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Abstract

Nowadays, application domains such as smart cities, agriculture, or intelligent transportation, require commu-
nication technologies that combine long transmission ranges and energy efficiency to fulfill a set of capabilities
and constraints to rely on. In addition, in recent years, the interest in Unmanned Aerial Vehicles (UAVs) pro-
viding wireless connectivity in such scenarios is substantially increased thanks to their flexible deployment.
The first chapters of this thesis deal with LoRaWAN and Narrowband-IoT (NB-IoT), which recent trends
identify as the most promising Low Power Wide Area Networks technologies. While LoRaWAN is an open
protocol that has gained a lot of interest thanks to its simplicity and energy efficiency, NB-IoT has been intro-
duced from 3GPP as a radio access technology for massive machine-type communications inheriting legacy
LTE characteristics. This thesis offers an overview of the two, comparing them in terms of selected per-
formance indicators. In particular, LoRaWAN technology is assessed both via simulations and experiments,
considering different network architectures and solutions to improve its performance (e.g., a new Adaptive
Data Rate algorithm). NB-IoT is then introduced to identify which technology is more suitable depending
on the application considered. The second part of the thesis introduces the use of UAVs as flying Base Sta-
tions, denoted as Unmanned Aerial Base Stations, (UABSs), which are considered as one of the key pillars
of 6G to offer service for a number of applications. To this end, the performance of an NB-IoT network are
assessed considering a UABS following predefined trajectories. Then, machine learning algorithms based
on reinforcement learning and meta-learning are considered to optimize the trajectory as well as the radio
resource management techniques the UABS may rely on in order to provide service considering both static
(IoT sensors) and dynamic (vehicles) users. Finally, some experimental projects based on the technologies
mentioned so far are presented.
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Introduction

The Internet of Things (IoT) is a system of interrelated computing devices and everyday objects which are
able to transfer data over a network without requiring human-to-human or human-to-machine interaction, by
communicating over the Internet [1]. The idea behind IoT is to revolutionize the way we live and work: smart
city or smart home applications [2], as well as smart agriculture [3] or Industry 4.0 [4], are a few among all
the possible applications. Some IoT connectivity technologies are prevalent in a specific application domain,
such as Bluetooth Low Energy in Personal Area Networks [5] and Zigbee in Home Automation systems [6].
Others, like Wi-Fi Low Power, Low Power Wide Area Networks (LPWAN) [7] and cellular systems, such as
the Long Term Evolution for Machines (LTE-M) and Narrowband-IoT (NB-IoT), have a much broader scope.
Notably, this landscape is constantly and rapidly evolving, with new technologies being regularly proposed,
and existing ones being updated and modified. This facilitates their further proliferation into new application
domains.

This thesis, at first, is dedicated to the two most promising Low Power Wide Area Network (LPWAN)
technologies [8], namely Long Range Wide Area Network (LoRaWAN) and NB-IoT. LoRaWAN has been
released by the LoRa Alliance as an open protocol in 2015 [9]. At the Physical (PHY) layer, it relies on
LoRa, a proprietary solution developed by Cycleo and later acquired by Semtech in 2012. The main benefits
of LoRaWAN consist of very low energy consumption and a large communication range, at the cost of having
a low data rate. Such characteristics make it very suitable for a lot of common use cases in smart cities and
smart agriculture. NB-IoT was introduced by 3rd Generation Partnership Project (3GPP) in Release 13 as an
alternative solution to the LPWAN technologies already available on the market (e.g., LoRaWAN). It is based
on Long Term Evolution (LTE), even though it can be considered an adaptation for low-cost Machine Type
Communications (MTC).

In the following, their main characteristics will be presented and their performance in terms of a variety
of Key Performance Indicators (KPIs), which concern both the PHY and the Medium Access Control (MAC)
layers, will be investigated. In addition, specific solutions for LoRaWAN networks, such as the introduction
of a new Adaptive Data Rate (ADR) algorithm as well an analysis of fog-based network deployments, will
be discussed. In addition, some experimental activities have been carried out while working on the topics
mentioned above. Accordingly, this thesis will present an innovative system exploiting LoRaWAN and based
on machine learning techniques able to estimate soil moisture without the need for ad-hoc sensors. It will be
shown that by exploiting the underground radio wave propagation, it is possible to extract useful information
which are sufficient to measure with a good grade of approximation the humidity of a terrain.
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After considering static scenarios with fixed terrestrial Base Stations (BSs) and ground users, the role of
Unmanned Aerial Vehicle (UAV) (a.k.a. drones) acting as flying BS (UABS) will be investigated. Nowadays,
the rising and relevance of UAVs in civil applications such as delivery, photogrammetry, monitoring, and
others, call for technology, safety, and security improvements in the UAVs’ construction technology. For
these reasons, it can be predicted an increase in the use of UAVs even in urban environments for a variety of
new applications aiming at improving citizens’ daily lives. With this perspective, multiple UAVs providing the
cellular network service for urban and rural applications could be easily envisaged. As a matter of fact, the use
of UABSs may deeply improve network performance by matching stringent requirements on communication
performance imposed by the several applications cited before, for example, by providing dedicated ground-
to-UAVs links.

After dealing with a usual NB-IoT network, in this thesis, a UAV-aided NB-IoT network will be analyzed,
by considering urban scenarios with an UABS following predefined trajectories according to the distribution
of static IoT nodes. Moreover, even though until now the usage of UABSs has been considered especially
suited for MTC and IoT links, since ground nodes are usually static (i.e., they do not change their position
over time), an important use case is provided by considering mobile users (e.g., vehicles), which makes the
exploitation of UABSs even more promising. It is indeed foreseen that beyond fifth-generation (5G) networks
will require degrees of flexibility that current technologies do not provide, thus the role of UABSs in such
networks is gaining much attention.

Therefore, the second part of the thesis is focused on vehicular users and use cases, which deeply change
the assumptions considered when dealing with static users. UABSs can support high demanding Vehicle-to-
Everything (V2X) applications, such as advanced driving [10, 11] and extended sensing [12, 13], as specified
by 3GPP [14]. To this end, the trajectory design assumes a fundamental role in order to match network
requirements, therefore machine learning-based solutions (Reinforcement Learning and Meta-Learning) will
be presented in order to address such problems. The use of machine learning algorithms outperforms standard
optimization tools when dealing with complex problems which would require deep simplifications, such as
the one proposed in the following.

Besides the trajectory design, another important problem that will be considered is the design of efficient
Radio Resource Management (RRM) schemes when dealing with UAV-aided network. As a matter of fact,
proper coordination between the terrestrial BSs and flying UABSs must be carefully conceived in order to
guarantee optimal performance.

The remainder of the thesis is organized as follows. Chapter 1 focuses on LoRaWAN by providing a
description of the technology as well as a literature overview; after this, a full analysis of the performance
LoRaWAN network is provided, in usual cloud-based scenarios as well as fog-based ones. At the same time,
a new ADR algorithm is presented and compared with the standard solution. Chapter 2 provides an overview
of the NB-IoT technology as well as a detailed comparison with LoRaWAN. In Chapter 3, the focus moves
towards the use of UABS in a NB-IoT network, by offering insights on the use of a moving BS and the
improvement offered in terms of network performance by addressing different UABS predefined trajectories
and varying different network parameters. Chapter 4 is focused on the design of trajectories for UABSs
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by exploiting Reinforcement Learning (RL)-based and meta-learning-based techniques and addressing the
possibility of having moving vehicles in an urban scenario. Chapter 5 is then dedicated to the study of
RRM techniques for UABS-aided networks. Finally, Chapter 18 concludes the thesis. In the Appendix,
the experimental activity related to the deployment of the Sensing-without-Sensors system for soil moisture
estimation is described.
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Chapter 1

LoRaWAN

1.1 Introduction

In large-scale IoT networks, long-range connectivity and energy efficiency are challenging requirements,
which have been met by LPWAN technologies, such as LoRaWAN, NB-IoT [15], SigFox [16]. Such net-
works combine a long battery life and wide coverage, at the cost of a low bit rate. Among those, LoRaWAN
is deemed as one of the most promising, being relatively flexible and straightforward, both technology- and
business-wise [17, 18]. In a LoRaWAN network, End Devices (EDs), representing IoT nodes (e.g., sensors or
actuators), send packets to Gateways (GWs), which forward them to a Network Server (NS) they are connected
to via Internet (e.g., using WiFi, 4G/5G, Ethernet, etc.). The NS serves as a centralized entity, responsible for
network upkeeping.

At the physical layer, LoRaWAN relies on LoRa, which is a proprietary physical layer solution patented
by Semtech Corporation1, while the MAC and network layers have been defined by the LoRa Alliance2 in the
respective specifications [9]. The LoRa modulation is based on chirp spread spectrum, which exploits chirps
whose frequency increases or decreases linearly over a certain amount of time.

LoRaWAN EDs mainly operate in license-free industrial, scientific and medical (ISM) bands, whose avail-
ability and usage conditions somewhat differ for various regions of the globe [19]. Specifically, in the EU,
the most widespread implementation is based on the 863-870 MHz ISM band, even though a version of LoRa
working at 2.4 GHz is gaining much attention [20].

First, this chapter proposes the architecture of a new LoRaWAN simulator, LoRaWANSim, which has been
released as open access, that integrates both MAC layer and PHY layer functionalities. Second, original results
obtained by means of the simulator are provided, which give an insight into the performance of LoRaWAN
and the impact of different network setups.

As for the simulator itself, the novelty of the approach lies in the integration of two separate simulators,
namely, the MAC layer simulator and the PHY layer simulator, which interact with each other at run-time.
In particular, the PHY layer simulator is in charge of providing the outcome (success/failure) of every sin-

1https://www.semtech.com/lora
2https://lora-alliance.org/
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gle transmission to the MAC layer simulator, which knows who is transmitting to whom and when. This
depends on a number of aspects and parameters (e.g., experienced signal-to-noise ratio, adopted Spread-
ing Factor (SF) and Coding Rate (CR), interleaving, Gray coding, modulation/demodulation) that are accu-
rately considered/reproduced at the physical layer. This level of integration is not usual in currently avail-
able LoRaWAN simulators, as well as in network simulators, in general. Among the other unique features,
which are not present in the state-of-the-art tools are (i) support of multiple gateways, (ii) possibility of pri-
oritizing and enabling/disabling the receive windows, (iii) accounting for uplink-downlink interference in
RX1, and modeling half or full-duplex LoRaWAN gateways. The simulator is also available for free on
https://github.com/kvmikhayl/LoRaWAN simulator.

As for the numerical results, several original results are provided. Specifically, the impact of different CRs
in interference-limited and noise-limited scenarios is investigated, also showing that in heavily interference-
limited conditions, the adoption of powerful coding rates is counterproductive for both the delivery rate and
the energy consumption. Moreover, the impact of downlink transmissions (e.g., acknowledgments) on the
average energy consumption of EDs is assessed, showing that increasing the number of gateways affects not
only the packet delivery rates in uplink and downlink but also the average consumption of devices, hence,
ultimately, the battery life.

After the description of the simulator, this chapter proposes a novel ADR algorithm to be implemented
at the network server, denoted as Collision-Aware ADR (CA-ADR), aiming at finding a set of data rates
to be assigned to EDs such that packet success rate and network throughput improve w.r.t. the standard
ADR solution. The algorithm exploits the orthogonality of signals emitted with different data rates [21]
and tries to minimize interference while maintaining connectivity toward the GW. The algorithm has been
tested and compared with the standard solution as well as another approach presented in the literature [22,
23], adopting an integrated methodology involving both simulations and experiments. In particular, a small
testbed composed of one ED sending data to a GW, connected to a NS, has been used to characterize delays,
both in terms of processing time and transmission time in the different links (wireless and wired). A traffic
emulator has been developed to stress the NS and characterize its performance in the presence of high network
traffic. The outcomes of these experiments have been provided as input to a simulator, evaluating the network-
level performance when considering a large number of EDs deployed in a given area. The performance of
CA-ADR has been evaluated assuming the LoRaWAN network deployed in both a cloud and a fog computing
scenario. In particular, two different setups for the NS, in terms of computational capabilities and location,
have been considered. The impact of the NS deployment on the network performance has been assessed.

The remainder of the chapter is organized as follows: Section 1.2 provides details about the LoRaWAN
technology. Section 1.3 describes the state of the art related to LoRaWAN, Section 1.4 introduces LoRaWAN-
Sim, going through each block and performance metric obtainable, as well as its validation, and provide some
interesting results. After, Section 1.5 illustrates the new ADR algorithm and Section 1.6 provides some details
about the cloud and fog architecture in LoRaWAN. Finally, Section 1.7 concludes the chapter

6 Chapter 1. LoRaWAN
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1.2 Technology background

Fundamentals of LoRa and LoRaWAN relevant to understanding the key aspects of the protocol and architec-
ture are presented and discussed in the following.

1.2.1 LoRa PHY

At the PHY layer, LoRa adopts the M -ary Chirp Spread Spectrum (CSS) modulation, which is based on
chirps, that is, sine-wave signals whose frequency sweeps linearly with time. Denoting with f0 the central
frequency of the sweep interval [f0− BW

2
, f0+

BW
2
], and assuming t = 0 as the signal starting instant, a single

LoRa chirp can be mathematically expressed as

c(t) = V0 cos

(
2πf0t+ 2π

∫ t

0

∆f(s, ξ)dξ + ϕ0

)
, 0 ≤ t ≤ Ts (1.1)

where

– V0 > 0 is the chirp amplitude,

– s ∈ {0, · · · ,M − 1} is the modulation symbol;

– ∆f(s, t) is the symbol-dependent instantaneous frequency-offset, ranging in the interval [−BW
2
, BW

2
],

– ϕ0 is the signal phase at the initial instant t = 0,

– Ts is the chirp duration.

In particular, LoRa uses M differently-shaped chirps, each of which is in one-to-one correspondence
with the M symbols of the modulation alphabet S = {0, · · · ,M − 1}: given a modulation symbol s ∈ S, the
corresponding ∆f(s, t) linearly increases starting from−BW

2
. Then, when the maximum frequency-offset BW

2

is reached, ∆f(s, t) wraps around to −BW
2

and keeps on increasing linearly until ∆f(s, t = Ts) = ∆f(s, 0).
Ts, which represents the chirp duration, is usually referred to as symbol interval.

The modulation parameters are chosen such that

– BW ∈ {125, 250, 500} kHz,

– M = 2SF, with SF denoting the Spreading Factor,

– SF ∈ {7, 8, 9, 10, 11, 12},

– TsBW =M .

By operating with high SF values, LoRa transmitters increase their communication range [24]; robustness
against channel impairments and interference from third systems, frequency selectivity and Doppler effect, is
also enhanced by increasing SFs. On the other hand, this results in a low data rate and long Time on Air (ToA),
which are the main drawbacks of operating with high SFs.

Chapter 1. LoRaWAN 7
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The physical layer bit rate Rb depends on SF, the sweep interval frequency-sweep interval (BW) and the
coding rate CR of the Forward Error Correction (FEC) mechanism (which encodes 4 data bits into codewords
of 5..8 bits for CR ∈ [1, .., 4], respectively) and is given by [25]:

Rb = SF ·
4

4+CR

2SF

BW

[bit/s]. (1.2)

The indicative values (denoting the maximum instantaneous data rate) are provided in Table 1.1 assuming,
as an example case, BW=125 kHz and CR=1.

Table 1.1: Bit Rate with BW=125 kHz and CR=1

Spreading Factor 7 8 9 10 11 12
Bit rate [bit/s] 5468 3125 1757 976 537 293

The bit rate has a direct impact on the ToA of transmissions, which is the time needed to transmit a packet
on the wireless channel and it is computed [26] as:

Tsymbol(SF) =
2SF

BW
[s] (1.3)

Tpreamble(SF) = (Lpreamble + 4.25) · Tsymbol(SF) [s] (1.4)

Lpayload = 8 +

⌈
(8B − 4SF + 28 + 16− 20H)

(4SF)

⌉
· (CR + 4) (1.5)

Tpayload(SF) = Lpayload · Tsymbol(SF) [s] (1.6)

ToA(SF) = Tpreamble(SF) + Tpayload(SF) [s] (1.7)

where B is the payload size in bytes, H = 0 when the header is enabled and H = 1 when no header is
present, Lpreamble and Lpayload are the length in symbols of the preamble and the payload respectively.

1.2.2 LoRaWAN

On top of the LoRa PHY, the LoRaWAN protocol builds up the upper protocol layers. Communication
between EDs and GWs is implemented via LoRa, whereas GWs are connected via standard Internet Protocol
(IP) connections, such as Wi-Fi, Ethernet, or 4G/5G, to the NS, resulting in a star-of-stars topology. EDs are
not associated to a specific GW but rather to a NS and all GWs receiving data from an ED forward them to
the NS, which is then in charge of discarding duplicates, sending acknowledgements (ACKs) and managing
the overall network.

The access to the radio channel is ALOHA-based complemented by selecting one of the available fre-
quency channels, so an ED sends a packet whenever it has data to send. By standard, the network channels
can be freely attributed by the network operator. However, in the EU 868 MHz band, three default channels
must be implemented in every ED [19]. Those channels are the minimum set that all network gateways should

8 Chapter 1. LoRaWAN
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Figure 1.1: LoRaWAN Network Architecture

Channel Frequency [MHz] 868.1 868.3 868.5
Bandwidth [kHz] 125

Table 1.2: EU868 Default Channels

always be listening on. They are reported in Table 1.2. In addition to these, extra channels (up to 16 in total)
can be optionally configured.
LoRaWAN defines three classes of devices, which differ primarily with respect to the support of the downlink
communication capabilities and which are labeled A, B and C.

– Class A devices’ uplink transmission is followed by up to two short downlink receive slots (denoted
Receive Window 1 (RX1) and Receive Window 2 (RX2), respectively) after two different fixed RE-
CEIVE WINDOW DELAY intervals (the standard suggests using 1 s delay between the end of an
uplink and RX1, and 2 s delay between the end of an uplink and RX2), as it can be seen in Figure 1.2.
Class A is primarily intended for EDs with limited energy availability (e.g., battery-powered ones), such
as sensors since it provides the lowest power consumption.

– Class B devices allow for more than two receive slots, opening extra receive windows at scheduled
times. Synchronization between EDs and GWs is kept via periodic beacons broadcast by a GWs.

– Class C devices have a nearly continuously open receive window except for the time spent in uplink
transmissions, so they are always reachable by the network, which is attained at the cost of increased
power consumption.

Furthermore, two transmission modes, which can be selected on a per-packet basis, are defined by the Lo-
RaWAN specification:

Chapter 1. LoRaWAN 9
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Figure 1.2: RX Windows in Class A

– Confirmed Mode: when an ED sends an uplink packet, it expects to receive an ACK packet from the
NS (through the GW) after its transmission, and it may continue transmitting the same message if no
ACK is received.

– Unconfirmed Mode: no ACK is sent by the NS, so the ED does not know if the packet has been correctly
received.

1.2.3 Standard ADR Algorithm

One of the key operations performed by the NS is to implement an ADR algorithm to dynamically set the
data rate and transmit power to be used by a given ED during its communication. In the following, the
most widespread implementation is considered, that is the one used by The Things Network or ChirpStack,
which is based on Semtech’s recommended algorithm [27]. This algorithm is specifically designed to allow
connectivity between EDs and GWs. However, the standard algorithm [27] does not take into account the
interference problems that may be present when the offered traffic increases. Indeed, since a simple ALOHA-
based protocol is used by EDs to access the channel, collisions, and packet losses may dramatically impair
the network throughput, especially when low data rates are used for transmissions [21]. The standard ADR
tries to assign the lowest value of SF, allowing connectivity between the ED and the GW, in order to reduce
as much as possible energy consumption.

In addition to the ADR algorithm working at the NS, which is designed by the server developer, there
exists another ADR algorithm, working at the ED side, specified by LoRa Alliance [9], designed to keep track
of the connection only.

EDs are in charge of deciding if ADR should be used or not. When activated, the NS will control the trans-
mission parameters of the device sending ADR-specific commands. Besides, the device should periodically
check whether the NS still receives its uplink frames, otherwise, it should autonomously set its SF.

Algorithm 1 shows the implementation at the NS used to decide about the transmission parameters (specif-
ically, SF and PT) each ED connected to the NS should set. The NS runs the algorithm each time an uplink
packet from a given ED is received and decisions on data rates are based on measurements performed over
the last k packets received from the ED (by default, k = 20). In particular, at first, the SNRmargin is measured

10 Chapter 1. LoRaWAN
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Algorithm 1: Network Server Adaptive Data Rate Algorithm

Input: SF(temp) = SF(t), P (temp)
T = PT(t), SFmin = 7

SNRmax = max{last k uplink packets received},
SNRmin given in Table 1.3 by setting SF(t),
SNRmargin = SNRmax − SNRmin −M ,
Nstep =

⌊
SNRmargin

3

⌋
Output: SF(t+ T ), PT(t+ T )

1 if Nstep > 0 then
2 while Nstep > 0 & SF(temp) > SFmin do
3 SF(temp) = SF(temp) − 1

4 Nstep = Nstep − 1

5 while Nstep > 0 & PTtemp > PTmin
do

6 P
(temp)
T = P

(temp)
T − 3 dB

7 Nstep = Nstep − 1

8 else
9 while Nstep < 0 & PTtemp < PTmax do

10 P
(temp)
T = P

(temp)
T + 3dB

11 Nstep = Nstep + 1

12 return SF(t+ T ) = SF(temp), PT(t+ T ) = P
(temp)
T

as reported in algorithm 1, where SNRmax is the maximum Signal-to-Noise Ratio (SNR) among the last k
collected packets, M is a margin set a priori (M = 10 dB by default), and SNRmin is the minimum SNR
required to correctly demodulate the received signal, computed considering the initial value of SF (see Table
1.3). Then, an iterative process starts. SNRmargin is used to compute Nstep, which indicates how many times
the iteration will run. In particular, if Nstep is greater than 0, both Nstep and the SF are decremented by one
unit at each step, until either the minimum SF is reached (SF=7) or Nstep reaches zero. If the iteration has
not been completed yet (Nstep > 0), then the transmitted power is also decremented by 3 dB at each further
step, until either it reaches the minimum value (2 dBm by standard) or the iteration terminates (Nstep = 0).
On the other hand, if the initial value of Nstep is lower than 0, then both Nstep and the transmitted power are
incremented at each step (by one unit and 3 dB, respectively) until either the maximum power (14 dBm) or
the last iteration (Nstep = 0) is reached. In both cases, the algorithm stops at most after Nstep steps.

As far as the ED is concerned, it will receive information from the NS about the transmission parameters
to be used, but then it will continuously track the connection with the NS. Algorithm 2 reports the ADR imple-
mentation at each ED. The description is valid in the case of confirmed transmission mode (extension to the
unconfirmed mode is straightforward [9]). Each time an ED sends an uplink packet without receiving an ACK,
the counter ADR ACK CNT is incremented; after ADR ACK LIMIT (by default 64) messages without any
downlink response, the device sends a request to NS, which must respond within the next ADR ACK DELAY

Chapter 1. LoRaWAN 11
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Data Rate Spreading Factor SNRmin [dB]
0 12 -20
1 11 -17.5
2 10 -15
3 9 -12.5
4 8 -10
5 7 -7.5

Table 1.3: SNRmin values for different SFs with BW=125 kHz.

(by default 32) frames with a downlink frame. If no reply is received, the ED must try to reconnect to the
network, by first setting the transmitted power to its default value and then possibly switching to the next
lower data rate. The device must lower its data rate every time the ADR ACK DELAY expires.

Algorithm 2: End Device Adaptive Data Rate Algorithm
Input: SFtemp set to the current SF value assigned, ADR ACK CNT = 0

Output: New value of SF
1 while uplink transmission do
2 if no ACK received then
3 ADR ACK CNT=ADR ACK CNT+1
4 if ADR ACK CNT=ADR ACK LIMIT then
5 request downlink response from NS
6 if ADR ACK CNT ≥ ADR ACK LIMIT+ADR ACK DELAY then
7 SFtemp = SFtemp + 1

8 else
9 ADR ACK CNT = 0

10 return SFtemp

1.3 Literature Overview

Given the LoRaWAN potential, the research community has been dedicating significant efforts to its study,
both theoretically and experimentally [28]. A number of open-source network simulators have been developed
over the recent years [29]; however, most of them have been created for validating one specific research target.
Therefore, they tend to be focused on a specific aspect and are often limited by a number of assumptions, and
cannot properly capture the operation of the LoRaWAN protocol stack as a whole. Another somewhat limiting
factor is the steep learning curve required to use these tools, which is due to the use of highly effective, but
rather complex, discrete-events simulation frameworks.
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One of the most popular LoRaWAN simulators available today is LoRaSim [30], a discrete-event sim-
ulator realized using SimPy. It can emulate a network of devices and gateways randomly positioned in a
2-dimensional grid and implements a channel model based on the well-known log-distance path loss. Two
performance metrics are provided as outputs: Data Extraction Rate and Network Energy Consumption, which
refer to the overall network and not to the behavior of the individual ED. LoRaSim, though, lacks a num-
ber of features, such as accounting of the imperfect SF orthogonality, downlink traffic and Duty Cycle (DC)
limitation. A closed-source expansion of LoRaSim is presented in [31]. The main improvement concerns bidi-
rectional communication, but the other features are still missing. An ns-33 [32]. based simulator implementing
class A is presented in [33], and it has been extended by the authors themselves to include also downlink traffic
[34]. However, there is no characterization of the energy performance. LoRaFREE [35] implements downlink
communications and SF imperfect orthogonality in a network with one full-duplex GW and EDs generating
periodic traffic only; in addition, the channel is based on the log-distance path loss model. LoRaEnergySim
[36], instead, is a tool based on the WiMOD iC880A GW, which focuses on energy consumption, even though
it still assumes perfect SF orthogonality.

Many recent studies focus on the evaluation of the performance of LoRaWAN networks. In [17] and [18],
LoRaWAN technology was compared to other LPWAN technologies, that are Sigfox and NB-IoT, to point
out the advantages of LoRaWAN in terms of battery lifetime and capacity in many scenarios. The coverage
of LoRa communications has been addressed in [37], where authors show that the maximum communication
range can reach up to 10 km with a small percentage of packets lost. A theoretical analysis of the achievable
uplink throughput has been carried out in [38], where the effect of the SF allocation and the impact of SF
imperfect orthogonality on the overall throughput are taken into account.

There exist also a number of works focused on the ADR mechanism. In [22, 23] it is proposed to estimate
the link quality to be used as input to the ADR algorithm based on the average SNR, rather than the maximum
SNR as done in the standard solution. This approach is also considered a benchmark to evaluate the CA-ADR
algorithm. In [23], authors also propose a hysteresis algorithm to mitigate the problem of a link for which the
link margin lies approximately at the midpoint between two decision levels and the ADR algorithm may lead
to oscillations between a sub-optimal and an optimal solution for the transmission parameters. Another study
worth mentioning is [30], where authors propose that each ED chooses its transmission parameters locally,
to minimize the ToA and maximize lifetime. This approach, though, does not take into account the possible
connection problem the ED could experience without a proper mechanism to set such parameters according
to the conditions the ED is working in. Authors in [39] propose a way to optimize the throughput with respect
to the standard implementation by increasing the number of devices using small SFs, even though this leads
to lower packet success probability. In [40] two SF allocation mechanisms are proposed: EXP-SF, where SF
are equally distributed among nodes (i.e., each cluster of N/6 nodes is assigned a specific SF, where N is the
total number of nodes), whereas in EXP-AT, SFs are assigned to EDs so as to attempt to achieve the same
ToA for each group of (potential) interferers.

3ns-3 is a discrete-event network simulator for Internet systems, targeted primarily for research and educational use. ns-3 is free
software, licensed under the GNU General Public License, and is publicly available for research, development, and use
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In contrast with the above-cited works, CA-ADR takes into account the collision probability at the network
level in order to improve the overall packet success probability. This is something other works do not focus
on, since their goal is to improve performances in terms of energy consumption and link-level throughput
but eventually reduce the network success probability. This new approach, instead, allows achieving fairness
among all nodes distributed in the network, whatever the SF they are using, reducing the number of collisions
they will experience, which is particularly suitable for large dense networks.

The advantages of deploying LoRaWAN network components on edge and fog computing infrastructures
have also been investigated, especially in the case of latency-critical services or limited connectivity toward
the Internet. An edge-assisted IoT architecture has been proposed and demonstrated with proof-of-concept
implementation, showing how to enable advanced services and distributed storage closer to the end-devices
[41]. Another approach consists in augmenting the existing LoRaWAN architecture with a middleware solu-
tion that enables IoT data analytics at the edge, allowing application data sharing among multiple customers
[42]. To this purpose, a proof-of-concept prototype named IoTRACE has been implemented, which allows
multiple data subscribers to deploy their analytics applications at the edge, demonstrating how edge analytics
can be combined with cloud analytics. An edge-fog-IoT architecture has also been proposed and applied to
the use case of urban traffic management and monitoring [43]. Devices located at the edge and fog layers
are used to offload time-sensitive data processing tasks and to provide localized gateway and storage func-
tions. Another work presents the design and deployment of a LoRaWAN infrastructure capable of providing
novel applications in a smart campus [44]. The architecture enables the deployment of fog computing nodes
throughout the campus to support physically distributed, low-latency, and location-aware applications that de-
crease the network traffic and the computational load of traditional cloud computing systems. Being in charge
of collecting data from the GWs and forwarding them to relevant applications, the NS is typically deployed
in a cloud computing environment, which is rarely located close to the source of data. Therefore, in case of
latency-critical services or limited connectivity toward the Internet, deployments of LoRaWAN network com-
ponents based on edge and fog computing solutions have also been considered [45, 46], bringing services,
such as advanced analytics and distributed storage, closer to the EDs [41]. However, in most of the previous
works the NS functionality is still deployed in the cloud, with processing-enabled GWs located at edge or fog
nodes. Although the IoTRACE architecture assumes that NS can be deployed even at the edge, this solution
has not been quantitatively evaluated. In general, no previous studies have been carried out to characterize the
difference between a cloud-based and a fog-based deployment of a LoRaWAN NS in terms of the performance
of the ADR algorithm.

1.4 LoRaWAN Simulator

As stated before, the simulator includes two main components: the PHY-layer and the MAC-layer simulators.
The PHY-layer simulator implements a complete LoRa transceiver (transmitter+receiver), thus generating
the modulated signal and performing the demodulation tasks, whereas the MAC layer simulator manages the
channel multiple access, thus implementing the data traffic (who transmits to whom and when), accounting
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for mutual interference and the presence of multiple gateways. Specifically, the simulator considers class A
LoRaWAN devices (support of class C is also available) operating in the EU 863-870 MHz ISM band and
supports a number of features, including both uplink and downlink communications, imperfect SF orthogo-
nality, capture effect, full/half-duplex GW operation, uplink-downlink interference, DC limitations and energy
consumption estimation. The simulation tool is extremely flexible, as it allows to tune a large number of pa-
rameters, related to the PHY layer, the LoRaWAN protocol and the network itself. The outcomes are provided
in terms of the overall Delivery Rate, for both uplink and downlink, and Energy Consumption values for the
individual devices and the network as a whole.

In the following, the function of each block shown in Figure 1.3 is discussed.

Figure 1.3: LoRaWAN simulator block scheme

1.4.1 Offline configuration operations

Prior to the simulation execution, a configuration step must be carried out offline, which consists of the
definition of the scenario (e.g., the network layout) and of a number of parameters, which rules the network
behavior. This step is discussed hereafter.

Network layout configuration. For each simulation, an area of interest is defined by the user (by default,
a circular shape is assumed), in which N EDs and G GWs are deployed either manually (e.g., where they are
actually located in a real deployment), or automatically, in fixed (e.g., on a grid) or in random positions.

Radio propagation configuration. An Okumura-Hata channel model [47] is implemented as the de-
fault model in the simulator, both for urban and rural scenarios, even though other channel models can be
defined by the user. The power received, PR, is computed as a function of the transmit power, PT, as
PR[dBm] = PT[dBm] + GT[dB] + GR[dB]− L[dB], where GT is the transmitting antenna gain, GR is the
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receiving antenna gain, L represents the path loss in dB, which differs when considering an urban or a rural
scenario:

Lurban =69.55 + 26.16 log10(f)− 13.82 log10(hb)−
3.2(log10(11.75 ))

2 − 4.97+

(44.9− 6.55 log10(hb)) · log10(d) + s,

(1.8)

Lrural =69.55 + 26.16 log10(f)− 13.82 log10(hb)−
0.8− (1.1 log10(f)− 0.7)hm + 1.56 log10(f)+

(44.9− 6.55 log10(hb)) · log10(d)−
4.78(log10(f))

2 + 18.33 log10(f)− 40.94 + s,

(1.9)

where f [MHz] is the carrier frequency; hb [m] is the height of the GW antenna above the ground surface;
hm [m] represents the height of the ED above the ground surface; d [km] is the transmitter-receiver distance.
Finally, the parameter s represents random channel fluctuations due to shadowing, modeled via a Gaussian
random variable, with zero mean and standard deviation σ, that is, s ∼ N (0, σ2). The user can choose the
transmit powers PT, σ, and the heights of the EDs/GWs antennas.

Note, that the discussed layout and propagation models can be defined by the user manually based, e.g.,
on empirical measurements. The respective functionality is supported by the simulator.

Radio resource management configuration. The policy adopted for the choice of the SF can be defined
by the user, along with the DC configuration. As for the former, the user can dictate a specific SF for each ED
or let the simulator make a decision based on the ADR. With reference to the DC, instead, the DC constraints
can be disabled or enabled; in the latter case, these are automatically satisfied according to the regional
limitation reported in [19]. In particular, DC limitations are specified according to LoRaWAN specification
version 1.0.1, which dictates that a device (i.e., ED or GW), after sending a packet of duration ToA seconds,
must not use the same frequency sub-band for the next ToA( 1

DC
− 1) seconds. In addition, the user can

also define the transmission parameters related to both RX windows. For RX1, the RX1DROffset parameter,
which is the difference between the SF used in uplink and in RX1, is chosen by default according to Table 1.4
(the user can introduce a different table if needed). For RX2, instead, SF is fixed to 12 by the standard, even
though the user can decide to change such a parameter.

Data traffic configuration. The traffic generation models, for both the uplink and the downlink, are
also configured by the user, along with the size of uplink and downlink packets in bytes (BUL and BDL,
respectively), the presence of the packet header H and the length of the preamble Lpreamble. When the default
configuration is adopted, data packets are generated by EDs periodically every T seconds. The user can also
define the probability of generating a downlink message after an uplink packet; by default, this is set to 1.

SIR threshold configuration. The MAC layer simulator is in charge of reproducing the ALOHA-based
access protocol adopted by LoRaWAN, which does not depend on the parameters to be configured. However,
within the simulator, this block also evaluates the Signal-to-Interference Ratio (SIR) experienced by a receiver
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Uplink SF
RX1DROffset

0 1 2 3 4 5

7 7 8 9 10 11 12
8 8 9 10 11 12 12
9 9 10 11 12 12 12
10 10 11 12 12 12 12
11 11 12 12 12 12 12
12 12 12 12 12 12 12

Table 1.4: Downlink SF according to different RX1DROffset values[19]

due to simultaneous transmissions, in order to check whether the packet is correctly received or not. As
detailed in Section 1.4.3, the SIR is compared with a threshold γ, dubbed SIR-threshold, which can be defined
by the user. Clearly, evaluating the success/failure of transmission in the presence of interference is by no
means a MAC layer task; in the simulator perspective, however, the MAC layer simulator block is the most
appropriate for the SIR assessment, because only this block knows which nodes (if any) are simultaneously
transmitting hence might interfere each other.

Physical layer configuration. The bandwidth BW of the modulated signal is a user-defined parameter,
along with the coding rate CR of the forward-error-correcting code adopted to reveal/correct transmission
errors. Indeed, the encoding process should be carried out at the Logical Link Control (LLC) sub-layer but,
for the sake of simplicity, in the simulator, it is carried out by the PHY-layer block. Note, that in the current
LoRaWAN specification both BW and CR are pre-specified for each region. Such models allow to update
these parameters, thus adapting the simulator to other regions and/or novel modulation-coding schemes.

Table 1.5 summarizes the key parameters a user can define.

1.4.2 Run-time operations

During the execution, the Data traffic simulator, which oversees the whole network, provides the MAC layer
simulator with the time instants when data packets, generated either by EDs or GWs, enter the respective
transmission queues. The MAC layer simulator, in turn, reproduces the behavior of the ALOHA channel
access protocol for all devices in the network, thus deciding which nodes, among those with queued packets,
transmit and when.

This information is passed to the SNR assessment block that, given the positions of the transmitting
nodes and the adopted channel model/channel measurements, derives the SNR experienced by receivers.
Such information, along with the current SF value provided by the Radio resource management, is used
by the Physical layer simulator, which generates the modulated signal corrupted by noise and demodulates
it in order to assess if the packet is correctly received or not. Clearly, all accompanying operations, such as
interleaving/de-interleaving, Gray coding/decoding and channel coding/decoding, are carried out as well. The
transmission outcome, either success or failure, is passed to the MAC layer simulator for any consequent
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Network layout parameters
N Number of EDs G Number of GWs
R Circular area radius [km]

Radio propagation parameters
PED
T Transmit power of the ED [dBm] PGW

T Transmit power of the GW [dBm]
GED ED Antenna Gain [dB] GGW GW Antenna Gain [dB]
hm Height of the ED [m] hb Height of the GW [m]
σ Shadowing standard deviation [dB]

Radio resource management parameters
SF Spreading Factor RX1DROffset Shift between Uplink and RX1 SF
DC Duty Cycle Limitation

Data traffic parameters
BUL Uplink Payload Size [bytes] BDL Downlink Payload Size [bytes]
H Packet Header presence Lpreamble Length of the preamble
T Uplink packet periodicity [s]

SIR threshold parameters
γ SIR Threshold [dB]

Physical layer parameters
CR Coding Rate BW Sweep interval [kHz]

Table 1.5: List of key parameters defined by the user

action. The MAC layer simulator also gets from the SNR assessment block the values of the useful and
interfering power at the receiver under investigation. This information is used to assess whether the interfer-
ence level is such to prevent the correct reception. As detailed in Section 1.4.3, this assessment is carried out
by comparing the SIR experienced by the receiver under investigation and the SIR-threshold γ. Given the
result of such comparison and the success/failure outcomes of the Physical layer simulator (which does not
account for interference), the MAC layer simulator updates the performance counters, which are then used
to compute the final performance metrics.

1.4.3 Performance Metrics

At the end of the simulation, three default performance metrics are provided, which are discussed hereafter.

Uplink Delivery Rate

The delivery rate provided by the simulator refers to the packets received by GWs. Two impairments are
taken into account that might prevent GWs from correctly receiving transmitted packets, namely noise and
interference.
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As mentioned above, the LoRa PHY simulator implements the whole transmitter→Additive White Gaus-
sian Noise (AWGN) channel→ receiver chain. In particular, the PHY-layer simulator reproduces the opera-
tions carried out by the transmitter (channel coding, interleaving, gray coding and modulation), the addition
of AWGN noise in the channel and the receiver behavior (demodulation, deinterleaving, decoding). Thus,
given the frame of data bits to be transmitted, the adopted SF, CR and BW as well as the actual SNR that char-
acterizes a given link, the PHY-layer simulator assesses whether the currently transmitted packet is correctly
received or not.

The possible presence of interference is also considered, taking into account the possibility that, even
though a collision happens between two LoRa packets (considering both uplink and downlink), one of them
could be correctly received if one of the signals is strong enough. In this case, the simulator supports the
capture effect mechanism, so the packet is correctly received provided that the SIR, that is the ratio between
the useful received power and the sum of the interfering powers, is above a given threshold, γ:

SIR =
PR∑
i PRi

≥ γ (1.10)

where PR is the received power of the target ED, PRi
is the received power of the i-th interfering signal

and γ depends on the SF used, as specified by a Table 1.6 [21] (the table can also be modified by a user, if
desired). In particular, since the simulator accounts for inter-SF interference, the inequality should be verified
for all the interfering signals by summing the received power for each SF.

Ref
Int

SF7 SF8 SF9 SF10 SF11 SF12

SF7 1 -8 -9 -9 -9 -9
SF8 -11 1 -11 -12 -13 -13
SF9 -15 -13 1 -13 -14 -15

SF10 -19 -18 -17 1 -17 -18
SF11 -22 -22 -21 -11 1 -20
SF12 -25 -25 -25 -24 -23 1

Table 1.6: SIR Thresholds [dB] [48]

Condition (1.10) is used by the MAC layer simulator to decide whether the reception of a packet by GWs
is prevented by the interference. In addition, since the simulator supports both full-duplex and half-duplex
GWs, interference between transmissions takes into account also the potential uplink/downlink interference
and the very possibility of the GW transmitting and receiving packets simultaneously. The type of the GWs
is specified as a part of network pre-configuration.

Energy Consumption

The simulator is able to estimate the LoRaWAN energy performance by computing the energy consumed by
each ED by assuming an ED working in class A (or class C) and transmitting an uplink packet, followed,
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optionally, by the reception of a downlink packet. Therefore, the simulator takes into account the energy spent
in: uplink transmission, RX Delay 1, downlink reception in RX1, RX Delay 2, downlink reception in RX2,
sleep until the next uplink transmission, as reported in (1.11).

E =EUL + ERXDelay1
+ EDLRX1

+ ERXDelay2
+ EDLRX2

+ ESleep =

V ITX TTX + V IRXDelay
TRXDelay1

+ V IDLRX1
TDLRX1

+

V IRXDelay
TRXDelay2

+ V IDLRX2
TDLRX2

+ V ISleep + TSleep

(1.11)

In (1.11), V represents the voltage, I is the current and T is the time spent in each state. In particular,
the time passed in transmission and reception, TTX and TRX (in case a downlink packet has been sent), are
considered equal to the ToA of the packet, which is computed from (1.7). The time intervals spent in TRXDelay1

and TRXDelay2
are defined by the standard, as reported in Section 1.3. If a downlink packet has not been sent

or the packet has not been correctly received due to interference, the time intervals spent in reception during
RX1 and RX2 are defined based on Table 1.7, which corresponds to the duration of five preamble symbols,
required to effectively detect the downlink packet preamble. The other parameters used to characterize the
consumption in the different phases have been taken from [49, 50]; they refer to the Microchip RN2483 LoRa
Mote [51], and they are reported in table 1.8.

Table 1.7: RX1 and RX2 duration when no packets are received by the ED [49]

Parameter Value
SF 7 8 9 10 11 12

TRX1 [s] 12.29 24.58 49.14 98.3 131.02 262.14
TRX2 [s] 1.28 2.3 4.35 8.45 16.64 33.02

Table 1.8: Energy Consumption parameters [50]

Parameter Value
PT [dBm] 14 12 10 8 6 4 2
IT [mA] 38 35.1 32.4 30 27.5 24.7 22.3
IR [mA] 38

IRXDelay
[mA] 27

ISleep [mA] 0.0016
V [V] 3.3

Downlink Response Rate

The simulator allows also to estimate the rate of correctly delivered downlink packets. In particular, a down-
link packet can be generated for each uplink packet sent by an ED with a user-defined probability. The

20 Chapter 1. LoRaWAN



1.4. LoRaWAN Simulator

simulator schedules the downlink packets for each ED based on the number of GWs which have received
this packet and their availability (accounting for the DC restrictions). The Downlink Response Rate is then
computed as the ratio between the number of downlink packets delivered and those generated.

When modeling the delivery of a downlink, a procedure similar to that discussed above in the case of
an uplink is used. However, there are some differences between the RX1 and RX2 cases. According to the
LoRaWAN specification, in the case of RX1, data are sent in the same frequency channel used for the uplink,
therefore both downlink-to-downlink (i.e. caused by simultaneous downlink transmission from the other GW)
and uplink-to-downlink (i.e. caused by simultaneous uplink transmissions of the other ED) are considered.
Meanwhile, in the case of RX2, which is typically carried within a standalone frequency channel, only the
downlink-to-downlink interference between different GWs is considered.

1.4.4 Validation

To check the accuracy of the simulator results, several tests have been carried out (results are averaged over
10000 iteration cycles), and their results have been mainly checked against that of the analytical models and
the state-of-the-art literature, as summarized in this section. Comparisons with experimental results have been
also carried out, as discussed in the following.

PHY-Layer Simulator

The behavior of the PHY-layer simulator has been validated through the comparison with the results reported
in [52] and [53]. The symbol error rate (i.e., the chirp error rate) as a function of the SNR = Pu

Pw
, where

– Pu denotes the average power of the signal,

– Pw = N0BW denotes the noise power within the nominal signal bandwidth BW.

is presented in Figure 1.4. Even the visual comparison shows a very close match between the two.

Packet Delivery Rate

The default setting of the parameters adopted in simulations is summarized in Table 1.9. Note, that T there
stands for the average period between the uplink packets for each ED. As for the scenario, the GW is consid-
ered placed at the center of a circular area of radius R, and the EDs were randomly and uniformly distributed
within this area.

Figure 1.5 shows the Uplink Delivery Rate as a function of the Offered Traffic, defined as:

O =
8 ·B ·N

T
[bit/s] (1.12)

The Uplink Delivery Rate has been defined as the percentage of packets correctly received by the GW
according to the conditions described in Section 1.4.3. As a reference, the figure shows the rate computed
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Figure 1.4: Symbol error rate as a function of the SNR

with the well-known equation for ALOHA Success Probability, Ps, by Abramson [54]:

Ps = e−
2∗N∗B

T (1.13)

It can be seen that the two curves match very closely. Note that, since the analytic equation accounts only
for intra-SF interference and it implies the loss of all collided packets, specifically for this comparison, the
capture effect and the inter-SF interference computation have been disabled.

Besides validating the simulator by means of analytical models, experiments have been carried out by set-
ting up a small LoRaWAN network. To this purpose, Idesio Rigers Boards 1.0 equipped with the Microchip
RN2483 radio transceiver have been used, fully certified 433/868 MHz SX1276 LoRa module, that supports
LoRaWAN Class A, and one GW, placed 50 meters away from the devices. Five boards have been pro-
grammed to send a packet of BUL = 16 bytes every T = 60 seconds for 1 hour. The Uplink Delivery Rate has
been estimated as the ratio between the number of packets received over the number of the sent packet. All
devices used the same SF and the experiment has been replicated with SF=7 and SF=10. The results reported
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Table 1.9: Simulation Parameters

Parameter Value Parameter Value
N {1, 25, 50, 100, 250, 500} PED

T 14 [dBm]
G 1 PGW

T 16 [dBm]
GED 0 [dB] GGW 0 [dB]
BUL 20 [bytes] BDL 20 [bytes]
R 4 [km] CR 1
T {10, 30, 60, 150, 300} [s] BW 125 [kHz]
hm 1 [m] hb 30 [m]
H 1 Lpreamble 8
σ 3 [dB] RX1DROffset 0

DC 1%

Figure 1.5: Uplink Delivery Rate as a function of Offered Traffic

in Table 1.10 show the good accuracy of the simulator. Note, that the minor difference in the results (i.e., the
additional packet losses) may have been caused by interference from the third-party systems.
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Table 1.10: Experimental results and comparison with analytical, simulated and experimental results

Results SF=7 SF=10
Analytical Result 0.991 0.959

Experimental Result 0.968 0.914
Simulated Result 0.997 0.978

Figure 1.6: Energy Consumption as a function of Offered Traffic

Energy Consumption

The validation of the energy consumption results provided by the simulator has been carried out by configuring
the GW to respond in RX1 to each packet received in uplink and removing the DC restrictions. The results
are presented in Figure 1.6. For comparison, a simple analytical model given by

E = EUL + ERXDelay1
+ EDLfull

· Ps + EDLempty · (1− Ps) [J] (1.14)

has been used, whereEUL is the energy required for the uplink transmission, ERXDelay1
is the energy consumed

between the uplink and RX1 (having duration of 1 s), while, in downlink, EDLfull
is the energy spent if a packet

is received, and, finally, EDLempty denotes the consumption of a device when it opens the RX Window, but no
packet is received. The NS will send a packet in downlink only if it receives an uplink packet, whose success
probability is equal to Ps, so it knows the device has transmitted something and it will open the Receive
Window. It should be highlighted that in this case, neither duty cycle constraints nor the possibility the send
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a downlink message in RX2, which would require a more complex model, are taken into account. As can be
seen from the presented charts, the results are almost coincident.

1.4.5 Numerical Results

Having validated the simulator in simple scenarios, some initial insight into less trivial cases, which show
some notable trade-offs, are provided in the following. Unless stated otherwise, for these simulations, the same
parameters and configurations which have been used in the previous section are kept. In all the considered
scenarios, GWs operate in full-duplex mode.

(a) Uplink Delivery Rate as a function of Area Radius, R. (b) Energy Consumption as a function of Area Radius, R.

Figure 1.7: Impact of the Area Radius, R [km].

Figure 1.7a depicts the Uplink Delivery Rate as a function of the radius of the circular area where N = 50

nodes are distributed for both CR=1 and CR=4 when varying T . As expected, when the area dimension in-
creases, the delivery rate decreases. In particular, in an interference-limited scenario (T = 30 s), performance
does not depend on CR, but for very small areas, CR=1 is the best case due to lower ToA and, therefore,
collisions. On the other hand, when the scenario is limited by noise (T = 300 s), CR=4 performs better for
bigger areas, thanks to the stronger encoding it is able to offer.

Observing the energy performance in this scenario, reported in Figure 1.7b, it can be noticed that the
consumption increases with the area size. This happens because EDs are forced to use higher SFs when they
are far from the GW, which causes higher energy consumption. In addition, nodes using CR=4 consume more
energy mainly because the ToA is higher, therefore the time spent during transmission is higher.

Figure 1.8a shows the delivery rate as a function of the number of EDs in the network for both CR=1 and
CR=4. As a matter of fact, the higher the number of EDs in the network, the higher the rate of collisions,
which results in the degradation of the overall performance of the network. In addition, when the scenario is
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(a) Uplink Delivery Rate as a function of Number of EDs,
N

(b) Average Energy Consumption
as a function of Number of EDs, N .

Figure 1.8: Impact of the Number of End Devices, N

limited by interference (T = 30 s), CR=1 shows better performance. This happens because the ToA is smaller
w.r.t CR=4 case, therefore there are fewer collisions. On the other hand, when the scenario is limited by noise
(T = 300 s) and all EDs can successfully reach the GW since no interference is present, no difference between
the two approaches is highlighted. The respective energy consumption is revealed in 1.8b, which shows that
the average energy consumption decreases when the number of ED increases. This result may seem counter-
intuitive; however, it is explained by the increase of the uplink collisions, resulting in fewer packets being
correctly received by the GW, and, consequently, fewer packets sent in downlink to the ED. As a matter of
fact, if the uplink message is lost, no downlink packet will be sent to the ED, which will then consume less
power. In addition, also in this case, nodes using CR=4 consume more energy on average.

For the sake of completeness, an analysis of the Uplink Delivery Rate in presence of class C downlink
traffic has been carried out, whose functioning has been described in Section 1.2.2. In this scenario, N = 50

EDs transmit every T = 60 seconds. 2 GWs have been placed at (x, y) = [R/2, R/2], [−R/2,−R/2] of
a circular area of radius R. More specifically, it is assumed that one GW may be transmitting a class C
downlink packet with probability p at an instant t ∈ [0, T ] and, therefore, it may be interfering with the uplink
packet sent to the other GW, according to the capture effect mechanism already described in Section 1.4.3.
As expected, the higher the probability p, the higher the interference, so the Uplink Delivery Rate decreases.
Results are provided in Table 1.11.

Finally, an analysis of the Downlink Response Rate, as described in section 1.4.3, has been carried out.
Two scenarios have been considered: one with a single GW, placed at the centre of the circular area of
radius R, and one with four GWs, placed respectively at coordinates (x, y) = [R/2, R/2], [−R/2,−R/2],
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Table 1.11: Uplink Delivery Rate with Class C Downlink Interference

p Uplink Delivery Rate
0 0.9748

0.1 0.9662
0.3 0.9428
0.5 0.894

(a) Downlink Response Rate (b) Average Energy Consumption

Figure 1.9: Impact of the Duty Cycle, DC

[R/2,−R/2], [−R/2, R/2], with RX2 disabled. In Figure 1.9a the Downlink Response Rate as a function
of the duty cycle for RX1 window is reported. The higher the DC, the higher the number of packets sent in
the downlink. Per intuition, with more GWs present in the network, the Downlink Response Rate is higher.
However, this results in increased average energy consumption, since the reception of a downlink packet often
requires more energy than that needed for checking the two empty receive windows.

1.5 Collision-Aware ADR Algorithm

1.5.1 CA-ADR Description

In this section, a new ADR algorithm will be introduced and evaluated. The idea behind the new algorithm
is to assign SF in order to guarantee a given success probability in delivering a packet, accounting not only
for the link-level performance (connectivity with the GW), but also for the collision probability (MAC-level
performance). The algorithm exploits the orthogonality among signals transmitted with different SFs, as
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assumed in previous work (see, e.g., [21, 48]).

Algorithm 3: Collision-Aware ADR Algorithm
Input: p̂mac = 1, SF = {7, 8, 9, 10, 11, 12}
Output: SF(n) for n ∈ N

1 foreach SF ∈ SF do
2 ncount(SF) = 0

3 nmax(SF) =
⌊(

1
2
log

(1−ToA(SF)
T

)
(p̂mac)

)
+ 1
⌋

4 foreach n ∈ N do
5 SFmin(n) = min{SF s.t. PR(n) ≥ PRmin

(SF)}
6 SFtemp(n) = SFmin(n)

7 foreach n ∈ N do
8 if ncount(SFtemp(n)) < nmax(SFtemp(n)) then
9 SFres(n) = SFtemp(n)

10 ncount(SFtemp(n)) = ncount(SFtemp(n)) + 1

11 else
12 SFtemp(n) = SFtemp(n) + 1

13 if SFtemp(n) ≤ 12 then
14 go to 8

15 if
∑

SF∈SF(ncount(SF)) = N then
16 return SF(n) = SFres(n) for n ∈ N
17 else
18 if p̂mac > 0.01 then
19 p̂mac = p̂mac − 0.01

20 go to 1

In the algorithm pmac(SF) denotes the packet success probability for an ED using spreading factor SF,
taking into account collisions at the MAC layer. In particular, pmac(SF) is the probability that no other trans-
missions will occur during the vulnerability period of ALOHA, which coincides with 2 · ToA, being ToA
given by equation (1.7). Therefore, pmac(SF) is defined as [54]:

pmac(SF ) =

(
1− ToA(SF )

T

)2(n(SF )−1)

(1.15)

where n(SF) is the number of devices using spreading factor SF. In the algorithm, for the sake of simplicity,
the capture effect is not accounted; therefore, it tries to assign SFs in order to limit as much as possible
the collision probability. When running the simulation, after the SF values assignment, the simulator then
accounts for the capture effect, as described in section 1.5.2, to evaluate if a packet is correctly received by
the GW.
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The CA-ADR algorithm is reported in Algorithm 3 and it works as follows. By first setting pmac(SF)

equal to a target value, p̂mac = 1, the maximum number of EDs that can use a specific SF, nmax(SF), is
computed according to the equation reported in line 3 of the algorithm (i.e., reversing equation (1.15)). Then,
for each node n the minimum value of SF the ED can use is derived, that is the minimum SF satisfying
PR(n) ≥ PRmin

(SF) (see line 5 of algorithm 3). PR(n) is the average power received by the GW when the
ED is transmitting (averaged over the last k packets received) and PRmin

(SF) is reported in Table 1.12. The
algorithm then tries to assign the obtained minimum SF to each ED, as long as the number of nodes already
assigned that SF value (ncount(SF)) does not exceed the maximum allowed (nmax(SF)). If the limit is reached,
then the algorithm tries to assign a higher SF following the same process and keeps increasing it up to the
maximum value (SF=12). When ncount(SF) = nmax(SF) even for the highest SF value, no SF assignment is
carried out for that specific ED. At the end of the process, the algorithm checks if it was able to assign a SF to
each ED, by comparing the sum of the ncount(SF) to N . If they are equal, it means that each ED has a correct
SF assigned, otherwise p̂mac is decremented by 0.01 and the algorithm runs again from the beginning, as long
as p̂mac > 0.01.

Differently from the reference ADR implementation, the CA-ADR algorithm running on the NS goes
through a number of iterations to make sure that all EDs are assigned the best SF values such that nmax(SF)

is never exceeded. It is thus important to assess the complexity of the CA-ADR algorithm. In the worst case
when all the iterations must be executed, the number of operations to be performed is given by (|SF| + N ·
|SF|+N + |SF|) · 100. Considering that the set SF is very small, the CA-ADR complexity is O(N).

Table 1.12: SF sets for different PRmin
with BW=125 kHz.

PRmin
[dBm] SFmin SF

-137 12 {12}
-134.5 11 {11, 12}
-132 10 {10, 11, 12}

-129.5 9 {9, 10, 11, 12}
-127 8 {8, 9, 10, 11, 12}

-124.5 7 {7, 8, 9, 10, 11, 12}

1.5.2 Benchmarking the CA-ADR algorithm

In this section assumptions and models according to the scenario considered to evaluate the new CA-ADR
are reported. A set N of EDs is considered, whose size is N = |N |, randomly and uniformly distributed in
a square area of side D [m]. A set G of GWs are deployed in the area, with G = |G|. EDs generate a packet
of payload B [bytes] in an instant that is randomly and uniformly distributed within a time period T [s]. As a
result, the offered throughput, O, defined as the number of bits per second generated in a network of N EDs,
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is given by:

O =
8 ·B ·N

T
[bit/s] (1.16)

Note that duty cycle constraints are not explicitly assumed, but the results shown are valid even in the
presence of duty cycle, provided that the offered throughput O given by equation (1.16) is generated each
time an ED wakes up to transmit its data.

The power received by a GW, PR, as a function of the transmit power, PT is computed according to
the Okumura-Hata model[47] described in Section 1.4 for large urban areas. In addition, both uncorrelated
and correlated shadowing samples are considered in the following. For the correlated case, the well-known
Gilbert-Elliot model [55, 56] is considered, since it gives a negative exponential correlation function, which is
exactly the correlation function that can be observed for shadowing in outdoor environments [56]. According
to [55] the channel is modeled via a two-state Markov chain (see Figure 1 in [55]), where the two states
represent: Good channel, where shadowing is characterized by a low value of the standard deviation, σG and
Bad channel, where shadowing is characterized by a high value of the standard deviation, σB. The probability
of remaining in a given state (Good or Bad) is set equal to p and performance are analyzed by varying p.

At the receiver side, a packet is assumed correctly received if:

1. PR ≥ PRmin
(SF ) and

2. PR/
∑

i PRi
≥ γ

where PR is the useful received power, that is the power received by the GW when the ED is transmitting (in
case of multiple GWs, the strongest one, that is the one receiving the largest received power, is considered);
PRmin

is the receiver sensitivity; PRi
is the power the GW is receiving from the i− th interfering ED.

The second condition represents the capture effect: even in the presence of collisions, there is a possibility
that the receiver (i.e., the GW) is able to capture the frame if the SIR is above a given threshold (capture
threshold) [57]. γ has been measured in [21] via experiments performed with the same devices as the ones
used in this chapter (see Table III of [21] for details). Finally, note that, as stated above, LoRaWAN uses a
simple ALOHA-based multiple access protocol, meaning that an ED sends its data whenever available and
interferers will be represented by all the other transmitters in the area whose packets are partially or entirely
overlapping in time with the useful one.

According to specifications [26], the receiver sensitivity, PRmin
, is defined as:

PRmin
[dBm] = 10 log10(k ·BW · T0(F − 1)) + SNRmin (1.17)

where the first term represents the noise power, given that k is the Boltzmann constant, BW is the bandwidth,
T0 = 290 Kelvin degrees is the standard noise temperature, F = 6 dB is the receiver noise figure; SNRmin is
reported in Table 1.3 and it represents the minimum SNR required for demodulation [27].

1.5.3 Numerical Results

The performance of the CA-ADR algorithm are evaluated in terms of i) Packet Success Rate, Ps; ii) Network
Throughput, S; iii) Latency, L, and iv) Round Trip Time, RTT .
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Ps is the percentage of packets that are correctly received at the GW, given that both conditions 1 and 2 in
Section 1.5.2 are satisfied. Consequently, the Network Throughput, S, has been defined as:

S =
B ·N · Ps

T
[bit/s] (1.18)

Latency L has been defined as the interval of time between the generation of a packet at the ED and its
reception at the NS and it can be expressed as

L = T
(proc)
ED + ToAUL(SF) + T

(proc)
GW + τGW−NS + T

(proc)
NS [s] (1.19)

where T (proc)
ED is the time needed by an ED to generate a packet, ToAUL(SF) is the ToA for transmitting

the uplink data for a given value of SF, T (proc)
GW is the processing time needed by the GW (which just performs

packet forwarding), τGW−NS is the propagation delay needed to reach the NS from the GW (via Internet), and
T

(proc)
NS is the processing time required at the network server.

Figure 1.10: Latency

Finally, RTT has been defined as the interval of time between the generation of a query at the NS, to be
sent in downlink to a given ED, and the instant when the NS receives the reply in uplink from the ED itself.
This delay strongly depends on the operating class used by the ED. In particular, since in Class A the receive
window is opened only after an uplink message, the NS is able to send a downlink message (which contains
the query) only after the correct transmission by the ED. This means that if an uplink packet is lost, the NS
will not know that the receive window of the ED is open and it will not send the downlink message, waiting for
the next uplink packet. Therefore, in the case of Class A devices, the packet to be sent in downlink remains at
the NS for a certain amount of time, denoted as T (wait)

NS , which depends on the periodicity with which packets
are generated and on the probability that they are successfully received at the GW/NS. Therefore, RTT for
Class A devices, RTTA, is given by:

RTTA = T
(wait)
NS + ToAUL(SF) + T

(RXwind)
ED + ToADL(SF) + L [s] (1.20)

where T (wait)
NS = T

2
+ T · (1− Ps) is the average waiting time of the packet at the NS, given that EDs generate

packets in uplink every T and these packets have a probability to be correctly received Ps, and T (RXwind)
ED is
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the interval between the uplink transmission and the beginning of the first receive window opened by the ED,
denoted in the standard as RECEIVE DELAY1.

In Class C, instead, as described in Section 1.2.2, the NS can send a packet to the ED at almost every
instant (except during ED transmissions and taking into account possible duty cycle limitation), therefore,
there is no need to wait for an uplink message from the ED. The RTT for Class C devices, RTTC, is given
by:

RTTC = τNS−GW + ToADL(SF) + L [s] (1.21)

CA-ADR algorithm has been tested and compared with the standard solution, considering an integrated
approach exploiting simulations and experiments.

As far as the simulation is concerned, a proprietary MATLAB® simulator, implementing the models
presented in the previous section and the standard ADR algorithm, has been developed. At each transmission,
after the SF assignment, the simulator checks if collisions among packets sent with the same SF happen and
if they result in a loss (see condition 2 in Section 1.5.2). This allows computing Ps and S.

The considered scenario is shown in Figure 1.11, where two GWs are deployed in a fixed position and
EDs are randomly distributed in a squared area. The parameters used in the simulation are reported in Table
1.13. If not otherwise specified, the case of uncorrelated shadowing with standard deviation σ is considered.

Figure 1.11: Reference Scenario

In order to understand the limitations of the new algorithm in terms of the number of devices it is able to
handle, the Packet Success Rate and the Network Throughput are plotted as a function of N . In Figure 1.12,
the Packet Success Rate as a function of the number of the EDs in the network is presented. As expected,
the success probability decreases with N due to the increase in the collision probability. CA-ADR algorithm
performs notably better because it takes into account the overall distribution of EDs in the network, assigning
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Parameter Notation Value Parameter Notation Value
Carrier frequency [MHz] f 868, 5 Bandwidth [kHz] BW 125

Coding rate CR 4/5 Transmit power [dBm] PT 14
Number of EDs N 100 Number of GWs G 2

Packet periodicity [s] T 5 Area side [km] D 3
SIR Threshold [dB] γ 1.5 Payload size [bytes] B 16
Propagation constant β 3 Shadowing std. dev. [dB] σ 3
Maximum PT [dBm] PTmax 14 Minimum PT [dBm] PTmin

2
Preamble length Lpreamble 8 Header H 1

GW antenna height [m] hb 30 Shadowing std. dev. (bad) [dB] σB 6
ED antenna height hm 1 m Shadowing std. dev. (good) [dB] σG 1

Table 1.13: CA-ADR Simulation Parameters

Figure 1.12: Packet Success Rate, Ps, as a function of the number of EDs, N .

SFs in a more fair way. Collisions are not taken into account by the standard algorithm, which assigns the
lowest SF possible to all devices by looking only at the link-level performance. The new algorithm, instead,
reduces as much as possible the set of nodes using the same spreading factor, by keeping track of the number
of EDs already using a given SF and assigning (when possible from the connectivity viewpoint) a different
value of SF, reducing the collision probability. In the figure results obtained with the ADR algorithm proposed
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in [22, 23] are considered as another benchmark. As expected, it performs better than the standard one, since
it assigns SFs based on the measure of the average SNR, rather than the maximum one. However, the CA-
ADR solution outperforms also this benchmark, since it uses average SNR measure as done in [22, 23] and,
in addition, includes features to reduce collisions, not considered in [22, 23].

Figure 1.13: Network Throughput, S, as a function of the number of EDs, N .

Figure 1.13 shows the Network Throughput as a function of the number of EDs. Performance, in this case,
is a direct consequence of the behavior of the Packet Success Rate. Indeed, for low values of N , S increases
with N , being proportional to it (see equation (1.18)) and being Ps high; on the contrary, when N becomes
too large, Ps starts decreasing dramatically, resulting in a saturation effect for S. Therefore, the improvement
of the proposed solution w.r.t. the standard one increases by increasing N .

Figure 1.14 shows the behavior of the Network Throughput by varying the area size. The new algorithm
performs better w.r.t. the standard solution until a given area size is reached, after which they converge. S
for the CA-ADR case decreases with D, since this algorithm is only limited by connectivity problems, so its
performance is maximized for small areas. With increasing values of D, the algorithm needs to assign SF=12
to more and more nodes in order to reach the GW, resulting in an increased number of collisions. On the
contrary, the standard solution presents an optimum value of D maximizing S: for small area sizes, it tends to
assign SF=7 to all nodes, which is enough to reach the GW, and this results in many collisions (many nodes
using the same SF), while for large areas, as in the case of CA-ADR, the algorithm tends to assign SF=12 to all
nodes to overcome connectivity problems, resulting again in many collisions (this is the reason why the two
algorithms converge for D > 8000 m). The peak value of S for the standard solution is reached for D = 6000
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Figure 1.14: Network Throughput, S, as a function of the area side, D [m].

m, where some EDs use a higher SF to maintain connectivity, so the overall number of nodes using the same
SF is lower with respect to smaller areas, resulting in fewer collisions. The solution in [22, 23] shows some
improvements, because it takes into account the average of the SNR values, so it is more conservative and it
assigns a low SF value with less probability w.r.t. the standard. However, CA-ADR still performs better for
areas with side D < 5000 m.

Figure 1.15 shows the impact of the shadowing on the performance of the algorithms. The inclusion of
shadowing strongly reduces performance for both solutions, standard and CA. However, performance does
not change significantly when considering different channel models in the presence of shadowing, that is for
the uncorrelated or correlated channels by varying p (i.e., the probability of remaining in Good or Bad channel
conditions). However, it is important to notice that, in all cases, the proposed solution is always better than
the standard one, because the assignment of the SF is always carried out in order to reduce collisions, when
possible.

Figure 1.16 shows the Packet Success Rate as a function of T . Since the CA-ADR algorithm is specifically
designed to reduce collisions, the lower T , the higher will be the offered throughput, and the larger will be the
gap w.r.t. the standard because collisions are better managed by CA-ADR. In addition, the figure shows the
impact of the presence of external interference. A situation where Ni = 50 interfering nodes are randomly
and uniformly deployed in the area has been simulated; they generate a data packet, assumed to be transmitted
with the same transmit power used by LoRa devices and assuming that the packet occupies the channel for
100 ms. Results have been obtained by modifying the frequency of generation of packets from the interferers,
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Figure 1.15: Packet Success Rate, Ps, as a function of the area side, D [m] with shadowing analysis

that is varying the level of interference generated in the network; in particular, they are assumed to transmit
every Ti = 5 s and Ti = 15 s. As it can be seen, even though the performance is generally worse due to the
presence of external interference, the CA-ADR still performs better, although the difference with the standard
algorithm becomes smaller.

Differences in terms of delay the two algorithms provide as a result of their decision have been also
investigated. Figure 1.17 shows the RTT as a function of the number of EDs. In the case of Class A, the
factor which has more relevance is the collision probability, because an uplink packet needs to be received by
the NS before it could be able to transmit a packet in downlink. Therefore, the CA-ADR algorithm performs
better (i.e., the RTT is lower) w.r.t. the standard solution. In the case of Class C, instead, RTT does not
depend on PS because the ED is always listening, so the NS can send downlink packets even if it has not
received anything from the ED. Therefore, the standard solution performs better, because it tends to assign
lower SFs (i.e., the minimum value of SF allowing connectivity), resulting in lower transmission times, on
average.

36 Chapter 1. LoRaWAN



1.5. Collision-Aware ADR Algorithm

Figure 1.16: Packet Success Rate, Ps, as a function of the packet periodicity, T [s]

Figure 1.17: Round Trip Time, RTT , as a function of the number of EDs, N .
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1.6 Comparing Cloud and Fog Architectures

1.6.1 Methodology and Experimental Results

Experiments have been conducted to characterize delays in two different network architectures considering
the same scenario described in the previous section. For this purpose, Chirpstack has been exploited to set
up a LoRaWAN network (i.e., the network server). As for the GW, the LoRaWANTM EMB-GW1301-O
gateway has been used, based on the Semtech SX 1301 chipset working at 868 MHz, with network connectivity
provided via Ethernet. Finally, concerning EDs, Idesio Rigers Board 1.0 equipped with the Microchip RN2483
radio transceiver, fully certified 433/868 MHz SX1276 LoRa module and supporting LoRaWAN Class A
devices, have been used.

The above-described setup has been replicated in two different architectures: i) cloud-based case, where
the NS and all its components were installed on a powerful computing machine, assuming the NS was located
in the cloud (see below); ii) fog-based case, where the NS was running on a Raspberry Pi 3 Model B, connected
via the University Local Area Network (LAN) to the GW.

The propagation delay, τGW−NS , introduced when considering the two architectures has been measured.
For this purpose, ping sessions of 30 minutes each have been carried out considering a public remote NS
provided by A2A Smart City4, which can be reasonably assumed as a cloud server, as well as the Raspberry
Pi server implementation, connected via the university LAN to the GW for the fog case. Results of the
measurements are provided in Table 1.14.

τ Average Standard Deviation

τGW−NS (Cloud) 26.2 ms 16.9 ms
τGW−NS (Fog) 0.4 ms 0.2 ms

Table 1.14: Propagation Delays

Spreading Factor Average Standard Deviation
SF7 61,6 ms 4,26 ms
SF8 68,5 ms 1,9 ms
SF9 90,8 ms 2,78 ms

SF10 132,6 ms 2,33 ms
SF11 260,3 ms 2,6 ms
SF12 389,9 ms 0,98 ms

Table 1.15: T (proc)
ED values

The processing time at the EDs, T (proc)
ED , has been also measured: results are reported in Table 1.15 and, as

4https://www.a2asmartcity.it/
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it can be seen, this time increases with SF. As for the processing time at the GW and NS, T (proc)
GW and T (proc)

NS ,
negligible times have been measured in all traffic conditions analyzed.

Finally, in order to understand the limits, in terms of computing capabilities, of the Raspberry Pi imple-
mentation for the NS, situations characterized by high traffic conditions have been considered. Having at
disposal only 15 real EDs during experiments, the Lorhammer traffic emulator5 has been used, which is an
open-source tool able to emulate LoRaWAN traffic and redirect it to the NS, that was implemented on the
Raspberry Pi. Such a tool offers the possibility to specify the number of GWs and EDs in the network, the
frequency with which EDs send packets, and the size of the packets, that is the offered throughput as defined
in equation (1.16).

The outcomes of the above experiments have been provided as input to a simulator, characterizing the
network-level performance, to derive the latency and RTT as defined above. Figure 1.18 shows such a
methodology.

Figure 1.18: Evaluation methodology

1.6.2 Comparison

In this scenario two GWs are considered, which can either be managed by a single centralized NS (cloud
case) or are associated with two separated NSs (fog case). Therefore, in the first case, CA-ADR algorithm
runs considering all EDs in the area, while in the second case, EDs are divided into two subsets according to
the Received Signal Strength Indicator (RSSI) value (for the sake of simplicity, the strongest GW is selected)
and the algorithm runs on the two separated subsets. No substantial differences have been observed in terms
of SF allocation to EDs, therefore no significant differences in terms of Ps can be observed (see Table 1.16).

5http://lorhammer.itk.fr/

Chapter 1. LoRaWAN 39



1.6. Comparing Cloud and Fog Architectures

N Ps Cloud Ps Fog
10 0.997 0.986
50 0.962 0.960
100 0.922 0.921
150 0.884 0.884
200 0.852 0.849

Table 1.16: Success rate in Cloud and Fog architectures

In particular, it can be seen that the advantage achievable in the cloud configuration (where a joint op-
timization of the entire area is considered) is negligible. On the other hand, it is expected that the cloud
architecture will bring larger latency, and this is analyzed in the following.

Figure 1.19: Latency, L, as a function of the area side, D

Figure 1.19 shows how the latency evolves when increasing the area size, for the two architectures. By
increasing D, higher SF are needed to reach the GWs, therefore the ToA of the packet and then the latency
increase. In addition, as expected, the cloud architecture results in larger latency, due to the time needed to
reach the cloud infrastructure, where the NS is deployed. The above results show that the cloud architecture
works worsening in terms of latency, while slightly improving the network throughput performance. However,
to draw final conclusions, it is necessary also to check if a fog-based solution is feasible also in terms of
computing capabilities. To this aim, an upper bound in terms of the maximum amount of traffic (in bit/s) the
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network server is able to process without crashing or causing a relevant delay for the user has been derived.
Fixing the packet size to 100 bytes and the packet periodicity to 0.1 s, the number of EDs generating data have
been varied. For each value of N , 10000 packet transmissions are emulated to check the CPU usage and to
check possible crashing of the NS. The Raspberry Pi implementation proved to handle up to an offered traffic
of 40 Mbit/s, reached by setting N = 5000, with almost 100% of CPU usage. Such limit is largely compliant
with all LPWAN applications, as identified in [21], which demonstrates that the fog solution is sufficiently
powerful to manage a LoRaWAN network and this architecture does not present particular drawbacks.

1.7 Conclusions

With the number of LoRaWAN connections approaching 200 million worldwide [8], there is significant inter-
est from both scientific and industrial communities in LoRaWAN technology. However, despite the apparent
simplicity of such a protocol, assessing its performance and finding the proper trade-offs by means of analyt-
ical tools is not always possible. Therefore, in this chapter, a new MATLAB-based simulator tool covering
the physical and upper layers of the LoRa/LoRaWAN protocol stack has been described. The simulator im-
plements a number of unique features such as support of multiple gateways both for uplink and downlink, a
detailed interference analysis, receive window prioritization, and energy consumption computation.

In addition, the simulator has been used to provide illustrative results, which demonstrate exciting and
not always intuitive trade-offs. The impact of different coding rates in interference-limited and noise-limited
scenarios has been investigated. Also, the use of more powerful coding rates turns out to be counterproductive
as the number of EDs increases significantly, thus making the network operate in heavy interference condi-
tions. In addition, the impact of downlink transmissions on the average energy consumption of EDs has been
assessed.

After the description of some results, a new ADR algorithm for LoRaWAN network, called Collision-
Aware ADR, has been proposed. Simulation and experimental approaches have been jointly used in order
to compare the new algorithm with two benchmark solutions, considering different performance metrics.
Results show that CA-ADR outperforms the standard solution thanks to the orthogonality of signals emitted
with different data rates, a fact that allows for drastically reduced collisions among transmissions.

Finally, cloud- and fog-based architectures have been set up and compared in terms of network through-
put, latency and processing capabilities. Results demonstrate that the fog architecture based on a common
Raspberry Pi is still able to manage a sufficient amount of traffic for many real-life IoT applications. It has
also been underlined that the lower latency achievable with the fog architecture can help also in reacting to
dynamic environmental changes, i.e. the NS can quickly send commands to EDs to change transmission
parameters.
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Chapter 2

Narrowband-IoT

2.1 Introduction

NB-IoT was introduced in Release 13 of 3GPP specification documents, emerging as an alternative solution to
the LPWAN technologies already available on the market (e.g., LoRaWAN). It is designed to provide efficient
connectivity in cellular IoT scenarios and attain a long battery life for a massive distribution of machine
terminals and it offers a large number of connections per cell and robust coverage, enabling connectivity
even in underground and indoor environments [58]. NB-IoT leverages the LTE standard numerology, but
it is adapted for low-cost MTC, supporting a massive number of devices per cell. From LTE, it retains the
synchronization, radio access, resources definition and assignment mechanisms. Modifications to regular LTE
procedures have been introduced to enhance the link budget and significantly reduce energy consumption,
complexity and costs.

NB-IoT and LoRaWAN feature enormous potential to support the development of many different IoT
applications. Preliminary analyses and comparisons between the two have been carried out during the last
few years. To give an example, the authors of [18] analyze the advantages and disadvantages of choosing one
technology over the other according to different indicators, such as battery lifetime, capacity, and reliability.
Coverage comparison between different LPWAN technologies is carried out in [59], where authors point
out that NB-IoT provides the best coverage probability, even though EDs experience a link loss which on
average is 3 dB higher than LoRaWAN. In [60] it is shown that NB-IoT provides uplink and downlink
connectivity with less than 5% failure rate, whereas LoRaWAN struggles to provide sufficient indoor coverage.
The qualitative analysis of the different KPIs and the results of the energy consumption measurements are
reported in [61]. A coverage analysis in a real-life scenario has been carried out in [62], where NB-IoT
is shown to outperform LoRaWAN thanks to directional antennas, thus providing better coverage to EDs.
The propagation models and the coverage have been investigated in [24], based on the data of an extensive
empirical city-wide measurement campaign. In addition to a discussion on the capability of each technology
to support links of tens of kilometers, the paper provides some insight into the characteristics of commercial
infrastructure deployments by NB-IoT and LoRaWAN operators. The comparative field trials measuring
the performance of LoRaWAN and NB-IoT in several propagation-challenging scenarios are reported by the
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authors of [63]. Results on the coverage provided by three LPWAN technologies, including NB-IoT and
LoRaWAN, in a city, are reported and discussed as a part of [64]. In [65], the MAC protocols of several IoT
technologies are investigated, specifically in the Smart City domain. The survey [66] suggests that LoRaWAN
is more advantageous in terms of energy efficiency and cost, whereas NB-IoT offers more benefits in terms
of reliability, resilience to interference, and latency. A comparison between several LPWAN technologies is
carried out in [67], which classifies them according to different performance metrics, indicating LoRaWAN
as the best solution with respect to energy efficiency and NB-IoT as the best one for high data rate services.
Performance comparisons of wireless technologies for specific application domains are carried out in [68],
where Smart Grid use cases are taken into account, and in [69], where Smart Water Metering is considered.
The results of these studies reveal that NB-IoT provides better scalability compared to LoRaWAN and, thus,
it is able to support a huge number of devices with a low packet error rate.

However, most of the cited works provide only qualitative comparisons and focus on one aspect of the two
technologies (e.g., energy consumption, scalability, or coverage). Another critical aspect is the different setups
considered for the two technologies (e.g., with respect to the infrastructure density or antenna characteristics).
In this chapter, instead, a more systematic, accurate, and comprehensive analysis and comparison of the
performance of two technologies are introduced:

– employing novel simulators accounting many important aspects of the PHY layer and the Link Layer
(LL) of the two technologies,

– addressing within one single study a number of relevant metrics under a number of variables for identical
scenarios,

– highlighting the PHY and LL features and mechanisms causing the observed trends and results.

For the purpose of the investigation, two simulators have been developed, one for NB-IoT and one for
LoRaWAN (described in Section 1.4), both fed with the same input scenarios and parameters.

The remainder of the chapter is organized as follows: Section 2.2 details the NB-IoT technology. Note
that in these sections, for the sake of conciseness, the focus is on the PHY and LL layers procedures that
are relevant to the proposed studies and do not attempt to provide a complete description of the technology.
Section 2.3 compares the two solutions. Finally, Section 2.4 concludes the chapter.

2.2 Technology background

With respect to the spectrum usage, NB-IoT can operate in three different modes: i) a stand-alone mode,
ii) within the guard bands of LTE carriers, or iii) within LTE carriers (in-band mode). As in LTE, NB-IoT
evolved Node-Bs (eNBs) employ Orthogonal Frequency Division Multiple Access (OFDMA) in the downlink,
and User Equipments (UEs) (the term used in LTE to denote an ED or a user terminal) use Single Carrier
Frequency Division Multiple Access (SC-FDMA) in the uplink. However, the modulation schemes are limited
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to Binary Phase Shift Keying (BPSK) and Quadrature Phase Shift Keying (QPSK) to reduce complexity and
ensure a better link budget.

Hybrid Automatic Repeat Request (HARQ) is implemented in both the uplink and the downlink by default,
even though this requirement was relaxed in Release 14, and half-duplex operations are now allowed. In
addition, UEs (cat NB1/NB2) implement power control in the uplink, in order to reduce power consumption
when possible.

Traditionally, in Release 13 and Release 14, NB-IoT was limited to Frequency Division Duplexing (FDD)
operations implying the use of different frequency bands for uplink and downlink transmissions. However, in
Release 15 (2019) a new option - Time Division Duplexing (TDD) - has been introduced, allowing to use of
the same frequency band both for uplink and downlink. It supports a nominal system bandwidth of 180 kHz
(equal to the one of an LTE Physical Resource Block (PRB)) in both uplink and downlink. However, most of
the commercial NB-IoT networks are still based on FDD.

In the uplink, the resource grid is composed of multiple subcarrier frequencies with a step (the so-called
frequency separation - ∆f) of either 3.75 kHz or 15 kHz [70]. The time slots have a duration of 0.5 ms and 2
ms in case of ∆f=15 kHz and ∆f=3.75 kHz, respectively. On top of this, NB-IoT introduces the notations of
Resource Element (RE), which is the smallest time-frequency resource (i.e. one subcarrier and one-time slot),
and the Resource Unit (RU), denoting a combination of a specific number of consecutive subcarriers (i.e., 1,
3, 6 or 12) and a specific number of time slots.

In the downlink, the frequency separation is fixed at 15 kHz, and the concept of PRB is used. A PRB
spans over 12 subcarriers and 7 Orthogonal Frequency Division Multiplexing (OFDM) symbols and a pair of
PRBs is the smallest schedulable unit, which is referred to as a single subframe (thus having the total duration
of one millisecond).

The Coverage Enhancement (CE) is mainly achieved by introducing repetitions and thus exploiting time
diversity. The transmission of control information and data is repeated a number of times. Each replica
has a different coding, and multiple replicas can be combined at the receiver to increase the probability of
successful reception. Repetitions increase energy and time consumption, so UEs are often subdivided into
three coverage classes, characterized by a different number of repetitions and specific configurations that
impacts the coverage. In general, the higher the Radio Signal Received Power (RSRP), the fewer repetitions
are used by the UE. The coverage classes are named, from higher to lower RSRP, Normal (N), Robust (R)
and Extreme (E).

Table 2.1 offers a summary of the key parameter values.

2.2.1 NB-IoT Device Operation Sequence

To better illustrate NB-IoT procedures, hereafter the operations carried out in an FDD network are de-
tailed [72].

Once powered up, a UE typically starts the cell search procedure, through which it acquires time and
frequency synchronization with a cell, identifies it, and receives from the periodically-broadcast information
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Table 2.1: NB-IoT Key Parameters Values

Parameter Value
Bit Rate up to 253.6 kbit/s

Frequency Bands [400, 2700] MHz
Bandwidth 180 kHz
Link budget up to 164 dB
TX Range up to 10 km [71]

Figure 2.1: Random Access Procedure in NB-IoT

blocks all the information about the configuration of the network, including, e.g., the radio resource configu-
ration.

Once possessing all the required information, the UE may try to establish the connection to the network.
For this, it has to execute the Random Access (RA) procedure (see Figure 2.1) to gain access to a radio chan-
nel. Specifically, the UE waits for a scheduled Random Access Channel (RACH) window and it transmits a
randomly selected preamble (Msg1 in Figure 2.1). A preamble is composed of four groups of symbols and for
each of the four groups the carrier is changed. Three different Narrowband Physical Random Access Chan-
nel (NPRACH) preamble formats are currently defined (formats 0 and 1 introduced in Release 13 and format 2
added in Release 15), featuring different trade-offs between the on-air time and the maximum communication
range. Up to three periodic NPRACH windows can be configured in a single cell, each associated with a CE
level and characterized by a different number of preamble symbols repetitions (ranging from 1 to 128 [73]).
The selection of the coverage class to be used is made by the UE based on its estimation of the RSRP, the
network configuration, and the number of previous unsuccessful RA attempts. The NPRACH transmission is
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sometimes referred to as Msg 1 since this is the first message in RA procedure.
If multiple UEs choose the same preamble, the transmissions will overlap, but, initially, the eNB is not

aware of it. Thus, the eNB delivers the scheduling for Random Access Response (RAR) (or Msg2) in the
Narrowband Physical Downlink Control Channel (NPDCCH). The RAR itself is sent using the Narrowband
Physical Downlink Shared Channel (NPDSCH) by the eNB, which allocates the resources and specifies the
Modulation and Coding Scheme (MCS) as well as the number of repetitions for the next uplink transmission
for each of the received RA preambles. In this phase, the UEs that have chosen the same preamble will receive
the same RAR. These UEs will send Msg3, which carries the Buffer Size Report (BSR) and the unique data
identifying the device, i.e., the UE Contention Resolution Identity, using Narrowband Physical Uplink Shared
Channel (NPUSCH) resources and then they wait for Radio Resource Control (RRC) connection setup (or
Msg4), scheduled again via NPDCCH. Msg4 is therefore used to grant resources for data transmission and
solve possible collisions. A similar procedure has to be repeated each time an unconnected UE requires to
access the radio resources to transmit the data.

2.3 Comparing NB-IoT and LoRaWAN

In the following, a thorough comparison between NB-IoT and LoRaWAN will be discussed.
In this section, in particular, assumptions and models are reported. A NB-IoT network simulator has been

realized following intentionally the structure of the LoRaWAN simulator (already described in Section 1.4) to
enable fair comparison of the two technologies. The structure is illustrated in Figure 2.2.

2.3.1 Network Layout and Data Traffic Configuration

A set N of EDs, whose size is N = |N |, is randomly and uniformly distributed in a circular area of radius R
[km]. The single LoRaWAN GW, as well as the NB-IoT eNB, share the same location in the center of such
area. EDs are assumed to generate periodically, with period T [s], a frame with a payload of B [bytes]. All
these parameters are configurable and the same scenario is fed as an input to the LoRaWAN simulator as well
as to the NB-IoT one.

The well-known Okumura-Hata model (described in Section 1.4) is adopted in both simulators to take into
account the attenuation introduced by the propagation. Both urban and rural scenarios are addressed.

2.3.2 Physical layer simulations

For a given position of an IoT node (either ED or UE) in the considered scenario, the SNR experienced in the
link is assessed, based on the propagation model and the receiver characteristics (e.g., noise figure). Then,
given the transmitter configuration (e.g., BW, SF, CR for LoRa and BW, ∆f , MCS for NB-IoT) the signal
corrupted by the noise is generated (either LoRa or NB-IoT) and passed to the corresponding receiver, which
assesses if the transmitted frame has been correctly received. More precisely:

Chapter 2. Narrowband-IoT 47



2.3. Comparing NB-IoT and LoRaWAN

Figure 2.2: Block scheme of the NB-IoT simulator.

– LoRa. The LoRa simulator reproduces the operations carried out by the transmitter (channel coding,
interleaving, gray coding and modulation), the addition of AWGN in the channel and the receiver behav-
ior (demodulation, deinterleaving, decoding). Thus, given the frame of data bits to be transmitted, the
simulator assesses whether the currently transmitted frame has been correctly received or not according
to different parameters, such as SF, CR and BW and the SNR that characterizes a given link.

– NB-IoT. For NB-IoT, the success/failure of NPUSCH transmissions is assessed by means of a NB-IoT
PHY Layer simulator, which is based on the LTE Toolbox [74] provided by MATLAB. In particular,
for each frame to be transmitted, the corresponding baseband waveform of the SC-FDMA modulated
signal is generated by the simulator and passed through the noisy AWGN channel. At the receiver side,
the simulator performs SC-FDMA demodulation, decoding and assesses if the frame has been correctly
received or not.

In case of collision (i.e., overlapping of different transmissions in frequency and time), the capture effect
for both technologies is also taken into account. Specifically, the receiver has still a chance to capture the
frame, provided that the SIR is above a given technology-specific threshold:

PR∑
i PRi

≥ γ (2.1)

48 Chapter 2. Narrowband-IoT



2.3. Comparing NB-IoT and LoRaWAN

where PR is the received power of the wanted signal, PRi
is the power the GW/eNB is receiving from the i-th

interfering node and γ is the threshold. More precisely

– LoRa. For LoRa, the possibility that a collision may occur between two LoRa frames (whether they
are sent in uplink or downlink) is considered, even though the two frames do not overlap entirely, since
the access to the channel is ALOHA-based. In addition, as described in Section 1.4, the simulator
is designed to take into account SF quasi-orthogonality, so collisions may happen even between EDs
using different SF and a frame has still a chance to be correctly received if the SIR is higher than a given
threshold which depends on the SFs considered.

– NB-IoT. For NB-IoT, collisions may happen only during the RA procedure, since each UE has its own
NPUSCH resources for uplink data. As described in Section 2.2.1, two or more UEs choosing the same
NPRACH preamble will collide when sending Msg3. However, one of the UE may still complete its
procedure and receive Msg4, given that, during Msg3 transmission, its SIR is sufficiently high, which
in the simulator has been fixed to γ = −4.6 dB [58].

2.3.3 Protocol-specific parameters and operations

LoRaWAN

EDs are considered to have already joined the network using one of the two activation procedures supported
by LoRaWAN. Therefore, each ED generates a data frame to be sent in uplink periodically every T seconds.
The DC limitations are implemented according to LoRaWAN specification version 1.0.1, which imposes that
a device (i.e., ED or GW), after sending a frame of duration ToA seconds, computed with the formula reported
in Section 1.2, must not use the same frequency band for the next ToA( 1

DC
− 1) seconds. An ED can use a

specific SF or the one resulting from the ADR algorithm (in the presented results, EDs are assumed to use
ADR, if not stated otherwise). After selecting an SF, it is checked whether a transmitted frame has been
correctly received according to the procedure described in Section 2.3.2 and the related performance metrics
are derived. No ACK is considered in this case.

The key LoRaWAN parameters used during simulations are summarized in Table 2.2.

Table 2.2: LoRaWAN Parameters

f 868 [MHz] BW 125 [kHz]
H 1 Lpreamble 8

DC 1% CR 1

NB-IoT

In the simulator UEs are assumed already synchronized to the network, so each UE starts by determining a
CE level according to the measured RSRP and its set of operations begins from the RA procedure. Each ED is
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configured according to the CE level to which it belongs (the configurations used in the simulator are reported
in Table 2.3 and Figure 2.3) by comparing its RSRP with the RSRPmin in Table 2.3.

Timely feedback is assumed from the eNB to the UEs during the RACH procedure, in the case of Msg2 and
Msg4 transmissions, as uplink transmissions can be more challenging than the downlink ones [75]. Therefore,
in the simulator time intervals between the end of such messages, as well as the time needed to transmit them
are fixed, as considered in [76, 77].

Table 2.3: NB-IoT Coverage Parameters [58]

CE0 CE1 CE2
RSRPmin [dBm] -101 -111 -121

NPRACH Periodicity [ms] 320 640 640
NPRACH Subcarriers 24 12 12

NPRACH Format 0 0 1
NPRACH Repetitions 2 8 32
NPUSCH Repetitions 2 8 32

Figure 2.3: NB-IoT Uplink Resources Structure (illustration of one possible configuration)

Once the CE level is selected, the UE sends the random NPRACH preamble at the first NPRACH occur-
rence and the RA procedure is carried out as described in Section 2.2.1, by checking if every single message
is correctly received. If not, the procedure fails and the UE must start from the beginning. Each time the RRC
connection is set up correctly, an ED sends uplink data during the scheduled NPUSCH, after the assignment
of the resources. A UE asks for a total amount of resources equal to:

Transport Block Duration = NRU ·Nrep · τRU (2.2)
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where NRU is the number of RUs needed to send a frame, which depends on the MCS selected, Nrep is the
number of repetitions of the transmission, defined according to the CE level and, finally, τRU is the duration of
one RU.

After sending uplink data, the UE goes in Power Saving Mode (PSM) until a new frame is generated, so
the connection to the network can be released and the UE disconnected from the eNB. The NB-IoT related
parameters used during the simulation are summarized in Table 2.4.

Table 2.4: NB-IoT Parameters

f 800 MHz BW 180 [kHz]
∆f 3.75 kHz MCS Index 6

2.3.4 Performance Metrics

This section presents selected numerical results that were obtained to compare the two technologies.

The comparison has been carried out in terms of Block Error Rate (BLER), network throughput, energy
consumption, and latency.

BLER

Having defined as block the MAC level payload, which is the data frame of B bytes passed to the physical
layer for modulation and transmission1, the BLER is defined as the ratio between the number of erroneously
received blocks and the total number of transmitted blocks.

BLER =
number of erroneous blocks

number of transmitted blocks
(2.3)

Network Throughput

The network throughput, S, has been defined as the number of data bits correctly received by the GW/eNB
from all EDs/UEs over the duration of the simulation divided by the duration of the simulated time:

S =
8Nreceived ·B

Tsim
[bit/s] (2.4)

where Nreceived is the number of received frames, and Tsim is the duration of the simulation in seconds.

1The 8 ·B bits of a block are processed (channel coding, interleaving, etc.) according to the technology considered to obtain the
payload of the physical layer frame to be transmitted.
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Parameter LoRaWAN NB-IoT
PT [dBm] 14 14
ITX [mA] 38 220
IRX [mA] 38 46
IIdle [mA] 27 6
ISleep [mA] 0.0016 0.003
V [V] 3.3 3.6

Table 2.5: Energy consumption parameters

Energy Consumption

Finally, the mean energy consumption E of a single ED/UE has been defined as:

E = ETX + ERX + Eidle + Esleep = V ITX TTX + V IRX TRX ++V Iidle Tidle + V Isleep Tsleep [J] (2.5)

The current, voltage and time duration of the different phases used to compute the energy consumption are
reported in Table 2.5 and have been taken from the state-of-the-art works [50, 78]. In (2.5), V represents the
voltage, I is the current and T is the time spent in each state, respectively. More specifically, for LoRaWAN,
TTX coincides with the ToA of the frame, Tidle coincides with a RECEIVE WINDOW DELAYs excluding the
reception time, TRX is the time spent in reception and Tsleep coincides with the time interval between the end
of the transmission of a frame and the beginning of the next transmission. For NB-IoT, TTX is the sum of
the time spent sending MSG1, MSG3 and NPUSCH data, TRX is the time spent receiving MSG2 and MSG4
and downlink control information (DCI), Tidle indicates the remaining time spent during the different phases
without transmitting/receiving and, finally, Tsleep is the time the UE spends sleeping between the end of the
transmission of NPUSCH data and the beginning of the next RA procedure.

Latency

For LoRaWAN, the average latency, L, of a successful transmissions is:

L = ToAUL(SF) +
∞∑
i=1

(1− Ps)
i · T [s] (2.6)

where ToAUL(SF ) is the Time on Air of the uplink frame which depends on the chosen SF, Ps is the prob-
ability of correctly receiving a frame given the two conditions described in Section 2.3.2 and T is the frame
periodicity. It is worth highlighting that, in case of no collisions, the minimum latency experienced by an ED
coincides with the ToA of the frame.

For NB-IoT, the average latency depends on the success of the RA procedure as well as the time needed to
send uplink data using NPUSCH resources, which depends on the resources assigned to the UE by the eNB.
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The minimum latency Lmin is defined as:

Lmin = TMSG1 + τMSG1 + TMSG2 + τMSG2 + TMSG3 + τMSG3 + TMSG4 + τMSG4 + TNPUSCH [s] (2.7)

where TMSGi is the time needed to send the i-th MSG, τMSGi is the time interval between the end of MSG i and
the beginning of MSG i+ 1 and TNPUSCH is the time needed to send the actual uplink data.

Consequently, the average latency L is equal to:

L = Lmin +
∞∑
i=1

(1− Ps)
i · (TNPRACH + Lmin) [s] (2.8)

where Ps is the probability of correctly receiving each message needed for the RA procedure, given the two
conditions described in Section 2.3.2, and TNPRACH is the time the UE spends waiting for the next NPRACH
occasion (in case the previous RA procedure failed).

The results obtained via simulation are based on the configurations reported in Table 2.6. Each simulation
run covers 5 minutes of simulated time and 10000 iterations of simulation are carried out for each run. Results
are presented assuming an urban scenario, if not otherwise specified.

Table 2.6: Simulation Parameters

Parameter Notation Value
Number of EDs N 1,50,100,250,500,750,1000

Number of GWs/eNBs GW/eNB 1
Area radius [km] R 1,3,5,7,9

Packet periodicity [s] T 10,20,30,40,50,60
Payload size [bytes] B 10,20,25,50,100

GW/eNB antenna height [m] hb 30
ED antenna height [m] hm 1

Shadowing st. dev. [dB] σ 3
Carrier frequency [MHz] f 868 for LoRaWAN

800 for NB-IoT

2.3.5 Numerical Results

The LoRa BLER is plotted in Figure 2.4 as a function of the signal-to-noise ratio for all SFs and CRs, con-
sidering a block size of B = 20 bytes. One can observe that, for a given SF, passing from CR1 (CR2) to
CR3 (CR4) allows a gain of about 1.5 dB in terms of SNR. One also observes that, as expected, passing from
CR1 to CR2 or from CR3 to CR4 does not provide any benefit. In fact, CR1 and CR2 do not provide any bit
correction capability, whereas both CR3 and CR4 allow correcting only one bit in a codeword.
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Figure 2.4: LoRa block error rate. BW = 125 kHz.

The NB-IoT NPUSCH BLER is shown in Figure 2.5, considering again a block size of B = 20 bytes, for
different numbers of repetitions. It is clear that, by increasing the number of repetitions, a gain in terms of
SNR is achieved.

Comparing the two technologies, it can be stated that NB-IoT is more robust to noise. Considering, for
instance, an application requiring a maximum BLER of 10−2, the minimum SNR is in the range {−23,−7} dB
for LoRaWAN (depending on SF and CR) and in the range of {−31,−22} dB for NB-IoT (depending on the
number of repetitions).

Figure 2.6 shows the network throughput as a function of the number of EDs in the network2. In par-
ticular, for LoRaWAN, all EDs use SF=7, SF=12 or the SF resulting from the ADR algorithm, whereas, for
NB-IoT, EDs use MCS Index=1, 6 or 13. As expected, NB-IoT almost always provides higher throughput
w.r.t to LoRaWAN for medium traffic, whereas for very high traffic the two becomes comparable. However,
both demonstrate the same trend, since the network throughput increases with the number of EDs until such
number becomes too large and collisions worsen the performance. This can also be seen that there is an op-
timal number of devices that maximizes the network throughput. Comparing the results for urban and rural
scenarios, it can be seen that the throughput for the rural scenario is higher than that of the urban scenario. The
main reason is the lower path loss and its lower fluctuation in the rural environment. For NB-IoT specifically,
using a high MCS Index (e.g., MCS Index=6 or 13) provides a higher throughput since fewer resources are

2In this section, the acronym ED is used to denote both LoRaWAN end-devices and NB-IoT user-terminals.
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Figure 2.5: NB-IoT block error rate. MCS Index=6.

needed to send the same frame if compared to a lower MCS Index (MCS Index=1). On the other hand, for
LoRaWAN, enabling ADR turns out to be better w.r.t choosing only SF=7 or 12, since this allows exploiting
the quasi-orthogonality of the different SFs. In addition, it is worth noting that the performance of LoRaWAN
is further reduced due to the duty cycle limitation, which particularly affects the case with SF=12.

The energy consumption is shown in Figure 2.7 as a function of the number of EDs. It can be clearly
seen that NB-IoT devices feature higher energy consumption, which increases further with the increase of the
number of EDs active in the network. This happens because more EDs compete for the access to resources
and EDs which fail try again during the next NPRACH occurrences. In addition, lower MCS Indexes make
EDs use more resources, resulting in more time spent in transmission.

On the contrary, for LoRaWAN, the energy consumption remains stable regardless of the number of EDs
in the network, since, being based on ALOHA, a LoRaWAN ED transmits whenever it has to.

In Figure 2.8 the network throughput S is presented as a function of the radius R of the circular area over
which EDs are distributed. As before, for LoRaWAN, EDs use SF=7, SF=12 or the SF resulting from the ADR
algorithm, whereas, for NB-IoT, the possibility of having only CE0 or all 3 coverage classes is addressed.

It can be clearly seen that NB-IoT provides higher throughput if compared to LoRaWAN. In particular,
when the area becomes larger, the availability of multiple CEs drastically improves the performance. Mean-
while, the performance obtained by NB-IoT when using only one coverage class appears to be worse even
than that of LoRaWAN.
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Figure 2.6: Network throughput, S [kbit/s], as a function of the number of EDs, N , withR=3 km, B=20 bytes
and T=10 s

For LoRaWAN, using the ADR turns out to be the best choice, since it offers higher throughput, compared
to using SF=7 and, thanks to the use of the optimal SF, is not as much affected as SF=12 by duty cycle
limitation and collisions, even though using SF=12 should enable better performance in terms of coverage.

For a fixed area size, the rural scenario shows better performance with respect to the urban one because of
the better link quality experienced by EDs (being the average path loss lower).

The energy consumption as a function of the area radius R is shown in Figure 2.9. LoRaWAN devices
consume much less than NB-IoT ones, whose consumption, especially for large areas and when using all 3 CE
classes, strongly depends on the number of transmission repetitions UEs are configured to use when sending
their data if they operate in CE 1 or 2.

In Figure 2.10 the network throughput S is shown as a function of the block size, B. For LoRaWAN, EDs
use the ADR algorithm, whereas, for NB-IoT, EDs using MCS Index=6 are considered, for both urban and
rural scenarios. As a general trend, by increasing the block size, the throughput raises. One can also notice
that NB-IoT is able to provide higher throughput w.r.t to LoRaWAN in all cases. Even though LoRaWAN
specifications [19] define a maximum payload for each SF for different regions, in this case, the same packet
dimensions for NB-IoT and LoRaWAN are addressed for a fair comparison.

The related energy consumption as a function of the block size, B, is reported in Figure 2.11. As expected,
NB-IoT consumes more energy than LoRaWAN, with slightly better performance in a rural scenario due to
the better link quality and, thus, fewer packet losses. In any case, increasing the block size boosts energy
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Figure 2.7: Energy consumption,E [J], as a function of the number of EDs,N , implyingR=3 km,B=20 bytes
and T=10 s

consumption due to the longer transmission time.
Finally, Figure 2.12 shows the latency as a function of the network throughput, S. LoRaWAN huge

latency for higher throughput is the consequence of the high number of collisions due to the number of EDs
transmitting since, when a frame is lost, the network should wait for the next transmission attempt, which
happens T seconds after. For NB-IoT instead, if the RA procedure fails due to collisions, it is possible to try
again during the next NPRACH occasion, without waiting for the next frame generation.

Qualititave Comparison

In addition to performance-related aspects, the comparison between LoRaWAN and NB-IoT, and the identi-
fication of their actual strengths and limitations, should also consider regulatory issues and business models.
From the regulatory viewpoint, there is a clear difference between the two technologies. NB-IoT can be de-
ployed over existing 4G systems. Only Mobile Network Operators (MNOs) who have a 4G license can offer
NB-IoT services. This is both an advantage and a drawback. The positive side is that for MNOs, deploying the
network is just a technical and investment issue. In many countries all over the world, they have already de-
ployed NB-IoT plug-ins, and there is no other issue in exploiting it from the user viewpoint. On the opposite,
LoRaWAN operates on a license-exempt ISM band which is regulated differently from country to country. In
Europe, the document providing guidelines for the use of LoRaWAN (and other) technologies is CEPT Rec-
ommendation number 70 03. Different national authorities interpret it in various ways. The business model
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Figure 2.8: Network throughput, S [kbit/s], as a function of the Area Radius, R [km], with N=100,
B=20 bytes and T=10 s

Figure 2.9: Energy consumption, E [J], as a function of the Area Radius, R [km], with N=100, B=20 bytes
and T=10 s
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Figure 2.10: Network throughput, S [kbit/s], as a function of the block size, B [bytes], with N=100, R=3 km
and T=10 s.

Figure 2.11: Energy consumption, E [J], as a function of the block size, B [bytes], with N=100, R=3 km and
T=10 s
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Figure 2.12: Latency, L [s], as a function of the network throughput, S [kbit/s], with R=3 km, B=20 bytes
and T=10 s

behind the two technologies is totally different. NB-IoT services can only be offered by MNOs. As long as
they deploy the network, it is publicly available (upon payment of a subscriber fee). On the opposite, anyone
in principle could offer LoRaWAN coverage; private deployments may be useful for particular applications
(especially in remote locations, which are not attractive to MNOs). LoRaWAN networks might be available
for free in some areas, as it happens, e.g., with the Things Network - a community of open source LoRaWAN
gateway owners.

Other technical aspects that should be considered when comparing the two technologies include the fol-
lowing:

– NB-IoT offers advanced security protocols compared to LoRaWAN, which is particularly insecure when
using Activation by Personalization (ABP) join procedure.

– LoRaWAN is limited also from the packet size point of view (according to the SF used, as described in
Chapter 1, and does not provide any fragmentation mechanism by the standard.

– Roaming: Sub-GHz ISM bands (normally used by MNOs for NB-IoT wide coverage) are not uniform
around the globe, which complicates trans-ocean roaming. NB-IoT terminals supporting multiple bands
can handle this. Recently, intra-continental roaming solutions for LoRaWAN (allowing to roam between
networks deployed in the same bands) have been delivered. However, their widespread adoption is still
underway.

– IP support: NB-IoT supports IP, and many off-the-shelf transceivers implement IP-based protocols
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like TCP/UDP, FTP, HTTP, CoAP, MQTT. This enables seamless integration between NB-IoT and the
Internet, whereas LoRaWAN requires some form of adaptation layer (most often handled by the NS) in
between.

– Handover: LoRaWAN networks do not implement any sort of handover mechanism. NB-IoT has to
handle it, though this requires additional signalling.

2.4 Conclusions

In this chapter, NB-IoT technology has been described and carefully compared with LoRaWAN, account-
ing for technical aspects, both at PHY and Link layers, and regulatory issues. As one can expect, the two
technologies differ in many aspects and both have strengths and weaknesses but, depending on the specific
application, the best solution can be identified based on the above-reported discussion and numerical results.
To summarize, NB-IoT implements a more robust modulation and coding scheme, together with a highly
reliable Link layer, at the cost of larger energy consumption. Therefore, NB-IoT is more suitable for appli-
cations that are demanding in terms of reliability and network throughput. In addition, it is not limited by
any regulation in terms of duty cycle, thus devices can transmit more frequently or bigger data volumes. On
the other hand, LoRaWAN is convenient for applications having strict requirements in terms of lifetime (i.e.,
for battery-constrained use cases) and where the reliability requirements can be relaxed. Notably, subject to
some configurations and scenarios, either of the considered technology may outperform its counterpart. It is
important to keep this in mind when considering the communication technology to be used for the particular
use case scenario. Also, this motivates the further more in-depth study of the effects the different network
parameters have on the technology performance as well as the development of relevant optimization mecha-
nisms. Unfortunately, this aspect (especially for NB-IoT technology) has got somewhat limited attention so
far.
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Chapter 3

UAV-Aided NB-IoT Networks

3.1 Introduction

In the previous chapter the performance of a NB-IoT network have been investigated by considering a terres-
trial deployment (i.e., terrestrial BSs in the area of interest). Even though statistical reports already proved a
steady increase in the number of machine-type or IoT links1, the massive presence of IoT devices might not
be the only major challenge to be addressed for the future. Other key challenges lie on the more differentiated
and stringent requirements on communication performance - the demand - imposed by the several applica-
tions and use cases possible. These may include autonomous vehicles, wearables, industrial IoT for Industry
4.0, data monitoring, alarm detection, municipality services and many others, in which one can observe that
commonalities are few. These aspects call for new paradigms to network design. To avoid the densification
and deployment of new terrestrial bases needing huge investments in capital and operational expenditures, a
viable and largely foreseen solution can be found in mobile BSs.

UABSs, (i.e. UAVs where mobile BSs are mounted), represent very interesting means to add the required
flexibility and scalability for future networks. UABSs have, in fact, the potential to fly on-demand and exactly
where it is needed. Moreover, they are not tied to roads, not affected by traffic congestion and can feature
good connectivity with both, on-ground users, and terrestrial BSs (i.e., backhaul), thanks to the large proba-
bility of being in Line of Sight (LoS). The usage of UABSs is especially suited for massive Machine-Type
Communication (mMTC) and IoT links since IoT nodes are mostly static (do not change their position over
time) and their traffic demand is usually predictable [79]. The knowledge of these two basic inputs allows to
make decisions in advance on the trajectory to follow to maximize IoT service, plan periodical flights when
the demand arises, modify the UABS behavior if needed, and so on. This may be further relevant if these
mobile BSs have to direct themselves in remote and different areas where the nodes are placed. To consider a
scenario with the plurality of IoT applications mentioned before, as pictured in Figure 3.1, a massive number
of IoT devices scattered in different zones of a service area, requesting to transmit a periodical packet, is

1See, e.g., https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/ or
https://www.ericsson.com/en/mobility-report/reports/november-2019/iot-connections-outlook.
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Figure 3.1: Illustrative example of a scenario with multiple IoT applications and nodes served by UABSs.

considered in this chapter. This is a realistic scenario and perfect for UABS services during a single flight.

Thanks to their versatility, flying network nodes like UAVs gained an ever-increasing interest from re-
searchers to standardization bodies. The 3GPP, after considering the feasibility of UAVs being UE (i.e. end
users of the cellular network), started approaching on-board radio access for UAVs (denoted with the acronym
UxNB) at the beginning of Release 17 [80, 81]. In fact, if a UAV could have installed the same radio-frequency
equipment with a similar protocol stack to target both IoT nodes and broadband users, it would be convenient
for mobile operators. To this purpose, there exist a number of technologies targeting IoT applications that
follow the fourth-generation (4G) numerology [58]. In particular, the focus will be on NB-IoT for the design
intended to target low-end IoT applications with low data rates, delay tolerance, massive connections, and
extremely wide coverage [82].

Initial studies on NB-IoT UAV-aided networks focused on the key link-level considerations, and specif-
ically on the characterization of path loss and its impact on the so-called Air-to-Ground (ATG) channel [83,
84]. These activities on UABSs were followed by the aim of finding an acceptable trade-off between cover-
age, capacity, and connectivity, as in [85]. To be more specific, in [84] the effect of the user-UAV incident
angle w.r.t. the ground plane as a function of drone height is studied. It is defined as elevation angle, and
its aperture may determine whether a link is or not free from obstructions and in LoS conditions. Differently
from this chapter’s objective, the majority of papers address the general users, forgetting the implications
and limitations of the specific protocol procedures. For example, dynamic trajectories for the 3D space are
studied in [86] with the purpose to connect IoT nodes at their activation time. Authors jointly optimize the
transmission power of ground nodes, the overall energy spent in movement, and the choice of the next stop
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of each UABS. Optimization algorithms have also been studied for UABS placement to achieve optimal
energy efficiency [87, 88] by minimizing power consumption and transmission delays. Finally, [89] studies
trajectories for energy minimization in a NB-IoT context. The NB-IoT protocol is considered in [82], whose
research targets are low data rates, delay tolerance, massive connections, and extremely wide coverage [90].
However, these works usually lack a fine-grained protocol study and focus on the optimization of one metric
above another. On the other hand, the goal is to provide a more general overview of potentials and challenges
with a deeper focus on protocol details rather than the optimization of a single performance metric. Also,
optimization frameworks struggle to handle large input instances (e.g. a massive number of nodes in the sce-
nario) because of the excessive computation times, in terms of days or weeks. For example, [91] and [92]
consider less than 10 users in the service area. In [93], it is optimized the 3D locations of UABSs for wire-
less powered NB-IoT. Another work worth mentioning is [94]. Authors propose a NB-IoT model to collect
underground soil parameters in potato crops using a UAV-aided network. The analysis in this case is mostly
application-dependent and therefore differs from the general evaluation with different metrics provided in the
following.

However, the literature still lacks a detailed model and protocol analysis of similar scenarios and setups.
Therefore, the focus of this chapter is to extend and further discuss the system dynamics of NB-IoT networks
served by an UABS, rather than compare the proposed approach with other research activities. This study
may help to extract the major impacts of the overall protocol stack of the NB-IoT technology on UAV-aided
networks.

In this chapter, different approaches to aerial support for NB-IoT networks are proposed, in order to
provide a general overview of the challenges and potentials of these systems. To properly assess the network
performance of UABSs serving NB-IoT nodes, performance metrics as the percentage of completely served
nodes, the throughput provided, the latency which has to be expected, and the IoT nodes’ energy consumption
are jointly considered. The key contributions can be summarized as follows:

– a UAV-aided NB-IoT scenario is proposed, with several hundreds of nodes located in different parts of
the area to simulate diverse applications. Differently from other papers in literature, the NB-IoT tech-
nology is considered in detail as specified by the 3GPP documents, including the signaling procedures,
and studied in all of its features;

– performance in terms of the number of completely served nodes, achieved network throughput, per-
ceived latency, and energy consumption of nodes are investigated;

– the impact of using different UABS trajectories is analyzed;

– the implications of the three NB-IoT coverage classes and the impact of varying UABS parameters,
such as speed, height, and trajectory selection are considered.

The chapter is organized as follows. Section 3.2 describes the scenario and the network model. Final
simulation results and related discussions are reported in Section 3.3. Finally, Section 3.4 concludes the
chapter.

Chapter 3. UAV-Aided NB-IoT Networks 65



3.2. System Model

3.2 System Model

The scenario taken into consideration has the scope to recreate a realistic deployment of IoT nodes, denser
in service areas and absent in other locations. For example, IoT devices can be positioned at smart traffic
junctions, in city parks, at waste collection points, in parking lots, or into buildings, to name just a few.
Thus, practically, clusters of IoT nodes are distributed in the area, characterized by close vicinity when they
implement the same application requirements. The spots scattered with NB-IoT nodes are considered not to
be served adequately by the terrestrial infrastructure and, for this reason, an UABS equipped with NB-IoT
radio access is sent to supply the service instead.

3.2.1 Network Scenario

To be specific, the scenario is modeled using a Poisson Cluster Process, namely the Thomas cluster process
(TCP) [95], as proposed in [79] and conventionally done in the literature (see, e.g., [96]). The TCP is a
stationary and isotropic Poisson cluster process generated by a set of offspring points independently and
identically distributed (i.i.d.) around each point of a parent Poisson Point Process (PPP) [95]. In particular,
the locations of parent points are modeled as a homogeneous PPP, with intensity λp, around which offspring
points are distributed according to a symmetric normal distribution with variance σ2 and mean value m.
As a consequence, the intensity of the offspring points can be written as λ = λp · m. In the proposed
scenario, offspring points represent the IoT nodes asking for service, whereas parent points are only reference
coordinates for cluster centers.

A square area of size L x L m2, where offspring points are located according to the description above,
is simulated. A sample scenario together with possible UABS trajectories in depicted in the following (see
Figures 3.2, 3.3, 3.4).

A single UABS is considered to decrease capital and operational expenditures and to simplify the final
numerical evaluation. Please note that, in this model, the extension to the case of multiple UABSs do not
necessitate additional complex settings, and therefore it is not a major focus of this work. However, for the
sake of completeness, it will be discussed in the following.

The UABS is assumed to start its flight from a fixed position, which can be considered as a recharge station
and where it has to come back at the end of the trajectory. In this way, it can recharge or change its battery for
the next flight. The capacity of the UABS battery is assumed to be sufficient to enable a full round trip over
any trajectory. This is a reasonable assumption provided that the UABS has no heavy payload other than the
RF equipment and the flight time is no longer than half an hour [97, 98]. The UABS is assumed to fly at a
constant altitude from the ground between 200 m and 300 m (not violating the regulations in EU).

3.2.2 Channel Model

Motivated by the short-sized traffic demand, the backhaul link UABS-terrestrial BS can be assumed as free-
space propagation, and the capacity achieved is sufficient for both the UABS control links (for maneuverabil-
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ity and command and control signals) and data forward. The propagation model affects the UABS-ground
node-link and is therefore known as ATG channel. Consequently, the received power, Prx, as a function of
the transmit power, Ptx, can be expressed as: Prx[dBm] = Ptx[dBm] − AL[dBi] − LATG[dB]. The ATG
propagation can statistically model the loss value, LATG, as the reference considered here for drones in urban
environments [83, 99]. According to this model, connections between drones and nodes can either be LoS or
Non-Line of Sight (NLoS). For NLoS links, the signals travel in LoS before interacting with objects located
close to the ground which results in shadowing effects. pLoS denotes the probability of connection being LoS.
The probability pLoS at a given elevation angle, θ, is computed according to the following equation

pLoS =
1

1 + α exp(−β[180
π
θ − α])

(3.1)

with α and β being environment-dependent constants, i.e. rural, urban, etc, and adopted as given in [83, 84].
Equation (3.1) determines for every link if it is in LoS or NLoS condition, impacting then the value of ξLoS in
equation (3.2). The LoS path loss model is given by:

LATG(d)[dB] = 20 log

(
4πfcd

c

)
+ xLoSξLoS + (1− xLoS)ξNLoS + η (3.2)

where xLoS equals 1 in case of realization of LoS links and 0 otherwise. ξ represents the shadowing coefficient
which depends on LoS or NLoS conditions as well and is set as described in [83, 84]. Then, c is the speed of
light, fc is the center frequency, and d is the transmitter-receiver distance in meters. An additional penetration
loss, η, as for in indoor monitoring or basement applications is considered.

If the received power is above the receiver sensitivity, the node is in the connectivity range of the UABS.
Because of the fact that NB-IoT may have three coverage classes, there are three sensitivity thresholds, one
for each class ce, denoted as Pce,min. Once the device is connected and synchronized to its coverage class
signalling, it can attempt to access the channel through the NB-IoT NPRACH (see Chapter 2), so that, if
succeeded, it may be given resources to transmit its data. The number of resources assigned determines the
packet size that the node can transmit in the given time window. Note that, since IoT nodes are the devices
more limited in their characteristics, for example considering the maximum transmit power, in the following
some assumptions are made:

– the connectivity range is defined by the uplink,

– the downlink control communication is error-less.

3.2.3 Traffic Model and Metrics

Each node will then request to the UABS to transmit one uplink packet of size B. NB-IoT nodes are assumed
to be already synchronized to the cellular network; they start their operations from the RA, exchanging the
required NB-IoT signalling messages and, if completed correctly, the required uplink resources are scheduled
in NPUSCH. As one can imagine, the procedure is robust but its completion is not guaranteed. In fact, the
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Parameter Itx [mA] Irx [mA] Iidle [mA] Isleep [mA] V [V]
Value 220 46 6 0.003 3.6

Table 3.1: Energy Consumption Parameters

main obstacles may be found in the UABS movement, channel fluctuations and collisions. The last two are
application and environment dependent, while the first may be subject to a proper trade-off of the different
latency, energy consumption, throughput and success rate metrics. In the following, pedex u will indicate a
generic node in the network.

Latency, that is the interval elapsing between the instant when the node has a packet to transmit to the
service completion, is computed as:

∆τu = τu,tx − τu,start (3.3)

where τu,tx is the time instant in which the node transmits its packet and τu,start when this data is first available.
For ease of evaluation, τu,start is assumed equal to the time in which the UABS starts its trajectory for all nodes
u. Then, the throughput, tu, achieved by a single node u whose transmission is considered successful depends
on ∆τu as:

tu =
B

∆τu
(3.4)

If a node un is not able to transmit its packet demand, it would be tun = 0 b/s. Finally, the energy consumption
has to account for the signalling related to the RA procedure. It holds:

Eu =Etxu + Erxu + Eidleu + Esleepu =

=V Itx Ttxu + V Irx Trxu + V Iidle Tidleu + V Isleep Tsleepu (3.5)

where V indicates the voltage with which the IoT node is powered, Itx and Irx the current needed in trans-
mission and reception mode, respectively, Iidle the current present when the node stays in idle, and Isleep the
current during PSM. Similarly, Ttxu , Trxu , Tidleu , Tspeedu indicate the times spent by each node u for being in
the corresponding operation mode. Of course, this depends on the message exchange described in Chapter 2
(that includes an alternating of transmission and reception modes). Some of these parameters are fixed and
shown in Table 3.1 [78].

3.2.4 UABS Trajectories

As mentioned, multiple possible trajectories for one UABS flying over clusters of IoT nodes have been ana-
lyzed. These trajectories follow a predefined path since IoT nodes are placed in fixed positions and usually
have a traffic demand that is easily predicted or periodical. In this way, the static positioning of multiple drones
can be avoided, which would require increasing capital expenses. Moreover, a static deployment of hovering
UABSs has further energy consumption issues from the UABSs side, which may be less under control. The
following possible trajectories are considered:
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– Circular path;

– Paparazzi-like trajectory;

– Flight following the solution of a Traveling Salesman Problem (TSP) over clusters’ parent points.

Each of these trajectories has its pros and cons. Thanks to the wide coverage which can be achieved by the
three coverage classes of NB-IoT, the circular path might be an option for its short path length. On the other
side, if IoT nodes are not adequately covered, the paparazzi-like trajectory is able to scan the entire area.
However, since the UABS has to serve clusters of fixed nodes, there is a third option. Locations of the parent
points can be considered as reference coordinates to model the trajectory as a TSP [100], as proposed in [79].
In this way, it can be observed the effectiveness of these choices compared to other known alternatives. The
TSP determines, for a finite set of points whose pairwise distances are known, the shortest route connecting
all points. The circular path has a radius length equal to half the length of the circumscribed circle of the
service area. To better adapt the circular trajectory to the nodes’ deployment, the perimeter of the service area
is considered as the maximum extension of the nodes’ location in all directions, centering it and the circular
path consequently. A similar implementation is repeated for the paparazzi trajectory, which considers also a
sensing radius for the UABS to define the width of the serpentine, fixed to 500 m. Examples of trajectories
and cluster positions for a scenario snapshot are represented in Figures 3.2, 3.3 and 3.4.

Figure 3.2: Example of the circular path (blue line) and clusters with nodes (red dots) location; the dark blue
circle indicates the start of the trajectory.
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Figure 3.3: Example of Paparazzi path (blue line) and clusters with nodes (red dots) location; the dark blue
circle indicates the start of the trajectory.

Figure 3.4: Example of TSP-driven path (blue line) and clusters with nodes (red dots) location; the dark blue
circle indicates the start of the trajectory.
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Table 3.2: Radio and Network Parameters

Parameter Notation Value Parameter Notation Value
Area side [km] L 10 Mean number of nodes per cluster m 100

Intensity of parent points λp 5 Locations’ standard deviation σ 100
Packet size [bits] B 500 UL transmit power [dBm] Ptx 14 dBm

Antennas loss [dBi] AL 2.5 Penetration loss [dB] η 40
Environment constant α 0.1581 Environment constant β 9.6117

Noise power [W] PN 30 10−17 Channel bandwidth [kHz] Bc 180 KHz
Subcarrier spacing [kHz] ∆f 3.75 Available subcarriers NSC 48
Carrier frequency [MHz] fc 1747.5 RU duration [ms] TRU 32

MCS index IMCS 6

As one can easily see, the performance of the considered network depends both on the UABS mobility
pattern and the UABS NB-IoT cell configuration. In the following section, it is shown how the respective
parameters (e.g., UABS height and speed, NB-IoT coverage class configuration and cluster dimension) affect
the performance.

3.3 Numerical Results

In this section, NB-IoT network performance will be analyzed. As previously mentioned, a number of metrics
have been jointly studied, being:

– the access rate, Racc;

– the percentage of nodes completely served, Ssuc;

– the mean latency perceived by nodes, ∆τavg;

– the network throughput, Tnet;

– the mean energy consumption of NB-IoT nodes, E.
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These metrics are computed via the following formulas:

Racc =
nsuc

natt

(3.6)

Ssuc =
nsuc

ntot

· 100 (3.7)

∆τavg =

∑ntot

u=1(τu,tx − τu,start)

ntot

(3.8)

Tnet =
ntot∑
u=1

tu (3.9)

E =

∑ntot

u=1Eu

ntot

(3.10)

The access rate Racc in equation (3.6) denotes the fraction of the number of succeeded transmissions, nsuc,
over the overall attempted by anyone of the IoT nodes, natt. In this way, it can be analyzed how frequently a
node u may get access to the channel. When the Racc value gets close to zero, the number of access attempts
has to increase before success. Equation (3.7) is used to identify how effective is the UABS service. In
fact, Ssuc counts the number of nodes successfully transmitting their traffic demand over the total number of
present IoT nodes, ntot, in percentage. Then, equation (3.8) computes the latency or delay for the node u
spanning from the time in which the request is started, τu,start, until when the transmission succeeded, τu,tx. If a
node is not able to transmit its packet, it is not considered in the average latency computation. Equation (3.9)
computes the overall network throughput by summing the one of each node u, tu. Finally, equation (3.10)
averages the energy consumed by all nodes present in the service area, ntot
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Figure 3.5: Percentage of served IoT nodes for different UABS speeds and trajectories with h = 200 m.
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To start with, Figure 3.5 shows the percentage of IoT nodes served by the UABS, which means their
traffic demand is completely fulfilled. Its value is represented while varying the UABS speed, v, and for the
different trajectories. This picture has some relevant outcomes. First, the performance is not the same when
varying speed; for each trajectory, it drops fairly below the 50% of served nodes. This is clearly related to
the time interval in which the UABS is able to maintain a robust radio connection with each node. In fact,
if the received power falls below the receiver sensitivity before the signalling is completed and the node is
scheduled an uplink resource on the NPUSCH (for example, if the UABS has flown away too fast), it will not
be able to successfully transmit its packet. This effect becomes relevant when discussing latency because the
value of v creates a trade-off between low application delays and successful transmissions. At first glance, it is
also evident that the TSP trajectory is able to serve a higher number of nodes for every UABS speed, making
more robust what first proposed in [79]. In fact, this trajectory ensures the UABS gets in close vicinity with
each cluster and each node, while minimizing the distance traveled. On the opposite, the circular trajectory
decreases the percentage of successful transmissions by 50% with respect to TSP and Paparazzi ones, on
average. The coverage extension and the time spent over each node do not allow in this case a sufficient
service. The analysis of the other metrics would allow us to finally assess and discuss the final trajectory-
dependent performance.
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Figure 3.6: Access rate of IoT nodes for different UABS speeds and trajectories with h = 200 m.

Figure 3.6 represents the access rate, Racc, again while varying the UABS speed for different trajectories.
By looking at increasing speeds and for the same trajectory, the value of Racc is dropping for each trajectory
at 25 m/s, as it was for the service in Figure 3.5. With the UABS moving faster, the occasions to attempt
channel access decrease. From equation (3.6), this metric evaluates together the number of overall attempts
tried by nodes and, from these, the ones which are successful. This might explain why the Paparazzi and
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circular trajectories have higher access rates; these can be achieved if the total number of attempts is small
(the denominator) with respect to other trajectories. If a lower number of nodes try to access at the same
time to the channel (maybe for connectivity issues) the probability of successful transmission increases (see
equation (3.6)).
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Figure 3.7: Perceived latency of IoT nodes for different UABS speeds and trajectories with h = 200 m.

Another figure of merit is the latency with which packets are transmitted (on average), ∆τavg, in Figure 3.7.
As expected, the latency decreases with increasing speed for each trajectory; the NB-IoT nodes that can
successfully transmit their packet are served faster because the UABS will reach them with a smaller delay.
Furthermore, focusing on the latency of the different trajectories, it can be noticed that the TSP path performs
better, followed by the circular one. In fact, the distances covered by these two trajectories are fairly smaller
with respect to the other. On the contrary, for its characteristic of scanning the entire service area, the Paparazzi
trajectory employs much larger delays than the other two.

The network throughput, Tnet, that can be achieved has been also analyzed. As formulated in equa-
tion (3.9), these results will also depend on the ones of Figures 3.7 and 3.5 because of the dependence on
service completion and latency in equation (3.4). Interestingly, three different trends with different UABS
speeds, v, can be observed for the three different trajectories: i) the TSP shows a maximum in the curve,
ii) the circular does not change significantly, while iii) the Paparazzi shows an improvement with increasing
velocities. The maximum shown by the network throughput in the TSP trajectory corresponds exactly to the
service-latency trade-off with UABS speed mentioned before. However, because of the low total service of-
fered, the circular trajectory is hardly showing any maxima. Similarly, the maximum cannot be appreciated
for the Paparazzi path, but the network throughput appears to be increasing with increasing speed. In fact,
one can observe that at lower UABS speeds as 10 to 15 m/s, the average latency is so large (almost one or a
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Figure 3.8: Network throughput for different UABS speeds and trajectories with h = 200 m.

half hour) that the maximum cannot occur for the chosen UABS speed range. As expected, the TSP trajectory
shows a relevantly higher throughput with respect to the other two, up to 16 kb/s. Also, because of a larger
average latency, the Paparazzi trajectory achieves an even lower throughput than the circular one (which had
a worse percentage of served nodes). As last performance metric, the impact of trajectories on the average
energy consumption, E, is reported in Figure 3.9.

To avoid cluttering, the impact of two different UABS heights, h, is shown for the same trajectory. Results,
in this case, are provided considering the TSP path, being the trajectory showing better results in terms of
almost all metrics.

In this case, the percentage of served NB-IoT nodes with varying UABS speed, v, is plotted in Figure 3.10.
The behavior of the two curves with respect to speed is the same as already discussed in Figure 3.5. However,
it can be seen a slight difference from before, that is a lesser sharp decrease in successful transmissions
when the speed is 25 m/s. For lower speeds, the system performs better at lower UABS heights, h, while
for higher speeds increasing heights improves the service. One might expect that since for higher altitudes
the transmitter-receiver distance increases on average, the curve with the larger UABS height would perform
always worse than the other (as it happens for values of v lower than or equal to 20 m/s). However, this does
not consider the NB-IoT signalling messages procedure and timing. In fact, for increasing values of h, not
only the transmitter-receiver distance gets higher, but also the coverage range of the UABS increases (given
by the angle of incidence of the UABS with the ground, or elevation angle in [83, 84]). Consequently, it
increases the time interval during which, on average, the NB-IoT node remains in the coverage range of the
UABS. As shown in Figure 3.10, this effect can be more appreciated with increasing values of speed.

What has been discussed above is confirmed in Figure 3.11, showing the average energy consumption, E,
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Figure 3.9: Average energy consumption of IoT nodes for different UABS speeds and trajectories with h =

200 m.

with varying UABS speeds and heights. Being an average, its value depends on the number of nodes able to
reach the UABS connectivity and enter the RA (i.e. signalling) procedure. The curves’ decreasing trend with
speed is the same for the two h values and was already discussed for the TSP in Figure 3.9. A higher altitude
lets a larger number of nodes be in connectivity with the UABS, therefore leading to the start of the RA
procedure. This increases the overall energy consumption, regardless of successful transmission or not. With
lower speeds, more nodes would be able to complete the signalling procedure, whether with higher speeds the
energy consumed accounts only for the transmission of NB-IoT Msg1 and/or Msg2.

The analysis of the energy consumption can be validated by Figure 3.12. It represents the access rate,
Racc, for different UABS heights and speeds in the TSP trajectory. Here, the curve trend with respect the to
speed, v, is the same, as for Figure 3.11, and the curve with the higher height, h, has a lower access rate. This
means that a larger number of attempts does not correspond to the same number of successful transmissions.
In fact, also due to the average larger transmitter-receiver distances with a higher-height UABS, it gets more
difficult for nodes to complete the RA procedure.

Related to average latency, ∆τavg, one can observe a quite less significant impact. In Figure 3.13, the value
of ∆τavg is affected more by increasing UABS speeds rather than increasing UABS heights.

As evinced until now, the TSP trajectory performs better than the other in terms of successful transmis-
sion, latency and throughput, making it the most promising among the three for cellular IoT (e.g. NB-IoT)
applications. Based on the provided results, one can extract the behavior of UAV networks with respect to
speed, height and trajectory choice.

In the numerical evaluation, at first relevant factors, an operator must take into account when deploying
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Figure 3.10: Percentage of served IoT nodes for different UABS speeds and heights in the TSP path.

this kind of system are identified. First, the speed undergoes a trade-off between average perceived latency
and throughput from one side to the total number of successfully served nodes on the other. In this sense, the
NB-IoT protocol plays a relevant role, since higher speeds do not allow the completion of the RA procedure
and therefore the scheduling of uplink resources in the NPUSCH. Moreover, though a larger altitude would
grant an increased connectivity range, it also increases the transmitter-receiver distance, which has again a
negative impact on the successful completion of the RA procedure.

From the shown results, one can also infer conclusions on the trajectory selection. It can be stated that the
circular trajectory, as would be for any path that travels the perimeter of a convex figure, is neither an effective
trajectory in terms of latency nor a robust choice for the service of a massive number of IoT nodes. In fact, it is
not able to follow the particular deployment of nodes for a given service area. On the other hand, a Paparazzi
trajectory seems a good alternative, since it ensures to scan of the overall service area. This might be a fair
solution if a mobile operator does not know a priori the location of nodes. However, because of the fact that
this information is usually easy to retrieve and the Paparazzi trajectory becomes expensive in terms of energy
consumption and latency, is probably not desirable. This confirms the expectations on the robustness of the
TSP path.
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Figure 3.11: Average energy consumption of IoT nodes for different UABS speeds and heights in the TSP
path.
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Figure 3.13: Perceived latency of IoT nodes for different UABS speeds and heights in the TSP path
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3.4 Conclusions

This chapter proposed a thorough network performance evaluation of an UABS-aided NB-IoT network through
detailed simulations. The different aspects of the NB-IoT protocol have been considered, including the sig-
nalling granting resources for uplink transmission and the different NB-IoT coverage classes. Then, the system
performance have been evaluated jointly considering the service offered, access rate, average latency, network
throughput and energy consumption metrics. UABS speed and height reveal a noticeable impact on the final
performance, requiring a performance trade-off on the different metrics. Finally, it has been also observed the
impact of different trajectory selections, with the trajectory given by the TSP solution being the most suitable
for clustered environments.
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Chapter 4

Trajectory Design for UAV Networks

4.1 Introduction

With the advent of 5G and beyond networks, novel advanced paradigms target network scalability and seam-
less communications. Therefore, as described in the previous chapter, the use of UABSs that may fly on-
demand exactly when and where service is needed [101, 102], arises high interest and expectations. An
important use case is offered by vehicular wireless networks, in which UABSs serve as relays between ve-
hicular users and the network, enabling users to upload data collected by on-board sensors [103, 104, 105,
106, 107, 108]. Such user-generated data are collected by the network and then forwarded to other vehicles
by means of BSs or Road Side Units (RSUs). Being able to offer stronger, possibly LoS, links to vehicles as
compared to (static) ground BSs, UABSs can support high demanding V2X applications, such as advanced
driving [10, 11] and extended sensing [12, 13], as specified by 3GPP [14].

In this context, the design of the trajectory assumes a fundamental role. Since the continuous variation
in time of the environment constitutes a critical challenge, recent trends for UAV trajectory design show that
the use of RL is particularly helpful [109]. Indeed, solving mathematical optimization models is not possible
when a-priori input data is unavailable or requires too high complexity and computation time. To solve such
problems, RL allows instead to learn in an environment with little prior information available. As it will be
discussed later, RL balances the environment exploration done by an agent with the exploitation of acquired
knowledge through time, aspects that allow learning the dynamics of a vehicular scenario.

The problem with RL-based solutions stems largely from the need to re-train an RL policy from scratch for
any new environment, e.g., for a new traffic pattern of the ground users. Therefore, after exploring RL-based
solutions, meta-learning [110] techniques will be addressed in this chapter in order to solve such a problem.
Meta-learning is able to transfer information from previously experienced configurations to new conditions,
reducing the time needed to optimize the UABS’s policy. Standard meta-learning solutions for RL, also known
as meta-RL, require the designer to have access to the simulators corresponding to all the previously encoun-
tered traffic conditions [111]. This may be practically impossible, or at least computationally prohibitive.
Given these limitations of conventional meta-RL, the use of continual meta-RL via Continual Meta Policy
Search (CoMPS) [112] will be addressed, which removes the need to revisit previous traffic conditions, and it
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operates online, acquiring new knowledge as new conditions are encountered.

The rest of the chapter is organized as follows. A review of the state of the art is provided in Section 4.2.
The use of Deep Q-Network (DQN) and its extensions are explored in Section 4.3, whereas a comparison
between discrete and continuous action spaces by means of DQN and Deep Deterministic Policy Gradient
(DDPG) is reported in Section 4.4. The use of meta-learning is described in Section 4.5. Finally. Section 4.6
concludes the chapter.

4.2 Literature Overview

A key problem in UABS-based networks is designing algorithms that can efficiently optimize the trajectory
of the UABS while ensuring target performance given some constraints [113, 114, 115]. As a means to find
such trajectories, convex optimization approaches have been widely adopted under the assumption of fixed
ground user locations [116]. In order to alleviate the impact of the simplifications required to apply convex
optimization tools, RL-based solutions have been leveraged for the case of static ground users. As a matter of
fact, most of the works consider fixed IoT nodes [117, 118]. Examples of DQN based algorithm are described
in [119], where the goal of the algorithm developed by the authors is to get fresh data collection for time-
critical IoT services. The use of UABSs for Search and Rescue (SAR) missions is considered in [120]. In
this case, authors exploit a RSSI-based Q-learning in a GPS-denied indoor environment in order to detect
users to be served. A fleet of UABSs is considered in [121], so a multi-agent RL approach is used in order
to formulate the path planning problem taking into account multiple UABSs in the scenario. Such an issue is
again addressed with a DQN algorithm by feeding the neural network within the model with global maps of
the environment.

The problem reaches a new level of complexity when the target of UAV services is moving. Authors
in [122] adopt Q-learning for the trajectory control part, and [123] employs Q-learning for 3D trajectories in a
multi-UABS environment where users are roaming. [124] studies the optimal positions of UABSs in a sparse
highway with a variation of the Deep Independent Q-learning for multiple agents. However, the communica-
tion range of drones is here considered fixed, therefore ignoring spatiotemporal channel fluctuations. Moving
users are considered in [125], where authors propose a RL approach for multiple UABSs trajectory planning
to serve vehicles considering the UABSs energy consumption. However, in this case, the trajectory planning
turns out to be very simple since a highway scenario is considered. In [126], authors take into account mobil-
ity and they present a scenario where the path planning is based on the initial position as well as the prediction
of the users’ next location. To do so, they exploit Q-Learning for the trajectory design, which is fed with the
prediction of users’ movement generated by an echo state network algorithm that exploits GPS coordinates
supposed to be available by mining data from social networks. An emergency scenario is considered in [127],
where authors propose a Q-Learning-based algorithm to find the best positions of multiple UABSs in order
to maximize the number of covered users moving in an area, rather than learning a trajectory to follow them
in the environment. In [128], authors study the optimal positioning of a relaying UABS which collects data
from one vehicle user while avoiding interfering with nearby V2V communications, while in [104] the opti-
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mization is performed taking into account the energy efficiency, the latency and the backhaul link capacity.
Both works consider a deployment problem, without taking into account a complete flying trajectory. Works
like [129, 130, 124] consider highway scenarios where the UABS movement is limited to one direction, while
in [131, 132] authors deeply simplify the city layout, by discretizing it into road segments. Nonetheless, all
these works provide as input to the system the exact vehicles’ positions.

Besides standard RL-based techniques, conventional meta-learning was previously considered for UABS
trajectory optimization in [133] by assuming that the ground users are static and have known locations. The
same authors in [134] extended their previous work by considering multiple UABSs. Unlike these previous
works, in the following, traffic conditions characterized by vehicular users with a priori unknown locations
will be considered, moving beyond conventional meta-RL by accounting for the constraint that simulators for
previous traffic configurations cannot be revisited.

4.3 Deep Q-Learning-based Trajectory Design

At first, the use of DQN and its extensions (DDQN and Double Dueling Deep Q Network (3DQN)) consider-
ing a discrete action space will be considered.

4.3.1 System Model

One UABS, u, and a set of vehicles denoted as GUEs, g, belonging to the set G, are present in the scenario
of interest. The UABS is equipped with a radio antenna system enabling beamforming for the mmWave
frequency bands; its position is given by [xt, yt, h], with constant altitude h, at time instant t. GUEs implement
an extended sensing application, according to which, each vehicle wants to exchange data gathered through
local sensors or video with other vehicles nearby [14]. To do this each GUE sends V2X messages (e.g.,
Cooperative Awareness Message (CAM) and Collective Perception Message (CPM)), to the network, every
tmsg seconds, with tmsg ∈ [0.1, 1] seconds. In the following, it is assumed tmsg = 1 s. Cars are moving in
an urban environment considering a map based on an area of the city of Bologna (Italy). This city map is
characterized by many possible paths each vehicle can take; their generation is based on Simulation of Urban
Mobility (SUMO), an open source traffic simulator [135] (an example is provided in Figure 4.1). In order to
improve the system performance, the UABS is expected to identify the most suitable trajectory to maximize
network service.

Since the RL algorithm used for this work is based on a discrete set of actions, as it will be discussed in
Section 4.3.4, the UABS can move only in predetermined directions. To model this behavior, the map (1460
x 760 m2) is divided into a squared grid world with vertices corresponding to the possible positions. The
number of positions available depends on the UABS speed, so the slower the UABS, the more granular the
grid will be (in simulations, there are 2628, 1176, and 666 possible positions for the slowest, the medium and
the fastest settings, respectively).
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Figure 4.1: Example: three possible paths (yellow, blue, red) taken by GUEs.

4.3.2 Channel Model

A mmWave communication system working at a carrier frequency fc = 30 GHz is assumed. Accordingly, the
channel model adopted is provided by the 3GPP in [136], considering, specifically, the Urban Macro (UMa)
scenario (more details in Chapter 7.4 of [136]). The model introduces probability for a link to be in LoS
conditions (see Table 7.4.2-1 of [136]), pL, that depends on the projected 2D terminal distance from the
UABS, d2D and user terminal height, hUT. Therefore, the channel losses, lL and lN for LoS and NLoS,
respectively, depend also on other parameters characterizing the propagation link, such as the terminal height,
hUT, the UABS height, h, and the 3D distance between the UABS and the terminal. Slow fluctuations due
to shadowing are considered with parameters σL = 4 and σN = 6 (dB), respectively. Consequently, each
link in the scenario has a channel loss (in dB scale) PL = lL + σ∗

L with probability pL or PL = lN + σ∗
N

with a probability 1− pL, where σ∗
L and σ∗

N are the shadowing samples taken from the Gaussian distributions
σ∗
L ∼ N (0, σ2

L) and σ∗
N ∼ N (0, σ2

N), respectively.
Finally, the SNR in dB is defined as:

SNR = [Ptx +Gtx +Grx − PL]− Pnoise (4.1)

where Ptx is the transmitted power in dBm, Gtx and Grx represent the gain in transmission and reception,
respectively, in dB and Pnoise is the noise power.

4.3.3 Beamforming

Tackling a 6G network scenario, it is assumed transmissions take advantage of beamforming techniques. In
particular, the UABS is using a fixed Grid of Beams, operating on a set of Nbeam = 9 resulting on the ground
as circular spots and arranged in a 3x3 grid. Φ denotes the solid angle deriving from the radiation pattern
and αbeam ≈ Φ/Nbeam as the solid angle of a beam. Consequently, the maximum gain G can be expressed
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as [137]:

G =
41000

(αbeam
360
2π

)2
(4.2)

For the sake of simplicity, the radiation pattern is assumed ideal, with gain G inside the angle αbeam, and zero
outside. ϕ denotes the 2D angle of the UABS’s vertical plane, from which it is inferred the field of view of the
UABS projected on the ground.

4.3.4 Problem Definition

Time t is discretized into steps of duration tmsg. According to standard RL problems, an agent interacts with
an environment during an episode, lasting T steps. At each step, starting from state st, belonging to the state
space, S, the agent chooses an action, at, from a set of possible actions, A, according to its policy π. After
selecting such action, the agent moves to state st+1 ∈ S and receives a scalar reward rt = r(st, at) based on a
reward function r : S ×A → R.

To this end, some definitions are introduced:

– an agent as the UABS, u, whose target is to design the trajectory which maximizes a reward function;

– a state in the state space that consists of the agent location and number of vehicles under each beam. The
agent position is expressed in (x, y) coordinates at the relative time instant t. The UABS is able to get
information related to the number of GUEs under its field of view, therefore a vector bt, in which each
element bt,i is equal to the number of GUEs under the i-th beam at time instant t, is defined. Therefore,
a state is defined as st = {xt, yt,bt};

– an action of the agent as a movement on the map in one of 8 possible directions or hovering. Therefore,
the Action Space is defined as A = {0,←, ↑,→, ↓,↖,↗,↘,↙}, where 0 represents the decision to
stay still;

– the reward measures the benefit of selecting a specific action a while being in a state s. Since the agent
aims at maximizing the number of served GUEs, it is computed as the sum throughput of the vehicles
seen by the UABS at time instant t. Therefore, it is defined as

rt =
∑
g∈G

r
(g)
t :=

∑
g∈G

Bch log(1 + SNR(g)
t ), (4.3)

where r(g)t indicates the capacity of the g− th GUE at time t for the UABS in state st and action at, and
where Bch is the channel bandwidth.

4.3.5 Q-Learning

Q-Learning is a model-free RL algorithm that consists of an agent interacting with an environment in order to
learn and optimize its behavior. In particular, it aims at iteratively improving the state-action value function,
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or Q-function, which represents an expectation of the discounted cumulative future rewardRt from the current
state st up to the last step T :

Qπ(s, a) = Eπ[Rt|st = s, at = a, π] (4.4)

where Eπ is the expected value under policy π and with Rt given by:

Rt =
T∑
i=t

γi−tr(st, at) (4.5)

where γ ∈ [0, 1] represents the discount factor, which balances the importance of the immediate and the future
reward.

Given a transition< st, at, rt, st+1 >, Q(s,a) can be expressed by the Bellman equation in terms of Q-value
of the next state st+1:

Q(st, at) = rt + γmax
a
Q(st+1, a) (4.6)

In other words, it is possible to express the Q-value as the sum of the immediate reward and the discounted
future reward of the state that follows, without the need of calculating each value as the sum of the expected
cumulative reward.

In its simplest form, Q-Learning exploits the Q-Table, a look-up table in which the Q-value for each
state-action pair is stored and regularly updated. The agent chooses an action based on an epsilon greedy
policy [138], thus the chosen action may be random with probability ϵ or it can be the action with the highest
Q-Value with probability 1-ϵ. Each time an action is chosen, the updated Q-Value is computed as:

Qnew(st, at) = Q(st, at) + α(rt + γmax
a
Q(s(t+1), a)−Q(st, at)) (4.7)

where α represents the learning rate, which determines how new information overrides old information.

4.3.6 Deep Q-Learning

The main drawback of Q-Learning is that in case of high dimensional state or action spaces, the Q-Table
would require too much time to be created, as well as too much space to be stored. For these reasons, DQN
has been introduced in order to represent the policy π or other learned functions as a deep neural network
which, taking the state as input, estimates the Q-values for all the different actions an agent may take.

Q-values can be any real values, which makes the problem a regression task, thus optimized with a function
of the error loss between the predicted and the true values, estimated using equation 4.6. Both true and
predicted target values are used to calculate the loss and consequently to update the neural network weights,
leading to a huge correlation between target values and network weights. To avoid convergence issues and
make the training more stable, two different networks are used:

– the action network, with parameters θ, represents the predicted value and it is used to select the action
the agent takes and it is updated every n steps;
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– the target network, with parameters θ−, is a clone of the action network used only to compute the true
value and it is updated every m >> n steps by copying the action network’s weights.

Therefore, the loss is computed as:

L = f(rt + γmax
a
Q(st+1, a, θ

−)−Q(st, at, θ)) (4.8)

As f , in the following the Huber Loss [139] has been chosen.

4.3.7 Double Deep Q-Learning

In [140], authors claim that the standard Q-Learning algorithm is known to overestimate action values under
certain conditions. In order to prevent such overestimation, a DDQN algorithm is presented. The idea behind
this algorithm is to decouple the selection from the evaluation, by exploiting the action network to select the
action, whereas the corresponding Q-Value is estimated using the target network.

Therefore, the loss function changes as:

L = f(rt + γQ(st+1, argmax
a
Q(st+1, a, θ), θ

−)−Q(st, at, θ)) (4.9)

4.3.8 Dueling Deep Q-Learning

Given the policy π, it is possible to define the state-value function V π
(s) = Ea∼π(s)[Q

π
(s,a)], which represents the

expected total reward following policy π starting from state s.
Consequently, it is possible to define the Advantage function as

Aπ(s, a) = Qπ(s, a)− V π(s) (4.10)

which represents how advantageous would be an action with respect to the others at the given state following
policy π.

Dueling DQN [141] introduction is motivated by the fact that it is unnecessary to know the outcome of
each action at each time step, so, exploiting two separate streams (which are recombined in order to generate
the Q-values) for the estimation of the State values and the Advantages, the dueling architecture can learn
separately which states are important from which action is better to select. This also provides the possibility
to integrate it in the classical DQN schemes, whose functioning remains the same, since no changes to inputs
and outputs are made. In the following, the term 3DQN refers to a Dueling Double DQN scheme.

4.3.9 Numerical Results

Parameters set in simulations are reported in Table 4.1. During training, the Buffer Size is set to N = 500000

and the Batch Size K = 128.
Results are presented in terms of total reward, which is the sum of the reward obtained by the agent at

each step, that is R =
∑T

t=0 rt, where T is the length of one episode and rt has been defined in equation (4.3).
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Table 4.1: DQN Simulation Parameters

Parameter Notation Value
Number of GUEs Ng 15

Average GUE speed [m/s] vg 10
GUE transmit power [dBm] Ptx,g 20

Carrier frequency [GHz] fc 30
Channel bandwidth [MHz] Bch 1.44

Effective noise power [dBm] Pnoise -106.4
Episode Length [s] T 380

Learning Rate α 0.001
Discount Factor γ 0.8

Buffer Size N 500k
Batch Size K 128

Action Network Update n 1
Target Network Update m 500

Figure 4.2 shows the total reward as a function of the number of episodes for different algorithms presented
in Section 4.3.4, when setting vu=20 m/s and ϕ = 140◦. Note that, by changing ϕ, the antenna gain at the
UABS will change according to equation (4.2). It can be clearly seen that the dueling architecture offers
more advantages since the dueling DDQN and the dueling DQN perform better with respect to the other
architectures. The reason behind this may be explained by the fact that the dueling architecture is able to learn
which states are important regardless of the action to take, which means that the agent is able to detect which
are the most important locations (i.e., states) to reach first and then optimize how to reach them. Surprisingly,
the double architecture alone does not provide good results, even worse than the standard DQN. This may
happen due to the fact that the Q-value, in the double architecture, is estimated exploiting the target network,
which is updated slower w.r.t. the action network, as explained in Section 4.3.6. This penalizes the knowledge
the agent may have acquired and which is not used until the next target network update. In addition, the figure
shows how the introduction of the beam information bt into the state definition gives a huge boost in terms of
training time, allowing the algorithms to converge after 1000 episodes. On the other hand, the removal of such
information, which changes the state definition to st = {xt, yt}, increases the time needed for the algorithms
to converge up to 10000 episodes, since the agent has fewer data at its disposal. Finally, the horizontal line
shows the performance of a UABS taking decisions without using any RL-based solution, but only selecting
each action by going towards the direction of the beam with the highest number of vehicles inside at each
time step. This allows us to compare the RL architectures with a benchmark, where the UABS is exploiting
the information available but is not actually learning how to use it properly. As it can be clearly seen, the
benchmark performance is very poor w.r.t. those achieved when RL is used.

On overall, the 3DQN is proved to be the best solution, since it converges faster w.r.t. the standard dueling
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Figure 4.2: Comparison between different algorithms for vu=20 m/s and ϕ = 140◦.

architecture. Therefore, the next results will be presented considering only such an algorithm.
Figure 4.3 shows the total reward as a function of the number of episodes for different UABS speed, vu,

having set ϕ = 140◦. Results are comparable in terms of total reward obtained at the end of the training,
even though higher speeds offer faster convergence mainly because the agent is able to explore the entire map
faster. In addition, it can be noticed that choosing such speeds does not worsen the performance, even if they
are higher w.r.t. the average GUEs speed.

Finally, Figure 4.4 depicts the total reward as a function of the number of episodes for three different
overall fields of view of the UABS, ϕ, when setting vu=20 m/s. As can be seen, a larger field of view, and
therefore a larger angle of aperture per beam, provides better results mainly because more GUEs are seen
by the UABS. In addition, the beam angle of the aperture helps also in the detection of the GUE movement
direction, resulting in faster learning.
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Figure 4.3: Comparison between different UABS speeds with Dueling DDQN for ϕ = 140◦.
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Figure 4.4: Comparison between different UABS aperture angles with Dueling DDQN for vu=20 m/s.
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4.4 Comparing Dueling Double Deep Q-Network and Deep Determin-
istic Policy Gradient

After describing a 3DQN-based solution, a comparison with the DDPG algorithm will be described in the
following in order to understand the advantages and/or limitations of the use of such algorithm as well as the
exploitation of a continuous action space.

4.4.1 System Model

The scenario considered is the same one reported in Section 4.3.1. In the same way, the channel model and
the beamforming approach are the ones presented in Section 4.3.2 and Section 4.3.3, respectively.

One major difference is the introduction of a priority-based mechanism in the service provided to GUEs.
As a matter of fact, given the stringent requirements of vehicular communications [14], it is important also to
consider the case when the UABS offer continuous service that guarantees radio access for multiple contiguous
time instants during a time interval with an application dependent duration. For these reasons, a GUE g is
assumed to be served at time t if a target SNR, SNRth, is met:

y
(g)
t =

1 if SNR(g)
t > SNRth

0 otherwise
(4.11)

The concept of the user satisfaction then is introduced to define a target Quality of Experience (QoE). Suppose
that GUE g ∈ G has a service time window W of duration Tw, composed of N intervals of duration ∆t=1s.
BeingNs the number of intervals inW in which g has been served, the GUE is satisfied in that service window
if Ns ≥ N̂s, where N̂s is a threshold that depends on the target application requirements. To keep track of
the service history at each time instant t and for each GUE g, a priority p(g)t is introduced and assigned to
each GUE. It corresponds to the number of times the vehicle g has been served during the previous N time
intervals.

4.4.2 Problem Definition

Again, the RL problem definition is the same provided in Section 4.3.4. However, to address the priority
mechanism previously described and to consider a continuous action space in the case of DDPG, the following
changes have been introduced:

– S is represented by (xt, yt,bt), where (xt, yt) is the position of the UABS on the xy plane and bt is now
representing a vector of Nbeam elements where each element bi,t corresponds to the sum of the priorities
p
(g)
t of the GUEs g ∈ G inside the i-th beam at time instant t;

– A refers to the possible movement directions of the UABS, measured as the angle of rotation with re-
spect to a global reference system, and its current speed of flight in m/s. The discrete set used in 3DQN is
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limited to actions a ∈ A, whereA =MD×VD; withMD = {−135◦,−90◦,−45◦, 0◦, 45◦, 90◦, 135◦, 180◦},
the limited directions set, and VD = {10, 20, 30, 40}m/s the set of possible speeds. In the case of DDPG,
the agent may choose actions a ∈ A with A =MC ×VC , whereMC and VC are continuously defined
in [−180◦,+180◦] and [10, 40] m/s, respectively;

– the rewardR is represented by the instantaneous weighted normalized sum rate considering some penal-
ties factors: rt = Rt − (λb + λn),

rt = Rt − (λb + λn), (4.12)

Rt =
∑
g∈G

r
(g)
t p

(g)
t =

∑
g∈G

Bchlog2(1 + SNR
(g)
t )

Rbest

p
(g)
t . (4.13)

Where SNR(g)
t is the signal-to-noise ratio of the g-th link measured at the UABS, p(g)t is the current

priority of the g-th GUE, Bch is the channel bandwidth and Rbest is a normalization factor, calculated
as the highest rate achieved by a counterfeit placed GUE exactly underneath the UABS at closest dis-
tance h(u), thus assuming it suffers from the lowest possible path loss according to the channel model
implemented. Normalizing the rate helps to define penalties that work on a known range of values and
improve the training performance. The penalty λb is assigned in case the UABS tries to go outside the
borders of the area considered, while the penalty λn is assigned if Rt = 0.

For the implementation of the UABS’s trajectory design based on a discrete action space, the 3DQN
algorithm was used, while for the continuous action space, the DDPG algorithm has been exploited.

3DQN

To solve the trajectory design problem using a discrete set of actions, the algorithm 3DQN was used, as
presented in Section 4.3.

DDPG

DDPG was specifically designed to operate with a continuous action space [142]. It inherits from DQN the
use of a replay buffer D to store experiences and the exploitation of delayed target networks to stabilize the
training. Differently from the previous algorithm, DDPG uses two different Deep Neural Networks (DNNs):
the actor network, with parameters µ, and the critic network, with parameters ψ. The critic network estimates
the Q-values for all states and actions, while the objective of the actor network is to parameterize a determin-
istic policy πµ(s|µ) := argmaxaQ(s, a|µ), which chooses the best agent’s action while in state s. The idea
of the algorithm is to use Q-values estimates, provided by the critic, as a score for the performance of the
deterministic policy πµ. By maximizing such a score the policy will approach the optimal one.
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4.4.3 Numerical Results

In this section, results will be presented in terms of total reward, which is obtained by summing the rewards
obtained by the agent, that is R =

∑T
t=0 rt, where T is the length of one episode and rt has been defined

in equation (4.12). As a second performance metric, the percentage of satisfied users, Pg, is obtained as the
ratio between the number of satisfied service windows for each GUE and the total number of service windows
requested by the same GUE to the UABS, averaged among all GUEs. Parameters used during the simulation
are listed in Table 4.2.

Parameter Notation Value
UABS height [m] h(u) 100

UABS speed [m/s] v(u) [10-40]
Number of GUEs ∥G∥ 15

GUEs speed [m/s] v
(g)
m 12

UABS aperture angle ϕ(u) 100°
Service time window duration [s] Tw 10

Interval duration [s] δtpacket 1
Transmit power [dBm] Ptx 14

Noise power [dBm] Pnoise -106.4
Transmitting antenna gain [dB] Gtx 0

Receiving antenna gain [db] Grx 24
Carrier frequency [GHz] fc 30

Channel bandwidth [MHz] Bch 1.44 MHz
Reward normalization factor Rbest 20.00

Episode duration [s] T 380

Reward penalties λb, λn 0.01
Number of episodes Nep 5000

Discount factor γ 0.9

Table 4.2: DQN/DDPG Simulation Parameters

Figure 4.5 shows the comparison among different DNN input layer architectures, Raw and One Hot En-
coding (OHE). Raw encodes for each state variable its current value onto a neuron. OHE, instead, uses a
set of neurons for each state variable so that its current value is encoded as a single neuron in the set that is
“on”, with value 1, while the others are “off”, with value 0. The plot shows the total reward as a function
of the number of episodes, using a moving average with window 20. To avoid the problem of overfitting,
during each episode, vehicles randomly choose roads to travel following a given traffic distribution generated
by SUMO. During training, the UABS may choose random directions to explore the environment and gain
new experiences or it can take the estimated best action (i.e., the action providing the highest reward accord-
ing to its current knowledge) following the current policy. The plot is shown in terms of evaluation episodes,
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Figure 4.5: Total reward R, as a function of the number of episodes, Nep, during evaluation

so, every 20 training episodes, an evaluation of the agent is performed by following the best policy (i.e., no
random action can be taken), while vehicles follow a pre-defined path (shown in Figure 4.1).

One can notice that, in the case of 3DQN, OHE converges to a better result since the obtained reward is
higher. Instead, OHE is the only possible choice for the DDPG algorithm, since the Raw architecture fails
during training resulting in a bad trajectory for the UABS.

Indeed, OHE optimizes separately the estimates for each element of the state, making the training more
difficult but also providing better results. For sake of brevity, the results presented in the following are obtained
by an UABS that uses OHE as the input layer and 3DQN algorithm for training, but they can be easily extended
for the DDPG-OHE case.

Figure 4.6 shows the Pg for different satisfaction thresholds N̂s. It can be seen that the priority p
(g)
t ,

introduced in the reward function, is fundamental to let the UABS learn a trajectory that maximizes the
QoE. Indeed, by removing it from the reward function (i.e., considering the reward as the instantaneous rate
only), the UABS is not able to provide services with high user satisfaction threshold requirements. Also, it
is important to give the UABS the possibility to choose its speed. Reducing the Action space to the direction
selection only and fixing the speed, for example to 20 m/s, the QoE is worsened.
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Figure 4.6: Percentage of satisfied users, Pg, for different service thresholds, N̂s, considering 3DQN and
OHE encoding. The priority curve shows the performance when considering the reward function defined in
equation (4.12) and an UABS trained using a reward function that do not use the priority factor pg(t) (”without
Priority”), that is Rt =

∑
g∈G r

(g)
t .

4.5 Meta-Reinforcement Learning-based Trajectory Design

As stated before, meta-learning can deeply improve conventional RL performance by reducing the number of
episodes that need to be simulated in order to optimize the policy that controls the UABS’s trajectory when
facing a new task. In the following, a meta-RL solution based on CoMPS [112] will be described.

4.5.1 System Model and Problem Definition

As illustrated in Figure 4.7, a learning task consists of an initial position pu[0] = [xu[0], yu[0]] of the UABS
on the plane and of a traffic pattern. Time is discretized as t = 0, 1, . . . , T , where T is the maximum duration
of an episode. The traffic pattern is defined by the number G of GUEs, by the path Pg, speed vg and (discrete)
starting time instant tg ∈ {1, . . . , T} for each GUE g ∈ {1, . . . , G}, as well as by the probability pmsg that a
GUE generates a packet at each time step. A path Pg is a piece-wise linear curve connecting successive points
on the plane.

Given the input parameters τ = (G, {vg, Pg, tg}Gg=1, pmsg) defining a traffic pattern, a traffic simulator
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Figure 4.7: A learning task is defined by an initial UABS’s position pu[0] and by a traffic pattern determined
by the number of GUEs, G, the GUEs’ speeds, {vg}Gg=1, the GUEs’ discrete starting time instants, {tg}Gg=1,
paths, {Pg}Gg=1, and packet generation probability, pmsg. The UABS interacts with the learning task through a
simulator over a number of episodes in order to optimize its trajectory.

produces the positions pg[t] = [xg[t], yg[t]] for each GUE g = 1, . . . , G at discrete time instants t = tg, tg +

1, . . . , Tg, where Tg is the smaller value between the total duration of an episode, T , and the time at which
the end point of a path is reached by the GUE g. Specifically, the simulator implements a Markov model
p[t] ∼ Pτ (p[t]|p[t− 1]) to generate the GUEs’ positions p[t] = [p1[t], . . . , pG[t]] at time instant t as a function
of the previous positions p[t−1] as well as of the traffic pattern τ . The conditional distribution Pτ (p[t]|p[t−1])
can account for interactions among GUEs and for random events that may affect the GUEs’ trajectories.

Assuming constant altitude, the UABS’s position during the T discrete time instants of an episode is
described by the sequence pu[t] = [xu[t], yu[t]] for t ∈ [0, 1, . . . , T ]. At each time instant t, the UABS can
hover, or it can move in one of the eight possible directions AD = {←, ↑,→, ↓,↖,↗,↘,↙}. Therefore,
the action space is defined as A = {∅,AD}, with ∅ indicating the hovering decision.

While on route, at each time instant t ∈ {tg, tg+1, . . . , Tg}, a GUE can produce a message with probability
pmsg. This measurement is stored only for the current time and discarded if not delivered to the UABS.
Denoting as SNRg[t] the SNR level of GUE g towards the UABS at time instant t, GUE g is assumed to be
covered at time t if the inequality

SNRg[t] ≥ SNRth (4.14)

holds, given a fixed threshold SNRth. When condition (4.14) is satisfied, the GUE can successfully commu-
nicate a message to the UABS at time instant t. The UABS can receive at most Cmax packets at the same time
t. If more than Cmax GUEs satisfy condition (4.14) and have a packet to transmit, the UABS randomly selects
a subset of Cmax GUEs from which to receive a packet.

The goal is to optimize the stochastic policy π(a|s) for the UABS that selects action a ∈ A as a function
of the current state s of the system, i.e., a[t] ∼ π(·|s[t]). The state is defined as the collection of all positions
of UABS and GUEs, s[t] = (pu[t], p[t]) ∈ S. After selecting an action a[t], the UABS and all the GUEs move
to state s[t+ 1] with transition probability Pτ (s[t+ 1]|a[t], s[t]) given as

Pτ (s[t+ 1]|a[t], s[t]) = Pτ (p[t+ 1]|p[t]) · ⊮(pu[t+ 1] = f(p[t], a[t])),
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where the conditional distribution Pτ (p[t + 1]|p[t]) is implemented by the traffic simulator; f(pu[t], a[t]) is a
function that updates the position of the UABS given action a[t]; and ⊮(·) is the indicator function. Given
state s and action a, the UABS obtains a scalar random reward r[t] ∼ Pτ (r|s) equal to the sum of packets
collected by the UABS, i.e.,

r = min

(
Cmax,

G∑
g=1

rg

)
. (4.15)

In (4.15), the random variable rg equals one if GUE g has a packet to transmit and satisfies the coverage
condition (4.14). Note that the random variable rg is a function of the current state s, and that its stochasticity
arises from the random packet generation process.

Given an initial UABS position pu[0] and the traffic pattern τ , the design problem for the policy π(a|s) is
formulated as the optimization of the discounted average return

max
π

{
Jτ0(π) =

T∑
t=1

γtEπ(a[t]|s[t]) [r[t]]

}
, (4.16)

with discount factor γ ∈ (0, 1] [143]. In (4.16), the problem configuration is identified as τ0 = [pu[0], τ ], by
explicitly indicating the dependence of the expectation on the policy π(a[t]|s[t]). The average also accounts
for the transition probability (4.15) and for the random reward (4.15).

As for the channel model considered, it has been described in 3.2.

4.5.2 Meta-Reinforcement Learning Algorithm

In this section, at first, a standard policy gradient-based solution will be explored. This approach addresses
problem (4.16) from scratch for a fixed configuration τ0 given by initial UABS position pu[0] and traffic
pattern τ . Then, by exploiting continual meta-learning, it is possible to transfer knowledge across different
configurations, to avoid a large number of training episodes.

Conventional Reinforcement Learning

To address problem (4.16) for a given configuration τ0, a parameterized policy πθ(a|s) is introduced and a
standard policy gradient method [144, 143] is adopted. Accordingly, the gradient of the reward function
Jτ0(πθ) in (4.16) is estimated as

∇̂θJτ0(πθ) =
T∑
t=0

∇θ log πθ(a[t]|s[t])G[t], (4.17)

with return G[t] =
∑T

t′=t γ
t′−tr[t′]. The gradient (4.17) is computed at the end of each episode of T time steps

based on the experience e := [s[0], a[0], r[0], . . . , s[T ], a[T ], r[T ]]. The gradient (4.17) is used to update the
policy parameters vector θ as

θ ← θ + η∇̂θJτ0(πθ) (4.18)

with learning rate η > 0 [143].
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Meta-Reinforcement Learning

In continual meta-RL, the UABS explores configurations τ i0 sequentially over a discrete index i = 0, 1, . . .

The goal is to transfer knowledge from previously observed tasks so as to prepare to solve problem (4.16) for
future configurations using fewer episodes. A key challenge in this process is posed by the assumption that
the UABS cannot run additional simulations for previously encountered configurations. This problem can be
addressed by storing information about experiences from previous configurations.

Following [112], information is assumed to be transferred from previous tasks in the form of an initialized
model parameter vector θ0 for the policy gradient update (4.18). As illustrated in Figure 4.8, continual meta-
RL consists of two main steps applied for each new configuration τ i0:

– Conventional policy gradient-based RL is applied over N episodes to maximize the expected reward
Ji(θ) = Jτ i0(πθ) with initialization θ0i , producing the optimized parameter vector θ∗i (θ

0
i ) as a function of

θ0i ;

– A meta-update of the initialization θ0i is applied with the goal of maximizing the sum of the expected
rewards for the configurations encountered so far for the problem

θ0i+1 ← argmax
θ0

i∑
i′=0

J̃i(θ̃∗i (θ
0)). (4.19)

In (4.19), the notations J̃i(θ) and θ̃∗i indicate that the UABS cannot run new episodes for previous and current
tasks, and hence it can only estimate the average return Ji(θ) and the optimized model parameter vector θ∗i (θ

0)

for configurations i′ = 0, . . . , i. These are explained next.
In order to estimate Ji(θ) along with the policy parameter θ∗i (θ

0) without reusing the simulator, for con-
figuration τ i0, Continual Meta Policy Search (CoMPS) [112] stores a full experience set Ei = {[ei,n, πi,n]}Nn=1

including all the experiences

ei,n = [si,n[0], ai,n[0], ri,n[0], . . . , si,n[T ], ai,n[T ], ri,n[T ]] (4.20)

for configuration τ i0, as well as the probabilities to choose the corresponding actions in ei,n

πi,n = [πθi,n(ai,n[0]|si,n[0]), . . . , πθi,n(ai,n[T ]|si,n[T ])]. (4.21)

In (4.20) and (4.21), the notations si,n[t], ai,n[t], ri,n[t], θi,n stand for state, action, reward, and policy parameter
at time t for episode n in configuration τ i0. In addition, the best episode n∗ is chosen as the episode that
achieves the highest total reward without discounting factor γ [112], i.e., n∗ = argmaxn

∑T
t=0 ri,n[t], and the

corresponding experience ei,n∗ is saved in the skilled experience set E∗i .
Using the full experience sets {Ei′}ii′=1 and the skilled experience sets {E∗i′}ii′=1, CoMPS addresses problem

(4.19) as follows. First, off-policy local updates are used to obtain the optimized policy parameter vector
θ̃∗i (θ

0) as
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Figure 4.8: Continual meta-reinforcement learning: For each new configuration τ i0 comprising UABS’s initial
position and traffic pattern, the UABS implements RL to optimize its trajectory starting from the current
initialization of the policy parameter vector θ0i inherited from the previous configurations. After completing
optimization on the current configuration, experiences are saved in separate sets, and a meta-learning step
(ML) is carried out using offline RL.

θ̃∗i (θ
0) = θ0 + η

T∑
t=0

πθ0(ai,n[t]|si,n[t])
πθi,n(ai,n[t]|si,n[t])

· ∇θ0 log πθ0(ai,n[t]|si,n[t])Gi,n[t]

with learning rate η > 0 and corresponding discounted return Gi,n[t] =
∑T

t′=t γ
t′−tRi,n[t

′] as defined
in (4.17). In (4.22), the episode n is selected at random from the N episodes in set Ei. Furthermore, the
importance sampling ratio πθ0(ai,n[t]|si,n[t])/πθi,n(ai,n[t]|si,n[t]) is included in (4.22) in order to compensate
for the generally different probability assigned to action ai,n[t] given state si,n[t] by the policies πθ0(a|s)
and πθi,n(a|s). This can partly mitigate the performance degradation caused by the adoption of off-policy
optimization [145, 146].

The objective J̃i(θ) is evaluated using the skilled experience E∗i via behavioral cloning [147]. The be-
havioral cloning loss measures how well the policy πθ can reproduce the near-optimal, skilled trajectory
ei,n∗ ∈ E∗i . It is accordingly defined as

J̃i(θ) = −
T∑
t=0

log πθ(ai,n∗[t]|si,n∗[t]). (4.22)
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Finally, CoMPS applies gradient-based optimization to problem (4.19) as

θ0 ← θ0 − κ

i+ 1

i∑
i′=0

∇θ0 J̃i(θ̃
∗
i (θ

0)), (4.23)

with learning rate κ > 0.

In order to reduce computational complexity as i grows in (4.23), B tasks are sampled among the avail-
able i+ 1 tasks to compute the gradient in (4.23). This way, evaluating the meta-update (4.18) requires order
O(4ImetaBTC) operations, assuming Imeta iterations for the meta-update (4.23), where C represents the com-
putational complexity of applying policy πθ(a|s) from the state s. In contrast, conventional RL (4.17) requires
orderO(2IconvenTC) operations, where the number of iterations Iconven is typically very large [117]. Therefore,
by transferring knowledge from previous environments, meta-RL can significantly reduce the computational
complexity.

4.5.3 Numerical Results

In this section, insights and experimental pieces of evidence on the benefits of meta-learning via CoMPS
as compared to conventional RL are provided. Since meta-learning aims at transferring useful knowledge
across different configurations encountered over time index i, as a benchmark, a basic transfer RL solution
is considered, which uses the policy parameter vector θ∗i optimized based on the ith configuration as the
initialization of conventional RL (Section 4.5.2) for the (i + 1)th configuration. If not stated otherwise,
parameters used during the simulations are listed in Table 4.3.

Toy Example

At first, a simple setup consisting of a small 40 m × 40 m grid world with two possible tasks is considered.
The configurations for the two tasks differ only in the path Pg traveled by the three GUEs (G = 3), whereas
other parameters are fixed: The initial position of the UABS is set as the bottom-right corner of the square
area, i.e., pu[0] = [20, 0]; the speed for the GUEs are given as v1 = v2 = v3 = 1 m per time step t = 1 s,
the message generation probability is pmsg = 1, and the starting time instants of the GUEs are assumed to be
t1 = 1, t2 = 2, t3 = 3. The duration of an episode is set to T = 60 s. In the path Pg for task τ 10 , all the GUEs
start from the bottom right corner of the square area to move in clockwise direction along the perimeter of the
area, while for task τ 20 the movement of GUEs is taken in counterclockwise. Lastly, tasks are assumed to be
presented alternatively for every discrete time index i.

Figure 4.9 plots the average number of packets collected per episode, assuming N = 50 episodes, over
time index i. The error regions are obtained by evaluating the standard deviation over 10 independent ex-
periments. Conventional RL cannot take advantage of the data from i configurations, while the performance
of transfer RL is affected by a negative transfer of information from the previous configurations. In contrast,
meta-RL via CoMPS can effectively transfer information from the i previous configurations. This is illustrated
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Table 4.3: Meta-RL Simulation Parameters

Parameter Notation Toy Example Urban Scenario
Number of tasks explored K 50 50

Number of tasks N 50 50
Learning rate (Eq. 4.18) η 0.001 0.001
Learning rate (Eq. 4.23) κ 0.0001 0.0001

Discount factor γ 0.8 0.8
Time step [s] t 1 1

Maximum number of packets received by the UABS Cmax 10 10
UABS speed [m/s] vu 1 20
GUE speed [m/s] vg 1 10

Transmit power [dBm] Ptx 0 20
Noise power [dBm] Pnoise -100 -100

Transmitting antenna gain [dB] Gtx 0 0
Receiving antenna gain [dB] Grx 0 0
Packet generation probability pmsg 1 1

SNR Threshold [dB] SNRth 50 -10
Carrier frequency [GHz] fc 30 30

by the initial trajectory optimized by meta-RL, which is shown in the top part of Figure 4.9 for increasing val-
ues of i. The figure demonstrates how meta-RL gradually identifies a useful initial trajectory from which fast
adaptation can be carried out for both tasks.

Urban Scenario

In order to evaluate the effectiveness of meta-learning over a more realistic setting, simulated traffic patterns
using the SUMO software for an area in the city of Bologna, Italy, is considered, with a dimension of 1500 m
× 900 m [135]. In this scenario, K = 50 different task configurations, characterized by different numbers of
GUEs (randomly chosen between 15 and 30) moving with different random speeds along different paths, are
explored sequentially over time index i = 0, . . . , 49. The duration of an episode is set to T = 300 s.

Figure 4.10 shows the average number of packets collected per episode across N = 50 total episodes as
a function of time index i. Again, the error regions are obtained by considering the standard deviation over
10 independent experiments. In a manner that reflects well the results reported for the toy example, meta-
RL outperforms both conventional and transfer RL by successfully transferring knowledge from previously
encountered configurations.
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Figure 4.9: (Bottom) Average number of packets collected by the UABS across N = 50 episodes as a func-
tion of time index i; (Top) Initial trajectory of UABS obtained from the meta-learned initialization θ0i (4.19)
(visualized as a black line). For this toy example, two tasks are deployed alternately for each time i while
the only difference between the two tasks is the path Pg: even i takes a clockwise path while odd i has a
counterclockwise path.
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Figure 4.10: Average number of packets collected by the UABS across N = 50 episodes as a function of time
index i. GUEs’ paths are generated using the SUMO software [135].
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4.6 Conclusions

In this chapter different strategies to solve the trajectory design problem in UABS network providing services
to vehicular applications have been described.

At first, architectures based on Q-Learning and its extensions have been considered. It has been proved
that such algorithms are able to generate a good trajectory by letting the agent explore the environment, al-
lowing the UABS to track vehicles’ movement, following them during their path. In particular, the dueling
architecture turns out to be suitable for the target tracking problem and the inclusion of beamforming informa-
tion in the state definition can help solve such a problem. In addition, an analysis on different UABS related
parameters was performed, showing that there exists an optimal configuration that leads to better results in
terms of network throughput.

Secondly, a comparison between 3DQN and DDPG has been carried out, by addressing the advantages
and the limitations of the use of a discrete action space against a continuous one. Also, the advantages of using
OHE encoding for the input state during training have been proved and a priority-based mechanism has been
introduced in the reward function to offer continuous service for high demanding V2X applications. Even
if the pool of actions is more limited, due to its intrinsic limitation to use a discrete set, 3DQN outperforms
DDPG, showing that a more complex algorithm and action space is not useful in the considered problem.

Finally, in order to reduce the data requirements for RL-based training, this chapter covers the idea of
extracting useful information from previously encountered traffic configurations to adapt quickly to new en-
vironments via meta-RL. Even without the ability to actively revisit previous traffic conditions, meta-RL can
optimize the initial policy parameter vector so as to reduce the number of exploration steps during training.

Chapter 4. Trajectory Design for UAV Networks 105





Chapter 5

Radio Resource Management Techniques for
UAV Networks

5.1 Introduction

In this chapter, RRM techniques for UABSs-aided vehicular networks are investigated. Although 5G and
beyond networks aim to guarantee service availability for an ever-increasing number of users even in urban
areas, the type of service and the related requirements in terms of latency, quality, and data rate are very
stringent [148]. A scenario at mmWave frequencies where terrestrial macro BSs (MBSs) provide access to
vehicles together with UABSs, which are connected to macro Base Stations (MBSs) for the command and
control signalling, is considered. For the UABS, this becomes a backhaul link through which vehicular traffic
is forwarded. In this context, an Integer Linear Program (ILP) that jointly addresses vehicular applications’
requirements, beam selection and resource allocation optimization is proposed, where both terrestrial and
aerial BSs are considered.

There already exist some works in the literature studying RRM techniques considering UABSs for ve-
hicular applications. Among these, the minimum number of UAVs to be deployed to offer communication
coverage to all vehicles in the area is studied in [149, 150] and, in particular, the issue of improving re-
source allocation for UAV-enabled vehicular communications is addressed in [151, 122, 149]; the energy
consumption performance is analyzed in [151], while [122] focuses on network throughput and [149] on the
percentage of resources allocated to vehicles. However, these resource allocation problems do not consider
nor optimize the backhaul connections - compulsory for UAV-aided architectures - or joint terrestrial-aerial
coordination. Instead, in this chapter, a joint optimization of the backhaul and access connections considering
aerial and terrestrial links at the same time is introduced. On the other hand, both radio resource assignment
and backhaul are considered, for example, in [152, 153]; however, the challenges of beamforming and user
movement are not taken into account. In this chapter, the RRM includes an optimized beam selection strategy
together with time-frequency resource allocation and the algorithm is re-computed dynamically to accommo-
date the vehicular movement. Furthermore, a novel performance metric measuring the QoE of vehicular users
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is considered. To the best of my knowledge, no other work in the literature designs a joint RRM strategy
between terrestrial and aerial infrastructure optimizing a QoE metric and accounting for backhaul capacity
limits, access-backhaul resource splitting and beamforming.

The rest of the chapter is organized as follows. Section 5.2 describes the considered model and its impli-
cations, whereas Section 5.3 introduces the proposed ILP for RRM. Section 5.4 analyzes the obtained results
and Section 5.5 concludes the chapter.

5.2 System Model

5.2.1 Reference Scenario and Application Requirements

An urban scenario with the elements depicted in Figure 5.1 is considered. A setA of UAVs is flying above the
area at a constant altitude, h, from the ground. Each UAV is assumed to be dedicated to a predefined mission,
but at the same time has radio-frequency equipment on board (i.e., acts as UABS). Then, fixed on the ground
there are terrestrial BSs, hereafter referred to as MBSs, being part of a set M. Through the city roads are
driving vehicular users, hereafter denoted as GUEs, g, belonging to the set G.

The channel model considered is the same described in Section 4.3.2. MBSs have wired connections
with the network core, therefore, this link is assumed to be robust and has the capacity sufficient to forward
signalling and content. On the opposite, UABSs have to maintain a wireless communication link with MBSs
to receive the necessary command and control signalling. This backhaul link is subject to RRM optimization.

As for the application requirements, the extended sensing scenario is analyzed, according to which, each
vehicle wants to exchange data gathered through local sensors or video with other vehicles nearby. By ex-
changing V2X messages [14], vehicles can enhance the perception of their surroundings beyond what their
own sensors can detect. As the network is collecting sensor data, the traffic requirements are particularly
challenging for the uplink communication [103]. The traffic demand Dg for the GUE g ∈ G depends on the
degree of automation considered, with a data rate ranging between 1 and 1000Mbps [103]. The mobility of

UABS

MBS with coverage

Backhaul

RAN

GUE

UABS beam coverage

Network core

Figure 5.1: Network components and architecture.
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Figure 5.2: Scenario example where UAVs follow a Paparazzi-scan trajectory to accomplish a predetermined
task

GUEs and UABSs leads to a dynamic scenario, which is considered by updating the traffic demand of GUEs
with a time granularity of ∆t = 100 ms1. One GUE, g, is denoted as served in the given interval, ∆t, if it
is able to upload its demand Dg. To account for an appropriate QoE metric, each GUE, g, is assumed to be
satisfied if it is served for at least N̂s time intervals within a given time window, Tw = Nw ∆t (being N̂s a
given percentage ofNw). The QoE requirement, N̂s, is determined by the time the vehicle may take to execute
a maneuver (e.g., turn at crossroads, enter/exit roundabouts, stops, and so on). Example values are reported
in [148], considering the average values of vehicles’ speed and communication range in specific use cases.
To increase the probability of satisfying a vehicle, the network prioritizes the traffic of GUEs who have been
served in the previous intervals (see Section 5.3.2).

5.2.2 UAVs Trajectory

As previously mentioned, the UAVs in the scenario have predefined missions (other than communication)
constraining them from flying on an already determined trajectory. Possible UAVs’ tasks might be video-
monitoring an area or collecting sensor data scattered all over the scenario. A suitable trajectory for such
missions is a Paparazzi-scan, which shapes a serpentine that scans the entire area [156]. A scenario example
is pictured in Figure 5.2. To model the UAV movement, the scan serpentine is completely defined by the area
side and a parameter introduced on purpose, named as Paparazzi-scan sensing radius, rp. The value of 2rp
defines the serpentine width, while the height and length are respectively defined by Q and Q′. The rp choice
depends on the UAVs potential coverage; its definition allows UABSs to eventually cover the entire service
area for a number of Nuav. Each new UAV enters the scan trajectory every tp. Please note that the model

1Note that 100ms is the packet generation interval for many types of V2X including CAM and CPM [154, 155]
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presented hereafter works independently from the UAV trajectory, and it can be re-applied for any given UAV
path.

5.3 Problem Definition

5.3.1 Approaching Radio Resource Management

A radio RU may span over three dimensions: time, frequency, and space. For what concerns time-frequency
radio resources definition, the numerology provided by the 3GPP standard for 5G [157] is considered. In gen-
eral, time-frequency radio resources refer to a set of Resource Blocks (RBs), each composed of 12 consecutive
subcarriers carrying an OFDM signal. Subcarriers span over the frequency axis with a subcarrier spacing ∆f .
Then, every RB is defined in time by time slots of duration Tslot, which are strictly related on the choice of
∆f for carrying 14 OFDM symbols. Then, the chosen bandwidth value, B, determines the total number of
RBs at disposal, W . If Bch = B

12∆f
, W can be formalized as:

W =
B

12∆f
· ∆t

Tslot
. (5.1)

Furthermore, the space dimension is defined by a number of covering beams, resulting from beamforming.
Supposing fully digital or hybrid beamforming capabilities, the available K beams are determined by the
UAV’s antenna system configuration. In particular, while each MBS can activate all the beams available on
the ground footprint, UABSs can activate at the same time only Nbeam beams of the K available, due to
the need to limit payload and energy consumption of UAVs. This leads us to the optimization of the most
appropriate beam selection depending on the current GUE demand.

With the aim of applying resource reuse without creating interference, let us now observe the different
links in the network: i) UABS-MBS, ii) GUE-MBS, iii) GUE-UABS.

UABS-MBS

The wireless backhaul forwards all traffic handled by UABSs to the MBSs. Since it is important to guarantee
here high capacity and avoid interference, backhaul links are assigned dedicated resources from the overall
pool, not shared with (and constraining) access links. Clearly, because of the scenario dynamicity, the set of
RUs given to backhaul might change over time.

GUE-MBS

For this access link, a safe reuse of RUs in the space dimension cannot be considered. Given the wide area
to cover, MBSs’ beams might in fact create overlapping footprints on the ground. Reuse of the same RBs in
overlapping beams would result in non-negligible interference.
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GUE-UABS

On the contrary, UABSs fly at constant heights highly above the ones of MBSs (hundreds of meters against
25-30 meters), and the resulting coverage spot on the 2D ground plane of each beam is smaller and better
distinguishable from others of the same UABS. For this reason, safe reuse of RBs in beams of the same UABS
is assumed. To further explain how to access RUs are shared, the GUE-UABS links can be seen as vertical
links, while the GUE-MBS ones as horizontal links. While horizontal links are -potentially- interfering with
others (and reuse is not recommended), vertical ones leverage on highly directive and narrow beams, such
that RB reuse and share will not severely interfere with others. These concepts are later applied to avoid
interference.

The number of available RBs is not the same at MBSs and UABSs. Each MBS m may need to save
RUs for other services, and therefore has W ∗

m = W/2 RBs. On the contrary, to be safe from interference of
overlapping beams from other UABSs, W ∗

a = W/|A| are the RBs available at the single beam. Relevant to
note, backhauling requires dedicated RBs from the same initial pool as access, and therefore a proper tradeoff
of access-backhaul RBs needs to be found. In the following, an ILP algorithm providing an optimal solution
and maximizing network performance is proposed.

5.3.2 RRM Strategy and Problem Formulation

Given the previous definition of a served GUE within an interval ∆t, the proposed objective function maxi-
mizes the number of successfully served GUEs by MBS and UABS joint operation. From the above discus-
sion, one knows how RUs can be assigned and when reuse is possible. However, there are some degrees of
freedom left to be considered: i) the BS (MBS or UABS) from which a GUE g ∈ G has assigned RUs, ii) how
many RUs should be allocated given the demand Dg, iii) the UABSs’ beams that should be activated, iv) and
the number of RUs needed by backhaul links given its capacity or data rate. These aspects are then considered
in the proposed ILP, which results in a beam selection and joint resource allocation optimization considering
the backhaul capacity.

To introduce the ILP, the binary variables are first defined:

yg =

{
1 if user g ∈ G is served

0 otherwise

xg,m =

{
1 if g ∈ G is assigned RUs by MBS m ∈M
0 otherwise

xg,a =

{
1 if g ∈ G is assigned RUs by UABS a ∈ A
0 otherwise

eja =

{
1 if beam ja ∈ Ka is active on UABS a ∈ A
0 otherwise

The objective function aims at maximizing the number of served users, through yg, trying to serve them
continuously. In order to allow a continuous service, each user g ∈ G is weighted with a priority value that
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varies over time, pg. A higher value of pg increases the probability that g will be served in the following time
instants. In particular, in each time window (i.e., t = 1, .., Tw) pg varies as follows:

pg(t) =


1 for t = 1

pg(t− 1) + 1 if yg(t) = 1

pg(t− 1) if yg(t) = 0

(5.2)

The following integer variables are also subject to optimization and, together with binary variables, are
the output of the RRM procedure. They specify the number of RUs given to a specific communication link:

– wg,m and wg,a represent the number of resources assigned to user g ∈ G by the MBS m ∈M or UABS
a ∈ A, respectively;

– wa,m is the number of resources assigned by the MBS m ∈M to the backhaul with UABS a ∈ A.

To summarize, the purpose of the following RRM ILP is: i) define an optimal joint operation between
MBSs and UABSs with the variables xg,m, wg,m, xg,a, wg,a while maximizing yg; ii) optimize the selection of
UABSs’ beams with variables eja to reach the maximum number of GUEs, iii) considering the RB assignment
to backhaul with variables wa,m, for all g ∈ G, a ∈ A, m ∈M.

The RRM procedure runs every ∆t at each MBS m ∈ M. The problem is thus dependent on m:

P(m) : max

(∑
g∈Gm

pgyg

)
(5.3a)

wg,mrg,m∆t+

+
∑
a∈Am

∑
ja∈Ka

kg,jawg,arg,a∆t ≥ ygDg, ∀g ∈ Gm

(5.3b)∑
g∈Gm

wg,m +
∑
a∈Am

wa,m ≤ W ∗
m (5.3c)∑

g∈Gm

kg,jawg,a + wa,m ≤ W ∗
a , ∀a ∈ Am, ∀ja ∈ Ka

(5.3d)∑
g∈Gm

∑
ja∈Ka

wg,akg,jarg,a ≤
ra,m
FB

wa,m, ∀a ∈ Am

(5.3e)∑
ja∈Ka

eja ≤ Nbeam, ∀a ∈ Am (5.3f)

∑
g∈Gm

wg,akg,ja ≤ ejaW
∗
a , ∀a ∈ Am, ∀ja ∈ Ka

(5.3g)

xg,m +
∑
a∈Am

xg,a ≤ 1, ∀g ∈ Gm (5.3h)

wg,m ≤ xg,mW
∗
m, ∀g ∈ Gm (5.3i)

wg,a ≤ xg,aW
∗
a , ∀a ∈ Am, ∀g ∈ Gm (5.3j)

xg,a, eja ∈ {0, 1}, ∀a ∈ Am, ∀g ∈ Gm, ∀ja ∈ Ka

(5.3k)

xg,m, yg ∈ {0, 1}, ∀g ∈ Gm (5.3l)

wg,a ∈ {0, ...,W ∗
a }, ∀a ∈ Am, ∀g ∈ Gm (5.3m)

wg,m ∈ {0, ...,W ∗
m}, ∀g ∈ Gm (5.3n)

wa,m ∈ {0, ...,min [W ∗
m,W

∗
a ]}, ∀a ∈ Am (5.3o)

where kg,ja is an input to the problem and indicates with value 1 whether vehicle g is covered by beam ja

of UABS a ∈ Am and 0 otherwise. Sets Am ⊆ A and Gm ⊆ G depend on m and are computed later in
Algorithm 4. FB is denoted as the backhaul factor and ranges within [0,1]; it is used to enhance the backhaul
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Algorithm 4: RRM Model implementation.

1 Input:M, A, G, Dg, ∀g ∈ G, Nbeam, W ∗
a , W ∗

m, Tsim,
2 Channel parameters in Table 5.1
3 Output: yg, wg,m, wg,a, wa,m ∀g ∈ G, ∀a ∈ A, ∀m ∈M
4 for t = 0 to Tsim do
5 Update positions ∀g ∈ G, ∀a ∈ A, ∀m ∈M
6 for each MBS m ∈M do
7 for each candidate UABS a ∈ A do
8 compute ra,m;
9 for each GUE g ∈ G do

10 compute rg,m, rg,a;

11 for each MBS m ∈M do
12 compute subsets Gm and Am;
13 solve P(m);

14 for each GUE g ∈ G do
15 if (t mod Nw) = 0 then
16 pg = 1

17 else if yg = 1 and 1 ≤ (t mod Nw) < Nw then
18 pg+ = 1

capacity, by reducing the RUs needed to forward traffic: lower FB values correspond to greater backhaul
capacity. In more detail, each constraint of P(m) has a specific role. First, constraint (5.3b) ensures each
vehicle g transmits a demand of Dg bits given the rate of the unitary RU and the number of RUs assigned by
a specific BS. Then, constraints (5.3c) and (5.3d) guarantee that the number of RUs assigned does not exceed
the maximum available for MBSs and UABSs bases, respectively. Clearly, RUs allocated for the backhaul are
accounted for in both. Also, constraint (5.3e) ensures the backhaul capacity is enough to forward the UABS
vehicular traffic to the network. As motivated previously, RUs are reused for different beams only by UABSs.
Then, constraints (5.3f) and (5.3g) limit the number of beams that can be simultaneously activated at each
UABS a ∈ Am to Nbeam. Finally, constraints (5.3h) to (5.3j) specify that each vehicle is served by one BS at
a time. Expressions (5.3k)-(5.3o) show the validity interval of each variable in P(m).

5.3.3 Solving the ILP

To finally assess the model performance, a dynamic environment is simulated by following the steps in Al-
gorithm 4. It shows a realistic implementation over time, where RRM decisions might change depending on
traffic, movement and channel variations. In fact, at each time t, the positions of vehicles and UABSs are
updated, and respective data rates re-computed. Also, traffic priorities are updated with equation (5.2).
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Table 5.1: Network and Channel Parameters.

Parameter Notation Value
Area sides [m2] QxQ′ 1800x1600

Number of MBSs |M| 6
Number of UAVs |A| = Nuav 18

SNR threshold [dB] γth -13.7
UABS transmit power [dBm] Ptx,A 23
GUE transmit power [dBm] Ptx,G 20

UABS transmission gain [dB] Gtx,A 17.72
UABS receiver gain [dB] Grx,A 17.72

GUE transmission gain [dB] Gtx,G 0
Paparazzi-scan sensing radius [m] rp 200

Paparazzi-scan time shift [s] tp 25
UABS speed [m/s] vA 20
UABS altitude [m] h 100

UABS aperture angle αA 140°
Number of available beams at UABSs K 9
Max nr. of UABS active beams per ∆t Nbeam 4

GUE traffic demand per ∆t [kbit] Dg 100
Effective noise power [dBm] Pnoise -106.4

Overall bandwidth [MHz] B 400
Channel bandwidth [MHz] Bch 1.44
Subcarrier spacing [kHz] ∆f 120

Slot duration [ms] Tslot 0.125
Number of time windows for QoE Nw 60

5.4 Numerical Evaluation

5.4.1 Performance Metrics

The first considered performance metric is the service time, Ts, that is the amount of time a vehicle is served,
computed in each time window Tw. By denoting as Ns the number of intervals of duration ∆t in Tw during
which the vehicle is served, it holds: Ts = Ns ∆t. In the next section, the statistics of this service time are
shown in terms of CCDF (Complementary Cumulative Distribution Function), FTs = Prob{Ts ≥ ts}. As a
second performance metric, the percentage of satisfied users, P (sat)

g , is computed, that is the ratio between the
number of users for which Ns ≥ N̂s w.r.t. the total number of vehicles.
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5.4.2 Numerical Results

The achieved results are presented in this section. Simulations of the proposed model and scenario run in
a Python environment, whereas the Gurobi solver provides the output from the ILP. Each simulation lasts
Tsim = 60 seconds and parameter settings are listed in Table 5.1. To properly account for vehicular movement
through time, the vehicular traces are obtained from SUMO, as it has been done in the previous chapter.
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Figure 5.3: CCDF functions over the service time, Ts, with receiving gain Grx,M = 16 dB

In Figure 5.3, one can observe the CCDF of the service time, Ts, when setting Grx,M = 16 dB. Three
curves highlight: i) benchmark case, where UAVs are not active as UABSs (obtained by setting Nbeam = 0);
ii) UABSs active and FB = 1; iii) UABSs active and FB = 0.1. Focusing on the first case, the benchmark
shows an expected decrease in service time. Indeed, with increasing Ts, the probability FTs for the single
GUE is lower. This applies also to the other cases. However, curves with settings ii) and iii) show a notable
performance improvement with respect to i). This proves the presence of UABSs helps in maintaining stable
and durable links. A further improvement can be appreciated with FB = 0.1. In fact, one can deduce from
constraint (5.3e) that the lower is FB, the higher becomes the backhaul capacity for each RU, allowing the
network to use a reduced number of RUs for this link and an increased one for access links.

As in Figure 5.3, Figure 5.4 shows the CCDF with service time for the same settings, except for the MBS
receiving gain, Grx,M = 25 dB. As expected, the same behavior as before is observed, but with a substantial
improvement in all cases of the GUE’s FTs (i.e. GUEs almost double the probability of achieving Ts service
time). Indeed, a higher receiving gain of MBSs not only enhances the capacity of backhaul and access links
but allows a larger coverage area.
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Figure 5.4: CCDF functions over the service time, Ts, with receiving gain Grx,M = 25 dB.

Figure 5.5 shows the percentage of satisfied GUEs, P (sat)
g , depending on the minimum number of intervals

of duration ∆t given by the application requirements, N̂s, chosen over the time window Tw. Results are shown
for the same parameter settings as Figure 5.3 and over a number of QoE thresholds: 85%, 90%, 95%, 97%,
and 99%. As expected from the results of Figure 5.3, the benchmark shows a lower percentage of GUEs
satisfied w.r.t. the cases in which UABSs are present. Furthermore, the curve has a decreasing trend with N̂s.
In fact, this repeats the behavior of the CCDF above. Then, as before, from the curves having FB = 1 or
FB = 0.1, it can be evinced that a lower FB is always able to substantially increase the GUE satisfaction. In
particular, Figure 5.5 shows that a backhaul capacity enhanced 10 times may improve network performance
by more than 20%.

Similarly to Figure 5.4 and 5.5, Figure 5.6 presents values of P (sat)
g while varying the QoE threshold for

Grx,M increased from 16 to 25 dB. The general behavior of the previous curves applies also here. As before,
when increasing the beamforming gain at the reception of MBSs, each curve shows a notable increase in GUE
satisfaction. This confirms the important role of the usage of beamforming at mmWaves. In fact, with respect
to the previous figure, P (sat)

g increases up to 50%.
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Figure 5.5: Percentage of satisfied GUEs while varying the QoE threshold, N̂s, for different parameter settings
and Grx,M = 16 dB.
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Figure 5.6: Percentage of satisfied GUEs while varying the QoE threshold, N̂s, for different parameter settings,
Grx,M = 25 dB
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5.5 Conclusions

This chapter covers the fundamental aspects of RRM in a 3D Network (3DN) for vehicular service, analyzing
beamforming, resource allocation, and a new QoE metric at mmWaves frequencies. An ILP is proposed to
optimize the beam selection and RBs assignment between backhaul and access links, considering a joint aerial-
terrestrial operation. Results highlight that the presence of UABSs and the beamforming gain at reception of
MBSs increases significantly the QoE for vehicular applications. Moreover, a relevant aspect that emerges is
the role of the backhaul capacity, which may limit the traffic handled by a UABS.
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Conclusions

The first part of the thesis (Chapters 1 and 2) deals with the study of terrestrial IoT network employing the
two most widespread LPWAN technologies, LoRaWAN and NB-IoT, whereas, in the second part, the study
is focused on UAV-aided where UABSs are used to provide service to IoT and V2X applications.

At first, this thesis presented a new MATLAB-based simulator tool, LoRaWANSim, which includes phys-
ical and upper layers of the LoRa/LoRaWAN protocol stack and which has been openly delivered to the
community. As demonstrated, such a simulator has a number of unique features (including, but not limited to
(i) support of multiple gateways both for uplink and downlink, (ii) uplink-uplink, uplink-downlink, downlink-
uplink, and downlink-downlink interference accounting, (iii) receive window prioritization, (iv) modeling of
energy consumption) whilst being decently simple to use and easy to configure, being based on MATLAB.

Besides, some results have been obtained using such simulators, showing not always intuitive trade-offs.
A study on different coding rates has been carried out in interference- and noise-limited scenarios. First, it
has been demonstrated that some benefit on the packet delivery rate, although marginal, can be achieved only
in the latter scenario. Second, as the number of EDs increases significantly, thus making the network operate
in heavily interference-limited conditions, the adoption of more powerful coding rates has been proved to be
counterproductive. In addition, the impact of downlink transmissions (e.g., acknowledgments) on the average
ED energy consumption has been assessed, showing that increasing the number of GWs affects not only the
packet delivery rates in uplink and downlink but also the devices’ battery life. All these, as well as many other
aspects of LoRaWAN, require further investigations and I believe that the simulator presented in this thesis
can be a great help.

Secondly, a new Adaptive Data Rate algorithm for LoRaWAN networks, called Collision-Aware ADR,
has been proposed, which takes into account collision probability at the MAC layer to assign data rates to end
devices. The new algorithm has been compared with the standard as well as other solutions already presented
in the literature, considering different performance metrics via simulation and experimental approaches. Re-
sults show that CA-ADR outperforms such solutions for networks that are not strongly limited by connectivity
issues. This is because CA-ADR exploits the orthogonality of signals emitted with different data rates, a fact
that allows for drastically reduce collisions among transmissions.

In addition, cloud- and fog-based architectures have been studied and compared in terms of performance
indicators, such as network throughput, latency, and processing capabilities. The fog architecture has been
proven to be feasible since even if the NS is deployed on a common Raspberry Pi, it is still able to manage
a sufficient amount of traffic for many real-life IoT applications. In addition, the fog architecture allows for
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reducing the end-to-end latency as expected, while maintaining very good performance in terms of network
throughput when compared to the cloud-based scenario. Finally, it has been underlined that the lower latency
achievable with the fog architecture can help also in reacting to dynamic environmental changes.

After dealing with LoRaWAN, a detailed comparison with NB-IoT has been proposed, accounting for
technical aspects, both at PHY and Link layers, and regulatory issues. In conclusion, the two technologies
differ in many aspects and both have strengths and weaknesses. Depending on the specific application, the
best solution can be identified based on the above-reported discussion and numerical results. Even though
NB-IoT implements a more robust modulation and coding scheme, together with a highly reliable Link layer,
it is heavily limited by larger energy consumption, not always suitable for specific IoT applications. Therefore,
NB-IoT is more adequate for applications that are demanding in terms of reliability and network throughput.
In addition, being not limited by any regulation in terms of duty cycle, devices can transmit more frequently
or bigger data volumes. On the other hand, LoRaWAN is convenient for applications for battery-constrained
use cases, where the reliability requirements can be relaxed.

At the very same time, results show that the network configurations (e.g., ADR support for LoRaWAN,
or the CE level support and RACH configurations for NB-IoT) affect the performance of the considered
technologies quite significantly. Notably, as shown in this thesis, either of the considered technology may
outperform its counterpart according to the scenario considered. This is very important when considering
the communication technology to be used for the particular use case scenario and it motivates more in-depth
studies on the effects the different network parameters have on the technology performance as well as the
development of relevant optimization mechanisms.

After considering static IoT scenarios with fixed terrestrial BSs, the thesis explored the role of UAVs in
the network architecture.

Chapter 3 has been dedicated to UAV-aided NB-IoT. This chapter proposed a network performance evalu-
ation accounting for different aspects of the NB-IoT protocol by considering different performance indicators,
such as the access rate, latency, network throughput, and energy consumption. UABS speed and height have
been proven to have a noticeable impact on the final performance, thus leading to important trade-offs on the
different metrics. In addition, the choice of the trajectory, as one can expect, assumes a huge role, with the
trajectory given by the TSP solution being the most suitable for clustered environments as the one presented
in this chapter. However, this motivates the study of better mechanisms to design the trajectory to be used by
the UABS, as it has been presented in the following chapters.

For the reasons just discussed, chapter 4 proposed different strategies to solve the trajectory design problem
in UABS network, in particular when dealing with mobile users and V2X applications which have many
differences with respect to the static IoT scenario considered before. At first, it has been proved that Q-
Learning-based algorithms are able to generate good trajectories allowing the UABS to track and follow
vehicles during their path. Specifically, the dueling architecture turns out to be the best solution for the target
tracking problem, with a boost given by the inclusion of beamforming information. Secondly, a comparison
between the use of a discrete or a continuous action space by means of 3DQN and DDPG algorithms has been
carried out, by addressing their advantages and limitations. For this comparison, a priority-based mechanism
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has been introduced in the reward function to offer continuous service for specific high demanding V2X
applications. Even if the pool of actions is more limited, due to its intrinsic limitation to use a discrete set,
3DQN outperforms DDPG, showing that a more complex algorithm and action space is not useful in the
considered problem. In addition, in order to reduce the data requirements for RL-based training, this chapter
proposed the use of a meta-RL solution to extract useful information from previously encountered traffic
configurations, so that the agent can adapt faster to new tasks it has to perform. As a matter of fact, meta-
RL can optimize the initial policy parameter vector so as to reduce the number of exploration steps during
training.

Finally, chapter 5 proposed a RRM scheme in a UAV-aided vehicular network by analyzing beamforming
and resource allocation at mmWaves frequencies. An ILP is proposed to solve such a problem with the goal
of optimizing the RBs assignment between backhaul and access links as well as the beam pattern selection,
considering jointly aerial-terrestrial operations. It proved that the presence of UABSs increases significantly
the QoE for vehicular applications which require specific continuous services. In addition, the role of the
backhaul capacity emerges as a limiting factor for the traffic handled by a UABS.

These last chapters presented a careful analysis of the use of UABSs proving how their introduction in
the network architecture may be extremely interesting and worth exploring, especially for very demanding
applications, such as V2X communications.
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Appendix - A Sensing without Sensors System for
Soil Moisture Estimation

A.1 Introduction

One of the application domains that benefited most from the growth of the IoT is smart agriculture. Indeed,
according to the research community, agriculture products will have a very high demand by 2050 [158]; hence
it is important to develop innovative approaches which can face such a trend. For this purpose, IoT and related
technologies represent a potential solution to solve such problems. Furthermore, in smart agriculture, many
applications can be developed to help farmers by automating and optimizing agricultural productivity[15, 159,
160, 161]. Among these, soil monitoring applications play a vital role. As a matter of fact, soil parameters,
such as moisture and temperature, are essential for the life and the growth of plants, and, at the same time,
their monitoring is helpful to avoid waste of resources, i.e., irrigation water [162].

In this appendix, an application for estimating soil moisture based on the propagation of electromagnetic
waves in underground wireless communications is proposed. It is known, indeed, that sub-GHz radio waves
can propagate underground with a loss rate that depends on the soil type and moisture content. Therefore,
two radio transceivers buried at a fixed distance can exchange signals and make it possible to provide indirect
estimates of soil moisture content without the need for ad-hoc sensors. For this purpose, the developed sys-
tem, starting from the RSSI, can evaluate the soil moisture through properly tuned Machine Learning (ML)
algorithms, realizing the Sensing-without-Sensors concept. More specifically, such a system can estimate the
soil moisture of an entire volume instead of a single point, as most other commercially available humidity
sensors do.

In this context, a good choice is a communication protocol based on LoRa working in the EU863-870 MHz
band because it is expected that its waves can travel underground up to about 5-10 m. As explained before,
LoRa is considered one of the most promising LPWAN technologies, which are technologies specifically
designed to allow long-range communication while being very energy efficient. LoRa does not provide a high
data rate; hence, it is helpful for applications that require sending a small amount of data periodically. Because
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Figure A.1: Overview of the LoRa wireless network architecture used in the test-bed.

of all these reasons, it is deemed one of the best technologies to use in the smart agriculture domain.
The remainder of the chapter is organized as follows. In Section A.2, a review of the state of the art is

presented. Section A.3 provides a detailed analysis of the system, whose preliminary results are presented in
Section A.4. Finally, Section A.5 concludes the section.

A.2 Literature Overview

Different methods have been developed in order to design soil moisture prediction systems. Many works
in the literature are based on Peplinski’s principle [163], which is a semi-empirical model which takes into
account the soil composure, the soil moisture, and the frequency to determine the complex permittivity of the
water-soil mixture. Starting from this, authors in [164] and [165] derived path loss models for underground
communication. In [166], authors carried out an experimental analysis of the underground communication
for different sub-GHz bands, and they derived a model which characterizes the behavior of the channel by
estimating the RSSI for different soil moisture levels. However, the definition of the soil moisture level from
these models is not straightforward, and, in most cases, they cannot be applied to all the ranges of values of
soil moisture. For these reasons, a ML-based approach is the most suitable since it turns out to be particularly
useful when it is not possible to derive an analytical model.

Although the interest for ML techniques for precision agriculture has gained much attention during the last
years [167], there are not so many systems specifically designed for precise soil moisture prediction. In [168],
authors address different algorithms to predict the evolution of soil moisture for 1, 2, and 7 days ahead, starting
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from measurements collected in different fields. In the same way, in [169], deep Neural Network (NN) models
are used to make predictions for the following days according to selected meteorological parameters. Another
approach based on deep NNs is presented in [170], where authors exploit precipitation, air temperature, net
radiation, and ground temperature data. A data mining system is presented in [171]. Such a system can gather
weather predictions from several weather stations and use such data to predict the soil moisture for the next
day. A sensing system named SoMoS is described in [172]. It is shown that by measuring the variation of
the RSSI, it is possible to detect precipitation events that produced a significant variation in the soil moisture.
Such a system has been evaluated in a laboratory environment [173]. Another approach based on RFID passive
sensors is proposed in [174], where it is explained how variations in soil moisture modify the soil permittivity,
which consequently affects the impedance match/mismatch between the tag chip and the sensor probe.

In contrast to the above-cited works, the goal in the following is to predict the soil moisture without the
need for soil moisture sensors (if not for the training phase) or other types of data but based on the RSSI only,
thus reducing the cost in comparison to other solutions implementing sensors over radio devices. Furthermore,
the proposed design allows the estimation of the soil moisture of a volume and not of a single point. Thanks
to this, there is no need to deploy many devices on the field, making the overall monitoring solution even
cheaper. Finally, being the system based on LoRa, it is possible to monitor huge areas without the need for
complex infrastructures, but with just a single GW, thanks to the coverage range such technology can provide.

Machine Learning
Algorithm

Database

Training & Validation
Datasets

Test
Dataset

Prediction Model

Predicted

RSSI

Soil Moisture

RSSI

Soil Moisture

Figure A.2: Block scheme of the complete methodology.

Appendix A. Appendix - A Sensing without Sensors System for Soil Moisture Estimation 125



A.3. Methodology

A.3 Methodology

A.3.1 Sensing without Sensors System

The main element of the proposed system is called tile. Each tile consists of four EDs, located at the angles
of a square area (10m × 10m in the experimental setup) and buried at 30 cm underground. EDs transmit
data packets to a Concentrator, located in the center of the tile, which is equipped with one LoRa transceiver
buried at 30 cm, for receiving data from EDs, and one LoRa transceiver on the terrain surface to forward
the measured RSSI to a GW located in a building nearby the experimental field. Such GW is connected to
a NS where data are collected and processed. The devices are based on the Semtech SX1272 module, and
they use a fixed frequency of 868.1MHz for their transmissions. Data collected include the RSSI of the four
links between every single ED and the Concentrator. The four EDs send dummy packets to the Concentrator
via LoRa, which measures the RSSI of each transmission and periodically sends a message containing such
information to the GW via LoRaWAN.

The ground truth soil moisture levels are measured inside the volume, in the four middle points which fall
between the Coordinator and each ED, as reported in Fig A.1. To get such measurements, commercial sensors
(Sentek Drill&Drop TriScan) have been used.

All the observed data are collected in a database where each entry is composed of:

– the average value of RSSI measured by the four EDs located in the squared tile;

– the average value of the soil moisture measured by the commercial probes;

– the corresponding timestamp of the instant when the measurements, both in terms of RSSI and soil
moisture were taken.

The collected data are used to train, validate and test the ML algorithms which are briefly summarized in
Section A.3.2. The approach is summarized in Figure A.2.

A.3.2 Machine Learning Algorithms

The ML task of predicting the value of one or more continuous target variables t given the value of an input
vector x is widely known as regression. Given a training data set comprising N observations {xn}, where
n = 1, ..., N and xn is a D-dimensional vector, together with corresponding target values tn, the goal is
to predict the value of t for a new observation x. In the simplest approach, this can be done by directly
constructing an appropriate function y(x) whose values for new inputs x constitute the predictions, t̂, for the
corresponding values of t. Considering that the Concentrator measures the RSSI of each packet received by
the 4 EDs, the n-th observation, xn, can be expressed as the average RSSI, while tn is the average soil moisture
level of the considered four points. In this work, the regression problem is solved using two well-known ML
algorithms:
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– Decision Tree: it is a tree structure predictive model that goes from observations, represented in the
branches of the tree, to conclusions about the target value, represented in the leaves. The algorithm
is named regression tree if the predicted outcome can take continuous values (i.e., a real number).
These algorithms are simple to understand and interpret, but they are usually not robust against small
changes in the training dataset, which can lead to completely different tree structures. Despite this,
when the provided training set is large enough, the algorithm shows remarkably high accuracy and low
computational complexity.

– Neural Network: considering the case study of this work, the sought dependence between RSSI and soil
moisture is not linear; therefore, a shallow NN has been chosen as a suitable regression algorithm [175].
During the training phase, the network tracks and approximates the function described by the inputs.
Once the approximation is completed, it is possible to predict the soil moisture values according to the
new RSSI observations.

A.4 Numerical Results

The trial was carried out in a 3-year-old commercial apple orchard at the experimental farm of the University
of Bologna (Cadriano (BO), Italy, 44°33’03”N, 11°24’36”E, 33 m a.s.l.), of the variety Fuji grafted on M9
rootstock. Trees were grown on a silty clay loam soil (Haplic Calcisol soil, 20 g 100 g−1 sand, 42 g 100 g−1

silt, and 38 g 100 g−1 clay; pH = 7.6) at a density of 3030 tree ha−1 and managed as a spindle training system.
The orchard was drip irrigated, and the floor management included herbicide strips along the row and grassed
alleys regularly. It is worth noticing that the set of soil moisture values is not characterized by huge variations
since the humidity of the field is kept under control for other activities carried out on it.

According to the procedure described in Section A.3.1, N = 1152 observations of average RSSI and
corresponding soil moisture levels have been collected in the database. The set is made of data collected
between April and July 2021.

To properly train and characterize the ML algorithms, the acquisitions have been randomly split in train-
ing, validation and test sets as 60%, 20% and 20% respectively, as depicted in Fig A.2. A single-hidden-layer
feed-forward NN with 10 neurons and linear activation function in the hidden layer has been used, and the
well-known k-fold cross-validation method has been chosen to avoid overfitting. The logical structure of the
network is depicted in Figure A.3.

The metric adopted to measure the performance of the ML algorithms is the Root Mean Squared Error
(RMSE), defined as

RMSE =

√∑Nt
i=1 (t̂i − ti)2

Nt

where Nt is the number of points of the test dataset.
Figure A.4 and Figure A.5 show the results of the regression of the Decision Tree and the NN, respectively.

The green points represent the real observations, t, while the red squares are the estimated soil moisture
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Figure A.3: Single-hidden-layer neural network considered for soil moisture prediction.

levels, t̂. As depicted in the figures, both the tested algorithms successfully find a model to fit the relation
between the RSSI and the respective soil moisture. In fact, both the algorithms show good performance with
RMSE≈0.30%.
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Figure A.4: Performance of the Decision Tree algorithm. In green the real observations; in red the estimated
soil moisture levels.
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Figure A.5: Performance of the NN. In green the real observations; in red the estimated soil moisture levels.

A.5 Conclusion

In this appendix, an innovative system able to estimate the soil moisture in a field using the RSSI measure-
ments to model the underground propagation via a machine learning approach has been presented. The sys-
tem’s novelty lies in the concept of Sensing-without-Sensors approach, which makes the estimation possible
without the need for actual sensors. Furthermore, the proposed solution is able to estimate the soil moisture
of an entire volume instead of a pointwise measurement, as commercial systems usually do.
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