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Abstract

This work aims to develop a neurogeometric model of stereo vision, based on corti-
cal architectures involved in the problem of 3D perception and neural mechanisms
generated by retinal disparities. We apply it to reproduce phenomenological ex-
periments as well as to process 3D images, identifying three-dimensional visual
percepts in space, solving the correspondence problem.

First, we provide a sub-Riemannian geometry for stereo vision. This proposal
is inspired by the work on the stereo problem by Li and Zucker in [LZ06], and it
uses sub-Riemannian tools introduced by Citti and Sarti in [CS06] for monocu-
lar vision. In particular, we present a mathematical interpretation of the neural
mechanisms underlying the behavior of binocular cells, that integrate monocular
inputs, by introducing a suitable cortical fiber bundle. The natural compatibil-
ity between stereo geometry (stereo triangulation [Fau93]) and neurophysiological
models (binocular energy model [AOF99b]) shows that these binocular cells are
sensitive to position and orientation. Therefore, we model their action in the space
M = R3 × S2

θ,ϕ equipped with a sub-Riemannian metric.

Integral curves of the sub-Riemannian structure shed light on the computa-
tions underlying the correspondence problem. They encode not only the vari-
ables of the space, but also curvature and torsion, which are necessary for the
3D matching. Moreover, a fan of these curves can model the 3D analog of the
psychophysical association fields of Field, Heyes and Hess [FHH93], for the 3D
process of regular contour formation, studied by psychophysical experiments in
[HF95, HHK97, KHK16]. This illustrates how good continuation in the world
generalizes good continuation in the plane, as conjectured in [LZ06].

As a second step, we study the constitution of 3D perceptual units in the
three-dimensional scene generated from the sub-Riemannian geometry. Following
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[BCCS14], these perceptual units emerge as a consequence of the random cortico-
cortical connection of binocular cells. We present the stochastic process at the
basis of this phenomenon, by considering an opportune stochastic version of the
integral curves. We generate a family of kernels through the forward Kolmogorov
operator associated to the generated stochastic process, and approximate them
using a Monte Carlo simulation-based method.

These kernels represent the probability of interaction between binocular cells
and are implemented as facilitation patterns to define the evolution in time of
neural population activity at a point ξ ∈ M. This activity is usually modeled
through a mean field equation.

The existence and uniqueness of a solution classically follow from the Cauchy
problem in Banach spaces, while the stability analysis is performed using the Lya-
punov method, leading to the consideration of the associated eigenvalue problem.
We show that three-dimensional perceptual units naturally arise from the discrete
version of the eigenvalue problem associated to the integro-differential equation of
the population activity.
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Résumé en français

Ce travail vise à développer un modèle neurogéométrique de la vision stéréo, basé
sur les architectures corticales impliquées dans le problème de la perception 3D et
les mécanismes neuronaux générés par les disparités rétiniennes. Nous l’appliquons
pour reproduire des expériences phénoménologiques ainsi que pour traiter des im-
ages 3D, en identifiant des percepts visuels tridimensionnels dans l’espace, en ré-
solvant le problème de correspondance (the correspondence problem).

Tout d’abord, nous proposons une géométrie Sous-Riemannienne pour la vi-
sion stéréo. Cette proposition s’inspire du travail sur le problème de la stéréo
effectué par Li et Zucker dans [LZ06], et elle utilise les outils Sous-Riemanniens in-
troduits par Citti et Sarti dans [CS06] pour la vision monoculaire. En particulier,
nous présentons une interprétation mathématique des mécanismes neuronaux qui
sous-tendent le comportement des cellules binoculaires, qui intègrent les entrées
monoculaires, en introduisant un espace fibré corticales approprié. La compatibil-
ité naturelle entre la géométrie stéréo (triangulation stéréo [Fau93]) et les modèles
neurophysiologiques (modèle d’énergie binoculaire [AOF99b]) montre que ces cel-
lules binoculaires sont sensibles soit à la position et soit à l’orientation. Nous
modélisons donc leur action dans l’espace M = R3 × S2

θ,ϕ équipé d’une métrique
Sous-Riemannienne.

Les courbes intégrales de la structure Sous-Riemannienne éclairent les calculs
qui sous-tendent le problème de correspondance. Elles codent non seulement les
variables de l’espace, mais aussi la courbure et la torsion, qui sont nécessaires pour
résoudre la correspondance 3D. De plus, un éventail de ces courbes peut modéliser
l’analogue 3D des champs d’association psychophysiques de Field, Heyes et Hess
[FHH93] ; il s’agit d’un processus de formation de contours réguliers, étudié par des
expériences psychophysiques dans [HF95, HHK97, KHK16]. Ceci illustre comment
une bonne continuation dans le monde généralise une bonne continuation en 2D,
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comme conjecturé dans [LZ06].

Ensuite, nous étudions la constitution d’unités perceptuelles 3D dans la scène
tridimensionnelle générée à partir de la géométrie sub-riemannienne. Suivant
[BCCS14], ces unités perceptuelles émergent comme une conséquence de la connex-
ion cortico-corticale aléatoire des cellules binoculaires. Nous présentons le proces-
sus stochastique à la base de ce phénomène, en considérant une version stochastique
opportune des courbes intégrales. Nous générons une famille de solutions fonda-
mentales pour l’opérateur de Kolmogorov direct associé au processus stochastique
généré, en les approximant à l’aide d’une méthode basée sur la simulation de Monte
Carlo.

Cette famille représente la probabilité d’interaction entre les cellules binocu-
laires et est mise en œuvre comme un modèle de facilitation pour définir l’évolution
dans le temps de l’activité de la population neuronale à ξ ∈M. Cette activité est
généralement modélisée par une équation de champ moyen.

L’existence et l’unicité d’une solution découlent classiquement du problème
de Cauchy dans les espaces de Banach. En revanche, l’analyse de stabilité est
effectuée à l’aide de la méthode de Lyapunov, ce qui conduit à la prise en compte du
problème des valeurs propres associé. Nous démontrons que les unités perceptuelles
tridimensionnelles apparaissent de façon naturelle, à partir de la version discrète du
problème des valeurs propres, associé à l’équation intégro-différentielle de l’activité
de la population.
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Chapter 1

Introduction

In this thesis, we present a mathematical model of the neural mechanisms underly-
ing the perception of three-dimensional visual stimuli. Since differential geometric
tools are used in this interpretation, we speak about neurogeometry of stereo vi-
sion, as the word neurogeometry was introduced by Jean Petitot in [PT99] to refer
to geometrical models of the functional architecture of primary visual areas, which
include mathematical models concerning the neural origin of the perceived space.

Precisely, stereo vision systems recover the 3D images from projections onto
the two retinae, projections which are slightly different, due to the horizontal
separation of the eyes. These differences are usually referred to as disparities and
they are the main clues for 3D visual perception. Our main focus will be on
horizontal disparity d, defined by introducing a set of coordinates:

x = xL + xR
2 , y = yL, d = xL − xR

2 (1.1)

with (xL, yL) left retinal coordinates, (xR, yR) right retinal coordinates, and noting
that yL = yR since we are projecting onto aligned parallel planes. This set of
coordinates is usually referred to as the cyclopean coordinate, because we perceive
the world like we have a single eye in the middle of the head, [Jul71].

The three-dimensional world must be reconstructed from two-dimensional reti-
nal projections. The major difficulty is understanding how to pair points in the
left retinal plane with corresponding points in the right retinal plane. This inverse
optics problem is fundamentally underdetermined because a given pair of retinal
images coincides with many distal stimuli [Piz01, Bru21], leading to the stereo cor-
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respondence problem. The principal hints used (by the brain or computer vision
algorithms) to reconstruct the 3D world and thus perceive the visual scene are
precisely the disparities.

The brain processes the visual signals coming from the two eyes along the visual
pathway. In particular, the integration of the (visual) binocular signals is generally
thought to occur in the primary visual cortex. By studying cells stimulated by
the depth feature in V1, Ohzawa et al. in ’99 [AOF99b] found that these cells
perform a non-linear integration of left and right monocular cells that are selective
for orientation. A classic model of binocular cell behavior based on physiological
experiments is the binocular energy model (BEM) first presented in [AOF99b],
which encodes disparities through the receptive profiles of simple cells, leading to
the notion of position and phase disparities [JR15]. However, Read and Cumming
proposed in [RC07], building upon [AOF99a], that phase disparity neurons tend
to be strongly activated by false correspondence pairs. Therefore, it is widely
concluded, the most relevant disparity in the receptive fields is the position alone.
This, however, neglects the orientation difference between the two eyes [NKB77],
disregarding the orientation disparity. Although there are attempts to extend
the energy model to incorporate binocular differences in receptive-field orientation
[BCP01], they are limited. The geometrical model we will present incorporates
orientation differences directly.

The goal of this work is to propose a neurogeometric model for the cortical-
inspired geometry underlying the stereo vision, based on the encoding of position
and orientation differences in the two eyes. The encoding of features in the early
stages of the visual process is the focus of neuromathematical models, developed
from the work of Hoffmann [Hof89] and Koenderink-van Doorn [KvD87]. Our
neuro-geometrical model considers essential the geometric frameworks used for the
descriptions of the functional architecture of V1 proposed by Petitot and Tondut
[PT99], Bresslof and Cowan [BC03], Citti and Sarti [CS06], Zucker [Zuc06], and
many others works [Pet08, DBRS13, SCS10a, SC15, SCP07].

The starting point is the study of the problem from both technical (stereo
triangulation) and neural (binocular energy model) perspectives. If we assume that
a three-dimensional stimulus is a curve γ : R −→ R3, we can use the classical tools
of stereo geometry to determine both the position and the direction of γ given the
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corresponding retinal points. Similarly, binocular neurons encode the orientation
of the three-dimensional scene as a first-order information of the stimulus: the
binocular cells naturally recognize the unitary tangent direction γ̇ to the 3D spatial
stimulus γ, which can be described by the parameters n = n(θ, ϕ) of S2. This
natural compatibility between neural elements and stereo geometry allows us to
suitably define the space of stereo cells as the manifold of positions and orientations
M = R3 o S2.

The coupling of positions and orientations, as already noted by Duits and
Franken in [DF11], allows to endow the manifold with a sub-Riemannian struc-
ture by using left-invariant vector fields of SE(3) acting onM, thus defining the
horizontal connectivity for the space. This action is quite natural since M is a
quotient of SE(3) by the one-parameter subgroup {0}×SO(2). Under these condi-
tions, the sub-Riemannian structure onM can be expressed locally by considering
a local orthonormal frame {Y3, Yθ, Yϕ} for the distribution D, where the vector
field Y3 encodes the tangent of the stimulus, while Yθ and Yϕ involve orientation
directions.

Integral curves with constant coefficients of the sub-Riemannian structure, de-
fined by the differential equation

d Γ(t) = YR3,Γ(t) d t+ c1Yθ,Γ(t) d t+ c2Yϕ,Γ(t) d t, c1, c2 ∈ R, (1.2)

shed light on the computations underlying the correspondence problem. They
encode not only the variables of the space, but also curvature and torsion, which are
necessary for the 3D matching, as favored by Zucker et al. in [AZ00, LZ03, LZ06].
Curvature and torsion of the restriction of the integral curves (1.2) in R3 are
expressed in terms of the coefficients c1, c2 ∈ R:

k =
√
c2

1 + c2
2, τ = c2

1 − c2
2

k2 cotanϕ (1.3)

Planar curves of this family reduce to circular arcs, and are compatible with the
integral curves of the monocular model proposed by Citti-Sarti in [CS06]. Also he-
lices in the direction of depth belong to the family (1.2), introducing a geometrical
setting in which the curves conjectured by Alibhai-Zucker in [AZ00] are natural.

These curves generalize to the three-dimensional case the Gestalt law of good
continuation, one of the laws underlying the formation of percepts in space and
introduced in seminal psychological works such as [Kan79, Wer23, Kof35, Kof63,
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Koh67]. The law of good continuation states that elements that are aligned in
space tend to be perceived as belonging to the same perceptual unit. How the
visual system encodes this regular contour formation principle was theorized by
Field, Hayes and Hess in [FHH93] through psychophysical experiments for the
bi-dimensional case. They introduced the concept of association field, which es-
sentially describes the pattern that determines whether stimuli can be associated
with the same perceptual unit in terms of position and orientation: a stronger
correlation characterizes mainly aligned or co-circular elements.

The generalization of the 3D process of regular contour formation has been
studied through psychophysical experiments in [HF95, HHK97, KHK16, DW15,
KGS05a, KGS+05b]. Kellman, Garrigan, Shipley et al. [KGS05a, KGS+05b]
generalize to the three-dimensional case the concept of alignment and co-circularity
introduced by Field, Hayes and Hess [FHH93] in the two-dimensional case. They
introduce a theory called 3D relatability which basically imposes conditions on
edges’ orientations in space. Moreover, they propose that the strength of the
relatable edges in co-planar planes with the initial edge must meet the relations of
the bi-dimensional association fields. The properties of the curves that are suitable
for connecting these relatable points have been investigated in [HHK97, KHK16,
DW14, DW15], and they are described as being smooth and monotonic. We model
associations underlying the 3D perceptive organization with the family of integral
curves (1.2). These curves satisfy the above properties and locally connect the fan
of associations generated by the geometry of 3D relatability.

The extension of the law of good continuation and its formalization through
the concept of association field makes it possible to identify the visual units in 3D
space. The first step for understanding this identification is to consider the stochas-
tic counterpart of the involved integral curves. These are assumed to describe the
interactions between the (binocular) cells involved. The stochastic process under-
lying this phenomenon is described by a stochastic differential equation:

d Γ(t) = YR3,Γ(t) d t+ λ(Yθ,Γ(t), Yϕ,Γ(t)) dB(t), λ ∈ R, (1.4)

with B(t) 2-dimensional Brownian motion. The probability of reaching a point ξ,
starting from a point ξ′ along these curves has a (time-independent) density:

{Jλ(ξ, ξ′)}λ∈R, (1.5)
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which coincides with the (time-integrated) fundamental solution of the forward
Kolmogorov equation associated to (1.4) with operator

L = −Y3 + λ(Y 2
θ + Y 2

ϕ ) (1.6)

written in terms of the chosen vector fields. These PDEs, in principle very difficult
to deal with, have been solved exactly in [PD17, DBM19] using Fourier transforms
and validated with numerical Fourier methods and Monte-Carlo simulations in
[DBM19]. The latter one is the method we implement, in order to follow the
approach presented in [BCCS14] based on the stochastic integral curves of the
sub-Riemannian structure.

The evolution of a state of a population of cells has been first modeled through
mean field equations by Wilson-Cowan [WC72, WC73] and Amari [Ama72], then
extended by Ermentrout and Cowan in [EC79, EC80] and by Bresslof and Cowan
in [BCG+02, BC03]. Other modified models that take into account the delay of
the cortex are proposed by Faye and Faugeras in [FF10].

Following the work of Sarti and Citti [SC15], the result of the propagation
along the connectivity of the visual impulse can be described, without considering
the delays for the transmission of the signal, by the following integro-differential
equation in the 3D perceptive space of positions and orientations:

da(ξ, t)
dt

= −a(ξ, t) +
∫
µJλ(ξ, ξ′)a(ξ′, t)dξ′ + h(ξ, t), inM (1.7)

where ξ ∈M , h(ξ, t) is the feedforward input, µ ∈ R. The existence and unique-
ness of a solution classically follow using instruments of functional analysis, recast-
ing equation (1.7) as a Cauchy Problem.

Stability analysis is performed through the Lyapunov method applying the
results of Faye-Faugeras [FF10] in our setting. The existence of a stable steady
state of (1.7) leads to an eigenvalue problem. In analogy with the work of Perona
and Freeman in [PF98], we show that the eigenvectors associated with the largest
eigenvalues encode the greater salience of objects in the analyzed visual scene,
leading to the identification of the perceptual units in space. An opportune nor-
malization has been introduced to improve the performance of the affinity matrix
in [MS01], with the introduction of the transition matrix of a Markov chain. In
this setting, stable solutions are computed as eigenvectors of this matrix, and they
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represent perceptual units in the three-dimensional visual scene.

The thesis is organized as follows:
Chapter 2 starts by briefly reviewing the basis underlying visual sensory per-

ception. We first describe the visual cortex, introducing the visual pathways and
concentrating on the monocular and binocular organization of neurons in the pri-
mary visual cortex V1. Then, we present the perceptual phenomena that govern
the formation of perceptual units in space, investigating the Gestalt laws, with
particular attention to the law of good continuation and its neural formalization
through the introduction of the notion of association field by Field, Hayes and
Hess in [FHH93].

Chapter 3 provides a background for the stereo problem. First, we introduce
classical stereo geometry. Then, we study neural models proposed for describing
the behavior of binocular cells, introducing the classical binocular energy model.
Finally, presenting the constraints that are usually imposed for solving the stereo
correspondence problem, we conclude with the description of our main reference
model for the solution of the stereo problem: the proposal of Zucker et al. in
[AZ00, LZ03, LZ06].

Chapter 4 gives a presentation of the main mathematical tools, definitions, and
notions of sub-Riemannian geometry used to develop geometrical models for the
functional architecture of the primary visual cortex. We present the notions of fiber
bundles, integral curves, Lie groups and algebras, sub-Riemannian manifolds. Fi-
nally, we describe its applications to vision, presenting the sub-Riemannian model
for monocular cells selective for orientation introduced by Citti and Sarti in [CS06].

Chapter 5 contains our first original contribution. Starting from binocular re-
ceptive profiles, we introduce the neuro-mathematical model for binocular cells.
First, we define the cortical fiber bundle of binocular neurons, followed by the
differential interpretation of the binocular profiles in terms of the neurogeome-
try of the simple cells. Then, we give a mathematical definition of the manifold
R3 o S2 with the sub-Riemannian structure we choose and we study its integral
curves and the properties of these curves in relation to the notion of torsion and
curvature. Finally, we proceed to the validation of our geometry with respect to
biological and psychophysical phenomena present in literature. Integral curves
model neural connectivity, and they can be related to the geometric relationships
from psychophysical experiments on perceptual organization of oriented elements
in R3, generalizing the concept of an association field in 3D.

8



Chapter 6 deals with the individuation of three-dimensional perceptual units in
the visual scene. We start with the introduction of a stochastic model for cortical
connectivity, considering the stochastic differential equation (1.4). We compute
its probability density through the fundamental solution of the generator of the
associated forward Kolmogorov operator. Numerical implementation of the kernel
is performed via a Monte Carlo simulation. Then, we introduce the neural activity
of the population via an integro-differential equation, studying the existence and
uniqueness of the solution through a Cauchy problem in Banach spaces, and we
perform stability analysis using a variation of the Lyapunov method introduced
in [FF10]. Finally, we see how the discretization of the problem leads to spectral
clustering. We perform some numerical experiments to validate our algorithm,
and we conclude with a comparison with Gaussian type kernel to emphasize the
role of our chosen metric.

The last Chapter is devoted to conclusions.
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Chapter 2

Neurophysiology and
psychophysics of vision

In this chapter we briefly give an introduction to the basis of visual
sensory perception. Let us first clarify that perception does not nec-
essarily coincide with sensation: sensation is the registration of the
physical stimuli on the sensory receptors and perception is the process
of creating a conscious perceptual experience from sensory input. We
first summarize a background on the main structures of the cortical
areas involved in the vision process, with particular attention devoted
to the early visual pathways and the primary visual cortex. Then, we
investigate how the stimuli in the outside world become a perceptual
experience.
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2.1 The cerebral cortex and the (early) visual pathway . . 12
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2.1 The cerebral cortex and the (early) visual pathway

The visual system begins to process the real world by converting the light enter-
ing the eye into a neural signal. This process is called transduction and can be
interpreted in terms of pixelation of the external stimulus. The generated action
potentials are conveyed through the optical nerve in the lateral geniculate nucleus
(LGN), and then they spread in the main visual sensory areas. In the following,
we review this procedure.

(a) (b)

Figure 2.1.1: Visual pathway in the brain. (a) Left (violet) and right (blue)
cerebral areas involved in the visual pathway, image taken from [Hub95]. (b)
Cortical regions implicated in the process.

2.1.1 Retina and LGN

The neural mechanisms involved in the visual system originate in the retina, the
first region where the light arrives from entering through the eye.

Anatomically, the retina has many layers of brain tissue, in particular, the
vertebrate retina is inverted so light has to pass through layers of neurons (as for
example ganglion and bipolar cells), before reaching the photosensitive sections of
rods and cones (visual sensory photoreceptors), which are the closest to the optic
nerve. The ganglion cells, whose axons form the optic nerve, are at the front of
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the retina: the optic nerve must cross through the retina to reach the brain, see
for example Figure 2.1.2.

Functionally, two main phenomena take place in the retina: the transduction
and the transmission of the signal.

(a)

Figure 2.1.2: Anatomic structure of the retina. Image adapted from [Hub95].

The transduction process translates the arriving light into action potentials
by visual sensory receptors, measuring the physical energy of light signals and
pixelating them, converting the light into electrical impulses. Ganglion (or bipolar)
cells receive input from a group of adjacent photoreceptors.

Then, the signals coming from ganglion (or bipolar) cells are fed to the brain,
broadcasted into the optical nerve, which transmits the visual information to the
lateral geniculate nucleus (LGN). The LGN is a bilateral1 structure in the thalamus
that relays information from the optic nerve to (visual) sensory processing cortical
areas. The most important area is the primary visual cortex, where most of the
retinal output first arrives.

2.1.2 The primary visual cortex V1

The primary visual cortex receives input from the LGN, it is responsible for the
early visual processing, and it is the most widely studied visual area: this is why
it is referred to by different names in different contexts. For instance, we recall
here

- primary visual cortex V1 : the position of the area along the flow of informa-
tion in the visual system;

1It means that one is present in each hemisphere of the brain.

13



- striate cortex: the way the brain cells in this area look under certain condi-
tions;

- area 17 and BA 17 : area’s position on Brodmann charts.

Anatomically, as shown in Figure 2.1.1, the primary visual cortex is a bilateral
structure in the occipital lobe of the brain: there is one in the left hemisphere,
which receives inputs from the right visual field, and there is one in the right
hemisphere, which receives inputs from the left visual field. The two sides of V1
are connected via the corpus callosum. Moreover, V1 is divided into 6 horizontal
layers with a characteristic distribution of inputs and outputs across layers [DM98].

The most important typical feature it is its high organization: the anatomical
structure can be correlated directly with its functions, as we will see in the next
paragraphs.

2.1.2.1 Retinotopic organization

The propagation of the visual signal from the retina to the visual cortices is per-
formed through the optical nerve. The induced map from the retina to the cortex
respect the topographic organization of the retina: adjacent locations on the retina
project to adjacent neurons in V1 by a point-by-point relationship, through a to-
pographic map, which is maintained in the LGN. This phenomenon goes under
the name of retinotopy. This map is not isotropic: some regions of the retina get

Figure 2.1.3: Retinotopic mapping of the visual field (left) in the primary visual
cortices (right). Image adapted from [PWK18].

to take up a much greater proportion of V1 than others. This feature is called
cortical magnification: there is more space in the cortex devoted to some sensory
receptors than to others.
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2.1.2.2 Different types of neurons

Neurons that populate V1 can be of different types. Hubel and Wiesel in [HW62]
discovered particular families:

• simple cells: neurons characterized by a strong push-pull antagonism built in
terms of elongated, adjacent ON and OFF subregions that have a mutually
suppressive influence. They respond to stimuli with particular orientations
within their receptive field.

• complex cells: neurons that also respond optimally to stimuli with particular
orientations. But, unlike simple cells, they respond to a variety of stimuli
across different locations, regardless of where it is within their receptive field.

• hypercomplex cells: neurons that display orientation selectivity but are con-
fined to stimuli of a limited size. This property is referred to as end-stopping.
If for example, the pattern continues beyond the receptive field, these cells
do not respond as greatly.

• binocular cells: neurons that receive inputs from both the left and right eyes
and integrate the signals to create a perception of depth. They respond
excellently to binocular disparity and are thought to be the first stage for
the processing of 3D vision.

2.1.2.2.1 Cell’s receptive profile Each cell reacts in an excitatory or in-
hibitory way to stimuli present in a precise portion of the retina called receptive
field (RF), which differs from a cell to the other. The response of the cell when
a stimulus is presented on a point (x, y) of their RF, is quantified in terms of a
function ϕ(x, y), called receptive profile (RP)

ϕ : D → R

where D is the receptive field and (x, y) are retinal coordinates. This function
describes the neural output of the cell in response to a punctual stimulus in the
two-dimensional point (x, y). More precisely, the area is considered ON if the
cell spikes in a positive way responding to a signal (excitatory response to a light
stimulus) and OFF if the cell spikes negatively to a signal (inhibitory response to
a light signal).
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Figure 2.1.4: Receptive fields and profiles of LGN and simple cells. Simple cells
arise from LGN cells. Images adapted from [DAOF95, Wan95, Pet08].

De Angelis et al. in [DAOF95] performed a mapping for the receptive fields
and profiles of LGN and simple cells, and results are shown in Figure 2.1.4. For
example, simple receptive fields arise from multiple isotropic LGN receptive fields
by converging in a line [Hub95, Wan95].

2.1.2.3 Monocular organization

The primary visual area organizes its monocular neurons in an hypercolumnar
structure, where columns correspond to parameters representing the cell’s features
such as orientation, ocular dominance, color, etc.

Figure 2.1.5: (a) Hubel’s "Ice Cube" model of the functional architecture of the
visual cortex. Image adapted from [Hub95]. (b) Orientation columns.

This sensational discovery was made by Hubel and Wiesel, who showed that
the preferred orientation of V1 neurons is roughly constant moving perpendicularly
to the cortical surface [HW62]. These groups of neurons with similar orientation
selectivity are called orientation columns. On the other hand, the preferred ori-
entation varies gradually in the directions parallel to the surface, in a way that
different columns are sensitive to different orientations, see Figure 2.1.5.

Moreover, V1 neurons alternate ocular dominance columns [LHW75], contain-
ing cells that are responsive only to input from the left or right eye at the center
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of these bands (and binocular neurons at the boundaries), and there are also blobs
[LH84], columns for a group of neurons sensitive to color.

All these columnar structures are organized in hypercolumns, a block of V1
containing both the ocular dominance and orientation columns for a particular
region in the visual space, together with blob structure. This is the so-called
classical "ice cube" model presented in [HW62], shown in Figure 2.1.5.

2.1.2.3.1 Orientation maps Orientation maps are the bi-dimensional imple-
mentation of the functional organization for orientation preference, and this is
another example of the topographic organization besides retinotopy, introduced in
Section 2.1.2.1. Since tangential penetration in the superficial layers of the cortex

Figure 2.1.6: Different orientations are coded on a two-dimensional V1 map with
different colors. On the right, there is an example of a smooth change of orientation
and singular point, also called pinwheel. Image adapted from [BZSF97].

done by Hubel and Wiesel in [HW62, HW77] reveals that RPs of cells close to each
other strongly overlap while the orientation preference varies smoothly, these maps
present regions where the value changes smoothly. However, there are also points
of singularity, with all orientations arranged around them, and for this reason,
they are commonly called pinwheels, displayed in Figure 2.1.6. In particular, each
pinwheel corresponds to an orientation column of Figure 2.1.5, and so orientation
is engrafted onto the positional map [Hub95]. This two-dimensional reduction was
presented by Bosking et al. (Fitzpatrick group) [BZSF97] using optical imaging
techniques in which the cells’ orientation preference is color-coded, see Figure 2.1.6.
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2.1.2.3.2 Cortical connectivity To conclude our review of the functional ar-
chitecture of monocular V1 cells, we discuss now the connectivity between neurons
inside the hypercolumnar structure. Two types of communications play a central
role: short and long-range connectivities.

The short range connectivity involves a local circuit operating at sub-millimeters
dimensions consisting of a mixture of intracortical excitation and inhibition: this
is why it is usually called local, short-range or intracortical connectivity. It has
been suggested in [BC03] that such circuitry provides the response of cells to local
features of visual stimuli. More precisely, the action of the intracortical circuitry is
to select within the column the cell which gives the maximal response to a feature
of the visual stimulus and suppresses all the others. The mechanism able to pro-
duce this selection is called non-maximal suppression or feature selection. These
local interactions generate, for example, orientation and spatial frequency tuning
curves, see image (a) of Figure 2.1.7.

(a) (b)

Figure 2.1.7: Examples of cortical connectivity. (a) Response of a cell to bars
presented at various orientations. Orientation tuning curve comes out from the
short-range connectivity. (b) Diffusion of a tracer of biocytin along horizontal
connections. Image adapted from [BZSF97].

On the other hand, there exists another type of connectivity of the primary vi-
sual cortex, modulating interactions between different columns. Since this circuit
operates over a range of several millimeters, it usually goes under the name of long
range or horizontal connectivity. Neurophysiological experiments such as [BZSF97]
and [GDI+96] reveal the existence of these connections along the cortical surface:
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they correlate cells with the same orientation belonging to different hypercolumns,
with non-overlapping receptive fields. This is shown in image (b) of Figure 2.1.7:
the injection of a chemical tracer into a small area of the visual cortex propagates
through lateral connections and this result is combined with the orientation map.
It can be noticed that in the immediate neighborhood of each neuron, the connec-
tions are relatively isotropic, but over larger distances, they follow the orientation
preferences, preferably by connecting neurons with co-oriented aligned receptive
profiles.

2.1.2.4 Binocular organization

A generally accepted theory is that binocularly driven neurons in the primary
visual cortex form the first stage for the processing of binocular disparity ([PNB68,
BBP67, PF77, SK17]). Indeed, cells at lower levels in the visual pathway, such as
LGN cells or monocular simple cells, are not driven by stimulation through both
eyes, as remarked by Hubel and Wiesel in [HW62]. They account for disparity-
tuned neurons in a brief report in [HW70] and they observe single units driven
from both eyes from which it is possible to determine separate left and right RFs.

The architecture and the neural connections of the visual cortex underlying
binocular vision have recently been studied in [PSK16], while binocular interac-
tions characterized by binocular and monocular synaptic inputs have been in-
vestigated in [STR+22]. In general, binocular domains form a separate set of
connections in V1, suggesting (if there exists) a distinct columnar system beside
the monocular one, [MAHG93]. Anyways, in V1 the binocularly-driven cells tend
to be closer to the ocular dominance boundaries, while the monocular cells are
toward the centers [LHW75].

Moreover, as already said, binocular cells in V1 encode horizontal positional
disparity, usually referred to as disparity, and orientation features, directly linked
with the monocular orientation preferences. We will investigate these properties
in the next paragraphs.

2.1.2.4.1 Disparity tuning cells The positional disparity is encoded by binoc-
ular cells through monocular receptive fields, in two different ways: considering
the difference between receptive profile center locations (position-shift model) of
the two eyes, or by differences in receptive profile organization (phase-shift model).
Binocular cells in V1 respond to their preferred disparity value, generating dispar-
ity tuning curves, as shown in Figure 2.1.8.
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(a) Near (b) Far (c) Zero

Figure 2.1.8: Disparity tuning curves for different types of cells. The horizontal
axis represents the disparity while the vertical axis represents the response of the
cell to the value of disparity. Image (a) involves a cell responding to negative values
of disparity, recognizing objects located in front of the plane of fixation. Image
(b) represents cells responding to positive values of disparity, identifying objects
located behind the plane of fixation. Image (c) displays cells responding to zero
values of disparity, describing objects on the plane of fixation. Images adapted
from [TCL03].

.

The tuning curves presented in Figure 2.1.8 involve different disparity-tuned
cells. Poggio and colleagues in [PF77, PGK88, Pog95] have classified them into
several categories. We recall here three main groups:

• tuned excitatory neurons displayed binocular facilitation to stimuli over a
narrow range of small disparities, including zero disparity. Since zero dispar-
ity is a characterization of the fixation point, they respond best to objects
that are located within the plane of fixation, namely when the image has
zero disparity.

• far neurons are inhibited by stimuli in front of the fixation point and ac-
tivated by stimuli behind the fixation point, so they respond optimally to
objects behind the plane of fixation.

• near neurons show a reciprocal disparity sensitivity with respect to far neu-
rons. Indeed, they respond best to objects located in front of the plane of
fixation.

2.1.2.4.2 Interocular orientation differences from monocular outputs
The standard neurophysological technique applied for the measurement of binoc-
ular profiles assumes the mono dimensionality of the monocular RPs, ignoring
information about the orientation selectivity of monocular simple cells. This as-
sumption is made because the response of the cell should change quickly when
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disparities are measured orthogonally to the RP’s orientation, as the structure of
the monocular RPs changes most rapidly in that direction [CD01]. Differences
between left and right structures which only involve the (absolute) locations of
the RPs are usually called absolute (horizontal) positional disparity, or zero order
disparity.

However, tilt and slant of objects in space are coded in the concept of interoc-
ular orientation differences, namely differences between left and right monocular
preferred orientations. This difference in orientation generates when stimuli are not
located on fronto-parallel planes, introducing the concept of first order disparity,
involving the difference in orientation of the two left and right retinal projections.

(a) (b) (c)

Figure 2.1.9: (a) Top image illustrates zero-order stimulus involving the frontopar-
allel plane. The bottom image shows a first-order stimulus on a surface lying in
depth. Image adapted from [Orb11]. (b) Orientations differences of two projec-
tions. Image adapted from [BCP01]. (c) Differences in orientations receptive fields.
Image adapted from [STO10].

The existence of different preferred monocular orientations as inputs of a binoc-
ular cell, confirmed by neural works such as [STO10, BCP01, BFM72, BC01,
STR+22], has led to the question of whether neurons characterized by this interoc-
ular difference are selective for orientation disparities, and hence forming another
neural mechanism for depth perception, [BFM72], or not. Until now, no one has
found evidence for this mechanism, see for example [BC01], attributing the role of
physiological variables to the couple of monocular orientations.

2.1.2.4.3 Long range connectivity for binocular cells Equivalently to the
monocular case, also for binocular cells it is possible to speak of long-range hori-
zontal connections. The existence of lateral connections which spread horizontally
across the cortex was detected in [MAHG93] using biocytin injection targeted at
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a binocular site, see Figure 2.1.10. They observed that the interactions only prop-
agate between binocular regions, and the distribution avoids the centers of ocular
dominance columns.

Synaptic interactions between binocular neurons have recently been studied
also in [STR+22], discovering that binocular synapses varied in degree of the re-
sponse correlation between left and right visual stimulation. Binocular congruent
input consists of interocular orientation preference difference up to ≈ 19 degrees,
and they are highly orientation selective, maintaining the aligned orientation pref-
erence, similarly to the monocular case.

Figure 2.1.10: A biocytin injection superimposed on a map of ocular dominance
columns, image result from the work in [MAHG93]. Binocular zones are coded
black, while monocular zones are coded white. The injection site (yellow circle)
was centered on a binocular zone. The patches’ propagation (red corresponds to
dense while green to sparsely labeled) tended to avoid highly monocular sites and
were located in binocular zones.

2.1.3 Beyond V1

Physiological and psychophysical neural evidence [SK17, Hub95] states that V1 is
just the beginning of the visual processing. Although it is not really clear how the
visual pathway continues, the second major area involved in processing the visual
signal is V2, the secondary visual cortex (also known as Brodmann area 18, or
prestriate cortex).

V2 receives strong feedforward input from and gives feedback to V1, with
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which it shares many properties: cells are tuned to simple characteristics such as
orientation, spatial frequency, and color but also cells’ responses are modulated
by more complex properties such as orientation of illusory contours [VdHPB84,
APVE07], and of course, binocular disparity [VDHZF00].

Moreover, V2 sends strong connections to the upper layers of the visual cortex.
The signal travels in multiple areas creating functional pathways that feed visual
information from V1 into associational cortical areas, where the processing of
visual information continues. These areas are situated in the parietal and temporal
lobes, and following the "two-streams hypothesis", they give rise to two different
pathways, [SK17]:

• dorsal (lateral parietal) pathway: it is also known as the "where pathway"
and it is involved with processing the object’s spatial location relative to the
viewer through the environment.

• ventral (inferior temporal) pathway: it is also known as the "what pathway"
and it is responsible for a high-resolution form of vision, meaning that it
is involved with objects and visual identification and recognition, and color
processing.

Figure 2.1.11: Two streams hypothesis. Green: dorsal pathway. Violet: ventral
pathway. Image adapted from Wikipedia.

These two streams are supposed to communicate with each other, to ensure
that vision comes together. In fact, the only sure thing is that V1 and V2 are the
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last areas to have all the visual information. And so, conscious vision happens
when simultaneous or approximately simultaneous activations across all visual
areas happen, [SK17].

What appears to be really important is the existence of feedback loops that
stand in the brain. At every level, there is a return of input from higher levels of the
visual pathways to earlier ones. Forward and backward connections are thought
to play a role in synchronizing the responses in the brain so that our perceptual
experiences are whole objects and not just fragmented parts. Thus, our experience
of vision is distributed across the cortex and constant feedback loops from higher
to lower levels integrate our perception.

2.2 Perceptual phenomena

Visual perception is the result of a series of complex mechanisms carried out by
the visual system, which mediate between the acquisition of the real stimulus
and its interpretation, to obtain a coherent description of the visual scene. This
process takes place through a perceptual organization, whose principles were first
expressed by Gestalt psychologists on a phenomenological level, using only sub-
jective experience without any neurophysiological evidence.

Many psychological experiments suggest that the principles underlying Gestalt
laws are implemented within the mammalian primary visual cortex [BZSF97].

2.2.1 Gestalt theory

The first studies concerning the perceptual organization of the visual scene were
conducted in the 1920s by German psychologists Max Wertheimer, Wolfgang Köh-
ler, and Kurt Koffka, who founded the school of thought known as Gestalt psy-
chology. The classical references for these topics are [Kof35, Koh29, Wer23] and it
is also possible to refer to [WEK+12] for a more recent review. The word Gestalt
in German means "organized whole" and refers to the general concept that the
perceived stimulus is something more than the simple sum of all its parts.

The purpose of Gestalt theory is to understand the laws behind the human
mind’s ability to construct meaningful perceptions from disorganized real stimuli.
A pattern for self-organization is sought that can combine smaller elements to form
larger objects.

The Gestalt approach is based on the development of a set of principles known
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as the laws of perceptual organization, which can be summarized by the following
points, visually represented in Figure 2.2.1:

(a) Proximity (b) Similarity (c) Good continuation

(d) Closure (e) Common fate (f) Simmetry

Figure 2.2.1: Visual representation of the laws of perceptual organization. Images
adapted from [Kan79].

• Law of proximity: elements that are close to each other and apart enough
from the rest of the elements form a group or a cluster.

• Law of similarity: elements similar in color, texture, shape, or orientation
are grouped together.

• Law of good continuation: elements aligned (or with comparable alignment)
and which tend to form continuous curves are grouped together.

• Law of closure: the perception of forms and figures in their complete appear-
ance happens despite the absence of some of their parts.

• Law of common fate: pieces which are subjected to the same spatial or
temporal change are grouped together.

• Law of symmetry: spatially symmetric pieces are more likely to be perceived
together rather than non-symmetric ones.
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2.2.2 Association field and good continuation

One of the most studied laws of perceptual organization, which plays a fundamental
role within the problem of perceptual grouping, is the law of good continuation,
quantitatively studied in many works [FHH93, GM91, GM85, PZ89, KS91, SK94].

In [FHH93] Field et al. investigated through psychophysical experiments how
the visual system encodes the good continuation of the contour. In doing so, they
introduced the notion of associative fields, thus formalizing the Gestalt principle
in terms of the position and mutual orientation of elements or patches in two-
dimensional space.

During the experiment, an observer was shown an image composed of aligned
Gabor patches (oriented elements in space), which form a path, against the back-
ground of a large number of randomly distributed patches, image (a) of Figure
2.2.2. The purpose of the experiment was to test the subject’s ability to detect
the perceptual units present in the visual stimulus.

(a) (b) (c)

Figure 2.2.2: Pshychophysical introduction of the association field. (a) Field-Hayes
and Hess experiment. Image adapted from [FHH93](b) Pattern describing the
association field. Image adapted from [FHH93](c) Ladder effect. Image adapted
from [YF98].

The results of this experiment can be summarized in the concept of an associ-
ation field. This is the description of a pattern that allows determining the stimuli
that can be associated with the same perceptual unit, representing the elements
of the stimulus that are associated with a central point. In particular, correlations
between elements are stronger between segments that are collinear or co-circular.
In fact, the solid lines indicate the elements that can be connected with the central
component, while the dotted lines indicate unrelated elements, image (b) of Figure
2.2.2.

An interesting result that comes out of these psychophysical experiments con-
cerns the correlation between the association fields and the horizontal connections
of the monocular cells of V1. In this sense, lateral connectivity is seen as a potential
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implementation of the perceptual phenomenon of the law of good continuation.
Moreover, while the classical concept of association fields involves only coaxial-

oriented elements, a similar correlation is also observed between parallel segments,
or more precisely orthogonal with respect to the central-oriented element. This
effect is usually called ladder effect [MC82, FHH93, YF98], see image (c) of Figure
2.2.2.

Historically, good continuation in depth is much less well developed than good
continuation in the plane. Despite that, the origins of the problem are quite
ancient: in [Kof63], Koffka noticed that the perception of a perspective drawing
is strengthened when viewed with stereoscopic vision, compared to the monocular
case, observing the introduction of mutual reinforcement rather than a conflict
of forces. One of the objectives of this thesis is to realize a mutual reinforcement
model, developing good continuation in depth analogously to the models of contour
organization in two dimensions. Psychophysical investigations such as [DW14,
DW15, KHK16, Utt83] suggest that this should be feasible. Indeed, Hess and
colleagues in [HF95, HHK97] extend the good regularity in 3D, a property that is
in accordance with the more recent works of Deas-Wilcox and Khuu-Honson-Kim
in [DW15, KHK16]. We will use a more mathematical approach, in agreement
with the study of 3D-circularity applied to crossing-preserving enhancement DW-
MRI introduced in [MOW+17, PFS+15, RDRV10], or for mapping connectivity in
diffusion MRI [MS09, MS12]. We will study this in more detail in Chapter 5 and
Chapter 6.
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Chapter 3

The stereo problem

In this chapter, we introduce a brief review of classical geometry
and reference models for the stereo problem. First, we recall the
geometrical properties of perspective projections which are the
basis of stereo triangulation. Then, we concentrate on models
proposed for describing the stereo vision. At the beginning we
examine the neural model for the integration of monocular out-
puts performed by binocular cells, then we study mathematical
models for the stereo correspondence problem, illustrating typ-
ical constraints and finally presenting the differential model of
reference.
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3.1 Classical stereo geometry

It is generally accepted that the first scientist to give mathematical attention to 3D
vision is the greek mathematician Euclid around 300 BC, in his work Optics, which
deals almost entirely with the geometry of vision. These preliminary notions laid
the foundation for the development of the configuration of the stereo vision problem
over the centuries, and a complete historical background can be found in [How12,
HR95]. Nowadays, extensive textbooks on the subject have been published, as
for example [Fau93, FL01, HZ03, SR11]. In this subsection we briefly recall this
geometrical configuration, to define the variables that we will use, mainly referring
to [Fau93, Ch. 6].

3.1.1 Stereo variables

Consider the global reference system (O, i, j, k) in R3, with O = (0, 0, 0) the origin
and with coordinates (r1, r2, r3). We introduce the optical centers CL = (−c, 0, 0)
and CR = (c, 0, 0), with c real positive element, and we define two reference sys-
tems: (CL, iL, jL), (CR, iR, jR), the reference systems of the retinal planes RL and
RR with coordinates respectively (xL, y), (xR, y). In the global system we suppose
the retinal planes to be parallel and to have equation r3 = f , with f denoting the
focal length. This geometrical set-up is shown in Figure 3.1.1.

Remark 3.1.1. A point Q = (r1, r2, r3) in R3 projects in the two retinal planes
via perspective projection through optical centers CL and CR. This computation
defines two projective maps πL and πR respectively for the left and right retinal
planes:

πL : R3 −→ R2 πR : R3 −→ R2
r1

r2

r3

 7→
(
f(r1+c)
r3
fr2
r3

)
,


r1

r2

r3

 7→
(
f(r1−c)
r3
fr2
r3

)
.

(3.1)

We call the pair of points QL and QR projections of Q as corresponding
points, since this definition is usually referred to points on the retinae of the
two eyes which when simultaneously stimulated normally produce a single visual
impression.

Proof. A point on the left retinal plane of local coordinates (xL, y) has global
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Figure 3.1.1: Stereo triangulation. A three-dimensional point Q projects into the
left and right parallel and aligned retinal planes RL, RR through optical centers
CL and CR. The bidimensional projections on the retinal planes characterized by
equation r3 = f are called QL and QR.

coordinates QL = (−c + xL, y, f), and it corresponds to a point Q = (r1, r2, r3)
in the Euclidean R3 such that CL, QL and Q are aligned. This means that the
vectors QL − CL = (xL, y, f) and Q− CL = (r1 + c, r2, r3) are parallel, obtaining
the following relationships:

xL = f
r1 + c

r3
, y = f

r2
r3
. (3.2)

Analogously, considering QR and CR, we get:

31



xR = f
r1 − c
r3

, y = f
r2
r3
. (3.3)

In a standard way, the horizontal disparity is defined as the differences
between left and right retinal abscissa coordinates

d := xL − xR
2 , (3.4)

up to a scalar factor. Moreover, it is also possible to define the coordinate x as the
average of the two retinal coordinates x := xL+xR

2 , leading to the following change
of variables: 

x = fr1
r3

y = fr2
r3

d = fc
r3

←→


r1 = xc

d

r2 = yc
d

r3 = fc
d

, (3.5)

where the set of coordinates (x, y, d) is known as cyclopean coordinates, be-
cause, in a sense, we perceive the world with a single eye in the middle of the head.
For further details see [Jul71].

3.1.2 Tangent estimation

Corresponding points in the retinal planes allow to project back in R3. An analo-
gous reasoning can be done for the tangent structure: starting from tangent vectors
of corresponding curves in the retinal planes, it is possible to project them back
and recover the 3D tangent vector. We recall here this result, while for a detailed
explanation the reader can consult [Fau93].

Remark 3.1.2. Consider γL and γR corresponding left and right retinal curves,
perspective projections of a curve γ ∈ R3. Knowing the left and right retinal tangent
structures, then it is possible to recover the direction of the tangent vector γ̇.

Proof. Starting from a curve γ ∈ R3, we can project it in the two retinal planes
obtaining γL = πL(γ) and γR = πR(γ) from equations (3.1). The retinal tangent
vectors are obtained through the differential γ̇L,R(t) = Dπγ(t)γ̇(t):

γ̇R(t) =

f(γ3γ̇1+(c−γ1)γ̇3)
γ3(t)2

f(γ3γ̇2−γ2γ̇3)
γ2

3

 , γ̇L(t) =

f(γ3γ̇1−(c+γ1)γ̇3)
γ3(t)2

f(γ3γ̇2−γ2γ̇3)
γ2

3

 . (3.6)
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Extending the tangent vectors and the points into R3, we get t̃L = (γ̇L1, γ̇L2, 0)T ,

and m̃L = (γL1, γL2, f)T , and UtL = (PL)−1m̃L×(P−1
L )t̃L, with PL =


1 0 −c/f
0 1 0
0 0 1


projection matrix. The same reasoning holds for the right structure, with projec-

tion matrix PR =


1 0 c/f

0 1 0
0 0 1

 .

Then UtR × UtL is a vector parallel to the tangent vector γ̇:

UtR × UtL =

f
42c(γ̇2γ3 − γ̇3γ2)

γ4
3︸ ︷︷ ︸

λ(t)

γ̇1,
f42c(γ̇2γ3 − γ̇3γ2)

γ4
3

γ̇2,
f42c(γ̇2γ3 − γ̇3γ2)

γ4
3

γ̇3


= λ(t) (γ̇1(t), γ̇2(t), γ̇3(t))

= λ(t)γ̇(t).
(3.7)

3.2 Neural model for stereo vision

In this section, we recall the classical model used to explain the behavior of binoc-
ular neurons in V1. We will focus in particular on binocular simple cells.

3.2.1 Binocular energy model (BEM)

The typical model, based on physiological experiments, which describes the output
of binocular cells is the binocular energy model (BEM), first introduced by Anzai,
Ohzawa and Freeman in [AOF99b]. This model encodes disparities through the
receptive profiles of simple cells, leading to the definition of position and phase
disparities [JR15].

3.2.1.1 Position and phase disparities

The characterization of position disparity is based on the idea that the binocular
visual system infers different positions in the retinae. The encoding mechanism of
this phenomenon is developed through position differences between the centers of
right and left eye receptive profiles, of which a graphic representation can be seen
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in Figure 3.2.1. Formally, this definition coincides with the definition of horizontal
disparity introduced in (3.4).

(a) (b)

Figure 3.2.1: Positional disparity. (a) Geometry of binocular projection. The
fixation point projects to the two corresponding foveas and has zero disparity by
definition. Other points of the visual scene project in different positions. (b)
Position disparity definition on the retinae. Circle and square points represent the
centers of the RPs. Images adapted from [Qia97].

The notion of phase disparity involves different shapes of left and right receptive
profiles while maintaining constant receptive profile positions. Denoting with φ the
phase of the RP, fitted as usual with a Gabor function (we will see this with more
details in Chapter 4, subsection 4.4.2), it is possible to define the phase disparity
as:

dP = φR − φL (deg PA) dP = −( φR
360fR

− φL
360fL

) (deg VA) (3.8)

with PA=phase angle in the retina, and VA= visual angle in the 3D world, fR,
and fL frequency of the right and left RPs.

Read and Cumming in [RC07], building upon [AOF99a], proposed that phase
disparity neurons tend to be strongly activated by false correspondence pairs,
namely pairs of points in projection on the retinae that do not correspond to a
three-dimensional percept. Therefore the most relevant disparity in the receptive
fields is the position alone.
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(a) (b)

Figure 3.2.2: Behavior of RPs in the definition of position and phase disparity. (a)
Position disparity. (b) Phase disparity. Images adapted from [JR15]

3.2.1.2 Description of the model

The BEM model, introduced at the beginning of the 90s in [AOF99b], involves
the behavior of binocular simple cells. The basic idea behind it, it is a binocular
neuron with a receptive field in each eye. The output of each eye depends on
the inner product of each eye’s image with the corresponding receptive field: for
example for the left eye the output is

OL =
∫
R
ϕL(x, y)IL(x, y)dxdy, (3.9)

where the function IL represents the (left) retinal image and ϕL represents the
(left) classical receptive profile. More details concerning the monocular case are
given in Chapter 4, subsection 4.4.2.

More precisely, the energy model assumes that monocular left and right outputs
are summed linearly; if the result is negative, the neuron is inhibited and does not
fire, while if positive, the neuron fires at a rate proportional to the square of the
inputs:

Pos(OL +OR)2, (3.10)

where Pos(x) := max{x, 0}.

A relationship exists between the binocular interaction RP and monocular RPs,
and it can be explained observing that, if OL + OR > 0 then the output of the
binocular simple cell is the following:

O2
L +O2

R + 2OLOR.
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The first two terms represent responses due to monocular stimulation while the
third term OB := OLOR is the one that depends on binocular disparity, so it is
called binocular interaction term. In this sense, although the model is mainly lin-
ear, the binocular interaction introduces a non-linear factor (multiplicative model).

The binocular receptive profile’s computation of the interaction part is per-
formed in [AOF99b] and it is in accordance with the prediction of the BEM, as
displayed in Figure 3.2.3.

Figure 3.2.3: Comparisons between binocular interaction RPs and the product of
left and right eye RPs. First row: binocular interaction RPs of 3 cells (A-C) are
shown on top (Raw data). Second raw: contour plots for the product of left and
right eye RPs (LR) are shown for each cell (D-F) on the right (Prediction) along
with 1-dimensional (1D) profiles of the left (L) and right (R) eye RPs. Contour
plots for the prediction are scaled so that each has the same peak as that of the
corresponding plot for the raw data. Predictions are qualitatively very similar to
the raw data. Image adapted from [AOF99b].

3.3 Mathematical model for stereo correspondence

Three-dimensional vision involves the use of two eyes (or at least two cameras)
to encode visual scene information. This information is projected into the aligned
retinal planes starting from parallel optical centers. Going from the 3D world
to the retinae is a simple process, characterized by central projections; on the
other hand, the 3D reconstruction problem requires to solve the stereo matching
problem.
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The stereo matching problem, also known as stereo correspondence prob-
lem, refers to the problem of ascertaining which parts of one image correspond
to which parts of the other image. Indeed, the horizontal separation of the eyes
(different points of view) causes the two retinal images to be slightly different and
so the reconstruction forces to find the set of points in one image which can be
identified as the same points in the other image. This is usually done by consider-
ing points or features in one image and matching them with the points or features
in the other image, establishing corresponding points or corresponding features.

Many works in literature have addressed the stereo problem using different
viewpoints. Here we recall the work of Vaillant and Faugeras [VF92] in relation
to extremal boundaries for 3D curved objects, and, very important from our per-
spective, the works of Zucker et al. [AZ00, LZ06, LZ03] which deal with curves
stereo geometry using tools of differential geometry.

In the next subsection, we first recall the classical constraints imposed to facil-
itate the coupling problem, and then we introduce the model proposed by Zucker
et al. [AZ00, LZ06, LZ03] to solve the correspondence.

3.3.1 Constraints on the coupling problem

Modeling stereo vision has made significant progress in the field of computer vision
in the last 20 years and surveys for this literature review can be found for example
in [KK16, HI16].

The central point is the introduction of algorithms able to find a disparity map
that solves the matching. However, none of the proposed algorithms has optimal
performance on all occasions and this happens because they often conflict with
the presence of constraints, which can be inserted or naturally emerge from the
geometry of stereo images.

The classical constraints that often appear are:

- Epipolar constraint: the imposition of the ordinate coordinate of the two
images to be the same. It is always possible to return in this case by applying
the rectification process. For more details on this topic see [Fau93].

- Uniqueness: the requirement that a feature in one stereo half-image has to
be matched to, at most, one similar feature in the other half-image.

- Continuity (or smoothness): the disparity of the matches should vary smoothly
almost everywhere over the image.

37



- Ordering: the ordering of features is preserved across images.

- The disparity gradient: the disparity gradient is defined as the derivative of
the disparity with respect to the Cyclopean coordinate x, namely ∂d/∂x.
A disparity gradient limit requires that the absolute value of the disparity
gradient never exceeds a given value.

- Geometric constraints: punctual constraints, arising from the geometric rela-
tionships underlying the problem embedded in the Euclidean three-dimensional
space. The constraints imposed by the projection are described in Section
3.1.

In general, several models have been proposed for vision problems which incor-
porate different types of constraints: for instance, we cite the model introduced
by Marr and Poggio in [MP79] to describe human stereo vision, integrating the
constraints of uniqueness and continuity. They build it considering orientational
differences in the two eyes to compute disparity. Or, the work of Faugeras and
Robert [FR96], which relates information concerning two images with a third one,
based on constraints emerging from epipolar geometry.

At the beginning of the 21st century, Zucker et al. [AZ00, LZ03, Zuc14] em-
ployed position, orientations, and curvature in 2D retinal planes to relate the 2D
Frenet differential structure in the left and right retinal planes with the Frenet ge-
ometry of the 3D space, integrating geometric constraints. We investigate better
this model in the following subsection.

3.3.2 The Zucker model

The model introduced by Zucker, Alibhai and Li for stereo vision in [AZ00, LZ03,
LZ06], aims at generalizing the fundamental concept of co-circularity in three
dimensional space. In particular, co-circularity in R2 has been firstly developed by
Parent and Zucker in [PZ89] observing that a bi-dimensional curve γ can be locally
approximated at 0 via the osculating circle and so its generalization involves the
Frenet differential geometry of a three-dimensional curve.

While in the two-dimensional case the approximation of the curve using the
Frenet 2D basis causes the curvature to appear in the coefficient of the Taylor
series development (1st order), in the three-dimensional case the coefficients involve
both the curvature and torsion. So, in [AZ00] the authors propose heuristically to
generalize the osculating circle for space curves with an osculating helix, with a
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preference for r3-helices (helices whose spiral develops along the r3-axis) to provide
stability in terms of camera calibration. In this way the orientation disparity is
encoded in the behavior of the helix in the 3D space: there is no difference in
orientation in the retinal planes if the helix is confined to be in the fronto-parallel
plane (the helix in this plane becomes a circle and the torsion of the curve is equal
to zero), otherwise as the magnitude of the torsion increases, moving along the 3D
curves, the retinal projections have different orientations.

In [LZ03, LZ06] they observe that with the introduction of the curvature vari-
able as a feature in the two monocular structures, assuming having corresponding
points, it is possible to reconstruct the 3D Frenet geometry of the curve, start-
ing from the two-dimensional Frenet geometry, with the exception of the torsion
parameter.

The success of this model is due to the simultaneous use of the notions of dis-
parity of position and orientation, which are naturally tied together by differential
geometry, as we will see in the next paragraphs.

3.3.2.1 Geometry of the model

In [LZ03, LZ06] the authors choose in the external and in the retinal space co-
ordinate systems with the same orientation up to a translation. They suppose
to know for every (left and right) retinal image its position, tangent, and cur-
vature (x, y, θ, k), and they prove the following Proposition, of which a graphic
representation can be found in Figure 3.3.1.

Proposition 3.3.1. Given two perspective views of a 3D space curve with full
calibration, the normal N and curvature k at a curve space point are uniquely
determined from the positions, tangents, and curvatures of its projections in two
images. Thus the Frenet frame {T,N,B} and curvature k at the space point can
be uniquely determined.

Hence, using the knowledge of the Frenet basis together with the fundamental
addition of the curvature variable, they used the concept of transport to build a
stereo correspondence algorithm.

3.3.2.2 Transport in R3

The proposed idea is to move the 3D Frenet frame consistently with the 2D Frenet
structure of the left and right retinal planes, to match the stereo correspondence

39



(a) (b)

Figure 3.3.1: (a) Geometrical setup of Proposition 3.3.1. Given points
(xL, yL, θL, kL) and (xR, yR, θR, kR) it is possible to determine the position, the
Frenet frame {T,N,B} and the curvature k but not the torsion τ . (b) Transport
of the Frenet frames in R3 helps find consistent left-right image tangent pairs.
Images adapted from [LZ06].

between pairs of (left and right) pairs of tangents. More specifically, they compare
the measurements obtained from transporting the differential structure with the
information on the measured point. This is shown in Figure 3.3.1, image (a). Since
the osculating plane is at disposition, thanks to Proposition 3.3.1, it is possible to
define a distance on the osculating plane and, for everything to remain compatible,
a minimum torsion constraint is (heuristically) imposed.

Thus, the notion of transport translates into the definition of a distance, or
rather a probability measure, which tells how likely it is that a pair of points is
made up of corresponding elements and it is not a false match. This goes under
the name of compatibility.

More precisely, the compatibility from a point i to a point j is defined starting
from the reconstructed tangents Ti and Tj , considering the projection of T ∗i of Ti
in the osculating plane at point j. They call s the transport distance from T ∗i to
Tj on the osculating plane , c the projection distance from Ti to T ∗i and ∆φ the
difference of rotation between T ∗i and Tj in the osculating plane, and define the
compatibility matrix:

R = [Rij ] = Gσt(s)Gσc(c) cos ∆φ, (3.11)

with Gσ Gaussian kernel of parameter σ.
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Figure 3.3.2: Sample compatibility fields around j. Brightness encodes the positive
support. Source [LZ06].

An intuitive demonstration of compatibility field is shown in Figure 3.3.2. The
image shows slices of compatibility Rij around the point j by displaying the degree
of support a neighboring node i receives from j. From these few slices, it is possible
to see that both the position and the orientation disparities affect the compatibility
and the emergence of the bending and twisting of the structure.
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Chapter 4

Elements of sub-Riemannian
geometry and application to
vision

This chapter includes a brief introduction to the mathematical
tools that are used to describe the neural mechanisms underlying
the visual system. We will introduce the notions of smooth man-
ifold, tangent bundle, Lie group and sub-Riemannian manifold.
Finally, we present an application of this mathematical theory
to the field of perceptual vision, describing the sub-Riemannian
model proposed by Citti-Sarti in [CS06] for neural mechanisms
underlying monocular vision.
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4.1 Basic differential geometry

In this section, we review basic notions of differential geometry, mainly following
[Tu11].

Definition 4.1.1. A topological space M is a manifold of dimension n if every
point on M has a neighborhood U homeomorphic to an open subset of Rn. The
homeomorphism φ : U → Rn is called coordinate system or chart. If p ∈ U and
φ(p) = 0, then we say that the coordinate system is centered at p.

Definition 4.1.2. Let M be a topological manifold of dimension n. Then, a
smooth structure F on M consists of a maximal atlas on M , namely F =
{φα;α ∈ A} is a collection of coordinate systems φα : Uα → Rm such that:

• ∪α∈AUα = M ;

• the transition map φα ◦ φ−1
β : φβ(Uα ∩ Uβ) → φα(Uα ∩ Uβ) between local

coordinate systems is C∞ for every α, β ∈ A;

• if a coordinate system φ satisfies that φ ◦ φα and φα ◦ φ−1 are C∞ for every
α ∈ A, then φ ∈ F .

A manifoldM together with a smooth structure F on it is called smooth manifold
(or differentiable manifold).

Definition 4.1.3. Let M and N be smooth manifolds. A map F : M −→ N

is C∞ at a point p ∈ M if there exist charts (U, φ), (V, ψ), around p ∈ M and
F (p) ∈ N respectively, such that the composition ψ ◦ F ◦ φ−1 is C∞ at p. We say
that F is smooth if it is C∞ at every point of M , and write F ∈ C∞(M,N). If
N = R, we simply write F ∈ C∞(M).

For smooth maps between manifolds, it is possible to give the notion of differ-
ential, which will be described as a linear map acting on germs of smooth functions.

Definition 4.1.4. Let U, V ⊂ M be neighborhoods of p ∈ M and let f ∈ C∞(U)
and g ∈ C∞(V ). We say that f and g are equivalent if there is a neighborhood
W ⊂ U∩V of p such that f agrees with g onW . The equivalence class of f : U → R
is called the germ of f at p.

The set of germs of smooth functions at p in M is denoted by C∞p (M) and it
is a unitary commutative ring.
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Definition 4.1.5. Let M be a smooth manifold and let p ∈M . A derivation at
p is a linear map D : C∞p (M)→ R such that, for any f, g ∈ C∞p (M),

Dp(fg) = (Dpf)g(p) + f(p)(Dpg) (Leibniz rule). (4.1)

A derivation at p is also called a tangent vector at p. We denote by TpM the
tangent space of M at p, i.e. the set of all tangent vectors at p.

Definition 4.1.6. Let F ∈ C∞(M,N) and let p ∈ M . The differential of F at
p is the linear map DpF : TpM → TF (p)N defined as:

DpF (Xp)(f) = Xp(f ◦ F ), ∀f ∈ C∞F (p)(N), Xp ∈ TpM. (4.2)

When the target space is N = R, we also use the notation dpF for the differential
of F at p.

Note that the above definition is well-posed since f ◦ F ∈ C∞p (M) for any
f ∈ C∞F (p)(N). Using the notion of differential, one can prove that TpM is a vector
space of dimension n = dimM .

Definition 4.1.7. Let M and N be smooth manifolds of dimension n. We say
that F ∈ C∞(M,N) is a diffeomorphism if F is a homeomorphism with smooth
inverse. We say that F is a local diffeomorphism at p if there exist neighbor-
hoods U ⊂ M , V ⊂ N of p and F (p) respectively such that F|U : U → V is a
diffeomorphism.

4.1.1 Vector fields and covariant tensors

Definition 4.1.8. Let E,M,N be smooth manifolds and let π : E → M be a
smooth surjection. We say that the structure (E,M, π,N) is a fiber bundle if,
for every x ∈ E, there exists an open neighborhood U ⊂ M of π(x) and a diffeo-
morphism φ : π−1(U)→ U ×N , such that the following diagram commutes:

π−1(U)

π
%%

φ // U ×N
proj1
��
U

(4.3)

where proj1 : U ×N −→ U is the projection onto the first factor. The manifold M
is called the base space, E the total space, and N the fiber. In particular, for any
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p ∈M , the preimage π−1(p) is diffeomorphic to the fiber over p, namely {p} ×N .

Definition 4.1.9. Let (E,M, π,N) be a fiber bundle. We say that e : M −→ E is
a smooth section of the fiber bundle if e ∈ C∞(M,E) and π ◦ e = idM .

Note that, every fiber bundle π : E −→ M is an open map, since projections
of products are open maps. A particular case of fiber bundle is given by vector
bundles, that is when the fiber N = Rk for some k ∈ N. In this case, we say that
the triple (E,M, π) is a vector bundle of rank k. A notable example of vector
bundle is the tangent bundle of a manifold.

Example 4.1.1. Let M be a smooth manifold of dimension n. Denote by TM the
disjoint union of all tangent spaces of M , namely

TM =
⊔
p∈M

TpM. (4.4)

TM has the structure of a differentiable manifold. Moreover, denote by π :
TM → M the projection such that, for every p ∈ M , π−1(p) = TpM . The triple
(TM,M, π) is a vector bundle of rank n, called tangent bundle. A vector field
on manifold M is a smooth section of the tangent bundle. The set of vector fields
on a manifold M is denoted by Vec(M).

In an analogous way, one can define the cotangent bundle T ∗M , which is
a vector bundle of rank n whose fibers are given by T ∗pM := (TpM)∗, for every
p ∈M . Sections of the cotangent bundle are called differential 1-forms.

We remark that, by the very definition of tangent vector, a vector field can be
seen as a derivation on C∞(M), namely a linear map on C∞(M) satisfying the
Leibniz rule. Moreover, Vec(M) is a module over the ring of smooth functions.

We introduce the notion of differential form on a manifold, which is a particular
case of a covariant tensor. We refrain to give the general definition of tensor bundles
and (k, r)-tensors on a manifold since we will not need it.

Definition 4.1.10. LetM be a smooth manifold. A covariant tensor T of order
k ∈ N is a C∞(M)-multilinear mapping of the form:

T : Vec(M)× . . .×Vec(M)︸ ︷︷ ︸
k times

−→ C∞(M). (4.5)

Namely, this means that T is a homomorphism of C∞(M)-modules in each argu-
ment.
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Remark 4.1.1. A covariant tensor T of order k on a smooth manifold is a
pointwise object, in the following sense: let p ∈ M and fix a set of coordinates
(x1, . . . , xn), on U ⊂ M , where p ∈ U . These coordinates induce a basis of
the tangent space TqM , for any q ∈ U , denoted by {∂x1 , . . . , ∂xn}. Then, letting
X1, . . . , Xk ∈ Vec(M), we may write

Xi|q =
n∑
j=1

aij(q)∂xj |q, ∀ q ∈ U, i = 1, . . . , k. (4.6)

Therefore, by linearity we have

T (X1, . . . , Xk)(q) =
n∑

j1,...,jk=1
aij1(q) . . . aijk(q)T (∂xj1 , . . . , ∂xjk )︸ ︷︷ ︸

Tj1,...,jk (q)

. (4.7)

The functions Tj1,...,jk on U are called components of T . The expression (4.7) im-
plies that the value of T (X1, . . . , Xk) at p depends only on the values of X1, . . . , Xk

at p and of the components of T at p. Moreover, we may also consider Tp as a
multilinear map on (TpM)k.

Definition 4.1.11. Let M be a smooth manifold. A Riemannian metric g on
M is a symmetric covariant tensor of order 2. In particular, this means that, for
any p ∈M ,

gp : TpM × TpM −→ R (4.8)

is a bilinear, symmetric map and the dependence p 7→ gp is smooth. We say that
the pair (M, g) is a Riemannian manifold.

One can define notions of length and distance on M , using the Riemannian
metric. We will do this in the more general framework of sub-Riemannian mani-
folds in Section 4.3.

Remark 4.1.2. Let (M, g) be a Riemannian manifold. Then, we can define a
canonical isomorphism between the tangent space at a point and its dual:

α : TpM → T ∗pM ; 〈α(v), w〉 = gp(v, w), ∀w ∈ TpM. (4.9)

4.1.2 Differential forms and Hodge star operator

Definition 4.1.12. Let M be a smooth manifold. We say that ω is a differential
form of order k, and write ω ∈ Ωk(M), if it is an alternating covariant tensor of
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order k, such that for any permutation σ ∈ Sk,

ω
(
Xσ(1), . . . , Xσ(k)

)
= sgn(σ)ω(X1, . . . , Xk), ∀X1, . . . , Xk ∈ Vec(M). (4.10)

By construction, Ωk(M) is a real vector space of finite dimension.

Note that the notion of differential forms of order 1 coincides with the one
given in Definition 4.1.1, as covariant tensors are pointwise objects.

Definition 4.1.13. Let M be a smooth manifold and let ω ∈ Ωk(M), η ∈ Ωl(M).
Then, the exterior product between ω and η is the differential form ω ∧ η ∈
Ωk+l(M), defined by: for any X1, . . . , Xk+l ∈ Vec(M),

(ω∧η)(X1, . . . , Xk+l) =
∑

σ∈S(k,l)
sgn(σ)ω

(
Xσ(1), . . . , Xσ(k)

)
η
(
Xσ(k+1), . . . , Xσ(k+l)

)
,

(4.11)
where S(k, l) = {σ ∈ Sk+l | σ(1) < . . . < σ(k), σ(k + 1) < . . . < σ(k + l)}.

Remark 4.1.3. Let us consider a smooth manifold M of dimension n. Then,
according to Definition 4.1.6, for any smooth function f ∈ C∞(M), the differential
df defines a 1-form. Indeed,

df(X)(p) := dpf(Xp), ∀ p ∈M, X ∈ Vec(M). (4.12)

Moreover, since covariant tensors are pointwise objects, we may define local differ-
ential forms. In coordinates (x1, . . . , xn) on U ⊂ M , (4.12) allows to make sense
of the (local) 1-forms dx1, . . . , dxn. By construction, we also have

dxi(∂xj ) = δij , ∀ i, j = 1, . . . , n. (4.13)

Reasoning as in Remark 4.1.1, one can prove that any 1-form is a linear combi-
nation of the set {dx1, . . . , dxn}, thus it is a basis of Ω1(U). In an analogous way,
one can prove that dim

(
Ωk(M)

)
=
(n
k

)
with basis given by

dxi1 ∧ . . . ∧ dxik , ∀ 1 ≤ i1 < . . . < ik ≤ n. (4.14)

Definition 4.1.14. Let (M, g) be a Riemannian manifold. Then, the Rieman-
nian volume form volg is the n-form defined, in local coordinates (x1, . . . , xn)
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on U ⊂M , as

volg |q =
√
| det gq|dx1 ∧ . . . ∧ dxn, ∀ q ∈ U. (4.15)

The definition of volg at a point is independent of the choice of local coordinates.
Moreover, if M is orientable than volg ∈ Ωn(M).

Remark 4.1.4. Let (M, g) be a Riemannian manifold and let (x1, . . . , xn) be local
coordinates on U ⊂ M . The canonical ismoprphism (4.9) and the description
through (4.14) allow to extend the Riemannian metric to k-forms, namely for 1-
forms:

g1
q (dxi, dxj) := gq(α(∂xi), α(∂xj )), ∀ q ∈ U, i, j = 1, . . . , n. (4.16)

Then, for k-forms, for any ω1, . . . , ωk, η1, . . . , ηk ∈ Ω1(M), we have

gkq (ω1 ∧ . . . ∧ ωk, η1 ∧ . . . ∧ ηk) := det
(
g1
q (ωi, ηj)

)k
i,j=1

, ∀ q ∈ U. (4.17)

Definition 4.1.15. Let (M, g) be an orientable Riemannian manifold of dimension
n. Then, the Hodge star operator ? : Ωk(M)→ Ωn−k(M) is the linear operator
defined by

ω ∧ ?η = gk(ω, η)volg, ∀ω, η ∈ Ωk(M). (4.18)

A common example of the Hodge star operator is the case n = 3 for the
Euclidean space M = R3.

Example 4.1.2. Let M = R3 with the basis {dx, dy, dz} of one-forms. One finds
that:

? dx = dy ∧ dz

? dy = dz ∧ dx

? dz = dx ∧ dy.

(4.19)

Moreover, the Hodge star relates the exterior and cross-product in three dimen-
sions:

?(u ∧ v) = u× v ?(u× v) = u ∧ v. (4.20)

where u and v are 1-forms, or vectors, according to the opportune interpretation.

49



4.1.3 Integral curves on a manifold

Definition 4.1.16. Let M be a smooth manifold. A smooth curve is defined by
a map γ : I → M , where I ⊂ R is an open interval. The tangent vector γ′(t) to
the curve γ is defined as its differential at t, namely

γ′(t) = Dtγ (∂t) ∈ Tγ(t)M, t ∈ I, (4.21)

where ∂t denotes the tangent vector to the interval I at t.

Definition 4.1.17. Let M be a smooth manifold and X ∈ Vec(M). We say that
γ : I →M is an integral curve of X if

γ′(t) = Xγ(t), ∀t ∈ I. (4.22)

The flow φ : I ×M → M of the vector field X is defined in such a way φ(·, p) is
the unique integral curve of X starting at p, i.e. such that φ(0, p) = p.

In local coordinates (x1, . . . , xn), we may write a smooth curve as γ(t) =
(γ1(t), . . . , γn(t)). In the basis of the tangent space {∂x1 , . . . , ∂xn}, we have

γ′(t) = (γ′1(t), . . . , γ′n(t)) =
∑

γ′i(t)∂xi . (4.23)

Analogously, we can write the vector field X ∈ Vec(M) in coordinates:

Xp =
∑

ai(x1, . . . , xn)∂xi , (4.24)

where ai’s are smooth and p ∈M has coordinates (x1, . . . , xn). Therefore, we can
rewrite equation (4.22) as

∑
i

γ′i(t)
∂

∂xi
=
∑

ai(γ1, . . . , γm)∂xi , (4.25)

Thus, γ is integral curve of X if and only if, in coordinates, is a solution of the
previous system of autonomous first order ODEs. In particular, this ensures that,
locally, integral curves of a vector field always exist.
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4.2 Lie algebras and Lie groups

Definition 4.2.1. Let M be a smooth manifold and let X,Y ∈ Vec(M). Their
Lie bracket, or commutator, is defined by their action on smooth functions f ∈
C∞(M) as:

[X,Y ](f) = X(Y (f))− Y (X(f)). (4.26)

This quantity is a measure of non-commutativity of the vector fields. Indeed,
if [X,Y ] = 0, the flows of X and Y commute, in the sense that φX(t, φY (p)) =
φY (t, φX(p)), for any p ∈ M . In this case, it is said that X and Y commute with
each other.

Definition 4.2.2. A Lie algebra g on R is a real vector space together with a
bilinear operation [·, ·] : g× g→ g, called Lie bracket, which satisfy:

• anti-commutativity property: [X,Y ] = −[Y,X]

• Jacobi identity: [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 for all X,Y, Z ∈ g.

Note that the bracket operation defined in Definition 4.2.1 is actually a bilinear
form on Vec(M) satisfying the requirements of the previous definition. Thus,
(Vec(M), [·, ·]) is a Lie algebra of infinite dimension.

Definition 4.2.3. Let M be a smooth manifold and let F = {X1, . . . , Xk} ⊂
Vec(M) be a family of vector fields. The Lie algebra generated by F is the
smallest sub-algebra of Vec(M) containing the family itself, i.e.

Lie(F) = span{[Xj1 , [. . . [Xjl−1 , Xjl ]]] | ji ∈ {1, . . . , k}, l ∈ N}. (4.27)

Definition 4.2.4. Let (G, ∗) be a be a group. We say that G is a Lie Group if
it carries the structure of a differentiable manifold in such a way that the group
operation

∗ : G×G→ G; (g, h) 7→ g ∗ h, ∀ g, h,∈ G (4.28)

and the inversion
i : G→ G; i(g) = g−1, ∀ g ∈ G (4.29)

are smooth maps.

Definition 4.2.5. Let (G, ∗) be a Lie group and let g ∈ G. The left multiplica-
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tion, or left translation, Lg : G→ G is the map :

Lg(h) = g ∗ h, ∀h ∈ G. (4.30)

A vector field X on G is called left-invariant if

X(f ◦ Lg) = (Xf) ◦ Lg, ∀ f ∈ C∞(G), g ∈ G. (4.31)

Definition 4.2.6. Let (G, ∗) be a Lie group. The Lie algebra of a Lie group
is the vector space of all left-invariant vector fields on G:

Lie(G) = {X ∈ Vec(G) | X left-invariant }. (4.32)

The previous definition makes sense, since Vec(G), with the bracket, is a Lie
algebra. The Lie algebra of a Lie group can be identified as the tangent space at
the identity e of the group G :

Lie(G) ∼= TeG. (4.33)

4.3 Sub-Riemannian geometry

We recall some basic facts about sub-Riemannian geometry, following [ABB19].

Definition 4.3.1. A sub-Riemannian manifold is defined as a triple (M,D, g),
where M is a smooth, connected finite-dimensional manifold, D is a sub-bundle of
rank k ∈ N of the tangent bundle, called distribution, and g is a metric on D.
This implies that for any p ∈ M , there exist a neighborhood U ⊂ M of p and k
orthonormal vector fields {X1, . . . , Xk} defined on U , such that

Dp = span{X1|p , . . . , Xk |p} ⊆ TpM, ∀ p ∈ U. (4.34)

We always assume that the distribution is bracket-generating, namely the Lie
algebra generated by D at the point p coincides with TpM , for every p ∈M , i.e.

Liep(D) = TpM, ∀ p ∈M. (4.35)

Recall that, according to Definition 4.2.3, the Lie algebra generated by D at p can
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be expressed by means of (4.34), namely

Liep(D) = Liep({X1, . . . , Xk}). (4.36)

We sometimes refer to (4.35) as Hörmander condition. With a slight abuse of
notation, we say that M is a sub-Riemannian manifold.

Note that the previous definition includes Riemannian manifolds, indeed if
D = TM , then g must be a Riemannian metric on M . Thus, sub-Riemannian
geometry is a generalization of Riemannian geometry.

Definition 4.3.2. Let M be a sub-Riemannian manifold. We say that γ : [0, T ]→
M is a horizontal curve, if it is absolutely continuous in coordinates and

γ̇(t) ∈ Dγ(t), for a.e. t ∈ [0, T ]. (4.37)

This implies there exists a function u : [0, T ]→ Rk, such that

γ̇(t) =
k∑
i=1

ui(t)Xi|γ(t) , for a.e. t ∈ [0, T ]. (4.38)

where {X1, . . . , Xk} is a local orthonormal frame for D as in (4.34). We require
that u ∈ L2([0, T ],Rk).

By construction, ‖γ̇(t)‖|γ(t) = |u(t)| for a.e. t ∈ [0, T ], where |·| is the Euclidean
norm in Rk. Therefore the map t 7→ ‖γ̇(t)‖|γ(t) is square integrable on [0, T ] and
we can evaluate the length of horizontal curves. This allows us to define the
sub-Riemannian distance on M .

Definition 4.3.3. Let M be a sub-Riemannian manifold, and let γ : [0, T ] → M

be a horizontal curve. Its length is defined as follows:

`(γ) =
∫ T

0
‖γ̇(t)‖|γ(t)dt. (4.39)

Then, the Carnot–Carathéodory distance, or sub-Riemannian distance, is de-
fined by length-minimization procedure: for any p, q ∈M , we set

dSR(p, q) = inf{`(γ) | γ : [0, T ]→M, horizontal curve joining p and q}. (4.40)

According to Definition 4.3.2, not every curve is admissible and has finite
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length, thus it is not guaranteed that any couple of points is at finite distance.
The next theorem ensures that, under the Hörmander condition for the distribu-
tion, the sub-Riemannian distance is indeed well-defined.

Theorem 4.3.1 (Chow-Rashevsky). LetM be a sub-Riemannian manifold. Then,
the distance dSR : M×M → R is finite, continuous and it induces the same topology
as that of the manifold. Furthermore, the resulting metric space (M,dSR) is locally
compact.

We report here a seminal result by Hörmander [Hör67] ensuring the hypoel-
lipticity of operators obtained as sum of squares of vector fields plus possibly a
drift.

Theorem 4.3.2. Let M be a smooth manifold and let {X1, . . . , Xk} be a set of
bracket-generating vector fields on M . Then the operator

L = X1 +
k∑
i=2

X2
i (4.41)

is hypoelliptic, which means that if ϕ is a distribution defined on an open set
Ω ⊂M , such that Lϕ ∈ C∞(Ω), then ϕ ∈ C∞(Ω).

In a sub-Riemannian manifold M , with generating frame (4.34) satisfying the
Hörmander condition, we can immediately apply the above theorem to obtain
regularity for the solution to Lu = 0.

4.4 Sub-Riemannian model of monocular vision

Sub-Riemannian models of visual perception have been introduced in the work of
Citti and Sarti in [CS06], enriching the field of neurogeometry of vision. In this
section, we briefly review the history underlying the development of this discipline,
and then we concentrate on the study of the monocular Citti-Sarti model, one of
the starting points for our work.

4.4.1 Neurogeometry of vision

Families of cells involved in the visual sensory perceptual process are sensitive to
different properties of the image: position, orientation, contrast, curvature, scale,
phase, motion and stereo. In general, most of these families have a hypercolumnar
structure, as shown in Section 2.1.2.3: over every point (x, y) of the retinal plane
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there is an entire set of cells, each one sensible to a particular feature. Neuromathe-
matical models of V1 often adopt a differential geometry approach to modeling the
functional architecture of this area. We summarize the main steps characterizing
the evolution of neurogeometry, principally following [CS14, Chapter 1]:

• Introduction of differential geometry to vision
The pioneering idea underlying the application of differential geometry to
vision is introduced in the seminal works of perceptual psychology specialists
Koenderink and van Doorn in [KvD87] and Hoffmann in [Hof89] in the mid-
80s. In particular, Hoffman had the breakthrough idea of representing the
hypercolumnar organization of V1 as a fiber bundle with the space of retinal
locations as a basis, introducing Lie group theory to model the functional
architecture of the primary visual cortex. Almost simultaneously Mumford
in [Mum94], announced a variational approach to describe smooth edges, in
terms of the elastica functional, developing a stochastical explanation.

• The concept of neurogeometry
Results dealing with differential geometry and vision were unified under the
name of neurogeometry by Petitot and Tondut [PT99], who related the as-
sociation fields of Field Hayes and Hess [FHH93] with the contact geometry
introduced by Hoffmann [Hof89] and the elastica of Mumford [Mum94]. By
describing the set of simple cells as a fiber bundle, they identified the struc-
ture of this layer of cortical cells with the Heisenberg group, performing
contour completion in this structure by minimizing a suitable functional.

• Developments after 2000
The proposal of Petitot in [PT99], with the introduction of the term neuro-
geometry, is at the basis of a large class of models, which uses instruments
of differential geometry or group theory to explain the behavior of the visual
cortex starting from its functional architecture.
In this framework, Citti and Sarti observed that stratified Lie groups struc-
tures more appropriately describe the functional architecture of the visual
cortex, proposing a description for the set of simple cells requiring invari-
ance under roto-translations, namely introducing the Lie group SE(2). The
important idea was to endow it with a sub-Riemannian metric, which well
describes the behavior of the neural and psychophysical mechanisms at the
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basis of visual perception. We will study this model in more detail in Section
4.4.2.
This mathematical description of V1 has been used in many other works
to define a symplectic structure [SCP07], to study cortical orientation maps
[BCSS12, BCS14], to study different features selectivity such as scale [BCS18]
and spatio-temporal visual stimuli [BCCS14], to group perceptual stimuli
[BCCS14, ASFC+17], to study visual illusions [FMCS19, BCF+20]. A semi-
discrete variant of [CS06] was proposed in [BCGR14], and a relation between
association field curves and sub-Riemannian geodesics in SE(2) has been
carried out in [DBRS14]. Moreover, a spherical extension of the contour
perception model has been proposed in [MD16].

4.4.2 The Citti-Sarti model

Formally, it is possible to model the primary visual cortex as R2 × S1 (position-
orientation space), and thus naturally encoding the hypercolumnar structure dis-
covered by Hubel and Wiesel in [HW62]. An example of this structure is displayed
in image (a) of Figure 4.4.3, where the model proposed by Ben-Shahar and Zucker
in [BSZ04] is shown.

We have seen that the receptive field (RF) of a cortical neuron is the portion
of the retina to which the neuron reacts, and the receptive profile (RP) ϕ is the
function that models the activation of a cortical neuron. In particular, the receptive
profiles of simple cells in the primary visual cortex V1, sensitive to position (x, y)
and orientation θ, has classically been modeled through a bank of Gabor filters
ϕ{x,y,θ}, which act on a visual stimulus ([BCS14, Dau85, JP87]).

Following the neuro-mathematical model of Citti and Sarti [CS06], the set of
simple cells RPs can be obtained via translations of vector (x, y) and rotation of
angle θ from a unique mother profile ϕ0(ξ, η)

ϕ0(ξ, η) = exp (2πiξ) exp
(
−ξ

2 + η2

2σ2

)
, (4.42)

a Gabor function with real (even) and imaginary (odd) parts, phase1 φ equal to 0
and frequency f equal to 1, displayed in Figure 4.4.1. Translations and rotations

1The general expression for the Gabor function with phase φ and frequency f is ϕ0(ξ, η) =
exp (i (2πfξ + φ)) exp

(
− ξ2+η2

2σ2

)
. We assume f = 1 and φ = 0. For the reader interested in a

model of phase variation, we recommend [BCS18].
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(a) (b)

Figure 4.4.1: Even (a) and odd (b) part of Gabor function: the surface of the
two-dimensional filters, their common bi-dimensional representation and a mono-
dimensional section.

can be expressed as:

T(x,y,θ)(ξ, η) =
(
x

y

)
+
(

cos θ − sin θ
sin θ cos θ

)(
ξ

η

)
, (4.43)

and T(x,y,θ) denotes the action of the group of rotation and translation SE(2) on
R2, which associate to every vector (ξ, η) a new vector (x̃, ỹ), according to the law
(x̃, ỹ) = T(x,y,θ)(ξ, η). Hence a general RP can be expressed as

ϕ(x,y,θ)(ξ, η) = ϕ0(T−1
(x,y,θ)(ξ, η)), (4.44)

and this represents the action of the group SE(2) on the set of receptive profiles.
The retinal plane R is identified with the R2 plane, whose coordinates are

denoted by (x, y). When a visual stimulus I : R −→ R+ activates the retinal
layer, the neurons centered at every point (x, y) produce an output O(x, y, θ),
which can be modeled as the integral of the signal I with the set of Gabor filters:

O(x, y, θ) =
∫
R
ϕ{x,y,θ}(ξ, η)I(ξ, η)dξdη, (4.45)

where the function I represents the retinal image.
For (x, y) fixed, we will denote θ̄(x, y) the angle of maximal response:

max
θ
‖O(x, y, θ)‖ = ‖O(x, y, θ̄(x, y))‖; (4.46)

we will then say that the point (x, y) is lifted to the point (x, y, θ̄(x, y)). If all the
points of the image are lifted in the same way, the level lines of the 2D image I
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are lifted to new curves in the 3D cortical space (x, y, θ).

In the right-hand side of the equation (4.45) the integral of the signal with
the real and imaginary part of the Gabor filter is expressed. The two families
of cells have different shapes, hence they detect different features. In particular
odd cells are responsible for boundary detection, and we concentrate on these
ones. The output of simple cells (4.45) can then be locally approximated as
O(x, y, θ) = −X3,θ(Iσ)(x, y) at every point (x, y, θ) where Iσ is a smoothed version
of I, obtained by convolving it with a Gaussian kernel, and

X3,θ = − sin θ∂x + cos θ∂y. (4.47)

Switching to dual, the action of simple cells induces a choice of contact form
separately on each cell:

ωθ = − sin θ dx+ cos θ d y. (4.48)

The vector fields lying on its kernel, namely

X1 = cos θ∂x + sin θ∂y, X2 = ∂θ (4.49)

define a bi-dimensional sub-bundle of the tangent bundle to R2×S1, referred to as
the horizontal tangent bundle. One can define a scalar product on this sub-bundle
by imposing the orthonormality of X1 and X2: this determines a sub-Riemannian
structure on R2 × S1.

Example 4.4.1. (Imposing orthonormality of vector fields) The enforcement of
the orthonormality of the vector fields X1 and X2 results in the imposition of a
degenerate metric for the space R2 × S1 with coordinates (x, y, θ). The metric
matrix in these coordinates can be obtained in two steps: first by considering the
metric matrix in the basis determined by the involved vector fields, and then by
applying a classic change of basis.

The tangent space basis determined by the involved vector fields, more precisely
X1, X2 defined in (4.49) and X3 introduced in (4.47), is:

B = {X1, X3, X2}. (4.50)
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Using this basis, the gB matrix of the metric takes the form

gB =


1 0 0
0 0 0
0 0 1

 , (4.51)

since we are imposing just the orthonormality of X1 and X2. Let us now consider
the canonical basis of the space tangent to R2 × S1 with respect to the coordinates
(x, y, θ) i.e. C = {∂x, ∂y, ∂θ}. The metric matrix in this basis is given by

gC =


cos2 θ cos θ sin θ 0

cos θ sin θ sin2 θ 0
0 0 1

 (4.52)

obtained via gC = MT
C→B(gB)MC→B, where MC→B is the basic change matrix from

C to B.

(a) (b) (c)

Figure 4.4.2: (a) Examples of the compatibilities around the central point of the
image, derived from planar co-circularity. Brightness encodes compatibility values.
Figure adapted from [BSZ04]. (b) Starting from the central initial oriented point,
the solid line indicates a configuration between the patches where the association
exists while the dashed line indicates a configuration where it does not. Figure
adapted from [FHH93]. (c) Association field of Field, Hayes and Hess. Figure
adapted from [FHH93].

The visual signal propagates, in an anisotropic way, along cortical connectivity
and connects more strongly cells with comparable orientations. As we have seen in
Section 2.2.2 the relevance of alignment in bi-dimensional contour integration has
been first stated in the Gestalt law of good continuation [Kof63, Koh67]. The co-
circularity in the bi-dimensional planes has been studied by Zucker et al in [PZ89]
to describe the consistency and the compatibility of neighboring oriented points,
in accordance with specific values of curvature. An example of this compatibilities
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can be found in Figure 4.4.2, image (a). Psychophysical experiments were further
conducted, see for example [IBR89, SV87, Utt83]. In particular, Field and al.
in [FHH93] describe the association rules for bi-dimensional contour integration,
introducing the concept of association fields. A representation of these connec-
tions can be found in Figure 4.4.2, images (b) and (c). Neurophysiological studies
[Bla92, BZSF97, HMD14, MAHG93, SGLS97] show that the cortical correlate of
the psychophysically defined association field is the cortical connectivity among
cells of similar orientation preference, the so-called long-range connectivity.

(a) (b) (c)

Figure 4.4.3: (a) Orientation columns of cells in (x, y, θ) coordinates and long range
horizontal connections. Figure adapted from [BSZ04]. (b) Horizontal integral
curves in R2 × S1 generated by the sub-Riemannian model geometry proposed by
Citti and Sarti in [CS06]. (c) Projection of the fan of the integral curves in the
(x, y) plane. Figure adapted from [CS06].

Based on these findings, Citti and Sarti in [CS06] modeled the propagation in
the cortex as a propagation along integral curves of the vector fields X1 and X2,
namely

γ̇(t) = X1,γ(t) + kX2,γ(t), (4.53)

obtained by varying the parameter k in R, see Figure 4.4.3. Their 2D projection
is shown to produce a close approximation of the association fields, as shown in
[CS06] displayed in Figure 4.4.3, image (b).

Other models have been proposed, as for example the work of Boscain, Duits,
Rossi and Sachkov [BDRS14] or the one of Duits, Boscain, Rossi and Sachkov
[DBRS13]. They consider the SE(2) sub-Riemannian point of view presented in
[CS06], and then, they study the geodesics of the sub-Riemannian structure, to take
into account all appropriate end-conditions of association fields. More precisely, the
set of possible orientations in a point (x, y) that can be reached and connected with
an initial segment in (0, 0) oriented along the horizontal axis is usually described
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by an angle θ, which satisfies the following inequality: tan−1 ( y
x

)
≤ θ ≤ π

2 . This
condition is sometimes referred to as 2D relatability, see for example [KGS05a].
The authors of [BDRS14, DBRS13] observe that in 2D the set of end-points can
be obtained by minimizing geodesics whose spatial projections do not reveal cusps,
proposing then a model for 2D relatability and association fields.

It is worth making a final consideration regarding the fact that, in the model
proposed by Citti-Sarti, the retina is treated locally as if it were a plane, using
retinotopic coordinates (x, y). We will adopt this approach throughout the thesis,
as it describes well the local behavior, even if globally the retina can be viewed
as a sphere. A model that has adopted this point of view has been introduced in
[MD16] in which spherical association fields arise from the SO(3) sub-Riemannian
geometry acting on the spherical frame bundle. However, the comparison between
sub-Riemannian geodesics and wavefronts in SE(2) and SO(3) studied by the
authors of [MDS+17], shows that locally the two geometries are very similar.
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Chapter 5

The sub-Riemannian model for
stereo vision

In this chapter we present the neurogeometric model for stereo vi-
sion proposed in [BCSZ23], in which the parametrization involves
both spatial and orientation disparities. This model is based on a
sub-Riemannian structure on the three-dimensional space of position-
orientation and provides insight into neurobiology, suggesting an
implicit organization for neural interactions and a well-defined 3D
association field. Integral curves of the sub-Riemannian structure
shed light on the computations underlying the correspondence prob-
lem, and the model illustrates how good continuation in the world
generalizes good continuation in the plane.
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5.1 Motivation for the mathematical approach

Results presented in previous chapters show that, for the cortical-inspired geom-
etry underlying stereo vision, it makes sense to encode positional disparities and
orientation differences in the information coming from the two eyes.

(a) (b) (c)

Figure 5.1.1: Cartoon of visual cortex, V1, superficial layers. (a) Macroscopic or-
ganization: a number of (abstracted) orientation hypercolumns, colored by left-eye
(green)/right-eye (purple) dominant inputs. The color grading emphasizes that at
the center of the ocular dominance bands the cells are strongly monocular, while at
the boundaries they become binocularly-driven. (b) A zoom in to a few orientation
columns showing left and right monocular cells at the border of ocular dominance
bands. Cells in these nearby columns will provide the anatomical substrate for
our model. (c) More recent work shows that both monocular and binocular inputs
matter to these cells (redrawn from [STR+22], using data from ferret). This more
advanced wiring suggests the connection structures in our model.

Monocular information is segregated into ocular dominance bands [LHW75] in
layer 4, as cartooned in Figure 5.1.1. Image (a) shows an array of orientation hyper-
columns arranged over retinotopic positions, image (b) accentuates the orientation
distribution along a few of the columns near each position: horizontal connections
(not shown) affect the interactions between these units (subsection 2.1.2.3). Im-
ages (a) and (b) in Figure 5.1.1 are colored by dominant eye inputs: while the
monocular cells are toward the centers of the bands, the binocularly-driven cells
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tend to be closer to the ocular dominance boundaries. This configuration leads
to wonder about the nature of the interaction among groups of cells representing
different orientations at nearby positions and innervated by inputs from the left
and right eyes. The physiology suggests (Figure 5.1.1 image (c)) the answer lies
in the interactions among both monocular and binocular cells.

In this chapter we specify these interactions through the proposition of a
neurogeometric model for binocular cells, building on neuromathematical mod-
els, with particular emphasis on the neurogeometry of monocular simple cells in
V1 ([CS06, Pet08, PT99, SCS10a, SC15, SCP07]).

5.2 Differential interpretation of binocular neural mech-
anisms

The first step to tie biological results, pre-existing neuromathematical models and
classical stereo geometry is to give a differential interpretation of binocular neural
mechanisms underlying the stereo problem. We start with binocular receptive pro-
files and we realize a natural fiber bundle for modeling stereo, then, we identify the
natural direction emerging from these binocular RPs, which will be the direction
of the tangent to a potential 3D curvilinear object in the scene.

5.2.1 Binocular profiles

Binocular neurons receive inputs from both the left and right eyes, and to facil-
itate calculations, we assume these inputs are first combined in simple cells in
the primary visual cortex. This is a widely studied approach, see for example
[AOF99b, CD01, KBSO16, MF04]. In particular, it provides a first approxima-
tion in which binocular RPs are described as the product of monocular RPs, see
Figure 3.2.3.

This binocular model allows us to define disparity and frontoparallel coordi-
nates as d = xL−xR

2

x = xR+xL
2 ,

(5.1)

perfectly in accordance with the introduction of cyclopean coordinates in (3.4). In
this way (x, y, d) correspond to the neural correlate of (r1, r2, r3), via the change
of variables (3.5).
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5.2.2 The cortical fiber bundle of binocular cells

The hypercolumnar structure of monocular simple cells (orientation selective) has
been described as a jet fiber bundle in the works of Petitot and Tondut [PT99],
among many others. We concentrate on the fiber bundle R2 × S1, with fiber S1,
see e.g. [BSZ04].

In our setting, the binocular structure is based on monocular ones. In partic-
ular, for each cell on the left eye there is an entire fiber of cells on the right, and
vice versa, for each cell on the right there is an entire fiber of cells on the left.
This implies that the binocular space is equipped with a symmetry that involves
the left and right structures, allowing us to use the cyclopean coordinates (x, y, d)
defined in (5.1).

Figure 5.2.1: Left: schematic representation of the fiber bundle in two dimension,
with relationships between left and right retinal coordinates. Right: representation
of the selection of a whole fiber of left and right simple cells, for every x and for
every d.

Hence, we define the cyclopean retina R, identified with R2, endowed with
coordinates (x, y). The structure of the fiber is F = R× S1× S1, with coordinates
(d, θL, θR) ∈ F . The total space is defined in a trivial way, E = R×F = R2×R×
S1×S1, and the projection π : E −→ R is the trivial projection π(x, y, d, θL, θR) =
(x, y). The preimage of the projection E(x,y) := π−1({(x, y)}), for every (x, y) ∈ R,
is isomorphic to the fiber F , and the local trivialization property is naturally
satisfied.

A schematic representation can be found in Figure 5.2.1. The base has been
depicted as 1-dimensional, considering the restriction R|x of the cyclopean retina
R on the coordinate x. The left image displays only the disparity component of the
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fiber F , encoding the relationships between left and right retinal coordinates. The
right image shows the presence of the left and right monodimensional orientational
fibers.

5.2.3 Beyond the binocular energy model

We have recalled in subsection 3.2.1 that the classical model for expressing the
left/right-eye receptive field combination is the binocular energy model (BEM) in-
troduced in [AOF99b] for binocular RPs. However, this proposal typically ignores
the orientational feature of monocular simple cells, even if we have seen that this
information is needed to encode tilt and slant of objects in the space: orientation
disparity happens in the projections in the left and right eye. This orientational
inequality has mathematical but also neurophysiological evidence, as shown for
example in [BCP01], when the authors extended the BEM to incorporate these
differences, or in the many works presented in paragraph 2.1.2.4.2.

So, even though the binocular energy model is a type of minimal model, it
serves as a starting point, allowing the combination of monocular inputs. How-
ever, it is not sufficient to solve the stereo-matching problem. It is argued in
[PSK16, SPTL13] that, in addition to the neural mechanisms that couple charac-
teristics (such as signals, stimuli, or particular features) relating the left and right
monocular structures, there must be a system of connections between binocular
cells, which characterizes the processing mechanism of stereo vision.

In the following, binocular RPs and differential forms will allow us to identify
a natural direction along which we can establish an opportune set of connections.

5.2.4 Differential forms and binocular RPs

The BEM model, according to equation (3.10), generates the interaction term
OLOR, which can be expressed using left and right monocular RPs:

OROL =
∫
ϕθR,xR,y(x̃R, ỹR)IR(x̃R, ỹR)dx̃RdỹR

∫
ϕθL,xL,y(x̃L, ỹL)IL(x̃L, ỹL)dx̃LdỹL

=
∫ ∫

ϕθR,xR,y(x̃R, ỹR)ϕθL,xL,y(x̃L, ỹL)IR(x̃R, ỹR)IL(x̃L, ỹL)dx̃RdỹRdx̃LdỹL.
(5.2)

If we fix ỹi for i = L,R, we derive the expression of the binocular profiles ϕR,L =
ϕθR,xR,yϕθL,xL,y as product of monocular left and right ones, so that OROL =∫ ∫

ϕR,LILIR. This is in accordance with the measured profiles of Figure 3.2.3.

67



Since we know from the monocular case ([CS06]) that there exists a relationship
between RPs and 1-forms, we can see that there is an analogous correspondence in
the binocular case with a 2-form of the space expressed in cyclopean coordinates.

Proposition 5.2.1. The binocular interaction term can be recast as wedge product
of the two monocular 1-forms ωθL and ωθR defined in (4.48):

OROL = ωθR ∧ ωθL . (5.3)

Proof. It follows from [CS06] that the output of simple cells (4.45) in SE(2) can
be locally approximated as O(x, y, θ) = −X3,θ(Iσ)(x, y). We will denote with the
subscript R the quantities corresponding to the right monocular structure, and we
will use the subscript L for the left one. Accordingly, it is possible to re-write the
binocular interaction term as:

OROL = X3,θR(IσR)(xR, y)X3,θL(IσL)(xL, y). (5.4)

We define vR := (D(xR,y)IσR
~X3,θR)X3,θR withD(xR,y)IσR differential (Jacobian)

of the smoothed version of the image IσR at the point (xR, y), in such a way that
we have

OR = X3,θR(IσR)(xR, y) = (D(xR,y)IσR
~X3,θR) = ωθR(vR) (5.5)

since ωθR(X3,θR) = 1 and D(xR,y)IσR
~X3,θR ∈ R; the same reasoning holds for the

left structure. It is then possible to recast (5.4) in the retinal coordinates as:

OROL =ωθR(vR)ωθL(vL)

=ωθR ∧ ωθL(vR, vL) + ωθL(vR)ωθR(vL)︸ ︷︷ ︸
=0

,

=ωθR ∧ ωθL(vR, vL),

(5.6)

exploiting the properties of the wedge product and the left and right retinal coor-
dinates.

Expressing the retinal coordinates in terms of cyclopean ones (3.4) we have

xR = x− d and xL = x+ d, (5.7)
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and the extended left and right 1-form can be written as:

ωθR =− sin θR dx+ cos θR d y + sin θR d d

ωθL =− sin θL dx+ cos θL d y − sin θL d d.
(5.8)

We define ωbin := ωθR ∧ ωθL as the natural 2-form characterizing the binocular
structure. By an abuse of notation, identifying 1-forms with vectors, it is possible
to use the Hodge duality in three dimension to relate the wedge product with the
cross product ωbin = ?(ωθR ∧ ωθL) = ωθR × ωθL . In this way we get:

ωbin =


sin(θR + θL)
2 sin θR sin θL
sin(θL − θR)

 . (5.9)

Remark 5.2.1. The vector ωbin of equation (5.9) can be interpreted as the inter-
section of the kernels generated from ωθR , ωθL expressed in in cyclopean coordinates
(x, y, d):

kerωθL = span




cos θL
sin θL

0

 ,


1
0
1


 , kerωθR = span




cos θR
sin θR

0

 ,

−1
0
1




⇒ ωbin = kerωθR ∩ kerωθL .
(5.10)

The result of the intersection of these structures identifies a direction, as shown in
Figure 5.2.2.

In other words, we earlier recalled (subsection 4.4.2) that the result of the
action of a monocular odd simple cell is to select directions for the propagation of
information. We now have combined these, for the two eyes, to show that in the
three-dimensional case the binocular neural mechanisms also lead to a direction.
We will see in the next sections that this direction is the direction of the tangent
vector to the 3D stimulus, provided points are corresponding.

5.2.5 Compatibility with stereo geometry

We consider the 2-form characterizing the binocular structure ωbin defined in (5.9)
and we show that it can be associated with the tangent vector of the 3D stimulus,
mathematically modeled as a curve γ : R −→ R3. The idea is that this tangent
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Figure 5.2.2: Direction detected by ωbin through the intersection of left and right
planes generated by kerωθR and kerωθL . Red vector corresponds to the associated
2-form ωbin.

vector is orthogonal both to ωθR and to ωθL , and therefore it has the direction of
the vector product ωθR ∧ ωθL .

Precisely, we consider the normalized tangent vector tL and tR on retinal planes

tR = (cos θR, sin θR) tL = (cos θL, sin θL), (5.11)

applied to the points (xR, y) and (xL, y), retinal projections of γ ∈ R3, according
to equations (3.1). Taking into account that f is the focal coordinate of the
retinal planes in R3, we associate to these planar points the corresponding points
m̃L = (xL − c, y, f) , m̃R = (xR + c, y, f) in R3, with c ∈ R coordinate of the
optical centers as defined in section 3.1. Applying equation (3.7) to this setting,
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it is possible to derive the tangent vector of the three-dimensional contour:

UtL = P−1
L m̃L × P−1

L t̃L =


xL

yL

f

×


cos θL
sin θL

0

 =


−f sin θL
f cos θL

xL sin θL − yL cos θL

 ,

UtR = P−1
R m̃R × P−1

R t̃R =


xR

yR

f

×


cos θR
sin θR

0

 =


−f sin θR
f cos θR

xR sin θR − yR cos θR

 ,
(5.12)

and recovering the tangential direction via the cross product

UtR × UtL = f


cos θR(xL sin θL − yL cos θL)− cos θL(xR sin θR − yR cos θR)
sin θR(xL sin θL − yL cos θL)− sin θL(xR sin θR − yR cos θR)

f(sin θL cos θR − sin θR cos θL)

 .
(5.13)

Proposition 5.2.2. If we define

ω̃θL := UtL , ω̃θR := UtR (5.14)

and the corresponding 2-form ωR3 := ω̃θR ∧ ω̃θL, then, up to a multiplicative factor,
the following equalities hold:

ω̃θL = ωθL , ω̃θR = ωθR , ωR3 = ωbin. (5.15)

Proof. Let us recover the expression of the 1-forms ω̃θL := UtL and ω̃θR := UtR .
Recall here the change of variable (3.5):

r1 = xc
d

r2 = yc
d

r3 = fc
d

, (5.16)

and its differential: 
d r1 = c

d dx− cx
d2 d d

d r2 = c
d d y − cy

d2 d d

d r3 = −fc
d2 d d

. (5.17)
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Figure 5.2.3: Three-dimensional reconstruction of the space from retinal planes.
The one-dimensional form ωθL and ωθR are identified with the normal to the curves
γL and γR. Their three dimensional counterpart ω̃θL and ω̃θR identify the tangent
vector to the curve γ : R→ R3 by the wedge product ω̃θL ∧ ω̃θR .

Writing the quantity UtL of equation (5.12), in term of a 1-form in the variables
(r1, r2, r3), we have:

ω̃θL =− f sin θL d r1 + f cos θL d r2 + (xL sin θL − y cos θL) d r3. (5.18)

Changing coordinates:

ω̃θL =− f sin θL
(
c

d
dx− cx

d2 d d
)

+ f cos θL
(
c

d
d y − cy

d2 d d
)

+ (xL sin θL − y cos θL)
(
−fc
d2 d d

)
=fc

d
(− sin θL dx+ cos θL d y − sin θL d d)

=fc

d
ωθL .

(5.19)

So, up to the multiplicative factor fc
d , we have that ω̃θL = ωθL in the variables
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(x, y, d). The same reasoning holds for the right structure.

In this way, the disparity binocular cells couple in a natural way positions, iden-
tified with points in R3, and orientations in S2, identified with three-dimensional
unitary tangent vectors. As already observed in subsection 5.2.3, the geometry
of the stereo vision is not solved only with these punctual and directional argu-
ments, but there is the need to take into account suitable types of connections. In
[AZ00, LZ03, LZ06], Zucker et al. proposed a model that considered the curvature
of monocular structures as an additional variable. Instead, we propose to consider
simple monocular cells selective for orientation and to insert the notion of curva-
ture directly into the definition of connection. It is therefore natural to introduce
the perceptual space via the manifold R3 o S2, and look for appropriate curves.

5.3 A perceptual model in the space of 3D position-
orientation R3 o S2

We have just clarified that binocular cells are parametrized by points in R3, and
orientations in S2. An element ξ of the space R3 o S2 it is defined by a point
p = (p1, p2, p3) in R3 and an unitary vector n ∈ S2. It is usual to define the 2
dimensional sphere as the set of points in R3 having (Euclidean) distance from the
origin equal to 1, formally S2 = {n ∈ R3; ‖n‖ = 1}. Since the topological dimension
of this geometric object is 2, we introduce the classical spherical coordinates (θ, ϕ)
such that n = (n1, n2, n3) ∈ S2 can be parametrized as:

n1 = cos θ sinϕ

n2 = sin θ sinϕ

n3 = cosϕ

(5.20)

with θ ∈ [0, 2π] and ϕ ∈ (0, π). The ambiguity that arises using a local coordinate
chart is overcome by the introduction of a second chart (for example, see Remark
A.1.1, in Appendix A), covering the singular points.

Since S2 is not a Lie group (Hairy Ball Theorem), we cannot set a product
on R3 o S2. However, we can use the Euclidean group of rigid body motions in
dimension three, SE(3), and consider a group action. An element g = (p,R)
in SE(3) is defined by a point p ∈ R3 and a rotation R ∈ SO(3). The group
law expresses the fact that the composition of two body motions is again a body
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motion, and so for two elements g = (p,R) and g′ = (p′, R′) in SE(3) their product
is defined as

gg′ = (p+Rp′, RR′). (5.21)

The left group action Lg of g ∈ SE(3) onto (q, n) ∈ R3 o S2 is:

Lg(q, n) = (Rq + p,Rn). (5.22)

It is then clear that the group product (5.21) influences the group action (5.22)
in R3 o S2; for this reason then we use the notation o even though this is usually
reserved for the semi-direct product of groups. For further information regarding
the relationships between SE(3) and R3 o S2 from a differential point of view, see
Duits and Franken in [DF11] and also Duits, Creusen, Ghosh and Dela Haije in
[DCGDH11], with application to HARDI/DTI images. In the following, we adapt
these mathematical results to apply them to the problem of stereo perception.
More details about these mathematical spaces can be found in Appendix A.

5.3.1 Stereo sub-Riemannian geometry

The emergence of a privileged direction in R3, associated with the tangent vector
to the three-dimensional curvilinear stimulus, is the reason why we endow R3 o S2

with a sub-Riemannian structure that favors the direction in 3D identified by the
2-form ωbin.

To do so, we consider the following basis for the tangent space

∂1, ∂2, ∂3, ∂θ, ∂ϕ. (5.23)

and we move them with the push-forward of the group action (5.22): Yi|gφ =
(Lg)∗∂iφ = ∂i(φ ◦ Lg), with φ smooth function. Noticing that R ∈ SO(3) can be
decomposed as a product of rotations around the Cartesian axes (Euler coordinates
in (A.1)), and choosing g ∈ SE(3) as the element defined by a rotation R ∈ SO(3)
with the first rotation around the third axis equal to zero, the push forwarded
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vectors can be expressed in the coordinate chart as:

Y1 = cosϕ cos θ∂1 + cosϕ sin θ∂2 − sinϕ∂3

Y2 = − sin θ∂1 + cos θ∂2

Y3 = (sinϕ cos θ)∂1 + (sinϕ sin θ)∂2 + cosϕ∂3

Yθ = − 1
sinϕ∂θ

Yϕ = ∂ϕ

(5.24)

for ϕ 6= 0, ϕ 6= π.

We define the distribution D on R3 o S2 in such a way that it encodes the
coupling between positions and orientations. As proved by Duits and Franken in
[DF11], D is well-defined and a local frame in the coordinate chart is given by:

D = span{Y3, Yθ, Yϕ}. (5.25)

In particular, the vector field Y3 identifies the privileged direction in R3, while
Yθ and Yϕ involve just orientation variables of S2. The commutation rules of the
vector fields {Y3, Yθ, Yϕ} make them verify the Hörmander condition, defining a
sub-Riemannian structure if we also choose a metric onD. The metric is not unique
and the simplest choice is the metric which makes the vector fields {Y3, Yθ, Yϕ}
orthonormal. More precisely, the metric that we consider restricted to S2 is the
classical Riemannian metric of the sphere, induced by the Euclidean metric of R3.
The reader interested in more details can refer to Appendix A.

5.3.2 Change of variables

We have set the sub-Riemannian model in R3 o S2 starting from a cortical parame-
trization involving position and orientation disparity. We have already expressed
the change of variable in the variables (x, y, d) to (r1, r2, r3) in equations (3.5).
However, the cortical coordinates also contain the angular variables θR and θL

related in the perceptual space to the spherical angles θ, ϕ.

To identify a change of variable among these variables, we first introduce the
function (r1, r2, r3, θ, ϕ) F−→ (x, y, d, θL, θR) :
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F : R3 o S2 −→ R3 × S1 × S1

r1

r2

r3

θ

ϕ


7→



fr1
r3
fr2
r3
cf
r3

tan−1( r3 sin θ sinϕ−r2 cosϕ
r3 cos θ sinϕ−(c+r1) cosϕ)

tan−1( r3 sin θ sinϕ−r2 cosϕ
r3 cos θ sinϕ−(c−r1) cosϕ


, (5.26)

expressed locally in chart θ ∈ [0, 2π], ϕ ∈ (0, π) and where the retinal right and left
angles θR = tan−1( r3 sin θ sinϕ−r2 cosϕ

r3 cos θ sinϕ−(c+r1) cosϕ) and θL = tan−1( r3 sin θ sinϕ−r2 cosϕ
r3 cos θ sinϕ−(c−r1) cosϕ)

are obtained considering equation (3.6).

Remark 5.3.1. Three-dimensional stimuli lying in fronto parallel planes project
in retinal planes with the same orientation. The angle ϕ = k π2 with k ∈ N identifies
fronto-parallel planes, and substituting this value in (5.26), it follows that θL =
θR = θ.

Analogously, it is possible to define the change of variable (x, y, d, θL, θR) G−→
(r1, r2, r3, θ, ϕ):

G : R3 × S1 × S1 −→ R3 o S2

x

y

d

θR

θL


7→



cx
d
cy
d
cf
d

tan−1(2 sin θR sin θL
sin(θR+θL) )

tan−1(
√

sin2(θR+θL)+4 sin2 θR sin2 θL
sin(θR−θL) )


. (5.27)

The angles θ = tan−1(2 sin θR sin θL
sin(θR+θL) ) and ϕ = tan−1(

√
sin2(θR+θL)+4 sin2 θR sin2 θL

sin(θR−θL) ) are

obtained considering that tan θ = (γ̇)2
(γ̇)1

and tanϕ =
√

(γ̇)2
1+(γ̇)2

2
(γ̇)3

, applying these
relations to the spatial components of vector field Y3.

Remark 5.3.2. In accordance with Remark 5.3.1, projections on retinal planes in
which the tangents are characterized by angles θL = θR correspond to three dimen-
sional stimuli lying on fronto-parallel planes, identified with an integer multiple of
ϕ = π

2 .
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5.3.3 Integral curves

We will assume that the connectivity of the space is described by horizontal curves
of the distribution D, and thanks to the Hörmander condition it defines a met-
ric. According to definition (4.3.2), a curve Γ : [0, T ] −→ R3 o S2 is said to be
admissible (or horizontal) if :

Γ̇(t) ∈ DΓ(t),↔ Γ̇(t) = a(t)Y3,Γ(t) + b(t)Yθ,Γ(t) + c(t)Yϕ,Γ(t), (5.28)

where a, b, c are sufficiently smooth functions on t ∈ [0, T ]. We consider the partic-
ular case of constant coefficient admissible curves, with a(t) = 1, since the vector
field Y3 represents the tangent direction of the stimulus and so it never vanishes:

Γ̇(t) = Y3,Γ(t) + c1Yθ,Γ(t) + c2Yϕ,Γ(t), (5.29)

with c1 and c2 varying in R. An example of the fan of integral curves with constant
coefficients satisfying (5.29) is shown in Figure 5.3.1, where a strong resemblance
with the fan of helices proposed in [AZ00] can be observed.

(a) (b)

Figure 5.3.1: Fans of integral curves proposed for the geometry of the stereo vision.
(a) Fan of helices from the work of Zucker et al. [AZ00]. (b) Fan of sub-Riemannian
integral curves defined by equation (5.29) with varying c1 and c2 in R.

These curves can be thought of in terms of trajectories in R3 describing a
movement in the Y3 direction, which can eventually change according to Yθ and
Yϕ. It is worth noting that in the case described by coefficients c1 and c2 equal to
zero, the 3D trajectories would be straight lines in R3; by varying the coefficients
c1 and c2 in R, we allow the integral curves to follow curved trajectories, twisting
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and bending in all space directions.
Formally, the amount of "twisting and bending" in space is measured by in-

troducing the notions of curvature and torsion. We then investigate how these
measurements are encoded in the parameters of the family of integral curves, and
what constraints have to be imposed to obtain different typologies of curves.

Remark 5.3.3. The 3D projection of the integral curves (5.29) will be denoted
γ and satisfy γ̇(t) = (cos θ(t) sinϕ(t), sin θ(t) sinϕ(t), cosϕ(t))T . Classical instru-
ments of differential geometry let us compute the curvature and the torsion of the
curve γ(t):

k =
√

(ϕ̇)2 + sin2 θ(θ̇)2,

τ = 1
k2 (− cosϕ sin2 ϕ(θ̇)3 − sinϕϕ̇θ̈ + θ̇(−2 cosϕ(ϕ̇)2 + sinϕϕ̈)).

(5.30)

Using the explicit expression of the vector fields Yθ and Yϕ in equation (5.29), we
get

θ̇ = − c1
sinϕ, ϕ̇ = c2, (5.31)

from which it follows that:

k =
√
c2

1 + c2
2

τ =c2
1 − c2

2
k2 c1 cotanϕ.

(5.32)

Proposition 5.3.1. By varying the parameters c1 and c2, or equivalently imposing
conditions on the angles θ and ϕ of the integral curves (5.29), we have:

1. If ϕ = π
2 then k =

√
c2

1, τ = 0, and so the family of curves (5.29) are circles
of radius 1/c2

1 on the fronto-parallel plane r3 = cost.

2. If ϕ = ϕ0, with ϕ0 6= π/2, then k =
√
c2

1 and τ = c1 cotanϕ0, and so the
family of curves (5.29) are r3-helices.

3. If θ = θ0 then k =
√
c2

2, τ = 0, and so the family of curves (5.29) are circles
of radius 1/c2

2 in the osculating planes.

4. If c1 = ±c2 then τ = 0, and so the family of curves (5.29) are circles of
radius 1/c2

2 in the osculating planes.

Proof. The computation follows immediately from the values of curvature and
torsion (5.32) and classical results of differential geometry.
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This result allows us to naturally go back to the work of the Zucker group on
the problem of stereovision. Indeed, the second point of Proposition 5.3.1 upholds
the conjecture formulated by Alibhai and Zucker in [AZ00], proposing helices with
spiral along the depth direction to generalize the concept of co-circularity in di-
mension 3. Moreover, the following remark show compatibility with the results
presented in [LZ03].

(a) (b) (c)

Figure 5.3.2: Different types of curves generated by (5.29). (a) Arc of circles for
ϕ = π/2. (b) r3-helices for ϕ = π/3. (c) Family of curves with constant curvature
k and varying torsion parameter.

Remark 5.3.4. If the value of the curvature k is fixed, and one parameter, sup-
pose c2, is free in the definition of the integral curves (5.29), then we are in the
setting of Proposition 3.3.1. In fact, the coefficient c1 is obtained by imposing
c1 = ±

√
k2 − c2

2, and in particular the component that remains to be determined
is the torsion.

Examples of particular cases of the integral curves (5.29) according to Propo-
sition 5.3.1 and Remark 5.3.4 are visualized in Figure 5.3.2.

5.4 Comparison with experimental data

In this section, we present results of compatibility between the proposed sub-
Riemannian model and biological and psychophysical phenomena present in lit-
erature. The integral curve viewpoint suggests underlying biological circuits by
providing the direction of information flow. Moreover, the integral curves formal-
ize association field models: their parameters describe the spray of curves that
is well in accordance with 3D curves as studied in psychophysical experiments in
[HF95, HHK97, KHK16].
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5.4.1 Biological connections

The foundation for building our sub-Riemannian model of stereo was a sub- Rie-
mannian model of curve continuation. This was motivated by the orientation col-
umn at each position, and the connections between cells in nearby columns. These
connections were, in turn, a direct model of the long-range horizontal connections
in visual cortex, for which there is biological data (e.g. [BZSF97]). Aspects of the
cortical architecture that support binocular processing are illustrated in 2.1.2.4.
Although the inputs from each eye are organized into ocular dominance bands,
there is no direct evidence for "stereo columns" analogous to the monocular orien-
tation columns. But, there is evidence of long-range connections between binocular
cells, and our model informs, concretely, what information should be carried by
these long range connections. Thus, an organization for stereo is suggested, but it
is implicit in the architecture. Nevertheless, there is evidence in support of it.

(a) (b)

Figure 5.4.1: (a) A biocytin injection superimposed on a map of ocular dominance
columns, image result from the work in [MAHG93]. Binocular zones are in the
middle of monocular zones (coded in black and white). Starting from the injection
site (yellow circle in the center of a binocular zone) the patches’ propagation (red
corresponds to dense while green to sparsely labeled) tends to avoid highly monoc-
ular sites, bypassing the centers of ocular dominance columns, and are located in
binocular zones. (b) 3D interpretation of the physiological image (a).

Just as information propagates to enforce monocular curve continuation, the
binocular signal propagates to form a coherent binocular representation. The
Grinwald group established this for stereo [MAHG93] (see also Figure 5.4.1 image
(a)), using biocytin injections, that propagate directly along neuronal processes
and are deposited at excitatory synapses. Thus, this technique demonstrates the
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presence of long-range connections between binocular cells. These results were
refined, more recently, by the Fitzpatrick group [STR+22], using in vivo calcium
imaging. As shown in Fig. 5.1.1 image (c) the authors demonstrated both the
monocular and the binocular inputs for stereo, and the dependence on orientations.

More precisely, [MAHG93] showed selective anisotropic connectivity among
binocular regions: the biocytin tracer does not spread uniformly, but rather is
highly directional with distance from the injection point.1 Putting this together
with [STR+22], we interpret the anisotropy as being related to (binocular) ori-
entation ([STR+22]), which is exactly the behavior of the integral curves of our
vector fields. Our 3D association fields are strongly directional, and information
propagates preferentially in the direction of (the starting point of) the curve. An
example can be seen in Figure 5.4.1, image (b), where the fan of integral curves
(5.29) is represented, superimposed with colored patches, following the experiment
proposed in [MAHG93].

5.4.2 Psychophysics and association fields

The connections described by the integral curves in our model can be related to the
geometric relationships from psychophysical experiments on perceptual organiza-
tion of oriented elements in R3. The goal here is to establish that our connections
serve as a generalization of the concept of an association field in 3D.

5.4.2.1 Towards a notion of association field for 3D contours

The perception of continuity between two elements of position-orientation in R3

has been studied experimentally: in the works of Kellman, Garrigan, Shipley et al.
[KGS05a, KGS+05b], by introducing a theory called 3D relatability; in the works of
Hess and colleagues in[HF95, HHK97] by extending the good regularity/continuity
in depth; and the same topic has more recently been addressed by Deas-Wilcox
and Khuu-Honson-Kim in [DW15, KHK16].

5.4.2.1.1 3D relatability Kellman, Garrigan, Shipley [KGS05a, KGS+05b]
introduce a theory called 3D relatability extending to 3D the fundamental work of
Field, Heyes and Hess [FHH93], and determining the geometrical affinities between
orientations under which a pair of position-orientation elements are perceived as
connected in a 3D scene.

1This was the case with monocular biocytin injections as well.
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Figure 5.4.2: Example of the fan of the 3D relatable edges with initial point E0.

Particularly, in a system of 3D Cartesian coordinates, it is possible to introduce
an oriented edge E, defining the application point (r1, r2, r3) and its orientation
identified with the angles θ and ϕ. This orientation can be read through the
direction expressed by the vector (cos θ sinϕ, sin θ sinϕ, cosϕ)T . Consider an initial
edge E0, with application point on the origin of the coordinate system (0, 0, 0) and
orientation lying on the r1-axis, described by θ = 0, ϕ = π/2. The range of possible
orientations (θ, ϕ) 2 for 3D-relatable edges with E0 is given by:

tan−1
(
r2
r1

)
≤ θ ≤ π

2 and π

2 ≤
3π
2 − ϕ ≤ tan−1

(
r3
r1

)
. (5.33)

The bound of these equations identified with the quantity π
2 incorporate the 90

degrees constraint in three dimensions, while the bounds defined by the inverse of
the tangent express the absolute orientation difference between the reference edge
E0 and an edge positioned at the arbitrary oriented point E(r1,r2,r3) so that its
linear extension intersects E0, see [KGS05a, KGS+05b] for further details.

In Figure 5.4.2 we visually represent an example of 3D positions and orienta-
tions that meet the 3D relatable criteria. Starting from initial edge E0 applied

2The angle ϕ here has been modified to be compatible with our set of coordinates. The
relationship between the angle ϕ̃ in works [KGS05a, KGS+05b] can be expressed as : ϕ̃ =
acos(sinϕ) + π.
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in (p01, p02, p03) and orientation on the e1- axis, we display for an arbitrary point
(p1, p2, p3) the limit of the relatable orientation (θ, ϕ).

5.4.2.1.2 Good continuation properties in 3D Psychophysical studies, see
[DW15, HF95, HHK97], have investigated the properties of the curves that are
suitable for connecting these relatable points. These curves are well described by
being smooth and monotonic. In particular, using non-oriented contour elements
for contours, Hess et al. in [HHK97] indicate that contour elements can be effec-
tively grouped based primarily on the good continuation of contour elements in
depth. This statement is confirmed by the more recent work of Deas and Wilcox
[DW15], who in addition observe that detection of contours defined by regular
depth continuity is faster than detection of discontinuous contours. All these re-
sults support the existence of depth grouping operations, arguing for the extension
of Gestalt principles of continuity and smoothness in three-dimensional space.

Finally, on the relationship of the three-dimensional curves to 2-dimensional
association fields, see [KGS+05b, KHK16]. These authors have assumed that the
strength of the relatable edges in the co-planar planes of E0 must meet the relations
of the bi-dimensional association fields of [FHH93].

5.4.2.2 Compatibility with the sub-Riemannian model

To model associations underlying the 3D perceptive organization previously intro-
duced, we consider a family of integral curves (with constant coefficients) generated
from the local orthonormal frame (5.25) of the distribution D:

Γ̇(t) = Y3,Γ(t) + c1Yθ,Γ(t) + c2Yϕ,Γ(t). (5.34)

These curves locally connect the association fan generated by the geometry of
3D relatability. In particular, image (b) of Figure 5.4.3 shows the family of the
horizontal curves connecting the initial point E0 with 3D relatable edges.

In analogy with the experiment of Field, Hayes and Hess in [FHH93], we choose
to represent non-relatable edges to the left of the starting point E0, while on
the right 3D relatable edges. So, filled lines of the integral curves indicate the
correlation between the central horizontal element E0 and the ones on its right,
while dotted lines connect the starting point E0 with elements not correlated with
it, as represented on the left part of the image.

Points along the integral curves in R3 o S2 which satisfy the 3D relatability
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(a) (b)

Figure 5.4.3: 3D relatable points and integral curves. (a) 3D relatable edges are
displayed on the right of the initial edge E0. Unrelatable 3D edges are displayed
on the left. (b) Horizontal integral curves with filled lines connect 3D relatable
edges with initial point E0. Horizontal integral curves with dotted lines do not
connect 3D unrelatable edges.

condition are then projected into the retinal planes. We obtain a picture that
is in agreement with the projections of the stereo compatibility fields in retinal
images, introduced by Alibhai and Zucker in [AZ00], as shown in Figure 5.4.4.
In particular, image (a) displays the two right retinal projections (we omit the
very similar results for the left structures) of the position-orientation elements.
The superimposition of the upper part of the compatibility field with the upper

(a) (b) (c)

Figure 5.4.4: (a) Bidimensional projections of the compatibility fields (left, image
adapted from [AZ00]) and of the 3D relatable points (right). (b)Superimposition
of the compatibility field on the 3D relatable points projection. (c) Emphasizing
the involved region on the 3D relatable points projection.

part of the 3D relatable points (Figure 5.4.4 image (b)) allows the selection of
suitable points (image (c) of Figure 5.4.4) to analyze the existence of common
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patterns. In particular, by remaining vertically aligned with the starting point
(traveling along the y axis), the number of admissible orientations increases as the
ordinate coordinate grows. Moreover, in the examined regions the directions that
are taken into consideration are comparable, and in general, it is observed that
these investigated orientations lead to the global idea of co-circularity.

Restricting the integral curves on the neighborhood of co-planar planes with
an arbitrary edge E, we capture behaviors compatible with the 2D case. More
precisely, on the r1-r2 plane (fronto-parallel) and the r1-r3 plane we have arc of
circles, in accordance with Proposition 5.3.1. Furthermore, for an arbitrary plane
in R3 containing an edge E, we observe that the curves generated with fixed angle
ϕ are helices, locally satisfying the bi-dimensional constraint. Examples can be
found in Figure 5.4.5. In particular, the curves displayed in images (a) and (b)
of Figure 5.4.3 are well in accordance with the curves of the Citti-Sarti model,
depicted in Figure 4.4.2.

(a) (b) (c)

Figure 5.4.5: Compatibility with bidimensional constraint. (a) Restriction of the
fan of the integral curves on the e1-e2 plane. (b) Restriction of the fan of the
integral curves on the e1-e3 plane. (c) Restriction of the fan at ϕ = ϕ0. These
curves (black lines) are not planar curves but helices. However, their projection
(white lines) on the coplanar plane with the initial edge satisfies the bidimensional
constraints.

Finally, observing the behavior of the fan (5.34) on a three-dimensional curvi-
linear stimulus, we can see in Figure 5.4.6 how the proposed 3D association field
envelopes a space curve, in the same way that a 2D association field envelopes a
planar curve. The integral curve viewpoint does provide a direction of information
flow: curvature, implicitly described through coefficients c1 and c2, supplies a kind
of glue that enable transitions from points to nearby points.
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Figure 5.4.6: The three-dimensional space curve γ is enveloped by the 3D the
association field centered at a point. Formally, this association field is a fan of
integral curves in the sub-Riemmanian geometry described by equation (5.34) with
varying c1 and c2 in R.

As in all models, it is possible to admit alternative viewpoints. One of these,
not covered in this thesis, involves the geodesics of the sub-Riemannian struc-
ture. These curves have already been proposed in the two-dimensional case, by
the authors of [BDRS14, DBRS13], as a model for the geometry of 2D relatability
(and the two-dimensional association fields). Geodesics of the sub-Riemannian
structure of position-orientation in 3D have been the object of interesting papers,
such as [DGDHM16, DMMP18]. In these works, the authors not only characterize
geodesics with spatial cuspless projections but also their admissible boundary con-
ditions, which, depending on the point, could be used to involve all orientational
end-conditions according to the theory of 3D relatability.

5.4.3 Integration of contours and the stereo correspondence prob-
lem

The notion of 3D association field helps to understand how the brain integrates
contours to perceive a three-dimensional stimulus from images captured by the
eyes. We can see how the geometry we propose is a good starting point to under-
stand how to match left and right points and features.
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Figure 5.4.7: Left and right retinal images of the set Ω. Black points are the
projection of the point of the curve γ, while gray points are background random
noise.

Inspired by the experiment of Hess and Field in [HF95], we consider a path
stimulus γ interpreted as a contour, embedded in a background of randomly ori-
ented elements: left and right retinal visual stimuli are depicted in Figure 5.4.7.
We perform a first simplified lift of the retinal images to a set Ω subset of R3 o S2.
This set contains all the possible corresponding points, obtained by coupling left
and right points which share the same y retinal coordinate, see Figure 5.4.8. The
set Ω contains false matches, namely points that do not belong to the original
stimulus. It is the task of correspondence to eliminate these false matches.

We compute for every lifted point the binocular output OB of equation (3.10).
This output can be seen as a probability measure that gives information on the
correspondence of the couple of left and right points. We can simply evaluate which
are the points with the highest probability of being in correspondence, applying a
process of suppression of the non-maximal pairs over the fiber of disparity. In this
way, noise points are removed (Figure 5.4.9, image (a)).

We now directly exploit good continuation in depth. The remaining noise
elements are orthogonal to the directions of the elements of the curve that we
would like to reconstruct. Calculating numerically the coefficients c1 and c2 of
integral curves (5.29) that connect all the remaining pairs of points, we can obtain
for every pair the value of curvature and torsion using (5.32).

87



Figure 5.4.8: Lifting of the two left and right retinal images of Figure 5.4.7 in the
space of position and orientation R3 × S2.

(a) (b)

Figure 5.4.9: (a) Selection of lifted points according to the binocular output. (b)
Points of the stimulus γ connected by integral curves (5.29).

Figure 5.4.10 read it in terms of matricesM representing the values of curvature
or torsion for every couple of points ξi, ξj in the element Mij . In particular, we
observe that random points are characterized by a very high curvature and in
general also the torsion deviates from minimum magnitudes. So, by discarding
these high values, we select only the three-dimensional points of the curve γ,
which are well connected by the integral curves, as shown in image (b) of Figure
5.4.9. This is in accordance with the idea developed in [AZ00, LZ03, LZ06], where
curvature and torsion provide constraints for reconstruction in 3D.
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(a) (b)

Figure 5.4.10: Matrices M which element Mij represents the value of curvature or
torsion for every couple of points ξi, ξj . The first eight points correspond to the
stimulus curve γ while the others are random noise. (a) Curvature matrix. (b)
Torsion matrix.

The proposed neuro-geometry of stereo vision allows us to be precise about
the type of geometry that is relevant for understanding stereo abstractly, and
concretely it is informative toward the physiology: even though a "stereo columnar
architecture" is not obvious from the anatomy, it is well-formed computationally,
reasonable matching (at a first stage) left and right points and features.

89



90



Chapter 6

Individuation of 3D percepts

In this chapter we study the emergence of perceptual units in the
three-dimensional scene, starting from the stochastic counterpart
of the 3D association fields. These curves model the interactions
among binocular cells involved, and we use them to define a connec-
tivity kernel inserted as a facilitator pattern in the activity equation
of the population. Then, we see how the stability analysis of this
equation leads to the identification of the three-dimensional percep-
tual units of the scene, through the proposition of a grouping algo-
rithm. Finally, we examine the numerical results.

Contents
6.1 Stochastic model of 3D association fields . . . . . . . . 92

6.1.1 Stochastic differential Langevin equation . . . . . . . . . 92
6.1.2 Forward Kolmogorov operator . . . . . . . . . . . . . . 93
6.1.3 Time independent kernel . . . . . . . . . . . . . . . . . 94

6.2 Monte Carlo simulation of the kernel . . . . . . . . . . 95
6.2.1 Euler-Maruyama’s type scheme . . . . . . . . . . . . . . 96
6.2.2 Strong Law of Large Numbers . . . . . . . . . . . . . . 97
6.2.3 Error estimate . . . . . . . . . . . . . . . . . . . . . . . 100
6.2.4 Dependence on parameters . . . . . . . . . . . . . . . . 103
6.2.5 Comparison with stereo compatibility fields . . . . . . . 104

6.3 Neural activity via mean field equation . . . . . . . . . 105
6.3.1 Existence and uniqueness of a solution . . . . . . . . . . 107
6.3.2 Stability analysis . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Discrete mean field equation and spectral clustering . 111
6.4.1 Spectral Clustering and dimensionality reduction . . . . 112
6.4.2 Normalization with the transition matrix of a Markov chain113

91
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6.1 Stochastic model of 3D association fields

The probabilistic version of the association fields is used in the two-dimensional
case as a model of connectivity for cortical cells, for example in the works [PT99,
SC15, ASFC+17, DF10, SCS10b, BCCS14], based on the pioneering work of Mum-
ford [Mum94]. We apply this approach to the three-dimensional case, probabilis-
tically interpreting the 3D extension of the law of good continuation: entities
described by similar local orientations are more likely to belong to the same per-
ceptual unit. We will consider an equation predominated by transport in the
Y3 direction and diffusion in the orientation variables, as done for example in
[MS09, MS12]. In general, these equations describe the motion of a particle mov-
ing with constant speed in a direction randomly changing accordingly with the
stochastic process, and the effect is that particles tend to travel in straight lines,
but over time, they drift in space.

6.1.1 Stochastic differential Langevin equation

We consider the trajectory described by a deterministic law given by the vector
field Y3, altered by a certain random noise in the directions Yθ and Yϕ. The result
is a Itô’s stochastic process Γ(t) satisfying the stochastic differential Langevin
equation:

d Γ(t) = Y3,Γ(t) d t+ λ (Yθ,Γ(t), Yϕ,Γ(t))︸ ︷︷ ︸
σ(Γ(t))

dB(t), (6.1)

with B(t) = (B1(t), B2(t))T two dimensional Brownian motion, and λ ∈ R scalar
parameter. By abuse of notation, Y3 is interpreted as a deterministic coefficient and
it is called the drift coefficient, while σ is the diffusion coefficient of the stochastic
differential equation (SDE) (6.1). In our case, locally in the chart of subsection
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5.3.1, the drift term is given by

Y3,Γ = (cos θ sinϕ, sin θ sinϕ, cosϕ, 0, 0)T , (6.2)

and the diffusion coefficient σ(Γ) = (Yθ,Γ, Yϕ,Γ) is

Yθ,Γ = (0, 0, 0,−1/ sinϕ, 0)T and Yϕ,Γ = (0, 0, 0, 0, 1)T . (6.3)

The coefficients written in coordinates are smooth functions with locally bounded
derivatives. Therefore, classical results on uniqueness and existence of a strong
solution to the SDE (6.1) hold thanks to the fact that the terms of the drift and
diffusion coefficients are Lipschitz continuous.

6.1.2 Forward Kolmogorov operator

Itô’s formula allows us to formally associate to equation (6.1) its characteristic
operator, a second order differential operator L with variable coefficients. Locally
in the chart of subsection 5.3.1, L can be written as (see for example [Øks03]):

L =
3∑
i=1

(Y3,Γ)i∂i + λ

2
∑

i,j∈{θ,ϕ}
(σ(Γ)σ(Γ)T )i,j∂i∂j (6.4)

Let’s consider a starting point Γ(t0) = ξ0 at a time t0 and a test function φ.
After having applied the expected value to Itô’s formula, we have∫ ∫

(∂t + L)φ(t, ξ)ρλ(ξ, t; ξ0, t0)dξdt = 0, (6.5)

where ρλ is the density law of the stochastic process Γ, and it is a distributional
solution to the forward Kolmogorov (or Fokker-Planck) equation:

(∂t + L∗)ρλ(ξ, t; ξ0, t0) = δξ−ξ0δt−t0 (6.6)

with δ the delta distribution and L∗ the formal adjoint of L. Since the drift term
and the diffusion coefficient are defined as (6.2) and (6.3), the operator L∗ satisfies
the following expression in coordinates:

L∗f(t, ξ) = −
3∑
i=1

(Y3,ξ)i∂if(t, ξ) + λ

2
∑

i,j∈{θ,ϕ}
(σ(ξ)σ(ξ)T )i,j∂i∂jf(t, ξ). (6.7)
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Remark 6.1.1. The forward Kolmogorov operator L∗ can be written in terms of
vector fields of the distribution D presented in (5.25):

L∗ = −Y3 + λ(Y 2
θ + Y 2

ϕ ). (6.8)

Since the vector fields satisfy the Hörmander’s rank condition, the operator
L∗ is hypoelliptic, and so there exists a fundamental solution associated with
the forward Kolmogorov operator, with the property of being smooth out of the
pole (see Hörmander theorem [Hör67], recall here in Theorem 4.3.2). We will
recall in the next subsection that this fundamental solution is none other that the
probability density ρλ of the forward Kolmogorov equation (6.5), integrated over
time.

6.1.3 Time independent kernel

The fundamental solution for the operator ∂t + L∗, with L∗ defined in (6.8),
corresponds to the probability density function ρλ(ξ, t; ξ0, t0) associated with the
stochastic process satisfying equation (6.1). More precisely, it expresses the prob-
ability of having reached the point ξ after having evolved the equation (6.1) up to
time t, starting from ξ0 at time t0.

The main goal of this section is to identify a time-independent probability, to
characterize each point of the space in terms of the paths (6.1) that reach it inde-
pendently of the value of the evolution temporal parameter. It is therefore worth
noting that these density functions ρλ locally admit exponential-type estimates,
which decay to zero for very "evolutional" times.

Remark 6.1.2. (Gaussian estimates) The operator L∗ of (6.6) belongs to a class
of hypoelliptic operators that locally admit estimates for their fundamental solution.
Rotschild and Stein in [RS76] obtained optimal local estimates of the kernels, while
Gaussian upper and lower bounds have been proven in [BLU02, BP07a, CP08].

In literature, it is common to integrate over time to obtain such a time-
independent fundamental solution as shown in [BLU02] or in [Coc14, FCS17].
We recall here this result, which we will adopt throughout the thesis.

Proposition 6.1.1. Let ξ be a point in R3 o S2 and ρλ the fundamental solution
of the operator ∂t + L∗ with L∗ defined in (6.8), and pole in (ξ0, 0), with t0 = 0
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without loss of generality. Then

Jλ(ξ, ξ0) =
∫
R+
ρλ(ξ, t; ξ0, 0)dt (6.9)

is fundamental solution for the operator L∗:

L∗Jλ(ξ, ξ0) = δξ−ξ0 . (6.10)

Proof. Let u be a smooth function on R3 o S2 with compact support, independent
from the time variable t. Then:

−u(ξ0) =
∫
R+×R3oS2

ρλ(ξ, t; ξ0, 0)(∂t + L∗)u(ξ)dξdt

=
∫
R+×R3oS2

ρλ(ξ, t; ξ0, 0)L∗u(ξ)dξdt

=
∫
R3oS2

(∫
R+
ρλ(ξ, t; ξ0, 0)dt

)
L∗u(ξ)dξ

=
∫
R3oS2

Jλ(ξ, ξ0)L∗u(ξ)dξ

(6.11)

with Jλ(ξ, ξ0) =
∫
R+
ρλ(ξ, t; ξ0, 0)dt.

Alternatively, another way to deal with the time parameter is to make a fur-
ther assumption on the random walk, supposing having exponentially distributed
traveling time. Therefore, the time-independent fundamental solution is obtained
by taking the Laplace transform of the probability density, as done for example
by the authors of [DF11, PD17].

6.2 Monte Carlo simulation of the kernel

Approximation techniques based on Monte Carlo simulation are commonly de-
veloped to numerically compute the probability density related to these diffusion
processes but also to validate exact solutions obtained analytically, for example in
terms of Fourier transform as done in the works [PD17, DBM19] for (convection-)
diffusion Kolmogorov equations in the 3D space of position-orientations. In these
papers, the authors compare the numerical Fourier methods with the Monte Carlo
simulations. Although the approach is the same, we use this simulation with
the purpose of locally traveling along the integral curves, assuming the possibil-
ity of drifting in space in accordance with some stochastic noise. In this way,
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we approximate the fundamental solution (6.9) using a procedure developed in
[SC15, BCCS14] adapted to our case. First, a simulation of the stochastic paths is
carried out by applying the Euler-Maruyama method, then an appropriate average
is made, using the Strong Law of Large Numbers.

6.2.1 Euler-Maruyama’s type scheme

In order to generate the discrete version of the stochastic process Γt ∈ R3 o S2,
in coordinates Γt = (r1(t), r2(t), r3(t), ϕ(t), θ(t)), satisfying the Langevin equation
(6.1), we choose the Euler-Maruyama scheme approximation: this very simple
method allows a convergence rate result very satisfying if M →∞. For the reader
interested in this topic, further details can be found in [GT13].

We fix T > 0 and N 3M ≥ 1 number of steps of the path. Then, we construct
iteratively ΓMkT/M with 0 ≤ k ≤M , by setting

ΓM0 = Γ0,

ΓM(k+1)T/M = ΓMkT/M + Y3(ΓMkT/M ) TM + λσ(ΓMkT/M )
√

T
M δk

(6.12)

where
√

T
M δk comes from the fact that the Brownian increments dWi(t) follow the

Gaussian law N(0, TM ), with zero mean and variance T
M , and so δk = (δk1 , δk2 ) is

defined from the fact that δki has normal distribution N(0, 1). In coordinates we
have the following system:

r1(k + 1) = r1(k) + T
M cos θ(k) sinϕ(k)

r2(k + 1) = r2(k) + T
M sin θ(k) sinϕ(k)

r3(k + 1) = r3(k) + T
M cosϕ(k)

θ(k + 1) = θ(k)−
√

T
M

λδk1
sinϕ(k)

ϕ(k + 1) = ϕ(k) +
√

T
M λδ

k
2

for k = 0, 1, . . . ,M − 1, (6.13)

with Γ0 = (r1(0), r2(0), r3(0), ϕ(0), θ(0)) initial point.

Remark 6.2.1. A similar formulation has been introduced in [DBM19] to compute
numerically the fundamental solution associated with the Kolmogorov equation of a
diffusion process (the operator is written as sum of squares of vector fields generat-
ing the distribution) on the position-orientation space. The proposed discretization
[DBM19, eq. (72)] is based on the fact that a point in S2 can be thought of in
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terms of three-dimensional rotations starting from an initial axis (see Appendix
A.2, equation (A.18)). For example, S2 3 n(θ, ϕ) = Rθ3R

ϕ
2 e3, where e3 is the third

Cartesian reference axis, Rθ3 is the rotation around the third axis of angle θ and
Rϕ2 is the rotation around the second axis of angle ϕ. If we recast (6.13) using
rotations, we have: r(M) = r(0) +

∑M−1
k=0

T
M n(k + 1)

n(k + 1) =
(
R
θ(k+1)
3 R

ϕ(k+1)
2

)
e3

(6.14)

where n(k + 1) = (sin θ(k+1) cosϕ(k+1), cos θ(k+1) sinϕ(k+1), cosϕ(k+1)) ∈ S2, the
point r(k) = (r1(k), r2(k), r3(k)) ∈ R3, k = 0,M , and

θ(k + 1) = θ(k)−
√

T
M

λδk1
sinϕ(k)

ϕ(k + 1) = ϕ(k) +
√

T
M λδ

k
2

(6.15)

for k = 0 . . .M − 1. This differs from the discretization proposed in [DBM19, eq.
(72)], where the spherical term n(k + 1) is computed as a consecutive rotations’
product on the index k.

6.2.2 Strong Law of Large Numbers

Let us denote with Γ(t,ξ0,t0) the stochastic process associated to (6.1) starting from
the point ξ0 at time t0. Its density law ρλ is defined through a probability measure
P as

ρλ(S, t; ξ0, t0) := P [Γ(t,ξ0,t0) ∈ S] = E[1S(Γ(t,ξ0,t0))], (6.16)

with E the average in probability and S a subset of R3 o S2. To recover the density
from the approximated stochastic process (6.13), it is possible to use the Strong
Law of Large Numbers.

Theorem 6.2.1. (Strong Law of Large Numbers) Let (Γ(i)
t ), i ≥ 0 be a sequence of

independent and identically distributed random variables. Assume that E[Γ(i)
t ] <

∞. For N ≥ 1, denote the empirical mean of (Γ(1)
t , . . . ,Γ(N)

t ) by S̃N = 1
N

∑N
i=1 Γ(i)

t .
Then, the Strong Law of Large Numbers holds true:

lim
N→∞

S̃N = E[Γ(1)
t ], P − a.s. (6.17)

To apply the Theorem to our case, we first concentrate on the set S of interest.
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We fix a discrete covering grid {ξj}j∈N,j≤J of a suitable subset V of R3 o S2: this
is a collection of subsets {Ωi} satisfying Ωi ∩ Ωj = ∅ if i 6= j and ∪Jj=1Ωj = V . If
we perform a discretization on R3 with step size ∆1,∆2,∆3 and on S2 with step
size ∆ϕ,∆θ, we assign the element ξj to be a representative of the jth box. In this
sense we define S := {ξj}j∈N,j≤J .

Then, applying Theorem 6.17 to the stochastic process 1ξj (Γ
(i)
(t,x0,t0)), we get:

ρλ(ξj , t; ξ0, t0) = 1
N

N∑
i=1

1ξj (Γ
(i)
(t,x0,t0)). (6.18)

In other words, for a given ξ0 ∈ R3 o S2 we simulate N several discrete-time
random paths and assign to each region ξj a value between 0 and 1 corresponding
to the number of paths that passed through it at the final time t divided by N .
This provides a distribution over the cells ξj that, up to a multiplicative constant,
for large values of N gives a discrete approximation of the kernel.

What we have just obtained is a probability density relative to the Kolmogorov
equation (6.6). We have seen in subsection 6.1.3 that a time integration is sufficient
to obtain the time-independent fundamental solution. In the discrete case, this
corresponds to a sum over t:

JTλ (ξj , ξ0) =
T∑
t=t0

ρλ(ξj , t; ξ0, t0). (6.19)

In other words, by applying the numerical method just described not only on the
final points of the random walk (6.13) but on all the points of the path (relative
to different evolutions times t < T ), we obtain a numerical approximation of JTλ .
With this notation we explicitly underline the dependence of the kernel on the
parameters of diffusion λ and time T . We will see in subsection 6.2.4 how these
parameters affect the shape of the kernel.

Examples of the numerical kernels are shown in Figure 6.2.1. The iso-surfaces
in R3, images (a) and (b), are obtained considering the marginal distribution

JR3(ξj , ξ0) =
∫
S2
JTλ (ξj , ξ0)dσ, (6.20)

where dσ = sinϕdθdϕ is the spherical measure on S2. On the other hand,
the marginal distributions on the sphere JλS2(ξj , ξ0) are obtained by integrating
Jλ(ξj , ξ0) over R3. They are shown using a chart of S2 in images (c) and (d): the
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greater probability is that of remaining in a neighborhood of the initial point of
angles (θ0, ϕ0).

(a) Jλ=0.035
R3 (ξj , ξ0) (b) Jλ=0.08

R3 (ξj , ξ0)

(c) Jλ=0.035
S2 (ξj , ξ0) (d) Jλ=0.035

S2 (ξj , ξ0)

Figure 6.2.1: Top: Display of JR3(ξj , ξ0) for two different diffusion coefficients λ
(left λ = 0.035, right λ = 0.08), at isovalue 0.1. Euler-Maruyama scheme parame-
ters areM = 400, T = 100, N = 106. Bottom: Display of the marginal distribution
JS2 obtained after an integration of JTλ over R3, for the same parameters as above.
The starting point ξ0 has orientation defined by (θ0, ϕ0) = (π/2, π/2).

This simulated kernel approximates well the fundamental solution thanks to
the Strong Law of Large Numbers, recalled here in Theorem 6.17. And, even
though this Theorem can be applied to strengthen numerical convergence results
in this setting, as, for instance, those proposed by Duits, Bekkers and Mashtakov
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in [DBM19, eq. (76)], a necessary condition is that N is large enough. To better
understand how precise the numerical estimation is, it is useful to study the error
uncertainty regarding the reported measurement (6.18), as we will see in the next
section.

6.2.3 Error estimate

Monte Carlo method is based on the Strong Law of Large numbers and clearly
yields approximate results whose accuracy depends on the number of valuesN used
in equation (6.17). Indeed, the numerical mean JTλ (ξ, ξ0) computed via (6.18)
and (6.19) estimates the real mean E[1ξj (Γ(1))]. The difference between these
two quantities is usually called statistical error. Since it is not numerically
possible to know the true value of E[1ξj (Γ(1))], a possible measurement of the error
corresponds to studying the probability with which the true mean E[1ξj (Γ(1))] lies
in the interval I = [JTλ − r, JTλ + r], where r is a suitable confidence radius around
the estimated value JTλ . In probabilistic terms, this is equivalent to calculate

P (|JTλ − E[1ξj (Γ(1))]| ≤ r). (6.21)

The interval I is usually called confidence interval, because there is a probability
equal to (6.21) to know if the real mean lies within the interval itself.

Taking advantage, first, of the fact that we want this convergence radius to
depend on the parameter N (more specifically we require that this radius decreases
as N increases), and the fact that we can use the central limit theorem to compute
(6.21), it makes sense to consider r = σ√

N
, with σ =

√
V ar((1ξ(Γ(1))) standard

deviation of the random variable. Since the actual variance of the process cannot
be computed, it is standard to consider its approximation:

σ̄2 = 1
N

N∑
i=1

(
1ξ

(
Γi
)
− JTλ

)2
, (6.22)

also known as the variance of Monte Carlo’s estimates.
So, with a probability determined by (6.21), we can say that the true mean is

in a neighborhood of the approximated mean. Monte Carlo practitioners usually
use one standard deviation to determine the confidence radius, and thus the range
considered is [JTλ − σ̄√

N
, JTλ + σ̄√

N
]: this corresponds to know with a probability

of 33 percent that the estimated mean lies within the interval. Another widely
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used value (the one used in our simulation) is to consider 2.57 standard deviations,
having r = 2.57σ̄√

N
, which turns into a probability of 95 percent. Statisticians usually

display the confidence interval using an error bar of symmetric size r around the
empirical mean. For the reader interested in more information, we refer to [Nic14].

We display error bars for some sections of our kernel, and the results are shown
in Figure 6.2.2 and Figure 6.2.3. More precisely, keeping fixed the initial point ξ0 ∈
R3 o S2, and integrating over S2 as in (6.20), the kernel can be viewed as a function
of the variable (r1, r2, r3) ∈ R3, namely JTλ = JTλ (r1, r2, r3). For simplicity, we
focus on a section of the kernel: for example, fixing (r̄2, r̄3) we consider JTλ (r1) =
JTλ (r1, r̄2, r̄3). We estimate the variance σ̄ through the equation (6.22), and an
error bar corresponding to the confidence interval determined by r = 2.57σ̄√

N
at the

point of coordinates (r1, J
T
λ (r1)) is then placed along the vertical axis. The same

procedure can be applied to the others coordinates.

(a) (b)

Figure 6.2.2: Display of error bars on JTλ (r1) sections with λ = 0.035 and T = 100.
The initial point ξ0 is described by spatial indices (r10 , r20 , r30) = (50, 1, 50), while
(θ0, ϕ0) = (π/2, π/2). (a) Display of JTλ (r1) identified by (r̄2, r̄3) = (10, 50) for
two different numbers of paths N : blue color corresponds to N = 106, the black
one to N = 105. Emphasized in the red square: the amplitude (∆(N)) of the two
confidence intervals. The width of the blue interval is about half of the black one.
(b) JTλ (r1) identified by (r̄2, r̄3) = (50, 50) for two different number of paths: blue
correspond to N = 106, black to N = 105. Moving away from the pole, both the
kernel value and the confidence interval decrease.

Figure 6.2.2 shows error bars for JTλ (r1), namely a section perpendicular to
the r1−axis, related to kernels simulated with a different number of paths. Image
(a) shows the comparison between the values of a kernel generated by a number
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of paths N = 105 with one generated considering N = 106, in a neighborhood
of the pole ξ0: the magnitude of the confidence interval, indicated in the picture
as ∆(N), decreases as N increases. Image (b) shows that, as we get further and
further away from ξ0 (both along the r1-axis and on the r2-axis), the kernel value
decays to zero, as does the standard deviation. This is well in agreement with
Remark 6.1.2: as time becomes larger, the kernel value tends to zero.

(a) (b)

Figure 6.2.3: Display of error bars and percentage error for JTλ (r2), with kernel
parameters λ = 0.035 and T = 100, N = 106. The initial point ξ0 is described
by (r10 , r20 , r30) = (50, 1, 50) and (θ0, ϕ0) = (π/2, π/2). The section has indices
(r10 , r30) = (50, 50). (a) Display of error bars on JTλ (r2). (b) Display of the
percentage error E% = 100 r

JT
λ

(r2) , with r = 2.57σ̄√
N

.

Figure 6.2.3 shows the error along the section perpendicular to the r2−axis
and passing through ξ0. This section is orthogonal to the ones studied in Figure
6.2.2. Image (a) displays the trend of the error bars on the values JTλ (r2): moving
along the r2−axis the function decreases to zero, as does the error. This is well
in accordance with results of Figure 6.2.2 and Remark 6.1.2. On the other hand,
image (b) of Figure 6.2.3 shows the behavior of the percent error, defined here
as E% := 100 r

JT
λ

(r2) , with r = 2.57σ̄√
N

. In this case, the tendency is the opposite
compared to image (a): we have a good percentage estimate near ξ0, while this
goodness decreases as the distance from the ξ0 increases. This happens because
near the pole the points are reached by a high number of stochastic paths, and
this number decreases as we move away from ξ0.
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6.2.4 Dependence on parameters

The kernel defined by numerical approximation mainly depends on 4 parameters:
M the number of steps of the simulated path, N the number of paths considered, λ
the diffusion coefficient, and T the final evolution time of the generated path. We
will always consider the first two parameters quite large to ensure the convergence
of the method. The last two, on the other hand, affect the behavior of the kernel,
see Figure 6.2.4.

Figure 6.2.4: Marginal projections on the plane r1 − r2 to display dependence on
the parameters λ and T . The horizontal axis of the pictures corresponds to r1-
axis, while the vertical one corresponds to r2-axis. Columns describe the scale
parameter T = 15, 50, 100, 300, 600, while rows correspond to different values of
diffusion λ = 0.01, 0.035, 0.08.

This diffusion parameter operates a modification on the thickness of the kernel:
the bigger λ is, the thicker the kernel, making the diffusion terms prevail. On
the other hand, the smaller λ is, the thinner the kernel, mainly concentrated
on the initial direction n(ϕ0, θ0), making the transport term the leading term
characterizing the equation.
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On the other hand, the temporal parameter T can be seen as a scale param-
eter. The effect of the variation of the parameter T on the shape of the kernel is
shown in Figure 6.2.4: the columns show a proportional relationship between the
increase in the final time of the stochastic path, and the amplitude of the kernel.
During numerical experiments for visual grouping, this parameter will be taken in
accordance with the image dimension.

6.2.5 Comparison with stereo compatibility fields

In [LZ06] the authors transport the differential structure in a way that nearby
points are comparable with the measured information, and in particular, the set of
all compatible points is called the compatibility field around the starting point j.
The correlation between a neighboring point i and the starting point j shows the
degree of support in term of positions and orientations, and moreover, the different
slices of Figure 3.3.2 bring out the bending and twisting in space encoded by the
differential structure.

The kernels presented in this section, defined through the transition proba-
bilities of equation (6.19), are the counterpart of the compatibility fields in our
work. Indeed, these kernels express the correlation rate between neighbors of a
starting point p, which in this case we can think of as a position-orientation ele-
ment whose orientation is determined by the direction (0, 1, 0) in the 3D Cartesian
space. Positions and orientations in 3D space affect the compatibilities, as shown
in Figure 6.2.5. More precisely, the image shows a collection of position-orientation
elements selected by the kernel: we represent for points in R3 the preferred ori-
entation picked out from the kernel, together with its intensity in R3, computed
via equation (6.19). The intensity is characterized both by color and length of
the three-dimensional segment: the darker and longer the segment is, the more
it correlates with the starting point p. The bending and twisting information are
coded in the measurements since the different position-orientation elements are
not constrained to be in fronto-parallel planes. The dependence on position is
well displayed: as we move away from the initial position, the points in space lose
intensity. The same thing happens for orientations compatible with the initial
direction.
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Figure 6.2.5: Position-orientation elements correlated with initial point p ∈ R3

and initial direction n(θ, ϕ) = n(π/2, π/2) in the first coordinate chart. Intensity
decay depends on position and orientation: the darker and longer the segment is,
the more it correlates with the starting point.

6.3 Neural activity via mean field equation

The evolution of a state of a cells’ population has been modeled through a mean
field equation in many works, for example see [EC80, BC03, FF10, SC15], firstly
proposed in the works of Amari [Ama72] and Wilson and Cowan [WC72]. Ac-
cording to these works, the result of the propagation along the connectivity gener-
ated by the visual scene can be described, without considering the delays for the
transmission of the signal, by the following integer differential equation in the 3D
perceptive space of positions and orientations:

da(ξ, t)
dt

= −αa(ξ, t) + %

(∫
Ω
µJλ(ξ, ξ′)a(ξ′, t)dξ′ + h(ξ, t)

)
, in R3 o S2 (6.23)

where ξ is a point of R3 o S2, t > 0, dξ = dxdσ(n) = dx sinϕdθdϕ, with dx

Lebesgue measure in R3 and dσ spherical measure on S2, the coefficient α repre-
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sents the decay of activity, and h(ξ, t) is the feedforward input.
The function % is the transfer function of the population and it has a piecewise

linear behavior, as proposed in [SC15]:

%(s) =


0, s ∈]−∞, c− 1

2γ [

γ(s− c) + 1
2 s ∈ [c− 1

2γ , c+ 1
2γ ]

1, s ∈]c− 1
2γ ,+∞[

(6.24)

where γ is a real number that represents the slope of the linear regime and c is the
half-height threshold.

The kernel Jλ(ξ, ξ′) is the contribution of the cortico-cortical connectivity in-
troduced in the previous sections through equation (6.9), while the parameter µ
is a coefficient of short-term synaptic facilitation.

Remark 6.3.1. In the bi-dimensional case, it is customary when dealing with
kernels with the purpose of describing pure orientation, to consider reciprocal con-
nections [SCS10b, BCCS14]. This assumption is justified by neural studies, see
for example [KE92], where it is reasonable to consider two cells to be symmetri-
cally connected. We then take as kernels a symmetrization of the corresponding
connectivity kernels. The chosen symmetrization consists of taking

JS(ξi, ξj) = Jλ(ξi, ξj) + Jλ(ξj , ξi)
2 . (6.25)

This symmetrization is equivalent to sum the fundamental solution associated to
(6.1) with the fundamental solution of the same operator under an angular shift
in the opposite three-dimensional selected direction. Such rotation turns the drift
term Y3 into −Y3, hence transforming the forward Kolmogorov equation into the
corresponding backward equation, so the sum of the two solutions is symmetric.

Remark 6.3.2. As firstly remarked in [SC15], the set Ω is the restriction on a
domain on the space of points activated by the visual stimulus. In particular, by
assuming that the function of the feedforward input h can attain only two values,
namely 0 and a constant value c, we define the set of points activated by the
presence of the input:

Ω = {ξ ∈ R3 o S2;h(ξ) = c}. (6.26)

We suppose that the set Ω has a finite measure with respect to the introduced
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measure dξ. Hence the mean field activity equation reduces to:

da(ξ, t)
dt

= −αa(ξ, t) + γ

(∫
Ω
µJS(ξ, ξ′)a(ξ′, t)dξ′ + c

)
, in Ω. (6.27)

6.3.1 Existence and uniqueness of a solution

In this subsection, we deal with the property of existence and uniqueness of a
solution to equation (6.23). We use classical instruments of functional analysis,
assuming to work in L2(Ω,R), the space of the square-integrable functions from Ω
to R. This is a Hilbert space for the usual inner product

< a1, a2 >=
∫

Ω
a1(ξ)a2(ξ)dξ, (6.28)

inducing the norm ‖a‖L2(Ω,R) :=
(∫

Ω a
2(ξ)dξ

)1/2
.We define f(a) := −αa+A(a)+c,

with
A(a) = γ

∫
Ω
µJS(ξ, ξ′)a(ξ′, t)dξ′, (6.29)

and we denote with I a closed interval on the real line containing 0. We consider
a mapping a : I −→ L2(Ω,R), and equation (6.23) is recast as a Cauchy Problem:

a
′(t) = f(a)

a(t0) = a0
(6.30)

with initial value a0.
To apply the results that guarantee the existence and uniqueness of the solution

to the Cauchy Problem (6.30) in Banach spaces, we need to show that the function
f is well defined on L2(Ω,R) and that f is Lipschitz, in accordance with the results
presented in [HL13].

Proposition 6.3.1. If JS(ξ, ξ′) ∈ L2(Ω×Ω,R), the function f is well defined and
f(a) ∈ L2(Ω,R) for all a ∈ L2(Ω,R).

Proof. Performing a direct computation:

‖f(a)‖2L2(Ω,R) ≤

‖a‖2 + ‖A(a)‖2 + ‖c‖2 + 2‖a‖2‖A(a)‖2 + 2‖c‖2‖A(a)‖2 + 2‖c‖2‖a‖2,
(6.31)

exploiting the Cauchy-Schwarz inequality. Since a and c ∈ L2(Ω,R), we only need

107



to prove that ‖A(a)‖L2(Ω,R) <∞:

‖A(a)‖2L2(Ω,R) =
∫

Ω

(∫
Ω
JS(ξ, ξ′)a(ξ′, t)dξ′

)2
dξ

≤
∫

Ω

(∫
Ω
J2
S(ξ, ξ′)dξ′

∫
Ω
a2(ξ′, t)dξ′

)
dξ

≤ ‖JS‖2L2(Ω×Ω,R)‖a‖
2
L2(Ω,R)

(6.32)

using again the Cauchy-Schwarz inequality.

Remark 6.3.3. The kernel JS(ξ, ξ′) is obtained as the fundamental solution of the
hypoelliptic operator (6.8). Local estimates in terms of Gaussian upper and lower
bounds are provided for example in [BP07b], recalled here in Remark 6.1.2. It
follows that this kernel is locally integrable, in particular locally square integrable.
Furthermore, the operator (6.29) is linear, bounded, and compact on the measure
space of definition, see [Con19].

Proposition 6.3.2. Let JS ∈ L2(Ω × Ω,R), then we have that the function f is
Lipschitz in the variable a.

Proof. We have

‖f(a1)− f(a2)‖L2(Ω,R) =‖−a1 + a2 +A(a1)−A(a2)‖L2(Ω,R)

≤‖a1 − a2‖L2(Ω,R) + ‖A(a1)−A(a2)‖L2(Ω,R)

≤(1 +M)‖a1 − a2‖L2(Ω,R)

(6.33)

where we first use the triangular inequality, and then the properties of Remark
6.3.3. In particular, M is the Lipschitz constant for the operator A.

6.3.2 Stability analysis

We perform a stability analysis for the equation (6.23), exploiting the Lyapunov
method in Banach spaces, by applying the results of Faye and Faugeras in [FF10]
to our case of study.

6.3.2.1 General results

Definition 6.3.1. Let φ ∈ C1([0,+∞), L2(Ω,R)) be a solution to the Cauchy
problem (6.30). The function φ is said to be Lyapunov stable if for all ε > 0
there exists δ > 0 such that for every u0 s.t. ‖a0 − u0‖ < δ, then for the solution
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ψ of the Cauchy problem with initial datum u0, it holds ‖ψ(t)− φ(t)‖ < ε, for all
t ∈ [0,+∞). If then limt→+∞‖ψ(t) − φ(t)‖ = 0 then φ is said asymptotically
stable.

Definition 6.3.2. Let F ⊆ L2(Ω,R) an open subset such that 0 ∈ F , and let
V : F −→ R be a continuous functional. Then V is a Lyapunov functional for
the problem (6.30) if the following conditions hold:

• V (0) = 0 and V (a) > 0 for all a ∈ F , a 6= 0,

• dV (a)(f(a)) ≤ 0 for all a ∈ F ,

where the derivative of the functional is defined as:

dV (a)(f(a)) = lim
ε→0

V (a+ εf(a))− V (a)
ε

. (6.34)

Corollary 6.3.1. Let us assume without loss of generality that the initial datum of
the problem (6.30) is a0 = 0. Let V be a Lyapunov functional defined on L2(Ω,R)
such that the following conditions hold:

• u1(‖a‖) ≤ V (a) ≤ u2(‖a‖), where u1 and u2 are real, continuous, non de-
creasing functions such that u1(s), u2(s) positive for s > 0 and u1(0) =
u2(0) = 0.

• u1(t)→ +∞, t→ +∞

• dV (a)(f(a)) < −u3(‖a‖) where u3 is real continuous non decreasing positive
for s > 0 and u3(0) = 0.

Then, the point 0 is asymptotically stable for (6.30).

In the following, we are interested in the study of stationary solutions, namely
time-independent solutions.

Definition 6.3.3. An element a0 ∈ L2(Ω,R) is said to be a stationary (or
steady) state for (6.30) if f(a0) = 0.

In the case of a steady state a0, the solution φ(t) = a0 is a constant solution
to the Cauchy problem (6.30). It is possible to write the Taylor expansion of the
function f in a neighborhood of the steady state a0, by defining Ã := df(a0), in
the following way

f(a) = Ã(a− a0) + o(‖a− a0‖), for a→ a0. (6.35)
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Definition 6.3.4. We call linearized system associated to (6.30) in a0 the fol-
lowing

a′ = Ãa. (6.36)

6.3.2.2 Lyapunov method in the space of position and orientation

To study the stability of the stationary solution a0, we consider a small perturba-
tion around the stationary state u = a− a0, obtaining the linearized system

Ã(u) = −αu+ γµ

∫
Ω
JS(ξ, ξ′)u(ξ′)dξ′. (6.37)

In particular, the linearized equation around a0, associated to (6.23) has the fol-
lowing expression:

∂tu = −αu+ γµ

∫
Ω
JS(ξ, ξ′)u(ξ′)dξ′. (6.38)

If 0 is asymptotically stable for for (6.38), then a0 is asymptotically stable for
(6.23).

The Lyapunov functional that we consider is defined as the quadratic form:

V (u) = 1
2

∫
Ω
u2(ξ)dξ. (6.39)

For (6.39) to be a Lyapunov functional, we need to check the properties of Defi-
nition 6.3.2. The first property is trivially satisfied. Regarding the derivative, we
have:

dV (u)(Ã(u)) = −
∫

Ω
αu(ξ)u(ξ)dξ +

∫
Ω
u(ξ)µγ

∫
Ω
JS(ξ, ξ′)u(ξ′)dξ′dξ

≤ −α‖u‖2L2(Ω,R) + µγ‖JS‖L2(Ω2,R)‖u‖
2
L2(Ω,R)

= (−α+ µγ‖JS‖L2(Ω2,R))‖u‖
2
L2(Ω,R).

(6.40)

In particular, it follows that if ‖JS‖L2(Ω2,R) <
α
µγ then a0 it is stable.

6.3.2.3 Stability via Eigenvalues problem

The equation satisfied by small perturbation around the stationary state u = a−a0,
is given by:

du(ξ, t)
dt

= −αu(ξ, t) + γ

∫
Ω
µJS(ξ, ξ′)u(ξ′, t)dξ′, in Ω. (6.41)
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In particular, it is worth noting that in this framework, u is a solution of the
homogeneous equation associated to equation (6.23). Then, the stability of the
solution of this linear equation can be studied by mean of the eigenvalue problem
associated to the linear operator

Lu = −αu+ γµ

∫
Ω
JS(ξ, ξ′)u(ξ′)dξ′ = λu, (6.42)

which is equivalent to the following expression∫
JS(ξ, ξ′)u(ξ′)dξ′ = λ̃u, (6.43)

with λ̃ = λ+α
γµ . In general, the system is stable if λ < 0 and so imposing it to be

negative we get λ̃ < α
γµ . Moreover, if we consider all parameters equal to 1, we

obtain that the system is stable if the eigenvalue λ̃ < 1.

It follows from the Spectral Theorem on Hilbert spaces that a solution φ can
be written in terms of eigenvectors ui and eigenvalues λi of the operator (6.29) in
the following way:

φ(t) =
∑

ciuie
λit (6.44)

and in particular, if t = 0 we have a0 =
∑
ciui.

6.4 Discrete mean field equation and spectral cluster-
ing

The spectral analysis implemented by the neural population translates into the
identification of perceptual units, leading to a grouping performance strictly linked
with arguments of spectral clustering and dimensionality reduction, where the
salient objects in the scene correspond to the eigenvectors with the largest eigen-
values.

More precisely, in application it is common to work with a finite number of
points, hence having a discrete structure of the input. The configurations are then
constituted by a finite number N of elements in the lifted space with coordinates
ξi = (pi, n(θi, ϕi)), pi ∈ R3, n(θi, ϕi) ∈ S2, which are in relationship with the
binocular cells activated by the stimulus. We call the activated set Ωd, and so the
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mean field equation (6.41) becomes

da(ξi, t)
dt

= −αa(ξi, t) + γµ
N∑
j=1

JS(ξi, ξj)a(ξj , t), in Ωd. (6.45)

In particular, the kernel JS is reduced to a symmetric matrix J of dimensionN×N ,
whose entries (i, j) are

Jij = γµJS(ξi, ξj),

and the eigenvalue problem (6.43) becomes

Ja = λ̃a.

This matrix can be considered as the equivalent of the affinity matrix introduced
in many works for spectral clustering and dimensionality reduction problems, see
for example [RS00, BN03, CL06, PF98, MS01, SM00].

6.4.1 Spectral Clustering and dimensionality reduction

In this paragraph, we explain how (discrete) spectral analysis is connected with the
problem of perceptual grouping, linked with results of dimensionality reduction.

Let us suppose that the visual setting is composed of N discrete elements
ξi, i = 1, . . . , N that are present in the visual scenery. It is possible to describe
the visual scene in terms of an affinity matrix J, whose elements Ji,j describe the
affinities between elements ξi and ξj . It is then clear that the complexity of the
matrix J is of order O(N2).

The idea of Perona and Freeman in [PF98] is to characterize the scene by
approximating the matrix J by matrices of rank 1 and complexity N , each of
which will identify a perceptual unit in the scene. In particular, a rank 1 matrix is
represented as the external product of a vector p with itself: the element of place i, j
of the matrix is pipj , for every i, j = 1, . . . , N . So, the first approximating matrix
is computed as the best approximation of J minimizing the Frobenius norm as
follows:

p1 = argminp
N∑

i,j=1
(Jij − pipj)2. (6.46)

It has been proved in [PF98] that the minimizer p1 is the first eigenvector v1 of
the matrix Jx with largest eigenvalue λ1: p1 = λ

1/2
1 v1.

This procedure is applied iteratively until all significant eigenvectors are deter-
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mined. The salience of an eigenvector is determined starting from the magnitude
of the corresponding eigenvalue: the process ends when this is sufficiently small.
In general, this method selects only n eigenvectors, with n < N , reducing the
dimensionality of the problem.

6.4.2 Normalization with the transition matrix of a Markov chain

Spectral analysis techniques, proposed in [MS01] and used for example in [BCCS14],
have shown that there exists a normalization that turns the real symmetric affinity
matrix J into the transition matrix P of a Markov process, via row-wise normal-
ization. More precisely, if D is the diagonal degree matrix, having elements

Di,i =
N∑
j=1

Jij , for i = 1 . . . N

the normalized affinity matrix P is given by

P = D−1J.

Remark 6.4.1. This matrix in general is not symmetric. However, it can be
shown (see for example [MS01]) that its eigenvalues λi are real and satisfy 0 ≤
λi ≤ 1, and its eigenvectors ui accordingly can be chosen with real components.

Remark 6.4.2. This grouping mechanism arises from a spectral clustering of the
associated graph Laplacian, see for example [SM00, SB98, CG97, DlPHHVDW08].
Then it is possible to interpret the stimulus as a weighted graph.

Remark 6.4.3. We recall here that the normalization introduced in this paragraph
is supposed to occur at neural level throughout the neural visual system ([CH12]),
and in particular, in the primary visual cortex, see for example [Hee92]. In general,
a normalization divides the response of a neuron and the sum of the activity of
a pool of neurons. This is in agreement with the so-called Tononi normalization,
introduced in [TSE94], where the sum of the weights of the connections is required
to be equal to a constant value. This is consistent with the behavior of biological
neural systems in which the weight of connections is adjusted in such a way that
a neuron with few connections will weigh these inputs more heavily than a neuron
with many connections. Further discussion regarding this type of normalization
can be found in [BBB09].
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6.5 Grouping results

In this section, we develop the ideas illustrated so far by numerical examples: first,
we describe the stimulus used, and then we proceed with the spectral analysis,
adapting the spectral clustering algorithm introduced in [BCCS14, SC15] to our
case of study. In particular, eigenmodes are computed as eigenvectors of the P
matrix, and we show how they represent perceptual units in the 3D space. The
main steps of the algorithm are summarized in Remark 6.5.1.

Remark 6.5.1. (Main steps of the algorithm)

- Recover the domain Ωd ⊂ R3 o S2, ξk ∈ Ωd, k = 1, . . . n, from the coupling of
retinal images: the set of input elements appearing in the visual scene, plus
some (random) noise.

- Build the affinity matrix Jij = J(ξi, ξj).

- Compute the normalization P = D−1J and solve the eigenvalue problem
Pu = λu.

- Find the q eigenvalues {λi}qi=1 > 1− ε and take the corresponding eigenvec-
tors {ui}qi=1.

- For k = 1, . . . , n assign the point ξk to the clustered labeled by maxi{ui(k)}qi=1.

- Join together the clusters with less than Q elements.

6.5.1 Parameterized curve

Starting from two retinal images which are the projection of a curve γ : [0, T ]→ R3

of ncurve = 40 points, we recover the lifting of the stimulus in the space R3 o S2,
as shown in Figure 6.5.1.

Then, we apply the grouping algorithm to resolve both the corresponding prob-
lem and the segmentation of the tridimensional scene. The results derived from
the spectral analysis, in this case, can be seen in Figure 6.5.2. We used the time
interval of evolution [0, 300] for generating random paths for the computation of
the kernel. We compute the affinity matrix P and, after having thresholded and
selected the eigenvalues, we notice that there is only one main cluster that group
together more than Q = 25 points, described fully by the first eigenvector. The
first eigenvector in this case recovers satisfyingly the real curve, except for a ladder
point.
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(a) (b)

Figure 6.5.1: (a) Left and right retinal images. (b) Lifting of the stimulus in
R3 o S2: the coupling generates n = 88 corresponding points.

(a) (b) (c)

Figure 6.5.2: (a) Display of the affinity matrix P obtained using the kernel with
diffusion parameter λ = 0.02,M = 300, N = 106. (b) Plot of the sorted eigenvalues
of the affinity matrix. (c) Colored in red are the points recovered from the first
eigenvector, associated with the only main cluster.

6.5.2 Helix and arc

Then, we tested our algorithm on a synthetic stimulus similar to the one presented
in the work of Alibhai and Zucker [AZ00]. The stimulus is a couple of synthetic
images, composed of an arc and an y-helix. In our example the arc has narc = 40
points, and the helix is composed by nhelix = 80 points, as shown in Figure 6.5.3.

We then apply our grouping algorithm in the interval of time [0, 57] and the
spectral analysis is displayed in Figure 6.5.4. The algorithm segments well in two
parts the stimulus, recovering the two main clusters of the set: the first cluster
corresponds to the helix, red points in image (c) of Figure 6.5.4. The second
cluster recovers the point characterizing the arc, they are the blue ones in image
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(a) (b)

Figure 6.5.3: (a) Left and right retinal images. (b) Lifting of the stimulus in
R3 o S2: the coupling generates n = 132 corresponding points.

(a) (b) (c) (d)

Figure 6.5.4: (a) Display of the affinity matrix P obtained using the kernel with
diffusion parameter λ = 0.0275, M = 300, N = 106. (b) Plot of the sorted
eigenvalues of the affinity matrix. (c) Points clustered together are marked by the
same color. The number of minimum elements to form a cluster is Q = 35. (d)
Depth map.

(c) of Figure 6.5.4. So, these eigenvectors are well suited to describe the two main
perceptual units in the visual scene, even if two ladder points are recovered from
the helix.

We also generate a depth map, which allows us to display the points recovered
in R3 with different colors following depth (blue is closest to the observer, and
yellow is the farthest away).

The stereo reconstruction algorithm of [AZ00] recovers the helix and the arc,
which result separate in depth. Even our algorithm allows well this kind of re-
construction, with the additional segmentation of the tridimensional scene in two
perceptual objects.
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6.5.3 Natural images

A black and white image I is typically described with a function I : R2 → [0, 1],
where the value 0 corresponds to the color white, while the value 1 corresponds to
the black. In particular, since I(x, y) describes the intensity of the retinal image
on the retinal point (x, y), we assume that points of maximum intensity are the
points characterized by the presence of the stimulus.

(a) (b)

Figure 6.5.5: (a) Natural image imported in Matlab. (b) Segmentation of the
image through the process of maximal selectivity for orientation.

Applying the maximal selectivity process which characterized the action of
simple cells, as described in [CS06], we can extract the cartoon image, formally
expressed as a piecewise constant function, which takes only the values 0 or 1, and
the corresponding direction θ. Results of this process are shown in Figure 6.5.5.

(a) (b)

Figure 6.5.6: (a) Left and right natural images. (b) Lifting in the space R2 × S1.

We work with a couple of twigs images, generated from cameras with a baseline
of 6 cm, with the aim to well simulate the distance between the left and right eyes.
The couple of images imported in Matlab can be seen on the left of Figure 6.5.6.
The rescaled images have dimensions 89× 161. After having applied the maximal
selectivity orientation process, we obtain 121 points for the left image, and 127 for
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the right one, both displayed in the middle of Figure 6.5.6. These points are lifted
in the space R3 o S2, generating 200 corresponding points.

(a) (b)

(c) (d)

(e)

Figure 6.5.7: (a) Display of the affinity matrix P obtain using the kernel with dif-
fusion parameter λ = 0.035, M = 300, N = 106. (b) Plot of the sorted eigenvalues
of the affinity matrix. (c-d) Points clustered together. The number of minimum
elements to form a cluster is Q = 40. (e) Depth map.
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The spectral analysis of the stimulus is shown in Figure 6.5.7. The kernel for
computing the affinity matrix has been generated using an evolution interval of
time [0, 100]. There are two main clusters of points that correspond to the two
twigs represented in the figures: the first cluster (displayed in red) is composed by
46 points, while the second main cluster (blu) is formed by 64. And so 110 points
are recovered from the tridimensional visual scene. We consider also a depth map,
that allows us to better understand the configuration of the stimulus in the space,
image (e) of Figure 6.5.7. The points near the observer are marked with dark blue,
while the points farther away are characterized by yellow.

6.6 Comparison with Riemannian distance

In this section, we focus on the comparison between the sub-Riemannian distance-
based kernel we have introduced, and the kernel obtained by the classical exponen-
tial function whose argument depends on the Riemannian distance of the space.
The results presented here show the benefits of grouping using sub-Riemannian
distances rather than using isotropic distances.

6.6.1 Gaussian kernel

It is typical in graph-based clustering [SM00, CG97, CL06] to use a Gaussian kernel
as a similarity measure to group clouds of points. In particular, if we consider
a manifold M , this kernel is usually a non-linear function of a Euclidean-type
distance:

kξ0,E(ξ) = 1
4πσ exp

(
−dE(ξ − ξ0)2

4σ

)
, (6.47)

with dE Euclidean-type distance on M , ξ0, ξ ∈M , with ξ0 fixed, and σ ∈ R+.
When we talk about Euclidean-type distance, we are talking about Riemannian

distance on the manifold we are considering, in our case, M = R3 o S2. The
distance is defined as the classic Euclidean distance dR3 on R3, plus the classical
Riemannian distance on the sphere dS2 :

dE(ξ, ξ0) = dR3(p, p0) + dS2(n, n0), with ξ = (p, n) ∈ R3 o S2. (6.48)

This connectivity kernel can be seen as a fundamental solution of the classical
heat operator in M . The parameters involved here are only position ξ ∈ M

and the variance
√
σ ∈ R, so this kernel associates points that are close in the
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typical euclidean sense, and decorrelates points that are far. The parameter σ has
the function of a scale parameter, and so its function is to enlarge or shrink the
correlation area: if σ is small, the correlation is higher between points near ξ0,
while if σ is large the correlation involves also points far away. This is basically
due to the behavior of the Gaussian function.

It is then clear that the Riemannian distance of the space, core of the Gaussian
similarity kernel of equation (6.47), is not associated with a process of alignment
towards a principal direction, but it is at the basis of correlation between points
characterized by closeness. We can therefore think that this kernel encodes the
Gestalt principle of proximity, rather than the one of good continuation. In fact,
the euclidean kernel is usually used for grouping clouds of points instead of elements
characterized by specific features.

6.6.2 Numerical simulation

First of all, to visually understand the differences between the introduced sub-
Riemannian kernel (6.18) and the Riemannian-based Gaussian kernel, we picture
its iso-surfaces by displaying the intensity of (6.47) in R3, integrating on the sphere
in a similar way to what we have done in (6.20). The three-dimensional Gaussian
kernel surface is shown in Figure 6.6.1, image (a): they are Euclidean balls, char-
acterized by different radii as the parameter σ ∈ R+ varies.

Figure 6.6.1: Iso-surface of Gaussian kernel (6.47).
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This kernel is used to segment the cloud points of image (a) of Figure 6.6.2, by
applying the same algorithm proposed in Remark 6.5.1: we generate the affinity
matrix with the similarity measure induced by (6.47), and then we diagonalize it,
recovering the eigenvectors. We find that the three clouds are represented by the
three first eigenvectors of the affinity matrix, as displayed in image (a) of Figure
6.6.2. In particular, each color corresponds to elements belonging to the same
eigenvector.

(a) (b)

Figure 6.6.2: (a) Cloud of points in R3 o S2. (b) Grouping of the three clouds
with the first three eigenvectors, using the algorithm proposed in Table 6.5.1 with
the Gaussian kernel (6.47).

On the other hand, if we try to use this kernel on a three-dimensional scene
characterized by perceptual units in R3 o S2 surrounded by noise elements, we
observe that the eigenvectors associated with the Riemannian affinity matrix do
not represent the contours of the stimulus, but the areas with the highest density
of elements. We try this on the introduced stimuli of Section 6.5.

First, we concentrate on the three-dimensional synthetic images. Performing
the grouping algorithm on the 3D image representing the parametrize curve, we
observe that the first eigenvector (red points) does encode the area with the higher
number of elements, but it does not perform 3D reconstruction, result is shown in
image (a) of Figure 6.6.3. In this case, the only parameter we can modify to get a
better performance is the σ scale parameter, but it is not enough to retrieve the
3D object. This observation is even clearer in the case of the three-dimensional
image representing the arc of circle and y-helix. If we group with a suitable value
of sigma, for example equal to 3, we notice that the first eigenvector is able to
select the points that form the arc of circle, image (b) of Figure 6.6.3. However,
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(a) (b) (c)

Figure 6.6.3: Grouping with Gaussian kernel (6.47) on different stimuli. The
red points correspond to points selected by the first eigenvector. (a) Grouping
algorithm performed on the 3D curve of Figure 6.5.1. (b) Grouping algorithm
performed on the 3D images generated from Figure 6.5.3, with σ = 3. (c) The
same algorithm performed with σ = 9.

the second eigenvector is not able to reconstruct the three-dimensional helix. We
can modify the σ value to enlarge the area of influence, and results are displayed
in image (c) of Figure 6.6.3,. In this case even the first eigenvector is not able to
reconstruct the 3D arc but it groups only the elements forming the area with the
higher number of points.

(a)

Figure 6.6.4: Grouping with Gaussian kernel (6.47) on twig stimuli. The red points
correspond to points selected by the first eigenvector.

Then, we perform the same algorithm on the twig images, which an example
can be found in Figure 6.6.4. Even in this case, we find results similar to the
previous case, observing that the perceptual law underlying the grouping is based
on proximity, and so the closeness of points, without properly segmenting and
reconstructing the visual scene.
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We have showed that, sub-Riemannian geometry, in comparison with Rieman-
nian distances, achieves top performance in grouping the (three-dimensional) vi-
sual scenes to solve the stereo-matching problem. Similar results were also found
by Bekkers, Chen and Portegies in [BCP18], for perceptual grouping of blood ves-
sels in 2D and 3D, comparing sub-Riemannian and Riemannian distances in SE(2)
and SE(3). So, for problems characterized by a strong (three-dimensional) direc-
tionality, at the basis of the law of good continuation, sub-Riemannian distances
achieve an excellent performance compared to distances of the Euclidean-type.
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Chapter 7

Conclusion

In this thesis, a neuro-geometrical model for stereo vision is presented. Stereo
geometry has a mathematical structure that is a direct extension of plane curve
geometry: instead of (orientation, position) neural columns, these become abstract
fibers. The collection of fibers across position (and disparity) is a fiber bundle,
and elements of the fiber can be viewed as neurons. The natural coordinates
are position, positional disparity and orientations from the left and right eyes,
respectively.

The behavior of binocular cells is usually described by the binocular RPs,
the product of the left and right monocular RPs. We note that starting from
binocular receptive profiles, it is possible to reconstruct the three-dimensional
space using only the position and orientation of the visual stimulus in the reti-
nal planes (assuming having corresponding points). This differs from previous
models [AZ00, LZ03, LZ06] which assume the existence of monocular cells with
curvature-sensitive receptive profiles.

We propose a sub-Riemannian model on the space of position and orientation
R3 o S2 for describing the perceptual space of the involved neurons. This geomet-
rical structure favors the tangent direction of a 3D curve stimulus as a natural
consequence of neurophysiological models and classical stereo geometry. The inte-
gral curves of the sub-Riemannian structure encode the concepts of curvature and
torsion in their coefficients and are introduced to describe the connections between
elements. This model can be considered as an extension of the two-dimensional
model proposed by Citti and Sarti in [CS06] in the three-dimensional scene.

Integral curves model neural connectivity and they formalize association field
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models. They are well in accordance with the formation of regular 3D curves as
studied by psychophysical experiments in [HF95, HHK97, KHK16, DW15], with
the generalization of co-circularity in 3D [AZ00, LZ03, LZ06], and with mathemat-
ical conjectures [KGS05a, KGS+05b] describing the ability to perceive two contour
elements in the three-dimensional space as belonging to the same perceptual unit.
This provides a new framework for specifying the correspondence problem, by il-
lustrating how good continuation in the 3-D world generalizes good continuation
in the 2-D plane.

The stochastic counterpart of the 3D association fields provides a kind of glue
that allows transitions from points of the space to nearby points, and is thought of
as the underlying circuits of binocular neurons. This leads to the introduction of
connectivity kernels that encode the 3D geometric position-orientation information
and describe the probability of co-occurrence of elements of the space. These
probability densities are inserted as facilitation inducers in a neural population
activity model, whose stability analysis leads to the emergence of three-dimensional
perceptual units.

We implement a clustering algorithm to test the visual grouping properties of
the (discrete) connectivity kernels. We find that our algorithm is able to cluster
elements belonging to a single object in the 3D space. At the same time, the
algorithm is able to solve the stereo correspondence problem by determining the
appropriate match between left and right pixels, while discarding false matches. A
comparison with the same algorithm with the classical Gaussian kernel equipped
with a Euclidean-type distance explains and justifies the introduction of the pro-
posed sub-Riemannian metric.
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Appendix A

Position-orientation manifold
R3 o S2 and Lie group of rigid
body motions SE(3)

In this appendix, we recall the detailed definition of the position-orientation space
that we used throughout the thesis to describe the behavior of binocular cells. We
mainly refer to [DF11, DCGDH11, DGDHM16] to remind how R3 o S2 can be
thought of homogeneous space for the Lie group of rigid body motions SE(3), by
taking the quotient of SO(3), the three-dimensional rotation group, on a subgroup
identified with SO(2), the bi-dimensional rotation group.

A.1 3D rotation group SO(3)

The 3D rotation group SO(3), also known as the special orthogonal group, is the
group of all rotations about the origin of three-dimensional Euclidean space R3

under the operation of composition.
In particular, if RΨ

i denotes a counterclockwise rotation around the i-th axis
by an angle Ψ, then every rotation R ∈ SO(3) can be written uniquely in Euler
angle form:

R = Rθ3R
ϕ
2R

α
3 , (A.1)

where θ, α ∈ [0, 2π], while ϕ ∈ (0, π). Thus, the angles θ, ϕ, α can be taken as
coordinates in SO(3).
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Remark A.1.1. Since SO(3) is diffeomorphic to real projective space P3(R),
which is a quotient of S3 by identifying antipodal points, inevitable problems al-
ways exist in local charts. In (A.1) the ambiguity arises at the intersection of
the equator with the r3-axis. So, it is possible to introduce a second chart, where
every counterclockwise rotation is written as R = Rθ1R

ϕ
2R

α
3 with ϕ ∈ (−π/2, π/2),

θ, α ∈ [−π, π]. In this second chart, the ambiguity arises at the intersection between
the equator and the r1-axis.

The group of 3D rotation is a Lie group, and associated with every Lie group
is its Lie algebra. The Lie algebra of SO(3) is denoted as so(3) and it is the set
spanned by the skew symmetric matrices:

A3 =


0 −1 0
1 0 0
0 0 0

 , A2 =


0 0 1
0 0 0
−1 0 0

 , A1 =


0 0 0
0 0 −1
0 1 0

 , (A.2)

each of these represents respectively the vector fields ∂α, ∂ϕ, ∂θ in the neutral ele-
ment1 e ∈ SO(3), and so so(3) = span{∂α, ∂ϕ, ∂θ}e.

We have recalled in Chapter 4, section 4.2, that it is possible to identify the
Lie algebra of a Lie group with the set of left-invariant vector fields. The left-
invariant vector fields can be obtained from the basis {∂i}i of the tangent space
at the neutral element through the pushforward of the left multiplication LPQ :=
PQ,P and Q ∈ SO(3) by:

(LP )∗∂iφ = ∂i(φ ◦ LP )

for all smooth φ : UP → R, which are locally defined on some neighborhood
UP ⊆ SO(3) of P .

Example A.1.1. We recall here the computation of left-invariant vector fields,
considering the Lie algebra basis of so(3) in the neutral element e ∈ SO(3), starting
from ∂ϕ,e:

(LR)∗∂ϕ,e = (DLR)e∂ϕ,e = d

dt |t=0
LR(γ(t)) (A.3)

with γ : R −→ SO(3) such that γ(0) = e and γ̇(0) = ∂ϕ,e. We explicitly remind

1 The neutral element e in SO(3) corresponds to the identity matrix Id of dimension 3.
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that ∂ϕ,e = A2 and so it is natural to choose the curve γ as :

γ(t) = Rt2 =


cos t 0 sin t

0 1 0
− sin t 0 cos t

 . (A.4)

This leads to:

d

dt |t=0
LR(γ(t)) = R

d

dt |t=0


cos t 0 sin t

0 1 0
− sin t 0 cos t

 = RA2, (A.5)

the left-invariant vector fields at point R ∈ SO(3), which we can call Ỹϕ,R.

Then, we need to express this quantity in a basis for the tangent space of SO(3)
in a generic point R. The matrices that represents the vector fields {∂α, ∂ϕ, ∂θ} in
a generic point R of coordinates (α,ϕ, θ) in the second chart, are:

∂α,R = Rθ1R
ϕ
2R

α
3A3

∂ϕ,R = Rθ1R
ϕ
2A2R

α
3

∂θ,R = Rθ1A1R
ϕ
2R

α
3

(A.6)

computed using a curve η such that η(0) = R and η′(0) equal to the chosen vector
field. Expliciting the left invariant vector field Ỹϕ,R in the basis {∂α, ∂ϕ, ∂θ}|R we
have:

Ỹϕ,R = sinα tanϕ∂α,R + cosα∂ϕ,R −
sinα
cosϕ∂θ,R. (A.7)

According to [DF11], left-invariant vector fields express in the second chart,
forgetting the dependence on the point R ∈ SO(3), are:

Ỹθ = − cosα tanϕ∂α + sinα∂ϕ + cosα
cosϕ∂θ

Ỹϕ = sinα tanϕ∂α + cosα∂ϕ −
sinα
cosϕ∂θ

Ỹα = ∂α;

(A.8)
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while in the first chart (A.1) are:

Ỹθ = (cosα cotϕ)∂α + (sinα)∂ϕ −
cosα
sinϕ∂θ

Ỹϕ = −(sinα cotϕ)∂α + (cosα)∂ϕ + sinα
sinϕ∂θ

Ỹα = ∂α.

(A.9)

Since we are interested in working with the two-dimensional sphere, it is pos-
sible to define a sub-Riemannian metric gSO(3) with respect to vector fields Ỹθ
and Ỹϕ (belonging to the tangent space of the sphere) by imposing their orthonor-
mality. In this setting, we say that a curve2 γ : I −→ SO(3) is horizontal if
γ̇(s) = b(s)Ỹθ + c(s)Ỹϕ ∈ span{Ỹθ, Ỹϕ} for all s ∈ I, and its length is defined as:

`SO(3)(γ) =
∫
I

√
gSO(3)(γ̇(s), γ̇(s))ds =

∫
I

√
b2(s) + c2(s)ds. (A.10)

The Carnot-Charatheodory distance between two points P and Q ∈ SO(3), is
defined as the infimum of the SO(3)-lengths of the horizontal curves joining P
and Q:

dSO(3)(P,Q) = inf
γ
{`SO(3)(γ); γ(0) = P, γ(1) = Q}, (A.11)

and such a curve exists because of the Hörmander condition satisfied by the gener-
ating vector fields Ỹθ and Ỹϕ. In particular, for the reader interested in the curves
(geodesics) that solve(A.11), we refer to [MDS+17] .

A.2 Two dimensional manifold S2

It is usual to define the two dimensional sphere as the set of points in R3 having
(Euclidean) distance from the origin equal to 1, namely S2 = {x ∈ R3; ‖x‖ = 1}.
However, since the topological dimension of this geometric object is 2, we introduce
the classical spherical coordinates (θ, ϕ) such that n = (n1, n2, n3) ∈ R3 can be
parametrized as:

n1 = cos θ sinϕ

n2 = sin θ sinϕ

n3 = cosϕ

(A.12)

with θ ∈ [0, 2π] and ϕ ∈ (0, π).

2In the following, unless stated otherwise, I is identified with the interval [0, 1].
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The ambiguity that arises using a local coordinate chart is overcome by the
introduction of a second chart, covering the singular points similarly as already
explained in Remark A.1.1.

The Euclidean metric induces on the sphere the classical intrinsic Riemannian
metric:

gS2 := dϕ2 + sin2 ϕdθ2, (A.13)

and a set of local vector fields that are orthonormal with respect to this metric are

Yθ = − 1
sinϕ∂θ,

Yϕ = ∂ϕ,

(A.14)

well defined for θ ∈ [0, 2π], ϕ ∈ (0, π).

If we take a curve γ : I −→ S2, such that γ̇(s) = (θ̇(s), ϕ̇(s)), it is possible to
define its length with respect to the Riemannian metric introduced in (A.13):

`S2(γ) =
∫
I

√
ϕ̇2(s) + θ̇(s)2 sinϕ2(s)ds (A.15)

The Carnot-Charatheodory distance associated with this metric is defined by tak-
ing the infimum of the S2-length of a curve joining the two points:

dS2(n0, n1) = inf
γ
{`S2(γ); γ(0) = n0, γ(1) = n1}, (A.16)

for every couple of points ni = (θi, ϕi) ∈ S2, i = 0, 1.

Remark A.2.1. The two-dimensional sphere S2 can be interpreted in terms of the
rotation group SO(3) if we choose to apply a rotation R to the r3-axis. Formally,
this corresponds to associate to S2 the Lie group quotient of SO(3) over H, where
H is a one-parameter subgroup of SO(3). The subgroup H is defined as:

H = (0, 0, α) = {R ∈ SO(3);R = Rα3 , ∀α ∈ [0, 2π]}, (A.17)

the set of rotations around the third axis, usually identified with SO(2). The
quotient space is then defined as SO(3)/H = {RH,R ∈ SO(3)}, namely the class
of the left cosets of H. The equivalence relation reads as follow : R1, R2 ∈ SO(3),
R1 ∼ R2 ⇐⇒ (R1)−1R2 ∈ SO(2). In particular, the correspondence between
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SO(3)/SO(2) and S2 is given by the following map:

SO(3)/SO(2) 3 [Rθ3R
ϕ
2 ] = {Rθ3R

ϕ
2R

α
3 ;α ∈ [0, π} ⇐⇒

n(θ, ϕ) := (cos θ sinϕ, sin θ sinϕ, cosϕ)T = Rθ3R
ϕ
2R

α
3 e3 ∈ S2,

(A.18)

using the first chart, and with e3 = (0, 0, 1) ∈ R3. Analogous reasoning can be
done considering chart (A.1.1).

Basically, it is possible to identify the element n ∈ S2 with the group element
Rn ∈ SO(3), where Rn is any rotation matrix such that Rne3 = n.

A.3 3D Euclidean motion group SE(3)

An element g = (p,R) in SE(3) is defined by a point p ∈ R3 and a rotation
R ∈ SO(3). The law group expresses the fact that the composition of two body
motions is again a body motion, and so for two elements g = (p,R) and g′ = (p′, R′)
in SE(3) their product is defined as

gg′ = (p+Rp′, RR′). (A.19)

It is possible to notice that the group SE(3) is a semi-direct product of the trans-
lation group R3 and the rotation group SO(3), since it uses an isomorphism
R 7→ (p 7→ Rp) from the rotation group onto the automorphism on R3. That
is why it is more appropriate to write SE(3) = R3 o SO(3).

We consider the following basis for the tangent space Te(SE(3)) at the unity
element e = (0R3 , Id) ∈ SE(3)

BTe(SE(3)) = {∂1, ∂2, ∂3, ∂θ, ∂ϕ, ∂α} (A.20)

with table of Lie brackets (see [DF11]):

([∂i, ∂j ])i,j=1...3,θ,ϕ,α =



0 0 0 0 ∂3 −∂2

0 0 0 −∂3 0 ∂1

0 0 0 ∂2 −∂1 0
0 ∂3 −∂2 0 ∂α −∂ϕ
−∂3 0 ∂1 −∂α 0 ∂θ

∂2 −∂1 0 ∂ϕ −∂θ 0


. (A.21)
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The corresponding left-invariant vector field {Ỹi}i are obtained by the push-forward
of the left multiplication, and they can be expressed in the coordinate chart (A.1)
for ϕ 6= 0, ϕ 6= π:

Ỹ1 =(cosα cosϕ cos θ − sinα sin θ)∂1 + (sinα cos θ + cosα cosϕ sin θ)∂2+

− cosα sinϕ∂3

Ỹ2 =(− sinα cosϕ cos θ − cosα sin θ)∂1 + (cosα cos θ + sinα cosϕ sin θ)∂2+

sinα sinϕ∂3

Ỹ3 =(sinϕ cos θ)∂1 + (sinϕ sin θ)∂2 + cosϕ∂3

Ỹθ =(cosα cotϕ)∂α + (sinα)∂ϕ −
cosα
sinϕ∂θ

Ỹϕ =− (sinα cotϕ)∂α + (cosα)∂ϕ + sinα
sinϕ∂θ

Ỹα =∂α
(A.22)

or using the second chart (A.1.1), for ϕ 6= −π/2, ϕ 6= π/2:

Ỹ1 = (cosα cosϕ)∂1 + (cos θ sinα+ cosα sinϕ sin θ)∂2 + (sinα sinϕ− cosα cos θ sinϕ)∂3

Ỹ2 = (− sinα cosϕ)∂1 + (cosα cos θ − sinα cosϕ sin θ)∂2 + (sinα sinϕ cos θ + cosα sin θ)∂3

Ỹ3 = (sinϕ)∂1 − (cosϕ sin θ)∂2 + (cosϕ cos θ)∂3

,

(A.23)
with Ỹθ, Ỹϕ and Ỹα are the same of (A.8), as computed in [DF11].

As already noticed by Duits and Franken in [DF11], interpreting a point on
the sphere (A.12) as a direction, then the vector field Ỹ3 expresses the coupling
position-orientation. So, by noticing that Ỹθ and Ỹϕ belong to the tangent space
of the sphere, it is possible to consider the distribution that naturally couples
positions and orientations generated by these vector fields, namely

D = span{Ỹ3, Ỹθ, Ỹϕ}, (A.24)

and define a sub-Riemannian metric tensor gSE(3) with respect to these vector
fields by imposing their orthonormality. In this setting, a curve γ : I −→ SO(3) is
horizontal if γ̇(s) = a(s)Ỹ3 + b(s)Ỹθ + c(s)Ỹϕ for all s ∈ I, and its length is defined
as:

`SE(3)(γ) =
∫
I

√
gSE(3)(γ̇(s), γ̇(s))ds =

∫
I

√
a2(s) + b2(s) + c2(s)ds. (A.25)
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Moreover, if we consider g1 and g2 ∈ SE(3), then the Carnot-Caratheodory
distance between g1 and g2 is the infimum of the SE(3)-lengths of the horizontal
curves joining g1 and g2:

dSE(3)(g1, g2) = inf
γ
{`SE(3)(γ); γ(0) = g1, γ(1) = g2}. (A.26)

Such a curve exists because of the Hörmander condition satisfied by vector fields
Ỹ3, Ỹθ and Ỹϕ, since their commutation rules are the same as the ones shown in
Table (A.21). For the reader interested in the curves (geodesics) that solve(A.11),
we refer to the works [DGDHM16, MP20] .

A.4 3D space of positions and orientations R3 o S2

The 3D position-orientation space R3 o S2 and the associated local orthonormal
frame used to describe the behavior of binocular cells have been introduced in
section 5.3, exploiting the action of the group of SE(3) on R3 o S2. However, it is
commonly known that a deeper relationship exists between these spaces: R3 o S2

can be outlined in terms of a quotient of SE(3), basically taking advantage of
Remark A.2.1, namely

R3 o S2 := SE(3)/({0} × SO(2)). (A.27)

In other words, R3 remains unchanged, while the quotient identifies S2 elements
with cosets of SO(3)/SO(2).

Remark A.4.1. Within the quotient structure SE(3)/({0}×SO(2)) two elements
ξ = (p, [R]) and ξ′ = (p′, [R]′) are equivalent if:

ξ′ ∼ ξ ⇐⇒ (ξ′)−1ξ ∈ {0} × SO(2)

⇐⇒ p = p′ and ∃ α : (R′)−1R = Rα3 ∈ SO(2),
(A.28)

where it holds the identification of Remark A.2.1, and the relationship between the
elements of S2 and SO(3)/SO(2) is defined according to (A.18).

The group action · of g = (p,R) ∈ SE(3) onto (q, n) ∈ R3 o S2 is defined by

g · (q, n) = (Rq + p,Rn); (A.29)

and so, because this group product influences the group action in R3 o S2, we use
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the semi-product notationo even though this is usually reserved for the semi-direct
product of groups.

Remark A.4.2. Via the group action, the equivalence relation (A.28) amounts
to:

g′ ∼ g ⇐⇒ g′ · (0, e3) = g · (0, e3), (A.30)

where e3 = (0, 0, 1) is the third reference axis in R3.

Thereby, an arbitrary element ξ in R3 o S2 can be considered as the equivalence
class of all rigid body motions that map reference position and orientation (0, e3)
onto (p, n) with arbitrary p ∈ R3 and n ∈ S2 defined considering the spherical
coordinates introduced in equation (A.12).

It is quite natural now to consider the vector field Ỹ3 of (5.24) which couples
positions and orientations and vector field on the sphere Yθ and Yϕ defined in
(A.14). (When we work in the position-orientation space, the vector field Ỹ3 will
be denoted with Y3 for clarity. ) The local frame {Y3, Yθ, Yϕ} satisfies the Hör-
mander’s condition in the chart of definition, and in this setting we extend the
classical Riemannian metric on S2 to a sub-Riemannian metric (A.13) on R3 o S2,
by imposing the orthonormality of these vector fields.

Naturally, the length of a horizontal curve γ : I −→ R3 o S2, is defined as

`R3oS2(γ) =
∫
I

√
a(s)2 + ϕ̇2(s) + θ̇(s)2 sinϕ2(s)ds, (A.31)

where a(s) is the coefficient associated to vector field Y3.
The Carnot-Charatheodory distance between two points ξ1 = (p1, n1) and ξ2 =

(p2, n2) is:

dR3oS2(ξ1, ξ2) = inf
γ
{`R3oS2(γ); γ(0) = ξ1, γ(1) = ξ2}. (A.32)
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Appendix B

Fundamental solutions in SE(3)
and R3 o S2

In this appendix, we briefly introduce a first investigation on the parametric
relationship between the fundamental solution of the forward Kolmogorov op-
erator (6.8), (computed numerically in 6.2), and the fundamental solution of
the corresponding hypo-elliptic convection-diffusion operator in SE(3), already
solved exactly and with numerical, analytical and stochastical approximation in
[DBM19, PD17, PSMD15].

First, we find a (local) isometry between R3 o S2 and its SE(3) counterparts,
and then, we relate the behavior of fundamental solutions for operators defined
in these spaces, using the notion of lifting of operators, embedding in the work of
Bonfiglioli-Biagi [BB17].

B.1 Metric property between R3 o S2 and SE(3)

The manifold R3 o S2 is a left quotient of the Lie group of rigid body motion
SE(3), as recalled in subsection A.4. In this section we show that we can pass the
metric defined in subsection A.3 on SE(3) to the quotient on R3 o S2, investigating
the existence of an isometry between these two spaces.

B.1.1 Local isometry from SE(3) to R3 o S2

The existence of a local isometry, between SE(3) and R3 o S2 together with the
distances defined in the previous sections, is proved by adapting a technique pro-
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posed by Arcozzi-Baldi in [AB08] to our setting. In particular, this technique is
developed locally, providing the appropriate lifting relating R3 o S2 to SE(3).

Theorem B.1.1. Let H̃ = {0} × H be a one parameter subgroup of SE(3), H
defined in (A.17). Then X = SE(3)/H̃ is locally (in charts) isometric to R3 o S2.

Proof. The subgroup H̃ has a unique intersection with the plane {α = 0} and so
we can identify X with R3 o S2 via the following map:

φ : (pR3 , θ, ϕ, 0) · H̃ 7→ (pR3 , θ, ϕ). (B.1)

We will see that φ is a surjective isometry: the surjective property follows imme-
diately from the transitive action of SE(3) on R3 o S2.

On the other hand, to show that φ is an isometry, we need to prove the equality
of the Carnot-Caratheodory distances:

dX(g1H̃, g2H̃) = dR3oS2(φ(g1H̃), φ(g2H̃)). (B.2)

It is sufficient to show that every horizontal curve γ in R3 o S2 has a horizontal
lifting γ̃ in SE(3). In particular, we say that γ̃ is an horizontal lift if γ̃ is horizontal
(in SE(3)) and we have φ ◦ π(γ̃) = γ, where π is the usual projection. So, we will
have `SE(3)(γ̃) = `R3oS2(γ) and we can conclude.

First, we need to determine the existence of the opportune lifting: if we consider
a curve γ = (p, (θ, ϕ)) in R3 o S2 in a way that its length satisfy (A.31), we can
define α such that:

α(s) = α0 −
∫ s

0
θ̇ cosϕds. (B.3)

This integral is well defined, and so taking the horizontal lifting γ̃ = (p, θ, ϕ, α),
we get that γ̃ is an horizontal curve for SE(3):

˙̃γ = a(s)Ỹ3 + b(s)Ỹθ + c(s)Ỹϕ (B.4)

with b(s) = ϕ̇ sinα − θ̇ sinϕ cosα and c(s) = ϕ̇ cosα + θ̇ sinϕ sinα. With these
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coefficients it is possible to compute the length of the curve in SE(3):

`SE(3)(γ̃) =
∫ √

a2(s) + b2(s) + c2(s)ds

=
∫ √

a2(s) + (ϕ̇ sinα− θ̇ sinϕ cosα)2(s) + (ϕ̇ cosα+ θ̇ sinϕ sinα)2(s)ds

=
∫ √

a2(s) + ϕ̇2(s) + θ̇(s)2 sinϕ2(s)ds

= `R3oS2(γ).
(B.5)

So, the equality of the Carnot-Caratheodory distances (B.2) follows immediately.

Corollary B.1.1. Let H be a one-parameter subgroup of SO(3), as defined in
(A.17). Then X = SO(3)/H is isometric to S2.

Proof. The proof follows directly from the proof of Theorem B.1.1, by restriction
to the spaces SO(3) and S2.

In particular, there exists a relationship between the left-invariant vector fields
defined in (A.22) and the spherical vector fields (A.14).

Remark B.1.1. The spherical vector fields Yi presented in (A.14) can be obtained
from left invariant vector fields Ỹi defined in (A.22) through a rotation described
by the matrix Rα3 and quoting with respect to the α variable:

Yθ

Yϕ

0

 = Rα3


Ỹθ

Ỹϕ

Ỹα


|R3oS2

=


cosαỸθ − sinαỸϕ
sinαỸθ + cosαỸϕ

Ỹα


|R3oS2

. (B.6)

Actually, there is also another way to get the same set of vector fields in R3 o S2,
and this is done by choosing the representative of α in the quotient space as α = 0.
This can be thought of as the implicit function theorem proved in homogeneous Lie
groups by Franchi, Serapioni and Serra Cassano in [FSSC01] and then in Carnot-
Carathéodory spaces by Citti and Manfredini in [CM06]: if a function f is of class
C1 with respect to the general vector fields, then f|α=0 is of class C1 with respect
to vector fields restricted to α = 0.

This existing relationship that links the vector fields of SE(3) with the vector
fields defined in R3 o S2, thanks to the formula (B.1), allows us to understand the
definition of the lifting proposed in Theorem B.1.1.
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Remark B.1.2. The lifting of (B.3) has been determined expressing the length
of a curve γ : I −→ S2 defined in (A.15) in terms of the local orthonormal vector
fields (A.14):

γ̇ = −θ̇ sinϕYθ + ϕ̇Yϕ. (B.7)

Using result (B.6), thus substituting the expression of the vector fields Yθ, Yϕ in
terms of the vector fields defined in SO(3), we get:

γ̇ = −θ̇ sinϕ(cosαỸθ − sinαỸϕ) + θ̇(sinαỸθ + cosαỸϕ)

= (ϕ̇ sinα− θ̇ sinϕ cosα)Ỹθ + (θ̇ sinϕ sinα+ ϕ̇ cosα)Ỹϕ
= −θ̇ cosϕ∂α + ϕ̇∂ϕ + θ̇∂θ,

(B.8)

from which we choose to define α̇ as the coefficient of ∂α.

B.2 Fundamental solutions for lifted operators

Since it is possible to switch from a set of vector fields in R3 o S2 to a set in SE(3),
through a change of variable and a passage to the quotient, in this section we study
the existence of a relationship between the fundamental solutions of operators in
SE(3) and in R3 o S2, operators written in terms of vector fields.

B.2.1 Involved operators

Thanks to Remark B.1.1, it is possible to consider a change of variable F :
SE(3) −→ SE(3) such that its differential acts on the tangent space via (B.6),
introducing the following set of vector fields:

Z3 =DF (Ỹ3) = Ỹ3

Zθ =DF (Ỹθ) = cotϕ∂α −
1

sinϕ∂θ

Zϕ =DF (Ỹϕ) = ∂ϕ.

(B.9)

Two hypoelliptic operators, one on R3 o S2 and the other one on SE(3), can
be defined in terms of the vector fields considered:

LSE(3) := Z3 + Z2
θ + Z2

ϕ (B.10)
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and
LR3oS2 := Y3 + Y 2

θ + Y 2
ϕ , (B.11)

and we observe that one can be written in terms of the other, differing by a
remainder.

Remark B.2.1. The operator LSE(3) can be expressed in terms of the operator
LR3oS2:

LSE(3) = LR3oS2 +R, (B.12)

with R remainder that involves the α directions, namely in coordinates

R = cotϕ∂2
α − 2cotϕ

sinϕ∂θ∂α. (B.13)

B.2.2 Lifting of operators

In the following we introduce the definition of the lifting of an operator and the
results it implies, applying to this setting the introductive results of the work
presented by Biagi-Bonfiglioli in [BB17].

Definition B.2.1. Let L be a smooth linear partial differential operator on a
manifold M and L̃ = L + R another second order differential operator defined in
an higher manifold M × N . We say that L̃ is a lifting of L if the followings
conditions hold:

i) L̃ has a smooth coefficients, possibly depending on ξ ∈M and α ∈ N ;

ii) for every fixed f ∈ C∞(M), one has

L̃(f ◦ π)(ξ, α) = (Lf)(ξ), for every (ξ, α) ∈M ×N, (B.14)

where π(ξ, α) = ξ is the canonical projection of M ×N onto M .

Remark B.2.2. The partial differential operator LSE(3) introduce in (B.10) is a
lifting of LR3oS2 introduced in equation (B.11) by considering M = R3 o S2 and
N = S1.

This definition allows us to recover the relationship between the fundamental
solutions, obtaining the solution defined on the quotient space simply by integrat-
ing the fundamental solution associated to the operator on SE(3), with respect to
the additional variable.
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Theorem B.2.1. Let LR3oS2 be the smooth operator defined in (B.11) on R3 o S2

and let LSE(3) be the lifting on SE(3) introduced in (B.10), according to Definition
(B.2.1). We suppose that there exists a fundamental solution Γ̃ for LSE(3) satisfying
the following properties:

i) for every fixed ξ, ξ′ ∈ R3 o S2 with ξ 6= ξ′, one has

α 7→ Γ̃(ξ, 0; ξ′, α) belongs to L1(S1); (B.15)

ii) for every fixed ξ ∈ R3 o S2 and every compact set K ⊆ R3 o S2, one has

(ξ′, α) 7→ Γ̃(ξ, 0; ξ′, α) belongs to L1(K × S1). (B.16)

Then the function Γ : {(ξ, ξ′) ∈ R3 o S2 × R3 o S2 : ξ 6= ξ′} −→ R defined by

Γ(ξ, ξ′) =
∫
S1

Γ̃(ξ, 0; ξ′, α)dα, (B.17)

is a fundamental solution for LR3oS2 on R3 o S2.

Proof. It follows from i) that Γ is well-posed. Then, to have Γ fundamental solu-
tion, we need

- Γ(ξ, ·) ∈ L1
loc(R3 o S2). This follows from ii);

- LR3oS2Γ(ξ, ·) = −Dirξ ∈ D′(R3 o S2).

In order to prove the second property, we consider f ∈ C∞0 (R3 o S2). This
function can be consider as a function of C∞0 (SE(3)) such that ∂kαf = 0 for all
k ∈ N. Then, we have:

−f(ξ) = −f (ξ, 0)︸ ︷︷ ︸
g∈SE(3)

=
∫
SE(3)

Γ̃(g, g′)L∗SE(3)f(g′)dg′ =

=
∫
SE(3)

Γ̃(ξ, 0; ξ′, α)L∗SE(3)f(ξ′)dξ′dα′
, (B.18)

with L∗SE(3) formal adjoint of LSE(3). Thanks to (B.12), we know that L∗SE(3) =
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L∗R3oS2 +R∗, and so

=
∫
SE(3)

Γ̃(ξ, 0; ξ, α′)(L∗R3oS2 +R∗)f(ξ′)dξ′dα′

=
∫
R3oS2×S1

Γ̃(ξ, 0; ξ′, α′)(L∗R3oS2)f(ξ′)dξ′dα′

=
∫
R3oS2

Γ(ξ, ξ′)(L∗R3oS2)f(ξ′)dξ′.

(B.19)

The second equality follows from the fact that the formal adjoint R∗ of the operator
R has the form:

R∗Ψ =(−1)2 cotϕ∂2
αΨ(ξ, α) + (−1)2∂θ

(
−2cotϕ

sinϕ∂αΨ(ξ, α)
)

= cotϕ∂2
αΨ(ξ, α)− 2cotϕ

sinϕ∂θ∂αΨ(ξ, α)

=RΨ,

(B.20)

and so we can conclude that∫
R3oS2×S1

Γ̃(ξ, 0; ξ′, α′)(R∗)f(ξ′)dξ′dα′ = 0. (B.21)

Remark B.2.3. It would be interesting to consider the same operator of (B.10)
in SE(3) written in terms of left-invariant vector fields Ỹi,SE(3) and searching for
a relationship between its fundamental solution and the one defined on R3 o S2 for
the operator defined in (B.11). In particular, the left-invariant operator in SE(3)
has an extra first-order term not involving the direction identified by α, so there
is the need to introduce a different strategy. We may use a parametrix method,
with the idea of choosing the fundamental solution in R3 o S2 as parametrix, to
obtain an approximation via iteration for the left-invariant operator. This will be
the object of future research.
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