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Abstract

The term Artificial intelligence acquired a lot of baggage since its introduction
and in its current incarnation is synonymous with Deep Learning. The sudden
availability of data and computing resources has opened the gates to myriads of
applications. Not all are created equal though, and problems might arise espe-
cially for fields not closely related to the tasks that pertain tech companies that
spearheaded DL.

The perspective of practitioners seems to be changing, however. Human-
Centric AI emerged in the last few years as a new way of thinking DL and AI
applications from the ground up, with a special attention at their relationship with
humans. The goal is designing a system that can gracefully integrate in already
established workflows, as in many real-world scenarios AI may not be good enough
to completely replace its humans. Often this replacement may even be unneeded
or undesirable.

Another important perspective comes from, Andrew Ng, a DL pioneer, who
recently started shifting the focus of development from “better models” towards
better, and smaller, data. He defined his approach Data-Centric AI.

Without downplaying the importance of pushing the state of the art in DL,
we must recognize that if the goal is creating a tool for humans to use, more raw
performance may not align with more utility for the final user. A Human-Centric
approach is compatible with a Data-Centric one, and we find that the two overlap
nicely when human expertise is used as the driving force behind data quality.

This thesis documents a series of case-studies where these approaches were
employed, to different extents, to guide the design and implementation of intelli-
gent systems. We found human expertise proved crucial in improving datasets and
models. The last chapter includes a slight deviation, with studies on the pandemic,
still preserving the human and data centric perspective.
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Chapter 1

Introduction

The research activity conducted in the four years that led to this thesis has been
characterized by a horizontal approach to the discipline of data science, which
resulted in the application of the same concepts to a variety of different fields.
There is however a common thread running through all these projects, which is
the idea of putting the role of human experts and users at the center of the design
process.

This philosophy is often referred to as Human-Centric (or Human-Centered)
AI, as opposed to work that too narrowly focuses on the models and algorithms
while loosing track of the relationship the finished model will have with its users
and their goals. The insight humans provide if involved can, in turn, help in
improving the models, evaluating the results, and refining the data, which is the
prime driving force behind data science applications and machine learning systems.
The attention to data, which should be “good” rather than just “big”, has shaped
the Data-Centric AI movement which, similarly to the human-centric approach,
is opposing the focus on scaling model size. At the intersection of the two we
found the value of using domain expertise to clean and reduce datasets, as well as
evaluating the model outputs and help in debugging. This Human-AI collaboration
loop results in more performant, more reliable and overall more usable systems.

In the next section will go over the research background and introduce the
questions we will address in the following chapters. Finally, we conclude this
introduction by providing an outline of the dissertation.

3



4 Chapter 1. Introduction

1.1 Research Background

In 2018 the Association for Computing Machinery (ACM) nominated Geoffrey
Hinton, Yann LeCun and Yoshua Bengio as the three recipients of the prestigious
Turing Award for “conceptual and engineering breakthroughs that have made deep
neural networks a critical component of computing” [1]. In a way, this was an offi-
cial recognition of the dawn of a new era of Artificial Intelligence (AI), spearheaded
by adoption of deep learning (DL).

It has been 66 years since the infamous Dartmouth Conference [2] that char-
acterized the golden age of AI, whose popularity rose and waned multiple times
over the years, and while many fundamental questions are yet to be answered we
can clearly see how today AI seems to be much more of reality than it was be-
fore. The advancements of deep learning, which some define as a fourth industrial
revolution, have been made possible by the increase in computational power and
the enormous quantity of data made available by the internet and the ubiquitous
presence of computing devices like smartphones.

In this scenario, Data Science and machine learning have become such a fun-
damental part of computer systems that people capable of wielding these powerful
tools become highly sought after [3]. As Barreto hinted at back in the 1990s, neu-
ral networks could be considered a new programming paradigm. One where the
data replaces the explicit instructions given in code by the programmers [4].

It is interesting to notice, however, how in the world of traditional software
development we have seen a number of sub-fields emerging as computers become
more and more integrated in our society. For example, tools needed to be cre-
ated to help programmers organize their work, keep track of changes and enable
collaboration with others; various testing methodologies became a necessity when
systems needed to be dependable and run constantly; similarly the discipline of
human-computer interaction emerged as computers entered homes and offices to
become tools at the disposal of non-technical audiences [5].

When it comes to this new programming paradigm instead, the corresponding
disciplines that address the same concepts are still taking shape and lack the same
depth. This could be only a matter of time, and tools to address the engineering
task of developing machine learning and deep learning systems are being intro-
duced more and more. But when people deal with AI there is also a fundamental
difference with classical software development, somewhat of a philosophical stance:
the idea that, ultimately, an intelligent system should be completely capable of do-
ing tasks like we humans do without the need of intervention on our part. Many
believe that a general artificial intelligence (AGI) is right around the corner [6]
but the current success of deep learning, with models capable of surpassing human
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performance on many difficult tasks [7, 8] and even breaking new ground on prob-
lems like protein folding [9] is still resulted in narrow AI that can only do specific
things. It is true that size and performance seem to scale linearly [10], but very
big and flexible models, recently dubbed foundation models, like OpenAI’s GPT-3
[11] or Deepmind’s Gato [12] still have quite visible limits and it is reasonable to
argue that maybe more data and computation is not enough, also considering how
training those systems is inaccessible to most.

Whether or not AGI is near, many scholars are warning about the danger of
not considering these technologies in relation to humanity and advocate for the
development of systems that are human compatible, to cite the title the last book
by Stuart Russell [13]. Rather than focus on artificial intelligence we should strive
for what Minsky at al. defined humanistic intelligence: “[...] intelligence that arises
because of a human being in the feedback loop of a computational process, where
the human and computer are inextricably intertwined” [14].

When we shift the focus from raw performance to actual utility for the users
and we start treating deep learning as yet another tool in the data science box a lot
of interesting research considerations start emerging from the limitations of these
new technologies. In particular, we are interested in the human-centric (or human-
centered) AI movement, exemplified by groups like the HCAI team at Stanford ,
and, relatedly, to the data-centric perspective introduced by Andrew Ng [15].

Human Centric AI, as the name suggests, means that humans should be put
at the center of AI research rather than algorithms and benchmarks [16]. This
shift in perspective invests all aspects of AI models, from the inputs they receive
for training, to the way their outputs are presented. It is easy to draw a parallel to
human computer interaction from the software engineering world but in this case
interacting with models could mean a number of different things: interacting with
the data during the preparation of the dataset and design of the model, interacting
with the development of the model, or interacting with the trained model and its
predictions.

With Data Centric AI instead the focus is on data as the most effective source
of improvement now that the algorithmic and coding part of deep learning has been
“solved” as Ng says in an interview introducing the concept [15]. He highlights how
scaling up model size may still be worthwhile for some applications but in some
fields that amount of data is simply not available. In these situations, moving away
from “big” data towards “good” data is the most effective strategy. Quantifying
what good data means is obviously very dependent on the context and on the task
at hand, but it is easy to see how human experts can play an active and invaluable
role in providing this measure.
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If we think about the life-cycle of an AI model, from its design to its produc-
tization and use, we can identify a number of phases where human input could
be integrated, injecting their values and perspective. In the literature, this design
choice is called human-in-the-loop AI [17, 18]. In this context humans can be
included in a downstream way, the most common, or in an upstream way.

The first approach corresponds to what is sometimes called active learning
or interactive machine learning [19] and focuses on the most obvious loop in AI-
human interaction, that is inputting new data and getting a prediction. Here a
model makes a prediction that a human in turn uses to make a decision while also
providing feedback to the model, often by providing a ground truth that may have
been wrong or noisy in the training set.

The latter instead arises by considering the development loop of the model.
Here ML engineers and domain experts can work together and iteratively improve
both on the model architecture and the dataset [20]. The human role here can be
that of identifying the best dataset and weeding out uninformative or misleading
examples or that of providing an evaluation of results which are difficult to judge
in a purely mathematical way (e.g., art, text, moral decisions) . This kind of loop
is crucial in all the situations in which there is ambiguity in the data, perhaps
when the dataset was not explicitly build for the purpose of training a model, or
ambiguity in the question the model is trying to answer, where bias may be lying
in plain sight but needs human expertise to be spotted.

When companies, especially smaller ones, are trying to implement practical
AI systems the issue of data quality is as big of a problem as data quantity [21].
This obstacle to actionable AI can realistically only be solved through human
intervention when the data its already there

Having humans and AI work together is also about the way things are pre-
sented. This concerns performance, outputs but also the internal structure of the
model itself. Careful choice of metrics and data visualization can help in this
regard.

Metrics can obfuscate a lot of the shortcomings of a model if they are not
chosen carefully and even more importantly, they should be aligned with the val-
ues of the users. Failing to recognize this is a form of the famous McNamara
Fallacy and can lead to catastrophic results when the model is released in the
wild. A high scoring model for classification might give the impression that it has
learned a meaningful representation of the data but looking at what the model
considers reveals that this is not the case. For example, Ribeiro et al. found that
distinguishing huskies from other dogs was done by looking at the background
and Sturm et al. found that music genre recognition models were not considering
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musical features that humans relate to said genres [22, 23]. This problem is what
in turn enables adversarial attacks to deep learning models and prevents their use
in certain high stakes situations [24].

Visualization techniques can enable debugging a model when things go wrong
or just simply allow us to understand what goes into making a prediction [25, 26].
Furthermore, they can increase the value associated with a model prediction by
making it more interpretable and digestible to non-technical audiences.

On the topic of interpretability, we also need to consider situations in which
humans are the recipients of a decision coming from an AI system. In situations
where there is a lot at stake and failure cannot be tolerated even for human beings,
people will tend to not trust machines and will require an explanation of how it
arrived at its conclusion [27–29]. In this context, the performance of the model is
the least of the concerns while legal and ethical questions take the main stage.

While there is an increasing corpus of research on explainable AI, researchers
like Cynthia Rudin advise against the use of post-hoc explanation of black box
models in supporting law enforcement and the justice system in the USA [30]. She
noticed how dataset in those situations were very biased, and arguably the society
from which the data came from is even more, and claims that black-box systems
hid away those biases behind a curtain of good predictive performance.

In the world of healthcare, we see that automated diagnoses are not well
received by patients, who prefer to interact with a human physician [31]. At
the same time, while intelligent systems can achieve superhuman results in visual
diagnostic exams like CT scans, the combined performance of humans and AI
is even higher [32, 33]. Furthermore, most of the time caring for a patient and
forming a diagnosis goes beyond the correct interpretation of a single exam and
entails high-level abstract reasoning that machines do not excel at.

1.2 Research Questions

Given the contextual framework described in the previous section, let us now go
over the research questions we will address in this thesis through the discussion
of the cases studies reported in the following four chapters. As anticipated, this
thesis contains applications of data science to very different fields, but all of these
applications are informed by the same approach to the discipline.

The following research questions serve to highlight these themes across the
different chapters:
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RQ1: How can human expertise be integrated in the development of
an AI system? As we discussed in the background section, human expertise
can be integrated at different levels of the machine learning pipeline. In each of
the projects that compose this thesis we will highlight how we leveraged human
expertise and how much it contributed to the performance of the final model.

RQ2: Can an under-performing system still be useful? “All models are
wrong, but some models are useful” states an infamous maxim by George Box that
every data scientist knows. However, there are cases in which a model is performing
worse than what one would expect in a similar application. The reason for this
can be many but, as we said, performance metrics are not the only indication of
value. We will investigate how a model can be helpful for humans even without
breaking records in benchmarks.

RQ3: Are metrics always sufficient to evaluate a model? Metrics give us
an indication of the performance of a model and, together with the loss function,
encode the goal of a deep learning model, or, in other words, what question it is
answering. Sometimes, however, the question is not easily encoded by a simple
mathematical function, and we need to involve domain experts in the evaluation.

RQ4: What is the role of visualization in human-centric applications?
Visualization techniques are a powerful tool to discover relationship in the data
but can also play an important role in the development of a deep learning model
by providing a view of what the model is learning and doing. These tools are
even more valuable when coupled with domain expertise as non-trivial concepts
can emerge from the right plot.

RQ5: When are classical approaches preferable to deep learning? Deep
Learning has replaced other techniques as the state of the art in virtually any
field of application. However, there are situations in which classical methods from
statistical learning can be more useful. In the context of this thesis, we found this
to be the case for studies concerning the pandemic, when the lack of data meant
training neural networks and making predictions was difficult but there was still
insight to be gathered from other types of models.



1.3. Thesis Outline 9

1.3 Thesis Outline
We conclude this introductory chapter by including a structured summary for the
rest of the thesis, to provide an overview of every chapter at a glance:

Chapter 1 serves as the introduction, describing the aims and contents of the
work and giving a brief account of the research background that help framing all
methods and conclusions.

Chapter 2 describes a project which involved building a system for predicting
the failure of mechanical water meters for an Italian energy company. Along the
way many considerations related to our research question emerged, especially of
data quality and of Human-AI collaboration.

Chapter 3 deals with the design of a model able to automate the remote sensing
phase of an archaeological expedition. This is the phase in which archaeologists
look for potential sites of interest using satellite and aerial imagery. This is a
perfect example of Human-AI collaboration as automating this extremely time-
consuming task would only help archaeologist focus on more important parts of
their work while still requiring their involvement in validating the outputs. We
used two different approaches, both leveraging transfer learning and showed how
refining the dataset and data representation together with domain experts can
improve performance.

Chapter 4 illustrates the creation of a model for automatic generation of sym-
bolic music in the style of traditional Irish and Swedish folk. Differently from the
other field of applications we depicted, music is characterized by the absence of
a clear-cut notion of a "good" output. This makes the roles of human experts in
the loop fundamental, as it allowed us to overcome design difficulties and create a
model able to beat the previous state of the art. In the final part we also discuss
how such a model can be integrated into a music co-creation workflow.

Chapter 5 contains a number of observational studies performed during the
pandemic, highlighting the themes of Research Question 5. In a situation where
understanding what is happening is as important as obtaining good predictions,
classical models can be a better choice compared to a black box like neural net-
works.

Chapter 6 finally concludes the thesis, summing up the common insights gather
across all the different research projects.





Chapter 2

Automatic Detection of Defective
Water Meters

This chapter describes the results of a collaboration project with a company that
provides various services in norther Italy like waste management, electricity, nat-
ural gas, and water supply [34–41]. The water supply division of the company
wanted to use artificial intelligence methods to solve a problem with water meters
they had been facing for a while. For obvious privacy reasons the company will
remain unnamed and the relevant information about the dataset and models will
be discussed without revealing details connected to their business.

This project posed some interesting challenges that highlighted the impor-
tance of involving domain experts in the design of machine learning systems as
they hold the key to the good interpretation of data. After an initial phase of bad
performance, we inquired the managers and engineers in the company and with
the insight they provided we were able to refine the dataset and obtain a model
with good performance.

In a further experiment with new data, we found that the inclusion of addi-
tional information in the form of categorical features regarding the nature of each
water meter and its use degraded performance instead of improving. We hypothe-
sized the cause for this was connected to the curse of dimensionality and inspired by
the distribution of the categorical attributes (a Pareto-like distribution), we tried
different techniques to reduce dimensionality like binning and principal component
analysis, albeit without solving the issue. Thus, we devised an unusual approach,
in which we filter the dataset accordingly and create a model for each categorical
attribute which can be used as an ensemble with better overall accuracy.

11
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In the final part of this collaboration, it emerged the theme of how perfor-
mance metrics in classification problems can be misaligned with the actual costs
and benefits of a company. While we were never informed on the actual details
and numbers, we proposed the company to adjust the classifier threshold in a way
that made sense for their business process, even if it were not the mathematical
optimum.

2.1 Detecting Faulty Devices
In this section we will describe the process that led to creation of the first classifier
for faulty devices, including discussing background and related works and detailing
the neural network we designed for the task.

2.1.1 Background

Let us start by discussing some related work. Anomaly detection is a common
task in the world of machine learning, and it is characterized by a small number of
interesting data points that are different from the rest in some way. Usually, the
approach consists in learning the distribution of the ordinary data and comparing
the anomalous instances to that. If there is enough data on the axis of time, one
could also compare each individual instance to its own past to see if there is any
deviation from the norm.

In the case of our specific task, however, we have a very heterogeneous dataset
when it comes to its properties (e.g., consumption, use, meter type, etc.) and,
more importantly, with huge differences and irregularities in the frequency of the
readings. This made classical approaches to anomaly detection more complex to
adapt to our problem and pushed towards an end-to-end solution using neural
networks.

Additionally, while we are plenty of papers in the literature for individuating
anomalies like a leakage or a failure, in water distribution pipelines, there is a not
surprising scarcity of papers that discuss methods for detecting anomalies in water
meters [42–44].

Those that do seem to focus on the use of simple heuristics and statistical
analyses. For example, Roberts and Monk developed a simple algorithm that indi-
viduates possible anomalies, occurring at a given water meter, when a decreasing
trend in water consumption is observed along a series of readings which is updated
just quarterly [45]. Monedero et al, instead, propose an approach to detect tam-
pering activities in mechanical water meters that employs a very basic statistical
analysis for identifying [46]: either a low rate in water consumption, a sudden
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stoppage of that consumption, or simply a decreasing consumption trend.

For sure, the advent of electrical water meters, along with telemetry that can
provide water consumption readings on a per hour basis, could significantly alter
this picture and allow the use of more common online anomaly detection techniques
that are already employed in managing other types of utilities like electricity [47].

2.1.2 Dataset Description

The company had no specific database put in place for this task, so a significant
part of this project consisted in working together to define a proper dataset to
train our machine learning algorithms on. Our starting point is a huge database of
reading and metering devices which contains a lot of redundant information and is
used mainly for administrative and billing operations. The data spans a period of
4 years, from 2014 to 2018, with around 15 million rows, representing individual
readings that pertain to over 1 million metering devices, including both working
and defective.

Table 2.1 list the 14 attributes associated with the individual readings in the
starting database. Attribute 1 is used as the primary key for grouping the readings
for each device. Table 2.2 lists the 17 attributes associated with each device, with
attribute 17 representing our target variable. As we will discuss later, not every
attribute was deemed useful for our purpose of training a predictive model.

Table 2.1: Attributes in the readings database

No Attribute name No Attribute name

1 Water Meter ID 8 Reader ID
2 Reading ID 9 Type of Contract
3 Reading Value 10 Reading Validity
4 Reading Date 11 Certification on the ERP
5 Prev. Reading Value 12 Final Billing
6 Prev. Reading Date 13 Reason for Reading
7 Reading Frequency 14 Accessibility

2.1.3 Dataset Cleaning and Pre-processing

The preprocessing phase is a critical part of any data science project. In this spe-
cific instance we had to invest significant work into cleaning up the format of each
column and then extracting the relevant information from the starting database
by matching readings to their respective device and making sure everything was
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Table 2.2: Attributes in the devices database

No Attribute name No Attribute name

1 Water Meter ID 10 Installation Date
2 Producer Code 11 Plant
3 Producer Description 12 Type of Contract
4 Material ID 13 Geographical Zone
5 Material Description 14 Accessibility
6 Max/min Reading Value 15 Use Category
7 Meter Type ID 16 Address
8 Meter Type Description 17 Operation (Faulty/Non Faulty)
9 Year of Construction

coherent. We devised, and revised, a set of rules together with the domain experts
which we referred to as a "semantic of validity" which we will now describe. After
that we proceeded with the well-established practices of standardizing the numeric
variables and of transforming categorical data into one-hot encoded vectors.

Feature Selection

Selecting features is a key task, since irrelevant or redundant features can impact
the training activities [48, 49]. Numerical Features were easy to choose as they
only consist in the water consumption values (difference between current reading
and the previous) to which we combine the number of days since the last reading to
help with their irregular frequency (Attributes 3, 4, 5, 6 of the readings dataset).

Further, on the basis of precise suggestions provided by the company, we
also included the following additional features from the devices dataset: producer
(Attribute 2), material (Attribute4), meter type (Attribute 7), and use category
(Attribute 15).

Table 2.3 reports all the aforementioned selected features.

Table 2.3: Final set of features used to train the model

# Features # Features

1 Reading Value 5 Serial Number of the Producer
2 Previous Reading Value 6 Material ID
3 Reading Date 7 Meter Type ID
4 Previous Reading Date 8 Use Category
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Semantics of Validity

Many of the readings that compose the datasets came with numerous inconsis-
tencies and impurities, whose causes depend on organizational conflicts between
different business processes. The company obviously never gave us much detail
on those processes but allowed us to interact with domain experts who helped us
define what we call a “semantic of validity”.

The first rule of this semantic was considering attribute 10 (Reading Validity).
This is set by a human operator once he reads a value on the meter and validates
its correctness. Experts suggested that readings labeled as explicitly non-valid
should not be taken into consideration. Table 2.4 reports the number of non-valid
measurements with respect to the total.

Table 2.4: Readings: Valid/Non-valid (attribute 10)

Attribute 10 of Readings

Initial 15,129,379
Non-valid 1,898,128
Valid 13,231,251

In addition to attribute 10, we were suggested to consider also attributes 11
(Certification on the ERP) and 12 (Final Billing), as their combined values offer
a stronger indication of correctness. Their meaning is as follows:

(i) has been (correctly) read/collected on site by a human operator,

(ii) has been (correctly) recorded onto the company ERP system,

(iii) has been (correctly) billed to the final client.

While attributes 10, 11, and 12 can take a total of 45 different combinations,
just 7 of those cover almost 99% of the total amount of readings in the dataset.
These specific combinations are shown in Table 2.5. Some of those, even if still
“valid”, refer to different administrative aspects of the readings, however, to create
our dataset we are only interested in the readings that reflect the true numbers
shown on the device. The experts pointed us to the first combination in the Table,
with Attribute 10 equal to 1 and Attribute 11 and 12 equal to 2. For the sake of
simplicity, we will refer to those readings as those enjoying the 1-2-2 Factor.

Up until this point we only talked about readings as we were dealing with the
rows of a database containing all of them. But since we need to predict meters, we
had to aggregate the readings by device. Table 2.6 shows how many meters, that
also have the 1-2-2 Factor, possess at least a certain number of readings, from 1 to
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Table 2.5: Readings: main categories (with relative amount of readings)

Attribute 10 Attribute 11 Attribute 12 Readings

1 3 2 407,592
1 2 4 282,527
1 2 6 132,409
1 2 5 110,363
1 2 3 106,742
1 3 5 105,957

Other 229,079

Total 13,231,251

5. Additionally, the second-to-last row contains the total number of meters, while
the last one is the total amount of faulty meters.

Unfortunately, of the total amount of readings we now considered valid, some
were mathematical adjustments of the readings, estimated values of presumed
water consumption values computed for billing purposes. We asked the domain
experts to point them out as their presence interfered with phenomenon we wanted
to detect. Table 2.7 shows the quantity of readings we had to discard.

At this point we thought that, given our “semantic”, the dataset was clean
enough to paint a sensible picture of the phenomenon and so we tried training
a model. When tested on a holdout set with newer data however, we obtained
an AUC score of 0.61. Consequently, we furthered the discussion with company
experts to find what the cause might be.

Our intuition is that that semantics disregards the role played by time. In

Table 2.6: Number of meters with the 1-2-2 Factor

1-2-2 Factor Meters

1-2-2 (≥ 1) 1,154,054
1-2-2 (≥ 2) 1,091,334
1-2-2 (≥ 3) 1,038,337
1-2-2 (≥ 4) 981,420
1-2-2 (≥ 5) 915,441
Faulty (≥ 1) 23,752

Total 1,239,977
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Table 2.7: Proportion of real vs. adjusted measurements (with the 1-2-2 Factor)

Type # of Readings
Real 8,185,163 (69%)

Adjustments 3,671,419 (31%)

Total 11,856,582

particular we found out that the time at which each reading is taken can vary
wildly between different devices and even between successive readings of the same
one. Figure 2.1 exemplifies this phenomenon. The x-axis represents the difference
in consumption, in terms of cubic meters of water, between two subsequent read-
ings enjoying the 1-2-2 Factor, while on the y-axis we can see the time intervals
(measured in days) between two subsequent readings with the 1-2-2 Factor.

Figure 2.1: Time intervals vs differential water consumption (two consecutive read-
ings)

Looking at the y-axis we can see that there are a number of readings that
are extremely separated in time. This is so extreme that even if we considered
them valid it would take years to have more than one reading. In any case those
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are suspect as the Italian law prescribes at least two or three readings per year,
depending on the type of use. We also see some outliers when it comes to the
difference in consumption. Those may depend on a series of factors according to
the company, such as the necessity to reset them to 0 (hence the points that lie on
y = 0 as the operation is registered immediately), which we were not interested
in, however. All these considerations pushed us to reconsider the semantics we
previously defined and to introduce additional constraints to guarantee coherent
readings when it comes to consumption and time.

A reading is to be considered valid only if all the following requirements are
satisfied:

(i) a human operator has read a certain reading value at the reading site.

(ii) that reading value has been correctly recorded onto the company ERP and
billed to the client

(iii) time and consumption difference with the previous reading, following rule 1
and 2, are what we can considered coherent.

For the sake of simplicity, we will call this enhanced semantics as the X-Factor.
Notice that the enforcement of the X-Factor to our initial dataset makes the num-
ber of valid readings fall down to less than two million. On this reduced but clean
dataset we trained the model described in the next Section.

2.1.4 Model Description

We designed a deep neural network specifically for our task. Figure 2.2 contains a
schematic representation of it. The architecture is characterized by the presence
of two parallel branches that are responsible for processing and extracting features
from the time-series data for consumption and the categorical attributes for each
meter. The model was implemented using the Keras library that is built on top
of Google’s Tensorflow framework for deep learning [50, 51].

The time-series branch uses a recurrent neural network, specifically the Gated
Recurrent Unit (GRU) variant, followed by a fully connected layer with ReLU
activation [52, 53]. The choice of a RNN allows the model to process an arbitrary
number of readings without any problem (apart from the necessity of padding)
but we soon realized with the company that requiring more than 5 readings makes
the model difficult to put in production. The categorical branch instead features a
simple stack of fully connected layers, also with ReLU activation, that takes in the
one-hot encoded vectors. Both branches feature a dropout mechanism to avoid
overfitting [54]. The output tensors of the two branches are then concatenated
into a single one that goes through a final dense layer of the same size before the
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final binary output that computes the classification probability with the softmax
function. The model is optimized using stochastic gradient descent (SGD) applied
to the binary cross-entropy loss.

Figure 2.2: Schematic representation of the artificial neural network we designed.
The top branch (in yellow) processes the time series for water consumption. The
bottom branch (in blue) processes the categorical attributes. The resulting features
are concatenated before the last layer.

As already seen in table 2.6 the dataset is highly imbalance as the fault we are
trying to detect is, fortunately, quite rare. This is a common problem in this kind
of scenario. We addressed it by oversampling the minority class using synthetic
data created with the algorithm SMOTE-NC [55, 56]. This is a variant of classic
SMOTE that can deal with categorical data as well. We used the area under the
Receiver Operating Characteristic curve (AUC-ROC) as the performance metric
to report results and compare different models during development [57].

2.1.5 Results

We trained the model with meters whose readings, following the semantic of valid-
ity, were taken in the period from the beginning of 2014 to mid 2018. The dataset
comprised around 45, 000 non-faulty meters and around 15, 000 faulty meters. As
anticipated, to help in the learning process, we used SMOTE-NC to over-sample
the faulty water meters in the training achieving a balance between the classes.
One tenth of the data was used for validation and one fifth for testing.
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Training and validation performance for our neural network is reported in
Table 2.8, showing results using at least a certain number of readings for each meter
(from 2 to 5). With an AUC score ranging from 0.82 to 0.88 in the validation phase
we can confidently consider our experiments successful. The company deemed the
models working with devices with at least 2 or 3 readings the most appropriate.
These struck a balance between accuracy and usability, given the time necessary
to accumulate 4 readings or more can be too long. Following this, we performed
an additional and final testing experiment on a new testset with around 30, 000
devices with new readings with the X-Factor gathered in from the middle to the
end of 2018. The test yielded an AUC score of 0.86 and 0.89, using 2 or 3 readings
respectively, confirming the efficacy of our model and semantic.

Table 2.8: Validation and Testing performance for the neural network model with
different number of readings as inputs.

Input Readings AUC (validation) AUC (test) Additional Test

2 0.90 0.82 0.86
3 0.93 0.85 0.89
4 0.95 0.87
5 0.97 0.88

Additionally, we have conducted a comparative analysis with some common
machine learning algorithms. This is important as artificial neural network are
known to be under-performing on tabular data, which part of our dataset is, even
though this is mainly true for smaller dataset [58, 59]. We experimented with
all the following traditional learning algorithms, implemented in the open-source
library scikit-learn [60]:

• Linear Regression (LR),

• Lasso (LA),

• Elastic Net (EN),

• Classification and Regression Tree (CART),

• K-nearest neighbors (KNN),

• Adaptive Boosting (AB),

• Gradient Boosting (GB),

• Random Forest (RF),

• Multi-Layer Perceptron (MLP, with one hidden layer with 100 neurons).
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The bar plot in Table 2.9 shows the AUC scores for each of these models, to be
compared with our deep neural network (DNN) with 3 readings in the rightmost
bar. Some models, like the GB and MLP ones, get close to a 0.80 score, which we
could consider acceptable. Nonetheless, in this specific application deep learning
seems to be the way to go, with results that are consistently higher.

Table 2.9: AUC scores for different machine learning models against our neural
network using 3 readings

Model LR LASSO EN KNN CART AB GB RF MLP DNN

AUC (test) 0.79 0.78 0.65 0.61 0.66 0.67 0.80 0.79 0.79 0.85
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2.2 Making Categorical Data Helpful

Although the company deemed the results shown in the previous section satisfac-
tory, we wanted to extend the collaboration and further validate our methods with
new additional data. Thus, they provided us new dataset pertaining a different
group of water meters with at least 3 readings that follow the semantic we defined.
It contained 17, 714 devices, of which 15, 652 were non-defective and 2, 062 were
defective.

The company informed us that the process behind the labeling of faulty de-
vices was slightly different this time, without going into much detail. However,
the change was transparent to us as we still got a binary flag for good and bad
samples. Still the performance might have been affected by this change.

We found that our model best model, retrained on this new dataset was under-
performing, with an AUC score of 0.78. Trying to understand what could have
gone wrong, we noticed that removing categorical data altogether from the inputs
actually resulted in performance closer to the original experiments. Consequently,
we hypothesized that the problem lies with the so-called curse of dimensionality,
as categorical attributes are one-hot encoded and result in a total of 205 additional
dimensions.

In this section we describe how we tried to leverage this additional informa-
tion in order to further increase performance, first trying dimensionality reduction
techniques and noticing the Pareto-like distribution of data and finally using a
non-traditional approach consisting in using the categorical attributes as filters for
different models.

2.2.1 Dimensionality Reduction

Our dataset contains both categorical and numerical features. Most machine learn-
ing algorithms are estimated through the optimization of a real-valued function in
a continuous space and thus can directly work on numerical data as they are (or
at most some preprocessing is required for numerical stability).

Categorical variables on the other hand do not clearly translate to real-valued
space where a function can be optimized and usually require some special treat-
ment. The most common approach is called one-hot encoding and consist in cre-
ating a n-dimensional vector where n is the number of categories for each feature.

It is easy to see how the size of this vector can grow very fast, making the
solution space very big and sparse, and possibly damaging the performance of
a model [61]. The problem of exploiting categorical variables while avoiding or
mitigating this downside is common to any machine learning approach and is
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actively studied with many different techniques used to address it [62–64].

All of them follow similar ideas of generating new features that encapsulate the
information of the original high-dimensional representation but in a more compact
space. These new features should be as few and uncorrelated as possible, while
providing most of the information contained in the original data. Hopefully the loss
of information given by the procedure is balanced by the increased performance of
the resulting model that can be more easily fit to the dataset.

Commonly used for numerical data, Principal Component Analysis (PCA) is
the most famous technique for reducing dimensionality [65]. It re-projects data
points in a new, smaller, space determined by the largest eigenvectors that account
for most of the variance in the data, making it mathematically similar to singular
value decomposition (SVD). The same idea applied to categorical data is called
Multiple Correspondence Analysis (or MCA). Essentially, it performs the same
re-projection using SVD but working on a contingency table [66–68].

A generalization of MCA is CATegorical Principal Components Analysis (or
CATPCA) which however is equivalent in the case of one-hot encoded variables
like our own [69].

Dimensionality can be also reduced through Multi-Dimensional Scaling (MDS)
technique. MDS aims to represent observations in lower-dimensional metric space
while trying to reproduce the original distance between them in best way it can
using a non-linear transformation [70, 71].

Using a latent variable model, some researchers try to find groups and clusters
in latent space and use those as features for classification [72–74].

In our case however we would expect our neural model to do this implicitly
and train a new latent variable model would incur in the same problems. A
simple, yet crude, way to reduce the number of dimensions in certain situations
it the technique called Binning. As the name suggest we can group categorical
attributes in bins that share common characteristics, with the classic example
being age brackets [75]. The other common scenario is to create a category for
uncommon values. Obviously, this method is quite a lossy process and the decision
to group certain values together should be informed by domain expertise or some
mathematical analysis. However, if the information loss is relatively small it can
be a good solution. A similar operation is often done for numerical data and is
called Censoring.

As we will see in the next section, classical methods did not seem to provide
any advantage in our case. Thus, instead of using categorical features as input to
the model we employed them as a driver for data selection, thus eliminating, from
the start, the need for a dimensionality reduction of the categorical space. The
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resulting models have a narrower scope but combined together they yield a higher
accuracy.

2.2.2 Pareto Distribution of Data

To investigate the difference in performance between the model with and without
the categorical data we started by plotting the distribution of values for each
categorical attribute.

In Figure 2.3, we can see four histograms showing the distribution of values for
each categorical variable in our model, which we will call A, B, C, and D. These
can take, respectively 98, 45, 48 and 14 different values. For each categorical
variable, we have a dotted curve with the cumulative percentage distribution of
those n values over our devices. For the sake of conciseness, the figure only shows
the distribution for defective devices as the respective histograms for non-defective
meters would show very similar results. It is quite evident that the shape of the
distribution for all the categorical variables in the dataset is that of a power law,
commonly known as a Pareto distribution [76].

The popular principle connected to this type of distribution is that 80% of
the population exhibits only 20% of the possible values, while the remaining 20%
features the other 80%. In other words, a few values are highly representative
of the whole group while the majority is quite rare. In the general framework of
power-law distribution the actual values can be obviously different from 80 and
20. In our case we see that around 90% of the dataset is covered by around 20%
of the attributes.

Table 2.10 summarizes this finding reporting the total number of values and
the amount necessary to cover the majority of the dataset for each categorical
variable.

Variable N. of Values Most Frequent N. of Meter Devices

Defective Non-defective

A 98 23 (23%) 1855 (90%) 13474 (86%)
B 45 7 (16%) 1854 (90%) 13707 (88%)
C 48 11 (23%) 1889 (92%) 13369 (85%)
D 14 3 (21%) 1945 (94%) 13963 (89%)

Table 2.10: A quasi-Pareto distribution of the categorical characteristics
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Figure 2.3: Histograms of value counts for each categorical variable
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2.2.3 Results

In this section we report the results from the initial tests we conducted and the
subsequent experiments where we tried reducing the dimensionality with the tech-
niques described before. Table 2.11 lists the size of the categorical space and the
performance of each model. The dataset used for all models discussed here used
2062 defective meters and 15,652 non-defective meter.

Table 2.11: results for the four experiments with categorical data

Exp Dimension AUC-ROC validation AUC-ROC testing

#1 0 85% 86%
#2 205 78% 83%
#3 128 73% 81%
#4 48 76% 85%

In the first experiment the input included only the numerical values of the
readings without any categorical attribute. Instead, in the second experiment we
used both the readings and the categorical values mentioned above (A, B, C and
D) transformed with one-hot encoding.

In the third experiment we tried reducing the dimensionality with PCA [65].
Using it on one-hot encoded data makes it equivalent to MCA. We selected the first
128 principal components, which accounted for approximately 90% of the variance
in the dataset.

Lastly, in the fourth experiment we tried employing binning. The size of the
bins is informed by the analysis described in the previous section. The resulting
categorical space given by one-hot encoding has 48 dimensions in total: 44 given
by the sum of the most frequent categorical values plus 4 for the “other” bin added
for each categorical feature.

Unfortunately, none of the techniques we tried was effective in increasing the
performance of the base model with no categorical attribute. Binning is slightly
improving the situation in testing but not in training while PCA seems to be
damaging in every situation. Since the domain experts in the company believed
that these attributes should contain some useful information that we could exploit
we decided to try a completely different approach before giving up on their use.

2.2.4 Using Categorical Data as a Filter

Since using categorical data as additional information to provide to the model did
not seem to be helpful in this situation, we wanted to try another approach to
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the problem, considering also how the resulting model could be included in the
company processes.

Our idea was that of using the categorical inputs as filters for the dataset
rather than inputs. We can create datasets that contain only devices featuring the
most frequent values for a certain categorical device and train different models for
each of them. These models would be less general but hopefully more accurate
in that specific cases. When the inputs do not fall in the “filtered” categories we
considered then we can just fall back on the general model.

Table 2.12 shows the results of these models trained on the filtered dataset
according to attribute A, B, C or D, which we called respectively DLMA, DLMB,
DLMC , and DLMD.

Table 2.12: Validation and test result for the four attribute-specific models

Model AUC validation AUC test
DLMA 0.87 0.88
DLMB 0.87 0.87
DLMC 0.86 0.88
DLMD 0.87 0.87

The resulting models from this procedure can also be used together, in an
example of what are called ensemble methods and in particular of the bagging
technique [77]. The predictions from the models can combined by majority voting
or simply averaged. This approach can be used for example whenever we have a
device that possesses the characteristics of all the four models together. Obviously,
this can work only for a limited quantity of meter devices, yet it could provide finer
predictions, whenever applicable.

Table 2.13 shows the results the performance obtained by combining the pre-
dictions on the test set from the four models and using the voting strategy. This
applies to the intersection of the four groups which counted 2304 non-defective
devices and 313 defective ones. As shown, we have an improvement in AUC-ROC
that increased to the value of 90%.

Table 2.13: Testing results using an ensemble made from all the categorical models

Model PPV NPV TPR TNR F1(P) F1(N) Acc. AUC
DLM/Bagging 65% 96% 61% 83% 63% 95% 91% 90%
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2.2.5 Comparison with Other Methods

Like in the previous section, we wanted to compare the model with other machine
learning algorithms that could perhaps work better on the tabular data. We used
the implementation available in the python library scikit-learn, using the default
parameters for each of them. The methods used are SVM, CART, GB and RF. The
last two especially seemed to be the best performing in the previous experiment
and are known to be good for this type of data. Table 2.14 shows the results.

Table 2.14: Results for different machine learning algorithms

Model AUC validation AUC testing
SVM 0.69 0.80
CART 0.65 0.73
GB 0.72 0.89
RF 0.78 0.89

All methods seem to have difficulties learning in this context, but we can
see that Random Forest has almost the same performance as our neural network.
Surprisingly, they score even higher in the testing dataset which could be an artifact
of the dataset itself. Since it was sampled from the company, we unfortunately
have no way of knowing if the process was biased. When we performed a cross-
validation experiment, however, AUC scores showed a high variance for RF that is
not present for the neural network, thus we can conclude that our model is more
robust.
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2.3 Integrating AI in a Human Decision Process

In this section we discuss how our model can be integrated in the existing hu-
man processes that are already established in the company. Those consideration
arose at the end of our collaboration, when we suggested a few modalities of use
of such models. While the details may only apply to this specific instance of ap-
plied machine learning the general idea can be carried over to other contexts in
which a decision must be made and that present imbalance in the dataset and an
asymmetry in the importance of certain mistakes over others.

2.3.1 Decision Thresholds in the X-Factor Model

In the previous section we have shown how, with the help of human experts in the
company, we created a usable dataset starting from a huge database of readings and
attributes created for accounting purposes and then used it to train a deep learning
model that was able to detect the type of faulty devices the company was looking
for. Now we will discuss how this classifier relates to the established processes in
the company and how it integrates into those depending on the decision threshold.

Let us start by describing how the company dealt with the problem before (to
the best of our knowledge as not many details were provided for obvious reasons).
The first step is the compilation of a list of candidate faulty devices by looking at
their consumption history. This is done with a heuristic that considers the presence
of a series of consecutive readings indicating null consumption, usually two or three.
At that point, a manual process starts where analysts will manually sift through
the candidates to select the devices that will be checked in person by technicians
and eventually replaced if needed. Null or decreasing consumption could be due
to other things obviously. Sometimes is possible to combine multiple data sources
together, like natural gas consumption if the client receives both, to compare the
values and exclude false positives. However, not every device is replaced due to
multiple business and practical reasons (e.g., meter is inaccessible, replacement
is too costly at the moment, etc.). To give some perspective on the matter here
are some statistics we received based on the estimates the company makes: Every
year, on average, around 10, 000 devices are considered faulty candidates; of those,
almost 5, 500 are shortlisted after checks mentioned above, while around 1, 500 are
finally replaced.

Now as an example let us consider the model and test dataset described
in section 2.1.2, containing around 30, 000 devices with readings collected in the
period mid 2018–end 2018. Of those 30, 000, 6, 652 devices were suspected as faulty,
while 22, 634 were labeled as non-faulty, as stated by the company. Remind our
classifier was able to make predictions in that context with an AUC score of 0.86.
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Without considering anything but performance metrics, we could set the decision
threshold to 0.46, the one that minimizes the number of both false negatives and
the false positives, selected using the intersection point shown in Figure 2.4 and
make errors as those exemplified by the confusion matrix of Figure 2.5b.

Figure 2.4: False positive rate and false negative rate depending on the choice of
decision threshold

Using this model, the company could decide to ignore the devices predicted
as not faulty (20, 513) and either change all the ones predicted as faulty, knowing
that half of those could be actually working correctly or instead check on them
manually using procedures similar to those already in place, with the added benefit
of having save the time necessary for creating the shortlist. The first road is only
viable if replacement is not costly. While we do not know for certain, we can
imagine is not desirable for the company.

The second road instead would make them work on 8, 773 meters, for just six
months, when they usually deal with only 5, 500 shortlisted devices every year,
making it hardly justifiable. Additionally, with “optimal” threshold we would
have 1, 937 faulty meters that are not detected. We do not know the cost of
false negatives for the company but moving the decision threshold towards the
direction of minimizing their number, for example with a value of 0.3 as in Figure
2.5a, would have the effect of decreasing the number of faulty meters that are never
detected down to 443 while also yielding an overwhelming 18, 509 water meters to
be replaced or verified.
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The mathematical optimum in this case is not aligned with the most useful
action for the company as the value of a classification error is not neutral [78].
Integrating their perspective into the process we can instead set a higher threshold
using a value like 0.65 as shown in Figure 2.5c. This approach would result in a
number of suggested faulty meter of 1, 680, which is way closer to the actual number
of meters that are replaced by the company with their heuristic manual method.
However, we can do this without losing time on heuristics, shortlisting and any
other further check. There is small cost in replacing relatively few (21) working
meters which presumably do not constitute a problem. On the other hand, this
strategy is potentially missing on a certain number, perhaps considerable, of faulty
devices. To mitigate this, it would also be possible to find an additional threshold,
slightly lower than 0.65, and manually check on those devices which are above
this new value but below the former. This threshold could be chosen so that the
expected fraction of previously false negative devices to check manually is around
the numbers the company can already manage.

2.3.2 An Improved Strategy with the Categorical-filtered
Model

When considering the new development described in Section 2.2 and the conse-
quent models trained on each categorical attributes the ideas from the previous
sections still stand. On the practical level things would only get a bit more con-
voluted.

1. We should first consider if a device possesses the categorical characteristics
of either the variable A, B, C or D.

2. If that is the case, we can make a prediction using the corresponding model
(either DLMA, DLMB, DLMC , or DLMD).

3. If that is not the case, we can fall back on the generic model with the X-factor
and only consider the time series.

However, it should be noticed that the likelihood that a device does not possess
any of those characteristics, at least in the context of the dataset we have studied,
is quite low, i.e., below 10% on average, as our Pareto analysis has demonstrated.
Anyhow, the use of multiple models at the same time, with some strategy to com-
bine their predictions has the potential to make the model even more performing
as section 2.2.4 showed.
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(a) Threshold = 0.3 (b) Threshold = 0.46

(c) Threshold = 0.65

Figure 2.5: confusion matrices for different threshold

2.3.3 AUC Scores and the “Best” Model

There is one element we did not consider in the previous discussions of thresholds
and performance which is linked to importance, or cost, of certain decisions or
classification. In particular, the cost of each mistake and the utility of each correct
answer may not be equal. In the case of binary classification, like the one we are
facing, there are only two types of mistakes: false positives and false negatives.
The risk connected to those two may very well be unequal, but the company did
not disclose any details about it at the time of our collaboration. However, we can
give a theoretical overview of how to integrate this additional constraint in the use
case we described.

The technique comes from the union of decision theory from machine learning
and expected utility theory from the field of economics [79, 80]. We can start by
associating and score to each of the four quadrants in the confusion matrix that
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correspond to the utility or cost of that type of outcome. We can assume that
correctly identifying a faulty meter has a high utility if the fault makes the company
lose a lot of money; conversely, the cost of sending technicians and eventually
replacing a non-faulty device could be higher and undesirable. The nice thing
about this approach is that those scores can be totally arbitrary and also adjusted
independently of the classifiers being used.

Once we defined our utility scores, we can combine them with the prior prob-
ability of each classification outcome. This quantity can be simply estimated by
considering the number of faulty devices over the total.

rp =
N

N + P
; rn = 1− rp (2.1)

We end up with the following formula for expected utility:

E[U ] = uTP ·TPR·rp+uFN ·(1−TPR)·rp+uFP ·FPR·rn+uTN ·(1−FPR)·rn (2.2)

Finally, using the equations below we can obtain a set of lines in the AUC-
ROC space that correspond to the same level of expected utility, with slope m and
intercept b. At the intersection between the ROC curve and the line corresponding
to the highest expected utility we find the best classifier according to our needs
even if it may be one with a lower overall AUC score.

TPR = m+ uFN · FPR + b (2.3)

m =
uTN − uFP
uTP − uFN

· rn
rp

(2.4)

b =
E[U ]− uFN · rp − uTN · rn

uTP − uFN · rp
(2.5)

Notice how only the intercept is related to the value of expected utility while
the slope entirely depends on the prior probabilities and the utilities scores. In a
visual way we can imagine the common ROC graph with the curve corresponding to
a classifier. Using these formulas, we will have a series of lines with the same slope
m corresponding to different levels of the same expected utility that intersect our
curve at specific points. At those points we can find the classification thresholds
that correspond to that expected utility. The intersection point with the line with
highest intercept represents the threshold for that maximizes utility. Moreover, if
we have more than on classifier, we can plot the ROC curve for both and select
the one that gives us the best utility level, even if the absolute value of the AUC
curve is less or equal.
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2.4 Conclusion

We described the results of a year-long collaboration with an Italian utility provider
that operates in the norther part of the country. The project focused on the
creation of a predictive model that would be able to identify water metering devices
with a particular type of fault before it resulted in a complete stoppage of the
appliance.

Section 2.1 documents the first experiments we performed and describes the
important process behind extracting a proper dataset from the company billing
database and the definition of a semantic of validity to enable us to clean up all
the impurities it contained. This process would have not been possible without
a collaboration with the domain experts working the company at various levels.
Administrative knowledge was necessary in order to understand which attributes
and rows to keep from the database. Technical expertise on the other hand was
important in selecting the appropriate features that could be connected to the type
of fault we were trying to model. This is a perfect example of the human-in-the-
loop design process this thesis wants to portray and the increase in performance
perfectly answers Research Question #1: The integration of human expertise is
the crucial element in improving the performance of our model, guiding the choice
of models and, more importantly, shaping the dataset so that it contains only the
information that is most relevant to the learning algorithm.

In Section 2.2 we saw how in an additional experiment at the end of the col-
laboration project we had to deal with the very strange case of categorical data
negatively affecting the performance of the model. Answering Research Ques-
tion #4, this time data visualization was the key to understanding the nature
of categorical data, which appeared to be following a Pareto-like distribution.
Together with our intuition of data scientist pointed us in the direction of dimen-
sionality reduction techniques to address the problem. Unfortunately, the classical
approaches would not yield any significant advantage but trying the unusual ap-
proach of using categorical data as a sort of filter to split the dataset and train
multiple proved successful and opened the possibility for a new way of interacting
with the model through the use of multiple combined models.

The theme of how to interact with this classification model are discussed
in Section 2.3, where we showed how there are various way the company could
integrate our model in their decision process. Our collaboration terminated before
we could see how this turned out so we can only speculate on what strategy would
be in their best interest. Nonetheless, the conclusion we draw are quite general
and can be applied to any situation in which there is a classification model to
be inserted in a decision process. In particular we have seen how, the choice of a
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decision threshold that is not the mathematical optimum may be a better choice for
the company as it more easily aligns with their already established practices. This
relates to Research Question #2. Moreover, we can notice how if the model is
developed as a support to humans, rather than a substitute, a strategy could also
be that of using the model classify the more obvious (as in the outputs with higher
probability) data points while leaving a certain amount to be manually checked.
On similar note, relating toResearch Question #3, we also show how the metric
we used, the area under the ROC curve, can be misleading in situations where the
outcomes of classification are not equiprobable, and mistakes have different real-
world costs associated to them. We propose a way of addressing this by using a
technique coming from economics called expected utility which can be combined
with then ROC curve to select the best model beyond the single AUC metric.
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Remote Sensing for Archaeology

In this chapter we will explore a completely different field of application, archaeol-
ogy, tackling a task known as remote sensing. In simple terms, it consists in finding
potential sites from satellite images. While very far from the application in the
previous chapter, this project still evokes the same concepts of human-in-the-loop
design and data-centric considerations on the quality and meaning of our training
samples.

In particular, we had to deal with a dataset that was, once again, not built
purposely for machine learning and with the added problem of a small number of
labeled examples (few hundreds to a few thousands). Furthermore, this labeling
tended to be quite imprecise, in a way that is not problematic for the manual
work of humans but that can compromise the training of a model. Involving
archaeologists was thus important from the start to understand how to treat the
few examples we had, and, more importantly, what to consider as a negative
example in a supervised learning setting.

Moreover, once a model was trained we needed their help once again as the
evaluation procedure in this context is more complex than in other settings. In
fact, the area the model should be used on is the same area where the examples
come from and there is a considerable chance that some potential sites were indeed
missed by previous surveys, especially given the size. In the event the model
predicts something as a new archaeological site, then we have to decide whether
it is a mistake (as an automatic testing procedure would) or if it is indeed a new
site.

In the next section we will start by going over some background information
and relevant research. Section 3.2 will describe the first attempt to solve this
problem with a small dataset coming from the QADIS project and using a tile
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classification approach. Section 3.3 will instead show a second attempt based on
semantic segmentation models using a bigger dataset resulted from the FloodPlains
project. Finally 3.4 concludes the chapter.

3.1 Background

We collaborated with colleagues from the department of archaeology that work in
huge areas in the Near East [81–83]. Their interest in is a particular type of ar-
chaeological sites called Tell which is prominent in floodplains like Mesopotamia.
The Arabic word Tell literally means “hill” and indicates a stratification of build-
ings mostly made of mud-bricks and debris that, over time, resulted in an actual
artificial hill. Given the nature of the Mesopotamian floodplain, these elements
tend to emerge visibly from the landscape and to be recognizable from satellite im-
agery. The shape, size and color can vary considerably, but they generally present
an elliptic form with red and brown hues (as they are composed of clay).

These archaeologists’ workflow involves a phase of “remote sensing” in which
part of the large investigation area is surveyed through satellite or aerial imagery,
often coming from multiple sources, and combined with old maps and reports, with
the goal of spotting the contours of candidate sites and pinpointing their location.

Remote sensing can refer to any techniques and technology that involves the
use of data gathered by sensors or cameras mounted on satellites or aircraft or
various nature. These data can then be used to learn something about, or monitor
the state of, some points of interest. This can range from keeping track of forests’
growth or consumption, to the movement and size of glaciers, to even identifying
pools in a neighborhood, or looking for archaeological sites, like in our case [84–89].

The emphasis on data beyond common optical imagery is due to the wide
range of sensors that can be employed to highlight different properties of the target,
like temperature or chemical composition, for example. This hyper-spectral remote
sensing can be used in archaeology to help highlight sites that may appear more
clearly in other parts of the electromagnetic spectrum [90, 91]. There is also the
possibility of working with three-dimensional data collected by LIDAR technology.
This requires collecting point cloud data through drones that fly at low altitude.
The end results can be extremely precise, but are obviously not as easy to obtain
as simple 2-dimensional photos collected by satellites [92, 93]. The analysis of all
these sources of data was commonly carried out by a human expert, who knew
what to look for and where, as computer vision solutions were not always viable.
Doing all of this manually is obviously time-consuming but is also very important
to the preparation of a mission in a faraway country that can last weeks. The recent
development of deep learning for computer vision however is changing the scenario
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and we now see automatic classification, detection and segmentation models based
on neural networks [94]. In this context, our collaboration wanted to investigate
the possibility of automating this process and to study with what accuracy a
system would be able to perform the same task when provided with similar satellite
imagery.

Contrary to what one could expect the archaeologists explained how the most
valuable thing for them was not achieving high accuracy but rather the consider-
able time savings. This is because the points of interest that they find through re-
mote sensing are checked and discussed by humans anyway before deciding whether
to actually visiting them or not. A system like this could speed up the discovery
phase and let them concentrate on the decision making. Additionally, the num-
ber of sites in these regions is so high that the fact of missing some of them is
not considered an issue. Since the prediction would be reviewed by the domain
experts in any case, overtime the system could be retrained with an ever-refined
dataset and become even better. All this makes our task a perfect application of
human-in-the-loop machine learning.

In next sections we will describe how we used the same satellite images used
by our fellow archaeologists (other data sources like maps and old aerial photos
were too low quality compared to our inputs to be combined) and approached
the task using classification and segmentation techniques as seen in the literature.
Also, given the size of the dataset and the limit of our computational resources,
transfer learning was an important part of these project.
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3.2 Tile Classification Approach for the QADIS
Project

This section details the first approach we tried in our collaboration with the ar-
chaeologists. At the time our colleagues were working on the QADIS project,
surveying an area of 1, 830 km2 in the Qadisiyah region in Iraq [95, 96]. The next
section details the dataset they provided and the system we designed for the task.
After that we discuss how we envisioned a possible interaction between the domain
experts and the model.

3.2.1 Dataset

For these experiments, the archaeologists provided a small dataset of shapes cor-
responding to 145 confirmed sites they surveyed. Additionally, we had the shapes
for 21 areas found not to be actual sites, for a total of 166. They also provided
a set of 415 points coming from a previous survey by Adams [97].We decided to
not consider those however, as they lacked the shape information contained in the
others making it difficult to assess their size without visual inspection. Figure 3.1
shows the investigation areas and all the sites.

Starting from the satellite photos, coming from ESRI, and the shapes we
were provided with we first defined a rectangle to inscribe the QADIS area. This
rectangle was then divided into tiles, corresponding to images of 299× 299 pixels,
preserving their native resolution and roughly corresponding to an area of almost
180 × 180 meters. Examples of this tiles are shown in Figure 3.2. Not to lose
any information, we also used a kind of intermediate tile, between two consecutive
tiles, essentially obtained shifting the window by half a tile, when we extracted
the images. All this resulted into a set of approximately 300, 000 tiles. The choice
of size is dictated by the use of a pretrained model we will discuss later.

To be considered is the fact that while the number of tiles in this dataset is
huge, it is also extremely skewed in favor of tiles representing non-sites: in fact,
the number of tiles that could represent true sites is just 3, 280. To be noticed,
again, is the fact that these 3, 280 refer to tiles that can also have almost a null
intersection with a true site (that is, they overlap just for a very small portion with
a true site); hence making the validity of the information contained in that tile
arguably significant. To alleviate this problem, we selected tiles as representative
of true sites, just in these two cases:

(i) they overlapped with true sites for a geographical extension of at least 10%
of their area,

(ii) they overlapped with true sites for an extent of at least 30%.
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In the first case, we got some 2, 211 tiles, while in the second case we got some
1597 tiles out of the total amount of 3, 280 tiles. These tiles represented the positive
examples on the basis of which we constructed our datasets for training our deep
learning model. To the positive cases, we added some negative cases (non-sites)
to get two well-balanced datasets, respectively constructed of 4, 422 and 3, 194
examples. Those were randomly selected from tiles that had no intersection with
the sites as suggested by the archaeologists.

Figure 3.1: The investigation area for the QADIS project. Yellow dots correspond
to the sites we used in the training set. Blue dots are the 21 sites that were
mistakenly identified as such. Red dots are the 415 sites by Adams that we did
not use as they did not come with a shape.
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Figure 3.2: Example tiles from the dataset.

3.2.2 Model

Given the very small size of our dataset we considered the use of Transfer Learning
as a viable strategy to adopt in our context. The basic idea is to start from a
deep learning model that has already learnt how to classify images, and then to
specialize it to deal with our tiles [98, 99].

To this aim, we exploited the Google’s Inception v3 model, made available
for use as a pre-trained tool in the Keras library [100, 101].We used Inception as a
feature extractor, with its weights (learned from the ImageNet dataset) frozen, by
removing the classifying head and then replacing it with the new neural network
to be trained. The model was trained for 10 epochs, as increasing the number of
epochs yielded no significant difference when we came to the results. Not only,
also class weights were employed (0.3 for non-site and 0.7 for sites, respectively),
in an effort to help the model avoid mistakes on the positive cases.
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Finally, in the hope of helping the model learn a more general representation,
as well as to avoid overfitting, we also resorted to a data augmentation procedure
that randomly applied a set of general geometrical transformations to all the im-
ages on a given batch. In this context we want to learn invariant representation
to things like rotation and mirroring as they do not change the appearance of a
site. Other popular transformation includes slight shifts in attributes like bright-
ness, contrasts or in the color space. For this experiment, we resorted to the data
augmentation procedures provided by the Keras library.

3.2.3 Results

First, we trained four models, combining two types of overlap rule (10% and 30%)
to a different ratio of positive to negative examples (1:1 and 1:2). After that we
tried two more variations: adding a larger context to the inputs and using a more
aggressive data augmentation.

The AUC accuracy prediction scores for the hold-out test set (20% of the
total) are shown in Table 3.1 and are mostly in the neighborhood of 0.60. Model
2 achieves the lowest at 0.55, while Model 3 is the best one, with a 0.63. These
poor performances were somewhat expected given the difficulty of this task and
lack of data. Nonetheless, we can conclude that a more conservative overlapping
rule gives better performance overall and that the 1:1 ratio is consistently better,
albeit slightly. Additional development led us to Model 5 and 6, documented in
Section 3.2.5, showing an improvement with scores of 0.65 and 0.71 respectively.

Table 3.1: Classification performance for the 6 models we tested.

Model Type Overlap AUC Score (test)

1 1:1 Ratio 10% 0.61
2 1:2 Ratio 10% 0.61
3 1:1 Ratio 30% 0.61
4 1:2 Ratio 30% 0.61
5 Parallel 30% 0.61
6 Aggressive Augmentation 30% 0.71

3.2.4 Using Prediction Heatmaps

Even if the general AUC metrics were not well promising, we decided to take
the output from Model 3 and to overlay them to the geographical site map in
order to print a pictorial impression of how the predictions came distributed over
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a real map. In spite of the numerical results, in fact, our intent was to check
if (at least visually) the predictions returned by the model could still point the
user in the right direction, by highlighting a particular spot on the map. The
following pictures (Figures 3.3 to 3.6) show an example area from the map and
were produced by overlaying the predictions returned by Model 3 on the QADIS
area map, using the software QGIS.

In particular, Figure 3.3 represents our starting point. The tiles in yellow
should be predicted as sites, while those in blue as non-sites. Figure 3.4 should
resemble a classical heatmap, where the more yellowish are the tiles, the higher is
the associated probability they should represent (a part of) a true site, as predicted
by the model (low probability zones are made transparent).

Figure 3.3: Ground Truth from the testing examples. Blue tiles are negatives,
yellow are positives. Green contours are know sites, red are known non-sites.

Figure 3.4: Prediction heatmap from the model. Dark colors corresponding to low
scores are also made transparent for visualization sake.
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While this result is still not convincing at all, we tried presenting the ar-
chaeologists a different visualization. The new idea we developed was to extend
the prediction map to incorporate blocks of 5× 5 tiles, over which the prediction
probability was computed as equal to the maximum value of the contained tiles.
With this new approach (Figure 3.5 ), the big archaeological site on the left is
discovered, while the small sites on the right are still off our radar, and also two
false positive areas, unfortunately, emerge. To notice is the fact that we adopted
a very simple max function to reason with our heatmap. Less naive functions and
filters could hopefully provide more accurate interpretations.

To check the robustness of our method, we tried to shift to the left all the
scene, in order to verify if the predictions stay unchanged. Results are shown
in Figure 3.6 and are controversial. On one side, it is confirmed that the big
archaeological site is somewhat individuated (and the two little ones on the right
stay off the radar), but more areas representing false positives emerge on the left
of the scene, confirming that the approach is not stable.

Figure 3.5: Coarse-grained prediction of the same test example.

Figure 3.6: Coarse-grained prediction after shifting the input area to the right.



46 Chapter 3. Remote Sensing for Archaeology

3.2.5 The Role of Context and Data Augmentation

Given the lackluster performance all the four models, we were suggested by the
archaeologists that perhaps the inputs were too narrow to give the model a good
sense of what a site is. To address this, we tried introducing a second input that
would represent the surrounding context [102]. For each training tile we assembled
a new image, composed of the 8 surrounding tiles around it, thus resulting in a
3×3 squared picture. This picture was then resized to a 299×299 tile, in order to
feed it to our Inception v3 model (the same used to analyze the primary tile). As
seen from Figure 3.7, we deployed a new custom model composed of two parallel
Inception v3 branches, one for the tile and one for its 3×3 context, whose outputs
were concatenated and fed to a dense layer for final prediction.

Figure 3.7: Parallel Architecture used for model 5 and 6. The idea is encoding a
larger area using the existing tiles, constructing a 3x3 square and scaling it down.

The model was trained using the same hyperparameters of the Model 3: 30%
overlapping; 1:1 ratio, 10 epochs; 0.3 / 0.7 class weights. After training, the testing
activity was performed again, and a 65% AUC-ROC value was achieved, with just
a moderate improvement in the prediction performances.

A final improvement to our neural model was achieved by carrying out a
more intense activity of data augmentation [103]. While the first models used a
randomly applied transformation at every iteration, this time we tried creating
a dataset containing all possible symmetries of the input images (rotations and
mirroring) to which then are randomly applied “destructive transformation” like
shearing and zoom. This resulted into a quantity of tiles, representing positive
examples (i.e., true sites), approximately equal to 12, 776. At that point, to work
with a balanced training dataset (where the number of positive examples equals
the quantity of negative ones), we further added 12, 776 tiles representing non-sites,
and then we retrained our model.
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The result we got, in terms of AUC-ROC on each single tile, was around the
value of 71%. While one could acknowledge this as an important improvement,
an increased performance in the classification of single tiles does not necessarily
correspond to a better performance in recognizing true archaeological sites in their
entirety, owing to the motivation that our tiles are, on the map, just small portions
of larger archaeological sites.
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3.3 Semantic Segmentation Approach for the Flood-
Plains Project

In this section we will look at a different approach to the same problem. The
collaboration described in the previous section halted due the pandemic and once
it was possible to continue, we had a bigger dataset available, coming from the
FloodPlains Project 1.

This project has been developed in the framework of the European Union
project “EDUU – Education and Cultural Heritage Enhancement for Social Cohe-
sion in Iraq” 2, coordinated by Nicolò Marchetti. The ongoing project “KALAM.
Analysis, protection, and development of archaeological landscapes in Iraq and
Uzbekistan through ICTs and community-based approaches”, funded by the Volk-
swagen Foundation has allowed a review of our data input and the development of
the research presented in this section3. The CRANE 2.0 project of the University
of Toronto provided the geospatial servers on which FloodPlains is running.

Given the size of this new dataset, just shy of 5, 000 examples, and the limi-
tations of the previous approach (namely, the cumbersome tiling process and the
impossibility of working with images of arbitrary size) we decided to frame the
problem as a semantic segmentation task this time, and use pretrained deep learn-
ing models to achieve the best performance. This choice allows us to overcome the
limitation in input size of the previous approach and generates pixel-level classifica-
tion maps that are way more useful for indicating the presence of sites. Using this
type of machine learning approach is not unseen in archaeology but most works
focus on the use of Random Forest models trained on very small and narrowly
focused datasets [104].

3.3.1 Dataset

We started with a dataset of geo-referenced vector shapes corresponding to con-
tours of known Tell sites in the survey area of the Floodplains Project that spans
more than 66, 000km2, as shown in Figure 3.8. This dataset contains 4, 934 shapes
collected from a variety of sources, dating back even several decades, and who were
all confirmed by in person surveys.

To generate a dataset of images we imported the shapes mentioned above into
QGIS (an open-source GIS software) and using a Python script we saved a square
of length L centered on the centroid of site which contains only satellite imagery

1https://floodplains.orientlab.net
2EuropeAid CSOLA/2016/382-631 www.eduu.unibo.it
3www.kalam.unibo.it

www.eduu.unibo.it
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from Bing Maps (we also considered other maps but found that in this particular
area they all are mostly the same). After this we saved the same image without
a base map but with the site contour shown, represented as a shape filled with a
solid color, to serve as our ground truth masks.

In the first experiments we set L to be 1000 meters but, after consulting with
domain experts we imagined that the increasing the size of the prediction area
could be beneficial due to the inclusion of a larger context. Subsequently we also
tried using L = 2000 meters with improved results.

From this square we randomly crop a square of length L/2 to be used as the
input. This ensures that the model does not learn a biased representation for which
sites always appear at the center of the input, Figure 3.10a shows, and additionally
serves as data augmentation. When extracting from QGIS we saved images with
a resolution of around 1 pixel/meter (1024 pixels for 1000 meters, double that for
the model with increased input size) but the inputs were then scaled down to half
of that to ease computational requirements while having low impact on the overall
performance. We split the dataset into a 90% training set and a 10% holdout test
set, stratifying the “empty” images we added.

Figure 3.8: Investigation area. Cyan shapes represent surveyed sites. Red areas
are location where no site can be found, like cities and artificial lakes.
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Following a suggestion from domain experts, we also tried integrating CORONA
imagery as an additional input [105] as in their usual workflow those historical
aerial photos are very useful and often combined with the satellite base map and
other topographical maps. After importing the photos into QGIS we followed the
same procedure to create the inputs, ensuring the crop operation was equal for
both Bing and Corona images.

Filtering out bad examples

After inspecting the outputs of the first experiments we noticed some site shapes
looked wrong, as shown in Figure 3.9. The archaeologists then warned us that the
dataset was compiled as a comprehensive source of information for their workflow,
rather than specifically to train a machine learning model, and highlighted that
some of the shape could either be imprecise or not visible on present day photos
(but is in historical ones). To gauge the effect of this impurities we also wanted
to try training models with a filtered dataset. Theoretically those sites provide
no information and could actually impair the learning process. Exploring the
dataset, we found that some sites that were too either too big or too little, as
well as sites that are not visible anymore from present day images because of
agriculture, urbanization, or flooding

Figure 3.9: the examples from the filtered images. The sites are either flooded,
extremely small or covered by a city.

For the filtered dataset, we started by removing the top 200 sites by area
as these were considerably bigger than the rest of the dataset. Visual inspection
confirmed that they follow the shape of areas that are not just simply Tells. After
a discussion between data scientists and archaeologists we convened that this was
a good heuristic as it helped focusing the target only to tell shapes. Besides,
such large areas would be difficult to learn and arguably meaningless, as the mask
to be predicted would be completely filled with ones. The number 200 comes
from calculating those that would not fit inside the squares we used as inputs
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and translates to excluding sites with areas larger than 20 square degrees (around
0.25 km2).

Additionally, we filtered out 684 sites that either presented a very small area or
contained notes by the archaeologists that suggested they were not visible anymore.
In particular, the size threshold was set at 0.1 degrees squared (roughly equal to
1000 m2). This very small sites actually correspond to a generic annotation for a
known sites with unknown size or precise location. After this procedure, the total
number of shapes is thus 4050.

Data Augmentation

As in the tile-based classification model, we performed data augmentation and
leveraged the Python library albumentations, which provides a framework for easily
applying a variety of transformation with a random probability at load time [106].

(a) (b)

Figure 3.10: a) prediction from the model trained with no random cropping
(ground truth in green, prediction in yellow); b) Nine examples of possible aug-
mentations for the same site (cyan contour).

Apart from the random crop we described before, which was always per-
formed, we included three types of augmentations. They are as follows: The
first is a random rotation of 90, 180 or 270 degrees. This transformation is non-
destructive, and it is useful to teach the model that an archaeological site is recog-
nizable, regardless of the orientation. Similarly, we also applied a random mirror-
ing, either horizontal or vertical covering all the possible symmetries an image can
have. Lastly, we applied a (slight) brightness and contrast shift, as the images are
not uniform in their lightning conditions, and this should help the model recognize
sites in those cases. Figure 3.10b shows some examples.
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As a final addition, we introduced 1, 155 images with empty masks (no sites
to predict) sampled from locations suggested by the archaeologists (red areas in
Figure 3.8). Those include highly urbanized areas, intensive agricultural areas,
location subject to flooding (i.e., artificial lakes and basins) and rocky hills and
mountains. The total number was arbitrary and chosen by considering the size of
each suggested area and of the tiles. This addition brought the final number of
images to 5, 025.

Uzbekistan

At the request of the archaeologists, we also performed an additional test on a
dataset coming from the Uzbek-Italian Archaeological Project [107]. Given the
similarity between the Tell in the Mesopotamian floodplain and the Uzbek Tepa
in the we wanted to see if the model was able to detects those sites without the
need of additional retraining.

The dataset features 2, 318 point-like annotations, categorized in different
ways, which also come with attributes related to their preservation states. Fol-
lowing the indication of domain experts, we selected only sites classified as either
Tepa, Low Mound or Monument with the well-preserved label. The final number
of sites ends being 229: 148 Tepa, 67 Mounds and 14 Monuments. The actual test
set images were created following the same procedure described previously.

3.3.2 Models

All deep learning models for semantic segmentation are based on the same archi-
tectural concept of employing both an encoder and a decoder. The encoder is in
charge of feature extraction, and at various levels of detail, of reducing the image
to smaller and smaller feature maps, essentially learning where to look in the im-
age. The decoder instead plays the role of inflating the feature maps back to the
input size, while learning to create the actual mask one wants to predict.

We employed a library of pre-trained segmentation models for Pytorch, as
the primary goal of this study was to check its feasibility [108]. The library in
fact allows the use of different segmentation architectures, that in turn shape the
decoder section, and combine them with different encoders for feature extraction.

In our experiments, we used U-Net and MAnet as the segmentation architec-
tures, and ResNet and EfficientNet as encoders for feature extraction. U-net is a
fully convolutional network architecture introduced in 2015 for semantic segmen-
tation of cellular tissues. The model is characterized by two almost symmetrical
halves, an encoder and a decoder, hence the U shape that gives the name, with
connections that go across at the same depth level [109]. MAnet was also devel-
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oped in the context of medical applications but it also showed successful results
in segmentation tasks involving satellite images [110, 111]. It features attention
blocks (made popular by the transformers architecture) and an architectural de-
sign aimed at better capturing long range spatial dependencies ResNet is a very
popular and influential deep learning architecture for computer vision introduced
in 2015. It popularized the idea of skip connections, becoming the state of the
art for convolutional neural networks (CNN), and it is often used as a bench-
mark for new models. We employed a version with 11 million parameters (i.e.,
resnet18), pre-trained on the ImageNet dataset [112]. EfficientNet is an optimized
convolutional network introduced by Google Brain, that features a streamlined
architecture thanks to clever design decisions and to the use of a neural architec-
ture search to find the best scaling for depth, width and resolution. We used the
B3 model which has a similar amount of parameter to resnet18, while allegedly
performing way better [113].

Finally, some words are in order regarding loss functions. Loss functions
play a very important role as they are directly responsible for the way the model
learns and thus produces its outputs. Among the many alternatives, we used the
Intersection-over-Union (IoU) metric. This serves as our performance metric while
the formula below shows how it is computed:

Metrics and Loss Functions

The metric of interest in semantic segmentation is called Intersection-over-Union
(IoU). As the name implies is measure the ratio between the intersection and the
union of the predicted mask and the ground truth mask. The formula below shows
how it is computed in terms of the outcomes of pixel classification:

IoU =
Y ∩ Ŷ
Y ∪ Ŷ

=
TP

(TP + FP + FN)
(3.1)

where Y is the segmentation mask and Ŷ is the predicted mask (TP, FP and
FN stand for true positives, false positives, and false negatives).

While IoU can be used a loss function, for numerical differentiation reasons
Dice Loss is often preferred [114].

Ldice = 1− 2TP

2TP + FP + FN
(3.2)

We also experimented with Focal Loss. This is a variation of the classical
Cross Entropy Loss with the introduction of a mechanism that scales down the
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contribution of easy to predict elements [115]. For each pixel to classify we have:

Lfocal = −α(1− pt)γlog(pt) (3.3)

with
pt = p · target + (1− p) · (1− target)

where target corresponds to each pixel in the mask (either 1 or 0) and p to the
predicted probability.

3.3.3 Results

The first experiment we performed were aimed at exploring if the use of different
models made a difference in the final result. all models performed quite well, with
testing IoU scores around the value of 0.70, as summarized in Table 3.2. Not
shown are the foreseeable exceptions of the base model (U-net with resnet18 and
dice loss) trained either without cropping and negatives, or with only cropping
which scores respectively around 0.50 and 0.64.

Table 3.2: Validation Performance (per-image IOU).

Model Architecture Encoder Loss Epochs IoU

1 U-net resnet18 dice 10 0.6823
2 U-net efficientnet-b3 dice 10 0.7068
3 U-net resnet18 focal 10 0.7221
4 U-net efficientnet-b3 focal 10 0.7219
6 MAnet efficientnet-b3 dice 10 0.6920
7 MAnet efficientnet-b3 focal 10 0.7265

8 U-net efficientnet-b3 dice 20 0.7178
9 MAnet efficientnet-b3 dice 20 0.7316
10 MAnet efficientnet-b3 focal 20 0.7437

11 MAnet (filtered dataset) efficientnet-b3 dice 20 0.7662

12 MAnet (2k input) efficientnet-b3 dice 20 0.8076
13 MAnet (2k input+filter) efficientnet-b3 dice 20 0.8154

14 MAnet (1k input+CORONA) efficientnet-b3 dice 20 0.7406
15 MAnet (2k input+CORONA) efficientnet-b3 dice 20 0.8345
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MAnet seems to provide no significant benefit over U-net, at least in our
experiments: their predictions are extremely similar in most cases and so are their
scores. MAnet seems to be taking the lead slowly with more training iterations,
though. Similarly, Dice Loss and Focal Loss obtain extremely close scores, with the
only discernible difference being the output they produce. Dice Loss tends to create
masks that are more cohesive and clear-cut, with blocks of high probability that
sharply taper off to 0.0 at the edges, whereas Focal Loss creates hazier prediction
maps that change more smoothly. Coming to the encoder choice, as expected
resnet18 consistently performed worse than efficientnet-b3. However, the gap is
not extremely marked in terms of IoU, even though qualitatively it seems to make
worse mistakes (e.g., it misses some part of the sites).

We decided to go further with our experiments by only using the combination
of MAnet with efficientnet-b3 and focal loss, trained for 20 iterations. We retrained
a model with these settings on the filtered dataset which resulted in an even
improved IoU score. This is likely due both the effect of better learning and less
“false” mistakes in the scoring process.

Finally, we tried to double the size of the inputs after noticing with the domain
experts that the model seemed to make mistakes in situations where there was not
enough context to understand the target. This resulted in a considerable increase
in performance, reaching 0.8076 and going up to 0.8154 when the filtered dataset
is used.

The inclusion of CORONA images in the input did not seem to meaningfully
change the performance of the model with the smaller input size, with an IoU
of 0.7406. This could be likely due the low resolution of these images. On the
other hand, the model with the larger input received a boost in segmentation
performance, scoring 0.8345 IoU, although a quick look at the prediction showed
that there was not a striking difference from the model without CORONA inputs.
As we will see next, testing for site detection showed that the model is not actually
performing better.

Detection Performance

To measure the detection performance, we transformed the raster predictions from
the best models into vector shapes, using the well know library GDAL (Geospa-
tial Data Abstraction Library), and looked for the intersection between the site
annotations and the predictions.

To obtain smoother shapes, before the conversion we first applied a Gaussian
blur to the prediction raster and then clipped values above a certain threshold (0.5
but the number can be changed for a more or less sensitive model) to 1.0 while
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everything else would be set to 0.0. This automatic evaluation gives good but not
too exciting results, with an accuracy score of 62.50% and 60.08% for model 13
and 15 respectively.

We can argue already that the would provide a good starting point for human
analysis, being able to find most sites reliably. However, given the unreliable
nature of the dataset, we wanted to involve the domain experts into the process
to provide a verification of the predictions and to differentiate the cases in which
the model commits proper mistakes from those in which it makes justifiable errors
that a human would do too [116].

Table 3.3 summarizes the results of the automatic and the human evaluation,
showing a marked improvement in detection performance given by re-adjusting
mistakes according to their nature. We include recall, besides accuracy, as the
percentage of real sites retrieved by the model is perhaps the most important
aspect for the archaeologists.

Table 3.3: Site detection performance for the best model: automatic and adjusted
by human review.

Model Evaluation TP TN FP FN Accuracy Recall

13 Automatic 228 98 70 125 0.6257 0.6459
Adjusted 258 185 40 68 0.8040 0.7914

15 Automatic 209 104 57 151 0.6008 0.5806
Adjusted 239 197 27 88 0.7913 0.7309

Let us explain how this adjustment procedure was carried out. First of all
there a considerable number of sites that are no longer visible from present day
satellite images and were not filtered from the dataset. This was expected as only
50% of the annotations had additional information and even less contained indica-
tion of their visibility. Those sites should not be considered as False Negatives but
rather as True Negatives. When it comes to predictions marked as False Positive,
sometimes the model predicts another site close by, instead of not the being tested.
The can be considered a mistake or not depending on the nature of the "missed"
site. In one case we have a site that is not longer visible, so the prediction is
actually a True Positive. On the other hand, it can be a site that is still visible,
but maybe less so than another one, close by in the picture. Given that, in a real
world scenario, the closeness to other sites would result in a useful suggestion as
the human expert would then be able to retrieve them all, we considered those
sites as True Positives. We could alternatively consider them as both a false neg-
ative and a true positive, or even avoid considering non visible sites altogether
resulting in a minimal difference with accuracy 0.7837 and recall 0.8201. Lastly,
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some predictions were actually present in the outputs but too faint for the cutoff
threshold we imposed. We did not adjust for those errors but they indicate a pos-
sible approach for interaction: using predictions as overlays and manually looking
at the map. Alternatively setting a lower threshold could solve the problem.

It is interesting to see how Model 15 is performing worse, even if it had
higher IoU. Looking at the predictions, it appears that this model is a little more
“cautious”, resulting in a lower recall but also less False Positives. In turn, this
can result in a higher IoU because it reduces the Union term, and if areas are a
little bit more precise it even raises the Intersection term. However, for detection’s
sake, we need the presence of an intersection rather than a perfect match and in
this situation the lower number of positives is punishing. Overall the difference in
accuracy is not excessive but we must also consider the additional complexity and
cost of using two sets of input images which make model 15 a bit cumbersome.
For this reason we moved on using just model 13.

To conclude, in Table 3.4 we show some examples of the comments provided
by the archaeologist regarding the prediction produced by model 13, which are
instead showed in Figure 3.11.

Table 3.4: Nine examples of comments from the archaeologists on the model pre-
dictions showed in Figure 3.11.

Site Comment

AKK.0006 The site shows various levels of destruction due to modern structures,
canals and fields. Difficult to spot on Bing images.

AKK.0021 Site completely destroyed by agriculture.
AKK.0106 Site completely destroyed by agriculture.
AKK.0213 Correct prediction. The model also recognizes as a site a portion not

included by the archaeologist but that is certainly part of it.
AKK.0261 Correct prediction. The predicted site SE of the target, could effectively

be labled by an archaeologist doing remote sensing.
AKK.0317 Correct prediction. Although the target is not predicted because of its

location, the marked sites in the NE would be also labeled by an archae-
ologist doing remote sensing.

AKK.0355 Perimeter is very faint and is difficult to locate from Bing images because
of agricultural destruction.

AKK.0621 Correct prediction. Site in NW of the target would be also labeled by an
archaeologist doing remote sensing.

AKK.0776 Site is completely destroyed by urbanization.
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(a) AKK.0006 (b) AKK.0021 (c) AKK.0106

(d) AKK.0213 (e) AKK.0261 (f) AKK.0317

(g) AKK.0355 (h) AKK.0621 (i) AKK.0776

Figure 3.11: Nine example predictions as mentioned in Table 3.4. Site outline is
shown in Green. Yellow areas are True Positives, Orange areas are False Positives.
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Maysan

After that we also tried the model on rectangular area from the Maysan region
for which we obtained annotations that we did not include in the initial dataset.
This test had the goal of evaluating how many false positives the model would
predict and to give an example of the mistakes the model makes in an operational
scenario.

Figure 3.12: Maysan test area (orange) with ground truth sites (turquoise) and
predictions (yellow).

The area we selected contains 20 sites and span 104 km2. Figure 3.12 shows
the area with the annotation from the archaeologists and the prediction from the
model. As it can be seen, the model is able to recover 17 of the 20 sites while
also suggesting around 20 more shapes (depending on what is considered a single
instance). Most of these suggestions are not useful but are also easily and quickly
sifted out by an expert eye, especially in context, given their size or their location.

Uzbekistan

On the Uzbek dataset the situation is not as good unfortunately. Evaluation of
the outputs showed that the model is able to identify correctly around 25 to 30%
of the sites in this region, depending on how strictly the shapes are considered.
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The errors are comprised either of sites that are missed completely or sites that are
somehow hinted either too faintly or inside a huge area that appears meaningless.

The reason for this severe drop in performance is most probably due to the
different nature of the landscape in the region which in some locations appear to
be way more urbanized and in general features more vegetation. Furthermore, the
conventions which lie behind the annotations in the Uzbek dataset might not be
perfectly aligned with the Mesopotamian one further complicating the situation.

The only way of dealing with this problem is probably to create a small dataset
of selected Tepa sites and perform an additional round of transfer learning so that
the model may grasp the new context and characteristics in the region.

Table 3.5 contains some comments the archaeologists provided after looking
at the prediction on the Uzbek dataset. The sites mentioned here, are shown
in Figure 3.13 where the annotated sites are shown with a red square and the
prediction are ovelaid on the image as we did not perform any automated test in
this case.

Table 3.5: Nine examples of comments from the archaeologists on the model pre-
dictions showed in Figure 3.11.

Site Comment

NUR.016 Difficult to locate as inside deep paleorivers that make the landscape dif-
ficult to read (experts tend to focus more near those physical features).

NUR.018 Very small site difficult to locate in this landscape. No chromatic variation
and faint elevation.

NUR.042 Very small site difficult to locate in this landscape. Many traces of
riverbeds make the landscape difficult to read.

PAS.100 Small Tell (14m diameter) easily recognizable among farmed land but prob-
ably too small compared to the training data in Iraq.

PAS.102 Similar to PAS.100, too small compared to Iraqi tells.
PAS.107 Correct prediction. The predicted areas would be considered by an archae-

ologist doing remote sensing.
PAS.114 Tell is visible but surrounded by densely urbanized landscape.
PAS.149 This tell does not have the traditional elliptic shape as it was partially

salvaged from urbanization.
PAS.269 Landscape full of potential tells, the predicted area should be surveyed.



3.3. Semantic Segmentation Approach for the FloodPlains Project 61

(a) NUR.016 (b) NUR.018 (c) NUR.042

(d) PAS.100 (e) PAS.102 (f) PAS.107

(g) PAS.114 (h) PAS.149 (i) PAS.269

Figure 3.13: Nine example predictions as mentioned in Table 3.4. Site outline is
shown in Green. Yellow areas are True Positives, Orange areas are False Positives.
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3.3.4 Proposing a Human-AI Collaboration Workflow

With a model such as the one we just described we can imagine a new workflow
for the archaeologists doing remote sensing.

Starting from the dataset the model produces prediction masks that can be
manipulated through post-processing to obtain a vector shapefile that can be used
for automatic evaluation and detection of sites. At this stage, the user has the
possibility of choosing how a threshold to cut prediction off and the use of tech-
niques to smooth the output shapes like blurring or buffering the vectors. All these
operations can be done automatically by the model code or left to the user which
can employ common tools in any GIS software, where is also possible to choose
the preferred graphical representation of the outputs.

Additionally, a map overlay can be generated by stitching together adjacent
prediction maps and visualizing the probability values, resulting in something sim-
ilar to an heatmap. The goal in this case is that of spotting sites that might pass
undetected by the automatic comparison because their probability lower than the
threshold while still being distinguishable for humans who are also able to inte-
grate their intuition and contextual clues coming from other maps and sources of
information.

Each time model is used, in either way, after reviewing the outputs the users
would be able to obtain either a new set of annotations or a list of sites to be
removed or relabeled. Figure 3.14 summarizes the use we envision for the model
we described.

Figure 3.14: Proposed Human-AI collaboration workflow

We demonstrate the overlay tactic on a small area in the Maysan region, as
shown in Figure 3.15 but the computation could be easily scaled up to cover huge
areas, as it takes less than a second to produce an output and there is no need to
complete the operation in one go anyway.
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The only shortcoming of this method is the evident ridge between different
input images. In theory semantic segmentation could work with inputs of arbitrary
size but doing so requires huge amount of memory which might not be available.
A solution might be the creation of overlapping prediction maps that would then
be averaged, trading off computational time for increased precision.

Figure 3.15: Map overlay example in small portion of the Maysan region
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3.4 Conclusion

This chapter presented a challenging task where the interaction with the human
experts is very important and goes way beyond the optimization of scoring metrics.
The conclusion we can draw from this experience related to Research Questions 1,
2, 3 and 4.

Answering RQ1, we saw how important the expertise of archaeologists has
been in this project. Together we were able to define the dataset and decide how to
treat the annotations representing the site shapes, trying to establish what counts
as a positive example and what counts as a negative example. Their input helped
us move from the classification to the segmentation approach which demonstrated
more effective. Moreover, they helped us filter out of the dataset all the instances
that could throw off the model in its learning process.

Concerning RQ3, we saw how human evaluation was necessary as in this
context an automated process fails to show if a prediction is actually good or bad
on its own. IoU can be low when model has predicted the correct site in a sub-
optimal way or when it has predicted the site perfectly but also something else
that is not useful (but that the humans could easily ignore). Additionally, we can
have a low score for a training example that is not visible anymore that the model
correctly ignores, resulting in punishing the right behavior by the neural network.
This consideration carry over when we try to measure detection performance by
considering intersection between the segmentation and the sites. A proper evalua-
tion then, should try to understand where the model is making justifiable mistakes
that can either be:

• Mistakes that can be explained by lack of visible sites, which a human would
make too

• Mistakes where the model suggests a probable site that it is not yet in the
dataset, but that human would also consider

• Predictions which point in the right direction even if the shape is not the
same as the one in the dataset

Using human-in-the-loop evaluation and adjusting the scores on the test set
shows the model is more apt than it appears at first glance. Even when considering
detection performance, we see how metrics are insufficient to capture the perfor-
mance and utility of our models. Once again, not every mistake has the same
weight in this contexts and we could argue that a more sensitive model (i.e., with
higher recall) is more useful here. Furthermore, addressing RQ2, our colleagues
in archaeology told us that the mistakes our systems make are not problematic
for their use case and that instead the speed and simplicity is remarkable. The
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usefulness of an artifact such as our deep learning models highly depends on the
problem at hand and the way it was addressed before, without the use of intelligent
systems. Even an under-performing system can still yield improvements if not in
terms of accuracy perhaps in terms of time.

We concluded the chapter by proposing a human-AI collaboration workflow
that allows the domain experts to benefit from the model, even as it is imperfect,
in term of time savings. In turn they can make it better by correcting its mis-
takes along the way, while doing the work they would normally do. One of the
interaction modes we discuss involves the use of the model to produce an overlay
visualization instead of just giving predictions. Considering RQ4, This overlay
can syngergize with the knowledge of the archaeologists and focus their eye on
interesting areas even if they would not be considered as a site by the automated
procedure, improving the overall results.





Chapter 4

Symbolic Music Generation with
Transformers

In this chapter we will describe the results of a project focused on the generation
of symbolic music. Music is a peculiar field of application when compared to the
previous two we talked about because, being an art form, it has clear rules and
structure that can be learned but it lacks an easily identifiable metric to define its
quality [117]. There are certainly many ways to judge and critique music but none
of those is more valid than the other and they do not require to be universal and
perfectly coherent. This in turn makes it difficult to formalize a set of rules or a
function to score some piece of music according to any concept of quality.

Modeling music can be achieved using the same techniques used for gener-
ating text. In fact, we can think of symbolic music and its relationship to music
itself in the same way we think about text and its relationship to language. The
only difference is that for the musical style that include polyphony, there is also
a vertical relationship between instruments or voices, while natural language is
mainly horizontal with relationships spanning different words in a text.

The two main approaches to generating sequences of notes, or words, are those
based on rules and those based on statistical modeling [118, 119]. The latter is the
current state of the art, as the former proved to be not flexible enough to adapt
to the many different forms language and music appear in the real world, while
also requiring a great deal of effort in order to formalize a “grammar”. Statistical
modeling can be reduced to performing the task of predicting the next word or
note in a sequence. The various applications that leveraged neural networks in the
last few years showed us that this is enough to learn structures and rules from a
dataset of meaningful examples without the explicit coding of rules [120].

67
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Both music and text generation however face the issue of evaluating more
abstract concepts like style or any type of aesthetic value. In simple words: how
do we defined what a good piece of music is? What makes a compelling text or
poem? The only way to answer these answers is with the involvement of human
experts and users in the creation of the dataset, in the development of the models
and in the evaluation of the outputs.

These themes are a central part of the MUSAiC project, in the context of
which this project was carried out [121].

The object of our efforts was initially Irish folk music and the implementation
of a new neural network based on transformers that could surpass the perfor-
mance of folkRNN the previous state of the art in this task [122]. Achieving this
goal proved to be more complex than expected and highlighted the importance
of human-in-the-loop techniques in order to solve issues during development. In
particular, hyperparameter tuning was hard to perform by simply looking at the
loss curves and required human expertise and manual evaluation of the outputs. In
combination with informative data visualization this allowed us to guide the design
decisions and obtain the performance we desired after designing a new sampling
strategy that could compensate the weak points of the model.

The final confirmation of the quality of the work came from the participation
in the AI Music Generation Challenge 2021.1 This competition focused on a style
of Swedish folk music called slängpolska which is quite different from Irish folk. The
Tradformer proved to be flexible enough to learn the style from the few examples
available by leveraging the knowledge it got from Irish music and it received the
highest scores from the judges, winning multiple prizes.

The Chapter is structured as follows: Section 4.1 discusses data represen-
tation and the datasets we used, both Irish and Swedish; Section 4.2 describes
the deep learning models involved and the visualization techniques we employed;
Section 4.3 explains the difficulties we faced during development and illustrates
the human-in-the-loop evaluation; Section 4.4 deals with the Swedish music task
and how we performed transfer learning. Section 4.5 is a brief discussion of how
the Tradformer was used in music co-creation sessions and how generative models
relate to creativity; Finally, Section 4.6 concludes the chapter.

1https://github.com/boblsturm/aimusicgenerationchallenge2021

https://github.com/boblsturm/aimusicgenerationchallenge2021
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4.1 Dataset and Representation
Let’s start by detailing the dataset we used and the peculiar musical representation
it features.

4.1.1 The abc-notation Standard

We employed a particular type of symbolic format called abc-notation. This
standard has a long history in world of Irish folk music and has seen a wide adoption
by online communities of musicians as it easily adapted to the new communication
medium that was the internet. It was so popular that it has a specific MIME type.2

Let us go over the most important tokens in the abc standard that we de-
cided to include in our model’s vocabulary. It is worth noting that while we were
interested only in the most basic elements that pertain to the melodic content, the
notation supports the vast majority of elements that could be found on a sheet mu-
sic, even for more complex musical traditions. However, since this project focused
on Irish and Swedish folk music which is mostly monodic and where expression
and embellishment are usually left to the players, learning any indication beyond
the actual notes in the melody was not important.

The abc format uses letter A to G to indicate pitches following the Anglo-
Saxon convention. Natural numbers after each letter indicate the duration of that
note with respect to the basic step (usually 1/8). Fractions can be used to indicate
a duration shorter than the base step or the write notes that do not have a integer
multiple duration (e.g a dotted semiquaver can be expressed using 3/2) The most
basic version covers two octaves using uppercase and lowercase letters, but this
range can be extended by adding one or more commas or a ticks after the letter
to indicate lower or higher octaves (e.g. C, or c’). Alterations use the symbols ˆ
for sharps, _ for flats and = for naturals.

Beside note and duration there a number of “structural” tokens to be consid-
ered: Each bar is delimited by the | token, while || signals the end of a tune.
Similarly reminiscent of sheet music notation we also have and |: and :| signi-
fying the start and end of a repeated section. |1 and |2 are used to indicate a
first and second ending bar, which are quite common. The occasional triples is
indicated by (3, and chords/double stops are contained in squared brackets [ ].

Finally, each tune begins with a series of fields that represent metadata: X
indicates the id of that tune in a collection; T is for title; C for the composer; M
specifies the meter and K the key and modality (e.g. C dorian); L is for the base
step duration and Q for the base metronome indication.

2https://www.iana.org/assignments/media-types/text/vnd.abc

https://www.iana.org/assignments/media-types/text/vnd.abc
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Figure 4.1 shows an example of this notation and Figure 4.2 shows the corre-
sponding rendered version on the staff.

X:754
T:Slangpolska fran Barseback
T:(SvL Skane nr. 754)
T:efter Per Munkberg
O:Barseback, Skane
R:Polska
M:3/4
L:1/16
K:Am
|:e4A4E4|e4 B2c2 e4|cdef agfe cdef|gfed fedc B2A2|e4A4E4|
e4 B2c2 e4|cdef agfe cdef|gfed f2e2 e4:|
|:GBeB GBeB GBeB|FAeA FAeA FAeA|GBeB GBeB GBeB|
FAeA FAeA FAeA|ABcd e4 a4|gfed f2e2 e4:|

Figure 4.1: abc-notation for the tune Slängpolska från Barseback

Figure 4.2: The sheet music corresponding to the abc-notation in Figure 4.1

4.1.2 Irish Folk Dataset

One community that embraced this format is that of Traditional Irish Folk mu-
sicians. The website The Session 3 is probably the most important there are
thousands of different pieces, called tunes, often with numerous variations and
comments from the users.

The website provides a .json file with the complete database of tunes in abc-
notation. This was used by Sturm [122] to create a tokenized dataset which they
used to train a deep neural network for music generation, called folkRNN.

3www.thesession.org

www.thesession.org
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Figure 4.3: Histograms for length, meter and mode. Most of the dataset is Major
and 4/4. Average length is 168

The first step of project used the same dataset so that folkRNN could be a
point of comparison.

The dataset contains around 30, 000 rows, but not all of those are valid tunes.
Some of those are only partial “variations” of others already present, others are
modern compositions inspired by Irish folk that however contain elements not
present in traditional tunes (e.g., odd time signatures, unusual tuplets, chromati-
cism)

The tokenized version contains around 20.000 tunes with a vocabulary of
137 tokens, including three tokens for start and end of sentence and for padding.
All tunes are transposed to C, while maintaining their original mode which for
traditional folk is either major, minor, dorian or mixolydian. Time signatures
usually correspond to certain type of dances. The most common are Reels in 4/4,
Jigs in 6/8, Waltzes in 3/4 and Marches in 2/4.

The distribution of those tunes is however not uniform, with the vast majority
of tunes being in 4/4 and in the major mode. The average length is 168 tokens
when considering the whole dataset with 2, 252 tunes longer than 256 and only
214 longer than 512. The model we used requires the specification of a maximum
sequence length which we initially set to 256 as it does not pose problems for the
Irish dataset but was subsequently raised to 512 as the Swedish dataset, described
in the next section, had longer tunes and we wanted to keep as much of these
examples as possible.

4.1.3 Swedish Folk Dataset

As we will describe in depth in section 4.4, we also experimented with a different
type of folk music in the context of Ai Music Generation Challenge 2021. The
challenge focused on a particular sub-genre of traditional Swedish dance music
called Slängposlka.
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This music is characterized by a 3/4 time signature and comes either in the
major or minor mode. However, minor tunes make frequent use of the harmonic
minor mode, that is the 7th degree of the scale is raised in cadential passages
giving a peculiar sound. Contrary to the usual rhythmic structure of 3/4 music
like waltzes, where the is a strong beat and two weak beats, in slängpolska we find
3 even pulse in each measure which can be divided in two 8th notes or very often
into a series of 16th notes.

These characteristics make this genre quite different from the examples we
have in the Irish dataset, while sharing the same representation and general con-
cepts behind dance music. Additionally, the available dataset, scraped from the
website FolkWiki4, is quite small, only containing around 600 examples.

Our goal was then to create a model for slängposlka that could effectively learn
the style from the limited data while leveraging the common knowledge learned
from the Irish dataset.

4.2 Methods

This section describes the methods used in this project, namely the transformer
architecture and the visualization techniques we devised around it.

4.2.1 The Transformer Architecture

Transformers are the current state of the art for sequence modeling, they revo-
lutionized natural language processing and are now being used also for computer
vision tasks.

This neural network architecture was first introduced by Vaswani et al. [123]
in the context of neural machine translation. The intuition is that of making the
attention mechanism the main driving force of the model. Previous work already
leveraged this architectural feature but, as the title of the paper claims, it may
be the only component needed for successful learning. The basic idea is that of
learning a series of matrices that enable scoring the relative importance of each
token when it comes to computing the output (usually predicting the next token
or value in a sequence). To do so we compute three matrices called key, value,
and query. They can be thought of as a sort of soft associative memory system
that learns what to retrieve, or look at using the attention metaphor, based on
the inputs. A common modification to the original formulation of the attention
mechanism is that of splitting the latent space to reduce the computational weight,

4www.folkwiki.se

www.folkwiki.se
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also allowing to split the attention to multiple aspects of the input, in what’s called
multi-head attention.

The equations below describe the actual computation, where Q is the query,
K is the key, and V is the value; dk is the dimension of the embedding.

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (4.1)

Another important part in the transformer is the positional encoding. The
attention mechanism in fact, is not able to differentiate between the same token
in different positions as they would share the same embedding vector. RNN do
not face this problem as the inputs are presented one after the other, making their
positional context explicit in the way the go through the network. Transformers,
on the other hand, process everything at same time, so to explicit the positional
information and encoding function is used, which is summed to the embedding
vectors according to the following formula. Successive timestep will sum different
values to each dimension in the embedding space.

PE(pos,2i) = sin
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pos

n
2i

dmodel

)
PE(pos,2i+1) = cos

(
pos

n
2i

dmodel

)
(4.2)

Apart from these two peculiarities, transformers only feature feedforward lay-
ers with residual connection in the attention block. Once the inputs are encoded,
they go through a number of blocks and the final representation is used to com-
pute output probabilities. On a macroscopic level we could then say that RNN
and transformer are equivalent with slightly differing “memory” mechanisms [124].

4.2.2 A Model for Traditional Music: The Tradformer

Starting from an open-source implementation5 of OpenAI’s GPT-2 [125] we de-
veloped a transformer model specifically optimized for symbolic music generation
that we called Tradformer. Figure 4.4 shows the architecture of the model with
the different parts each colored in a certain way.

The hyper-parameters where chosen through human-in-loop evaluation of the
outputs. Same goes for the choice of the positional encoding, which was a learned
vector in the original implementation which we reverted back to sinusoidal function
proposed by Vaswani. Sampling proved to be the most challenging part that re-
quired a lot of effort and human expertise; the algorithm we devised is documented
in Section 4.3.

5https://github.com/karpathy/minGPT
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Figure 4.4: Tradformer architecture

4.2.3 Visualization

After we realized the fact that the transformer was under-performing out of the
box, we started an iterative process of development and refinement which is de-
scribed in Section 4.3. Visualization played a fundamental role in guiding our
intuition and bringing together the musical knowledge and the machine learning
knowledge.

Softmax

Let us start by considering the softmax visualization. As the name implies, we
plot the softmax scores that the model outputs at each timestep. These scores are
very useful because they show what the model has learned as a probable output.
Also, when using a sampling strategy that draws from a distribution it allows us
to see if mistakes are due to a low probability token or if the whole distribution is
skewed towards values that are not correct.
X:0
M:6/8
K:Emin
|:G|EAA ABd|ege edB|AGE EDE|G3 GFG|EAA ABd|ege edB|AGE EDE|GAG A2:|
|:d|eaa bag|ege edB|AGE EDE|G3 GFG|eaa bag|ege edB|AGE EDE|GAG A2:|

Figure 4.5: An example output from the Tradformer, transposed to E minor. This
tune is the same that appears in the softmax plot in the next figure

Figure 4.5 shows the abc and musical notation for a reel generated by the
Tradformer. This reel is not particularly interesting, but it exhibits the regular
structure often found in this type of tunes.
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The A-part start with statement of a theme in the first four bars that is
reprised almost verbatim in the next four bars with the exception of the last one.
This type of structure is very common. The only strange thing about is the fact
that the tune ends on an A, which is not a note present in the tonic chord of E
minor (which contains E, G and B). The B-part starts with a different pattern in
the first bar but still follows the A-part in the subsequent three. The second half of
the section is identical, with the last bar choosing the same unusual note as before.
When we take a look at the softmax plot in Figure 4.6 we find an explanation of
this behavior.

Figure 4.6: Softmax visualization. Columns correspond to a timesteps and rows
to tokens in the vocabulary. Darker values correspond to higher probabilities

The model starts off with a probability distribution that is quite uniform
between the note tokens. The same uniformity can be seen at the start of the B-
part after the repeat sign. This means the model has learned that at the beginning
of each section the melody is not biased towards anything in particular.

After a couple of measures however the probabilities appear to be highly
concentrated on specific tokens. This is because the model has learned that in
this style, thematic ideas in the melodies get repeated after two or four measures
and so it looks back at the previous steps and chooses the same tokens. Between
the A and the B-part we can see that the model is a bit uncertain on how to
end the section. That unusual note we saw in the finished tune actually has a
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lower probability than the G token, which would finish the section on the 3rd of
the tonic chord a sound more familiar and perhaps satisfying. It is interesting
enough to notice that the model has learned that the ending of the A-part is often
reprised for the B-part and so when it comes to the last tokens it assigns almost
100% probability to the same sequence we have seen before even if they had low
probabilities before.

Weights of the Final Layer

Plotting the weights matrix of the last layer of the model, often called the classifi-
cation head, is interesting not only as a debug tool, like the previous one, but also
as it provides confirmation that certain musical concepts were learned.

Figure 4.7: The weights of the last layer of the model.
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This layer is responsible for translating the latent information at the end
of the model into a probability distribution for the outputs through the softmax
function. In Figure 4.7 each row corresponds to one of the 137 output tokens and
each column corresponds to the 128 dimensions of the latent space. Red hues
represent positive weights and blue hues represent negative weights, with white
around 0. However, the actual weights are not interesting to us, but rather the
evident similarities we can see when we sort the rows by the musical function of
each token.

The first group we can see at the top is the “additional” token for start and
end of sequence and for padding; after that we can clearly see two bands: one for
the meter tokens and one for the mode tokens.

Below that we have a group of “structural” tokens, like measure bars and
repetition marks, and then all the token that relate to tuplets. Here we noticed
a strange phenomenon: tuplets beyond triplets (which are quite common in some
style of Irish music) share a very similar weight vector to certain duration tokens
which are the block right next to it.

Our hypothesis is that those tokens have in common the fact of being rarely
used, which we verified by looking for them in the dataset, and their weights are
thus probably similar for this reason. When we trained the slängpolska model we
removed those without any loss of performance, and we could argue that their
presence was not very sensible given the styles we are considering.

Embedding Self-Similarity

Closely related to what we just observed is also the plot of the self-similarity
matrix of the token embedding. This plot gives us a nice visual confirmation of
the fact that the model has learned certain musical concepts and relationships that
we could already suspect from the previous plot. It is also interesting to notice
that those same structures also appeared in the weight matrices for the gates in
folkRNN [126].

In Figure 4.8, each row and column correspond to one of the 137 tokens.
Hotter colors towards red represent high similarity (1.0), colder colors towards
blue/green indicate opposite vector (-1.0) and yellow indicates independent vectors
(0.0). Like before, we can see clusters forming that correspond to certain musical
functions (keys, meters, duration, etc.). We also see a nice pattern in the similarity
between notes of diatonic scale (notes without alterations, the white keys on the
piano) across different octaves, indicated by diagonal lines in the plot. Similarity
also between the natural and altered version of each note also appears, with blocks
that seem to relate to flats, sharps, and naturals at the bottom-right end of the
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plot.

Figure 4.8: Self-similarity matrix of the embedding layer. We can see clusters and
lines corresponding to specific musical relations between tokens.

Attention Heads Scores

Finally, we visualized the attention scores for each of the 4 heads in each of the 16
layers. Plotting the product of the key and query matrices gives us the possibility
of visualizing what each attention head is looking at.

Figure 4.9 shows the attention scores at layer 1, 8 and 16 for the same tune
used in the Softmax plot and shown in figure 4.5. Here darker values correspond to
higher attention scores for the token at that timestep in the input sequence; those
scores and used to compute the output at the next timestep. This kind of plot has
become very common in transformer applications and is useful to get an idea of
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the important part of the input. However, some researchers have pointed out how
this visualization is not a good form of explanation [127]. This is because after
the first attention block, the fully connected combine and shuffle all input position
together, making the plots of subsequent layer unrelated to the input sequence.
Nonetheless, certain structural pattern can be seen in the attention plots that are
definitely connected to regularities in the inputs, even if their location may not be
completely informative.

Figure 4.9: Attention plots for the first, eight and last layer on the Tradformer.
We can see patterns that are reminiscent of musical structure

In the first layer we can see (this also apply to the next few) we see attention
patterns that are either very focused on the initial tokens or are very diffuse.
This makes sense as the initial tokens are the one that contain information about
selecting the right notes and rhythms (key and meter tokens) which are the most
basic concepts and are very important for generating a correct piece.

Towards the middle layers of the model, we start to repeated structures at
regular intervals. While, as stated before those are not necessarily related to the
position they are in, they unmistakably relate to measures as they match their
number. We interpret this as an indication that the model is now focusing on
higher level concepts like the melodic content of each bar.
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Once we reach the end of the model, we see very sparse patterns which could
related to any number of things, but it is interesting to notice how we find diagonal
structures which resemble the bipartite structure of the tune, with an A and a B
section each composed of two phrases in a call and response scheme.

4.2.4 Sampling Strategies

The sampling strategy of Tradformer is extremely important. We found the biggest
improvement in the quality of the generated music came from replacing a naive
approach with a more sophisticated one based on beam search.

Our early models were using a naive sampling approach, where single tokens
were drawn from a categorical distribution parametrized with the softmax prob-
abilities. The outputs contained counting errors and drifting melodies and were
rated very poor against melodies generated by folkRNN.

Lowering the softmax temperature was slightly helpful in preventing such
problems but created too much repetition. Furthermore, temperature is applied
equally even when the context makes it unnecessary.

We thus tried employing top-k and top-p sampling [128], where unlikely to-
kens, according to rank or probability mass, are removed before the remaining
probabilities are re-scaled by softmax. With p ∈ [0.9, 0.99] we saw fewer mis-
takes but also less variety. This could be countered by increasing the temperature
above 1.0, but we observed the melodies were still drifting. Even a nudge to these
hyper-parameters led to wildly different results and finding the right balance was
difficult.

This led to our development of our own flavor of beam-search sampling. We
employed a combination of beam search and nucleus sampling similar to that
proposed in [129]. Tradformer starts with top-p sampling (only looks at the most
likely token up to p percent of the probability mass) and then uses at most k of
those as branches to search a tree of depth of maximum depth D. This results in a
sample space of at most kD token sequences with a probability distribution given
by the softmax of the sum of the logits of the component tokens. This increases
computational cost, but the increase in output quality was clear. Tradformer sets
D = 3, p = 0.99 and k = 3.

Beam search provided melodies with more direction and virtually no mistakes
but, as noticed for NLP in [128], makes for less “surprising” outputs. Correctness
and variety seem to be two different objective that are difficult to obtain at the
same time. However, leaving some control over those parameters to the user can
provide creative opportunities.
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Figure 4.10: Schematic representation of the proposed sampling strategy

4.3 Matching the Performance of folkRNN

The open-source implementation of the transformer model could work properly
with the folkRNN dataset as it came, by just specifying the correct vocabulary
size and using the tokenized tunes. We expected this state-of-the-art architecture
to perform well enough right out of the box, but this was not what happened.

The model was making considerably more mistakes than folkRNN ever did,
and this unexpected issue led to several iteration of the model which eventually be-
come the Tradformer. This iterative development was guided by human expertise,
both as machine learning experts and musicians.

We setup a series of human-in-the-loop evaluation experiments using the ex-
pertise of the data scientists in the MUSAiC project who are also musicians. The
experiments were conducted as follows: 10 tunes would be generated using the
same prompt by both the tradformer and folkRNN. Any information that could
help recognizing the output like the way tokens are grouped would be hidden and
the tunes would be randomly shuffled. After that an evaluator would look at them
and score them with a simple system (good or bad) while also providing a brief
comment.

Figure 4.11 shows the first three rounds of evaluation. As we anticipated the
transformer model was performing badly out of the box in round 1. Adjusting the
hyperparameters using our expertise and the insight from visualization, find out
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Figure 4.11: Human-in-the-loop evaluation

that we did not need as many attention heads and that the latent space needed
not to be very big, yielded a better model for round 2 but it still performed poorly
in comparison to folkRNN. Round 3 saw the introduction of a better sampling
strategy once we realized how susceptible the model outputs are to that. We
continued with further evaluation focusing on specific styles (4/4 jigs and 6/8
reels) where the tradformer still came out on top so we considered our development
process successful.

4.4 Transfer Learning on Slängpolska: The Ai Mu-
sic Generation Challenge 2021

After matching folkRNN performance we wanted to test the flexibility of this model
by employing it in a generation task with a small dataset and a slightly different
musical language. The Ai Music Generation Challenge 2021 provided the perfect
chance to test our model capabilities against other approaches to the same task
and also to see how human experts would evaluate its outputs.

The challenge consisted in generating 1000 tunes in a particular style of
Swedish dance music called Slängpolska. There were no rules concerning the type
of models or computational resources to be used. The organizers pointed the
participants to a dataset of original tunes which we described in section 4.1.3.
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After the submission 9 tunes would be selected at random form the 1, 000, and
an additional one would be handpicked by the participants. After that, a number of
judges, all of whom were either expert musicians or dancers of traditional Swedish
music, would score the tunes according to four parameters.

Formal Coherence: the adherence proper musical formalism, such as the correct
use of repetitions or the absence of unwarranted missing/additional notes in
each measure.

Stylistic Coherence: the adherence to the mannerism of Slängpolska and how
well this was captured by the model

Playability: how well the generated tune can be performed on a traditional
instrument. These usually have limitation when it comes to range and artic-
ulations.

Danceability: how well the tune could be performed by dancers, needing a regu-
lar rhythmic structure in each measure and in the tune overall. Tunes exhibit-
ing plagiarism or presenting meter or rhythm uncharacteristic of Slängpolska
would be discarded and receive a null score (F)

The Tradformer was adapted as follows for the task. Firstly, we increased the
maximum sequence size of to 512 tokens as Slängpolska in the dataset tended to be
longer than Irish music and we did not want to lose any available information. We
also removed all the rare and unnecessary tokens from the vocabulary following
the intuition we got from the weight matrix plot in section 4.2.3. This lowered the
vocabulary size from 137 to 128.

We observed that the outputs of the tuned model suffered from problems that
can be traced back to the lack of data. Most notably, certain patterns tended to
be repeated too often. The model had a tendency to get “stuck” in cycles of two
bars – a behavior not seen in either the Irish or Swedish datasets. We also found
miscounted measures. The Swedish tuned Tradformer would create odd-length
sections, but not as often as seen in the Swedish dataset. Furthermore, we found
it hard to balance between interesting output and the risk of too much repetition.

Hallstrom et al. [130] report that fine-tuning a folkRNN model on the whole
FolkWiki database (not just Slängpolska) also presented difficulties in adaptation,
and generated melodies described as unfocused. The strict policy on malformed
tunes motivated us to employ rejection sampling to filter out generated material
that would score nothing.

We devised a series of conditions and generated new tunes until the model
produced the thousand tunes required in the challenge submission. Inspired from
the analysis by Sturm and Ben-Tal [131], we formed criteria by looking at statistics
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Figure 4.12: Final scores for the AI music generation challenge 2021

from the original dataset and choosing reasonable values. One condition was that
all bars must have the correct number of notes. Another condition was that a tune
does not contain too many repeated measures, and in particular too many repeated
couples – as this type of repetition happens frequently in the generated material
but not in the training data. We also checked the tune length and pitch range,
along with the number of bars in each section. Very short or lengthy sections show
a generation that has gone amok. Rejection sampling discarded around one tenth
of the outputs, evidencing the baseline quality of the model.

The Tradformer ended up winning the contest, surpassing the performance of
folkRNN and other LSTM based models used by the other participants. Figure
4.12 shows the overall scores.

The following Figures 4.13 to 4.22, show the nine tunes that were randomly se-
lected for the challenge plus the cherry-picked one, in traditional music notation.
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Figure 4.13: Tune #108

Figure 4.14: Tune #117

Figure 4.15: Tune #263

Figure 4.16: Tune #267
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Figure 4.17: Tune #463

Figure 4.18: Tune #553

Figure 4.19: Tune #576
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Figure 4.20: Tune #738 (hand-picked)

Figure 4.21: Tune #751

Figure 4.22: Tune #900
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4.4.1 Scores and Comments from the Judges

The following 5 tables contain the scores and comments for each tune from each
judge. It is interesting to see how different judges were more or less lenient towards
certain quirks of the model like the odd structure it produced sometimes. It could
be an indication of a kind of bias towards AI technology in the sense that the
expectation is lower if we know that a machine is producing such artifacts. On
the other hand, the fact that these quirks are found "interesting" by some may
reflect their creative inclination and acceptance of things that push the envelope of
traditional forms, appreciating the potential of such a model to provide examples
of a familiar music with a different spin.

Nonetheless for the best scoring tunes we see a recurrent comment praising the
authenticity of the composition, signaling how the model has effectively grasped
what makes a tune traditional. The irregularities and "boringness" are two faces of
the same medal and go back to the problem of balancing the errors and repetition
in the sampling phase.

Table 4.1: Judge 1 scores and comments

Tune D S F P Comment

108 B C C B Very repetitive in the A-part
117 A A A A Typical Slängpolska in minor. Quite simple but in the style.

A motif comes back in the end of B-part.
263 A A B A A bit odd to repeat the first two bars. Nice with the different

length of the phrases in the B-part.
267 A A A A Going back to the Bb in measure 7 seems a bit sudden, but

it still works in the context I think
463 B B C B There are some good elements melodically and rhythmically.

The length of the C part is 6 bars makes the tune a bit un-
balanced

553 B B B B It’s a bit confusing in the beginning because you feel it as 4/4
but then it “resolves” to ¾ again. I like this melody. It makes
it interesting when playing with the meter

576 A B A A Not a typical Slängpolska melodically but a good melody and
rhythm. Theme of the A-part comes in again at the end of
B-part.

738 A A A A
751 A B B A Not a very common key. A part end surprisingly on G.
900 B B B A A bit repetitive, but the rhythms are good.
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Table 4.2: Judge 2 scores and comments

Tune D S F P Comment

108 C C C C It can be difficult to feel the first beat in the bars with all
repetitions of the little phrase. Just one motif is repeated
with small variations in the first part which sometimes can
be suggestive or maybe a bit boring.

117 B B B B The tune reminds of an older type of Slängpolska. Feels fa-
miliar

263 B B B B It’s not so common with 7 bars in a repeat. The dancers often
want even bars. The repeated motif in the 1:st part can give
a suggestive feeling. Bar 6 in 2nd repeat doesn’t fit so good.
I miss one bar in the end of part 2. Cm can be sometimes
tricky on the violin. I tried it in Am.

267 A A A A Easy to learn and remember. “Typical” tonality. You get the
feeling that you can find this tune in a spelmansbok.

463 D D D D The 3rd part is not coherent. The two first parts works
553 A B A A I played in G
576 A B A A Gives nice energy for the dance. Nice tune.
738 A A A A This tune feels genuine.
751 A A A A The repeat of the motif in bar 6 and 7 in the second part is

nice. Nice polska. The tune feels authentic.
900 B B B B

Table 4.3: Judge 3 scores and comment

Tune D S F P Comment

108 C C D C repetitive but some nice variations of the simple motive
117 C B A C simple but effective, coherent
263 C B A C Quite good. Nice sequences
267 B A A B
463 C C D C OK, strange repetitions
553 C A A B simple but effective, coherent,
576 B B A B nice simple melody, very convincing
738 B A A B
751 B A B B Simple but coherent. Very repetitive but in a nice coherent

way
900 C B D C very repetitive
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Table 4.4: Judge 4 scores and comments

Tune D S F P Comment

108 C C B B Too many repeated phrases, small variations though.
117 A B A A Feels like a tune, but a little boring one.
263 C C D A Feels better to play in G or D minor for example. Nice tune, if

wasn’t for the uneven measures, 6+7, funny but not in style,
at least unusual.

267 C C B C Rhythmically good, ok melody.
463 F D D C Some phrases could fit but too many repetitive phrases. Four

parts is unusual
553 C D B C Sounds like a Danish tune or a menuette. Cool.
576 A B A A Nice tune. E-minor felt good to play in.
738 C C A A More 1-3 feel in the rhythm but still even. Feels like a tune,

maybe not the most brilliant one but still. Better played in
d minor.

751 C C A A More 1-3 feel in the rhythm but still even. Feels like a tune,
maybe not the most brilliant one but still. Better played in
d minor.

900 A B A A It’s a nagging tune.

Table 4.5: Judge 5 scores and comments

Tune D S F P Comment

108 C F F B lacks melodic coherence and development
117 A A A B limited material, but works
263 B C B B a bit unusual, but also a bit interesting
267 B A A A polonäs style OK
463 A A A B
553 A A A A could be traditional!
576 A A A A nice, in the box, nice dorian in the B part!
738 A A A B makes tonal sense - even a progression in the second part
751 A A A A good! within the box, makes tonal sense - even a progression

in the second part
900 B A B A lacks formal contrast, but within the box
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4.5 Music Co-Creation

In this section we want to describe how the model has been used for music co-
creation sessions, where the outputs served as the basis for further composition.
In this scenario the model becomes an assistant, an extension to human creativity
[132–134].

Traditional folk music already provides for the possibility of performers in-
cluding their own embellishment and variation to a tune, as long as the melody is
still recognizable. For this reason, the way the dataset was tokenized completely
ignores any symbol that is related to expression and only conserves the actual
notes. When a practitioner plays the outputs of folkRNN or the Tradformer, they
will “fill in the gaps” by introducing their sensibility to the playing anyway. In
this sense, the lack of detail of the outputs can be seen as a feature rather than a
shortcoming.

Figure 4.23: The original output from the Swedish Tradformer

Figure 4.24: The revised version of the tune we title Ugglas Polska. The A-part
sees the introduction of tonal ambiguity and the B-part is partly rewritten to
extend a passage we were fond of.
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Figure 4.23 shows one of the outputs of the Swedish model and Figure 4.24
shows the final version of the same tune, with multiple tweaks we introduced while
playing it we describe below:

• Transposition from C minor to B minor, a more appropriate key for the
instruments we played.

• Introduction of some tonal ambiguity through alternate use of the notes D
and D# in bars 2,4 and 5.

• Slightly alteration of bar 6 to include the leading tone A#.

• The phrase in bar 7 was replaced with an arpeggio outlining the dominant
chord resolving in bar 8.

• Bars 11, 13 and 14 were rewritten to develop and vary the pattern presented
in bars 9 and 10.

• Bar 12 transposed down an octave in order to avoid jumps and continue the
phrasing.

• Bars 15 and 16 rewritten to revisit the ending of the first part to create a
satisfying conclusion.

Such adjustments to generated material, which are not always necessary fixes
but rather aesthetic decisions, can be part of the workflow of a composer. More
examples along with recordings can be found online 6.

4.6 Conclusion

This chapter documented the work done as a visiting PhD student taking part in
the MUSAiC project. The set goal was exploring the differences and similarities
between transformers and recurrent neural networks when applied to the task of
symbolic music generation. In particular, the work focused on learning how to
generate traditional folk music from Irish and Swedish traditions and to compare
the results with the previous state of the art, folkRNN.

At the beginning, our expectations were that the transformer would obtain ex-
tremely good performance without much effort, given how since their introduction
in the world of natural language processing they have redefined state-of-the-art
performance in every of the major tasks. However, we encountered many obsta-
cles along the way and the quality of the outputs was consistently worse than those
generated by folkRNN.

6https://tunesfromtheaifrontiers.wordpress.com/
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To address the problem, we started tuning hyperparameters in order to lower
the model loss, but we soon found out how the metric was not telling a lot about
what humans care about: the quality of the generated music. This is understand-
able, as the loss function does not integrate any concept of musicality and a wrong
token always has the same weight, even if sometimes swapping a note for another
has no effect on the perceived musical quality. Once again, we have an answer to
our Research Question 3, clearly showing how metrics are something to treat
carefully and that does not always align by default with the human concept of
value.

To improve our model, we thus resorted to human-in-the-loop evaluation, it-
eratively improving on the model after reviewing the scores given to the outputs by
a domain expert (which in this case was ourselves as all MUSAiC research are also
musicians). Another key element in this development process was visualization.
Looking at how the model generated its predictions and at the inner state of the
model gave us precious insight on what was working and what was not. Interpret-
ing this information both as musicians and deep learning experts ultimately led
to the creation of an improved sampling strategy. This address both Research
Question 1 and 4.

In the final section we showed a few examples of human-AI collaboration in
the process of creating new music. We started from the outputs of the Tradformer
and collectively decided on adjustments that would fit our taste. Sometimes those
adjustments addressed an aesthetic want of the musicians while some other times
they were necessary to correct mistakes in the outputs that blemished and other-
wise enjoyable tune. In the context of Research Question 2 this shows how in
creative application even a less-than-perfect system can kick-start creativity and
be of good use to artists.





Chapter 5

Observational Studies During the
Pandemic

This chapter will focus on observational studies we performed during the pandemic
to try to contribute to the scientific discussion and highlight certain issues [135–
141]. While the contents of the following section may be seen as a slight departure
from what was discussed up until now, there a few considerations that tie together
this chapter with the data-centric and human-centric themes previously covered.

First of all, as we will discuss in the next section, the data collection during
the pandemic has suffered from the sudden necessity of standardized and capillary
infrastructure for diagnostic testing that resulted in datasets that were adjusted
overtime with correction to both the methodology and the data itself. Additionally,
every country opted for slightly different strategies to deal with the pandemic
and for collecting data on the spread. For this reason, we opted for traditional
statistical methods that are very clearly interpretable in what they are showing
and make no effort of hiding this uncertainty and variance in the various dataset
we used. We could say that our methods are data-centric in the sense that their
choice is dictated by the only data available during the pandemic.

Traditional methods, with their interpretability, are also important to the
human-centric discussion. The pandemic has affected, and continues to affect, the
lives of millions around the world. In the midst of this crisis many ideas and
hypothesis circulated, some more cautious and other more bold. We felt that
observational studies with clear goals and interpretable methods would be the
most useful to the public discussion, even though they demonstrated very little.
In any case, the lack of data and the difficulty of intervening and experimenting
with policies made most of the work on the pandemic, that claimed any degree
of certainty, speculation at best. So, we can say that in a context like this, with

95



96 Chapter 5. Observational Studies During the Pandemic

human lives at stake, using clear and interpretable models and being transparent
about their limitations is human-centric as it considers who the information is
going to be consumed by, and how it could affect them, both on an individual and
collective level [142].

5.1 Data Sources
Here we will describe the source of the various dataset used in the analysis detailed
in the next sections and we will also provide some comments on their nature and
their usefulness.

5.1.1 Covid Timeseries Data

We used time series data for COVID-19 daily new cases and daily new deaths for
each Italian region in section 5.2 and 5.3 while we used nation-wide data for a
number of different countries in 5.4 and 5.5.

Italian Regions

Data for the Italian studies comes from the official repository managed by the
Italian department of civil protection (PCM-DPC)1. This repository is available
on GitHub and is updated daily with the numbers coming from each regional
health department independently. This led to discrepancies that were addressed
to the best of their capabilities, but not always fixed. Looking at certain regions,
especially the smallest one, we can sometimes see negative numbers of cases that
signal some kind of recounting has happened due to mistakes.

The procedures behind the collection of some data also changed overtime,
most notably for what counts as a positivity test. All these considerations make
the dataset to be taken with a grain of salt. However, it must be noted how at the
beginning of the pandemic things were moving quickly and this data was all that
was possible to obtain.

Countries Around the World

The international data was taken from the repository maintained by Johns Hopkins
University that collected and aggregated information coming from every country
around the world that made it available2. This is also available on GitHub and
updated daily or as soon as new data comes up [143].

1https://github.com/pcm-dpc/COVID-19
2https://github.com/owid/covid-19-data
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Most countries exhibited a very evident weekly oscillation in the number of
new cases. This dynamic was due to the procedure behind testing and reporting
in most countries and can be safely removed with a moving average when dealing
with the time-series. While some put forward the idea that this periodicity is
connected to weekend activities and gatherings, the hypothesis has been ignored
as the behavior persisted even during periods of lockdown and restriction to people
movements.

5.1.2 Tourism and Demography Data

In section 5.2 we used data on Italian domestic tourism together with other de-
mographic indicators. These datasets come from the Italian Institute of Statistics
(ISTAT) and can be easily and freely accessed on their website, which also al-
lows the creation of custom views of the database to be downloaded in the most
common formats.

At the time of our experiments, tourism data for 2020 were not yet available
but we hypothesized that the numbers would be somewhat proportional to those of
2019 and thus used them as a proxy. This choice is not uncommon and a number
of other studies followed a similar path. Another problem is the fact that the
tourism numbers came aggregated monthly, whereas COVID-19 data is published
daily. To circumvent this, we devised a clever aggregation strategy documented in
Section 5.2.1.

ISTAT publishes data concerning both the number of people registering in
hotels and other structures (arrivals) and the average number of days they stay
(presences), aggregated from region of origin and region of destination. We used
the former datum, as we were only interested in the volume of people moving from
one region to the next. For each region thus we summed the number of incoming
tourist from other regions with the number of people from that region that visited
others. This is because we wanted to include the information about people leaving
and then returning home with the virus in incubation.

Beside tourism data, we also included a number of demographic features, listed
below, to control for the effect of other factor that could be contagion drivers. For
those, the most updated information available at the time was used.

• Population density.

• Share of population over 65.

• Annual expenditure on healthcare for each region.

• NUTS-2 classification for each region (North-East, North-West, Center, South,
Islands).
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5.1.3 Other Data

School Re-openings Dates

In section 5.3 we used a changepoint detection method to compare the sudden
acceleration in the spread of the virus in September 2020 with the reopening of
schools in every Italian region. The dates are the official ones decided by the
Italian Ministry for Education (MIUR).

Euro2020 Data

In section 5.4 we used the same method and compared our results to the dates
of each match for the 2020 European Football Championship (EURO2020) which,
being an anniversary edition, took place in many different countries instead of a
single one. The official dates and location come from the UEFA website dedicated
to the competition.

Köppen Classification

In Section 5.5 we studied COVID-19 seasonality on different countries around the
world. We wanted to select as many different climates as possible, following the
Köppen climate classification [144]. This classification divides climates into five
main groups, where each group is considered based on seasonal precipitation and
temperatures. The five main groups are: Tropical (A), Dry (B), Temperate (C),
Continental (D) and Polar (E).

We analyzed 30 different countries that cover all the five groups, with several of
the selected countries belonging to two or more groups, given their vast geography
(e.g., India, Russia, and the USA, to cite a few). The complete list of the 30
countries follows below, each with its prevalent type of climates: Argentina (B,
C), Australia (A, B, C), Austria (D, E), Belgium (C), Brazil (A, C), Canada (C,
D, E) Chile (B, C, D), Colombia (A, C), Croatia (C), Denmark (D), France (C),
Germany (C, D), Hungary (D), India (A, B, C, D), Indonesia (A), Italy (B, C),
Japan (A, C, D), Mexico (A, B, C), Morocco (B, C), Norway (D, E), Portugal
(C), Russia (D, E), Saudi Arabia (B), South Africa (B, C), South Korea (C, D),
Spain (B, C), Sweden (D, E), Turkey (B, C, D), UK (C) and USA (B, C, D, E).

Notice that our selection includes 18 out of the 20 countries of the Group of
20. China was excluded just because its SARS-COV-2 data are not made available
on a regular basis. Also, the European Union (EU) was not considered as a whole.
Yet, in place of EU, we included the following EU members: Austria, Belgium,
Croatia, Denmark, France, Germany, Hungary, Italy, Portugal, Spain, and Sweden.
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5.2 Domestic Tourism During Summer 2020

The SARS-CoV-2 virus that emerged in Wuhan, China, at the end of 2019, causing
the COVID-19 pandemic, has spread globally extremely quickly. This is unques-
tionably due to its high infectiveness, but it would not have reached the planetary
scale if not for the interconnectedness of the world we live in. The centrality of
Wuhan and its multiple transport communication hubs (roadways, railways, air-
ports, and boats) played an important role in the spread of the virus in China in
the early days of the infection, showing that those regions that required the least
travel time from that city were hit earlier and more fiercely [145]. From there the
virus was carried by planes, and by the beginning of March 2020 it had reached
other Asian countries, then Europe, Australia, and the Americas.

At that point, it was clear that we were heading towards a pandemic, and
most countries in the world put in place multiple restrictions to avoid the further
spread of the virus, including banning international travel (even domestic in some
countries) and closing public places, schools, and offices, as well as encouraging
strict personal hygiene rules to reduce the possibility of virus transmission. These
measures were fortunately quite effective in flattening the curve, up to the point
that many countries lowered their guard by the end of spring 2020, thinking that
the worst was behind them, and ended up facing a second wave in the autumn.

As Tomas Pueyo discussed in his article in the New York Times, the decision
to forbid travel, both international and domestic, was one of the key ingredients
in slowing down the contagion and making it manageable [146]. He goes on to
analyze how The Fence, that is, the set of containment measures, including travel
restrictions and strict monitoring of incoming tourists, had been progressively
dismantled with the arrival of summer, making the sacrifices made during the
previous months almost useless, as it often took just a few careless travelers to
ignite a contagion in a region that was previously unscathed.

Those considerations describe quite well what happened in Italy during the
period from February to August 2020. Essentially, after the outbreak of COVID-
19 that started at the end of February in Lombardy and then violently hit all
of northern Italy, the Italian government imposed a nationwide lockdown (on 9
March) in order to flatten the curve and avoid further spreading of the virus
[147]. This measure proved to be effective with the passage of time, and thus the
lockdown was gradually lifted at the beginning of May 2020 as the number of new
daily active cases steadily declined; all citizens were then allowed to go outside,
even when not strictly necessary, and people could gather, for example, in bars
and restaurants while still maintaining social distancing. Nonetheless, it was not
possible to move freely between regions until 3 June 2020 , when the total number
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of new infected nationwide was averaging between 200 and 300 [148]. The count of
the new daily infections remained stable until the last week of August 2020, when
there was a noticeable uptick that brought the number of new daily cases, on a
national level, to over 1, 200 [149].

Considering that the virus is known to take 10–14 days to show its symptoms,
this puts the start of this inflation in the first half of August, which is the preferred
time of the year for vacation trips in Italy, thus leading to a hypothesis, which is at
the center of a national debate, that there was a significant relationship between
Italian domestic tourism and the resurgence of the virus during the summer of
2020 [150]. What should also be considered is the fact that, this summer, the
most typical Italian tourist destinations were visited mostly by Italian tourists,
with little or no contribution by international tourism because many countries
had set limits on travel, as well as implementing flying restrictions [151]. This idea
of a relationship between Italian domestic tourism and the resurgence of the virus
is also reinforced by a careful observation of the number of new daily infections
in certain Italian regions that are typical holiday destinations; they were almost
virus-free at the beginning of the summer, and, in the span of a few weeks, cases
escalated from almost 0 to hundreds, daily. A peculiar example of this phenomenon
is the insular region of Sardinia, where the virus had almost disappeared from the
island and then suddenly came back in August 2020, surely carried by the tourists
that arrived for their summer holidays [152].

During the first year of the pandemic, travel and its role in the spread of
COVID-19, has been researched intensively, from various angles. However, most
works only analyzed the phenomenon in the context of international travel or
domestic travel in other nations, while we wanted to look at the situation in Italy.

Some works focused on the dynamics of people moving from one place to
another, while others studied the way the virus can be transmitted in the environ-
ment of trains and planes [153, 154]. Krisztin et al. used econometric models to
study how cross-country air travel played an important role in the early spread of
the virus between European countries [155].

Dasgupta and Wheeler created a model that tries to estimate how the num-
ber of infections evolved as a function of people’s interaction and the COVID-19
infection rates, registered in different geographical areas [156]. This model inte-
grates estimates about the movement of people from area to area generated using
a technique known as gravity modeling. Zhang et al. used a kind of gravity model
based on the number of infections, which performed a regression analysis of various
means of transport in order to investigate how relevant their contribution to the
spread of the virus was [145].
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In the same vein as [155], Farzanegan et al. studied the role played by tourism
in the spread of the virus between countries across the world by using regression
analysis to verify the relevance of tourist flows on the total number of infected
people in conjunction with other factors, such as, for example, population density
and aging, healthcare expenditures, and others [157]. Similarly, Falk and Hang-
sten analyzed how alpine tourism during the winter holidays resulted in a surge of
COVID-19 cases in the Scandinavian countries, as many citizens brought back the
virus after their return from their holidays in Italy and Austria [158]. Along the
same line, Gössling et al. have investigated the influence of tourists moving from
China to other countries, while comparing the resulting COVID-19 spread with
previous pandemics, also with a special focus on the impact it had on economies
[159]. The regression approach is the one we decided to use for our analysis de-
scribed later.

We conclude this section by reporting on two other papers that are inspired
by different visions of this problem. One of these two belongs to the group of
simulation studies that are more interested in finding out how the virus spreads or
decays, with the precise goal of guiding policy makers, yet without a meticulous
attention to the precision with which they predict how many people are getting
infected. To this group belongs the study conducted by D’Orazio et al., who
investigated how certain COVID-19 containment measures could be more effective
than others in limiting the spread of the virus in touristic cities, with the intent
of going back to a business-as-usual regime, being pressured by economic reasons
[160].

Finally, Susceptible-Infected-Removed (SIR) are the most popular modeling
tools for epidemiology. These models are based on differential equations that
describe the dynamics of the epidemic and need to calibrate their parameters on
data in order to work correctly. Unfortunately, as Roda et al. have shown, there
may not be enough data available, as the contagion unfolds, to calibrate them
correctly and, more importantly, the more complex the model is (with an increasing
number of parameters), the more this calibration becomes unmanageable [161].

5.2.1 Methods

Let us describe the methods we anticipated. We utilized a common change point
detection method to find the most likely moment of change in the time series of
the new daily infections [162]. Results show that the hypothesis of a relevant
change in August 2020 had a solid statistical confirmation, which is valid for all
the Italian regions included in this study, and it is centered in the last days of
August 2020. We then performed a regression analysis using generalized linear
model (GLM) estimating, on a monthly basis, the total amount of new infections
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Figure 5.1: Number of new daily infection cases (in blue) and seven-day moving
average (orange) for each of the 21 Italian regions, in the period between 1 July
and 30 September.
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using the number of inbound and outbound tourists per region along with a variety
of other additional factors that could help explain the dynamics of the pandemic,
beside tourism (e.g., regional population density, public sanitary expenditure per
region). The end goal for this model is not predictive accuracy, although that is an
indicator of a proper fit, but rather is to investigate contribution of certain features
to the model performance and their statistical significance. In this, we can find a
clue of their importance in the spread of the pandemic, hopefully guiding future
policies.

Changepoint Detection

The first thing we wanted to do was to check whether there was an actual change
in the number of new cases compatible with our hypothesis that summer tourism
could be the cause. This means that there should be a increase visible around 15
days after the contagion.

To find this change point in all the time series represented in all the 20 graphs
of Figure 5.1, we used the change point selection method described in [163]. The
idea is that of computing a discrepancy measure between different parts of the
observed time series. If the two parts do not present a relevant change (for example,
in their mean or in their variance, or both) this discrepancy factor will be low,
otherwise there will be a peak, and a change point will be detected. This is
essentially a window-based method, whose algorithm behind works by calculating
a discrepancy measure d, based on the following formula:

d(yu..v , yv..w ) = c(yu..w )− c(yu..v )− c(yv..w ) (5.1)

Where y, in our case, is a cumulative count of infected cases, while u, v and
w represent those days that delimit the boundaries of two temporal contiguous
windows. More precisely, with u < v < w, we have two temporal windows:
the first one spans from day u to day v, the second one from day v to day w.
Obviously, these are two contiguous windows, hence if we reunite them, we yield
a unique temporal window, spanning from day u to day w. The cost function c
utilizes the square of the L2 norm, and it is defined as follows:

c(yI) =
∑
t∈I

||yt − ȳ||22 (5.2)

where I is the above-mentioned temporal window; y, again, is the cumulative
count of the infected cases, while ȳ is the correspondent mean value computed over
that considered window. To individuate each change point for each of the Italian
regions under observation, we looked for the maximum value taken by d.
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A method able to find more than one changepoint (or none) by using some
kind of threshold or penalty can also be considered. Using a penalty based on
Bayesian Information Criterion (BIC), as suggested in [163], we computed a vari-
able number of changepoints with the same window-based method that are indi-
cated in purple in Figure 5.4.

Generalized Linear Model

The method we decided to use followed the example of by Farzanegan et al. and
consists in the analysis of a regression model that includes parameters for tourism
and other relevant factors for control purposes. We fit a generalized linear model
(GLM), assuming a negative binomial distribution for the target variable, esti-
mating the parameters with maximum likelihood estimation. The software is im-
plemented in the R programming language. The choice of a negative binomial
distribution comes from the fact that we are dealing with counting data [157, 164,
165]. A possible alternative would be to use a Poisson distribution, which assumes
equal mean and variance, making it unsuitable in the context of COVID-19 due
to the well-recognized characteristics of over-dispersion manifested by the spread
of this kind of disease, often referred to as a super spreading scheme [166, 167].

Figure 5.2: Incoming domestic tourists per each Italian region for each month of
2019. Typically, peaks of the curves are observed in August.

The target variable is the number of new cases for each Italian region in
the period we are considering, shown in figure 5.1. Even though the COVID-19
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data is released daily, we aggregated it on a monthly basis in order the be able
to use data about tourism flows. The number for incoming tourist are in fact
aggregated monthly, as shown in Figure 5.2, and there are no other sources with
finer granularity.

To increase the number of observations in our dataset, we ended up creating
a series of windows move by 1-week steps, as shown in Figure 5.3. For each "step"
in-between months we took a fraction from the current month a fraction from the
other, essentially obtaining a linear interpolation between the two values.

As an example, consider a one-month long window starting at the beginning
of the second week of July and ending after the first week of August; this returns a
total number of tourists to be taken into consideration, which is equal to the sum
of 75% of the number of tourists for July plus 25% of the number of tourists for
August.

Figure 5.3: Dataset structure. Each window for the target (black) is shifted 14 days
forward from the inputs (white) to account for the time required by COVID-19
symptoms to manifest.

As anticipated, we also included some feature to control for other relevant
factors like population density, healthcare expenditure, aging population and ge-
ography. The formula for our negative binomial regression model is given below:

ln(y) = β0 + β1ln(Tiw) + β2ln(Di) + β3ln(Hi) + β4Oi + β5Ai (5.3)

with y = E(Yiw|Tiw, Di, Hi, Oi, Ai).
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The various β indicate the coefficients to be estimated, associated with the
following independent variables:

• Yiw is the cumulative number of the new infection cases occurring in a region
i during the time comprised within the (black) window w;

• Tiw is the sum of inbound and outbound tourists for a given region, i, during
the aforementioned window, w;

• Di is the population density for each region, i, measured as the number of
inhabitants per km2;

• Hi is the healthcare expenditure for the region, i, expressed as a percentage
of the region’s GDP;

• Oi is the proportion of total the population over the age of 65;

• Ai is a categorical variable that indicates the NUTS2 classification mentioned
in Section 5.1;

• ln stands for the natural logarithm. We applied this transformation to be
comparable with the approach in [157] and also because it showed improved
performance.

5.2.2 Results

Let us start by considering Figure 5.4, which shows the main changepoint in red
and, in purple, the occasional others resulting from the threshold method described
before. The most likely change point for majority of the Italian regions falls around
the end of August, placing the peak of the COVID-19 spread around the middle of
that month (owing to the well-known 14-day lag). This period in time is exactly
when most Italians usually go on holiday. There are, however, a few exceptions,
namely Abruzzo, Basilicata, Molise, and the autonomous province of Bolzano,
whose change point is found to be closer to the middle of September. Nonetheless,
it is important to note that those regions, being small in size, typically receive
flows of tourists more gradually, never exceeding large volumes. Hence, the reason
for that shift in time could lay there. Because of its nature, the method also has a
harder time when called on to detect changes if they occur slowly and gradually,
such as in the case of Sicily or Marche.

Moving on to the regression model, we begin by discussing the estimated co-
efficients. While our regression model can be used as a prediction model, as we
show further down in this section, the real interest of regression analysis is infer-
ence about the factors included in the model, looking for statistically significant
relationships between them and the target variables.
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Figure 5.4: Number of new daily infection cases (in blue) and correspondent 7-
day moving average (orange) for each of the 21 Italian regions, in the time span
between July 1st and September 21st. In red marked is the change point found by
the change point detection method. In purple are showed additional changepoints.
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Table 5.1: Coefficient Estimates for our generalized linear model (GLM). They
show how tourism (T ) and density (D) are highly significant, as well as the ge-
ographical indication (A) for Island and Southern regions (although less). The
percentage of elderly (O) is also included.

Coefficients Estimate Std. Error z-Value Pr(> |z|)
(Intercept) -9.93064 2.10982 -4.707 2.52e-06
log(T) 0.85395 0.12426 6.872 6.31e-12
log(D) 0.82921 0.14986 5.533 3.14e-08
log(H) -1.19588 0.59292 -2.017 0.04370

O 11.12581 3.68649 3.018 0.00254
(A) Islands 1.33754 0.35277 3.792 0.00015

(A) North-Est 0.06887 0.17690 0.389 0.69705
(A) North-West -0.31216 0.19199 -1.626 0.10397

(A) South 0.65365 0.27646 2.364 0.01806

Table 5.1 contains the estimates produced by the fitted GLM and their levels
of significance. Under Coefficients, the reader can find the names of the predic-
tors whose coefficients need to be estimated. Underestimates, one can find the
estimates of those coefficients, as per Equation 5.3. Along with those estimates
comes an attempt to measure the errors made by the model when those estimates
are computed. More precisely, the third column (Std Error) presents the standard
deviations associated with those estimates, while the fourth column provides the
so-called z-value, which is a statistic that returns a result different from the hy-
pothesis, which is that the given coefficient is equal to zero. Put simply, when z
is high (either positive or negative), there is a low probability that the coefficient
under consideration is zero; that is, not relevant for the solution of the regression
problem of interest. Finally, we come to the fifth column, where the probability
that the estimates set under the column Coefficients can exceed the modulus of
the already explained z-value is estimated. This last value, in particular, should
be considered for an immediate analysis of the table, where the lower values under
column 5 are associated with the most relevant predictors.

All this being said, what is quite interesting in this discussion is the careful
observation of the estimates computed for the coefficients of the following predic-
tors: tourism and density of population (T and D). These two factors appear as
important predictors with the capability to have an influence on the solution of
the regression problem we are facing, as confirmed by their high significance, given
that the estimates of their relative coefficients come with good precision, as an
analysis of columns 3, 4, and especially 5, reveal.
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It is also interesting to note how the Island and Southern regions seem to be
linked to an increased number of infections (with respect to other Italian regions)
because of the same statistical motivations we have explained before. Also of note,
for similar reasons, is the predictor associated with the percentage of persons aged
over 65 (O), while other predictors (e.g., healthcare expenditure, H) do not seem
to play a relevant role for this model.

In summary, this model appears to be more influenced by how many infections
are brought by tourists; the percentage of people with an age over 65 is of secondary
importance, followed by how much money a given region spends on healthcare.

Predictive Performance

Even though it was not in our interest to create a predictive model we wanted to
see how this regression model would fare against a deep neural network, albeit a
very simple one, trained on the same data.

Region Real Cases GLM Neural Net

Abruzzo 480 463 293
Basilicata 135 91 117
Calabria 383 298 270
Campania 3959 1466 2007

Emilia-Romagna 3325 2133 2484
Friuli Venezia Giulia 677 362 348

Lazio 4303 1619 2168
Liguria 1504 907 889

Lombardia 6239 3349 4329
Marche 542 513 470
Molise 84 37 101

Piemonte 1817 781 983
Puglia 1689 922 857

Sardegna 1452 491 610
Sicilia 1625 1254 1034
Toscana 2412 1314 1557

Trentino-Alto Adige 869 472 778
Umbria 546 223 199

Valle d’Aosta 46 40 67
Veneto 3852 2252 2557

Table 5.2: Cumulative number of new infection cases as predicted by different
models for the interval 15 August – 15 September 2020.
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Table 5.2 shows the results of this prediction test. As we can see the neural
network is slightly better but not by much while also being an opaque model that
cannot be interpreted in any way. In this situation traditional methods are to
be preferred since the benefit of interpretability is of greater value than the small
loss of accuracy. If we look at Mean Absolute Percentage Error, how far from the
actual number each model is on average, the neural networks scores 36% and the
GLM scores 40%, only a 4% difference.
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5.3 School Reopening in September 2020

As the summer of 2020 was coming to its end, with its relatively low number of
COVID-19 cases in most western countries, many started arguing whether it was
wise to normally restart school activities. During the first wave, in most nations
schools were closed, as any other activity, and only some partially reopened them
as the situation got under control and the lockdown was lifted. In this context,
the large COVID-19 outbreak in a high school in Israel in May 2020 ignited the
discussions about the role of schools in the spread of the virus [168, 169].

Two opposing sides appeared quite clearly: on one side, those who considered
schools to be a minor risk and the importance of school paramount; on the other,
those who were concerned by the lack of clear data on the contagion dynamics
in schools and were scared by the high number of asymptomatic cases in younger
people. The same discussion emerged in all the other countries affected by the
ongoing pandemic, with the two sides bringing to the table mostly the same argu-
ments with the occasional country-specific remarks. Most international literature
that suggests the absence of considerable risk factors connected to schools focuses
on the fact that children and adolescents seem to be the least affected by the
virus, both in terms of the number of positive cases but also of symptoms and
contagiousness. Ismail et al,[170] studying UK schools, show how the incidence in
students is not larger than the total incidence in the region and how the most cases
inside schools are transmission between staff members. Similar studies targeting
other countries draw similar conclusions, especially when they come to primary
schools and kindergarten [171–176]. The hypothesis that asymptomatic children
could easily and unknowingly spread the virus in their families was rejected by
Munro and Faust [177] and by other similar analyses, based on argument that
children have a lower susceptibility to the virus and thus play a lesser role in the
transmission [178–180].

The researchers presenting the opposite hypothesis point to the weaknesses
of many of the aforementioned studies, namely the very small samples and the
fact that often the role of asymptomatic subjects is not tracked and considered
properly. Many point out the correspondence between the insurgence of the second
wave in many countries within 2–3 weeks from the school openings and point
to the data that suggest a higher spread in the school-aged population in those
months, especially in high school and university students [181, 182]. Flasche and
Edmunds have responded to Ismail’s study saying that it was conducted with
schools not fully populated underestimating the potential of children, especially in
the age bracket 10–18 years. [183] This group has seen a considerable increase in
September, as did college students, and seemed to be a common source of SARS-
CoV-2 infections in the households. Also, Yamey and Walensky [184] express



112 Chapter 5. Observational Studies During the Pandemic

their concerns for universities reopening, while Sebastiani and Palù [185] studied
the Italian situation and argued that the rise of new cases in September, with
most SARS-CoV-2 infections happening in the household, was compatible with
the hypothesis of school being a factor. While inside schools, measures were taken,
they argued that outside contact was inevitable due to public transportation and
social gatherings, so that young people spread the virus among themselves. Larosa
et al. [186] conducted a study in the Reggio Emilia province (Emilia-Romagna
region, Italy) showing that there were non-negligible clusters in the age bracket
10 – 18 years. They also suggested that more prompt isolation and testing could
have hindered the spread, stressing how important timeliness is in this context.
Despite their opposing positions, most researchers emphasize the need for the same
measures: an active case finding approach with systematic and thorough testing
of students and personnel.

Following this scientific debate, we focused on Italy and looked at the con-
tagion curves and relating them to the dates schools opened in each of the 21
regions. Italy has faced a hard time during its second wave, as it was bringing the
healthcare system to its knees. It started during the autumn, somewhere around
the start of October 2020, and peaked in November when the government imposed
a new form of lockdown with color-coded regions depending on risk.

September was a crucial period, as with the end of summer many activities
were going back to normal, and the virus prevalence in the nation was quite low
[187]. In the first days of that month, a slight increase in the number of new
cases was registered in most regions, probably due to the cross-regional movement
for the summer holidays [137]. This prompted many to warn of the arrival of
the second wave, but the number of new cases stabilised in the coming days, and
the growth was considered small in any case. School reopened between the third
and the fourth week of September [188, 189] while people had also already started
going back to their offices and activities. Another thing to notice is the referendum
of 20 September that in some regions corresponded with other elections for local
government and senate representatives. While attendance was quite low, one could
wonder the effects of such an event.

Because of the shocking scarcity of available and reliable data on SARS-
CoV-2 infections inside Italian schools, we chose another perspective in order to
investigate the hypothesis of an association between schools and the resurgence of
the virus, by analysing the growth rate of the total number of infections in all the
Italian regions, before and after the school reopening.
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5.3.1 Methods

Given the scarce availability of data collected in schools that could better describe
their role in Italy (for the reasons stated in the Introduction), we decided to work
with the population-wide data at the regional level. We fitted a piecewise linear
regression model where the dependent variable was only the number of new daily
confirmed COVID-19 cases, and the independent variable was just the number
of days since 1 September 2020 (until 31 October 2020). The result is a model
comprised of a changepoint and two segments, whose slopes represent the growth
rate before and after the acceleration in the exponential growth causing the second
wave; we passed from a stable situation with the exponent close to 0 which means
little to no growth, to a situation with markedly positive exponent. To have a
measurement of the uncertainty in our estimates, we decided to use a Bayesian
framework for the regression as described in [190]. Two transformations were
applied to the initial data. First, we used a 7-day rolling average as the raw data
presents a weekly periodicity due to the way COVID-19 tests are carried out and
registered. Second, we applied a natural logarithm so that the exponential growth
appears as an easily identifiable slope. Using the R package called mcp built on top
of JAGS [191], we estimated a piecewise linear regression model for each region.
We modeled our dependent variable ln(y) (the natural log of confirmed daily cases)
as a Normal distribution whose mean depends on the regression coefficients a1 and
b1 (the intercept and angular coefficient) before a changepoint τ , and a2 and b2
after the changepoint, as represented in the formula below.

ln(y) ∼ N (a1 + xb1, σ
2) if x ≤ τ

ln(y) ∼ N (a2 + xb2, σ
2) if x > τ

(5.4)

The model was fitted using a Markov Chain Monte Carlo (MCMC) method.
Since the two lines are joined at the changepoint, without discontinuities, the
second intercept term a2 is not estimated as is bound to be a2 = τ(b1 − b2) + a1.

As described in [191], the intercept and slope priors used for the Bayesian
estimation were chosen in Gaussian families, while for the changepoint a Uniform
distribution was used, precisely as reported below:

τ ∼ Uniform(min(x), max(x) )

σ ∼ N (0, sd(y))

b ∼ t(0, 3 ∗ sd(y), 3)

a ∼ t(0, sd(y)/max(x)−min(x))

(5.5)

The final estimates for all the parameters are reported in Table 5.3 with the
95% CI. To give an idea of the increase in slope, we computed the number of days
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(DT1 and DT2) necessary to observe a doubling in the number of new cases from
the changepoint onward, with both slopes (using the average angular coefficient),
as shown in the following equations:

DT1 =
ln(2yτ )− a1)

b1
− τ ; DT2 =

ln(2yτ − ln(yτ ))

b2
;

where yτ = ea1+τb1
(5.6)

5.3.2 Results

Table 5.3 shows all the estimated coefficients for each region. Similarly, Figure 5.5
shows all the curves and regression lines. Out of the 21 Italian regions, 15 (71%) of
them have a changepoint within 28 days from the date when the school opened. In
particular, the average number of days between the opening and the changepoint
is 16.66 days (CI 95% 14.47 to 18.73). This number is plausible in a scenario
where one has to be exposed to the virus and then manifest symptoms in order to
be tested, also considering that children and adolescents were often asymptomatic
and could have functioned as a driver for “second-degree” contagion.

Looking at the estimated slopes of Figure 5.5 and 5.6, we can have an idea
of the strength of the increase. While one could comment on the difference in the
angular coefficients, converting it into an angle, the number does not convey the
idea very effectively. Translating it into the number of days required for a doubling
in the growth rate is more interpretable.

Of the 15 regions mentioned above, 4 had a slope that is null or slightly
negative before the change, making this time infinite, but the fact that the trend
was inverted to an average value of 6.23 days (CI 95% 4.30 to 8.20) is significant
enough by itself. The remaining 11 regions went from an average of 47.50 (CI 95%
37.18 to 57.61) days at the rate before the changepoint to an average of 7.72 (CI
95% 7.00 to 8.48) at the rate after the changepoint. Figure 5.5 illustrate these
results.

Of the 6 regions that break the pattern, two of them, P.A. Trento and P.A.
Bolzano (often considered one region, called Trentino-Alto Adige) presented a
changepoint more than four weeks after the school opening; they are indicated in
blue in Table 5.3. On the other hand, the remaining four, in yellow in Table 5.3,
begin their rapid increase before or in correspondence of the school opening. Both
are displayed in Figure 5.6. All the models converge quite nicely, with narrow 95%
CI, except for Basilicata, where the changepoint estimation is extremely wide,
probably due to the high variability in the reported numbers.

Figure 5.5 and 5.6 use the following graphical convention: The vertical blue
line indicates the changepoint with the blue area corresponding to the 95% CI.
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Table 5.3: Estimated parameters from the 21 Italian regions along with school
opening date (Open), number of days between opening and changepoint dates (D)
and the doubling time for the two slopes (DTi). Between brackets are the 95% CI.

Region Open D ∆ m1 m2 a1 σ

Basilicata 23/09 -4 19.25
(0.01, 51.02)

0.02
(-0.00, 0.06)

0.06
(0.04, 0.08)

1.15
(0.78, 1.45)

0.35
(0.29, 0.29)

Campania 23/09 -2 20.85
(18.81, 2.86)

-0.00
(-0.01, 0.01)

0.07
(0.07, 0.08)

5.07
(5.00, 5.15)

0.08
(0.07, 0.07)

Abruzzo 23/09 0 22.54
(20.73, 24.28)

-0.01
(-0.02, -0.00)

0.10
(0.09, 0.11)

2.73
(2.58, 2.88)

0.18
(0.15, 0.15)

Sardegna 21/09 0 21.26
(17.65, 26.73)

-0.00
(-0.01, 0.01)

0.05
(0.04, 0.05)

3.94
(3.85, 4.03)

0.08
(0.07, 0.07)

Puglia 23/09 8 30.92
(29.63, 32.20)

0.01
(0.01, 0.01)

0.07
(0.07, 0.07)

4.13
(4.08, 4.19)

0.08
(0.07, 0.07)

Calabria 23/09 9 31.67
(29.68, 33.65)

-0.01
(-0.01, 0.00)

0.10
(0.09, 0.11)

2.75
(2.62, 2.88)

0.19 (
0.16, 0.16)

Valle
d’Aosta 13/09 13 26.22

(24.09, 28.29)
-0.00

(-0.02, 0.01)
0.14

(0.13, 0.15)
0.68

(0.49, 0.87)
0.27

(0.22, 0.22)

Umbria 13/09 14 26.87
(25.72, 28.09)

0.01
(0.00, 0.01)

0.10
(0.10, 0.10)

2.79
(2.72, 2.87)

0.11
(0.09, 0.09)

FVG 15/09 16 30.91
(29.49, 32.22)

0.01
(0.01, 0.02)

0.09
(0.08, 0.09)

2.96
(2.88, 3.05)

0.13
(0.11, 0.11)

Piemonte 13/09 16 28.58
(27.40, 29.73)

0.02
(0.02, 0.02)

0.11
(0.10, 0.11)

3.99
(3.94, 4.05)

0.08
(0.06, 0.06)

Veneto 13/09 16 29.20
(27.09, 31.62)

0.01
(0.01, 0.02)

0.08
(0.07, 0.08)

4.75
(4.68, 4.82)

0.09
(0.07, 0.07)

Lombardia 13/09 17 30.30
(29.56, 31.02)

-0.01
(-0.01, -0.00)

0.12
(0.12, 0.13)

5.49
(5.44, 5.55)

0.08
(0.07, 0.07)

Toscana 13/09 17 29.67
(28.81, 30.51)

0.01
(0.01, 0.01)

0.10
(0.10, 0.10)

4.39
(4.33, 4.45)

0.08
(0.07, 0.07)

Emilia
Romagna 13/09 18 30.65

(30.11, 31.23)
-0.01

(-0.01, -0.01)
0.09

(0.09, 0.09)
4.86

(4.83, 4.90)
0.05

(0.04, 0.04)

Marche 13/09 19 32.35
(30.53, 34.01)

0.02
(0.01, 0.02)

0.10
(0.09, 0.11)

2.73
(2.63, 2.83)

0.15
(0.12, 0.12)

Liguria 13/09 20 32.74
(30.35, 35.16)

0.02
(0.02, 0.03)

0.08
(0.08, 0.09)

3.85
(3.75, 3.96)

0.15
(0.12, 0.12)

Molise 13/09 22 35.16
(33.16, 37.35)

0.02
(0.01, 0.03)

0.12
(0.11, 0.14)

0.72
(0.55, 0.91)

0.29
(0.24, 0.24)

Sicilia 13/09 22 34.52
(32.17, 36.81)

0.04
(0.03, 0.04)

0.07
(0.07, 0.08)

3.81
(3.75, 3.87)

0.09
(0.08, 0.08)

Lazio 13/09 23 35.85
(34.69, 37.01)

0.02
(0.01, 0.02)

0.09
(0.09, 0.10)

4.89
(4.85, 4.94)

0.07
(0.05, 0.05)

P.A.
Bolzano 6/09 28 34.39

(29.46, 41.99)
0.04

(0.03, 0.05)
0.10

(0.07, 0.12)
1.97

(1.83, 2.12)
0.22

(0.17, 0.17)
P.A.
Trento 13/09 32 44.99

(42.97, 47.17)
0.02

(0.02, 0.03)
0.12

(0.09, 0.14)
2.68

(2.55, 2.81)
0.24

(0.20, 0.20)
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The yellow vertical line indicates the date school reopened. Black dots are the
natural log of daily confirmed cases from 09/01/2020 to 31/10/2020 that we used
as inputs. The regression lines, using the average value for the coefficients, are
shown in red and green. On the rightmost side of each plot, the y-axis is reported
without the log transformation, to allow the reader to infer what the confirmed
case rates were in each region.

Figure 5.5: Plots for the regions whose changepoint is within 28 days since school
openings.
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Figure 5.6: Regions that do not exhibit the pattern. First 4 start rising before
school open, the last two take more than 28 days after that.

The results highlight how the second wave in Italy started in the days be-
tween September and October, with a degree of variability. These changepoints
are on average a couple of weeks after the school openings. Certainly, multiple
confounding factors played a role in the acceleration of the SARS-CoV-2 infection,
but our opinion is that schools are surely one of those, and the magnitude of their
effects should be investigated more thoroughly.

In the short period that precedes the second wave, there were not many events
that interested as many people as schools. The referendum and elections on 20
September almost coincides with school opening but did not have a large par-
ticipation. Workers going back to their offices could also have played a major
role, however by looking at the nationwide mobility report by Google Mobility,
we can see that in September the number of people moving to their workplace
increased steadily from −30% to −20% with respect to the reference level before
the pandemic [192]. If we consider that in Italy, there are approximately 25 million
workers, an increase of 10% would translate into 2.5 million more people circulat-
ing. If we compare this number with that of students and school personnel which
is equal to approximately 11 million, we can conclude that perhaps, even when
considering that both categories use public transportation heavily, schools could
be more influential in spreading the virus.

The regions that do not follow the pattern may tell us something more. In a
regionalised country like Italy, with a strong territorial differentiation, Trento and
Bolzano could be outliers [193]. They are two northern, neighbouring autonomous
provinces, often considered a single region, which share characteristics of a higher
care coverage of social and educational services that could set them apart from
other regions. In the others, the change is before or coincidental with school
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opening, so any factor that could have ignited the second wave is to be researched
outside of the school activity and all the other connected activities. The effect of
schools, if any, would be absorbed in the inflation already in act. Being all four
maritime regions, tourism could perhaps be one of the major causes. Regarding
those regions where the number of cases has high variability, the reason is most
likely that the number of tests done each day varies as much. We could have
normalised the cases with the number of tests, but this datum is often unreliable
and leads to unrealistic normalised values, so we decided to avoid this. It should
be also noted that any research hypothesis concerning SARS-CoV-2 infections in
schools has a hard time being verified in Italy, as no region has so far seriously
investigated the dynamics of the spread of the virus inside schools by using a
systematic active case finding methodology.

There are, finally, some important technical considerations to put in evidence
concerning the possible limitations of this study. First, the data we have used to
count the number of daily SARS-CoV-2 cases were made available by the Ital-
ian government under the form of aggregated measures. In several cases, those
measures have changed meaning/value over time, with errors that were never cor-
rected. Not only that, but in order to highlight the shift in the infections growth
rate (i.e., the slopes), along with the moment in time when this happened (i.e.,
the changepoint), we adopted a simple normal model, resulting in two lines before
and after the changepoint of interest. We recognise that this method is not the
more accurate one with which to count COVID-19 cases. Poisson-like distributions
would be more appropriate. Moreover, it should be considered that the target of
this study was not trying to create a model for the count of COVID-19 infections,
per each single day of observation, but to look at how quickly they grew, comparing
the slopes. Nonetheless, a Poisson model yields comparable results. In particular,
the 15 regions that showed the pattern continue doing so (the changepoint falls
within 3 weeks from the school reopening). Also, the relevant parameters (the
slopes coefficients b1 and b2) for all the 21 Italian regions have an average absolute
difference from their respective of less than 0.01 (0.0057 for b1, 0.0081 for b2), with
the average number of days since the reopening of schools equal to 15.2 days, well
within the CI computed with the normal model. A limitation of this study is also
concerned with the impossibility to provide an estimate of many other confound-
ing factors that could have played a role during the period of observation, besides
schools. Another limitation resides in the use of Italian data. The extension to
different geographies could result into more robust results.
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5.4 2021 European Football Championships

During the summer of 2021 Europe, as well as other countries around the world,
saw a resurgence in the COVID-19 pandemic, after a brief respite given by the
effects of the vaccination that started in the first half the year. This new wave of
the pandemic seemed to be driven by a new strain of virus that has been referred
to as the Delta variant. This is the scenario in which the European football
championship has taken place, from 11 June to 11 July 2021 (one year later than
it should have been). This 2020 edition, being a special celebration for the 60th
anniversary of the tournament, has had the peculiarity of being hosted by several
different countries, instead of just one as it normally happens.

The decision to allow such a massive event across the European continent,
in such a delicate time, immediately triggered a debate on the problems it would
cause. Nonetheless, the competition was held, leaving each hosting country some
freedom on which restrictions to apply (e.g., the number of fans allowed at each
football stadium). This resulted in very different behaviors, ranging from Hungary
hosting its matches at full stadium capacity at Puskás Arena (∼ 68, 000 seats)
to Germany limiting the attendance to 22% of the maximum stadium capacity
[194–197]. Obviously, there were more factors than just the stadium, with fans,
massively gathering in pubs, squares, and public places, to watch the matches, thus
leading to infection clusters that surged all around Europe, as witnessed by the
media coverage of these events [198–201]. Not only that but even the gathering of
teams and their staff may have given their contribution to the spread of the virus
(given the itinerant nature of this edition), as the COVID-19 literature on football
and other sports suggests [202–204].

On one side, one could conclude that those who considered this event to be a
minor risk did not take into any consideration of those theories that maintain that,
with COVID-19, super-spreading events may be the main driver of an epidemic
spread, under specific circumstances [205, 206]. An example, on 19 February
2020, was the Champions League match, between Atalanta and Valencia, which
attracted a third of Bergamo’s population to AC Milan’s San Siro stadium. In
addition, more than two thousand and a half of Spanish supporters took part.
Experts, now, point to that 2020 football match as one of most relevant reasons
why the city of Bergamo had become the epicenter of the COVID-19 pandemic,
during the first wave in Italy, with a very high death toll; not to mention, that the
35% of Valencia’s team also became infected [207].

On the other hand, it is well known that the return of supporters to stadiums is
the highest priority for football’s business, and the financial impact of the COVID-
19 pandemic on football depends, almost exclusively, on both the timing and the
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scale of supporters’ return to stadiums [208].

Following this debate, this work focused on the European football champi-
onship and its matches, looking for a possible compatibility with the reversal of
the decrease/increase trend of the SARS-COV-2 cases, observed in many countries
participating in the tournament. To investigate the hypothesis of an association
between those football matches and the resurgence of the virus, we searched for
a changepoint in the daily timeseries of the new SARS-COV-2 cases registered in
each country, expecting it to appear not later than two to three weeks after the
date of the first match that the national team played.

Upon finding such a changepoint, we investigated if that changepoint was
coincidental with a change in the infection rate, from a decreasing trend to an
increasing one. It should be noted that our type of analysis has been observational
in nature, and it was used to determine if the exposure to the specific risk fac-
tor, given the frequent mass gatherings following the football events, might have
correlated with the particular outcome of the virus resurgence in many European
countries. With this type of study, we cannot demonstrate any cause and effect,
but we can make preliminary inferences on the correlation between the participa-
tion in the European football championship of a given country and the inversion
in the SARS-COV-2 case rate that may have hit, at a particular point in time, the
population living in that country.

5.4.1 Methods

The methods we used in this experiment are the same described in section 5.3.1.
The only exception is the inclusion of a formula to also compute the halving time
for decreasing time-series as observed for many countries in the months before the
EURO2020 matches.

The following equation are for the halving or doubling time before the change-
point τ :

Hb =
ln yτ

2
− a1
b1

− τ ; Db =
ln 2yτ − a1

b1
− τ where yτ = ea1+τb1 (5.7)

While the following equation are for the halving or doubling time after the
changepoint τ .

Ha =
ln yτ

2
− ln yτ

b2
; Da =

ln 2yτ − ln yτ
b2

where yτ = ea1+τb1 (5.8)

As a final note, it is important to mention that while it is quite usual that
COVID-19 cases can show their biggest single-day jumps two to three weeks after a
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particular mass event [185], we have extended the search space for a changepoint of
our procedure to four weeks, for the sake of the reliability. Nonetheless, following
the literature we have considered of interest only those changes occurred in the
infection curves in the interval 5-6 to 22-23 days since the event of interest.

5.4.2 Results

This Section is split over two different parts. The first reports the results we
obtained with the 22 countries that took part in the European Football Champi-
onship. The second illustrates the results we got with some 12 European countries
that did not participate in the tournament.

Countries That Participated in the Tournament

17 out of 22 (77%) countries taking part in the European football championship
have shown a changepoint occurring not later than two to three weeks after their
first match (i.e., during the tournament). For all these 17 countries, the change-
point coincides with a reversal in the new daily SARS-COV-2 cases from a de-
creasing to an increasing rate.

The group of all these countries provides evidence in favor of the hypothesis.
Precisely, the group is comprised of all the following countries: Austria, Belgium,
Croatia, Czechia, Denmark, Finland. France, Germany, Hungary, Italy, Nether-
lands, North Macedonia, Poland, Slovakia, Spain, Switzerland, and Ukraine.

Table 5.4 provides the lists of those countries, where under the τ column we
listed for each country the mean value of the days passed before the changepoint
was detected, since the beginning of the period of observation (28 May 2021). Since
we are working with a posterior distribution, in brackets the 95% CI are indicated.
In the Diff column, instead, we have listed the difference, in terms of days, between
the point in time when the changepoint occurred and the date of the first match
played by that given national team. The fourth and fifth columns of Table 5.4
show the mean values (with the corresponding 95% CI) for the coefficients b1 and
b2, that have been used to compute the steepness of the slopes, respectively before
and after the changepoint. The sixth column, finally, reports the average value of
the first intercept a1, with its 95% CI.

We have further worked with the numbers comprised in Table 5.4 by rounding
the mean changepoint value for all the 17 countries and then calculating the dif-
ference, in terms of days, between that value and the date when they played their
first match. This way, we have obtained that the average date of the changepoint,
for all the 17 countries of interest, falls 14.97 days [95% CI 12.29 to 17.47] after
the beginning of their participation in the tournament (approximately two weeks).
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Table 5.4: Countries with a changepoint coincidental with a reversal from a de-
crease to an increase in the SARS-COV-2 case rate that occurred during the Eu-
ropean football championship.

Country τ Diff b1 b2 a1

Austria 36.4 (35.8, 37.1) 20 -0.05 (-0.06, -0.05) 0.08 (0.08, 0.09) 6.28 (6.25, 6.32)
Belgium 24.9 (24.6, 25.2) 10 -0.06 (-0.06, -0.06) 0.04 (0.04, 0.04) 7.70 (7.68, 7.71)
Croatia 28.7 (27.4, 30.3) 13 -0.06 (-0.06, -0.06) 0.02 (0.02, 0.03) 5.87 (5.83, 5.92)
Czechia 26.2 (25.3, 27.2) 9 -0.06 (-0.06, -0.05) 0.02 (0.02, 0.03) 6.30 (6.26, 6.34)
Denmark 28.2 (27.8, 28.6) 13 -0.06 (-0.06, -0.06) 0.05 (0.05, 0.06) 7.13 (7.11, 7.15)
Finland 19.8 (18.4, 21.0) 5 -0.03 (-0.04, -0.03) 0.04 (0.04, 0.05) 4.98 (4.90, 5.05)
France 34.7 (34.6, 34.8) 17 -0.06 (-0.06, -0.06) 0.11 (0.11, 0.11) 9.28 (9.28, 9.29)

Germany 35.1 (34.6, 35.5) 17 -0.07 (-0.07, -0.07) 0.05 (0.05, 0.05) 8.60 (8.59, 8.62)
Hungary 40.3 (38.4, 42.0) 22 -0.06 (-0.06, -0.06) 0.03 (0.02, 0.05) 5.99 (5.95, 6.03)
Italy 36.5 (36.3, 36.8) 23 -0.05 (-0.05, -0.05) 0.09 (0.09, 0.10) 8.25 (8.24, 8.26)

Netherlands 26.4 (26.2, 26.6) 10 -0.06 (-0.06, -0.06) 0.09 (0.09, 0.09) 8.18 (8.17, 8.20)
Macedonia 34.8 (31.9, 37.6) 19 -0.05 (-0.05, -0.04) 0.05 (0.04, 0.07) 3.59 (3.46, 3.72)
Poland 35.2 (33.5, 36.8) 18 -0.07(-0.07, -0.07) 0.01 (-0.00, 0.01) 6.92 (6.89, 6.94)
Slovakia 39.4 (36.8, 42.1) 22 -0.05 (-0.05, -0.04) 0.02 (0.00, 0.03) 5.02 (4.96, 5.08)
Spain 24.9 (24.8, 25.0) 8 -0.01 (-0.01, -0.01) 0.07 (0.06, 0.07) 8.45 (8.44, 8.46)

Switzerland 32.9 (32.5, 33.5) 18 -0.07 (-0.07, -0.07) 0.08 (0.08, 0.08) 6.93 (6.91, 6.96)
Ukraine 25.8 (25.1, 26.5) 10 -0.05 (-0.05, -0.05) 0.00 (0.00, 0.01) 8.06 (8.04, 8.07)

Now, we have made a step further and, taking the mean values for the coefficients
b1 and b2, we have estimated how the slopes for the two lines have changed, on
average, before and after the changepoint. We have obtained that all the 17 coun-
tries have had a decreasing number of daily cases until the changepoint and ended
up with a reversed trend afterwards.

Table 5.5 shows the halving time before and the doubling time after the
changepoint, for each given country of this group. More precisely, the mean halving
time before the changepoint is 18.07 days [95% CI 11.81 to 29.42], while the mean
doubling time after the changepoint is 29.10 days [95% CI 14.12 to 49.78]. The
credible intervals are quite wide but if we better investigate the values reported in
Table 5.5, we recognize that most of the deviation depends on just three countries,
namely: Spain, Ukraine, and Poland, with their exceptionally large values.

To better highlight and summarize all the results we have discussed so far, we
also present Figure 5.7 and Figure 5.8, where the same results are portrayed from
a clear graphical viewpoint. In particular, Figure 5.7 takes into account the inver-
sion of the SARS-COV-2 case trend of the following countries: Austria, Belgium,
Croatia, Czechia, Denmark, Finland. France, Germany, Hungary, Italy. Figure
5.8, instead, shows the inversion of the SARS-COV-2 case trend of Netherlands,
North Macedonia, Poland, Slovakia, Spain, Switzerland, and Ukraine.
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Table 5.5: Quantifying the inversion from a decrease to an increase in COVID-19
case rate for the countries of Table 5.7

Country Halving time Hb Doubling Time Da

Austria 12.69 8.18
Belgium 11.05 17.60
Croatia 11.77 28.32
Czechia 12.05 28.22
Denmark 11.49 12.71
Finland 21.81 15.84
France 11.86 6.32

Germany 10.14 13.17
Hungary 11.10 22.10
Italy 13.56 7.43

Netherlands 12.11 7.69
N. Maced. 14.88 13.20
Poland 9.67 92.80
Slovakia 14.91 41.59
Spain 103.50 10.62

Switzerland 10.03 8.56
Ukraine 14.43 159.00

All the figures in this section should be interpreted as follows:

• Yellow space: duration of the tournament. Red vertical line: first match.

• Purple vertical line: last match.

• Green vertical line: last hosted match. Blue vertical line: changepoint.

• Blue space: CI amplitude for the changepoint. Blue bell-shaped peaks: peaks
of the probability density function for the changepoint.

• Green segment: case rate trend before the changepoint.

• Red segment: case rate trend after the changepoint.

• Grey segments: fitted lines drawn randomly from the posterior distribution,
based on the corresponding CI.

• Black dots: number of daily SARS-COV-2 cases.

• Rightmost y-axis: number of cases.

• Leftmost y-axis: logarithm of the number of cases
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Figure 5.7: Inversion of the SARS-COV-2 case trend for Austria, Belgium, Croatia,
Czechia, Denmark, Finland. France, Germany, Hungary, Italy, occurring not later
than two to three weeks after their first match.
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Figure 5.8: Inversion of the SARS-COV-2 case trend for Netherlands, North Mace-
donia, Poland, Slovakia, Spain, Switzerland, Ukraine, occurring not later than two
to three weeks after their first match.
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Figure 5.9: Portugal, Russia, Sweden, Turkey, and UK break the pattern, without
a well recognizable changepoint or a reversal in the case rate, occurring not later
than two to three weeks after the beginning of the tournament.
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All the 5 remaining countries (i.e., Portugal, Russia, Sweden, Turkey, and
UK), instead, break the pattern and cannot be considered evidence in favor of the
research hypothesis. In particular:

(i) Portugal, Russia and UK show a robust increasing trend in the SARS-COV-2
infection case starting well before the beginning the tournament, hence the
detected changepoints, as well as the relative slopes, cannot considered an
evidence in favor the hypothesis

(ii) Turkey seem to show quite a regular pattern, with a well identifiable change-
point and the usual inverting trend in the case rate, nonetheless the problem
here is that that changepoint happens well after the team left the competi-
tion, more than four weeks since its first match;

(iii) finally, for Sweden, the model fails to fit because there seems to have two
different changepoints, that are either before or after the tournament, making
them irrelevant.

The situations mentioned above are illustrated in Figure 5.9, where it is evident
that all those five countries break the pattern.

Finally, Table 5.6 reports the value of τ , diff and of all the other parameters,
with the corresponding 95% CI. Of particular interest, here, is the large excursion
in the CIs for Sweden and Portugal that witness the peculiarity of that situation.

Table 5.6: parameters for the five countries that break the pattern.

Country τ Diff b1 b2 a1

Portugal 26.4 (2.4, 47.7) 8 0.03 (0.01, 0.05) 0.08 (0.08, 0.09) 6.28 (6.25, 6.32)
Russia 38.7 (38.4, 39.0) 24 0.03 (-0.03, -0.03) 0.00 (0.00, 0.00) 8.91 (8.90, 8.91)
Sweden 26.9 (7.9, 45.8) 10 -0.04 (-0.05, -0.02) 0.00 (-0.04, 0.05) 7.26 (7.15, 7.36)
Turkey 43.4 (43.1, 43.6) 29 -0.01 (-0.01, -0.01) 0.05 (0.05, 0.06) 8.93 (8.92, 8.94)
UK 52.6 (27.8, 28.6) 37 0.05 (0.05, -0.05) -0.04 (-0.05, -0.04) 7.99 (7.98, 7.99)

Countries That Did Not Participate in the Tournament

While maintaining the pure observational nature of the inferences of our anal-
ysis, about the effect of the tournament, we took advantage of another natural
experiment, by observing what has happened, during the tournament, in some
12 additional European countries that did not take part in the European football
championship (considering the beginning of the tournament as the basis of our
statistical observations).

This group was comprised of the following countries (with motivations for
their choice reported in brackets): Greece and Ireland (great football traditions),
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Table 5.7: Estimated parameters for countries not participating in EURO2020.

Country τ Diff b1 b2 a1

Moldova 9.6 (6.5, 12.5) -4 -0.06 (-0.10, -0.03) 0.01 (0.01, 0.02) 4.36 (4.21, 4.50)
Norway 16.6 (15.1, 18.0) 3 -0.05 (-0.06, -0.04) -0.00 (-0.00, 0.00) 6.03 (5.98, 6.07)

Azerbaijan 24.2 (23.0, 25.3) 10 -0.08 (-0.08, -0.07) 0.06 (0.05, 0.06) 5.47 (5.41, 5.54)
Greece 26.0 (25.8, 26.3) 12 -0.06 (-0.06, -0.06) 0.07 (0.07, 0.07) 7.53 (7.51, 7.55)
Ireland 31.6 (30.5, 32.7) 18 -0.01 (-0.01, -0.01) 0.06 (0.05, 0.06) 6.05 (6.01, 6.08)
Serbia 34.8 (33.5, 36.2) 21 -0.05 (-0.05, -0.04) 0.05 (0.04, 0.06) 5.83 (5.79, 5.87)

Lithuania 39.1 (38.2, 40.1) 25 -0.08 (-0.08, -0.08) 0.09 (0.08, 0.10) 6.42 (6.39, 6.45)
Latvia 45.1 (41.5, 48.4) 31 -0.05 (-0.05, -0.05) 0.02 (-0.01, 0.05) 5.91 (5.87, 5.94)

Romania 37.6 (35.2, 39.9) 24 -0.06 (-0.06, -0.06) 0.04 (0.03, 0.05) 5.77 (5.72, 5.82)
Bosnia 38.6 (36.2, 40.8) 25 -0.06 (-0.06, -0.05) 0.04 (0.02, 0.06) 4.63 (4.55, 4.70)
Bulgaria 39.8 (33.0, 44.2) 26 -0.04(-0.04, -0.03) 0.04 (0.01, 0.06) 5.49 (5.44, 5.55)
Iceland 46.8 (44.9, 48.4) 33 -0.01 (-0.02, 0.00) 0.31 (0.27, 0.36) 1.40 (1.11, 1.70)

Romania and Azerbaijan (hosting countries), Norway and Iceland (representatives
of Northern Europe), Bulgaria and Moldova (representatives of Eastern Europe),
Serbia and Bosnia (representatives of Balkans), Latvia and Lithuania (largest coun-
tries representatives of Baltic Europe). The results of the application of our method
to the above 12 countries are presented in Table 5.7. The 12 countries are listed
based on the increasing value of diff (the number of days that separate the change-
point from the beginning of the tournament).

Needless to say, many other countries were left out. The motivations were
manifold, ranging from their limited geographical dimensions (e.g., Malta, Faroe
Islands, San Marino, Cyprus, Andorra, Montenegro, Kosovo, etc.) to geopoliti-
cal considerations, also in relationship with the game of football. For example:
Georgia, Armenia, Kazakhstan, and Belarus are not famous for their international
football traditions. Moreover, they are also well aligned with the contagion dy-
namics of one of their most influential neighboring countries, that is, Russia, we
had already examined.

Here, it is important to remind what was already stated at the end of Section
5.4.1: COVID-19 cases can show their biggest jumps two to three weeks after a
particular mass event, hence only those countries with inverting changes occurring
in the time interval from 5 to 23 days after the beginning of the tournament were
considered as those that have followed the pattern. This group is comprised of
Greece, Azerbaijan, Ireland, Serbia. Just 4 countries out of 12 (33%).

For all the other 8 countries (67%), either their changepoint was premature
(Norway, Moldova) or it came too late, precisely more than 23 days after the
beginning of the tournament (Latvia, Lithuania, Romania, Bosnia, Bulgaria, and
Iceland, in some cases, even without a clear case trend inversion, e.g., Bosnia). As
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before, with Figures 5.10 and 5.11 we have portrayed a graphical representation
of the same data of Table 5.7 for all the 12 countries of interest.

In conclusion, these final numbers have clearly shown that, while one could
suppose that an increase in COVID-19 cases may have been an inevitable con-
sequence of the general European situation in July 2021, the European football
tournament, with its mass gatherings, has played the important role of accelerator
of this phenomenon, for many of its participating countries.

Figure 5.10: Azerbaijan, Bosnia, Bulgaria, Greece, Iceland, Ireland.
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Figure 5.11: Latvia, Lithuania, Moldova, Norway, Romania, Serbia.
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5.5 Covid Seasonality

At the end of 2021, as the virus had been around for almost two years, a discus-
sion started about the possibility that COVID-19 might follow a seasonal pattern,
similar to many other viral infections, like measles and flu, for example. This
idea gained momentum probably because of how the contagion receded during the
summer months in many Western countries, only to start climbing back up again
with the start of autumn, finally reaching a new peak during the winter holidays.

From a scientific perspective, the debate on an infection pattern that repeats
over a one-year period has been driven by several analyses investigating the correla-
tion between SARS-COV-2 and various climatic (and environmental) factors, such
as temperature, humidity, and UV radiations. The rationale behind this research
is that if a negative correlation between SARS-COV-2 and higher temperatures
and exposure levels to UV radiation can be demonstrated, then lower COVID-19
infection rates should happen in some given seasons of the year.

D’Amico et al. used a multivariate regression to assess the influence of tem-
peratures and vaccinations on mortality rates in temperate climate countries. They
found a negative correlation with temperatures and discovered that the vaccina-
tion’s effect grew larger as the temperature decreased [209]. Similarly, Ma et al.
studied the problem in the United States using a generalized additive mixed model.
Their findings are that temperatures are negatively correlated with COVID-19, in
an almost linear way, in the range of 20-40° C [210].

However, some other research begins to point out the weaknesses of this type
of studies. For example, Fontal et al., while studying the negative correlation
between the virus and both higher temperature and humidity, found that there
are moments in which this correlation can be inverted, typically corresponding to
summer outbreaks in certain regions [211]. The authors suggest that this can be
due when various human activities take over, like intensive use of air conditioning,
lack of preventive measures and uncontrolled mass gatherings. Also, Sera et al.
have expressed their concerns, concluding that the effect of weather, while present,
is negligible when compared to the decisive impact of control interventions [212].
Baker et al. have argued that climate factors can play an important factor in the
infection when the virus is in the endemic stage. In contrast, during the pandemic
stage, it only drives modest changes [213]. Finally, Telles et al, where it has been
demonstrated that a combination of factors, including climate, control policies and
the use of urban spaces could influence the seasonality of COVID-19 [214].

The positive effect of good weather seems to contrast with several COVID-
19 contagions that have broken out, with broad impact, even if with unfavorable
climates to the spread of the virus. For example, while this is completely anecdotal,
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one could wonder what mechanisms were behind the resurgence of the contagion in
May 2020 in Israel [215]. Similarly, the 2021 Olympic Games in Japan took place
during the summer when the weather was optimal, but the virus spread, even in
the presence of high security standards [216]. In the same period, the European
Football Championship took place, and this tournament was connected with an
increase of new cases in many involved countries [138]. Also, a new peak hit strong
just a few weeks after the president of USA gave a speech during the 4th of July
celebration, declaring the final success in beating the pandemic, but a new peak
[217]. Finally, the third wave across Europe started at the end of 2021 summer in
many eastern countries, when the temperatures were still relatively high.

Following this scientific debate, we investigated the one-year seasonality hy-
pothesis employing a technique from signal processing. Applying a Fourier trans-
form to the daily SARS-CoV-2 infections timeseries at a worldwide level, we looked
for peaks in the frequency spectrum that could inform us about the presence, or
lack thereof, of cycles in the spread of the virus

5.5.1 Methods

The method we adopted for our investigation was a Fourier spectral analysis. In
particular, we applied a Discrete Fourier Transform (DFT) to the time series of
the number of the new daily SARS-CoV-2 cases and looked for outstanding peaks
in the frequency domain corresponding to specific periods [218]. This Fourier fre-
quency spectrum analysis was performed with the precise intent to obtain a con-
verted peak spectrum, indicating the strength and the recurrence of the pandemic
waves. In particular, we looked for peaks in the frequency spectrum that could
reasonably indicate a periodicity with a certain length. Employing a spectral anal-
ysis on the time series of the COVID-19 cases has allowed us to understand, with
less ambiguity, the period length of the recurrent outbreaks, instead of counting
and observing the number of infections, directly

The 1-dimensional DFT y[k] of length N, of the length-N sequence x[n], is
defined as:

y[k] =
N−1∑
n=0

x[n] e−2πj
kn
N (5.9)

Where y[k] corresponds to magnitude of the k-th frequency and n represents
the n-th day of the time series, with x being the daily number of SARS-COV-2
cases registered on that n-th day of the series.

The period of observation for this study goes from 1 February 2020 to 24
December 24 2021, with the decision not to take into consideration the strong
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SARS-CoV-2 outbreak that hit Europe in December 2021, as the progression of this
wave was still ongoing in many of the investigated countries during our analysis.
The length of the input was set to 730 (two years). Since our study’s real period of
observation started on 1st February 2020 (until 24th December 2021), the string x
was left padded with zeros to reach 730 samples. This zero padding did not alter
the validity of the operation since in all the considered countries no SARS-COV-2
infection was registered before 1st February 2020.

To conclude, using a Python library called SciPy [219] we performed a DFT
of the time series of the SARS-COV-2 data of each country, that returned all the
peaks in the frequency spectrum at their corresponding frequency which can be
inverted to obtain the repetition period.

5.5.2 Results

The next five figures show the DFTs obtained for all the countries subject of our
study, using two separate plots. For each country, the leftmost plot reports the
time series of the new daily SARS-COV-2 infections during the observed period.
In all plots on the left, x[n] is the COVID-19 timeseries of interest, where x is the
number of daily new infections per each day n. In all the plots on the right we find
the corresponding frequency spectrum output by the DFT. The red line connects
the magnitude associated with the different frequencies k, expressed on a yearly
basis (i.e., one, twice, trice a year and so on).

Two preliminary facts are noteworthy. First, we can observe a peak in the
frequency spectrum representing the 7-day cycle associated with the case reporting
process, on the rightmost side of all these DFT plots. This was a quite expected
fact, since the reporting process causes an oscillation during the week, in almost
all the considered countries. Since we have 52 weeks in a year this peak appears
around the location corresponding to this number.

Second, we can observe higher magnitudes and one or more peaks on the
opposite side of the spectrum for all our DFT plots. This might be an indication
of cyclical patterns in the pandemic, with the first point (k = 1) corresponding to
a one-year cycle that people commonly associate with seasonal illnesses. However
a word of caution is necessary: given the short length of the timeseries, with only
two years of data at the time of writing, this analysis is limited by the so-called
Fourier uncertainty principle [220]. This is equal to the same concept in quantum
physics and tells us that there is an inherent trade-off between time and frequency
resolution. In our case, this uncertainty could only be overcome with a longer
signal. In practice, the energy associated with lower frequency, like a 1-year cycle,
are spread out and difficult to evaluate. This makes sense as a pandemic the
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reoccurs every year would only appear twice in our timeseries.

In the plots we have highlighted three different sectors colored in orange,
green and pink (from right to left). Those sectors display temporal intervals,
respectively, equal to 3-6 months (orange), 6-9 months (green), and 9-12 months
(pink). They should be interpreted as follows: If one observes for a certain country
the presence of a peak in a given colored sector of the plot (say the green one, for
example), this means that country has been hit by a COVID-19 outbreak, which
has recurred with a period of 6-9 months. More precisely, if that peak lies on the
x axis in correspondence of a value of k = 2, this implies that we have had two
outbreaks per year in that country.

Coming now to our results, our 30 DFT plots of Figures 55 to 58 reveal that,
in the observed period, all the 30 investigated countries have seen the recurrence
of at least one COVID-19 wave, repeating over a variable period in the range 3
- 9 months, with a peak of magnitude (roughly equivalent to the number of new
infections) at least half as high as that of the highest peak ever experienced since
the beginning of the pandemic until December 2021. These findings suggest that
strong COVID-19 outbreaks may repeat with cycles of different lengths, without
a precisely predictable seasonality of one year.
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Figure 5.12: DFT plots for Argentina, Australia, Austria, Belgium, Brazil and
Canada.
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Figure 5.13: DFT plots for Chile, Colombia, Croatia, Denmark, France and Ger-
many
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Figure 5.14: DFT plots for Hungary, India, Indonesia, Italy, Japan and Mexico
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Figure 5.15: DFT plots for Morocco, Norway, Portugal, Russia, Saudi Arabia and
South Africa
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Figure 5.16: DFT plots for for South Korea, Spain, Sweden, Turkey, UK and USA
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As an additional analysis suggested in the peer review for this work, we re-
turned to the timeseries of new COVID-19 cases, looking for peaks recurring in
each country but adopting a simpler technique. Specifically, using a 7-day rolling
average as the raw data of leftmost plots of Figures 5.12 to 5.16 present a weekly
periodicity, due to the way COVID-19 tests are carried out and registered, we
considered a peak has happened in a given day n, if the number of SARS-COV-2
infections registered in that day was larger than the number of daily SARS-COV-2
cases reported in the 28 days both before and after n. Not only, but to be consid-
ered a peak, the number of infections registered on that day n had to be larger than
a given threshold computed as the 85% of the average of the daily cases reported in
all the days since the beginning of the pandemic until n. Choosing 28 days comes
from the working definition of wave as provided in [221], where the three quarters
of the upward periods of many studied COVID-19 waves lasted less than a month.
Similarly, for the downward periods. The rationale behind the concept of having
a threshold came, instead, from the need to filter out all the micro peaks. Finally,
upon computation of all the peaks for each country during the period of interest,
we chose the two highest ones. Then we computed for each such pair the distance
in days between them. Table 5.8 reports the corresponding results.

Precisely, the number of peaks, the distance in days between the two highest
ones and their corresponding dates are given for each country. It is interesting
to notice that if we average, all over the 30 countries, the values of the temporal
distances between the two highest peaks, we obtain a mean of 190 days (SD 100).
In other words, we have obtained a confirmation for all our 30 countries of the
recurrence of peaks, with an average period of almost 6 months and a standard
deviation of nearly 3 months. Moreover, the 80% of the examined countries has
that (maximal) temporal distance which falls below the value of one year. Even if
we restrict this analysis to only the 13 European countries of our dataset: Austria,
Belgium, Croatia, Denmark, France, Germany, Hungary, Italy, Norway, Portugal,
Spain, Sweden, and the UK, we achieve an average of almost 5 peaks in a two-
years period, with a mean distance between the two highest ones equal to 171 days
(SD 85), once again confirming the hypothesis that strong COVID-19 waves may
repeat with cycles whose duration break the seasonality pattern of one year.

Table 5.8 also reports, for each registered peak, the variant of the virus that
could be considered prevalent at the time of the corresponding outbreak. In par-
ticular, to individuate the variant to be associated to each peak, we utilized, for
each period and for each country, both the proportion of the total number of se-
quences collected over time, which fall into some given variant groups, and the
corresponding phylogenetic tree. These data are extrapolated, respectively, by
the two following initiatives: Covariants.org and Nextstrain.org [222, 223]. It is
worth noticing that both these initiatives are enabled by data shared by the GI-
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SAID.org project that collects all the genome sequences of COVID-19, worldwide
[224]. While it is surely of interest the relation between a peak and the frequencies
of the sequences collected during a given outbreak, it should be considered that
the information about the clades, portrayed in Table 5.8, cannot be always as-
sumed as necessarily representative. The motivation is that genome sampling may
not be equal across different countries and periods, with some countries with low
sequencing numbers or even with some samples more likely to be sequenced than
others. It is worth concluding by pointing out that each mentioned variant in Table
5.8 has been identified based on the conventional names proposed by the genome
sequencing initiatives mentioned above (i.e., Covariants.org and Nextstrain.org.).
Essentially, each variant’s name is comprised of a 2-digit number that represents
the year, a progressive alphabetical letter, plus a letter from the Greek alphabet
as provided by the WHO organization (e.g., 21J Delta).

Table 5.8: Country, type of climates for that country, number of COVID-19 out-
break peaks, distance in days between the two highest peaks, dates of the two
highest peaks, dates of the remaining peaks, and more frequent clades per peak.
The mean distance between the two highest peaks is 190 days (SD 100).

Country
(Climate) highest peaks w/ clades Dist. remaining peaks w/ clades

Argentina
(B/C)

2020/10/21 (20B/C/D)
2021/05/23 (20J Gam., 21G Lamb.) 214 2021/01/11 (20B, 20I Alpha, 20 J Gam.)

Australia
(A/B/C)

2020/08/04 (20B/C/F)
2021/10/10 (21J Delta) 432 2020/03/30 (19A/B, 20A/B/C)

Austria
(D/E)

2020/11/13 (20A)
2021/11/24 (21J Delta) 376

2020/03/28 (20A/B/C)
2021/04/01 (20I Alpha)
2021/09/15 (21J Delta)

Belgium (C) 2020/10/30 (20A/B)
2021/03/27 (20I Alpha) 148 2020/04/15 (20A/C)

2020/08/12 (20A/C)

Brazil (A/C) 2021/03/27 (20J Gamma)
2021/06/22 (20J Gamma) 87 2020/07/28 (20B)

2021/01/12 (20B, 20J Gamma)
Canada
(C/D/E)

2021/01/09 (20B/C/G)
2021/04/12 (20I Alpha, 20J Gam.) 93 2020/04/22 (19A, 20B/C)

2021/09/13 (21i/J Delta)

Chile
(B/C/D)

2021/04/14 (20J Gam.,21G Lamb.)
2021/06/08 (20J Gam., 21G Lamb.) 55

2020/06/12 (19A, 20B/D)
2020/10/01 (20B/D)
2021/01/25 (20B/D/G, 20I Alpha)
2021/11/15 (21J Delta)

Colombia
(A/C)

2021/01/20 (19A, 20B/C)
2021/06/28 (21H Mu) 159 2020/08/16 (20A/B)

2020/11/02 (19A, 20B)

Croatia (C) 2020/12/13 (20B)
2021/11/11 (21J Delta) 333

2020/04/01 (20A)
2020/07/15 (20B)
2020/08/29 (20B)
2021/04/21 (20I Alpha)

Denmark (D) 2020/12/18 (20B/E)
2021/05/12 (20I Alpha) 145

2020/04/08 (20A/C)
2020/09/23 (20A/B/E)
2021/03/16 (20I Alpha)
2021/08/16 (21J Delta)

France (C) 2020/11/07 (20A)
2021/04/17 (20I Alpha) 161

2020/04/18 (19B, 20A)
2021/02/11 (20I Alpha)
2021/08/16 (21J Delta)
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Country
(Climate) highest peaks w/ clades Dist. remaining peaks w/ clades

Germany
(C/D)

2020/12/23 (20A/E)
2021/04/25 (20I Alpha) 123 2020/04/02 (19B, 20A/C)

2021/09/10 (21J Delta)

Hungary (D) 2020/12/03 (20A)
2021/03/26 (20A, 20I Alpha) 113 2020/04/13 (20A)

India
(A/B/C/D)

2020/09/16 (20A/B)
2021/05/08 (21A/J Delta) 234 ...

Indonesia
(A)

2021/02/01 (20A/B)
2021/07/18 (21I/J Delta) 167 2020/09/26 (20A/B)

Italy (B/C) 2020/11/16 (19A, 20A)
2021/03/22 (20E) 126

2020/03/26 (20E, 20I Alpha)
2021/01/11 (20I Alpha)
2021/08/27 (20J Alpha)

Japan
(A/C/D)

2021/01/11 (20B)
2021/08/25 (21J Delta) 226

2020/04/15 (19B, 20A/B)
2020/08/09 (20B)
2021/05/14 (20I Alpha)

Mexico
(A/B/C)

2021/01/21 (20A/B/C)
2021/08/22 (21I/J Delta) 213 2020/08/01 (20A/B)

2020/10/09 (20A/B/C)
Morocco
(B/C)

2020/11/17 (20A/B)
2021/08/10 (21J Delta) 266 2020/04/22 (20A)

2020/06/25 (20A)

Norway
(D/E)

2021/03/22 (20I Alpha)
2021/09/05 (21I/J Delta) 167

2020/03/29 (19A, 20A/B)
2020/11/23 (20A/B/C/E)
2021/01/10 (20A/B/E, 20I Alpha)
2021/05/26 2021/05/26 (20I Alpha)

Portugal(C) 2020/11/19 (20B/E)
2021/01/28 (20E, 20I Alpha) 70

2020/04/03 (20B)
2020/07/13 (20B)
2021/07/23 (21J Delta)

Russia (D/E) 2020/12/26 (20B/C)
2021/11/06 (21J Delta) 315 2020/05/12 (20/B)

2021/07/15 (21J Delta)

S.Arabia (B) 2020/06/20 (20A)
2021/08/06 (21I Delta) 412 2021/07/02 (21I Delta)

S.Africa
(B/C)

2021/01/11 (20A, 20H Beta)
2021/07/08 (21I/J Delta) 178 2020/07/19 (20B/D)

2021/08/22 (21J Delta)

S.Korea
(C/D)

2021/08/15 (21I Delta)
2021/09/30 (21I/J Delta) 46

2020/03/04 (19B, 20C)
2020/08/27 (20A/C)
2020/12/25 (20C)
2021/02/20 (20C, 20I Alpha, 21D Eta)
2021/04/23 (20A, 20I Alpha)

Spain (B/C) 2021/01/26 (20E, 20I Alpha)
2021/07/19 (21J Delta) 174

2020/03/31 (19B, 20A/B)
2020/11/04 (20E)
2021/04/27 (20I Alpha)

Sweden
(D/E)

2021/01/11 (20A/E)
2021/04/12 (20I Alpha) 91 2020/04/29 (19A, 20B/C)

2020/06/18 (20B)

Turkey
(B/C/D)

2020/12/02 (20A/B, 20I Alpha)
2021/04/20 (20I Alpha, 20H Beta) 139

2020/04/16 (20A)
2021/08/15 (21A/J Delta)
2021/10/15 (21J Delta)

UK (C) 2021/01/09 (20I Alpha)
2021/07/21 (21J Delta) 193

2020/04/22 (19A, 20D)
2020/11/16 (20B/E)
2021/09/08 (21J Delta)
2021/10/23 (21J Delta)

USA
(A/B/C/D/E)

2021/01/11 (20B/C/G, 21C Epsilon)
2021/09/13 (21J Delta) 245

2020/04/10 (19A/B, 20B/C)
2020/07/22 (20B/C/G)
2021/04/14 (20I Alpha)
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5.6 Conclusion

This chapter is wholly focused on the topic of the COVID-19 pandemic and, con-
trary to the others, lacks the presence of deep learning methods, save for some
sporadic mentions. However, data science should be about providing value with
analysis and extracting information from the data we have available.

As Cynthia Rudin noticed, black-box models can hide all sort of biases and
problems inside of them, and in high-risk situations this characteristic is all but
desirable [30]. Given the lack of coherent data caused by the discrepancy in collec-
tion methodologies we discussed in section 5.1 and, especially in the first months
of the pandemic, the lack of data of any kind, we decided to focus on observa-
tional studies. That is, a study that organizes and analyzes the available data
and that proposes a hypothesis on the processes that lie behind it. Obviously,
the conclusion we can draw from such studies are limited. But this limitation
stems from the limitation in the observations themselves and we could argue that
trying to squeeze more out of what is available can results in misleading conclu-
sions, or in conclusions that are equally flawed and uncertain but perhaps hide the
shortcomings behind a wall of mathematical complexity.

All of our studies were not conclusive but suggested further investigation and
advised policymakers to take exceptional care given the situation we were going
through.

In Section 5.2 we tried using a simple but very easily interpretable regression
analysis to have a statistical confirmation of our suspect that tourism was driving
a second wave of COVID-19 in Italy. Up until the end of summer 2020, most
regions had close to 0 cases and then suddenly there was an increase almost ev-
erywhere, and strangely enough also in remote insular regions like Sardinia. Our
liner regression was not very good for prediction but was useful to find the most
relevant factors. The method showed a strong correlation between tourism data
and COVID-19 cases, even when controlling for other factors like aging popula-
tion and healthcare expenditure. This conclusion was not difficult to draw even
without mathematical tools. However, prevention policies had to clash with the
pressures from the economy which in the end had the upper hand. That answer
to which is the best thing to do is better left to philosophers and political scientist
but after more than 2 years we can safely assume that our hypothesis was correct.

Section 5.3 dealt with the matter of school reopening in Italy. The topic
spurred endless discussion in every country, and each took a slightly different
approach. On our part what we wanted to show is that there were clear clues that
suggest a link between school activity and the rise of new cases on a temporal level.
We highlighted how going back to school at all levels meant that 11 million Italians
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(who are not only children but also adults working as teacher, administration staff,
public transportation drivers, etc.) were moving and interacting each day while
most workers were still working from home (the increase in people going to the
office was 2.5 million). The technique we used is very simple and the results
are akin to a visual analysis but still we find it compelling enough to suggest
randomized tests in schools. Albeit the Italian government never pushed for such
an experiment making it impossible to know the impact of school contagion, also
because contact tracing never took off. With the arrival of new variants in following
year we saw an ever-increasing number of children testing positive which in a way
confirmed the hypothesis of their role in the spread. gain, the decision to not open
school clashes with the developmental damages this caused to a whole generation,
and we cannot tell which decision is best.

Using the same methodology, in Section 5.4 we also looked at the European
Football championship of 2020, which was rescheduled to 2021. This edition was
held in different European countries for each match as it was a special edition for
the 60th anniversary. We found that, while many countries saw an increase in
cases in that period, it is way more consistent in those that participated in the
tournament. While the study is quite limited and we it is hard to believe it could
sway an organization such as UEFA, we wanted to contribute to the increasing
literature on the risk of massive gatherings like sporting events.

Finally, Section 5.5 sought to add a simple yet effective visual confirmation
to the fact that the COVID-19 pandemic is not a virus with the traditional yearly
seasonality of other coronaviruses like the flu. Applying spectral analysis to the
series of new cases we showed how the strongest “frequency” is often the weekly
pattern due to data collection. When there are other prevalent components, their
frequency often does not correspond to 1 year but rather is shorter. While some
epidemiologist suggested that if and when the COVID-19 will become endemic
it might have this seasonal pattern for the moment is not a factor to take into
account when decided how to act with public policies.

To circle back to the concepts of this thesis, we started with very limited
and problematic data and decided to use methods that best fit these limitations.
Concentrating on the data meant leaving behind complex machine learning and
deep learning models and use simple but effective techniques. This is a data-
centric approach to the problem. The results of our methodologies are easily
interpretable, and their limitations are clear. The graphical nature of Bayesian
changepoint estimation in particular is very easy to understand. In a time of
great uncertainty and confusion, even for those who have to decide for the whole
population, providing this sort of analysis is useful as it consider the human-factor
in approaching a data problem, making it a human-centric result.
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Conclusions

Deep learning has quickly moved from being a cutting edge research topic to a tool
at the disposal of data scientists employed in companies at every level, all over the
world. It has entered virtually any field of application and took over the previous
state of the art in most cases. This thesis, as broad as it is, is a demonstration of
this incredible diversity.

The widespread use of these technologies is starting to show how big of an
impact they can have on our society. This is true, however, both when things work
as intended as when they do not. It is very difficult to account for every potential
source of ill effects, but shifting the perspective in the design process can go a long
way. Human and Data-centric approaches come into play exactly to address this
issue.

The success of a system based on statistical methods like deep learning is tied,
obviously, to the data it learns from: not only their quantity, but mostly their
quality and their meaning. Data should be seen as the programming language of
those huge universal approximation machines that are neural networks. The way
a dataset is built, together with the choice of loss function, shapes the question
the machine should answer. If we are not careful, this question could be biased in
ways that may not be evident, especially to the engineers building the system.

To solve this we need the help of human experts, which should always be
part of the design and implementation loop of such intelligent systems. Their
knowledge can be helpful on many levels: they can help in creating a better dataset,
or in fixing and existing one that is imperfect, by highlighting the biases and
idiosyncrasies of the data; they can provide insight on how to structure the model
and make it better and, most importantly, they can help evaluating the results
that the model produces, which often are badly summarized by metrics and loss
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functions. When a system is integrated in a human process its value can go beyond
the simple accuracy, as there are other “dimensions” where it can be helpful, like
saving time or kick-starting a creative endeavor. All this considered, we have shown
and discussed four different applications of machine learning and data science.

This final short chapter summarizes the contributions of this thesis and the
conclusions which emerged in each part, addressing the research questions we
presented in the introduction.

Section 2 described a model to classify faulty metering device for a wa-
ter supply company. Addressing RQ1, we have seen how distilling the process
that generates the data and the experts’ knowledge into our dataset and model
helped achieving good performance and a model general enough to work on differ-
ent datasets. Concerning RQ4, we showed how visualizing the data distribution
helped us define a better way to deal with categorical data. Partially relating to
RQ2 and RQ3, in the final section we discussed how the models could be inte-
grated into the established practices of the company. It emerged how their utility
goes beyond the AUC score and we need to take into account what the company
values.

Section 3 instead focused on an intelligent system that helped archaeolo-
gists find potential sites to survey in the Mesopotamian floodplain. Their process
involves manually checking satellite and aerial imagery that covers an enormous
area and pinpointing the location of those sites. Fully answering RQ1, we saw
how their expertise was fundamental on many levels. First they helped us define
how to treat the dataset that they annotated and provided, both concerning the
satellite images and the sites shapes, and to refine the examples by removing the
most problematic instances from the training set. They helped us realize the better
approach (segmentation vs. classification) and select hyperparamters. Most im-
portantly they performed human-in-the-loop evaluation that allowed us to better
gauge the model performance. This last point ties into RQ2, as we soon realized
that the usual metrics are limited in this context. Namely, a prediction that points
to an unseen site is computed as an error even when its not and a missing predic-
tion can be justified by a site no longer visible in satellite photos. Re-evaluating
errors in the test set with an archaeologist showed that the model performance are
higher than what initially appeared. Moreover, even when mistakes are present we
have to consider their meaning and impact. Concerning RQ3, When we asked our
colleagues archaeologists, they highlighted how the most important feature of the
system is the time that it saves them and also how a lot of what could be consid-
ered mistakes are actually something that they consider valuable and would check
manually. Finally, we also imagined a new workflow for remote sensing tasks which
leverages our model. Beside providing automatic predictions, its use can result in
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a continuous refinement of the existing dataset and the production of an overlay,
which can guide the eye of domain experts, in a synergy with their knowledge,
without replacing them. This visualization provides another aspect to RQ4.

Section 4 documented the results of the work done during a visiting period
at KTH Stockholm in the MUSAiC project. The goal was creating a transformer
model for traditional folk music and compare it to the previous SotA folkRNN.
Answering RQ1 and RQ4, the design and implementation process did not run
as smooth as we anticipated and through the use of human expertise (as both
musicians and machine learning experts) and visualization techniques we were
able to address all the issues and obtain a new state-of-the-art model. Especially
important was the use of human evaluation, conducting periodic blind tests against
folkRNN to check if the model improved, as the loss function did not provide useful
information. This provides yet another answer to RQ3. In the last section we
discussed how the model can be used in a setting of human-AI collaboration for
music co-creation. In this setting the model provides a new tune that musician can
play and refine freely. Concerning RQ3, folk music is not as rigid as, for example,
classical music and small mistakes in the output can be easily ignored by musicians
as long as the musical idea is intelligible.

Section 5 took a slight detour in dealing with COVID-19 and its relationship
with tourism, schools and mass-events as well as its supposed seasonal behavior.
These observational studies provided results that were far from conclusive but
nonetheless highlighted, in a simple and often graphical way, relationships that
were in the data, urging for further experiments or new policies by the govern-
ment. The approach we took had the goal of contributing to the public and
scientific discussion, while keeping in mind the limitations of the data and trying
to communicate unambiguous hypothesis without hiding uncertainty. Following
RQ5, we chose to use only classical methods from statistics that guarantee trans-
parency and interpretability, and can clearly highlight uncertainty in the case of
Bayesian techniques. To communicate this efficiently, we focused especially on
good visualizations, addressing another aspect of of RQ4. Finally, relating to
RQ2, even if our models were not good in the sense of predictive capabilities,
they provided valuable insight and highlighted data and factors that could have
helped in further, more conclusive, studies.
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