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Chapter 1. Introduction 

1.1 Mycotoxins 
The term mycotoxin was created in 1962 as a consequence of a veterinary crisis near London, 

during which approximately 100,000 turkey died (Blout, 1961). 

There are over 300 mycotoxins that have been isolated and chemically characterized (Betina, 

1984), but research has focused on those forms causing significant injuries to humans and 

farm or companion animals.  

Mycotoxins are secondary metabolites which are produced by several fungi belonging to the 

genera: Aspergillus, Penicillium, Fusarium, and Alternaria (Moss, 1992; Overy et al., 2003; 

Placinta et al., 1999; Sweeney and Dobson, 1998). During processes of food drying and 

storage, Aspergillus and Penicillium species, are generally found as contaminants while, 

before or after harvesting, Fusarium and Alternaria spp. mycotoxins are produced (Sweeney 

and Dobson, 1999). Secondary metabolites are synthesized during the end of the exponential 

phase of mould growth and seem to have no biochemical and/or biological significance in 

mould growth and/or development or competitiveness (Jay, 1992; Hussein and Brasel, 2001). 

Mycotoxins primarily occur in the mycelium of toxigenic moulds but could also be found in 

spores indicating that moulds are not toxigenic per se and while some mycotoxins are 

produced by only a limited number of moulds species, others may be produced by several 

genera (Deacon, 2001; D’Mello and Macdonald, 1997). 

1.1.1 Ochratoxin A 

Ochratoxin A (OTA) molecule was discovered as a metabolite of Aspergillus ochraceus in 

1965 (Van der Merwe et al., 1965), is the most toxic molecule in ochratoxins group. 

Ochratoxins are a group of secondary metabolites produced by Aspergillus and Penicillium 

spp. They consist of OTA-ethyl ester known as ochratoxin C (OTC), ochratoxin B (OTB) and 

its methyl and ethyl esters, and other molecules as reported in Figure 1.1. OTA is mainly 

produced by Penicillium verrucosum or P. nordicum in cool and temperate regions, (Castella 

et al., 2002; Larsen et al., 2001; Pitt and Hocking, 1997) while in tropical and semitropical 

regions, it is mainly produced by Aspergillus ochraceus (Kozakiewicz, 1989; Pardo et al., 

2005; WHO/FAO, 2001). 

Ochratoxin A has been found in barley, oats, rye, wheat, coffee beans, and other plant 

products, with barley having a particularly high likelihood of contamination (Bennet and 

Klich, 2003). There is also concern that ochratoxin may be present in certain wines, especially 



Chapter 1. Introduction 

 5

those from grapes contaminated with Aspergillus carbonarius (Marquardt and Frohlich, 1992; 

Pitt, 2000; Van Egmond and Speijers, 1994). 

Ochratoxin A is nephrotoxic in both human and animal species studied. Kidney is the primary 

target organ, but animal studies indicate that ochratoxin A may cause liver toxicity, 

mutagenicity, teratogenicity, neurotoxicity, and immunotoxicity (Beardall and Miller, 1994; 

Kuiper-Goodman and Scott, 1989). OTA has been classified as a class 2B carcinogen 

(possibly carcinogenic to humans) by the IARC (International Agency for Research on 

Cancer) based on animal studies and epidemiological studies in human populations (IARC, 

1993). 

There has been speculation that ochratoxins are involved in a human disease called Balkan 

Endemic Nephropathy (Krogh, 1987; Hult et al., 1982). This condition is a progressive 

chronic nephritis that occurs in populations who live in areas bordering the Danube River in 

some areas of Romania, Bulgaria, and the former Yugoslavia. In one Bulgarian study, 

ochratoxin contamination of food and presence of ochratoxin in human serum were more 

common in people with Balkan Endemic Nephropathy and urinary tract tumors than in 

unaffected people (Castegnaro et al., 1987). 

 

 
Figure 1.1 Structure of ochratoxins (from Ringot et al., 2006) 

Toxicokinetic of Ochratoxin A 
After oral ingestion, OTA is rapidly absorbed and reaches the systemic circulation, where it is 

extensively bound to plasma proteins: the extent of absorption varies from 40% in chickens to 

66% in pigs (Galtier et al., 1981). Following absorption, OTA is bound readily to serum 

albumin and other macromolecules (Hult and Fuchs, 1986). The unbound fraction is lower 

than 0.02% in humans, indicating an extent of protein binding of 99.98% (Hagelberg et al., 

1989). In most animal species, the kinetic behaviour of OTA has been described as a two 
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compartments open model, although recent data on the accumulation in kidneys suggest that 

these models are too simple and data should be re-analysed using multi-compartment models.  

In monkeys and humans the major route for plasma clearance is urinary elimination, whereas 

in rodents biliary excretion seems to prevail. In blood, liver, and kidneys, OTA is 

accumulated; in females of mammalian species, OTA is excreted via milk (Marquardt and 

Frohlich, 1992). Biliary excretion and entero-hepatic re-circulation of OTA-glucuronides may 

account for the inter-individual and interspecies variability of kinetic parameters observed in 

kinetic studies. The elimination half-lives of OTA in Wistar rats and pigs were reported to be 

5 and 6 days, respectively (Dietrich et al., 2005). In human, OTA has longer half-life for its 

elimination than in any of the species examined: data indicate that elimination half-lives in 

humans is 35 days (based on one individual) and in non-human primates is 19 to 21 days 

(Creppy, 1999). These species differences seem to be due to largely to differences in the 

degree of serum protein binding and its effect on renal clearance, as well as the rate of 

conjugation and extent of entero-hepatic re-circulation. Bacterial metabolism in the 

gastrointestinal tract produces the cleavage product, ochratoxin α, which can be absorbed 

from the lower gastrointestinal tract. The cellular effects of OTA include inhibition of enzyme 

involved in phenylalanine-tRNA complex synthesis (Bunge et al., 1979; Marquardt and 

Frohlich, 1992), mitochondrial ATP production inhibition (Meisner and Meisner, 1981) lipid 

peroxidation stimulation (Rahimtula et al., 1988). 

Ochratoxin A in pigs 
Pig is one of the most sensitive species to the adverse effects of OTA. Pigs are much more 

sensitive than most laboratory animal species excepting the dog. The oral LD50 in the pig is 

about 1 mg/kg b.w. (Harwig et al., 1983). 

In a series of experiments, groups of three to six sows were given feed containing OTA at a 

concentration of 0, 0.2, 1, or 5 mg/kg, equivalent to 0, 8, 40, and 200 μg/kg b.w. per day, for 

periods of 5 days, 5 or 12-16 weeks, respectively, or up to 2 years. In female pigs, dietary 

levels of 0.2 mg/kg diet (equivalent to 8 μg/kg b.w. per day) for 90 days caused a reduction in 

renal activity of cytosolic phosphoenolpyruvate carboxykinase and gamma-glutamyl 

transpeptidase together with a decreased kidney function as indicated by reduced tubular 

excretion of p-aminohippurate and increased glucosuria. Cytosolic, and not mitochondrial, 

phosphoenol-pyruvate carboxykinase activity was reduced. Lowest Observed Effect Level 

(LOEL) for effects on the kidneys (effects on enzymes and function) was established by the 

Joint FAO/WHO Expert Committee on Food Additives (JECFA) at 8 μg/kg b.w. per day in a 
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90-day feeding study (FAO/WHO, 2001). Ochratoxin A is believed to be responsible for a 

porcine nephropathy that has been studied intensively in the Scandinavian countries. The 

disease is endemic in Denmark, where rates of porcine nephropathy and OTA contamination 

in pig feed are highly correlated (Krogh, 1987). 

Ochratoxin A has been described to affect humoral and cellular immunity in several species: 

in pigs, after subcutaneous injection of pure or crude OTA were found reduction in relative 

lymphocyte counts and an increase in total leukocyte, relative neutrophil and eosinophil 

counts (Müller et al., 1999). 

Ochratoxin A in rats 
In rats, the effects of OTA on renal function and morphology are indicated by increased 

relative kidney weight, urine volume, blood urea nitrogen, urinary glucose, proteinuria, and 

impaired urinary transport of organic substances. Renal lesions were histologically 

characterised by karyomegaly, necrosis of tubular cells, and thickening of tubular basement 

membranes. The target site is specific, being the straight segment of the proximal tubule S3 in 

the outer stripe of the outer medulla. The most comprehensive studies on OTA toxicity in rats 

have been performed within the US National Toxicology Program (US-NTP, 1989). In these 

studies, groups of 80 male and female Fischer 344/N rats were given OTA by gavage in maize 

oil at a dose of 0, 21, 70, or 210 μg/kg b.w. per day, 5 days/week for up to 103 weeks. The 

studies confirmed the specific site of renal injury and the sex differences in susceptibility. 

Renal lesions consisted in contraction and disorganization of the normal linear pattern of the 

S3 tubules due to marked development of karyomegaly and cytomegaly. The overall Non 

Observed Adverse Effect Level (NOAEL) derived from these studies was 21 μg/kg b.w. per 

day for 5 days/week, equivalent to 15 μg/kg b.w. per day (US-NTP, 1989; FAO/WHO, 2001).  

Petrik et al. (2003) showed that administration of 120 μg OTA/kg b.w. per day to Wistar rats, 

for 10, 30 or 60 days, produced oxidative stress and dose/time related apoptosis in both, 

proximal and distal epithelial kidney cells. Studies in rats have shown a preventive effect of 

pre- or co-treatment with melatonin (10-20 mg/kg b.w. per day) on parameters of OTA-

induced liver and kidney toxicity (Aydin et al., 2003) and on OTA-induced oxidative stress, 

such as changes in liver and kidney glutathione peroxidase, superoxide dismutase and 

malondialdehyde (Meki and Hussein, 2001; Abdel-Wahhab et al., 2005). Bertelli et al. (2005) 

have reported that flavonoids in red wine may exert a protective effect against OTA 

nephrotoxicity in rats by limiting oxidative damage as measured by renal lipohydroperoxides, 

reduced and oxidized glutathione, and renal superoxide dismutase activity.  
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1.1.2 Fumonisin B1 

Fumonisins were first isolated in 1988 from a culture of Fusarium verticillioides (earlier 

Fusarium moniliforme) grown on maize and their structures were also determined 

(Bezuidenhout et al., 1988; Gelderblom et al., 1988). Fumonisin B analogues, including 

toxicologically important fumonisin B1, B2 and B3, are the most abundant naturally 

occurring fumonisins (Marasas, 1996). 

The fumonisin B1 (FB1) molecule includes a long chain aminopentol backbone with two 

ester-linked tricarballylic acids. Aminopentol originates from FB1 by hydrolysis of the 

tricarballylic acid side chains at carbon 14 and 15, which are then replaced by hydroxyl 

groups.  

 

 
Figure 1.2 Chemical structure of fumonisins 
(www.inchem.org, last access March, 7th 2008) 

 

The exact mechanism of action of FB1 is still unclear. Shier (2000) refers to the low degree of 

absorption of FB1 as the “fumonisin paradox” (how can a toxin cause agriculturally 

significant diseases and possibly human cancers if it is not effectively absorbed after oral 

administration?). Little is known about the possible endogenous hydrolysis of FB1 by the 

mammalian metabolism, even if some studies performed on primates (Shephard et al., 1994a) 

and ruminants (Rice and Ross, 1994) revealed that the ester moiety of FB1 was hydrolysed in 

the intestine. Absorption of FB1 by enterocytes has also been studied in vitro with Caco-2 

cells that are representative of human small intestine enterocytes: Caloni et al. (2002) showed 

no absorption of FB1 and no absorption of partially hydrolyzed metabolites by both 

undifferentiated or differentiated cells. By contrast, absorption of totally hydrolyzed FB1 

(aminopentol or HFB1) was evident in differentiated Caco-2 cells, which expressed 
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enzymatic and metabolic characteristics of mature enterocytes (De Angelis et al., 2005). 

Molecular structures of fumonisins are very similar to sphingolipids (Shier, 1992); thus, they 

interfere in the metabolism of the latter and disturb the processes mediated by these molecules 

(Kim et al., 1991). It has been postulated that FB1 exerts its toxicological effects inhibiting 

ceramide synthase enzymes. This lead to an increased concentration of sphingoid bases 

(sphinganine and sphingosine and their phosphorylated derivatives) as well as the depletion of 

ceramide and complex sphingolipids (Merrill et al., 2001; Riley and Voss, 2006; Suzuky et 

al., 2007). The elimination route of FB1 is via bile and the excreted toxin is still biologically 

active (Enongene et al., 2000) either unchanged or depleted of one ester-linked tricarballylic 

acid (at the C14-position). Traces amounts of aminopentol, the fully hydrolyzed FB1, were 

found in feces (Shephard et al., 1994a). As no hydrolyzed product has been found in the urine 

or bile, it is assumed that the hydrolysis occurs in the gut, probably performed by 

microorganisms (Shephard et al., 1995; Fodor et al., 2006). Caloni et al. (2000) observed a 

poor rate of hydroxylation in the rumen fluid. Fumonisin B1 may be hydroxylated, but this 

limited hydroxylation seems to take place pre-systemically, as studies with bovine liver 

microsomes did not show any significant transformation of FB1 (Spotti et al., 2001). 

Although the biotransformation of FB1 is very limited, it has been shown to inhibit certain 

P450 enzymes, both in vivo and in vitro (Spotti et al., 2000). 

Toxicokinetic of Fumonisin 
Fumonisins are poorly absorbed and the oral bioavailability remains generally below 5% for 

FB1, and seems to be even lower for FB2. The absorbed fractions are rapidly distributed and 

eliminated. In rats and most other animals, the absorption kinetic of FB1 indicates a rapid 

distribution and elimination that is adequately described by a two- or three-compartments 

model (Martinez-Larranaga et al., 1999). Only a low level of FB1 is detected in plasma and 

tissues after oral administration, indicating that the absorption is negligible. Indeed, in cows 

and laying hens, systemic absorption of orally given FB1 is less than 1% (Martinez-Larranaga 

et al., 1999; Vudathala et al., 1994) In pigs, the bioavailability of FB1 following intragastric 

administration is estimated to be 3–6% (Prelusky et al., 1995). 

In rats, FB1 shows a rapid distribution and renal elimination rates (t½el = 40 minutes after 

intravenous injection). After intragastric administration of the toxin, up to 80% of the 

radiolabel is recovered in feces and up to 3% in urine. Tissue levels were found to be the 

highest in kidneys, followed by liver (Norred et al., 1993) while no detectable quantity is 

reported in other organs (Shier, 2000). Fumonisin B1 is glucuronidated and excreted with bile 
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fluid (approximately 1.4% of the dose), which may result in entero-hepatic re-circulation. The 

entero-hepatic re-circulation probably increases the exposure of the intestine to the 

mycotoxin, at least for rats and pigs (Dantzer et al., 1999; Norred et al., 1993; Prelusky et al., 

1996a; Shephard et al., 1994b). Intestinal cells are exposed to a substantial portion of the 

ingested FB1. Intestinal epithelial cells of nonhuman primates 24 h after administration of 

radiolabeled FB1, contained 25% of the dose.  

Carry-over studies showed that in pigs fed 2-3 mg/kg feed 14C-FB1 for a period of 24 days, 

concentrations of 160 and 65 ng/g of tissue FB1 were found in liver and kidney, respectively. 

Muscle and fat tissue did not contain residues of FB1 (Prelusky et al., 1996b). A more recent 

study on residue formation of FB1 in porcine tissues showed that after oral administration of a 

very high (experimental) dose (100 mg FB1 per animal per day) for 5-11 days, residues of 

FB1 can be detected in kidneys (833 ng/g), liver (231 ng/g), lung (170 ng/g), spleen (854 

ng/g), muscle (26 ng/g) and fat (2 ng/g). All the animal studies carried out to determine the 

potential carry-over of fumonisins from animal feed into animal products indicated that levels 

of FB1 can be found in various tissues, but the low carry-over rate suggests that these low 

residue levels do not to contribute substantially to human exposure. 

Fumonisin B1 in pigs 
Fumonisin toxicosis in pigs is characterized by pulmonary, cardiovascular and hepatic 

symptoms. Moreover, hyperplastic oesophagitis, gastric ulceration, hearth hypertrophy and 

pulmonary arteries hypertrophy have been described (Casteel et al., 1994; Gumprecht et al., 

1998, 2001; Smith et al., 1996, 1999). Lethal pulmonary oedema and hydrothorax has been 

observed in pigs exposed to feed containing > 12 mg FB1/kg feed (corresponding to 0.6 

mg/kg b.w. per day) (Haschek et al., 2001). Gross pathology reveals a severe pulmonary 

oedema (heavy, wet lungs) with widened interlobular septa, but without further signs of 

inflammation. When exposure was consistent over a period of 8 weeks, levels as low as 1 mg 

FB1/kg feed produced proliferation of the connective tissue, primarily around the lymphatic 

vessels and in the subpleural and interlobular connective tissue, extending into the 

peribronchial and peribronchiolar area. However, these alterations were not accompanied by 

clinical signs (Zomborszky-Kovács et al., 2002a,b). It has been suggested that the pulmonary 

injury is preceded by cardiovascular abnormalities and haemodynamic changes with 

pulmonary hypertension and left heart insufficiency (Smith et al., 1999). When pigs are 

exposed to fumonisins they develop also hepatic injury with necrosis and cholestasis. 

Affected animals become anorexic; they show signs of encephalopathy, loss of body weight, 
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and hepatic nodular hyperplasia. These changes are associated to alterations in serum 

biochemical parameters, including an increase in circulating bile acids, elevated bilirubin 

concentrations, and increased values for serum aspartate aminotransferase, alkaline 

phosphatase, gamma-glutamyl transferase and lactate dehydrogenase activity (Zomborsky-

Kovács et al., 2002a,b). 

A dose- and time-dependent increase in the concentration of free sphinganine in serum and 

tissues is also observed early resulting in an increase in the sphinganine to sphingosine 

(Sa:So) ratio. In lung, liver, and kidneys, Sa:So ratio is increased and significant changes have 

been observed after exposure to 5 mg FB1 per kg feed (corresponding to an exposure of 0.2 

mg/kg b.w. per day) for a period of 2 weeks. Riley et al. (1993) found high free sphinganine 

level in liver, lung, and kidney tissues from pigs that were exposed to concentration ≥23 mg 

total FB1 + FB2 per kg feed, and an increased Sa:So ratio in serum from pigs occurred when 

concentrations were ≥ 5 mg/kg feed. 

Rotter et al. (1996) and Zomborszky-Kovács et al. (2002a) found that the Sa:So ratio was not 

increased in pigs fed 1 mg pure FB1/kg feed. Increased serum Sa:So ratios were found by 

these studies in pigs fed diets contaminated with 10 mg/kg feed or with ≥5 mg/kg feed, 

respectively. 

In practical conditions, the increase in the Sa:So ratio can be used to establish a diagnosis, as 

this phenomenon is unique for a fumonisin toxicosis. Alterations in the Sa:So ratio in organs 

are a sensitive biomarker, monitoring of the Sa:So ratio (for example in serum or urine 

samples) has a double function in monitoring exposure and assessing the onset of adverse 

effects due to fumonisin toxicosis. Considering the Sa:So ratio as the most sensitive parameter 

in the assessment of adverse effect exerted by fumonisins, the Lowest Observed Adverse 

Effect Level (LOAEL) was found to occure when pigs were exposed to feed containing 5 mg 

of fumonisins per kg feed. Lung lesions in pigs were observed at a dose of 0.4 mg/kg b.w. per 

day (Riley et al., 1993; Zomborszky-Kovács et al., 2002a). 

Fumonisin in feeds and foods 
Natural occurrence of fumonisins on maize and maize-based products has been reported in 

different parts of the world (Dutton, 1996). The natural occurrence of FB1 has also been 

reported in sorghum (Shetty and Bhat, 1997). Ingestion of feed contaminated with fumonisins 

cause syndromes like equine leukoencephalomalacia (Marasas et al., 1988), porcine 

pulmonary edema (Harrison et al., 1990), and induces hepatotoxic effects in rats (Gelderblom 

et al., 1994). Several human epidemiological studies have shown a strong correlation between 
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the natural occurrence of dietary fumonisins with high incidences of human esophageal 

cancer. Fumonisins are implicated in the pathogenesis of oesophageal cancer in humans 

(Marasas et al., 2000) in different parts of the world (South Africa, China, Italy, and South 

Carolina). Studies in the Texas-Mexico border suggest that intake of fumonisin-contaminated 

corn (in the form of tortillas) induce an increased neural tube defects among Mexican-

American women (Missmer et al., 2006). Fumonisin B1 has been classified by the 

International Agency for Research on Cancer (IARC, 1993) as “possibly carcinogenic to 

humans” (class 2B). Food of animal origin could be contaminated with FB1 after the toxin 

has been absorbed from the digestive tract, entered the bloodstream and reached other tissues.  

1.1.3 Deossinivalenol 

Deoxynivalenol (DON), also known as vomitoxin, is mainly produced by Fusarium 

graminearum (Gibberella zea), in some areas by F. culmorum (Richard, 2000). The 

geographical distribution of the two species appears to be related with temperature, since F. 

graminearum predominantly is found in warmer climates.  

 

 
Figure 1.3 Chemical structure of 

deoxynivalenol (EFSA, 2004). 

 

Deoxynivalenol is the most common thricotecene, a class of mycotoxins, worldwide found in 

feedstuffs, particularly cereals (wheat, maize, barley, oat, rye and less often in rice, sorghum 

and triticale). Corn and wheat are the major crops affected, while small grains such as oat, 

rye, and barley has low incidence of DON contamination (CAST, 2003). Fungi survive on 

residue leaves on the field from the previous season, providing an inoculum source for the 

new crop. These fungi find the best conditions for development in cool, moist conditions with 

contamination of the crop occurring when conidia of the organism are windblown to the corn 

silks or in small grains to the anthers which emerge outside the floret during anthesis.  
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The fungus penetrates the host ear or floret and produces the disease which may be ear rot in 

corn or head blight in small grains. A direct relationship between the incidence of Fusarium 

head blight and contamination of wheat with DON has been established. The incidence of 

Fusarium head blight is most affected by moisture during flowering season (WHO, 2001). 

The time of rainfall is the most critical period for toxin production. Certain environmental 

conditions may allow for late growing season development of DON in crops. In corn, the ear 

rot produced by F. graminearum may appear. (Richard, 2007). Deoxynivalenol occurrence is 

almost exclusively associated with cereals, and the levels of occurrence are in the order of 

hundreds of μg/kg upwards. Contamination occurs mainly in field pre-harvest. As seasonal 

variations significantly influence the extent of Fusarium infections, levels of DON tend to 

vary from year-to-year. Wheat may appear prematurely ripe and at harvest the kernels will 

have a blanched appearance and pink staining. In cereals where there is pink staining the 

disease may be referred to as pink scab. Storage under good conditions (<14% moisture) will 

minimize further elaboration of the toxin and DON does not further accumulate in storage.  

There is no experimental or epidemiological evidence for mutagenic and/or carcinogenic 

properties of DON and it was classified in 1993 by the International Agency for Research on 

Cancer (IARC) in Group 3 (not classifiable as to its carcinogenicity to humans). A Temporary 

Tolerable daily Intake (TDI) of 1 μg/kg b. w. was established by the EU Scientific Committee 

on Food (SCF, 2002), and the Provisional Maximum Tolerable Daily Intake (PMTDI) 

established by JECFA (WHO, 2001). 

Mechanism of action of Deoxynivalenol 
The first toxic effect associated with trichothecenes including DON was the inhibition of 

protein synthesis. Trichothecenes bind to the 60S subunit of eukaryotic ribosomes and 

interfere with the activity of peptidyltransferase. Based on the induction of emesis, suppose a 

possible interaction with serotinergic and dopaminergic receptors (Fioramonti et al., 1993). 

Loss of appetite, and subsequently reduced feed intake resulted in low weight gain in growing 

animals due to this effect. DON is also an immunosuppressor (reduction of immunoglobulins 

production and depletion of lymphocytes from spleen, Peyers patches and thymus). Clinical 

studies revealed cell depletion in thymus, spleen or bursa Fabricius in exposed animals, and in 

vitro, the sensitivity of B- and T- cells, isolated from spleen, thymus and Peyer’s patches 

towards DON has been described in many studies. In vivo cell apoptosis in thymus, spleen, 

Peyer’s patches, bone marrow, and liver has been also demonstrated after administration of 

other trichothecenes (Poapolathep et al., 2002, 2003; Shinozuka et al., 1997a,b). Recently, 
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DON involvement in upregulation of pro-inflammatory cytokines has been studied: evidence 

in rodent species that DON increases the expression of proinflammatory cytokines, might 

provide the explanation for a various effects observed in pigs, including: 

• feed refusal, as IL-6 is known to induce anorexia, 

• inhibition of protein-synthesis and reduced weight gain, 

• IL-6 dependant deregulation of IgA production: elevated levels of circulatory IgA might 

impair glomerular function, resulting in a renal wasting syndrome (Pestka and Zhou, 2000). 

 

Concomitant factors (lipopolysaccharide of Gram-negative bacteria, viral infections) that 

modulate transcription of cytokines and chemokines, could explain the differences in clinical 

responses to low levels of DON in individual herds, due to the strong influence of these 

factors on DON response. It is important to note that these mechanistic studies have been 

almost entirely conducted in mice, or rodent and human cell lines. However, the described 

mechanisms are highly preserved in mammals, including pigs where the response may be 

even more pronounced due to the renowned susceptibility of pigs to bacterial and viral agents 

modulating cytokine response.  

Toxicokinetic of Deoxynivalenol 
Deoxynivalenol is rapidly absorbed in pigs and oral bioavailability is estimated to be 55% 

(Rotter et al, 1996). After intragastric dosing of radiolabeled DON, absorption half time was 

less than 30 minutes (Prelusky et al., 1988). After feeding a diet containing naturally 

contaminated wheat (4.2 mg/kg feed), the maximum serum DON concentration was found 

after 4.1 h (Dänicke et al., 2004a). Organ distribution was measured in pigs only following a 

single intravenous injection of DON (1 mg/kg b.w.) and revealed high initial concentrations 

in plasma, kidney and liver. Measurable concentrations were detected also in the abdominal 

fat, back fat, lung, adrenals, spleen, testis, heart, brain, muscle tissue, intestines and pancreas, 

indicating a large volume of distribution (Prelusky and Trenholm, 1991). The plasma 

eliminination half-life was found to vary between 1.2 and 3.9 hours in pigs depending on 

study (Eriksen et al. 2003; Prelusky and Trenholm, 1991) and reach 7.14 hours when radio-

labelled DON was given by gavage (Prelusky et al., 1988). Excretion of DON occurs 

predominantly via urine. Deoxynivalenol may be de-epoxidated by the microbial flora of the 

intestinal tract with an increasing capacity from the small to the large intestine (Dänicke et al., 

2004a). De-epoxy DON has not been detected in blood, although it was excreted in the urine 

(Eriksen et al., 2003; Dänicke et al., 2004b-d). Moreover, the glucuronidated DON is found in 
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blood and urine. Acetyl-DON is rapidly deacetylated in the upper intestinal tract and absorbed 

exclusively as de-acetylated DON (Eriksen et al., 2003). Deoxynivalenol is not significantly 

carried over into tissues or fluids of animals consuming toxic levels (Prelusky, 1994). Residue 

analyses of DON in tissues from pigs fed DON concentration ranging between 0.7–7.6 ppm 

revealed in most cases low (<20 ppb) or undetectable DON concentrations (Cote et al., 1985; 

Prelusky and Trenholm, 1992). 

Deoxynivalenol in pigs 
In swine, DON induces reduction of feed intake or even feed refusal, and, at high dosages 

pigs may vomit. Differences are reported for in vivo trials when DON contamination of the 

diets is obtained adding crystalline DON or naturally/artificially contaminated raw material: 

naturally/artificially contaminated feed had a stronger effect on the feed intake and weight 

gain reduction than pure toxin (Forsyth et al., 1977; Foster et al., 1986; Rotter et al., 1994; 

Trenholm et al., 1994). In pigs, when crystalline DON was applied, complete feed refusal was 

observed at 12 mg/kg feed and vomiting at 20 mg/kg feed (Young et al., 1983; Forsyth et al., 

1977). When naturally or artificially DON contaminate raw materials are mixed into the diets, 

the decrease of feed consumption, and consequently weight gain, was observed at 0.6 and 2 

mg/kg feed for naturally and artificially contamination, respectively (Bergsjö et al., 1993b; 

Friend et al., 1982; Overnes et al., 1997; Young et al., 1983). The difference is not clearly 

explained, but hypotheses include the presence of other toxins in the raw materials, the 

presence of other compounds (for example bacterial polysaccharides) increasing the toxicity 

of trichothecenes and inducing taste aversion (Rotter et al., 1996). The observed reduction in 

feed intake at the lowest doses of contamination was temporary, but the loss in weight gain 

during the first period was not completely compensated later and the animals reach slaughter 

weight at a higher age.  

1.1.4 Mycotoxins legislation in European Union 

Regulations for ochratoxin A, fumonisins and deoxynivalenol are present in the European 

Union (Table 1.1). No regulations have been established in United States for ochratoxin A. 

Guidelines and advisory levels are proposed by FDA for fumonisins and deoxynivalenol, 

respectively (Table 1.2). 

Recently, the Scientific Panel on Contaminants in food chain of European Food Safety 

Agency (EFSA) has published an opinion where OTA is considered an undesirable substance 

in food (EFSA, 2006) after a previous opinion about its presence in animal feed (EFSA, 
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2004a). Human exposition to OTA seems to be associated primarily to consumption of 

contaminated vegetable products (cereals, coffee, wine) and, partially to ingestion of animal 

products derived from animals fed contaminated feeds. Data on human exposition to OTA 

revealed that weekly exposure in adults ranges from 15 to 60 ng/kg b. w. including high 

consumers of foods containing ochratoxin. This rate of exposure is below the Tolerable 

Weekly Intake value of 120 ng/kg body weight as derived by the Panel. However, as current 

EFSA consumption databases do not include infants and children, they concluded that more 

data would be needed to assess exposure rates of this segment of consumers, taking into 

account their dietary preferences (EFSA, 2006). 

DON and fumonisins were classified as undesirable substances in animal feeds, in 2004 and 

2005 respectively (EFSA, 2004b; EFSA 2005). No opinions on DON and fumonisins in food 

are published at the moment. 

 
Table 1.1. European Union regulations for ochratoxin A, fumonisins 
(including FB1, FB2, and FB3), and deoxynivalenol 

Mycotoxin/Product Concentration 
(µg/kg) 

Ochratoxin A  
Raw cereals grains 5 
All products derived from cereals intended for 
direct human consumption 

3 

Dried vine fruit (currants, raisins, and sultanas) 10 
  
Fumonisins (including FB1, FB2, and FB3)  
Unprocessed maize 2000 
Maize grits, meal, and flour 1000 
Maize-based food for direct consumption 
except maize grits, meal, and flour and 
processed maize based foods for infants and 
young children and baby food 

400 

Processed maize-based foods for infants and 
young children and baby foods 

200 

  
Deoxynivalenol  
Cereal products as consumed and other 
products at retail stage 

500 

Flour used as raw material in food products 750 
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Table 1.2. United States regulations for fumonisins (including FB1, 
FB2, and FB3), and deoxynivalenol 

Mycotoxin/Product Concentration (µg/kg) 
Fumonisins (including FB1, FB2, and FB3)  
Human foods  
Degermed dry milled corn products 2 
Whole/partially degermed dry milled corn 
product 

4 

Dry milled corn bran 4 
Cleaned corn intended for mass production 4 
Cleaned corn intended for popcorn 3 
Corn and corn byproducts for animals  
Equids and rabbits 5<20% diet 
Swine and catfish 5<20% diet 
Breeding ruminants, poultry, mink, dairy cattle, 
laying hens 

30<50% diet 

Ruminants >3 mos. before slaughter and mink 
for pelts 

60<50% diet 

Poultry for slaughter 100<50% diet 
All other livestock and pet animals species 10<50% diet 
  
Deoxynivalenol  
Finished wheat products for human 
consumption 

1 

Grain and grain by products destined for swine 
and other animals (except cattle and chickens), 
not to exceed 20% of diet for swine (40% for 
other species) 

5 

Grain and grain byproducts for beef, feedlot 
cattle older than 4 months and chickens; not to 
exceed 50% of the diet. 

10 
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1.2 Prevention strategies 
Mycotoxicoses are the toxic responses caused by mycotoxins ingestion by humans and 

animals and are examples of “poisoning by natural means” analogous to the pathologies 

caused by exposure to pesticides or heavy metal residues (Bennett and Klich, 2003). Toxic 

effects depend on different factors including type of mycotoxin and its mechanism of action, 

amount and duration of the exposure, age, health, sex, and metabolism of the exposed 

individual (Galvano et al., 2001; Hussein and Brasel, 2001). Synergistic effects involving 

genetics, dietary status, and interactions with other toxic insults could occur and are not well 

understood. Toxic effects of mycotoxin ingestion get worse if other nutritional injuries such 

as vitamin deficiency, caloric deprivation, alcohol abuse, malnutrition, and infectious disease 

status occur (Bennett and Klich, 2003). 

Consumption of mycotoxin contaminated foods lead to the induction of teratogenic, 

cancerogenic, oestrogenic, neurotoxic, and immunosuppresive effect in humans and/or 

animals (Atroshi et al., 2002). To control mycotoxins induced damages, different strategies 

have been developed to reduce the growth of mycotoxigenic fungi as well as to decontaminate 

and/or detoxify mycotoxin contaminated foods and animal feeds. Critical points, target for 

these strategies, are: prevention of mycotoxin contamination, detoxification of mycotoxins 

already present in food and feed, inhibition of mycotoxin absorption in the gastrointestinal 

tract, reduce mycotoxin induced damages when absorption occurs. 

 

1.2.1 Prevention of contamination 

Mycotoxin contamination of agricultural product can occur in the field as well as during 

storage: phytopathogenic fungi such as Fusarium spp can produce mycotoxins before or 

immediately post harvesting. Strategies to prevent mycotoxins contamination can be divided 

regard the use of different products, such as cereals, nuts, fruits, coffee, wine, etc. for the 

prevention and reduction of various mycotoxins. 

Main mycotoxin hazards associated with wheat pre-harvest in Europe are the toxins that are 

produced by fungi belonging to the genus Fusarium in the growing crop: mycotoxins 

produced by these fungi include trichothecenes (deoxynivalenol, nivalenol, and T-2 toxin) as 

well as zearalenone. Although Fusarium infection is generally considered to be a pre-harvest 

problem, if poor drying practices are made, can increase the susceptibility for in storage 
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mycotoxin contamination (Aldred and Magan, 2004). There are inherent differences in the 

susceptibility of various cereal species to mycotoxin contamination and these differences 

between crop species appear to differ between countries. This is due to differences in the 

genetic pool within each country’s breeding program and the different environmental and 

agronomic conditions in which crops are cultivated (Edwards, 2004). For these reasons 

particular seed varieties are recommended for the use in specific geographical areas (Codex 

Alimentarius, 2002). Mesterhazy et al. (2002) suggested, based on a study about DON 

contamination in wheat, that an increased availability of resistant varieties, coupled with the 

use of appropriate fungicides, was the key in an integrated approach to mycotoxin control 

associated with Fusarium.  

In maize, hybrids genetically engineered for insect resistance (by insertion of Bacillus 

thuringiensis genes encoding the endotoxin CryA), had kernels that consistently had less 

fumonisins than kernels from normal plants. Other maize hybrids genetically engineered for 

fumonisin degradation (by insertion of a gene encoding a fumonisin esterase enzyme, from a 

Gram-positive bacterium) have been produced. These transgenic maize plants can degrade 

FB1 to aminopentol, its hydrolysis product, a compound that however retains most of the FB1 

toxicity (EMAN, 2008a). 

Another factor which is known to increase the susceptibility of cereals to toxigenic mould 

invasion is injury due to insect, bird, or rodent damage (Smith et al., 1994). Insect damage 

and fungal infection must be controlled by proper use of insecticides, fungicides, and other 

appropriate practices. Benefits of fungicide is due to their efficacy in preventing or reducing 

toxin synthesis in naturally-infected fields (Ioos et al., 2005). The use of fungicides introduces 

a complication: there is evidence that under certain conditions, fungicide use may actually 

stimulate toxin production. This is an important finding as it indicates that the impact of the 

fungicide is not directly related to mycotoxin production.  

A limited number of biocompetitive microorganisms have been found for the management of 

Fusarium infections. Antagonistic bacteria and yeasts may also lead to reductions in pre-

harvest mycotoxin contamination. For instance, Bacillus subtilis has been shown to reduce 

mycotoxin contamination by F. verticilloides during the endophytic growth phase. Similarly 

antagonistic yeasts such as Cryptococcus nodaensis have also been shown to inhibit various 

Fusarium species (Cleveland et al., 2003). 

Moisture management is the critical point: the main control measure in preventing mycotoxin 

contamination from harvest until the end of the production chain. An appropriate sampling 

procedure to control moisture content of the harvested grain during the harvesting operation is 
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very important because moisture vary considerably within the same batch of grains. Another 

strategy to reduce mycotoxin contamination is the separation of damaged grains from healthy 

grains. Fungal infection is minimized by avoiding the mechanical damage to grains and 

contact with soil (Codex Alimentarius, 2002; EMAN, 2008b). 

Post harvest strategies are important in the prevention of mycotoxin contamination including 

improved drying and storage conditions, and eventually, the use of natural and chemical 

agents, as well as irradiation. Mycotoxigenic fungal growth can arise in storage as a result of 

moisture variability within the bulk or as a result of condensation of moisture in cooled grains 

located closed to the interface with the wall of the storage silo. 

The moisture levels in stored crops is one of the most critical factors in the growth of 

mycotoxigenic moulds and in mycotoxin production: aflatoxins can be produced at aw values 

ranging from 0.95 to 0.99 with a minimum aw value of 0.82 for A. flavus, while the minimum 

aw for OTA production is 0.80 (Sweeney and Dobson, 1998). Aflatoxins are produced by A. 

parasiticus at minimum relative humidity of 14% in wheat grains while for OTA production 

the moisture content needs to be higher, approximately 17-18% (Codex Alimentarius, 2002).  

Storage temperature is another critical factor influencing mould growth and mycotoxin 

production: OTA production by P. verrucosum occurs between 10 to 25°C, while aflatoxins 

produced by A. flavus can growth in the temperature range from 10-43°C, with an optimum in 

the 32 to 33°C range (ICMSF, 1996; Olsen et al., 2003). Monitoring of stored grain 

temperature several times during storage may be important in determining mould growth: 

temperature increase of 2-3°C may indicate mould growth or insect infestation. To control 

and reduce mould growth and mycotoxins production, Codex Alimentarius (2002) suggests 

that storage facilities must be dry, provide protection from rain, ground water, rodents and 

birds, with minimum temperature fluctuations.  

Various natural and chemical molecules are known to prevent both mycotoxigenic mould 

growth and mycotoxin formation. Fungicides have effect on mould growth and mycotoxins 

biosynthesis regarding their chemical type, dose of application, cereal type, fungal species, 

and storage conditions. Other approaches and possible alternatives to fungicides are the use of 

organic acids that inhibit growth and mycotoxins production (sorbic acid and its salts, sodium 

benzoate, propionic and citric acids) and the potential use of antagonistic bacteria, fungi, and 

yeast. Growth and OTA production were inhibited in many strains of Aspergillus tested by 

vanillic acid but no inhibition nor reduction in OTA production was detected in Aspergillus 

ochraceus strain. (Palumbo et al., 2007). It is well established that antagonistic yeast can 
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reduce the growth of spoilage moulds both in vitro and under simulated full-scale storage 

conditions. 

Pichia anomala and Saccharomyces cerevisiae and their activity against P. verrucosum 

induce a decrease in OTA production to non detectable levels (Petersson et al., 1998). Lactic 

Acid Bacteria (LAB) or their antifungal metabolites have been studied as natural 

preservatives to inhibit mycotoxigenic mould growth and mycotoxin production in recent 

years (Magnusson et al., 2003; Stiles et al., 2002). Lactic acid bacteria showed reduction or 

prevention of aflatoxins production by Aspergillus species (Gourama and Bullerman, 1997; 

Luchese et al., 1992). Special interest to LAB is due to their activity as preservatives in foods 

and the classification of some of them as GRAS “Generally Recognized As Safe”. In some 

cases the antifungal and antimycotoxigenic potential of LAB are still unknown, it is widely 

believed that inhibition of mycotoxin synthesis is due to microbial competition, the depletion 

of nutrients, low pH, and also due to the production of heat-stable low-molecular weight of 

metabolites which are produced by LAB (Batish et al., 1997; Laitila et al., 2002). Natural 

plant extracts and spices are also known to prevent mould growth and mycotoxin production 

(Dobson, 2002; Yin and Cheng, 1998). Juglal et al., (2002) suggested that the inhibitory 

effects exerted by spices and herbs may rely at least in part on phenolic compounds such as 

coumarins and flavonoids. 

With respect to OTA production, spice essential oils of oregano, mint, basil, sage, and 

coriander have been shown to be effective against ochratoxin-producing fungi, with oregano 

and mint oils completely inhibiting the growth of a strain of A. ochraceus and OTA 

production after 21 days at the concentrations of 1000 ppm (Basìlico and Basìlico, 1999).  

If fungal contaminaton is already present in feed and foods, different strategies can be applied 

to remove them and reduce mycotoxins production. Radiation is typically categorized as 

either ionizing or non-ionizing, with ionizing rays involving X-rays, and gamma rays and 

non-ionizing rays involving UV rays, microwaves, infrared rays, and radio waves. In relation 

to mycotoxin prevention irradiation has been used to inhibit mycotoxin biosynthesis during 

storage period, and many studies have been conducted to access the use of γ-irradiation in 

particular to prevent mould growth and mycotoxin formation (Aziz et al., 2002). Refai et al. 

(1996) showed that radiation dose of 4 kGy both inhibit growth of A. ochraceus and 

subsequent ochratoxin production in poultry feed concentrates. Not all fungi however respond 

to irradiation in the same way as is evidenced by the report of Aziz and Smyk (2002) where 

they showed that exposure to near UV radiation induced the synthesis of both AFB1 (200 

ppm) and OTA (210 ppm), in non-toxigenic fungal strains of A. flavus EP-63 and A. 
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ochraceus P-153, respectively. The effectiveness of irradiation in the inhibition of mould 

growth and mycotoxin biosynthesis is both strain and dose dependant, as well as being 

influenced by humidity and storage conditions. 

1.2.2 Detoxification of contaminated food and feed 

The prevention of mycotoxin contamination prior to harvest or during post-harvest and 

storage is not always possible therefore various detoxification processes play an important 

role in helping prevent exposure to the toxic and carcinogenic effect of mycotoxins. 

Detoxification of mycotoxins is typically achieved by removal or elimination of the 

contaminated commodities or by inactivation of the toxins present in these commodities by 

physical, chemical, or biological methods but chemical treatments to detoxify foods and feeds 

is not allowed in European Union. The dilution of contaminated products with good quality 

products is also prohibited (Reg. CE 466/2001). 

Decontamination processes, as indicate by FAO, needs the following requisites to reduce 

toxic and economic impact of mycotoxins (Bata and Lasztity, 1999; Galvano et al., 2001; 

Piva G. et al., 1995): 

• it must destroy, inactivate, or remove mycotoxins; 

• it must not produce or leave toxic and/or carcinogenic/mutagenic residues in the final 

products or in food products obtained from animals fed decontaminated feed; 

• it must be capable of destroying fungal spores and mycelium in order to avoiding 

mycotoxin formation under favorable conditions; 

• it should not adversely affect desirable physical and sensory properties of the feedstuff; 

• it has to be technically and economically feasible. 

 

Physical segregation and removal of contaminated grains from cereals is an important option 

since chemical detoxification is not acceptable. 

The removal of seeds and kernels visible contaminated by moulds can lead to the removal of 

significant quantities of mycotoxins since the mycotoxins contamination occurs in small 

amounts of grains (Scott, 1998). Sorting can be based on damaged and discolored grains with 

manual, mechanical, and electronic methods. Manual selection is based on the fact that 

damaged kernels will vary in size, shape, and color and that visible mould growth will be 

present on the affected kernels. This method is the simplest way for the physical removal of 

contaminated grains but it is a very time-consuming procedure and it is not applicable in 
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cereals. Manual sorting is very useful for the removal of mouldy apples to reduce the level of 

patulin contamination (FAO, 2001).  

In mais and cotton seeds fluorescent sorting is useful to remove aflatoxin contaminated grains 

(Scott, 1998) but in this case electronic sorting is unlikely to be used on large scale due to 

economic factors.  

The use of floating and density segregation is another method to decrease the mycotoxin 

content of crops: aflatoxin levels in toxic maize kernels can be decreased in this way (Huff 

and Hagler, 1985).  

It has been reported that gravity separation can be useful in reducing DON levels in grains. It 

has also been shown that the use of specific gravity tables which allow the removal of the 

least dense fractions containing the tombstone kernels can reduce DON contamination by 68 

to 85% in wheat containing 4–7 mg/kg toxin (EMAN, 2008c).  

During milling process it is possible to remove certain grain components to reduce levels of 

contamination. In standard milling practice to obtain white flour, OTA can be reduced by 

66% from hard wheat inoculated with P. verrucosum contaminated at 618 μg/kg OTA but 

only a 40% reduction can be obtained for soft wheat (EMAN, 2008c). 

Physical methods for mycotoxin decontamination include thermal and irradiation inactivation 

of mycotoxins. 

Most mycotoxins are heat-stable within the range of conventional food processing 

temperatures (80–121°C), so little or no destruction occurs under normal cooking conditions 

such as boiling and frying, or even following pasteurization (Scott, 1984; Smith et al., 1994). 

The sensitivity of mycotoxins to heat treatment is affected by many factors including 

moisture, pH, and ionic strength of food (Samarajeewa et al., 1990). Degradation by heat 

treatment depends on type of mycotoxin and its concentration, the extent of binding between 

the mycotoxin and the food constituents, the degree of heat penetration, as well as the heating 

temperature and the processing time (Rustom, 1997). Deoxynivalenol levels were unaffected 

by heat treatments of 100–120°C at pH 4.0 and 7.0, but at pH 10.0 heat treatments of 120°C 

for 30 min or 170°C for 15 min resulted in the complete degradation of DON (Wolf and 

Bullerman, 1998). FB1 is completely removed from corn meal if it is roasted at 218°C for 15 

min (Castelo et al., 1998). 

High temperatures reached during extrusion has been reported to be a useful technique in the 

destruction of some naturally occuring food toxins. Cazzaniga et al. (2001) reported a greater 

than 95% reduction of DON in maize flour following extrusion cooking (140–200°C). 
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Irradiation has proven useful in the post harvest control of mycotoxins in storage: irradiation 

is a non-thermal treatment and is increasingly being referred to as “cold pasteurization” given 

that it can eliminate food borne pathogens without increasing in product temperature, and that 

overall average doses of 10 kGy presents no toxicological hazard (Molins et al., 2001; 

Rustom, 1997). 

A wide range of chemicals have been shown to reduce, destroy, or inactivate mycotoxins 

(Piva G. et al., 1995; Scott, 1998; Sinha, 1998). These chemicals include acids (hydrochloric 

acid), bases (ammonia, sodium hyroxide), oxidizing agents (hydrogen peroxide, ozone), 

reducing agents (sodium bisulfite), chlorinating agents (sodium hypochlorite, chlorine dioxide 

and gaseous chlorine), and miscellaneous reagents such as formaldehyde. Many chemical 

treatments may destroy mycotoxins present in many foods and feeds, but in many cases they 

significantly decrease the nutritional value of foods or produce toxic products or other 

products with undesirable effects; these side-effects limit their widespread use. 

The use of many of the available physical and chemical methods for the detoxification of 

products contaminated with mycotoxins is limited due to problems concerning safety issues, 

possible losses in the nutritional quality of treated commodities, limited efficacy and 

economic implications (Bata, and Lasztit, 1999). This has led to the search for alternative 

strategies such as biological agents.  

Various fermentation processes have also been shown to result in reducing the toxic effects of 

mycotoxins. Varga et al. (2000) reported the ability of various Aspergillus strains (A. 

fumigatus, A. japonicus, and A. niger) to degrade OTA in liquid YES media. It as been 

suggested that mycotoxins present in agricultural products may be removed by ethanol 

fermentation as occurs for OTA in beers, patulin in apple juice and OTA in barley after 

ethanol fermentation (Bennet and Richard, 1996; Karlovsky, 1999). By contrast, it is a well-

established that OTA has been found in a wide variety of wines, indicating that it does in fact 

survive the fermentation process (Cabanes et al., 2002; Lopez de Cerain et al., 2002). 

1.2.3 Inhibition of gastrointestinal tract absorption  

One approach to the prevention of mycotoxicosis in livestock is the addition in the diets of the 

non-nutritionally adsorbents that bind mycotoxins preventing the absorption in the 

gastrointestinal tract. The addition of adsorbents to feeds is the most widely applied way of 

protecting animals against mycotoxin damage. Activated carbons, hydrated sodium calcium 

aluminosilicate (HSCAS), zeolites, bentonites, and certain clays, are the most studied 

adsorbent and they possess a high affinity for mycotoxins (Huwig et al., 2001; Nageswara 
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Rao and Chopra, 2001; Ramos et al., 1996). Esterified glucomannan derived from yeast cell 

wall have been tested for the adsorption of mycotoxins. The cell walls polysaccharides 

(glucan and mannan), proteins, and lipids have been reported to exhibit numerous different 

adsorption mechanisms, e.g. hydrogen bonding, ionic, or hydrophobic interaction (Diaz et al., 

2002).  

The adsorption efficiency of these compounds depends on the chemical structure of both the 

adsorbent and the mycotoxin. The physico-chemical structure of the adsorbent including dose, 

total charge and charge distribution, size of the pores and surface area, as well as physico-

chemical properties of the mycotoxins play a significant role in the achievement of mycotoxin 

binding by adsorbent materials (Huwig et al., 2001). Mycotoxins that contain polar functional 

groups such as aflatoxins can be adsorbed by many effective adsorbents including certain 

clays e.g. montmorillonite and zeolite-clinoptolite. Non-polar mycotoxins such as OTA and 

zearalenone are not effectively adsorbed on the hydrophilic negatively charged surfaces of 

unmodified clays.  

Activated carbons are known as one of the most effective and non-toxic group of sorbents 

with a high surface to mass ratio (500–3500 m2/g). Proposed mechanism for activated carbon 

is the adsorption of mycotoxins by hydrogen bonding. According to Lemke et al. (2001), 

binding of mycotoxins to HSCAS and activated carbons was nearly 100% available in both 

water and simulated gastrointestinal fluid. In another study, Galvano et al. (2001) showed that 

the adsorption abilities of the activated carbon ranging from 0.80 to 99.8% and 1.83 to 

98.93% for OTA and DON, respectively.  

Similarly, Avantaggiato et al. (2003) investigated the effectiveness of activated and 

cholestyramine in reducing the intestinal absorption of zearalenone. They observed that, the 

use of 0.25 to 2% activated carbon or cholestyramine resulted in a reduction of zearalenone 

absorption of 43 to 84% or 19 to 52%, respectively. HSCAS from natural zeolite has been the 

most extensively investigated adsorbent because of possessing high affinity for aflatoxins 

demonstrated by several in vivo and in vitro experiments. 

Zeolites are crystalline, HSCAS of alkali and alkaline-hearth cations characterized by infinite 

three-dimensional structure. Dakovie et al. (2003) indicated that the degree of hydrophobicity 

plays a role in OTA adsorption on organo-zeolites and reported that the toxic effects of OTA 

in the gastrointestinal tract can be prevented by the use of organo-zeolite in animal feed. 

Bentonites are another category of adsorbents commonly used in the adsorption of 

mycotoxins. Bentonites have been extensively used in the clarification of beverages and 
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decoloration of oils (Ramos et al., 1996). The adsorption ability of bentonites mainly depends 

on the interchangeable cations (Na+, K+, Ca2+, and Mg2+) present (Galvano et al., 2001).  

In recent years, there has been increasing interest on the hypothesis that the absorption in 

consumed food can be inhibited by microorganisms in the gastrointestinal tract (Kankaanpää 

et al., 2000) Numerous investigators showed that some dairy strains of LAB and 

bifidobacteria were able to bind aflatoxins effectively (El-Nezami et al., 1998a; Oatley et al., 

2000). The mechanisms of aflatoxin binding by specific LAB and bifidobacteria are unclear: 

cell wall peptidoglycans and polysaccharides have been suggested to be the two most 

important elements responsible for the binding by LAB and the absorption of 

mutagens/carcinogens in the small intestine (El-Nezami et al., 2000; Haskard et al., 2000). 

This suggestion is supported by the study of El-Nezami et al. (1998b) where all the Gram-

positive strains tested were more efficient than Escherichia coli, suggesting that the bacterial 

ability to remove AFB1 is dependent on the cell wall structure.  

A Eubacterium (BBSH 797) strain is able to inactivate trichothecenes by reduction of the 

epoxide ring (Binder et al., 1996; CAST, 2003). This strain was isolated out of bovine rumen 

fluid and the mode of action was proven in vitro and also in vivo. A novel yeast strain, 

capable of degrading OTA and zearalenone was isolated and characterized (Bruinink et al., 

1998; Schatzmayr et al., 2003).  

The ability of Lactobacillus rhamnosus strains GG and LC-705 to remove AFB1 and OTA, 

were studied by Turbic et al (2002); they reported removal of high amounts (77-95%) of 

AFB1 and moderate amounts (36-76%) of OTA and not for other substrates (caffeine, vitamin 

B12, folic acid) suggesting that these strains may be useful for dietary detoxification. This 

suggestion is also reported by Fuchs et al (2008) who studied the ability of LAB strains to 

degrade OTA in vitro. 

Piotrowska and Zakowska (2005) reported a good ability by three Lactobacillus strains to 

remove OTA from a contaminated liquid medium during first 5 hours of incubation, reaching 

90% of initial OTA concentration reduction at 15 hours. 

1.2.4 Reduction of damages when absorption occurs 

In addition to special care to prevent the growth of moulds, detoxification measures, reduction 

of gastrointestinal absorption, there is a need for prevention of the mycotoxin-induced toxic 

effects once the toxin is ingested. Nutritional approaches, such as supplementation of 

nutrients, food components, or additives with protective effects against mycotoxin toxicity are 

assuming increasing interest. Since some mycotoxins (i.e., OTA, FB1, AFB1, DON, and T2 
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toxin) have been known to produce damages by increasing oxidative stress (Atroshi et al., 

1995; Baudrimont et al., 1997a; Creppy et al., 1998; Hoehler and Marquardt, 1996; Hoult and 

Payà, 1996), the protective properties of antioxidant substances have been extensively 

investigated. Selenium, some vitamins, and their precursors have marked antioxidant 

properties that act as superoxide anion scavengers. For these reasons, these substances have 

been investigated as protecting agents against toxic effects of mycotoxins. Selenium protects 

spleen and brain against membrane damage caused by DON and T2 toxin (Atroshi et al., 

1995); vitamins A, C, and E reduced DNA adducts in kidney and liver of mice exposed to 

OTA and zearalenone from 70 to 90% (Grosse et al., 1997); vitamin C in mice exposed to 

OTA showed reduction of abnormalities in both mitotic and meiotic chromosomes and 

morphologies of the sperm head (Bose and Sinha, 1994). Similar protective actions have also 

been attributed to vitamin E (Ibeh and Saxena, 1998) and vitamin A against exposure of 

animals to OTA (Kumari and Sinha, 1994). 

Other nutritional components with antioxidant properties were investigated: phenolic 

compounds were found to induce cytosolic glutathione S-transferase activity that stimulated 

the formation of specific AFB1-glutathione conjugate. Rompelberg et al. (1996) found that 

eugenol does not modify the unscheduled DNA synthesis in hepatocytes exposed to AFB1. 

Aspartame has a wide protective action against OTA-induced subchronic effects (Baudrimont 

et al., 1997b; Creppy et al., 1996). When given after intoxication of animals with OTA, 

aspartame eliminated the toxin efficiently from the body. The protective action should be due 

to its structural similarity to OTA and phenylalanine. Authors suggest that aspartame is the 

best candidate for preventing OTA-induced subchronic effects, also considering the absence 

of adverse effects in humans and animals. 

Cyproheptadine, a serotonine antagonist with appetite-stimulant properties, has been tested to 

reduce feed refusal due to the presence of DON (Prelusky et al., 1997). Cyproheptadine offset 

the reduction of feed intake. It was concluded that, although serotoninergic mechanism is 

involved in reducing DON-induced feed refusal, further investigations are needed to better 

understand the reasons of anorectic effect. Carnosol and carnosic acid, two natural 

polyphenols found in Rosmarinus officinalis, are potent inhibitors of in vitro AFB1-induced 

DNA adduct formation (Offord et al., 1997). 

Anthocyanin contained in oranges, blackberries, strawberries, and cranberries, had shown 

protective effect against cytotoxicity induced by OTA and AFB1 in a human hepatoma-

derived cell line (Hep G2) and a human colonic adenocarcinoma cell line (CaCo-2). 

Cyanidin-3-O-beta-glucopyranoside attenuated ROS production induced by the two toxins in 
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both cell lines and inhibition of DNA and protein synthesis induced by the mycotoxins was 

counteracted by pretreatment with the antioxidant. Similarly, apoptotic cell death was 

prevented as demonstrated by a reduction of DNA fragmentation and inhibition of caspase-3 

activation. (Guerra et al., 2005). Similar preventing effects on Hep G2 cells, were observed by 

Renzulli et al. (2004) by rosmarinic acid and its properties to prevent and reduce ROS 

production, DNA fragmentation, protein synthesis inhibition, and apoptosis cell death. 

Role of melatonin as antioxidant and free radicals scavenger related to OTA induced damages 

were evaluated in rats (liver and kidneys) where melatonin showed a protective effect against 

OTA toxicity through the inhibition of oxidative damage and stimulation of GST activities 

(Meki and Hussein, 2001). In rats, OTA (289 μg/kg b.w. per day) induced histopathological 

damages in heart and lung and treatment with melatonin (10 mg/kg b.w. per day) significantly 

reduced the degree of damages (Okutan et al., 2004); in kidneys of treated rats, OTA induce 

oxidative stress and melatonin somministration did not change significantly these parameters 

in comparison to control rats (Ozçelik et al., 2004). Melatonin showed positively effects in 

rats fed fumonisin contaminated diets, reducing kidneys damage (Morsy et al., 2006). Against 

fumonisin induced damages, royal jelly was evaluated in rats. In liver and kidney of rats fed 

contaminated diet (200 mg/kg b.w. per day of fumonisins) supplemented with royal jelly (100 

and 150 mg/kg b.w. per day) there was a significant improvement in growth performance, 

oxidative stress parameters, and histological and histochemical parameters. These 

improvements were pronounced in animals fed FB1 contaminated diet plus the high dose of 

royal jelly. Authors conclude that royal jelly have a protective effects against fumonisin 

toxicity and this protection was dose dependent (El-Nekeety et al., 2007). 
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Chapter 2. Objectives 

Mycotoxins are a worldwide food and feed safety threat. They are genotoxic carcinogens that, 

independently from the dosage ingested by animals and  human, cause health and economic 

problems. Ochratoxin A and fumonisin B1 have been classified by the International Agency 

for Research on Cancer (IARC, 1993) as “possibly carcinogenic to humans” (class 2B). 

Studies were performed to investigate strategies that could act on the critical point in order to 

limit mycotoxin contamination and absorption.  

Purpose of the present study was to investigate in vitro and in vivo, strategies to counteract 

mycotoxin threat particularly in swine husbandry. 

Nutritional strategies to prevent mycotoxins absorption and their adverse effects need an 

improved knowledge about intestinal absorption kinetics of these contaminants. Due to the 

lack of studies on the intestinal absorption kinetic of OTA and FB1, Ussing chambers 

technique was applied on rat intestinal mucosa.  

Lactic Acid Bacteria strains were tested in vitro for their efficacy to reduce, by binding and/or 

degradation, OTA, FB1, and DON levels in bacterial medium. 

An in vivo study in rats were performed to evaluate the effects of in-feed supplementation of a 

LAB strain, Pediococcus pentosaceus FBB61, to counteract the toxic effects induced by 

exposure to OTA contaminated diets. 

Two separated in vivo trials on weaning piglets were performed to evaluate the efficacy of 

two commercial products preventing mycotoxin absorption. Growth performance of piglets 

fed FB1 and DON contaminated diets were monitored. 

 

 



Chapter 3. In vitro studies 

 30

Chapter 3. In vitro studies 

3.1 Ussing diffusion chambers technique applied to assess rat small 

intestinal permeability of ochratoxin A and fumonisin B1 
Nutritional strategies to prevent mycotoxins absorption and their adverse effects need an 

improved knowledge about intestinal absorption kinetics of these contaminants. The kinetics 

of OTA absorption was studied in vitro using cell cultures (Berger et al., 2003; Heussner et 

al., 2002; O’Brien et al., 2001) and monolayer of cultured cells supported on membranes 

(Caloni et al., 2005; McLaughlin et al., 2004); as well as in vivo in humans and animals 

(Dietrich et al., 2005). CaCo-2 cells were used to study in vitro toxicity of FB1 (Caloni et al., 

2002). The Ussing chambers technique used in the present study for the first time to study the 

intestinal absorption of OTA and FB1. Ussing chambers technique allows to study the 

passage of compounds across live intestinal tissue in 2 contiguous chambers (mucosal and 

serosal, respectively) for a 2 hours in a controlled environment similar to the physiological 

conditions (Söderholm et al., 1998). Tissue metabolism after mounting of mucosa in the 

Ussing chambers is maintained fully functional for during the absorption study (Berggren et 

al., 2003). The absorption of different kind of molecules (ions, drugs, nutrients, 

macromolecules) could be monitored by adding the compound to be studied in the mucosal 

chamber and by retrieving it from the serosal chamber. 

The present study investigated the absorption of OTA and FB1 through viable tissues excised 

from small intestine of rats with Ussing chambers technique (Grass and Sweetana, 1988), a 

method to predict in vivo intestinal absorption in humans (Fagerholm et al., 1996; Lennernäs 

et al., 1997). 

3.1.1 Materials and methods 

Animals 
The Ethics Committee of Lund University had previously granted approval for the animal 

study. Male rats (n = 10), Sprague-Dawley strain (Möllegaard, Skensved, Denmark), 

weighing 379 ± 45 g, were kept on chopped wood bedding in polycarbonate cages (12 h day-

night photoperiod, at 20 ± 2°C, and a relative humidity of 50 ± 10 %). Rats had free access to 

a pelleted rat standard diet (B & K Universal, Sollentuna, Sweden) and water prior to 

sacrifice. Under diethyl ether anaesthesia, jejunum from each rat (10 cm from the ligament of 

Treitz) was removed, immediately immersed in a modified oxigenated Krebs-Ringer buffer 
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(KR) at room temperature (Pantzar et al., 1993). The jejunal segment from each rat was cut in 

12 pieces (2.5 cm), opened along the mesenteric border, rinsed with the same buffer and 

mounted in Ussing chambers.  

Experimental procedure 
Both serosal and mucosal reservoirs of the Ussing diffusion chambers with 1.78 cm2 of 

exchange tissue area (Navicyte, San Diego, CA, USA) were filled with 5 ml KR which was 

continuously bubbled with carbogen (95% O2 and 5% CO2) and circulated by gas at 37°C 

(Grass and Sweetana, 1988). The experiment started (t = 0) within 30 min from the 

anaesthesia, by replacing the buffer in the 12 mucosal reservoirs with 5 ml KR containing 

mycotoxins and/or marker molecules to assess mucosal integrity. Treatment arrangement had 

been designed to reduce possible functional and/or anatomical differences among sections 

excised along the cut intestinal tract (Figure 3.1). At the onset of experiments, substance 

concentrations in mucosal reservoir were OTA, 0.50 µmol/l (Sigma Chemical Co., St. Louis, 

MO, USA); FB1, 41.6 µmol/l (Sigma Chemical Co., St. Louis, MO, USA); 14C-Mannitol, 

11.5 kBq/ml (DuPont, Dreieich, Germany, Mw: 182); FITC-Dextran 4400, 1 mg/ml (Sigma, 

St Louis, MO, USA, Mw: 4.400); ovalbumin, 25 mg/ml (A-7641 Sigma, Mw 45000). 

Experiments were continued for 2 h and every 20 min a 1 ml sample was taken from all the 

serosal reservoirs for the subsequent analysis and replaced with 1 ml of fresh KR. At 2 h, a 1 

ml sample was withdrawn from mucosal reservoirs of chambers 1, 4, 7, and 10 for 

mycotoxins analysis. 

 

 
Fig. 1. Treatments arrangement along the 12 jejunal segments from each of 

the sacrificed rats (n=10). OTA, ochratoxin A = 0.50 µmol/l; FB1, fumonisin 

B1 = 41.6 µmol/l; M, markers solution composed by 14C-Mannitol = 11.5 

kBq/ml, FITC-Dextran 4400 = 1 mg/ml, and ovalbumin = 25 mg/ml. 
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Analysis 
Marker molecules analysis were performed according to Nejdfors et al. (2000). The amount 

of radiolabeled mannitol in 0.5 ml samples was directly measured by using a beta counter 

(LKB, Bromma, Sweden) after mixing 5 ml of a liquid scintillation cocktail (Ready Safe®, 

Beckman, Fullerton, CA, USA). FITC-dextran was measured by spectrophotofluorometer 

(CytoFluor 2300, Millipore, Bedford, MA, USA) at an excitation wavelength of 480 nm and 

an emission wavelength of 520 nm, with the appropriate FITC-dextran dissolved in KR as a 

standard. Quantification of ovalbumin was carried out by electroimmunoassay (Laurell, 

1972), using specific antiserum (Department of Animal Physiology, Lund University), in 

samples that had been kept at -20°C. 

The apparent permeability coefficients (Papp) for the markers across the intestinal mucosa 

were calculated from the equation: Papp (cm s-1*10-6)=dc/dt * [V/(A*C0)], where dc/dt is the 

variation of the serosal concentration over 60-120 minutes (mol/l/sec), V is the volume of the 

serosal side reservoir (cm3), C0 is the initial marker concentration in the mucosal reservoir 

(mol/l) and A is the exposed intestinal area in the chamber (cm2). 

All the solvents used for mycotoxins analysis were of analytical or HPLC gradient grade and 

were obtained from Merck (Darmstadt, Germany). The solution of o-phthalaldehyde, 

purchased from Sigma Chemical Co. (St. Louis, MO, USA), was weekly prepared according 

to Solfrizzo et al. (2001) and stored at +4°C. 

FB1 analysis were carried out using a Kontron Instruments 325 ternary liquid chromatograph 

equipped with a 10 µl loop, combined with a Spectra System FL3000 (Thermo Separation 

Products) fluorescence detector with excitation and emission wavelength of 360 and 434 nm, 

respectively. A Luna Phenylhexyl column (5 μm; 250 mm x 4.6 mm I.D.) (Phenomenex, 

Torrance, CA, USA) was used. Prior to injection 70 μl of sample were derivatizated with 70 

μl of o-phthalaldehyde for 30 seconds and injected within 1 min. As mobile phase two 

solvent systems were employed: 3.4 pH aqueous buffer with 2% of glacial acetic acid and 

0.1% of triethylamine (A) and acetonitrile (B). The separation was operated at a flow rate of 

1.2 ml/min with the following isocratic gradient A:B (60:40) in 30 min. The fluorescence 

chromatogram was recorded starting from the 13th minute because the glutamic acid, present 

in the buffer, reacts with o-phthalaldehyde causing the detector overload. The limit of 

quantification was 0.69 μmol/l. 

OTA analysis were carried out using a liquid chromatograph (P4000, ThermoFinnigan, 

California, USA) equipped with a 20 µl loop, combined with a fluorescence detector (FL300, 

ThermoFinnigan, California, USA) with excitation and emission wavelength of 332 and 
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470nm, respectively. A Supersphere 100 RP-C18 column (4 μm; 125mm×4.0mm I.D.) 

(Merck & Co., Whitehouse Station, NJ, USA) was used. As mobile phase two solvent 

systems were employed: aqueous buffer with 2 % of glacial acetic acid and acetonitrile in 

isocratic gradient elution (59:41) at a flow rate of 1 ml/min in 13 min. The limit of 

quantification was 0.0037 μg/l. 

Statistical analyses 
Data were reported as mean ± SE. The difference was considered significant when P < 0.05. 

For statistical evaluations means of the Papp from the individual intestinal segments from each 

animal were calculated. The experimental unit, n, represents the number of animals (n = 10 

rats) and not the number of observations (each animal had 2, 2 or 4 observations, for 

mycotoxins, mycotoxins plus marker molecules, and marker molecules treatments, 

respectively). Means were compared by one-way ANOVA and Newman Keuls post test. Data 

were analyzed using the program GraphPad Prism (GraphPad Software 4.00, San Diego, 

CA). 

3.1.2 Results and discussion 
14C-mannitol, FITC-dextran, and ovalbumin analysis in chambers containing only marker 

molecules (3, 6, 9, and 12) showed no significant differences (P>0.05) in the calculated Papp 

for any of the different markers, indicating no differences of absorption kinetic along the 

excised portion of small intestine.  

As reported in Table 3.1, marker analysis revealed no significant differences (P>0.05) in 

calculated Papp coefficient of marker molecules between chambers containing marker 

molecules plus OTA (chambers 2 and 8), and chambers containing only marker molecules 

(chambers 3, 6, 9, and 12); no significant differences (P>0.05) were detected in calculated 

Papp coefficient of marker molecules between chambers containing marker molecules plus 

FB1 (chambers 5 and 11), and chambers containing only marker molecules (chambers 3, 6, 9, 

and 12), suggesting no damages of rat small intestine mucosa permeability induced by 

mycotoxins. 

Concentrations of OTA (chambers 1 and 7) and FB1 (chambers 4 and 10) in serosal side 

reservoirs of Ussing chambers were below the limit of quantification throughout the 2 h 

experiment (data not shown). 
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Table 3.1. Calculated apparent permeability coefficient (Papp * 10-6) 

for 14C-mannitol, FITC-dextran, and ovalbumin, in Ussing diffusion 

chambers mounting pieces of intestinal mucosa excised from rat small 

intestine (n=10) exposed to ochratoxin A or fumonisin B1. 

Treatments* OTA + 
M M 

FB1 + 
M 

  

 Papp (cm s-1 * 10-6) Pooled 
SEM 

P of the 
model 

14C-Mannitol 4,53 5,18 4,95 0,55 0,52 
FITC-Dextran 0,76 0,82 0,88 0,12 0,61 
Ovalbumin 0,05 0,09 0,09 0,02 0,12 

*OTA, ochratoxin A = 0.50 µmol/l; FB1, fumonisin B1 = 41.6 µmol/l; 

M, markers solution composed by 14C-Mannitol = 11.5 kBq/ml, FITC-

Dextran 4400 = 1 mg/ml, and ovalbumin = 25 mg/ml. 

 

Ussing chamber technique has been applied to kinetic and intestinal permeability studies on 

drugs, nutrients, proteins, prions, and macromolecules using pieces of mucosa from various 

animal species (rat, pig, ovine, cattle, rabbit) as models for animal and human absorption 

(Keljo and Hamilton, 1983; McKie et al., 1999). Moreover, this technique has been applied to 

study the permeability properties of human intestinal mucosa (ileal and colonic segments) 

used to reconstruct the urinary tract (Nejdfors et al., 2000). The application of Ussing 

chambers on piglet intestinal mucosa to study alternatives to in-feed antibiotic for young pigs 

(Boudry, 2005) represent a useful reference for the application of this technique in animal 

nutrition studies.  

In the present study, marker analysis results from Ussing chambers containing marker 

molecules alone (chambers 3, 6, 9, and 12) revealed no differences in Papp for any of the 

different marker molecules suggesting that marker molecules absorption kinetics was not 

affected by the different position along the excised mucosa. These latter Papp values suggested 

that KR solution had not damaged the functional integrity of rat intestinal mucosa during the 

2 h exposure. 

Ochratoxin A 
The absorption of solutes along the gastrointestinal tract is regulated by several factors, 

among which the pH value of intestinal content that is highly relevant and affects the 

protonated to non-protonated ratio of solutes in relation to their individual pKa. The OTA 

pKa values are in the range 4.2-4.4 and 7.0-7.3 respectively for the carboxyl group of 
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phenylalanine mojety and for the phenolic-hydroxyl group of the isocumarin part. OTA is 

rapidly absorbed from stomach and, even against a concentration gradient, from proximal 

jejunum (Kumagai and Aibara, 1982) in rats and mice. Walker and Larsen (2005) reviewed 

the OTA percentage absorbed from small intestine of rats was approximately 56%. Berger et 

al. (2003) reported that OTA was absorbed from apical to basolateral compartment of CaCo 

2-cell monolayer cultivated for 21 days, mimicking the in vivo situation when apical and 

basolateral compartment pH were 6.0 and 7.4, respectively. Same authors reported absorption 

even when the pH value was the same (7.4) in apical and basolateral compartments. In the 

present study, pH values of buffer solutions in mucosal and serosal side of rat small intestinal 

mucosa, were 7.4. Over the 120 min of experiment, OTA was not detected in serosal side 

reservoirs of Ussing chambers when OTA (chambers 1 and 7) or OTA plus marker molecules 

(chambers 2 and 8) were present in the mucosal side. Such time interval is comparable to the 

physiological residence time of feed in the gut during digestion. Moreover, OTA analysis 

from samples withdrawn from mucosal side at the end of 120 min of experiment, revealed 

that OTA concentrations were not different from those contained in KR daily fresh prepared 

buffer at the beginning of the experiment (t = 0). These results confirmed that under our in 

vitro conditions no-absorption occurred from mucosal to serosal side of rat small intestine 

mucosa. In an in vivo experiment with bile salt-depleted rats, Kerkadi et al. (1999) showed 

that OTA absorption was significantly decreased. The absence of bile salts in the OTA 

containing mucosal solutions could be a possible explanation for the non-absorption of OTA 

throughout the rat mucosa observed in the present study. We decided to avoid the addition of 

bile salts to KR solution in mucosal side reservoirs of Ussing chambers according to the 

study of Patel et al. (2006). They suggested a progressive loss of viability of excised rat 

mucosa in presence of simulated intestinal fluids containing bile salts. Kinetics of OTA 

distribution and OTA binding to plasma proteins has been studied by Kumagai (1985) 

concluding that albumin-deficient rats were able to clear OTA from systemic circulation 

faster than normal rats. In our study the presence of ovalbumin as marker for endocytotic 

transport has not affected the OTA absorption as suggested from results obtained in Ussing 

chambers without marker molecules (chambers 1 and 7), where OTA was not detected in 

serosal side reservoirs and persist in mucosal side reservoirs over the 120 min experiment. 
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Fumonisin B1 
The zero-absorption of FB1 reported by Caloni et al. (2005) through CaCo-2 cells cultured on 

semi-permeable membrane, was confirmed by our study in excised rat intestinal mucosa: FB1 

was not detected in serosal side samples throughout the 120 min experiment and, moreover, 

as reported for OTA, the FB1 concentrations detected in samples from mucosal side 

reservoirs at the end of the experiment were not different from FB1 concentrations in KR 

daily fresh buffer at the beginning of the experiment (t = 0). Such findings are in accordance 

with Voss et al. (2001) that reported low absorption of FB1 in rats and rapid elimination in 

feces, however no clear indications were found about the in vivo site of absorption of FB1 

(Shier, 2000) but previous swine study, feeding piglets with 30 ppm of FB1 (similar to the 

dose used in the present study) strongly impaired animal health and growth (Piva et al., 

2005). Pagliuca et al. (2005) in these piglets found both FB1 and aminopentol in liver 

suggesting that aminopentol was originated from dietary FB1. 

 

The present study firstly develops the Ussing chamber technique to investigate in vitro the 

intestinal permeability of OTA or FB1: results showed that OTA and FB1 were not absorbed 

from rat small intestine mucosa. Since in vivo absorption of both the mycotoxins normally 

occurs, it is evident that in these experimental conditions Ussing diffusion chambers were not 

able to assess the intestinal permeability of OTA and FB1. Whether the lack of absorption is 

due to the Ussing diffusion chambers per se or to the overall experimental conditions 

deserves further investigations actually in progress. 
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3.3 Do Lactic Acid Bacteria detoxify mycotoxins contaminated medium? 
Also with other fungal toxins such as zearalenone, trichothecenes and fumonisins, binding 

effects have been observed in chemical analytical investigations (El-Nezami et al., 2002ab; 

Kabak et al., 2006). The first hypothesi on the efficacy of LAB to detoxify bacterial broth 

contaminated by mycotoxins is reported by El-Nezami et al (1998a). Strains of LAB and 

bifidobacteria were able to bind aflatoxins. Gram-positive strains were more efficient than 

Gram-negative strains (El-Nezami et al., 1998b) suggesting that the mechanism of aflatoxin 

binding involves the cell wall peptidoglicans and polysaccharides as the two most important 

elements responsible for the binding and the absorption of mutagens and carcinogens in small 

intestine (El-Nezami et al., 2000; Haskard et al., 2000). Lactic Acid Bacteria recently has 

been evaluated for the ability to reduce OTA (Fuchs et al., 2008; Turbic et al., 2002). 

Piotrowska and Zakowska (2005) showed the ability to remove OTA from a contaminated 

liquid medium by LAB (Lactobacillus rhamnosus GG, L. acidophilus CH-5, L. plantarum 

LOCK0862). 

In these preliminary in vitro studies, LAB strains were tested for their efficacy to reduce 

OTA, FB1, and DON levels in bacterial contaminated medium. 

3.3.1 Materials and methods 

Rogosa Biosbroth was obtained by Biolife Italiana S.r.l., Milan, Italy; ochratoxin A, 

fumonisin B1, and deoxynivalenol, were purchased from Sigma-Aldrich (Milan, Italy). 

Inorganic salts, acetonitrile, methanol, water HPLC grade were purchased from Merck 

(Darmstadt, Germany). Phosphate buffer solution (PBS) was prepared by mixing 137 mM 

NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4.7H2O, 1.4 mM KH2PO4, final pH 7.2. 

Lactic Acid Bacteria strains 
Intestinal LAB were isolated from different gastrointestinal tract regions of pigs and poultry 

by subsequently isolation on Rogosa Bios broth + agar 1.5%. Culture media was prepared, for 

this and the following studies, as reported by the supplier but without addition of Tween 80. A 

total of 240 bacteria strains from swine and 200 from poultry were sampled, isolated and 

stored at -20°C with culture media and glycerol 20% until revitalization for screening. 

Ochratoxin A study 
Sixty-four LAB strains isolated from feces of newborn piglets, sows, weaning piglets, 

growing pigs, and duodenal, jejunum, ileum, cecum content were tested. 
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Strains stored at -20°C were revitalized in 10 ml of Rogosa broth, incubated at 39°C for 18 

hours. Fresh culture were used to inoculate (1% v/v) 10 ml of Rogosa broth contaminated 

with 200 ppb of OTA. After 20 hours of incubation at 39°C, samples were centrifuged (6500 

rpm, 20 min, 20°C) and 4 ml of broth were diluted with 4 ml of PBS. pH value was adjusted 

between 7 and 8 prior to OTA purification. OTA was purified with immunoaffinity column 

(Ochraprep, R-Biopharm, Rhone LTD, Glasgow, Scotland). The sample was applied and 

allowed to pass the column and flow rate was maintained at 1-2 ml/min. Then the column was 

washed with 10 ml of PBS. For the eluition of bound OTA, 2 ml of methanol and 2 ml of 

water HPLC grade were used. The eluate was dried down and the residue re-dissolved in 1 ml 

of methanol. OTA analysis were carried out using a liquid chromatograph (P4000, 

ThermoFinnigan, California, USA) equipped with a 20 µl loop, combined with a fluorescence 

detector (FL300, ThermoFinnigan, California, USA) with excitation and emission wavelength 

of 332 and 470 nm, respectively. A Supersphere 100 RP-C18 column (4 μm; 125mm×4.0mm 

I.D.) (Merck & Co., Whitehouse Station, NJ, USA) was used. A mobile phase with two 

solvent systems were used: aqueous buffer with 2 % of glacial acetic acid and acetonitrile in 

isocratic gradient elution (59:41) at a flow rate of 1 ml/min in 13 min. The limit of 

quantification was 0.07 μg/ml. 

Lactic Acid Bacteria that showed good efficacy to reduce OTA contamination were evaluated 

for their ability to reduce OTA contamination in in vitro cecal fermentation system (batch-

culture techniques), which simulate the intestinal environment and microflora. A two step 

procedure was applied: first the digestion of the feed through enzymatic reactions followed by 

the fermentation of the digested diet with intestinal content and LAB strains under study. 

In vitro enzymatic digestion of the feed 
A standard diet for weaner pigs was digested in vitro to simulate ileal digestion as described 

by Verveake et al. (1989). This was a stepwise procedure with an incubation of feed (25 g; 

particle size < 1 mm) in 500 ml of pepsin solution (0.2% pepsin w/v, HCl 0.075 N; P7000 

from porcine gastric mucosa; Sigma Chemical, St. Louis, MO, USA) in a shaking waterbath 

at 37°C for 4 h. At the end of the 4h incubation, the solution was adjusted to pH 7.5 with 

NaOH 0.1 N. In the second step 500 ml of a pancreatin-NaHCO3 mixture solution (10 g/l 

pancreatin of 1M NaHCO3; P1500, from porcine pancreas; Sigma Chemical, St. Louis, MO, 

USA) was added and the mixture was reincubated for 4 h at 37°C to simulate pancreatic 

digestion. Composition of the phosphate buffer solution was as follows: 26.2 mM Na2HPO4, 

46.7 mM NaHCO3, 3.3 mM NaCl, 3.1 mM KCl, 1.3 mM MgCl2, 0.7 mM CaCl2. 
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After enzymatic digestion, the preparation was centrifuged (6500 rpm, 10 min, 4°C), washed 

twice with distilled water, re-centrifuged (6500 rpm, 5 min., 4°C), and dried at 60°C 

overnight. Chemical analyses of the diet after digestion are (% of dry matter): crude protein, 

8.06; ether extract, 11.80; crude fiber, 12.47; ash, 6.69; NDF, 38.01; ADF, 17.60; ADL, 3.70; 

starch, 18.45. The digested diet was used as the substrate in the in vitro fermentation study. 

In vitro cecal fermentation 
Cecal contents from 6 pigs (approx. 120 kg BW) were collected within 20 min after slaughter 

and kept in a sealed nylon bag at 37°C during transfer to the laboratory. Cecal contents were 

then diluted with buffer (ratio 1:3) and filtered through 6 layers of cheese cloth. The filtered 

liquid was used as inoculum. The buffer composition (McDougall, 1948) was as follows: 9.8 

g NaHCO3; 0.57 g KCl; 0.079 g CaCl2.6H2O; 9.3 g Na2HPO4.12H2O; 0.67 g NaCl; 0.12 g 

MgSO4.7H2O in 1 l of distilled water. Buffer pH was then adjusted to pH 6.7 by adding 3 M 

HCl. The buffer solution was kept at 37°C and flushed with CO2 for 20 minutes before use. 

The inoculum was dispensed into five 10 ml glass syringes (5 ml of inoculum in each syringe) 

and five 50 ml vessels (previously flushed with CO2, 15 ml of inoculum in each vessel) per 

treatment, containing 20 and 100 mg of predigested diet, respectively (Piva et al., 1996). 

Syringes and vessels were sealed and incubated at 37°C for 24 h. 

Six treatments were investigated: negative control (predigested diet and cecal inoculum); 

positive control (predigested diet, cecal inoculum) contaminated with OTA at 251.8 ± 29.8 

ppb; treatment 1, as positive control treatment inoculated with strain A at 2.5x1011 cfu/ml; 

treatment 2, as positive control treatment inoculated with strain A at 1.3x1011 cfu/ml; 

treatment 3, as positive control treatment inoculated with strain B at 1.3x109 cfu/ml; treatment 

4, as positive control treatment inoculated with strain B at 4.5x109 cfu/ml. Lactic Acid 

Bacteria strains stored at -20°C were revitalized in 10 ml of Rogosa broth, incubated at 39°C 

for 20 hours. Fresh culture were used to inoculate the fermentation system. 

Gas production was measured as described by Menke et al. (1979), using 10 ml glass syringes 

and recording the cumulative volume of gas produced every 30 min. Samples of fermentation 

fluid were collected from each vessel at time 0, 4, 8 and 24 h after incubation in a shaking 

water bath for ammonia analysis; OTA concentration were determined in the starting cecal 

inoculum and at the end of the fermentation as follow: 3 ml of fermentation fluid were diluted 

with 3 ml of PBS. pH value was adjusted between 7 and 8 prior to OTA purification by 

immunoaffinity clean-up as previous described.  



Chapter 3. In vitro studies 

 40

Chemical analyses of feed and fermentation fluid 
Analyses of the diets (crude protein, crude fiber, ether extract, ash, and starch) were 

performed according to AOAC standard methods (AOAC, 2000; Method 954.01 for crude 

protein, Method 962.09 for crude fiber, Method 920.39 for ether extract, Method 942.05 for 

ash, Method 920.40 for starch). Ammonia in fermentation fluid and intestinal chymus was 

measured as described by Searcy et al. (1967). 

Statistical analyses 
A modified Gompertz bacterial growth model (Zwietering et al., 1992) was used to fit gas 

production data. This model assumes that substrate levels limit growth in a logarithmic 

relationship as follows: 

V = VF exp { − exp [1 + (μme/VF)(λ − t)]} 

where symbols have the meanings assigned by Zwietering et al. (1990): V = volume of gas 

produced at time t, t = fermentation time, VF = maximum volume of gas produced, μm = 

maximum rate of gas production, which occurs at the point of inflection of the gas curve and 

λ = the lag time, as the time-axis intercept of a tangent line at the point of inflection. 

The duration of the exponential phase was calculated from the parameters of the modified 

Gompertz equation, as suggested by Zwietering et al. (1992) with the following: 

exponential phase (h) = VF/(μme){1 − ln[(3 − 5 )/2]}. 

Curve fitting was performed using the program GraphPad Prism 4.0 (GraphPad Software, San 

Diego, CA, USA). Total gas production, maximum rate of gas production, duration of the 

exponential phase, ammonia data were analyzed by ANOVA using GraphPad Prism 4.0 

(GraphPad Software, San Diego, CA, USA) in a completely randomized design. Each syringe 

and vessel formed the experimental unit. The differences among means of groups were 

analyzed using the Newmann-Keuls test. Differences were considered statistically significant 

at P<0.05. 

Fumonisin B1 study 
Seventy-nine LAB strains isolated from feces of newborn piglets, sows, weaning piglets, 

growing pigs, and duodenal, jejunum, ileum, cecum content of pigs and poultry at slaughter 

were tested. 

Strains stored at -20°C were revitalized in 10 ml of Rogosa broth, incubated at 39°C for 18 

hours. Fresh culture were used to inoculate (1% v/v) 10 ml of Rogosa broth contaminated 
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with 5 ppm of FB1. After 20 hours of incubation at 39°C, samples were centrifuged (6500 

rpm, 20 min, 20°C) and 3 ml of broth were diluted with 6 ml of distilled water. pH value was 

adjusted between 7 and 8 prior to FB1 purification. FB1 was purified with sax columns 

(Isolute, International Sorbent Technology LTD, Mid Glamorgan, UK) as reported by the 

supplier. Diluted broth sample was applied and allowed to pass the column and flow rate was 

maintained at 1-2 ml/min. Then the column was washed with 8 ml of methanol:water (60:40, 

v/v). For the eluition of bound FB1, 2 ml of methanol + 1% acetic acid was used. The eluate 

was dried down and the residue re-dissolved in 1 ml of methanol. FB1 analysis were carried 

out on derivatized sample: 70 μl of sampled were added to 70 μl of derivatization agent o-

phthaldialdehyde, before HPLC analysis. The solution of o-phthalaldehyde, purchased from 

Sigma Chemical Co. (St. Louis, MO, USA), was weekly prepared according to Solfrizzo et al. 

(2001) and stored at +4°C. Detection of FB1 were performed with a Varian chromatographer 

(Mod. 9012) equipped with a 20 µl loop combined with Varian fluorimetric detector (Mod. 

9070). Samples were injected in a Phenomenex C18 column (3 μm; 150 x 4.6 mm) with 

excitation and emission wavelength of 340 and 440 nm, respectively. As mobile phase two 

solvent systems were employed: an aqueous buffer (pH 3.4) with 2% of glacial acetic acid 

and 0.1% of triethylamine and HPLC-grade acetonitrile. The separation was operated at a 

flow rate of 1.2 ml/min with the following isocratic gradient of acqueous buffer:acetonitrile 

(60:40, v/v) in 30 min. 

Deoxynivalenol study 
One-hundred and twelve LAB strains isolated from duodenum, jejunum, ileum, cecum 

contents, and feces of weaning piglets were tested. 

Strains stored at -20°C were revitalized in 10 ml of Rogosa broth, incubated at 39°C for 18 

hours. Fresh culture were used to inoculate (1% v/v) 10 ml of Rogosa broth contaminated 

with 2.5 ppm of DON. After 20 hours of incubation at 39°C, samples were centrifuged (6500 

rpm, 20 min, 20°C) and 4 ml of broth were diluted with 4 ml of PBS. pH value was adjusted 

between 7 and 8 before DON purification. DON was purified with immunoaffinity column 

(Donprep, R-Biopharm, Rhone LTD, Glasgow, Scotland). Diluted broth sample (1 ml) was 

applied and allowed to pass the column and flow rate was maintained at 1-2 ml/min. Then the 

column was washed with 10 ml of HPLC-grade water. For the eluition of bound DON, 1 ml 

of methanol was used. The eluate was dried down and the residue re-dissolved in 1 ml of 

mobile phase. DON analysis were carried out using a liquid chromatograph (P4000, 

ThermoFinnigan, California, USA) equipped with a 20 µl loop, combined with UV detector 
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(UV2000, ThermoFinnigan, California, USA) at 218 nm. As mobile phase water:acetonitrile 

(90:10, v/v) were employed at a flow rate of 0.8 ml/min in 6 min. 

3.3.2 Results and discussion 

Ochratoxin A study results and discussion 
Sixty-four LAB strains were evaluated for their efficacy to reduce OTA contamination in 

bacterial broth. Four strains showed a reduction of initial OTA contamination (200 ppb) of 

10% (Figure 3.2) while other strains showed no reduction or reduction lower than 10%. Two 

strain with major degradation properties, named strain A and strain B, were tested for their 

ability to degraded OTA in in vitro cecal fermentation. No OTA was detected in cecal content 

sampled at slaughter and used to prepare the fermentation inoculum. After 4 and 8 hours, 

fermentation parameters were not statistically different (data not shown); after 24 hours of 

fermentation (Table 3.2), treatments 3 and 6, inoculated with strain A e B, respectively, 

showed a higher gas production than positive and negative control treatments (P<0.05). Lactic 

Acid Bacterial inoculum in treatments 3, 4, 5, and 6, increase significantly (P<0.05) the rate 

of gas production than positive and negative control treatment. No statistically differences 

were reported of ammonia production at 4, 8, and 24 hours of fermentation (data not shown).  

After 24 hours of fermentation OTA was not detected in treatment 6 whereas in treatment 2, 

3, 4, and 5, was decreased by 95% of the initial concentration of 251.8 ± 29.8 ppb. 

Based on these data it is not clearly if LAB strain inoculated are able to decrease OTA 

contamination per se in cecal in vitro fermentation system. Further studies are needed to better 

understand in vitro mechanism by which LAB may reduce OTA contamination and if other 

intestinal bacteria species can do the same. 
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Figure 3.2. Ochratoxin A percentual reduction by Lactic Acid Bacterial strains. 
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Table 3.2. Fermentation parameters and ochratoxin A concentration at 24 hours. Within a 

column, means without a common superscript letter differ (P<0.05; n=5) 

 Bacterial 
strain 

Ochratoxin A
concentration R2 Ymax Rate max Log phase 

 cfu/ml ppb  (ml) (ml/h) (h) 
  Mean SD  Mean SD Mean SD Mean SD 

Treatment 1 - - - 0,920 7,14a 0,95 0,64a 0,05 8,16 1,44 
Treatment 2 - 12.2 3.1 0,956 8,61b 0,23 0,69a 0,07 9,15 0,97 
Treatment 3 A: (2.5x1011) 12.0 2.5 0,957 9,74bc 0,77 0,83b 0,05 8,48 0,20 
Treatment 4 A: (1.3x1011) 9.6 0.8 0,931 9,18b 0,50 0,79b 0,05 8,44 0,36 
Treatment 5 B: (1.3x109) 14.4 2.1 0,964 8,98b 0,13 0,82b 0,04 7,94 0,45 
Treatment 6 B: (4.5x109) - - 0,926 10,72c 1,02 0,87b 0,05 8,90 0,36 
 

Fumonisin B1 study results and discussion 
Results of LAB evaluation for degradation of FB1 in Rogosa broth were reported in Figure 

3.3. FB1 initial concentration (5 ppm) was reduced above 50% by 12 LAB strains. 

Studies of Mokoena et al. (2005) on fermented mais to investigate the potential of LAB 

fermentation in reducing FB1 contamination showed a decrease of FB1 and zearalenone (56% 

and 67%, respectively) concentration after 3 days of incubation. Reduction of FB1 showed in 

the present study need further investigations to better understand the mechanisms by which 



Chapter 3. In vitro studies 

 44

LAB remove the mycotoxin (absorption and/or degradation) and the effect of FB1 on LAB 

viability. 

 

Figure 3.3. Fumonisin B1 percentual reduction by Lactic Acid Bacterial strains. 
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Deoxynivalenol study results and discussion 
Results of LAB evaluation for degradation of DON in Rogosa broth were reported in Figure 

3.4. No strains were individuated with percentual reduction higher than 5% of the initial 

concentration in Rogosa broth (2.5 ppm). Microbes in the digestive tract of pigs are capable of 

causing detoxifing reactions as demonstrated by the formation of de-epoxy-DON and the 

concomitant decrease of DON after incubation of digesta and feces from pigs in the presence 

of DON (Kollarcik et al., 1994; Lauber et al., 2000; Eriksen et al., 2002). These studies tested 

DON degradation by intestinal contents that include different microbial species. The present 

study tested only LAB and recorder no degradation of DON, further studies need to better 

understand intestinal and fecal microbial species that could detoxify DON. 
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Figure 3.4. Deoxynivalenol percentual reduction by Lactic Acid Bacterial strains. 
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This part of the studies allow to conclude that isolated LAB strains from pigs and poultry 

feces and intestinal contents, showed low efficacy to reduce OTA, FB1, and DON 

contamination from Rosoga broth. Piotrowska and Zakowska (2005) monitored the ability to 

remove OTA from a contaminated liquid medium by LAB (Lactobacillus rhamnosus GG, L. 

acidophilus CH-5, L. plantarum LOCK0862) during 40 hours. They observed that OTA 

concentration dropped significantly during the first 5 hours of incubation, and the lowest OTA 

concentration (90% reduction of initial concentration) was reached after 15 hours of 

incubation. From 15 to 40 hour of incubation, 9% of OTA previously removed, come back to 

the medium. This pathway was present in all tested strains. The OTA binding to bacterial 

biomass is the possible explanation for OTA removal from the medium but other unknown 

mechanisms (for example bacterial enzymatic detoxification) should not be omitted. 

In the present study only final mycotoxin concentration was recorded therefore it is not 

possible to hypothesize the evolution of mycotoxins removal from the medium even if good 

removal ability was recorded by 12 LAB strains regarding FB1. Further studies are needed to 

better understand the evolution of mycotoxin removal from liquid medium and the 

mechanism followed by each mycotoxin. 
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4.1 Feeding Pediococcus pentosaceus FBB61 reduces oxidative stress 

induced by ochratoxin A in rats 
In vitro studies of Piotrowska and Zakowska (2005) which confirmed OTA elimination from 

culture media due to OTA binding to LAB cells are not confirmed, in the literature available, 

by in vivo studies with OTA and LAB in any animal species. We selected for this study rats as 

animal model, and Pediococcus pentosaceus FBB61 (ATCC43200) as a probiotic strain with 

a specific bactericidal activity against Gram positive bacteria (Piva and Headon, 1994), and 

with ability to positively modulate in vitro cecal fermentation in swine (Piva A. et al., 1995). 

Ochratoxin A-mediated carcinogenesis can be divided into direct (formation of covalent DNA 

adducts) and indirect (DNA damage by oxidative metabolism) modes of action (Pfohl-

Leszkowicz et al., 2007).  

The purpose of the present study was to investigate whether microbial balance and induced 

gut metabolic modifications associated to the use of P. pentosaceus FBB61, could result in 

the reduction of oxidative stress associated to OTA consumption in rats. 

4.1.1 Materials and methods 

Chemicals 
OTA from Aspergillus ochraceus was purchased from Sigma-Aldrich (Milan, Italy) and 

Pediococcus pentosaceus FBB61 (ATCC 43200) was purchased from LGC Promochem 

(Milan, Italy). M17 broth was purchased from Oxoid Ltd (Dansingstoke, UK). All other 

chemicals were purchased from Merck (Frankfurt, Germany). 

Animals and treatments 
The experiments reported in the present paper complied with current Italian law and met the 

guidelines of the Institutional Animal Care and Use Committee of Sacred Heart Catholic 

University of Piacenza (Italy). The experiments were performed with male 40 Sprague–

Dawley albino rats (83.2 ± 4.2 g body weight at the beginning of experiments). They had free 

access to water and were kept at 20 ± 2°C, with a natural photo-period (12 h light – 12 h dark 

cycle). Rats were subdivided into four groups (10 rats/group), individually caged and received 

the substances under study orally, via their meal feed, for 4 weeks: control group (CTRL) 

received a commercial balanced standard diet; group PP received CTRL diet containg 100 

g/kg of freeze-dried corn meal with P. pentosaceus FBB61 (replacing equal amount of corn 
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meal without PP); group OTA received the CTRL diet contaminated with OTA; group 

OTA+PP received CTRL diet supplemented with both the previous treatments (OTA and P. 

pentosaceus FBB61). To obtain freeze-dried corn meal with P. pentosaceus FBB61, strain 

was cultured for 22 h at 37°C in M17 broth; 1 l of the cultured broth was centrifuged 1100xg 

for 10 min and the pellet obtained was mixed with 200 ml of glycerol and 800 g of corn meal 

prior to freeze-drying, in order to obtain 109 Colony Forming Unit (cfu) of P. pentosaceus 

FBB61 per 100 g of corn meal. The corn meal containing freeze-dried P. pentosaceus FBB61 

was stored at –20°C until feed supplementation. High contaminated corn meal (280 ppm) was 

added to diets in order to obtain final concentration in experimental diets as follows: 179 ppb 

in OTA diet; 174 ppb in PP+OTA diet. Diets not added with concentrated contaminated corn 

meal was analysed for basal OTA concentration and 2 ppb in CTRL diet, 3 ppb in PP diet was 

recorded.  

After 3 weeks of daily treatment, animals were sacrified by cervical dislocation and the liver, 

kidneys and brain of each rat were rapidly removed in a cold room. All samples were 

immediately frozen (−80°C), and were processed within 1 week of collection. Tissues 

sampled were homogenized in 9 volumes of cold PBS. Samples of homogenate were used to 

evaluate non-proteic thiol groups (RSH), lipid hydroperoxide (LOOH) levels as indicators of 

oxidative status of tissues. 

Non-proteic thiol groups 
Levels of RSH were measured, in 200 μl homogenate, using Hu's (1996) method partially 

modified. This spectrophotometric assay is based on the reaction of thiol groups with 2,2-

dithio-bis-nitrobenzoic acid at λ = 412 nm in absolute ethanol (εM = 13600). Results are 

expressed as nmol/mg proteins. 

Lipid peroxidation 
Levels of LOOH were measured in tissue homogenates following the oxidation of Fe+2 to 

Fe+3 in the presence of xylenol orange at λ = 560 nm. The assay mixture contained in a total 

volume of 1 ml: 10% homogenate, 90% methanol containing reagents at the following 

concentrations: 100 μm-xylenol orange, 250 μm-ammonium ferrous sulfate, 4 mm-butylated 

hydroxytoluene, and 25 mm-H2SO4. After 30 min incubation at room temperature, the 

absorbance was measured at λ = 560 nm using a U2000 Hitachi spectrophotometer (Hitachi, 

Ibaraki, Japan). Calibration was obtained using H2O2 (0.2–20 μm). Results are expressed as 

μmol/mg proteins. 
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Statistical evaluation 
Data are reported as means and standard deviation, and the level of significance was P<0.05. 

Data were analysed for statistical significance using one-way ANOVA. (Prism 4.00, 

GraphPad Software, San Diego, CA). 

4.1.2 Results and discussion 

Gut microbial modulation induced by LAB in the gastrointestinal tract is a crucial feature of 

probiotics to maintain a healthy intestinal microflora. Moreover, the ability of some LAB to 

bind aflatoxins to their cell wall or cell membrane (El-Nezami et al., 1998a; 2000), and the 

hypothesis that OTA could be eliminated by this mechanism (Piotrowska and Zakowska, 

2005), make probiotics potential candidate to counteract mycotoxin threat in human and 

animals. 

During the present study, general clinical exam was performed every day. Body weight, feed 

and water intake measured weekly and no significant differences were observed in body 

weight, average daily feed and water intake (Table 4.1). 

 

Table 4.1. Growth performance of rats fed a commercial standard pellet diet 

(control, CTRL) supplemented with P. pentosaceus FBB61 (106 cfu/g of feed, 

PP) or/and 200 ppb of ochratoxin A (OTA and PP+OTA, respectively). Rat, 

individually caged, is the experimental unit (n=10). 

Item  CTRL PP OTA PP+OTA SEM 
Final weight (21 d) g 182.4 187.4 182.2 184.4 4.94 
ADFI (0-21 d)  g 14.23 14.77 14.24 14.22 0.40 
ADWI (0-21 d) g 25.01 26.37 25.04 26.27 1.13 

Abbreviations: ADFI, Average Daily Feed Intake; ADWI, Average Daily Water Intake 
 
 
Sulfhydryl groups are important elements of the anti-oxidant defence in the organism limiting 

the production of oxygen-derived free radicals: high levels of non proteic thiol groups suggest 

a good capacity to limit the ROS formation. Free radicals react with unsaturated fatty acids of 

cell membrane and cause oxidative damage. Lipid hydroperoxidation is indicated by LOOH 

levels: low levels of LOOH suggest low damage to cell membranes.  

Involvement of OTA in oxidative pathway (Baudrimont et al., 1997a) is confirmed by results 

of the present study: in liver (Figure 4.1) of OTA fed rats where higher RSH levels and lower 

LOOH levels than CTRL rats were detected (P<0.001). The same pattern was detected in 

kidney (Figure 4.2) and brain (Figure 4.3). 
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In liver, PP fed rats showed higher RSH and lower LOOH levels than CTRL fed rats. This 

indicate PP in-feed supplementation ameliorate oxidative status in liver. In kidney and brain, 

PP fed rats showed RSH and LOOH levels not different from CTRL rats indicating that no 

oxidative stress is induced by PP in-feed supplementation. 

 

Figure 4.1. Non proteic thiol group and ipid peroxidase levels in liver from rats 

fed a commercial standard pellet diet (control, CTRL) supplemented with P. 

pentosaceus FBB61 (106 cfu/g of feed, PP) or/and 200 ppb of ochratoxin A (OTA 

and PP+OTA, respectively). Each value represents mean ± SD (n = 10). Different 

letters in the same tissue means P<0.001. 
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Figure 4.2. Non proteic thiol group and ipid peroxidase levels in kidney from rats 

fed a commercial standard pellet diet (control, CTRL) supplemented with P. 

pentosaceus FBB61 (106 cfu/g of feed, PP) or/and 200 ppb of ochratoxin A (OTA 

and PP+OTA, respectively). Each value represents mean ± SD (n = 10). Different 

letters in the same tissue means P<0.001. 

 

CTRL PP OTA PP+OTA

50

100

150 CTRL

PP

OTA
PP+OTAbc c

a
b

KIDNEY

R
SH

 (n
m

ol
/m

g 
of

 p
ro

te
in

)

 
CTRL PP OTA PP+OTA

0.0

0.1

0.2

0.3

0.4

0.5

0.6
CTRL
PP
OTA
PP+OTA

a a

c

b

KIDNEY

LO
O

H
 ( μ

m
ol

/m
g 

of
 p

ro
te

in
)

 
 



Chapter 4. In vivo studies 

 50

Figure 4.3. Non proteic thiol group and ipid peroxidase levels in brain from rats fed 

a commercial standard pellet diet (control, CTRL) supplemented with P. 

pentosaceus FBB61 (106 cfu/g of feed, PP) or/and 200 ppb of ochratoxin A (OTA 

and PP+OTA, respectively). Each value represents mean ± SD (n = 10). Different 

letters in the same tissue means P<0.001. 
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In liver and kidney, data from PP+OTA fed rats demonstrated that supplementation of P. 

pentosaceus FBB61 to a ochratoxin A contaminated diet is able to increase RSH levels and 

decrease LOOH levels (P<0.001). Moreover, in kidney RSH level of PP+OTA fed rats is 

restored to levels in CTRL rats. PP+OTA fed rats showed reduction of LOOH levels in liver, 

kidney and brain (P<0.001) than rats receiving OTA contaminated diet without 

supplementation of P. pentosaceus FBB61. The OTA induced oxidative stress is confirmed 

by increased RSH values and reduced LOOH levels in all tissues examined than CTRL 

tissues. Results on tissues from PP+OTA fed rats suggest that contaminated OTA diet 

supplemented with P. pentosaceus FBB61 reduce OTA induced oxidative damages. However, 

additional experiments are necessary in order to improve knowledge of toxicokinetics studies 

to know the concentration of OTA and genotoxicity studies related to beneficial effect and 

dosage of probiotic administration. 

 

The present study allows to conclude that feed supplementation with P. pentosaceus FBB61 

in rats ameliorates the oxidative status in liver, and lowers OTA induced oxidative damage in 

liver and kidney if diet was contaminated by OTA. This P. pentosaceus FBB61 feature joined 

to its bactericidal activity against Gram positive bacteria and its ability to modulate gut 

microflora balance in pigs, encourage additional in vivo experiments in order to better 

understand the potential role of P. pentosaceus FBB61 as probiotic for farm animals and 

humans. However, data drive to perform in depth studies i) to elucidate, in vitro and in vivo, 



Chapter 4. In vivo studies 

 51

the effect of possible interactions among different bacteria strains and mycotoxins or their 

metabolites able to reducing toxicants absorption, ii) to investigate different pathways, related 

to DNA damage/repair, influenced by PP and or OTA ingestion. 
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4.2 Effects of fumonisins contaminated diet on weaning piglet growth 

performance 
The fumonisin B analogues, including toxicologically important FB1, FB2 and FB3, are the 

most abundant naturally occurring fumonisins (Marasas, 1996). Fumonisin B1 causes 

pulmonary oedema in swine (Harrison et al., 1990). The results of surveys indicate that 

fumonisins contaminate maize kernels in all corn-growing countries of the world and can 

cause fumonisin toxicosis (Dutton 1996). Food materials of animal origin may become 

contaminated with FB1 after the toxin has been absorbed from the digestive tract, entered the 

bloodstream and reached the peripheral tissues.  

Aim of the study was to evaluate the effect of ingestion of FB1 contaminated diet on growth 

performance of weaning piglets. The effects were measured on the production results daily 

gain, feed intake and feed conversion.  

4.2.1 Materials and methods 

Animals 
The Ethics Committee of University of Bologna had previously granted approval for the 

animal study. Seventy male weaning piglets (initial body weight 7.03 ± 0.13 kg) were house 

in 14 cages (5 pigs/pen; 7 pens/treatment) homogeneous by weight. Piglets were divided into 

two groups: control group (CTRL) receiving a standard piglets diet at 50% corn meal; group 

receiving standard piglets diet where corn meal was contaminated by fumonisin B1 and B2 

(FB). Two diets were fed in each group: a phase 1 diet from 4 to 6 weeks of age and a phase 2 

diet from 6 to 10 weeks of age (Table 4.2). Piglets had been weighed at the beginning of the 

trial, when switching from diet 1 to diet 2 at day 14 of the trial, and at the end of the trial after 

42 days from the beginning. Feed intake and daily gain were recorded. Clinical findings and 

mortality were daily recorded. 

Statistical analyses 
Data were analyzed for normal distribution and prevalence of outliers, and were subjected to 

test t-Student in GraphPad Prism. Data are shown as means ± SEM (n = 7). Significant 

differences are stated at P<0.05. 
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Table 4.2. Ingredient of experimental diet. 
 Phase 1 diets Phase 2 diets 
Group CTRL FB CTRL FB 
Ingredient % as-feed basis 
Corn 50.00 - 50.00 - 
Contaminated corn - 50.00 - 50.00 
Soy-bean meal (48) 15.83 15.83 19.75 19.75 
Milk whey sweet dried 12.00 12.00 5.00 5.00 
Barley 5.00 5.00 16.94 16.94 
Soy bean extruded 5.00 5.00 - - 
Soy oil 1.71 1.71 1.97 1.97 
Potato protein 4.00 4.00 3.00 3.00 
Wheat bran 3.55 3.55 - - 
Calcium carbonate (CaCO3) - - 0.80 0.80 
Monocalcium phosphate 0.72 0.72 1.16 1.16 
Calcium formate 0.70 0.70 - - 
Sodium chloride 0.37 0.37 0.47 0.47 
L-Lysine HCl 0.33 0.33 0.24 0.24 
DL-Methionine 0.15 0.15 0.08 0.08 
L-Threonine 0.09 0.09 0.50 0.50 
L-Tryptophan 0.06 0.06 0.03 0.03 
Vitamins+Oligo premix1 0.50 0.50 0.50 0.50 
   
Feed analysis - - 
Fumonisin B1+B2 (ppm) 0.91 7.32 2.34 7.56 

1 Standard vitamin+oligominerals for piglets without selenium 
 

4.2.2 Results and discussion 

As reported in Table 4.3, not statistically significant differences were observed in growth 

performance of piglets fed fumonisin contaminated diets for 6 weeks after weaning (7.32 ppm 

during first 2 weeks, then 7.56 ppm for 4 weeks). These results confirmed literature data, 

where no response to growth rate was observed at FB1 concentrations below 40 mg/kg of feed 

(Rotter et al., 1997) and no effects were reported on body weight and feed consumption on 

weaned piglets fed 10, 20, and 40 mg/kg FB1 contaminated feed (Zomborszky-Kovács et al., 

2004a). Fumonisin toxicosis induce the increase in the Sa:So ratio that can be used to 

establish a diagnosis (Riley et al., 1993). Alterations in the Sa:So ratio in organs are a 

sensitive biomarker of the onset of adverse effects. Considering the Sa:So ratio as the most 

sensitive parameter in the assessment of adverse effect exerted by fumonisins the lowest 

observed adverse effect level (LOAEL) was found when pigs were exposed to feed containing 

5 mg of fumonisins per kg feed. Monitoring of the Sa:So ratio (for example in serum or urine 

samples) has a dual function in monitoring exposure and assessing the onset of adverse 

effects. Analysis of Sa:So ratio on blood samples collected at day 14 and 42 of the study are 

in progress. 
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Table 4.3. Growth performance of piglets fed a control diet (CTRL) 
added with fumonisins (FB). Pen is the experimental unit (7 
pens/treatment), each pen house 5 piglets. Data are shown as means ± 
SEM (n = 7). 

Item  CTRL FB P 
Initial weight kg 7.05 ± 0.22 7.01 ± 0.16 0.91 
Phase 1  0 – 14 Days  
ADFI kg/d 0.36 ± 0.02 0.37 ± 0.03 0.65 
Weight (14d) kg 10.14 ± 0.29 10.09 ± 0.43 0.92 
ADG kg/d 0.22 ± 0.01 0.21 ± 0.02 0.65 
Feed:Gain  1.59 ± 0.10 1.83 ± 0.11 0.13 
     
Phase 2  15-42 Days  
ADFI  kg/d 0.92 ± 0.009 0.95 ± 0.02 0.28 
Weight (42d) kg 23.93 ± 0.50 24.09 ± 0.62 0.85 
ADG kg/d 0.51 ± 0.01 0.52 ± 0.02 0.77 
Feed:Gain  1.79 ± 0.03 1.83 ± 0.04 0.49 
     
Overall period  0 – 42 Days  
ADFI kg/d 0.71 ± 0.008 0.72 ± 0.01 0.10 
ADG kg/d 0.41 ± 0.01 0.39 ± 0.005 0.22 
Feed:Gain  1.75 ± 0.04 1.82 ± 0.03 0.22 
     
Mortality  1 (at day 6) 1 (at day 7)  

Abbreviations: ADFI, Average Daily Feed Intake; ADG, Average Daily Gain 
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4.3 Effects of a mycotoxin detoxifying commercial product on growth 

performance of piglets fed deoxynivalenol contaminated diet 
Swine are very susceptible to DON (Rotter et al., 1996) and could therefore serve as a model 

for human sensitivity to this mycotoxin. Study of Dänicke et al. (2004a) evidenced that the 

majority of the ingested DON is quickly and nearly completely absorbed in the proximal part 

of the small intestine. To avoid absorption of DON through gastrointestinal mucosa, 

detoxifying agents studied to adsorb or degrade DON in the digestive tract, must be effective 

under the physiological conditions in the stomach and the duodenum within a very limited 

period of time.  

Aim of the present study was to evaluate of the effect on growth performance of weaned 

piglets fed DON contaminated diets, supplemented with a commercial detoxifying agent for 

mycotoxins. 

4.3.1 Materials and methods 

Animals 
Ninety-six piglets (half males half females, Landrace x Large White), weaned at 28 days of 

age and weighing 7.7 ± 1.1 kg (mean ± SD), were divided into four groups, homogenous for 

weight and gender, of 24 animals each. Animals were housed in cages (six animals per cage, 

four cages per treatment) in an environmentally controlled room for a 40 days feeding trial. 

The first 4 days of the trial, piglets received the same base diet for an adaptation period. After 

the adaptation period, piglets received experimental diets: group CTRL continue to receive 

the base diet; group PROD, received base diet with the addition of a commercial product for 

mycotoxin detoxification at 2.5 g/kg; group DON, received base diet contaminated with DON 

at 2.5 ppm; group PROD+DON, received base diet contaminated with DON at 2.5 ppm and 

added with commercial product (2.5 g/kg). Feed and water were provided ad libitum. 

Composition of base diet is reported in Table 4.4. Chemical composition of the experimental 

diets is reported in Table 4.5.  

Animals were individually weighed and feed consumption was recorded weekly.  

Analyses of the diets (crude protein, crude fiber, ether extract, ash and starch) were performed 

according to AOAC standard methods (AOAC, 2000) and Van Soest et al. (1991) for neutral 

detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) 

determinations. 
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Table 4.4. Ingredient of experimental diet. 
Phase Days 0-21 Days 22-40 
Ingredient % as-feed basis 
Corn meal 27.81 35.48 
Barley meal 15.00 20.00 
Barley flakes 12.00 6.00 
Soy-bean meal 44% 15.00 17.50 
Wheat bran 6.00 6.00 
Dried milk whey 11.00 5.00 
Potato protein concentrate 6.00 3.50 
Soy-bean oil 3.30 2.80 
Vitamin/Mineral Mix1 0.50 0.50 
Calcium carbonate 1.40 1.30 
Dicalcium phosphate 1.35 1.25 
NaCl 0.30 0.40 
L-Lysine-HCl 0.22 0.20 
DL-Methionine 0.11 0.06 

1Vitamin/mineral premix containing per kg: vitamin A, 2,500,000 IU; vitamin D3, 
400,000 IU; vitamin E, 10 mg; vitamin K, 400 mg; vitamin B1, 300 mg; vitamin 
B2, 1,000 mg; vitamin B6, 600 mg; vitamin B12, 8 mg; biotin, 30 mg; niacin, 
5,000 mg; pantothenic acid, 3,000 mg; folic acid, 200 mg; choline, 100,000 mg; 
Fe (as iron carbonate), 20,000 mg; copper (as copper sulphate), 4,000 mg; 
manganese (as manganese chelated with amino acids), 2,000 mg; manganese (as 
manganese oxide), 18,000 mg; zinc (as zinc oxide), 25,000 mg; cobalt (as cobalt 
carbonate), 100 mg; iodine (as potassium iodine), 300 mg; selenium (as sodium 
selenite), 50 mg. 

 

Table 4.5. Chemical composition of the experimental diets (% D.M.) 
 Days 0-21 Days 22-40 
 CTRL PROD CTRL PROD 
Dry Matter (%) 91.29 91.28 90.70 90.69 
Crude protein 19.94 19.94 20.28 19.69 
Ether extract 5.38 5.32 4.71 4.71 
Crude fiber 3.58 3.76 4.19 4.84 
Ash 6.75 6.75 6.32 6.31 
NDF 12.16 12.54 13.80 15.18 
ADF 5.22 5.20 6.11 6.46 
ADL 0.68 0.78 0.94 0.90 
Starch 36.27 34.73 40.14 42.75 

 

Statistical analyses 
Data were analyzed according to a complete two by two factorial design of ANOVA with 

DON and commercial product as the factors (the effect of gender was not considered). The 

differences among means of groups were analyzed using the Student-Newman-Keuls test. 

Each cage formed the experimental unit. Differences were considered statistically significant 

at P<0.05. 
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4.2.2 Results and discussion 

Growth performance of piglets are reported in Table 4.6 The addition of DON to the diets 

significantly reduced (P<0.05) average daily gain (ADG) between day 0 and 21 as well as 

between day 0 and 40. Piglets fed DON contaminated diets reported body weight significantly 

lower than CTRL piglets (P<0.05). Feed to gain ratio was significantly increased by DON 

throughout the trial (P<0.05). Commercial product tested did not influence piglet growth 

performance and the interaction between commercial product and DON was not significant 

for any of the parameters tested. 

Feeding DON caused higher incidence of diarrhea during the third and fourth week of the 

experiment.  

 
Table 4.6 Growth performances of weaned piglets fed a diet added or not with deoxynivalenol 
(DON) and/or a commercial product (PROD). 

       ANOVA P values 

  CTRL PROD DON 
PROD 
+DON  PROD DON PRODxDON 

Initial weight kg 7.72 7.78 7.70 7.77  - - - 
Phase 1 Day 0 - 21     
Weight (21d) kg 14.0 14.2 12.4 13.1  0.528 0.095 0.724 
ADG kg/d 0.297b 0.304b 0.224a 0.255a  0.413 0.019 0.599 
ADFI kg/d 0.466 0.445 0.421 0.477  0.510 0.793 0.160 
Feed:Gain  1.58A 1.49A 1.90B 1.89B  0.568 0.002 0.686 
      
Phase 2 Day 22 - 40     
Weight (40d) kg 24.8b 24.4b 22.1a 23.3a  0.652 0.046 0.354 
ADG kg/d 0.573 0.541 0.511 0.537  0.875 0.121 0.161 
ADFI kg/d 1.048 1.010 1.026 1.038  0.701 0.930 0.466 
Feed:Gain  1.83a 1.87a 2.01b 1.94b  0.707 0.038 0.300 
      
Overall period Day 0 - 40     
ADG kg/d 0.428B 0.417B 0.361A 0.389AB  0.543 0.006 0.191 
ADFI kg/d 0.733 0.699 0.693 0.734  0.891 0.918 0.140 
Feed:Gain  1.71A 1.67A 1.92B 1.89B  0.351 < 0.001 0.995 

* Values are means of 4 cages per treatment; ADG = Average Daily Gain; ADFI = Average Daily Feed Intake; different 
letters within the same row mean significant difference (P<0.05). 

 
Growth results show that the presence of DON at 2.5 ppm in piglet diets significantly reduced 

average daily gain of animals. Because daily feed intake was not significantly affected by 

DON, the poor growth performances of DON-fed piglets seem to be caused mainly by the 

significantly higher feed to gain ratio that was induced by DON throughout the trial. 

Despite the fact that the interaction between DON and PROD did not reach the significance 

level for any of the parameters tested, piglet growth performances were numerically improved 

when PROD was added to DON containing diet. In fact, PROD+DON-fed piglets showed 
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higher final live weight (23.3 vs 22.1 kg), average daily gain (0.389 vs 0.361 kg/d), and daily 

feed intake (0.734 vs 0.693 kg/d) than DON-fed animals. Conversely, PROD showed no 

positive effect on feed to gain ratio and diarrhea incidence. When added to the basal diet, 

PROD did not affect animal growth, suggesting that there is no detrimental effect of PROD 

on the absorption of nutrients. 

The present trial confirmed that pigs are very sensitive to DON and that dietary contamination 

with DON strongly affects piglet growth performances. 
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Chapter 5. Conclusions 

Mycotoxins are contaminants of agricultural products both in the field and during storage and 

can enter the food chain through contaminated cereals and foods (milk, meat, and eggs) 

obtained from animals fed mycotoxin contaminated feeds. Mycotoxins are genotoxic 

carcinogens that cause health and economic problems. Ochratoxin A and fumonisin B1 have 

been classified by the International Agency for Research on Cancer (IARC, 1993) as 

“possibly carcinogenic to humans” (class 2B). 

Different strategies can be applied separately or in synergy to reduce mycotoxin damage in 

human and animals: 

The first step is the reduction of fungi contamination, and consequently mycotoxin 

production, in cereals and vegetal products. Moisture and temperature during storage are 

critical factors influencing mould growth and mycotoxin production: proper storage 

conditions and the use of fungicides or their alternatives (organic acids and essential oils) can 

be applied to reduce mycotoxin contamination. 

The second step is the detoxification of contaminated feeds and foods. The use of many of the 

available physical (sorting and segregation) and chemical (HCl, NH3, H2O2, O3) methods is 

limited due to problems concerning safety issues, possible losses in the nutritional quality of 

treated commodities, limited efficacy and economic implications. This has led to the search 

for alternative strategies such as biological agents. Biological agents, such as LAB, belong to 

this second step and to the third step of intervention.  

The third step of intervention is the inhibition of mycotoxins gastrointestinal absorption. 

Lactic Acid Bacteria were able to bind mycotoxins reducing their concentration in in vitro 

systems. This step of intervention is investigated in the present study evaluating in vitro the 

efficacy of LAB strains to reduce, by binding and/or degradation, OTA, FB1, and DON levels 

in bacterial medium. A large number of LAB strains isolated from feces and different 

gastrointestinal tract regions of pigs and poultry were screened for their ability to remove 

OTA, FB1, and DON from bacterial medium. Results of this in vitro study showed low 

efficacy of isolated LAB strains to reduce OTA, FB1, and DON from bacterial medium. 

Consequently, an in vivo trial in rats was performed to evaluate the effects of in-feed 

supplementation of a LAB strain, Pediococcus pentosaceus FBB61, to counteract the toxic 

effects induced by exposure to OTA contaminated diets. The study allows to conclude that 

feed supplementation with P. pentosaceus FBB61 ameliorates the oxidative status in liver, 

and lowers OTA induced oxidative damage in liver and kidney if diet was contaminated by 
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OTA. This P. pentosaceus FBB61 feature joined to its bactericidal activity against Gram 

positive bacteria and its ability to modulate gut microflora balance in pigs, encourage 

additional in vivo experiments in order to better understand the potential role of P. 

pentosaceus FBB61 as probiotic for farm animals and humans. The inhibition of mycotoxins 

gastrointestinal absorption can be reached also by the addition in the diets of the non-

nutritionally adsorbents that bind mycotoxins. The most studied non nutritional adsorbents are 

activated carbons, hydrated sodium calcium aluminosilicate, clays and yeast cell walls 

polysaccharides (glucan, mannan, esterified glucomannan). To better understand the intestinal 

absorption of mycotoxins, the Ussing chambers technique was applied in the present study 

that for the first time to investigate in vitro the permeability of OTA and FB1 through rat 

intestinal mucosa. Results showed that OTA and FB1 were not absorbed from rat small 

intestine mucosa. Since in vivo absorption of both mycotoxins normally occurs, it is evident 

that in these experimental conditions Ussing diffusion chambers were not able to assess the 

intestinal permeability of OTA and FB1. 

The fourth step of intervention is the reduction of damages when mycotoxins absorption 

occurs. Nutritional approaches, such as supplementation of nutrients, food components, or 

additives with protective effects against mycotoxin toxicity are assuming increasing interest. 

Evidence of the feasibility of this approach are reported by the present study on rats were the 

in-feed supplementation of a probiotic strain reduce the oxidative damage in liver and kidneys 

of rats fed OTA contaminated diets. 

In the present study, in vivo trial on weaned piglets fed FB1 allow to conclude that feeding of 

7.32 ppm of FB1 for 6 weeks did not impair growth performance. 

Deoxynivalenol contamination of feeds was evaluated in an in vivo trial on weaned piglets. 

The comparison between growth parameters of piglets fed DON contaminated diet and 

contaminated diet supplemented with the commercial product did not reach the significance 

level but piglet growth performances were numerically improved when the commercial 

product was added to DON contaminated diet. 

Further studies are needed to improve knowledge on mycotoxins intestinal absorption, 

mechanism for their detoxification in feeds and foods, and nutritional strategies to reduce 

mycotoxins induced damages in animals and humans. The multifactorial approach acting on 

each of the various steps could be a promising strategy to counteract mycotoxins damages.  
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