𝑖𝑠𝑡
𝑎𝑏𝑑 . The 

corresponding rotation matrix axes are defined, starting from 𝑱𝑤𝑟𝑖𝑠𝑡
𝑓𝑙𝑒𝑥

, as: 

𝒙𝑇𝑅𝐹
𝐵𝐶𝑆

𝑤𝑟𝑖𝑠𝑡
= 𝑱𝑤𝑟𝑖𝑠𝑡

𝑓𝑙𝑒𝑥

𝒚𝑇𝑅𝐹
𝐵𝐶𝑆

𝑤𝑟𝑖𝑠𝑡
= 𝑱𝑤𝑟𝑖𝑠𝑡

𝑎𝑏𝑑 ∧ 𝒙𝑇𝑅𝐹
𝐵𝐶𝑆

𝑤𝑟𝑖𝑠𝑡

𝒛𝑇𝑅𝐹
𝐵𝐶𝑆

𝑤𝑟𝑖𝑠𝑡
=  𝒙𝑇𝑅𝐹

𝐵𝐶𝑆
𝑤𝑟𝑖𝑠𝑡

∧ 𝒚𝑇𝑅𝐹
𝐵𝐶𝑆

𝑤𝑟𝑖𝑠𝑡

 (19) 
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Knee motion: 

Differently, the knee is usually approximated with a single revolute joint 

depending on the flexion-extension axis 𝑱𝑘𝑛𝑒𝑒
𝑓𝑙𝑒𝑥

. Thus, the rotational triad relies on 

that angle and the z-axis 𝒛𝑇𝑅𝐹
𝐵𝐶𝑆

𝑘𝑛𝑒𝑒

𝑇𝑝𝑜𝑠𝑒
computed with the T-pose. The final axes are 

defined as: 

  

𝒚𝑇𝑅𝐹
𝐵𝐶𝑆

𝑘𝑛𝑒𝑒
= 𝑱𝑘𝑛𝑒𝑒

𝑓𝑙𝑒𝑥

𝒙𝑇𝑅𝐹
𝐵𝐶𝑆

𝑘𝑛𝑒𝑒
= 𝒚𝑇𝑅𝐹

𝐵𝐶𝑆
𝑘𝑛𝑒𝑒

∧ 𝒛𝑇𝑅𝐹
𝐵𝐶𝑆

𝑘𝑛𝑒𝑒

𝑇𝑝𝑜𝑠𝑒

𝒛𝑇𝑅𝐹
𝐵𝐶𝑆

𝑘𝑛𝑒𝑒
=  𝒙𝑇𝑅𝐹

𝐵𝐶𝑆
𝑘𝑛𝑒𝑒

∧ 𝒚𝑇𝑅𝐹
𝐵𝐶𝑆

𝑘𝑛𝑒𝑒

 (20) 

Ankle motion: 

The ankle motion axes are defined by 1) dorsiflexion-plantarflexion motion 𝑱𝑎𝑛𝑘𝑙𝑒
𝑓𝑙𝑒𝑥

 

and 2) inversion-eversion motion 𝑱𝑎𝑛𝑘𝑙𝑒
𝑖𝑛𝑣 . The motions are performed in standing 

position, in two different moments for right and left foot. The subject can balance 

the equilibrium by leaning to a fixed surface, trying to remain as straight as 

possible. The axes are computed as:   

𝒛𝑇𝑅𝐹
𝐵𝐶𝑆

𝑎𝑛𝑘𝑙𝑒
= 𝑱𝑎𝑛𝑘𝑙𝑒

𝑖𝑛𝑣

𝒙𝑇𝑅𝐹
𝐵𝐶𝑆

𝑎𝑛𝑘𝑙𝑒
=  𝑱𝑎𝑛𝑘𝑙𝑒

𝑓𝑙𝑒𝑥
∧  𝒛𝑇𝑅𝐹

𝐵𝐶𝑆
𝑎𝑛𝑘𝑙𝑒

𝒚𝑇𝑅𝐹
𝐵𝐶𝑆

𝑎𝑛𝑘𝑙𝑒
=  𝒛𝑇𝑅𝐹

𝐵𝐶𝑆
𝑎𝑛𝑘𝑙𝑒

∧ 𝒙𝑇𝑅𝐹
𝐵𝐶𝑆

𝑎𝑛𝑘𝑙𝑒

 (21) 

Figure 6 Representation of Left) elbow flexion extension movements, 
Right) wrist flexion-extension movements 
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2.3.2 Material and Methods 

The wearable Shadow MoCap Suit and the optoelectronic Vicon system (©Vicon 

Motion Systems Ltd) are the sensors used to compare the results of different 

sensor-to-segment calibration methods. A man subject (172 cm, 62 Kg, 27 years 

old) with no mobility dysfunctions wears both the IMUs attached with tapes and 

straps and 42 reflective markers following the Plug-in-Gait (PiG) model available 

with the Vicon/Nexus software package.  Figure 7 shows the sensor setup and 

disposition. The Vicon optoelectronic system consists of 6 Bonita and 2 Vero 

cameras, processing data within Nexus 2.5, and keeping all system settings at 

default values. The camera calibration is performed by sweeping the Vicon active 

wand in the entire control volume, using at least 3000 frames per camera. The 

Shadow Mocap sends the sensor output to a PC wireless with a frequency of 100 

Hz, which saves data in a .csv file. The results are post-processed offline. The 

experiments are performed outdoors in a shaded area to have IMU signals without 

magnetometer interferences, thus analysing only the effect of the calibration 

algorithms and not errors in attitude computation of the IMU sensors. The subject 

performs a series of movements to calibrate the IMU MoCap systems, while the 

motion is captured simultaneously by the two hardware. The synchronization 

between the two systems occurs standing up on tiptoe at the beginning of each 

Figure 7 Left: Plug-in-gate protocol, Right: Experimental set-up with markers and IMUs 
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recording session. The Vicon data are exported as c3d file by Nexus 2.0 after a 

process of labelling, filtering, and filling markers' gaps. For determining the angle 

joints, we used a standard model and we import the motion data into the Anybody 

Modelling System (AMS), with a process that will be described accurately in the 

next chapters. The AMS output the joint angles, which are compared with the ones 

obtained with the IMU systems with different calibration methods. The 

comparison is developed offline in Matlab 2020a.  

Different sensor-to-segment procedures of upper limbs are compared and listed 

in Table 2. Since the purpose is to develop a fast and reliable IMU MoCap 

calibration for ergonomics evaluation of upper limbs, the algorithms for the lower 

limbs are only proposed and implemented but not fully tested and detailed results 

will not be reported here. Briefly, visually the motion of the lower leg is coherent 

with reality using only the static poses, while the additional movements seem to 

have a limited influence on the calibration accuracy, on the contrary requiring 

extra time that could be safe for industrial procedures, especially if the calibration 

process has to be repeated several times during the working shift. 

One of the drawbacks of this approach is the difference between the AMS model 

and the IMU MoCap system. The joint coordinate system defined in AMS depends 

on the morphology and shapes of the bones building up the musculoskeletal 

model, which is scaled over the subject using the position of the markers set. The 

same coordinate system on our model is built differently, starting from functional 

 
Table 5 Tested upper limbs sensor-to-segments procedures  

Name Activity 1 Activity 2 Activity 3 

T T-pose   

N N-pose   

C C-pose   

Mean Static T-pose N-pose C-pose 

Elbow T-pose Elbow motion  

Wrist T-pose Wrist motion  

Functional 1 Mean Static Elbow motion Wrist motion 
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references which, though being related to the morphological ones, are not 

perfectly coincident. Thus, the two systems differ in definition, so the computed 

joint angles. Similar to the approach of [33], for determining the best strategies 

and the trueness of the results, the RMSE of the angle excursion between the joint 

angles, obtained with IMUs, and the AMS results are calculated. The joint angle 

 𝒒𝑖,𝑗
𝐽𝑜𝑖𝑛𝑡(𝑡) from the IMU MoCap systems is calculated with the method described 

in Section 2.2.3 and decomposed with the Euler angle method. Similar to [33], the 

ZXY sequence, also proposed by the ISB, is used for the elbow joint, whereas the 

ZYX sequence is preferred for the wrist joints. The decomposition of the shoulder 

is complex because, due to its elevated range of motion, can reach mathematical 

singularities. The ZXY sequence is chosen for the shoulder. The RMSE is calculated 

in different tests performing five pure joint movements: shoulder flexion and 

abduction, elbow flexion and pronation, and wrist flexion and abduction.  

However, the intrinsic errors of this comparison procedure make the results 

difficult to interpret. Beyond the differences in the joint coordinate systems, soft 

tissue artifacts could add noises to the optoelectronic system output, and errors 

could occur in AMS in calculating the angle joints by analysing the trajectories of 

the markers. Other differences due to distinct joint angle decomposition 

sequences between the models could cause misleading results. Another simple 

test evaluation is performed to overcome this problem. Starting from the N-pose, 

the subject closes his hands and executes random movements in the horizontal 

Figure 8 Hand closed test analysis in AMS 
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and coronal plane. The distance between the endpoint of the hands, measured 

instantly for each upper limb’s calibration procedure, should be proximal to zero 

because of the hand touching. The calibration procedure that shows the lowest 

values correspond to the approach that better tracks the motion of the upper limb. 

Figure 8 displays a frame of the test just described in AMS.  Moreover, this test 

gives an overview of the capability of the IMU MoCap system to perform position 

analysis, which is of interest to the development of control strategy in 

collaborative robotics.  

2.3.3 Results 

Figure 9 shows the performance of different upper-limb sensor-to-segment 

calibrations proposed in the holding hand test. The test lasts almost 10 seconds, 

where the subject randomly moves the closed hands in front of the chest for the 

first 5 seconds, then above the head for the last 5 seconds. The distance between 

the end position of the hand is computed for each moment of the test. The T-pose 

performs the worst results (0.175 ± 0.042 m). The best performances are for the 

C-Pose (0.090 ± 0.035 m) and Functional 1 (0.098 ± 0.030 m). The similarity in the 

absolute values of the Elbow and Wrist calibration with the T-Pose indicates that 

results mainly depend on the shoulder calibration performance, which is the term 

that unites those algorithms and differs from the C-Pose and Functional 1.  

 

Figure 9 Results of holding hand test of different upper limbs sensor-to-segment calibration algorithms. 
The theoretical values should be near 0, thus the performing algorithm is the one with the lowest values 
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Table 6 RMSE results of joint angles excursion during pure joint motion between different upper limb sensor-
to-segment calibrations and AMS joint angles computed with an optoelectronic system 

  RMSE Left  

 

Shoulder 
Flexion 

Shoulder 
Abduction 

Elbow 
Flexion 

Elbow 
Pronation 

Wrist 
Flexion 

Wrist 
Abduction 

T 8.56 8.39 4.79 17.94 10.65 10.61 

N 23.43 7.32 4.64 19.67 5.33 9.57 

C 8.14 7.42 5.66 18.54 8.23 11.13 

Mean 
Static 12.34 7.47 7.20 18.67 8.90 10.70 

Elbow 8.66 8.38 4.57 18.03 9.42 9.15 

Wrist 8.56 8.39 4.79 17.94 9.27 5.74 

Functional 
1 12.34 7.47 6.76 18.23 9.24 5.69 

 RMSE Right 

 

Shoulder 
Flexion 

Shoulder 
Abduction 

Elbow 
Flexion 

Elbow 
Pronation 

Wrist 
Flexion 

Wrist 
Abduction 

T 5.39 7.58 21.82 19.41 6.51 5.24 

N 30.28 6.48 4.86 20.50 5.77 11.58 

C 6.27 6.20 9.64 21.11 6.38 9.04 

Mean 
Static 11.54 6.42 1.91 20.29 7.06 8.87 

Elbow 5.67 7.49 16.20 19.51 7.36 5.42 

Wrist 5.39 7.58 21.82 19.41 6.43 5.90 

Functional 
1 11.54 6.42 2.57 19.92 6.75 8.67 

 

Hoverer, dynamic calibration motion shows slightly better results than the 

standalone static pose. Nevertheless, the absolute value of the hand distance 

higher than zero indicates that residual errors are present in the position 

evaluation. In addition to mistakes in the definition of the anthropometric model 

underlined in Section 2.1.1, the simplified biomechanical model is a stick figure, 

which does not consider the volume and size of the body segments, and it could 

lead to additional position errors. 

Table 3 gathers the RMSE of different upper limb sensor-to-segment calibrations. 

The values of RMSE are homogenous within the range reported by [33] and [32]. 
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The shoulder shows 5.36° ≤ RMSE ≤ 30.28° with lower accuracy for N-Pose for the 

shoulder flexion. The elbow angle varies among a range of 1.91° ≤ RMSE ≤ 21.82°. 

The results confirm that elbow pronation-supination movements show poorer 

correlation and accuracy than elbow flexion-extension motion. Firstly, it is difficult 

to perform a pure pronation-supination elbow motion, and secondly, because the 

effects are “visible” on the distal part of the forearm, near the wrist joints. Thus, 

errors could occur in the interpretability of the elbow results by biomechanical 

models driven by both markers and IMUs MoCap system. The variability of the 

sensor-to-segment results over the left elbow is such low that there is no preferred 

algorithm. Differently for the right elbow, the T-Pose has the poorest outcomes. 

However, the poor results are averaged and corrected by the other static poses 

since the RMSE of the Mean Static case decades drastically. In general, the union 

of several pose calibrations and different techniques increases the accuracy of the 

evaluation and reduces the intrinsic errors of the calibration procedures. For wrist 

motion, the range is coherent with the literature with 5.24° ≤ RMSE ≤ 11.58°.  

The proposed testing procedure is biased by analysing only pure joint motion. It is 

quite known that angle variability and accuracy increase with movement 

complexity [32]. Moreover, we tested only one subject, which is too low for a 

comprehensive calibration comparison. However, the acceptable results of the 

closing hand test confirm the validity of the proposed methods for the calibration 

of IMU MoCap systems.  

Hoverer, the proposed sensor-to-segment calibration methods exploiting only the 

IMU orientation output without using the gyroscope and accelerometer signals, 

show results comparable to more standard approaches. The joint axis defined 

during the dynamic calibration by deriving the quaternion output exhibits effects 

equivalent to the literature that uses the gyroscope signals. Then, the algorithms 

proposed are promising for reducing the number of signals to stream online by the 

IMUs system to the PC or workstation, possibly reducing the overall latency. 

Additionally, the novel C-Pose definition, which adds anthropometric constraints 

to the calibration phase, shows encouraging results, especially if combined with 

other static poses or functional movements. 

2.4 Conclusions 

The anthropometric models and the motion tracking algorithms are tested and 

compared with the literature. Among the anthropometric measures, Drillis and 



M o t i o n  T r a c k i n g  S y s t e m  |  

 

63 

 

Contini's model shows the lowest percentage of error in the absolute value of 

segment length compared with measured body length. Thus, this model is chosen 

for all MoCap implementations, which will be described in the next chapter. 

The proposed motion tracking algorithm can be integrated into any commercial 

IMUs system that outputs the sensor attitude estimates. The usage of quaternions 

is preferred when developing algorithms in real-time, however, the same logic is 

implementable using other orientation representations. The motion algorithm 

outputs the segment position and joint angle in a virtual reference frame attached 

to the human hips during the calibration phase. The latter is not dependent on the 

initial human orientation respecting the Earth's coordinates systems and makes 

the analysis free of this dependence. Despite the simplicity of the concept, this 

definition is new in the literature because the majority use IMUs systems for pure 

biomechanical studies where only joint angles and not the body positions in space 

are estimated. Also, fewer works study the usability of MoCap IMU in collaborative 

robotics applications. This definition is fundamental for easy integration with 

other external systems because only the relative position and orientation of the 

pelvis respect the associated reference frame origin is necessary. 

Moreover, the proposed sensor-to-segment upper limbs calibration procedure 

shows results comparable to the literature, even if only the orientation output is 

used and not the raw gyroscope and accelerometer signals. This procedure 

consists of performing three static poses and four functional movements: T-Pose, 

N-Pose, and C-pose followed by flexion-extension and pronation-supination of the 

elbow and flexion-extension and abduction-adduction of the wrist. This procedure 

is relatively fast to execute since it requires a couple of minutes and shows 

performing results for position and angle analysis compared to the “true” motion 

measured with optoelectronic systems. 

In conclusion, the IMU MoCap system is a promising tool for accurate track human 

motion. This system is wearable, low-cost, and lightweight and could constantly 

monitor the workers in industrial scenarios. The proposed algorithm estimates the 

body segments' motion but does not calculate the absolute position of the body 

in an external reference system. In other words, it cannot measure the distance 

computed by the worker by walking but can estimate the angle range motion, the 

position assumed, and in a second analysis, the effort performed. If the operator 

works stationary (such as cashiers, assembly line laborers, etc.) it could be 

implemented in safety control strategies of collision avoidance, whereas for 
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moving workers is a powerful tool for measuring awkward posture or excessive 

effort, if integrated with force sensors. A fast calibration procedure allows being 

repeated several times during the working shift, thus reinitializing the system and 

reducing the drifting error effect. The major drawback of these systems is their 

high dependence on magnetic disturbances, which could be large in workshops or 

workplaces with high numbers of ferrous materials. However, researchers are 

studying sensor fusion algorithms that minimize these impactful effects or how to 

mitigate them by integrating other wearable and flexible sensors. 
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Chapter 3 

Ergonomic assessments 

The European Agency for Safety and Health at Work (EU-OSHA) reported in 

2019 [1] that roughly three out of every five workers in the EU-20 complain about 

musculoskeletal disorders (MSD). These are issues of muscles, joints, tendons, 

ligaments, nerves, cartilage, bones, and localized blood circulation systems. Work-

related MSDs are caused or aggravated primarily by working conditions and 

environments. In 2015 the most common types of MSD were backache (43%) and 

muscular pain in the shoulder, neck, and upper limbs (41%). These cumulative 

disorders could be due to physical and biomechanical factors, organizational and 

psychological aspects, or individual and personal characteristics. Among all, 

excessive force application, awkward positions, heavy physical and repetitive 

work, lifting, or exposure to high and continuous vibrations or too-low 

temperatures are the most impactful on workers' health. 

The effects of these aspects on the human body and how to contrast their 

outbreak are studied by ergonomics, the science that aspires to achieve safe, 

productive, effective and interactive systems of people, machines, environments, 

and devices, with a human-centered perspective. Ergonomics gathers 

standardized approaches and procedures for improving the performance of 

human-machine interactions, redesigning the human workplace, and diminishing 

MSD. 
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Wearable devices, if worn by the workers, could measure various physiological 

and kinematic parameters and monitor human movements and vital signs, thus 

improving physical well-being, reducing work-related injuries, and increasing work 

efficiency. A direct measurement method based on wearable IMUs systems allows 

the analysis in outdoor and unstructured environments. IMUs represent promising 

instruments for industrial safety ergonomic assessments for their high flexibility, 

portability, low dimension, low power consumption, and usability in complex 

scenarios. As mentioned in the previous chapter, MoCap IMU systems, allowing 

kinematics studies, are a powerful tool for determining in real-time the exposure 

of awkward positions and repetitive movements, which is one of the more 

impactful risk factors for MSD onset. 

Another influential risk factors are physical loads. The most common approach 

in biomechanics for estimating muscle loads uses offline optimization techniques 

that resolve the kinematic and dynamic problem of validated musculoskeletal 

models. Software often utilized for biomechanical studies and ergonomics 

evaluation are OpenSim [2] and Anybody Modelling System (AMS)[3]. The motion 

data and external forces of a specific task are recorded and imported into the 

software environment, which estimates joint angles and muscle effort. After a 

software selection, AMS is designated among the two for its extensive shoulder, 

back, and upper arm musculoskeletal models, which are fundamental for precise 

ergonomic assessment in working scenarios. In the last few years, several 

researchers have used AMS for risk assessment in lifting loads in the supermarket 

sector [4], in construction manufacturing [5], and in assembly lines [6], [7], but no 

one performed an ergonomics analysis with robotic-aided systems of working 

tasks. Several studies with AMS regard physical interaction between humans and 

the exoskeletons, but no investigations evaluate physical interaction between 

humans and a serial collaborative robot, namely a cobot. Thus, this chapter 

describes a complete study of the physical human-cobot interaction during an 

industrial task with AMS. In particular, the advantages of using a cobot as an 

assisted device for repetitive drilling tasks are quantified by comparing the OCRA 

index, an ergonomic parameter that considers the motion range and the muscle 

effort and fatigue of shoulder, elbow, and wrist muscles. Thus, a novel 

methodology to exploit the AMS characteristics for completing a full ergonomics 

OCRA analysis for defining the best strategy to release workers by excessive efforts 

is defined.  
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However, using specific musculoskeletal software makes online ergonomics 

assessment impossible because it requires time to be settled and performed. 

Thus, we develop a simple biomechanical model able to estimate in real-time (100 

Hz) the upper limbs' joints wrench by force exerted over the hand using a Newton-

Euler approach. The model is tested and validated with the AMS output in the 

drilling-aided collaborative task. The idea is to study the feasibility and accuracy of 

a system made of IMUs and force sensors to determine in real-time ergonomics 

risk factors and warn the worker in dangerous or excessive load situations. Finally, 

a subject-specific and reduced biomechanical model definition is proposed. 

This chapter comprehends five sections: the first one contains an extensive 

literature review on using IMU MoCap systems for ergonomics assessment, while 

in the second one, the characteristics of AMS are detailed. The third section 

describes the study and the experiments of the physical-human interaction, 

whereas the fourth section details the online wrenches estimation and 

ergonomics indices using IMU MoCap systems. Finally, a brief description of the 

ongoing work on defining a subject-specific and reduced biomechanical model for 

ergonomics assessments characterizes the fifth section. 

3.1 Ergonomic methods for work-related musculoskeletal 

disorders 

Ergonomics at work is of fundamental interest among researchers, public 

health systems, associations, and institutions for its impact on workers’ health 

and, consequently, on economic and social issues. An accurate analysis of workers’ 

exposure to dangerous factors is a preventive contribution to developing a safer 

working environment and reducing work-related MSD. It is fundamental to 

ergonomists, occupational health physicians, employee representatives, and 

regulating authorities to have robust, accurate, and reliable methods as the basis 

for risk and reduction programs. Thus, several approaches have been proposed in 

the literature in the last few years. These methods can be categorized under three 

big categories [8]: 

Self-reports, including interviews and questionnaires to the workers for 

analysing the physical and psychosocial factors. It is proven that the accuracy in 

quantifying the duration or frequency of assuming specific postures is imprecise 

and unreliable [9], [10]. Similarly, workers show difficulties in assessing the correct 
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weight of loads or amplitude of forces, tending to underestimate it. More accurate 

estimations occur with office workers [11]. Furthermore, difficulties with self-

reports may arise from the varying level of comprehension and education of the 

workers, who could mislead or misunderstands the questions. Thus, multiple 

methods are needed to assess a precise ergonomics analysis.  

Observational methods, where an external observer assesses postural and 

other critical factors, gathering the results on sheets. The considered physical 

factors differ among different procedures [12], which primarily evaluate the 

posture of upper limbs. This method is relatively low-cost and practical for use in 

several workplaces where more invasive techniques with additional sensors would 

not work. However, it suffers from intra- and inter-observer variability in risk 

factors assessment. More recently, ergonomists used video recording to improve 

posture analysis during the working shift, and researchers developed automatic 

video algorithms for detecting posture risk factors [13], [14] and excessive 

repetition [15], [16].  

Direct methods, where sensors attached to the worker measure risk factors. It 

includes approaches based on optical MoCap systems, such as Microsoft Kinect 

depth cameras [17], [18] or markers-based optoelectronic hardware [19]. The 

kinematic data are integrated into specific software that assesses ergonomics risk 

factors. However, optical MoCap systems suffer from occlusions and light 

interferences. Thus other methods rely on inclinometer sensors [20], or flexible 

goniometers [21], [22] for upper limbs and trunk posture analysis. Nevertheless, 

these systems detect motion mostly on one plane and cannot measure the angles 

in both directions. Others use electromyography analysis (EMG) to estimate the 

muscle effort during assembly works [23], and integrate this system with 

kinematic sensors, thus to compute simultaneously posture and force risk factors 

[24], [25]. Despite the high development of EMG sensors, their signals are still 

noisy and require high resources in terms of equipment, competence, and set-up 

time. Moreover, IMU MoCap systems have been widely studied in the last decade 

since they efficiently perform a posture analysis and are easily integrable with 

other sensors for force studies. Therefore, direct measurements of the workers’ 

conditions are the most effective method, especially with the widespread growth 

of lightweight and precise electronic sensors.  

Specifically, a literature review of 2021 [26] identified twelve works based on 

IMUs for ergonomics analysis. Most of them rely on the ISO 11228 Standards[27]–
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[29], the ergonomics guidelines for manual handling risk assessments. The latter 

consist of three parts, one specifically for lifting and carrying objects with a mass 

of 3 Kg or more (part 1), one for a standing pushing and pulling task applied by the 

two hands (part 2), and one for the handling of low loads at high frequency (part 

3). Part 1 refers principally to the revised NIOSH lifting equation [30], which 

estimates the Lifting Index (LI) by dividing the load weight of a specific task by the 

recommended weight limit. This limit considers several factors: the horizontal and 

vertical distance of the lifted weight respecting the middle ankle point, the 

asymmetry of the lifting motion outside the mid-sagittal plane, the motion 

frequency, and the hands' coupling with the weight to be lifted.  Part 2 relies on 

Snook & Ciriello’s force limits [31], which identify the maximum static strength 

exertions including age, gender, and stature. This value is then adjusted according 

to the distance and the frequency of pushing and pulling tasks. Part 3 accounts for 

several procedures for the risk assessment of repetitive movements and efforts of 

the upper limbs. For example, OWAS [32], RULA [33] and REBA [34] primary rely 

on posture analysis, whereas Strain Index (SI) [35] and QEC [36] consider other risk 

factors such as forces, duration of exertion and speed of work. Among all, the 

completest method is considered the OCRA index [37] because it takes into 

account posture, force, repetitiveness, the duration of repetitive tasks, and 

recovery time during a working shift.   

The usage of MoCap IMU systems in ergonomics study is relatively recent, and 

Table 1 gathers, as far as we know, all the works whose aim is to use IMUs, both 

alone and in combination with other sensors, for working ergonomic evaluations. 

Among all the reviewed papers, only the work of Peppoloni et all. and Giannini et 

all. consider, besides the human kinematic evaluation of postures that is easily 

implementable with IMU sensors, also force factors. They measure the level of 

human effort and loads exerted on one human arm with offline analysis of EMG 

signals. The latter directly measures the muscle action potential which is 

transformed, through empirical models, into muscle tension first and ergonomics 

factors second. However, EMGs are often cumbersome, with procedures 

computationally expensive and difficult to use in real time. Moreover, no one 

performed a complete analysis of the OCRA index because of Lenzi et all. evaluate 

only the posture factors. 
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Table 7 Ergonomics studies with IMU MoCap systems 

Study Hardware Body part Risk Factor Test set-up 

Caputo et al. 

[38] 
4 IMUs 

Pelvis, trunk, 

arm, forearm 

(right) 

EAWS [39] - 

posture 

4-subject test in FCA 

plant assembly line 

Conforti et al. 

[40], [41] 
8 IMUs 

Lower limbs, 

trunk 

Classification of 

correct lifting 

movements 

26-subject 

laboratory test to 

train machine 

learning algorithms 

Giannini et al. 

[42] 

17 IMUs and 

2 EMG 
Full body 

NIOSH, Snook & 

Ciriello, REBA, SI 

2-subject test of lift-

on/lift-off of 

containers on a 

cargo ship 

Lenzi et al. 

[43] 
7 IMUs 

Pelvis, arm, 

Forearm, 

Hands,  

OCRA (only posture 

term) 

7 test of real low-

loads repetitive task 

Lins et al. [44] 

15 IMUs and 

vibrotactile 

interface 

Full body 

without hands 
OWAS 

Lab test for 

vibrotactile interface 

to warn the workers 

in case of awkward 

postures 

Melter et al. 

[45] 
4 IMUs 

Pelvis, trunk, 

arm, forearm 

(right) 

RULA 
53-surgeons test of 

surgical operations 

Peppoloni et 

al. [46], [47] 

4 IMUs and 

8 channel 

EMG  

Pelvis, trunk, 

arm, forearm 

(right) 

RULA, SI (real-time) 

1-subject test of 

grocery cashier 

activity 

Sedighi et al 

[48] 

4 IMUs and 

a heart rate 

monitor 

Pelvis, trunk, 

arm, forearm 
Physical fatigue 

8-subject lab 

simulated 

manufacturing tasks 

Valero et al. 

[49] 
8 IMUs 

Upper and 

lower back, 

arms, thighs, 

legs 

Posture and 

productivity score 

6-subjects test of 

bricklaying 

apprentices 

Yan et al. [50] 2 IMUs Back and head Head posture  
1 subject lab test 

working simulation 
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Lu et al. [51] 5 IMUs 

Wrist, arm, 

forearm, back, 

thigh (right) 

NIOSH 
1 subject lab lifting 

tasks 

Kim et al. [52] 17 IMUs Total body Study of lifting task   

14 subject lab test of 

simulated material 

handling tasks 

Thus, the novelty of our work is to calculate the complete OCRA index in a 

collaborative task. The kinematic is measured by a wearable system made of 17 

IMUs, and the force exerted on the hands is measured by a 6-axis torque and force 

sensor placed on the end-effector (EE) of the cobot.  The study is performed using 

the AMS software and a custom-made model that estimates the OCRA index. 

3.1.1 OCRA index 

The OCRA (Occupational Repetitive Action) index evaluates the effect of 

repeated actions and checks if the working procedure and shift subdivision are 

admissible. It performs a detailed analysis of all the main mechanical and 

organizational factors that may cause musculoskeletal overload risks for the 

operator’s upper limbs. It is equal to the ratio between the number of Actual 

Technical Actions (ATA) carried out during a work shift and the number of 

Reference Technical Actions (RTA) for each upper limb [29]:  

𝑂𝐶𝑅𝐴 𝑖𝑛𝑑𝑒𝑥 =  
𝑛𝐴𝑇𝐴

𝑛𝑅𝑇𝐴
  (1) 

A technical action (TA) is defined as an elementary manual action required to 

complete the operation within a cycle (i.e. push, pull, grasp, reach). Defining the 

cycle time 𝑡𝑐 as the time required to complete the total number of technical 

actions 𝑛𝑇𝐶 , the 𝑛𝐴𝑇𝐴 in a working day (𝑡) is equal to:  

𝑛𝐴𝑇𝐴 = 𝑛𝑇𝐶 ∙  
60

𝑡𝑐
 ∙ 𝑡  (2) 

The 𝑛𝑅𝑇𝐴 is calculated by: 

𝑛𝑅𝑇𝐴 = ∑[𝑘𝑓(𝐹𝑀𝑗 ∙ 𝑃𝑀𝑗 ∙ 𝑅𝑒𝑀𝑗 ∙ 𝐴𝑀𝑗) ∙  𝑡𝑗] ∙ (𝑅𝑐𝑀 ∙ 𝑡𝑀)

𝑛

𝑗=1

  (3) 

where: 

• 𝑛 is the number of repetitive tasks during a shift. 
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• 𝑘𝑓 is the constant of the frequency of technical actions per minute, 

usually equal to 30. 

• 𝐹𝑀 is the force multiplier that depends on the percentage of maximum 

contraction measured with EMG or the ratio between the force exerted 

and the force limit defined in [53]. 

• 𝑃𝑀 is the posture multiplier determined by the percentage of time on 

which shoulder, elbow, and wrist joints angles exceed angle limits, listed 

in Table 2. 

• 𝑅𝑒𝑀 is the repetitiveness multiplier in each task. If the same TA lasts for 

at least 50% of the cycle time or if the cycle time is shorter than 15 s, it 

equals 0.7. Otherwise, it is equal to 1. 

• 𝐴𝑀𝑗 evaluates the presence of additional factors such as vibrating tools, 

the requirement for absolute accuracy, the localized compression of 

anatomical structures, exposure to cold surfaces and environments, use 

of gloves, etc. It can assume four different values. 

• 𝑡𝑗 is the net duration, in minutes, of each j-th repetitive task. 

• 𝑅𝑐𝑀 is the recovery multiplier and is the risk factor due to the lack of 

recovery periods.  

• 𝑡𝑀 is the duration multiplier and depends on the total duration of the 

repetitive task during a complete working shift.  

Table 8 Posture multiplier 𝑷𝑴 for awkward postures [29]  

Awkward posture and/or 

movements  

Portion of cycle time 

1% - 24% 25% - 50% 51% - 80% > 80% 

Elbow Supination (≥ 60°) 

1 

0.7 0.6 0.5 
Wrist 

Extension (≥45°) 

Flexion (≥45°)   

Hand 
Hook grip or palmar grip 

(wide span) 

Elbow 
Pronation (≥ 60°) 

Flexion/extension (≥ 60°) 

1 0.7 0.6 
Wrist 

Radio/Ulnar deviation (≥ 

20°) 

Hand Pinch 
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Thus, for each TA the values of force, posture, repetitiveness, and additional 

factors are determined and multiplied for their duration. The sum of all the 

obtained values determines the OCRA index, which indicates the workplace level 

of risk. A value ≤ 2.2 indicates no risk, whereas a value within 2.3 – 3.5 implies low 

risk, and improvements are necessary to reduce it. If the value is > 3.5, the risk is 

high, and the working tasks have to be modified to be more ergonomic.  

Among all the factors, the force multiplier, 𝐹𝑀, is the less straightforward. Some 

ergonomists propose using EMG electrodes that directly estimate the muscle 

activation of each muscle. The amplitude of EMG signals can provide some insight 

measure of the muscle force, even if the direct relationship between the two is 

complicated by the fact that factors such as type of muscle fiber, muscle length, 

and muscle velocity can all influence the relationship between the electrical and 

mechanical activity of the muscle. Moreover, this method is noisy, expensive, and 

with a bulky setup. Thus, the standards propose two different procedures: a 

biomechanical approach based on a statistical strength distribution and the CR-10 

Borg scale [54], a quantitative measure of perceived exertion during physical 

activity in questionnaire forms to the workers. The validity of using this scale 

increases with the number of workers interviewed. However, since the self-report 

responses tend to underestimate the effective force exercised [9], a more 

scientific and experimental approach is preferred. The statistical analysis 

described in [53] is a European Standard for determining the force limit for 

machinery operation. The maximal force is the maximal force-generating capacity 

of the user. It is determined for relevant actions within specified intended user 

populations that consider an equal representation of males and females. As a safer 

approximation, the distribution parameters belong to the female reference 

groups. Limits are referred for specific activities for the adult European working 

population and get closer to reality by changing over the logarithmic normal 

distribution, with:  

𝐹𝑙𝑛
̅̅ ̅̅ = ln 𝐹̅ (4) 

𝜎𝑙𝑛 = ln
𝐹̅ +  𝜎 

𝐹̅
 (5) 

where 𝐹̅ and 𝜎 are the specific distribution parameters for the adult female 

population of specific working activity listed in [53]. For professional use, the 

maximal isometric force 𝐹𝐵 is defined as the 15% percentile of the maximum force 

𝐹𝑙𝑛
̅̅ ̅̅  as follows:  
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𝐹𝑙𝑛15% = 𝐹𝑙𝑛
̅̅ ̅̅ − 0.5244 ∙ 𝜎𝑙𝑛  (6) 

𝐹15% = 𝐹𝐵 = 𝑒𝐹𝑙𝑛15%   (7) 

The so-obtained force limits allow up to 85% of the adult European working 

population to execute the task without exceeding their physical capacity. For the 

upper limbs, the maximal isometric force 𝐹𝐵 of the principal working activities are 

listed in Table 3. The 𝐹𝐵 values could be used to estimate the force multiplier: if 

the force that solicits the workers during a specific task is known, the ratio 

between the measured value and the 𝐹𝐵 defines a percentage of loading that 

estimates the force multiplier. Moreover, these values are necessary to determine 

the maximal admissible joint torque, Section 3.4.1, for the online estimation of the 

OCRA index. 

Another solution to estimate the muscle effort is by simulating the working 

scenario with validated commercial musculoskeletal models. The external load 

applied to the worker can be modelized or imported by experimental 

measurements. The musculoskeletal model, scaled according to the workers' 

anthropometric measures, simulates the muscle effort, and determines the force 

multiplier of the OCRA index analysis.   

 

 

  

Table 9 Maximal isometric force 𝑭𝑩 defined from the mean force 𝑭̅ and the specific 
distribution parameter 𝝈 for adult female population [53] 

 

Activity  𝐹̅ [𝑁] 𝜎 [𝑁] 𝐹𝐵  [𝑁] 

Hand work  Power Grip  278,00  62,20  250  

Arm work:  
sitting posture  
  
  
  
  
  
  

  

Upwards   58,00  18,40  50  

Downwards  88,60  33,20  75  

Outwards  65,50  26,20  55  

Inwards  85,60  24,60  75  

Pushing W trunk support  312,00  84,40  275  

Pushing W/O trunk support  78,00  42,70  62  

Pulling W trunk support  246,00  45,70  225  

Pulling W/O trunk support  67,90  33,50  55  

Whole body work   
  

Pushing   233,70  81,00  200  

Pulling  164,60  44,90  145  
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3.2 Multibody software for ergonomics  

Musculoskeletal multibody software allows kinematic and dynamic human 

motion analysis by providing postures, joint loads, and muscle forces activity 

estimation. Both AMS and Opensim include complete and detailed 

musculoskeletal models and associated algorithms for simulating the human body 

working in concert with its environments. However, the body coordinate systems, 

algorithms, and modelling assumptions vary between the two systems. Firstly, 

Opensim scales the anthropometric measurements with static trials: segments are 

scaled separately along the principal axis to fit the joint centres and in the 

perpendicular plane to make experimental landmarks points coincident. 

Conversely, Anybody performs dynamic calibrations, and the segments are firstly 

scaled in the longitudinal dimension to match the markers' position and then 

scaled in width to obtain the specific mass property, estimated with length-mass 

scaling approaches [55]. While the theoretical approach of the kinematics and 

dynamics algorithms are the same for the two software, the musculoskeletal 

models differ because they are derived from different anatomical studies, and so 

do the numbers of muscle actuators and the properties of muscle and tendons. 

Therefore, a methodical comparison between the two systems is difficult to 

assess. The works of [55], [56], compares the muscles force estimations during gait 

at regular and different speed. They both underline that those two approaches 

show similar muscle activation patterns, even if some discrepancies are present in 

the actual values due to differences in models’ definitions and kinematic results. 

Similar conclusions are derived from the study of [57] that compare the results of 

the two software during lower-limb simple motion with EMG data. They 

highlighted that force-length velocity muscle properties are different between the 

two environments, thus causing differences in the muscle effort estimation. 

However, all those studies used standard marker-based approaches as input data 

for kinematic analysis. This comparison is even more complex when wearable IMU 

sensors are the input data because the method by which the data are imported 

differs completely.  

Opensim uses Opensense [58], a toolbox that implements IMU-based kinematic 

measurements. The IMU’s attitude estimation, defined in the Earth coordinate 

system (ECS), and the correspondent values of the sensor-to-segment calibration 

are imported into the software and associated with the musculoskeletal model 

positioned in the same initial posture of the imported data. Then, each IMU is 
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visualized inside the environment as a small square solid with specific coordinate 

frame that correspond to the IMU technical reference frame (TRF). If the simulated 

TRF differs from the actual TRF orientation, the simulated IMU can be moved and 

rotated. Then, the musculoskeletal kinematics relies on minimizing the weighted-

square difference of the angle that defines the relative rotation between the 

IMU’s rotation matrix in ECS and the rotation matrix that describes the segment 

attitude in the virtual frame. The complete formulation is in [58]. On the contrary, 

the approaches for importing IMU data of AMS depend on global optimization like 

the one for marker-based protocol. The IMU MoCap results are transformed into 

a moving skeleton and imported into AMS through the BVH file. Then, several 

markers are attached both to the BVH file and the musculoskeletal model in 

meaningful anatomical points. The kinematic resolution is by a least-square 

optimization of the distance between the AMS model's virtual markers and the 

trajectory of the ones moved by the IMU Mocap algorithm. As far as we know, a 

complete comparison of the results obtained by these two approaches in 

importing IMU data is not performed, and it is unknown which is the best 

performing. However, this factor is not a determinant for software selection. AMS 

has a more detailed shoulder and upper limb musculoskeletal model among the 

two solutions. Since the principal work-related MSD are of the upper body, AMS 

is chosen as the preferred multibody software for ergonomics assessment. 

3.2.1 Anybody Modelling Repository 

AMS is flexible and easily programmable: the Anybody Model Repository 

(AMMR) [55] is an open library of musculoskeletal models configurable in multiple 

ways, including different and partial limb segments, types of muscles, human 

scaling, and several recruitment solvers. Each body part is implemented from 

detailed cadaver/anatomy studies, ensuring high accuracy and anatomical fidelity. 

Originally the entire body model was developed at Aalborg University (Denmark), 

subsequently being updated with different body part models validated in other 

laboratories. In particular, the shoulder and arm models come from the Dutch 

Shoulder Group of the TU Delft University and contain data from two persons. The 

full-musculoskeletal body model is used for the ergonomics study assessment of 

upper limbs. It includes 947 muscle elements, and 80 degrees of freedom (DOF), 

subdivided in: 

-  2x 3 DOF at the ankle joints 
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-  2x 1 DOF at knee joints  

-  2x 3 DOF at hip joints 

-  6 DOF at the pelvis 

-  3 DOF between thorax and pelvis 

-  12x 3 DOF for the cervical, thoracic, and lumbar spine 

-  2x 3 DOF at the glenohumeral joints 

-  2x 2 DOF at the elbow joints  

-  2x 3 DOF at the sternoclavicular joints  

-  2x 2 DOF at the wrist joints 

-  1 DOF at the neck joints 

 The shoulder and arm model includes 20 and 10 muscle elements respectively, 

subdivided into several muscle bands positioned at various points with different 

lines of action. The musculoskeletal geometric and inertial parameters are firstly 

scaled to the subject by applying a length-mass-fat scaling law with the human's 

total mass and height as input. Secondly, another calibration procedure that 

considers the position of experimental markers in anatomical points can update 

the first estimation of anthropometric parameters. AMS models are driven by 

marker-based or markerless motion tracking systems using specific integration 

protocols, which are modifiable according to the type, number, and positions of 

markers used.  

The AMS has four muscle model classes differing in complexity and accuracy of 

their representation of physiological muscles. However, higher complexity 

traduces on higher numbers of parameters to set up during the musculoskeletal 

model calibration and elevated computational costs during the analysis. The 

simplest model considers only the muscle’s isometric strength, that is its force in 

a static condition at its optimal length. This formalization, called AnyMuscleModel, 

works reasonably well with moderate contraction velocity and little joint angle 

variations since the muscle strengths do not depend on the muscle’s current 

length and contraction velocity. However, small and low motions are not typical 

of working scenarios, thus the full-blown Hill-type muscle models or three-

element model [59] is preferred. Figure 1 shows a schematic representation of the 

muscle of AnyMuscleModel3E library. It considers three components: a contractile 

element (CE), representing the active properties of the muscle fibre, and two non-

linear spring elements, one in series (T), which defines the elasticity of the tendon, 

and one parallel (PE) characterizing the passive stiffness of the muscle fibres. 
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Muscles are a collection of equal fibres in parallel orientated either in the direction 

of the tendon or at an acute angle. This angle is called pennation angle γ, and its 

value changes when the muscle extends or contracts. Referring to the Figure 1, 

the LMT is the total length of the muscle element, which is equal to the sum of the 

tendon length LT and the muscle fibre length LF adjusted by pennation angle γ. 

Equally, the force in tendon FMT is the force of muscle fibre FM multiplied by the 

cosine of the pennation angle. Each muscle fibre is defined by ideal parameters 

with muscle at neutral fibre length and zero contraction velocity. In particular, F0 

is the maximal isometric muscle force, Lf0 is the nominal muscle fibre length, LT0 is 

the nominal tendon length, and γ0 is the nominal pennation angle.  

One of the challenges in body modelling is to scale and change the size of 

musculoskeletal models reflecting individuals of different statures and weights. If 

this problem is complex for scaling the length of the body segments, it is even 

more problematic when calibrating muscle-tendon units. The basic idea in AMS is 

the assumption that each muscle-tendon fibre has its optimal length at some 

predefined position of the joint it spans. So, the muscle-tendon calibration 

procedure consists of moving the length-calibrated skeleton in those specific 

positions and adjusting the length of the tendons to give the attached muscles 

their optimal lengths in those positions. Table 4 and 5 gathers the principal muscle-

tendon parameters of the shoulder and elbow fibres, scaled to a subject of 1.72 m 

and 62 Kg. In this case, the nominal tendon strain, which is a parameter that 

controls the elasticity, is equal to 0.053, and the relative amount of fast fibre is 0.4 

for each muscle. 

Figure 1 Left: details of the AMMR model, right: schematic representation of three-elements Hill-
type muscle-tendon unit 
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Table 10 Muscle-tendon parameters of the shoulder group 

Shoulder Fibers Names F0 [N] Lf0 [m] Lt0 [m] γ0 [rad] 

Biceps Brachi Caput breve (1) 152.24 0.15 0.1 0.0349 

Biceps Brachi Caput longum (1) 157.55 0.1 0.1 0.0349 

Coracobrachialis (1-6) 82.33 0.091 0.0182 0.0174 

Deltoideus Posterior (1-4) 79.66 0.1155 0.02475 0 

Deltoideus Lateral (1-4) 181.45 0.1155 0.02475 0 

Deltoideus Anterior (1-4) 120.37 0.1405 0.02475 0 

Infraspinatus (1-6) 120.55 0.065 0.0075 0 

Latissimus Dorsi 1 38.41 0.14 0.021 0 

Latissimus Dorsi 2 76.83 0.14 0.021 0 

Latissimus Dorsi 3 98.78 0.14 0.021 0 

Latissimus Dorsi 4 120.733 0.14 0.021 0 

Latissimus Dorsi 5 159.148 0.14 0.021 0 

Levator Scapulae (1-4) 76.14 0.1 0.02 0.087 

Pectoralis Major Thoracic (1-10) 57.53 0.12 0.012 0.0872 

Pectoralis Major Clavicular (1-5) 46.02 0.12 0.012 0.0872 

Pectoralis Minor (1-4) 75.85 0.08 0.008 0.0872 

Rhomboideus(1-3) 223.32 0.068 0.0136 0.0872 

Serratus Anterior(1-6) 168.61 0.073 0.0073 0 

Subscapularis (1-6) 221.284 0.08 0.04 0.0698 

Supraspinatus (1-6) 69.04 0.047 0.00376 0 

Teres Major (1-6) 44.25 0.1 0.01 0.0349 

Teres Minor (1-6) 45.67 0.07 0.007 0.0349 

Trapezius Scapular (1-6) 128.78 0.1 0.02 0.1745 

Trapezius Clavicular (1-6) 128.78 0.1 0.01 0.1745 
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Table 11 Muscle-tendon parameters of the elbow group 

Elbow Fibers Names 

Maximal 

Isometric 

muscle force 

[N]  

Optimal 

muscle fiber 

lenght [m] 

Nominal 

Tendon 

Lenght [m]  

Nominal 

Pennation 

angle 

Triceps LH (1-2) 248.70 0.094 0.0329 0.523 

Brachialis (1-2) 270.14 0.123 0.0185 0.261 

Triceps ME (1-2) 400.56 0.087 0.01305 0.7853 

Triceps LA (1-2) 212.27 0.055 0.01375 0.5235 

Brach rad (1-2) 97.36 0.128 0.0192 0.2617 

Anconeus (1-2) 8.1765 0.024 0.006 0.5235 

Pronator teres caput humeral (1-2) 82.472 0.0665 0.0099 0.2617 

Pronator teres caput ulnare (1-2) 164.94 0.0665 0.0099 0.2617 

Supinator Humerus (1-2) 263.45 0.04 0.006 0.2617 

Supinator Ulna (1-2) 263.45 0.04 0.006 0.2617 

Once the muscles are scaled, an optimization problem estimates the force 

generated by each muscle. For the dynamic principles, the external forces, muscle 

loads and joints, and contact loads equal to balance the entire body system. Since 

the number of muscle fibres is physiologically higher than the model's DOF, a 

muscle recruitment criterion is necessary to resolve the muscle redundancy and 

accurately determine which set of muscles balances the external loads. In skilled 

movements, the central nervous system recruits the muscle systematically, 

choosing the muscles to activate. Remembering that muscles are unilateral 

elements that can only pull and push, the mathematical formalization has to be 

constrained to have solutions with positive or zero muscle forces. Thus, the 

problem consists of finding the muscle force by minimizing the dynamic equation 

that equals all the muscle and joint forces 𝒇(𝑀) to the external and inertia forces 

(𝒓):  

min𝐺(𝒇(𝑀)) 
(8) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:       𝑪𝒇(𝑀) = 𝒓 ,   𝑓𝑖
(𝑀)

≥ 0, 𝑖 = 1,… , 𝑛(𝑀)                 

where 𝑪 is the weight matrix of muscle activation that regulates how much a 

specific muscle is responsible of the total force, and 𝐺(𝒇(𝑀)) is the function of 
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muscle force recruitments, which varies accordingly to the strategy adopted. The 

simplest is linear muscle recruitment, where the cost function is the sum of each 

muscle force normalized by its maximal strength. This approach is not 

physiological because the minimization tends to activate muscles with higher 

strength and leave unused muscles with lower power values. It is more plausible 

that the nervous system actives the higher number of muscles to reduce the 

strength of each fiber. The polynomial muscle recruitment guarantees higher 

synergies between muscle activations: 

𝐺 = ∑ (
𝑓𝑖

(𝑀)

𝐹0𝑖
)

𝑝𝑛(𝑀)

𝑖=1

 (9) 

where 𝑝 indicates the exponents of the function, which is necessary to penalize 

larger terms in the sum and active muscle more uniformly. Usually, a muscle 

criterion of high polynomial order (𝑝>2) guarantees a higher level of synergism to 

balance the external loads, thus having the maximum activity of any muscles as 

small as possible. This criterion physiologically means that the entire system tends 

to reduce the fatigue of the muscles, maximizing its endurance, and it is 

considered the most suited for ergonomics evaluation. 

3.2.2 Force multiplier definition in Anybody 

As mentioned in Section 3.1.1, ISO 11228 suggests using surface 

electromyography analysis for determining the force multiplier and the muscle 

overloads. The EMG signal is normalized to the muscle's maximum voluntary 

contraction (MVC) which is the maximum voluntary force possible under dynamic 

or isometric muscle action conditions, limited by muscle fiber recruitment and 

frequency of action potentials. It is measured with EMG sensors imposing a static 

pose with known loads on the muscles. Thus, the MVC is equivalent to the maximal 

isometric muscle force 𝐹0 defined in AMS. For calculating the force multiplier for 

OCRA evaluation, it is admissible to substitute the %MVC, defined as the ratio 

between the EMG data and MVC, with the proportion of the AMS i-th muscle force 

(𝑓𝑖
(𝑀)

) exerted in a specific task and the maximal isometric strength. This value, 

called muscle Activity (𝐴), is automatically calculated within AMS. In this context, 

referring to the process of calculating the OCRA force multiplier 𝐹𝑀  as per ISO 

11228-3, the %MVC can be substituted by the worst muscles activity 𝐴𝐽 of a 

specific joint calculated from AMS values as: 
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%𝑀𝑉𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅ =  
1

𝑇
∑𝛥𝑡𝑗

𝑛

𝑗=1

∙ max(𝐴𝐽) ∗ 100 (10) 

where 𝑇 is the cycle time and 𝛥𝑡𝑗 is the duration of exposure to a specific 

technical action. Table 6 lists the corresponding force multiplier of specific values 

of %𝑀𝑉𝐶 and Borg scale.  

The ergonomics assessment workflow proposed using AMS is simple and easily 

automatized. The worker motion can be captured by a MoCap system (optical or 

inertial) and imported into the simulation environment with a protocol specific to 

the technology. The forces exerted on the worker can be measured with force and 

torque sensors or simulated directly inside the modelling environment. Finally, 

AMS can resolve the kinematics and the dynamics obtaining the angle joint and 

the muscle effort for calculating the posture and force multiplier. Validated 

musculoskeletal models for studying the workers' safety is a valuable tool for 

designing a safer working environment, reducing muscle stress and overloads, and 

hopefully preventing work-related MSD. This tool can support ergonomists in 

methodical estimation and prevention of dangerous situations in the modern 

working industrial workflow. 
Table 12 Force multiplier 𝑭𝑴 for awkward postures [29] 

Force level 

% of MVC, or 𝐹𝐵 
5 10 20 30 40 ≥ 50 

CR-10 Borg 

score 

0.5 

very, very 

weak 

1 

very weak 

2 

weak 

3 

moderate 

4 

somewhat 

strong 

≥ 5 

strong/ 

very strong 

Force multiplier, 

𝐹𝑀 
1 0.85 0.65 0.35 0.2 0.01 

These values can be interpolated if intermediate results are obtained 
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3.3 Study of the physical human-robot interaction with 

AMS 

The study of the physical human-robot interaction is gaining increasing 

attention due to the widespread of the robotic system as assistive devices in 

machinery and highly industrial automation companies, rehabilitation sectors, and 

surgical applications. One of the protagonists of the industry 4.0 revolution is the 

collaborative robot, namely the cobot. There are many collaborative robot 

applications across all industries, including assembly, dispensing, finishing, 

machine tending, material handling, welding and removal, quality inspection, etc. 

In these scenarios, cobots work in conjunction with humans by releasing the 

worker of excessive loads or executing tasks that are too repetitive or energy 

dispendious. Even if the trend of using collaborative robotics in the industry is fast-

growing, the number of systematic studies that estimate their beneficial effects 

on industries is few. Musculoskeletal modelling simulation can estimate the 

interaction forces between humans and robots and be a complete tool for 

designing and planning safer interaction activities. Several studies regard the 

physical interaction between humans and exoskeletons [60]–[64], but, as far as 

we know, no one simulated the physical interaction between humans and cobots 

during a working task. 

Manual drilling still prevails in assembly, maintenance, repair, and surgical 

tasks. The operation parameters diversity, such as material, number of holes, 

distance, location, and hole orientations require a highly flexible robotic system, 

able to collaborate with the worker. Cobots represent a promising solution. Using 

collaborative robotics systems could help the workers by releasing the load, 

avoiding awkward postures, and reducing the overloads of the musculoskeletal 

system. Thus, in collaboration with the SAIMA laboratory of the University of 

Bologna, a cobot application is designed to help the workers in the drilling 

operation. 

This work aims to estimate the beneficial effect of using a cobot as an assistance 

device for drilling operations by estimating the OCRA index. In particular, the 

physical human-robot interaction is simulated into AMS and used to verify the 

validity of different controlling strategies implemented. 



E r g o n o m i c  a s s e s s m e n t s  |  

 

87 

 

3.3.1 Collaborative robotics scenario 

The human-robot collaborative scenario consists of using a hand-guiding cobot 

for reducing the worker’s effort on drilling operation. It consists of the Franka 

Emika Panda (FRANKA EMIKA GmbH, Munich, GER), a lightweight 7-DOF 

collaborative robot. It consists of seven brushless DC motor and harmonic drive 

gears equipped with torque and encoder sensors. The end-effector is customized 

with a commercial drill fixed with a plastic and metallic structure. The Schunk FT-

AXIA 80 EtherCat sensor (SCHUNK GmbH & Co), mounted between the end-

effector and the hand manoeuvre, measures the interaction forces. It is 6-axis 

sensors that estimate forces and torque on its sensible side plate thanks to internal 

strain gauges. The worker’s motion is measured with the Shadow MoCap suit.  

Figure 2 is a schematic representation of the described collaborative scenario. 

Similar to the approach in [65], the robot is hand-guided with the admittance 

control that smoothly regulates the robot's velocity in response to the force 

applied to the end-effector by the human. The human guides the end-effector to 

the hole location and performs the task in two different modalities: 1) in the first 

mode, defined w/o helping, the torque command in joint space compensates only 

the robot gravity and joint friction, thus the workers perform the drilling without 

sensing weight but has to push in the hole direction, whereas in 2), named 

w/helping, a velocity controller moves the end-effector in the hole direction and 

helps the worker performing the drilling operation. The velocity controller is 

Figure 2 Representation of the collaborative robotics scenario set-up 
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activated manually when the driller is in the desired position. The worker directs 

the driller in the path of the drilling hole, which is saved to force the robot end 

effector to sweep in that direction with a specific velocity.  

The two cobot modalities are tested with the same procedure consisting of 

performing four holes in precise locations of a piece of wood: the first one is on a 

plane perpendicular to the ground, while the last three are on a plane parallel to 

the ground, at the height of approximately 1 m. Different drilling positions 

simulate a real working scenario for testing a variety of configurations of the upper 

limbs. Table 7 shows the technical actions subdivision following the OCRA 

procedure for the left and right upper limbs.  As mentioned in Section 3.1.1, the 

OCRA index depends on the duration and the number of repetitions of the same 

task, external factors such as noises or temperature, the number of breaks and 

recovery, and the posture and force multiplier. Supposing that the working 

operations in all the analysed cases, have to be finished at the same time, with the 

same cycle works and repetitions, and that the worker is subjected to the same 

external factors, the difference between the OCRA indexes in the two cases 

depends only on the value of the force and postures factors, which are the 

workers' postures and muscle efforts during the drilling task. Both these terms are 

estimated using AMS. 
Table 13 Technical actions subdivision of the drilling operation  

Technical Actions 

Left Upper Limb Right Upper Limb 

Grasp drill Grasp drill 

Place on 1st hole Place on 1st hole 

- Operate by pressing button 

Push to make 1st hole Push to make 1st hole 

Place on 2nd hole Place on 2nd hole 

- Operate by pressing button 

Push to make 2nd hole Push to make 2nd hole 

Place on 3rd hole Place on 3rd hole 

- Operate by pressing button 

Push to make 3rd hole Push to make 3rd hole 

Place on 4th hole Place on 4th hole 

- Operate by pressing button 

Push to make 4th hole Push to make 4th hole 

Total number of technical 

actions, nTC 

9 13 

Cycle time, tC, s 40 40 

Frequency, f, TA/min 13.5 19.5 



E r g o n o m i c  a s s e s s m e n t s  |  

 

89 

 

3.3.2 Material and methods 

The results of the collaborative tasks are compared with the ones obtained with 

a standard drilling process to estimate the beneficial effects of using cobots in 

manual industrial operations. A man subject (height = 1.72 m, weight = 62 Kg) 

wears the Shadow MoCap suit that records the motion during the three tests. The 

standard drilling operation is performed outdoors, and the kinematic is also 

measured by an optoelectronic Vicon system consisting of 6 Bonita and 2 Vero 

cameras, processing data within Nexus 2.5, and keeping all system settings at 

default values. 42 markers are fixed over the subject body following the Plug-in-

Gait (PiG) protocol, fully described in Section 2.3.2. Figure 3 shows the setup of 

the two systems.  

The MoCap algorithm presented in Chapter 2 traduces the information of each 

IMU into meaningful kinematic output. The subject performs three static poses 

and the functional movements of the elbow and wrist to calibrate the IMU MoCap 

system. Simultaneously, the motion tracked by the Vicon system scales the 

musculoskeletal model inside AMS. The first estimation of the length of the upper 

Figure 3 Experimental set-up. Left: standard drilling operation. Right: collaborative drilling task 
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and lower limbs and the pelvis obtained with the length mass scaling law is 

corrected by the position of the experimental markers. The muscle and tendon 

properties are scaled accordingly. The Vicon data are used uniquely for the 

calibration, while the IMU MoCap systems compute the subject's motion in all the 

experiments. 

The motion tracking output determines the BVH file, which is necessary to 

implement the IMU signal in AMS, with an automatic code implemented in Matlab 

2020a. The BVH (Biovision Hierarchy) format is an ASCII file with a hierarchical data 

structure representing the human skeleton, used as a standard format for biped 

character motion. The first part of the code contains the anthropometric length of 

the human body, and the second part gathers the position of the pelvis, which is 

set equal to the zero, and the 3 Euler angles for each joint, transformed from the 

correspondent joint quaternion with the ZYX convention. A custom-made protocol 

assigns the correspondence between the BVH and AMS musculoskeletal model, 

with 45 virtual markers attached to meaningful anatomical points of the two 

systems. Through a least-square optimization of the distance between the AMS 

model's virtual markers and the trajectory of the acquired data ones, the 

kinematics of the human model is computed, obtaining the human joint angles.  

Figure 4 shows the two models and the marker's positions of the protocol 

implemented. The interaction forces between the human and the driller, 

measured in a coordinate system attached to the sensitive plate of the 

force/torque sensor, are imported into AMS in custom reference frames defined 

Figure 4 IMU data implementation in AMS: BVH skeleton related to the 
musculoskeletal model 
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in specific hand points of the AMS musculoskeletal model. The transformation 

matrix is easily identifiable by knowing the hand's orientation and position with 

respect to the sensor. In the standard drilling application, the force/torque sensor 

is stable in a fixed position, and its output is imported in AMS in a reference frame 

rigidly attached to the AMS global coordinate systems. The operator holds the 

driller with one hand; thus, the right arm supports the entire stress. On the 

contrary, during the collaborative drilling task, the torque sensor's attitude, and 

position change according to the end effector’s motion. The operator guides the 

driller with a bimanual structure that forces the hands to be symmetric to the tool. 

Then, the two upper arms balance and support together the interaction force. 

Supposing that the connection between the hand and the structure is rigid and 

unchanged during the experiment duration, the relative position and orientation 

are estimated by the structure's geometry. The corresponding transformation 

matrix converts the forces measured by the sensors in the hand coordinate 

systems, defined into AMS as a reference node in the palm hand oriented as the 

hand reference frame of the BVH model.  

The ground reaction forces necessary to proceed with the dynamic analysis, are 

estimated by the GRF prediction tool of AMS, which relies on 25 conditional 

contacts added to the model feet that work as force actuators. They equal normal 

and frictional forces to balance the entire system. Mathematically, these terms are 

treated as muscles using muscle recruitment optimization, thus having the 

maximal permissible reaction values for minimizing muscle activity. For estimating 

muscle forces, static force optimization minimizes the polynomial muscle criterion 

of Eq.9 with 𝑝 = 2. Despite its good prediction, the muscles sometimes present 

unphysiological and abrupt switch peaks when the joint moment passes from 

negative to positive. For this reason, a moving averaging filter (smooth(rloess), 

Matlab 2020a), which assigns zero weight to data outside six mean absolute 

deviations, is used to filter the AMS muscle activity data. To test different AMS 

configurations the muscles are modelled with AnyMuscleModel3E and 

AnyMuscleModel libraries. 

The volume of the driller and the robotic system is simulated inside the AMS 

environments by adding the .stl files in specific locations. In the standard drilling 

operation, the .stl of the tool is attached to a node of the right hand, whereas the 

robot .stl is positioned with the base translated of a measured value from it to the 

human foot.  
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3.3.3 Results 

The choice in defining the marker's position of the protocol that drives the 

musculoskeletal model from the BVH file is fundamental to performing a proper 

kinematic evaluation. The kinematic analysis of AMS may fail, usually for a worse 

definition of the position of the markers for resolving the global optimization 

process. A proprietary procedure adjusts the marker position by manually 

choosing their direction of movement to reduce the difference with the 

experimental data. Hoverer, the numbers of optimizable markers are restricted, 

and the procedure does not always converge to a solution. Moreover, this 

procedure is particularly truthful with marker-based input data because it changes 

the markers' position according to the position of experimental markers using 

several experimental data performing several movements. However, this 

procedure is less straightforward for the IMU MoCap system because the number 

of possible markers to move is doubled (both musculoskeletal and BVH ones) 

without target points to reach. The suggestion of the AMS developers is to modify, 

in a systematic and restrained way, the position of the musculoskeletal and BVH 

markers. However, the choice depends on the user's decision with a reiterative 

process that could be dispendious and ineffective. The implementation of IMU 

MoCap inside modelling software is a relatively new and unexplored topic. In the 

last years, several researchers have studied the feasibility of using IMUs data in 

AMS, comparing the kinematics and dynamics results with the ones obtained with 

the gold standard optoelectronic systems[66]–[69]. However, they all utilize the 

Xsens MVN Studio as IMU systems and a specific protocol for the XSens BVH 

output implemented inside the AMS library. They demonstrated that the 

prediction of joint angles and muscle activity with IMU sensors provide 

comparable performances of the optoelectronic system. However, that protocol 

is not feasible for our custom biomechanical IMU MoCap algorithms because of 

different anatomical reference system definitions than XSens BVH. Thus, the same 

approach is used but with modified marker positions, which are optimized 

manually with BVH files containing simple movements of upper limbs (abduction 

and flexion of the shoulder and elbow flexion). The markers' position is 

systematically changed thus to obtain a musculoskeletal model that accurately 

mimics the expected motion. Figure 5 shows a frame of the AMS models in the 

two different configurations. The overall kinematics is similar to the actual motion 

even if some errors are present: the hands, especially in the experiments with the 
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robot, do not touch the driller holding structure during the complete phase of the 

experiments. The wrists are over-flexed, and this could be due to a lack of 

constraint in the wrist joints or some errors in positioning the markers over the 

hands. However, the overall kinematic is acceptable. During the task of standard 

drilling, the only joint that exceeds the limits reported in the normative is the 

shoulder abduction angles. Physiologically the shoulder abduction has a range of 

about 90°, and the imposed limit is 45°: positions higher than this value are 

potentially dangerous for the workers, especially if highly repeated. The latter 

angle remains under the limits of robotics-aided drilling operations. The operator's 

hands hold the handle, and no upper limbs' angles exceed the limits. In this specific 

scenario, the posture multiplier would assume a value within 0.7-0.6 for a 

standard drilling operation, whereas it is equal to 1 when the human collaborates 

with the robot.  

 It is noticeable mentioning that the subject conducting the experiments is not 

a manual worker nor an expert in drilling. It is not clear if a trained worker would 

assume the same position during standard drilling or would change its posture 

naturally thus reducing the load on the joints. However, cobots, specifically 

designed for a specific task and with an ergonomic handle structure, are helpful to 

conduct and force the workers' posture to maintain the correct position during 

repetitive tasks, especially at the end of the work shift when the fatigue advances. 

 The results of the dynamic studies confirm the advantages of using assistive 

cobot systems. Figure 6 shows the moments over the flexion axis of the right 

Figure 5 AMS frame of left: standard drilling, right: collaborative drilling task 
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elbow for the three cases analyzed. For simplicity, only the phase of the actual 

perforation is analyzed. The elbow torque on the standard drilling reaches a peak 

of 25 Nm due to the load exertion necessary to make the hole. This absolute value 

depends on the material to proceed, the type of working equipment, and the 

posture of the upper limb. However, under the same working condition, this value 

has a maximal peak of 1.2 Nm for the collaborative task w/o helping and shows an 

almost constant value for the case w helping around 0.5 Nm. The results confirm 

what was expected: the cobot supports the workers' upper limbs by drastically 

reducing the load over the joints. Moreover, the w helping case smooths the 

torque outputs since the operator does not push because the velocity controller 

operates the drilling operation.  

Figure 7 shows the activity of the supraspinatus 1, which is similar in terms of 

trends and absolute values to other muscles of the supraspinatus group. Following 

the procedure proposed in Section 3.2.2, the force multiplier calculation considers 

the maximum values of the most active muscles of each joint in a specific technical 

action and the ratio between the TA duration and the entire time cycle. In the 

standard operation, the supraspinatus is the more activated muscle for the 

shoulder. Figure 7 shows only the drilling technical action. The supraspinatus 

activity reaches 0.45 for the standard drilling, whereas it remains near zero for the 

two collaborative tasks. In those cases, the supraspinatus is not the most activated 

Figure 612 Right flexion axis moments in the three cases analysed: standard drillin, w helping and w/o 
helping 
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muscle, however, the other muscle activity remains under the 0.05 threshold. 

Supposing that the duration of the drilling task is 50% of the entire cycle time, the 

%MVC is equal to around 22.5 for the standard operation and less than 3 for the 

collaborative task. Thus, the force multiplier is respectively 0.65 and 1 for the two 

different cases. The cobot solution for manual handling of low loads at high 

frequencies considerably reduces the force multiplier and the OCRA index.   

3.3.4 Sensibility analysis  

Musculoskeletal simulations' results depend on multiple factors: goodness of 

the input data, the definition of the markers protocol, calibration of the 

musculoskeletal model, precision of the muscle parameters, and so on. How much 

these factors impact the final results is resolved by the sensitivity analysis, which 

determines how different values of an independent variable affect particular 

estimated variables, such as joint angles or muscle and joint load. Several 

researchers performed extended sensitivity analysis on musculoskeletal modeling. 

For example, [70] demonstrated that using a subject-specific scaling model in 

OpenSim, such as the one proposed by [71], estimates better loads of 

glenohumeral muscles in simple motions than the generic model. In general, 

model prediction accuracy is sensitive to the properties of the muscle-tendon 

units and model geometry. [72] proved that the upper limbs' force estimation 

depends on the muscle path, moment arm, and the number of lines of action. In 

Opensim, a complete sensitivity analysis for upper limbs studied how much joint 

and muscle loads are influenced by different types of kinematic input data [73], 

and by changing tendon and muscle length, maximal isometric force, and 

pennation angle [74]. The results indicate that OpenSim upper limb 

Figure 713 Supraspinatus 1 activity estimated by AMS in three cases 
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musculoskeletal model is more sensitive to variation in the maximal force and 

muscle length. On the contrary, [75] performed a sensitivity analysis on Anybody 

studying the variability of the lower limb muscle activity in gait simulation by 

changing the same muscle-tendon parameters, founding that the tendon length is 

the most influential term, followed by the maximal force and muscle length. Both 

the two papers mentioned above calculate the Local Sensitive Index (LSI), 

necessary to address the influence of the muscle variation on the output of the 

same muscle, and the Overall Sensitivity Index (OSI) that, conversely, indicates 

how much a variation of the parameters of one muscle influence all the other 

muscle activity.  

Since there are no studies regarding the sensitivity of shoulder musculoskeletal 

model prediction to muscle-tendon properties using AMS, we perform a 

preliminary study. We calculate the LSI and OSI of 11 muscle bundles of upper 

limbs: infraspinatus, deltoideus anterior, deltoideus lateral, pectoralis major 

clavicular, biceps brachii caput breve, biceps brachii caput longum, trapezius 

scapular, supraspinatus, deltoideus posterior, trapezius clavicular, and pectoralis 

major thoracic. Starting from the muscle-tendon parameters estimated by the 

calibration on the subject and listed in Table 4, we vary the maximal isometric 

force and muscle fibre length from their nominal value. In line with the anatomical 

variability observed in literature for each muscle-tendon unit [76], [77], the 

nominal values are perturbated from -10% to +10% with a step of 2.5%, modifying 

one by one each parameter. Thus, 176 simulations estimate the muscle activity 

and the joint moments for each perturbation, and the corresponding value of LSI 

and OSI is calculated. Results show that the moments are not affected by changing 

the muscle parameters: the correspondent mean OSI values are, in fact, lower 

than 0.05. Conversely, both LSI and OSI for the muscle activity show unexpected 

results compared to the values obtained in the work of Carbone et all. [75], which 

reach an average LSI value of 13.93% in varying fiber length and 23.08% for 

maximal isometric force. On the contrary, the results obtained by our study of 

upper limb sensitivity have an average LSI of almost 144% and 178% for OSI. 

Comparing the activity trend, it seems that a modest variation of muscle 

parameters makes the dynamics algorithm unstable such that only one muscle of 

each bundle is activated reaching high activity values, while the others are not 

activated at all, decreasing sensibly their activity with values near zero. It is 

fundamental to mention that in the set-up of our simulations, we force the tendon 

length to maintain constant values. Conversely, Carbone et all. includes muscle-
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tendon length equilibrium in their sensitivity study. According to the AMS 

developers, the stability of the tendon length values is necessary to resolve the 

dynamics algorithm successfully. It seems that if this value is not maintained 

constant, the dynamic algorithm will converge to a solution trying to change the 

tendon length, following the perturbations of the muscle length, thus preserving 

an equilibrium of the total length of the muscle-tendon unit. However, this is only 

a supposition, and more investigations on the dynamic’s resolution and muscle 

recruitments in AMS are necessary for a complete dissertation. For the same 

reason, the obtained LSI and OSI estimates are not listed here because it is not 

clear how to interpret the results and the goodness of the sensitivity analysis we 

performed. 

We also performed the sensibility of the OCRA index evaluation to IMU MoCap 

calibration procedures. In particular, we compared the angle joints of the upper 

limbs obtained by importing inside the software the kinematic data provided by 

the BVH data calibrated with static and dynamics poses listed in Chapter 2.3.2. 

Figure 8 shows the upper limb joint angles during the standard drilling test. The 

shaded area corresponds to the differences between the minimum and maximum 

value obtained by calibrating the IMU MoCap algorithm with T-pose, N-pose, C-

pose, Mean Static, Elbow movement, Wrist-movements, and Functional 1. The red 

dot lines correspond to the OCRA joint limits that define the posture multipliers. 

Figure 8 Upper-limb joint angles estimated by AMS with different IMU MoCap sensor-to-segment calibration  
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The trends between the calibration are similar, confirmed by a Pearson correlation 

coefficient (r) higher than 0.97 for all the angles considered. Thus, the results 

present an offset of the absolute values: elbow pronation angles show the higher 

difference (max=18°), followed by wrist flexion (max = 15°), shoulder flexion (max 

= 10°), elbow flexion (max = 8°), wrist deviation (max= 6°) and shoulder abduction 

(max = 3°). Even if these differences, the only angle that exceeds the limit is the 

shoulder abduction, which confirms that the posture multiplier is within the 0.7-

0.6 range. Similarly, the muscle activities are not strongly affected by different 

calibration methods, producing a force multiplier equal to the one obtained with 

the functional 1 calibration method. Thus, the OCRA computed with AMS is not 

highly sensible to the choice of IMU MoCap calibration method.  

 

3.4 Online Joint wrench and force multiplier estimation  

The previous section has demonstrated the validity and the advantages of using 

musculoskeletal modelling for ergonomic evaluation. AMS can estimate the 

posture and force multiplier necessary to compute the OCRA. However, this 

process consists of several steps, is dispendious and time-consuming, and is 

impossible to use in real-time or directly in the working environment when the 

ergonomic expert performs the study. However, a peculiarity of IMU MoCap 

systems is their feasibility of real-time motion detection with acceptable accuracy. 

This characteristic makes the system able to be used as a prevention tool for online 

assessment of the posture multiplier. For example, in case of performing awkward 

positions, an external alarm or visual feedback can warn the workers, who correct 

their posture. However, to have a complete ergonomic analysis, also the force 

multiplier has to be defined. This paragraph describes the assumptions and 

simplifications, the algorithm, and the experimental test of an online wrench 

estimation of upper limb joints by knowing the force exerted on the hands. The 

computation of human body dynamics is an interesting topic for the study of the 

physical human-robot interaction [78], [79], rehabilitation [80] and ergonomics 

[47]. The company Scalefit (https://www.scalefit.de/home.html) claims to 

perform ergonomics analysis online by estimating both the awkward posture and 

joint load. They use the IMU MoCap suit of XSens consisting of 17 IMUs, but it is 

unclear if they integrated additional force sensors over the hands or foot or if they 

estimate the joint load only considering the human body weights and positions. 

https://www.scalefit.de/home.html
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In this study, we perform an ergonomics analysis on a robot-collaborative 

drilling task by knowing the forces exerted on the hands and estimating the joint 

moment with a Newton-Euler approach. The test is like the collaborative w/o 

helping drilling operation described previously, and the results obtained are 

compared with the AMS results.  

3.4.1 Definition of maximal joint torque by EN 1005-3 

For EN 1005-3, the force multiplier depends on the ratio between the measured 

force exerted and the maximal limits reported by normative. In the same way, the 

force multiplier is dependent on the proportion between the estimated joint 

torque and a limit value not defined yet in any standard. However, those values 

can be derived by the force limits listed in Table 3, which allow up to 85% of the 

adult European working population to execute the task without exceeding their 

physical capacity. They are specific to common simple positions that could occur 

in working environments. Thus, the lengths of the body segments are estimated 

with the Drillis & Contini model and are necessary to calculate the torque that 

loads the joints, considering the F in that specific position.  

The simplest human upper limb model consists of 7-DoF. The humerus is linked 

to the chest by the shoulder and composed of 3 revolute joints that permit three 

movements: shoulder abduction/adduction, internal rotation, and 

flexion/extension. The elbow is modelled with two rotational DoF: elbow 

flexion/extension and forearm pronation/supination. Finally, the hand is linked to 

the forearm by two revolute joints, which define palmar flexion/extension and 

ulnar/radial deviation. Figure 9 shows a graphic representation of the model 

proposed.  

Figure 9 Schematic representation of the 7-DoF upper limbs model 
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Table 14 Upper-limb maximal joint torque 

Activity  Shoulder [ Nm ]  Elbow [ Nm ]  Wrist [ Nm ]  

Arm work:  
sitting posture  
  
  
  
  
  
  

  

 𝑇𝑆𝑥 𝑇𝑆𝑦 𝑇𝑆𝑧 𝑇𝐸𝑦 𝑇𝐸𝑧 𝑇𝑊𝑥 𝑇𝑊𝑧 

Upwards     22  22  9 

Downwards    -33  -33  -14 

Outwards  -18 21    -10  

Inwards  24 -33    14  

Pushing W trunk support         

Pushing W/O trunk support    20     

Pulling W trunk support         

Pulling W/O trunk support    -18     

Thus, by multiplying the force by its lever arm vector, the maximal joint torque on 

each joint is estimated for each arm work in sitting positions, and the results are 

listed in Table 8.  The distinction between different types of movements is difficult 

to assess, especially when computing the kinematic in real time. Thus, maintaining 

a high coefficient of security, the lower value in absolute values is chosen as torque 

limits for the 7 DoF of upper limbs. Thus, the %𝑀𝑉𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅ for determining the force 

factor is calculated considering the worst case among the seven upper limbs axis 

considered and equal to: 

%𝑀𝑉𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅ =  
1

𝑇
∑𝛥𝑡𝑗

𝑛

𝑗=1

∙
𝜏𝑗

𝑇𝑗
𝐿 (11) 

where 𝜏𝑗 is the torque computed in real-time in each axis and the 𝑇𝑗
𝐿 is the 

correspondent joint torque limit. Then, the force multiplier is determined by Table 

6. 

3.4.2 Joint wrench estimation algorithm  

Through the IMU motion algorithm and calibration presented in Chapter 2, the 

quaternion 𝒒𝑉𝐶𝑆
𝐵𝐶𝑆

𝑖
 indicates the orientation of each i-th body coordinate system 

(BCS) expressed in the virtual coordinate system (VCS). The estimation of the 

wrenches in each joint is performed with the Newton-Euler equations, similar to 

the approach of [78] because they are easily implementable recursive approaches 

in real-time. The human body's inertial parameters derive from validated 

anthropometric models. The Drillis & Contini model [81] estimates the segments 

masses 𝑚𝑖 with the human weight as input, while inertia 𝑰 𝑖 is determined by the 
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radius of gyration listed in [82] with both weight and high as input . Similarly, the 

position of the segment’s center of mass 𝒄 in the BCS depends on the height of the 

subject analysed. The i-th body’s forces 𝒇𝑝,𝑖   and moments 𝝉𝑝,𝑖 in the proximal 

joints are a function of the respective wrench (𝒇𝑑,𝑖, 𝝉𝑑,𝑖) in the i-th body’s distal 

point. The ̃  symbol represents the skew-matrix, whereas the 𝝎𝑖 and the 𝝎̇𝑖 are 

the angular velocities and accelerations derived from the IMU’s gyroscope signal 

in the correspondent BCS. Thus, the resolution equation is: 

{
𝒇𝑝,𝑖 = −𝒇𝑑,𝑖 − 𝑚𝑖(𝒈𝑖 + 𝒄̈𝑖) 

𝝉𝑝,𝑖 = −𝝉𝑑,𝑖 − 𝒍𝑑,𝑖̃𝒇𝑑,𝑖 − 𝑚𝑖𝒄𝑖̃(𝒈𝑖 + 𝒄̈𝑖) − 𝑰 𝑖𝝎̇𝑖 − 𝝎𝑖̃(𝑰 𝑖𝝎𝑖 )
 (12) 

where 𝒈𝑖 and 𝒄̈𝑖  represent the gravity acceleration and the linear acceleration 

of the center of mass in the i-th body reference system respectively, and 𝒍𝑑,𝑖 the 

distance between the proximal and distal points of the segment. The wrench 

applied by the j-th (distal) body to the body i is determined in the previous 

iterations i+1 and expressed in the body coordinates system by the joint 

quaternion  𝒒𝑖,𝑗
𝐽𝑜𝑖𝑛𝑡, which defines the joint angles between two successive BCS. 

The wrench estimation starts from the distal segment point, where the force 

exerted by external machinery or loads is known. This method is simple and fast 

and can be easily implemented in real-time.  

3.4.3 Material and Methods 

The same experimental collaborative robotic scenario, described in Section 

3.3.1, is used to validate the proposed methodology. A man subject (height = 1.78 

m, weight = 70 Kg) wears the Shadow MoCap suit and drills holes at four different 

locations: the first one is on a plane perpendicular to the ground, while the last 

three are on a plane parallel to the ground, at the height of approximately 1 m. 

The cobot supports the total weight of the drills by gravity compensation strategy. 

Unlike the previous case, the admittance control is not activated, and the subject 

pushes with more force, thus stimulating variations in the force multiplier value. 

The sensor positioned in the cobot EE, as shown in Figure 2, records the force and 

torque exerted on the hands. The IMU MoCap and the joint wrench estimation 

algorithms are implemented into a ROS package with a methodology that will be 

fully described in the next chapter. After a complete calibration of the IMU MoCap 

system performing the Functional1 pipeline, the evaluation is performed in real-

time (100 Hz) and then saved in a .csv file. To test the validity of the method, the 
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angle and joint wrenches estimated are compared with the results obtained in 

AMS. In particular, the IMU kinematic data are firstly transformed into a BVH file, 

with a frequency downsampling to 20 Hz, and imported into AMS. Similarly, the 

physical human-robot interaction forces are first referred to in the hand 

coordinate system and imported into the AMS model. 

3.4.4 Results 

The results of joint angles and moments of the proposed algorithm for 

estimating OCRA ergonomics posture and force multipliers are shown in the figure 

below. In particular, Figure 10 compares the angle computed in real-time (blue 

line) with the one obtained with AMS, both correlated to the angle limits set in the 

normative (red dot line). The results show a good correlation except for the wrist 

angles, probably due to some error in the AMS computation: visually is possible to 

notice that the hand assumes an unreal and unexpected position, probably for lack 

of constraints due to the protocol used. Figure 11 shows the comparison between 

the joints’ moments. Those values show similarities in values and trends, 

especially in the elbow joint. Differences in the kinematics angles and the 

definition of the inertial parameters of the upper limbs of the two systems can 

cause discrepancies in the results. The scaling law of AMS for inertial parameters 

differs from the one used in our definition, resulting in different values of inertial 

matrices. Although the biomechanical human model definition is upgradeable and 

Figure 14 Upper-limbs joints moments comparison between AMS and the proposed method 
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better definable, the real-time dynamic estimation shows acceptable and 

promising results. 

From these moments data, the algorithm computes the force multiplier 

dividing the obtained value, for each technical action, with the maximal joint 

admissible torque, listed in Table 8. The force multiplier estimated with Eq.11, and 

interpolated following the suggestion of the Standard, is 0.6368. The AMS muscle 

activity analysis shows that among all the muscles, the most stressed muscle group 

is the shoulder one. The %MVC of the left and right shoulder is equal to 10.04 and 

11.79 respectively; for the elbow is 6.21 and 6.06, and for the wrist is equal to 6.21 

and 5.88. The maximal value is of the right shoulder, where the deltoideus anterior 

muscle reaches the maximal value. The corresponding force multiplier equals 

0.5861, and it is comparable to the one obtained by the proposed procedure. 

In conclusion, IMU MoCap systems integrated with external force and torque 

sensors are a promising tool to assess ergonomics analysis in real-time, thus, 

reducing the workers’ musculoskeletal disorders. The algorithm proposed for 

tracking the workers’ motion and joint loads returns results comparable to the one 

simulated with AMS. The procedure and the definition of maximal joint torques 

using EN 1005-3 permit estimating the force multiplier by joint torque online 

evaluation and monitoring the workers’ musculoskeletal overloads in real-time. 

This approach is highly usable in a contest where the workers must perform 

repetitive tasks for several hours. In a safer working environment, if an excessive 

joint load or a prolonged awkward posture is detected, an alarm signal or visual 

Figure 11 Upper-limbs joints moments comparison between AMS and the proposed method 
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feedback would warn the workers to be in potentially dangerous situations for 

their musculoskeletal health. 

3.5 Towards reduced and subject-specific biomechanical 

models  

It is evident that the value of motion tracking systems and ergonomics 

assessments depends on the choice of the sensor system and the biomechanical 

models that perform the analysis. The more the models can reproduce the actual 

behaviour of the human, the more the calculation of kinematic, dynamics and 

ergonomic parameters reflect reality. One of the main objectives of biomechanics 

is to define subject-specific human models. While the determination of muscle 

and tendon parameters is difficult because invasive sensors are needed, the joints' 

axis of rotation and kinematic constraints are identifiable with less invasive 

detectors. As mentioned in Chapter 2, it is common to perform functional 

movements to assess the joint axis of rotation with marker-base and marker-less 

MoCap systems. The constraints imposed by reduced biomechanical models could 

reduce the noises and intrinsic errors of the instrumentation and increase the 

overall accuracy of kinematic analysis. In this direction, we reduced the upper limb 

DoF from 9 to 7: elbow and wrist's spherical joints are substituted with two 

revolute joints with non-orthogonal axes. Moreover, the axis directions of the 

revolute joints are obtained by functional movements captured by the IMU MoCap 

system to develop a subject-specific model. Specifically, with the same approach 

used to perform the dynamic sensor-to-segment calibration proposed in Chapter 

2, the quaternions of the body coordinate system 𝒒𝑉𝐶𝑆
𝐵𝐶𝑆

𝑖
 determine the direction 

vector of elbow and wrist axes in the virtual coordinate frame. With the flexion 

extension and pronation-supination of the elbow, the non-orthogonal axes are 

defined by the quaternion of the arm's body coordinate system. Similarly, the 

elbow axes in VCS are identified with the hand-body coordinate system during 

flexion-extension and abduction-adduction activities. The kinematic is definable 

with successive elementary rotation matrices misaligned according to the angle 

computed by the joint movements in VCS. The Drillis & Contini model defines the 

distances between the joints. Attached to each body segment 3 virtual markers in 

specific positions are defined. The kinematic is resolved like the approach of AMS. 

The IMU outputs move the 9-DoF upper limbs skeleton, modeled with only 

spherical joints, by the MoCap algorithm described in Chapter 2. That skeleton has 
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attached the same number of markers of the reduced biomechanical model in the 

exact positions.  

 With a global optimization that minimizes the distance between the markers 

of the two models, the joint angle values are estimated offline. This minimization 

problem is constrained to resolve the kinematic with joints angle inside a range of 

feasible and possible configurations. Those values of motions are detailed in  [82]. 

Figure 12 shows a scheme of the procedure described above and a schematic 

representation of the reduced and subject-specific biomechanical models.  

A preliminary model is developed offline in Matlab 2020a, showing promising 

results. The global optimization filters out some IMU noise and constrains the 

motion into physiological ranges of motion. 
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Chapter 4 

Cobot-IMU hand guiding system with 

online collision avoidance  

With the growing interest of the manufacturing industry in systems able to 

reach higher productivity while maintaining at the same time high flexibility and 

efficiency, one of the main goals of Industry 4.0 is to take advantage of the 

enormous potentiality of collaborative robotics. During the last decade, cobots 

were widespread in the automotive industry, which requires increasing 

customization and product flexibility. It is estimated that the number of cobots 

sold to electronic and automotive in 2020 was 22,000 units, with a positive trend 

for the next decade. Thanks to their high flexibility, cobots are recently introduced 

in surgery applications: for example, for brain and spinal surgery, the cobot 

automatically moves its high-powered microscope and provides high-resolution 

images of the surgical area, or in total knee arthroplasty operation, the cobot 

moves for better define the cutting plane and reducing bones axes misalignments. 

Moreover, cobots have been introduced in rehabilitation for training the upper 

limbs in neurologically impaired individuals. In general, cobots can increase 

productivity and improve product and life quality.  In industrial applications, the 

cobot also releases human workers from strenuous and health-damaging 
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activities. However, effective collaboration requires physical contact between the 

robot and the human in a common workspace where human safety is guaranteed. 

Among all the collaborative solutions, redundant cobots can achieve more 

dexterous robot motion and increase the flexibility of the collaboration. The 

manipulators are kinematically redundant when more DoF than needed to 

execute a given task. For example, it is possible to command the auxiliary joints 

space to avoid joint limits and singularities or avert obstacles [1].  

Hand-guiding operation is a task in which the operator manually guides the 

collaborative robot to follow an arbitrary desired trajectory. A redundant cobot 

under hand-guiding motion can force the redundant chain to assume 

configurations that ensure safety or facilitate the human to perform a specific task. 

In general, a practical collision avoidance strategy requires the accurate 

instantaneous posture knowledge of the human operator. In robotics, the most 

used MoCap systems are vision sensors, such as stereophotogrammetric cameras, 

depth cameras, RGB cameras, and lasers [2]–[6]. Nevertheless, a vision system 

suffers from occlusion problems in cluttered environments with varying light 

conditions [7]. 

As an alternative, a new research area considers collaborative solutions based 

on IMU MoCap systems that are free of occlusion problems and represent a 

possible solution for their compactness, low cost, and fast response. However, 

IMUs are prone to drifting errors, and their integration with robotic systems needs 

more investigation. To the authors’ knowledge, the only studies which dealt with 

this integration are those from [8], [9], in which the position of a free-walking 

human in space is tracked by IMUs and lasers in a collaborative scenario. 

In this chapter, we study a collaborative hand-guiding task in which a safe 

human-robot interaction (HRI) is ensured by performing the collision avoidance 

strategy in null space and tracking the human position with IMU MoCap systems. 

This HRI scenario consists of an operator wearing the Shadow MoCap systems, 

who guides the cobot by a handle mounted to its EE. During the operation, the 

cobot control command allows smooth EE manual guidance and a safety control 

strategy, which maximizes the distance between the redundant links and the 

operator to avoid unexpected collisions. In the proposed setup, the control 

strategy needs to acquire the positions of operator body segments from the 

MoCap system and calculate the distance between the human and the cobot to 

command the control strategy. Differently from previous works, the IMUs 3D 
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position drifting error is inhibited by making the operator stand in a fixed location 

with a hand firmly attached to the EE and continuously syncing the hand with the 

EE position. The HRI control command is computed in real-time under the 

ros_control framework. The proposed setup is tested with a simple experiment to 

evaluate the capability of the integration of IMUs system for online collision 

avoidance in null space during hand-guiding tasks. Redundant cobots are 

promising for their flexibility in chain configuration: without changing EE 

positioning, the auxiliary motion can relocate the robot far enough from the 

operator, thus preventing the assumption of awkward postures, which could lead 

to injuries. 

In the following pages, section 1 describes the experimental setup 

implemented in real-time; section 2 defines the calibration of the IMU MoCap 

system with the robot, and section 3 describes the robot control strategy. Finally, 

section 4 reports the results of the tests performed. 

4.1 IMU MoCap system integration in cobot controller 

The Franka Emika Panda redundant serial robot and the Shadow MoCap system 

are the hardware integrated for hand-guiding collaborative applications. Franka 

Emika provides libfranka, an open-source C++ interface for sending real-time 

control commands to the robot. It further integrates this library into the 

ros_control framework (FrankaROS) to be compatible with ROS ecosystem while 

maintaining real-time capability (1kHz). Motion Shadow suit provides an open-

source C++ SDK that programmatically handles the real-time (100Hz) data streams 

coming from each IMU. Each IMU is connected to a wireless hub, that gathers the 

data and estimates the attitudes through sensor fusion algorithms. The raw data 

of the sensors and the estimated attitudes are transmitted via Wi-Fi to the 

workstation PC which runs the robot controller. The sensor data are integrated 

into the robot control protocol for calculating new control commands in real-time 

(i.e., sensor integration layer). For this purpose, we extended FrankaHW, the 

hardware interface defined in FrankaROS, to simultaneously send and receive 

signals from the robot and perform the IMU MoCap algorithm. In the sensor 

integration layer, the corresponding interfaces of the sensor hardware resources 

are made available to the controller for using the sensor signals. The C++ SDK of 

Motion Shadow suit is customized in a ROS package to be compatible with the 
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ros_control framework.  These data are shared with an additional controller which 

provides a user interface for executing the MoCap sensor-to-segment calibration 

and the integration with the robot coordinate system. The system integration 

structure is shown in Figure 1 .  

4.2 Calibration of IMU MoCap system in robot frame 

The IMU MoCap algorithm, described in Chapter 2, returns the position of each 

body coordinate system (BCS) into the virtual coordinate frame (VCS). The IMU 

MoCap position estimations need to be referenced to the robot coordinate system 

(RCS) to implement the collision avoidance strategy. The robot mounts on a flat 

surface parallel to the human standing ground, and the RCS has the z-axis pointing 

up. For a simple calibration set-up, we chose the T pose as the reference pose for 

both the sensor-to-segment calibration and for defining the relative rotation and 

translation between the human and the robot. In this position, all BCSs and VCS 

have identical orientations and different origins located at the distal end of each 

body segment, the z-axis pointing against gravity, the x-axis to the anterior 

direction, and the y-axis defined according to the right-hand convention. To align 

VCS and RCS, the human positions the left hand attached to the handle without 

grabbing it during the T-pose calibration. The operator faces along the RCS x-axis 

with the help of markers on the floor. Thus, the relative orientation between the 

human and the robot, 𝒒𝑅𝐶𝑆
𝑉𝐶𝑆, is a known rotation of 180 degrees along the z-axis. 

Figure 2 shows the calibration position above-mentioned. 

 

 

Figure 1 Ros_control framework integration for peripheral sensors 
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Thus, the displacement between VCS and RCS, 𝒓⃑ 𝑅𝐶𝑆
𝑉𝐶𝑆(𝑡), is the difference between 

the guiding hand position 𝒑⃑⃑ ℎ𝑎𝑛𝑑(𝑡) and robot EE position. Based on 𝒒𝑅𝐶𝑆
𝑉𝐶𝑆 

and 𝒓⃑ 𝑅𝐶𝑆
𝑉𝐶𝑆(𝑡), a homogeneous transformation matrix 𝑻𝑅𝐶𝑆

𝑉𝐶𝑆(𝑡) is constructed. The 

body position with respect to RCS, 𝒑⃑⃑ 𝑅𝐶𝑆𝑖
(𝑡) is obtained as: 

[𝒑⃑⃑ 𝑅𝐶𝑆𝑖
(𝑡)]  =   𝑻𝑅𝐶𝑆

𝑉𝐶𝑆(𝑡) [𝒑⃑⃑ 𝑖(𝑡)]  (1) 

where [∙] is the homogeneous representation of the 3D vector 𝒑⃑⃑ 𝑖(𝑡), which 

defines the position of the human segment in the VCS. 

4.3 Robot Control Strategy 

The Franka robot was controlled in torque mode, assigning the following 

commands to the joints: 

𝝉𝑐 = 𝝉𝑡𝑎𝑠𝑘 + 𝝉𝑛𝑢𝑙𝑙𝑠𝑝𝑎𝑐𝑒  (2) 

𝝉𝑡𝑎𝑠𝑘  is the torque command in the joint space, to compensate robot gravity 

and joint friction, thus assuring an effortless manual guidance. 𝝉𝑛𝑢𝑙𝑙𝑠𝑝𝑎𝑐𝑒  is the 

command in the null space maximizing the distance between the robot and the 

Figure 2 Left: Biomechanical model and coordinate system definition for the IMU MoCap algorithm, right: 
schematical representation of the human position and robot during the calibration phase 
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human body without causing any wrench on the EE. Then, the corresponding 

velocities are sent, which are then converted to torques by the inner control loop 

of the robot controller. 

Following the approach presented in Khatib [10] and Ficuciello et al. [11], 

𝝉𝑛𝑢𝑙𝑙𝑠𝑝𝑎𝑐𝑒 is determined as:  

𝝉𝑛𝑢𝑙𝑙𝑠𝑝𝑎𝑐𝑒 =  𝑘(𝑰 − 𝑱𝑇𝑱𝑇†)
𝜕𝑤

𝜕𝒒
 (3) 

where 𝑤 is the distance cost function, containing the distance between the 

robot and the human body estimated based on the data from the MoCap system, 

𝒒 is the vector of joint variables, 𝑰 is the identity matrix of dimension 7 (number of 

links of the robot), 𝑱 is the Jacobian of the robotic arm, † is the pseudo-inverse 

operator and 𝑘 is a user-defined gain, needed to regulate the magnitude of 

𝝉𝑛𝑢𝑙𝑙𝑠𝑝𝑎𝑐𝑒. In this work, 𝑘 is extended as a sigmoidal function on the distance to 

have a smooth activation of the null-space collision avoidance: 

𝑘 = ℎ(1 + 𝑒𝑠(𝑤−𝑤𝑚𝑖𝑑𝑑𝑙𝑒))
−1

 (4) 

where ℎ is a gain constant, 𝑠 is the steepness, and 𝑤𝑚𝑖𝑑𝑑𝑙𝑒 is the middle point 

of the sigmoidal (i.e., the point in which the value of the sigmoidal is 0.5). The 

values for ℎ, 𝑠 and 𝑤𝑚𝑖𝑑𝑑𝑙𝑒 were empirically set as 3 N, 30 m-1 and 0.6 m by trial-

and-error tuning. To decrease the computational burden in calculating 𝑤, the 

following approximations are made: the robot is schematized as two main 

segments, one from the origin of the reference frame of the second joint to the 

origin of the reference frame of the fourth joint and the other one from the origin 

of the reference frame of the fourth joint to the origin of the reference frame of 

the sixth joint. The reference frames are defined according to the Denavit-

Hartenberg convention, as shown in Figure 3. In addition, for the human body, 

only the right arm is considered, because in the hand-guiding application under 

consideration, it is most likely that collisions may happen with the right arm, 

considering the structure of the robot and the fact that the end-effector is grabbed 

with the left hand. Consequently, three segments are considered for the right arm, 

namely those connecting the right shoulder, elbow, wrist and terminal hand 

points, whose positions by the IMU MoCap system. 
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The minimum distance between the human right arm and robot is obtained by 

calculating the minimum distance between pairs of segments based on the 

method introduced in [12]. 

4.4 Results 

A simple test was performed to validate the approach described in this work. 

After the calibration phase, the operator grasps the guiding handle with the left 

hand and approaches with the right hand the robot elbow point. The null-space 

command drives the robot to avoid contact with the human right arm without 

affecting the EE. Errore. L'origine riferimento non è stata trovata. presents these 

Figure 3 Left: Schematic representation of the three robot segments, 
right: visualization of the human model in RViz 

 

Figure 4 Pictures of the real world and RVIZ scene for the three phases of the test 
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test phases both in the real-world scene and in the corresponding RViz (a 3D 

visualization tool in ROS) virtual scene. In the RViz scene, a simple human skeleton 

(red segments) was visualized based on the joints/extremes position of MoCap 

results, while the minimum distance between robot structure and human right 

arm is highlighted as a yellow segment. Figure 5 presents the recorded null-space 

commands and the distance between the robot and the arm. At the beginning of 

the test, 𝝉𝑛𝑢𝑙𝑙𝑠𝑝𝑎𝑐𝑒 is not active since Equation 11 has a value close to 0 with a 

large distance. When the distance decreases below 0.7 m as the human operator 

approaches the robot with her right arm, 𝝉𝑛𝑢𝑙𝑙𝑠𝑝𝑎𝑐𝑒 starts to increase significantly, 

since the sigmoidal function rises from near zero. In this test, this activated 

𝝉𝑛𝑢𝑙𝑙𝑠𝑝𝑎𝑐𝑒 had command values mainly on the first, second and third joints to 

generate a motion in the joint space that drove the robot’s links away from the 

right arm with minimal effect on the end effector. 

In conclusion, this work shows that the proposed system integration and IMU 

MoCap algorithm are effective in collision avoidance scenarios for hand-guided 

redundant cobots. Moreover, the integration scheme allows the entire system to 

work under relatively high frequencies (1kHz for robot control and 100Hz for 

motion capture) with peripheral sensors. The proposed MoCap algorithm, 

although involving several degrees of simplifications, is easy to implement and can 

be extended by using more sophisticated calibration methods, or even including 

additional sensors to correct the pose estimation error. The suggested control 

strategy that resolves collision avoidance in the null space, can also be used to 

avoid joint limits and singularities. In addition, the redundancy of cobot is 

Figure 5 Plots of the null space commands of the joints and of the estimated distance 
between the robot and the operator during the test 
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particularly useful not only for collision avoidance but, more generally, for hand-

guiding HRI applications to improve the user effectiveness and experience. More 

redundant degrees of freedom can be introduced to allow more complicated 

control strategies in the null space. 
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Chapter 5 

Method for automatic scaling knee 

joint models from optical markers 

using PCA 

Musculoskeletal modelling is a powerful technique for investigating the 

complexity of human movements through computer simulation. As shown in the 

previous Chapters, these models are not only purely theoretical tools, but have 

both clinical and industrial applications. This wide field also justifies the different 

types of models proposed: from general to specific ones, from very accurate for 

the best results to more simplified for the lower computational time, as also 

discussed previously in this Thesis. 

Considering general models, the most used multibody software for 

musculoskeletal simulations are OpenSim and AnyBody Modelling System. 

Subject-specific variables, such as joint surfaces or muscle parameters, can be 

modified easily to explore both healthy and pathological movement patterns [1], 

[2], determine muscle force contribution [3], and define neuromusculoskeletal 

cause-and-effect relationships [4]. Also in this context, the literature gathers 

various musculoskeletal models characterized by different joint kinematics, 

muscle reduction and direction of force, resolution strategies, and more in 

general, different levels of details. For example, among other aspects, knee 

models vary for DoF number, geometries, and the presence of cartilage and 
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ligaments. The simplest OpenSim knee model is a hinge joint with 1 DoF [5], where 

the flexion rotation is the independent variable, and the additional two rotations 

and three translations of the tibia relative to the femur are coupled to it. However, 

hinge-based knee models cannot correctly estimate motion of secondary DoFs. To 

improve the accuracy of the simulation, knee models can be extended to more 

complex planar and spatial parallel mechanisms [6]–[8], constrained by the 

ligaments' length and articular contacts. 

The ideal approach is to use CT or MR images to create patient-specific 

geometries and identify menisci, cartilage, and ligament geometries [9]. The effect 

of including patient-specific images in the simulation workflow has received 

growing attention among researchers [10]–[12], who claim that MRI-based 

models produce more physiological kinematic solutions, reducing the impact of 

anatomically inaccurate joints and soft-tissue artifacts. MRI can be considered non 

or minimally invasive with respect to other imaging techniques, which require 

radiation exposure or more invasive procedures. Moreover, it may allow good 

imaging of soft tissues too. Nevertheless, it is a long and expensive analysis and its 

postprocessing is laborious and time-consuming. Moreover, MRI scanners are not 

always accessible in clinical scenarios and have limitations on a global scale. That 

is why the development of generic knee model scaling strategies based on patient-

specific anthropometric measurements or more inexpensive experimental data 

might provide a more translatable clinical tool, in particular for the analysis of large 

cohorts [9].  

The scaling strategy of OpenSim and Anybody combines measured distances 

between the 3D coordinates of markers' location and manually specified scale 

factors, such as subject height and weights. The dimension of each human 

segment is corrected with a set of virtual markers placed in the unscaled model in 

the same anatomical locations as the experimental markers. Masses and inertia 

tensor of each segment depends on mass-fat scaling factors different for each 

software. This scaling strategies are optimized for the joint models used in this 

general software. 

Our objective is to develop a method that scales the parameters of a knee 

model based on the envelope of tibiofemoral configurations that minimize the 

peak contact pressure [13], [14]. The model has been already applied in 

musculoskeletal models with very good results [13]. In that previous study the 

patient MR images were used to obtain the model geometry, and the 
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corresponding model based on the congruency of the articular surfaces. The idea 

in this case is trying to obtain sophisticated knee model’s results without MRI, thus 

defining the model parameters only from experimental marker data and 

anthropometric measurements. If the technique proves successful, it can be 

extended to obtain a more accurate full-body model also for the applications 

described previously in this Thesis, where it has already been shown the 

importance of having fast and accurate procedures for a practical industrial use. 

This work is in collaboration with Prof. Daniel Benoit of the University of Ottawa 

and the Children’s Hospital of Eastern Ontario (CHEO), which provides us with 

eleven MRI images and experimental markers set of adolescent patients with a 

primary ACL injury. Additional MRI images will be processed and segmented by 

Prof. Benoit group, but they were not available for the time frame of the project 

and are not used here. The MRI images include only the knee joints, with a span 

of about 200 mm centred in the middle of the knee, with a section of the distal 

femur, proximal tibia and fibula bones. This group of images is used to define the 

scaling model which will be used to scale the knee model on other patients. Seeing 

the limited number of patients available now, the scaling model study is 

preliminary, but the technique can be informed with any number of additional MRI 

data. 

To build the scaling model, an automatic procedure is devised for determining 

the anatomical coordinate system of the partial femur and tibia from MRI, 

correlated to the coordinate system of the full bones. This is also necessary for the 

knee model definition and for correlating the MRI images with the marker set. 

Since the two anatomical coordinate systems, i.e. the one from MRI images and 

the one from the markers, are not perfectly consistent, due to the different 

information associated to MRI and markers, the misalignment between each pair 

of coordinate systems are determined using full-leg images from a different study. 

The misalignment is a correcting factor for properly positioning the partial knee 

bones and the corresponding knee model into the marker data set.  

The knee model features a simplified representations of knee articular contact 

from adolescent MRIs for the medial/lateral components of the femur and tibia. 

The knee model parameters, expressed in the marker coordinates systems, the 

marker coordinates and anthropometric measurements, defined on the eleven 

patients, feed a Principal Component Analysis (PCA) method. The scope of the PCA 

is to predict outcomes from sparse datasets, and its performance is estimated by 
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considering different combination of geometrical features and anthropometric 

data. Details of the method and results are presented and discussed in this 

Chapter.  

5.1 Automatic Reference Frame definition 

The automatization of coordinate system definition from anatomical images is 

a powerful strategy to drastically reduce the process-time for each subject. For the 

present study, this automatization is useful to create the scaling model from a 

large cohort. However, it is worth noting that the same procedure can be used to 

simplify the implementation and use of the knee model for those patients who 

must undergo an MRI. For these patients, no scaling is required but the model still 

needs to be identified from MRI images and aligned on marker data. 

One easy implementation to define the axis of long bones is to calculate the 

line passing through the centroids of small slices of bones. The long-bone axis (𝐿′) 

is thus obtained by computing the centroids of 40 slices of 2 mm, starting from 

approximately 100 mm from the distal condyle surface. The choice of these 

parameters will be motivated lately. The coordinates of the best-fit line through 

slices' centroids are identified using singular-value decomposition, and named as 

L’ which points proximally. Moreover, a common approach uses two spheres to 

approximate the femoral condyle surface, and this has also been used in some 

knee models [6]. Similar to other methods described in the literature [15], [16], 

the femur Zf axis, defined usually as cylindrical axis, is chosen as the line connecting 

the centre points of the sphere pointing laterally both for the right and left knee, 

thus normalizing the difference between right and left knee. The automatic 

coordinate system of the femur, calculated using custom-MATLAB script (R2020a, 

MathWorks, Natick, MA), is reported in Table 1. 
 Table 1 Femur MRI coordinate system definition 

 Automatic definition of femur coordinate system 

𝑍𝑓 Vector through centre points of the 2 spheres, 

pointing laterally 

𝑋𝑓 𝑋𝑓 = 𝐿′ ∧ 𝑍𝑓 for right legs, 𝑋𝑓 = 𝑍𝑓 ∧ 𝐿′ for left legs 

𝑌𝑓  𝑌𝑓 = 𝐿′ ∧ 𝑋𝑓 for right legs, 𝑌𝑓 = 𝑋𝑓 ∧ 𝐿′ for left legs 

𝑂𝑓 Midpoint between the spheres’ centre points 
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Table 2 Tibia MRI coordinate system definition  

  

 

 

 

 

 

Similarly, for the tibia, the vector pointing laterally between the centroids of 

the tibia plateau points (𝐵′), and the long bones axis (𝐿′′) defined like in the femur, 

are used to define the tibia coordinates system (Table 2). 

5.2 Standard Reference Frame definition 

The International Society of Biomechanics (ISB) proposes guidelines to define 

the coordinate systems of bones and joints. Specific body coordinate systems, 

identified by markers' positions and manual palpation, describe the bone motion. 

Specifically for the tibia-femoral joints, the femoral and tibial coordinate systems 

are listed in [20].  The orientation definition of the tibia with respect to the femur 

follows the ZXY Euler angle sequence, as reported in [18].  

According to the ISB recommendation, the femoral coordinates system 

depends on the Hip Joint Centre of rotation (HJC). Since its localization through 

direct markers is not feasible, empiric approaches have been widely tested and 

studied. ISB recommends using a "functional" approach, where the subject 

performs several leg movements [19] and the HJC is defined as the centre of the 

best-fit sphere described by the trajectories of the thigh's markers cluster. 

However, if the patient cannot perform any movement, the HJC is estimated 

thanks to “prediction” methods that use regression equations and anthropometric 

measurements. Several researchers evaluated the accuracy of different 

algorithms. They compared the prediction values with measurements obtained by 

roentgen stereophotogrammetric analysis [20], or with medical imaging 

techniques, such as X-ray images [21] and MRI [22], which are considered the gold 

standard with errors as small as 2 mm. A recent systematic review [23] identified 

a total of 11 “predictive” methods and 13 different “functional” procedures and 

Automatic definition of tibia coordinate system 

𝑌𝑡 𝑌𝑡 = 𝐿′′ 

𝑋𝑡 𝑋𝑡 = 𝑌𝑡  ∧ 𝐵′for right legs, 𝑋𝑡 = 𝐵′ ∧ 𝑌𝑡 for left legs 

𝑍𝑡 𝑍𝑡 = 𝑋𝑡 ∧ 𝑌𝑡  for right legs,𝑍𝑡 = 𝑌𝑡 ∧ 𝑋𝑡  for left legs 

𝑂𝑡 Projection of 𝑂𝑓 on 𝑌𝑡 
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claims that among the predictive ones, the Harrington equation [22] shows the 

best accuracy under ideal conditions. However, the error in using this equation is 

still 3-6 mm higher than the functional approach. Thus, it is convenient to define 

a reference system with all the anatomical points palpable.  

The objective is to correctly refer to the anatomical reference system defined 

by the experimental skin markers in the MRI images. Thus, the aim is to study the 

average misalignment between the three axes of the automatic reference frame 

and an anatomical coordinate system identified with the experimental markers 

set. It is convenient to define a reference system using anatomical points that are 

palpable and easily identifiable, like those used with skin markers, and similar to 

standard anatomical reference systems. For example, the greater trochanter of 

the femur is easily perceptible and addressed with a marker during experimental 

data. The custom anatomical reference system for the femur is reported in Table 

3. Regarding the tibia reference system, it is defined following the ISB guidelines: 

 

 

 
Table 3 Femur coordinates system definition 

Custom femur coordinate system 

𝑋𝐶𝑓 Perpendicular to the plane defined by the lateral and 

medial epicondyles and the greater trochanter, 

pointing anteriorly 

𝑍𝐶𝑓 Connecting lateral and medial epicondyle, pointing 

laterally  

𝑌𝐶𝑓 𝑌𝐶𝑓 = 𝑍𝐶𝑓 ∧ 𝑋𝐶𝑓, for right leg, 𝑌𝐶𝑓 = 𝑋𝐶𝑓 ∧ 𝑍𝐶𝑓, for 

left leg 

𝑂𝐶𝑓 Midpoint between the epicondyle points 
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Table 4 Tibial coordinates system definition 

Tibial coordinate system 

𝑋𝐶𝑡 Perpendicular to the plane defined by the lateral and 

medial malleoli and midpoint between the tibia plate, 

pointing anteriorly 

𝑌𝐶𝑡 Connecting the midpoint of malleoli and midpoint of 

tibia plate, pointing proximally  

𝑍𝐶𝑡 𝑍𝐶𝑡 = 𝑋𝐶𝑡 ∧ 𝑌𝐶𝑡, for right leg, 𝑍𝐶𝑡 = 𝑌𝐶𝑡 ∧ 𝑋𝐶𝑡 ,for 

left leg 

𝑂𝐶𝑡 Projection of femur centre into 𝑌𝐶𝑡 

5.3 Misalignment between the two systems 

Computing the misalignment between the automatic reference frames and the 

standard ones is important for setting the correct position of the two bones in the 

marker set-up. A more accurate localization reduces the overall error in the 

definition of musculoskeletal models, joint axis alignments, and kinematic 

evaluation. It is also fundamental to study the correlation with the anthropometric 

data and to setup the scaling model. 

5.3.1 Material and Methods 

Data on the full legs of seven subjects obtained from previous studies [26-28] 

are used to define the misalignment. Since these data were described in previous 

publications, only a brief description of the experimental protocol is reported 

here. Each leg was scanned using standard CT (STCT) (Brilliance CT 16-slice system, 

Philips Healthcare), and 3.0 Tesla MRI (MRI 3 T; 3T MR750W GEM ENAB, GE). 

Details of image scans are listed in [24]. From each scan, 3D models of the entire 

bones of the femur, tibia, and fibula are obtained by a semi-automatic 

segmentation process using Medical Imaging Interaction Toolkit (MITK software 

2003–2021, German Cancer Research Centre DKFZ). For each subject two pairs of 

reference systems are defined: 1) the automatic reference frame using the femur 

and tibia bones cut almost at 100 mm from the knee joint flexion axis, and 2) the 

standard reference frame obtained by the full bones’ images. Identification of 

anatomical points and best-fitting spheres is performed in Geomagic Studio 2012.  
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The measure of the distance (positions and orientation) between reference 

systems is performed through a recent metric based on platonic solids [25]. A 

sensitivity study determined the minimum number of slices to stabilize the 

automatic long axis definition algorithm. Then, the variability of the misalignment 

between the pair of coordinate systems is obtained and the mean value is 

computed using the quaternion mean formalism [26]. This mean misalignment 

denotes a constant error between the automatic reference frame definition and 

the standard one and is a representative parameter for correcting the bone 

alignment with respect to the markers’ dataset.  

5.3.2 Results 

The sensitivity analysis results to define the minimum bone length to have a 

stable definition of the long axis and, consequently, of the anatomical reference 

frame are shown in Figure 2. It displays the measure of the differences, defined 

with the platonic solid formalism, between the automatic reference frame and the 

standard reference frame definition: a small value means that the differences are 

Figure 1 Femur(left) and tibial (right) coordinates systems. The orange tern is the 
results of the automatic definition. Green one corresponds to the marker definition 
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small in terms of both orientation and position of the origin of the coordinate 

system. Each curve is a different subject. Since the automatic algorithm computes 

the long axis using all the slices analysed, the figure shows the attitude difference 

starting from 1) the lowest point of the femoral condyle, 2) 30 mm higher than the 

lowest point, and 3) 50 mm higher, almost at the beginning of the femoral 

diaphysis. The third case reaches stability faster and with a lower value of 

misalignments. In particular, the mean of the seven test cases after 80 mm cuts is 

equivalent to 12.40, 11.64, and 8.33 mm in the three cases. Thus, to have a better 

axis definition, it is necessary to consider only the femoral diaphysis and cut out 

the centroids obtained in the epiphysis. Moreover, 80 mm of the femur is 

sufficient to stabilize the axis detection algorithm and define a meaningful 

anatomical reference coordinate system.  

Figure 2 Stability analysis of the automatic reference definition over the cutting slice 

Figure 3 Axis-angle representation of the misalignments between the two coordinate systems of the 7 
analysed subjects 
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Table 5 Results of the femur and tibial misalignments in quaternion formalism  

Mean femoral misalignment 

Orientation 𝒒𝑓 = (−0.9989, 0.0223,−0.0344, 0.0218) 

Position 𝒑𝑓 = (−6.4331,−3.2410, 0.5945) 

Mean tibial misalignment 

Orientation 𝒒𝑡 = (−0.9613, 0.0215, −0.2729, 0.0324) 

Position 𝒑𝑡 = (1.5436,−5.3269, 0.4470) 

The same considerations are valid for the tibia. These conditions are assumed 

hereinafter. 

Figure 3 gathers the visual representation of the rotation that transforms the 

automatic reference frame into the standard one: the vector direction 

corresponds to the axis of rotation, whereas the vector magnitude is the angle of 

rotation.  The mean value of the orientation is defined by a quaternion (q = 

(q0, q1, q2, q3)) and the position (p = (px, py, pz)) as the mean of the 3D coordinates 

of vectors among the seven subjects. These terms, for the femur and tibia, are 

listed in Table 5. These values are used to correct the preliminary alignment of the 

femur and tibia on the markers experimental data, whose procedure will be 

described in the next section.  

5.4 Automatic alignment of knee MRI images in 

experimental marker dataset 

An automatic procedure for aligning the partial knee MRI images into the 

experimental marker set is necessary to correlate the coordinates of the knee 

model with the marker and anthropometric information. In this phase, from each 

MRI image, the automatic reference frame of both the tibia and femur is detected 

and corrected with the corresponding misalignments estimated in the previous 

Section. Even if the population of this study is adolescent and differs from the 

previous one, which is more mature, it is possible to suppose that the mechanical 

axis of both the femur and tibia doesn’t change much after childhood.  
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5.4.1 Material and Methods 

Datasets consist of the images of eleven ACL-injured participants recruited 

from the Children’s Hospital of Eastern Ontario (CHEO) and the University of 

Ottawa. Inclusion criteria included primary ACL injury and no history of major 

lower limb injury prior to study enrolment. Participants are chosen using the 

Tanner stages of pubertal development [27], [28]. To create a wide range of 

adolescents, one male and one female subject from each Tanner stage is selected 

wherever possible. Mean values of the participant are (age: 15.42 ± 1.4, height: 

165.8 ± 6.5 cm, weight: 67.35 ± 15.6 and tanner stage: 3.92 ± 1.2).  

For each participant, a multiplanar sequence of MR images is collected at 1.5 T, 

repetition time/echo time 1400/17 ms, field of view equal to 160 mm, and slice 

thickness of 0.8 mm (Siemens Magnetom Skyra, Siemens Healthineers AG, 

Germany). Sagittal, coronal, and axial views of proton density (PD) cube-weighted 

scans are used to segment the distal third of the femur, the proximal third of tibia 

and fibula, and the medial and lateral menisci (Workbench 2018.04.2, MITK, 

Germany). Moreover, each participant performs an experiment with a whole-body 

cluster set with a hybrid protocol [33] consisting of 84 markers shown in Figure 4. 

Data are collected at 100 Hz by a 10-camera motion capture system (6 MX and 4T 

series, Vicon, UK). The automatic alignment procedure consists firstly of the 

definition of the femur and tibia reference system using the experimental marker  

Figure 4 Custom marker set used in the experimental phase  
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Table 6 Femur marker coordinate system definition 

 

 

Table 7 Tibial marker coordinate system definition 

 

 

  

 

 

 

 

set. The markers, highlighted in orange in Figure 4, are necessary to construct 

the reference system as in Table 6 and 7.  

Since the relative position of the femur and tibia is unknown during the marker 

experiments and differs from the one captured during the MRI, the alignment 

procedure consists of three steps: 

1. Aligning the MRI automatic definition of the femur coordinate system 

corrected by the mean femoral misalignment to the marker one 

2. Correction of the marker tibial coordinate system with the tibial mean 

misalignment 

3. Aligning the MRI tibia coordinate system to the corrected marker one 

through an optimization process that minimizes the error between the 

two, moving the tibia within its range of motion, calculated using a 

validated procedure [29]. Specifically, for every tibia flexion angle from 0° 

Marker coordinate system on the femur 

𝑋𝑀𝑓 Vector pointing anteriorly of the plane defined by 

(R)GT, (R)KNM and (R)KNL 

𝑍𝑀𝑓 Vector pointing laterally connecting (R)KNM and 

(R)KNL  

𝑌𝑀𝑓 𝑌𝑀𝑓 = 𝑍𝑀𝑓 ∧ 𝑋𝑀𝑓 

𝑂𝑀𝑓 Middle point between (R)KNM and (R)KNL 

Marker coordinate system on the tibia 

𝑋𝑀𝑡 Vector pointing anteriorly of the plane defined by  

𝑂𝑀𝑓 , (R)ANL and (R)ANM 

𝑌𝑀𝑡 Vector pointing up connecting 𝑂𝑀𝑓 and the 

middle point of (R)ANL and (R)ANM 

𝑍𝑀𝑡 𝑍𝑀𝑡 = 𝑋𝑀𝑡 ∧ 𝑌𝑀𝑡 

𝑂𝑀𝑡 𝑂𝑀𝑓 



M e t h o d  f o r  a u t o m a t i c  s c a l i n g  k n e e  j o i n t  m o d e l s  
f r o m  o p t i c a l  m a r k e r s  u s i n g  P C A  |  

 

136 

 

to 130°, an optimization algorithm maximizing joint congruence, 

determines the five coupled motion components of the tibia with respect 

to the femur.  

The optimization problem minimizes a measure of the distance between two 

spatial rigid-body poses [25], called platonic distance. It measures the root mean 

square (RMS) distance between corresponding virtual points in the two reference 

systems, placed on the vertices of a platonic solid with radius R. Equivalently, it 

defines the same RMS distance for any equally spaced and homogeneously 

distributed points on a sphere. Defining 𝒐𝑘
𝑗

 as the position vector between the 

origin of the j-th and the k-th reference systems, and 𝑹𝒋𝒌 as the relative rotation 

matrix between the two, the platonic distance 𝑑𝑝 is equal to: 

𝑑𝑝 = √|𝒐𝑘
𝑗
|
2
+ 2𝑅2

(1 − 
𝑡𝑟(𝑹𝒋𝒌)

3
)  (1) 

where 𝑡𝑟(∗) is the trace of the matrix inside the brackets, and R is the radius of a 

sphere centred in the body reference systems and circumscribed to a regular 

polyhedron, that defines the intrinsic weight for the rotational part. R is chosen 

taking a sphere that approximatively envelopes the knee. In particular 𝑹𝒋𝒌 and 𝒐𝑘
𝑗

 

are computed between the corrected marker tibial coordinate system and the MRI 

tibia reference system. The position and orientation that minimize the value of 𝑑𝑝 

correspond to the tibia reference system with respect to the marker frame. In this 

way it is possible to determine the relative pose of the femur and tibia consistent 

with the anatomy and kinematics.   

5.4.2 Results 

The positions of 5 markers define the marker experimental coordinate systems. 

The same procedure is performed for the eleven participants, using as input the 

markers gathered during a static stand-up session. The MRI image of the tibia-

femoral joint is correctly positioned for 9 participants, but the positioning fails for 

2 cases because the markers of RANL or RANM (see Figure 4) are absent in the 

marker datasets. Figure 5 shows the results obtained.  
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The position of the markers of the tibia and femur are also used to define the 

tibial-femoral joints angle in the experimental pose. The mean flexion angle and 

the standard deviation among the nine knees at the static pose is (10,22 ± 11,28)°. 

The mean value is consistent with the flexion angle found in literature in the 

standing position. The standard deviation is high due probably to some factors. 

The anatomical reference systems from MRI are defined automatically and then 

corrected to match a modified anatomical reference system, as previously 

described: the difference with a more standard definition could lead to residual 

flexion angles depending on the participant. Moreover, there could be intrinsic 

errors in the markers' position. In addition, the population of the study is 

adolescents with ACL injuries, and there are no specific studies evaluating the 

flexion angle in standing position for comparison. However, the results obtained 

with this procedure seem visually correct. It is a promising tool for aligning partial 

Figure 5 (left) Alignment of the partial knee in the marker reference systems (right) 
Relative position of the tibia with respect to the femur during the MRI acquisition and 

marker experimental set-up 
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bone images to experimental marker sets in a more complex biomechanical 

system using both markers' positions and model-based joint motion predictions.   

5.5 PCA 

Principal Component Analysis (PCA) decomposes shapes, described by a given 

number of parameters, into discrete vectors called modes, which represent a basis 

of principal components in the parameter space. It approximates data 𝒙 (namely, 

the parameters of a population) as the sum of its mean values 𝒙̅ and the weighted 

sum of n principal components 𝒃𝑖 [30]–[32]:  

𝒙 =  𝒙̅ + ∑𝑎𝑖𝒃𝑖

𝑛

𝑖=0

 (2) 

The value of 𝑛, which can assume the maximum value of the number of 

subjects, is chosen so that the accumulated variance explained by each 

component accounts for at least 90% of the total variation in the population. The 

principal components 𝒃𝑖 describe a basis vector that shapes the features of all 

datasets, whereas 𝑎𝑖, the so-called principal components scores, quantify the 

contribution of each feature. The way in which the values of these components 

are estimated can differ. Following the procedure described in [33], if 𝑴 is the 

matrix that contains all measurements, and 𝒖 the mean of each row, the mean-

subtracted matrix 𝑴̅ is: 

𝑴̅ =  𝑴 − 𝒖𝒉𝑇 (3) 

where h is a vector of ones of length 𝑛, equal to columns of 𝑴. The covariance 

matrix is:  

𝑪 =   
𝑴̅𝑴̅𝑇

𝑛 − 1
 (4) 

from which the eigenvectors and eigenvalues are calculated. The eigenvectors 

are ordered by decreasing eigenvalue and gathered in the matrix 𝑽 where the first 

column corresponds to the eigenvector with the largest eigenvalue. Thus, the 

coefficients 𝑎𝑖, composing the vector 𝒂 are solved by the system of linear 

equations: 

𝒂 = 𝑽−1(𝑴 − 𝒖𝒉𝑇) (5) 
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The matrix 𝑽 forms a new space that describes the matrix 𝑴 where the 

variances of the measures are maximized, and the covariances are zero. The 

eigenvectors are the principal components of the data set, and the corresponding 

eigenvalues are the variance of each principal component. Basically, the basis 

defined by V (or a subset) is assumed to describe any possible component of a 

population, so that this new space can be used to predict some components of the 

measures given other components, using both 𝑽 and 𝒖 calculated with the full 

dataset.  

Supposing to have a vector 𝒅 with m data that has fewer rows than the matrix 

𝑴, the principal component scores 𝑎𝑖 are calculated from (5) substituting 𝑴 with 

𝒅, the m x n sub-matrix of 𝑽 and the first m values of 𝒖 and 𝒉. Since the reduced 

𝑽 matrix is not square, the matrix inversion is substituted by the matrix 

pseudoinverse. The pseudo inversion implicates a least square minimization. Then 

the predicted values are equal to:  

𝒅∗ = 𝑴̅ + ∑𝑎𝑖𝑽𝑖

𝑛

𝑖=𝑖

 (6) 

Another procedure, similar to the one described in [34], extracts the principal 

components scores with a specific optimization problem. In particular, it consists 

of three stages: 1) deconstructing the predictor variables into principal 

components, 2) using an optimization problem to predict the principal 

components scores, and 3) reconstructing the predicted values by the resolution 

of the linear regression. Since the purpose of the work is to reconstruct the knee 

model parameters from experimental marker data and anthropometric 

measurements, the optimization problem for the prediction stages consists of 

minimizing the distance between the reconstructed marker position of PCA and 

the anthropometric values, 𝑓(𝒙̅, 𝒃𝑖, 𝑎𝑖) function of the positive unknowns 𝑎𝑖, and 

the experimental positions of the subject to be explored.  

𝑚𝑖𝑛∑|𝑓(𝒙̅, 𝒃𝑖, 𝑎𝑖) − 𝒑𝑗| 

𝑀

𝑗=1

 (7) 

The two approaches slightly differ from each other, and the results are described 

later.  



M e t h o d  f o r  a u t o m a t i c  s c a l i n g  k n e e  j o i n t  m o d e l s  
f r o m  o p t i c a l  m a r k e r s  u s i n g  P C A  |  

 

140 

 

5.5.1 PCA feature matrix 

The objective is to use the PCA to scale the geometrical parameters necessary to 

schematically describe the articular surface and define an advanced knee model 

given marker data and anthropometric measurements as inputs. The condylar 

surfaces can be approximated with 1) two planes at the proximal tibia and by two 

spheres at the distal femur or with 2) two spherical surfaces both for the proximal 

tibia and distal femur [6], [8].  

Each sphere is described mathematically by four parameters: the radius and the 

vector of centre coordinates. A plane is defined in general by three parameters: 

for instance, the distance of the plane from the origin and two angles which 

parametrize the unit vector perpendicular to the plane. However, to have a 

description of the position of each plane which could be more easily correlated to 

the overall geometrical features of the tibia, the coordinates of the centre of each 

tibial plateau are chosen instead of the plane-origin distance, thus obtaining five 

parameters. With this convention, the numbers of parameters are for:  

• distal femur surfaces: 8 parameters  

• proximal tibia surfaces: 8 or 10 parameters depending on the 

approximation used 

The PCA is well-defined when the matrix 𝑴 has column number n , the number of 

measures, higher than row number m, the number of parameters. In this case, the 

column number correspond to the MRI images correctly positioned in the marker 

reference systems and equals 11 for the femur and 9 for the tibia. Thus, the matrix 

is highly rectangular because it has a number of rows higher than the number of 

columns, which is not optimal for setting a good PCA feature matrix. The idea is to 

Figure 6 Spheres that model the condylar surfaces of femur and tibia  
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fill the row matrix with the minimum number of parameters possible, since the 

present population is low. The minimum number of markers that describe the 

knee morphology is four: the two markers positioned on the medial and lateral 

epicondyles and the two proximal markers of the shank, one anterior and one 

posterior. Thus, the tibiofemoral joint dimensions are defined both in the 

longitudinal and transverse planes. 

For the femur, three different datasets are tested and listed in Table 8. The green 

colour highlights the known parameters, whereas the orange underlines the one 

to estimate during the prediction phase. All the points coordinates are referred to 

the corresponding anatomical coordinate systems defined with markers. The 

height is measured from the ground to the head top of the subject standing against 

the wall. The knee width is the length, manually estimated, between medial and 

lateral epicondyles. The distance, calculated as the sum or differences between 

the spheres’ radius, highly depends on the geometry of the proximal tibia surface, 

especially the anatomy of the tibia plateau plates. 

 
Table 8 PCA femur cases 

Case 1 Case 2 Case 3 

(R)KNL: Knee Lateral 

(R)KNM: Knee Medial 

(R)SHPA: Shank Proximal 

Anterior 

(R)SHPP: Shank Proximal 

Posterior 

= = 

Coordinates and Radius of 

Lateral Femur Sphere 
= = 

Coordinates and Radius of 

Medium Femur Sphere 
= = 

 Subject Height Distance between lateral 

sphere of femur and tibia 

Subject Knee 

Width 

Distance between medial 

sphere of femur and tibia 
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In the analysed data, they were almost flat with convex and concave surfaces 

depending on the geometry. Therefore, the corresponding sphere could be above 

or over the knee joint axis. Figure 6 underlines the variation of these spheres’ 

position. The higher variability is in the lateral spheres. Thus, for the distance 

calculation, if the coupled spheres are on the same side, the sign of the tibia centre 

coordinates is set to negative. The variability over the sphere's positions returns 

an unstable PCA analysis, especially for the inability to recognize the relative 

position between the coupled spheres. Therefore, the convention that describes 

the tibia with two planes is preferred.  

The normal vector 𝒏  is parameterised using the angle of its projection in the 

coronal 𝛿 and sagittal plane 𝛾: 

𝛾 = 𝑎𝑡𝑎𝑛2(𝑛𝑦 , 𝑛𝑥) 

𝛿 = 𝑎𝑡𝑎𝑛2(𝑛𝑦 , 𝑛𝑧) 
(8) 

To reduce even more the number of parameters for describing the tibia surface, 

the mean plane between the lateral and medial tibial plane is defined within 

Geomagic Studio 2012 for all the experimental knees. Figure 8 shows the cited 

planes. 

Similar to the femur analysis, four different datasets for the tibia are tested and 

listed in Table 9. 

Figure 7 Projections of the vector over the anatomical planes 
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Table 9 PCA tibial cases 

Case 1 Case 2 Case 3 Case 

4 

(R)KNL: Knee Lateral 

(R)KNM: Knee Medial 

(R)SHPA: Shank 

Proximal Anterior 

(R)SHPP: Shank 

Proximal Posterior 

= = = 

 Coordinates and 

Radius of Lateral 

Femur Sphere 

Coordinates and 

Radius of Lateral 

Femur Sphere 

 

 Coordinates and 

Radius of Medial 

Femur Sphere  

Coordinates and 

Radius of Medial 

Femur Sphere  

 

Tibial Lateral plane 

(position + 2 angles) 

= Tibial Medium plane 

(position + 2 angles) 
= 

Tibial Medial plane 

(position + 2 angles) 

=   

Figure 8 Planes that describe the tibial condyle surface. (left) medial and lateral 
planes (right) mean plane between the two 
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5.5.2 LOOCV 

The Leave-One-Out Cross-Validation or LOOCV is a procedure to estimate the 

performance of machine learning algorithms when they are used to make 

predictions on data not used to train the model. In general, in cross-validation, the 

entire dataset is split into k subsets, which are used as testing sets while all the 

other subsets train the model. Specifically, in LOOCV the k is equal to the number 

of measures and defines a methodology for assessing which cases of PCA perform 

the best prediction. Each column of the matrix M is recursively a testing set, while 

PCA is calculated with the matrix minus the testing columns. The similarity 

between the actual and predicted values is measured through the mean squared 

error (MSE): 

 

𝑀𝑆𝐸 =  
∑( 𝑦𝑖 − 𝑓(𝑥𝑖))

2

𝑛
  

 
(9) 

 

where n is the total number of observations, 𝑦𝑖 and 𝑓(𝑥𝑖) are respectively the 

response and the predicted value of the i-th observation. The MSE is calculated for 

each splitting dataset k. The performance is equal to the mean of the MSE of that 

specific case. The LOOCV, compared to using a single test set to assess the 

algorithm efficiency, is less biased because it repeatedly fits the model to a dataset 

that contains n-1 observations and does not overestimate the mean MSE.  

5.5.3 Results 

The first five principal components of all the analysed cases account for over 

98% of the variance in morphology present in the complete training set, which 

contains 9 participants. Figure 9 shows the variance for each component and the 

cumulative variance. However, since the purpose is to reach the highest accuracy 

without considering computational cost, 8 principal components are used in the 

LOOCV test. 
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Table 10 LOOCV femur results 

 Case 1 Case 2 Case 3 

 Classic 

PCA 
Min. 

Classic 

PCA 
Min. 

Classic 

PCA 
Min. 

1 7.78 39.55 26.92 15.4 31.22 223.96 

2 6.62 6.79 9.02 77.31 119.37 254.43 

3 16.61 433.12 62.89 100.45 33.49 2377.39 

4 19.70 2888.30 71.69 138.86 48.06 62.01 

5 12.21 29.52 50.49 29.86 49.54 244.22 

6 4.52 6.90 10.56 46.78 50.89 140.08 

7 1.05 1.32 0.02 0.47 43.56 44.89 

8 5.32 6.37 27.02 34.14 273.45 178.75 

9 0.93 0.49 1.07 0.53 74.52 71.87 

𝑀𝑆𝐸̅̅ ̅̅ ̅̅  8.3 380.26 9.6 49.31 80.46 399.73 

Figure 9 Variation and cumulative variation represented by principal component number of femur and tibia 
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Table 11 LOOCV tibial results 

 Case 1 Case 2 Case 3 Case 4 

1 22.64 25.21 18.87 21.06 

2 51.85 39.36 20.43 24.6 

3 52.37 43.21 19.68 26.42 

4 108.44 76.64 58.28 60.41 

5 98.06 75.57 21.79 70.24 

6 16.32 10.53 7.90 11.31 

7 3.77 3.31 1.54 1.30 

8 78.62 58.87 34.21 47.76 

9 3.60 2.96 0.71 0.88 

𝑀𝑆𝐸̅̅ ̅̅ ̅̅  48.41 37.29 20.39 29.33 

The two resolution methods for determining the principal component scores, 

i.e. classic PCA and the minimization algorithm, are compared with the LOOCV 

using the femur training set. Table 10 shows the results of the LOOCV where the 

number on the left corresponds to the participant whose parameters are 

predicted using data from the other 8 participants as the dataset. 

The classical PCA approach has an 𝑀𝑆𝐸̅̅ ̅̅ ̅̅  5.1 and 4.9 times lower than the 

minimization algorithm for cases 2 and 3, and the discrepancy is even higher for 

case 1. Thus, the classical PCA approach performs better and is the only one 

evaluated for the tibia LOOCV analysis. The results for the tibia are in Table 11. 

For the femur, the 𝑀𝑆𝐸̅̅ ̅̅ ̅̅  is 8.3 for the case that considers only the spheres 

coordinates and radius, that increase to 9.6 when adding anthropometric terms. 

As expected, the case that includes the distance between the spheres is the worst 

analysed, with an 𝑀𝑆𝐸̅̅ ̅̅ ̅̅  of 80.46. The variability over the distance terms makes the 

prediction more unstable and subject to errors. 

For the tibia, case 3 has the best performance, with a 𝑀𝑆𝐸̅̅ ̅̅ ̅̅  equal to 20.39. The 

latter comprehends the femur spheres' centre coordinates and radius, and the 

coordinates of the medial tibial plane with the corresponding two angles. This case 

is a good solution because it gathers all the information for assessing the 
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morphological feature of the complete tibia-femoral knee joint. Femoral features 

are fundamental for increasing the variance of the datasets: case 4, which 

considers only the tibial medial plane, shows a higher 𝑀𝑆𝐸̅̅ ̅̅ ̅̅  (29.33). Similarly, case 

2 is performing better than case 1, where only the tibial features are present. 

Moreover, reducing the feature numbers by substituting the two lateral and 

medial planes with the mean one is successful because it decreases the 

parameters to predict and, therefore, the 𝑀𝑆𝐸̅̅ ̅̅ ̅̅ , especially with a small dataset.  

Increasing the dataset numerosity correspond to reducing the 𝑀𝑆𝐸̅̅ ̅̅ ̅̅  and 

diminishing the errors in the prediction. Figure 10 shows the LOOCV result of 

femur case 1, considering a dataset of 9, 10, and 11 subjects. The 𝑀𝑆𝐸̅̅ ̅̅ ̅̅  is lower 

when the dataset is higher, so likely it is possible to reduce the overall errors by 

gathering a more numerous knee and marker dataset.  

Table 12 shows the absolute error of the worst and the best prediction of 

sphere centre coordinates and radius for case 1 of the femur and case 3 for the 

tibia. The worst and the best case correspond to the 4th and 9th subjects for both 

the femur and tibia: CL and rL indicate the centre and radius of the femur lateral 

sphere, whereas CM and rM to the medial femoral one. Instead, PM designates a 

coordinate of a point of the medial tibial plane, and γM and δM the projection 

angle of the normal vector to the coronal and sagittal femur coordinates system.  

 

 

Figure 10 Variation of 𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅ using different numbers of subjects in the dataset 
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Table 12 Absolute error |𝑷𝒓𝒆𝒂𝒍 − 𝑷𝒑𝒓𝒆𝒅| of case 1 for femur and case 3 for the tibia 

  Femur 

 Case 1 

Tibia  

Case 3 

  Worst  Best Worst Best 

Fe
m

u
r 

CLx (mm) 0.73 0.12 0.16 0.009 

CLy (mm)   0.44 0.07 0.04 0.003 

CLz (mm) 10.51 1.81 27.78 1.78 

rL(mm) 1.13 1.4 88.38 4.30 

CMx (mm) 0.6 0.12 0.17 0.009 

CMy (mm) 0.42 0.11 0.03 0.002 

CMz (mm) 3.08 1.82 22.17 1.96 

rM (mm) 0.8 2.43 6.94 3.70 

Ti
b

ia
 

PMx (mm)   17.31 11.36 

PMy (mm)   182.09 1.15 

PMz (mm)   118.91 13.58 

γM (°)   11.48 1.21 

δM (°)   237.44 0.31 

The highest error is in the prediction of the z coordinates of spheres and plane 

points, corresponding to the knee medial-lateral axis. 

5.6 Conclusions 

The work's purpose is to implement an automatic procedure for scaling the 

morphological features of the tibial-femoral joints using data from experimental 

markers positioned on anatomical points. Data to feed into PCA algorithms need 

to be expressed in the same reference system and normalized among all the 

subjects. Since the only known parameters are the coordinates of the markers, 

they are used to define the anatomical femur reference system, which is subject-

specific and easily identifiable in all the subjects. Instead of using the standard 
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approach, which mathematically estimates the position of HJC, the femur 

reference system is defined using the marker position of the greater trochanter. 

The knee surface features are identified from MRI images that contain the partial 

distal femur bones and the proximal tibial image. An automatic procedure for 

assessing a meaningful and anatomically significant reference system for the 

partial bones is defined. Its misalignments with respect to the reference system 

defined by the greater trochanter are estimated. The misalignment study over 

seven subjects with total femur, tibia, and fibula bones shows that the angles are 

stable and similar among the datasets. It confirms the robustness of the automatic 

algorithm for defining the reference system in partial bones and permits the 

definition of a correction factor. It is beneficial for translating that custom 

reference system to the one computed with a more standard procedure.   

With the correction angle, the partial bones of the femur are positioned 

accurately over the experimental setup, thus associating markers' coordinates 

with the feature of MRI images. Since the relative position of the tibia about the 

femur is unknown during the marker acquisition, the relative position is computed 

by a minimization problem. The subject stands up during the data acquisition, and 

we expect a tibial-femoral angle of around 10°. Minimization results over nine 

participants confirm that the relative angle is among that range, confirming the 

validity of the procedure proposed. 

For economical and convenience reasons, it is common to scan only partial 

knee bones with MRI. This automatic procedure is a powerful tool for positioning 

the anatomical surfaces using the markers set. Specifically, multibody analyses are 

more performing with subject-specific images. Thus, this procedure is easily 

implementable into OpenSim or Anybody to increase the automation and 

goodness of the musculoskeletal model. 

If the MRI images are not present, the tibial-femoral features can be predicted 

with the scaling model developed using the PCA and imported into the software. 

Precisely, the mean absolute errors over the 9 subject - LOOCV test for the PCA 

femur case 1 in the prediction of the femur lateral spere are CLx = (0.27 ± 0.33) 

mm, CLy = (0.18 ± 0.22) mm, CLz = (4.12 ± 5.06)mm and rL = (2.58 ± 3.25) mm, 

while over the medial spheres are CMx = (0.53 ± 0.72) mm, CMy = (0.6 ± 1.03) mm, 

CMz = (3.93 ± 4.44) mm and rM = (2.27 ± 2.88) mm. The overall error is always 

lower than 1 cm, with a maximum STD excursion in the mediolateral axis 

coordinates. Thus, the prediction of femur spheres using only four markers is 
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precise, performing, and promising. It is demonstrated that the prediction 

accuracy increases with the numerosity of the dataset: 11 subject-LOOCV results 

are always lower than the one obtained with fewer participants. Therefore, a 

primary goal is to increase the number of subjects analysed and diminish even 

more the overall error.  

Increasing the number is particularly necessary for the tibial feature 

predictions. The tibial model that better performs PCA analysis is the one that 

substitutes the spheres with corresponding planes. The concavity or convexity of 

the tibial plateaus makes the sphere variability difficult to control. Nevertheless, 

the results obtained from replacing the plane are encouraging. Among all the tibia 

cases analyzed, the one with lower overall error predicts the femoral spheres and 

the mean tibial plane. In that specific case, the mean absolute errors over the 9 

subject – LOOCV of the tibial mean plane are PMx = (58.82 ± 80.59) mm, PMy = 

(30.30 ± 59.21) mm, PMz = (54.10 ± 54.34) mm, γM = (43.84 ± 70.6)° and δM = 

(53.92 ± 76.77)°. The overall error is higher and inadmissible to implement in a 

more advanced setting. However, the procedure remains valid and promising, and 

future investigation must be done. The number of terms to predict is 8 in the 

femur PCA, while increments to 13 for the tibia PCA. The PCA feature matrix 

includes 9 participants, lower than the prediction terms. The corresponding matrix 

is highly rectangular and unable to perform a good prediction. We are quite sure 

that increasing the numerosity of the dataset will reduce the overall errors, thus 

being able to define a scaling law both for the femur and tibia knee joints features. 
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Conclusions 

This thesis deals with methodologies and protocols for preventing workers’ 

musculoskeletal disorders with wearable inertial sensors. In particular, an IMU 

MoCap system made of 17 IMUs, is used to assess the OCRA index. It is an 

ergonomics standard for reducing worker’s injuries for repetitive and low loads 

industrial tasks, by calculating several risk factors among which posture and force 

multipliers. The first one is measured by estimating the percentage of time in 

which the worker’s upper-limb angle joints exceed the limits imposed by the 

normative. The Standards suggest three different methods for estimating the 

force multipliers:  using the Borg Scale, EMG sensors, or by the ratio between the 

estimated force over the hand and the one specified by EN 1005-3 in precise and 

common working positions. While the posture multiplier is easily identifiable with 

IMU MoCap algorithms and is simply definable in real-time, the force multiplier 

computation is not straightforward. Thus, we propose two different 

methodologies for determining this value. The first one uses AMS, a multibody 

modelling software with a detailed and validated upper-limb musculoskeletal 

model, by substituting the EMG signal with the muscle activity estimated by the 

simulation. The second one is derived by the ratio between the upper-limb joint 

moments computed online using the IMUs and a force/torque sensor, by a 

maximal admissible torque estimate by some assumption of EN 1005-3. The two 

assessments show similar results in estimating the force multiplier in a 

collaborative robot scenario, where a commercial cobot assists the workers in 

performing four holes in a laboratory test. This promising outcome validates the 

online algorithm for dynamic estimation of upper-limb wrenches as a powerful 

tool for assessing ergonomics evaluation in real-time in industrial scenarios. The 

latter, even if the algorithm is upgradeable with reductive and subject-specific 

musculoskeletal models, represents an innovation in ergonomics assessments. An 

extensive literature review has shown that no studies have performed a dynamic 

evaluation of force multiplier using IMUs and force/torque sensors in real time. 

Another novelty of this thesis is using AMS for estimating the physical-human 

robot interactions under different cobot control algorithms. Through this study, 
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the advantages of using collaborative solutions for reducing loads and awkward 

postures on the workers are estimated with AMS. The joint angles and the muscle 

activities exerted in a standard drilling task are compared with the one obtained 

with a cobot controlled with admittance control and gravity compensation and 

one with a velocity controller that moves the EE in the drilling directions. This 

study's results confirm that the cobot supports the workers' upper limbs by 

drastically reducing the load over the joints and activity of the shoulder muscle 

and forces the workers to maintain safer postures during the operation. Thus, 

cobots are promising tools for diminishing the worker's efforts and preventing 

musculoskeletal disorders, particularly if used as assistance devices for repetitive 

tasks. 

In general, IMU MoCap systems, if well calibrated, has high performances in 

ergonomics assessments. For a precise estimation of the position of the workers, 

proper sensor-to-segment calibration is needed. In this thesis, we proposed a 

novel calibration method only by using the orientation outputs of each sensor, 

thus reducing the number of signals to send to the workstation and cutting down 

the latency of the entire system. After comparing different procedures, the more 

performing pipeline consists of performing three static poses, namely the T-pose, 

N-pose, and C-pose, and correcting the initial estimation with controlled 

functional movements of the elbow and wrist. This procedure outputs joint angles 

that have errors comparable with other methods proposed in the literature, 

confirming its validity for correctly estimating the human kinematic. IMUs are 

wearable, compact, and lightweight and could be worn by workers during the day 

and constantly track motion and used as preventive devices for diminishing 

musculoskeletal disorders. As a future development, visual or auditive signals 

could be integrated with the IMU MoCap systems and warn the workers if 

potentially dangerous situations are occurring. Moreover, IMUs are an effective 

alternative to vision systems to ensure no collision with the cobot during a 

collaborative task. They show a robust motion estimation that could be used to 

command cobot joint torques to avoid unexpected and hazardous collisions with 

the cobot.  

To increase even more the accuracy of IMU MoCap systems two possible 

strategies could be performed: an accurate calibration of the gyroscope and 

accelerometer to have more stable attitude estimation, and a subject-specific 

musculoskeletal model with more complex kinematic joints model to filter out 
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noises and errors of IMU MoCap algorithm. In those directions, we proposed a 

low-cost calibration of gyroscope and accelerometer sensors using the free-fall 

motion of a pendulum, and a reduced and subject-specific biomechanical model 

gathering joint axis directions with functional movements. While the first study 

shows promising results, the second one is only partially implemented offline in 

Matlab, and as future developments, more experiments for determining the 

actual improvements of this model over a more standard one are needed. 

It is universally accepted that the more the biomechanical model describes the 

properties of the human body evaluated, the more the kinematics and dynamics 

results describe the actual human behaviours. Thus, as a final part of this extensive 

work for ensuring safety at work, an automatic method for scaling sophisticated 

and subject-specific joint models from markers position is developed using PCA. 

By using the positions of only four markers near the knee is possible to determine, 

with a good approximation, the position and radius of the two spheres in the 

femur and the position and normal direction of a plane in the tibia that fully 

describe the tibial-femoral joints with more details. The results are promising; 

however, it is proven that the prediction accuracy can increase even more with a 

higher number of studied populations. 

In conclusion, in this thesis, different strategies for preventing workers’ 

musculoskeletal disorders are outlined, tested, and validated in laboratory 

settings. The next step is to perform the same studies in working scenarios, thus 

evaluating the effective feasibility of the proposed methods in real life. 
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