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Abstract

In the frame of inductive power transfer (IPT) systems, arrays of magnetically
coupled resonators have received increasing attention as they are cheap and versatile
due to their simple structure. They consist of magnetically coupled coils, which
resonate with their self-capacitance or lumped capacitive networks.

Of great industrial interest are planar resonator arrays used to power a receiver
that can be placed at any position above the array. A thorough circuit analysis has
been carried out, first starting from traditional two-coil IPT devices. Then, resonator
arrays have been introduced, with particular attention to the case of arrays with a
receiver. To evaluate the system performance, a circuit model based on original
analytical formulas has been developed and experimentally validated. The results
of the analysis also led to the definition of a new doubly-fed array configuration
with a receiver that can be placed above it at any position. A suitable control
strategy aimed at maximising the transmitted power and the efficiency has been
also proposed. The study of the array currents has been carried out resorting to
the theory of magneto-inductive waves, allowing useful insight to be highlighted.
The analysis has been completed with a numerical and experimental study on the
magnetic field distribution originating from the array.

Furthermore, an application of the resonator array as a position sensor has been
investigated. The position of the receiver is estimated through the measurement of
the array input impedance, for which an original analytical expression has been also
obtained. The application of this sensing technique in an automotive dynamic IPT
system has been discussed.

The thesis concludes with an evaluation of the possible applications of two-
dimensional resonator arrays in IPT systems. These devices can be used to improve
system efficiency and transmitted power, as well as for magnetic field shielding.
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Chapter 1

Introduction

Wireless power transfer (WPT) technologies are penetrating more and more
into everyday life, since they offer many advantages with respect to wired

ones, such as increased electrical safety (electrical contacts are avoided) and the
ability to transfer energy in durst and wet environments. The dawn of WPT can be
attributed to Maxwell’s “Treatise on Electricity and Magnetism”, published in 1873
[6], where the idea of transmitting power between two points in free space has been
first proposed. In 1886, Heinrich Rudolf Hertz succeeded for the first time in pro-
ducing and detecting electromagnetic waves, confirming Maxwell’s predictions. At
the early beginning of the previous century, other experiments to transmit electrical
power without wires between two points in space have been carried out by Nikola
Tesla, leading to several industrial patents regarding the wireless transmission of
power, including the classical two coils WPT system [1, 7], illustrated in Fig. 1.1,
introducing the concept of electromagnetic resonance for the first time in history.
Tesla’s original idea was to transfer power for lighting distant cities or districts from
places where cheap power is obtainable, but it never materialised on an industrial
scale. There are several stories and legends regarding this theory, but the most rea-
sonable cause for its lack of diffusion concerns the dubious feasibility and electrical
safety issues. However, Maxwell’s and Tesla’s ideas inspired engineers who have
developed over the years WPT strategies and devices exploiting different physical
phenomena [8], finally allowing diffusion on an industrial scale of this technique.

Techniques for wireless electric energy transmission can be divided into two main
families: far-field techniques, in which energy is transmitted via electromagnetic
waves and near-field techniques, in which energy is transferred by means of an elec-
tric or magnetic field which varies in time. A schematic summary of the different
WPT technologies is reported in Fig. 1.2. The far-field WPT allows the power to be
transported for long distances, up to several kilometres, since it travels with electro-
magnetic radiation. To enhance the electromagnetic propagation phenomenon, the
far-field WPT systems usually operate in the radio frequency spectrum [9], even if
applications working in the visible spectrum have also been developed [10, 8]. How-
ever, these systems allow very little power to be transferred with a generally modest
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Figure 1.1: Tesla’s resonant coils for wireless power transmission [1].

efficiency and are then mainly devoted to power wireless sensor networks, “Internet
of Things” devices, radio-frequency identification (RFID) systems, and wireless-
powered unmanned air vehicles. An interesting generalised analysis applicable to
both far- and near-field WPT systems in presented in [11], with a particular focus
on electromagnetic energy harvesters. Near-field wireless power transfer can instead
reach very high power rates, preserving good efficiency (generally higher than 90%).
They can be developed to exploit the electric or magnetic induction principles, and
are then classified as capacitive or inductive power transfer systems, respectively.
In capacitive power transfer (CPT) devices the energy is delivered from the trans-
mitting to the receiving circuit through capacitively coupled metallic plates, that
have to be fed with a time varying voltage [12, 13]. Inductive power transfer (IPT)
devices instead consist in systems of magnetically coupled coils, and the energy is
transferred through the magnetic field generated by time-varying currents. Accord-
ing to Maxwell’s equations of electromagnetism [6], both the electric and magnetic
induction phenomena are emphasised as the frequency increases, which is however
limited according to the electrical dimensions of the system, therefore in such a way
as to prevent the energy from being radiated. The applications of near-field WPT
systems range from powering consumer electronics devices and biomedical implants
[14, 15] with a few tens of watts up to heavy industrial equipment and electric vehi-
cles (EVs), that require tens of kWs [16, 17, 18, 19]. Different research proved that
IPT systems can achieve very high power transfer levels [20, 21], but the coupling
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Figure 1.2: Classification of wireless power transfer technologies.

device (i.e. the magnetically coupled coils) is heavy and bulky. Moreover, to confine
the magnetic flux density and thus improve the efficiency, planar ferrite cores are
usually introduced in high-power applications, leading to a further increase in weight,
costs and power losses. Despite ferrite cores involve losses, in terms of efficiency, it
is still convenient to introduce them. Ferromagnetic cores also limit the operating
frequency of the IPT system, being somehow proportional to the frequency [22, 20].
However, bounding the magnetic flux density, they play a crucial role in increasing
the safety of the system. Human exposure to magnetic fields is one of the main
concerns that limit the large scale diffusion of IPT systems [23, 24]. The coupling
link of CPT apparatuses is much lighter than that of IPT systems and can oper-
ate at higher frequencies, being made of conductive plates only [12, 13, 22]. CPT
systems have been proved to achieve kW-level power transfer at more than 90% of
efficiency [25], the power transfer remains lower than that achieved by IPT systems
[22]. Along with the frequency, the voltage applied to the conductive plates should
also be raised as high as possible to increase the performance of the system, resulting
in a negligible electrical hazard. Furthermore, humid and dirty environments can
alter their functioning [13, 26].

To improve the system performance in terms of efficiency and transmitted power,
compensation networks are typically introduced in both CPT and IPT systems. The
basic idea was suggested by tesla as early as the beginning of the last century in
[1] (see also Fig. 1.1), in which the magnetically coupled coils are both connected
to lumped capacitors (with appropriate capacitance values) to trigger the so-called
magnetic resonance phenomenon. In this way, the magnetic energy required by
the coils for the power transfer is supplied by the capacitors and not by the power
source, improving the efficiency of the system. Analogously, in CPT systems, the
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electrical energy required by the capacitive coupling can be supplied by special
lumped inductors introduced in the circuitry connected to the metallic plates. In
modern WPT systems, compensation networks with various topologies are now al-
ways used [27, 28]. In addition to improving performance, they also allow particular
operating conditions to be reached, that are necessary to power the load with the
appropriate voltage or current [28]. The CPT and IPT systems generally require an
auxiliary circuitry which involves, in addition to the coupling system, the compen-
sation networks and the energy conversion systems, connected at both system input
and output. Although the basic idea of these two WPT techniques is similar (and
dual), in most practical applications the WPT systems in the near field exploit the
principle of magnetic induction.

In this frame, a further focus on IPT system is addressed, which aims at pro-
viding a broader overview of the most recent developments in this technique. The
increasingly widespread use of these systems has led to the development of particular
solutions designed to overcome some limits that the physical nature of the system
imposes.

1.1 Automotive IPT Systems
The fundamental parameters of an IPT system can be summarised in transferred
power, transfer efficiency and transfer distance. Based on this, it is also possible
to identify the limits of the systems and, consequently, to introduce solutions to
overcome them. Among the high-power IPT apparatuses, the most widespread and
of common interest applications concern charging systems for electric vehicles. In-
deed, in recent years, IPT systems have been considered as the main solution for
the wireless charging of electric vehicles (EV). In view of reducing carbon emissions,
authorities of many countries are now encouraging the transition from internal com-
bustion engine vehicles (ICEV) to battery electric vehicles (BEV) or plug-in hybrid
electric vehicles (PHEV). The European Commission has set the year 2035 (with
some exceptions to 2036) as a reference deadline from which only BEVs or PHEVs
will be commercialised, while several other organisations have reported EV adoption
projections ranging from 10% to 60% by the year 2040 [29]. The main problem of
EVs is nothing else but the electric storage system, i.e. the battery pack, which is
the bottleneck today due to its unsatisfactory energy density, limited lifetime and
high cost [18, 16]. In addition to the already included advantages of practicality and
safety, IPT systems for EV charging can be considered a (probably partial) solu-
tion to the problem of low energy availability of EVs. Indeed, by installing wireless
charging systems in multiple areas along the way, you can recharge more frequently
by taking advantage of the moments when the vehicle is stationary. For long dis-
tance travel, electric roads have also been introduced and tested, which allows the
EV to continuously take power from the road through an integrated dynamic WPT
system, thereby dramatically reducing the required battery storage capacity [19]. A
wide and exhaustive overview of both static and dynamic IPT systems is provided
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(a) (b)

Figure 1.3: (a) DD pads architecture as originally proposed in [2] and (b) layout of
DD pad described in the SAEj2954 [3] for WPT3/Z1 (see categories in [3]) system.

in [16, 17, 19, 18].
Static IPT systems are in fact composed of a transmitter and a receiver, mag-

netically coupled through two or more coils. In general, since the power involved is
very high, each coil is controlled by an appropriate circuit, composed of switching
power converters and compensation networks. In the most common applications,
rectangular or circular coils are used (the latter have a stronger coupling with the
same surface area of the coil [30]) or the so-called “DD” coils, introduced by G.
Covic at al. and exhaustively described in [2]. Figs. 1.3a shows a representation of
the original DD coil architecture proposed in [2], in which the path of the magnetic
flux is also illustrated, while in Fig. 1.3b the DD coils suggested for WPT3/Z1 IPT
systems (see categories in [3]) is depicted. The resulting winding is the union of
two identical windings lying side by side, fed with anti-phase currents. In this way,
instant by instant, they generate magnetic fields with parallel axes but opposite
directions and therefore at each instant of time one coil acts as a north pole and
the other as a south pole. In this way, a polarised single-sided flux pad is obtained,
which in fact corresponds to a pad that enhances the field in the centre and can-
cels it at the edges. The resulting magnetic flux configuration allows the mutual
coupling of the coils to be improved. However, it must be noticed that if DD coils
are employed, both the transmitting and receiving coils must present this configura-
tion. To improves performances in misalignment conditions, “DDQ” coils have also
been proposed [2], which however require a further winding to be introduced. An
interesting research carried out by R. Bosshard at al. [20] highlighted that, a 50-kW
square-rectangular coils IPT system is more efficient than an equivalent one with DD
coils, due to the increased core losses in correspondence of the centre of the DD coils.
DD coils however proved to be safer than the rectangular ones in terms of magnetic
field emissions, since a lower magnetic flux density is measured in the vicinity of
the apparatus [20]. This kind of coil can also be employed for dynamic IPT, which
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is today the last frontier of research regarding IPT systems [2, 31]. In both static
and dynamic IPT compensation networks are strongly required. A comprehensive
description of their aim, operations and design considerations are provided in [27],
but further developments have been proposed with both passive [32, 33, 34] and
active circuitry [28].

1.1.1 Automotive IPT Standards
In recent years, given the growing diffusion and commercialisation of static IPT
systems, dedicated standards have been developed since 2015 [35]. In particular, the
main ones are noted: IEC 61980–1, SAE J2954 RP and GSO ISO/PAS 19363:2021,
EN ISO 19363:2021, which have many common points. The main aspects that these
standards aim at defining concern the system power rate, operating frequency, the
distance between transmitter and receiver and the interoperability conditions for
different systems. They also indicate the limits for electromagnetic emissions, both
conducted and radiated.

1.2 Multi Coil IPT Systems
Starting from two-coil static IPT systems, different solutions that provide for multi-
ple windings have been proposed, with the aim of extending the transmission range.
In high-power multi coil systems, that are mainly devoted to EVs charging and
to moving parts in industrial automatic machines, each coil is independently fed
by its own power supply [31, 36]. However, alternative configurations with passive
intermediate resonant coils have also been developed [37, 38, 39, 40]. In these sys-
tems, one-dimensional (1D) arrays of magnetically coupled resonators are arranged
in between the transmitter and receiver resonators, thereby allowing a more effi-
cient power transfer [41]. These resonant structures have been first proposed by a
research group of the Massachusetts Institute of Technology in 2007 [42], in a pa-
per considered a milestone in modern IPT. The basic structure is composed of a
transmitter and a receiver coil, with two intermediate self-resonant coils. This ar-
rangement is also named as “four-coils” IPT system [43] but generalised analyses for
arrangements with a higher number of resonators have also proposed [44, 45, 40].
Overall, these systems have proven to be able to improve the efficiency and the
transmitted power even when the transmitting and receiving coils are far apart and
their coupling would be almost zero. A representation of a 1D array of resonators is
shown in Fig. 1.4. In fact, if it is possible to interpose all the resonators forming an
array, it is reasonable to think that it may be also possible to feed directly the one
closest to the source. Moreover, although it is possible to design them adequately,
the controllable variables of the system are only the currents and voltages of the
input and output ports. Therefore, the currents and voltages of the intermediate
resonators can also assume very high values and it is not possible to modify them
directly in real time. Among these systems, one of the most promising applications
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Figure 1.4: Schematic illustration of a 1D resonator array [4]. The power injected
in the array reaches the receiver through the intermediate relay resonators.

consists in a resonator array that powers a receiver which can be placed at any
position above it. In this case, the array acts as a transmitter, even if only the first
coil is powered. This system exhibits peculiar behaviour in terms of efficiency and
transmitted power and has been thoroughly analysed in [46, 47, 47]. In order for the
power transfer to be efficient, it is necessary to adopt appropriate control strategies,
also by inserting some additional components, as proposed in [48, 49].

Further extensions to bi-dimensional (2D) arrays of passive resonators have also
been proposed. In this case, a plane composed of magnetically coupled resonant
circuits is interposed between the transmitter and the receiver. Depending on the
resonator tuning (i.e. their resonant frequency), the 2D array can either amplify
or attenuate the incident field. To compare their effect with that of natural lattice
materials, it is possible to derive a homogeneous model of the array [50]. The
resulting magnetic permeability can therefore be greater or less than that of vacuum,
and in some cases (with appropriate resonator tuning) even negative [51, 52]. Due to
the possible unnatural properties, these 2D array configurations are also referred to
as metamaterials or metasurfaces. It is crucial to mention that metamaterials have
been first introduced to control electromagnetic waves [53, 52], with revolutionary
applications in the field of optics [51, 54].

More recently, metamaterials have been also introduced in near-field IPT systems
[55, 56, 57], as a way to increase the system efficiency [55, 58, 59] or shielding
applications [57, 60], resulting in a structure similar to those of Fig 1.5. Similarly
to the case of 1D arrays, a 2D resonator array can be used as a transmitter to
feed a receiver that can be placed at any position over it. This possibility has
been explored in [61, 62, 63]. In all works, the goal is to transfer power efficiently
to multiple positions on the table, reducing the complexity of the system and the
necessary circuitry. However, as in the case of 1D arrays, controlling the input
voltage and current alone is not sufficient to achieve the desired performance. In
[61], the resonators are made to work out of resonance to modify the structure of
the piano from the electromagnetic point of view, in [62] more superimposed planes
are used and in [63] particular resonator structures have been introduced.
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Figure 1.5: Schematic illustration of a metasurface devoted to the magnetic field
focusing in two-coil IPT system [5].

1.2.1 Magneto-Inductive Waves
The studies on structures of magnetically coupled resonators lead Solymar et al to
introduce a new type of slow wave, that is the magneto-inductive wave [64]. By
resorting to the analogy between transmission lines and coupled resonant circuits, it
is possible to consider the arrays of magnetically coupled resonators as the cascade
of transmission line segments. Indeed, the time and space behaviour of the resonator
currents and voltages is analogous to the one of a wave that propagates in the line
[65, 66]. In this frame, magneto-inductive waves, which are current waves, have
been defined for 1D, 2D and 3D resonator arrays [67]. The study of resonator arrays
through the theory of magneto-inductive waves allows us to better understand the
behaviour of the physical system than its description through Kirchhoff’s laws, as
the latter allows only the analysis and not the synthesis of circuit problems of this
complexity. Through the theory of magneto-inductive waves, interesting results
about the transmitted power [47], current distribution [68, 64] and impedance of
maximum power transfer have been obtained [47, 69].

1.3 Outline of the Thesis
Several wireless energy transmission systems based on the IPT technique have been
developed. Based on the application, power and dimensions may vary and, con-
sequently, also the architecture of the system. In this context, this thesis aims to
evaluate the feasibility of resonator arrays when used in power applications, also
considering the installation context. In fact, the research on the state of the art of
these multi-coil systems (summarised in the sections above) has highlighted the lack
of systems that can be used in concrete practical applications. Although functioning,
the resonator arrays presented in the literature have always been characterised by
modest power and efficiencies. In this thesis, after a first illustration of the basic con-
cepts of the IPT technique in Chapter 2, Chapter 3 discusses a circuit-based design
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methodology for two-coils IPT systems with two types of compensation networks,
chosen because they are simple but effective. Chapter 4 goes inside the analysis
of resonator arrays, coming to define a control technique that allows the maximi-
sation of both the transmitted power and efficiency. In Chapter 5, an analysis of
the current distribution and the magnetic field generated by the structure has been
carried out, resorting to the theory of magneto-inductive waves. Taking advantage
of the peculiar characteristic of the input impedance of 1D resonator arrays with a
receiver, a technique for the detection of its position has been proposed in Chapter
6, with relative application to IPT dynamic systems. Chapter 7 concludes the work
by discussing the potential and limits of 2D arrays of resonators. In particular, these
systems have been studied as transmitters for WPT apparatuses and as metama-
terials, that can be designed to shield or amplify the magnetic field in the region
where they are inserted.





Chapter 2

Basics of Inductive Power
Transfer (IPT)

With the attempt to harmonize the background, the basic operating principle of
IPT systems is illustrated in this chapter. Then, a general circuit model is derived,
from which the system parameters of practical interest can be defined. The pre-
sented model can be extended to more complex systems involving multiple coils and
compensation networks.

2.1 Physical Principle: the Magnetic Induction
IPT systems exploit the magnetic induction principle, firstly discovered by Michael
Faraday in 1831. In 1834, Emil Lenz specified the direction of the induced field,
while the mathematical formulation has been established by Franz Ernst Neumann
in 1845. The principle states that:

The electromotive force along a closed path is equal to the negative of the
time rate of change of the magnetic flux enclosed by the path [70, 71].

Mathematically, it can be expressed as:

emf = −dΦc

dt
(2.1)

where the acronym emf denotes the electromotive force acting on the closed path
γ, Φc is the flux of the magnetic field B⃗ through the oriented surface Σ bounded
by γ and t refers to the time. In general, the time variation of the magnetic flux
through a surface can be written as:

dΦc

dt
=

d

dt

∫∫
Σ

B⃗ · d⃗Σ (2.2)

where both the magnetic field and the oriented surface can vary in time, each of
them contributing to the resulting emf . To highlight the two different contributions,
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it is possible to rearrange the right-hand-side term of (2.1). According to [70] and
assuming a generic rigid path γ, it yields:

emf = −dΦc

dt
= −

∫∫
Σ

∂B⃗

∂t
· d⃗Σ−

∮
γ

B⃗ ∧ v⃗ · d⃗l. (2.3)

It is then possible to define

emfT = −
∫∫

Σ

∂B⃗

∂t
· d⃗Σ (2.4)

as transformer emf , which originates from the variation of the magnetic field when
Σ is not changing in time, and

emfM = −
∮
γ

B⃗ ∧ v⃗ · d⃗l (2.5)

as motional emf , which originates from the movement of the closed path γ at the
speed v⃗ in presence of a constant B⃗. It is worth mentioning that the motional emf

is non-null only if the magnetic field B⃗ is non-uniform (even though it is stationary).
Indeed, a uniform B⃗, can be considered a constant in the integral and, consequently,
also the term B⃗ ∧ v⃗. The line integral would result therefore zero.

The magnetic induction principle is very widely exploited in the field of electrical
engineering. Indeed, the majority of the electric machines works based on this phe-
nomenon. While in electric motors and actuators both the transformer and motional
emf contribute to the operations, static machines only exploit the transformer one.
Similarly, the most widespread IPT systems are designed to emphasise the emfT ,
regardless the emfM is present or not. In dynamic IPT apparatuses both the emfT
and the emfM are generated, but the system is specifically designed to make the
emfM negligible with respect to the emfT , as it will be discussed in the following.

2.2 Coils Circuit Modelling
The operation of an IPT system can be described considering the magnetic induction
principle applied to the electric circuits forming that system, that are realised with
conductors wound in air or on a ferromagnetic core. For safety reasons, a conductive
shield can also be introduced. The following analysis is however valid for any kind
of magnetically coupled circuits and, for simplicity, it will start considering air-core
coils.

For a generic system of n circuits and in the hypothesis of current loops, it is
possible to define the self-inductance coefficient Li of the generic ith loop as:

Li =
Φii

Ii

∣∣∣∣∣
Ij=0

j = 1, .., n

j ̸= i
(2.6)
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where Φii is the magnetic flux linked to the ith loop and produced by the current Ii
of the same loop, while the other currents are null. Similarly, it is possible to define
the mutual inductance coefficient Mij between the ith and jth loop as:

Mij =
Φij

Ij

∣∣∣∣∣
Ii=0

i = 1, .., n

i ̸= j
(2.7)

where Φij denotes the magnetic flux produced by Ij and linked to the ith loop. It can
be proved that the self-inductance coefficients are non-negative, while the mutual
ones can have any value (over R). Moreover, the mutual inductance coefficient
between two loops is unique, namely Mij = Mji. Based on these definitions, two
circuits are considered magnetically coupled if they are characterised by a non-null
mutual inductance. To quantify the coupling between the two coils, the coupling
coefficient k is introduced and defined as:

kij =
M√
LiLj

. (2.8)

It is a dimensionless parameter ranging from 0 to 1. The value of this parameter
makes it possible to identify the strength of the coupling which is in this work
considered weak if k < 0.4 and strong if k > 0.8, as it is usually assumed. Due to
their distance, the coupled coils of IPT systems present coupling coefficients in the
order of 0.1 ÷ 0.35, even in presence of magnetic materials bearing the windings.
Instead, the coils of traditional transformers are characterised by k ≈ 1, being them
wound on the same ferromagnetic core.

Coupled Inductors Model The simplest configuration of IPT system involves
two magnetically coupled coils, one connected to the power source and named “pri-
mary coil” or “transmitter coil” and the other connected to the load, named as
“secondary coil” or “receiver coil”. The (ideal) coupled coils are represented in Fig.
2.1 with the corresponding inductors, characterised by their self-inductance and mu-
tual inductance coefficients. The black dots denote the direction of the induced emf

acting on the coil, which depends on the orientation of the loop (already indicated
as the curve γ). Practically speaking, it depends on the winding arrangement. The
transmitter and receiver voltages are denoted as v1(t) and v2(t), respectively, while
the transmitter and receiver currents as i1(t) and i2(t), respectively. In this con-
figuration, the magnetic induction principle can be used to express the inductors
voltages and, considering the Kirchhoff voltage law (KVL) applied to the circuit of
Fig. 2.1, the governing equations can be written as:

v1(t) =
dΦ11(t)

dt
+

dΦ12(t)

dt

v2(t) =
dΦ22(t)

dt
+

dΦ21(t)

dt

(2.9)
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Figure 2.1: Representation of coupled inductors: a) Schematic representation b)
equivalent circuit representation.

where the linked fluxes Φ11(t), Φ12(t), Φ21(t) and Φ22(t) can be expressed as func-
tions of the loop currents from which originates through the inductance coefficients
as:

Φ11(t) = L1i1(t) Φ12 = Mi2(t)

Φ22(t) = L2i2(t) Φ21 = Mi1(t).
(2.10)

As introduced in Sec. 2.1, the flux through a loop can vary due to both the time
variation of the magnetic field and the time variation of the loop geometry, result-
ing in the emfT and emfM , respectively. Focusing on IPT systems, two possible
configurations can be identified:

• static IPT systems

• dynamic IPT systems

Static IPT In static IPT systems the coils are standstill, only the emfT is present
and the governing equations (2.2) can be simplified considering that the self- and
mutual inductance coefficients are fixed, leading to:

v1(t) = L1
di1(t)

dt
+M

di2(t)

dt

v2(t) = L2
di2(t)

dt
+M

di1(t)

dt

(2.11)

The system can then be controlled acting on the voltages and currents.
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Dynamic IPT In dynamic IPT systems, the transmitting and receiving circuits
are in relative motion, making the self- and mutual inductance functions of the
relative position between the loops. In general, the parameter variation can be due to
a translation or rotational motion, with one, two or three degrees of freedom. In most
common applications, the receiver circuit moves with respect to the transmitting one,
which is usually installed under the ground. Thus, with reference to Fig. 2.1, a linear
movement in the x direction of the space is assumed. Moreover, in IPT systems of
practical interest, L1 and L2 can be considered constant, since their variation (due
to the presence of magnetic cores) is negligible with respect to the variation of the
mutual inductance. Anyway, in some researches, the L1 and L2 position dependence
is taken into account to improve the performances of the control system. The mutual
inductance between the transmitter and receiver coils is then considered as a function
of the position x and thus the governing equations (2.2) become:

v1(t) = L1
di1(t)

dt
+M(x(t))

di2(t)

dt
+ i2(t)

dM(x(t))

dt

v2(t) = L2
di2(t)

dt
+M(x(t))

di1(t)

dt
+ i1(t)

dM(x(t))

dt

(2.12)

and, applying the chain rule to the time derivative of the mutual inductance, it
yields:

v1(t) = L1
di1(t)

dt
+M(x(t))

di2(t)

dt
+ i2(t)v(t)

dM(x(t))

dx

v2(t) = L2
di2(t)

dt
+M(x(t))

di1(t)

dt
+ i1(t)v(t)

dM(x(t))

dx

(2.13)

where v(t) is the relative speed of the coils in the direction of the coordinate x. The
emfM contribution is then expressed as the product of the relative speed with the
space variation of M : both the instantaneous speed and the coil geometry play a
crucial role in the behaviour of the system. It must be noticed that, in general, the
time behaviour of the transformer and motional emf can be different. In fact, the
coil currents are usually sinusoidal, leading to a sinusoidal emfT . The time behaviour
of the emfM is more difficult to be predicted, being dependent on the geometry of the
coils and the relative speed. The emfM is usually not desired, since it complicates
the time behaviour of the voltages and, consequently, the control of the system.
However, the operating frequency of IPT systems ranges from tens of kHz up to
tens of MHz and thus, in these conditions, the emfT can be considered dominating
over the emfM [72]. Unless otherwise stated, this work mainly considers position-
independent parameters. Awareness of this phenomenon is however necessary to
predict the correct system behaviour.

Rearranging (2.11) it is possible to obtain different equivalent circuit represen-
tations of coupled inductors, that can highlight different parameters of practical
interest.
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Figure 2.2: T model equivalent circuit of an IPT system.

T Model The most common is the so called “T-model” circuit, depicted in Fig.
2.2, for which the primary and secondary voltages can be expressed as:

v1(t) = (L1 −M)
di1(t)

dt
+M

d

dt

(
i1(t) + i2(t)

)
v2(t) = (L2 −M)

di2(t)

dt
+M

d

dt

(
i1(t) + i2(t)

)
.

(2.14)

With this representation all the inductors are decoupled, thereby simplifying the
circuit analysis. When adopting this model, the parameters (L1−M) and (L2−M)

are usually named as “primary and secondary leakage inductances”, respectively,
and M as “magnetising inductance”. The former parameters highlight the amount
of flux produced by a coil which does not link to the other coil and, typically, it is
minimised by design. Conversely, the magnetising inductance (which corresponds to
the mutual inductance) is desired to be maximised, making the coupling stronger.

Transformer Model Historically, magnetically coupled coils are represented
with the so called “transformer model”, which can be directly deduced from the
T model considering an additional parameter: the transformer ratio (here denoted
as n). In the modelling of traditional wound transformers, the transformer ratio
is widely used since it represents the relation between the primary and secondary
voltages and currents during full load operations. Moreover, if the windings are
solenoids (as the ones of traditional transformers), the transformer ratio corresponds
to the turn ratio.

In general, these conditions are not matched. Indeed, the transformer ratio relates
the input and output circuit variables only if the leakage inductance is negligible
with respect to the magnetising inductance, or, equivalently, only if k is closed to
the unity. In case of weakly coupled inductors, as it is for typical IPT systems,
k ≪ 1 and the low value of M (with respect to L1 and L2) leads to a not negligible
magnetising current. Moreover, transformer windings can have shapes for which it
is not possible to identify the turns, and thus n does not corresponds to the turn
ratio [73, 74].

Being a mathematical artifice, the transformation ratio can still be defined in
terms of inductance, even though it is not sufficient to relate the primary and sec-
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Figure 2.3: Transformer equivalent circuit of an IPT system.

ondary voltages and currents during operations. By choosing:

n =
1

k

√
L2

L1
(2.15)

and introducing (2.15) in (2.14), it yields:

v1(t) = L1(1− k2)
di1(t)

dt
+ k2L1

d

dt

(
i1(t) + n i2(t)

)
v2(t)

n
= k2L1

d

dt

(
i1(t) + n i2(t)

)
.

(2.16)

This system of KVL equations allows the definition of the so called “transformer
model” of coupled inductors, which is the one typically adopted in power trans-
formers and it is depicted in Fig. 2.3. The choice of n made in (2.15) allows the
secondary series inductance to be eliminated from the equivalent circuit, where the
unique leakage inductance is referred to the primary side. Other choices can lead
to different equivalent circuits and must be done based on the specific needs of the
study.

It can be concluded that, despite the physical nature of the operating principle
(and consequently its mathematical description) is the same for IPT systems and
traditional transformers, the optimal system operations and performances require
different gimmicks.

2.2.1 Coil Power Losses
Modern IPT systems operate at frequencies ranging from 79kHz up to 90kHz, as
suggested by the standard SAE J2954. Increasing the operating frequency clearly
emphasises the magnetic induction principle and allows the size of inductors to be
kept limited, saving in costs and weight. The frequency is limited only for safety
reasons, since the damage to health and the electromagnetic interference caused by
the magnetic field generated by the coils increases with increasing frequency [3, 24].
However, the behaviour of the conductors is strongly affected by the frequency of
the circulating currents and undesired phenomena lead to a considerable increase
of the wire resistance with respect to its DC value. These phenomena are referred
as skin effect and proximity effect, and the effect of both is proportional to the
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Figure 2.4: Cross-section of (a) a generic Litz wire and (b) two turns of the winding
considered in the analysis.

operating frequency. The skin effect forces the current to concentrate in the outer
region of the conductor, while the proximity effect to concentrate in a limited region
where the influence of an external magnetic field (i.e. the one of near conductors) is
more intense. The resulting current crowding makes the AC resistance much larger
than the DC one. To reduce the impact of skin and proximity effects, stranded,
twisted, and, in particular, Litz wires are employed. A cross-section of a possible
arrangement of Litz wire is shown in Fig.2.4a. The main drawbacks of this solution
are: the reduced filling area of the wire section with respect to a solid wire and the
increased DC resistance, which is due to the longer conductor path of the strands
with respect to a cross-sectional equivalent straight conductor. The resulting coil
AC resistance Rac must be evaluated considering the parasitic effects, besides the
geometry and material. Different models have been proposed in literature, based on
both numerical or (approximated) analytical formulas [75, 76, 77]. In any case, the
calculation of the resistance of a winding made of Litz wire requires the knowledge
of the strands arrangement, which is expressed through geometrical coefficients. A
winding with N turns of radius r0 at a centre-to-centre distance δo is considered.
The copper Litz wire is composed of ns strands of radius rs at a centre-to-centre
distance δs. A cross-section of two turns of the winding is depicted in Fig. 2.4b.
The DC resistance Rdc is calculated as:

Rdc =
ρ

nsπr2s
NlT (2.17)

where lT is the average length of a winding turn and ρ is the wire resistivity. To
introduce the skin and proximity effects, the strands arrangement must be considered
through the packaging factor p, which is defined as

p =
Nπr2s
πr20

(2.18)
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and the internal and external porosity factors, which are defined, as:

ηin =
2rs
δs

√
π

4
(2.19)

and

ηout =
2rs
δo

√
π

4
(2.20)

respectively. Then, defining γs at the operating angular frequency ω as:

γs =
ds√
ωµσ

(2.21)

the final formulation of Rac can be expressed as [76, 77]:

Rac = Rdc
γs
2

[
1

ns
Kskin(γs)− 2π

(
4(N2

l − 1)

3
+ 1

)
ns

(
η2ext + η2int

p

2πns

)
Kprox(γs)

]
(2.22)

where
Kskin(γs) =

berγsbei
′γs − beiγsber

′γs
ber′2γs + bei′2γs

(2.23)

and
Kprox(γs) =

ber2γsber
′γs − bei2γsbei

′γs
ber2γs + bei2γs

. (2.24)

An accurate calculation of the Rac is crucial for both the determination of the
system losses and control strategy since it dramatically affects the behaviour of the
apparatus. Different empirical approaches for the choice of the number of strands
and layers of Litz wire are proposed, which however are not here discussed. Due
to the exigency of matching the market availability, the employed Litz wires have
been chosen among the standard ones proposed by the manufacturer based on the
resulting Rac calculated as in (2.22). Introducing the winding resistances R1 and R2

in the coupled inductors model, it modifies as depicted in Fig. 2.5 and the governing
equations (2.11) become:

v1(t) = R1i1(t) + L1
di1(t)

dt
+M

di2(t)

dt

v2(t) = R2i2(t) + L2
di2(t)

dt
+M

di1(t)

dt
.

(2.25)

2.2.2 Core Losses
In practical applications, a ferromagnetic ferrite core is often employed to bound
the magnetic field and increase both the coils self- and mutual inductances. Due to
the non ideal behaviour of this component, the ferrite presents a non-null electrical
conductivity. The alternated magnetic field generated by the coils induces currents
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Figure 2.5: Coupled inductors equivalent circuit of an IPT system with winding
resistances.

in the core leading to further power losses. Since the magnetic field is generated by
almost sinusoidal currents, it will be almost sinusoidal and the Steinmetz formula
can be adopted. According to [30], the core loss per unit of volume can be calculated
as:

pcore = cfα|B̂|β (2.26)

where c, α and β are the Steinmetz coefficients that depend on the specific core ma-
terial. The resulting core losses can be estimated by integrating the core loss density
pcore over the entire volume of the ferromagnetic material (both the transmitter and
receiver cores).

2.2.3 Power and Efficiency
Assuming a linear behaviour of the magnetic system, it is possible to represent the
circuit in frequency domain and exploit the phasor representation of currents and
voltages. For the generic two-port network represented in Fig. 2.6a, the governing
equations are:

V̂1 = Ẑ11Î1 + Ẑ12Î2
V̂2 = Ẑ22Î2 + Ẑ21Î1

(2.27)

where Ẑ11, Ẑ12, Ẑ21 and Ẑ22 are the impedance matrix parameters. For reciprocal
networks Ẑ12 = Ẑ21 and a unique mutual impedance Ẑm = Ẑ12 = Ẑ21 is introduced,
leading to:

V̂1 = Ẑ11Î1 + ẐmÎ2
V̂2 = Ẑ22Î2 + ẐmÎ1.

(2.28)

The efficiency of the power transfer can be defined as the ratio between the active
power dissipated on the load and the active power provided by the power source:

η =

|V̂2|2

Rload

Re
[
V̂1Î∗1

] . (2.29)

It can be then expressed in terms of the impedance parameters as [78]:

η =
Rload

Re
[
Ẑin

]∣∣∣∣∣ Ẑm

Ẑ22 +Rload

∣∣∣∣∣
2

(2.30)
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Î2

+

−
V̂2

[
Ẑ
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Figure 2.6: (a) generic two-port model fed by a real voltage source and powering
a resistive load and (b) the Thévenin equivalent network comprising the cascade of
the real voltage source and the two-port network and that powers a resistive load.

where Ẑin is the two-port input impedance defined as the ratio between V̂1 and Î1
that can be calculated from (2.28) as:

Ẑin =
V̂1

Î1
= Ẑ11 −

Ẑ2
m

Ẑ22 +Rload

. (2.31)

The condition for the maximum efficiency is obtained enforcing:

∂η

∂Rload
= 0 (2.32)

which lead to the expression of the required load Rηmax

load [78]:

Rηmax

load = R2

√
1 + χ2

√
1− ζ2 (2.33)

where:

χ2 =
Im[Ẑm]2

Re[Ẑ11]Re[Ẑ22]
ζ2 =

Re[Ẑm]2

Re[Ẑ11]Re[Ẑ22]
. (2.34)

The general expression of the maximum efficiency as a function of the impedance
matrix parameters is presented in [78]:

η =
χ2 + ζ2(√

1 + χ2
√

1− ζ2 + 1
)2

+ χ2ζ2
. (2.35)

For what concerns the power transferred to the load, it can be maximised resort-
ing to the classic theorem of the maximum AC power transfer. It states that the
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generator impedance must be equal to the complex conjugate of the load impedance.
In this case, the coupling system can be considered a part of the generator and,
according to the Thévenin theorem, the cascade of the generator and coupled in-
ductors can be represented with an equivalent bipole composed of the series of a
voltage source V̂th and an impedance Ẑth, depicted in Fig. 2.6b. Their expressions
as a function of the network parameters can be easily found from (2.28) considering
V̂1 = V̂g − Ẑg Î1 and result in:

Ẑth = Ẑ22 −
Ẑ2
m

Ẑ11 + Ẑg

V̂th =
Ẑm

Ẑ11 + Ẑg

V̂g.

(2.36)

It is then possible to define an expression for the active power Pl transmitted to
the load. In particular, it can be also normalised with respect to the maximum
available power Pth of the equivalent source (cascade of the real voltage generator
and the inductive link) to characterise the network independently on the operating
conditions, defined by the value of the voltage source V̂g. For the reduced network
of Fig. 2.6b, the maximum available active power for the load is:

Pth =
|V̂th|2

8Re[Ẑth]
(2.37)

and the expression of the load power Pl is found using (2.36), resulting in:

Pl =
1

Rload

∣∣∣∣∣V̂th Rload

Ẑth +Rload

∣∣∣∣∣
2

. (2.38)

The normalised load power P ′
l = Pl/Pth is expressed as:

P ′
l =

8RloadRe[Ẑth]

|Ẑth +Rload|2
(2.39)

which is valid for any operating conditions of a two-port network fed by a real voltage
source that powers the resistive load Rload.
The maximum power transfer is realised if Ẑth = RPmax

load and, being RPmax

load real, it
leads to RPmax

load = Re[Ẑth]. This requirement is often very hard to achieve but, in
any case, the cancellation of the imaginary part of Ẑth is required. It must be also
noticed that, in general, RPmax

load ̸= Rηmax

load .
Considering the coupled inductors model to represent the coils and a real sinusoidal
voltage source represented by V̂g and Ẑg = Rg + jXg, at the angular frequency ω

the equations (2.28) become:

V̂1 = (R1 + jωL1)Î1 + jωMÎ2
V̂2 = (R2 + jωL2)Î2 + jωMÎ1.

(2.40)
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For this circuit it holds:

χ2 =
(ωM)2

R1R2
ζ2 = 0 (2.41)

and thus the maximum efficiency is achieved when:

Rηmax

load = R2

√
1 +

(ωM)2

R1R2
. (2.42)

which leads to:

ηmax =
χ2

(1 +
√

1 + χ2)2
. (2.43)

The maximum efficiency monotonically increases as χ increases, that corresponds
to a decrease in the winding resistance. In particular, it can be seen that ηmax → 1

for χ→∞, which corresponds to the case of ideal coupled inductors.
The maximum power transfer further requires Im[Ẑth] = 0, which can be fulfilled
only introducing suitable reactive elements to provide the magnetic energy required
by the coupling system. If the system is properly compensated, the maximum power
transfer is achieved with [78]:

RPmax

load = R2 +
(R1 +Rg)(ωM)2

(ωL1 +Xg)2 + (R1 +Rg)2
(2.44)

and the maximum transferable power is:

Pmax = Pg
χ2

1 + χ2
. (2.45)

where

Pg =
|V̂g|2

8Rg
(2.46)

is the available generator active power. Also in this case, a very high χ is desired,
being Pmax → Pg for χ→∞.

2.2.4 Voltage Gain and Transadmittance
The main aim of IPT systems is the maximisation of the transferred power to the
load, preserving a great efficiency. However, adjustment of the load voltage and
current is often necessary, even in presence of additional power conversion stages
upward the receiver. The whole IPT apparatus is basically controlled by acting on
the primary voltage, which is usually imposed by a voltage source inverter. Thus,
an accurate and efficient control requires to know the relation between the input
voltage and the load voltage and current. With reference to the generic two-port
network model of Fig. 2.6a, it is then defined the voltage gain Ĝv of the coupling
system as:

Ĝv =
V̂2

V̂1
=

ẐmRload

Ẑ11(Ẑ22 +Rload)− Ẑ2
m

(2.47)
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and the transadmittance Ĝm as:

Ĝm =
Î2

V̂1
= − Ẑm

Ẑ11(Ẑ22 +Rload)− Ẑ2
m

(2.48)

which are simply related as: Ĝv = −RloadĜm. Based on these parameters, the con-
trol system varies V̂1 to achieve the required V̂2 or Î2, depending on the load profile.
These expressions clearly show that, to increase Ĝv and Ĝm, the coil impedances Ẑ22

and Ẑ22 should be minimised, again suggesting the need of compensation networks.
Moreover, from (2.47) it can be seen that a constant voltage gain (for any load) can
be obtained at a certain ω. Rearranged, (2.47) can be written as:

Ĝv =
Ẑm

Ẑ11Ẑ22 − Ẑ2
m

Rload
+ Ẑ11

(2.49)

and thus Ĝv is independent on Rload if:

Ẑ11Ẑ22 − Ẑ2
m = 0. (2.50)

Indeed, the term Rload would not be present in (2.49) and this operating condition
is referred to as constant voltage (CV) mode. Similarly, it is also possible to obtain
load-independent current operations at a certain ω by simply enforcing:

Ẑ11 = 0 (2.51)

which is usually referred to as constant current (CC) mode. These conditions can be
obtained with the proper tuning of compensation networks, that cancel the undesired
impedance contributions.

2.3 Compensation Networks
As introduced in Sec. 2.2.3, optimal IPT operations need a dedicated circuit to com-
pensate the reactive power the source exchanges with the coils. The low magnetising
flux results in a lower magnetising (or mutual) inductance, requiring high reactive
power rates (with respect to traditional transformers) to transfer a certain amount
of active power. The compensation networks aim at providing the reactive power
required by the coupling system, maximising the efficiency and the power transfer.
Moreover, with the proper tuning, the voltage gain and transadmittance can be
made constant for any load resistance value at the desired operating frequency [27].
Besides the increased cost and complexity, the main drawback of compensation net-
works is the so called “bifurcation phenomenon” [79], which refers to the multiple
zero-crossing the angle of the input impedance can present. This means that there
can be more frequencies at which Im[Ẑin] = 0. Indeed, a perfect IPT link compen-
sation requires a zero phase angle (ZPA) for the input impedance, which is desirable
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at the system operating frequency. This condition strongly depends on the load
value and operating frequency [27]. If not properly considered in the control strat-
egy, the system can deviate the working frequency from the design one or move
unstably between several undesirable operating conditions. As a consequence, the
power transfer capability dramatically drops and the bifurcation phenomena can
lead to the system instability [79]. The objective of the compensation networks can
be summarised as:

• maximise the efficiency

• maximise the power transfer capability

• minimise the reactive power

• realise constant voltage or current output

and must be achieved avoiding the bifurcation phenomenon.
Compensation network topologies have been vastly explored in literature, both ac-
tive and passive. Active compensations require additional components and control
drivers, increasing costs and system complexity [80, 81, 82, 28]. However, if prop-
erly designed, passive networks fulfil the aforementioned requirements still preserv-
ing simplicity and reliability. Passive compensations basically mix reactive elements
whose combination defines the specific characteristics the network can achieve. The
basic resonant topologies are the series-series (SS), series-parallel (SP), parallel-
series (PS) and parallel-parallel (PP) configurations [79, 30]. However, the primary
parallel compensation is not of interest for applications, since it requires an addi-
tional inductor (whose value may not be negligible) connected in series between the
inverter output port and the resonant tank [30]. Then, SS and SP configurations
have been comprehensively compared and discussed in [27, 83, 84], showing the main
benefits and drawbacks. Some improvements to these basic topologies have been pre-
sented, still using only capacitive elements. It is the case of the series-series/parallel
compensations [34], series/parallel - series [85] and parallel/series - series network
[86], which have been specifically developed for inductive wireless chargers. In the
frame of high-power IPT systems, more complex topologies have been introduced,
involving also lumped inductors. They are based on LCC networks, such as LCC-
LCC compensation [32, 87], or the other variants LCC-S [88] and LCC-P [89]. The
main advantage with respect to the above mentioned classic networks consists in
the increased tolerance to the receiver misalignment, being the tuning (usually) in-
dependent on the coupling conditions. The most widespread passive compensation
networks are the Series-Series (SS), Series-Parallel (SP) and LCC-LCC topologies
[90, 91, 87, 32, 83]. Among them, SS and LCC-LCC are the most adopted, since
they can fulfil both the CC-CV reference profiles, still preserving ZPA condition.
However, they are always exploited in system whit similar primary and secondary
self-inductance [30, 32]. It must be noticed that, due to their physical constitutions,
lumped inductors are much less efficient than lumped capacitors. For these reasons,
passive capacitive compensation networks are considered hereinafter.
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Figure 2.7: Series-series (SS) compensation of magnetically coupled coils.

2.3.1 Series-Series compensation
The so called series-series (SS) compensation network involves two capacitors con-
nected in series with the primary and secondary coil inductances, as depicted in Fig.
2.7. With reference to the generic two-port model of Fig. 2.6a, the coils impedances
of the IPT link modify as:

Ẑ11 = R1 + j(ωL1 −
1

ωC1
)

Ẑ22 = R2 + j(ωL2 −
1

ωC2
)

Ẑm = jωM.

(2.52)

With the proper capacitor tuning, the SS compensation ideally allows both constant
voltage and constant current operations, but at different frequencies. However,
while the CC mode guarantees a null input phase angle, in CV mode it cannot be
reached. These features are explained in the following considering ideal networks.
The presence of the winding resistance is not negligible in real applications, but only
slightly modifies the frequency response of the system if the coil design is optimised.

CC mode According to (2.51), CC operations can be easily achieved by compen-
sating the inductance of the primary coils with its series capacitor, and it is obtained
if:

ωSS
cc =

1√
L1C1

. (2.53)

Then, the secondary capacitor C2 can be chosen to guarantee ZPA, namely to cancel
the imaginary part of the input impedance at the desired angular frequency ω,
leading to

C2 =
1

(ωSS
cc )2L2

. (2.54)

In this condition, the input impedance results:

ẐSS
in (ωSS

cc ) =
(ωSS

cc M)2

Rload
. (2.55)
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It is important to notice that, in real systems, the winding resistance cannot be
cancelled. Thus, Ẑ11(ω

SS
cc ) = R1 and Ĝm slightly changes for varying loads.

CV mode Constant voltage (CV) operations are still allowed for more than one
operating angular frequency and can be deduced from (2.50) applied to this SS
configuration. Considering the system of ideal coupled coils, the condition becomes:

ω4(L1L2 +M2)− ω2

(
L1

C2
+

L2

C1

)
+

1

C1C2
= 0. (2.56)

Mathematically, four different values of ω can verify (2.56), but only positive real
values are clearly allowed. The angular frequencies ωSS

cv1,2 that allow CV operations
are:

ωSS
cv1,2 =

√√√√√√
(
L1

C2
+

L2

C1

)
±∆ω

2(L1L2 +M2)
(2.57)

where:

∆ω =

√√√√(L1

C2
+

L2

C1

)2

− 4
(L1L2 +M2)

C1C2
(2.58)

and ∆ω ∈ R. It must be noticed that, at these frequencies, ZPA is no more guar-
anteed and the SS compensation is usually exploited for CC operations only. The
choice of the CV mode angular frequency can be done by looking at the input phase
angle. Indeed, classic H-bridge converters require an inductive input impedance to
realise soft switching and maximise the efficiency. In [92] it is shown that:

Im[ẐSS
in (ωSS

cv1)] > 0

Im[ẐSS
in (ωSS

cv2)] < 0
(2.59)

and thus operations as ωSS
cv1 are preferred. It must be also noticed that an inductive

behaviour of the inverter allows the soft-switching, but if the impedance magnitude
is too large, the efficiency drops. Thus, to reduce (and control) the input impedance
still preserving CV operations, other compensation methods have to be adopted.
To avoid bifurcation phenomena in SS topologies, [79] proved that the following
condition must be verified when operating at ωSS

cc :

Q1 >
4Q3

2

4Q2
2 − 1

(2.60)

where
Q1 =

ω0L1

R1
Q2 =

ω0L2

R2
(2.61)

are the primary and secondary coils quality factor, respectively.
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Figure 2.8: Series-parallel (SP) compensation of magnetically coupled coils.

2.3.2 Series-Parallel Compensation
The series-parallel (SP) compensation still involves two capacitors, one connected
in series with the primary inductance and the other connected in parallel to the
secondary inductance, as depicted in Fig. 2.8. To describe the network, the generic
two-port can be resorted, whose impedance parameters are:

Ẑ11 = R1 + j
(
ωL1 −

1

ωC1

)
+

(ωM)2

R2 + j
(
ωL2 −

1

ωC2

)
Ẑ22 =

(R2 + jωL2)

1 + jωR2C2 − ω2L2C2

Ẑm =
jωM

1 + jωR2C2 − ω2L2C2
.

(2.62)

It can be easily proved that the network is still reciprocal, but the mutual impedance
Ẑm is no more purely imaginary and this can be addressed to the secondary winding
resistance. To better understand the role of the compensation capacitors, it is
possible to simplify the expressions assuming ideal windings, namely R1 = R2 = 0.
The impedance terms then result:

Ẑ11 = j
(
ωL1 −

1

ωC1

)
+ (ωM)2

jωC2

1− ω2L2C2

Ẑ22 =
jωL2

1− ω2L2C2

Ẑm =
jωM

1− ω2L2C2
.

(2.63)

CC mode Operating at angular frequencies for which Ẑ11 = 0 guarantees that
the output current is independent of the load. It easy to prove that the roots of
(2.56) also makes Ẑ11 = 0 and thus

ωSP
cc1,2 = ωSS

cv1,2 . (2.64)



2.3. Compensation Networks 49

The criterion to ensure a unique ZPA ad the desired angular frequency is in this
case [79]:

Q1 >
Q2

2 + 1

Q2
(2.65)

CV mode Constant voltage operations can be found from (2.50) applied to this
system configuration, yielding:

L2 + (ωM)2

C1(1− ω2L2C2)
− ω2L1L2

(1− ω2L2C2)
= 0 (2.66)

whose positive root is:

ωSP
cv =

√
1

C1(L1 − M2

L2
)
. (2.67)

It can be noticed that a CV output can be achieved regardless the tuning of the
secondary compensation, which can be usually done with the aim of compensating
the reactive part of the receiver load or realizing ZPA input impedance at the desired
ω [93]. This can be ensured by simply enforcing:

ωSP
cv =

1√
L2C2

(2.68)

resulting in the input impedance at ωSP
cv

ẐSP
in (ωSP

cv ) =
M2

L2
Rload. (2.69)

The main drawback of this tuning is the dependence of ωSP
cv on the coupling condi-

tion, expressed by M . In IPT applications, the alignment of the coils is not always
guaranteed, endangering CV operation of the SP compensated systems.
The SP and SS compensations are the basic networks from which the more com-
plicated topologies can be derived. Indeed, SS and SP are very simple ed effective,
even if they can be improved, at the cost of increasing losses, complexity and costs.
Based on the above analysis, the SS resulted to be a great solution for achieving
coupling independent CC operations, still ensuring ZPA. Instead, the SP compen-
sation strategy can be used to easily achieve CV output in ZPA condition, but this
is possible at operating frequencies that depend on the coupling conditions (see eq.
(2.67)). This dependence requires control strategies able to track and vary the oper-
ating frequency, with the risk of working out of resonance. A careful design is then
necessary.

2.3.3 Series-Series/Parallel Compensation
The series-series/parallel (SSP) configuration can be seen as an improvement of
the SP topology to guarantee an higher tolerance to the receiver misalignment. It
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Figure 2.9: Series-series/parallel (SSP) compensation of magnetically coupled coils.

is represented in Fig. 2.9. According to [94], the series capacitors compensate the
coils leakage inductances, while the parallel one compensates the mutual inductance.
Intuitively, this latter capacitor aims at providing the reactive power required by
the magnetizing inductance. The capacitors are tuned so that:

ωSSP
cv =

1√
(L1 −M)C1

=
1√

(L2 −M)C2S

=
1√

MC2P
. (2.70)

This expression clearly indicates that the tuning is still dependent on the coupling
condition, but the resulting voltage gain is much more stable with respect to coupling
variations.

2.3.4 Series/Parallel Primary Compensation
The series/parallel - series (SPS) and series/parallel - parallel (SPS) topologies have
been introduced to combine the benefits of the series and parallel primary compen-
sation. They are represented in Figs. 2.10a and 2.10b, respectively, and are realised
starting from parallel-series or parallel-parallel networks introducing a series primary
capacitor. Then, the desired operating mode can be realised and the exceeded input
impedance can be compensated with the primary series capacitor. In particular,
these networks can be exploited for merging:

• CV operations and ZPA with a secondary series compensation

• CC operations and ZPA with a secondary parallel compensation.

As discussed in Sec. 2.5, a passive receiver rectifier requires a sinusoidal input
current to ensure diode soft-switching. This condition cannot be achieved with a
capacitor in parallel with the rectifier input port, since it enforces the voltage to be
sinusoidal, resulting in a distorted current. Thus, a secondary series compensation
is preferred.
A general idea about the benefits and drawbacks of these compensation networks is
discussed in [85, 33]. It states that these configurations allow the input impedance
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Figure 2.10: Schematic of (a) series/parallel - series (SPS) and (b) series/parallel -
parallel (SPP) compensation topology.

to be adjusted as desired while preserving the secondary coil and capacitors re-
quired for optimal operations. However, undesired sub-resonances may complicate
the practical implementation.

In [95] safety concerns are also discussed. In general, it can be seen that IPT
links operating in CV mode behave as voltage sources. This implies that, at the
angular frequency that allows CV operations, the link equivalent impedance seen
from the load towards the source tends to infinite values. In case of faults and short-
circuit events, the coils, compensation networks and power source are intrinsically
protected. Conversely, the CC operations lead to an ideal null impedance of the
system seen from the load, and possible faults can damage the system components.
In general, secondary compensated systems are more suitable for CV operations,
even if the optimal operating angular frequency is affected by the coupling conditions
[85, 95, 33]. For CC operations, SS compensated IPT systems are chosen, being the
inductive link perfectly compensated and thus very efficient when operating at ωSS

cc .
However, safety countermeasures must be adopted.
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2.4 Power Source
With the aim of enhancing the magnetic induction phenomenon, modern IPT sys-
tems are fed by a high-frequency alternating voltage, provided by a DC/AC switch-
ing power converter. Due to recent developments in semiconductor technologies,
the inverter power MOSFETs can reach switching frequencies in the order of tens
of kHz. This is the case of silicon carbide (SiC) and gallium nitride (GaN), which
have been tested up to 400 kHz for high-power applications and up to 1 MHz for
consumer electronic devices [96].

In practical applications, the DC bus is usually fed by a power factor correction
(PFC) stage, which rectifies the grid voltage and whose main role consists in fixing
the DC bus voltage [3]. However, in this work, it is not discussed and a DC ideal
voltage source Vdc is considered as upward power source.

In this work, the H-bridge (single-phase) inverter depicted in Fig 2.11a has been
considered. Depending on the adopted modulation strategy, the output inverter
voltage vin(t) can be a two or three-level square wave, with a peak value equal
to the DC bus voltage Vdv and peak-to-peak value of 2Vdc. The signal frequency
corresponds to the MOSFETs switching frequency fsw. The main control parameters
of an H-bridge converter are: the MOSFETs switching frequency fsw, the MOSFETs
duty cycle D and the time delay between the opening and closing of MOSFETs of
different legs. This latter parameter leads to a displacement angle δ between the
output voltage of the two inverter legs, whose minimum value is the so called “dead
time”, necessary to avoid the switch short circuit. While fsw basically acts on the
period of vin(t), the duty cycle and the phase-shift δ change the width of the positive
and negative pulses of the waveform, depicted in Fig. 2.11b. The phase shift control
is generally referred to as duty cycle control since D and δ are related as:

D = sin(
δ

2
). (2.71)

The effect of these parameters can be better appreciated in the frequency domain.
The square voltage vin(t) can be expressed as as:

vin(t) = Vdc

∞∑
n=1

4

nπ
sin(

nδ

2
)cos(nωswt). (2.72)

where ωsw = 2πfsw is the switching angular frequency and n the harmonic order.
The expression shows that the phase shift directly acts on the amplitude of the
spectral components, while fsw on its frequency.

The large coil inductance makes the coupling system behaves as a filter for the
input voltage vin(t) and, in particular, a third order low-pass filter. Thus, the
harmonic components of the receiver voltage vr(t) are strongly smoothed and the
fundamental component dominates over them. It follows that a sufficiently accurate
description of the IPT system behaviour can be obtained considering operations at
a single frequency, namely at the frequency of the fundamental component of the
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Figure 2.11: (a) Schematic of an H-bridge inverter and (b) inverter leg voltage
waveforms showing phase shift between inverter legs and the resulting output voltage
waveform vin(t) = vab, with vab = vag − vbg.

primary coil input voltage. This assumption is usually referred to as “first harmonic
approximation” and allows the phasor representation of the circuit variables. The
phasor associated to the fundamental component of v1(t) at the switching angular
frequency ωsw is:

V̂1 =
4

π
Vdc sin(

δ

2
)ej0. (2.73)

whose phase angle is assumed null in this work. According to [97], the internal
impedance of voltage source inverters is usually negligible with respect to the equiv-
alent impedance of the IPT system seen from the inverter output port. Thus, the
inverter can be considered an ideal voltage source with value V̂1.

2.4.1 Zero Voltage Switching
Power electronic converters are characterised by a high versatility still preserving
great efficiency. However, in high-power and high-frequency applications saving in
losses becomes crucial. The main contribution to the converter losses are the con-
duction and the switching losses, both due to the non ideal behaviour of the switches
[98]. The conduction losses are due to the presence of a parasitic resistance, which
dissipates power when crossed by a current. The switching ones are instead related
to the commutation of the switches, which is not instantaneous (not ideal). Thus,
both the turn on and turn off operations take some time in which neither the switch
current nor the voltage are null. Their product corresponds to the dissipated power.
This occurs at each commutation and thus the switching losses are proportional to
the switching frequency [98].
While the conduction losses can be limited only by acting on the switch technology,
the switching losses can be reduced ensuring the switch turn off occurs when the
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voltage is null. This condition is referred as “zero voltage switching (ZVS)” and is
especially applied when employing MOSFETs. It is important to notice that it can
be achieved for the turn off only. ZVS is basically achieved charging the parasitic
capacitance Coss of the switch, so that it behaves as it is ideal (the MOSFET VGS

is null). During the commutation, the load current (that deviates from flowing
through the closed switch to the open one) charges the parasitic output capacitance
of the opening switch and discharges the one of the closing switch. If the closing
switch capacitance is fully charged before the current crosses its zero value, then
a nearly ideal turn off commutation occurs [99, 98]. This requires that the load
current is sufficiently high and lags the square voltage. These conditions can be
achieved ensuring the load presents an inductive behaviour and thus, considering a
sinusoidal load current, the condition can be written as:

arg[Ẑload(ωsw)] > 0. (2.74)

In IPT systems, the inverter load basically corresponds to the cascade of compensa-
tion networks, coupling system and receiver circuit. Equation (2.74) is a fundamen-
tal condition that must be taken into account in the system design. Alternatively,
(2.74) can be fulfilled adjusting the operating frequency, thereby requiring a more
sophisticated control. Overall, ZVS guarantees:

• Zero turn-off power losses

• Reduced EMI / RFI at transitions

• No power loss due to discharging Coss

• High efficiency with high voltage inputs at any frequency

• Reduced gate drive requirements (no Miller effects being VGS = 0 during turn-
off)

while the main disadvantage consists in a more complex design, with the further
requirement expressed by (2.74). The ZVS technique can be applied to any switching
converter, whose topology only affects the required current and load constraint.

2.5 Receiver Circuit
The receiver circuit is basically devoted to the conditioning of the transmitted power
and, depending on the specific application, it can involve a passive or active rectifi-
cation [100, 101, 102]. The latter can also allow bidirectional power flow [103, 104],
which has encountered growing interest over the past few years due to the increasing
diffusion of electric vehicles. The output power is commonly used to feed generic
loads or charge batteries, along with to power more complex powertrain architec-
tures. In this frame, the most widespread solution consists in a first passive recti-
fication stage followed by a DC/DC converter that adjusts the voltage to fulfil the
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Figure 2.12: Passive full bridge rectifier.

load requirements [3, 103, 101]. Depending on the nature of the converter, differ-
ent receiver voltage and current may be required. Indeed, in presence of a DC/DC
conversion stage upward the battery management system (BMS), the IPT link can
be controlled to simply set the desired chopper DC bus voltage. Conversely, in case
of passive rectification, the IPT system is required to provide the required battery
voltage and current. This can be achieved by acting on the primary voltage through
the inverter. In this work, a passive full-bridge rectifier with a second order output
filter is chosen. The circuit is depicted in Fig. 2.12. A nearly sinusoidal receiver
current allows the rectifier diodes to commute at zero current, thereby dramatically
reducing the rectifier switching losses. The output filter sizing is strictly correlated
to the specific application and it is assumed it makes the ripple in the DC output
current Io and voltage Vo negligible. In first harmonic approximation, the rectifier
circuit can be modelled as a resistance, whose value is defined as the ratio between
the phasors of the receiver voltage V̂r and the current Îr as:

Rac =
V̂r

Îr
. (2.75)

The nature of the secondary compensation basically defines the calculation of the
Rac. Indeed, the current and voltage of a non linear load can be discontinuous and,
in general, at least one of the two variables is. As discussed in [105], if the rectifier
input voltage is enforced to be sinusoidal and the rectifier output filter presents an
inductive behaviour, then the current will be distorted and (2.22) becomes:

Rac =
π2

8
Ro (2.76)

where Ro is the equivalent DC load. This is the typical case of a parallel compen-
sated receiver, where the parallel capacitor forces the output receiver voltage to be
continuous and makes the system behaves as an equivalent voltage source. Con-
versely, if the rectifier input current is sinusoidal and the rectifier filter is capacitive,
Rac modifies as:

Rac =
8

π2
Ro (2.77)
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which is the case of a series compensated receiver. Indeed, the secondary coil in-
ductance forces the output current to be continuous and the system matches the
characteristics of a current source.

2.6 Conclusions
The operation of IPT systems is based on the principle of magnetic induction and
the power is then transferred between two magnetically coupled coils. In addition to
the optimisation of the coil coupling coefficient and self-inductance, modern wireless
power transfer systems provide for the use of compensation networks. These circuits
allow the efficiency and the transmitted power to be maximised and, with the proper
tuning, also allow particular operating modes to improve the control of the load
voltage and current. Among the possible operating strategies, constant voltage and
constant current operations have been analysed, which are obtained by making the
voltage gain or transadmittance independent of the load. Due to the intense filtering
action of the IPT link (which comprises the cascade of the compensation networks
and the inductive coupling), the harmonics of voltages and currents in the circuits
are dramatically smoothed, and the first harmonic approximation can hold. Overall,
although the device architecture appears simple and similar to those of traditional
transformers, appropriate measures are required to achieve good performance in
terms of efficiency and power transfer.



Chapter 3

Circuit-Based Design of IPT
Systems

Modern inductive power transfer systems have proved to be capable of transmitting
a very large amount of power alongside ensuring high efficiency. However, depending
on the specific application, these systems have to fulfil also other load requirements,
i.e. adequate output voltage and current. To achieve these goals, a proper circuitry is
used to feed the primary coil and to convert the power received by the secondary coil,
resulting in complex system architectures whose components require an adequate
design procedure. The first and major issue concerns the dependence of the system
behaviour on the adopted network topology, which makes a general design algorithm
very difficult to be defined. In this section, the passive parts forming the IPT system
are described and their behaviour analysed. Different solutions are discussed and
compared with the aim of providing useful design guidelines.

3.1 Design Procedure
The definition of a suitable design procedure requires the main system specifications
and degrees of freedom to be harmonised with the system physical constraints. In
IPT apparatuses, both the size and the connections of the circuit components can
be freely chosen. It is therefore important to provide guidelines so that the device
meets the requirements and is optimised for the specific application. While the main
goal of any IPT device can be considered the efficient transmission of the desired
power, different voltage and current profiles may be required to be fulfilled, which
are defined by the particular nature of the load. In high-power applications, the load
usually consists of a battery, fed by its own passive or active rectifying circuitry as
discussed in Sec. 2.5. All these features clearly affect the design, which should
be carried out once the circuit topology is chosen, and thus the work frame of the
system must be first identified. The presented design procedure has been defined
enforcing:
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Figure 3.1: Flow chart illustrating the design steps for the IPT link with the com-
pensation networks based on the load requirements. The green boxes indicate the
specifications, the grey boxes the degrees of freedom and the blue boxes the calcu-
lation steps.

• Maximum system efficiency

• Lightweight vehicle assembly

• Fulfilment of the required voltage gain

• Zero voltage switching (ZVS)

• Minimum circulation of reactive power (ZPA)

and the main steps are summarised in the flow chart of Fig. 3.1. The first design
step consists in the choice of the compensation network, that must be addressed
based on the desired operating mode. In automotive applications and, in general, in
the majority of high-power chargers, the battery is fed by a DC/DC converter and
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the IPT system is driven to regulate its DC bus voltage [3]. Thus, CV operation is
usually the best control strategy, which can be easily achieved with an SP compen-
sation network. However, this network has the disadvantage of coupling-dependent
capacitor tuning and thus the SS topology may be preferred.

Once the compensation strategy has been defined, the design passes through the
modelling of the load, as discussed in Sec. 2.5. In particular, a DC load Rl0 is de-
rived based on the type of battery pack. The next step consists in the matching of
the receiver. Indeed, the presented procedure exploits the condition of maximum ef-
ficiency for defining the optimal secondary capacitance value, but requires to choose
a reference coupling coefficient k0 and primary and secondary coils quality factors
(Q1 and Q2 respectively). They can be chosen so that the bifurcation is avoided, as
suggested in [79]. From the secondary capacitance value, the size of the secondary
coil inductance L2 is defined to make the receiver resonate at the desired frequency.
As a rule of thumb, deviating this inductance value of about 15%–20% ensures pole
splitting phenomena to be avoided [79].

The primary coil inductance L1 can be designed to achieve the desired voltage
gain or transadmittance of the converter (the choice depends on the adopted control
strategy and operating mode). These parameters are usually referred to the IPT link
input voltage V̂1, which however is strictly correlated to the inverter control strategy
and DC bus voltage Vdc. In general, it holds |V̂1| = 4Vdc/π. The last step consists
in the tuning of the primary compensation at the design operating frequency for
achieving the prefixed IPT link behaviour.

3.2 Load Modelling: Battery Pack for Automo-
tive Applications

High-performance lithium-ion batteries are the most used energy storage systems,
especially for electric vehicle (EV) applications [106, 107]. In particular, modern
automotive powertrain systems are now mainly equipped with 400V battery packs
composed of either high-power or high-density cylindrical cells [106, 107, 108]. In
this chapter, as a case study, a battery pack composed of 21700 cylindrical cells
with a nominal voltage equal to 3.6V is considered, which are driven with a voltage
that ranges from a minimum of 3.2V up to a maximum of 4.2V. Then, considering
100 series connected cells, the battery pack voltage ranges from 320V to 420V and
the resulting maximum power is 3.6kW (corresponding to the first level described
in [3]). The typical charging profile consists of a first constant current (CC) mode
followed by a constant voltage (CV) mode, represented in Fig. 3.2a as a function of
the battery state of charge (SOC) for the considered pack. The charger must then
provide the proper DC voltage and current to the battery, which depends on the SOC
conditions and is estimated through current or voltage measurements. The power
P0 absorbed by the battery can be easily derived from this profile and it is reported
in Fig. 3.2b. It strongly varies during the charging and reaches the maximum value
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Figure 3.2: Characteristics of the battery pack: a) voltage and current profiles b)
absorbed power and equivalent resistance.

in the transition region (from CC to CV mode). The DC conversion stage and the
battery can be globally modelled as a variable resistance Rl0 as:

Rl0 =
V 2
batt

P0
. (3.1)

It strongly depends on the charging profile and behaves nearly linearly only in the
range 44Ω - 60Ω. Considering the battery lifetime and recycle time, a battery charger
must provide sufficiently accurate charging current and voltage for safe operation.
From the charging profile shown in Fig. 3.2, the battery equivalent resistance in-
creases significantly as the charging operation goes from CC to CV modes.

3.3 Design of a Series-Parallel Compensated IPT
System

As discussed in Sec. 3.1, passive capacitive compensations are preferred in prac-
tical applications. In this section, the SP topology is analysed, with the aim of
evaluating its feasibility for static charging systems. The SP compensation has the
main advantage of allowing high-efficiency operations when working in CV mode
[30, 109]. The presence of the DC/DC converter does not require the IPT link
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Figure 3.3: Flow chart illustrating the design algorithm for the inductive coupling
and the compensation networks based on the selected output characteristic. The
load resistance Rl and the coupling coefficient k refer to actual parameters during
variable operating conditions.

to follow the complete voltage and current profile. Moreover, an optimised design
allows the secondary inductance to be kept 3 ÷ 4 times smaller than the trans-
mitter one, allowing saving in space and weight. This condition does not occur in
SS compensated systems, for which the optimal design leads to a less pronounced
difference between the primary and secondary inductances. Lightness is one of the
fundamental requirements for mechanical components, especially in the automotive
sector. The main drawback of SP compensation is the dependence of the primary
compensation tuning on coupling conditions. However, automotive IPT systems
usually include several sensors to drive the vehicle positioning and thus only slight
variations of the inductance parameters occur. A good alignment is indeed crucial
to limit the magnetic field emissions, for which stringent requirements are reported
in the standards [3, 23]. Two different design procedures are proposed for achieving
either a CV or ZPA at the desired resonant frequency and are summarised in the
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flow chart depicted in Fig. 3.3. All the calculations are reported and discussed in
the following and the different parameter choices motivated.

3.3.1 Load Matching
The SP compensation makes the IPT link behave as a current source while the
rectifier involves a second order filter at is output [105]. As discussed in Sec. 2.5,
in the hypothesis of ideal components and first harmonic approximation, the overall
load seen from the receiver port can be modelled as an equivalent resistance defined
as:

Rl =
π2

8
Rl0 =

π2

8

V 2
batt

P0
. (3.2)

With the aim of maximising the power delivered to the reference load, the optimal
receiver tuning can be done enforcing the efficiency is maximised. This condition
can be found analytically, as discussed in [93, 110]. The total link efficiency can be
defined as the ratio between the load power and the one at the input of the primary
coil (the primary compensation is not considered):

ηTlink
=

Pload

Pinlink

=

|V̂2|2

Rl

Re
[
V̂L1

Î∗L1

] (3.3)

where V̂L1
is the phasor voltage across the primary coil and ÎL1

its phasor current.
This expression can be rearranged as [93]:

ηTlink
=

k2Q1Q
2
2

(α +Q2)

(
1 + k2Q1Q2 +

Q2

α

) (3.4)

with α = ωC2Rl and ω = 2πf, that is the angular frequency associated to the
operating frequency f. It is important to notice that this expression is valid for any
primary compensation strategy and receiver tuning. Indeed, different choices can
be done for the secondary capacitance value. By differentiating the link efficiency
and enforcing:

∂ηTlink

∂α
= 0 (3.5)

it is possible to find the value of α that maximises the efficiency, referred as αopt,
which results in:

αopt =
Q2√

1 + k20Q1Q2

. (3.6)

In the hypothesis of high-quality factors Q1 and Q2 and assuming a reference cou-
pling factor k0, αopt is uniquely determined. The optimal value of the secondary
capacitance C2opt is thus found for the design load Rl0 and resonant frequency f0 as:

C2opt =
αopt

ω0Rl0
. (3.7)
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3.3.2 Design for Constant Voltage Output
From the definition of the receiver angular frequency it is possible to find the sec-
ondary inductance L2opt that allows the receiver to resonate at the design resonant
frequency. Nevertheless, different definitions of receiver angular frequency are pos-
sible. With the aim of achieving a constant voltage output at ω0, a parallel com-
pensated receiver has to be tuned as:

ω0 =
1√
L2C2

(3.8)

and thus the optimal value of L2 can be obtained straightforwardly as:

LCV
2opt =

1

ω2
0C

CV
2opt

(3.9)

or, equivalently,

LCV
2opt =

1

αopt

Rl0

ω0
. (3.10)

The optimal value L1opt of primary inductance is defined based on the desired voltage
gain magnitude, which can be expressed as a function of the generic α parameter
as:

|ĜCV
v | =

√
L2

L1

[
αQ1k0

1 + αQ1k20

]
. (3.11)

Introducing the expression of αopt in (3.11), after some mathematical manipulations
the primary inductance value is found to be:

LCV
1opt = LCV

2opt

(
1

|Ĝv|
αoptQ1k0

1 + αoptQ1k20

)2

= LCV
2opt

(
1

|Ĝv|
k0Q1Q2

k20Q1Q2 +
√

1 + k20Q1Q2

)2

.

(3.12)

As last, the primary capacitor value is tailored to compensate the overall link
impedance (already referred as Ẑin) for realising ZPA as:

CCV
1opt =

1

ω2
0L

CV
1opt

(1− k20)
. (3.13)

Due to the dependence of the primary compensation tuning on k0 (coupling con-
dition), a possible misalignment between the transmitter and receiver can strongly
deviate the system behaviour from the design one.
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Figure 3.4: Equivalent circuits of the resonant inductive link with primary and
secondary decoupled inductors and series controlled voltage sources.

3.3.3 Design for Coupling Independent ZPA
The main objective of compensation networks is to provide the coupling device with
the reactive power necessary for the transfer of active power. In this view, it is pos-
sible to calibrate the secondary compensation in order to perfectly compensate the
receiver. This corresponds to cancelling the reactive part of the receiver impedance
seen by the ideal controlled voltage source e2(t) which represents the induced voltage
in the secondary, as it can be seen in Fig. 3.4. For a parallel compensated receiver,
the impedance can be expressed as:

Ẑ2 = R2 + jωL2 +
Rl0

1 + jωC2Rl0
(3.14)

= R2 +
1

1 + (ωC2Rl0)2
+ jω

(
L2 −

C2R
2
l0

1 + (ωC2Rl0)2

)
(3.15)

and thus it is possible to have Im[Ẑ2] = 0 at ω0 if:√
C2R2

l − L2

L2C2
2R

2
l0

= ω0. (3.16)

It can be noticed that the tuning of this compensation network described in (3.8)
allows CV operations, but it does not allow the imaginary part of the receiver
impedance to be completely compensated. Indeed, Ẑ2 presents a “residual” real
term due to the parallel connection of the load and secondary capacitor.

Mathematically, a real receiver impedance that would maximise the power trans-
ferred for a fixed e2(t) is obtained with an imaginary resonant frequency only, which
is, of course, meaningless. From (3.16), it is possible to find the optimal secondary
inductance value at ω0 as:

LZPA
2opt =

C2optR
2
l0

1 + (ω0C2optRl0)2
(3.17)
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or, equivalently,

LZPA
2opt =

αopt

1 + α2
opt

Rl0

ω0
. (3.18)

The primary compensation can be exploited to ensure ZPA, namely cancelling
the imaginary part of the link input impedance. With the receiver tuned according
to (3.16), this can easily achieved if:

ω0 =
1√
L1C1

. (3.19)

In this condition, the voltage gain magnitude results:

|ĜZPA
v | =

√
L2

L1

kQ1Q2

√
α2 + 1

αk2Q1Q2 + α +Q2
. (3.20)

The optimal primary inductance value can then be found considering the matched
receiver (α = αopt) as:

LZPA
1opt = LZPA

2opt

( k0Q1Q2
√

α2
opt + 1

|Ĝv|
(
αoptk20Q1Q2 + αopt +Q2

))2

= LZPA
2opt

(
k0Q1

√
1+k2

0Q1Q2+Q2
2

1+k2
0Q1Q2

|Ĝv|
(
1 +
√

1 + k20Q1Q2

))2

(3.21)

and thus the primary capacitor results:

Copt
ZPA =

1

ω2
0L

ZPA
1opt

. (3.22)

With this choice, the resonant frequencies of the primary and secondary circuits
are independent of the alignment conditions of the transmitting and receiving coils,
since the coupling coefficient parameter k does not appear in the expressions defining
the capacitance values. It is however important to note that for the calculation of
the condition of maximum efficiency a reference value k0 has been assumed for
the coupling coefficient. The misalignment affects the optimal value of α, which
would slightly deviate the optimal values of primary and secondary inductances
and capacitances. However, the system always works in resonance, guaranteeing
maximum efficiency with the resulting parameters.

3.3.4 Case Study
The design procedures presented in Sec. 3.1 were applied in a test case involving an
automotive IPT battery charging system with a battery pack of the type described
in Sec. 3.2. The specifications for the IPT system design are given in the first part
of Table 3.1, the resulting parameter values are reported in the second part, while
the third part lists the inductive link components. The design assumptions are:
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Table 3.1: Case study system parameters for the SP design.

Quantity Symbol Value Unit of Measure
Specifications

On board DC bus rated voltage Vdc 420 V
Inverter DC bus rated voltage VDC 230 V

Power rate Pdc 3 kW
Operating frequency f0 85 kHz

Primary inductor quality factor Q1 ≫ 100 -
Secondary inductor quality factor Q2 ≫ 100 -

Reference coupling coefficient k0 0.3 -
CV Output

Primary inductor LCV
1opt

89.8 µH
Secondary inductor LCV

2opt
26.77 µH

Primary capacitor CCV
1opt

43 nF
Secondary capacitor CCV

2opt
131 nF

Coupling Independent ZPA
Primary inductor LZPA

1opt
89.8 µH

Secondary inductor LZPA
2opt

24.5 µH
Primary capacitor CZPA

1opt
42.9 µF

Secondary capacitor CZPA
2opt

131 µF

• inductor quality factors Q1 and Q2;

• reference coupling coefficient k0.

The results reported in the Tab. 3.1 show that the value of the secondary induc-
tance is about 4 times lower than that of the primary for both design approaches,
in accordance with expectations. Similarly, but in opposite relationship, are the ca-
pacities. The overall energy of the system is therefore completely comparable, even
if the nature of the prevailing one changes. It can then be noted that the optimum
values of the primary inductance are approximately the same for the two different
tuning approaches, while the receiving coil inductances slightly differ. In addition,
studying the trends of LCV

2opt
and LZPA

2opt
as a function of α it can be found that the

two inductances present approximately the same value for αopt > 6, regardless of
the particular system specifications. Indeed, the ratio between LCV

2opt
and LZPA

2opt
is

expressed as:
LCV
2opt

LZPA
2opt

=
1 + α2

opt

α2
opt

(3.23)

that tends to 1 for αopt → ∞. This corresponds to the case of ideal coils with null
resistance, again testifying the impact of the coils quality factors on the optimal
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Figure 3.5: (a) Voltage gain magnitude and (b) input impedance angle as a function
of the frequency for the inductive link designed for CV operations at f0 = 85 kHz.

performance and, in turn, on the design.
The voltage gain and the input phase angle of the IPT system tuned for CV oper-
ations are reported in Fig. 3.5 as a function of the frequency and for different load
values. From Fig. 3.5a, it can be seen CV operations can be achieved if the sys-
tem exactly works at the resonant frequency, being |ĜCV

v | strongly affected by the
frequency shift. The input phase angle can become negative if Rl > Rl0, with the
consequent risk of increasing the switching losses. From Fig. 3.6 is instead possible
to see the voltage gain and input phase angle as functions of the frequency in case
of tuning for coupling independent ZPA. Different curves at different loads show the
strong variation that both |ĜCV

v | and Φin can experience during the charging cycle.
The most critical condition is represented by the trend of the input phase angle,
which can present negative values for small loads. However, for small loads, the pri-
mary current is also low and the switching losses are limited. The main advantage
of the tuning proposed in Sec. 3.3.3 can be appreciated from Fig. 3.7, which reports
the input phase angle of the IPT system as a function of the frequency for different
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Figure 3.6: (a) Voltage gain magnitude and (b) input impedance angle as a func-
tion of the frequency for the inductive link designed for coupling independent ZPA
operations at f0 = 85 kHz.

values of the coupling coefficient. In particular, Fig. 3.7a refers to the tuning for CV
operations and clearly highlights that the input phase angle is strongly affected by
the coupling conditions, with the risk of deviating from the optimal operating value
(slightly larger than zero). From Fig. 3.7b it can be seen that the system designed
for coupling independent ZPA is capable of preserving a perfect compensation for
each value of k, namely the resonance frequency is independent of the coupling co-
efficient. It must be noticed that ZVS operations are necessary to limit the inverter
losses. They require the input phase angle to be slightly larger than zero, which can
be easily achieved by deviating the value of the primary resonant capacitor from the
optimum one (derived from the analytical formulas). However, an increase in k can
lead the system to work in capacitive region, decreasing the efficiency. It is therefore
essential to dimension the system considering the strongest coupling condition that
the system is assumed to experience.



3.3. Design of a Series-Parallel Compensated IPT System 69

50 60 70 80 90 100 110 120

-2

-1

0

1

2

(a)

50 60 70 80 90 100 110 120

-2

-1

0

1

2

(b)

Figure 3.7: Input impedance angle as a function of the frequency for different cou-
pling coefficients in case of inductive link designed for (a) CV output and (b) cou-
pling independent ZPA operations at f0 = 85 kHz.

3.3.5 Efficiency Characterisation
The efficiency of the SP compensated IPT system designed for CV or coupling inde-
pendent ZPA has been calculated for different operating conditions and is reported
in logarithmic scale in Fig. 3.8. The efficiency is calculated unless iron and diodes
losses as a function of the equivalent load resistance Rl for different coupling coeffi-
cients k at the operating frequency is f0 = 85 kHz. The system tuned for coupling
independent ZPA appears slightly more efficient with respect to the one tuning for
CV operations. This result can be addressed to the receiver tuning, which is per-
fectly compensated when the condition (3.16) is fulfilled. However, for a certain
value of Rl, an higher coupling coefficient leads to higher efficiency, as it can be
expected. The maximum value of the efficiency is found for loads closed to the
reference one Rl0 and is 97.8%. The efficiency is higher as the coupling coefficient
increases, while the maximum of the efficiency curves occur in correspondence of
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higher equivalent loads as the coupling coefficient decreases. The difference between
the two trends is more significant approaching high loads and the curves referred
to the system tuned for CV operations overlap. When used as a battery charger,
the system load can vary drastically, going from very low to very high values. It is
therefore important to verify that the efficiency is acceptable throughout the load
range foreseen for the specific application.

Figure 3.8: Overall link efficiency of a WPT system designed for CV or coupling
independent ZPA, operating at f0, as a function of the receiver equivalent load Rl,
for different coupling coefficients k.

3.4 Design of a Series-Series Compensated IPT
System

In this section, a design procedure for SS compensated IPT systems is presented,
in analogy to the algorithm proposed in Sec. 3.3. The same load and specifications
are then considered. Avoiding making hypotheses on the choice of the compensation
tuning, we proceed as previously illustrated, maximising the power transferred to
the load and therefore the efficiency of the transmission. The first step consists in
the load modelling and the definition of the specifications, which are considered the
same as in the SP case. For series compensated receivers, the equivalent resistance
representing the whole receiver load is defined as:

Rl =
8

π2
Rl0 =

8

π2
V 2
batt

P0
. (3.24)

Then, the efficiency of the IPT link that considers the coupled coils and the receiver
compensation is written in terms of α = ωRlC2 as [93]:

ηTlink
=

αk2Q1Q2

(1 + αQ2 + k2Q1Q2)(1 + αQ2)
(3.25)
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and, enforcing
∂ηTlink

∂α
= 0 (3.26)

the optimum α value αopt that maximises the efficiency is found:

αopt =
Q2√

1 + k20Q1Q2

. (3.27)

This expression is analogous to the same obtained for the SP compensation and
still requires hypotheses on the quality factors Q1 and Q2 and coupling coefficient,
together with the operating frequency f0 and load Rl0. Assuming high values of Q1

and Q2 and a reference coupling coefficient k0, the optimal value of the secondary
capacitance C2opt is thus found for the design load Rl0 and resonant frequency f0 as:

C2opt =
αopt

ω0Rl0
. (3.28)

Differently from the SP topology, there is no ambiguity in the choice of the secondary
compensation tuning, being the imaginary part of the receiver impedance completely
cancelled when tuned as in (3.28). Despite different operating modes are possible
(see Sec. 2.3.1), constant current operation mode is the preferred one, requiring
a simple tuning which is also independent on the coupling conditions. Thus, the
primary and secondary capacitors are dimensioned to compensate the primary and
secondary coil inductance, respectively. The secondary inductance L2 is the found
as:

LCC
2opt =

1

αopt

Rl0

ω0
. (3.29)

Following the work flow reported in Sec. 3.1, it is now possible to design the
primary inductance according to the desired voltage gain or transadmittance. Be-
ing the SS topology well suited to CC operations, the transadmittance is chosen.
However, it must be noticed that these two parameters are related as:

Ĝv = −RlĜm (3.30)

and thus, once the load is fully characterised in terms of current and voltage, they can
be used equivalently. In terms of the α parameter, the transadmittance magnitude
of a SS compensated IPT system can be written as:

|Ĝm| = −
1

Rl

√
L2

L1

[
αkQ1Q2

1 + αQ2 + k2Q1Q2

]
(3.31)

from which the optimal primary inductance L1opt is found considering the reference
coupling coefficient k0 and αopt:

L1opt = L2opt

[
1

|Ĝm|Rl

αoptk0Q1Q2

1 + αoptQ2 + k20Q1Q2

]2

= L2opt

[
1

|Ĝm|Rl

k0Q1Q2

√
1 + k20Q1Q2√

1 + k20Q1Q2 +Q2 + k20Q1Q2
2

]2
.

(3.32)
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Table 3.2: Case study system parameters for the SS design.

Quantity Symbol Value Unit of Measure
Specifications

On board DC bus rated voltage Vdc 420 V
Inverter DC bus rated voltage VDC 230 V

Power rate Pdc 3 kW
Operating frequency f0 85 kHz

Primary inductor quality factor Q1 ≫ 100 -
Secondary inductor quality factor Q2 ≫ 100 -

Reference coupling coefficient k0 0.3 -
CC Output

Primary inductor LCV
1opt

141 µH
Secondary inductor LCV

2opt
297 µH

Primary capacitor CCV
1opt

25 nF
Secondary capacitor CCV

2opt
12 nF

The design is concluded with the choice of the primary capacitor C1 that aims at
compensating the primary inductance in the condition of maximum link efficiency.
The optimal value C1opt is simply defined as:

CCV
1opt =

1

ω2
0L1opt

. (3.33)

Both the primary and secondary compensations are independent on the coupling
coefficient, meaning that the system can efficiently operate also in misalignment
conditions (even if an efficiency reduction inevitably occurs).

3.4.1 Case Study
The validation of this design procedure can be done considering the system specifi-
cations presented in Sec. 3.2. The resulting IPT link parameter values are reported
in Tab. 3.2. The self-inductance values of the primary and secondary coils result
in a ratio of approximately 2, which is equivalent to the voltage gain of the system.
This characteristic is also common to traditional transformers that employ solenoid
windings, in which the transformer ratio coincides with the ratio between the num-
ber of turns of the primary and secondary windings. In an IPT system, the coils
typically have a planar geometry, and thus the number of turns does not have the
same meaning as in solenoid windings. However, it is possible to find an analogy if
we consider the square root of the inductance ratio.
The capacitors are sized with the aim of fully compensating the inductances of the
two windings. It can be seen that the values of C1opt and C2opt are also in ratio 2,
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Figure 3.9: (a) Transadmittance magnitude and (b) voltage gain magnitude as a
function of the frequency for the SS compensated IPT link designed for CC opera-
tions at f0 = 85 kHz.

like the inductances. This simply demonstrates how the system (reactive) energy
is conserved and that the compensation networks provide all the reactive power
required by the coupling system.
One of the main features of SS compensated IPT systems is the load independent
behaviour of the transadmittance. In Fig. 3.9a is represented the transadmittance of
the system as a function of the frequency for different loads and it is noted how the
curves intersect at the resonant frequency. The voltage gain is instead shown in Fig.
3.9b as a function of the frequency and for different loads. It results load dependent
at the resonant frequency, as expected. However, there are two points at two different
frequencies where the gain curves intersect for any load value, as announced in Sec.
2.3.1. They are highlighted with black circles. For those frequencies, the voltage
gain is independent of the load. They can be calculated as in (2.57) and for this
system result in fSScv1 = 74 kHz and fSScv1 = 102 kHz. As discussed in Sec. 3.1, IPT
systems for automotive applications usually feature in-vehicle DC/DC converters
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Figure 3.10: Input impedance angle as a function of the frequency for different (a)
receiver loads and (b) coupling coefficients of the SS compensated IPT link designed
for CV operations at f0 = 85 kHz.

to regulate the battery voltage and current. In these conditions the system must
therefore operate in CV mode. However, it is disadvantageous to work in CV mode
(therefore far from the resonant frequency) in SS compensated systems as the tuning
of the compensation networks no longer guarantees a null input phase angle at the
working frequency and, above all, not independent on the coupling conditions. In
Figs. 3.10a and 3.10b the system input angle is shown as a function of the frequency
for different loads and different alignment conditions between the transmitter and
receiver coils. It can be noticed that, still working at the resonant frequency, it is
possible to obtain both load independent and coupling independent ZPA behaviour.
Moving away from that frequency it is likely to incur in negative values of the input
phase angle, which does not allow the source converter to work in ZVS. In practical
implementations, the capacitance of the primary capacitor is chosen slightly lower
than that necessary to guarantee ZPA operations, so that the IPT link is globally
slightly inductive and allows the ZVS of the inverter MOSFETs. In this frame, it
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Figure 3.11: Overall link efficiency as a function of the receiver equivalent load Rl

and for different coupling coefficients k of the SS compensated IPT link designed for
CV operations at f0 = 85 kHz, operating at f0,

is essential to consider that, for loads lower than the reference one, the input phase
angle becomes negative. It is therefore necessary to properly evaluate Rl0, choosing
it among the lowest values that the system will have to deal with. The efficiency
of the system (without considering the core and capacitor losses) is shown in Fig.
3.11. As expected, it has maximum values in correspondence with the reference load
and decreases dramatically as the coupling coefficient decreases. In particular, the
efficiency of the system is very sensitive to the coupling condition at high loads, while
at light loads it always presents approximately the same trend. This suggests once
again that it is essential to consider an appropriate reference load, which should be
as close as possible to that of steady state, but with a tolerance such as to consider
the light load conditions.

3.5 Conclusions
A design workflow for passive compensated IPT systems has been discussed and de-
fined for inductive links with SP and SS compensation networks. The methodologies
were applied to the design of a wireless charging system for automotive applications.
These devices are mostly equipped with an on-board DC/DC converter that reg-
ulates the voltage and current of the battery. It is therefore important to ensure
efficient and robust power transfer against load and coupling coefficient variations.
In general, it can be assumed that it is sufficient to control the voltage of the receiver
(which corresponds to that of the DC bus of the on-board converter) by keeping it
at a predetermined value.
As it results from the analysis of the two compensated systems SS and SP, the ideal
solution requires a voltage operation independent of the load and the coupling co-
efficient. With an SP compensated system it is easy to reach the first condition,
but the resulting voltage gain is strongly affected by the coupling coefficient. Con-
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versely, a k-independent tuning can be achieved with a SS compensation, at the cost
of having a voltage gain that is not constant as the load varies. In this configuration,
however, constant current operation is obtained, which can be exploited to control
the current of the circuit downstream the receiver. This mode of operation is typical
of single-stage battery chargers. Starting from the same project specifications, it is
evident that the SP compensation allows the same power to be transmitted with
similar efficiency using a receiving coil approximately three times lower than that of
the transmitting one in terms of inductance. As already discussed, a lower induc-
tance leads to a smaller weight and volume, which are very important characteristics
in the automotive environment. However, it is important to note that this system is
very sensitive to coupling conditions, which, in the field, may not correspond to the
ideal ones. For this reason, SS compensated systems are preferred in an industrial
environment, where there are fewer constraints of size and weight.
As last consideration, it can be noticed that the parallel compensated receiver expe-
riences a very large current, being it limited by the winding resistance only. Besides
overload issues, that can be avoided with a suitable coil design, high receiver cur-
rents can lead to high magnetic fields, with the risk of exceeding the standard limits.
Special attention should be paid to shielding strategies in SP compensated systems.



Chapter 4

Resonator Arrays for IPT

Arrays of resonators have been introduced as coupling devices in IPT systems to
overcome one of the major limitations of near-field WPT apparatuses, that is the
weakness of the transmitter-receiver coupling. Indeed, the transmitter and receiver
are often strongly misaligned, as schematically illustrated in Fig. 4.1a, resulting
in a coupling coefficient k ≪ 0.1 which dramatically limits the performance of the
system. In fact, larger misalignments lead to important decrease in efficiency and
transferred power, together with an increase of the magnetic field in the surrounding,
that mirrors the increased coil leakage inductances. Whenever possible, the coupling
is dramatically improved employing magnetic cores that drive the transmitter flux
towards the receiver, but these solutions are not always possible. Indeed, besides
the cost, magnetic cores are basically made of ferrite or surrogates, whose mechani-
cal characteristics make their manufacturing (especially the shaping) very difficult.
They are also very fragile, with a consequent risk of fractures when subjected to
vibrations, events that can easily occur in automotive and industrial environments.
It must also be noticed that, even if ferrite cores present a reduced electrical con-
ductivity with respect to traditional magnetic materials (and consequently lower
losses), they operate efficiently up to a frequency close to 500 kHz. However, there
are several applications that exploit higher frequencies for IPT, such as biomedical
and consumer electronics IPT devices, that work around tens of MHz. For these so-
lutions, ferrite cores generate too many losses. A widely exploited alternative is the
use of intermediate relay coils, that can be placed in between the transmitter and
receiver coils, resulting in a structure of magnetically coupled circuits as depicted
in Fig 4.1b. The relay coils are basically wound coils or PCB-printed inductors
connected to a lumped capacitor tuned so that the circuit resonates at the IPT
system operating frequency. They basically relay the magnetic field received by the
previous coil, enhancing the magnetic coupling between the transmitter and receiver
coils. Consequently, also the transmitted power and efficiency increase and are lim-
ited by the internal resistance of the coils only. Thus, the crucial parameter that
affects the performance of the system is the quality factor of the relay resonators,
which should be maximised by design. The resulting device can be considered a
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Figure 4.1: Schematic representation of (a) strongly misaligned IPT system (SPS)
and (b) the same system with two intermediate relay coils.

simple extension of the original two-coils system, but some issues concerning power
reflection phenomena may lead to system glitches or, in the worst case, even to the
complete breakdown. An accurate and general model is then crucial for the design
and analysis of resonator arrays.
The structure of these devices can widely vary depending on the applications, with
the resonators arranged in different ways [41, 43, 111, 112] and there not exist
conventional coils and array structures. These kinds of systems behave differently
depending on the coils arrangement, shape and parameters. The majority of the
applications employ resonator arrays to transmit small power in the range of a few
watts and operate at very high frequency for near-field operations, namely around
tens of MHz. This chapter aims to evaluate the feasibility of resonator arrays to
operate in the industrial and automotive environment, where high power rates are
required and the operating frequency must not exceed tens of kHz. As already
mentioned in Chapter 3, the frequency is limited by the technology of the power
electronic components and, more stringently, for safety reasons (magnetic field lim-
its). As a power supply, a switching converter is still considered, while the load
is the passive rectifier with a filter and battery pack described in Sec. 2.5. This
analysis starts considering a generic resonator array where the transmitter feeds a
receiver through the intermediate relay coils to then deal with the case of resonator
array used as a transmitter, which feeds a receiver placed over it at any position.
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Figure 4.2: Schematic representation of 1D resonator arrays in a (a) coaxial ar-
rangement (b) planar structure along a line and (c) generic planar arrangement.
The direction x denoted by the dashed line indicates the path of the power travel-
ling along the array.

4.1 1D Resonator Arrays
This section considers 1D resonator arrays composed of n magnetically coupled reso-
nant circuits, called resonators or cells. In general, any system of coupled resonators
can be considered a 1D array if the mutual inductance between adjacent coils pre-
vails over that defined between non-adjacent coils and the pairs of adjacent cells
consecutively lie in a direction of the space. Some examples are schematically il-
lustrated in Fig. 4.2, where the coils can be coaxial or arranged in a plane along a
line. The former structure is schematically depicted in Fig. 4.2a while the latter in
Figs. 4.2b and 4.2c. The array in Fig. 4.2c can still be considered planar, even if
the resonators lie along a bent line. The main difference between coaxial and planar
structures consists in the mutual inductance, whose sign is positive for coupled (and
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close enough) coaxial coils and negative for the planar coupled ones. The magnitude
is in general expected to be larger for coaxial coils, but clearly depends on the inter-
cell distance. For the purposes of power transfer, the sign of the mutual inductance
is irrelevant, proving that it is the same for any pair of coupled resonators.

4.1.1 Resonator Array Equivalent Circuit
The equivalent circuit of a one-dimensional resonator array feeding a load and pow-
ered by a half-bridge inverter is reported in Fig. 4.3. For simplicity, all the res-
onators are assumed to be equal in terms of self-inductance and lumped capacitance,
arranged symmetrically so that mutual inductance is the same for any couple of ad-
jacent resonators. Moreover, the mutual coupling between nonadjacent cells is much
lower than that between adjacent resonators, and thus it is neglected. In literature,
this assumption is commonly adopted when dealing with periodic resonant struc-
tures [64] and it is also known as “nearest-neighbour interaction”. The resonators
are then characterised by a self-inductance L and resistance R, while the mutual
inductance between adjacent coils is denoted by M . Each coil is series connected to
a lumped capacitance C so that they resonate at the frequency:

f0 =
1√
LC

. (4.1)

The resonators are labelled in increasing order from 1 to n, where the first is con-
nected to the power source and the nth to the load, as depicted in Fig. 4.3. Opera-
tions at the cell resonant frequency guarantee that the resonator currents are sinu-
soidal, and that the first harmonic approximation can hold. An associated equivalent
circuit of the resonator can be easily derived, while the power source and the load
can be modelled as discussed in Sec. 2.4. As a power source, any other voltage
source inverter can be used, provided that the correspondent Thévenin equivalent
voltage V̂s and impedance Ẑs are appropriately modified. According to Sec. 2.4, at
the frequency f0 and assuming δ = π, the equivalent voltage source defined in (2.73)
can be expressed as:

V̂s =
2Vdc
π

ej0 (4.2)

and
Ẑs =

8Ron

π2
ej

tdω0
2 (4.3)

where Ron is the resistance of the MOSFETs. The dead time td can be considered
negligible with respect to the period T0 = 1/f0 of the fundamental voltage compo-
nent, and for operations at f0 the inverter is assumed an ideal voltage source V̂s.
Being the resonator series compensated, the equivalent load is represented by the
resistance

Rload =
8

π2
Rbattery (4.4)
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Figure 4.3: Equivalent frequency-domain circuits of a resonator array.

where Rbattery is the resistance of the battery pack. However, also in this case,
different receiver terminations can be adopted and the load equivalent resistance
changes accordingly.

A mathematical model for generically arranged resonator arrays can be derived
writing the Kirchhoff voltage law equations for each array cell. Assuming operation
at the generic frequency f , the system of n KVL equations written in phasor form
results:

V̂1 = ẐÎ1 + jωMÎ2
0 = ẐÎ2 + jωMÎ1 + jωMÎ3

...
0 = ẐÎi−1 + jωMÎi−2 + jωMÎi
0 = ẐÎi + jωMÎi−1 + jωMÎi+1

...
0 = ẐÎn−1 + jωMÎn−2 + jωMÎn
V̂n = ẐÎn + jωMÎn−1

(4.5)

where Ẑ = R + jωL + 1/(jω) is the impedance of a resonator. This system of
equations can be written more compactly in matrix form as:

V̂ = ẐÎ (4.6)

where Î is the phasor current vector and V̂ = [V̂1 0 ... 0 V̂n]
T the phasor voltage

vector. Ẑi,ẐT
is the n × n impedance matrix of the resonator array and has the

form:

Ẑ =



Ẑ jωM 0 0 · · · 0

jωM Ẑ jωM 0 · · · 0

0
...

. . .
... · · ·

...
...

...
...

. . .
... 0

... · · · 0 jωM Ẑ jωM

0 · · · · · · 0 jωM Ẑ


(4.7)

which is a symmetric Toeplitz matrix, namely the terms of each descending diagonal
are constant and the matrix is symmetric. The “Toeplitx form” of this matrix is
due to the choice of identical and equally spaced resonators, while its symmetry
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is due to the reciprocity of the network. Moreover, only the terms on the three
central diagonals are different from zero, having neglected the coupling between
non-adjacent cells. In general, a Toeplitz matrix is easier to be inverted, since
it presents only 2n − 1 degrees of freedom, instead of n2, thereby simplifying the
solution of (4.6). These properties have been exploited to derive mathematical closed
expressions of the network parameters [113].

4.1.2 Two-port Representation
To evaluate the performance of the system in terms of efficiency and transmitted
power, it is possible to model the resonator array as a two-port network [114]. This
representation also allows the voltage gain and transadmittance parameters to be
derived, which are useful for defining the control strategy of the system when used
in practical applications. The array of resonators is represented with the associated
impedance matrix, but depending on the needs of the designer, also other config-
urations can be exploited [115]. As discussed in Sec. 2.2.3, general expressions of
power and efficiency can be derived from the two-port representation. Being Ẑi,ẐT

symmetric, the system (4.6 is reciprocal and can reduced to the form:[
V̂1
V̂n

]
=

[
Ẑ11 Ẑm

Ẑm Ẑ22

][
Î1
În

]
(4.8)

where the impedance matrix terms are found as:

Ẑ11 =
V̂1

Î1

∣∣∣∣
În=0

Ẑ22 =
V̂n

În

∣∣∣∣
Î1=0

Ẑm =
V̂1

În

∣∣∣∣
Î1=0

=
V̂n

Î1

∣∣∣∣
În=0

.

(4.9)

Then, rearranging (4.5) enforcing (4.9), the analytical expressions of the impedance
matrix parameters for an array of n resonators are obtained. They can be deduced
by removing the equations of all the resonators but the first and the last ones,
resulting in:

Ẑ11 = Ẑ+Ẑeq
n−1,0 (4.10)

Ẑ22 = Ẑ+Ẑeq
n−1,0 (4.11)

Ẑm = j3−n(ωM)n−1
i−1∏
k=1

1

Ẑ+Ẑeq
k,0

. (4.12)

where Ẑeq
n−1,0 is the equivalent impedance of an array with n−1 and short-circuit

load, while Ẑeq
k,0 is the equivalent impedance of an array of k resonators terminated
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in short-circuit. The equivalent impedance of an array of l resonators terminated
with a generic load Ẑend is defined according to [113] as:

Ẑeq

l,Ẑend

=
(ωM)2

Ẑ+
(ωM)2

...+
(ωM)2

Ẑ+
(ωM)2

Ẑ+Ẑend

. (4.13)

These expressions are valid for any array of the type depicted in Fig. 4.3, with any
number of resonators n, power source and load. Moreover, they can be extended
to the case of a generic array with different cell parameters and mutual inductance,
still assuming the nearest-neighbour approximation holds. Indeed, the equivalent
impedance can still be calculated according to (4.13), considering the proper value
of mutual inductance and resonator impedance. In case of identical ed equally spaced
cells, a closed expression for the recursive formula (4.13) is derived in [113] and is:

Ẑeq

l,Ẑend

=
f l(2(ωM)2−gẐend)+hl(fẐend−2(ωM)2)

f l(f+2Ẑend)−gl(g+2Ẑend)
(4.14)

where f = Ẑ−
√

Ẑ2+4(ωM)2 and g = Ẑ+
√

Ẑ2+4(ωM)2.

4.1.3 Model Validation
The analytical formulation of the two-port impedance matrix parameters has been
verified through numerical simulations. In particular, circuit simulations have been
carried out, that basically consist in solving the KVL equations enforcing (4.9). The
open-circuit condition of a port of the system (required for the calculation of the
parameters) is obtained connecting that port to an auxiliary impedance Ẑaux and
enforcing it has a value large enough to make the port current nearly null. Then, the
required voltage and current are obtained solving the system (4.6) that incorporates
Ẑaux. As an example, for the parameter Ẑ11, an auxiliary impedance Ẑaux = 109Ω

has been series connected the the nth resonator. Then, a fictitious voltage V̂1 = 1V

has been set and the current Î1 has been obtained from (4.6). The dual procedure
holds for the calculation of Ẑ22.
The mutual impedance Ẑm can be determined both terminating the first or the last
resonator with Ẑaux. Terminating the output port n, the voltage V̂n and the current
Î1 are needed. The port voltage is calculated as:

V̂n

∣∣∣
În=0

= jωMÎn−1 (4.15)

while the currents Î1 and În−1 are determined solving (4.6) (that involves Ẑaux).
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4.1.4 Results
The numerical simulations have been carried out considering the parameters of the
resonator array prototype used in the experimental setup. In particular, each res-
onator of the array is realised with a 6-turn square winding of 153 mm side length.
The stranded wire conductors have a section of 2.5 mm2, that results in an intrinsic
resistance R = 0.05Ω and a self-inductance L = 11.9µH. The mutual inductance be-
tween the adjacent resonators is M = −1.67µH. The lumped capacitors connected
to the coils present a capacitance of 1µF, making the system resonate at f0 = 45.1

kHz.
Simulations of arrays with a different number of resonators have been performed,

which resulted in very good agreement with the values calculated through the analyt-
ical expressions. The real and imaginary parts of the two-port impedance parameters
obtained with the two different approaches are shown in Fig. 4.4 for different num-
bers of resonators. In particular, a difference between the simulated and analytically
calculated values is found only at the tenth significant digit and therefore it cannot
be appreciated in the graphs. The Ẑ11 and Ẑ22 parameters are equal and present
only real values, and this can be addressed to the assumption of perfect resonance
operations. Indeed, the continued fraction (4.13) does not present complex terms
when Ẑ is real. However, the magnitude initially oscillates between very large and
small values, mirroring the case of ideal resonator array [113]. In particular, large
values occur for an odd number of array resonators, while low values for an even one.
This clearly suggests that important power reflections can occur when the array is
formed by an odd number of resonators. The mutual inductance Ẑm can have a
non-null real or imaginary part depending on the number of resonators n, but not
both. This has an impact on the output voltage phase angle, while it is irrelevant
to the power transmission. Moreover, both the real and imaginary components os-
cillate around zero and their amplitude decrease as n increases. However, for arrays
with an even number of resonators, the Ẑm is imaginary and its amplitude much
larger than the one found when n is odd, suggesting a better transmitter-receiver
coupling in arrays composed of an even number of resonators.

4.1.5 Power and Efficiency
To evaluate the performance of the system it is possible to derive the efficiency and
power transfer of a two-port network as described in Sec. 2.2.3. The efficiency of
the resonator array has been calculated as in (3.4), while the optimal load values
Rηmax

l that maximise the efficiency are found with (2.33). In particular, the values of
Rηmax

l evaluated for arrays with a different number of resonators have been plotted
in Fig. 4.5a. The values oscillate depending on the number of resonators, especially
for low n. As the number of cells increase, the trend converges to the value Rηmax

l =

0.48Ω, which can be considered the resistive load that maximise the efficiency for
the considered array parameters. The convergence of the curve shows that, even for
quite large numbers of cells, there is a unique optimal load value. This peculiarity
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Figure 4.4: Impedance matrix parameters for arrays with different numbers of res-
onators at the resonant frequency f0. The square markers refer to the formulas
(4.10)-(4.12) and the circle markers to the numerical solution of (4.6).
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Figure 4.5: Considering a different number of array resonators, (a) shows the optimal
resistance values for maximum efficiency, (b) the maximum efficiency achievable with
the considered resonator parameters and (c) the efficiency for different loads.
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Figure 4.6: Equivalent Thévenin (a) voltage source and (b) impedance for arrays as
a function of the number of cells.

can be attributed to the symmetry of the structure. In fact, if the resonators had
different parameters or were even only positioned non-symmetrically, this would not
be possible. For the considered arrays, the maximum efficiency (namely the efficiency
for optimum load) is shown in Fig. 4.5b. As expected, it shows a decreasing trend as
the number of resonators increases. The efficiency of arrays with different number of
cells is then plotted in Fig. 4.5c for different generic loads, including the optimal one
of 0.48Ω. Similar trends are observed for each considered load, which show how the
efficiency decreases as the number of resonators increases. The higher efficiency is
obtained for the optimal value of 0.48 Ω, as expected. For what concerns the power
transfer capability, this system has been characterised using the Thévenin equivalent
circuit depicted in Fig. 2.6b. In particular, to consistently evaluate the effect of the
relay coils, the voltage V̂th and impedance Ẑth of the equivalent real generator are
plotted in Figs. 4.6a and 4.6b, respectively, for arrays with a different number of
resonators. The Thévenin equivalent voltage corresponds to the no-load voltage of
the array (the voltage at the receiver port when it is in open-circuit). In particular,
it has been normalised with respect to the value of the ideal generator input voltage
V̂g. For arrays with few cells, the value of V̂th fluctuates. The curve generally shows
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Figure 4.7: Available power at the receiver port of the resonator array as a function
of the number of cells.

that the generator voltage is always attenuated when the array has an odd number
of resonators. When these are instead even, the voltage is amplified until n = 16,
to be then attenuated. This peculiarity suggests the existence of a limit number
of resonators for which the no-load input voltage is amplified that depends on the
cell parameters. The angle of V̂th is 0 for n odd and π/2 for n even, according to
the behaviour of Ẑm (see Fig. 4.4c). The impedance Ẑth has a similar trend, but is
mirrored, and is always real. In fact, in perfect resonance, the impedances Ẑ11 and
Ẑ22 are always real. According to the theorem of the maximum power transfer, the
maximum power on the load can be extracted when this is equal to the complex
conjugate of the impedance generator. Thus, the values of Ẑth also correspond to
the required loads for the maximum power transfer, being them real. The maximum
available power on the load is still varying depending on the number of resonators
and array parameters. It is depicted in Fig. 4.7 and presents a decreasing trend
with an increase in the relay coils. This can be addressed to the presence of the coils
resistance, which inevitably leads to power losses.

4.2 Resonator Arrays with a Receiver
IPT devices that use relay coils to improve performance find few practical applica-
tions, both real and industrial. This is because they are formed but many elements
that occupy a not negligible space. If in a real system there is the possibility of
inserting intermediate coils, why not directly feed the one closest to the receiving
coil? In the author’s knowledge, there is no evidence of systems of practical interest
with this structure, especially for power applications. However, resonator arrays can
be exploited as transmitters, offering the possibility to the receiver to collect power
efficiently in different points of space, resulting in a structure of the type depicted
in Fig. 4.8. Furthermore, the power transfer can also take place with the receiver
in motion and therefore operate as a dynamic IPT system. In general, both for
static and dynamic applications, this type of system is enjoying growing interest in
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Figure 4.8: Schematic representation of an IPT system with a resonator array and
a receiver over it.

the industrial and consumer electronics fields, as it requires a very limited number
of components. In fact, apart from the supply coil and the receiving coil, all the
circuits are passive and composed only of windings and capacitors. However, the
low number of controllable variables can lead to a very high sensitivity of the system
parameters to the load and coupling conditions, requiring specific and suitable con-
trol strategies. In this work, as it is in high-power IPT systems, the power source
is composed of an inverter, whereas the load is commonly a battery. The resulting
system is very similar to traditional LLC battery chargers, in which the DC/AC
stage feeds the DC/DC one through a transformer with the difference that, in this
case, the transformer stage is realised with an array of resonators and the receiver
coil [116, 117]. In modern LLC converters, the high-power rate required by the load
makes the soft-switching operations of the input inverter necessary [116, 118], as dis-
cussed in Sec. 2.4, and the design of power electronic components and the control
strategy require an adequate model of the system. For this reason, an equivalent
circuit model of the array of resonators with a receiver is derived, with the idea of
evaluating its performance. Different equivalent models can be defined and have
been proposed [119, 115, 56], even though they usually apply to simple network
topologies. The case of an array of resonators becomes complicated to be treated
analytically, especially when the receiver can be freely positioned over any resonator
of the array. However, similarly to the approach proposed in Sec. 4.1.2, a two-port
network representation is established starting from the definition of the impedance
matrix of the system, and the analytical expressions of the impedance matrix terms
also presented. The model has been validated both numerically and experimentally.

4.2.1 Circuit Model
The same resonator array presented in Sec. 4.1 is here considered. It is composed
of n cells and a further resonator is introduced that acts as a receiver. This receiver
coil is free to be placed over any cell of the array and then the mutual inductance
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Figure 4.9: Equivalent circuit of an IPT system with a resonator array and a receiver
over it.

Mr,i between the receiver and the ith facing cell is the same for each position,
being all the cells identical. The receiver coil is characterised by a resistance Rr

and self-inductance Lr. It resonates with a series lumped capacitor of capacitance
C at the resonant frequency f0 = 1/(2π

√
LrCr). All the circuits (including the

receiver one) resonate at the same frequency f0. A general equivalent load Ẑload

is still considered, which is assumed connected to the receiver circuit, as described
in Sec. 2.5. As a power source, the inverter considered in Sec. 2.4 and modelled
in Sec. 4.1.1 is adopted. A further degree of freedom can be obtained introducing
a termination impedance ẐT in the last cell of the array which can be adjusted to
maximise the transfer efficiency, as described in [49]. Indeed, the results presented
in Sec. 4.1.4, clearly highlight the strong dependency of the array efficiency and
power transfer on the number of resonators. In particular, depending on whether
n is even or odd, the parameters can considerably vary, especially for small n.
The termination impedance can then be used to deactivate the last resonator if
required. Moreover, to avoid further power consumption, ẐT is used as short-circuit
(SC) or open-circuit (OC), and it can be realised with a switching device whit
the proper safety circuit (i.e. freewheeling circuit). Different modulation strategies
have been proposed for the termination impedance [48], that allows similar operating
conditions of the array at any position of the receiver. Assuming the system operates
at the cell resonant frequency, the analysis is carried out considering the fundamental
components of currents and voltages, considered as phasors at the resonant angular
frequency ω0 = 2πf0. The resulting circuit model is depicted in Fig. 4.9. The system
of n+1 KVL equations that describes the behaviour of the resonator voltages and
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currents can be written as:
V̂1 = ẐÎ1+jωMÎ2
0 = ẐÎ2+jωMÎ1+jωMÎ3

...
0 = ẐÎi−1+jωMÎi−2+jωMÎi
0 = ẐÎi+jωMÎi−1+jωMÎi+1+jωMr,iÎr

...
0 = ẐÎn−1+jωMÎn−2+jωMÎn
0 = (Ẑ+ẐT )În+jωMÎn−1

V̂r = ẐrÎr+jωMi,rÎi

(4.16)

where the last equation refers to the receiver. Similarly to the 1D array case, this
system can be arranged in matrix form. It must be noticed that, depending on
the receiver position, the system of KVL equations changes, since the array cell
coupled with the receiver changes. Consequently, also the impedance matrix changes
accordingly. In general, it is possible to rewrite (4.6) as:

V̂ = Ẑi,ẐT
Î (4.17)

where Î is the phasor current vector and V̂ = [V̂10...0V̂n]
T the phasor voltage

vector. Ẑi,ẐT
is a (n+1)×(n+1) impedance matrix of the system when the receiver

is coupled with the generic ith resonator and is written as:

Ẑi,ẐT
=



Ẑ jωM 0 0 · · · 0

jωM Ẑ jωM 0 · · · 0

0
...

. . .
... · · · jωMi,r

...
...

...
. . .

...
...

... 0 · · · jωM Ẑ+ẐT 0

0 0 jωMr,i 0 · · · Ẑr


(4.18)

The last row and column appear due to the added receiver KVL equation, and their
non-zero terms change position as the receiver moves and couples to different array
resonators. In general, for each receiver position, a different system of equations
must be solved to determine the circuit variables. Moreover, Ẑi,ẐT

incorporates
also the termination impedance, which can be zero (or SC) or very large (OC) and
also affects the system solution. It must be noticed that an OC terminated array
basically corresponds to a similar array with one less resonator. The current and
voltage are in turn functions of both the receiver position and array termination,
thereby complicating the design of the control system with respect to traditional
isolated power converters. No closed or even recursive analytical expressions have
been found to generally describe them.

4.2.2 Two-port Representation
A 2x2 impedance matrix can be again adopted to obtain a compact representation
of the array of resonators. Differently from the case of the single array, the output
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Figure 4.10: Schematic representation of (a) an array of n resonators with a receiver
R over the ith cell, terminated with ẐT and (b) the correspondent compacted array
terminated with the equivalent impedance (4.21).

port is the receiver port, while the input port is the one of the first array coil, as
depicted in Fig. 4.8. The (n+1)×(n+1) impedance matrix is symmetric, meaning
that the system is reciprocal and a unique mutual term Ẑm is considered. The
two-port network is defined as:[

V̂1
V̂r

]
=

[
Ẑ11 Ẑm

Ẑm Ẑ22

][
Î1
Îr

]
(4.19)

where

Ẑ11 =
V̂1

Î1

∣∣∣∣
Îr=0

Ẑ22 =
V̂r

Îr

∣∣∣∣
Î1=0

Ẑm =
V̂1

Îr

∣∣∣∣
Î1=0

=
V̂r

Î1

∣∣∣∣
Îr=0

.

(4.20)

These terms are defined for a specific termination impedance and receiver position
and can be derived rearranging the system of KVL equations. To simplify the
calculation, the resonators that follow the one covered by the receiver - namely from
the (i+1)th to the nth one - can be substituted with their equivalent impedance
seen from the ith cell. The expression of the equivalent impedance is reported in
(4.13), where in this case m = n−i and Ẑend = ẐT . This choice allows passing
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from the original array (schematically represented in Fig. 4.10a) to a reduced one
(schematically represented in Fig. 4.10b) composed of the remaining i resonators,
terminated with the impedance

Ẑeq
T = Ẑeq

n−i,ẐT
, (4.21)

and the receiver coupled with the last cell. Being the receiver coupled with the
last cell only, the reduced array can be considered as a 1D array where the mutual
impedance between the last and second-last cells is Mr,i. Thus, the considerations
made in Sec. 4.1.1 still hold. The system can be then described by i+1 KVL
equations (instead of the original n+1), resulting in:

V̂1 = ẐÎ1+jωMÎ2
0 = ẐÎ2+jωMÎ1+jωMÎ3

...
0 = ẐÎi−1+jωMÎi−2+jωMÎi
0 = (Ẑ+Ẑeq

T )Îi+jωMÎi−1+jωMr,iÎr
V̂r = ẐrÎr+jωMi,rÎi

(4.22)

which can be further reduced by removing the equations of all the resonators but
the first one and the receiver to the two-port network equations system:

V̂1 = Ẑ11Î1+Ẑ1rÎr
V̂r = Ẑ22Îr+Ẑr1Î1.

(4.23)

After some mathematical manipulations, the analytical expressions of the impedance
matrix terms are found as:

Ẑ11 = Ẑ+Ẑeq

n−1,Ẑeq
T

(4.24)

Ẑ22 = Ẑr+
(ωMr,i)

2

Ẑ+Ẑeq
T +Ẑeq

i−2,0

(4.25)

Ẑm =
Mr,i

M

(
1

(jωM)i−2

i−1∏
k=1

Ẑeq

k,Ẑeq
T

)
. (4.26)

These formulas are valid for arrays of the type described in Sec. 4.1, that can have
any number of resonators, termination impedance values and the receiver aligned
with any array resonator. Moreover, an analytical and closed formulation of the Ẑ11

and Ẑ22 parameters can be found introducing the closed expressions of the array
input impedance presented in [113] in (4.24)and (4.25).

4.2.3 Model Validation
The analytical expressions (4.24)-(4.26) are validated with numerical simulations
based on the system circuit model, where the required currents and voltages are
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calculated with (4.17). As discussed in Sec. 4.1.3, an additional termination with
a very large value (108 Ω) is added in the port that must present a null current to
emulate the open-circuit condition. Then, the parameter Ẑ11 can be calculated as
in (4.20) introducing the auxiliary impedance Ẑs in the receiver port so that Î1 ≈ 0.
Similarly, Ẑ22 is calculated as in (4.20) enforcing Îr ≈ 0 through Ẑs connected to the
input port. The mutual impedance Ẑm is calculated at the receiver port, thereby
introducing Ẑs in the receiver. In particular, the receiver voltage V̂r is calculated as:

V̂r

∣∣∣∣
Îr=0

= jωMr,iÎi. (4.27)

4.2.4 Results
The simulations have been carried out considering the array of resonator described
in Sec. 4.1.4, in which the last resonator port (nth) has been short-circuited or
kept open. A further condition has been considered, that is the termination of the
array with the resistance Rηmax

l . This resistance value maximises the efficiency of
the array and it has been introduced in Sec. (2.2.3). Hereinafter, this condition is
referred as array optimal termination and the optimal ẐT is named ẐTopt. For this
array is results in 0.48Ω. The receiver coil is realised with 5-turns copper winding,
wound around a circular plastic core with a diameter of 9 cm. It presents resistance
Rr = 0.055Ω and a self-inductance Lr = 3.8µH, whereas the mutual inductance
between the receiver and the facing resonator of the array is 1.13µH. It is connected
to a lumped capacitance Cr of 3.3µF that makes the receiver resonate at the array
cells resonant frequency. It must be noticed that there are several parameters that
can vary and affect the system performance, that are the receiver load, receiver
position and array termination. For a meaningful discussion, the number of array
cells has been fixed to n = 25 and the cases of SC, OC and optimal array termination
have been considered. The simulations consider operations at the cell resonant
frequency f0. The two-port network parameters have been calculated and reported
in Figs. 4.11 for the SC termination, Fig. 4.12 for the OC termination, and 4.13
for the case of optimal termination, as a function of the receiver position and still
considered perfectly alignment of the receiver with the facing cell. The plots report
both the values obtained with the formulas (4.24)-(4.26) and the numerical solution
of (4.17). The points completely overlap, testifying a perfect agreement between
analytical and simulation results.

Unlike the case of a single array, the parameters Ẑ11 and Ẑ22 have different
behaviour. The trend of Ẑm is instead similar to the one of the previous case.
Moreover, it can be noticed that both the real and imaginary parts of Ẑ22 and Ẑm

are dramatically affected by the receiver position, while for Ẑ11 they are constant.

Impedance Ẑ11 For both terminations, the parameter Ẑ11 assumes a real value,
which is the same for any receiver position. This indicates that the receiver does
not interact with the array, as it can be seen from Figs. 4.11a, 4.12a and 4.13a. It
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Figure 4.11: Impedance matrix parameters as a function of the receiver position for
an array of 25 cells terminated in short-circuit. The square markers refer to the
formulas (4.10)-(4.12) and the cross markers to the numerical solution of (4.6).
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Figure 4.12: Impedance matrix parameters as a function of the receiver position
for an array of 25 cells terminated in open-circuit. The square markers refer to the
formulas (4.10)-(4.12) and the cross markers to the numerical solution of (4.6).
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Figure 4.13: Impedance matrix parameters as a function of the receiver er position
for an array of 25 cells terminated in the optimal load. The square markers refer to
the formulas (4.10)-(4.12) and the cross markers to the numerical solution of (4.6).
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can be explained considering its definition. Indeed, it basically corresponds to the
array input impedance in absence of the receiver, which presents a real value being
the system in resonance condition. That value is however affected by the number of
cells and array termination, and thus it differs in the two cases (with different ẐT ).
A detailed analysis of the input impedance is provided in [113].

Impedance Ẑ22 The impedance Ẑ22 is still real and oscillates according to the
receiver position. In particular, in case of SC and OC terminations it presents an
average value of 0.16 Ω, while it is 0.14 Ω in case of matched termination, shown in
Figs. 4.11b, 4.12b and 4.13b, respectively.

It can be noticed that, in case of SC and OC terminations, Ẑ22 oscillates with
decreasing amplitude until the receiver covers the cells in the first half of the array
(i < n/2), whereas the trend is inverted for i > n/2. This can be explained consid-
ering that, for an SC array, both Ẑeq

T and Ẑeq
i−2,0 oscillate according to [113]. This

results in the trends depicted in Figs. 4.11b and 4.12b. As the receiver approaches
the central array resonator, the Ẑeq

T and Ẑeq
i−2,0 tend to the same value with opposite

periodicity. The limit case occurs for i = (n±1)/2, where the two contributions
compensate each other. Differently, in case of a matched array (see Fig. 4.13b),
Ẑeq
T is always equal to the matching impedance and, assuming Mr,i constant, the

only varying term of (4.25) is Ẑeq
i−2,0, which behaves as the input impedance of a

short-circuited array (described in [113] and in Sec. 4.1.4).

Impedance Ẑm The term Ẑm presents a real and an imaginary part that both
oscillate around zero and whose amplitudes decrease as the receiver approaches the
last array resonators. It must be noticed that Ẑm presents real values when the
receiver is aligned with even-numbered resonators (regardless of n being even or
odd), which can be also negative. This parameter expresses the link between the
input and output ports of the network and, for magnetically coupled resonators, it
is usually associated to the overall impedance between the ports. The higher mutual
impedance values are found in case of OC termination, that basically corresponds
to the same array in SC but with one less resonator.

4.2.5 Transformer Equivalent Circuit
The array of resonators with a receiver can be described with the model of the real
transformer (depicted in Fig. 4.14), which is the most common model for the anal-
ysis and design of isolated power converters. By exploiting the parameters of the
two-port network that represents the array, it is possible to describe the system with
the typical parameters of classic transformers. In this way, the design of the power
inverter and energy conversion devices downstream of the receiver can be designed
according to the usually adopted techniques. Furthermore, the representation of the
array as a transformer allows for deducing further information about its operation
and performance. The model consists of three complex parameters, namely a trans-
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Ẑcc

Ẑm

Î1

+

−
V̂1

Îr

+

−
V̂r

τ̂

Figure 4.14: Equivalent frequency-domain circuits of a resonator array.

verse impedance ẐM , a longitudinal impedance Ẑsc, and an ideal transformer with
transformer ratio τ̂ . In particular, ẐM is also called “magnetising impedance” and
indicates the reactive power necessary for the transfer of active power, while Ẑsc

is called “short-circuit impedance”, since it can be determined through the short-
circuit test of the transformer (which consists in estimating the parameter when the
output port is short-circuited and feeding the device at the rated current). Thus,
the associated impedance matrix can be written as:[

V̂1
V̂r

]
=

[
ẐM

ẐM

τ̂
ẐM

τ̂
Ẑsc+ẐM

τ̂2

][
Î1
Îr

]
. (4.28)

Equating the terms of the impedance matrices of the two models (4.8) and (4.28),
the parameters of the real transformer two-port network result:

τ̂ = Ẑ11

Ẑm

ẐM = Ẑ11

Ẑsc = τ̂2Ẑ22−Ẑ11.

(4.29)

They are plotted as a function of the receiver position when the array is terminated
in SC, OC and ẐTopt

in Figs. 4.15 and 4.16 and 4.17. The parameters show a strong
dependence on the position of the receiver, with different characteristics according to
the termination. This behaviour can be easily explained by observing the definition
of the parameter itself, which directly derives from the terms of the impedance
matrix that represents the two-port. Specifically, the transformer ratio τ̂ is complex,
and its amplitude oscillates as the position of the receiver varies, with the average
value that increases as the receiver moves away from the source. Terminating the
array with ẐTopt

, these oscillations are dramatically smoothed, and |τ̂ | still increase
with the receiver position i. For all the three considered terminations, the angle
of the transformer ratio presents a periodic behaviour. It basically indicates the
variation of the receiver voltage angle in relation to the number of resonators of
the array placed in between the receiver and the power source. The magnetising
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Figure 4.15: Real transformer parameters as a function of the receiver for an SC
terminated array.

reactance Ẑm exactly corresponds to Ẑ11, which is purely real and constant for
any receiver position. This parameter is directly related to the coupling between
the input and output coils, which assumes high values in traditional transformers
and very low values in IPT systems (which are in fact weakly coupled). Thus, in
traditional transformers, ẐM is negligible during load operation, as the current it
drains is much smaller than that which circulates on Ẑsc. Unfortunately, however, in
resonator arrays and in general in all weakly coupled systems, it cannot be neglected,
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Figure 4.16: Real transformer parameters as a function of the receiver for a OC
terminated array.
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Figure 4.17: Real transformer parameters as a function of the receiver for an opti-
mally terminated array.
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Figure 4.18: Experimental Setup.

since it presents very low values that lead to very high magnetising currents, as can
be deduced from Figs. 4.15, 4.16 and 4.17. The SC impedance Ẑcc is real for
any receiver position and array termination, and oscillates between negative and
positive values for all the terminations considered. In particular, for SC and ẐTopt

terminations, the minimum values are found when the receiver is aligned with the
odd cells of the array, while in the OC case when it is aligned with even cells. It
is important to note that the behaviour of Ẑsc in the SC and OC case is exactly
mirrored.

4.3 Experimental Validation
The analytical and numerical procedures for the extraction of the two-port impedance
matrix parameters have been experimentally validated. The experimental setup,
that comprises a resonator array with a receiver, an oscilloscope with the proper
probes and the power source is depicted in Fig. 4.18. The impedance parameters
have been estimated according to (4.20) measuring the currents and voltages at the
system input and output ports. The measurements have been performed by feeding
the array with a sinusoidal voltage at the resonant frequency of the cells, supplied
by a Hameg signal generator and amplified by an analog amplifier. For the current
measurements, a Tektronix TCP305A probe amplified by a Tektronix “TCPA 300"
has been used, while an isolated Pico probe “TA057" with a bandwidth of 25 MHz
has been chosen for the voltage measurements. Both the probes have been connected
to a Rohde&Schwarz RTO 1004 oscilloscope with a sampling capability of 10 GSa/s
and bandwidth of 600 MHz. Figs. 4.19a and 4.19b show the current (orange) and
voltage (yellow) waveforms recorded for the estimation of Ẑm when the receiver is
aligned with the 3rd and 4th array cell, respectively. In particular, from Fig. 4.19a
it can be seen that the input current lags the output voltage by π

2 , whereas in Fig.
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a)

b)

Figure 4.19: Voltage (in yellow) and current (in orange) waveforms at the receiver
port when the receiver is coupled to (a) the 3rd and (b) the 4th array cell.

4.19a the two waveforms are in phase, as predicted in Sec. 4.2.4.
The results of the measurements are compared with the analytical and numerical
predictions for the SC and ẐTopt

termination in Figs. 4.20 and 4.21, respectively, as a
function of the receiver position. The graphs show a perfect agreement between the
analytical and experimentally estimated values. The most significant deviation is
found for Ẑ22, with both terminations considered. This difference can be attributed
to the unwanted coupling between the receiver and the nearby resonators of the
array. In general, the dominant coupling is the one between the receiver and the
cell below, and these results prove that the error introduced by neglecting the other
receiver couplings is acceptable. The model faithfully describes the operation of the
system. It can be observed that the parameters Ẑ11 and Ẑm have been estimated
feeding the first resonator of the array with the receiver port in OC, enforcing a
null receiver current. Thus, for both measurements, the receiver does not interact
with the array. Instead, the current and voltage considered for the estimation of Ẑrr

have been directly measured at the receiver port, which slightly couples even with
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array cells adjacent to the one below. This effect is more evident when the receiver
is above even numbered resonators, since the equivalent impedance of the system
seen by the receiver port presents higher values and the circulating current lower
magnitudes.

a)

b)

c)

Figure 4.20: Two-port impedance parameters as a function of the receiver position
for an array of 6 resonators at the resonant frequency of 45.1kHz in case of SC
termination. The circle and cross markers refer to the formulas (4.24)-(4.26) and
experimental results, respectively.
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a)

b)

c)

Figure 4.21: Two-port impedance parameters as a function of the receiver position
for an array of 6 resonators at the resonant frequency of 45.1kHz with the array
terminated in ẐTopt

. The circle and cross markers refer to the formulas (4.24)-(4.26)
and experimental results, respectively.
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Figure 4.22: (a) Resistive load values that allow maximum efficiency and (b) max-
imum achievable efficiency as a function of the receiver position, for an array of 25
cells in different termination conditions.

4.3.1 Power and Efficiency
To complete the characterisation of the system, the performance in terms of efficiency
and transmitted power were evaluated. Initially, the load resistance that allows the
maximum efficiency was calculated according to (2.33) and reported in Fig. 4.22a as
a function of the position of the receiver and for the different termination conditions,
i.e. SC, OC and ẐTopt

. the trends differ according to the termination of the array. In
the case of SC or OC terminations, the values oscillate with mirrored trends, while
their mean values correspond to the ones obtained with ẐTopt

termination. For this
latter case, the optimum load is approximately the same for each position. SC
termination presents the maximum value of Rηmax

l when the receiver is aligned with
odd-numbered resonators, while the minima occur when i is even. OC termination
leads to a reversed characteristic. It is also interesting to observe that the maximum
efficiency decreases when the resonator moves away from the source and that, in the
case of SC and OC terminations, it does so by oscillating around the trend obtained
with ẐTopt

termination. When considering generic loads, the efficiency gradually
decreases as the receiver moves away from the source, as it can be expected. The
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efficiency trends are plotted as a function of the receiver position and for different
loads in Figs. 4.23a, 4.23b and 4.23c when the array is terminated in SC, OC
and ẐTopt

. A load value RlAV R
has been introduced. It basically corresponds to the

average value of Rηmax

l and is 0.15Ω. It was introduced as there is no single optimum
load, and an average of the load values that maximise efficiency was chosen as a
reference. The choice is justified by the fact that, being the standard deviation of
the optimal load values quite small, loading the receiver with RlAV R

we can consider
the maximised efficiency. Indeed, the curves show how the average optimum load
actually leads to the highest efficiency and that this decreases dramatically when
the load differs from that value. Furthermore, the terminations in SC and OC also
lead in this case to fluctuating trends in a mirrored manner. In general, even for
generic loads, the system presents maximum efficiency if it is terminated in:

• SC if i is odd

• OC if i is even

while terminating in ẐTopt
clearly introduces further losses. Thus, despite the more

smoothed behaviour, it is not convenient to insert further resistance in the circuit, to
limit energy losses. Obviously, if the array is formed by an odd number of resonators,
the oscillation of the efficiency curve is reversed, and the termination modulation
strategy must be suitably modified. This last consideration leads to the definition of
a control strategy that allows maximum efficiency alternating SC termination with
OC with an appropriate switching circuit. This technique has been discussed in
[49, 48].

It is then possible to calculate the parameters of the Thévenin equivalent circuit
of the system at the receiver port, whose impedance indicates the optimum load
value to obtain the maximum power transfer. It is represented as a function of
the position of the receiver in Fig. 4.24 considering the 3 different terminations.
The peculiarity of the trend lies in the inversion of the oscillating trend when the
receiver is over the second half of the array. In fact, in the case of SC and ẐTopt

termination, the equivalent impedance has higher values when the receiver is aligned
with odd cells and vice versa, as it can be seen in Fig. 4.24a. In the case of OC
termination, the impedance has the same trend as the other two up to i < n/2, and
then reverses. This exactly reflects the behaviour of the Ẑ22, which dominates in the
calculation of Ẑth. It is now important to observe how the maximum and minimum
values of the power as a function of the position of the receiver also depend on the
output load (see Fig. 4.24b), unlike the efficiency, for which the above considerations
are valid for any load. Let ẐthAV R

be the average load value among those that
maximise power. Plotting the power as a function of the receiver position for the
three different termination conditions, it is possible to see how the behaviour changes
as the load changes. It is shown in Figs. 4.25a, 4.25b and 4.25c as a function of
the receiver position and for different terminations in case Rl < Rl, Rl = ẐthAV R

and Rl > ẐthAV R
, respectively. The traced curves clearly show that, depending

on whether the load is greater or smaller than the average one, the termination
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Figure 4.23: System efficiency as a function of the receiver position and for different
loads when the array is terminated in (a) SC, (b) OC and (c) ẐTopt

.
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Figure 4.24: (a) Thévenin equivalent impedance and (b) maximum available power
at the receiver port.

condition that allows the maximum power transfer for the considered load changes.
This behaviour has a huge impact on the control strategy, which should somehow
consider possible load variations during operations. The considerations made so far,
which derive from an in-depth circuit analysis of the system, outline the guidelines
for the design of both the system and control strategy. Similarly to the technique
proposed in [49] for maximising the efficiency, it is possible to switch between SC
or OC terminations of the array to maximise the transmitted power based on the
load and position of the receiver. Furthermore, it must be considered that, in the
case of loads lower than the average optimal one, the link between the position and
the appropriate modulation vary according to whether the receiver is on the first
or second half of the array, as can be deduced from the graphic relation of power.
Overall, it can be concluded that, for an array with an odd number of resonators, the
control strategy for maximum efficiency depends on the load. In particular, the case
of Rl = ẐthAV R

can be associated to the case of a load larger that the average one,
but similar results are obtained with the opposite choice. However, it can be noted
that, for i < n/2, the power transmitted in the case of OC or SC is very similar.
This behaviour reflects the one of the available power (see. Fig. 4.24b), as well as
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Figure 4.25: Power transferred to a load (a) Rl < ẐthAV R
(b) Rl = ẐthAV R

and (c)
Rl > ẐthAV R

, as a function of the receiver position and for different terminations.

the equivalent impedance Ẑth and it is strongly related to the Ẑ22 parameter. This
latter is in turn affected by the receiver geometry and parameters, as well as by the
coupling with the array resonators. It is therefore possible to obtain different (albeit
similar) behaviour of the parameters by properly designing the system. However,
the transmitted power generally decreases with an increasing number of resonators,
even if it is possible to maximise it obtaining considerable results. Overall, the
optimal control is summarised in the following paragraphs.
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Load Rl < ẐthAV R
The system transferred power is maximum if the array is

terminated in:

• i ≤ n/2

– OC if i is odd

– SC if i is even

• i ≥ n/2

– SC if i is odd

– OC if i is even

Load Rl > ẐthAV R
The system transferred power is maximum if the array is

terminated in:

• ∀i

– SC if i is odd

– OC if i is even

At last, it must be noticed that if the array is formed by an odd number of resonators,
the SC and OC termination conditions are reversed. Overall, it can be seen that
the power can actually be maximised, but the power available to the load still has
some oscillations based on the termination adopted. This is due to the oscillations
of the available power Pth, whose trend is once again a consequence of the peculiar
behaviour of the two-port network parameters. Thus, even with the optimal load
for maximum power, the transferred power would oscillate. Thus, even with a load
Rl = Ẑth the transferred power would oscillate depending on the receiver position.

4.4 Doubly-Fed Resonator Array for Maximum
Efficiency and Power Transfer

From the analysis of the system performance conducted so far, it is possible to see
that the efficiency and the output power can be maximised. However, from the
graphs of Fig. 4.25 it can be clearly seen that, regardless of the type of termination,
when the receiver is coupled to even-numbered cells the transmitted power is much
lower than in the case where it is coupled with the odd-numbered ones. Thus, while
the real-time change of the termination from SC and OC can allow the efficiency
to be maximised, the power transfer presents maximum and minimum values that
considerably vary. In high-power applications, this can be the major limitation, as
it is crucial to extract the maximum power possible from the source, which is then
efficiently transferred to the load. Furthermore, it is not taken for granted that loads
can operate discontinuously.
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Still ensuring maximum efficiency, the power transmitted to the load can be
increased ensuring that the receiver is always aligned with even-numbered cells. This
is possible by introducing an additional power driver in the second cell of the array
as illustrated in Fig. 4.26, which powers the system when the receiver is coupled to
odd cells. Deactivating the first cell i would become even. To keep the efficiency
high, it is advisable to carry out the modulation between SC and OC again. This
has a key effect on the reflected impedance of the array segment following the ith cell
made of n−i resonators. Considering this segment terminated in SC, its equivalent
impedance seen by cell ith assumes low values (ideally zero) if n−i is even and high
values (ideally infinite) if n−i is odd. To improve power transmission, its reflected
impedance to the resonator ith should be as low as possible and, therefore, it is
desired that the line be terminated in SC if n−i is even or OC if n−i is odd (this
modulation allows the maximisation of the power). It follows that to maximise the
power it is necessary to have i odd and n−i even and terminated in SC. Therefore,
the modulation of the source and termination must be synchronised. The proposed
control strategy is:

• if i is odd

– Power V̂s1

∗ SC termination if n is odd
∗ OC termination if n is even

• if i is even

– Power V̂s2

∗ OC termination if n is odd
∗ SC termination if n is even

This control strategy was applied to the array of 25 resonators described in Sec.
5.3.4. The transmitted power as a function of the position of the receiver is plotted
in Fig. 4.27 for three different load conditions. The graph shows that the power on
the load is now approximately constant as the position of the receiver varies, and
above all close to the maximum obtainable values set by the system parameters.
As a final note, it is important to discuss the feasibility of such a power driver. In
fact, the power source has been schematised as real independent voltage sources,
which can however correspond to a single inverter with a suitable topology. The
driver requires to be able to power the first cell by short-circuiting the second and
to power the second by leaving the first in an open circuit (therefore deactivated).

4.4.1 Design Considerations
To preserve the simplicity of these devices, it is reasonable to think of using a sin-
gle converter with two additional switches to open and close the first and second
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Figure 4.26: Doubly-fed array with fixed termination.

cells, respectively. However, direct connections of switches in series to inductors (in
some applications even power) lead to overvoltages that can damage components.
Therefore, if only one power source is used, it is necessary to consider free-wheeling
paths for the current of the coils by introducing suitable diodes. In this thesis, the
control circuit is not discussed as the goal is to show the feasibility of a resonator
array that allows for the maximisation of the transmitted power and efficiency. It is
important to notice that, for consistency, the whole discussion was done considering
the measured parameters of the resonator array built in the laboratory. However,
the system is not optimised for power transfer. For the system to transfer consistent
power (at least some kWs), the coils should be redesigned and ferromagnetic cores
incorporated. This would allow the self- and mutual inductance coefficients to be
dramatically increased, with a consequent increase in the efficiency and power trans-
fer. Furthermore, as shown in Chapter 3, the dimensioning of the system must be
carried out based on the load to be powered. In fact, the results of Sec. 4.3.1 show
how it is possible to define an optimal load value that allows the transmitted power
to be maximised after setting the system parameters. For arrays with a receiver, a
design procedure based on analytical formulas is almost impossible given the com-
plexity of the model. In any case, by calculating the system parameters through the
analytical expressions proposed, it is possible to implement an iterative calculation
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, as a function of the receiver position and for different terminations for
a doubly-fed array controlled to maximise efficiency and power transfer.

procedure that allows the optimisation of the system parameters on the basis of the
load requirements.

4.5 Conclusions
In this chapter, a study of the performance of arrays of resonators employed for
IPT has been carried out. In particular, the two-port model described through the
impedance matrix has been adopted to represent the system, simplifying the analysis
and allowing the comparison of this kind of apparatuses with traditional transform-
ers or IPT devices. In particular, original analytical expressions of the two-port
network parameters have been proposed and numerically validated, both for simple
arrays and for resonator arrays with a receiver. For this second case, experimental
validations have been performed on a working prototype. The experimental results
are in perfect agreement with the predictions obtained through the analytical for-
mulas and highlighted a strong dependence of the system parameters on the position
of the receiver. The efficiency and transmitted power have been studied for both ar-
ray configurations, also considering various load conditions. Furthermore, the load
values that allow the maximisation of efficiency or transmitted power have been
presented and discussed. Overall, this study highlighted that resonator arrays are a
very cheap and structurally simple alternative to traditional IPT systems, allowing
them to extend the power transfer distance. Unfortunately, however, for a fixed
array structure, system parameters vary drastically based on the load and location
of the receiver, making system control very complicated. The attention was focused
on arrays with a receiver, as they are solutions of real practical interest, especially
for industrial applications. An optimal control strategy that allows both the trans-
mitted power and the efficiency to be maximised has been proposed. It should be
noted that, in the literature, control strategies for this kind of devices have been
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presented only for maximising the efficiency, which however cannot guarantee the
maximisation of the transmitted power. With this technique, combined with an
optimised design of the system (maximisation of self- and mutual inductances of the
coils) it is possible to obtain IPT apparatuses with performances comparable to the
traditional two-coils systems, with the crucial advantage of transmitting the power
even with the receiver placed far from the source coil.



Chapter 5

Distribution of Currents in
Resonator Arrays:
Magneto-inductive waves
and Standing Wave Pattern

Resonator arrays are devices composed of coupled resonant circuits and are mostly
used as devices for IPT. Their behaviour in terms of efficiency and transmitted
power has been thoroughly discussed in the previous chapter, with also the defini-
tion of a control strategy aimed at maximising the efficiency and the transmitted
power. In particular, a representation of these systems as two-port networks has
been proposed, also providing analytical expressions for the terms of the impedance
matrix. This type of representation has allowed a consistent comparison between
traditional IPT devices and those using resonator arrays with a receiver, useful for
evaluating their behaviour when connected to other system components. However,
this model includes only four system variables, namely the current and voltage of the
input and output ports. The currents and voltages of the intermediate resonators
are not explicit and therefore the two-port model does not allow their analysis. In
literature, the presence of power reflections has been mentioned to explain the fail-
ure to transfer the whole power to the load [64, 66, 47, 69]. In fact, as shown in
Chapter 4 and known from the basics of circuit theory, the power transferred to a
load strongly depends on the value of the load itself. In resonator arrays, especially
when they are employed to feed a receiver, the optimisation of the load is almost
impossible, due to the great dependence of the parameters on the position of the
receiver [47]. This leads to an important amount of reflected power (i.e. that is
supplied by the source but not absorbed by the load), which is dissipated by the
resonators. The result can be severe overloads of the cell windings, with consequent
thermal stress. Furthermore, the dissipated power dramatically decreases the effi-
ciency. This implies that the resonators must be dimensioned to withstand even
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very intense thermal and electrical stresses with a low power transferred to the load.
An optimised project requires a thorough and complete knowledge of the behaviour
of the system, also able to foresee possible critical aspects that can lead to a mal-
function or breakdown of the system. In this framework, an in-depth study of the
resonator currents is performed considering different operating conditions. It is im-
portant to notice that, since the array operates in resonance, the resonator currents
are limited by the resistance of the wires only, which should be kept very small to
limit losses. The analysis is performed with both the circuit analysis and the theory
of magneto-inductive waves [64], which is based on the classical transmission line
(TL) theory. The results have also been experimentally validated with a prototype
of resonator array.

5.1 Magneto-Inductive (MI) Waves
Magneto-inductive waves resulted as a by-product of the research on metamateri-
als [64]. A possible definition metamaterial is provided in [54], that defines these
objects as assemblies of resonant magnetic and electric circuits that behave as a
continuous medium with positive and/or negative dielectric and magnetic proper-
ties. In particular, magnetic metamaterials are considered, that basically consist of
periodic structures of magnetically coupled resonant circuits, mostly made of coils
(wound or printed on PCBs) that all resonate at the same frequency thanks to their
self-capacitance or a properly connected lumped capacitor. Each resonator can be
also referred to “unit cell” or “meta-atom”, while the resulting structure is commonly
named “lattice”, recalling the concept of molecular structure of traditional natural
materials. Metamaterials can consist of one-dimensional, two-dimensional or even
three-dimensional structures, whose applications range from optical lenses (also with
the definition of an invisibility cloak) [51, 53] up to power and data transmission
[120, 121, 122]. When considering one-dimensional lattices, it is straightforward to
understand the analogy between resonator arrays and metamaterials, which are in
fact two different ways of considering the same devices.

In this frame, a new kind of wave has been defined, called magneto-inductive wave
by Shamonina et al. [64]. The nature and mechanism of this phenomenon can be
understood considering the structure of these metamaterials. In general, the currents
and voltages of the resonators spread in the lattice thanks to the magnetic coupling
they experience. In fact, by energising a coil with a power source, a 90 degrees-
displaced voltage (and a corresponding current) is induced in the coupled resonators,
which in turn induces a voltage (and thus a current) in the other coupled cells. This
behaviour mirrors the one of a wave that propagates in the lattice thanks to the
cells mutual coupling and, in the case of magnetic metamaterials, it corresponds to
a current wave. This wave has been introduced in [67]. More rigorously, the waves
can be described for 1D metamaterials resorting to the circuit model also used in
Chapter 4 and reported in Fig. 5.1. Indeed, two coupled resonant circuits can be seen
as a two-port, where the relation between the phasors of input and output current
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Figure 5.1: Equivalent frequency domain circuits of a resonator array.

and voltage is defined by the electromagnetic properties of the physical system. In
particular, the two-port networks that support waves are defined in terms of chain
matrices T̂, also named ABCD matrices [123]. Exploiting this representation of
magnetically coupled coils and assuming the nearest-neighbour approximation, the
n-cells array can be modelled as a cascade of n−1 two-ports (shown in Fig. 5.2),
that phase-shift and attenuate their input current and voltage. For two adjacent
resonators i and i+1 the voltages and currents at the input and output ports of the
two-port network are related as:[

V̂i
Îi

]
= T̂i,i+1

[
V̂i+1

Îi+1

]
(5.1)

where

T̂i,i+1 =

[
Âi,i+1 B̂i,i+1

Ĉi,i+1 D̂i,i+1.

]
(5.2)

The chain matrix terms can be found from the impedance matrix representation
of series resonant coupled coils discussed in Sec. 2.3.1 as described in [123, 124],
resulting in:

Âi,i+1 = − Ẑi

ẐMi,i+1

B̂i,i+1 = ẐMi,i+1
− ẐiẐi+1

ẐMi,i+1

Ĉi,i+1 = − 1
ẐMi,i+1

D̂i,i+1 = − Ẑi+1

ẐMi,i+1

.

(5.3)

where Ẑi and Ẑi+1 are impedances of the coils and ẐMi,i+1
the mutual impedance as-

sociated to their magnetic coupling. In arrays with identical resonators of impedance
Ẑ, these terms reduces to Ẑi = Ẑi+1 = Ẑ/2 and Ẑ1 = Ẑn = Ẑ, while the mutual
impedance ẐMi,i+1

= jωM . Thus, the array can be described by three different
T̂i,i+1 matrices only. Hereinafter, the transmission matrices associated with the
two-port networks that involve the first and last array resonators are referred to
T̂1,2 and T̂n−1,n, respectively, the one that represents the coupling between two ad-
jacent array resonators (i.e. the generic ith and (i+1)th) is simply named as T̂MI
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Ẑs

+

−
V̂1−

+V̂s T̂1,2
... T̂ ... T̂n−1,n ẐT
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and results:

T̂MI =

 −
Ẑ

2jωM
jωM

(
1+

Ẑ2

4(ωM)2

)
− 1

jωM
− Ẑ

2jωM

 (5.4)

This representation suggests an analogy between TL and resonator arrays. In-
deed, the chain matrix is typically used to model transmission lines as it allows the
representation of the entire line with a single chain matrix obtained as the prod-
uct of the chain matrices of the individual cascaded TL sections. For a generic
transmission line segment of length d, the chain matrix can be also expressed as
[125]:

T̂MI−TL =

[
cosh(γ̂d) Ẑ0sinh(γ̂d)
1
Ẑ0
sinh(γ̂d) cosh(γ̂d)

]
. (5.5)

where Ẑ0 is the characteristic impedance of the TL segment, d its length and γ̂ =

α+jβ is the propagation constant, with α the attenuation constant and β the phase
constant. The analogy between TL and resonator arrays is formally established
enforcing T̂MI = T̂MI−TL and thus, equating (5.4) and (5.5) the characteristic
impedance and propagation constant of the considered line segment can be found
as:

Ẑ0 =

√
(ωM)2+

Ẑ2

4
(5.6)

which becomes Ẑ0 ≈ ω0M for a low-loss array operating in resonance, being Zi =

Zi+1 = R2/4 ≈ 0, and

γ̂ =
1

d
cosh−1

(
− Ẑ

2jωM

)
. (5.7)

The term d is the physical length of the unit, which was introduced to consider the
spatial dimension of the system and, in this case, corresponds to the side-length of
each resonator forming the array. It is important to note that, while the voltages V̂1
and V̂n correspond to the input and output voltages of the array, the other generic
port voltages cannot be identified in the real circuit (and therefore in its represen-
tation in Fig. 5.2). Instead, the currents correspond exactly to those circulating
in the coils with Îi and Î1 the ith and first resonator phasor currents, respectively.
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For this reason, the study focuses on current waves only. For an infinitely long or
matched 1D metamaterial, the current wave is called magneto-inductive wave and
is then defined as:

Îi = Î1e
−γ̂(i−1)d (5.8)

where Îi is the ith resonator phasor current and Î1 the first resonator phasor current,
assumed as the source one. These relations state that, for the same spatial interval
d, the voltages and currents change by the same amount, which is in this case e−γ̂d.
This behaviour corresponds to that of a wave that propagates and attenuates in the
direction of the space defined by the TL line, which is in this case also referred to
as MI waveguide. The attenuation constant per cell of the MI wave defined in (5.7)
can be expressed as [47]:

αd = sinh−1

(
1

kQ

)
(5.9)

where k = 2M/L is the coupling coefficient between adjacent cells and Q = ω0L/R

the quality factor of the single cell, being ω0 = 2πf0 the resonant angular frequency.
The current wave attenuation is due to the resistance R of each cell and becomes
stronger as the coupling between adjacent cells weakens. The propagation of MI
waves is governed by the dispersion equation which in case of low losses gives the
following simple relationship [47, 64]:

cos(βd) =

(
ω2
0−ω2

kω2

)
(5.10)

from which the limits in frequency of the propagation band can be found enforcing
|cos(βd)| = 1. For operations at ω0, the attenuation is minimum and the phase shift
per cell is βd ≈ π/2. The wavelength of MI waves is λMIW = 4d, since the wave
experiences a phase shift of β each space interval d. The analogy with TLs also
suggests the possibility of matching the MI waveguide to avoid MI-standing waves.
This condition is achieved if the array is terminated in a lumped impedance equal
to the characteristic one of the MI waveguide, defined as [64]:

Ẑ0 = jωMe−γ̂d. (5.11)

For a low-loss MI waveguide, Ẑ0 simplifies to Ẑ0 ≈ ω0M for f = f0, as already
introduced in (5.6) and Sec. 4.1.5. In resonance and matching conditions, the
currents in a low-loss MI waveguide (i.e. R ≪ ω0M) have the same magnitude
and the power transferred to the terminal resonator is maximum [69, 46]. Similar
considerations can be extended to the case of 2D and 3D lattices, which however
are not discussed in this work.

5.2 Standing Waves and Current Peaks
The analogy between resonator arrays and TLs, although not essential to describe
their operation, is able to provide useful information regarding the operation of these
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devices. The description of the current in the resonators as a propagating wave al-
lowed a simple definition of the termination that allows the maximisation of both
the efficiency and power transmitted as a matching condition. This consideration
also leads to conclude that, if the load is different from that of matching Ẑ0, re-
flections of the power at the output port of the MI waveguide occur, which in turn
lead to reflections of the MI wave. In mismatching conditions, therefore, standing
current waves arise, with very high current peaks, increasing losses and resonator
thermal stress. This phenomenon can be studied through the theory of MI waves,
that requires a comprehensive and precise modelling of the circuit and connected
devices since the reflections of the waves strongly depend on the boundary condi-
tions of the line, as is known from the TL theory. Resonator arrays are usually fed
by switching power converters, while the load is typically a battery charging system,
whose modelling has been already discussed in Sec. 2.4 and 2.5, respectively. Thus,
at the resonance frequency of the resonators, the power source can be modelled as
a voltage source with a series impedance and the load as a resistance. For the sake
of generality, the termination impedance ẐT has been considered as an array load.
The standing wave pattern in a TL can be determined by studying the propagation
and reflections experienced at the two terminals. The first reflection that the cur-
rent wave undergoes is due to the mismatching of the termination impedance ẐT ,
which usually differs from the characteristic impedance Ẑ0 which can be quantified
through the termination reflection coefficient ρ̂T defined as:

ρ̂T =
ẐT−Ẑ0

ẐT+Ẑ0

. (5.12)

Similarly, also the backward wave can experience reflections at the source terminals
and thus the source reflection coefficient ρ̂s is introduced as:

ρ̂s =
Ẑs−Ẑ0

Ẑs+Ẑ0

. (5.13)

where Ẑs is the source internal impedance.
When the ends of the line are connected to power converters, it is difficult to

control the terminations, as they strongly depend on the operating conditions as
well as on the circuitry. Usually, as discussed in Sec. 2.4, voltage source inverters
present a nearly null internal impedance while the load is modelled as a resistance
that depends on the output voltage and transferred power, as introduced in Sec.
2.5. Moreover, there are some control strategies of the converters downstream of the
receiver which allow the desired input impedance to be obtained. They are solutions
developed to achieve maximum power transfer and allow a significant improvement
of the system performance. However, as they are not very common in high-power
applications, especially in the industrial field, they are not considered. However, the
analysis is independent of the type of converter connected to the receiver.

The standing wave pattern is the result of the multiple reflections occurring at
the input and termination sides of the line, whose superposition leads to the actual
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distribution of currents. The final mathematical expression is given in [124, 123]
for waves in traditional TLs and it can be extended to the case of MI waveguides.
After some mathematical manipulation, the current in the generic ith resonator of
the array can be defined as:

Îi =
V̂s

Ẑs+Ẑ0

e−γ̂(i−1)d−ρ̂T e−2γ̂(n−1)deγ̂(i−1)d

1−ρ̂S ρ̂T e−2γ̂(n−1)d
. (5.14)

This current distribution is the result of the mismatching of both sides of the line
and corresponds to a standing wave pattern for MI wave, which exhibits maxima and
minima with a periodicity that depends on the wavelength of the individual wave.
Depending on the nature of the type of termination, the resulting reflected wave
interferes differently with the incident one, thus leading to different configurations
of standing wave patterns. Standing wave patterns also lead to power reflections,
with a consequent dramatic decrease of the power transfer capability and efficiency
[47], together with important stress of the circuit components.

According to [124], the shape of a standing wave pattern can be identified by
specifying:

• the ratio of the current magnitude maximum to the minimum in the standing
wave pattern (standing wave ratio);

• the distance between two consecutive maxima or minima;

• the location of any current minimum, with reference to a specified coordinate.

The standing wave ratio (SWR) is introduced to quantify the magnitude of the
wave peaks and it is defined as:

SWR =
|Îi|max

|Îi|min

(5.15)

where |Îi|max and |Îi|min are the maximum and minimum current magnitudes in the
waveguide, respectively. The distance between consecutive current maxima or min-
ima corresponds to half wavelength, which is 2d for a MI wave, being its wavelength
λMIW = 4d. It must be noticed that, considering the attenuation due to the losses,
the magnitude of the current peaks is expected to be lower as the waveguide gets
longer, as the current wave experiences a stronger attenuation. The location of the
current minima can be deduced from the length of the waveguide in the terms of
wavelength and the type of termination, together with their distance.

5.2.1 Numerical Simulations
Applying the current calculation procedure just introduced to the array prototype
presented in Chapter 4, it is possible to verify the presence of MI standing waves in
the structure. It must be noticed that, to enhance the performance of the array, a
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higher operating frequency of f0 = 147 kHz has been chosen. The resonator coils
are the same and thus the capacitors have been modified accordingly to make them
resonate at f0. The resulting array parameters are reported in Tab. 5.1.

The simulations are performed for different values of the reflection coefficients
ρ̂T and ρ̂s, that leads to different current distributions. Assuming the internal
inverter impedance ẐS = 0Ω ( the inverter is realised with GaN transistors), the
source reflection coefficient results ρ̂S ≈ −1, that lead to perfect reflections. The
termination reflection coefficient ρ̂T is instead affected by the termination, whose
effect in terms of efficiency and power transfer has been investigated in [69].

The standing wave pattern of the current can be appreciated in Fig. 5.3, where
the magnitude of the current wave as a function of the position in the array for the
case f short-circuit SC termination, open-circuit OC termination and perfect load
matching (which corresponds to the optimal load Rηmax

l discussed in Sec. 4.1.5) is
shwon. It must be noticed that, being the considered TL an array of resonators,
the OC termination corresponds to an array with one less resonator. This feature
is crucial in the following analysis. As expected, the plot shows that in the case
of a matching termination no standing wave patterns occur, unlike in the cases
of SC and OC. In particular, the amplitude of the currents is approximately the
same in each resonator and shows a slight decrease as the distance of the considered
resonator from the source increases. This testifies to the presence of attenuation
due to the resistance of the windings. Furthermore, the amplitude of the current
peaks is much greater in the OC case, which corresponds to an array with an odd
number of resonators. On the contrary, in case of SC termination, the resonator
current magnitudes are very low, with the peaks having amplitude comparable to
that obtained in the case of matching. The analysis was deepened by evaluating the
SWR of the current for arrays with a different number of resonators terminated in
SC and perfected matching, and it is depicted in Fig. 5.4. As already mentioned, the
OC termination of an array corresponds to the same array with one less resonator. In
particular, the blue curve refers to arrays with SC termination, whereas the red one

Table 5.1: Resonator array parameters

Quantity Symbol Value Unit of Measure
Resonator Resistance R 0.11 Ω

Resonator Self-inductance L 12.5 µH
Resonators Mutual Inductance M -1.55 µH

Capacitance C 93.1 nF
Resonance Frequency f0 147 kHz

Characteristic Impedance Ẑ0 1.43 Ω

Input Impedance Ẑs 0.01 Ω

Input Voltage Vin 3.6 Vrms
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Figure 5.3: MI wave standing wave patterns for different termination loads.

is obtained with a perfect matching. This plot again confirms the effectiveness of the
matching terminations in ensuring a uniform current distribution, with a SWR≈ 1

for any n. The blue curve, which refers to SWR in SC terminated arrays, presents
very large values when n is odd and lower values if n is even, as already noted for
the array of 6 resonators in Fig. 5.3. For each of the three terminations considered,
the SWR decreases as the number of line resonators increases. This testifies that
the current wave attenuates much more as it passes through more resonators.

5.2.2 Lossless and low-loss array
According to the TL theory and with reference to an array composed of n resonators,
the current maxima can occur in the resonators whose index i is

i = n−2m, (5.16)

where m = 0, 1, 2, . . . ,m < n/2, is an integer number. This indicates that a current
maximum always occurs in the last resonator of the array, regardless of the number
of resonators. From (5.16) it follows that the current maxima are found in the even
resonators for an array with an even number of cells, and in the odd resonators for
an array with an odd number of cells.

The value of the MI SWR and thus the values of the maximum current magnitude
can be obtained using (5.14). When the array has an even number of cells, the even
resonators experience current maxima with amplitude defined as: |V̂s/(Ẑs+Ẑ0)|,
while the odd-resonators currents are null.

Instead, when the array is composed of an odd number of cells, the denominator
of (5.14) becomes zero, compromising the convergence of the formula. However, its
value can be evaluated as the limit when the number of resonators ξ approaches n

as:

Îi = lim
ξ→n

V̂s

Ẑs+Ẑ0

e−γ̂(i−1)d−ρ̂T e−2γ̂(ξ−1)deγ̂(i−1)d

1−ρ̂S ρ̂T e−2γ̂(ξ−1)d
. (5.17)



5.3. Resonator array with a receiver 126

10
0

10
1

10
2

0

5

10

15

20

25

30

Figure 5.4: Standing wave ratio for arrays of different lengths and different termi-
nation conditions.

Performing the calculation for different values of i, it is found that the current
magnitude in the odd resonators tends to the infinite, whereas |V̂s/(Ẑs+Ẑ0)| in the
even resonators.

These results are exact in lossless arrays with (ideal) resonators, even if they
can be considered acceptable even in the case of resonators with low R and limited
attenuation. Thus, for low-loss arrays, the amplitude and location of the current
maxima do not vary much with respect to the case of a lossless array and the
considerations here presented are still valid.

Concerning the lossless case, the presence of attenuation in the resonators leads
to a slight reduction of the current maxima and a slight increase in the value of the
currents in the odd resonators (which are no longer zero) in arrays with an even
number of resonators, as testified by Fig. 5.3. In arrays with an odd number of
resonators, the attenuation produces a significant reduction of the current maxima
and the current magnitude in the even resonators decreases. Overall, the SWR
is more pronounced as the MI waveguide becomes shorter, being the input energy
spread among fewer resonators. Moreover, the values of the SWRs in Fig. 5.4
for a very large number of resonators equal the ones obtained with the matching
terminations, net of the numerical error and the uncertainty on the parameters.
This confirms the classic theory of the TLs, which states that the behaviour of the
waves in matched or infinitely long TL is equivalent and no reflections occur at the
termination.

5.3 Resonator array with a receiver
In this section, the modelling approach presented in Sec. 5.1 is extended for the
configuration of a resonator array with a receiver presented in Sec. 4.2.4 and its
equivalent circuit is reported in Fig. 5.5. The receiver resonator is here assumed
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Îi

MM

R

C
L
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identical to the array resonators, allowing the analysis to be simplified. However, this
choice does not affect the generality of the analysis. The receiver is placed 10mm
above the array and connected to a load Ẑload, as represented in Fig. 5.5. The
last cell of the array is terminated in an additional impedance ẐT that can assume
arbitrary values. Unlike the previous section, in this case the analysis was conducted
considering the receiver also in non-perfect alignment positions. This means that the
receiving coil can be coupled to more resonators of the array and, in particular, at
most with two, since it is identical to them. The mutual inductance Mr,i between the
receiver circuit and the ith resonator of the array is now a continuous function of the
receiver position. The receiver position is defined by the coordinate x, that points to
the direction of the space in which the array lies and has its zero in correspondence
of the first resonator. For x = 0, the receiver is perfectly aligned with the first
cell. Being all the resonators identical, the mutual inductance as a function of the
position x behaves as reported in Fig. 5.6 considering the receiver coupled to three
different consecutive resonators. As can be seen, the mutual inductance between
the receiver and a cell of the array is different from zero only for two consecutive
resonators at a time.

The mutual inductance coefficients between the receiver and the array cells affect
the circuit parameters and thus its dependence on the coordinate x makes all the
circuit variables functions of x. For a complete analysis, different positions of the
receiver have been considered.

5.3.1 Equivalent transmission line
The TL approach to the modelling of resonator arrays with a receiver is here dis-
cussed, whose definition allows interesting insights to be attained. Using chain
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Figure 5.6: Mutual inductance between the receiver and three consecutive resonators
of the array, as a function of the receiver position at a receiver height of 10mm.
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Figure 5.7: Section of the equivalent TL of a resonator array with a receiver coupled
with the ith resonator.

matrices to represent inductive couplings between resonators, there are several pos-
sibilities for including the receiver. In general, it can be seen as a short line segment
deriving from the main line, which is the array. In particular, it is equivalent to con-
sidering the receiver as a λ/4 long TL segment. Similar considerations are reported
in [65, 66]. Having as objective the study of the current distribution in the array,
it is convenient to include the receiver in the chain matrices which represent the
array resonators coupled to the receiver. In this way the information on the receiver
current is lost but it is possible to trace the analysis back to that of a simple 1D
waveguide, drawing useful information in an intuitive way.

5.3.2 Perfectly aligned receiver
In case the receiver couples to one resonator only, the receiver can be embedded into
the equivalent circuit of the facing array resonator as the reflected impedance Ẑd.
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In fact, according to [46, 126, 47], for a receiver coupled to the ith array cell, it is
possible to write the KVL equation:

jωMÎi−1+(Ẑ+Ẑdi)Îi+jωMÎi+1 = 0 (5.18)

where

Ẑdi =
(ωMr,i(x)

∣∣
max)

2

Ẑr

. (5.19)

The equivalent TL representing this system configuration can be obtained from
that of the resonator array without a receiver considering the increased impedance
Ẑ+Ẑdi of the ith resonator. The transmission matrices T̂i−1,i and T̂i,i+1 that
involve the ith resonator modify consequently. In particular, Ẑi in (5.3) becomes
Ẑi = (Ẑ+Ẑdi)/2, while the mutual impedance ẐMi,i+1

is not altered. According to
(5.6), also the characteristic impedance of that TL segments changes. Indeed, the
modified transmission matrices T̂i−1,i and T̂i,i+1 present a characteristic impedance
Ẑ0i−1,i = Ẑ0i,i+1 = Ẑ0d ̸= Ẑ0. This clearly corresponds to a discontinuity in the
MI waveguide, leading to reflections of MI waves that come from the power source
and the termination at the interfaces between the TL with different Ẑ0. They are
indicated with dashed vertical lines in Fig. 5.7. The reflection phenomenon can be
quantified through the reflection coefficient at these interfaces. For forward MI waves
travelling from the power source towards the termination (positive x direction), the
reflection coefficient at the interface between the i−1 and i cells is:

ρ̂di =
Ẑ0d−Ẑ0

Ẑ0d+Ẑ0

, (5.20)

while it is −ρ̂di at the interface between the i and i+1 cells. The reflection coef-
ficients for backward MI waves (that travel in the negative x direction) at these
interfaces are the opposite of the ones for forward MI waves. Reflections can be
avoided by eliminating the discontinuities, that is by making sure that the charac-
teristic impedance of the TL segments that include cells coupled to the receiver is
equal to Ẑ0. This possibility has been explored in [47]. Besides the trivial solution,
the exact receiver matching for resonance operation is found enforcing: Ẑload = Ẑm

load

where

Ẑm
load =

ω0M
2
r,i(x)

∣∣
max

Me−αd
−R. (5.21)

This condition is very difficult to be met, since the receiver load is defined by the
circuitry connected to it. Power electronics circuits that allow the control of the
input impedance can be used to match the receiver to the MI waveguide.

5.3.3 Receiver coupled to two array resonators
When the receiver couples to two resonators, it can still be embedded in the array
introducing a reflected impedance and a controlled voltage source in the facing
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Figure 5.8: Section of the equivalent TL of a resonator array with a receiver coupled
to the ith and (i+1)th resonators.

cells. This can be seen from the KVLs of these resonators, that must include a
further coupling introduced by the receiver. In the case of perfect alignment, the
contribution of the controlled voltage sources is negligible and the model is reduced
to the one described in the previous section. Assuming the receiver couples to the
ith and (i+1)th resonators, the impedances of the ith and (i+1)th resonators and
the mutual impedances between the ith and (i+1)th resonators and the adjacent
ones modify accordingly. In turn, also the associated transmission matrices T̂i−1,i,
T̂i,i+1 and T̂i+1,i+2 change, resulting in the equivalent TL depicted in Fig. 5.8. The
parameters of the chain matrices are derived from the KVL equations written for
the receiver and the ith and (i+1)th array resonators:

jωMr,iÎi+jωMr,i+1Îi+1+ẐrÎr = 0 (5.22)

jωMÎi−1+ẐÎi+jωMÎi+1+jωMr,iÎr = 0 (5.23)

jωMÎi+ẐÎi+1+jωMÎi+2+jωMr,i+1Îr = 0 (5.24)

Substituting Îr from (5.22) in (5.23) and (5.24) it is possible to obtain:

jωMÎi−1+

(
Ẑ+Ẑdi(x)

)
Îi+

(
jωM+Ẑdi,i+1

(x)

)
Îi+1 = 0 (5.25)

and (
jωM+Ẑdi,i+1

(x)

)
Îi+

(
Ẑ+Ẑdi+1

(x)

)
Îi+1+jωMÎi+2 = 0 (5.26)

with

Ẑdi(x) = ω2Mr,i(x)
2

Ẑr

(5.27)

Ẑdi+1
(x) = ω2Mr,i+1(x)

2

Ẑr

(5.28)

Ẑdi,i+1
(x) = ω2Mr,i(x)Mr,i+1(x)

Ẑr

(5.29)
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The new terms of T̂i−1,i, T̂i,i+1 and T̂i+1,i+2 are found as in (5.3) considering:

Ẑi(x) =
Ẑ+Ẑdi(x)

2
(5.30)

Ẑi+1(x) =
Ẑ+Ẑdi+1

(x)

2
(5.31)

and
ẐMi,i+1

(x) = ẐMi+1,1
(x) = jωM+Ẑdi,i+1

(x). (5.32)

The characteristic impedances of the TL segments are found from (5.3) and (5.6)
and it is not real anymore, being the mutual impedance not purely imaginary.
Moreover, they are different for each line segment that involves resonators cou-
pled to the receiver and, being the mutual inductances Mr,i and Mr,i+1 continuous
function of the coordinate x, also dependent on the receiver position. In general,
Ẑ0i−1,i(x) ̸= Ẑ0i,i+1(x) ̸= Ẑ0i+1,i+2(x) ̸= Ẑ0. In this condition, further reflections
of MI waves travelling in the waveguide inevitably occur, that can be estimated
through the reflection coefficients at the interfaces. These parameters are complex,
and for forward MI waves can be generally defined as:

ρ̂i,i+1(x) =
Ẑ0i,i+1(x)−Ẑ0i−1,i(x)

Ẑ0i,i+1(x)+Ẑ0i−1,i(x)
. (5.33)

They are shown in Fig. 5.8 in correspondence of the dashed lines to indicate the
port at which they are calculated. The opposite value should be considered for
backward MI waves. Overall, the equivalent TL can be considered as the cascade of
three TL segments: the first comprising the resonators from the first to the (i−1)th,
the second composed of the resonators coupled to the receiver (two-port networks
represented by T̂i−1,i, T̂i,i+1 and T̂i+1,i+2) and the third comprising the resonators
from the (i+2)th to the last one. In particular, the first and third segments of the
TL result to be longer or shorter depending on the receiver position.

5.3.4 Numerical Simulations
The presented TL model has been applied considering the resonator array prototype
presented in Chapter 4 tuned as described in Sec. 5.2.1. As already mentioned, the
receiver coil is equal to the array cell ones. The mutual inductance coefficients
between the receiver and the resonators of the array were calculated considering a
space discretisation step of ∆x = d/30.

The simulations have been performed considering SC, OC and matched termina-
tions and different load resistance values. In particular, as described in Sec. 5.1 and,
equivalently in Sec. 4.1.5, a matching load that allows the maximisation of the effi-
ciency of the receiver TL segment can be found. For perfect alignment positions of
the receiver the value can be found as in (5.6). In this condition, the mutual induc-
tance Mr,i is 5.3 µH and the optimal receiver load is Ẑload,opt = ωMr,i ≈ 5Ω. When
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the receiver couples to more cells, the situation becomes more complex but the value
can still be found from (5.3) and (5.6) considering the proper mutual inductance val-
ues. Assuming Ẑload,opt as reference receiver load, other two values Ẑload,L << Ẑlopt

and Ẑload,H >> Ẑlopt have been chosen to simulate low- and high-impedance condi-
tions, respectively, and are Ẑload,L = 0.7Ω and Ẑload,L = 15Ω. Moreover, the load
Ẑload = 15Ω theoretically guarantees the matching of the receiver to the array and
is calculated by (5.21). To understand the combined influence of terminations and
load on resonator currents, the current distribution for a certain termination is anal-
ysed considering different loads. The termination impedance of the array ẐT , which
is the unique degree of freedom during the operation, can be adjusted to maximise
the efficiency and the power transfer, as discussed in Chapter 4. In particular, to
avoid the abrupt variations of the equivalent two-port parameters experienced with
SC or OC terminations, it seems convenient to set ẐT = Ẑ0, i.e., matching only
the array. In this way, the amount of power that is transferred in the TL segment
after the discontinuity introduced by the receiver (terminal array segment) does not
undergo reflections and is completely absorbed by the termination impedance. How-
ever, the presence of the receiver produces a discontinuity in the impedance of the
line which inevitably leads to reflections, resulting in a standing wave pattern in the
TL segment upward of the receiver. The current magnitudes of the resonators are
reported in Fig. 5.9 as a function of the receiver position for the different values of
load resistance, showing that severe current peaks occur in the odd-numbered res-
onators when the receiver is perfectly aligned with even-numbered resonators. The
standing wave pattern in the array can be better visualised by plotting the resonator
current magnitudes for positions of perfect alignment only, since they lead to the
highest currents. These plots are reported in Fig. 5.10 considering the different
loads Ẑload,L, Ẑlopt and Ẑload,H . As expected, no standing waves occur for the seg-
ment of the TL downstream of the resonator covered by the receiver, with the overt
case when the receiver is coupled to the first resonator of the array. The reflections
caused by the impedance discontinuity are more evident when the receiver is close
to the power source, since this situation corresponds to the shortest equivalent TL,
confirming the results of Sec. 5.2.1 and observed in Fig. 5.4.
When considering SC and OC terminations similar standing wave patterns are found.
As anticipated in Chapter 4, the power and efficiency curves suggested the possibility
of reflections of the currents in the array. When considering SC or OC terminations,
the MI wave undergoes reflections both at the interface of the TL segments involving
the receiver and at the end of the line, leading to standing wave patterns in the array
segments upstream and downstream of the receiver. For a meaningful comparison of
the array behaviour, the effect of all three terminations (i.e. SC, OC and matching)
is considered for each one of the three load conditions considered. The magnitude
of the resonator currents as a function of the receiver position is shown in Figs.
5.11, 5.13 and 5.15 for the receiver loads Ẑload,L, Ẑlopt and Ẑload,H , respectively. The
standing wave patterns for positions of perfect alignment are plotted in Figs. 5.12,
5.14 and 5.16 considering the loads Ẑload,L, Ẑlopt and Ẑload,H , respectively. The plots
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Figure 5.9: Current magnitude of each resonator as a function of the receiver posi-
tion, for a matched array and different load resistances.
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Figure 5.10: Standing wave patterns for different positions of the perfectly aligned
receiver, a matched array and different load resistances.
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highlight that the resonators covered by the receiver experience low current values,
whereas the most severe peaks occur when the receiver covers the even resonators.
Analysing the worst scenarios, it is possible to state that the receiver load Ẑload

affects the amplitude of the current peaks, whereas their position is determined by
the length and the boundary conditions of the equivalent TL (input and termination
impedances). Considering resistive loads, the reflected impedance from the receiver
Ẑdi is real and then the phase shift experienced by the MI waves along the line is
not altered, despite further reflections occur. The resulting standing wave pattern
can be explained considering the defect impedance introduced by the receiver and
the length of the TL segments upstream and downstream of the discontinuity.

Case Ẑload = 0.7Ω For low values of Ẑload (|Ẑload| < |Ẑm
load)|), the receiver re-

flected impedance presents very high values and the array resonator covered by the
receiver behaves as if it is open. For a receiver perfectly aligned with the ith res-
onator, the upstream TL segment is formed by i−1 resonators and is terminated in
SC, while the downstream one is composed of n−i cells and is terminated in ẐT .
Thus, according to Sec. 5.2.1 (see Fig. 5.4), the upstream SWR has higher values
if i is even (since the ith cell is in OC), while the downstream segment experiences
higher SWR values if:

• n−i is odd with SC termination

• n−i is even with OC termination.

This can be appreciated in Fig. 5.12. In the case the receiver couples to two
resonators i and i+1, similar considerations hold, being the upstream TL segment
composed of i−1 cells and the downstream one of n−(i+1) cells. Overall, the
current behaviour in the two line segments varies according to the receiver position,
which determines their effective length and terminations, as it is shown in Fig.
5.11. It is interesting to notice that, when the receiver is aligned with an odd-
numbered cell in the array, the SWRs of the TL segments are much lower than
those for a receiver aligned with even-numbered resonators. In fact, being n even,
the alignment with odd cells leads to upstream TL segments with an even number
of resonators terminated in SC. Globally, for these cases, the power required at the
source is limited. An exception is observed in the array current distribution of the
downstream TL segment for SC and matched terminations. In these conditions, the
even cells experience current peaks when the receiver is placed between an even and
an odd cell. This may be explained considering that both upstream and downstream
TL segments are composed of an odd number of cells and thus their SWRs have
higher values, as discussed in Sec. 5.2.1.

Case Ẑload = 5Ω If the receiver load increases, its reflected impedance decreases,
thereby limiting the influence of the receiver on the coupled array resonators. As is it
possible to see from Figs. 5.13 and 5.14, the trends of the currents and the SWRs are
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Figure 5.11: Magnitude of the currents of the array resonators as a function of the
receiver position, for different terminations and a receiver load Ẑload = 0.7Ω.
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Figure 5.12: Standing wave patterns for different positions of the receiver, different
terminations and a receiver load Ẑload = 0.7Ω.
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Figure 5.13: Magnitude of the currents of the array resonators as a function of the
receiver position, for different terminations and a receiver load Ẑload = 5Ω.
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Figure 5.14: Standing wave patterns for different positions of the receiver, different
terminations and a receiver load Ẑload = 5Ω.
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Figure 5.15: Magnitude of the currents of the array resonators as a function of the
receiver position, for different terminations and a receiver load Ẑload = 15Ω.

similar to those of the previous case but with currents of smaller magnitude. Indeed,
the magnitude of the reflection coefficient is lower, being the reflected impedance
introduced by the receiver smaller.

Case Ẑload = 15Ω The last case considered concerns the load Ẑload = 15Ω, which
guarantees the matching of the receiver TL segment for perfect alignment positions
obtained according to (5.21). The upstream equivalent TL segment is matched
when the impedance Ẑi of the resonator facing the receiver is Ẑ0 (ρ̂di = 0). In
general, Ẑi = Ẑ+Ẑdi+ẐTL,down, where ẐTL,down is the reflected impedance of the
downstream TL segment to the ith resonator, whose value varies between zero and
infinity depending on its length and termination, as shown in [126]. For a low-loss
array Ẑi ≈ Ẑdi+ẐTL,down and thus, considering the receiver matched, Ẑi ≈ Ẑ0 only
if ẐTL,down ≈ 0, namely only if:

• the downstream TL segment is composed of an even number of resonators and
is terminated in SC;

• the downstream TL segment is composed of an odd number of resonators and
is terminated in OC

This can be appreciated from Fig. 5.16, which illustrates the standing wave patterns
in case of different array terminations. A matched upstream TL segment makes the
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Figure 5.16: Standing wave patterns for different positions of the receiver, different
terminations and a receiver load Ẑload = 15Ω.

upstream resonator currents all equal. Instead, Fig. 5.15 indicates that for generic
receiver positions current peaks (and in turn standing wave pattern) still occur for
an array with an odd number of resonators This increases the components thermal
stress and may potentially lead to a breakdown of the whole apparatus.

5.4 Experimental verification
The numerical results were experimentally verified using the array prototype already
described in Sec. 5.2.1 in the case of perfect termination match and a load of 5 Ω.
The input voltage is established with an H-bridge inverter and set to 3.6Vrms. As
already anticipated, the inverter employs GaN transistors, resulting in an internal
impedance ẐS = 0.01Ω. In particular, it is an H-bridge inverter with four GaN
MOSFET, driven by a Texas Instruments TMS320F28379D Launchpad DSP. The
setup is shown in Fig. 5.18. The currents have been measured by means of a cur-
rent probe Tektronix TCP302 amplified by a Tektronix "TCPA 300" and processed
through an Agilent "Infiniium" 54855A oscilloscope with a sampling capability of
2 GSa/s and a bandwidth of 500 MHz. The results of the measurements are re-
ported and are compared with the numerical predictions in Fig. 5.17. As expected,
the measurement reveals the presence of standing wave patterns for the MI wave
(current wave), with the highest values in correspondence to the positions of perfect
alignment of the receiver with even resonators. The results of the measurements
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Figure 5.17: Comparison between the numerical and experimental values of the
resonator current magnitude for different receiver positions in the case of ẐT = 1.5Ω

and Ẑload = 5Ω.

prove to be in perfect agreement with the numerical predictions, with a maximum
error of 3.5 % in correspondence with the major current peaks.

5.5 Magnetic Near-Field of the Resonator Ar-
ray with a Receiver

One of the main problems of IPT systems concerns the magnetic field they pro-
duce and its dangerous effect on objects and human beings present in the environ-
ment surrounding the device. In fact, since the magnetic field generated by these
devices varies over time, it induces eddy currents in conducting objects, causing
electromagnetic interference that can lead to the malfunction of the objects them-
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Figure 5.18: Experimental setup for the magnetic field measurements.

selves. Furthermore, even human tissues can experience induced currents, due to
their non-zero electrical conductivity and this can lead to physiological problems
[23, 24]. Most of the magnetic field analyses produced by IPT devices have been
performed considering traditional two-coil systems, even for specific automotive ap-
plications [23, 127, 3]. The shielding of low-frequency magnetic fields has become
an increasingly important issue, which concerns IPT devices of all kinds, from those
for automotive applications to even those for consumer electronics. In this frame,
resonator arrays appear as complex multicoil systems, which require efficient shield-
ing to be used safely and to be in compliance with international standards. In the
design phase of the shield, it is important to consider its effect on the system, which
can lead to power losses and therefore to a decrease in efficiency. The screens are
designed on the basis of the magnetic field they must attenuate, which, especially in
the near-field, depends on the intensity and distribution of the system currents. As
discussed in the previous sections, the resonators of the array can experience even
very high currents due to the presence of the receiver. According to the operating
conditions and the position of the receiver, the distribution of currents in the cells of
the array changes considerably and, consequently, also the magnetic field it gener-
ates. Considering the resonator array used in the Chapters 4 and 5, an evaluation of
the generated magnetic field was carried out considering a matched array with the
matched receiver perfectly aligned with the last cell. The matching loads have been
chosen to guarantee the reproducibility of the results also considering arrays with
different coils and parameters. Note that this is also the condition chosen for the
verification of the equivalent TL model proposed in Sec. 5.4 and the currents mea-
sured experimentally have been considered for the calculation of the magnetic field.
In particular, the array is tuned to operate at 147kHz and powered by a voltage of
3.6 V, as in the case of Secs. 5.3.4 and 5.4. The overall magnetic field distribution
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a)

b)

Figure 5.19: FEM calculated magnetic flux density on a plane 9.6cm above the array
in (a) vector representation (b) magnitude.

is the result of the interaction of all the magnetic fields generated by each array cell
and it has been evaluated by means of FEM simulations and by using closed-form
expressions for the magnetic field generated by square coil [128]. Specifically, the
magnetic field has been calculated on planes parallel to the array at a distance of 9.6
cm above and 12.5 cm below it. Indeed, being the considered system devoted to the
supply of portable electronic devices, the more susceptible area to the magnetic field
is the one in which people operate, i.e., right above the devices. The FEM results
are affected by a 0.2% of final error and the mesh has been driven by an automatic
adaptative procedure. The magnetic flux density vectors evaluated on the plane
above the array are plotted in Fig. 5.19a for a fixed instant of time. As expected,
the field is more intense in resonators with higher current, i.e. the odd-numbered
ones (see. Fig. 5.19a). The direction of the vectors of the magnetic field generated
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by the single coil depends on the phase of the current circulating in the coil itself
and, considering that in the even cells the amplitude of the current is almost zero,
the final distribution of the magnetic field will be determined by the currents in the
odd resonators. For different instants of time the currents have different values and
therefore the distribution of the field varies. As time varies, the resulting effect is
that of a magnetic field standing wave in the direction of the space along which the
array lies (x in this case), whose nodes are at a distance of 2d, as predicted in Sec.
5.2. To evaluate the intensity of the field that stresses the shield, the intensity of
the magnetic field is plotted for the upper plane in Fig. 5.19b. Being calculated for
the same instant of time, this spatial field distribution corresponds to that of Fig.
5.19a. The maximum value is 56µT on the plane above the array and 42µT on the
plane below it.
These results have been experimentally validated through measurements on the real
prototype described in Sec. 5.4. In particular, the magnetic field has been estimated
from the voltage induced on a circular probe of 2.8 cm in diameter, driven by a
Hewlett-Packard 8591E spectrum analyser. Since the probe is much smaller than
the current source loops (array coils), the magnetic flux density can be considered
uniform across its surface. The average value of the normal component Bp of the
magnetic field that links to the probe can be estimated as:

Bp =
Vp

ω0Ap
(5.34)

where Vp is the voltage induced in the probe, Ap its the probe area and ω0 the
frequency of the array currents. The measurements have been performed with the
probe placed at the vertical distance of 9.6 cm above and 12.5 cm below the array in
correspondence with the centre of the coils. In terms of the overall magnetic field,
the resonator array with a receiver in the last cell results to be the worst condition
since all the coils contribute, experiencing non-negligible current magnitudes (see
Fig. 5.17). Indeed, even if the current peaks are stronger when the receiver is
aligned with the first cell, the other array resonators do not experience considerable
currents. In Figs. 5.20a and 5.20b the measured, FEM simulated and analytically
calculated magnetic field at the centre of each array resonator is reported for the
plane above and below the array, respectively.

The comparison clearly shows a very good agreement for the highest values of
the magnetic flux density, whereas a mismatch between measurements and FEM
simulations of about 10% occurs in the resonators with the lowest values of current.
The difference between the measures and calculations can be attributed to the hy-
pothesis of considering the magnetic flux density uniform over the entire probe area.
In fact, it is reasonable to state that the higher the field, the greater its uniformity
over the resonator. The results of the analytical calculations match the measured
values for almost all the cells, and instead present an error of a few per cent in
correspondence of the fourth cell. It should also be noted that, since the calculation
methods are in any case approximate (even the analytical formulas are obtained
with simplifications), an (even small) error is foreseeable.
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Figure 5.20: Comparison between magnetic flux density values obtained from mea-
surements, FEM simulations and analytical calculation at the centre of the array
resonators on a plane placed (a) 9.6 cm above and (b) 12.5 cm below the array.

5.5.1 Shielding the IPT System
Given the field that these IPT systems have been shown to produce, it is interesting
to evaluate the possibility of shielding them, first of all considering traditional passive
shields. A partial shielding of the magnetic field (at least for the legs of an individual
sitting at the desk or table) can be obtained by introducing a planar shield below
the array.

The shielding effectiveness of a planar shield can be calculated as described in
[129] and [130]. Indeed, [130] specifically refers to the shielding effectiveness of
multilayered magnetic shields generated by coaxial circular loops. However, the
array is composed of square loops, and thus it is necessary to consider circular loops
that, in terms of magnetic flux density, are equivalent to the square ones. According
to [128], the radius of the circular loop equivalent to the square one is calculated
enforcing that the magnetic flux density produced at a generic point of coordinate
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Figure 5.21: Shielding effectiveness of a single-layer aluminium planar shield and
two-layer aluminum-Mumetal®egistered planar shield

z along the axis of the loop when both loops carry the same current is the same.
The radius req of the equivalent loop is found numerically solving:

r2eq

(r2eq+z2)3/2
− s2

π

(
z2+

(
s

2

)2)3/2
= 0 (5.35)

where s is the square loop side-length. Applying the procedure proposed in [130],
the shielding effectiveness (SE) of a single-layer aluminium shield and a two-layer
shield with aluminium and Mumetal® are shown in Figs. 5.21, respectively. The SE
is calculated considering the shield placed on the bottom of the array. Among the
commercial thicknesses for shielding material, the aluminium layer is considered 0.28
mm thick, whereas the Mumetal® with a thickness of 0.05 mm. The resulting SE
is plotted in Fig. 5.21. For the single-layer shield, it resulted in an average value of
about 51 dB, whereas the average SE for the two-layer aluminum-Mumetal® shield
is about 64 dB. As expected, the multilayer screen is more effective in shielding the
array magnetic flux density, which, however, is more expensive. It is also important
to underline that the presence of the shield always deteriorates the performances,
since it introduces further losses due to its non-null conductivity.

5.6 Conclusions
The current distribution in the array of resonators has been analysed with the the-
ory of MI waves. As in the previous chapter, it emerged that, for generic loads,
reflections of the input power could occur. Resonator arrays have been studied as
transmission lines, expressing them as a cascade of chain matrices. This approach
allows the system behaviour to be analytically investigated, as well as it provides
insights about the phenomena that occur. With this model, it was possible to cal-
culate and define the matching load of the line and, in the case of a resonator array
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with a receiver, also of the receiver TL segment. The distribution of the currents
showed the presence of critical standing waves, with current peaks of considerable
amplitude. In particular, the analysis of simple resonator arrays fed by an inverter
has shown critical standing wave ratios in case the arrays are composed of an odd
number of resonators. An analytical expression for the resonator currents of a generic
array based on the TL analogy has been proposed and validated, in the hypothesis
of nearest-neighbour interaction. The study of resonator arrays by means of the
equivalent TL model was performed considering the different modulation strategies
of the termination proposed in Chapter 4 and for different receiver positions. The
study showed that also in this case the current distribution in the resonators is very
uneven. A uniform efficiency and power transfer for all the receiver positions along
the array can be reached at the expense of standing wave patterns of the resonator
currents. The presence of a receiver introduces a discontinuity in resonator array
TL causing reflections and then high current peaks, which in turn may lead to se-
vere stress to the electric components. It is therefore important to appropriately
dimension the system components, especially when used for powers in the order of
kWs, which are typical for industrial apparatuses. The intense currents circulating
in the resonators generate a significant magnetic field, whose distribution mirrors
current standing wave patterns. A proper shielding strategy is therefore necessary,
and the study has shown how a planar single-layer aluminium shield or a two-layer
aluminum-Mumetal® shield can still be adequate to shield the device.

With adequate control strategies, the efficiency of the system can be considerably
increased, but the impact of the magnetic field generated on people and objects in
the surrounding environment remains a problem that can limit the application of
these devices.





Chapter 6

Receiver Coil Position
Sensing in Resonator Arrays

In this chapter, an application of resonator arrays for position sensing is discussed.
The possibility of using resonator arrays for detecting objects has been also discussed
in [131, 132, 133], that exploit the interaction between metallic objects or tags and
the resonator array. Resonator arrays are mainly devoted to very low-power systems,
especially for consumer electronics applications. In this work, the detection of the
exact location of an external resonator coupled with the array is performed exploiting
the peculiar behaviour of the system input impedance. For a resonator array with
a receiver, the input impedance behaviour has been thoroughly analysed in [126]
considering perfectly aligned positions of the receiver with the cells of the array.
A recursive analytic expression has been provided, in particular, as a continuous
fraction, whose closed form is also proposed. However, all the discussion considers
only positions of perfect alignment, limiting the use of the formula. For the detection
of the position of the receiver, it is necessary to evaluate the input impedance as
a continuous function of the position of the receiver. From a circuit analysis of
these systems, an analytical expression of the input impedance of a resonator array
coupled with an external resonator placed in a generic position is presented and
its trend analysed for different parameter values. A simple and effective algorithm
for the localisation of the external resonator is proposed, with a deep focus also
on its digital implementation. This sensing technique can be exploited to build
ad hoc sensors for industrial or consumer electronics applications, in which the
external resonator does not act as a power receiver and the system is dimensioned
to function only as a sensor. The possibility of exploiting this technique in power
transfer devices has also been proposed, which can include both passive and active
array resonators. The receiver position detection has been proven to be effective
also in dynamic conditions, for which systems a simplified algorithm is proposed.
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Figure 6.1: (a) Schematic representation of a resonator array with an external coil
and (b) its equivalent circuit.

6.1 Input Impedance of a Resonator Array with
a Receiver

A resonator array coupled with an external resonator (whose position has to be de-
tected) is considered and schematically represented in Fig. 6.1a, where the position
of the moving resonator along the array is denoted by the variable x. The array
is composed of n identical and equally spaced coils, so that the mutual inductance
M between each pair of adjacent resonators is the same and dimensioned such that
the nearest-neighbour approximation can hold. Two additional impedances Ẑrc and
ẐT are added in the external and last array resonators, respectively. They provide
two degrees of freedom which can modify the behaviour of the system and result
crucial for the accuracy of the sensing, as discussed later. Due to the topology of the
system, the better choice is a moving coil of the same size of the array resonators, or
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slightly shorter. In fact, a bigger coil would couple with more array cells and then no
perfect alignment positions would be found, making the input impedance expression
unnecessarily complicated. Thus, a moving coil identical to the array resonators is
considered for simplicity. The moving resonator can be placed at any position along
x and thus the mutual inductance between the moving resonator and the generic
ith resonator of the array varies according to the moving-resonator position x, as
it is plotted in Fig. 5.6 for three consecutive array cells. The input impedance of
the system can be studied by resorting to the circuit model already proposed in
Chapter 4 and shown in Fig. 6.1b. Considering the system excited by a sinusoidal
input voltage at the resonant frequency f0, it is possible to consider all currents and
voltages as phasors at the angular frequency ω0 = 2πf0 and the internal impedance
of each array cell is R and the external coil impedance Ẑrc. Since the mutual induc-
tance coefficients between the receiver and the facing cells depend on the receiver
location, a relative coordinate ξ may be defined as:

ξ = x−(i−1)d (6.1)

where x is the absolute coordinate along which the array lies, i indicates the first
array cell facing the receiver and d the resonator size in the direction of x. Consid-
ering the moving resonator coupled with both the ith and (i+1)th cells of the array,
a system of Kirchhoff voltage law (KVL) equations can be written as:

−V̂s+ẐsÎ1+ẐÎ1+jωMÎ2 = 0

jωMÎ1+ẐÎ2+jωMÎ3 = 0
...

...
jωMÎi−2+ẐÎi−1+jωMÎi = 0

jωMÎi−1+ẐÎi+jωMÎi+1+jωMi,r(ξ)Îr = 0

jωMÎi+ẐÎi+1+jωMÎi+2+jωMi+1,r(ξ)Îr = 0

jωMÎi+1+ẐÎi+2+jωMÎi+3 = 0
...

...
jωMÎn−1+ẐÎn+ẐT În = 0

(6.2)

with one additional KVL equation for the receiver:

jωMr,i(ξ)Îi+jωMr,i+1(ξ)Îi+1+ẐrÎr = 0. (6.3)
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In order to write (6.2) in terms of the array currents only, the receiver coil current
Îr obtained from (6.3) can be substituted into (6.2), that becomes:

−V̂s+ẐsÎ1+ẐÎ1+jωMÎ2 = 0

jωMÎ1+ẐÎ2+jωMÎ3 = 0
...

...
jωMÎi−2+ẐÎi−1+jωMÎi = 0

jωMÎi−1+
(
Ẑ+Ẑdi(ξ)

)
Îi+
(
jωM+Ẑdi,i+1

(ξ)
)
Îi+1 = 0(

jωM+Ẑdi+1,i
(ξ)
)
Îi+
(
Ẑ+Ẑdi+1

(ξ)
)
Îi+1+jωMÎi+2 = 0

jωMÎi+1+ẐÎi+2+jωMÎi+3 = 0
...

...
jωMÎn−1+ẐÎn+ẐT În = 0

(6.4)

where

Ẑdi(ξ) = ω2
M2

i,r(ξ)

Ẑr

Ẑdi+1
(ξ) = ω2

M2
i+1,r(ξ)

Ẑr

Ẑdi,i+1
(ξ) = Ẑdi+1,i

(ξ) =ω2Mi,r(ξ)Mi+1,r(ξ)

Ẑr

.

(6.5)

The impedance terms (6.5) are usually called “defect impedances” and correspond
to the reflection impedances of the receiver to the facing array resonators. Repeat-
ing the process by substituting in each equation the one relevant to the adjacent
resonator, the remaining equation is the one of the first resonator, which becomes:

−V̂s+
[
Ẑs+Ẑ+Ẑeq

i,i+1(ξ)

]
Î1 = 0 (6.6)

where Ẑeq
i,i+1(ξ) corresponds to the equivalent impedance seen from the first cell of

the array with the external coil coupled with the ith and (i+1)th resonators. The
array input impedance results in the recursive formula:

Ẑeq
i,i+1(ξ) =

(ωM)2

Ẑ+
(ωM)2

. . .+
(ωM)2

Ẑ+Ẑdi(ξ)+
(ωM)2−D̂i,i+1(ξ)

Ẑ+Ẑdi+1
(ξ)+

(ωM)2

Ẑ+
(ωM)2

. . .+
(ωM)2

Ẑ+ẐT

(6.7)

where
D̂i,i+1(ξ) = 2jωMẐdi,i+1

(ξ)+Ẑ2
di,i+1

(ξ). (6.8)
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In general, for each couple of facing resonators i and i+1 the input impedance
of the system can be defined as a continuous function of the space. This kind
of function is named “continued fraction”, which is a recursive formula that can
be calculated through an iterative process. Thus, it is difficult to express it as a
function of the absolute coordinate x, since the continued fraction changes its form
depending on the receiver position. To the best of the author’s knowledge, no closed
analytical expressions are known for expressions of the type (6.7). However, these
kinds of expressions can be handled by DSPs and computers and thus they can be
easily computed numerically. For simplicity, the array input impedance for a generic
receiver position x is considered and indicated as Ẑeq(x).

While the input impedance of a resonator array without any moving-coupled
resonator is purely real when the system is excited at its resonant frequency [126, 47],
the presence of a moving resonator makes it complex. In this case, the imaginary
part of Ẑeq

i,i+1(ξ) is not null even if the system operates at its resonant frequency.
Considering all the cells operating in perfect resonance, the internal impedance Ẑ

and the defect impedances Ẑdi , Ẑdi+1
and Ẑdi,i+1

of (6.5) result purely real, while
D̂i,i+1 is complex. Intuitively, it can be explained considering that the presence of
the moving coil introduces a further coupling between the resonators it faces, with
a consequent phase delay in the impedance seen from the array input port.

6.1.1 Simulations and Discussion
The behaviour of the input impedance Ẑeq(x) for the array prototype described in
Sec. 5.4, where the receiver acts as an external coil and is loaded with Ẑrc. The
input impedance is plotted in magnitude and phase in Figs. 6.2, 6.3 and 6.4 as a
function of the receiver position for different values of load Ẑrc in case of short-circuit,
matched and open-circuit terminations of the array, respectively. The magnitude of
Ẑeq(x) is a continuous function of the spatial coordinate x and presents peaks for
perfect alignment positions of the receiver, with a periodicity similar to what has
been illustrated in [126]. Maximum values occur when the ith resonator faced by
the external coil is odd and minimum values when even. This behaviour is the same
for each array termination and moving coil load, as it is possible to see in Figs. 6.2,
6.3 and 6.4. This can be explained considering the behaviour of the resonator array
with the external coil embedded in the facing array resonators through reflected
impedances and controlled voltage sources, as discussed in Chapter 5. The system
is reduced to an array of i resonators, terminated with the series of the defect
impedance introduced by the moving coil and the equivalent impedance Ẑeq

n−i,ẐT

seen from the ith cell of the terminal segment of the original array, composed of
n−i resonators and terminated with ẐT , as illustrated in [126, 47]. When the defect
impedance dominates over Ẑeq

n−i,ẐT
, the input impedance is affected by the number of

resonators between the first array cell and the first resonator covered by the moving
coil i only, while the values of Ẑrc have an effect on the magnitude of |Ẑeq(x)|. As Ẑrc

increases, the presence of the moving coil affects less the array, with the limit case



6.1. Input Impedance of a Resonator Array with a Receiver 152

1 2 3 4 5 6

0

10

20

a)

1 2 3 4 5 6

-50

0

50

b)

Figure 6.2: Array input impedance as a function of the receiver position with short-
circuit termination for different values of load resistance Ẑrc, in magnitude (a) and
phase (b).

of infinite Ẑrc, which makes the receiver-resonators coupling negligible. The phase
of Ẑeq(x) presents maxima and minima depending on the coordinate x, with null
values in case of perfect alignment positions. The asymmetry in the phase trends
is due to the oscillatory behaviour of the equivalent impedance Ẑeq

n−(i+1),ẐT
of the

terminating part of the array seen from the (i+1)th cell [46, 126], which smooths
the phase shift introduced by the moving coil described by D̂i,i+1. By means of
Ẑeq

n−(i+1),ẐT
, it is possible to write Ẑeq

i,i+1(ξ) as:

Ẑeq
i,i+1(ξ) =

(ωM)2

Ẑ+
(ωM)2

. . .+
(ωM)2

Ẑ+Ẑdi(ξ)+
(ωM)2−D̂i,i+1(ξ)

Ẑ+Ẑdi+1
(ξ)+Ẑeq

n−(i+1),ẐT

(6.9)
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Figure 6.3: Array input impedance as a function of the receiver position with
matched termination for different values of load resistance Ẑrc, in magnitude (a)
and phase (b).

which clearly indicates that the phase shift is dominated by the ratio:

−D̂i,i+1(ξ)

Ẑ+Ẑdi+1
(ξ)+Ẑeq

n−(i+1),ẐT

(6.10)

where the terms D̂i,i+1(ξ) and Ẑdi+1
(ξ) present the same values for each pair of

resonators i and i+1 that face the moving coil. The impedance Ẑeq

n−(i+1),ẐT
dra-

matically oscillates depending on the number of resonators n−(i+1) and the ter-
mination impedance ẐT of the array. According to [126], the equivalent impedance
of a short-circuited array presents maximum and minimum values for an even and
odd number of resonators, respectively. The trend is opposite in case of open cir-
cuit termination. Moreover, the equivalent impedance is equal to the termination
impedance when the array is perfectly matched. Considering the phase of the array
equivalent impedance φẐeq

(x) for the short-circuited array of six resonators plotted
in Fig. 6.2(b), it can be seen that, when the first resonator faced by the moving
coil i is odd, the terminating segment of the array is composed by an odd num-
ber of resonators n−i and the equivalent impedance Ẑeq

n−(i+1),ẐT
presents very low
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Figure 6.4: Array input impedance as a function of the receiver position with open-
circuit termination for different values of load resistance Ẑrc, in magnitude (a) and
phase (b).

magnitudes. Thus, the phase shift experienced by Ẑeq(x) presents its maximum val-
ues, according to (6.10). Oppositely, if i is even, Ẑeq

n−(i+1),ẐT
attenuates the phase

shift. The opposite behaviour occurs when the array is terminated in OC. In case of
matched termination, Ẑeq

n−(i+1),ẐT
behaves the same for any position and then the

trend of φẐeq
(x) is symmetric. Furthermore, for increasing values of Ẑrc the defect

impedances (6.5) are smaller and the phase shift of Ẑeq(x) is less pronounced.
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6.2 Resonator Array as a Linear Position Sen-
sor: Design and Choice of the Array Pa-
rameters

The intrinsic resistance of the resonator windings is usually undesirable in resonant
systems, since it leads to power losses and thermal heating. However, it guarantees
the convergence of Ẑeq(x) to finite values and makes them different for any moving
coil position. Indeed, both the magnitude and phase of the equivalent impedance
are attenuated as the moving coil is positioned far from the array input resonator
and the combination of their values is unique for any position x of the moving coil.
Thus, once the array parameters are fixed, the measure of the array input impedance
allows the estimation of x. The coils are designed to maximise the self- and mutual
inductances and then the value of the intrinsic resistance is consequently found. The
remaining degrees of freedom are the coil number, their size d in the x direction of
the space, and the impedances ẐT and Ẑrc, which are usually purely real to avoid
altering the coil resonant frequency.

6.2.1 Termination conditions
Typical termination conditions for resonator arrays are SC, OC and matching [69,
47], which correspond to ẐT = 0, ẐT → ∞ and ẐT ≈ ωM , respectively. Values of
Ẑrc have not been discussed in literature; theoretically, any real value of ẐT and Ẑrc

makes Ẑeq(x) convergent and univocally defined for any x and a meaningful choice
is based on the sensitivity of the resulting Ẑeq(x) to the variation of the moving coil
position, as can be understood from Figs. 6.2, 6.3 and 6.4. As a first consideration, it
should be noticed that an open-circuit termination of the array is completely useless,
since the last resonator does not interact with the others and thus the presence of
the moving coil is not detected. Moreover, the behaviour of Ẑeq(x) is the same of
considering the array one resonator shorter. A matching array termination results
in a smoother trend of the input impedance function, but the sensitivity should
be pronounced to help in identifying the argument x of |Ẑeq(x)|. Thus, ẐT = 0 is
set. For what concerns Ẑrc, a similar argument is possible, which would lead to the
choice of Ẑrc = 0. However, the high values the input impedance presents for i = 1

can complicate the tuning of the sensor, since it strongly widens the range of values
that should be measured. Overall, the convergence and univocity of the equivalent
impedance function can be verified from its trajectory in the complex plane, that
should be limited and should not present intersection points. An example is the
curve plotted in Fig. 6.5, that shows the trajectory of the input impedance function
in the complex plane according to the moving coil position x for given values of Ẑt

and Ẑrc.
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6.2.2 Sensitivity
The number of array coils is chosen according to the dimension of the object whose
position has to be found and depending on the sensitivity of the input impedance
function to the coordinate x, which is crucial since it determines the effective accu-
racy in the measure. The sensitivity of Ẑeq(x) can be defined for both its amplitude
and phase as:

smag(x) =
d|Ẑeq(x)|

dx
(6.11)

and

sph(x) =
dφẐeq

(x)

dx
, (6.12)

respectively. Theoretically, for an accurate measure they should present the largest
magnitude possible, even though they risk diverging for some x, making their cal-
culation very difficult. Practically, the sensitivity is mainly affected by the space
variation of the mutual inductance Mr,i(x), which contributes to Ẑeq(x) as shown
in (6.5) and (6.7). Indeed, while the number of positive and negative peaks of both
|Ẑeq(x)| and φẐeq

(x) depends on the number of resonators, their variation for a
moving coil coupled with the generic ith and (i+1)th cells depends on dMr,i(x)/dx.

On the other hand, for a fixed array length Lx a higher number of array resonators
leads to an input impedance function more sensitive to the position x, since it
presents more periods and thus a more pronounced variation in space. Overall,
a trade off between n and Lx has to be found depending on the geometry of the
adopted coils and the trend of the mutual inductance Mr,i(x).

The portion of space Lx in which the sensor has to operate can be covered by an
arbitrary number of resonators, which determines the number of periods of |Ẑeq(x)|
and φẐeq

(x). Theoretically, since the space variation of Mr,i(x) is continuous, at least
an array of one resonator could be sufficient to make the sensor operate. However,
the moving coil length has to be greater than half of the array resonator length,
otherwise Mr,i(x) would result symmetric with respect to x and it would not be
possible to distinguish whether the moving coil covers the first or second half of the
resonator. Anyway, in practical applications, it is convenient to reduce the length
of the moving coil and adapt it to the size of the object to which it is fixed. In this
way, it is possible to cover the entire movement area of the object without altering
the size of the moving coil. Then, the number of coils can be chosen according to
the length Lx and the sensitivity parameters smag and sph.

6.2.3 Algorithm for the External-Coil Position Detec-
tion

Considering the system operating in resonance, the resonator impedance presents
a positive real part only, which is due to the winding resistance of the coils and
that makes the values of the array input impedance different for each moving coil
position x. Indeed, while both the magnitude and phase of Ẑeq(x) can have the
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Figure 6.5: Input impedance trajectory as a function of the receiver position for the
resonator array described in Sec. 6.1.1 with short-circuit termination and Ẑrc = 1Ω.
The function evolves for increasing x in the direction of the red arrows.

same value for different x, their combination is unique for a certain x. This can
be appreciated from Fig. 6.5: there are no intersection points in the plot. This
peculiarity can be exploited to detect the moving coil position simply starting from
the measurement of the input impedance. The basic idea consists in feeding the
first array resonator with a sinusoidal voltage v1(t) at the resonant frequency f0 and
measuring the current circulating in the same resonator i1(t), from which the input
impedance can be estimated for any position of the moving coil as:̂̃

Z =
V̂1

Î1
(6.13)

where Î1 and voltage V̂1 are the phasors of the input current and voltage, respec-
tively, at the resonant frequency. The superscript “ ∼" denotes estimated quantities.
Then, comparing the estimated and (theoretically) calculated values it is possible to
determine the moving coil position x. In particular, the calculated impedance should
match the measured one within a tolerance margin, which is introduced in order to
take into account the uncertainty due to measurement noise and the errors caused
by the digital implementation of the algorithms and calculations. Mathematically,
the conditions to be satisfied can be written as:

∥ Z̃−|Ẑeq(x)| ∥≤ δZ (6.14)

∥ φ̃−φẐeq(x) ∥≤ δφ, (6.15)

where δZ and δφ are the tolerance margins accepted for the magnitude and phase
equalities, respectively.
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Discrete Implementation

Systems of practical interest require the algorithms to be implemented in digital
environments by means of microprocessors and computers, which deal with discrete
functions and signals only. Thus, the proposed algorithm for the detection of the
moving coil location has to be formulated considering discrete quantities, leading
to new issues and limitations such as sampling and truncation errors. As a first
consideration, it should be noticed that the mutual inductance between the moving
coil and the generic ith resonator Mr,i(x) is usually calculated numerically, being
closed form expressions available for particular coil geometries only and, moreover,
they do not apply in presence of non-homogeneous media, as it usually occurs when
magnetic materials are used. For this reason, Mr,i(x) is assumed to be numerically
calculated with a discretisation step ∆x and thus, as a consequence, all the parame-
ters defined according to Mr,i(x) are affected by the choice of ∆x. In particular, the
discrete formulation of the sensitivity reported in (6.11) and (6.12) can be written
for a certain value of the (discretised) space coordinate xk considering the difference
quotients:

Smag(xk) =
∆|Ẑeq|
∆x

(xk) (6.16)

Sph(xk) =
∆φẐeq

∆x
(xk). (6.17)

These expressions clearly indicate that, assuming a fixed space interval ∆x, the
sensitivity of the input impedance is different for each ∆x, suggesting the need of
defining variable tolerance margins, that should be larger when the sensitivity is
higher. Thus, for a certain moving coil location xk, the inequalities reported in
(6.14) and (6.15) become:

∥ Z̃−|Ẑeq(x)| ∥≤ δZ(xk) (6.18)

∥ φ̃−φẐeq(x) ∥≤ δφ(xk), (6.19)

where δZ and δφ are the tolerance intervals accepted for the kth reference position.
Moreover, δZ and δφ can not be symmetric, since the difference between impedance
values corresponding to two consecutive positions is in general not constant, as it is
testified by the sensitivity functions. Thus, for both intervals, it becomes necessary
to distinguish two different parameters that define the upper and lower limits. The
simplest choice consists in defining backward and forward limits for δZ and δφ, that
can be combined in order to determine the effective tolerance interval for |Ẑeq| and
φẐeq

. In the following, the procedure is illustrated considering only the module of
the input impedance, but the same approach is adopted for the phase. It is omitted
for simplicity. The backward limit for δBZ (xk) can be defined for a generic position
xk as:

δBZ (xk) =
|Ẑeq(xk)|−|Ẑeq(xk−1)|

2
, (6.20)
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Figure 6.6: Feature of the input impedance magnitude of the resonator array de-
scribed in Sec. 6.1.1, where the blue curve represents the calculated continuous
function |Ẑeq|(x) and the dark-red dashed line its discrete version |Ẑeq|(xk). The
black line indicates the value of the measured input impedance magnitude Ẑ∗ (also

indicated with ˆ̃
Z) and the red dotted line the value of the function at the coordinate

xk. The green box represents the tolerance interval for x2, bounded by the associ-
ated tolerance margins δBZ (x2) and δFZ (x2).

while the forward limit δFZ (xk) in xk as:

δFZ (xk) =
|Ẑeq(xk+1)|−|Ẑeq(xk)|

2
. (6.21)

where the superscripts B and F indicate the backward and forward limits, re-
spectively. Then, the resulting intervals are set based on the trends of |Ẑeq| and
φẐeq

, that are described by the associated sensitivity parameters. For simplicity,
let us consider the input impedance magnitude first. The following cases can be
identified:

Smag ≥ 0 In case of positive Smag, |Ẑeq| is increasing and thus δBZ (xk), δ
F
Z (xk) ≥ 0.

The tolerance interval can be defined as:[
|Ẑeq(xk)|−δBZ (xk), |Ẑeq(xk)|+δFZ (xk)

]
. (6.22)
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Smag ≤ 0 Instead, for negative Smag, δBZ (xk), δ
F
Z (xk) ≤ 0 and the interval is:[

|Ẑeq(xk)|+δFZ (xk), |Ẑeq(xk)|−δBZ (xk)
]
. (6.23)

A graphic representation of δZ for Smag ≤ 0 is shown in Fig. 6.6, in which a
feature of the function |Ẑeq| is plotted. The black horizontal line represents the
value of the measured impedance Z̃, that should be compared with the discrete
values of |Ẑeq|. In the figure, the comparison is performed for xk ≡ x2 and the red
dot represents |Ẑeq(x2)|. Then, the interval δZ is coloured in green and contains the
black line, meaning that the condition (6.18) is satisfied. It is important to notice
that (6.18) or (6.19) can be met for different positions, but only one xk allows both
conditions to be fulfilled.

Smag = 0 In case a maximum or minimum of |Ẑeq| is found at a considered coordi-
nate xk , Smag may be null and the limits of the interval should be defined differently.
Indeed, if the function presents a minimum in xk, δBZ (xk) < 0 while δFZ (xk) > 0, and
thus they should both be considered as the upper limit. The larger in magnitude is
chosen. Then, an arbitrary lower limit δmin

Z is introduced to complete the interval,
leading to: [

|Ẑeq(xk)|−δmin
Z (xk), |Ẑeq(xk)|+|δF,BZ (xk)|

]
. (6.24)

The opposite situation occurs in case xk corresponds to a maximum of the input
impedance magnitude function, with the definition of an arbitrary upper limit δmax

Z ,
while as a lower limit the largest in magnitude between δBZ (xk) and δFZ (xk) is chosen.
Thus, the intervals can be expressed as:[

|Ẑeq(xk)|−|δF,BZ (xk)|, |Ẑeq(xk)|+δmax
Z (xk)

]
. (6.25)

Similarly, this procedure also applies to the limits of the phase tolerance margin.
A backward limit δBφ (xk) and forward limit δFφ (xk) are defined as in (6.20) and
(6.21), respectively. Also, arbitrary minimum and maximum limits δmin

φ and δmax
φ

are introduced, respectively, in case Sph = 0.
Overall, the proposed definitions of tolerance margins guarantee that (6.18) and

(6.19) are satisfied for at least one position xk. However, the limits become larger
as ∆x increases, with the risk of finding more values xk associated with a certain Z̃

and φ̃. Thus, the discretisation step has to be the smallest possible, consistent with
the machine precision. The proposed algorithm is schematically illustrated in Fig.
6.7.

Hardware Implementation

The discrete implementation of the external coil position monitoring technique must
be suitably accompanied by efficient and accurate measurements of the necessary
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Figure 6.7: Flow chart illustrating the algorithm for the detection of the moving coil
position.

quantities. To evaluate the feasibility of this type of sensor, it is advisable to evaluate
the hardware implementation considering the performance of modern DSPs, which
strongly affect the processing and the execution of the detection algorithm. The
input impedance can be estimated from the input voltage and current phasors at
the frequency f0, which are extracted from the associated measured waveforms.
The measurements of the voltage can be performed by using a compensated voltage
divider, that can be galvanically isolated by a cascaded optically isolated voltage
transducer. Similarly, the current can be recorded with an optically buffered resistive
shunt by the same device. These optically isolated voltage transducers (such as
AMC1202 [134], AMC3301 [135] and ACPL-790 [136]) have a bandwidth ∆f larger
than 200 kHz, less than 1 µV of input noise density, and a basic forward gain of 8.2.
The uncertainty introduced by the input noise is negligible since an enough narrow
band of at most some hundreds Hz centred round f1 is adopted for the voltage and
current measure.
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For what concerns the sampling, it can be carried out at 1 MSa/s. There is
no necessity of performing a full FFT, except for initialisation and thus the spec-
tral voltage and current components at f1 are estimated with a recursive FFT (a
complete FFT is required only for initialisation) together with the adjacent compo-
nents at f1−∆f and f1+∆f , to track the stability at f1. This kind of algorithm
requires few floating point operations, while modern DSPs have the computational
power of more than several hundred of MFlops (floating point operations per second)
[137, 138]. The FFT calculation can be performed in less than 120µs.

The simplicity of the algorithm, combined with the high-performance digital con-
trollers, allows this sensor to be used even in applications where the external coil
moves at high speed.

Position Detection of a Moving External Coil

It is straightforward to exploit this sensor even in contexts with moving mechanical
parts, whether they are rotating or translating. As introduced in Sec. 2.2, the
variation of the relative position between mutually coupled coils leads to the so-called
motional induced electromotive force emfM (see Chapter 2). It is associated with
the variation of magnetic flux due to the displacement of the circuit (and therefore
of the surface through which the magnetic flux is considered), and it is therefore an
inevitable phenomenon in resonator systems with coupled coils in motion. However,
the contribution of the emfM to the voltage induced in the coils is often negligible
compared to the emfT in IPT systems of practical interest. This is due to the fact
that the IPT devices are designed to work at relatively high frequencies (hundreds
of kHz) and the spatial variation of the coils mutual inductance is minimised by
design. It follows that the proposed algorithm can also be safely used to estimate
the position of the external coil when it is in relative motion with respect to the
array. With the appropriate structure, this type of sensor can also be applied to
dynamic rotary systems, such as for example the estimation of the rotor position in
an electric machine or the receiver position in a dynamic IPT system. Furthermore,
the latter application also allows the same coils used for power transmission to be
exploited, without therefore introducing further devices and modifying the structure
of the system. However, it is evident that the power transfer and the sensing of the
receiver position must not interfere during operation and thus the system must be
designed ad hoc. This possibility, in an automotive context, has been analysed
in the following, also presenting a simplified position estimation algorithm which
requires less computing power.
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6.3 Receiver-Coil Location Detection in a Dy-
namic Inductive Power Transfer System for
Electric Vehicle Charging

In this section, a receiver position detection technique in a dynamic IPT system
for automotive applications is proposed. The technique is based on the study of
the input impedance of the resonator array previously proposed, and is applied to
a dynamic IPT system for EV charging composed of a series of coils each fed by
its own independent power source [109]. With the proper scale, the same apparatus
can be exploited in automatic machines for industrial applications, where several
moving parts may need to be powered. In dynamic IPT systems for automotive
applications, the EV has to be charged in a very limited amount of time, which
is proportional to the length of the coupling area and inversely proportional to its
speed. To increase the length of the coupling area multiple charging coils may be
used. Preserving the same structure and complexity of the charging lane, an array of
cascaded resonating coils may be used, where the transmitter directly feeds the first
coil and the magnetically coupled receiver on the vehicle can take the power flowing
from the same unique transmitter through the intermediate relay coils [43, 139].
Although it has been shown in Chapter 4 that it is possible to maximise both the
transmitted power and the efficiency by controlling only the input voltage, the study
conducted in Chapter 5 on the currents and magnetic field generated by the system
highlighted the risk of electromagnetic interference and physiological damage to the
health of people or animals that are in the vicinity of the apparatus. For this rea-
son, it is reasonable to think that an IPT system for automotive applications in civil
environments requires greater control of the magnetic field emissions, especially con-
sidering the high power rates required by the charging processes of electric vehicles.
On the basis of the current state of the art, a dynamic IPT system has been devised
consisting of an array of magnetically coupled resonators powered, however, indi-
vidually, with voltage sources typical of static IPT systems, analysed and discussed
in Chapter 3. In these systems, the correct positioning and minimal misalignment
are necessary to improve the efficiency [97, 140]. Different solutions can be adopted
to detect the receiver position. In particular, external sensing systems can be used,
based on optical signals [141], tag readers (RFID) [142] or GPS [143]. Other possi-
bilities consist in introducing additional inductive sensors embedded with the IPT
coils, such as ferrite antenna [144], interposed detection coils [145, 146], Hall sensor
array [147] or TMR (tunnelling magnetoresistive) sensors foil [148] combined with
specific coils systems whose parameters can be exploited for the receiver detection
[149]. In this work, the basic idea consists in exploiting the existing IPT coils of the
resonator array, and, specifically, its peculiar input impedance.
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Figure 6.8: Schematic of the proposed dynamic IPT system. The EV detector block
is devoted to the high-frequency measurement of the array input impedance.

6.3.1 System Architecture and Receiver Location Detec-
tion

Dynamic wireless power transfer systems for roadways [150, 151, 152] or industrial
applications [36] are basically composed of an array of coils arranged in the direc-
tion along which the receiver moves. Each coil is fed by a proper supply system,
that comprises the power source (typically a voltage source inverter) and a com-
pensation network, as depicted in Figure 6.8. To increase the efficiency and reduce
the magnetic field emission, only the coil facing the receiver is turned on, while the
others are kept off. As a result, for each receiver position, the system operates as
a simple two-coil IPT apparatus. It must be noticed that a suitable control system
that synchronises the coil drivers is required to rapidly detect the receiver position
and activate the proper coil. All the array coils operate at f0 = 85 kHz, as indicated
in the automotive standard SAE J2954 regulating the static IPT systems [3]. The
transmitting coils are fed by H-bridge inverters with an LCC compensation network,
as illustrated in Figure 6.9. In particular, the primary LCC compensation network
is tuned such that:

ω0Lf =
1

ω0Cf
, ω0L−ω0Lf =

1

ω0C
(6.26)

where Lf , Cf and C are the parameters of the lumped components involved in the
LCC compensation network and L the self-inductance of the transmitting coils. In
particular, Lf is chosen to ensure ZVS operations of the inverter. In order for the
study to be consistent, the values of the system parameters have been chosen in
line with those indicated in the SAE standard, which, on the basis of the nominal
power and the distance between the transmitter and receiver, suggests limits for the
self-inductances and coupling coefficient of the coils, as well as working frequency.
The compensation network is tuned accordingly. The system parameter values are
reported in Tab. 6.1.

The basic idea for the receiver coil location detection consists in feeding the first
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Figure 6.9: Equivalent circuit of the coil driver. It consists of the cascade of an
H-bridge inverter and an LCC compensation network. The coil is modelled with a
lumped impedance, resistance and the series-controlled voltage source to represent
the coupling with the receiver and adjacent coils.

resonator of the array with a high-frequency voltage and estimating the impedance
at that port. During charging operations, only the coil coupled with the receiver is
fed by the power inverters (the others are deactivated), which operate at ω0. When a
voltage at a generic frequency is induced in a coil (represented in the time domain by
the controlled voltage source e(t) in Fig. 6.9), the resulting current depends on the
circuitry connected to that coil, which in this case consists of an LCC network and
an H-bridge inverter. In particular, the behaviour of the circuit can be understood
by studying the behaviour of the equivalent impedance Ẑ seen by the controlled
voltage source e(t). According to [97] (also discussed in Sec. 2.4), the inverter can
be assumed as an ideal voltage source, being its internal impedance much smaller
than the resistance of the circuit connected to the inverter output port (more than
one order of magnitude). Thus Ẑ is expressed as:

Ẑ(ω) = R+jωL+
1

jωC
+

jωLf
1

jωCf

jωLf+
1

jωCf

, (6.27)

and it is plotted in magnitude and phase as a function of frequency in Figs. 6.10a
and 6.10b, respectively. These figures show two anti-resonance peaks: the first (at
52 kHz) below the IPT operating frequency f0 and the other (at 108.4 kHz) above
f0. For these two frequencies, the impedance seen from e(t) presents minimum
values, meaning that the coil behaves as if it is in (series) resonance. Conversely,
at f0 the Ẑ is maximum and the coil behaves as if it is open. It must be noticed
that these considerations hold whether the inverter is working or not, being its
internal impedance negligible with respect to jωLf . Indeed, the MOS body diodes
always allow the inverter output current to flow back to the DC-bus limited by
their internal resistance only. The receiver circuit impedance is determined by the
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Table 6.1: Resonator array parameters

Quantity Symbol Value Unit of Measure
Transmitting Coils

Primary Coils Mutual Inductance M -2.6 µ H
LCC Series Capacitance C 82.3 nF
LCC Series Inductance Lf 27.34 µ H

LCC Parallel Capacitance Cf 0.128 µ F
WPT Resonance Frequency f0 85 kHz
Z measurement Frequency f1 108.365 kHz
Array Matching Impedance Ẑmatch 1.75 Ω

Receiver
Receiver Coil Quality factor Qr 300 /
Receiver Coil Self-inductance Lr 40 µ H
Receiver Series Capacitance Cr 87.5 nF
WPT Resonance Frequency f0 85 kHz
On-board DC-bus Voltage VOBCdc

520 V
Power Rate P 520 kW

compensation network and load. It is easy to see that, whatever the compensation
strategy adopted, only one resonant frequency at f0 is observed. This is due to the
presence of the equivalent load of the on-board charging system, which is modelled
as an equivalent resistance as in Sec. 2.5. Being it defined based on the on-board
converter bus voltage and transferred power, it can present values of tens of Ohms.
Overall, it is possible to conclude that, at the frequency f1 =108.4 kHz (the upper
anti-resonance is chosen without a loss of generality) the system behaves as an array
of magnetically coupled resonators as described in these Chapters and shown in Fig.
6.11, coupled to a non-resonant receiver placed over it. The array can be modelled as
in Sec. 4 and 5 and, in this case, the coils resonate due to the particular behaviour
of the LCC network and voltage source inverter. To simplify the description, an
equivalent (and fictitious) series capacitance C ′

s that makes the coils resonate at f1
is introduced and defined as:

C ′
s =

1

ω1L
. (6.28)

which describes the overall behaviour of the driver circuit upstream of the coil at the
frequency f1. As already discussed in both Chapters 4 and 5, an array termination
impedance is usually introduced to modify the system behaviour and improve both
the efficiency and the transmitted power. Furthermore, in Sec. 6.1 the effect of
the termination condition on the input impedance has been discussed, which in this
case is the parameter of interest. Thus, it is reasonable to introduce the termination
ẐT . However, the coils are designed for high power transfer rates and a further
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a)

b)

Figure 6.10: (a) Magnitude and (b) phase of the driver coil impedance Ẑ as a
function of the frequency.

impedance may alter the operation of the IPT system at f0. As a solution, a small
resonator coupled to the last array coil can be introduced at the end of the array,
dimensioned such that its reflected impedance acts as termination ẐT at ω1. This
additional coil allows the termination of the array to be found as:

ẐT =
(ω1Mac)

2

Ẑac

(6.29)

where Mac is the mutual inductance between the last array coil and the additional
coil and Ẑac the internal impedance of the additional resonator, which comprises
an arbitrary lumped impedance ẐacT that can be adjusted to achieve the desired
ẐT at f1. The circuitry used to realise ẐacT must be tailored such that it presents
a very high impedance for f = f0, so that it does not interfere during charging
operations. Moreover, it is important to dimension the additional coil components
in order to withstand the voltages induced by the last coil of the array during the
IPT operations at f0. Indeed, high currents may circulate in the last array coil
and therefore induced voltages in the coupled circuits may not be negligible. The
receiver impedance Ẑr is instead defined by the circuitry downstream it, namely
the rectifier, battery charger and the battery itself. Depending on the matching
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Figure 6.11: High-frequency equivalent circuit of the resonator array at ω1 = 2πf1
with an additional termination coil (with ẐacT ) and the receiver coil terminated
on the impedance Ẑrc. The “Z measurement” block estimates the array input
impedance.

Figure 6.12: Mutual inductance between the receiver and three consecutive res-
onators ((i−1)th, ith and (i+1)th) of the array, as a continuous function of the
position x.

network and equivalent load, Ẑr can assume different values. In the majority of the
applications, SS, SP, or LCC-LCC compensations are considered (see Chapter 3),
and, in general, they result in real Ẑr at the IPT frequency f0. However, when it
is excited at f1, Ẑr may present a capacitive or inductive behaviour, still depending
on the actual load and network topology. As a case study, a series compensation
is chosen for the receiver coil that, considering the system parameters reported in
Tab. 6.1, results in Ẑr = 40+j10 [Ω] at f1 proving to be inductive. For the sake of
completeness, also the capacitive behaviour is considered in the simulations. Since
the position detection system is based on the variation of the array input impedance
at the frequency f1, its behaviour must be characterised in relation to the particular
system. This is also crucial for the proper calibration of the measurement devices.
The expression of the input impedance of a resonator array with a receiver placed
at any position is shown in Sec. 6.1. In this case, the mutual inductance behaves
similarly to that shown in Fig. 6.12, with maximum values exceeding 8 µH. In
conditions of perfect alignment, this corresponds to a coupling coefficient of 0.15, in
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a)

b)

Figure 6.13: Array input impedance as a function of the receiver position with SC
termination for different values of load resistance Ẑr, in magnitude (a) and phase
(b).

line with the range proposed in the SAE standard [3]. The behaviour of the input
impedance Ẑeq(x) is plotted in magnitude and phase in Figs. 6.13–6.15 as a function
of the receiver position for different values of receiver impedance Ẑr, in case of SC,
matched and OC terminations, respectively. In particular, both real and complex
values of Ẑr have been considered as a comparison.

Similarly to the results of Sec. 6.1.1, the curves result slightly asymmetric. This
can be addressed to the peculiar behaviour of Ẑeq

n−i,ẐT
(the reflected impedance of

the coils that follows the one coupled with the receiver), which oscillates between
very high and low values depending on the number of resonators of the array it is
associated with (in this case n−i) and its termination impedance [113]. Indeed,
when switching from SC to OC termination, the array behaves as it has one less
resonator and the trend of the input impedance is mirrored. This can be appreciated
from Figs. 6.13 and 6.15, that show the mirrored trends of the input impedance
magnitude, while the phase trends are both mirrored and shifted. Two different
situations are thus identified: resonant receiver and non-resonant receiver.
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a)

b)

Figure 6.14: Array input impedance as a function of the receiver position with
matched termination for different values of load resistance Ẑr, in magnitude (a) and
phase (b).

Perfectly Resonant Receiver In the case of a perfect resonant receiver, Ẑr

is real, while the array input impedance is still complex in general. In particular,
it presents real values only in case of perfect alignment of the receiver, as already
discussed in Sec. 6.1.1. Instead, the phase presents the maxima and minima values
when the receiver is in between two array resonators and oscillates between positive
and negative values. This is common for all the array terminations considered.
Again, the lower the receiver load, the higher its influence on the input impedance,
whose maxima and minima have larger values.

Non-Resonant Receiver For complex Ẑr, the maxima and minima of the
input impedance magnitude are still found for perfect alignment positions and their
values decrease as the receiver approaches the end of the array. The phase reaches
the maximum and minimum values when the receiver is perfectly aligned with the
facing array coils, resulting in a shifted trend with respect to the case of the resonant
receiver. The phase behaviour in case of inductive or capacitive receiver load is
mirrored. The change from SC to OC terminations also makes the curve “translates”.
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a)
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Figure 6.15: Array input impedance as a function of the receiver position with OC
termination for different values of load resistance Ẑr, in magnitude (a) and phase
(b).

For inductive receiver loads, the input impedance presents an inductive behaviour
when the receiver is aligned with even-numbered resonators for an SC terminated
array and odd-numbered resonators terminating the array in OC. In the case of
capacitive receiver load the behaviour is the opposite.

Input Impedance Trajectory

In view of using it for detecting the receiver locations, the input impedance of the
array should present a one-to-one behaviour with respect to the receiver position,
meaning that at least the combination of the magnitude and phase of the input
impedance is unique for any x. The trajectory of the input impedance in the complex
plane is then studied for different terminations considering the receiver load Ẑr =

40+j10[Ω]. In Fig. 6.16 the input impedance for an SC terminated array is plotted.
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Figure 6.16: Input impedance trajectory as a function of the receiver position for
the resonator array with a series-compensated receiver and SC termination.

Figure 6.17: Input impedance trajectory as a function of the receiver position for
the resonator array with 6 cells and series-compensated receiver, terminated with
ẐT = 0.8Ω.

It is possible to notice that there is an intersection point. This means that
the same complex input impedance value is possible for multiple receiver positions
along the array. Intersections still occur even adopting the other usual terminations,
namely OC and matching impedance. However, to ensure univocity, simulations
proved that other terminations are required. In particular, for the considered sys-
tem, ẐT l ≈ 0.8Ω can avoid intersections, and corresponds to ẐT l ≈ hatZmatch/2.
The one-to-one behaviour is proved by the impedance trajectory of Fig. 6.17 for a
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Figure 6.18: Input impedance trajectory as a function of the receiver position for
the resonator array with 12 cells and series-compensated receiver, terminated with
ẐT = 0.8Ω

resonator with 6 cells, and has been verified also for a longer array of 12 cells as
shown in Fig. 6.18.

6.3.2 Simplified Receiver Location Algorithm
The basic and most intuitive algorithm to detect the receiver position from the
array input impedance has been described in Sec. 6.2.3. It can be done measuring
its amplitude as the ratio between the first coil voltage and current at the frequency
f1 and its phase with additional circuits, such as a PLL [153] or from the FFT (see
Sec. 6.2.3).

However, being the resonator array devoted to dynamic IPT, it is possible to
assume that:

• starting from the first one, the receiver couples consecutively with all the array
coils;

• the function |Ẑeq(x)| is monotonic in the interval between two positions of
perfect alignment.

First, it can be noticed that each time the receiver couples with a new array
coil, the slope of the input impedance magnitude reverses. Thus, from the first
assumption, it follows that the i and (i+1) resonators coupled with the receiver can
be identified considering the number of changes in the sign of the derivative of the
input impedance magnitude. The check of the function derivative can be easily done
by evaluating the difference between function values at consecutive positions as:

∆Z̃k = Z̃k+1−Z̃k (6.30)
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where Z̃k and Z̃k+1 are the estimated impedance values associated with two succes-
sive positions xk and xk+1, respectively. Thus, when the vehicle enters the array,
the receiver couples to the first array coil and so i = 1. Then, each time the sign of
∆Z̃k changes the position i and i+1 can be updated.

From the second assumption, according to which the input impedance magnitude
can be assumed monotonic for each pair of resonators coupled to the receiver, it
follows that |Ẑeq(x)| is sufficient to estimate the receiver position x. In this manner,
the detection of the receiver position, for which the calculated input impedance
matches the estimated one, can be limited to the correct coil interval where |Ẑeq(x)|
is monotonic. Once the coupled resonators i and i+1 are found, the position x can
be determined through (6.1) and enforcing (6.14).

Algorithm 1 Receiver coil position detection

Z̃0 = 0

k = 1

i = 1

while x < nd do
Acquire Z̃k

if sgn[∆Z̃k] ̸= sgn[∆Z̃k−1] then
i = i+1 ▷ Change of coil

end if
ξ = 0

while ∥ Z̃k−|Ẑeq
i,i+1(ξ)| ∥> δZ do

ξ ← ξ+∆x

end while
xk = xk−1+ξ

k = k+1

end while ▷ End of array

In the event that the algorithm is used to determine which coil has to be activated
for the power transfer, it is sufficient to know only which coils i and i+1 it couples
to. The basic algorithm is described with the pseudo-code shown in Algorithm 1.

The effective accuracy of the measurements is defined by the sensitivity parame-
ters, as already discussed in Sec. 6.2.2. They are strongly affected by the geometry
of the windings, which must be tailored based on the discretisation step and the
number of array coils.

This algorithm for estimating the position of the receiver (or even just the coils
coupled to it) can be performed in a limited number of operations. The measurement
of the current and voltage can be done as described in Sec. 6.2.3. The computational
power of modern DSPs guarantees very short calculation times and therefore the
possibility of running these algorithms even in the presence of moving vehicles. At
each algorithm run, the input impedance is calculated in one complex operation.
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A vehicle travelling at 100 km/h travels at about 28 m per second. Considering,
for example, a spatial discretisation ∆x of 5cm, the time available to the DSP for
the calculation is about 18 ms, much higher than that required one for a single run
of the algorithm.

6.4 Conclusions
The possibility of employing resonator arrays with a receiver (or a generic coupled
external coil) as a passive sensor is proposed and discussed. It is applicable to any
longitudinal array structure of magnetically coupled resonators and allows the ex-
ternal coil position to be estimated by measuring the array input impedance. This
technique can be implemented in arrays specially developed as sensors, which can
be introduced in systems with moving mechanical parts. Requiring little power, it
is therefore possible to create arrays with inductors printed on flexible PCBs, which
can be easily installed wherever desired. Attention should be paid when there are
metal parts in the surrounding structure, which can modify the parameters of the
resonators. It is however possible to consider these variations in the sensor calibra-
tion phase. Alternatively, the proposed technique can be implemented in systems
devoted to IPT. In this framework, two possible systems can be considered: res-
onator arrays for IPT, in which only the first coil is powered, and resonator arrays
with a driver circuit for each resonator. In the first case, the termination impedance
can be read from the source coil with appropriate current and voltage sensors, know-
ing the voltage and therefore the equivalent load of the receiving system. Note that
feedback from the receiver is always needed to check the input voltage properly.
As a second case, the possibility of detecting the receiver location in dynamic IPT
systems for automotive applications has been discussed, that can be implemented
using the same structure of the system, therefore in a non-invasive way. This is pos-
sible only by introducing a suitable high-frequency impedance measurement system
consisting in a current and voltage sensor with a DSP for the post-processing and
impedance estimation. The effectiveness of this method has been proved consider-
ing a dynamic IPT system selecting the component parameter values in line with
the SAEJ2954 standard, being the dynamic IPT not standardised yet. However, in
order to make both the IPT and position sensing system work without interference,
it was necessary to characterise the transmitting circuit of each coil and not only
the compensation networks typically employed can be allowed. To implement this
technique in automotive systems it is necessary to properly dimension the appara-
tus considering to satisfy both the requirements of the IPT system and that for the
location of the receiver.





Chapter 7

2D Resonator Arrays in IPT
Systems: Considerations for
Future Works

This chapter illustrates and discusses the results obtained from preliminary studies
on 2D resonator arrays in IPT systems. The basic ideas for future developments
are therefore illustrated and supported with the basic numerical simulations of 2D
structures of magnetically coupled resonators used in IPT apparatuses. As already
discussed in the Introduction, these types of structures are used for several purposes.
Even focusing only on IPT systems, 2D resonator arrays find different applications
based on how they are dimensioned and located in the apparatus. In particular,
the most intuitive application (and the first to be analysed here) is to use these
structures as transmitters to power one or more receivers which can be placed at
any position on the plane. In this context, the 2D array can be seen as the extension
of the one-dimensional array. 2D arrays can also be introduced into traditional two-
coil systems, to increase efficiency in misalignment conditions and/or shield the
magnetic field in certain regions of space. These two possible applications are also
briefly explored. In these contexts, they are introduced in place of natural materials
and, due to their exotic magnetic properties, are also named metamaterials. It can
be seen that, in general, near-field 2D resonator arrays are modelled as coupled
resonant circuits and, therefore, the theoretical approach is the same for all this
kind of structures.

7.1 2D Resonator Arrays for IPT
In Chapter 4, resonator arrays have been discussed extensively, especially when used
to power a receiver. It has been shown that, especially when appropriate control
techniques are adopted, power can be efficiently transmitted to a load connected
to the receiver. It is easy to think of introducing more coupled resonators also
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Figure 7.1: Schematic representation of a 2D array of resonators.

in other directions of space, to form a plane. In this way, by feeding even just
one of the resonators of the 2D array, the whole structure is energised and each
coil experiences a circulating current, that in turn generates a magnetic field. A
receiving circuit connected to a load can therefore ideally receive power in any
point of the plane. However, similarly to the case of 1D arrays, the currents in the
resonators do not all have the same amplitude and are strongly influenced by the
topology of the system, i.e. the circuit parameters, the power source connection
point and the load value. Thus, the original structure requires to be modified to
obtain the desired performance, by deactivating the appropriate resonators [61],
changing their structures [63] or overlapping different arrays fed in several different
points [62]. These solutions have been recently introduced and allow the distribution
of the currents to be somehow controlled, with the ultimate aim of improving the
performance in terms of transmitted power and efficiency in every point of the region
covered by the plane. As first step, the suitable model to represent the system must
be established.

7.2 Currents in 2D Resonator Arrays
Being the physical phenomena identical to those exploited in 1D resonator arrays,
2D resonator arrays can be modelled by means of the circuit theory and magneto-
inductive waves. To discuss the models, a 2D array composed of N resonant RLC
coils immersed in a linear medium and arranged to form a square lattice is con-
sidered, as represented in Fig. 7.1. The relation between the currents circulating
in the loops can be found applying the KVL to each coil, considering operations
in sinusoidal steady-state. The resulting system of equations can be expressed in
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matrix form as:
V̂ = ẐMÎ (7.1)

where ẐM is the impedance matrix of the system, Î is the vector of the phasor
currents flowing in the resonators and V̂ = [0...0V̂s0...0]

T is the phasor voltage
vector with V̂s the phasor supply voltage. Rigorously, the impedance matrix should
include the coupling coefficients between all the coils composing the metamaterial
[64] and is defined as:

ẐM =


Ẑ11 jωM12 jωM13 · · · jωM1N

jωM21 Ẑ22 jωM23 · · · jωM2N
...

...
...

...
...

...
...

...
... jωM(N−1)N

jωMN1 · · · · · · jωMN(N−1) ẐNN

 . (7.2)

The impedance of the generic mth cell of the array results:

Ẑmm = Rmm+jωLmm+
1

jωCmm
(7.3)

where Rmm is the resistance, Lmm the self-inductance and Cmm the capacitance
of the mth coil. The desired value of this last parameter can be obtained by con-
necting lumped capacitors to the coil or exploiting the coil self-capacitance with
a proper design. In particular, for low-frequency applications (up to a few GHz)
the self-capacitances of the unit cells are too small and lumped capacitors are re-
quired to make the coils resonate at the desired frequency. In planar structures, the
magnetic interaction of coplanar-coupled coils is characterised by a negative mutual
inductance. In the majority of the applications, 2D resonator arrays are designed
to form periodic lattices and thus all the coils are identical and positioned such that
their mutual inductance coefficients are the same for pairs of resonators in symmet-
ric positions with respect to the axis of the plane (that is the axis of the central
resonator). The 2D array is considered excited in the central resonator with a sinu-
soidal voltage V̂s. The resonators are characterised by a resistance R = 0.015Ω and
self-inductance L = 0.4µH, whereas a lumped capacitance C = 60 nF is chosen to
make the system resonate at the frequency f0 = 1 MHz.

The distribution of the surface currents in 2D resonator arrays is dominated by
the resonator mutual couplings and quality factor Q = ω0L/R, whose impact is
different depending on the lattice extension.

In general, the resonator resistance, self- and mutual inductances depend on the
operating frequency due to skin and proximity effects, and these phenomena em-
phasise as the frequency increases. However, when considering resonators made of
stranded-wire wound coils, those parameters can be considered frequency indepen-
dent up to few MHz. In this condition, still considering the 2D array-unit cells
perfectly resonant, it is possible to notice that the resistance, self- and mutual in-
ductances depend on the system geometry only.
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(a) (b)

Figure 7.2: Current distribution of a 51×51 2D array excited in the central resonator
considering the interaction of each coil in case of (a) Q = 40 and (b) Q = 260 at the
frequency f0.

7.2.1 Effect of the resonator quality factor on current
distribution

At a fixed frequency, different quality factors lead to different current distributions
and this effect can be particularly appreciated as the extension of the 2D array
increases. Considering a full impedance matrix Ẑm (all coils interact), for low-
quality factors (i.e., Q < 100), obtained by increasing the resonator resistance or
decreasing the operating frequency, the resonators laying on the diagonal of the
lattice experience higher currents (see Fig. 7.2a). In particular, the current gradually
decreases from the resonators closer to the power source towards the boundary ones,
which experience a nearly null current amplitude. Reversely, as Q increases it is
difficult to predict and control the current distribution, as shown in Fig. 7.2b.
Indeed, while the central resonators still experience higher currents, the current
distribution presents maxima and minima spread among all the lattice unit cells,
whose locations are not known a priori. Intuitively, the above mentioned behaviour
can be explained considering that the current distribution originates from the fed
resonator (the central one in this case) and spreads to surrounding unit cells thanks
to their mutual couplings, limited by the resonator resistance. A lower quality factor
leads to stronger attenuation of the currents and, as a limit case, no current flows
in the resonators furthest from the powered one. In this condition, these furthest
cells do not affect the current distribution. In case of higher quality factors, all
the lattice unit cells contribute to the resulting current distribution. According to
[64, 67, 121, 61], this behaviour is analogous to the one of a current wave, which
originates at the centre of the 2D array and diffuses in the lattice, which can be
considered the medium. If the wave reaches the boundary of the medium, reflections
occur, thereby leading to standing wave patterns. This phenomenon can be identified
in Fig. 7.2b, where the resonators are characterised by a high Q. In case the
medium presents a higher attenuation, the wave presents a very low amplitude at
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(a) (b)

Figure 7.3: Current distribution of a 51×51 2D array with (a) Q=25 and (b) Q=170,
excited in the central resonator considering all couplings between coils. The values
have been normalised to the current of the central resonator.

the boundary and its reflections can be considered negligible. This occurred in a 2D
array with low Q, whose current distribution is plotted in 7.2a. It must be noticed
that in case of a sufficiently attenuated medium (so that the currents are null in the
boundary resonators) it is possible to appreciate the propagation characteristic of
this kind of wave, which tends to follow the diagonals of the lattice.

7.2.2 Effect of couplings on current distribution
Different models can be adopted to describe the 2D array behaviour. Although
the most intuitive and most accurate evaluation of the current distribution can be
obtained considering the full impedance matrix, simplified models allow a dramatic
reduction of the computational effort and also allow the analytical description to
be simplified. The models are compared considering 51×51 2D array with high and
low Q resonators to emulate an infinitely extended lattice (to appease the effect of
the boundary unit-cells).

All couplings between coils (full model) When all the couplings between
coils are considered the impedance matrix ẐM is fully populated and the resulting
current distribution is depicted in Figs. 7.3 for 2D resonator arrays with low quality
factor (Q=25) and large quality factor (Q=170). The currents are normalised with
respect to the one of the central resonator, which presents the highest value. Besides
the centre, the resonators on the diagonals of the lattice tend to experience higher
currents. This behaviour is more accentuated in the case of large Q 2D array. In
case of low Q, current maxima are spread among more cells.

Adjacent Couplings only The couplings between nonadjacent resonators can
be neglected since the mutual inductance between two coils dramatically decreases
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(a) (b)

Figure 7.4: Current distribution of a 51×51 2D array with (a) Q=25 and (b) Q=170,
excited in the central resonator considering the couplings between adjacent coils in
the x, y and diagonal directions of the lattice. The values have been normalised to
the current of the central resonator.

as their distance increases, allowing Ẑm to be extremely simplified. Then, a first ap-
proximation consists in considering only the couplings between adjacent resonators
in all (x,y and diagonal) directions. The current distribution is governed by the
resonator mutual coupling Madj along the x and y directions and Mdiag along the
diagonal directions. The current distribution obtained with this approximation is
shown in Fig. 7.4 for 2D resonator arrays with small (Q = 25) and large (Q = 170)
quality factors, respectively. The highest values of the current are found in the same
positions as in the full model, although the values are slightly different. For the
large and low Q arrays the current still concentrates along the diagonals, although
this tendency is less pronounced than in the previous case. A higher Q leads to
localised maxima and minima (see Fig. 7.4).

Nearest-Neighbour Approximation and Magneto-Inductive Waves
Being Madj >> Mdiag, a further approximation consists in neglecting the coupling
between coils along the diagonals. With this assumption, referred to as "nearest-
neighbour" approximation, Ẑm simplifies and the distribution of the currents is
governed by the resonators-mutual couplings along the x and y directions of the
space only. With this approximation the currents of resonators lying on the lattice
diagonals markedly present the higher values for both the considered 2D resonator
arrays, as it is shown in Fig. 7.5 for 2D resonator arrays with small (25) and large
(170) Q, respectively. Under this approximation, the current distribution can be
considered the result of the propagation of the MI wave [64, 67], for which the
attenuation per cell can be written as [64]:

α =
1

d
sinh− 1

(
1

2kQ

)
(7.4)
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(a) (b)

Figure 7.5: Current distribution of a 51×51 2D array with (a) Q=25 and (b) Q=170,
excited in the central resonator considering the nearest-neighbour approximation.
The values have been normalised to the current of the central resonator.

where k = 2Madj/L is the coupling coefficient between adjacent cells in the directions
x and y. With this definition, it is easy to see how low values of quality factors and
coupling coefficients emphasise the attenuation of the current wave. The MI wave
attenuation is proportional to the resistance R of each unit cell and becomes stronger
as the coupling between the resonators weakens. A wave-based model allows a clear
explanation of the obtained results when the 2D array emulates an infinite lattice,
while it appears inaccurate in case of small and weakly attenuated 2D arrays. The
current distribution can be considered the result of the superposition of forward and
backward current waves, where the latter originate at the boundary of the 2D array.
As it happens in finite traditional waveguides, standing wave patterns can arise,
leading to local maxima and minima of the current [68, 61, 121]. It must be noticed
that, in practical applications [63, 55], the extension of the 2D array is limited and
the unit cells are designed to present high Q to avoid losses. The current distributions
of a 5×5 resonator array with Q=170 are reported in Figs. 7.6a-7.6c considering all
couplings between coils, the couplings between adjacent coils in the x, y and diagonal
directions, and the nearest-neighbour approximation, respectively. It can be seen
that the results obtained with both the approximated models are unacceptable.
In fact, even if the current distributions in the approximated cases recall the one
obtained with the full-couplings model, for some resonators the difference can be
even 40 %. In particular, the model that considers the couplings between adjacent
coils in the x, y and diagonal directions yields very high currents in the corner
resonators and in those in the centre of the sides (in addition to the fed one),
while in the nearest-neighbour approximation the highest current values occur in
diagonal resonators. Taking as a reference the current distributions obtained with
the full-coupling model, we can therefore conclude that the simplified model that
considers the couplings between adjacent coils in the x, y and diagonal directions
leads to reliable results for extended 2D resonator arrays, while when these are
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(a) (b)

(c)

Figure 7.6: Current distribution of a 5×5 2D array with Q=170 excited in the
central resonator considering: (a) all couplings between coils, (b) the couplings
between adjacent coils in the x, y and diagonal directions and (c) the nearest-
neighbour approximation. The values have been normalised to the current of the
central resonator.

limited (somehow related to the wavelength λMIW = 4d of the MI wave) the error
increases (see Fig. 7.6). In the nearest-neighbour approximation is in any case
difficult to consider the resulting current distribution acceptable, both for very large
and nonlarge 2D resonator arrays. Thus, it is difficult to predict and control the
current amplitude distribution.

7.2.3 Controlling the Resonator Currents: Terminated
2D Array

Similar to the one-dimensional case it is possible to think of terminating the lattice
to control the current distribution. Two types of termination impedances are con-
sidered, that are ẐTs

for the side resonators and ẐTc
for the corner resonators, as

depicted in Fig. 7.7. As an example, it is possible to try to obtain the same current
magnitude in all the resonators, in view to powering different receivers that can be
coupled with a cell. However, modelling the system based on the circuit theory
clearly requires the KVLs are fulfilled. The KVL for the generic mth resonator can
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ẐTc
... ...

...
...

...

Figure 7.7: Schematic representation of the 2D array of resonators.

be written as:

0 = ẐmmÎmm+

N∑
k

jω0MmkÎk (7.5)

where Ẑmm is the self-impedance of the coil and Mmk the mutual inductance between
the mth and kth coil. Assuming the same phasor current Î for all the resonators,
(7.5) becomes:

Ẑmm = −jω0

N∑
k

Mmk. (7.6)

This condition can be met only with an accurate design of the lattice resonators,
which may present different impedance values at the operating angular frequency
ω0 of the source coil or, in other words, they may result tuned at different resonant
frequencies. However, assuming the unit-cells tuned at the same resonant frequency
f0, the imaginary part of their impedance is null, and (7.6) reduces to:

Re[Ẑmm] = −jω0

N∑
k

Mmk (7.7)

which cannot be fulfilled being the left-hand-side term always real and the right-
hand-side term always complex. This equation clearly indicates that a lossy lattice
with equally resonant cell does not allow the same current in all the resonators.
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Lossless and Nearest-Neighbour Approximation In nearest-neighbour
approximation, it is assumed that resonators are coupled with their nearest ones
only. In a square lattice, four couplings are then considered for a generic resonator
out of the boundary and are characterised by the same mutual inductance M . In
general, the condition (7.6) dramatically simplifies to:

Ẑmm = −j4ω0M. (7.8)

which indicates that the overall impedance has to compensate the induced voltage
by near unit-cells. It must be noticed that this condition cannot be satisfied in case
of perfect resonance operation, being (7.8) a special case of (7.6).

7.2.4 Optimisation Procedure
The KVLs show that it is not possible to obtain the same phasor current in each
resonator, but they allow all the cells experience the same current magnitude, here
named I. The phases of the cell currents are different and have values such that
the KVL equations are satisfied. The numerical calculation of the termination
impedances for achieving the same current in each cell is addressed as an opti-
misation problem, that consists in finding the values of ẐTs

and ẐTc
that minimise

the normalised standard deviation σI of the resonator current magnitudes. It is a
single-objective optimisation problem of two complex variables and it can be ex-
pressed as:

min
ẐTs ,ẐTc

σI . (7.9)

Thus, the objective function of the problem is the normalized standard deviation
σI , which is defined as:

σI =
1

µI

√
1

N

∑
k

(|Îk|−µI)2 (7.10)

where
µI =

1

N

∑
k

|Îk| (7.11)

is the mean value of the resonator current magnitudes. When σI ≈ 0, the corre-
sponding µI can be considered the value of each resonator current magnitude I.

The problem has been solved implementing a Particle-Swarm Optimization (PSO)
algorithm, which found the value of the four varying parameters, namely the real
and imaginary parts of the edge and corner termination impedances. The calcula-
tion has been performed considering a sinusoidal input voltage of 1 V at f0. After
a first heuristic evaluation of possible limits for the parameter values, the variation
range of each variable has been set to [-10,10] in order to leave the algorithm free
to operate. Due to its stochastic nature, each run of the PSO algorithm provides
different optimised parameter values, still ensuring convergence. Being the optimal
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impedance values strictly correlated, to statistically reduce the uncertainty on the
results several runs have been performed. Then, a clusterization procedure allowed
the most recurrent solutions to be identified. In particular, the so called “k-means”
algorithm has been implemented to group the results of the 200 PSO runs. This
procedure partitions the 200 quaterns of values in k clusters minimising the dif-
ference between the quatern values and the cluster mean (named “centroid”), also
ensuring the minimum within-cluster variance. For all the considered metasurfaces,
it is found that the convergence is reached faster if the full model is used, at the
cost of a higher residual σI .

Table 7.1: Simulation results.

ẐTs
[Ω] ẐTc

[Ω] σI Observations
0.271-j0.154 -0.587-j0.195 0.0167 134
0.082+j0.128 -0.04+j10 0.24 1
-0.31-j0.12 0.474-j0.137 0.061 65

The results are summarised in Tab. 7.1, in which the optimum values for ẐTs

and ẐTc
with the corresponding normalised standard deviation σI are reported for

a 5×5 array. The map of the normalised currents obtained with the termination
set that presented the highest number of observations in the clusters confirms the
result, and it is shown in Fig. 7.8. However, the real part of the termination
impedances, which is interpreted as a resistance, often results negative. In practical
applications this condition can be met by means of active devices only, such as OP-
AMP based circuits or thyristors. From our analysis, we noticed that within the
realisations of the applied algorithm, sub-optimal results can be obtained in terms of
current’s uniformity, resulting in termination impedances also having a positive real
part, thereby indicating that passive components could be sufficient to terminate the
lattice, at the cost of a higher σI . It is also important to note that the presence of a
receiver can lead to an alteration of the current distribution in the array, based on
the coupling and the power transferred. In any case, the procedure can be repeated
by incorporating one or more receivers into the system model. Furthermore, it is
planned to test other types of optimisation procedures, with the aim of maximising
the current in certain arbitrarily chosen resonators. It is also worth mentioning that
a terminated 2D array can be designed for achieving a uniform magnetic field over
it [154]. A similar optimisation procedure has been implemented, whose objective
function calculates the average magnetic field in the desired area.

7.3 2D Resonator Arrays as Metamaterials
In near-field systems, the most promising applications of 2D resonator arrays can
be considered the magnetic field focusing and shielding. Several articles testify
to the effectiveness of these arrays in improving the coupling of loosely coupled
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(a)

Figure 7.8: Current distribution of a 5×5 metasurface excited in the central res-
onator considering all couplings between coils. The values have been normalised to
the current of the central resonator.

resonators and hence the power transfer efficiency [57], as well as to attenuate the
magnetic field in a certain region of the space. Their use mainly concerns high-
frequency systems, where traditional materials (such as ferrites) are not used, due
to the high losses they introduce and their weight [55, 57]. Acting as substitutes for
traditional materials, 2D resonator arrays have been modelled as homogeneous slabs,
based on their interaction with the electromagnetic field. The homogeneous slab is
characterised by a Lorentzian-like complex magnetic permeability, that can present a
magnitude lower or greater than that of the vacuum µ0 depending on the frequency,
as extensively discussed in [50]. This clearly means that, for a fixed system structure,
the overall effect of the metamaterial on the magnetic field depends on the operating
frequency at which the metamaterial cells are forced to work. This kind of behaviour
is typical of both single coils and arrays of resonant coils. From a structure of coupled
resonators is still possible to reduce the system to a unique circuit, as discussed in
[56]. Thus, an equivalence is established between metamaterials, single resonant
coils and natural materials characterised by a Lorentzian magnetic permeability.

The main characteristic is that the metasurface resonators are usually tuned to
work at the same frequency, although each resonator can be tuned differently. The
majority of the applications consider periodic metamaterials, i.e. all the resonators
have the same self-inductance and capacitance (this latter can be lumped or dis-
tributed). Nonperiodic structures have been investigated in [155], which shows how
the control of the resonator currents is possible with the appropriate tuning of the
cells. The behaviour of the currents is reflected in the magnetic field and, conse-
quently, in the efficiency of the IPT system. It must be noticed that, despite the
resonators can resonate at a different frequency, the whole array can still be re-
duced to a unique equivalent R-L-C coil, as described in [56]. Thus, the associated
magnetic permeability still presents the peculiar behaviour described by the Lorentz
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Figure 7.9: Isometric view of the system composed of a transmitter and a receiver
square wound coils with the interposed 5×5 array made of round wound coils.

dispersion model.
The possibility of different tuning of metamaterials cells has been here briefly

explored for the magnetic field focusing and shielding. In particular, an optimisation
procedure is defined to find the optimal tuning of each resonator.

7.3.1 Metamaterial for Magnetic Field Focusing
As a preliminary study, an array of 5×5 magnetically coupled resonators has been
considered. Each cell is formed by a winding of 12 turns made of a Litz wire
conductor with 1mm in diameter, series connected to a lumped capacitor whose
capacitance is found through an optimisation procedure. The transmitting and
receiving coils are identical. They are realised with 6-turn square windings of 153
mm side length. The stranded wire conductors have a section of 2.5 mm2. The
lumped capacitors connected to the coils are chosen to make the coils resonate
at f0=85kHz. The metamaterial slab is interposed between the transmitter and
receiver circuit, at different axial distances. The resulting system is depicted in
Fig. 7.9. The calculation of the coil self- and mutual inductances is performed with
a commercial software based on the finite element method (FEM). In particular,
to reduce the complexity of the model and therefore reduce the calculation effort,
the coils have been simulated considering their equivalent single-turn thick model.
The equivalence is established enforcing that the current density in the multi- and
single-turn coil models is the same, as described in Appendix A. From the FEM
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simulations, the mutual inductance matrix MM is extracted, which is defined as:

MMtot
=


L11 M12 M13 · · · M1N M1Rx

M1TX

M21 L22 M23 · · · M1N M2Rx
M2TX

...
...

...
...

...
...

...
...

...
...

... M(N−1)N
...

...
MN1 · · · · · · MN(N−1) LNN MNRx

MNTx

MRx1 · · · · · · MRx(N−1) MRxN LRxRx
MRxTx

MTx1 · · · · · · MTx(N−1) MTxN MTxRx
LTxTx

 (7.12)

where the subscript of each symbol denotes the winding to which the self- or mutual
inductance coefficient refers. The metamaterial cells are numbered based on their
position in the array as described for the metasurface of Fig. 7.1. However, the
numbering of the cells is clearly arbitrary and does not affect the generality of the
analysis. From MMtot

, the impedance matrix ẐMtot
at the angular frequency ω can

be derived, and results:

ẐMtot
=


Ẑ11 jωM12 jωM13 · · · jωM1N jωM1Rx

jωM1TX

jωM21 Ẑ22 jωM23 · · · jωM1N jωM2Rx
jωM2TX

...
...

...
...

...
...

...
...

...
...

... jωM(N−1)N
...

...
jωMN1 · · · · · · jωMN(N−1) ẐNN jωMNRx

jωMNTx

jωMRx1 · · · · · · jωMRx(N−1) jωMRxN ẐRxRx
jωMRxTx

jωMTx1 · · · · · · jωMTx(N−1) jωMTxN jωMTxRx
ẐTxTx

 . (7.13)

It can be proved that the network is reciprocal and both MMtot
and ẐMtot

result
symmetric. Moreover, being all the resonators identical, their resistance and self-
inductance can be considered the same and are named as Rres, Lres, respectively.
Being the resonators made of Litz wires, it is assumed that the resistance and
inductance parameters do not vary considerably with respect to the one calculated
with FEM magnetostatic simulations. However, this assumption does not affect
the generality of the analysis. The impedance of the cell in the generic position m

reduces to:
Ẑmm = Rres+jωLres+

1

jωCmm
(7.14)

while the capacitance can have a different value depending on the considered res-
onator. The resonant angular frequency of the generic mth resonator of the array is
then expressed as:

ωmm =
1√

LresCmm
(7.15)

It is convenient to introduce a coefficient Kmm for the generic mth resonator defined
as:

Kmm =
ωmm

ω0
(7.16)

which provides an indication of the deviation of the resonant angular frequency
of the considered cell from the one at which the transmitting and receiving circuits
work, that is ω0. The transmitter and receiver resistance and inductance parameters
can be considered the same and are named as R and L, respectively. Moreover, the
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transmitter and receiver circuits are tuned to operate at the reference frequency ω0,
which is assumed fixed in this analysis and thus also their series capacitance is the
same, referred to as C. Their impedances are then defined as, respectively:

ẐTx
= R+jω0L+

1

jω0C
(7.17)

and
ẐRx

= R+Rload+jω0L+
1

jω0C
(7.18)

where Rload is the receiver load defined as in Sec. 2.5. In this system, the efficiency
of the power transfer is calculated as:

ηtot =
Re[ẐMtot

]|ÎRx
|2

Re[V̂sÎ∗Tx
]

(7.19)

where ÎTx
and ÎRx

are the transmitter and receiver resonator phasor currents, re-
spectively. The currents are found solving the system:

V̂ = ẐMtot
Î (7.20)

where Î is the vector of the phasor currents flowing in the resonators and V̂ =

[0...0V̂s]
T is the phasor voltage vector with V̂s the phasor supply voltage applied to

the transmitter coil. The main goal of the metamaterial is to make the total efficiency
ηtot of the system increase compared to the case in which only the transmitter and
receiver circuits are present. For the two-coil system, the efficiency is defined as:

ηref =
Re[ẐMref

]|ÎRx,ref |2

Re[V̂sÎ∗Tx,ref
]

(7.21)

where ẐMref
is the impedance matrix that considers the transmitter and receiver

circuits only, and ÎTx,ref and ÎRx,ref the respective currents in absence of the meta-
surface. These currents are obtained by solving:

V̂ = ẐMref
Îref (7.22)

where Îref is the vector of the phasor currents flowing in the resonators and V̂ref =

[0 V̂s]
T is the phasor voltage vector with V̂s the phasor supply voltage applied to

the transmitter coil.

7.3.2 Optimisation Procedure
The numerical calculation of the resonant frequency of the cells that allows the
efficiency of the overall system ηtot to be maximised can be addressed as an opti-
misation problem. In particular, the problem consists in finding the values of the
25 Kmm coefficients (see (7.16)) that maximise ηtot. This corresponds to finding
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Figure 7.10: Schematic representation of the 2D array of 5×5 resonators. The cells
with the same tuning are indicated with the same parameter K. Six different tunings
are possible.

the optimal values of the cell resonant angular frequencies ωmm. Formally, it is a
single-objective optimisation problem of 25 variables and it can be expressed as:

min
Kmm

{
1

ηtot

}
. (7.23)

To reduce the size of the problem, it is possible to exploit the symmetry of the
system. Indeed, the resonators placed at the same distance from the axis of the
system (that is the one of the transmitter and receiver coils) have the same coupling
coefficients and therefore the same mutual inductances in the matrix Mm. These
resonators have the same impedance. In the 5×5 array, the number of parameters
reduces to six, named KA, KB, KC , KD, KE and KF , that corresponds to the vari-
ables of the optimisation process. The cells with the same tuning are indicated with
the same parameter K in Fig. 7.10. The problem has been solved by implementing
a PSO algorithm, which finds the value of the six varying coefficients K.

As a case study, the calculation has been performed considering a transmitter and
receiver axial distance (in the z direction) of 300mm. In particular, the reference
is set so that the receiver lies on the plane z = 0 and, being the windings 11mm
thick, the transmitter lies on the plane z = 311mm. The receiver is loaded with
Rload = 2Ω and the transmitter is fed by a sinusoidal voltage V̂s = 50V at the
frequency f0 = 85kHz. The system without the metamaterial has an efficiency
of ηref = 0.43 Then, the metamaterial is introduced and three different positions
have been considered, in which the metasurface lies on the plane z1 = 41mm (it is
close to the transmitter), z1 = 161mm (in the middle) and z3 = 269mm (close to
the receiver). After a first heuristic evaluation of possible limits for the parameter
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(a) (b) (c)

Figure 7.11: Resonant frequency of the metamaterial cells normalised with respect
to the operating frequency ω0 of the IPT system when the slab lies on the planes
(a) z1, (b) z2 and (c) z3.

values, the variation range of each variable K has been set to [0.1,5] in order to leave
the algorithm free to operate. The tuning resulting from the optimisation is shown
in Figs. 7.11a - 7.11c where the normalised resonant frequency of each resonator
is plotted for the z1, z2, z3 slab positions, respectively. The resulting IPT system
efficiency for the three cases are:

• ηtot = 51% for z1;

• ηtot = 81% for z2;

• ηtot = 56% for z3,

proving the effectiveness of the nonperiodic metamaterial in increasing the efficiency.
The results show that in the case of a metamaterial close to the transmitter or
receiver coils, the efficiency improvement is modest compared to the case in which it
is placed in the middle. This can be easily explained considering that the couplings
between the resonators of the metamaterial and the receiver are very weak when
the slab is positioned on the z1 plane, and those between the resonators and the
transmitter are very weak when the metamaterial lies on the plane z3, due to their
relative distance. This inevitably compromises the efficiency of the power transfer.
In the case of metamaterial positioned on the plane z2, the couplings of the cells to
the transmitter and receiver coils are ideally equal and with a value large enough
to make the system operate with 80 % of efficiency at f0. The plots of Fig. 7.11
show that the optimal operations require the unit cells to be tuned differently. For
the positions z1 and z2 the resonance frequency of the cells is lower than ω0 and,
therefore, the impedance of the cells is inductive at the working frequency. In the
case of a slab close to the receiver, the cells exhibit a capacitive behaviour at ω0.
Since the tuning is optimised to maximise the efficiency, results are strongly related
to the mutual couplings between the circuits of the system, which strongly vary
depending on the metamaterial position (neglecting skin and proximity effects).
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Figure 7.12: Isometric view of the system composed of the transmitting and a
receiving square wound coils with the 5x5 array made of round wound coils. The
green circles indicate the field probe coils.

However, it should be noted that in the positions z1 and z2 the tuning difference
between the various cells is modest, and therefore, for the considered metasurface,
it is reasonable to assume that an equal tuning leads to similar results, especially if
we consider a practical implementation.

7.3.3 2D Resonator Array for Magnetic Field Shielding
As discussed in the Introduction, 2D arrays (or metamaterial slabs) can also be used
to attenuate the magnetic field in a certain region of the space. In a IPT system, the
shielding of the magnetic field in the vicinity of the structure is essential, whether the
system operates at low power (i.e. for consumer electronics applications) or for high
power (i.e. automotive applications). Metamaterials employed for magnetic field
shielding present the same structure as the one used for magnetic field focusing.
The different behaviour of the metamaterial slab depends on the resonator tuning.
An optimised procedure for the tuning of the resonators is proposed and it is applied
to the IPT system already described in 7.3.1.

However, now the aim is the shielding of the magnetic field in the region up-
stream of the receiver, but the same algorithm can be implemented for the tuning of
metamaterials placed at any position. The arrangement of the coils is shown in Fig.
7.12. While the transmitter still lies on the plane z = 0, the receiver coils is now
at the distance z = 111mm, so that an efficiency ηref of 94% can be reached whit
the same load Rload = 2Ω. This example aims at showing the effect of the different
tuning of the resonators for the magnetic field shielding in a two-coils IPT system.
The metamaterial is then placed on the plane z = 131mm, which is 20mm above the
receiver. To evaluate the shielding effectiveness (SE) of the slab, it is essential to
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identify the region in which the magnetic field is evaluated. In this example, a plane
zSE = 181mm, namely 40mm downstream of the metasurface, has been chosen. As
already discussed in Sec. 7.3.1, the symmetry of the system allows only six vari-
ables to be considered. Similar considerations hold for the field points on the plane
zSE . Indeed, due to the system symmetry, the magnetic field at all the points in a
symmetric position with respect to the z axis must have the same value in magni-
tude. Thus, the magnetic field for the optimisation procedure is evaluated in the 28
points depicted in Fig. 7.12. To evaluate the field with the numerical procedure, 28
additional small coils are introduced in the model as field probes, in correspondence
of the field points. An arbitrary number Np of probes can be however introduced,
determining the resolution of the field map. These probe coils are enforced to be
in open-circuit, and thus they do not affect the current distribution in the other
circuits. In this way, assuming the probe coils are sufficiently small to consider the
magnetic flux through their surface is uniform, the magnetic flux through the area
of the ith field probe results:

Bi =
Vi

ω0Ai
(7.24)

where Vi is the amplitude of the phasor voltage V̂i induced in the ith probe by the
system coils, which is expressed as:

V̂i = jw0

∑
k

MkiÎk (7.25)

with Îk the current of the generic kth circuit of the IPT system and Mki the mutual
inductance between the kth circuit and the ith field probe. For the considered
IPT system, the circuits are 27, namely 25 resonators forming the metasurface, the
transmitter circuit and the receiver one. Then, an average magnetic field BAVG is
introduced for the calculation of the SE, which is defined as:

BAVG =
1

Np

∑
i

Bi. (7.26)

The same procedure must be repeated considering the system without the meta-
surface to calculate the reference average magnetic field BAVG,ref , still at ω0, that
corresponds to the average unshielded magnetic field on the plane zSE . Then, the
average shielding effectiveness is calculated as:

SEAVG = 20log10
BAVG

BAVG,ref
. (7.27)

7.3.4 Optimisation Procedure
The optimisation procedure consists in finding the optimal resonant angular frequen-
cies of the metamaterial resonators such that the average shielding effectiveness is
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(a) (b)

Figure 7.13: (a) Average SE in the plane zSE = 40mm above the metamaterial
and (b) resonant frequency of the cells normalised with respect to the operating
frequency ω0 of the IPT system when the slab is positioned at z = 131mm.

maximum. Mathematically, this procedure results in a multi-objective optimisation
problem with 6 real variables expressed as:

min
Kmn

{
1

SEAVG

}
. (7.28)

The resulting SE for the plane at z = 40mm above the system is shown in Fig.
7.13a. The SE map is obtained with the cell tuning plotted in Fig. 7.13b, which
shows that all the resonators present a resonant frequency lower than the ω0. At
the centre of the plane the SE reaches 15dB, and then decreases when the points
approach the boundaries of the plane. On the boundaries even negative values of
SE are found, meaning that the field is amplified. It is reasonable to think that this
is due to the fringing field, also referred to as edge-effect. To ensure a consistent SE
in a wider area, it is required to extend the array, adding resonators or increasing
their dimension.

Future developments of this algorithm foresee the addition of more objectives
in the optimisation procedure, including that of maximising efficiency to prevent
that the tuning for very high SE values deteriorates the efficiency of the system. In
addition, the self-inductance of the individual cells can be also optimised. However,
this requires working on the geometric model of the cell and not only on the circuit
model.

7.4 Conclusions
Possible applications of 2D arrays of magnetically coupled resonators in IPT systems
have been discussed. In general, it is shown that, depending on the extension of the
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array and the cell parameters, the proper coupling model must be adopted. The idea
of using the 2D array as a transmitter has revealed some critical issues in the control
of the currents. Similarly to the case of 1D resonators, it is necessary to control more
variables to properly manage the current distribution and ensure good performance.
This can be achieved by inserting proper terminations on the boundaries, but they
require a suitable control that has to be defined. When introduced into two-coil
IPT devices, resonator arrays are treated as metamaterials. By properly tuning
the resonators it is possible to improve efficiency in loosely coupled systems and
an optimisation process has been proposed. These early results indicate that it is
cost-effective in terms of efficiency to consider tuning the coils differently from each
other. Moreover, the independent tuning of the metamaterial cells may also allow
the magnetic field in a region of the space to be shielded. Future developments of
this algorithm foresee extensions to consider the optimisation of the coil geometry
and the number of cells. It can be concluded that, being the cells tuned differently,
the metamaterial structure is no more periodic. This solution is suitable for the
control of the magnetic near-field, for both focusing and shielding.





Chapter 8

Conclusions

The role of arrays of resonators in inductive power transfer systems has been dis-
cussed. As a first step, an analysis of the state of the art of passive compensation
networks has revealed that the most efficient (and widespread) topologies are the
series-series and series-parallel networks. In this frame, a simple circuit-based design
procedure has been developed for both the compensation strategies, which aims at
being simple to be implemented and therefore does not require complex iterative
processes. Optimal values for the inductance of the transmitting and receiving coils
can be easily found on the basis of the type of load, the power of the system and
the coupling condition. What it can be noted is that a parallel compensation of
the receiver requires a considerably smaller secondary inductance than that of the
series compensation case, at the cost of a higher current circulating in the winding
and, consequently, a more severe thermal stress and higher generated magnetic field.
Starting from the typical two coils system, the 1D arrays have been introduced.

These systems have been modelled as two-port networks, in order to focus the
analysis on transmitted power and efficiency. Furthermore, in order to consider
resonator arrays for power applications, they must necessarily be interfaced with
other electrical devices, i.e. voltage source inverters and rectifiers. By means of
the two-port representation, the resulting system can be seen as a typical isolated
power converter, in which the array takes the place of the transformer. Analytical
formulas of the two-port network parameters have been provided, thus allowing a
straightforward analysis of the system even in the design phase. The study of the
transmitted power and efficiency then led to the definition of an optimal control
technique for resonator arrays with a receiver fed at the first cell. A new doubly-fed
array topology has been proposed, which allows more power to be extracted from
the source and then efficiently transferred to the load. The result is a constant power
transfer for each position of the receiver, always at maximum efficiency.

Unfortunately, the analysis of the distribution of currents in the array revealed
that current peaks are present in some resonators depending on the position and load
of the receiver. The theory of magneto-inductive waves was found to be crucial to
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fully understand the physical mechanism governing the distribution of the currents
in the resonators. It also allowed a closed form expression of the current of a generic
cell of the array to be derived in the absence of a receiver. The modelling of the
array as a transmission line in the presence of a receiver has been carried out. The
analogy has been established considering the chain matrix representation of coupled
circuits. The research has underlined that the presence of loads introduces discon-
tinuities in the characteristic impedance of the transmission line associated to the
array, inevitably leading to reflections of the current wave. The results show that,
even at low loads and at power much lower than the nominal one, these reflections
lead to current peaks with values close to the maximum ones tolerated by the coils,
with consequent thermal and electrical stress. To limit this phenomenon, it is advis-
able to use control strategies that maximise the transmitted power and in particular
the efficiency, with specific attention to the reactive power at the input, which leads
to an increase in the circulating current without improving its performance. In fact,
the efficiency is calculated on the basis of the active power only. The reactive power
can be controlled by acting on the input impedance of the array, which is however
difficult to be controlled. The magnetic field generated by the array has been shown
to reflect the trend of the currents and, therefore, it presents very high values in
the vicinity of the apparatus. Especially when employed in civil infrastructure or
domestic environments, these systems require proper shielding.

A circuit-based study of 1D resonator arrays with a receiver has led to the defi-
nition of an analytical form of the input impedance of these devices. It is valid for
a receiver at any position and with a dimension such that it is coupled with two
cells at a maximum, but it can be extended to receivers of any size. The behaviour
of the input impedance is first of all useful for evaluating the input reactive power
of the array, based on which soft switching conditions for the power inverters can
be evaluated. However, it can be also used to estimate the position of the receiver.
The straightforward application consists in detecting the receiver location in res-
onator arrays with a receiver employed for IPT. It must be noted that the optimal
control techniques above discussed require its knowledge. Moreover, another possi-
ble and promising way of exploiting the peculiar behaviour of the input impedance
consists in realising sensors that have the structure of an array of resonators, which
can be installed in machines or industrial equipment. The simplicity of the circuit
guarantees its moderate cost and modern PCB printing techniques can lead to the
creation of very compact and light arrays, of any size. A study of the electronic
circuitry required for the impedance estimation also allowed their practical feasibil-
ity to be evaluated, revealing that with modern DSPs it is possible to implement
the proposed algorithm in a few milliseconds. Furthermore, the possibility of im-
plementing a simplified version of the algorithm was also illustrated in resonator
arrays for dynamic IPT in which each coil is powered independently. Because of the
high magnetic field generated by arrays with single excitation, it is worth considering
powering the resonators independently when the power rate of the systems increases
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(i.e. EV charging). If the coils are magnetically coupled, by introducing appropriate
compensation networks (the LCC topology has been considered) in the resonator
supply drivers, it is possible to identify frequencies at which the system acts as an
array of resonators with a receiver (which may also be non-resonant). It is therefore
possible to estimate the input impedance at the appropriate frequency to detect
the receiver location. However, the function that represents the input impedance
is strongly dependent on the system parameters, and thus the application of this
sensing technique must be considered in the design phase. The robustness of the
parameters that may occur during operations and installation conditions has to be
considered. In addition to the design, a calibration of the measuring system is then
necessary to take into consideration fundamental variations of these parameters, as
generally happens when using measuring instruments.

The extension of one-dimensional to two-dimensional resonator arrays has been
introduced. 2D arrays are suitable for various applications in IPT systems. The
most intuitive is to use them as transmitters to power one or more receivers that
can be placed at any position over the array. However, the control of the current
distribution is very complicated and cannot be done by only acting on the power
source. In analogy with 1D arrays, it has been thought of introducing suitable
impedances in the boundary resonators, but it is however difficult to find a general
control technique. Furthermore, variable impedances require additional circuits to
be introduced into the system, complicating its structure.

Other applications consider the introduction of resonator arrays in traditional
two-winding systems, to improve their performance or shield the magnetic field
they generate. The possibility of finding the optimal tuning of each resonator has
been explored, thereby leading to structures that are no longer periodic. Based on
preliminary simulations, this tuning technique has been proven to be effective. It
can therefore be stated that, in the near field, the periodicity of the array elements
is not necessary and it is convenient to optimise the parameters of each array cell
separately. This is due to the structure of the magnetic near-field, that presents
different vector values of the field at any point of the space (except for symmetries
of the source geometry). In fact, each cell will be excited according to its position
with respect to the source of the field (i.e. the coils of the IPT system) and therefore
its action on the overall magnetic field distribution must be evaluated ad hoc.

Resonator arrays have been proven to be systems of great practical interest for
various applications in IPT apparatuses. Their simple structure guarantees low
manufacturing costs and the possibility of adapting the device to different applica-
tion contexts. With a proper design and control, both one-dimensional and two-
dimensional resonator arrays can help in making inductive near-field wireless power
transfer systems more efficient, safe and convenient.





Appendix A

Inductance Calculation

When performing numerical simulations of wound coils using finite elements method
(FEM), the presence of different turns leads to a large amount of air-copper inter-
faces, which requires a very fine mesh. To decrease the problem size it is possible
to consider an equivalent thick current loop in place of the n-turns wound coil, as
shown in Fig. A.1. The transformation must fulfil the energy conservation principle,
namely requires that the energy of the original and equivalent systems is the same.
From this constraint, other assumptions which further simplify the model can be
derived, such as:

• same current density J̄

• same coil area

where the latter requires to consider the thick conductor volume as the union of the
conductor-turn volumes and a loop current of n times larger. The self-inductance L

of the thick coil can be derived from the magnetic energy Wm as:

L =
2Wm

I2
(A.1)

Figure A.1: n turn wound coil of size W×H and its equivalent thick current loop.
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The magnetic energy can be generally defined as:

Wm =
1

2

∫∫∫
τ

H̄ ·B̄dV, (A.2)

or equivalently as:

Wm =
1

2

∫∫∫
τ

J̄ ·ĀdV, (A.3)

where τ is the volume of the (theoretically infinite) entire space and Ā is the magnetic
vector potential expressed as:

Ā =
µ

4π

∫∫∫
τ

J̄

r
dV (A.4)

with r the distance between the field point and the point source. Thus, if the equiv-
alent winding inductance is defined preserving the distribution of J , it is possible
to assume that the total stored energy Wm is the same. Hereinafter, the subscripts
w and th denote that the related quantities are referred to the wound and thick
representation of the coils. The self-inductance of a n-turns wound coil is defined
as:

Lw =
2Wm

I2w
(A.5)

while for the thick loop it is:

Lth =
2Wm

I2th
. (A.6)

where Iw and Ith are the wound and thick coil currents, respectively. Being the Wm

the same for the two systems, the self-inductance coefficients are related as:

LwI
2
w = LthI

2
th. (A.7)

The currents of the two systems can be expressed as a function of the loop current
density J̄ , which is assumed to be the same and perpendicular to the coil surface,
resulting in:

JSw = Iw
JSth = Ith

(A.8)

and thus:
Ith =

Sth

Sw
Iw. (A.9)

The simplest and most intuitive way to size the equivalent thick coil is to set Sth =

nSw, and then excite it with Ith = nIw. However, the goal is to obtain an equivalent
system that is easier to analyse via FEM simulations. In particular, a planar winding
for WPT requires 3D simulations as we have not seen particular symmetries in the
system that allow us to reduce it to a 2D problem and therefore the model can be
very extensive from a computational point of view. To facilitate the generation of the
mesh in 3D problems, it is preferable to avoid curvilinear geometries and boundaries,
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since they would require many elements (i.e. tetrahedrons in 3D problems) to obtain
a satisfactory result. It is therefore convenient to consider a rectangular section for
the dummy thick coil, which can be seen as the union of the circular sections of the
single turns of the wound coil approximated with squares. To take into account this
further approximation, the geometric factor δ has been introduced and defined as:

δ =
Sth

nSw
(A.10)

leading to:
Ith = nδIw. (A.11)

Introducing (A.11) in (A.7), it yields:

Lw = (nδ)2Lth. (A.12)

These considerations can be extended to the calculation of the mutual inductance
coefficient Mw between two current loops, defined as

Mw =
Wm

Iw1Iw2

, (A.13)

where Iw1 and Iw2 are the currents of the two coupled wound coils. Introducing
equivalent thick coils, the mutual inductance is defined as:

Mth =
Wm

Ith1
Ith2

. (A.14)

where Ith1
and Ith2

are the currents of the two coupled equivalent thick coils. En-
forcing the conservation of energy, it holds:

MwIw1Iw2 = MthIth1
Ith2

(A.15)

where the currents can be expressed, according to (A.8), as:

J1Sw1 = Iw1 J1Sth1
= Ith1

J2Sw2 = Iw2 J2Sth2
= Ith2

(A.16)

with J1 and J2 the magnitudes of the current density vectors (normal component)
of the two coupled coils, assumed the same for the wound and thick coils represen-
tations. The thick and wound coil currents are related as:

Ith1
= n1δ1Iw1 Ith2

= n2δ2Iw2 (A.17)

where geometric factors δ1 and δ2 are defined as, respectively:

δ1 =
Sth1

n1Sw1

δ2 =
Sth2

n2Sw2

. (A.18)
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Figure A.2: Equivalent DD coils.

Introducing (A.17) in (A.15), it holds:

Mw = n1n2δ1δ2Mth. (A.19)

It can be also noticed that the coupling coefficient is invariant for the transformation.
For wound and thick coils it is defined as, respectively:

kw =
Mw√
Lw1Lw2

kth =
Mth√
Lth1

Lth2

(A.20)

which can be easily proved to be equal, namely:

kw = kth. (A.21)

Homogeneous DD Coils
The DD configuration (see Fig. A.2) is obtained considering two identical rectan-
gular windings excited by currents with the same amplitude and opposite phases.
Thus, both the transmitter and receiver circuits are represented by two thick coils,
resulting in four total coils. The self- and mutual inductance coefficients of the real
coils can be obtained by combining the ones of the four thick-coil model as:

LT = LT1
+LT2

+2MT1,T2

LR = LR1
+LR2

+2MR1,R2

M = MT1,R1
+MT1,R2

+MT2,R1
+MT2,R2

,

(A.22)

where LT1
and LT2

are the self-inductances of the single thick coils that form the
transmitting DD coil and LR1

and LR2
the self-inductances of the single thick coils

that form the receiving DD coil. Then, MT1,T2
, MR1,R2

, MT1,R1
, MT1,R2

, MT2,R1
and

MT2,R2
the corresponding mutual inductances.
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