
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN
INGEGNERIA ELETTRONICA, TELECOMUNICAZIONI

E TECNOLOGIE DELL’INFORMAZIONE

Ciclo XXXV

Settore Concorsuale: 09/E3 – ELETTRONICA

Settore Scientifico Disciplinare: ING-INF/01 – ELETTRONICA

PCM-based in-memory computing:
architectures, circuits and applications

Candidato: Alessio Antolini

Coordinatore: Supervisore:

Prof. Aldo Romani Prof. Antonio Gnudi

Cosupervisore:

Prof.ssa Eleonora Franchi Scarselli

Esame finale anno 2023

iii

“How far to go
I cannot say.
How many more
Will journey this way?”

"Storms in Africa", Enya - 1988

v

Abstract

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

Ph.D. in Electronics, Telecommunications, and Information Technologies
Engineering

PCM-based in-memory computing: architectures, circuits and applications

Alessio Antolini

Analog In-memory Computing (AIMC) has been proposed in the context of Beyond-
Von Neumann architectures as a valid strategy to reduce internal data transfers en-
ergy consumption and latency, and to improve compute efficiency. The aim of AIMC
is to perform computations within the memory unit, typically leveraging the phys-
ical features of memory devices. Among resistive Non-volatile Memories (NVMs),
Phase-change Memory (PCM) has become a promising technology due to its intrin-
sic capability to store multilevel data. Hence, PCM technology is currently inves-
tigated to enhance the possibilities and the applications of AIMC. This thesis aims
at exploring the potential of new PCM-based architectures as in-memory computa-
tional accelerators. In a first step, a preliminar experimental characterization of PCM
devices has been carried out in an AIMC perspective. PCM cells non-idealities, such
as time-drift, noise, and non-linearity have been studied to develop a dedicated mul-
tilevel programming algorithm. Measurement-based simulations have been then
employed to evaluate the feasibility of PCM-based operations in the fields of Deep
Neural Networks (DNNs) and Structural Health Monitoring (SHM). Moreover, a
first testchip has been designed and tested to evaluate the hardware implementation
of Multiply-and-Accumulate (MAC) operations employing PCM cells. This proto-
type experimentally demonstrates the possibility to reach a 95% MAC accuracy with
a circuit-level compensation of cells time drift and non-linearity. Finally, empirical
circuit behavior models have been included in simulations to assess the use of this
technology in specific DNN applications, and to enhance the potentiality of this in-
novative computation approach.

HTTP://WWW.UNIBO.IT

vii

Acknowledgements

Innanzitutto sono estremamente grato ai miei supervisori, la Prof.ssa Eleonora
Franchi Scarselli e il Prof. Antonio Gnudi, per il loro supporto, consiglio e guida du-
rante l’intero percorso di dottorato e nello sviluppo della tesi. Vorrei anche ringraziare
i nostri partner di STMicroelectronics Marcella Carissimi, Mattia Luigi Torres, Marco
Pasotti, Chantal Auricchio e Laura Capecchi per il loro fondamentale contributo alla
progettazione, sviluppo e caratterizzazione del testchip. Fondamentale l’apporto
dei colleghi Andrea Lico e Francesco Zavalloni, senza i quali molti dei risultati di
questo lavoro non sarebbero stati possibili. Un grazie anche agli altri colleghi Matteo
D’Addato, Luca Perilli e Alessia Elgani, con cui, seppur non lavorando sullo stesso
progetto, ho comunque condiviso avventure (e sventure) di questi anni. Ringrazia-
menti sentiti vanno ai collaboratori universitari che hanno arricchito questa ricerca,
ovvero il Prof. Riccardo Rovatti e il Prof. Mauro Mangia dell’Università di Bologna,
insieme al Prof. Fabio Pareschi del Politecnico di Torino, con il fondamentale e
costruttivo contributo di Carmine Paolino. Stimolante e originale è stato il ruolo
del collega Said Quqa e dei suoi supervisori Prof. Luca Landi e Prof. Pierpaolo
Diotallevi, a cui devo sincera gratitudine.

Questo percorso non sarebbe però stato possibile senza il supporto di tutte quelle
persone che fanno parte della mia vita (anche) da fuori. Grazie a Matteo, Said,
Richard, Carlotta, Elisa e Stefania (e tanti altri). Grazie a Luca, che ha sempre creduto
in me e che mi ha fatto crescere. Grazie a mio padre, che mi ha sempre supportato.
Grazie a mia madre, questo lavoro è dedicato a te, sperando che ovunque tu sia, tu
possa esserne orgogliosa.

ix

Contents

List of Figures xiii

List of Tables xvii

List of Abbreviations xix

1 Introduction and context 1
1.1 The Von Neumann bottleneck . 1
1.2 In-memory computing . 2

1.2.1 Context and aims . 2
1.2.2 Analog In-memory computing 3

1.3 Memory devices . 4
1.4 Applications of AIMC . 6

1.4.1 Algebra accelerators . 6
1.4.2 Signal processing . 7
1.4.3 Artificial intelligence . 8

1.5 Phase-change memory technology . 10
1.5.1 Working principle . 11
1.5.2 Multilevel storage . 12
1.5.3 Issues and challenges . 15

1.6 State-of-the-art AIMC-based units . 15
1.7 A brief overview on PCM-based AIMC 16
1.8 Overview of the thesis . 17

2 PCM cells characterization for analog in-memory computing 19
2.1 Experimental setup . 19

2.1.1 PCM Testchip . 19
2.1.2 Implemented testing routines . 20
2.1.3 Programming pulses parameters 20
2.1.4 Readout voltage choice . 22

2.2 PCM cells characterization using single-SET pulses 23
2.2.1 Noise . 23
2.2.2 Time drift . 27

2.3 PCM cell characterization using multiple pulses 28
2.3.1 Conductance tunability . 28
2.3.2 Drift-induced dispersion . 34

x

2.4 A programming algorithm for AIMC . 35
2.5 Time-temperature combined effect analysis 40

2.5.1 Evolution of cells distributions 42
2.5.2 Effects on drift coefficient . 43
2.5.3 Effects on noise . 45

2.6 Conclusion . 46

3 Evaluation of PCM-based AIMC operations for specific applications 47
3.1 A basic approach for AIMC based on PCM cells 47
3.2 Neural networks . 48

3.2.1 PCM Characterization and Numerical Modeling 49
3.2.2 Neural Training with PCM Layers 51
3.2.3 Results . 51

3.2.3.1 Fashion-MNIST Classification 52
3.2.3.2 Spectral Estimation Regression 52

3.3 Structural health monitoring . 53
3.3.1 Identification algorithm . 54
3.3.2 Identification of structural parameters using PCM cells 62

3.4 Conclusion . 65

4 Design and testing of an embedded AIMC unit based on PCM cells 69
4.1 AIMC unit implementation . 69

4.1.1 Testchip structure and interface to the ePCM array 70
4.1.2 MAC computation architecture 70
4.1.3 Drift compensation . 72
4.1.4 Reference and Readout circuit with sign management 74

4.2 Testchip implementation and control . 75
4.2.1 Digital interface . 76
4.2.2 Digital-to-analog converters . 77
4.2.3 Design for testability . 77

4.2.3.1 Internal signals accessibility 77
4.2.3.2 Test unit . 78

4.2.4 Testchip control . 79
4.2.4.1 Power-up sequence . 79
4.2.4.2 AIMC operations control sequence 79

4.3 Testchip validation . 80
4.3.1 Testing procedure . 80
4.3.2 Testing results . 82

4.4 Characterization results . 84
4.4.1 Accuracy of the AIMC unit . 84
4.4.2 Single conductance time drift compensation 85
4.4.3 Reference cell choice and full MAC drift compensation 87

4.5 Power analysis . 89

xi

4.6 Challenges and perspectives . 91
4.7 Application in a Deep Neural Network scenario 93

4.7.1 Modeling the Conductance Variability 93
4.7.2 PCM-Aware DNN Training and Evaluation 94

4.8 Conclusion . 98

5 Conclusions 99

Bibliography 101

xiii

List of Figures

1.1 In-memory Computing principle . 3
1.2 Example of a physical array . 3
1.3 Memory devices for AIMC . 5
1.4 Mixed-precision in-memory computing 7
1.5 Compressed sensing application . 8
1.6 Resistive array in DNN scenario . 9
1.7 PCM cell structure . 11
1.8 PCM cells programming principle . 12
1.9 SET and RESET pulses . 13
1.10 Partial-RESET programming curve . 14
1.11 Partial-SET programming curve . 14
1.12 PCM cell typical behavior . 14

2.1 SET and RESET pulses and their editable parameters. 20
2.2 PCM cells testing GUI . 21
2.3 Experimental setup for PCM cells testing. 21
2.4 I-V characteristic of PCM cells . 23
2.5 Single-SET pulse noise analysis . 24
2.6 Noise reduction through Adjacent Working Cells (AWC) 25
2.7 Noise reduction through oversampling 26
2.8 Single-SET pulse drift analysis . 29
2.9 Programming sequences . 30
2.10 RESET Staircase (RSC) and RESET Single Pulse (RSP) programming . . 31
2.11 SET Staircase (SSC) and SET Single Pulse (SSP) programming 32
2.12 Cells spread in SSC and SSP programming 33
2.13 Influences of initial RESET pulse . 34
2.14 SSC drift analysis . 36
2.15 Improved-SSC drift analysis . 37
2.16 Programming algorithm . 38
2.17 Sample cells programming . 39
2.18 Programmed levels . 39
2.19 Programmed cells spread over time . 40
2.20 Programmed cells analysis . 41
2.21 Evolution of cells distributions . 42
2.22 Mean values and spread of cells sets . 43

xiv

2.23 Mean values and spread of cells sets . 44
2.24 Mean drift coefficients . 44
2.25 Noise measurements example . 45
2.26 Temperature effects on noise . 46

3.1 Basic architecture to execute MAC operations 48
3.2 Numerical model of cells I-V characteristic 49
3.3 Examples of datasets . 50
3.4 Classification results . 53
3.5 SHM algorithm . 55
3.6 Reverse biortogonal 3.1 wavelet decomposition filters 57
3.7 Observation schedule of programmed filters 58
3.8 Drift of the programmed PCM cells. 58
3.9 Proposed filtering procedure . 59
3.10 Noise effects on filters . 61
3.11 Filters in the frequency domain . 62
3.12 Filtered signals . 63
3.13 Normalized root mean square error of the filtered signals 64
3.14 Mode shapes . 65
3.15 Modal assurance criterion matrices . 66
3.16 Influence lines . 66

4.1 AIMC unit prototype . 70
4.2 AIMC unit architecture . 71
4.3 MAC waveforms . 73
4.4 Reference readout circuit . 74
4.5 Cells readout circuit . 75
4.6 Testchip layout . 76
4.7 AIMC unit layout . 76
4.8 Output chain . 77
4.9 Single test conductance . 78
4.10 AIMC unit GUI . 81
4.11 Die micrograph . 81
4.12 Characterization of the analog level shifter. 82
4.13 Measurement of the analog inputs . 83
4.14 Measurement of the reference voltage 83
4.15 Measurement of the ramp signal . 83
4.16 MAC measured waveforms . 84
4.17 Accuracy of the AIMC unit . 85
4.18 Drift compensation . 86
4.19 MAC error . 87
4.20 Reference level effects . 88
4.21 MAC accuracy . 89

xv

4.22 MAC results and compensation . 90
4.23 Power consumption diagram . 91
4.24 Saturation of the output voltage after a positive MAC operation 92
4.25 Saturation of the output voltage after a negative MAC operation 92
4.26 Device model for DNNs . 93
4.27 Evolution over time of PCM cells . 95
4.28 Accuracy of the trained networks . 96
4.29 Classification accuracy when quantizing the signals applied to and

read from every layer, for NNs trained to exclusively address PCM
programming spread using a multiplier of 1. 97

4.30 Drift effects on networks accuracy . 97

xvii

List of Tables

1.1 Summary of some state-of-the-art testchips for AIMC. 16

2.1 Configurable parameters of SET and RESET pulses. 22
2.2 Required number of steps for cells programming. 38

3.1 Parameters of the batch and iterative filter banks. 60

4.1 Inputs and coefficients signs management. 75
4.2 AIMC unit computation modes. 79
4.3 AIMC unit control sequence. 80
4.4 Current consumption of the considered analog blocks. 90

xix

List of Abbreviations

AIMC Analog In-Memory Computing
CMOS Complementary Metal Oxide Silicon Field Effect Transistor
DMA Direct Memory Access
DNN Deep Neural Network
DRAM Dynamic Random Access Memory
IMC In-Memory Computing
MAC Multiply And Accumulate
MRAM Magnetic Random Access Memory
PCM Phase-Change Memory
RMS Root Mean Square
RSC Reset Stair-Case
RSP Reset Single-Pulse
SMU Source Meter Unit
SRAM Static Random Access Memory
SSC Set Stair-Case
SSP Set Single-Pulse
SHM Structural Health Monitornig

xxi

To my mother

1

Chapter 1

Introduction and context

This Chapter provides a description of the In-memory Computing (IMC) field, an
alternative to conventional computational architectures, where some computation
tasks take place directly in the memory unit. Then, a brief outline of the memory
devices that can support this method, along with some examples of applications
that could benefit from it, are provided.

1.1 The Von Neumann bottleneck

In the last decades, computing systems have been mainly built on the basis of the
Von Neumann architecture, where the processing unit and the memory one are
physically separated. In the execution of various computational tasks, large amounts
of data need to be continuously transferred between processing and memory units,
which entails significant costs in terms of latency and power. In particular, the la-
tency, associated with data accessing from storage units, constitutes a performance
bottleneck in a wide range of applications, particularly for the data-centric compu-
tational workloads related to artificial intelligence. This issue is known as the "Von
Neumann bottleneck".

The performances of processors have been rapidly increasing, following the well-
known Moore’s law. The storage unit mainly used in modern computers is typi-
cally implemented with dynamic random access memory (DRAM), which is a high-
density storage solution based on the charging and discharging of capacitors. The
performance of this memory depends mainly on two aspects, namely: i) the speed of
reading and writing, i.e., charging and discharging of the internal capacitors, and ii)
the memory bandwidth of the interface between the devices. Although the charge
and discharge rate of the capacitors has been increasing following Moore’s law, it
is still slower than the processing speed of the processors. Furthermore, the inter-
face between memory and processor is typically implemented by dedicated mixed-
signal circuits, and the increase in its bandwidth is mainly limited by the integrity
of the signal in the interconnection paths. Consequently, DRAM performances im-
provements have been much slower than processors, and at the present, the perfor-
mance of DRAM has become an huge bottleneck of overall computer performance,
the so-called "memory wall". Moreover, the energy consumption related to data

2 Chapter 1. Introduction and context

movements represents another significant challenge, as computing systems are now
severely constrained from the energy standpoint. As an example, in a 45-nm Com-
plementary Metal Oxide Semiconductor (CMOS) technology node, the energy cost
of multiplying two numbers is orders of magnitude less than accessing from mem-
ory [1].

Some current approaches, such as employing hundreds of parallel processors
(for example, as in Graphics Processing Units, GPUs) or Application-specific Inte-
grated Circuits (ASICs), cannot efficiently overcome the data movement challenge.
Therefore, the need to explore new architectures with an intrinsic alternative orga-
nization of memories and processing units is becoming increasingly evident.

1.2 In-memory computing

1.2.1 Context and aims

In-memory Computing (IMC) is an alternate design approach where certain compu-
tational tasks are performed within the memory unit itself, organized as a computa-
tional memory unit. Figure 1.1 schematically illustrates the differences in the com-
putation mechanism between a conventional computing system and a in-memory
computing one. In the first case, in the top of Figure 1.1, an operation is performed
on the data and data must be conveyed to the processing unit, resulting in signif-
icant costs in terms of latency and energy. In the case of in-memory calculation,
(bottom), the entire operation is performed within the computational memory unit,
thus avoiding the need to move data into the processing unit. The computational
activities are performed within the confines of the memory matrix and its peripheral
circuits, without deciphering the contents of the individual memory elements. This
approach is generally achieved by exploiting the physical attributes of the memory
devices, their array-level organization, the peripheral circuitry as well as the control
logic.

The advantages in power consumption in IMC architectures arises mostly from
the massive parallelism afforded by a dense array of millions of memory devices
performing computation. It is also likely that by introducing physical coupling be-
tween the memory devices, we can further reduce the computational time complex-
ity [2], and this is an attractive aspect for all those applications that require simple
but repeated operations on a large set of data, such as matrix operations or convolu-
tions. By blurring the boundary between the processing unit and memory unit, it is
possible to achieve significant improvements in computational efficiency. However,
this comes at the expense of the generality offered by the conventional approach, in
which the memory and processing units are functionally distinct from each other.
In fact, unlike generic processors, which can perform any type of calculation, in the
IMC approach it is possible to perform only a limited set of operations. Furthermore,
the in-memory calculation can only offer limited precision due to the analog nature

1.2. In-memory computing 3

FIGURE 1.1: Difference between the execution of a generic compu-
tation in a conventional architecture (top), and with the In-memory
Computing paradigm (bottom). Adapted from [1].

FIGURE 1.2: Example of a physical array to perform MVMs. Adapted
from [3].

of the operations performed within the memory, as opposed to conventional digital
calculation which grants arbitrarily high precision.

1.2.2 Analog In-memory computing

At the heart of the several computation algorithms are Matrix-Vector Multiplication
(MVM) functions. For purely digital computation, these operations can be reduced
to floating-point or fixed-point operations with an appropriate accuracy require-
ment. Alternatively, analog computing elements can be used to perform the matrix
operations. Analog In-memory Computing (AIMC) for matrix operations exploit
the possibility to map a 2-D matrix into a physical array (as depicted in Figure 1.2)
with an appropriate number of rows and columns in accordance with the abstract

4 Chapter 1. Introduction and context

mathematical operand. At the intersection of each row and column there is a mem-
ory element with conductance bi,j, that can represent a generic element of the matrix
B involved in the computation. The components of a voltage vector x = xi=1,...,N

are applied to the N rows, and the currents at the n columns y = yj=1,...,M are then
collected. Exploiting Ohm’s and Kirchhoff’s, the expression of the collected currents
are:

y = B · x =

y1 = ∑N

j=1 b1,jxj
...

yM = ∑N
j=1 bM,jxj

 (1.1)

which is equivalent to a matrix-vector multiplication.
The use of arrays of conductive elements for matrix multiplication is not new;

it was proposed many years ago [4], [5]. With renewed interest in deep learning, it
gained attention again as a possible solution to speed the required computations [1],
[6] up. To maintain the benefits noted above, this would mean that the weight data
are stored in a physical array, and that all operations are performed locally with the
weights in place. The natural choice for such arrays come from memory technolo-
gies. Ideally, the requirements for a memory device to be employed for AIMC are: i)
storage and retain of weights; ii) nondestructive readout mechanism; and iii) possi-
bility to read and write the entire memory array in one single operation. While i) and
ii) are conceivable, iii) is not feasible in conventional memories which are optimized
for random sequential access of size-limited words. Thus, conventional memory ele-
ments must be arranged in an array architecture that differs form the architecture of
conventional memory, and the employed architecture strongly depends on the type
of memory devices being employed in the computation.

1.3 Memory devices

Primary techniques used to store information have been based on the presence or
absence of charge, as occurs in dynamic random access memory (DRAM), static ran-
dom access memory (SRAM) and flash memory. A SRAM cell consists of two CMOS
inverters connected back to back. The charge is confined within the barriers formed
by FET channels and by gate insulators. The stored charge retention is small and
an external source constantly replenishes the lost charge. SRAM has almost unlim-
ited cycling endurance and sub-nanosecond read and write access times. In SRAM
the information is stored in the form of electric charge, with almost unlimited cy-
cling endurance and sub-nanosecond read and write access times [1], [7]. A DRAM
cell comprises a capacitor that serves as the storage node, which is connected in se-
ries to a FET. The storage node of a flash memory cell is coupled to the gate of a
FET. A range of in-memory logic and arithmetic operations can be performed using
both SRAM and DRAM. Capacitive charge redistribution serves as the foundation
for many of them, in particular storing and sharing of charge across multiple storage
nodes. In DRAMs, simultaneous reading of devices along multiple rows can be used

1.3. Memory devices 5

FIGURE 1.3: Summary of the most common memory devices: (a)
SRAM; (b) DRAM; (c) Flash; (d) RRAM; (e) PCM; (f) MRAM. Adapted
from [1].

to execute basic Boolean functions within the memory array [8], [9]. SRAM arrays
can also be used for matrix-vector multiplication operations, [10]. If the elements of
A and x are limited to signed binary values, the multiply operation is simplified to a
combination of XNOR and accumulate functions. A SRAM cell can be also designed
to execute XNOR operations within each memory cell [11]. In case the input is non-
binary, one approach would be to employ capacitors in addition to the SRAM cells
[12].

More recently, a novel class of memory devices has emerged, where information
is stored in terms of differences in the atomic arrangements of the materials they are
made of. Such differences manifest themselves as a change in resistance and, there-
fore, these devices are termed as resistive memory devices (or, for brevity, "memris-
tive"). Among these, the most important are phase change memory (PCM), resistive
random access memory (RRAM), and magnetic random access memory (MRAM).
One of the attributes of memristive devices that can be exploited for computation is
their non-volatile binary storage capability, thus, allowing logical operations to be
implemented through the interaction between the voltage and resistance state vari-
ables [5]. In addition, their non-volatile storage capability, in particular, the ability
to store a continuum of conductance values, facilitates the computation of analogue
MVMs. Memristive devices also exhibit an accumulative behaviour [13], whereby
the conductance of devices such as PCM and RRAM progressively increases or de-
creases with the application of an appropriate sequence of programming pulses.
This non-volatile accumulative behaviour can be exploited in several applications
[14].

6 Chapter 1. Introduction and context

In general, one of the main characteristics of a memory device is its access time,
which corresponds to the speed with which information can be stored (written) and
retrieved (read). Another key feature is its reliability, which refers to the number of
times a memory device can be switched from one state to another. A summary of the
most common charge-based and resistive memory devices is represented by Figure
1.3.

The work developed in this Thesis is based on Phase-change memories, whose
technology will be exposed in Section 1.5.

1.4 Applications of AIMC

The in-memory implementation of matrix-vector multiplications, examined in the
previous Paragraphs, can be used in a wide range of application domains, rang-
ing from scientific computation, which requires computational high precision, to
stochastic computation, which exploits imprecise and random processes.

AIMC can be used both to reduce the computational complexity of a problem,
and to reduce the amount of data accessed by performing computations within
memory arrays. Data-centric applications in machine learning and scientific pro-
cessing take full advantage of the reduced amount of memory accesses. In this Sec-
tion, some examples are given to show how in-memory computing has been applied
in various fields, such as scientific computing and artificial intelligence.

1.4.1 Algebra accelerators

The matrix-vector multiplication represents one of the most frequent operations in
the field of scientific computing applications. However, although approximate so-
lutions may be sufficient for many computational tasks in the field of artificial in-
telligence, the realization of an in-memory processing unit capable of effectively
addressing the problems of scientific processing still remains a challenge [1]. This
precision limitation can be solved to some extent, for example, with mixed-precision
computing, an alternative approach to achieve high-precision processing, based on
the combined use of in-memory processing and conventional processing. This ap-
proach is based on the fact that many calculation activities can be formulated as a
sequence of two distinct parts. In the first part, an approximate solution is obtained.
In the second part, the resulting error is calculated with high accuracy. Based on
the calculated error, the approximate solution is perfected and then the first part is
repeated. The first part typically has a high computational load, while the second
part has a low computational load. By repeating this sequence several times, it is
often possible to achieve a highly accurate solution. In mixed-precision memory
calculation, the basic idea is to use a low-precision computational memory unit to
obtain the approximate solution of the first part, and a high-precision processing
unit to create the second one. In this way, it is possible to take advantage of the high

1.4. Applications of AIMC 7

FIGURE 1.4: Mixed-precision in-memory computing example. Taken
from [15].

area and energy efficiency of the computational memory unit, in which most of the
calculation is performed, but still with high-precision results.

The implementation of this concept and the experimental demonstration of solv-
ing a system of linear equations using PCM devices was presented in [15] and schemat-
ically depicted in Figure 1.4. The basic principle here shown, is to exploit a fast but
imprecise matrix-vector products execution. An approximate solution is obtained
with in-memory computation with an iterative linear solver; then, this solution is
refined exploiting the residual error, which is calculated with high accuracy through
a conventional digital architecture. Experimental results have demonstrated that the
linear system can be solved with an error of approximately 1.3 ·10−15 by performing
a large number of iterations. Thus, the final error appears to be limited by the preci-
sion of the high-precision processing unit. A significant performance gain in terms
of consumption was also shown.

The main limitation of this technique is that the data must be stored in both
computational memory and the memory of a high-precision digital processing unit,
which increases the resources required to perform the task.

1.4.2 Signal processing

In the field of signal processing, compressed sensing and recovery is one of the ap-
plications that could benefit from matrix-vector multiplication performed in com-
putational memory units. The goal behind of compressed sensing is to acquire a

8 Chapter 1. Introduction and context

FIGURE 1.5: A N × M memristive crossbar encoding the measure-
ment matrix A used to acquire the CS measurements and to real-
ize the matrix-vector computations of the recovery algorithm. Taken
from [16].

large signal at a sampling rate which is below the Nyquist frequency and subse-
quently reconstruct that signal accurately [17]–[19]. Unlike most other compression
schemes, sampling and compression are performed simultaneously, with the signal
being compressed as it is sampled. These techniques have widespread applications
in medical imaging domains, in security systems and in camera sensors.

Compressed sensing consists in mapping a signal x of length N to a measurement
vector y of length M < N. If this process is linear, then it can be modeled from a
measurement matrix M of size M × N. The idea is to store the measurement matrix
in a computational memory unit in order to allow the execution of compression with
a time complexity equal to O(1). An approximate message passing (AMP) algorithm
[16] can be used to retrieve the original signal from the compressed sampling vector
y, using an iterative algorithm that involves multiple matrix-vector multiplications
on the same measurement matrix and its transpose (Figure 1.5). In this way it is
possible to use the same matrix that was encoded in the computational memory
unit also for the reconstruction, reducing the complexity of the reconstruction from
O(MN) to O(N).

A recent work related to the field of compressed sensing has been based on some
results of this Thesis [20].

1.4.3 Artificial intelligence

A neural network consists of at least two layers of nonlinear neuronal units (neu-
rons) interconnected by adjustable synaptic weights [21]. The propagation of data
through the layers of the network involves a sequence of multiplications between
matrices. The simplest neural network model is the feed-forward network, in which
information can travel in only one processing direction. These types of networks can
be single-layer, i.e., consisting only of input and output levels, or multi-layer with
various hidden layers.

Another type of neural network is represented by recurrent networks, in which
the output values of a higher-level layer are used as an input to a layer of a lower
level. These interconnections between layers allow the system to create a memory

1.4. Applications of AIMC 9

FIGURE 1.6: Top: Symbolic representation of a neural network. Bot-
tom: Resistive array implementing a neural network layer. Taken
from [21].

effect. Recurring networks are in fact used, for example, in speech recognition, trans-
lation, and handwriting recognition.

Modern neural networks (Deep neural networks, DNNs), can have more than a
thousand layers. By adjusting the weights, with an optimization procedure which
employs millions of examples, these networks can solve some problems remarkably
well.

In addition to the multiplications between large and dense matrices, which are
implicit in their functioning, DNNs are highly resistant to numerical inaccuracies,
especially for direct inference applications. These features make DNNs particularly
suitable for implementation on computational memory units, which can also imple-
ment non-binary networks thanks to their multilevel storage capability. A DNN can
be mapped to multiple crossbar arrays of storage devices that communicate with
each other. By exploiting the physical structure of the computational memory unit,
a layer of a DNN can be implemented on (at least) one crossbar, in which the weights
of the layer are stored in the state of charge or conductance of the memory devices at
the cross points (Figure 1.6). The propagation of data through the layer is performed
in a single step by entering the data in the rows of the crossbar and decrypting the
results in the columns. The results are then passed through the non-linear function
of the neuron, and then fed into the next level. The nonlinear function of the neuron
is typically implemented at the periphery of memory arrays, using analog or digital
circuits [21].

The calculations for DNNs includes both training, during which the network
weights are optimized on a labeled dataset, and direct inference, where the trained
network is used for classification, prediction or other tasks [22]. The efficiency of the
matrix-vector multiplication, in terms of speed and energy consumption, achieved
through in-memory processing is very relevant for inference-only applications, in

10 Chapter 1. Introduction and context

which data are propagated through the network on offline trained weights. In this
scenario, the weights are typically trained using conventional hardware, based on
graphics processing units (GPUs), and are subsequently programmed into the in-
memory processing device that performs the inference. Due to the non-idealities
introduced by the memory devices and the analog circuits present in the in-memory
processing chip, it is often necessary to include customized techniques in the training
algorithm to mitigate the effect of such non-idealities on the accuracy of the network
[15]. The training procedure should be generic and as hardware independent as
possible so that the network only needs to be trained once to be deployed across a
multitude of different chips [21].

In-memory computing can also be exploited in the context of supervised DNN
training, generally referred to as backpropagation. This type of training involves
three stages: i) forward propagation of the labeled data across the network; ii) back-
ward propagation of error gradients from the output to the network input, and iii)
weight update based on the calculated gradients with respect to the weights of each
layer. This procedure is repeated over a large dataset of labeled examples many
times until the network achieves satisfactory performance. Due to the need to re-
peatedly show large datasets to neural networks with a high number of layers, this
approach can take several days or weeks to train state-of-the-art networks with Von
Neumann machines. The concept of mixed-precision in-memory processing, de-
scribed in the previous Section, can be extended to the problem of training deep
neural networks where a computational memory unit is used to perform the back
and forth steps, while the variations of weight are calculated with high precision [1].

Some results of AIMC based on Phase-change memory cells employed in the
DNN scenario will be provided in Chapters 3 and 4.

1.5 Phase-change memory technology

Phase-change memories (PCM) represent an emerging technology in the field of
non-volatile memories. A PCM device typically consists of a small active volume
of phase change material sandwiched between two electrodes (as depicted in Fig-
ure 1.7). The phase change material can be changed from a low conductivity state
to a high conductivity state, and vice versa, by applying pulses of electric current.
The data are stored using the different electrical resistivity between the two possible
states (the high resistivity state can represent a logic "0", while the low resistivity
state can represent a logic "1") and can be read by measuring the electrical resistance
of the cell [13].

One of the key-features of PCM is that the data to be stored can be written in
a few nanoseconds, with a high retention (typically tens of years at room tempera-
ture [24], [25]). This property allows the use of PCM cells for non-volatile storage,

1.5. Phase-change memory technology 11

FIGURE 1.7: Schematic representation of a GST-type PCM cell. Taken
from [23].

such as Flash memories and hard-disks, operating at almost the same speed as high-
performance volatile memory such as DRAM memory [21], and being then recently
marketed as storage memories for conventional computing systems.

Although the physics related to the functioning of PCM devices has been exten-
sively studied since their discovery in the 1960s, there are still several open questions
relating to their electrical, thermal and structural dynamics. In the following, a brief
description of the operating principle will be provided, underlying as well the read
and write operations of PCM devices. The characteristics that make these memories
suitable for the AIMC context, and the main issues affecting their accuracy are then
illustrated.

1.5.1 Working principle

In PCM, data are recorded by causing a phase change in the material within the
memory device, that is to make it shift from a crystalline (ordered) phase to an amor-
phous (disordered) one, and vice versa. This transformation is accompanied by a
sharp change in the electrical and optical properties of the material. The amorphous
phase has a high electrical resistivity and a low optical reflectivity, while the crys-
talline phase has a low electrical resistivity (sometimes three or four orders of mag-
nitude lower) and a high optical reflectivity. The optical properties of phase change
materials have been widely used in optical data storage devices such as DVDs and
Blu-Ray discs. The electrical storage of binary data principle, on the other hand,
relies on the difference in resistivity between the two phases. Therefore, a write
operation in a PCM cell involves the transition of state from the amorphous to the
crystalline through the application of an appropriate electrical pulse. A reading op-
eration typically involves a current-based readout the electrical resistance of the de-
vice, which allows to discern if the state of the cell is amorphous (high resistance,

12 Chapter 1. Introduction and context

FIGURE 1.8: PCM cells programming principle. Taken from [26].

logical "0") or crystalline (low resistance, logical "1").
The amorphous phase of the phase change material (typically composed of an

alloy of Germanium, Antimony and Tellurium, known as GST) is thermodynam-
ically unstable, but the crystallization time at room temperature is very long [24].
However, by heating the amorphous material to a sufficiently high temperature, but
below the melting temperature, it will crystallize rapidly. To transform the mate-
rial back into the amorphous state, it must be heated above its melting temperature
and then rapidly cooled. This rapid cooling will "freeze" the atomic structure in a
disordered state.

In PCM cells heat is induced by Joule effect with the application of an electric
current through the phase-change material [13]. The electrical pulse used to switch
the device to the amorphous state is called the RESET pulse; the pulse used to switch
the device to the crystalline state is called the SET pulse. A RESET pulse therefore
refers to a current pulse that can melt a significant portion of the phase change mate-
rial. When the pulse stops abruptly, the molten material remains in the amorphous
state. In the resulting RESET state, the device will be in a high resistance state as
the amorphous region blocks the lower electrode. When a SET pulse is applied to a
PCM device in the RESET state, part of the amorphous region crystallizes. The tem-
perature corresponding to the highest crystallization rate is typically 400°C, which
is lower than the melting temperature (600°C). The programming principle of PCM
devices is depicted in Figure 1.8 [26], while Figure 1.9 shows the shapes of SET and
RESET pulses.

The resistance state reached after the application of a SET or RESET pulse can be
deciphered by biasing the device with a low amplitude reading voltage, to avoid the
perturbation the phase configuration [27]–[29].

1.5.2 Multilevel storage

A key-property of PCM devices is the possibility to reach a continuum of resistance
values between the RESET and the SET states. This feature allows PCM cells to store

1.5. Phase-change memory technology 13

FIGURE 1.9: SET and RESET pulses. Taken from [1].

data in an analog fashion [13]. This possibility is generally obtained by creating in-
termediate phase configurations in the material by applying suitable partial RESET
pulses. For example, Figure 1.10 shows a continuum of resistance levels achieved
by applying RESET pulses of varying amplitude (known as partial-RESET program-
ming [30]). The device is first programmed in a fully-crystalline state, after which
a sequence of RESET pulses is applied with progressive-increased amplitude. After
the application of each RESET pulse, the state of the device is read; the cell resis-
tance, which depends on the size of the amorphous region, accordingly increases
with increasing RESET amplitude.

The curve of Figure 1.10 is generally named programming curve, and shows
the possibility to increase and decrease the cells resistance by modulating the pro-
gramming current. Accordingly, it is possible to program a PCM device to a de-
sired resistance value through iterative programming, thus applying several consec-
utive pulses. In iterative programming, after each programming pulse, a verification
phase is performed by reading the resistance of the device. The programming cur-
rent applied to the PCM device in the next iteration will then be adapted according
to the error value between the desired resistance value and the read value. The
algorithm runs until the programmed resistance value reaches a value within a pre-
defined margin from the desired value.

Another technique to program PCM devices is represented by the dynamic crys-
tallization, also named partial-SET programming. As shown in Figure 1.11, a pro-
gressive reduction of the size of the amorphous region (and therefore of the resis-
tance of the device) can be induced by the subsequent application of SET pulses
with the same amplitude.

Although it is possible to achieve a desired resistance value through iterative pro-
gramming, there are significant temporal fluctuations associated with conductance
values, that will be addressed in the next Section, and experimentally characterized
in Chapter 2.

14 Chapter 1. Introduction and context

FIGURE 1.10: Partial-RESET programming curve. Taken from [26].

FIGURE 1.11: Partial-SET programming curve. Taken from [26].

FIGURE 1.12: Measured 14-hours time behavior of a cell normalized
conductance showing undesired phenomena: (1) uncertainty of ini-
tial value; (2) drift; (3) noise. Taken from [31].

1.6. State-of-the-art AIMC-based units 15

1.5.3 Issues and challenges

The main PCM cells non-idealities, that are relevant when employed in analog com-
puting contexts, are:

• Noise: low-frequency (flicker) noise affects cells behavior, as random electron
traps are located in the cell lattice, especially in the amorphous region [32].
Noise is proposed to be generated by variation in the configuration of the
amorphous-state traps structure.

• Time drift: cell conductance tends to decrease due to the time-decreasing den-
sity of traps of the hopping Pool-Frenkel conduction, typical of the amorphous
phase of cells [33]–[36].

• Uncertainty of the programmed conductance level: different cells respond dif-
ferently to the same programming pulses. Besides, the response of the same
cell to subsequent programming cycles shows a large variability. This leads to
dispersion and inaccuracy of the conductance levels [14], [28].

To illustrate the above points, the time-behavior of a typical PCM cell is shown
in Figure 1.12, where the measured conductance, normalized to its initial value, is
reported. Several studies have been carried out to motivate and model the behavior
of PCM cells, expecially for what concerns the amorphous phase. Some reference
works are [37]–[40], and an important survey on PCM device modeling is presented
in [41]. Moreover, new phase-change devices are currently under development [42].
Although relevant research efforts and advances, some questions related to this de-
vice technology are still open.

1.6 State-of-the-art AIMC-based units

In this Section, a brief analysis of the most recent AIMC elaboration units is pre-
sented.

For what SRAM-based AIMC is concerned, a notable work is presented in [43],
where a SRAM macro that computes ternary-MAC operations in binary/ternary
DNNs with high energy efficiency and high accuracy. The size of the array is 256 ×
64 and the prototype achieves energy efficiency of 40.3 TOPS/W for MAC operations
and 88.8% test accuracy for a CIFAR-10 data set. An additional contribution comes
from [10], where the architecture supports analog/binary input activation first layer
and binary hidden layers, with batch normalization and input–output buffering cir-
cuitry to enable cascading, if desired, for realizing different DNN layers. The energy
efficiency is comparable to the previous one, while the array dimension is 2.4 Mb.
Both prototypes are realized in a 65-nm CMOS technology node.

An example of AIMC unit exploiting a flash memory is illustrated in [44]. The
prototype targets a 28 × 28 binary-input, ten-output, three-layer neuromorphic net-
work based on arrays of highly optimized embedded nonvolatile floating-gate cells,

16 Chapter 1. Introduction and context

redesigned from a commercial 180-nm NOR flash memory. The network has shown
a 94.7% classification fidelity, with a 10-TOPS/W energy efficiency.

RRAM devices are exploited in [45] to obtain a high-performance and uniform
memristor crossbar array for the implementation of CNNs, which integrates eight
2048-cells memristor arrays to improve parallel-computing efficiency up to a mea-
sured 21.9 TOPS/W energy efficiency.

In the field of PCM technology, a recent work [46] shows a 256 × 256 AIMC core
designed and fabricated in a 14-nm CMOS technology. It allows to perform out-
puts affine scaling and non-linear operations. The measured energy efficiency is
10.5 TOPS/W for a CIFAR-10 classification task.

A summary of the presented works is reported in Table 1.1.

1.7 A brief overview on PCM-based AIMC

In this Section, some of the most recent works and results in the field of PCM-based
AIMC are commented.

Circuit solutions are analyzed in [47] and [48]. In the former, each analog weight
matrix is extended, as time progresses, by the introduction of additional columns
(i.e., neurons) to account for the lower dynamic range of the MVM output as con-
ductances become progressively smaller. In the latter, conversely, it is observed that
the typical implementation of negative weights with positive-only conductance, i.e.
having a second analog array whose output is subtracted from the first, already leads
to some measure of drift compensation. Again, the dynamic range of the output is
shrinked, thus requiring a renormalization to preserve performance. The renormal-
ization proposed therein requires an additional array of PCM cells to estimate the
drift of the SET state conductance (for binary-level applications, i.e. only using cells
in the SET and RESET state).

Finally, solutions can be applied at the software level or in any case in the digi-
tal section of the processing chain. Authors in [49] define an ad-hoc regularization
function applied during the NN training to limit the variability observed at the neu-
ron level resulting from perturbations of the individual conductances. In [50] drift
is addressed by renormalizing the drifted MVM output by modeling the median
conductance decay and rescaling the argument of the nonlinear activation function

TABLE 1.1: Summary of some state-of-the-art testchips for AIMC.

Reference [43] [10] [44] [45] [46]

Employed memory devices SRAM SRAM Flash RRAM PCM

CMOS Technology node 65 nm 65 nm 180 nm 55 nm 28 nm
Classification accuracy 88.8% 83.3% 94.7% 88.5% 96.2%

Energy efficiency [TOPS/W] 40.3 658 10 21.9 10.5

1.8. Overview of the thesis 17

following each layer to ensure that the entire nonlinearity domain is excited as ex-
pected for non-drifting weights. In [51] a periodic calibration procedure is used to
update the parameters of the batch normalization layers, so that even when weights
start to drift, those layers can still remap their outputs to zero-mean, unit-variance
distributions.

Obviously, each technique comes with its own set of drawbacks, i.e. requiring
a different fabrication process technology [52], a considerable area overhead asso-
ciated to the AIMC unit [47], [48], reliance on accurate device models [50] or the
periodic recalibration of the system [51]. By applying multiple techniques simulta-
neously the requirements on each of them can be relaxed, with potential reduction
of the incurred cost.

1.8 Overview of the thesis

This thesis aims at exploring the potential of new PCM-based architectures as in-
memory computational accelerators. The reference technology has been provided by
STMicroelectronics, through the joint lab with the ARCES Center of the University
of Bologna.

Several aspects will be addressed in order to achieve the desired goal. First of
all, current PCM writing cycles are optimized for use as binary memories. Even
if a binary PCM is compatible with many applications involving also MVM oper-
ations, the real advantage of in-memory computing will be unfolded only if truly
analog or at least multilevel resistive values will be achievable. This is a non-trivial
step, which requires a new carefully dedicated programming algorithm. Besides,
additional problems expected in multilevel PCMs are the spread and time-drift of
the programmed resistance values, causing a large variability, as well as the non-
linearity of the I-V characteristics of the memory cells.

In some applications, such as DNN, these problems can be mitigated by a spread-
and non-linearity-aware learning scheme, i.e. during the phase of weight determi-
nation. In a first phase of this work, arrays of conventional binary PCMs will be
operated and characterized under non-conventional operating conditions, similar
to the ones required for in- memory MVM. The focus will be to estimate and model
through suitable compact models the non-linear characteristics of the PCM resis-
tances, as well as their variability. This will allow to simulate MVM operations un-
der realistic conditions. In addition, this will allow to include realistic MVM models
into specific high-level software for DNN description and training.

As a result of this first phase, a first small-size array architecture for in-memory
MVM will be proposed, designed and laid-out in the given technology. A key point
will be the design of the analog blocks (drivers, converters, voltage and current ref-
erence generators) necessary for the non-conventional operation of the array. A deep
experimental characterization and validation of the architecture will be carried out
and discussed.

18 Chapter 1. Introduction and context

This thesis is organized as follows:

• In Chapter 2, a thorough characterization of PCM cells is presented, aimed at
evaluating and optimizing their performance as enabling devices for analog
in-memory computing applications.

• In Chapter 3, the use of PCM cells in two different applications is simulated,
with the aim of quantifying the impact of PCM cells non-idealities when em-
ployed to perform Multiply and Accumulate operations.

• Chapter 4 presents an integrated peripheral unit interfaced to an embedded
Phase-change Memory macrocell, with the aim of adding analog in-memory
computing feature without any modifications to the internal structure of the
memory array. Experimental characterizations are carried out to validate the
testchip, and to simulate its employment in a deep neural network scenario.

This research activity have been carried out with a fundamental support from
STMicroelectronics Italy, who first provided the evaluation board and the memory
samples used in Chapter 2; several designers contributed to the development of the
AIMC testchip presented in Chapter 4.

Part of the results of this work have been obtained thanks to a tight collaboration
with other academic research groups; in particular, results related to the deep neural
networks have been reached with the Signal Processing research group of both Uni-
versity of Bologna (Prof. Mauro Mangia and Prof. Riccardo Rovatti) and Politecnico
of Torino (Dott. Carmine Paolino, Prof. Fabio Pareschi and Prof. Gianluca Setti).
A collaboration with the Structural Engineering group of the University of Bologna
resulted in the analyses in the field of structural health monitoring (Dott. Said Quqa
and Prof. Luca Landi). My contributions focused on the PCM characterization, to-
gether with the collection of the experimental data for the proposed applications.
A relevant part of my Ph.D. activity was also involved in the testchip design and
testing. This research activity has been carried out with my colleagues Dott. Andrea
Lico and Dott. Francesco Zavalloni.

19

Chapter 2

PCM cells characterization for
analog in-memory computing

In this Chapter, a thorough characterization of phase-change memory (PCM) cells is
carried out aimed at evaluating and optimizing their performance as enabling de-
vices for analog in-memory computing (AIMC) applications. Exploiting the features
of programming pulses, strategies to reduce undesired phenomena that afflict PCM
cells and are particularly harmful in analog computations, such as low-frequency
noise, time drift and cell-to-cell variability of the conductance, are discussed. The
test vehicle is an embedded PCM (ePCM) provided by STMicroelectronics and de-
signed in 90-nm smart power BCD technology with a Ge-rich Ge-Sb-Te (GST) alloy
for automotive applications. Based upon the results of the characterization of a large
number of cells, an iterative algorithm is proposed to allow multi-level cell conduc-
tance programming and its performances for AIMC applications are discussed. An
analysis of the effects of time-temperature effect on cells in terms of drift and noise
concludes the Chapter.

Some of the material reported in this Chapter is reused from [31] (open access), and from
[53], in agreement with MDPI and IEEE copyright on theses and dissertations.

2.1 Experimental setup

2.1.1 PCM Testchip

We performed the experimental activity on an embedded PCM (ePCM) test chip de-
signed and manufactured by STMicroelectronics in 90-nm smart power BCD tech-
nology featuring a specifically optimized Ge-rich Ge-Sb-Te (GST) alloy. The chip is
intended for digital storage in automotive applications. The ePCM elementary cell
is based on an nMOS selector and occupies 0.19 µm2 of silicon area [29]. A 256-
KB macrocell was included in the test chip in 8 independent instances in order to
increase the total number of cells in a single chip. In addition to the 8 ePCM macro-
cells, the chip also includes a built-in self-test (BIST) block, several configuration reg-
isters, a reference generator block, and the circuitry that manages the input–output
interface [54].

20 Chapter 2. PCM cells characterization for analog in-memory computing

t

TON,R TON,S

ΔI

ΔT

AS

AR

IPULSE

FIGURE 2.1: SET and RESET pulses and their editable parameters.

2.1.2 Implemented testing routines

A PCM evaluation board (properly designed for testing purposes) was employed
and customized. This board allows one to configure current pulses applied to cells,
as voltage and current regulators are integrated on the test chip. Furthermore, it is
possible to measure the current of single or multiple cells thanks to an analog chip-
board interface and a dedicated I-V conversion chain. Every programming or mea-
surement process is achieved with a GUI interface, which is available on a personal
computer and customizable.

Several improvements to the GUI have been developed, in order to implement
dedicated testing routines. In particular, iterated-measures environments to charac-
terize PCM in terms of drift and noise have been exploited. Furthermore, an inter-
face to perform precise current-measurements through a Source Meter Unit (SMU)
has been created.

Finally, the evaluation board was equipped with analog to digital converters that
allow for the measured current to be stored and elaborated. A photo of the experi-
mental setup is reported in Figure 2.3, whereas a representation of the GUI interface
is shown in 2.2.

2.1.3 Programming pulses parameters

Cell transition between SET state and RESET state is accomplished with the appli-
cation of a corresponding current pulse [14], [24], [27], which causes a significant
portion of the cell to be heated, in order to modify its internal structure:

• a SET pulse is a trapezoidal current pulse, composed of an initial melting
phase, followed by a slow crystallization phase;

2.1. Experimental setup 21

FIGURE 2.2: Snapshot of the developed GUI for PCM cells character-
ization.

PCM array

SMU
Evaluation boardPower supply

GUI

FIGURE 2.3: Experimental setup for PCM cells testing.

22 Chapter 2. PCM cells characterization for analog in-memory computing

• a RESET pulse consists in a higher current flow and it is applied in order to
melt the central portion of the cell. The molten material quenches into the
amorphous phase, producing a cell in the high-resistance state.

The possibility to set the cell in a wide range of intermediate conductance states
is achieved through an adequate control of different configurations of the crystalline
and amorphous phases inside the active chalcogenide volume: in other terms, the
cell resistance value depends on the shape and the volume of the two phases. The
main aim of our set of measurements was to investigate the impact of the different
pulse parameters and the associated programming sequences on cells noise, drift,
and conductance variability. The pulse parameters that are editable through the
evaluation board are indicated in Figure 2.1, namely:

• the SET pulse can be modulated in amplitude (AS), width of the flat portion
(TON,S), and decaying slope (∆I/∆T);

• the RESET pulse can be modulated in amplitude (AR) and width TON,R.

The editable minimum, maximum, and step values of each parameter are re-
ported in Table 2.1.

2.1.4 Readout voltage choice

The available hardware allows current measurements through the application to one
or more cells of a readout voltage VR, ranging from 0 to VMAX

R . The measured aver-
age i(v) characteristic of a group of PCM cells is depicted in Figure 2.4, where i is the
cell current normalized to its maximum value, and v is defined as VR/VMAX

R . The
average normalized conductance g = i/v is nearly constant when VR falls within
[0 − 0.4]VMAX

R ; above VR = 0.5VMAX
R , the voltage applied to cells differs from VR

due to voltage drops of the transistors in the test chip readout circuitry. Therefore,
due to test chip implementation, for the operation described in (2), Vk=1,...,N will be
limited within the range [0 − 0.4]VMAX

R . All measurements described hereafter are
performed in the middle of that interval, namely, VR = 0.25VMAX

R
.
= VX.

TABLE 2.1: Configurable parameters of SET and RESET pulses.

Parameter Minimum Maximum Resolution Order of magnitude

TON,S TON,S0 2TON,S0 TON,S0/2 100 ns
∆I ∆I0 2∆I0 ∆I0 10 µA
∆T ∆T0 2∆T0 ∆T0/2 10 ns
AR AR0 6AR0 AR0/10 10 µA

TON,R TON,R0 2TON,R0 TON,R0/10 10 ns

2.2. PCM cells characterization using single-SET pulses 23

FIGURE 2.4: Left axes: typical normalized I-V characteristic obtained
by averaging the currents of 5120 cells. Right axes: normalized cells
mean conductance g = i/v.

2.2 PCM cells characterization using single-SET pulses

In this Section, a characterization in terms of drift and noise is carried out. Cells
were programmed through a single SET pulse. The following analyses were per-
formed considering 5120 cells. Henceforth, conductances G are normalized to cell
maximum conductance GMAX, and their currents I to IMAX = GMAXVX, turning in
cells normalized conductance g = G/GMAX and normalized current i = I/IMAX,
respectively. All the measurements, unless otherwise specified, were performed at
room temperature.

2.2.1 Noise

As previously observed, lattice imperfections and traps contribute to generate low-
frequency noise, which affects the analog computation process [33], [55]–[57]. Tests
were performed in the following way: first, a start RESET pulse with AR = 3AR0

and TON,R = TON,R0 was applied to erase the previous state, followed by a SET
pulse with TON,S = 2TON,S, ∆I = ∆I0, ∆T = ∆T0. Four different values of AS were
considered: AS0, 1.5AS0, 2AS0, and 3AS0. To limit the time drift contribution, we
performed measurements 12 h after the application of the SET pulse. Then, STOT =

188 current samples were collected for each cell at time intervals of 5 min ti. We
evaluated the noise parameter N%j of the j-th cell as:

N%,j =
100
gj

√√√√ 1
STOT − 1

STOT

∑
i=1

[
gj(ti)− gj

2] (2.1)

24 Chapter 2. PCM cells characterization for analog in-memory computing

FIGURE 2.5: Left: ensemble average over all the tested cells of N%,j
defined in 2.1 vs. SET pulse amplitude. Right: normalized conduc-
tance averaged on both time and cells.

where gj(ti) is the j-th cell normalized conductance at time ti, and gj is the time av-
erage of gj(ti). The ensemble average

〈
N%,j

〉
over all the tested cells is shown in

Figure 2.5 with red circles as a function of the amplitude AS, together with the in-
dication of the 10% and 90% limits of the distribution. On the right vertical axis the
cell conductance averaged on both STOT = 188 time samples ti and the 5120 mea-
sured cells is also shown. The conductance is proportional to the SET amplitude,
as expected, since a higher amplitude implies the crystallization of a wider cell vol-
ume. This leads to a reduction of noise, as its origin is mainly correlated to the lattice
disordered structure of the amorphous phase [30], [56], [57].

We then investigated the possibility of noise reduction by means of summing the
current contributions of adjacent cells programmed in the same SET state. Measure-
ments have been performed with groups of 2, 4 or 8 Adjacent Working Cells (AWC).
To do that, previous measurements have been repeated on a set of AWC×5120 cells,
and N% has been evaluated as in 2.1 but replacing g(ti) with the average of AWC
cells for each sample time. Results are shown in Figure 2.6 (left) as a function of
AWC for different pulse amplitudes. If noise of different cells were totally uncor-
related, the curves would depend on AWC as 1/

√
AWC (reported in the figure as

solid lines). As AWC > 1 for a given pulse amplitude results in an increase of power
consumption, it is interesting to compare the cases AWC = 1 and AWC > 1 for the
same normalized total current consumption. In Figure 2.6 (right) the ensemble aver-
age noise

〈
N%,j

〉
is reported as a function of the normalized total current for different

AWC. It is clear that the AWC > 1 strategy is not convenient when power consump-
tion is considered. In other words, for a given total current, a single cell achieves

2.2. PCM cells characterization using single-SET pulses 25

FIGURE 2.6: (Left) Dotted lines: measured ensemble average
〈

N%,j
〉

of N%,j defined in 2.1 vs. AWC for different SET pulse amplitudes.
Solid lines: theoretical 1/

√
AWC noise behavior. (Right)

〈
N%,j

〉
vs.

normalized total current for different AWC values.

26 Chapter 2. PCM cells characterization for analog in-memory computing

FIGURE 2.7: (Left) Measured ensemble average
〈

N%,j
〉

of N%,j de-
fined in 2.1 vs. number NS of samples in the averaging window for
different SET amplitude pulses. (Right) N%,j vs. normalized total cur-
rent for different NS values.

2.2. PCM cells characterization using single-SET pulses 27

more noise reduction than several cells in parallel with lower conductance. For these
reasons, the characterizations presented hereafter are performed with AWC = 1. Fi-
nally, we explored the possibility to reduce noise through a time average operation.
To this purpose, the previous measurements have been repeated and N% has been
calculated replacing in Figure 2.1 each g(ti) with the average over NS consecutive
samples equally separated in time by ∆t = 5min/NS, with NS = 1, 2, 4 or 8. Results
are shown in Figure 2.7 (left), where a slight reduction of noise is visible, in particu-
lar in the AS0-SET case. In analogy with the AWC strategy, it is necessary to consider
the additional power consumption introduced by the NS-oversampling operation.
N% as a function of the normalized total current is shown in Figure 2.7 (right) for the
different values NS. It is seen that time average is not effective to reduce noise for a
given total current. This can be understood taking into account the flicker nature of
PCM cells noise [33], [55], [57], as time average operation is equivalent to a low-pass
filter in the frequency domain.

A dependence of
〈

N%,j
〉

on SET pulse amplitude, AWC number and time aver-
age, similar to the ones discussed in Figures 2.5, 2.6, 2.7, is obtained varying TON,S,
∆I/∆T. To conclude, the most efficient strategy to reduce noise is to use a single cell
with a higher conductance for each matrix element.

2.2.2 Time drift

Short term drift manifests itself as a slow but steady increase of the resistivity of the
amorphous material. The conductance g(t) drift has been shown to follow a power
law [33]:

g(t) = g0

(
t
t0

)−α

(2.2)

where g0 is the initial conductance at arbitrary time t0, and α is the drift coefficient,
which is positive and cell-to-cell variable.

In this work, instead of exploiting such power-law model, drift is evaluated in
terms of relative conductance decrease D%,j of the j-th cell as:

D%,j(ti) = 100
gj,0 − gj(ti)

gj,0
(2.3)

where gj(ti) is the j-th cell normalized conductance at time ti and gj,0 its value mea-
sured 1 ms after the pulse application. We first investigated the effect of SET-pulse
amplitude on D%. To do that, we programmed 5120 cells in the same way explained
in the previous paragraph, then, we monitored them for T = 14 hours. The average〈

D%,j(T)
〉

over all the tested cells as a function of the SET-amplitude is shown in Fig-
ure 2.8 (left) with red bullets as a function of the amplitude AS, and the indication of
the 10% and 90% limits of the distribution are also shown. On the right vertical axis
the cell normalized mean conductance is plotted. Results show that the increase of
SET-amplitude reduces cells drift below 8% for AS = 3AS0.

28 Chapter 2. PCM cells characterization for analog in-memory computing

An additional result is reported in Figure 2.8 (right), where D% for each cell is
plotted vs. g0 for different pulse amplitudes. It can be observed that cells with the
same initial conductance g0 have a lower drift when g0 has been reached by applying
a higher SET pulse.

2.3 PCM cell characterization using multiple pulses

In this Section we investigate the use of specific sequences of multiple current pulses
to tune the cell conductance as close as possible to the desired level, while limiting
noise, drift and variability.

2.3.1 Conductance tunability

Cells reaction following the application of both a SET or a RESET pulse shows an
uncertainty due to random amorphization and crystallization phenomena. The pro-
gramming space is defined by the characteristic programming curve, which quan-
tifies the change of the cell (normalized) conductance as a function of the program-
ming pulse cur-rent. In the literature, two approaches have been proposed in order
to program the cell resistance to an intermediate level: (a) partial-SET programming
[58] and (b) partial-RESET programming [56], [57]. In the first approach, the cell
is first brought into the RESET state, and then, a partial-SET programming pulse is
applied so as to partially crystallize the ac-tive volume. In partial-RESET program-
ming, the cell is first brought into the SET state, and then, a partial-RESET pulse
is applied in order to partially amorphize the active volume. Based on these two
approaches, we experimented four different programming strategies and derived
the corresponding programming curves. The adopted programming se-quences are
illustrated in Figure 2.9: (a) RESET single pulse programming (RSP); (b) RESET stair-
case programming (RSC); (c) SET single pulse programming (SSP); (d) SET staircase
(SSC) programming.

In the RSP case (Figure 2.9 (a), first a SET pulse with AS = 5AS0, TON,S =

2TON,S0, ∆I = ∆I0, ∆T = ∆T0 is applied, followed by a single partial-RESET pulse
having a predetermined amplitude AR and width TON,R, and then, after 1 ms, a
readout operation is performed. The above sequence is repeated with increasing
values of AR between AR0 and 4AR0 with steps of ∼ AR0/10. In the RSC case (Fig-
ure 2.9 (b)), a single start SET pulse with the same parameters mentioned above is
applied only at the beginning, followed by a partial-RESET sequence identical to the
one in the RSP case, with readout operations performed after each specific RESET
pulse.

Results of RSP and RSC are illustrated in Figure 2.10 (a) and 2.10 (b), respec-
tively, where the mean conductance of NC = 5120 cells is plotted as a function of
AR for different values of TON,R(TON,R0, 1, 5TON,R0, 2TON,R0). The behavior of cells in
RSP mode shows an initial increase of conductance, due to the fact that small ampli-
tude RESET pulses tend to be similar to a SET pulse. Then, when AR > 2AR0, cells

2.3. PCM cell characterization using multiple pulses 29

FIGURE 2.8: (Left) Ensemble average of D% defined in 2.3 with T =
14 h vs. SET pulse amplitude; Right: mean value of the normalized
conductance measured after the application of SET pulse. (Right) D%
defined in 2.3 vs. normalized initial conductance g0 for different SET
pulses amplitudes. Measures have been taken over a set of 960 cells.

30 Chapter 2. PCM cells characterization for analog in-memory computing

AR1

Readout

AR2

Readout Readout

ARN

AS

AR1

Readout

AR2

Readout Readout

ARN

AS

t

AS AS

(b)(a)

Readout Readout Readout

(c)

Readout Readout Readout

t(d)

AR AR AR

AS1

AS2

ASN

AS1

AS2

ASN

t

t

AR

FIGURE 2.9: Analyzed programming sequences: (a) RESET single
pulse (RSP); (b) RESET staircase (RSC); (c) SET single pulse (SSP); (d)
SET staircase (SSC).

conductance begins to decrease. This initial in-crease of the conductance value is
absent in RSC mode. In both families of programming curves, the mean normalized
conductance g slightly depends on TON,R, whose value tends to increase the mean
conductance of cells, as the RESET pulse is longer and tends to be more similar to
a SET one. Furthermore, the programming curves for RSP or RSC are quite similar
when AR > 2AR0 both being characterized by an abrupt decrease to a full RESET
state. For what concerns partial-SET programming, in the SSP case (Figure 2.9 (c))
a start RESET pulse with AR = 3AR0 and TON,R = 2TON,R0 is applied, followed by
a single partial-SET pulse and a readout operation. The sequence is repeated with
AS varying from AS0 to 4AS0 in steps of ∼ AS0/10. Adopted values of TON,S are
TON,S0, 1.5TON,S and 2TON,S0. We chose ∆I = ∆I0 and ∆T = ∆T0 for all measure-
ments. The SSC case (Figure 2.9 (d)) is similar, but the start RESET pulse is applied
only at the beginning.

As before, the mean conductance of 5120 cells has been monitored. Results are
reported in Figure 2.11 (a) and 2.11 (b) for the SSP and SSC cases, respectively. In
these cases the conductance is not significantly influenced by the value of TON,S,
except for the lowest value of TON,S in the SSP case. On the other hand, as opposed to
the partial-RESET strategy, differences between the two sequences are indeed more
visible: the SSC conductance tends to increase faster, reaching values above 90% of
GMAX with a lower SET amplitude (AS = 2.2AS0), whereas the SSP conductance
reaches the same level only with a 3AS0 − 3.5AS0 SET pulse.

Comparing partial-RESET and partial-SET strategies, we can point out that RSP
and RSC lead to abrupt programming curves, whereas partial-SET programming
allows a smoother control of the conductance by means of the SET amplitude. Thus,
in view of a good conductance controllability, the partial-SET approach is preferable.

2.3. PCM cell characterization using multiple pulses 31

FIGURE 2.10: (a) RSP programming curves as a function of RESET
pulse amplitude, with different TON,R values. The generic g(AR,i)
represents cells normalized mean conductance after the application
of a start SET pulse and a RESET pulse with amplitude AR,i. (b) RSC
programming curves as a function of RESET pulse amplitude, with
different TON,R values. The generic g(AR,i) represents cells normal-
ized mean conductance after the application of a start SET pulse and
a sequence of RESET pulses with amplitude from AR0 to AR,i.

32 Chapter 2. PCM cells characterization for analog in-memory computing

FIGURE 2.11: (a) SSP programming curves as a function of SET pulse
amplitude, with different TON,S values. The generic g(AS,i) repre-
sents cells normalized mean conductance after the application of a
start RESET pulse and a SET pulse with amplitude AR,i. (b) RSC pro-
gramming curves as a function of SET pulse amplitude, with different
TON,S values. The generic g(AS,i) represents cells normalized mean
conductance after the application of a start RESET pulse and a se-
quence of SET pulses with amplitude from AS0 to AS,i.

2.3. PCM cell characterization using multiple pulses 33

FIGURE 2.12: Normalized standard deviation σ(g)/g defined in 2.4
as a function of SET pulse amplitude for both SSP and SSC program-
ming.

We also investigated the conductance spread induced by partial-SET program-
ming evaluating the normalized conductance dispersion σ(g)/g at each SET ampli-
tude step AS,i defined as:

σ(g)
g

(AS,i) =
100〈

gj(AS,i)
〉
√√√√ 1

NC − 1

NC

∑
j=1

[
gj(AS,i)−

〈
gj(AS,i)

〉]2 (2.4)

where the mean
〈

gj(AS,i)
〉

is calculated over the full set of NC = 5120 cells after the
application of the AS,i-amplitude SET pulse. Results depicted in Figure 2.12 show
that SSC programming leads to a lower spread when AS > 1.4AS0. Additionally, SSP
programming turns out to be more power hungry, as it requires a greater amount of
RESET applied pulses than the SSC one to reach the same value of g.

We finally investigated the effect of the amplitude of the start RESET pulse on
the SSC programming curve. Results are shown in 2.13, where g vs. AS/AS0 for
TON,S = 1.5TON,S0 is plotted for AR = 3AR0, 4AR0 or 5AR0. It is seen that the con-
ductance tends to increase more slowly for larger AR. In turn, larger SET pulse am-
plitudes are required to reach the same conductance level when AR is larger. There-
fore, the choice of the start RESET pulse amplitude plays an important role in the
programming curve, and this property will be exploited in the next Paragraph. To
sum up, SSC programming seems to be the most convenient programming strategy,
as it allows both good conductance control and spread reduction.

34 Chapter 2. PCM cells characterization for analog in-memory computing

FIGURE 2.13: SSC programming curves as a function of SET pulse
amplitude, with different values of the start RESET pulse amplitude.

2.3.2 Drift-induced dispersion

The cell-to-cell conductance spread, which is initially determined by the finite reso-
lution of the programming algorithm (see next Section), tends to increase with time
due to the cell-to-cell spread of the drift process described by the parameter D%
defined in (4). To investigate such drift spread we have characterized the D% distri-
bution, with the aim of optimizing the programming parameters in order to reduce
its standard deviation σ(D%). To this purpose, 5120 cells have been programmed
with an SSC strategy. After that, cells conductances have been measured firstly af-
ter 14 hours at room temperature (around 25°C), and then after having heated the
whole test chip to 150°C for 48 hours in a controlled climate chamber, to emulate the
maximum drift achievable by cells [59].

Figure 2.14 (a) shows the values of the measured normalized cells conductances
as a function of their initial normalized conductance g0 after the first and the second
time interval. Among the resulting conductivities, a set of four increasing normal-
ized conductivity values (g0 = 1/6, 1/3, 1/2, 2/3) has been chosen. Figure 2.14 (b)
reports the distribution of D% for such values of initial conductivity g0 ± 10%, where
the top and the bottom plot refers to the first and the second measure, respectively.
Results show that after 14 hours the mean value of D% is quite independent of initial
conductance value g0, while its dispersion tends to decrease for higher values of g0.
After 48-hours bake, both the mean value and dispersion of D% are increased with
respect to the first measure, and tend to decrease for higher values of g0, as can be
observed also from 2.14 (a).

2.4. A programming algorithm for AIMC 35

Previous results on D% in have shown that a drift reduction is achievable using
SET pulses of higher amplitude (see Figure 2.13). So, as observed at the end of Sec-
tion 4.1, we can use a higher-amplitude start RESET pulse in the SSC sequence to
reach the same desired conductance with higher partial-SET pulses. Thus, we re-
peated the D% dispersion analysis by increasing the start RESET pulse amplitude
to 5AR0, instead of the 3AR,0 used for the results of Figure 2.14 (a) and Figure 2.14
(b). Moreover, as suggested in [27], an additional 5AS0 start SET pulse was applied
before the start RESET pulse, with the aim of obtaining a more uniform cell initial-
ization. The improvements induced by these choices are clearly visible in Figure
2.15 (a) and Figure 2.15 (b), to be compared with Figure 2.14 (a) and 2.14 (b), for each
g0: the average value of D% is strongly reduced and the dispersion of D% is quite
reduced.

For the sake of completeness, we also performed measurements by varying the
duration of the start SET pulse (TON,S, 1.5TON,S and 2TON,S), as well as those of the
start RESET pulse (TON,R, 1.5TON,R and 2TON,R), but results did not significantly
differ from those reported here. The impact of high-amplitude SET pulses on en-
durance is not a severe constraint from the AIMC applications where a large amount
of write cycle is not required.

2.4 A programming algorithm for AIMC

In this Section, leveraging the characterizations described in the previous Sections,
an iterative programming algorithm is defined, able to set the cell conductance close
to a desired value. The algorithm is outlined in Figure 2.16. Once the conductance
target interval has been defined, specifying the mean value and relative tolerance,
the cell is first stimulated with the start SET and RESET pulses, as suggested by the
results of the analysis dis-cussed in the previous Section. Then the partial-SET SSC
sequence begins with a minimum SET amplitude AMIN . After a predefined time, in-
terval TWAIT, the cell current is read. If it falls within the target interval, the sequence
is terminated. If the conductance is lower than the required limit, the cell is stimu-
lated with a new SET pulse, with increased amplitude by a programmable step ∆A
(see Figure 2.17, sample cells 1 and 3). If instead the conductance is above the upper
limit, the whole process is restarted from the initial SET and RESET pulses (see Fig-
ure 17, sample cell 2). A maximum number of iterations ITERMAX is defined: if the
algorithm exceeds ITERMAX, the cell is declared not programmed and will not be
used in the final AIMC array. Figure 17 shows the programming sequences relative
to 5 sample cells, where the target has been defined as 0.5GMAX ± 10% tolerance.
It must be noted that the definition of this tolerance sets the maximum initial cell
spread σ(g)/g defined in 2.4. AMIN has been set to 1.5AS0, ∆A to AS0/20, TWAIT to
1 ms and ITERMAX = 100. In the same way we programmed groups of NPC = 128
cells with target g0 = 1/6, 1/3, 1/2 and 2/3, respectively. Table 2.2 summarizes the
minimum, maximum and average number of partial SET pulses required to program

36 Chapter 2. PCM cells characterization for analog in-memory computing

FIGURE 2.14: Effects of SSC sequence with AR = 3AR0. (a) Cells con-
ductance as a function of the initial normalized conductance after 14
hours at room temperature, and after 48 hours at 150°C. (b) Probabil-
ity distribution of D% obtained with the SSC programming sequence.
Different curves refer to different target conductances with ± 10% tol-
erance.

2.4. A programming algorithm for AIMC 37

FIGURE 2.15: Effects of SSC sequence with the addition of an initial
5AS0 SET pulse and AR = 5AR0. (a) Cells conductance as a function
of the initial normalized conductance after 14 hours at room temper-
ature, and after 48 hours at 150°C. (b) Probability distribution of D%
obtained with the SSC programming sequence. Different curves refer
to different target conductances with ± 10% tolerance.

38 Chapter 2. PCM cells characterization for analog in-memory computing

HARD
SET |G - GT| < TOL

YES

NO

ITER < MAX?

AMPL =
AMPL + Δ

TWAIT

CELL
PROGRAMMED

CELL NOT
PROGRAMMED

START
SET

START
RESET

As = AMIN SET
CELL

G > GT + TOL

G MEASURE

ITER =
ITER + 1

ITER = 0

G < GT - TOL

FIGURE 2.16: Proposed cells iterative programming algorithm. G in-
dicates the measured cell conductance and GT denotes the conduc-
tance target.

each cell, including possible restarted sequences. It can be noticed that the number
of mean programming pulses increases with the conductance target, as we used the
same AMIN for every conductance goal. To improve the programming speed, AMIN

could be chosen in relation to the target level. Every cell was correctly programmed
within the maximum 100 iterations.

Then, the programmed cells conductance has been monitored for ∼ 14 hours (160
samples with 5 minutes-steps), whose time evolution is depicted in 2.18. It must be
noticed that 4 different levels of conductance are distinguishable in the whole obser-
vation time interval. For each programmed group of NPC = 128 cells we calculated
the conductance spread defined as:

σ(g)
g

(ti) =
100〈

gj(ti)
〉
√√√√ 1

NPC − 1

NPC

∑
j=1

[
gj(ti)−

〈
gj(ti)

〉]2 (2.5)

and results are reported in 2.19. The initial value is under 6% in all cases (5.08%,
5.17%, 3.16% and 2.42% for g0 = 1/6, 1/3, 1/2 and 2/3, respectively) lower than the
target tolerance ± 10%. Then, due to the random conductance drift, σ(g)/g tends
to increase in the first readout interval (5 minutes). After that time, spread does not
change significantly, suggesting that the effect of drift is appreciable mostly in the
first 5 minutes (or less). Moreover, cells with higher conductance show a lower and
less variable spread, consistent with the previous analysis (see Figure 2.15).

Noise was evaluated through taking the last 120 samples occurring after 4 h from

TABLE 2.2: Required number of steps for cells programming.

Normalized target Min n. of steps Max n. of steps Mean n. of steps

1/6 2 20 6
1/3 2 45 10
1/2 2 64 22
2/3 3 95 36

2.4. A programming algorithm for AIMC 39

FIGURE 2.17: Typical evolution of the conductance of 3 sample cells
during the programming sequence steps with the conductance target
value set to 1/2 ± 10%. (1) cell programmed in few steps and only
one iteration; (2) cell programmed in 3 iterations; (3) cell programmed
with a long sequence of steps. The horizontal lines show conductance
target ± 10%.

FIGURE 2.18: Programmed cells conductance behavior monitored for
14 hours. Only 10 cells each group are plotted. Initial conductance
target values are 1/6, 1/3, 1/2, 2/3.

40 Chapter 2. PCM cells characterization for analog in-memory computing

FIGURE 2.19: Cells conductance spread σ(g)/g defined in 2.5 vs.
time. A zoom on the first 6 measures is shown the effect of drift on
the initial spread set by the proposed programming algorithm.

the application of the programming sequence to neglect initial strong drift effects.
Results are shown in Figure 2.20 (left) with circles, where N% defined in 2.1 for each
of the 512 cells is reported. Cells with the lowest conductance were characterized
by N% in the 2–10% range (except for two cells); the lowest noise, less than 2%, was
achieved by the cells with the highest conductance g0 = 2/3.

Finally, D% defined in 2.3 is shown in Figure 2.20 (right) with circles. Results
showed a decrease of conductance loss for higher-conductance, and D% was lower
than 10% for all cells except for the ones with the lowest conductance levels. This is
a key feature of SSC programming strategy combined with the adoption of start SET
and start RESET pulses. Solid lines in both plots in Figure 2.20 report the ensemble
average

〈
N%,j

〉
and

〈
D%,j

〉
over all the 512 tested cells with circles as a function of

the conductance target, together with the indication of the 10% and 90% limits of the
distributions.

2.5 Time-temperature combined effect analysis

In this final Section, we exploit the possibility to program PCM cells to a prede-
fined target to study the effects of temperature on drift and noise. According to this
purposes, nc cells have been programmed to the normalized target conductances
ĝi with a normalized tolerance ±δg. For each normalized target conductance ĝi, a
set of nc cell conductances is associated and then characterized in terms of spread,
drift and noise, and different temperatures T have been included in this study. For
each levels, the mean value of cells conductance µg(t0) and their relative dispersion
σg(t0) are defined. To this purpose, the considered cell conductances sets have been
measured 24 hours after programming at room temperature T = tA (approximately
25°C), defining thus a new cell set, with its mean value µg(t1) and relative dispersion
σg(t1). Afterward, the test chip has been baked at T = TB = 90°C. To monitor the

2.5. Time-temperature combined effect analysis 41

FIGURE 2.20: (Left) N%,j defined in (3) of the 512 programmed cells.
Circles represent noise of single cells. Error bars indicate noise mean
value for the four conductance target levels, together with the 10%
and 90% limits of the distribution. (Right) D%,j defined in (4) of the
512 programmed cells. Circles represent drift of single cells. Error
bars indicates noise mean value for the four conductance target levels,
together with the 10% and 90% limits of the distribution.

42 Chapter 2. PCM cells characterization for analog in-memory computing

g
1

g
2

g
3

g
4

g
5

g
6

g
7

0

2

4

t =
 t

0

g
1

g
2

g
3

g
4

g
5

g
6

g
7

0

2

4
t =

 t
1

g
1

g
2

g
3

g
4

g
5

g
6

g
7

0

2

4

t =
 t

3

g
1

g
2

g
3

g
4

g
5

g
6

g
7

0

2

4

t =
 t

2

FIGURE 2.21: Probability density function of measured normalized
cells conductances. The four plots are related to the distribution after
programming (t0), after 24 hours at TA = 25°C (t1), after 24 hours at
TB = 90°C (t2) and after 24 hours at TC = 150°C (t3), respectively.

dynamics of each cell, the conductances were then measured at room temperature
(to avoid leakage current increase due to high temperature) after 24 hours of bake;
the same process has been repeated for T = TC = 150°C, defining thus µg(t2), σg(t2),
µg(t3) and σg(t3).

2.5.1 Evolution of cells distributions

In the first subplot of Figure 2.21, the probability density functions (pdfs) of the
seven conductance levels are shown. In this case, the distributions of all cell sets are
separated, their mean values are near the conductance targets ĝi, and their bound-
aries lays under the normalized target tolerance ±δg. These conditions are implicitly
granted by the adoption of the aforementioned single-cell iterative programming al-
gorithm previously described. In the further subplots, reporting the pdfs at T = TA,
TB and TC, respectively, it can be easily observed that cells distributions tend to de-
crease their mean conductance µg, while their relative dispersion σg increases. As a
result, the considered conductances distributions tend to overlap, as memory cells
have lost their initial conductance under the combined effect of time and tempera-
ture due to random alterations to their internal structure. The values of µg(t0) and
µg(ti) are shown in Figure 2.22 (left), while the right plot reports the values of σg(t0)

and σg(ti). The mean values of cells sets tend to decrease uniformly with a slight
dependence on the mean initial conductance, whereas, the cells sets dispersion in-
crease is more evident for cells set with the lower value of target ĝi. Moreover, as

2.5. Time-temperature combined effect analysis 43

t
0

t
1

t
2

t
3

g
1

g
2

g
3

g
4

g
5

g
6

g
7

t
0

t
1

t
2

t
3

0

5

10

15

20

25

30

35

FIGURE 2.22: Left: measured mean normalized conductance µg after
programming (t0), and in the three conditions corresponding to t1, t2,
t3; different curves refer to the seven target conductances ĝi. Right:
measured conductance relative dispersion σg in the same conditions.

the programming tolerance δg has been chosen equal for all ĝi, σg(t0) results to be
inversely proportional to the target conductance.

In order to describe the behaviors of cells sets, the absolute variations of mean
values ∆µg(ti) = µg(t0) − µg(ti) and dispersions ∆σg(ti) = σg(t0) − σg(ti) of cells
sets are plotted as dots in Figure 2.23 left and right, respectively. As previously
shown, ∆µg increases with time and bake temperature. Moreover, ∆µg(t1) is slightly
dependent on the target conductance ĝi and varies between 0.1 and 0.3; µg(t2) in-
stead is greater for the higher values of ĝi and ranges from 0.3 to 1.1, while µg(t3))
varies from 0.5 to 1.9, and shows a strong dependence on ĝi. For what concerns the
cells set dispersion, ∆σg increases when cells conductance target ĝi is greater. In par-
ticular, ∆σg(t1) varies from 5% to -0.5%, ∆σg(t2) varies from -15% to -1%, and ∆σg(t3)

varies from -25% to -5%. All the measured values of ∆µg and ∆σg can be fitted with
2nd-order polynomial functions of conductance target ĝi, which are plotted in Figure
2.23 as dashed lines. The fitting functions of ∆µg show a more incisive dependence
on the 2nd-order term ĝi

2, whereas ∆σg has a stronger dependence on the 1st-order
term ĝi.

2.5.2 Effects on drift coefficient

In this context, three additional measurements have been performed after ∆t = 12
hours from t1, t2 and t3, respectively. Comparing these measurements with their

44 Chapter 2. PCM cells characterization for analog in-memory computing

g
1

g
2

g
3

g
4

g
5

g
6

g
7

0

0.5

1

1.5

2

t
1

t
2

t
3

g
1

g
2

g
3

g
4

g
5

g
6

g
7

-20

-15

-10

-5

0

t
1

t
2

t
3

FIGURE 2.23: Left: measured absolute variations of mean values
(dots) as a function of targets ĝi, and their fitting functions (dashed
lines), in the three conditions corresponding to t1, t2, t3. Right: mea-
sured absolute variations of dispersions (dots) as a function of targets
g ĝi, and their fitting functions (dashed lines) in the same three con-
ditions.

g
1

g
2

g
3

g
4

g
5

g
6

g
7

10-8

10-6

10-4

10-2

(t
1
, t

1
+ t)

(t
2
, t

2
+ t)

(t
3
, t

3
+ t)

FIGURE 2.24: Mean drift coefficients of cells sets as a function of the
targets ĝi in the three conditions corresponding to t1, t2, t3 with ∆t =
12 hours.

2.5. Time-temperature combined effect analysis 45

0 1 2 3
t 104

0

1

2

3

4

5

6

7

0 1 2 3
t 104

0

1

2

3

4

5

6

7

0 1 2 3
t 104

0

1

2

3

4

5

6

7

FIGURE 2.25: Example of noise measurement of seven sample cells at
[t1, t1 + ∆t] (left), [t2, t2 + ∆t] (center), [t3, t3 + ∆t] (right), with ∆t = 5
min.

corresponding of Figure 2.22 left, and inverting 2.2, drift coefficient has been then
estimated. The influence of targets ĝi and temperature on α are depicted in Figre 2.24,
where the mean drift coefficients αĝi , which are the mean drift coefficient of each cell
set, are plotted in logarithmic scale as a function of the targets ĝi, and for the three
different test conditions. Results show that the drift coefficient slightly depends on
the target conductance value, and it is more significant for low ĝi. As α is greater
than 0.01 when T =25°C, cells tend concordantly to weakly drift after ∆t = 12 hours.
When T = 90°C or 150°C, α is near to 0 in the time interval of ∆t, concluding that, in
these two latter conditions, time drift can be considered negligible, concluding that
its effect becomes trifling in few hours when high temperature is applied.

2.5.3 Effects on noise

An analysis of cells noise concludes this Section. To characterize this aspect, cells
conductances have been measured over a time interval ∆t = 5 min, collecting ns

= 30000 samples for each cell. Then, the mean noise N%, defined accordingly with
2.1, is evaluated for each cell set. An example of noise measurement is reported
in Figure 2.25, where seven sample-cells conductances are showed. Measures have
been performed at t1 + ∆t, t2 + ∆t, t3 + ∆t. The mean N% as a function of target
conductances ĝi is reported in Figure 2.26. Results show that noise is more relevant
for lower values of ĝi, where it is about three times greater. Moreover, N% does not
significantly differ for different temperatures. Accordingly, noise in PCM elements

46 Chapter 2. PCM cells characterization for analog in-memory computing

g
1

g
2

g
3

g
4

g
5

g
6

g
7

0

0.05

0.1

0.15

[t
1
, t

1
+ t]

[t
2
, t

2
+ t]

[t
3
, t

3
+ t]

FIGURE 2.26: Mean noise of cells sets as a function of target conduc-
tances in the three conditions corresponding to t1, t2, t3.

is related to amorphous phase of cells, which is more significant in low-conductance
ones.

2.6 Conclusion

PCM cells non-idealities, i.e. low-frequency noise, time drift and conductance spread,
lead to inaccuracies which affect the computation process accomplished by the mem-
ory array. Proper cell programming sequences to mitigate these undesired effects
are proposed. In particular, higher applied SET-amplitude pulses lead to better per-
formance in terms of noise. In addition, results have shown that, for a given target
conductance, a single cell achieves more noise reduction than several cells in parallel
each having lower conductance. Besides, drift is reduced when high SET-amplitude
pulses are employed. The SSC-programming strategy ensures better results in terms
of cells spread and initial conductance control. Moreover, the application of large
start SET and RESET pulses at the beginning of the programming sequence achieves
a better cells dispersion performance. Drift, dispersion and noise have been then an-
alyzed in relation to memory elements programmed with a dedicated programming
algorithm, showing their dependences on conductance targets and temperature. As
an example of application of the above considerations, the results of programming
40 cells with 4 different conductance levels are shown. The cells conductances have
been monitored up to 14 hours after the application of the programming procedure.
For all memory cells the measured conductance spread is under 14% and the relative
drift under 15%, the relative noise less than 9% for the 90% of cells.

47

Chapter 3

Evaluation of PCM-based AIMC
operations for specific applications

On the basis of the results previously presented, the use of PCM cells in two different
applications is simulated in this Chapter. Here the aim it to quantify the impact of
PCM devices non-idealities when employed to perform Multiply and Accumulate
(MAC) operations, which are the kernel of Matrix-vector Multiplications (MVMs).
To this purpose, additional characterization procedures have been implemented.
This Chapter also motivates the design of the AIMC unit presented in Chapter 4,
whose aim is is to develop an embedded unit which adds analog in-memory com-
puting (AIMC) features to an embedded PCM (ePCM) memory. These analyses have
been carried out with the contributions of expert collaborators, which provided and
implemented the application scenarios.

Some of the material reported in this Chapter is reused from [20], and from [3], in agree-
ment with IEEE and ASCE copyright on theses and dissertations.

3.1 A basic approach for AIMC based on PCM cells

A circuit representing a basic idea for a PCM-based AIMC scheme is illustrated in
Figure 3.1, and exploits the conductances stored in an embedded PCM array to per-
form MAC operations. Typically, embedded PCM memory arrays are organized in
bit lines (BLs) and word lines (WLs), which are accessible through selectors made of
NMOS transistors, as shown in dedicated works [27]–[29], [54]. With the selection
of a single word line, memory cells can be accessed in parallel through the main bit
line (MBL) nodes. Once a WL is selected, and a voltage Vi is applied to a single cell
programmed to a conductance gi, the current obtained is Ii = giVi; the total current
of the summation node is:

IOUT,j =
n

∑
i=1

gj,iVi (3.1)

which corresponds to the product between a voltage vector V = [V1, ..., Vn] and
the conductance vector Gj = [gj,1, ..., gj,n] of the selected j-th word line. The main
limit of this architecture is that it allows to compute a product between an input
vector and a conductance vector of a single selected word line only per cycle. To

48 Chapter 3. Evaluation of PCM-based AIMC operations for specific applications

FIGURE 3.1: Basic architecture to execute MAC operations with no
modifications to the structure of the PCM IP. In this example, the
wordline WL1 is supposed to be activated.

obtain a full matrix vector multiplication it is necessary to repeat the operation by
selecting in sequence the following word lines. Furthermore, this architecture does
not address the non-idealities of PCM (as previously analyzed in Chapter 2). In fact,
noise and drift effects would directly influence the accuracy of MAC operations;
moreover, the non-linear I-V characteristic of the PCM devices will become relevant
in the computation, as each variable input is here applied on a PCM cell. Thus, each
MAC coefficient gi shows a dependence on both the input and on time:

gi = gi(Vi, t) (3.2)

which is directly mapped on the MAC result.
In this Chapter, we analyze the impact of such non-idealities on specific appli-

cations. In particular, the I-V characteristic effect is modeled in a Deep Neural Net-
work (DNN) application, whereas drift and noise are taken into accout in a filtering
process for a Structural Health Monitoring (SHM) algorithm.

3.2 Neural networks

In this Section, we simulate the employment of PCM cells in AIMC operations per-
formed with the previous architecture in the field of Deep Neural Networks (DNNs).
To this purpose, we acquired and analyzed a set of I-V characteristics of PCM cells,

3.2. Neural networks 49

0.00 0.25 0.50 0.75 1.00
Vpcm

0.0

0.2

0.4

0.6

0.8

1.0

I p
cm

Iref
0.1
0.4
0.7
1.0

Vpcm

0.0
0.5

1.0

I ref

0.0

0.5
1.0

I p
cm

0.0

0.5

1.0

Vpcm

0.0
0.5

1.0

I ref

0.0

0.5
1.0

I p
cm

0.0

0.5

1.0

Vpcm

0.0
0.5

1.0

I ref

0.0

0.5
1.0

I p
cm

0.0

0.5

1.0

(a) (b) (c) (d)

FIGURE 3.2: (a) Average, normalized I/V characteristics of PCM de-
vices in four different conductance states. (b) Spline-based interpo-
lation of the average, normalized PCM behaviours, highlighting the
four states depicted in (a). (c) Low-order polynomial fitting of spline-
generated data points. (d) High-order polynomial fit of the same data.

exploiting also the experimental setup previously exposed in Chapter 2, and we
analyze the impact on non-linearities in the accuracy of two classification tasks per-
formed with DNNs.

3.2.1 PCM Characterization and Numerical Modeling

We have performed measurements on the ePCM test chip designed and manufac-
tured by STMicroelectronics in a 90-nm BCD technology previously employed in
Chapter 2.

Device characterization begins with the dedicated programming step, where the
PCM cells are brought into highly conductive SET states by means of a single cur-
rent pulse. A higher pulse intensity determines a more conductive state. The RE-
SET state, conversely is associated in this work to a null SET intensity. The current
through each of the 5120 available cells has been measured while sweeping the volt-
age across each cell, for different values of the applied programming pulses.

The one-shot programming phase does not include any iterative feedback mech-
anism to ensure that the programmed cell state is indeed the expected one. As our
goal requires the definition of nominal cell behaviours in different conductive states,
then the intensity of the applied current pulse does not provide a good measure
of the actual state. We have therefore classified the cell behaviour according to the
features of the obtained I(V) curves themselves, disregarding the intensity of the
programming pulse. Indeed, similar I(V) curves could be obtained by a cell pro-
grammed with a low-intensity pulse which in reality acts stronger than intended, or
a high-intensity pulse whose result is particularly weak.

Therefore, typical behaviours of ideal PCM cells are obtained by observing all
the curves at a fixed voltage Vre f , quantizing the current axis I around a set of ref-
erence currents Ire f = {I(0)re f , . . . , I(L−1)

re f } and averaging all the cells belonging to the
same quantization bin to obtain the typical behavior associated to that bin. A selec-
tion of curves obtained at different I(l)re f values is shown in Fig. 3.2. More in detail,

50 Chapter 3. Evaluation of PCM-based AIMC operations for specific applications

0.00 0.25 0.50
Normalized Frequency

60

40

20

0

20

40

60

Sp
ec

tru
m

 M
ag

ni
tu

de
 (d

B)

r
0.8
0.4
0
-0.4
-0.8

1 64 128
Sample

Ty
pi

ca
l S

ig
na

l I
ns

tan
ce

s

0.0 0.5 1.0
Sample value

0

100

101

102

De
ns

ity

Datasets
Fashion-MNIST
Spectrum-est.

(a) (b) (c) (d)

FIGURE 3.3: (a) Examples of Fashion-MNIST instances (b) Spectrums
for a selection of r with corresponding representative instances of
length 128 in 3.3. (c) Normalized histograms of input values for the
two datasets being employed. A linear scale is used in the range [0, 1]
for the vertical axis.

we define the nominal behaviour of a PCM cell as the average of all collected I/V
characteristics whose current is contained in the interval (I(l)re f − ∆I(l), I(l)re f + ∆I(l)) at

voltage Vre f , with ∆I(l)/I(l)re f = 5%. Having Vre f fixed, we then identify the program-
ming state with the value of measured current. Values have been normalized so that
applied voltages V, programming states I(l)re f and output currents I all lie in the [0, 1]
range, as shown in Fig. 3.2. In the following, we will only use this normalized data.

To obtain a numerical model of the type I(V, I(l)re f) we have interpolated the typ-
ical behaviours, extracted according to the above procedure, using a spline of order
3. The result is depicted in Fig. 3.2. This allows a reduced local complexity of the
model, while still describing accurately the features of the underlying surface. The
spline model will be here considered as our reference PCM model. At the same time,
polynomial models of arbitrary order (in the range 3 to 27) have been fitted to the
spline. Fig. 3.2 and Fig. 3.2 highlight the difference in approximation accuracy ob-
tained with different polynomial degrees. The necessity for polynomial models will
be clarified in the following section. Suffice it to say that the use of such models
within neural networks programming libraries allows the automatic differentiator
procedures to operate without concerns.

For convenience, the data, which is defined over positive values for both the ap-
plied voltage and the programming state, has been extended towards negative val-
ues along the programming axis, so that I(V,−I(l)re f) = −I(V, I(l)re f) with V, I(l)re f > 0.
Even if negative values for the programming state are not physically meaningful,
the actual hardware implementation can operate so that the contribution of a partic-
ular cell is negative on the output. A convenient side effect, is that the artificially-
introduced symmetry makes the polynomial representation more well-behaved and
reduces the number of significant coefficients, hence the computational burden.

3.2. Neural networks 51

3.2.2 Neural Training with PCM Layers

In a traditional dense layer, the core operation for the j-th neuron is hj = f (bj +

∑i wj,ixi). Aiming towards a circuital implementation where inputs are voltages, and
they are weighted by conductances programmed in different states, the expression
becomes hj = f (bj +∑i I(xi, wj,i)), where we neglect any additional term introduced
by electrical noise, programming noise or even quantization of the inputs or the
outputs.

Training a layer requires that I(xi, wj,i) is differentiable with respect to the weights
[60]. Therefore, the synapses description is in this case of polynomial type. Poten-
tially, a more physically-based model could be used as well, though as our measure-
ment data includes significant effects from the access devices surrounding the PCM
cells, we have preferred to have a unique model that could describe the behaviour
of the entire circuital block over the full voltage domain.

Two case studies will be analyzed in the following: a classification task per-
formed on the Fashion-MNIST dataset [61], and a regression problem, in which the
network has to estimate a parameter describing the spectral content of randomly
generated signal instances.

3.2.3 Results

In the following we will show numerical results on the training of neural networks
in which one layer is PCM-based. In all setups, the performance of a neural net-
work employing only conventional dense layers and having the same structure, is
used as a reference. To train the PCM-based network, the PCM synapses are al-
ways described by their polynomial model, with an arbitrarily selected degree and
by identifying L = 10 different reference currents. An initial performance metric is
thus obtained, related exclusively to the use of the polynomial. The final evaluation
is then performed on the same network, preserving the trained weights, but replac-
ing in the PCM-based layer the polynomial model with the spline one, representing
our reference model for nominal PCM devices. Since in a physical implementation
the state of a PCM cell cannot be programmed to arbitrary accuracy, we also test the
robustness of the network towards this kind of perturbation. We model the varia-
tion of the PCM state with a white gaussian noise added to the nominal values of the
weights (i.e., those suggested by training) during the final evaluation. The variance
of the weight noise is normalized to the nominal value, so that their ratio is fixed.
Clipping is then applied to ensure that the noisy weights are still within the validity
range of the numerical models.

Two different applications are shown, trying to highlight the different features of
the setups presented in this work and results are condensed in Fig. 3.4.

52 Chapter 3. Evaluation of PCM-based AIMC operations for specific applications

3.2.3.1 Fashion-MNIST Classification

The dataset is made of grayscale images of clothing articles, in a 28× 28 pixel format.
Two examples are shown in Fig. 3.3. The neural network topology being considered
has an input-flattening layer followed by a single dense layer with sigmoid acti-
vation functions and 10 output nodes. The loss function is the sparse categorical
cross-entropy. While the conventional reference network has no constraints on the
weights, in the PCM-based one we have introduced a “bathtub” regularization to
force them within the [0, 1] range. This implies a physical realization requiring only
positively-contributing PCM synapses on each layer output.

To assess the performance we use here the accuracy defined as the correct clas-
sification rate. Analyzing the results shown in Fig. 3.4, a monotonic trend is clear,
with networks trained on a high-order polynomial model almost matching the per-
formance of the reference network.

The fact that the weights obtained by training a low-order polynomial, as that
depicted in Fig. 3.2 is already sufficient to solve the classification task with ∼ 0.78
accuracy has been associated to the statistical distribution of pixel intensities. Being
their density concentrated around the extremes of the available range, as shown in
Fig. 3.3, the inherent nonlinearity of the models is not significantly excited. The
model feature that matters is that their output is different for low and high input
values. Both the spline and polynomials being employed possess such a feature,
resulting in a limited performance drop with respect to the reference case.

The application of noise on the trained weights only becomes significant around
10% relative standard deviation, with a performance loss still within 3.5% of the
noiseless setup. State-of-the-art iterative programming techniques of the physical
devices may indeed be able to achieve such a level of programming accuracy [62],
[63].

3.2.3.2 Spectral Estimation Regression

The second task being evaluated is a regression problem artificially constructed so
that the nonlinearity of the PCM I-V characteristic can be excited even more.

The problem is that of estimating the properties of the Fourier-spectrum of ran-
dom signal instances. Signals are characterized by a given a value −1 < r < 1, such
as a signal profile is high-pass for −1 < r < 0, flat/white for r = 0 and low-pass for
0 < r < 1. Examples of spectra for different values of r are shown in Fig. 3.3, with
corresponding representative signal instances depicted in Fig. 3.3. Further details
are provided in [20].

Given a value for r, signals can be generated by computing instances of a multi-
variate gaussian distribution N (0, K). Inverting the relationship between the power
spectrum and r is not possible, and the neural network has to estimate it by looking
at each signal instance and providing an answer in the [−1, 1] range.

3.3. Structural health monitoring 53

0 10 2 10 1 100
0.7

0.8

0.9

Ac
cu

ra
cy

Order
3
9
15
18

21
24
27
Ref.

0 10 2 10 1 100

Noise Relative Stddev

0.1

0.2

0.3

RM
S

Er
ro

r
Order
9
15
18
21

24
27
Ref.

(a)

(b)

FIGURE 3.4: Results for (a) Fashion-MNIST classification, and
(b) spectrum estimation regression. The black, dotted line represents
the performance obtained by a neural network employing standard
dense layers, without noise. Solid lines refer to the performance of
networks using the spline PCM model, with the weights trained on
the polynomial description of the device, and additional noise in-
cluded during the evaluation phase.

The network structure being tested operates on signal instances of 32 samples
and it has three dense layers of size 256, 256 and 1. The first two layers have
relu activation functions, while the output layer has none. The loss function is the
mean squared error, while the performance metric being observed is the root mean
squared (RMS) error. A conventional network with such a structure achieves a 0.114
RMS estimation error.

The weighting coefficients of the PCM-based layer in this case have been con-
strained in the range [-1, 1] . From an implementation point of view, this requires a
way for a PCM cell, to have a negative contribution on the sum of synapses currents,
which is widely demonstrated in literature [64], [65].

Results in Fig. 3.4 highlight a monotonic trend up to order 24, with a sudden
worsening of performance observed at 27.

The detrimental effect of the additive noise on the weights is still under control
for 10% relative standard deviation, with variations on the order of 0.014 RMS error
with respect to the noiseless setup. It is striking to observe a minimal performance
increase when weight noise is applied to the network trained on the order-27 poly-
nomial.

3.3 Structural health monitoring

In this Section, we analyze the employment of PCM cells in the context of Structural
health monitoring (SHM), exploiting PCM cells as filter banks coefficients for signal
processing. In particular, we focused the characterization on the effects of drift and
noise on the filtering accuracy, using a specific monitoring scenario. Moreover, a

54 Chapter 3. Evaluation of PCM-based AIMC operations for specific applications

dedicated filtering scheme has been developed to reduce the effects of noise in the
filters implementation.

Structural health monitoring (SHM) involves the observation and analysis of a
system over time using periodically sampled response measurements to monitor
changes to the material and geometric properties of engineering structures such as
bridges and buildings. SHM systems can be particularly helpful in assessing struc-
tural integrity to improve maintenance administration or emergency management
[66], [67]. A considerable amount of research has been conducted lately to make
vibration-based SHM techniques more and more advanced, dealing with the iden-
tification of structures with closely spaced vibration modes [68]. Recently, low-cost
sensing components, together with wireless transmission modules, have been stud-
ied to cut the costs related to the initial investment for an SHM system [69], [70].
However, frequent battery replacement is not viable when the monitored structures
are numerous and distributed over wide areas. For this reason, efficient algorithms
and smart data management strategies are gaining interest in both research and field
applications [71], [72]. AIMC could be useful in this scenario, as edge computing is
gaining interest to implement some tasks in SHM applications.

3.3.1 Identification algorithm

Consider the impulse responses bm[τ], with τ = 1, . . . , N, of one low-pass (m = 0)
and p bandpass (m = 1, . . . , p) filters such that the central frequencies of the band-
pass filters coincide with the first p resonant frequencies of a vibrating structure and
their frequency bandwidth is small compared to the distance between consecutive
modal frequencies [73], [74]. Let the coefficients of these filters be organized in col-
umn vectors bm ∈ RN . A filter bank matrix can be defined as follows:

B =
[
b0, b1, . . . , bp

]
(3.3)

Here, the term b0 encloses the coefficients of the low-pass filter that can be employed
to extract quasi-static structural features. On the other hand, the terms bm indicate
the bandpass filters used to extract different modal contributions from the accelera-
tion time response. Specifically, considering a matrix Xt such that

X = [xt,1, xt,2, . . . , xt,r] (3.4)

where xt,i are column vectors collecting the samples of the acceleration signal xi[t]
recorded at the instrumented locations i = 1, . . . , r in the time interval [t, t + N], a

3.3. Structural health monitoring 55

1 i r

B

b0

b1

bm

bpx [t]1

x [t]i

x [t]r

y [t]i,m

C
ur

va
tu

re
 in

fl
ue

nc
e

li
ne

s
M

od
e

sh
ap

es

Data acquisition Filtering Normalization1 2 3

t

1
2

3

y [t]i,0

FIGURE 3.5: Scheme of the unified algorithm.

set of decomposed signals can be calculated as

Yt = XT
t B =

y1,0[t] y1,1[t] · · · y1,p[t]
y2,0[t] y2,1[t] · · · y2,p[t]

...
...

. . .
...

yr,0[t] yr,1[t] · · · yr,p[t]

 (3.5)

The elements yi,0[t], upon changing the time variable into space (i.e., z = vt),
represent the samples of the curvature influence line of the beam at the i-th location.
Due to the Maxwell-Betti reciprocal work theorem, yi,0[z] is also the structural curva-
ture of the beam generated by a static load applied at the i-th instrumented location.
Moreover, the terms yi,m[t] with m = 1, . . . , p are the t-th samples of the m-th decou-
pled modal contributions collected at the i-th location. Therefore, the m-th column
vector of Yt, except when m = 0, is an instantaneous (the m-th) mode shape of the
instrumented structure.

Based on these concepts, the identification algorithm is deeply exposed in [74]
and it is based on the computation of 3.5. The procedure is as well schematized
in 3.5. It should be noted that the acquisition interval can be triggered to select
only the structural response referred to the vehicle passage automatically, e.g., using
the signal collected at the bridge expansion joints. The identified parameters can
be stored in each sensing node and averaged to the new incomes to improve the
robustness to recording noise. Then, the averaged parameters can be transferred to a
central unit or directly uploaded in a cloud-based platform at user-defined intervals.
Since phase information is neglected (i.e., the sign of the elements of the identified
shapes), strict synchronization is not necessary between the sensing nodes.

The filters bm[τ] should be highly selective in frequency to avoid the mixing of
different contributions that would affect the accuracy of the identified structural pa-
rameters. The procedure to generate suitable filters for the monitored structure is
described in [74].

56 Chapter 3. Evaluation of PCM-based AIMC operations for specific applications

The signals decomposition can be implemented using low-pass and high-pass fil-
ters applied recursively n times to the input signal, where n is the selected maximum
level of the wavelet transform. This implementation is known as Mallat algorithm
or FWT [75]. Specifically, the output coefficients of the wavelet packet transform
d(l)i,2k[t] and d(l)i,2k+1[t] obtained by decomposing the coefficients d(l−1)

k at the previous
level l − 1 can be calculated as

d(l)i,2k[t] = d(l−1)
k [t] ∗ ḡ0[2τ] (3.6)

d(l)i,2k+1[t] = d(l−1)
k [t] ∗ ḡ1[2τ] (3.7)

where ∗ denotes the convolution operator, k = 0, . . . , 2l−1 indicates the subband in-
dex of the obtained coefficients, and g0[τ] = ḡ0[−τ] and g1[τ] = ḡ1[−τ] are the
impulse responses of the low-pass and high-pass filters associated with a selected
wavelet function, respectively. The root of the tree d(0)0 [t] can be assumed coincident
with the discrete signal xi[t] collected at location i if the sampling frequency of the
collected signal is sufficiently high. Due to the linearity property of the convolution
operator, the decomposition of the signal shown in Equations 3.6 and 3.7 can also be
implemented as a one-step (or batch) filtering procedure using 2n equivalent filters
that produce the coefficients at the final transformation level n. These filters can be
obtained by cascading (i.e., performing recursive convolution upon upsampling the
filter at each iteration) g0[τ] and g1[τ] n times in a particular order [76]. For simplic-
ity, let G0(z) and G1(z) be g0[τ] and g1[τ] in the z-transform domain, respectively.
Due to the convolution theorem, the frequency representation of an equivalent band-
pass filter bm[τ] corresponding to the subband k = m at the transform level n can be
obtained as:

Bm(z) =
n−1

∏
l=0

Gl∗
(

z2l
)

(3.8)

where Gl∗(z) can be either G0(z) or G1(z) depending on the level l and on the desired
equivalent filter. For instance, Gl∗(z) = G0(z)∀l to generate the low-pass filter b0[τ].
In Equation 3.8, zk represents an upsampling in the time domain by a factor k, i.e.,
the upsampled filter gl∗[τ] at level l can be obtained as:

gl∗[τ] =

{
g∗
[

τ
2l

]
if τ = ξ2l , ξ ∈ Z

0 otherwise
(3.9)

where g∗[τ] is either g0[τ] or g1[τ] depending on the level l and on the desired equiv-
alent filter, and ξ is an integer value. Consequently, the number of null coefficients
of gl∗[τ] increases with l, while the number of non-zero coefficients is constant.

Each filter obtained through this procedure at level n has a bandpass range width
of Fs/2n+1, where Fs is the sampling frequency of the collected signal.

The equivalent decomposition filters were obtained by cascading Fejér-Korovkin
22 wavelet filters, and have a relatively high number of taps (i.e., 22), which generate

3.3. Structural health monitoring 57

equivalent filters that may be particularly challenging for implementations in smart
sensing nodes. For instance, considering the wavelet transform level 6, each equiva-
lent filter has 1326 taps. The low-pass and high-pass analysis filters have 4 taps, are
symmetrical (anti-symmetrical for the high-pass filter), and are formed of only two
coefficients, the higher of which is three times the lower, as shown in 3.6. Although
most equivalent filters obtained through this wavelet function are scarcely selective,
the low-pass filter, as well as some bandpass filters, are acceptable for identification
purposes, as it will be shown later. In particular, ordering the equivalent filters ob-
tained by cascading the wavelet filters in all the possible orders with an increasing
central frequency, the (2n−l + 1)-th filters are sufficiently selective, especially for low
l values (with l = 1, . . . , n). These filters have a center frequency equal to:

Fl =
Fs

2l−1 (3.10)

Sampling the structural response (i.e., selecting Fs) such that the structural reso-
nant modes have a natural frequency close to the Fl values allows the extraction of
the corresponding modal contributions.

In this study, 48 memory cells of the aforementioned testchip were programmed
in a laboratory environment to store 24 low and 24 high rbio3.1 decomposition fil-
ter coefficients. The following parameters were used in the described programming
algorithm: AMIN = 150 µA, TWAIT = 1 ms, and ∆A = 10 µA. The coefficients of each
filter were converted in conductance values bζ [η], which were then stored into spe-
cific memory cells. In particular, low filter coefficients were converted into 18 µS,
while high filter coefficients were converted into 54 µS, considering that a scale fac-
tor of 2 relates the coefficients of the high-pass and low-pass filter (see 3.6). The
initial conductance value of every filter coefficient was memorized with a maximum
tolerable error of ±5%, and the mean number of intermediate steps required to pro-
gram memory cells was 9.

An effective method for evaluating the above-mentioned long-term effects on
PCM cells is to bake the memory array in a thermal chamber for some dozens of
hours in order to accelerate the amorphization phenomena of the crystal lattice [36].
Recent studies have represented the behavior of PCM cells in time as a power model

1 2 3 4
Tap

-1

0

1

C
oe
ff
ic
ie
nt

Lowpass

Highpass

0.1768 0.5303

0.3536

1.0607

FIGURE 3.6: Reverse biortogonal 3.1 wavelet decomposition filters.

58 Chapter 3. Evaluation of PCM-based AIMC operations for specific applications

Programming LF1 HF1 LF3HF2LF2 Bake Wait

1 week 10 min 1 week 48 h 10 min 40 days 3 days

FIGURE 3.7: Observation schedule of programmed filters.

with the form [35].
The conductance of the PCM cells was observed using a current Source Meter

Unit (SMU) in the laboratory following the time schedule reported in 3.7. The filter
coefficients are collected with a sampling period of 6000 s in low sampling frequency
(LF) observation intervals, while every 0.02 s in high sampling frequency (HF) inter-
vals. Between LF2 and HF2, the memory array was baked for 48 hours at 150 ◦C
to evaluate the effects of time-related non-idealities at an ideal infinite time after
programming.

3.8 shows the conductance in time of all the monitored cells. Thin lines represent
the behavior of individual cells, while the reference power law [35], fitted to the
first two drift intervals, is represented as a thick line for high and low coefficients.
According to the power law, the coefficients recorded during the interval LF3 (i.e.,
after bake and additional 40 days at room temperature) correspond to an equivalent
observation time in the order of tens of years since programming. It is therefore
assumed that short-term drift effects have completely vanished.

The coefficients observed in the two HF intervals are used to build the 6 low-
pass (one for each transformation level) and 4 high-pass (only used in the first four
transformation levels) wavelet filters employed in this study to filter the structural
vibration response. Each filter is time-dependent due to a noise-related variability,
as the stored coefficients are affected by the aforementioned non-idealities.

As explained, the signal can be decomposed into different wavelet components
either using a set of equivalent filters corresponding to a given transformation level
(i.e., batch approach) or performing a recursive procedure. The batch approach is

High
Low

100 102 104

Time [h]

0

20

40

60

C
el

l c
on

du
ct

an
ce

 [
S

]

HF1

HF2

Bake

LF1 LF2

LF3

FIGURE 3.8: Drift of the programmed PCM cells.

3.3. Structural health monitoring 59

Current to voltage conversion

1

x [t] x [t+1] x [t+2] x [t+190]

x

G (z)

OUT

OUT

OUT

OUT

b [1]

t,i

yi,0

yi,1

yi,2

yi,3
1

G (z)0

G (z)0
2

G (z)1
2

G (z)1
2

G (z)0
4 G (z)0

8 G (z)0
16 G (z)0

32

G (z)1
4 G (z)1

8 G (z)0
16 G (z)0

32

G (z)1
4 G (z)0

8 G (z)0
16 G (z)0

32

G (z)0
4 G (z)0

8 G (z)0
16 G (z)0

32

1,1

2,1

2,2

1,2

OUT [t]1,1 OUT [t]1,2

OUT [t]2,2OUT [t]2,1

1
g [2]

xt,i

yi,0

yi,1

yi,2

yi,3

B (z)0

B (z)1

B (z)2

B (z)3

...

...

...

...

(a) (b)

(c) (d)

1
g [1]

1
g [3]

1
g [4]

0
g [2]

0
g [1]

0
g [3]

0
g [4]

01
g [1]

1
g [2]

0

00
g [1]

0
g [2]

0

1
b [2]

1
b [3]

1
b [190]

2
b [1]

2
b [2]

2
b [3]

2
b [190]

3
b [1]

3
b [2]

3
b [3]

3
b [190]

4
b [1]

4
b [2]

4
b [3]

4
b [190]

y [t]i,0

y [t]i,1

y [t]i,2

y [t]i,3

i i i i

...

...

x [t] x [t+1] x [t+2] x [t+3]i i i i

FIGURE 3.9: Filtering through the batch (a) and recursive (c) modes,
and their respective implementation in a PCM-based architecture
(b,d); in (d) the architecture of the dashed portion of (c) is represented.

represented schematically in 3.9a-b, and compared to the recursive procedure in
3.9c-d (the last figure shows only the first two levels of the transform). In this work,
the recursive implementation of the signal decomposition task on the PCM-based
architecture is proposed and compared with a batch implementation in terms of
power consumption and accuracy of the results. Both algorithms are implemented
using real observation of the filter coefficients in PCMs, collected as described in the
PCM programming section, in the laboratory. The structures of the filtering algo-
rithms were simulated in this study using the MATLAB environment. The input
signal, consisting of pre-collected structural vibration data, is sampled and filtered
using low-pass and high-pass wavelet filters in a fast wavelet transform implemen-
tation (see Equations (3.6) and (3.7)) to retrieve the signal components associated to
a wavelet decomposition level equal to n (in this case, n = 6). If a batch procedure
is adopted, the input samples are decomposed by m (in this case, m = 4) equivalent

60 Chapter 3. Evaluation of PCM-based AIMC operations for specific applications

filters whose impulse response is the inverse z-transform of Bm(z) in Equation (3.8).
In this case, the filter bank consists of NF = 4 filters, each with NT = 190 taps. The
implementation of this strategy is shown in 3.9b, where 4 WLs and 190 BLs are re-
quired. On the other hand, the recursive implementation is represented in 3.9c. The
filter bank consists of 6 layers, each of them having a different number of filters NF,
ranging from 2 to 4, with an increasing number of taps NT, ranging from 4 to 97,
with an increasing number of null values (3.9d). As illustrated in 3.9d, the coeffi-
cients of each filter are implemented in a single WL and different BLs, as every tap
must be multiplied with a different value of the input signal. If two or more filters
share the same input values (i.e., filters 1 and 2 in this case), they are programmed in
different WLs, sharing however the same BLs. Thereby, their outputs are available
at the same time and can be cast to the next filters. Between the two filter layers, a
current-to-voltage conversion is processed.

In 3.1, the features of batch and recursive approaches are summarized, together
with the number of non-zero coefficients per filter NON .

The recursive procedure has two principal advantages with respect to the mem-
orization of equivalent filters: (1) it drastically reduces the power consumption of
the sensing device, and (2) it reduces the noise effects of non-ideal PCM elements.

The performances in terms of power consumption of batch and recursive im-
plementations were compared considering the energy required to entirely process
a single input sample in both cases, neglecting the cost of current-to-voltage con-
version steps. Assuming that the energy is given by E =

∫ T
0 xS Idt, where xS is the

supplied voltage, I is a current and T is the operating time interval, the energy per
input sample E′ is

E′ =
∫ T

0
xS Idt = xSKı̄τ (3.11)

where K is the total number of taps to fully process the sample, ı̄ is the mean cell cur-
rent, and τ is the time required by the PCM array to compute a single product. As xS

and τ are equal in both implementations, the product Kı̄ is the actual energy bench-
mark. In the batch implementation, K = ∑ NF NT = 760 and ı̄ = 10.6 µA, whereas in
the recursive procedure, K = 1245 and ı̄ = 0.61 mA, thus, the power required by the
iterative strategy is only 9.43% of the power required by batch filtering, neglecting,

TABLE 3.1: Parameters of the batch and iterative filter banks.

Filter bank Layer NT NF NON

Batch I 190 4 190

Iterative

I 4 2 4
II 7 3 4
III 13 4 4
IV 25 4 4
V 49 4 4
VI 97 4 4

3.3. Structural health monitoring 61

-0.2

-0.1

0

0.1

0.2

C
oe

ff
ic

ie
nt

-0.2

-0.1

0

0.1

0.2

C
oe

ff
ic

ie
nt

-0.2

-0.1

0

0.1

0.2

C
oe

ff
ic

ie
nt

-0.2

-0.1

0

0.1

0.2

C
oe

ff
ic

ie
nt

Filter 0 Filter 1

ReferenceBatchRecursive

55 60 65
Tap

55 60 65
Tap

55 60 65
Tap

55 60 65
Tap

Filter 2

FIGURE 3.10: Noise effects on the equivalent filter for a level 6 trans-
form.

in a first approximation, the contribution of current to voltage conversion circuits.
In fact, even if the iterative implementation involves more taps than the batch pro-
cedure, the total required current is much lower as, according to Equations 3.8 and
3.9, and 3.1, a large number of coefficients are null, thus involving no current con-
sumption.

In order to compare the performance of batch and recursive implementation, 15
samples of the 4 equivalent filters used in this study were stored in PCM elements
and observed after a 48 h baking. 3.10 compares the observed interval (between tap
50 and 65) of the equivalent filter directly memorized in PCM elements (i.e., using
a batch approach, see 3.9a) with the equivalent filter obtained by convolving the
low-pass and high-pass coefficients observed in the interval HF2 according to 3.9c.
Specifically, both for the recursive and batch implementation, the filter observed at
100 different time samples collected every 0.02 s is reported (light green and magenta
spreads), together with their average (solid green and magenta lines). It is possible
to observe that the coefficients of the filter obtained through recursive implementa-
tion are closer to the reference values (i.e., the ideal filter that does not account for
the PCM non-idealities), although the spread (which represent the short-term noise)
is generally higher. The selective performance of the four filters is observable in the
frequency domain: 3.11 shows the equivalent filters obtained through a recursive
implementation before and after baking. As in the previous representation, the filter
coefficients observed at 100 different time samples are reported as spread and aver-
age lines. Although the spread increases after baking, the selective performance of
the filters is comparable.

62 Chapter 3. Evaluation of PCM-based AIMC operations for specific applications

0 0.1 0.2 0.3 0.4 0.5
Frequency

0

0.02

0.04

0.06

0.08

A
m

pl
it

ud
e

0 0.1 0.2 0.3 0.4 0.5
Frequency

0

0.02

0.04

0.06

0.08

A
m

pl
it

ud
e

(b)

(a)

Filter 0
Filter 1
Filter 2
Filter 3

FIGURE 3.11: Selected filters in the frequency domain: pre-bake (a)
and post-bake (b) environment.

3.3.2 Identification of structural parameters using PCM cells

This section presents the identification results obtained using the proposed algo-
rithm on the experimental data collected on a viaduct of the Italian A24 motorway.
Specifically, dynamic and quasi-static identification results are obtained using filters
programmed and observed in the test PCM unit. These results are obtained using
the memory cells in freshly programmed and long-term conditions, represented by
pre-and post-bake environments (i.e., the observation intervals HF1 and HF2, re-
spectively).

The viaduct, called Temperino [77]–[80], consists of a series of single-span post-
tensioned prestressed beams in a simply-supported isostatic configuration.

Since this study is aimed at investigating the usability of PCMs in structural
identification applications, the modal parameters identified using the proposed al-
gorithm and implementation technology will be compared to reference parameters
identified using a widely used algorithm for structural identification, namely, the
FDD [81]. Precisely, a traditional centralized application of the FDD is employed us-
ing 10 acceleration time histories of 1500 s collected at all the locations, subsampled
at 50 Hz. This method allows the identification of four vibration modes with natural
frequencies F̄m equal to 2.48 Hz, 5.06 Hz, 7.56 Hz, and 9.01 Hz.

In order to identify the mode shapes of the first, second, and fourth modes using
the proposed method, the signal is resampled at a frequency of 41.5 Hz. This way,
since F̄1 ≈ F3 and 4F1 ≈ 2F̄2 ≈ F̄4, the filters corresponding to a decomposition

3.3. Structural health monitoring 63

0 12
Time [s]

-4
-2
0
2
4

A
m

pl
it

ud
e

0 12
Time [s]

-4
-2
0
2
4

A
m

pl
it

ud
e

0 5
Time [s]

-2

0

2

A
m

pl
it

ud
e

0 5
Time [s]

-1

0

1

A
m

pl
it

ud
e

0 5
Time [s]

-1

0

1

A
m

pl
it

ud
e

0 5
Time [s]

-5

0

5

A
m

pl
it

ud
e

0 5
Time [s]

-5

0

5

A
m

pl
it

ud
e

0 5
Time [s]

-2

0

2
A

m
pl

it
ud

e

Filter 1Filter 0 Filter 3Filter 2

Filter 1Filter 0 Filter 3Filter 2

(a)

(b)

Reference Filtered

FIGURE 3.12: Filtered signals in pre-bake (a) and post-bake (b) envi-
ronment; filter 0 indicates the low-pass filter, while filters 1, 2, and 3,
are band-pass filters with central frequencies F1, F2, and F3, respec-
tively.

level 6, with central frequencies F3 = 2.59 Hz, F2 = 5.19 Hz, and F1 = 10.38 Hz, can be
effectively employed to extract the modal contributions associated with the modes
1, 2, and 4, respectively. It should be noted that, in this study, it is assumed that
the resonant frequencies of the structure (of a rough estimate of them) are already
known, e.g., from previous monitoring campaigns, in order to design the filters for
identification. This is a reasonable assumption since preliminary tests are usually
performed before designing a monitoring system. A low-pass filter obtained for a
decomposition level 5 is also employed to extract the quasi-static response compo-
nent with a frequency lower than Fs/26 = 0.64 Hz.

Figure 3.12 shows time windows of the filtered signals obtained using the filters
observed in the intervals HF1 and HF2 (i.e., in the pre- and post-baking environ-
ment), compared to the reference filtered signals obtained using ideal filters that do
not include the noise generated by PCM cells. Moreover, Figure 3.13 shows the error
of the filtered signal for each filter. Specifically, nRMSE represents the normalized
RMS error. The normalization is obtained by dividing both the reference and the
filtered signals by their standard deviation. It is possible to observe that the low-
pass filter is generally affected by a higher noise level and, as expected, the noise
increases in the post-bake environment. Moreover, the nRMSE of filter 1 is generally
the lowest, denoting a good quality of the extracted first modal contribution.

Although the error in the filtered signal is non-negligible, the mode shapes recon-
structed using the extracted modal contributions (3.14) are very close to the reference
ones – obtained using the traditional FDD – both for the pre- and post-bake envi-
ronments. In 3.14, the sign of mode shapes is determined using the sign identified
through the preliminary FDD-based identification. The high accuracy is confirmed

64 Chapter 3. Evaluation of PCM-based AIMC operations for specific applications

using the MAC [82], [83]. 3.15 shows that values close to 1 are obtained compar-
ing the reference and identified shapes, especially for the first two modes. Since the
identification method provides absolute values of the modal amplitudes, their sign
is determined based on the reference identified values.

It should also be noted that, although the central frequencies of the filters do
not correspond exactly to the resonant frequencies of the structure, the identification
results are in good agreement with the reference parameters. The method is there-
fore also robust to slight variations of the resonant frequencies, e.g., due to varying
temperature conditions.

Figure 3.16 shows the influence lines identified in pre- and post- bake environ-
ments. In particular, the average results are obtained considering 24 individual es-
timates computed during as many vehicle crossings. Although the estimates are
visibly affected by noise compared to the reference estimates, the maxima of the in-
fluence lines are in the right location. Also, the results obtained in the pre- and post-
bake environments are very similar to each other, denoting a good performance of
the algorithm for long-term applications. The literature has already shown that,
although the noise level can be high in quasi-static parameters, they are generally
very sensitive to structural damage. Moreover, considering a larger set of individual
estimates, the noise level would decrease.

S10
Sensor

0

0.5

1

1.5

nR
M

S
E

S10
Sensor

0

0.5

1

1.5

nR
M

S
E

(b)

(a)

Filter 0
Filter 1

Filter 2
Filter 3

S1

S1

S2

S2

S3

S3

S4

S4

S5

S5

S6

S6

S7

S7

S8

S8

S9

S9

FIGURE 3.13: Normalized root mean square error of the filtered sig-
nals in pre-bake (a) and post-bake (b) environment.

3.4. Conclusion 65

-5

5

0

5

0 403020-5 100

-5

5

0

5

0 403020-5 100

-5

5

0

5

0 403020-5 100

0

Location [m]

Location [m]

Location [m]

Reference Pre-bake id. Post-bake id.

000

FIGURE 3.14: Reference and identified mode shapes; from top to bot-
tom, output of filters 1, 2, and 3.

3.4 Conclusion

In this Chapter, an analysis of PCM devices being employed in two testcase appli-
cations has been carried out. In the first one, we have proposed a way of including
arbitrary synapse models within a neural layer, targeting specifically phase-change
memory devices. Two test setups have validated the procedure, a classification task
on the Fashion-MNIST dataset and an artificially constructed regression task. The

66 Chapter 3. Evaluation of PCM-based AIMC operations for specific applications

0

1 3

Identified Reference

0.5

2 2

M
A
C

3 1

1
1.000

0

1 3

Identified

0.5

Reference
2

M
A
C

2
3 1

10.847
0.999 1.000

0.751
0.971

(a) (b)

FIGURE 3.15: Modal assurance criterion matrices calculated between
identified and reference mode shapes in pre-bake (a) and post-bake
(b) environment.

0 10 20 30 40
Location [m]

0 10 20 30 40
Location [m]

0 10 20 30 40
Location [m]

0 10 20 30 40
Location [m]

0 10 20 30 40
Location [m]

0 10 20 30 40
Location [m]

(a)

(b)

S2

S2

S3

S3

S4

S4

Single estimates Average Reference

FIGURE 3.16: Influence lines identified in pre- bake (a) and post-bake
(b) environment for different sensor locations.

injection of noise on the trained weights has highlighted the robustness of the net-
works to a point that makes the devices promising candidates in actual circuital
implementations. Then, an identification procedure of modal and quasi-static struc-
tural parameters employing recursive filtering has been proposed, implemented
through PCM cells, that have been used for the first time in this research field. Specif-
ically, this study shows that a recursive implementation improves filter accuracy,
also reducing energy consumption. The challenges related to time-dependent non-
idealities of PCM devices are also investigated. Structural parameters identified in
two environments, showing that the PCM does not necessarily need to be freshly

3.4. Conclusion 67

programmed for SHM applications. Therefore, energy-consuming periodic repro-
gramming can be avoided, even under the effects of cells drift.

69

Chapter 4

Design and testing of an embedded
AIMC unit based on PCM cells

This Chapter presents an integrated peripheral unit interfaced to an embedded Phase-
change Memory (ePCM) macrocell, with the aim of adding Analog In-memory Com-
puting (AIMC) feature without any modifications to the internal structure of the
memory array. The testchip has been designed and manufactured in a 90-nm STMi-
croelectronics CMOS technology. The unit allows the execution of signed Multi-
ply and Accumulate (MAC) operations at the edge of the memory array exploiting
the physical characteristics of memory devices. I-V characteristic non-linearity and
transconductance time drift of PCM cells are overcome through a regulated bitline
readout circuitry with time-coded inputs, along with a drift compensation technique
based on a conductance ratio. The testing setup of the prototype is as well described,
along with a brief discussion on issues and future developments. To validate the
employment of the proposed hardware solution in the field of AIMC, measurement-
based models are exploited to emulate the prototype use in the field of Deep Neural
Networks (DNNs).

Some of the material reported in this Chapter is reused from [65], in agreement with
IEEE copyright on theses and dissertations.

4.1 AIMC unit implementation

The aim of the proposed AIMC unit is to overcome the limitations of the basic archi-
tecture illustrated in Chapter 3. The peripheral unit is interfaced with a 128-kB em-
bedded PCM (ePCM) array in a 90-nm STMicroelectronics CMOS technology, with
the purpose of executing one-step MAC operations with both signed inputs and co-
efficients. The developed testchip is mainly intended to demonstrate a readout tech-
nique for non-linearity and time drift compensation, which differs from solutions
based on empirical models and post-processing compensation [84]–[86]. Moreover,
the unit is conceived to avoid any changes of the internal structure of the memory.

70 Chapter 4. Design and testing of an embedded AIMC unit based on PCM cells

ePCM array

R
ow

 d
ec

od
er

AIMC unit

Column decoder

PC
M

WL[0]

WL[n]

PC
M

PC
M

PC
M

PC
M

PC
M

MBL[0] MBL[n]

Column
decoder

AIMC
unitDMA

pin

C
on

tr
ol

 u
ni

t

ePCM
array

Column decoderPROG & READ

PROG & READ

BL[0] BL[1] BL[m]

B
U

S

FIGURE 4.1: Left: Block diagram. Right: Simplified schematic of the
array architecture and column decoder. DMA pin is used to access
various internal analog signals.

4.1.1 Testchip structure and interface to the ePCM array

Figure 4.1 shows a simplified schematic of the 128-kB ePCM array architecture [54]
and AIMC unit interface. The AIMC unit is directly connected to the main bitlines
(MBL) and during AIMC computation standard ePCM read and program operations
are disabled. To perform MAC tasks, the AIMC unit sets the voltage of each MBL
and reads the current of the cells belonging to the addressed word line (WL). Unlike
other works [85]–[87], where MVM is performed in a single step, the proposed solu-
tion implements a MVM with multiple consecutive MACs; this requires a sequential
activation of different WLs, but prevents the row decoder from being modified, so
that the ePCM can be employed as a binary memory as well.

4.1.2 MAC computation architecture

The proposed architecture, shown in 4.2, is designed to perform a single signed
MAC operation:

Z = wj · x =
n

∑
i=1

wj,ixi (4.1)

The input array x = [x1, . . . , xn], where xi are 5-bit signed data, is stored in the
control unit. A set of DACs converts the 4-bit absolute value of each xi to analog
value Vi, while the sign bits xi,sign are directly connected to the readout circuit. Each
element wj,i of wj = [wj,1, . . . , wj,n] is expressed through a conductance gj,i for its

4.1. AIMC unit implementation 71

CR

Reference
Readout
Circuit

- +

VC1

- +

- +

-
+

START

START
VR0

VR

V1 V2 Vn
-
+

Control Unit

Ramp
Integrator

Output
Integrator

I1 I2 In

DAC DAC DAC

x1

WL[j]

g R
EF g 1 g n ePCM array

Column decoder

g S
n

g S
1

g 2 g S
2

VC2

VCn

CS
VS

VS0IREF

x2 xn

w1 w2 wn

I1 I2 InIREF Is,1 Is,2 Is,n

VREF
Readout
Circuit

Readout
Circuit

Readout
Circuit

xi,sign

FIGURE 4.2: Block diagram of the AIMC unit architecture.

magnitude, and through gS,j,i for its sign, each stored in a single PCM cell of the j-th
wordline; thus, from a functional point of view, the implementation of each weight
wj,i is:

wj,i =

gj,i if gS,j,i < gth

−gj,i if gS,j,i ≥ gth

(4.2)

where gth is the conductance threshold to encode a positive or negative weight sign.
The actual details of the device-level implementation can be found in the next Para-
graphs.

The Reference Readout Circuit sets the read voltage VREF across the reference
conductance gREF. According to Figures 4.2 and 4.3, when the START signal switches
to logic low, a current IREF = gREFVREF is integrated on capacitance CR, generating
a ramp signal VR starting from voltage VR0:

72 Chapter 4. Design and testing of an embedded AIMC unit based on PCM cells

VR(t) =
IREF

CR
t + VR0 (4.3)

The same reference read voltage VREF is applied across each weight cell gi through
n Readout Circuits. Each current Ii = giVREF is then sourced to or sunk from the
output integrator circuit according to the sign of the product wixi, which is obtained
combining the corresponding sign cell gSi value and xi,sign sign bit, as described .
Current Ii is then integrated on capacitance CS for a time window TONi , which be-
gins at the START falling edge and ends when the output VC,i of the i-th comparator
switches to logic low, i.e., when VR(t) = Vi. According to (4.3):

TONi =
(Vi − VR0)CR

IREF
=

(Vi − VR0)CR

gREFVREF
(4.4)

is the time-coded version of Vi. Summing all the n currents ±Ii, the output variation
∆VS = VS − VS0 is:

∆VS =
n

∑
i=1

[
± IiTONi

CS

]
=

CR

CS

n

∑
i=1

[
± gi

gREF
(Vi − VR0)

]
(4.5)

Considering Vi − VR0 and gi/gREF as the absolute values of xi and wi, respec-
tively, one can obtain that:

∆VS =
CR

CS

n

∑
i=1

wixi =
CR

CS
Z (4.6)

is therefore proportional to the signed MAC operation Z.

4.1.3 Drift compensation

As previously discussed in Chapter 2, the drift of a generic cell conductance g(t)
has been shown to follow the power law g(t) = g0(t/t0)−α [33], where g0 is the
conductance at arbitrary initial time t0, and α is the drift coefficient, which is pos-
itive and cell-to-cell variable. The MAC result is proportional to the conductance
ratio gi/gREF, and combining the drift model of g(t) with 4.5, the MAC operation
evaluated at time t1 after t0 becomes:

∆VS(t1) =
n

∑
i=1

[
± IiTONi

CS

]
=

CR

CS

n

∑
i=1

[
± g0,i

g0,REF

(
t
t0

)−(αi−αREF)

(Vi − VR0)

]
(4.7)

where g0,i and g0,REF are the weight and reference cells conductance at t0, respec-
tively. Therefore, each resulting drift coefficient is reduced to (αi − αREF), and drift
is partially compensated. In other words, the slope of ramp VR(t) decreases accord-
ingly to the reference cell conductance drift; this leads to an increase in integration
time TONi , which compensates for the drift-induced drop of weight cells currents.

4.1. AIMC unit implementation 73

V1,Vn,VR

VR0

VS

ΔVS(1)

VS0
ΔVS(2)

TON,n

TON,1

TON,1

TON,n

VC1,VCn

t

t

t

Vn

V1

VCn

START

t

VC1

FIGURE 4.3: Sketch of waveforms showing two consecutive MAC op-
erations. The first one represents a positive MAC, while the second a
negative one.

74 Chapter 4. Design and testing of an embedded AIMC unit based on PCM cells

VM

VDD

IREF

IREF

Biasing

To ramp
integrator

VREF

+

-

M0

M1

M2
M3

M4

M5

M6

M7

M8 M9

Voltage Regulator

Current
inversion

To gREF

FIGURE 4.4: Schematic of reference readout circuit.

Moreover, the adoption of time-coded inputs TONi , along with cells being read at
fixed voltage, addresses cells I-V characteristic non-linearity issue.

4.1.4 Reference and Readout circuit with sign management

The detailed schematic of the Reference Readout Circuit is shown in Figure 4.4. The
biasing circuit along with the voltage regulator allows to read the reference cell at a
fixed reference voltage level VREF. The reference voltage VREF applied to the source
terminal of transistor M5 is generated using a voltage regulator circuit, composed of
an operational amplifier and transistor M6. Feedback from the source of transistor
M5 is provided to the non-inverting input of the amplifier, while the inverting input
is connected to VREF, which is generated from a bandgap circuit. Current mirrors
M5-M0 and M2-M3 provide voltage feedback that forces the gate-to-source voltages
of transistors M0 and M5 to be equal. Thus, neglecting voltage drop through column
decoder shown in Figure 4.1 right, reference voltage VREF is applied to the reference
cell too. The current mirroring ratio of both current mirrors is 10:1, which is the same
used between transistors M2 and M7 to provide IREF to the ramp integrator.

Figure 4.5 shows one of the n Readout Circuits. The biasing and voltage regu-
lator circuits are equal to those previously described and apply VREF to the selected
cells. Moreover, the n biasing circuits share a single voltage regulator. The current
switching and sign generator circuits allow to manage both the input and the weight
signs. Sign cell current ISi, which is the bit line current from the weight bit cell gSi, is
mirrored by current mirror M14-M15 and compared to reference current IREF, mir-
rored from reference readout circuit to M13 by means of voltage VM. The result of
the current comparison is a logic signal wi,sign that represents the sign of wi. When
ISi < IREF, this being indicative of a positive sign, wi,sign voltage value is logic low.
Whereas, when ISi > IREF (i.e., a negative sign), wi,sign is logic high. wi,sign is then

4.2. Testchip implementation and control 75

VM

VDD VDD

Ii

Ii

xi,signVCi

Sign
Generator

Current
Switching

To output
integrator

wi,sign

VREF

+

-

M0

M1

M2
M3

M4

M5

M6

M7

Biasing

Voltage Regulator

M10

M8 M9

M12

M11

M13

M14 M15

M16

Is,i

IREF

To gi

Is,i

To gs,i

FIGURE 4.5: Schematic of the cells readout circuit, with sign genera-
tion system.

combined with the sign bit xi,sign to produce a control signal applied to transistors
M10 and M11 of the current switching circuit. Thus, the sign of the multiplication,
as summarized in the Table 4.1, determines the direction of current Ii applied to the
integrator.

4.2 Testchip implementation and control

The testchip includes a single 128-kB ePCM array interfaced with the AIMC unit,
and it is mainly intended to validate the proposed drift compensation technique. In
this first prototype, the dimension of the input and coefficient arrays is n = 12. Cir-
cuits have been designed with VDD = 1.2 V and VREF = 0.3 V, leading to PCM cells
currents ranging from hundreds of nA to 10 µA. The minimum time required to per-
form a single MAC operation is 150 ns, and depends on the reference conductance
value, as shown in (4.4), while the maximum output voltage ∆VMAX

S is ±400 mV.
An additional 5-V power supply is used for the DMA output buffer (later ex-

plained), whereas a 1.203-V bandgap voltage is employed to generate the analog
voltages of the input signals DACs, and it is conveyed to a voltage buffer, so that no

TABLE 4.1: Inputs and coefficients signs management.

wi,sign xi,sign xiwi

0 0 > 0
0 1 < 0
1 0 < 0
1 1 > 0

76 Chapter 4. Design and testing of an embedded AIMC unit based on PCM cells

FIGURE 4.6: Layout of the whole testchip, including both AIMC unit
and PCM IP.

FIGURE 4.7: Detailed layout of the AIMC unit; the PCM IP is not
shown.

current is absorbed by the external generator towards the circuit. The layout of the
testchip is reported in Figures 4.6 and 4.7, where the ePCM is included as well.

4.2.1 Digital interface

A digital and interface unit was designed to perform the following functions:

• Storage of the binary data which, once converted to analog, constitute the in-
put voltage values to the calculation modules;

• Storage of the configuration bits of the test units;

• Interface the AIMC unit with the external environment, thus propagating the
external digital signals that coordinate the operation of the analog circuits
within the unit.

4.2. Testchip implementation and control 77

FIGURE 4.8: Connection between the 1.2-V internal signals and the
DMA output pin. The estimated DMA pad capacitance and resistance
too are shown.

The read and write procedures of the AIMC registers are compliant with the
AMBA AHB protocol, as it is used in the STMicroelectronics testchip data-bus and
address-bus. The read operation is used to access the contents of both the user and
configuration registers. To access the AIMC registers, on the edge of the system
clock a write enable signal must be logic low, a selection signal must be logic high,
together with a valid address. Read access to the registers is performed at each clock
cycle, with the address sampled on the rising edge of the clock. Read access to the
registry can be done at 1-clock cycle speed. To write the AIMC registers, a write
enable and a selection signal must be high on the edge of the system clock, and an
address must be valid. Read access to the memory is performed at each clock cycle
with the address sampled on the rising edge of the clock and the data are available
on the data bus on the next clock cycle. The clock frequency is equal to 25 MHz.

4.2.2 Digital-to-analog converters

The input D/A converters have been designed using a series of complementary
pass-transistors, which deliver to the AIMC unit input voltages Vi, in a range of
200-575 mV with a resolution of 25 mV. The size of the input strings is 4-bit, there-
fore the possible output voltage levels are equal to 16. The D/A converters also
provide the input sign bits to the single analog cell without the need to convert it,
accordingly with the aforementioned circuital implementation. The resistor divider
that generates the analog input voltages is powered with the bandgap voltage; the
resistors have been sized so that the current absorbed by this branch is equal to 10
µA.

4.2.3 Design for testability

4.2.3.1 Internal signals accessibility

The design of the AIMC unit has been conceived to observe several internal nodes on
the analog DMA output pin, which is the only available output, due to the pinout
structure of the testchip. The electrical connection between the internal resources

78 Chapter 4. Design and testing of an embedded AIMC unit based on PCM cells

FIGURE 4.9: Single test conductance of the AIMC test unit. Signals
S1, ..., S4 represent the conductance programming binary string.

and the DMA pin is outlined in Figure 4.8, and it allows the selection, through an
analog multiplexer, of the internal signal to be observed. The DMA pin is accessed
through an output voltage buffer, which requires a 5-V power supply, and a 5-V pass
transistor, enabled by the control signal EN-DMA. The DMA buffer is optimized for
an input voltage range of [1.2 - 5] V approximately. The whole AIMC unit is supplied
with a VDD = 1.2 V voltage, consequently, the internal signals range between 0 and
VDD. In particular, the ramp VR and the analog inputs vary between 200 and 600 mV,
whereas the output voltage VS between 0 and 900 mV, being the output integrator
bias voltage VS0 = 450 mV (see Figure 4.2). An analog level shifter connects the 1-2
V multiplexer to the output buffer. The level shifter is composed of a 5-V pMOS
common source stage, which shifts the input signal up to the input MOS threshold
voltage.

4.2.3.2 Test unit

In order to analyze the performances of the computation technique, a test unit has
been added to the AIMC unit, with the aim of neglecting the effects of the PCM de-
vices employed as MAC coefficients and reference conductance. To do this, an array
of programmable conductances has been added to the design. The single conduc-
tance element, depicted in Figure 4.9, can be programmed among 16 conductance
levels through a 4-bit input string, which comes from the digital interface. The con-
ductance levels are obtained with the parallel-combination of four binary-weighted
conductances of values g0, 2g0, 4g0 and 8g0. The test conductances can replace
either the MAC coefficients gi and the reference conductance gREF. Consequently,
the AIMC unit can operate exploiting both test conductances and PCM elements,
through the REF-MODE and WEIGHT-MODE control bits, according to Table 4.2.
Some of the listed computation modes will be exploited in the characterization re-
sults Section.

4.2. Testchip implementation and control 79

4.2.4 Testchip control

4.2.4.1 Power-up sequence

The whole testchip activation sequence consists of the 5-V power supply activation,
followed by the 1.2-V one; after that, the bandgap voltage is supplied. To turn the
AIMC unit on, the internal power down signal is first deactivated; the reset is kept
at logic low in order to reset the initial conditions of the digital modules. When the
reset is released, it is possible to operate with the AIMC unit control signals, which
will follow the sequence illustrated in the next Paragraph.

4.2.4.2 AIMC operations control sequence

The AIMC unit operating phases have been designed so that the AIMC module does
not affect the normal execution of operations by the ePCM module. The operations
of the AIMC unit can be organized as follows:

• Memory array programming phase: the ePCM memory must be programmed
with a specific programming algorithm.

• Write (and read) of the internal digital registers: the digital inputs and the
configuration bits must be written on the digital interface registers.

• Array-circuit interfacing and execution of the calculation: the analog modules
receive the converted data from the DACs (enabled by two control signals
named ELAB and RE-INREG), as well as the power supply by the PCM cells is
enabled. Once the integrators are enabled with START signal, the calculation
is performed.

The phases and conditions imposed on the control signals are summarized in Ta-
ble 4.3, and are established by the listed control signals and their management is
entrusted to the external control of the testchip through a special evaluation board.
The switching frequency of the signals and therefore of the states has a frequency
determined by the execution of specific firmware. This frequency is estimated in the
order of 10 KHz.

TABLE 4.2: AIMC unit computation modes.

REF-MODE WEIGHT-MODE AIMC mode

0 0
Reference: test conductance
Weights: test conductances

0 1
Reference: test conductance

Weights: PCM cells

1 0
Reference: PCM cells

Weights: test conductances

1 1
Reference: PCM cells
Weights: PCM cells

80 Chapter 4. Design and testing of an embedded AIMC unit based on PCM cells

4.3 Testchip validation

4.3.1 Testing procedure

To perform automated measures on the testchip, the same GUI employed in Chapter
2 has been customized with additional features. In particular, the GUI allows the ob-
servation on DMA pin of some internal signals (power supply, VREF voltage, analog
inputs, ramp signal, and AIMC output). The software interface can be also used to
configure the digital interface, i.e., to set the AIMC inputs and control signals, and to
program the PCM cells involved in the MAC operations. An automated calibration
of the output to neglect the effects of the level shifter is also implemented. Further-
more, it is possible to execute MAC operations using either the test unit resistances
or the PCM cells. A snapshot of the GUI is reported in 4.10, while the testchip mi-
crograph is shown in Figure 4.11, where the evaluation board is depicted as well.

TABLE 4.3: AIMC unit control sequence.

State Operation Control signal conditions

Idle AIMC unit not used

ELAB = 0
START-AIMC = 0

RE-INREG = 0
EN-DMA = 0

PCM programming
ePCM cells standard

read and write operations

ELAB = 0
START-AIMC = 0

RE-INREG = 0
EN-DMA = 0

AIMC registers
configuration

Write and read operations
of AIMC testchips

ELAB = 0
START-AIMC = 0

RE-INREG = 0
EN-DMA = 0

AIMC unit to
array connection

Connection between
analog modules

and ePCM array enabled

ELAB = 1
START-AIMC = 0

RE-INREG = 1
EN-DMA = 0

Internal signal
observation

Observation of ramp,
analog inputs,
power supply)

ELAB = 0
START-AIMC = 0

RE-INREG = 1
EN-DMA = 1

AIMC MAC
computation

MAC operation enabled
(ramp and ouput

integrators enabled)

ELAB = 1
START-AIMC = 1

RE-INREG = 1
EN-DMA = 1

4.3. Testchip validation 81

FIGURE 4.10: Snapshot of the developed GUI for AIMC unit testing.

840 µm

360 µmAIMC
unit

128 kB
ePCM array

FIGURE 4.11: Die micrograph and evaluation board.

82 Chapter 4. Design and testing of an embedded AIMC unit based on PCM cells

FIGURE 4.12: Simulation and experimental characterization of the
analog level shifter.

4.3.2 Testing results

As previously mentioned, all the observable internal nodes are visible on DMA out-
put pin through the DMA buffer, whose bandwidth is limited by the internal dom-
inant pole and by the DMA pad to around 2 MHz. Consequently, signals that are
faster than approximately 0.5 µs will be limited to the buffer bandwidth. This is not a
limiting factor for what concerns the MAC accuracy evaluation, as only the starting
and the final values of VS are relevant.

Another important aspect to be considered in the testchip evaluation is the afore-
mentioned analog level shifter. This block is designed to shift its input signal up to
a quantity corresponding to the input pMOS threshold voltage Vth. This quantity is
expected to depend on the input signal itself, as shown in Figure 4.12, where it is ev-
ident that the threshold voltage Vth shows a linear dependence on the input voltage.
The experimental characterization of the level shifter has been performed measuring
on the DMA pin the analog input voltages of the AIMC unit, along with the 1.2-V
power supply; these values are reported on the x-axis of Figure 4.12, whereas on the
y-axis both simulated and measured values of both output and threshold voltages
are shown.

Measurements related to the analog inputs are reported in Figure 4.13, where
eight consecutive levels of Vi are shown. Figure 4.14 shows instead the MBL voltage
during a MAC operations, which is correctly kept at a constant VREF voltage, vali-
dating thus the readout circuit previously presented. Finally, different acquisitions
of ramp signals VR are shown in Figure 4.15, where the slope of the ramp varies in
accordance with the chosen gREF level.

4.3. Testchip validation 83

FIGURE 4.13: Measurement of the analog inputs.

FIGURE 4.14: Measurement of the reference voltage for several MAC
computations.

FIGURE 4.15: Measurement of the ramp signal with different levels
of reference conductance gREF.

84 Chapter 4. Design and testing of an embedded AIMC unit based on PCM cells

FIGURE 4.16: Waveforms showing four different MAC operations.
The results here shown are interpolated to rule out the effects of the
level shifter.

4.4 Characterization results

The AIMC performances have been evaluated in terms of MAC accuracy. The result
of the generic operation was obtained measuring on DMA pin the output voltage
∆VS, as defined in 4.5. Data were digitally converted using a 16-bit ADC available
on a dedicated evaluation board.

Measured data are then postprocessed to compensate the effects of the level
shifter, exploiting an automated interpolation based on the input analog voltages
and the 1.2-V supply, accordingly with Figure 4.12.

In the following Paragraphs, results are related to the normalized MAC output
z, defined as:

z .
=

Z
ZMAX =

w · x
max (w · x)

(4.8)

which is obtained measuring ∆VS
∆VMAX

S
. Figure 4.16 represents instead waveforms as-

sociated to two positive and two negative MAC operations. It is possible to execute
an arbitrary sequence of MAC operations exploiting the implemented GUI environ-
ment, which writes all the MAC outputs in a log file.

4.4.1 Accuracy of the AIMC unit

To evaluate the accuracy of the peripheral circuitry, without the effects of the PCM
cells non-idealities, the AIMC prototype was initially tested by performing m =

10000 random MAC operations z = [z1, . . . , zm], with zj = ∑12
i=1 wj,ixi. In this test

mode, the ePCM array cells has been replaced with the conductances of the test unit,

4.4. Characterization results 85

FIGURE 4.17: Accuracy of the AIMC unit. Left: Measured MAC op-
erations as a function of the ideal MACs, where MAC coefficients
are implemented with programmable integrated resistances. MAC
weights wi employed for the yellow (purple) data are negative (posi-
tive). Right: MAC error distributions of the two data sets.

presented in the Design for testability Section. Measurements performed on four dif-
ferent testchips are shown in Figure 4.17 (left), where the yellow curve refers to MAC
operations with negative weights, whereas the others employs positive weights. The
experimental data z are distributed around the red lines representing the ideal MAC
output zid, obtained by evaluating 4.5 with the nominal values of the integrated re-
sistors used as gi,j and gREF.

The distribution of the MAC error ε = zid − z for the two cases is reported in
Figure 4.17 (right). The accuracy of the circuit, defined as (1 − σε) [15], where σε is
the standard deviation of ε, is then equal to 98.9% for the positive-weights MACs,
and it is equal to 98.4% for the negative ones.

4.4.2 Single conductance time drift compensation

The drift compensation technique on individual cells has been tested evaluating a set
of normalized MAC outputs depending on a single weight wi. To this purpose, 960
PCM cells, belonging to 80 different WLs, have been programmed, with the iterative
algorithm developed in Chapter 2, with four different conductance levels. Then, in
accordance with 4.5, all but the i-th input xi have been set to 0, whereas xi was chosen
equal to the maximum xMAX; then, the normalized MAC output z = wi/wMAX

was measured. This operation has been repeated for all the 960 cells after T1 = 1
day, T2 = 4 days, and T3 = 7 days from initial time T0. Then, the testchip has been
baked at 85°C in a controlled climate chamber to accelerate cells drift phenomena

86 Chapter 4. Design and testing of an embedded AIMC unit based on PCM cells

FIGURE 4.18: Measured normalized outputs z after programming
(T0), T1 = 1 day, T2 = 4 days and T3 = 7 days at room temperature,
and then after B1 = 1 hour, B2 = 5 hours and B3 = 24 hours bake at
85°C. Left: constant reference current (black line); right: PCM refer-
ence current (black line). Dashed lines identify the mean measured
values, while areas borders identify the minimum and the maximum.

[88]. Measures have been repeated after B0 = 1 hour, B1 = 5 hours and B3 = 24 hours
bake.

All measurements have been performed first with a ramp signal VR generated
with a test conductance gREF constant in time, thus expecting no drift compensa-
tion (left plot of 4.18); then, VR was generated by a PCM reference cell gREF from
the array (right plot of 4.18). As expected, in the first case, normalized outputs z
tend to decrease in time under the effect of cells conductance drift, which becomes
even stronger after the bake. On the contrary, in the second case, the compensation
mechanism successfully reduces the drop of results in time, in agreement with 4.7,
keeping the four considered output levels widely separated. Nonetheless, the spread
of MAC operations belonging to the same level is unaffected by drift compensation,
as it is related to programming precision and to PCM cell-to-cell drift variability. In
this example, gREF was programmed to the second conductance level. To quantify
the effect of compensation, the normalized drift errors after 7 days at room tempera-
ture ∆z(T3) .

= z(T0)− z(T3), and after 24-hours bake ∆z(B3) .
= z(T0)− z(B3) have

been calculated for each multiplication in both uncompensated and compensated
case. Results of 4.19 show that the proposed technique keeps mean drift error under
6%, even after bake.

4.4. Characterization results 87

FIGURE 4.19: Normalized mean drift error ∆z as a function of the
PCM cells levels, in T3 (left) and B3 (right).

4.4.3 Reference cell choice and full MAC drift compensation

As previously shown, drift compensation is the main target of the described AIMC
unit and its key element consists in the use of a reference PCM cell gREF for the ramp
generation. Its level can be chosen: i) to maximize the VOUT output swing, and ii) to
compensate the drift effects on MAC operations.

The output voltage ∆VOUT can vary between ±∆VMAX
OUT , a limit determined by the

design of the output integrator. The maximum output swing, ∆VMAX
OUT , enforces an

upper bound on the maximum MAC operation, i.e., from (4.5):

∆VMAX
OUT =

kVMAX
IN

gREF

[
max

j

(
n

∑
i=1

gj,i

)]
=

kVMAX
IN

gREF

[
ngMAX

]
(4.9)

Thus, one can obtain a minimum value for gREF:

gREF ≥ k
VMAX

IN

∆VMAX
OUT

[
ngMAX

]
(4.10)

where VMAX
IN is the analog value corresponding to the maximum input xMAX. Condi-

tion (4.10) represents the worst-case constraint on gREF, as it assumes the maximum
programmable conductance gMAX for each stored weight gj,i [31]. However, in prac-
tical implementations, where the wj,i values and consequently the gj,i of the whole
array are known, the previous condition can be relaxed considering the maximum
amount of conductance per WL:

gREF ≥ k
VMAX

IN

∆VMAX
OUT

[
max

j

(
n

∑
i=1

gj,i

)]
= gmin

REF (4.11)

If the inequality in (4.11) is satisfied, all possible MAC operations are mapped
within the available output swing (as shown in the black line in Figure 4.20); other-
wise, the output voltage may saturate (as represented by the purple line). Thanks

88 Chapter 4. Design and testing of an embedded AIMC unit based on PCM cells

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

Ideal MAC

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

N
o
rm

a
li

ze
d
V

O
U

T

optimal

saturated

reduced dyn. range

FIGURE 4.20: Effects of different values for the reference conductance
gREF on the output swing of the MACs. i) optimal swing (Equation
(6)); ii) saturation due to low gREF level; iii) swing reduction induced
by PCM cells drift with constant gREF.

to the compensation technique, the first condition is maintained over time, whereas
the drift-induced random drop of MAC weights would translate into a sensible re-
duction of the output swing, as depicted by the yellow curve of Figure 4.20, with
consequent issues in any elaboration of the output.

In the proposed AIMC architecture, the value of the reference cell conductance
is crucial for the effectiveness of the drift compensation, as PCM devices tend to
assume drift coefficients with cell-to-cell variability, and a correlation to their ini-
tial conductance [31], [53], [89], both effects leading to an imperfect compensation
of the drift exponents in (4.7). The optimal value of gREF, which satisfies (6), has
been found by simulating 10000 random MAC operations z (the exact same set of
inputs and weights used in Section 4.4.1). ∆VOUT has been computed according to
the model (4.5) at time t0 with the target values of cells programming (i.e., with-
out drift), obtaining the target MAC values ẑ; then, the effects of drift have been
simulated in z(t) with (4.7), where the drift coefficient values have been taken from
a previous work [53]. Figure 4.21 depicts the MAC accuracy, already defined as
(1 − σε), as a function of the gREF

gMAX
value. Different curves refers to three considered

time intervals, i.e. 2 hours and 18 hours at room temperature, and after 24-hours
90°C bake. To simulate the condition where no compensation is adopted, the refer-
ence conductance has been kept constant in accordance with [65], letting thus MAC
operations depend on drift. It is evident that the more effective interval of values for
gREF is between ∼ [0.4 − 0.6] gMAX. The accuracy gain with respect to the uncom-
pensated case in the three considered scenarios, when drift compensation is imple-
mented with gREF

gMAX = 0.5, is 4.79, 5.38 and 7.81%.
As a final check, the same operations have been executed on the test chip, with

gREF
gMAX = 0.3, 0.5, 0.7 and 0.9. The experimental results are coherent with the numerical
simulations; in particular, the optimal level of gREF

gMAX for drift compensation is equal

4.5. Power analysis 89

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalized reference conductance

86

88

90

92

94

96

98

100

A
cc

u
ra

cy
(%

)

Setup Drift

comp.

no comp.

comp.
(measured)

2 h

18 h

bake

FIGURE 4.21: MAC accuracy as a function of gREF
gMAX . Continuous lines

refer to simulated results after 2- and 18-hours room temperature and
90°C bake drift. Dashed lines represent the MAC accuracy in the
same conditions when no compensation is adopted. Crosses report
the results of experimental evaluation of MAC accuracy for different
gREF levels.

to 0.5. The full set of MAC operations with gREF
gMAX = 0.5 is reported in Figure 4.22,

where the measured z(t) are plotted as a function of the ideal MAC zid, in the three
considered time instants. The results are also compared with the same operations
performed with no compensation. In this case, the reference conductance gREF is im-
plemented with an integrated resistance; thus, being the ramp reference current IREF

constant in time, no drift compensation is applied. The distribution of the MAC error
ε = zid − z(t) is also reported in the same figure both with and without drift com-
pensation. MAC accuracy, becomes quite constant over time when compensation is
adopted (97.7% after 2 hours and 96.8% after 14 hours at room temperature), even
after a 24-hours 90°C bake (94.8%); otherwise, its standard deviation σ(ε) tends to
increase with a consequent decrease of MAC accuracy over time (92.2%, 90.3% and
81.9%, respectively). It is evident that when no compensation is adopted, the output
swing is reduced, as previously discussed.

4.5 Power analysis

A theoretical power analysis of the analog core has been performed considering the
simulated current consumptions of each block, which are reported in Table 4.4.

The following expression summarizes the total mean current consumption ITOT

of the analog core (i.e., not considering the digital unit, the D/A converters and the
DMA buffer):

ITOT = k1 ICELL + IVR + IRAMP +
k2n
2

ICELL + nICMP + IOUT + k3nICELL (4.12)

90 Chapter 4. Design and testing of an embedded AIMC unit based on PCM cells

FIGURE 4.22: (Top) Comparison of the MAC output for compensated
and uncompensated cells (a) after 2 hours from programming, (b) af-
ter 18 hours and (c) after a 24-hours bake at 90 ◦C. (Bottom) Distribu-
tion of the MAC error ε.

where k1 = 1.05, k2 = 1.15 and k3 = 1.2 are dimensionless coefficients determined
by the current mirrors ratio employed in the readout circuits, and n = 12 is the size
of the MAC operation. Moreover, it has been assumed the inputs being at mean level
(Vi = VMAX/2 ∀i), so that the cell currents are halved. The total current ITOT is then
equal to 288 µA.

In accordance with the reference works, the energy efficiency η of the analog core
is quantified in terms of Number of Operations per Watt (OPS/W):

η =
NMAC

OP
TMACVDD ITOT

(4.13)

where NMAC
OP = 23 is the total number of elementary operations performed for a

MAC (i.e., 12 products and 11 sums), whose mean execution time is TMAC = 200 ns.
Therefore, the energy efficiency turns to be η ≃ 191 GOPS/W. This result lays
several orders of magnitude under the state of the art [46], [90]–[92], as the cur-
rent testchip has not been optimized in terms of power consumption. Nonetheless,

TABLE 4.4: Current consumption of the considered analog blocks.

Analog block Current name Mean current consumption

Single PCM cell ICELL 5 µA
Ramp integrator IRAMP 15 µA

Comparator ICMP 7 µA
Voltage regulator IVR 1 µA
Output integrator IOUT 75 µA

4.6. Challenges and perspectives 91

FIGURE 4.23: Power consumption diagram of the analog core.

some considerations can be done is sight of future developements and optimiza-
tions. In Figure 4.23 the power consumption diagram is reported. It is clear that
the most power-hungry contribution comes from PCM cells. This can be addressed
with either a lower readout voltage VREF level, and employing lower conductances
for MAC weights, though with a consequent increase of noise and drift figures, ac-
cording to Chapter 2. A considerable portion of power consumption is ascribed to
the comparators too, which have been designed to get high switching speed, so that
the MAC computation is more precise. A different strategy to encode the inputs may
be considered (e.g., with fully-digital solutions [91], [93]). Finally, the high output
integrator consumption is due to the large amount of cells currents to be integrated
on the output capacitance CS. Alternative solutions to the output integrator, as for
example a current-to-digital conversion [46] must be taken into account, also con-
sidering some related observations of the next Paragraph.

4.6 Challenges and perspectives

The current testchip represents a first prototype to demonstrate the possibility to
circuitally compensate the drift of PCM cells. The choice of integrating the cells cur-
rent to generate the analog MAC result, requires a power-hungry output integrator,
as shown in the previous Section. Furthermore, the testchip validation showed that
the integration mechanism is affected by the leakage currents of the analog core,
whose contribution affects the computation even once the MAC computation has
ended. Figures 4.24 and 4.25 show two MAC operations, where the time scale is
intentionally set to show the evolution of the output voltage after the end of the op-
erations themselves. It is evident that the output voltage keeps growing, even after

92 Chapter 4. Design and testing of an embedded AIMC unit based on PCM cells

FIGURE 4.24: Saturation of the output voltage after a positive MAC
operation.

FIGURE 4.25: Saturation of the output voltage after a negative MAC
operation.

the computation has ended, till it reaches the 1.2-V power supply. The phenomenon
manifests itself both with a positive and a negative MAC output. This is another im-
portant issue of employing the output current integrator. By analyzing the speed of
the output saturation, it is possible to estimate the leakage current being integrated
and it is equal to approximately 340 pA, which is confirmed by circuital simulations.
Consequently, this condition is particularly critical as the output must be precisely
sampled, otherwise it will be affected by an addition term. This consideration under-
lines again the necessity to differently implement the output generation, as different
schemes are available [46]. Furthermore, this output conversion chain has been de-
signed to handle MAC operations with a limited size (n = 12). However, the size
of the operations is expected to be larger for actual applications, as implemented in
state-of-the-art works [90], [91], [93], where this scheme is not suitable.

Moreover, the MAC computation time TMAC, as previously shown, depends in-
versely on the value of reference cell conductance gREF, which is time-varying to
implement drift compensation. As gREF decreases in time under the effect of drift,
TMAC tends to increase, and therefore, the number of OPS/W tends to shrink ac-
cordingly. Different approaches to implement a similar circuital drift compensation
must be then considered.

Additionally, in this first implementation, only a single PCM reference cell has
been involved in the ramp generation. As the drifting behavior of cells is purely
random, with a partial correlation to their programmed conductance level (as stated
in Chapter 2), the reference current may be generated averaging on a set of differ-
ent cells. This feature has been not yet implemented in this prototype due to layout

4.7. Application in a Deep Neural Network scenario 93

0.0 0.2 0.4 0.6 0.8 1.0

Normalized conductance
(a)

0.012

0.014

0.016

0.018

0.020

0.022

P
ro

g
ra

m
m

in
g

sp
re

a
d

st
d

d
ev

Measurements

Fit

0.0 0.2 0.4 0.6 0.8 1.0

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

M
ea

n
d

ri
ft

Uncompensated Drift

2h

18h

bake

0.0 0.2 0.4 0.6 0.8 1.0

Normalized conductance
(b)

0.02

0.03

0.04

0.05

D
ri

ft
st

d
d

ev

2h

18h

bake

0.0 0.2 0.4 0.6 0.8 1.0

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

Compensated Drift

2h

18h

bake

0.0 0.2 0.4 0.6 0.8 1.0

Normalized conductance
(c)

0.02

0.03

0.04

0.05

2h

18h

bake

FIGURE 4.26: (a) Standard deviation of the spread resulting from the
iterative programming procedure, as a function of the average con-
ductance of each programmed level. (b) Mean and standard devia-
tion of the drift-induced conductance variation for cells without com-
pensation and (c) with compensation.

constraints, but should be considered in possible next developments to better char-
acterize the proposed drift compensation technique.

4.7 Application in a Deep Neural Network scenario

4.7.1 Modeling the Conductance Variability

Validating the device and circuit performance in a (simulated) application requires a
numerical model for the device properties, namely the variability of the programmed
conductance under the effect of the iterative programming, and the conductance
drift, both with and without hardware compensation. To this end, PCM cells were
characterized by executing a MAC operation for each gj,i. To isolate a single cell,
among the 12 that determine a MAC operation, one external input Vk has been ap-
plied at a time, setting the others to 0. The AIMC output, as expressed in 4.5, then
reads:

VOUTj =
gj,k

gREF
Vk (4.14)

and depends on the single cell gj,k behavior only. The only nonzero input, Vk, was
forced to its maximum value VMAX

IN for increased accuracy.
Each individual level l can be reasonably approximated by a normal probability

density N (µ
(l)
p , σ

(l)
p), whose standard deviations is depicted in Figure 4.26 against

the mean normalized conductance. A continuous model has been fit to the data,
using the equation

σp(g) = σ0 + σ1 tanh
(

g
γ0

)
(4.15)

94 Chapter 4. Design and testing of an embedded AIMC unit based on PCM cells

The parameters σ0, σ1 and γ0 have been found by a nonlinear least squares fit using
the Levenberg-Marquardt algorithm. As negative weights are implemented map-
ping their magnitude and sign onto different devices, and assuming that only errors
on the former can be observed at the output, the model is extended towards negative
g values by setting σp(g) = σp(−g). This decision was grounded in the observation
of a similar behavior for positive and negative weights in Figure 4.17.

Conductance drift has been observed, both for compensated and uncompen-
sated cells, in the same settings described in the previous Section, i.e., after 2 hours,
18 hours and after a 24 hours bake at 90 ◦C. The mean µ

(l)
d and standard devia-

tion σ
(l)
d of the conductance variation ∆gd = g(t1) − g(t0) observed in each pro-

grammed level are shown in Figures 4.26 (b) and 4.26 (c). Note how the hardware
compensation scheme reduces the mean component of the drift by up to one order
of magnitude (for the cells which underwent a bake), while the spread of the level
is (slightly) increased. This is caused by the reference cell conductance gREF being
affected by its own variability, thus introducing an additional perturbation in the
PCM-implemented levels. The standard deviation data has been fitted by model
(4.15). Conversely, a polynomial of order 3 has been used for the error in the mean
value of the programmed level, with a saturation applied so that it does not become
positive for sufficiently low conductance values. The resulting functions µd(g) and
σd(g) are the solid lines in Figure 4.26.

The curve describing the standard deviation of an uncompensated drift in Fig-
ure 4.26 after the 24-hours bake results in a straight line. The intuitive explanation
is that conductances observed after the bake are more densely packed in the lower
half of the conductance domain, as showed in Figure 4.27. In that region the 2-hours
and 18-hours setups experience the a growth trend in standard deviation versus con-
ductance. Hence, when the drift is mapped back to the original conductance value,
right after the cells have been programmed, the trend is expanded and fills the entire
horizontal axis. Additionally, as larger values of initial conductance lead to a more
pronounced average drift, the larger mean variation determines an increase in the
spread as well, with the yellow curve overcoming the behavior of the other setups
on the upper part of the domain. As a final note, the models derived for the drift are
not continuous over time, i.e. their description only refers to the specified test condi-
tions. Furthermore, the models are extended towards negative weights by assuming
the standard deviation is an even function, i.e., σd(g) = σd(−g) and the mean as an
odd one, i.e., µd(g) = −µd(−g). This choice ensures that in any case drifts makes
the cells more resistive as time goes by.

4.7.2 PCM-Aware DNN Training and Evaluation

To evaluate the performance of the proposed variability mitigation strategies on an
actual application, a classification task on the well know CIFAR-10 dataset has been
selected as a testbench [94]. Two popular neural networks have been used, the Lenet-
5 [95] and the VGG-8 [47], having significantly different complexities, with ∼ 8× 105

4.7. Application in a Deep Neural Network scenario 95

0.0 0.2 0.4 0.6 0.8 1.0

Normalized conductance

After a
24-hours

90 °C bake

After
18 hours

After
2 hours

Initial

comp.

no comp.

FIGURE 4.27: Evolution over time of two batches of PCM devices,
programmed to a target normalized conductance of 0.35 and 0.85.
Both compensated and uncompensated cells are shown.

and ∼ 4 × 107 trainable parameters, respectively. Their implementation has been
suitably modified so that each synapse would emulate a PCM device, with the pos-
sibility of enabling conductance programming variability and drift at will.

With reference to a typical dense layer, the description of the j-th neuron output
is hj = f (bj + ∑i wj,ixi), with inputs xi, weights wj,i, bias terms bj and nonlinear
activation f (·). A PCM-based layer driven by time-encoded inputs would instead
be represented by:

hj = f

(
bj + ∑

i
k

gj,i

gREF
Vi

)
, (4.16)

where equation (4.5) has replaced the MAC in the original formulation. This same
reasoning can be trivially extended to convolutional layers and allows the definition
of a fully PCM-based DNN.

If programming noise and drift are being introduced, the elementary synapse
conductance becomes

gj,i = g = g0 + ∆gp(g0) + ∆gd(g0, ∆t) , (4.17)

where ∆gp(g0) is the programming variability, having distribution N
(
0, σp(g0)

)
and

∆gd(g0, ∆t) models the drift by drawing from a N (µd(g0, ∆t), σd(g0, ∆t)) distribu-
tion, using the models depicted in Figure 4.26

Both neural networks have been trained with the Adam optimizer [96], using the
following parameters: exponential decay rate for the 1st and 2nd moments equal to
0.9 and 0.99, and learning rate equal to 10−2 for the Lenet-5 network and 10−3 for
the VGG-8 one. Whilst training, the learning rates have been halved whenever the
process would reach a plateau for a predefined amount of epochs.

96 Chapter 4. Design and testing of an embedded AIMC unit based on PCM cells

0 2 4 6 8 10

Spread multiplier
(a)

0.50

0.55

0.60

0.65

0.70

T
es

t
a
cc

u
ra

cy

Lenet-5 training

Conventional

Device-aware

0 2 4 6 8 10

Spread multiplier
(b)

0.65

0.70

0.75

0.80

0.85

VGG-8 training

Conventional

Device-aware

FIGURE 4.28: Accuracy of the trained networks versus the program-
ming spread scaling coefficient, both for the conventional and device-
aware trainings. (a) Lenet-5 and (b) VGG-8 DNNs.

Let us first observe how the two DNNs, trained without any weight variabil-
ity, perform when the ∆gp term is introduced only at inference time. To widen the
scope of the analysis, the injected perturbation is scaled by a multiplying factor. One
reason to do it could be to relax the tolerance δg of the programming algorithm de-
scribed in Chapter 2, allowing it to converge in a lower number of iterations, speed-
ing up the initial setup of the memory or a possible refresh of its values. The dot-
ted curves in Figure 4.28 highlight the subitaneous loss of performance as soon as
noise is injected in the Lenet-5 DNN. The larger VGG-8 network, other than hav-
ing a higher accuracy, is also more resilient towards the injected perturbation. This
is thought to be the effect of the additional redundancy introduced by the larger
number of weights. The datapoint corresponding to a spread multiplier of 1 has
been highlighted, as it corresponds to the performance observed under the current
programming parameters.

To make the network aware of the programming spread affecting its weights, a
training methodology inspired by the fake quantization procedure [97] has been em-
ployed. It requires, at train time, the addition of a perturbation before the weights
are actually applied to the inputs. This obviously affects the network result, hence
the starting point of the backpropagation algorithm [60]. The weight-update process
then computes the derivative with respect to the original, nominal weights. Empiri-
cal evidence shows that this makes the network more resilient to weight variations.
The original technique was devised for the purpose of making the network robust
towards weight quantization. In that case, the properties of the injected variabil-
ity would have been dependent on the number of allowed levels. For the PCM-
based layers, instead, the injected perturbation models the programming-induced
variability, i.e., the ∆gp term in (4.17). Results in Figure 4.28 refers to DNNs trained
and evaluated with an identical spread multiplier. The performance gain is much
more pronounced for the smaller Lenet-5 than the larger VGG-8, so much so that
the former becomes implementable also on the currently available technology. At

4.7. Application in a Deep Neural Network scenario 97

3 4 5 6 7 8 9 10

No. of bits

0.5

0.6

0.7

0.8

0.9

1.0

V
a
li

d
a
ti

o
n

a
cc

u
ra

cy

vgg8

lenet5

quant.

no quant.

FIGURE 4.29: Classification accuracy when quantizing the signals ap-
plied to and read from every layer, for NNs trained to exclusively ad-
dress PCM programming spread using a multiplier of 1.

None 2 h 18 h bake

Drift time
(a)

0.50

0.55

0.60

0.65

0.70 Lenet-5 drift

comp.

no comp.

None 2 h 18 h bake

Drift time
(b)

0.5

0.6

0.7

0.8

0.9

1.0
VGG-8 drift

comp.

no comp.

FIGURE 4.30: Accuracy achieved when drift is applied to the DNN
weights at inference time, both with and without compensation. (a)
Lenet-5 and (b) VGG-8 DNNs.

a multiplier of 1, the Lenet-5 shows a 2.2% drop (69.4% down to 67.2%) in accu-
racy compared to the ideal, unperturbed, setup and a 15% increase (52.2% to 67.2%)
with respect to the conventionally-trained DNN with weight perturbation injected
at evaluation-time. This result, in conjuction with recent observations on the issues
with the IR drop in large PCM arrays [98], highlights the value of the device-aware
training technique to construct small and robust DNNs.

Indeed it has been observed how device-aware training techniques do not need
to accurately describe the variability of interest, because of an inherent ability of the
training to lead to networks robust against effect different from the perturbations
used in training [51], [99]. As an example, Fig. 4.29 shows the classification accuracy
of the two device-aware trained networks to address only PCM programming error,
but evaluated with the introduction of quantized activations between each layer.
Results prove that both networks can tolerate up to 6 bits of quantization with a

98 Chapter 4. Design and testing of an embedded AIMC unit based on PCM cells

performance degradation below 1%, while 5 bits introduce a loss around 5% points.
More severe perturbations should be explicitly addressed during the training proce-
dure [100]. In any case, the same perturbation-injection principle used in this work
could be used to address signal quantization (the original purpose of the technique)
or even the presence of parasitic elements in the analog array [99].

Having a network that can tolerate programming variability, the final step is to
observe its robustness against weight drift. Both networks, trained with a spread
multiplier of 1, have been re-evaluated by introducing the drift component of the
conductance ∆gd at inference time. From Figure 4.30 it is clear how the presence of
the hardware compensation allows the accuracy to be retained over time. The ac-
curacy gain after the 24-hours 90 ◦C bake is 36% for the Lenet-5 (even though the
corresponding point for the uncompensated evaluation falls outside the range of
the plot) and 22% for the VGG-8 DNN. While the drop with respect to the no-drift
condition is 3% and 0.2%. Still, the benefit is larger for the smaller network. How-
ever, even the VGG-8 one, which would lose significant accuracy after the 24-hours
bake, would be able to preserve its original performance with the introduction of the
hardware compensation technique.

4.8 Conclusion

In this Chapter a peripheral unit adding analog in-memory multiply and accumulate
(MAC) computing function to an embedded phase-change memory (ePCM) macro-
cell has been presented. The unit exploits an innovative readout scheme to address
non-linearity of I-V characteristic and time drift of cells conductances. The unit is
conceived to operate with signed inputs and coefficients and does not require any
modification to the internal structure of the ePCM. MAC operations are performed
with a 1-σ accuracy of 95.56which is not significantly affected in time by drift effects,
even after 24-hours bake at 85°C. The challenges and the possible future develop-
ments of this solution are discussed as well.

To evaluate the employment of the proposed hardware in a Deep Neural Net-
work (DNN) scenario, the spread and retention of the programmed conductances
have been characterized and modeled, including the effects of the proposed hard-
ware drift-compensation technique. The results have been used in a classification
task on the CIFAR-10 dataset, where a device-aware training procedure was em-
ployed to make the DNNs resilient to weight variability. The tests show that the
proposed combined techniques allows a 15% increase in accuracy for the Lenet-5
network compared to the conventionally trained one, with a marginal drop with re-
spect to the ideal reference setup. Drift compensation enables the networks to retain
accuracy over time and is especially beneficial for smaller DNNs, recovering up to
36% in accuracy compared to the uncompensated drift.

99

Chapter 5

Conclusions

In this chapter the results exposed so far will be summarized and discussed. As
already stated, a thorough characterization of PCM cells has been first carried out
to investigate their possible employment as enabling device for AIMC. Drift, dis-
persion and noise have been then analyzed in relation to memory elements pro-
grammed with a dedicated programming algorithm, showing their dependencies
on conductance targets and temperature. These results have been then employed to
evaluate PCM devices in specific applications. First, a possible use in a deep neural
network (DNN) scenario has shown a way of including arbitrary synapse models
within a neural layer. The injection of noise on the trained weights has highlighted
the robustness of the networks to a point that makes the devices promising candi-
dates in circuital implementations. Moreover, challenges related to time-dependent
non-idealities of PCM devices have been investigated in a structural health monitor-
ing (SHM) context. Structural parameters have been identified in two environments,
showing that PCM devices do not necessarily need to be freshly programmed for
this application. All these experimental activities have contributed to the design and
the development of a peripheral unit adding analog in-memory multiply and accu-
mulate (MAC) computing function to an embedded phase-change memory (ePCM)
macrocell. The unit exploits an innovative readout scheme to address non-linearity
of cells I-V characteristic and time drift of cells conductances. MAC operations are
performed with a 1 − σ accuracy of 95.56%, which is not significantly affected in
time by drift effects. Drift compensation has also been tested in DNN classification
tasks, recovering up to 36% in accuracy compared to the uncompensated case.

This research field embraces a wide spectrum of topics, thus requiring deep in-
vestigations on different subjects, from devices to circuits and to applications. Many
challenges are still open and more investigations in several fields are needed. Device
physics is currently being studied, as well as IMC architectural design and hetero-
geneous systems.

This thesis represents a first step to contribute to this topic, and establishes an
inspiring basis for next developments, providing evidence that the intersection be-
tween different disciplines and the collaboration among the community are funda-
mental to the advancement of research and technology.

101

Bibliography

[1] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou, “Mem-
ory devices and applications for in-memory computing,” Nature Nanotechnol-
ogy, vol. 15, no. 7, pp. 529–544, 2020, ISSN: 17483395. DOI: 10.1038/s41565-
020-0655-z.

[2] M. Di Ventra and Y. V. Pershin, “The parallel approach,” Nature Physics, vol. 9,
no. 4, pp. 200–202, 2013, ISSN: 17452481. DOI: 10.1038/nphys2566.

[3] S. Quqa, A. Antolini, E. F. Scarselli, et al., “Phase change memories in smart
sensing solutions for structural health monitoring,” Journal of Computing in
Civil Engineering, vol. 36, no. 4, p. 04 022 013, 2022. DOI: 10.1061/(ASCE)CP.
1943-5487.0001027.

[4] W. Haensch, T. Gokmen, and R. Puri, “The next generation of deep learn-
ing hardware: Analog computing,” Proceedings of the IEEE, vol. 107, no. 1,
pp. 108–122, 2018, ISSN: 15582256. DOI: 10.1109/JPROC.2018.2871057.

[5] W. Haensch, T. Gokmen, and R. Puri, “The Next Generation of Deep Learn-
ing Hardware: Analog Computing,” Proceedings of the IEEE, vol. 107, no. 1,
pp. 108–122, 2019, ISSN: 15582256. DOI: 10.1109/JPROC.2018.2871057.

[6] J. Pronold, J. Jordan, B. Wylie, I. Kitayama, M. Diesmann, and S. Kunkel,
“Routing brain traffic through the von neumann bottleneck: Efficient cache
usage in spiking neural network simulation code on general purpose com-
puters,” Parallel Computing, vol. 113, p. 102 952, 2022, ISSN: 0167-8191. DOI:
https://doi.org/10.1016/j.parco.2022.102952. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167819122000461.

[7] A. Kneip and D. Bol, “Impact of analog non-idealities on the design space
of 6t-sram current-domain dot-product operators for in-memory comput-
ing,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 5,
pp. 1931–1944, 2021. DOI: 10.1109/TCSI.2021.3058510.

[8] V. Seshadri, D. Lee, T. Mullins, et al., “Ambit: In-memory accelerator for bulk
bitwise operations using commodity dram technology,” in 2017 50th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2017,
pp. 273–287.

[9] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa: A dram-
based reconfigurable in-situ accelerator,” in 2017 50th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO), 2017, pp. 288–301.

https://doi.org/10.1038/s41565-020-0655-z
https://doi.org/10.1038/s41565-020-0655-z
https://doi.org/10.1038/nphys2566
https://doi.org/10.1061/(ASCE)CP.1943-5487.0001027
https://doi.org/10.1061/(ASCE)CP.1943-5487.0001027
https://doi.org/10.1109/JPROC.2018.2871057
https://doi.org/10.1109/JPROC.2018.2871057
https://doi.org/https://doi.org/10.1016/j.parco.2022.102952
https://www.sciencedirect.com/science/article/pii/S0167819122000461
https://doi.org/10.1109/TCSI.2021.3058510

102 Bibliography

[10] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A 64-tile 2.4-mb in-
memory-computing cnn accelerator employing charge-domain compute,”
IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1789–1799, 2019. DOI:
10.1109/JSSC.2019.2899730.

[11] A. Biswas and A. P. Chandrakasan, “Conv-sram: An energy-efficient sram
with in-memory dot-product computation for low-power convolutional neu-
ral networks,” IEEE Journal of Solid-State Circuits, vol. 54, no. 1, pp. 217–230,
2019. DOI: 10.1109/JSSC.2018.2880918.

[12] N. Verma, H. Jia, H. Valavi, et al., “In-memory computing: Advances and
prospects,” IEEE Solid-State Circuits Magazine, vol. 11, no. 3, pp. 43–55, 2019.
DOI: 10.1109/MSSC.2019.2922889.

[13] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and R. S.
Shenoy, “Overview of candidate device technologies for storage-class mem-
ory,” IBM Journal of Research and Development, vol. 52, no. 4.5, pp. 449–464,
2008, ISSN: 00188646. DOI: 10.1147/rd.524.0449.

[14] T. Nirschl, J. B. Philipp, T. D. Happ, et al., “Write strategies for 2 and 4-bit
multi-level phase-change memory,” Technical Digest - International Electron
Devices Meeting, IEDM, pp. 461–464, 2007, ISSN: 01631918. DOI: 10 . 1109 /
IEDM.2007.4418973.

[15] M. Le Gallo, A. Sebastian, R. Mathis, et al., “Mixed-precision in-memory com-
puting,” Nature Electronics, vol. 1, no. 4, pp. 246–253, 2018, ISSN: 25201131.
DOI: 10.1038/s41928-018-0054-8. arXiv: 1701.04279.

[16] M. Le Gallo, A. Sebastian, G. Cherubini, H. Giefers, and E. Eleftheriou, “Com-
pressed sensing with approximate message passing using in-memory com-
puting,” IEEE Transactions on Electron Devices, vol. 65, no. 10, pp. 4304–4312,
2018. DOI: 10.1109/TED.2018.2865352.

[17] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE Transac-
tions on Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005.

[18] D. L. Donoho, “Compressed sensing,” Information Theory, IEEE Transactions
on, vol. 52, no. 4, pp. 1289–1306, 2006.

[19] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing
MRI,” Signal Processing Magazine, IEEE, vol. 25, no. 2, pp. 72–82, 2008.

[20] C. Paolino, A. Antolini, F. Pareschi, et al., “Compressed sensing by phase
change memories: Coping with encoder non-linearities,” in 2021 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS), IEEE, vol. 2021-May,
2021, pp. 1–5, ISBN: 9781728192017. DOI: 10 . 1109 / ISCAS51556 . 2021 .

9401176.

https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1109/JSSC.2018.2880918
https://doi.org/10.1109/MSSC.2019.2922889
https://doi.org/10.1147/rd.524.0449
https://doi.org/10.1109/IEDM.2007.4418973
https://doi.org/10.1109/IEDM.2007.4418973
https://doi.org/10.1038/s41928-018-0054-8
https://arxiv.org/abs/1701.04279
https://doi.org/10.1109/TED.2018.2865352
https://doi.org/10.1109/ISCAS51556.2021.9401176
https://doi.org/10.1109/ISCAS51556.2021.9401176

Bibliography 103

[21] V. Joshi, M. Le Gallo, S. Haefeli, et al., “Accurate deep neural network in-
ference using computational phase-change memory,” en, Nature Communica-
tions, vol. 11, no. 1, p. 2473, May 2020, ISSN: 2041-1723. DOI: 10.1038/s41467-
020- 16108- 9. [Online]. Available: https://www.nature.com/articles/
s41467-020-16108-9 (visited on 10/22/2021).

[22] S. Bianchi, I. Muńoz-Martín, S. Hashemkhani, G. Pedretti, and D. Ielmini, “A
bio-inspired recurrent neural network with self-adaptive neurons and pcm
synapses for solving reinforcement learning tasks,” in 2020 IEEE International
Symposium on Circuits and Systems (ISCAS), 2020, pp. 1–5. DOI: 10 . 1109 /
ISCAS45731.2020.9181103.

[23] M. Baldo, E. Petroni, L. Laurin, et al., “Interaction between forming pulse and
integration process flow in epcm,” in 2022 17th Conference on Ph.D Research
in Microelectronics and Electronics (PRIME), 2022, pp. 145–148. DOI: 10.1109/
PRIME55000.2022.9816795.

[24] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and R. S.
Shenoy, “Overview of candidate device technologies for storage-class mem-
ory,” IBM Journal of Research and Development, vol. 52, no. 4-5, pp. 449–464,
2008, ISSN: 00188646. DOI: 10.1147/rd.524.0449.

[25] G. W. Burr, R. M. Shelby, C. Di Nolfo, et al., “Experimental demonstration
and tolerancing of a large-scale neural network (165,000 synapses), using
phase-change memory as the synaptic weight element,” in Technical Digest
- International Electron Devices Meeting, IEDM, vol. 2015-February, IEEE, 2015,
pp. 29.5.1–29.5.4, ISBN: 9781479980017. DOI: 10.1109/IEDM.2014.7047135.
[Online]. Available: http://ieeexplore.ieee.org/document/7047135/.

[26] A. Sebastian, M. Le Gallo, G. W. Burr, S. Kim, M. Brightsky, and E. Elefthe-
riou, “Tutorial: Brain-inspired computing using phase-change memory de-
vices,” Journal of Applied Physics, vol. 124, no. 11, 2018, ISSN: 10897550. DOI:
10.1063/1.5042413.

[27] F. Bedeschi, R. Fackenthal, C. Resta, et al., “A bipolar-selected phase change
memory featuring multi-level cell storage,” IEEE Journal of Solid-State Circuits,
vol. 44, no. 1, pp. 217–227, 2008, ISSN: 00189200. DOI: 10.1109/JSSC.2008.
2006439.

[28] F. Bedeschi, R. Fackenthal, C. Resta, et al., “A bipolar-selected phase change
memory featuring multi-level cell storage,” IEEE Journal of Solid-State Circuits,
vol. 44, no. 1, pp. 217–227, 2009, ISSN: 00189200. DOI: 10.1109/JSSC.2008.
2006439.

[29] M. Pasotti, R. Zurla, M. Carissimi, et al., “A 32-kb epcm for real-time data pro-
cessing in automotive and smart power applications,” IEEE Journal of Solid-
State Circuits, vol. 53, no. 7, pp. 2114–2125, 2018. DOI: 10.1109/JSSC.2018.
2828805.

https://doi.org/10.1038/s41467-020-16108-9
https://doi.org/10.1038/s41467-020-16108-9
https://www.nature.com/articles/s41467-020-16108-9
https://www.nature.com/articles/s41467-020-16108-9
https://doi.org/10.1109/ISCAS45731.2020.9181103
https://doi.org/10.1109/ISCAS45731.2020.9181103
https://doi.org/10.1109/PRIME55000.2022.9816795
https://doi.org/10.1109/PRIME55000.2022.9816795
https://doi.org/10.1147/rd.524.0449
https://doi.org/10.1109/IEDM.2014.7047135
http://ieeexplore.ieee.org/document/7047135/
https://doi.org/10.1063/1.5042413
https://doi.org/10.1109/JSSC.2008.2006439
https://doi.org/10.1109/JSSC.2008.2006439
https://doi.org/10.1109/JSSC.2008.2006439
https://doi.org/10.1109/JSSC.2008.2006439
https://doi.org/10.1109/JSSC.2018.2828805
https://doi.org/10.1109/JSSC.2018.2828805

104 Bibliography

[30] N. Papandreou, H. Pozidis, A. Pantazi, et al., “Programming algorithms for
multilevel phase-change memory,” Proceedings - IEEE International Symposium
on Circuits and Systems, pp. 329–332, 2011, ISSN: 02714310. DOI: 10 . 1109 /
ISCAS.2011.5937569.

[31] A. Antolini, E. Franchi Scarselli, A. Gnudi, et al., “Characterization and pro-
gramming algorithm of phase change memory cells for analog in-memory
computing,” MATERIALS, 2021. DOI: 10.3390/ma14071624.

[32] R. Jeyasingh, J. A. Chroboczek, G. Ghibaudo, M. Mouis, and H. S. Wong,
“Low frequency noise in phase change materials,” Proceedings of the IEEE
21st International Conference on Noise and Fluctuations, ICNF 2011, pp. 476–479,
2011. DOI: 10.1109/ICNF.2011.5994373.

[33] D. Ielmini, A. L. Lacaita, and D. Mantegazza, “Recovery and drift dynamics
of resistance and threshold voltages in phase-change memories,” IEEE Trans-
actions on Electron Devices, vol. 54, no. 2, pp. 308–315, 2007, ISSN: 00189383.
DOI: 10.1109/TED.2006.888752.

[34] D. Ielmini, A. L. Lacaita, and D. Mantegazza, “Recovery and drift dynamics
of resistance and threshold voltages in phase-change memories,” IEEE Trans-
actions on Electron Devices, vol. 54, no. 2, pp. 308–315, 2007. DOI: 10.1109/TED.
2006.888752.

[35] D. Ielmini and G. Pedretti, “Device and circuit architectures for in-memory
computing,” Advanced Intelligent Systems, vol. 2, no. 7, p. 2 000 040, 2020, ISSN:
2640-4567. DOI: 10.1002/aisy.202000040.

[36] F. G. Volpe, A. Cabrini, M. Pasotti, and G. Torelli, “Drift induced rigid current
shift in ge-rich gst phase change memories in low resistance state,” in 2019
26th IEEE International Conference on Electronics, Circuits and Systems (ICECS),
IEEE, 2019, pp. 418–421, ISBN: 9781728109961. DOI: 10.1109/ICECS46596.
2019.8964986.

[37] D. Ielmini, D. Sharma, S. Lavizzari, and A. L. Lacaita, “Physical mechanism
and temperature acceleration of relaxation effects in phase-change memory
cells,” in 2008 IEEE International Reliability Physics Symposium, 2008, pp. 597–
603. DOI: 10.1109/RELPHY.2008.4558952.

[38] D. Ielmini and Y. Zhang, “Analytical model for subthreshold conduction and
threshold switching in chalcogenide-based memory devices,” Journal of Ap-
plied Physics, vol. 102, no. 5, p. 054 517, 2007. DOI: 10.1063/1.2773688. eprint:
https://doi.org/10.1063/1.2773688. [Online]. Available: https://doi.
org/10.1063/1.2773688.

[39] M. Boniardi and D. Ielmini, “Physical origin of the resistance drift exponent
in amorphous phase change materials,” Applied Physics Letters, vol. 98, no. 24,
p. 243 506, 2011. DOI: 10.1063/1.3599559. eprint: https://doi.org/10.
1063/1.3599559. [Online]. Available: https://doi.org/10.1063/1.3599559.

https://doi.org/10.1109/ISCAS.2011.5937569
https://doi.org/10.1109/ISCAS.2011.5937569
https://doi.org/10.3390/ma14071624
https://doi.org/10.1109/ICNF.2011.5994373
https://doi.org/10.1109/TED.2006.888752
https://doi.org/10.1109/TED.2006.888752
https://doi.org/10.1109/TED.2006.888752
https://doi.org/10.1002/aisy.202000040
https://doi.org/10.1109/ICECS46596.2019.8964986
https://doi.org/10.1109/ICECS46596.2019.8964986
https://doi.org/10.1109/RELPHY.2008.4558952
https://doi.org/10.1063/1.2773688
https://doi.org/10.1063/1.2773688
https://doi.org/10.1063/1.2773688
https://doi.org/10.1063/1.2773688
https://doi.org/10.1063/1.3599559
https://doi.org/10.1063/1.3599559
https://doi.org/10.1063/1.3599559
https://doi.org/10.1063/1.3599559

Bibliography 105

[40] N. Ciocchini, E. Palumbo, M. Borghi, P. Zuliani, R. Annunziata, and D.
Ielmini, “Modeling resistance instabilities of set and reset states in phase
change memory with ge-rich gesbte,” IEEE Transactions on Electron Devices,
vol. 61, no. 6, pp. 2136–2144, 2014. DOI: 10.1109/TED.2014.2313889.

[41] M. Le Gallo and A. Sebastian, “An overview of phase-change memory device
physics,” Journal of Physics D: Applied Physics, 2020. DOI: 10 . 1088 / 1361 -
6463/ab7794.

[42] S. Ghazi Sarwat, T. M. Philip, C.-T. Chen, et al., “Projected mushroom
type phase-change memory,” Advanced Functional Materials, vol. 31, no. 49,
p. 2 106 547, 2021. DOI: https://doi.org/10.1002/adfm.202106547. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202106547.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/
adfm.202106547.

[43] S. Yin, Z. Jiang, J.-S. Seo, and M. Seok, “Xnor-sram: In-memory computing
sram macro for binary/ternary deep neural networks,” IEEE Journal of Solid-
State Circuits, vol. 55, no. 6, pp. 1733–1743, 2020. DOI: 10.1109/JSSC.2019.
2963616.

[44] F. Merrikh-Bayat, X. Guo, M. Klachko, M. Prezioso, K. K. Likharev, and D. B.
Strukov, “High-performance mixed-signal neurocomputing with nanoscale
floating-gate memory cell arrays,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 29, no. 10, pp. 4782–4790, 2018. DOI: 10.1109/TNNLS.
2017.2778940.

[45] P. Yao, H. Wu, B. Gao, et al., “Fully hardware-implemented memristor convo-
lutional neural network,” Nature, vol. 577, no. 7792, pp. 641–646, 2020, ISSN:
1476-4687. DOI: 10.1038/s41586-020-1942-4. [Online]. Available: https:
//doi.org/10.1038/s41586-020-1942-4.

[46] R. Khaddam-Aljameh, M. Stanisavljevic, J. Fornt Mas, et al., “Hermes-core—a
1.59-tops/mm2 pcm on 14-nm cmos in-memory compute core using 300-
ps/lsb linearized cco-based adcs,” IEEE Journal of Solid-State Circuits, vol. 57,
no. 4, pp. 1027–1038, 2022. DOI: 10.1109/JSSC.2022.3140414.

[47] X. Sun, W. S. Khwa, Y. S. Chen, et al., “Pcm-based analog compute-in-
memory: Impact of device non-idealities on inference accuracy,” IEEE Trans-
actions on Electron Devices, vol. 68, no. 11, pp. 5585–5591, 2021. DOI: 10.1109/
TED.2021.3113300.

[48] I. Muñoz-Martín, S. Bianchi, O. Melnic, A. G. Bonfanti, and D. Ielmini,
“A Drift-Resilient Hardware Implementation of Neural Accelerators Based
on Phase Change Memory Devices,” IEEE Transactions on Electron Devices,
vol. 68, no. 12, pp. 6076–6081, Dec. 2021, ISSN: 1557-9646. DOI: 10.1109/TED.
2021.3118996.

https://doi.org/10.1109/TED.2014.2313889
https://doi.org/10.1088/1361-6463/ab7794
https://doi.org/10.1088/1361-6463/ab7794
https://doi.org/https://doi.org/10.1002/adfm.202106547
https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202106547
https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202106547
https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202106547
https://doi.org/10.1109/JSSC.2019.2963616
https://doi.org/10.1109/JSSC.2019.2963616
https://doi.org/10.1109/TNNLS.2017.2778940
https://doi.org/10.1109/TNNLS.2017.2778940
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1109/JSSC.2022.3140414
https://doi.org/10.1109/TED.2021.3113300
https://doi.org/10.1109/TED.2021.3113300
https://doi.org/10.1109/TED.2021.3118996
https://doi.org/10.1109/TED.2021.3118996

106 Bibliography

[49] S. Kariyappa, H. Tsai, K. Spoon, et al., “Noise-Resilient DNN: Tolerating
Noise in PCM-Based AI Accelerators via Noise-Aware Training,” IEEE Trans-
actions on Electron Devices, vol. 68, no. 9, pp. 4356–4362, Sep. 2021, ISSN:
1557-9646. DOI: 10.1109/TED.2021.3089987.

[50] A. Chen, S. Ambrogio, P. Narayanan, et al., “Enabling High-Performance
DNN Inference Accelerators Using Non-Volatile Analog Memory (Invited),”
in 2020 4th IEEE Electron Devices Technology & Manufacturing Conference
(EDTM), Penang, Malaysia: IEEE, Apr. 2020, pp. 1–4, ISBN: 9781728125398.
DOI: 10 . 1109 / EDTM47692 . 2020 . 9117896. [Online]. Available: https : / /
ieeexplore.ieee.org/document/9117896/ (visited on 12/12/2022).

[51] V. Joshi, M. Le Gallo, and S. Haefeli, “Accurate deep neural network inference
using computational phase-change memory,” Nat Commun 11, 2473, 2020.
DOI: 10.1038/s41467-020-16108-9.

[52] R. Bruce, S. G. Sarwat, I. Boybat, et al., “Mushroom-Type phase change mem-
ory with projection liner: An array-level demonstration of conductance drift
and noise mitigation,” in 2021 IEEE International Reliability Physics Symposium
(IRPS), Monterey, CA, USA: IEEE, Mar. 2021, pp. 1–6, ISBN: 9781728168937.
DOI: 10 . 1109 / IRPS46558 . 2021 . 9405191. [Online]. Available: https : / /
ieeexplore.ieee.org/document/9405191/ (visited on 12/12/2022).

[53] A. Antolini, A. Lico, E. F. Scarselli, M. Carissimi, and M. Pasotti, “Phase-
change memory cells characterization in an analog in-memory computing
perspective,” in 2022 17th Conference on Ph.D Research in Microelectronics and
Electronics (PRIME), 2022, pp. 233–236. DOI: 10.1109/PRIME55000.2022.
9816788.

[54] M. Carissimi, R. Mukherjee, V. Tyagi, et al., “2-Mb Embedded Phase Change
Memory with 16-ns Read Access Time and 5-Mb/s Write Throughput in 90-
nm BCD Technology for Automotive Applications,” ESSCIRC 2019 - IEEE
45th European Solid State Circuits Conference, pp. 135–138, 2019. DOI: 10.1109/
ESSCIRC.2019.8902656.

[55] T. Tuma, A. Pantazi, M. Le Gallo, A. Sebastian, and E. Eleftheriou, “Stochastic
phase-change neurons,” Nature Nanotechnology, vol. 11, no. 8, pp. 693–699,
2016, ISSN: 1748-3387. DOI: 10.1038/nnano.2016.70. [Online]. Available:
http://www.nature.com/articles/nnano.2016.70.

[56] A. Cabrini, S. Braga, A. Manetto, and G. Torelli, “Voltage-driven multilevel
programming in phase change memories,” Proceedings of the 2009 IEEE In-
ternational Workshop on Memory Technology, Design, and Testing, MTDT 2009,
pp. 3–6, 2009. DOI: 10.1109/MTDT.2009.11.

[57] S. Braga, A. Sanasi, A. Cabrini, and G. Torelli, “Voltage-driven partial-RESET
multilevel programming in phase-change memories,” IEEE Transactions on

https://doi.org/10.1109/TED.2021.3089987
https://doi.org/10.1109/EDTM47692.2020.9117896
https://ieeexplore.ieee.org/document/9117896/
https://ieeexplore.ieee.org/document/9117896/
https://doi.org/10.1038/s41467-020-16108-9
https://doi.org/10.1109/IRPS46558.2021.9405191
https://ieeexplore.ieee.org/document/9405191/
https://ieeexplore.ieee.org/document/9405191/
https://doi.org/10.1109/PRIME55000.2022.9816788
https://doi.org/10.1109/PRIME55000.2022.9816788
https://doi.org/10.1109/ESSCIRC.2019.8902656
https://doi.org/10.1109/ESSCIRC.2019.8902656
https://doi.org/10.1038/nnano.2016.70
http://www.nature.com/articles/nnano.2016.70
https://doi.org/10.1109/MTDT.2009.11

Bibliography 107

Electron Devices, vol. 57, no. 10, pp. 2556–2563, 2010, ISSN: 00189383. DOI: 10.
1109/TED.2010.2062185.

[58] Y. Zhang, J. Feng, Y. Zhang, et al., “Multi-bit storage in reset process of
phase-change Random Access Memory (PRAM),” Physica Status Solidi -
Rapid Research Letters, vol. 1, no. 1, 2007, ISSN: 18626270. DOI: 10 . 1002 /
pssr.200600020.

[59] F. G. Volpe, A. Cabrini, M. Pasotti, and G. Torelli, “Drift induced rigid current
shift in Ge-Rich GST phase change memories in low resistance state,” 2019
26th IEEE International Conference on Electronics, Circuits and Systems, ICECS
2019, pp. 418–421, 2019. DOI: 10.1109/ICECS46596.2019.8964986.

[60] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” en, Nature, vol. 323, no. 6088, pp. 533–536, Oct.
1986, ISSN: 1476-4687. DOI: 10.1038/323533a0. [Online]. Available: https:
//www.nature.com/articles/323533a0 (visited on 10/22/2021).

[61] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A Novel Image Dataset
for Benchmarking Machine Learning Algorithms,” arXiv:1708.07747 [cs, stat],
Sep. 2017. [Online]. Available: http://arxiv.org/abs/1708.07747 (visited
on 10/22/2021).

[62] G. F. Close, U. Frey, J. Morrish, et al., “A 256-Mcell Phase-Change Memory
Chip Operating at 2+ Bit/Cell,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 60, no. 6, pp. 1521–1533, Jun. 2013, ISSN: 1558-0806. DOI:
10.1109/TCSI.2012.2220459.

[63] A. Antolini, E. Franchi Scarselli, A. Gnudi, et al., “Characterization and Pro-
gramming Algorithm of Phase Change Memory Cells for Analog In-Memory
Computing,” en, Materials, vol. 14, no. 7, p. 1624, Mar. 2021, ISSN: 1996-1944.
DOI: 10.3390/ma14071624. [Online]. Available: https://www.mdpi.com/
1996-1944/14/7/1624 (visited on 10/22/2021).

[64] M. Le Gallo, A. Sebastian, G. Cherubini, H. Giefers, and E. Eleftheriou,
“Compressed Sensing With Approximate Message Passing Using In-Memory
Computing,” IEEE Transactions on Electron Devices, vol. 65, no. 10, pp. 4304–
4312, Oct. 2018, ISSN: 0018-9383, 1557-9646. DOI: 10.1109/TED.2018.2865352.
[Online]. Available: https://ieeexplore.ieee.org/document/8450603/
(visited on 10/22/2021).

[65] A. Antolini, A. Lico, E. Franchi Scarselli, et al., “An embedded pcm periph-
eral unit adding analog mac in memory computing feature addressing non
linearity and time drift compensation,” in 2022 IEEE 48th European Solid State
Circuit Research (ESSCIRC), 2022, pp. 1–4.

https://doi.org/10.1109/TED.2010.2062185
https://doi.org/10.1109/TED.2010.2062185
https://doi.org/10.1002/pssr.200600020
https://doi.org/10.1002/pssr.200600020
https://doi.org/10.1109/ICECS46596.2019.8964986
https://doi.org/10.1038/323533a0
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0
http://arxiv.org/abs/1708.07747
https://doi.org/10.1109/TCSI.2012.2220459
https://doi.org/10.3390/ma14071624
https://www.mdpi.com/1996-1944/14/7/1624
https://www.mdpi.com/1996-1944/14/7/1624
https://doi.org/10.1109/TED.2018.2865352
https://ieeexplore.ieee.org/document/8450603/

108 Bibliography

[66] V. Y. Tan, M. Johnson, and A. S. Willsky, “Necessary and sufficient conditions
for high-dimensional salient feature subset recovery,” in Information Theory
Proceedings (ISIT), 2010 IEEE International Symposium on, IEEE, 2010, pp. 1388–
1392.

[67] D. Zonta, B. Glisic, and S. Adriaenssens, “Value of information: impact of
monitoring on decision-making,” Structural Control and Health Monitoring,
vol. 21, no. 7, pp. 1043–1056, 2014, ISSN: 15452255. DOI: 10.1002/stc.1631.

[68] L. Qu, P. S. Routh, and P. D. Anno, “Wavelet Reconstruction of Nonuniformly
Sampled Signals,” Signal Processing Letters, IEEE, vol. 16, no. 2, pp. 73–76,
2009.

[69] H. Jo, S.-H. Sim, T. Nagayama, and B. F. Spencer, “Development and Appli-
cation of High-Sensitivity Wireless Smart Sensors for Decentralized Stochas-
tic Modal Identification,” Journal of Engineering Mechanics, vol. 138, no. 6,
pp. 683–694, 2012, ISSN: 0733-9399. DOI: 10.1061/(ASCE)EM.1943- 7889.
0000352.

[70] A. Sabato, C. Niezrecki, and G. Fortino, “Wireless MEMS-Based Accelerome-
ter Sensor Boards for Structural Vibration Monitoring: A Review,” IEEE Sen-
sors Journal, vol. 17, no. 2, pp. 226–235, 2017, ISSN: 1530-437X. DOI: 10.1109/
JSEN.2016.2630008.

[71] J. Long and O. Büyüköztürk, “A power optimised and reprogrammable sys-
tem for smart wireless vibration monitoring,” Structural Control and Health
Monitoring, vol. 27, no. 2, 2020, ISSN: 15452263. DOI: 10.1002/stc.2468.

[72] A. B. Noel, A. Abdaoui, T. Elfouly, M. H. Ahmed, A. Badawy, and M. S.
Shehata, “Structural Health Monitoring Using Wireless Sensor Networks: A
Comprehensive Survey,” IEEE Communications Surveys and Tutorials, vol. 19,
no. 3, pp. 1403–1423, 2017, ISSN: 1553877X. DOI: 10 . 1109 / COMST . 2017 .
2691551.

[73] S. Quqa, L. Landi, and P. P. Diotallevi, “Instantaneous modal identification
under varying structural characteristics: A decentralized algorithm,” Mechan-
ical Systems and Signal Processing, vol. 142, p. 106 750, 2020, ISSN: 10961216.
DOI: 10.1016/j.ymssp.2020.106750.

[74] S. Quqa, L. Landi, and P. Paolo Diotallevi, “Modal assurance distribution of
multivariate signals for modal identification of time-varying dynamic sys-
tems,” Mechanical Systems and Signal Processing, vol. 148, p. 107 136, 2021,
ISSN: 10961216. DOI: 10.1016/j.ymssp.2020.107136.

[75] S. G. Mallat, A wavelet tour of signal processing, Third edit. Academic Press,
2009, ISBN: 9780123743701. DOI: 10.1016/B978-0-12-374370-1.X0001-8.

[76] M. Vetterli and J. Kovačević, Wavelets and Subband Coding. Prentice-hall, 1995,
ISBN: 0130970808.

https://doi.org/10.1002/stc.1631
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000352
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000352
https://doi.org/10.1109/JSEN.2016.2630008
https://doi.org/10.1109/JSEN.2016.2630008
https://doi.org/10.1002/stc.2468
https://doi.org/10.1109/COMST.2017.2691551
https://doi.org/10.1109/COMST.2017.2691551
https://doi.org/10.1016/j.ymssp.2020.106750
https://doi.org/10.1016/j.ymssp.2020.107136
https://doi.org/10.1016/B978-0-12-374370-1.X0001-8

Bibliography 109

[77] A. Aloisio, R. Alaggio, and M. Fragiacomo, “Dynamic identification and
model updating of full-scale concrete box girders based on the experimental
torsional response,” Construction and Building Materials, vol. 264, p. 120 146,
2020, ISSN: 09500618. DOI: 10.1016/j.conbuildmat.2020.120146.

[78] A. Aloisio, R. Alaggio, and M. Fragiacomo, “Time-domain identification of
the elastic modulus of simply supported box girders under moving loads:
Method and full-scale validation,” Engineering Structures, vol. 215, p. 110 619,
2020, ISSN: 18737323. DOI: 10.1016/j.engstruct.2020.110619.

[79] A. Aloisio, D. P. Pasca, R. Alaggio, and M. Fragiacomo, “Bayesian estimate
of the elastic modulus of concrete box girders from dynamic identification:
A statistical framework for the a24 motorway in italy,” Structure and infras-
tructure engineering, vol. 17, no. 12, pp. 1626–1638, 2021, ISSN: 17448980. DOI:
10.1080/15732479.2020.1819343.

[80] A. Aloisio, R. Alaggio, and M. Fragiacomo, “Bending stiffness identification
of simply supported girders using an instrumented vehicle: Full scale tests,
sensitivity analysis, and discussion,” Journal of Bridge Engineering, vol. 26,
no. 1, p. 04 020 115, 2021, ISSN: 1084-0702. DOI: 10.1061/(asce)be.1943-
5592.0001654.

[81] R. Brincker, L. Zhang, and P. Andersen, “Modal identification of output-only
systems using frequency domain decomposition,” Smart materials and struc-
tures, vol. 10, no. 3, p. 441, 2001, ISSN: 09641726. DOI: 10.1088/0964-1726/
10/3/303.

[82] R. J. Allemang, “The modal assurance criterion - Twenty years of use and
abuse,” Sound and Vibration, vol. 37, no. 8, pp. 14–21, 2003, ISSN: 15410161.

[83] R. Brincker and C. Ventura, Introduction to operational modal analysis. John Wi-
ley & Sons, 2015, pp. 1–360, ISBN: 9781118535141. DOI: 10.1002/9781118535141.

[84] C. Paolino, A. Antolini, F. Pareschi, et al., “Compressed Sensing by Phase
Change Memories: coping with encoder non-linearities,” pp. 1–5, 2021. DOI:
10.1109/iscas51556.2021.9401176.

[85] X. Sun, W. S. Khwa, Y. S. Chen, et al., “PCM-Based Analog Compute-In-
Memory: Impact of Device Non-Idealities on Inference Accuracy,” IEEE
Transactions on Electron Devices, vol. 68, no. 11, pp. 5585–5591, 2021, ISSN:
15579646. DOI: 10.1109/TED.2021.3113300.

[86] R. Khaddam-Aljameh, M. Stanisavljevic, J. Fornt Mas, et al., “HERMES Core-
A 14nm CMOS and PCM-based In-Memory Compute Core using an array of
300ps/LSB Linearized CCO-based ADCs and local digital processing,” IEEE
Symposium on VLSI Circuits, Digest of Technical Papers, vol. 2021-June, 2021.
DOI: 10.23919/VLSICircuits52068.2021.9492362.

https://doi.org/10.1016/j.conbuildmat.2020.120146
https://doi.org/10.1016/j.engstruct.2020.110619
https://doi.org/10.1080/15732479.2020.1819343
https://doi.org/10.1061/(asce)be.1943-5592.0001654
https://doi.org/10.1061/(asce)be.1943-5592.0001654
https://doi.org/10.1088/0964-1726/10/3/303
https://doi.org/10.1088/0964-1726/10/3/303
https://doi.org/10.1002/9781118535141
https://doi.org/10.1109/iscas51556.2021.9401176
https://doi.org/10.1109/TED.2021.3113300
https://doi.org/10.23919/VLSICircuits52068.2021.9492362

110 Bibliography

[87] V. Joshi, M. Le Gallo, S. Haefeli, et al., “Accurate deep neural network infer-
ence using computational phase-change memory,” Nature Communications,
vol. 11, no. 1, 2020, ISSN: 20411723. DOI: 10.1038/s41467- 020- 16108- 9.
arXiv: 1906.03138.

[88] M. Pasotti, R. Zurla, M. Carissimi, et al., “A 32-KB ePCM for Real-Time Data
Processing in Automotive and Smart Power Applications,” IEEE Journal of
Solid-State Circuits, vol. 53, no. 7, pp. 2114–2125, 2018, ISSN: 00189200. DOI:
10.1109/JSSC.2018.2828805.

[89] M. Boniardi and D. Ielmini, “Physical origin of the resistance drift exponent
in amorphous phase change materials,” in AIP Applied Physics Letters, 2011.
DOI: 10.1063/1.3599559.

[90] C.-X. Xue, J.-M. Hung, H.-Y. Kao, et al., “16.1 a 22nm 4mb 8b-precision reram
computing-in-memory macro with 11.91 to 195.7tops/w for tiny ai edge
devices,” in 2021 IEEE International Solid- State Circuits Conference (ISSCC),
vol. 64, 2021, pp. 245–247. DOI: 10.1109/ISSCC42613.2021.9365769.

[91] H. Jia, M. Ozatay, Y. Tang, et al., “15.1 a programmable neural-network in-
ference accelerator based on scalable in-memory computing,” in 2021 IEEE
International Solid- State Circuits Conference (ISSCC), vol. 64, 2021, pp. 236–238.
DOI: 10.1109/ISSCC42613.2021.9365788.

[92] M. E. Sinangil, B. Erbagci, R. Naous, et al., “A 7-nm compute-in-memory
sram macro supporting multi-bit input, weight and output and achieving
351 tops/w and 372.4 gops,” IEEE Journal of Solid-State Circuits, vol. 56, no. 1,
pp. 188–198, 2021. DOI: 10.1109/JSSC.2020.3031290.

[93] R. Khaddam-Aljameh, M. Stanisavljevic, J. F. Mas, et al., “Hermes core –
a 14nm cmos and pcm-based in-memory compute core using an array of
300ps/lsb linearized cco-based adcs and local digital processing,” in 2021
Symposium on VLSI Technology, 2021, pp. 1–2.

[94] A. Krizhevsky, “Learning multiple layers of features from tiny images,” Tech.
Rep., 2009.

[95] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998, ISSN: 00189219. DOI: 10 . 1109 / 5 . 726791. [Online].
Available: http://ieeexplore.ieee.org/document/726791/ (visited on
10/14/2022).

[96] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980 [cs], 2017. [Online]. Available: http://arxiv.org/abs/1412.
6980 (visited on 02/11/2022).

https://doi.org/10.1038/s41467-020-16108-9
https://arxiv.org/abs/1906.03138
https://doi.org/10.1109/JSSC.2018.2828805
https://doi.org/10.1063/1.3599559
https://doi.org/10.1109/ISSCC42613.2021.9365769
https://doi.org/10.1109/ISSCC42613.2021.9365788
https://doi.org/10.1109/JSSC.2020.3031290
https://doi.org/10.1109/5.726791
http://ieeexplore.ieee.org/document/726791/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Bibliography 111

[97] V. Peluso and A. Calimera, “Energy-driven precision scaling for fixed-point
convnets,” in 2018 IFIP/IEEE International Conference on Very Large Scale In-
tegration (VLSI-SoC), 2018, pp. 113–118. DOI: 10 . 1109 / VLSI - SoC . 2018 .
8644902.

[98] D. Ielmini, N. Lepri, P. Mannocci, and A. Glukhov, “Status and challenges
of in-memory computing for neural accelerators,” in 2022 International Sym-
posium on VLSI Technology, Systems and Applications (VLSI-TSA), Hsinchu,
Taiwan: IEEE, 2022, pp. 1–2, ISBN: 9781665409230. DOI: 10 . 1109 / VLSI -
TSA54299.2022.9770972. [Online]. Available: https://ieeexplore.ieee.
org/document/9770972/ (visited on 10/14/2022).

[99] Z. He, J. Lin, R. Ewetz, J.-S. Yuan, and D. Fan, “Noise Injection Adaption: End-
to-End ReRAM Crossbar Non-ideal Effect Adaption for Neural Network
Mapping,” in Proceedings of the 56th Annual Design Automation Conference
2019, ser. DAC ’19, New York, NY, USA: Association for Computing Machin-
ery, Jun. 2019, pp. 1–6, ISBN: 9781450367257. DOI: 10.1145/3316781.3317870.
[Online]. Available: https://doi.org/10.1145/3316781.3317870 (visited
on 12/12/2022).

[100] A. Bhattacharjee, L. Bhatnagar, and P. Panda, “Examining and Mitigating the
Impact of Crossbar Non-idealities for Accurate Implementation of Sparse
Deep Neural Networks,” in 2022 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), ISSN: 1558-1101, Mar. 2022, pp. 1119–1122. DOI:
10.23919/DATE54114.2022.9774736.

https://doi.org/10.1109/VLSI-SoC.2018.8644902
https://doi.org/10.1109/VLSI-SoC.2018.8644902
https://doi.org/10.1109/VLSI-TSA54299.2022.9770972
https://doi.org/10.1109/VLSI-TSA54299.2022.9770972
https://ieeexplore.ieee.org/document/9770972/
https://ieeexplore.ieee.org/document/9770972/
https://doi.org/10.1145/3316781.3317870
https://doi.org/10.1145/3316781.3317870
https://doi.org/10.23919/DATE54114.2022.9774736

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction and context
	The Von Neumann bottleneck
	In-memory computing
	Context and aims
	Analog In-memory computing

	Memory devices
	Applications of AIMC
	Algebra accelerators
	Signal processing
	Artificial intelligence

	Phase-change memory technology
	Working principle
	Multilevel storage
	Issues and challenges

	State-of-the-art AIMC-based units
	A brief overview on PCM-based AIMC
	Overview of the thesis

	PCM cells characterization for analog in-memory computing
	Experimental setup
	PCM Testchip
	Implemented testing routines
	Programming pulses parameters
	Readout voltage choice

	PCM cells characterization using single-SET pulses
	Noise
	Time drift

	PCM cell characterization using multiple pulses
	Conductance tunability
	Drift-induced dispersion

	A programming algorithm for AIMC
	Time-temperature combined effect analysis
	Evolution of cells distributions
	Effects on drift coefficient
	Effects on noise

	Conclusion

	Evaluation of PCM-based AIMC operations for specific applications
	A basic approach for AIMC based on PCM cells
	Neural networks
	PCM Characterization and Numerical Modeling
	Neural Training with PCM Layers
	Results
	Fashion-MNIST Classification
	Spectral Estimation Regression

	Structural health monitoring
	Identification algorithm
	Identification of structural parameters using PCM cells

	Conclusion

	Design and testing of an embedded AIMC unit based on PCM cells
	AIMC unit implementation
	Testchip structure and interface to the ePCM array
	MAC computation architecture
	Drift compensation
	Reference and Readout circuit with sign management

	Testchip implementation and control
	Digital interface
	Digital-to-analog converters
	Design for testability
	Internal signals accessibility
	Test unit

	Testchip control
	Power-up sequence
	AIMC operations control sequence

	Testchip validation
	Testing procedure
	Testing results

	Characterization results
	Accuracy of the AIMC unit
	Single conductance time drift compensation
	Reference cell choice and full MAC drift compensation

	Power analysis
	Challenges and perspectives
	Application in a Deep Neural Network scenario
	Modeling the Conductance Variability
	PCM-Aware DNN Training and Evaluation

	Conclusion

	Conclusions
	Bibliography

