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Abstract

The main purpose of this thesis is to go beyond two usual assumptions that accompany theoret-
ical analysis in spin-glasses and inference: the i.i.d. (independently and identically distributed)
hypothesis on the noise elements and the finite rank regime. The first one appears since the
early birth of spin-glasses. The second one instead concerns more the inference point of view.
Disordered systems and Bayesian inference have a well-established relation, which is evidenced
by their continuous cross-fertilization. The thesis makes use of techniques coming both from the
rigorous mathematical machinery of spin-glasses, such as the interpolation scheme, and from
Statistical Physics, such as the replica method.

The starting point of the work are the Sherrington-Kirkpatrick model and the spiked Wigner
model. The first is a mean field spin-glass where the couplings are i.i.d. Gaussian random
variables. The second instead amounts to establish the information theoretical limits in the
reconstruction of a fixed low rank matrix, the “spike”, blurred by additive Gaussian noise.
Assuming Bayes-optimality, namely to know everything about the generating process of the data
at disposal, one can prove that the spiked Wigner model is actually a spin-glass in a sub-region
of its phase space called Nishimori line. In such setting a whole set of identities and correlation
inequalities hold because of the special phase of the spin-glass or of the inferential setting, and
they are sufficient to imply replica symmetry. This in turn leads to finite dimensional variational
principles for the free energy.

The analysis of the previous models relies heavily on the i.i.d. nature of the noise. To weaken
this assumption, we can give the couplings an inhomogenous variance profile, thus breaking an
overall permutation symmetry among the particles sites and giving rise to the so-called multi-
species models. We study two different types of variance profiles: a convex coupling and a
deep coupling. This terminology refers to the possible ways we can couple different particles
belonging to different species.

Afterwards, we rigorously study the spiked Wigner model out of the Bayes-optimal setting.
Among the several ways to break Bayes-optimality, we focus on the mismatching priors case: the
Statistician that wants to reconstruct the spike assumes a wrong prior on its matrix elements.
We show that the model can be mapped into a spin-glass out of the Nishimori line, and therefore
Nishimori identities and replica symmetry break down. As a step further, we then introduce a
spiked model in which the noise is drawn from an orthogonal matrix ensemble, thus breaking
the independence assumption. Using the replica method, we derive its information theoretical
limits when the noise is drawn from an ensemble with quartic matrix potential. We show how
to build an Approximate Message Passing algorithm that saturates such limits.

Finally, we tackle the problem of high rank matrix factorization, providing a new point of
view. We abandon Bayes-optimality in favor of a convenient mismatched estimation. Since a
symmetric rank P matrix can be represented as a collection of P vectors, we aim at finding those
vectors iteratively one after the other. At each step of this procedure, that we call decimation,
the resulting inference model can be mapped into a spin-glass model whose Hamiltonian is
really similar to that of the Hopfield model, and as such it inherits most of its features. Using
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the replica method, we compute the free energy associated to each decimation step and show
numerically that it is a viable strategy for matrix factorization in certain ranges of the control
parameters. Above all, this shows that matrix factorization is possible.
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Sommario

Lo scopo principale di questa tesi è quello di superare due assunzioni che solitamente accom-
pagnano l’analisi teorica degli spin-glasses e l’inferenza: l’ipotesi di elementi di rumore i.i.d.
(indipendentemente e identicamente distribuiti) e il regime di rango finito. La prima compare
fin dalla nascita dei vetri di spin. Il secondo invece concerne più il punto di vista dell’inferenza.
I sistemi disordinati e l’inferenza bayesiana hanno una relazione consolidata, testimoniata dal
loro reciproco e costante stimolo. La tesi si avvale di tecniche provenienti sia dalla trattazione
rigorosa dei vetri di spin, come l’interpolazione, sia dalla Fisica Statistica, come il metodo delle
repliche.

Il punto di partenza del lavoro sono il modello di Sherrington-Kirkpatrick e il modello spiked
Wigner. Il primo è uno spin-glass a campo medio in cui gli accoppiamenti sono variabili
aleatorie gaussiane i.i.d.. Il secondo invece consiste nello stabilire i limiti nell’ambito della
dell’informazione nella ricostruzione di una matrice di rango basso fissat, lo ”spike”, sporcata
da un rumore gaussiano additivo. Assumendo l’ottimalità bayesiana, cioè di conoscere tutto sul
processo di generazione dei dati a disposizione, si può dimostrare che il modello spiked Wigner
è in realtà uno spin-glass in una sottoregione del suo spazio di fase chiamata linea di Nishimori.
In questo contesto, tutta una serie di identità e disuguaglianze di correlazione sono valide gra-
zie alla fase speciale dello spin-glass o del setting inferenziale, e sono sufficienti a implicare la
simmetria di replica. Questo a sua volta porta a principi variazionali in dimensione finita per
l’energia libera.

L’analisi dei modelli precedenti si basa fortemenete sulla natura i.i.d. del rumore. Per in-
debolire questa ipotesi, possiamo dare agli accoppiamenti un profilo di varianza non omogeneo,
rompendo cos̀ı una simmetria globale di permutazione tra i siti delle particelle e dando origine
ai cosiddetti modelli multispecie. Studiamo qui due diversi tipi di profili di varianza: un accop-
piamento convesso e un accoppiamento profondo. Questa terminologia si riferisce ai possibili
modi di accoppiare particelle appartenenti a specie diverse.

In seguito, studiamo in modo rigoroso il modello spiked Wigner al di fuori del setting Bayes-
ottimale. Tra i vari modi di rompere l’ottimalità, ci concentriamo sul caso di prior non concon-
rdanti: il ricevitore che vuole ricostruire lo spike assume un prior sbagliato sugli elementi della
sua matrice. Dimostriamo che il modello può essere mappato in uno spin-glass fuori dalla linea
di Nishimori, e quindi le identità di Nishimori e la simmetria di replica vengono meno.

Come passo successivo, introduciamo uno spiked model in cui il rumore è estratto da un
insieme di matrici random ortogonali, rompendo cos̀ı l’ipotesi di indipendenza. Utilizzando il
metodo delle repliche, ne ricaviamo i limiti statistici quando il rumore proviene da un insieme
con potenziale matriciale quartico. Mostriamo come costruire un algoritmo di Approximate
Message Passing che satura tali limiti.

Infine, affrontiamo il problema della fattorizzazione di matrici di rango elevato, fornendo
un nuovo punto di vista. Abbandoniamo l’ottimalità bayesiana a favore di una stima sub-
ottimale conveniente. Poiché una matrice simmetrica di rango P può essere rappresentata
come un insieme di P vettori, ci proponiamo di trovare tali vettori iterativamente uno dopo
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l’altro. A ogni passo di questa procedura, che chiamiamo decimazione, il modello di inferenza
risultante può essere mappato in un vetro di spin, la cui hamiltoniana è simile a quella del
modello Hopfield, e come tale ne eredita la maggior parte delle caratteristiche. Utilizzando il
metodo delle repliche, calcoliamo l’energia libera associata a ciascun passo di decimazione e
dimostriamo numericamente che la decimazione è una strategia valida per la fattorizzazione di
matrice in determinati intervalli dei parametri di controllo. Soprattutto, questo dimostra che
la fattorizzazione di matrici di rango elevato è possibile.
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Résumé

L’objectif principal de cette thèse est d’affaiblir deux hypothèses qui accompagnent habituelle-
ment l’analyse théorique dans les verres de spin et l’inférence: l’hypothèse d’éléments de bruit
i.i.d. (indépendamment et identiquement distribué) et le régime de rang fini. La première est
apparue dès la naissance des verres de spin. La seconde concerne plutôt le point de vue de
l’inférence. Les systèmes désordonnés et l’inférence bayésienne ont une relation bien établie, qui
est mise en évidence par leur constante fertilisation croisée. La thèse fait appel à des techniques
développées dans l’étude rigoureuse des verres de spin, comme l’interpolation, et de la physique
statistique, comme la méthode des répliques.

La thèse commence par une introduction aux modèles de Sherrington-Kirkpatrick et Wigner
spiked. Le premier est un verre de spin à champ moyen avec des couplages i.i.d. gaussiennes.
Le second revient plutôt à établir les limites statistiques dans la reconstruction d’une matrice
de rang fini, le ”spike”, brouillée par un bruit gaussien additif. En supposant l’optimalité
bayésienne, c’est-à-dire en sachant tout sur le processus de génération des données à disposition,
on peut prouver que le modèle Wigner spiked est en fait un verre de spin dans une sous-région
de son espace de phase appelée ligne de Nishimori. Dans un tel contexte, toute une série
d’identités et d’inégalités de corrélation sont valables en raison de cette phase spéciale, et elles
sont suffisantes pour forcer la symétrie de réplique qui conduit à des principes variationnels en
dimension finie pour l’énergie libre.

Les analyses précédentes reposent fortement sur la nature i.i.d. du bruit. Pour affaiblir
cette hypothèse, on peut donner aux couplages un profil de variance inhomogène, brisant ainsi
une symétrie de permutation globale entre les sites de particules et donnant lieu aux modèles
multi-espèces. Nous étudions deux types différents de profils de variance: un couplage convexe
et un couplage profond. Cette terminologie fait référence aux manières possibles de coupler
différentes particules appartenant à des espèces différentes.

Ensuite, nous étudions rigoureusement le modèle Wigner spiked hors du cadre d’optimalité
bayésienne. Parmi les différentes façons de briser l’optimalité de Bayes, nous nous concentrons
sur le cas de priors non concordants: le statisticien qui veut reconstruire le spike assume un
mauvais prior sur les éléments de sa matrice. Nous montrons que le modèle peut être représenté
dans un verre de spin hors de la ligne de Nishimori, et donc les identités de Nishimori et la
symétrie de réplique se brisent.

Pour aller plus loin, nous introduisons ensuite un spiked model dans lequel le bruit est extrait
d’un ensemble de matrices aléatoire orthogonales, brisant ainsi l’hypothèse d’indépendance. En
utilisant la méthode des répliques, nous obtenons ses limites théoriques d’information lorsque le
bruit est extrait d’un ensemble avec un potentiel de matrice quartique. Nous montrons comment
construire un algorithme approximé de passage de messages qui sature ces limites.

Enfin, nous traitons le problème de la factorisation des matrices de rang élevé sous un nouvel
angle. Nous abandonnons l’optimalité bayésienne en faveur d’une estimation sous-optimale
pratique. Puisqu’une matrice symétrique de rang P peut être représentée comme une collection
de P vecteurs, nous cherchons à les trouver itérativement. À chaque étape de cette procédure,
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appelée décimation, le modèle d’inférence résultant peut être mappé dans un verre de spin
similaire au modèle de Hopfield, et en tant que tel, il hérite de la plupart de ses caractéristiques.
En utilisant la méthode des répliques, nous calculons l’énergie libre associée à chaque étape de
décimation et montrons numériquement qu’il s’agit d’une stratégie viable pour la factorisation
matricielle dans certains intervalles des paramètres de contrôle. Cela montre surtout que la
factorisation de matrices est possible.
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Extended summary

The main purpose of this thesis is to go beyond two usual assumptions that accompany theoret-
ical analysis in spin-glasses and inference: the i.i.d. (independently and identically distributed)
hypothesis on the noise elements, that can be collected in a matrix for our purposes, and the
finite rank regime. The first one appears since the early birth of spin glasses. The second one
instead concerns more the inference point of view. Even though they might seem two separate
worlds, disordered systems and Bayesian inference have a well established relation, which is
evidenced by their continuous cross-fertilization and the number of technical tools they share.
The thesis makes use of techniques coming both from the rigorous mathematical machinery of
spin glasses, such as the interpolation scheme, and from Statistical Physics, such as the replica
method. We mention that, although the latter is not rigorous, it is widely accepted as an exact
method, and it is here employed whenever a rigorous solution is out of reach since it can still
give precious hints on the rigorous direction to take.

The prototypical models that are introduced in Chapter 1 are the Sherrington-Kirkpatrick
(SK) spin glass model and the spiked Wigner inference problem. The first one is a mean field
spin glass where the couplings between the N spins in the system are i.i.d. Gaussian random
variables, and is defined by the Hamiltonian:

HSK
N (σ) = −

N∑
i,j=1

Jijσiσj , Jij
iid∼ N

( J0
2N

,
J2

2N

)
, σ ≡ (σi)i≤N ∈ {−1,+1}N , (1)

with associated Boltzmann-Gibbs measure

dµN(σ) =
e−βHSK

N (σ)

ZN

N∏
i=1

d
(
δ1(σi) + δ−1(σi)

)
. (2)

Within the Statistical Mechanics formalism, the main goal is the computation of the thermo-
dynamic limit of its re-scaled log partition function ZN , usually called free entropy, or pressure,
per particle

pN(β) =
1

N
logZN . (3)

The variables on the particles sites i can be spins as above, or real variables with an apriori
distribution as below.

1
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The spiked Wigner model instead amounts to establish the information theoretical limits in
the reconstruction of a rank one (or fixed low rank) matrix, called spike, blurred by a Wigner

matrix, i.e. additive Gaussian noise. More precisely, if x∗ ≡ (x∗i )i≤N with x∗i
iid∼ PX for some

prior distribution PX , the observation at disposal are

y =

√
µ

2N
x∗x∗⊺ + z ∈ RN×N , zij

iid∼ N (0, 1) , µ ≥ 0 (4)

where x∗x∗⊺ is the spike. λ is called signal-to-noise ration (SNR). Assuming Bayes-optimality,
namely to know everything about the generating process of the data at disposal, one can prove
that the spiked Wigner model is actually a spin-glass in a really privileged sub-region of its
phase space, called Nishimori line. Indeed, restricting for simplicity the inference problem (4)
to binary spins, the posterior measure for x∗ given the Y is in the form (2) with β = 1 and a

Hamiltonian (1) where Jij
iid∼ N (µ/2N,µ/2N). Consequently, one can also define an associate

pressure per particle for the spiked Wigner model, that is related to the mutual information
between the observations Y and the ground truth x∗, a fundamental quantity to characterize
the quality of the spike reconstruction. Hence, the pressure per particle plays a central role for
both models.

Thermodynamic limits of quantities like the pressure per particle can be expressed as a
variational principle over order parameters whose stationary values have a physical or informa-
tion theoretical interpretation. In the Wigner-spiked model for instance the order parameter is
the projection, or overlap, of the Bayes-optimal estimator onto the hidden ground truth signal,
and it measures the quality of the reconstruction. Thanks to G. Parisi we know that the free
entropy of the SK model instead admits such variational representation but with an infinite
number of order parameters, a phenomenon known as replica symmetry breaking, and this is a
substantial difference with Bayes-optimal inference. The reason behind this discrepancy is that
in the Bayes-optimal setting a whole set of identities and correlation inequalities hold, as a con-
sequence of Bayes-rule or, as a dual viewpoint, of the special phase of the associated spin-glass.
In particular, it can be shown that, under mild hypothesis, they are sufficient to imply replica
symmetry, which leads to finite dimensional variational principles for the free entropy. Replica
symmetry, and its breaking, are strongly related to the concentration of the mentioned order
parameters in the thermodynamic limit around their expected values.

The two previous models have stimulated the production of an impressive volume of re-
search papers, and nowadays we can say we know different ways to compute the main thermo-
dynamic/information theoretic quantities even rigorously. However, most of the related studies
rely heavily on the i.i.d. nature of the couplings, or of the noise. One way to weaken this
assumption is that of giving the couplings an inhomogenous variance profile. In practice, we
can divide the N spins into K disjoint sub-groups or species, {Λr}r≤K , and assign a variance to
the i-j coupling according to which sub-group i and j belong to:

Jij ∼ N
( J0
2N

,
J2
rs

2N

)
, if i ∈ Λr and j ∈ Λs . (5)
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This in particular breaks an overall permutation symmetry of the particle sites of the model, or
signal components, that would be there otherwise. In spin glasses literature, the arising model
is said to be a multi-species model, to stress the different behaviours that the various particle
sites acquire. In inference a similar idea, called spatial coupling, was introduced but with the
purpose of studying the statistical limits of the spiked Wigner model. A multi-species model
on the Nishimori line can be directly obtained by (4) taking a couple-dependent SNR, just like
J2
rs. In Chapters 2 and 3 we study precisely this situation with two different types of variance

profiles: a convex coupling, when the eigenvalues of the variance matrix J2
rs are all non-negative,

and a deep coupling respectively, when J2
rs is tridiagonal with zeros on the main diagonal. The

latter is clearly not in the first cathegory, since a “deep” J2
rs has eigenvalues of alternated sign.

For these two models on the Nishimori line we prove rigorously a finite dimensional variational
for their limiting pressure per particle, using an adaptive interpolation technique.

In Chapter 4 we rigorously study the spiked Wigner model out of the Bayes-optimal setting.
There are several ways to break Bayes-optimality: (i) the Statistician who wants to infer the
spike does not know the SNR, or (ii) she ignores the nature of the noise involved. Here we
focus on a third alternative, that is (iii) when the prior is mismatched: the Statistician assumes
a wrong prior on the x∗i ’s. We show that the inference problem can be mapped into a spin-
glass out of the Nishimori line, and as a consequence Nishimori identities and replica symmetry
break down. Nevertheless, we are still able to prove that the overlap of the, inevitably sub-
optimal, estimator with the ground truth self-averages in the thermodynamic limit. This allows
us to write a variational principle for the free entropy per particle, that in general is not finite
dimensional. In other words, the mismatch can induce replica symmetry breaking. Furthermore,
the mutual information in this setting is no longer well defined, hence we are forced to work
with the cross entropy between the Statistician’s guess of the distribution of the observations
y and the true one, that is still linked to the pressure.

Afterwards, we go back to the i.i.d. paradigm. We stress that the multi-species setting
preserves the independence of the noise elements. In this respect, in Chapter 5 we study a
spiked model just like (4) in which the noise is no longer a Wigner matrix, but we draw it
from a wider orthogonal matrix ensemble. Orthogonal matrix ensembles are characterized by
a joint distribution of matrix elements that is invariant under any orthogonal transformation:
Z

D
= OZO⊺. We can write the associated probability distribution in terms of a matrix potential

as follows

dPZ(Z) ∝ dZ exp
(
− N

2
TrV (Z)

)
, dZ =

∏
i≤j≤N

dZij (6)

where V is a function of a real variable, that is extended to matrices: V (Z) = OV (λ)O⊺, with
λ the diagonal matrix of eigenvalues of Z, O the orthogonal matrix diagonalizing Z, and V here
is applied component-wise to the diagonal.

The Wigner, or Gaussian Orthogonal Ensemble (GOE), corresponds to a quadratic matrix
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potential V (x) = x2/2, but here we choose a quartic potential

V (x) = µ
x2

2
+ γ

x4

4
.

This is sufficient to break the independence among the noise matrix elements as long as γ > 0.
In fact, if we take for simplicity µ = 0 and γ = 1 then

dPZ(Z) ∝ dZ
∏
i,j,k,l

exp
(
− N

8
ZijZjkZklZli

)
which is clearly not factorizeable.

The techniques used in Chapter 5 generalize to higher order potentials, but we stop at the
fourth order for the sake of presentation. Since a rigorous derivation of the free entropy of the
associated spin-glass seems to be not at reach for the moment, we had to employ the powerful
replica method. We then compared the theoretical prediction of the mean square error of the
reconstruction with those of existing algorithms present in the literature, designed to take into
account the rotational invariant nature of the noise, realizing they were sub-optimal. As a
consequence we propose a modified Approximate Message Passing (AMP) algorithm and derive
its state evolution rigorously, showing that it matches the replica prediction. It is worth to stress
that, despite the formula for the free entropy, or mutual information, is still not rigorous, it
helped us in proving rigorously a gap in performance between our AMP and the ones previously
dealt with in the literature.

All the aforementioned spiked inference models deal with finite rank perturbations, the
spikes, of large noise matrices, Z. As opposed to that, in the final Chapter 6 the problem of
extensive rank matrix factorization under Gaussian noise is studied. Here x∗ is no longer a
vector of RN , but an N × P matrix. Hence the rank of x∗x∗⊺ now is P , with P/N → α > 0
when N → ∞. Despite the recent efforts in finding its Bayes-optimal statistical limits, the high
rank nature of the problem seems to be an insurmountable obstacle to the production of closed
formulae. Hence, we abandon Bayes-optimality in favour of an apparently easier mismatched
estimation. In particular, since we can think x∗ as a collection of P vectors (x∗t)t≤P , we aim
at finding those vectors one after the other. The mismatch is induced because it is as if we
were trying to retrieve a rank-one matrix, when the actual inference problem is intrinsically a
high rank one. At the first step, the estimation problem can be mapped into a spin glass whose
Hamiltonian is really similar to that of Hopfield model, and we show that it inherits most of its
features. After the first vector, that can be thought as a pattern in neural networks language, is
estimated, we insert in the Hamiltonian a repulsive term towards the corresponding direction.
This procedure can be iterated till all the patterns are estimated, and we call it decimation.
Using the replica method, we compute the free entropy associated to each decimation step.
From the fixed point equations with a sparse Ising prior PX = (1− ρ)δ0 +

ρ
2
[δ−1/

√
ρ + δ1/√ρ] we

show numerically that decimation is a viable strategy for matrix factorization in certain ranges
of the control parameters. Above all, this shows that matrix factorization is possible.



Sommario esteso

L’obbiettivo di questa tesi è quello di superare due assunzioni che solitamente accompagnano
l’analisi teorica dei vetri di spin e l’inferenza: l’ipotesi di elementi di rumore i.i.d. (indipendente-
mente e identicamente distribuiti), che possono essere raccolti in una matrice per i nostri scopi,
e il regime di rango finito. La prima compare fin dalla nascita dei vetri di spin. Il secondo invece
concerne più il punto di vista inferenziale. Anche se potrebbero sembrare due mondi separati,
i sistemi disordinati e l’inferenza bayesiana hanno una relazione ben consolidata, testimoniata
dai loro reciproci stimoli e dal numero di strumenti che condividono. La tesi si avvale di tec-
niche provenienti sia dalla trattazione rigorosa dei vetri di spin, come l’interpolazione, sia dalla
Fisica Statistica, come il metodo delle repliche. Si sottolinea che quest’ultimo, pur non essendo
rigoroso, è ampiamente accettato come metodo esatto, e viene qui impiegato ogni volta che una
soluzione rigorosa non è accessibile, in quanto può comunque fornire preziosi suggerimenti sulla
direzione rigorosa da prendere.

I modelli prototipo introdotti nel Capitolo 1 sono il modello di spin-glass di Sherrington-
Kirkpatrick (SK) e lo spiked Wigner model. Il primo è un vetro di spin a campo medio in cui gli
accoppiamenti tra gli N spin del sistema sono variabili aleatorie gaussiane i.i.d., ed è definito
dall’hamiltoniana:

HSK
N (σ) = −

N∑
i,j=1

Jijσiσj , Jij
iid∼ N

( J0
2N

,
J2

2N

)
, σ ≡ (σi)i≤N ∈ {−1,+1}N , (1)

con un misura di Boltzmann-Gibbs associata

dµN(σ) =
e−βHSK

N (σ)

ZN

N∏
i=1

d
(
δ1(σi) + δ−1(σi)

)
. (2)

Seguendo il formalismo della Meccanica Statistica, l’obiettivo principale è il calcolo del limite
termodinamico del logaritmo della sua funzione di partizione ZN , normalizzato con N , solita-
mente chiamato entropia libera, o pressione, per particella

pN(β) =
1

N
logZN . (3)

Le variabili sui siti di particella i possono essere spin come sopra, o variabili reali con una
distribuzione apriori come segue.

5
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Il modello spiked Wigner consiste invece nello stabilire i limiti in ambito di teoria dell’
informazione nella ricostruzione di una matrice di rango uno (o di rango finito fissato), chiamata
spike, sporcata da una matrice di Wigner, cioè da rumore gaussiano additivo. Più precisamente,

se x∗ ≡ (x∗i )i≤N con x∗i
iid∼ PX per una qualche distribuzione a priori PX , le osservazioni a

disposizione sono

y =

√
µ

2N
x∗x∗⊺ + z ∈ RN×N , zij

iid∼ N (0, 1) , µ ≥ 0 (4)

dove x∗x∗⊺ è lo spike. λ è chiamato signal-to-noise ratio (SNR). Assumendo ottimalità bayesiana,
cioè di sapere tutto sul processo di generazione dei dati a disposizione, si può dimostrare che
lo spiked Wigner model è in realtà un vetro di spin in una sottoregione privilegiata del suo
spazio delle fasi, chiamata linea di Nishimori. Infatti, limitando per semplicità il problema
inferenziale (4) agli spin binari, la misura a posteriori per x∗ data Y è nella forma (2) con β = 1

e un’hamiltoniana (1) dove Jij
iid∼ N (µ/2N,µ/2N). Di conseguenza, si può anche definire una

pressione per particella associata allo spiked Wigner model, che è legata alla mutua informazione
tra le osservazioni Y e il segnale sottostante x∗, una quantità fondamentale per caratterizzare
la qualità della ricostruzione dello spike. Pertanto, la pressione per particella svolge un ruolo
chiave per entrambi i modelli.

I limiti termodinamici di quantità come la pressione per particella possono essere espressi
attraverso un principio variazionale su parametri d’ordine i cui valori stazionari hanno un’ in-
terpretazione fisica o in teoria dell’informazione. Nello spiked Wigner model, ad esempio, il
parametro d’ordine è la proiezione, o overlap, dello stimatore Bayes-ottimale sul segnale x∗ e
misura la qualità della ricostruzione. Grazie a G. Parisi è noto che l’entropia libera del modello
SK ammette invece tale rappresentazione variazionale, ma con un numero infinito di parametri
d’ordine, un fenomeno noto come rottura della simmetria di replica, e questa costituisce una
differenza sostanziale con l’inferenza in setting Bayes-ottimale. La ragione di questa discrepanza
è che nel setting Bayes-ottimale valgono tutta una serie di identità e disuguaglianze di corre-
lazione come conseguenza della regola di Bayes o, da un punto di vista duale, della fase speciale
dello spin-glass associato. In particolare, si può dimostrare che, sotto ipotesi blande, queste sono
sufficienti a implicare la simmetria di replica, che porta a principi variazionali in dimensione
finita per l’entropia libera. La simmetria di replica, e la sua rottura, sono strettamente legate
alla concentrazione dei parametri d’ordine citati nel limite termodinamico intorno ai loro valori
attesi.

I due modelli precedenti hanno stimolato la produzione di un’impressionante mole di articoli,
e ad oggi possiamo dire di conoscere diversi modi per calcolare le principali quantità termod-
inamiche/in teoria dell’informazione anche in modo rigoroso. Tuttavia, la maggior parte degli
studi a tal riguardo si basa fortemente sulla natura i.i.d. degli accoppiamenti, o del rumore. Un
modo per indebolire questa assunzione è quello di dare agli accoppiamenti un profilo di varianza
disomogeneo. In pratica, possiamo dividere gli N spin in K sottogruppi, o specie, disgiunti,
{Λr}r≤K , e assegnare una varianza all’accoppiamento i-j a seconda del sottogruppo a cui i e j
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appartengono:

Jij ∼ N
( J0
2N

,
J2
rs

2N

)
, se i ∈ Λr e j ∈ Λs . (5)

Questo rompe una simmetria di permutazione globale tra siti di particelle del modello, o tra
le componenti del segnale, che sarebbe altrimenti presente. Nella letteratura sui vetri di spin,
si dice che il modello derivante è un modello multi-specie, per sottolineare il diverso comporta-
mento che i vari siti di particelle acquisiscono. In inferenza è stata introdotta un’idea simile,
chiamata accoppiamento spaziale, ma con lo scopo di studiare i limiti statistici dello spiked
Wigner model. Un modello multispecie sulla linea di Nishimori può essere ottenuto diretta-
mente da (4) prendendo un SNR dipendente dai siti accoppiati, come per J2

rs. Nei Capitoli 2
e 3 studiamo proprio questa situazione con due diversi tipi di profili di varianza: un accoppia-
mento convesso, quando gli autovalori della matrice di varianza J2

rs sono tutti non negativi, e
un accoppiamento profondo rispettivamente, quando J2

rs è tridiagonale con zeri sulla diagonale
principale. Quest’ultimo chiaramente non rientra nella prima categoria, poiché J2

rs avrebbe au-
tovalori di segno alterno. Per questi due modelli sulla linea di Nishimori dimostriamo in modo
rigoroso un principio variazionale finito dimensionale per la loro pressione limite per particella,
utilizzando una tecnica di interpolazione adattiva.

Nel Capitolo 4 studiamo in modo rigoroso lo spiked Wigner model fuori dal setting Bayes-
ottimale. Ci sono diversi modi per rompere l’ottimalità: l’osservatore che vuole dedurre lo spike
(i) non conosce l’SNR, oppure (ii) ignora la natura del rumore. In questa sede ci concentri-
amo su una terza alternativa, ovvero (iii) quando l’osservatore assume un prior sbagliato sugli
x∗i . Dimostriamo che il problema inferenziale può essere mappato in uno spin-glass fuori dalla
linea di Nishimori, e di conseguenza le identità di Nishimori e la simmetria di replica vengono
meno. Ciononostante, siamo ancora in grado di dimostrare che l’overlap dello stimatore, in-
evitabilmente subottimale, con il segnale sottostante si auto-media nel limite termodinamico.
Questo ci permette di scrivere un principio variazionale per l’entropia libera per particella, che
in generale non è in dimensione finita. In altre parole, il mismatch può indurre la rottura della
simmetria di replica. Inoltre, la mutua informazione in questo contesto non è più ben definita,
quindi siamo costretti a lavorare con l’entropia incrociata tra la distribuzione delle osservazioni
y ipotizzata dal ricevitore e quella vera, che è ancora legata alla pressione.

In seguito, torniamo al paradigma i.i.d.. Sottolineiamo che il setting multispecie preserva
l’indipendenza degli elementi di rumore. A questo proposito, nel Capitolo 5 studiamo uno
spiked model, come (4), in cui il rumore non è più una matrice di Wigner, ma è estratto da
un più ampio ensemble matriciale. Gli ensemble su cui ci concentriamo sono caratterizzati
da una distribuzione congiunta degli elementi di matrice che è invariante per trasformazioni
ortogonali: Z

D
= OZO⊺. Possiamo scrivere la distribuzione di probabilità associata in termini

di un potenziale matriciale come segue

dPZ(Z) ∝ dZ exp
(
− N

2
TrV (Z)

)
, dZ =

∏
i≤j≤N

dZij (6)
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dove V è una funzione di una variabile reale, estesa a variabili matriciali: V (Z) = OV (λ)O⊺,
con λ la matrice diagonale degli autovalori di Z, O la matrice ortogonale che diagonalizza Z, e
V applicata componente per componente alla diagonale.

L’ensemble di Wigner, o Gaussiano Ortogonale (GOE), corrisponde a un potenziale di ma-
trice quadratico V (x) = x2/2; qui ci concentriamo invece su un potenziale quartico

V (x) = µ
x2

2
+ γ

x4

4
.

Questo è sufficiente a rompere l’indipendenza tra gli elementi della matrice di rumore a patto
che γ > 0. Infatti, se prendiamo per semplicità µ = 0 e γ = 1 allora

dPZ(Z) ∝ dZ
∏
i,j,k,l

exp
(
− N

8
ZijZjkZklZli

)
che chiaramente non è fattorizzabile.

Le tecniche utilizzate nel Capitolo 5 sono generalizzabili a potenziali di ordine superiore, ma
per comodità di presentazione ci fermiamo al quarto ordine. Poiché una derivazione rigorosa
dell’entropia libera dello spin-glass associato non sembra essere accessibile al momento, ricor-
riamo al versatile metodo delle repliche. Confrontiamo successivamente la previsione teorica
dell’errore quadratico medio della ricostruzione con quella di algoritmi esistenti in letteratura,
progettati per tenere conto dell’invarianza rotazionale del rumore, realizzando che sono sub-
ottimali. Di conseguenza, proponiamo un algoritmo di Approximate Message Passing (AMP)
modificato e deriviamo la sua evoluzione di stato in modo rigoroso, dimostrando il suo accordo
con la previsione ottenuta dal calcolo con le repliche. Vale la pena sottolineare che, nonostante
la formula per l’entropia libera, o mutua informazione, non sia ancora rigorosa, essa ci ha aiutato
a dimostrare in modo rigoroso un gap di prestazioni tra il nostro AMP e quelli precedentemente
trattati in letteratura.

Tutti gli spiked models menzionati in precedenza trattano perturbazioni di rango finito, gli
spike, di grandi matrici di rumore, Z. Al contrario, nel Capitolo 6 ci occupiamo del problema
della fattorizzazione di matrici di rango estensivo in presenza di rumore gaussiano. In questo
caso, x∗ non è più un vettore in RN , ma una matrice N × P . Quindi il rango di x∗x∗⊺ è ora P ,
con P/N → α > 0 quando N → ∞. Nonostante i recenti sforzi per trovare i limiti statistici, la
presenza di un rango estensivo nel problema sembra essere un ostacolo insormontabile alla pro-
duzione di formule chiuse. Per questo motivo, abbandoniamo l’ottimalità bayesiana a favore di
una stima subottimale apparentemente più semplice. In particolare, dal momento che possiamo
pensare x∗ come a un insieme di P vettori (x∗t)t≤P , puntiamo a trovare questi vettori uno dopo
l’altro, iterativamente. Al primo passo, il problema inferenziale può essere mappato in un vetro
di spin la cui hamiltoniana è simile a quella del modello di Hopfield, e mostriamo che ne eredita
la maggior parte delle caratteristiche. Dopo aver stimato il primo vettore, che nel linguag-
gio delle reti neurali può essere considerato come un pattern, inseriamo nell’hamiltoniana un
termine repulsivo verso la direzione corrispondente. Questa procedura, chiamata decimazione,
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può essere iterata fino a quando tutti i pattern sono stati stimati. Utilizzando il metodo delle
repliche, calcoliamo l’entropia libera associata a ciascun passo di decimazione. Dalle equazioni
di punto fisso con un prior Ising con sparsità PX = (1 − ρ)δ0 +

ρ
2
[δ−1/

√
ρ + δ1/√ρ] mostriamo

numericamente che la decimazione è una strategia valida per la fattorizzazione di matrice in
determinati intervalli dei parametri di controllo. Soprattutto, ciò mostra che la fattorizzazione
di matrice è possibile.
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Résumé détaillé

L’objectif principal de cette thèse est d’affaiblir deux hypothèses qui accompagnent habituelle-
ment l’analyse théorique dans les verres de spin et l’inférence: l’hypothèse d’éléments de bruit
i.i.d. (indépendamment et identiquement distribué), qui peuvent être rassemblés dans une ma-
trice pour nos besoins, et le régime de rang fini. La première hypothèse apparâıt dès la naissance
des verres de spin. La seconde concerne plutôt le point de vue de l’inférence. Bien qu’ils puis-
sent sembler deux mondes séparés, les systèmes désordonnés et l’inférence bayésienne ont une
relation bien établie, ce qui est mis en évidence par leur constante fertilisation croisée et le
nombre d’outils techniques qu’ils partagent. La thèse fait appel à des techniques développées
dans l’étude rigoureuse des verres de spin, comme l’interpolation, et de la physique statistique,
comme la méthode des répliques. Nous mentionnons que, bien que cette dernière ne soit pas
rigoureuse, elle est largement acceptée comme une méthode exacte, et elle est employée ici
chaque fois qu’une solution rigoureuse est hors de portée, car elle peut toujours donner des
indications précieuses sur la direction rigoureuse à prendre.

Les modèles prototypiques présentés dans le Chapitre 1 sont le modèle de verre de spin
de Sherrington-Kirkpatrick (SK) et le problème d’inférence spiked Wigner. Le premier est un
verre de spin à champ moyen où les couplages entre les N spins du système sont des variables
aléatoires gaussiennes i.i.d., et est défini par l’hamiltonien:

HSK
N (σ) = −

N∑
i,j=1

Jijσiσj , Jij
iid∼ N

( J0
2N

,
J2

2N

)
, σ ≡ (σi)i≤N ∈ {−1,+1}N , (1)

avec la mesure de Boltzmann-Gibbs associée

dµN(σ) =
e−βHSK

N (σ)

ZN

N∏
i=1

d
(
δ1(σi) + δ−1(σi)

)
. (2)

Dans le cadre du formalisme de la mécanique statistique, l’objectif principal est le calcul de la
limite thermodynamique du logarithme de la fonction de partition ZN , généralement appelée
entropie libre, ou pression, par particule:

pN(β) =
1

N
logZN . (3)

11
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Les variables sur les sites i des particules peuvent être des spins comme ci-dessus, ou des variables
réelles avec une distribution apriori comme ci-dessous.

Le modèle spiked Wigner revient plutôt à établir les limites de la théorie de l’information
dans la reconstruction d’une matrice de rang un (ou de rang faible fixe), appelée spike, brouillée
par une matrice de Wigner, i.e. bruit gaussien additif. Plus précisément, si x∗ ≡ (x∗i )i≤N avec

x∗i
iid∼ PX pour une certaine distribution apriori PX , les observations dont on dispose sont les

suivantes

y =

√
µ

2N
x∗x∗⊺ + z ∈ RN×N , zij

iid∼ N (0, 1) , µ ≥ 0 (4)

où x∗x∗⊺ est le spike. On appelle λ le rapport signal/bruit (signal-to-noise ratio, SNR). En
supposant l’optimalité bayésienne, c’est-à-dire en sachant tout sur le processus de génération
des données à disposition, on peut prouver que le modèle spiked Wigner est en fait un verre
de spin dans une sous-région vraiment privilégiée de son espace de phase, appelée ligne de
Nishimori. En effet, en restreignant pour des raisons de simplicité le problème d’inférence (4)
aux spins binaires, la mesure de probabilité a posteriori pour x∗ étant donné le Y est de la

forme (2) avec β = 1 et un hamiltonien (1) où Jij
iid∼ N (µ/2N,µ/2N). Par conséquent, on peut

également définir une pression par particule associée au modèle spiked Wigner, qui est liée à la
information mutuelle entre les observations Y et le signal x∗, une quantité fondamentale pour
caractériser la qualité de la reconstruction des spikes. Ainsi, la pression par particule joue un
rôle central pour les deux modèles.

Les limites thermodynamiques de quantités comme la pression par particule peuvent être
exprimées par un principe variationnel sur des paramètres d’ordre dont les valeurs stationnaires
ont une interprétation physique ou dans la théorie de l’information. Dans le modèle spiked
Wigner, par exemple, le paramètre d’ordre est la projection, ou overlap, de l’estimateur bayésien
optimal sur le signal caché x∗, et il mesure la qualité de la reconstruction. Grâce à G. Parisi,
nous savons que l’entropie libre du modèle SK admet une telle représentation variationnelle
mais avec un nombre infini de paramètres d’ordre, un phénomène connu sous le nom de replica
symmetry breaking, et ceci constitue une différence substantielle avec l’inférence Bayes-optimale.
La raison de cette différence est que dans le cadre de l’inférence Bayes-optimale, tout un ensemble
d’identités et d’inégalités de corrélation sont valables, en conséquence de la règle de Bayes ou,
d’un point de vue dual, de la phase spéciale du verre de spin associé. En particulier, on peut
montrer que, sous des hypothèses faibles, elles sont suffisantes pour impliquer la symétrie de
réplique, qui conduit à des principes variationnels en dimension finie pour l’entropie libre. La
symétrie de réplique, et sa rupture, sont fortement liées à la concentration des paramètres
d’ordre mentionnés dans la limite thermodynamique autour de leurs valeurs moyennes.

Les deux modèles précédents ont stimulé la production d’un volume impressionnant d’articles
de recherche, et aujourd’hui nous pouvons dire que nous connaissons différentes façons de cal-
culer les principales quantités thermodynamiques, même de façon rigoureuse. Cependant, la
plupart des études connexes reposent fortement sur la nature i.i.d. des couplages, ou du bruit.
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Une façon d’affaiblir cette hypothèse est de donner aux couplages un profil de variance inho-
mogène. En pratique, nous pouvons diviser les N spins en K sous-groupes, ou espèces, disjoints,
{Λr}r≤K , et attribuer une variance au couplage i-j selon le sous-groupe auquel i et j apparti-
ennent:

Jij ∼ N
( J0
2N

,
J2
rs

2N

)
, si i ∈ Λr et j ∈ Λs . (5)

Cela brise en particulier une symétrie de permutation globale entre les sites de particules du
modèle, qui existerait autrement. Dans la littérature sur les verres de spin, on dit que le
modèle qui en résulte est un modèle multi-espèces, pour souligner les différents comportements
que les divers sites de particules acquièrent. En inférence, une idée similaire, appelée couplage
spatial, a été introduite mais dans le but d’étudier les limites statistiques du modèle spiked
Wigner. Un modèle multi-espèces sur la ligne de Nishimori peut être directement obtenu en
(4) prenant un SNR dépendant des sites couplés, tout comme J2

rs. Dans les Chapitres 2 et
3, nous étudions précisément cette situation avec deux types différents de profils de variance:
un couplage convexe, lorsque les valeurs propres de la matrice de variance J2

rs sont toutes non
négatives, et un couplage profond respectivement, lorsque J2

rs est tridiagonale avec des zéros sur
la diagonale principale. Ce dernier n’est clairement pas dans la première catégorie, puisqu’un
J2
rs profonde a des valeurs propres de signe alterné. Pour ces deux modèles sur la ligne de

Nishimori, nous prouvons rigoureusement un principe variationnel en dimension finie pour leur
pression limite par particule, en utilisant une technique d’interpolation adaptive.

Dans le Chapitre 4, nous étudions rigoureusement le modèle spiked Wigner hors du cadre
de l’optimalité bayésienne. Il existe plusieurs façons de briser l’optimalité bayésienne: (i) le
statisticien qui veut déduire le spike ne connâıt pas le SNR, ou (ii) il ignore la nature du
bruit. Nous nous concentrons ici sur une troisième alternative, c’est-à-dire (iii) lorsque le
prior est mal adapté : le statisticien assume un prior erroné sur les x∗i . Nous montrons que
le problème d’inférence peut être représenté par une verre de spin hors de la ligne de Nishi-
mori, et par conséquent, les identités de Nishimori et la symétrie des répliques ne sont plus
valables. Néanmoins, nous sommes toujours capables de prouver que l’overlap de l’estimateur,
inévitablement sous-optimal, avec le signal se concentre dans la limite thermodynamique. Cela
nous permet d’écrire un principe variationnel pour l’entropie libre par particule, qui en général
n’est pas de dimension finie. En d’autres termes, le mismatch peut induire une rupture de
symétrie des répliques. De plus, l’information mutuelle dans ce contexte n’est plus bien définie,
ce qui nous oblige à travailler avec la entropie croisée entre la supposition du statisticien de la
distribution des observations y et la vraie, qui est toujours liée à la pression.

Ensuite, nous revenons au paradigme i.i.d.. Nous soulignons que le cadre multi-espèces
préserve l’indépendance des éléments de bruit. À cet égard, dans le Chapitre 5, nous étudions
un spiked modèle tout comme (4) dans lequel le bruit n’est plus une matrice de Wigner, mais
il est extrait d’un ensemble de matrices orthogonales. Les ensembles de matrices orthogonales
sont caractérisés par une distribution conjointe des éléments de matrice qui est invariante sous
transformation orthogonale: Z

D
= OZO⊺. Nous pouvons écrire la distribution de probabilité
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associée en termes de potentiel matriciel comme suit

dPZ(Z) ∝ dZ exp
(
− N

2
TrV (Z)

)
, dZ =

∏
i≤j≤N

dZij (6)

où V est une fonction d’une variable réelle, que l’on étend aux matrices: V (Z) = OV (λ)O⊺,
avec λ la matrice diagonale des valeurs propres de Z, O la matrice de vecteurs propres de Z, et
V est ici appliqué élément par élément à la diagonale.

L’ensemble orthogonal de Wigner, ou ensemble orthogonal gaussien (GOE), correspond à un
potentiel matriciel quadratique V (x) = x2/2, mais nous choisissons ici un potentiel quartique

V (x) = µ
x2

2
+ γ

x4

4
.

Ceci est suffisant pour briser l’indépendance entre les éléments de la matrice de bruit tant que
γ > 0. En fait, si nous prenons pour la simplicité µ = 0 et γ = 1 alors

dPZ(Z) ∝ dZ
∏
i,j,k,l

exp
(
− N

8
ZijZjkZklZli

)
qui est manifestement non factorisable.

Les techniques utilisées dans le Chapitre 5 se généralisent aux potentiels d’ordre supérieur,
mais nous nous arrêtons au quatrième ordre pour les besoins de la présentation. Puisqu’une
dérivation rigoureuse de l’entropie libre du spin-glass associé semble ne pas être à portée de
main pour le moment, nous avons dû employer la méthode des répliques. Nous avons ensuite
comparé la prédiction théorique de l’erreur quadratique moyenne de la reconstruction (mean
square error, MSE) avec celles d’algorithmes existants présents dans la littérature, conçus pour
prendre en compte l’invariance rotationnelle du bruit, réalisant qu’ils étaient sous-optimaux. En
conséquence, nous proposons un algorithme AMP (Approximate Message Passing) modifié et
dérivons rigoureusement son évolution d’état, en montrant qu’il correspond à la prédiction des
répliques. Il convient de souligner que, bien que la formule de l’entropie libre, ou information
mutuelle, ne soit pas encore rigoureuse, elle nous a aidés à prouver de manière rigoureuse un écart
de performance entre notre AMP et les algorithmes précédemment traités dans la littérature.

Tous les spiked modèles d’inférence mentionnés ci-dessus traitent des perturbations de rang
fini, les spikes, de grandes matrices de bruit, Z. Par opposition, le dernier Chapitre 6 traite
du problème de la factorisation des matrices de rang extensif sous un bruit gaussien. Ici, x∗

n’est plus un vecteur en RN , mais une matrice N × P . Par conséquent, le rang de x∗x∗⊺ est
maintenant P , avec P/N → α > 0 lorsque N → ∞. Malgré les efforts récents pour trouver
ses limites statistiques Bayes-optimales, la nature de rang élevé du problème semble être un
obstacle insurmontable. Par conséquent, nous abandonnons l’optimalité bayésienne en faveur
d’une estimation sous-optimale pratique. En particulier, puisque nous pouvons considérer x∗

comme une collection de P vecteurs (x∗t)t≤P , nous cherchons à trouver ces vecteurs l’un après
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l’autre. Lors de la première étape, le problème d’estimation peut être représenté par un verre de
spin dont l’hamiltonien est très similaire à celui du modèle de Hopfield, et nous montrons qu’il
hérite de la plupart de ses caractéristiques. Après l’estimation du premier vecteur, qui peut
être considéré comme un pattern dans le langage des réseaux neuronaux, nous insérons dans le
hamiltonien un terme répulsif vers la direction correspondante. Cette procédure peut être itérée
jusqu’à tous les patterns soient estimés, et nous l’appelons décimation. En utilisant la méthode
des répliques, nous calculons l’entropie libre associée à chaque étape de décimation. À partir
des équations du point fixe avec un prior d’Ising avec sparsité PX = (1−ρ)δ0+ ρ

2
[δ−1/

√
ρ+δ1/√ρ],

nous montrons numériquement que la décimation est une stratégie viable pour la factorisation
matricielle dans certains intervalles des paramètres de contrôle. Cela montre surtout que la
factorisation de matrices est possible.
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Chapter 1

Basic notions

In this chapter we give the basic definitions needed throughout the thesis. The starting point is
the celebrated Sherrington-Kirkpatrick (SK) spin glass model [1]. Given the volume of research
papers published on this model in the last 40 years, both on the Physics and the Mathematics
side, it will be impossible to be exhaustive about this topic. Hence, we shall restrict to the
mathematical tools and physical ansatz’s that will be useful to our analysis.

SK is a mean field version of the Edwards-Anderson spin glass model [2], which can be
thought as nearest neighbour interaction model and was in turn first introduced to explain the
appearance of cusps in the susceptibility of metallic alloys [3]. Sherrington and Kirkpatrick
provided themselves a candidate free energy, the so-called replica symmetric solution. However,
they were aware that their solution had a flaw: in the low temperature limit it yields a negative
entropy, which is not allowed. Giorgio Parisi proposed instead a replica symmetry breaking
solution [4, 5] via the replica method [6], that needs the introduction of a collection of infinite
order parameters. The replica method is a really powerful tool that will be used in the thesis
whenever a rigorous alternative is out of reach. Though not rigorous strictly speaking, it is
widely accepted as an exact method. Nevertheless, a formal proof of the variational principle
for SK was achieved nearly 30 years later thanks to Francesco Guerra [7] and Michel Talagrand
[8], that were able to find matching bounds for the free energy from below and above respectively.
The proof, that requires a remarkable technical effort, was further simplified by Panchenko, who
was able to connect the Ghirlanda-Guerra identities in spin glasses [9, 10, 11] to ultrametricity
in the SK model [12].

Secondly, an introduction to high dimensional Bayesian Inference follows. Here we define
the main Information Theoretic quantities in order to analyze the statistical limits to the re-
construction of some signals blurred by additive Gaussian noise (at least in this introductory
section). The classic example of such inference tasks is the spiked Wigner model, that is largely
studied in (not only) recent literature. We will then show how to map this problem into a
disordered Statistical Mechanics model similar to SK. This will allow us to borrow some tools
from the mathematical machinery of disordered systems to establish its statistical limits. The
key idea will be the so-called adaptive interpolation [13, 14] (see also [15, 16, 17]), an adaptive

17
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version of that of Guerra’s.
The two previous models in some sense represent two paradigms that this thesis aims to

break, but at the same time they provide us with mechanisms and ideas that pervade modern
Statistical Physics.

1.1 Statistical Mechanics formalism

Before we get started, some initial definitions are in order. For our purposes, each Statistical
Mechanics model will be defined once its Hamiltonian, or Energy or Cost function, is given. The
role of the Hamiltonian is to assign a given energy to each possible configuration state of a system
of many particles, whose number is denoted by N . It can depend on some parameters and on
the degrees of freedom of said particles. For our analysis we are not interested in translational
or rotational degrees of freedom of these particles, so the Hamiltonian will depend only on their
internal degrees of freedom: typically a real number drawn from an apriori distribution P , or
simply ±1 in case of Ising spins. A generic Hamiltonian will thus be denoted by HN(x; a) where
a is a collection of possibly random parameters and x are the particles degrees of freedom.

The set of possible configurations of the system XN is endowed with the (possibly random)
Boltzmann-Gibbs probability measure:

dµN(x) =
exp [−βHN(x; a)]

ZN(β, a)

N∏
i=1

dP (xi) , (1.1)

where the normalization

ZN(β, a) =

∫ N∏
i=1

dP (xi) exp [−βHN(x; a)] (1.2)

is called partition function and β is the inverse absolute temperature. The (random) expec-
tations w.r.t. (1.1) are denoted by ⟨· · · ⟩β,a,N , and subscripts could be omitted to lighten the
notation. With a slight abuse the same notation is adopted for the replicated Boltzmann-Gibbs
measure µ⊗∞

N , used to average functions of different independent samples drawn from µN . How-
ever, we stress that the potential disorder introduced by the parameters a, as well as β, is
the same for each replica of the system. These expectations can be further averaged over the
disorder a if any and this is indicated with E.

A quantity of particular interest will be the (random) pressure, or free entropy, per particle

pN(β, a) =
1

N
logZN(β, a) =

PN(β, a)

N
. (1.3)

From a probabilistic perspective, the extensive pressure NpN is the moment generating function
of the Hamiltonian in the measure (1.1). Furthermore, as we shall see in the following, derivatives
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of pN w.r.t. the parameters a typically yield expectations of macroscopic quantities that one
can measure in a system, such as the magnetization in a ferromagnet, or the global overlap
of an estimator with a signal we want to recover, needed to establish theoretical limits in its
reconstruction.

1.2 The Sherrington-Kirkpatrick model

Consider the N2 + N random variables Jij
iid∼ N (0, 1), hi

iid∼ Ph. The mean field spin glass SK
model is a two body, inifinte-range interaction model defined by the hamiltonian:

HN(σ; J, h) = HSK
N (σ; J)−

N∑
i=1

hiσi , HSK
N (σ; J) = − 1√

2N

N∑
i,j=1

Jijσiσj , (1.4)

with σi = ±1 ∀i. The SK model is usually introduced with non random external magnetic fields
but we will need them for our purposes and they do not introduce great complications. If one
wants non-random external fields it is sufficient to choose Ph = δh for some real h. Our goal is
the computation of the pressure

pN(β, J, h) =
1

N
log

∑
σ∈{−1,1}N

exp (−βHN(σ; J, h)) . (1.5)

The previous is a random quantity that is known to concentrate in the thermodynamic limit
N → ∞. In particular it can be proved that it converges almost surely to the limit of its
expectations sequence thanks to the exponential concentration inequality [18, 19, 20]

P (|pN(β, J, h)− EpN(β, J, h)| ≥ x) ≤ 2 exp

(
− Nx2

2Cβ2

)
, (1.6)

with some positive constant C. A tail integration also yields a bound on the variance

E
[
(pN(β, J, h)− EpN(β, J, h))2

]
≤ C̄

N
(1.7)

for some positive constant C̄. Since the r.h.s. of (1.6) is summable in N by Borel-Cantelli
Lemma almost sure convergence is guaranteed. This means in particular that the specific
realization of the noise is irrelevant when the system is really large. In some cases it will suffice
to have the L2-like convergence (1.7).

Therefore, from this moment on we will focus on the quenched free entropy per particle,
namely

p̄N(β, h) = EpN(β, J, h) =
P̄N(β, h)

N
(1.8)
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where the average is taken w.r.t. the disorder J = {Jij}i,j≤N and the external biases h =
{hi}i≤N . We stress that there is an abuse of notation: the averaged pressure on the l.h.s.
depends only on the distribution of the h’s. From this point of view, the SK model could
have been defined in a totally equivalent way taking as Hamiltonian a 2N -dimensional Gaussian
process, labeled by spin configurations, with covariance

EHSK
N (σ)HSK

N (τ ) =
N

2
q2N(σ, τ ) , qN(σ, τ ) :=

1

N

N∑
i=1

σiτi (1.9)

and then add back the one body terms −∑i hiσi. qN is called overlap, and we will soon realize
it plays a central role both for the SK model and for the spiked Wigner model.

1.2.1 The replica trick

In order to compute the limiting free entropy (1.8) we use the following identity

1

Nn
logEZ(β, J, h)n n→0−−→ 1

N
E logZ(β, J, h) . (1.10)

In principle this does not seem to help much, since n is only a real number going to 0. However,
if it were a simple integer we would have a Gaussian expectation of the partition function, that
we now how to compute since it amounts only to the computation of the moment generating of
the Gaussian process HSK

N . Hence, in what follows we will assume we are able to consider n as
an integer up to the moment when we will need to send it back to 0.

This strategy, known as replica trick, turns out to be really versatile and can be applied to
many different contexts. However, unfortunately at the present day it has not been proved to
be mathematically rigorous. As we shall briefly overview later, a formal proof of the limiting
free entropy conjectured with replicas requires the introduction of brand new rigorous tools.
Let us now start from the replicated partition function

EZn = E
n∏

a=1

∑
σa∈{−1,1}N

exp

[
−

n∑
a=1

HSK
N (σa; J)−

n∑
a=1

N∑
i=1

hiσ
a
i

]
. (1.11)

As mentioned above we now perform a Gaussian integration over the Hamiltonian process,
obtaining

EZn = E
n∏

a=1

∑
σa∈{−1,1}N

exp

[
Nβ2

4

n∑
a,b=1

q2N(σ
a,σb) + β

n∑
a=1

N∑
i=1

hiσ
a
i

]
(1.12)

where the remaining E averages over the hi’s. Now the aim is to decouple the argument of the
exponential in the particle indices i. To do this we perform a Hubbard-Stratonovič transforma-



1.2. THE SHERRINGTON-KIRKPATRICK MODEL 21

tion on the q2N term.

EZn = E
n∏

a=1

∑
σa∈{−1,1}N

∫ n∏
a≤b=1

dqab

√
β2N

2π(1 + δa,b)

exp

[
−Nβ

2

4

n∑
a,b=1

q2ab +
Nβ2

2

n∑
a,b=1

qab qN(σ
a,σb) + β

n∑
a=1

N∑
i=1

hiσ
a
i

]
=

= E
n∏

a=1

∑
σa∈{−1,1}N

∫ n∏
a≤b=1

dqab

√
β2N

2π(1 + δa,b)

exp

[
−Nβ

2

4

n∑
a,b=1

q2ab +
β2

2

N∑
i=1

n∑
a,b=1

qab σ
a
i σ

b
i + β

N∑
i=1

n∑
a=1

hiσ
a
i

]
.

(1.13)

Now that we have fully decoupled particles we can also factorize the spin sums over the particle
indices. What remains is system that is still coupled only within replicas. Furthermore, when
the system becomes really large only extremal values of the exponent will matter, hence we are
allowed to use a saddle point approximation. These considerations lead to

1

Nn
logEZn N→∞−−−→ Extrqa,b

{
−β

2

4n

∑
a,b

q2a,b +
1

n
logE

n∏
a=1

∑
σa

exp

[
β2

2

n∑
a,b=1

qab σ
aσb + βh

n∑
a=1

σa

]}
(1.14)

where h is a copy of the hi’s. It is easy to realize that at saddle point qaa = 1.
From here, we can proceed in two ways. The simplest one is the so-called replica symmetric

ansatz, namely assuming that at stationarity one has

qab =

{
1 a = b

q a ̸= q
. (1.15)

The extremization remains only over q. With this ansatz the variational expression in (1.14)
simplifies considerably into

− β2

4
(1 + (n− 1)q2) +

1

n
logE

n∏
a=1

∑
σa

exp

β2

2
n(1− q) +

β2q

2

(
n∑

a=1

σa

)2

+ βh
n∑

a=1

σa


=
β2

4
(1− 2q + (n− 1)q2) +

1

n
logEEZ

{∑
σ=±1

exp [β(Z
√
q + h)σ]

}n
(1.16)

where Z is a standard Gaussian r.v. If we finally let n → 0 we recover the replica symmetric
free entropy for the SK model

1

Nn
logEZn N→∞−−−→

n→0
Extrq

{
β2

4
(1− q)2 + E log 2 cosh[β(Z

√
q + h)]

}
=: pSKRS (β) . (1.17)
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A similar computation could have been carried out with different apriori measure on the spins.
The only difference is that the diagonal elements of the overlap matrix qab are no longer one, but
are themselves parameters over which extremization is needed. Extremization over q in (1.17)
yields the fixed point equation

q = E tanh2 [β(Z
√
q + h)] . (1.18)

It is immediate to see that if β < 1 and h ∼ δ0 the unique solution is q = 0. Indeed

q = E tanh2 [β(Z
√
q)] ≤ Eβ2Z2q = β2q

which is satisfied only if q = 0. q = 0 is actually always a solution of (1.18) for h = 0. However,
it can be shown that it becomes unstable for β > 1 and another stable solution q > 0 appears. In
particular the solution with positive overlap is automatically selected first inserting an external
magnetic field and then sending it to 0 (see [20, Proposition 1.3.8]). If Eh2 > 0 instead (any
non trivial random variable), the solution is always unique.

As anticipated this ansatz has a major issue in the low temperature limit, as stated in the
following

Proposition 1.1. Consider the quantity

sSKRS := pSKRS − β
∂pSKRS

∂β
, (1.19)

with h = 0. The following limit holds

lim
β→∞

sSKRS = − 1

2π
. (1.20)

Proof. Writing (1.19) explicitly after an integration by parts one gets

sRS = −β
2

4
(1− q̄)2 + Eζ log 2 cosh(β

√
q̄Z)− β2q̄(1− q̄) . (1.21)

From (1.18) we see that limβ→∞ q̄ = 1, where by q̄ we denote the stable solution of the con-
sistency equation here and below. Hence we have to carefully estimate the products of β and
1− q̄:

β
√
q̄(1− q̄) = β

√
q̄

∫
R

dz√
2π
e−

z2

2

[
1− tanh2

(
βz

√
q̄
)]

=

∫
R

dz√
2π
e−

z2

2
d

dz
tanh

(
βz

√
q̄
)

=

∫
R

dz√
2π
e−

z2

2 z tanh
(
βz

√
q̄
)
= 2

∫ ∞

0

dz√
2π
e−

z2

2 z tanh
(
βz

√
q̄
)
=

= 2

∫ ∞

0

dz√
2π
e−

z2

2 z + 2

∫ ∞

0

dz√
2π
e−

z2

2 z

[
1− e−2βz

√
q̄

1 + e−2βz
√
q̄
− 1

]
= (z → z/β

√
q̄) =

=

√
2

π
− 4

β2q̄

∫ ∞

0

dz√
2π
e
− z2

2β2q̄ z
e−2z

1 + e−2z
. (1.22)
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The last integral is convergence and positive, and dominated by∫ ∞

0

dz√
2π
ze−2z =

1

4
√
2π

. (1.23)

Hence, since q̄ → 1, we can conclude that as β → ∞

β
√
q̄(1− q̄) =

√
2

π
+O

(
1

β2

)
, (1.24)

β(1− q̄) =

√
2

π
+O

(
1

β2

)
. (1.25)

Moreover,

Eζ log 2 cosh(β
√
q̄ζ) = 2

∫ ∞

0

dz√
2π
e−

z2

2 β
√
q̄z + 2

∫ ∞

0

dz√
2π
e−

z2

2 log
(
1 + e−2βz

√
q̄
)

(1.26)

where the last integral is of order 1/β. To see it it suffices to perform the change of variables
z 7→ z/β. Therefore

Eζ log 2 cosh(β
√
q̄ζ) = β

√
q̄

√
2

π
+O

(
1

β

)
. (1.27)

Plugging the previous estimates into the formula for sRS we finally get

sRS = − 1

2π
+ β

√
q̄

[√
2

π
+O

(
1

β2

)
− β

√
q̄(1− q̄)

]
=

= − 1

2π
+ β

√
q̄

[√
2

π
−
√

2

π
+O

(
1

β2

)]
= − 1

2π
+O

(
1

β

)
. (1.28)

If pSKRS were a well behaved solution, then sSKRS would be its entropy. Since in this thesis
we will not need to make any replica symmetry breaking ansatz, we present it directly from a
rigorous point of view in the following.

1.2.2 Interpolation and existence of the thermodynamic limit

The proof of existence of the thermodynamic limit for the SK model arrived only in 2002 [21]
and needed the introduction of the so-called interpolation technique. The idea is to define an
auxiliary Hamiltonian depending on an interpolating “time” parameter t that varies continu-
ously, typically in [0, 1]. This allows to compare the models related to the Hamiltonians obtained
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at the extremal times, 0 and 1, through a control on the t-derivatives of the interpolating model
for intermediate times. This technique is really rich, easy to handle, and can be used both to
prove existence of thermodynamic limits and to actually compute them via upper and lower
bounds.

Theorem 1.2 (Guerra-Toninelli [21]). The thermodynamic limit of the SK model exists and

lim
N→∞

p̄N(β) = sup
N

P̄N

N
<∞ . (1.29)

Proof. First off, we prove that the pressure is upper bounded a constant. Thanks to Jensen’s
inequality, and to the fact that HSK

N is Gaussian with variance N/2 we have:

p̄N(β, h) =
1

N
EJ,h log

∑
σ∈{−1,1}N

e−βHN (σ;J,h) ≤ 1

N
Eh log

∑
σ∈{−1,1}N

e
Nβ2

4
+β

∑N
i=1 hiσi (1.30)

that leads to

p̄N ≤ E log 2 cosh βh+
β2

4
. (1.31)

where h is a copy of the hi’s.
Secondly, we proceed with a super-additivity argument and then apply Fekete’s lemma.

The proof of super-addivity of the is carried out by interpolation. Let t ∈ [0, 1] and N1, N2 two
integers such that N1 +N2 = N . Define now the interpolating scheme:

Ht(σ; J, J̃ , h) =
√
tHSK

N (σ; J) +
√
1− t

[
HSK

N1
(σ; J) +HSK

N2
(σ; J)

]
−

N∑
i=1

hiσi (1.32)

HSK
N1

(σ; J̃) =
1√
2N1

N1∑
i,j=1

J̃ijσiσj , HSK
N2

(σ; J̃) =
1√
2N2

N∑
i,j=N1+1

J̃ijσiσj (1.33)

P̄N(t) ≡ Np̄N(t) = E logZN(t) = E log
∑

σ∈{−1,1}N
e−βHt(σ;J,J̃,h) , (1.34)

where J̃ij
iid∼ N (0, 1) are independent of all the rest. This entails in particular:

E[HN(σ)HN1(τ)] = E[HN(σ)HN2(τ)] = [HN1(σ)HN2(τ)] = 0 . (1.35)

The first t-derivative yields

˙̄PN(t) = −βE
〈dHt

dt

〉
N,t

= −βE
〈 1

2
√
t
HSK

N − 1

2
√
1− t

[HSK
N1

+HSK
N2

]
〉
N,t
. (1.36)
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We stress that the Gibbs measure depends on t through the corresponding Hamiltonian Ht and
we keep track of this dependency in the subscripts.

Thanks to (1.35) we can focus on the three terms appearing in the expectation separately.
Using Gaussian integration by parts we obtain

− βE
〈 1

2
√
t
HN

〉
N,t

= N
β2

4

[
1− E⟨q2N⟩N,t

]
(1.37)

βE
〈 1

2
√
1− t

HN1

〉
N,t

= −N1
β2

4
[1− E⟨q2N1

⟩N,t] , qN1(σ, τ ) =
1

N1

N1∑
i,j=1

σiτi (1.38)

βE
〈 1

2
√
1− t

HN2

〉
N,t

= −N2
β2

4
[1− E⟨q2N2

⟩N,t] , qN2(σ, τ ) =
1

N1

N∑
i,j=N1+1

σiτi . (1.39)

Now we can plug the previous contribution back into ṖN(t):

˙̄PN(t) = N
β2

4
E
[
1− ⟨q2N⟩N,t −

N1

N
+
N1

N
⟨q2N1

⟩N,t −
N2

N
+
N2

N
⟨q2N2

⟩N,t

]
=

= N
β2

4
E
[
N1

N
⟨q2N1

⟩N,t +
N2

N
⟨q2N2

⟩N,t − ⟨q2N⟩N,t

]
. (1.40)

Observe that

NqN(σ, τ ) =
N∑
i=1

σiτi =

N1∑
i=1

σiτi +
N∑

i=N1+1

σiτi = N1qN1(σ, τ ) +N2qN2(σ, τ ) (1.41)

qN(σ, τ ) =
N1

N
qN1(σ, τ ) +

N2

N
qN2(σ, τ ) (1.42)

namely the total overlap is a convex combination of the overlaps of the two subsystems we are
interpolating with. Since the square is a convex function one gets:

N1

N
q2N1

+
N2

N
q2N2

− q2N ≥ 0 (1.43)

and finally

˙̄PN(t) ≥ 0 ⇒ P̄N(1) = P̄N ≥ P̄N(0) = P̄N1 + P̄N2 , (1.44)

which proves super-additivity. The rest of the statement follows directly from Fekete’s lemma.

As a corollary one has also the existence of the ground state.
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Corollary 1.3 (Ground state energy, SK model). The thermodynamic limit of the ground state
energy of the SK model

eN := inf
σ∈{−1,1}N

HN(σ; J, h) (1.45)

exists, converges almost surely to the limit of its expectations sequence ēN := EeN , and

lim
N→∞

ēN = inf
N
ēN . (1.46)

Proof. We start with the simple bounds:

1

Nβ
log

∑
σ∈ΣN

e−βHN (σ) ≤ 1

Nβ
log 2Ne−NβeN (J) =

log 2

β
− eN (1.47)

1

Nβ
log

∑
σ∈ΣN

e−βHN (σ) ≥ 1

Nβ
log e−NβeN (J) = −eN . (1.48)

The previous inequalities can be rewritten as

eN − log 2

β
≤ − 1

Nβ
log

∑
σ∈ΣN

e−βHN (σ) ≤ eN (1.49)

that in turn entails

eN = lim
β→∞

− 1

Nβ
log

∑
σ∈ΣN

e−βHN (σ) . (1.50)

Taking instead the expectation first in (1.49) we get the relation

ēN = EeN(J) = lim
β→∞

− p̄N(β)
β

=
1

N
lim
β→∞

−PN(β)

β
. (1.51)

From the previous one we also see that both the sub-additivity of ĒN = NēN sub-additivity,
and the almost sure convergence of ēN are inherited from the pressure.

1.2.3 The replica symmetry breaking solution

Let us introduce two non-decreasing sequences:

0 = m0 ≤ m1 ≤ · · · ≤ mk ≤ mk+1 = 1 (1.52)

0 = q0 ≤ q1 ≤ · · · ≤ qk−1 ≤ qk = 1 (1.53)
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where k is a positive integer. We can associate a discrete probability distribution χ (with at
most k atoms, or k + 1 if we include 0) to the triple (k,m,q), as follows:

χ([0, q]) =
k∑

l=0

(ml+1 −ml)θ(q − ql) (1.54)

where the Heaviside step function is taken to be continuous from the right. The space of atomic
probability distributions with at most k atoms on [0, 1] is denoted by Mk

[0,1]. Consider now the
recursion

Zml
l−1 = El (Z

ml
l ) El[·] =

∫
R

dηl√
2π
e−η2l /2(·) (1.55)

Zk = cosh

[
β

(
h+

k∑
l=1

ηl
√
q − ql−1

)]
ηl

iid∼ N (0, 1) . (1.56)

The Parisi functional is defined as follows.

Definition 1.1 (Parisi Functional-1). Given the triple (k,m,q) as above, the Parisi functional
is:

P(χ; β) = log 2 + E logZ0 −
β2

2

∫ 1

0

qχ([0, q]) dq . (1.57)

where the expectation of logZ0 averages over the possibly random variable h, that is a copy of
the hi’s.

There is an equivalent way to express the nested term logZ0 by means of an anti-parabolic
PDE. To each χ ∈ Mk

[0,1] we associate a function Φχ(·, ·; β) that is the solution to the final value
problem

∂sΦχ(s, y; β) = −β
2

2

(
∂2yΦχ(s, y; β) + χ([0, s])(∂yΦχ(s, y; β))

2
)

Φχ(1, y; β) = log cosh y .
(1.58)

It is then not difficult to see that [22]

E logZ0 = EhΦχ(0, h; β) =: Φ̄χ(0; β) . (1.59)

Therefore, for future convenience we give the equivalent

Definition 1.2 (Parisi Functional-2). For any χ ∈ Mk
[0,1] as above, the Parisi functional is

χ ∈ Mk
[0,1] 7−→ P(χ; β) = log 2 + Φ̄χ(0; β)−

β2

2

∫ 1

0

dq qχ([0, q]) . (1.60)
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It is well known [7, 23] that for any χ1, χ2 ∈ Mk
[0,1]

|Φχ1(s, y; β)− Φχ2(s, y; β)| ≤
β2

2

∫ 1

s

dq |χ1([0, q])− χ2([0, q])| (1.61)

namely χ 7→ Φχ is Lipschitz in the L1([s, 1], dq) norm. This allows us to extend the functional
Φχ to all the probability measures M[0,1] with the prescription

Φχ := lim
n→∞

Φχn (1.62)

for any sequence (χn)n≥1 in Md
[0,1] such that χn −→ χ ∈ M[0,1] weakly. We hereby collect the

continuity and differentiability properties of Φ̄χ and P(χ; ·). Without loss of generality we can

assume hi = hξi with h ∈ R and ξi
iid∼ Pξ, since it amounts only to a re-scaling of Ph. We thus

consider P as a function of (χ; β, h) in the following proposition.

Proposition 1.4. Let a := Eξ21. The following hold:

i) Φ̄χ (and P(χ; ·, ·)) can be continuously extended to M[0,1] w.r.t. the weak convergence and

Φ̄χ(s, h; β) := lim
n→∞

EΦ̄χn(s, hξ; β) = EΦχ(s, hξ; β) (1.63)

for any sequence (χn)n≥1 in Md
[0,1] such that χn −→ χ ∈ M[0,1] weakly.

ii) χ 7→ Φ̄χ is convex in M[0,1].

iii) Φ̄χ is twice h-differentible for any χ ∈ M[0,1] and

|∂hΦ̄χ(s, h; β)| ≤
√
a , 0 < ∂2hΦ̄χ(s, h; β) ≤ a . (1.64)

In particular it is convex in h.

iv) Consider a sequence (χn)n≥1in M[0,1] such that χn −→ χ ∈ M[0,1] weakly. Then

∂hΦ̄χn −→ ∂hΦ̄χ . (1.65)

v) The function P(β, h) = infχ∈M[0,1]
P(χ; β, h) is h-differentiable at any h ∈ R and

∂hP(β, h) = ∂hP(χ∗(β, h); β, h) = ∂hΦ̄χ∗(β,h)(0, h; β) (1.66)

where χ∗(β, h) is the unique distribution at which the infimum is attained and only the
explicit dependence on h is taken into account.
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Proof. i). Consider χ1, χ2 ∈ Mk
[0,1]. By (1.61)

|Φ̄χ1(s, h; β)− Φ̄χ2(s, h; β)| ≤
β2

2

∫ 1

s

dq |χ1([0, q])− χ2([0, q])| (1.67)

namely χ 7→ Φ̄χ is Lipschitz too on Mk
[0,1]. Therefore we perform a continuous extension to

M[0,1] obtaining a continuous functional with respect to the weak convergence. Furthermore,
given a sequence (χn)n≥1 converging to χ ∈ M[0,1] weakly we have

|Φ̄χn(s, h; β)− EΦχ(s, hξ; β)| ≤
β2

2

∫ 1

s

dq |χn([0, q])− χ([0, q])| −→ 0 (1.68)

by dominated convergence.

ii). The thesis immediately follows from i) and the main result in [24] that asserts the convexity
of Φχ.

iii). By Proposition 2 in [24] the first two y-derivatives of Φχ exist and are continuous, with
|∂yΦχ(s, y; β)| ≤ 1, C/ cosh2 y ≤ ∂2yΦχ(s, y; β) ≤ 1 for some C > 0. Then, using Lagrange’s
mean value theorem and dominated convergence one can show that

∂hΦ̄χ(s, h; β) = E [ξ∂yΦχ(s, hξ; β)] , ∂2hΦ̄χ(s, h; β) = E
[
ξ2∂2yΦχ(s, hξ; β)

]
(1.69)

which implies (1.64) and in turn the convexity of Φ̄χ in h.

iv). Since Φ̄η is convex in h for any η ∈ M[0,1], Φ̄χn is a sequence of convex functions. Therefore,
thanks to points and i), ii) and iii)

lim
n→∞

∂hΦ̄χn = ∂h( lim
n→∞

Φ̄χn) = ∂hΦ̄χ . (1.70)

v). P(β, h) is convex in h because it is the limit of a sequence of convex functions. Hence it is
sufficient to prove that at any h ∈ R the sub-differential is single valued (as done for instance
in [25]). For any fixed δ > 0 and b in the sub-differential the following holds

P(β, h)− P(β, h− δ)

δ
≤ b ≤ P(β, h+ δ)− P(β, h)

δ
. (1.71)

Now, thanks to point i) and ii), P(χ; β, h) is also χ-convex, thus it has a unique minimizer χ∗,
and it is continuous w.r.t. the weak convergence. Hence we can find a sequence of measures
such that χn −→ χ∗ weakly and

P(χn; β, h) ≤ P(χ∗; β, h) +
1

n
= P(β, h) +

1

n
(1.72)
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whilst it is obvious that P(χn; β, h) ≥ P(β, h). Inserting these inequalities in (1.71) produces

− 1

nδ
+

P(χn; β, h)− P(χn; β, h− δ)

δ
≤ b ≤ 1

nδ
+

P(χn; β, h+ δ)− P(χn; β, h)

δ
. (1.73)

Notice that ∂1,2h P(χn; β, h) = ∂1,2h Φ̄χn(0, h; β) hence we can expand the Parisi functional up to
the second order obtaining

− 1

nδ
+ ∂hP(χn; β, h)−

aδ

2
≤ b ≤ 1

nδ
+ ∂hP(χn; β, h) +

aδ

2
, (1.74)

where we have used (1.64). Choose now δ = n−1/2 and then send n → ∞. Finally, applying
point iv) we conclude that the unique possible value for b is ∂hΦ̄χ∗(0, h; β).

We are now ready to state the theorem containing the thermodynamic limit of the SK model.
The proof of it lies outside of the scopes of the thesis. However, it is worth mentioning that
the upper bound was obtained by Guerra in [7] by means of interpolation. The main idea is
to interpolate between the SK model and a one-body (Gaussian) interaction model, that is
completely decoupled, and thus directly integrable. The difficulty here is to give this model the
right correlation structure in order to reproduce the complicated nested term logZ0 or Φχ. One
way of doing it, is by means of Ruelle probability cascades [18], that thanks to their invariance
properties naturally reproduce logZ0.

Theorem 1.5 (Guerra [7], Talagrand [8], [26]). The limiting pressure of the SK model fulfills
the functional variational principle

p̄N(β, h)
N→∞−−−→ inf

χ∈M[0,1]

P(χ; β, h) (1.75)

where the infimum point χ∗(β, h) is unique.

1.2.4 The replica symmetric bound and the Almeida-Thouless line

In Section 1.2.1 we saw how the replica symmetric ansatz looks like, and we showed it cannot
be the correct solution in the low temperature region. However, one can still wonder if it is

correct for high enough temperatures (low β). In particular, if we consider hi = hξi with ξi
iid∼ Pξ

without loss of generality, we expect a transition line in the phase plane β, h. This line is thought
to be the celebrated Almeida-Thouless line [27]:

β2E cosh−4
[
β
(
Z
√
q̄ + hξ

)]
= 1 (1.76)

with q̄ solving (1.18). For too large β the l.h.s. exceeds 1 and one should use the RSB solution
for the SK model. On the contrary, it is conjectured that when the l.h.s. is below 1 the replica
symmetric ansatz (1.17) is exact. From a rigorous viewpoint we can prove much less. To begin
with we prove that the replica symmetric pressure bounds the real one from above:
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Theorem 1.6 (Replica symmetric bound). The pressure of the SK model is uniformly bounded
from above by the replica symmetric pressure:

p̄N(β, h) ≤ pSKRS (β, h; q) , ∀ q ∈ [0, 1] (1.77)

pSKRS (β, h; q) =
β2

4
(1− q)2 + E log 2 cosh [β (hξ +

√
qz)] . (1.78)

Proof. Consider the one-body Hamiltonian

H̃N(σ; J̃ , q) = −√
q

N∑
i=1

J̃iσi J̃i
iid∼ N (0, 1) (1.79)

p̃N =
1

N
E log

∑
σ∈{−1,1}N

e−βH̃N (σ)+βh
∑N

i=1 ξiσi = E log 2 cosh [β (hξ + z
√
q)] (1.80)

Define then the interpolating hamiltonian:

Ht(σ; J, J̃ , h) =
√
tHSK

N (σ; J) +
√
1− tH̃N(σ; J̃ , q)− h

N∑
i=1

ξiσi (1.81)

where J and J̃ are independent disorders. H̃ can be seen again as a Gaussian family with
covariance

E[H̃N(σ; J̃ , q)H̃N(τ ; J̃ , q)] = NqqN(σ, τ ) (1.82)

In order to obtain a bound on the pressure we aim to control the first derivative of the interpo-
lating pressure:

pN(t) :=
1

N
E log

∑
σ∈{−1,1}N

e−βHN (σ;J,J̃,h) . (1.83)

A direct computation using integration by parts yields

ṗN(t) = − β

N
E
〈

1

2
√
t
HSK

N (σ; J, h)− 1

2
√
1− t

H̃N(σ; J̃ , q)

〉
N,t

=

=
β2

4
E
〈
1− q2N(σ, τ )− 2q + 2qqN(σ, τ )

〉
N,t

=

= −β
2

4
E
〈
(qN(σ, τ )− q)2

〉
N,t

+
β2

4
(1− q)2 . (1.84)

Hence, by the theorem of integral calculus:

pSKN = p̃N +
β2

2
(1− q)2 − β2

4

∫ 1

0

dtE
〈
(qN(σ, τ )− q)2

〉
N,t

≤ p̃N +
β2

2
(1− q)2 . (1.85)

After plugging p̃N in the previous inequality it is clear that the r.h.s. is exactly pRS.
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The only rather general result on the Almeida-Thouless line is the following negative state-
ment [28].

Theorem 1.7. If

β2E cosh−4
[
β
(
Z
√
q̄ + hξ

)]
> 1 (1.86)

then the pressure of the SK model is strictly smaller than the replica symmetric pressure, namely:

lim
N→∞

p̄N(β, h) < inf
q∈[0,1]

pSKRS (β, h; q) (1.87)

Proof. From Guerra’s replica symmetry breaking bound [7] we know that:

p̄N(β, h) ≤ inf
χ∈M[0,1]

P(χ; β, h) (1.88)

We just need to provide a measure χ̃ with more than one atom, hence different from a replica
symmetric one, such that P(χ̃; β, h) < pSKRS (β, h; q̄) when (1.86) is fulfilled. Take for instance:

χ([0, q]) =


0 if q ∈ [0, q̄]

m if q ∈ [q̄, r]

1 if q ∈ [r, 1]

(1.89)

where m ∈ [0, 1] and r ∈ [q̄, 1]. With these sequences the Parisi functional becomes the 1-step
RSB functional

P(β, h;m, r) =
β2

4

(
1 +mq̄2 + (1−m)r2 − 2r

)
+ log 2+

1

m
EξEZ′

[
logEZ coshm β

(√
(r − q̄)Z +

√
q̄Z ′ + hξ

)]
(1.90)

When we take m = 1, and r = q̄ and we go back to replica symmetric pressure, namely:
P(β, h; 1, q̄) = pSKRS (β, h), because we are at the zero-th step of the replica symmetry breaking.
If P(β, h;m, r) touches m = 1 with positive m-derivative for some r the proof is finished.

K(β, h; r) :=
∂P(β, h;m, r)

∂m

∣∣∣∣
m=1

= −β
2

4
(r2 − q̄2)−

− EξEZ′

[
logEZ coshm β

(√
(r − q̄)Z +

√
q̄Z ′ + hξ

)]
+

+ EξEZ′

EZ cosh β
(√

(r − q̄)Z +
√
q̄Z ′ + hξ

)
log cosh β

(√
(r − q̄)Z +

√
q̄Z ′ + hξ

)
EZ cosh β

(√
(r − q̄)Z +

√
q̄Z ′ + hξ

)
 (1.91)
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In order to establish its sign in a neighborhood of r = q̄ we perform a Taylor expansion that
yields:

K(β, h; q̄) = 0 (1.92)

∂K(β, h; r)

∂r

∣∣∣∣
r=q̄

= 0 (1.93)

∂2K(β, h; r)

∂r2

∣∣∣∣
r=q̄

= −β
2

2

(
1− β2EZ cosh−4 β

(√
q̄z + hξ

))
(1.94)

The latter is positive for r in a neighborhood of q̄ by (1.86). This concludes the proof.

Nevertheless, if ξi
iid∼ N (0, a) the RSB region can be fully characterized in terms of (1.76).

Only the statement of the following theorem will be useful in our analysis, so we omit the proof.
The interested reader can directly look at the original reference.

Theorem 1.8 (Chen [22]). Consider the SK model with centered Gaussian external field. For
any β > 0 and h > 0, the Parisi formula exhibits the replica symmetric solution if and only if
(β, h) lies inside the AT line, i.e.,

β2E cosh−4
[
β
(
Z
√
q̄ + hξ

)]
≤ 1 . (1.95)

As a concluding remark, we stress that Replica Symmetry and its breaking are connected to
the concentration of the overlap, which is the key order parameter in the SK model. A first signal
of this connection can be found in (1.85). In fact, following the first equality, if one could prove

that the quadratic deviation E ⟨(qN(σ, τ )− q)2⟩N,t

N→∞−−−→ 0 with some t-uniformity condition,
then the RS pressure would be exact. For the SK model this is not the case, as it can be seen
from Theorem 1.7. In the SK model the overlap fluctuates even in the thermodynamic limit and,
at least for our purposes1, χ∗(β, h) might be interpreted as its asymptotic distribution. However,
writing a so-called sum rule like the one in (1.85) for other models, such as Curie-Weiss, can be
a winning strategy.

1.3 High dimensional Inference and Statistical Mechan-

ics

In this section we start by highlighting the correspondence between the Statistical Mechanics
formalism already outlined above, and the Information theoretic one. The goal of Inference is
generally to retrieve some signal, called ground truth, and usually denoted by x∗ from a set
of noisy observations that depend on it, denoted by y. The typical situation also tackled in

1It can be shown that the first moments of the overlap are asymtptotically computable through χ∗. See [18]
Theorem 3.7 and [25] for precise statements.
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undergraduate courses is that of low dimensional inference, where the parameters to estimate
(say the components of x∗) are finite in number, whereas one assumes to have a growing number
of observations at disposal. An example is trying to estimate mean and variance of a Gaussian
given N samples from it. In this case, it is well known that the max-likelihood approach gives a
good answer to the problem. More precisely, it allows the observer to estimate the lacking pa-
rameters exactly when the number of observations becomes really large, ideally infinity. Notice
that this kind of approach is Bayesian: one needs to know the probability of the observations
given the parameters sought.

In this thesis however, we deal with high dimensional inference problems, where both the
number of observations and ground truth signal components grow. Typically, if the size of the
second grows with N , the first grow with Nk for some integer k. This makes the problem much
more complicated and it is known that the max-likelihood approach is no longer the optimal
one [29]. We stress that introducing such scalings in the inference task could also imply the
presence of phase transitions in some of the control parameters of the problem.

1.3.1 Basic definitions and Bayes Optimal Setting (BOS)

The goal of the inference tasks treated hereby is the reconstruction of non-negligible fraction of
components of a ground truth signal x∗ drawn from some prior distribution PX . In some cases

we will assume factorization over the components: X∗
i

iid∼ PX . We denote with a ∗ the ground
truth, namely those signal vectors that are directly drawn from the prior. The observations
can be modeled as a random function, the randomness being in some kind of noise Z, of the
ground truth: Y = FZ(X

∗). This, from a probabilistic perspective, translates into a likelihood
distribution density for the observations given an instance x sampled from PX : pY|X=x. We
stress that the form of this likelihood is strongly affected by the nature of the noise, since for a
fixed realization x the randomness in Y is solely inherited by the noise.

For our purposes we can assume to be able to write the posterior measure of the process
that plays a central role:

dPX|Y=y(x) =
pY|X=x(y) dPX(x)

Z(y)
, Z(y) =

∫
pY|X=x(y) dPX(x) . (1.96)

Z(y) is a normalization probability usually called evidence. It is important to mention that
inference is performed by Statisticians that can have different features, Bayes-optimality being
one of them:

Definition 1.3 (Bayes-optimality). A Statistician is said to be Bayes-optimal, or in the Bayes
optimal setting (BOS), if they know everything of the data generating process, namely PX and
FZ(·), or equivalently they know the correct posterior measure in (1.96).

As intuition suggests, a Bayes-optimal Statistician is able to reconstruct the signal in the
best possible way in a suitable error metric: the L2 norm.
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Proposition 1.9. Define the mean square error as the a posteriori expected quadratic deviation
of an estimator x̂(Y):

MSE(y) =

∫
∥x− x̂(y)∥2 dPX(x) . (1.97)

The MSE for a given set of observations y is minimized by the estimator

x̂(y) =

∫
x dPX|Y=y(x) =: ⟨X⟩y . (1.98)

Proof. The MSE is convex in x̂(y). It is thus sufficient to impose that the gradient w.r.t.
vanishes.

The previous proposition also motivates our interest in the posterior distribution (1.96). One
may decide to average also the possible Y-outcomes to have a general average expected error.
This quantity is called minimum (expected) mean square error :

MMSE := EY

〈
∥X− ⟨X⟩Y∥2

〉
Y
= EYEX|Y∥X− EX|YX∥2 . (1.99)

One can rewrite (1.99) expanding the square and using the total probability rule of conditional
expectations

MMSE = E∥X∥2 − 2EYEX|Y[X · EX|YX] + EY∥EX|YX∥2 = E∥X∥2 − EYEX|Y[X · EX|YX] =

= E∥X∥2 − EX∗,Y[X
∗ · EX|YX] = EX∗,Y∥X∗ − ⟨X⟩Y∥2 . (1.100)

Therefore, we see that the MMSE is really a measure of the quadratic deviation from the
ground truth, and hence a good measure of error. (1.100) is first example of the application
of a Nishimori identity: we have replaced a sample X from the posterior with a sample drawn
directly from the ground truth. This is actually a rather general fact stated in the following

Proposition 1.10 (Nishimori identities). Let f be a bounded function of the observations Y,
the ground truth X∗ and n−1 replicas (X(k))nk=2 drawn independently from the posterior (1.96).
Then

EX∗,Y⟨f(Y;X∗,X(2), . . . ,X(n))⟩Y = EY⟨f(Y;X(1),X(2), . . . ,X(n))⟩Y (1.101)

where now X(1) ∼ PX|Y.

Proof. We omit the function in the proof and focus only on the chain of expectations on the
r.h.s. of (1.101):

EY

n∏
k=1

EX(k)|Y(· · · ) = EYEX(1)|Y

n∏
k=2

EX(k)|Y(· · · ) = EX∗,Y

n∏
k=2

EX(k)|Y(· · · ) . (1.102)

The previous completes the proof.
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It is important to stress here that the validity of these identities is implied by Bayes-
optimality. A sub-optimal Statistician (see Chapter 4) cannot access the Nishimori identities
for reasons that will be clarified later. Despite being an almost immediate consequence of the
total probability rule, and hence of the optimal setting, the Nishimori identities are strongly
related to replica symmetry.

The reader will have noticed at this point some similarities with the Statistical Mechanics
formalism. In particular, Z(y) in (1.96) can be interpreted as a partition function correspond-
ing to a Hamiltonian − log pY|X=x(y) and unit inverse absolute temperature. The associated
quenched free entropy per signal component, with a total of N components, is then

p̄N =
1

N
EY logZ(Y) =

1

N
EY log

∫
pY|X=x(Y) dPX(x) = − 1

N
HN(Y) , (1.103)

namely the Shannon entropy of the observations up to a sign. The latter can depend also
on some other parameters of the problem that we neglected for the moment to lighten the
notation. The main information theoretic quantity of interest is the mutual information per
signal component between the ground truth and the observations:

1

N
IN(X

∗,Y) =
1

N
HN(Y)− 1

N
HN(Y|X∗) . (1.104)

The last contribution in (1.104) is the conditional Shannon entropy of Y given X∗ and, since
Y given a realization of X∗ is basically noise, HN(Y|X∗) can be considered as a pure noise
contribution.

A fundamental choice for FZ(X
∗) is the Gaussian channel, namely

Y =
√
µX∗ + Z (1.105)

where Zi
iid∼ N (0, 1) and µ > 0 is called signal to noise ratio (SNR). Then the posterior measure

rewrites as

dPX|Y=y(x) =
1

Z(y)

exp
(
−1

2
∥y −√

µx∥2
)

(2π)N/2
dPX(x) (1.106)

and the corresponding Shannon entropy is

HN(Y) = −EY log

∫
exp

(
−1

2
∥Y −√

µx∥2
)

(2π)N/2
dPX(x) . (1.107)

Inserting the change of variables (1.105) into the previous equation one can fully exploit the
Gaussian nature of the noise and prove the following

Proposition 1.11 (I-MMSE formula). For the Gaussian channel (1.105) it holds that

d

dµ
IN(X

∗,Y) =
1

2
MMSE =

1

2
E∥X∗ − ⟨X⟩Y∥2 . (1.108)
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Proof. A direct calculation yields

d

dµ
IN(X

∗,Y) =
d

dµ
HN(Y) =

− d

dµ

∫
dPX(x

∗)

∫
dNz

(2π)N/2
e−

∥z∥2
2 log

∫
dPX(x)

exp
(
−1

2
∥z−√

µ(x− x∗)∥2
)

(2π)N/2
=

1

2
√
µ
EZ,X∗⟨(Z−√

µ(X−X∗)) · (X−X∗)⟩Z,X∗ . (1.109)

Using Gaussian integration by parts over Z one gets

d

dµ
IN(X

∗,Y) =
1

2
EZ,X∗⟨∥X−X∗∥2⟩Z,X∗ − 1

2
√
µ
EZ,X∗⟨Z−√

µ(X−X∗)) · (X−X∗)⟩Z,X∗

+
1

2
√
µ
EZ,X∗⟨Z−√

µ(X−X∗))⟩Z,X∗ · (X−X∗)⟩Z,X∗ =
1

2
EZ,X∗∥X∗ − ⟨X⟩Z,X∗∥2 . (1.110)

Finally, one replaces back EZ,X∗ with EY and ⟨·⟩Z,X∗ with ⟨·⟩Y, and the statement is proved.

Notice that IN is related to the MMSE only through a Nishimori identity. In fact, the final
result in (1.110) would not match the definition of MMSE in absence of the Nishimori identities,
but it would still be a measure of divergence from the ground truth one wants to estimate.

1.4 The spiked Wigner model

The spiked Wigner model (WSM) was first introduced in [30] as a model for Principal Com-
ponent Analysis (PCA), and it was widely studied in recent literature. Without pretension of
being exhaustive, we refer the interested reader to [31, 32, 17, 14, 13, 33, 34], that are some of
the key papers for this thesis2. The WSM features an observation channel of the form

yij =

√
µ

N
x∗ix

∗
j + zij , i ≤ j ≤ N (1.111)

where x∗i
iid∼ PX and zij

iid∼ N (0, 1 + δij), and by convention we also take zij = zji. With these
symmetry constraints one may rewrite the observations as

y =

√
µ

N
x∗x∗T + z , (1.112)

meaning that FZ(X
∗) =

√
µ
N
X∗X∗T + Z. The noise matrix z = (zij)i,j≤N is also called Wigner

matrix.

2See also the introduction of Chapter 5 for other references.



38 CHAPTER 1. BASIC NOTIONS

Figure 1.1: Histogram of eigenvalues against Wigner’s semicircle law in blue.

At its birth, the WSM was studied from the point of view of its spectral properties. It is
known that the density of eigenvalues of a properly re-scaled Wigner matrix, such as Z/

√
N ,

forms a semicircle of radius 2 centered at the origin [35, 36]. However, when a rank one
perturbation is added to it like in (1.111), one can rigorously prove that, if the perturbation is
“strong” enough, namely if the SNR parameter µ is large enough, one eigenvalue pops out of
the Wigner semicircular bulk, see Figure 1.2. This phenomenon is also known as BBP transition
[37], and seems to suggest that the retrieval of the given instance of the signal x∗ is possible as
long as this “special” eigenvalue has popped out of the Wigner sea.

The result can be generalized for finite rank perturbations of extensive (namely growing
with the size of the system/matrix) rank matrices drawn from other random matrix ensembles
[38]. Furthermore, it is possible to evaluate the average overlap between the ground truth x∗

and the eigenvector(s) corresponding to the mentioned leading eigenvalue(s) coming out of the
bulk, that usually serves as an estimator for x∗. The higher this overlap is, the better the
reconstruction.

Notice though, that if the Statistician uses only this procedure to retrieve the signal then she
is missing an important piece of information that is actually at hand: the prior distribution. As
a matter of fact, the previous principal component analysis strategy does not take into account
the prior from which x∗ is drawn, that is known in a Bayes-optimal setting. Nevertheless, it
can be proved, using techniques we shall see later, that for the Gaussian prior PCA is actually
also Bayes-optimal, and we can give an intuitive reason for that: the Gaussian distribution is
the one that contains least information (has the largest entropy) for fixed mean and variance,
that are usually two parameters under control. Hence, there is no other information than the
one contained in them to exploit.
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Figure 1.2: BBP transition. Spectrum of the observations (1.111) for x∗i
iid∼ (δ1 + δ−1)/2, µ = 4.

Wigner’s semicircular law in blue as before.

1.4.1 Free entropy in the BOS via adaptive interpolation

For our purposes, it will suffice to restrict ourselves to the Rademacher prior, that is PX =
(δ1 + δ−1)/2. The computation will simplify considerably, though maintaining most of the
important features, and it will allow us to show the parallelism with the gauge theory of spin
glasses, where the Nishimori identities were first found. Another convenient choice to match
the notation used in spin glasses and that follows in the next chapters, is to use spins denoted
by σ’s, instead of the x′s and take the asymmetric observations

yij =

√
µ

2N
σ∗
i σ

∗
j + zij , 1 ≤ i, j ≤ N (1.113)

with zij
iid∼ N (0, 1). The probabilistic properties of the original channel (1.111) can be re-

obtained simply by symmetrizing the previous one: (yij + yji)/
√
2.

(1.113) is a type of Gaussian channel. Hence, writing the related posterior measure and
Statistical Mechanics Hamiltonian is not difficult:

dPσ|Y(σ) =
1

Z(y)

N∏
i,j=1

exp

[
−1

2

N∑
i,j=1

(
yij −

√
µ

2N
σiσj

)2
]

N∏
i=1

(
δ−1(σi) + δ1(σi)

2

)
. (1.114)

In order to lighten the notation, instead of carrying all the delta products, we just sum over
the sigma’s keeping in mind they’re just binary variables. Now we expand the square in the
exponential taking into account that σ2

i = 1 and neglecting terms not depending on σ, i.e.
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sums of y2ij:

µN(σ) =
1

Z(y)
exp

[
N∑

i,j=1

√
µ

2N
zijσiσj +

µ

2N
σiσ

∗
i σjσ

∗
j

]
, (1.115)

from which we clearly recognize the two-body interaction Hamiltonian:

−HN(σ; z,σ
∗) =

N∑
i,j=1

(√
µ

2N
zij +

µ

2N
σ∗
i σ

∗
j

)
σiσj . (1.116)

We denote the corresponding thermodynamic pressure per particle as

p̄N(µ) =
1

N
E log

∑
σ∈{−1,+1}N

exp (−HN(σ; z,σ
∗)) (1.117)

where the average is over all the disorder. Now we look for an interpolation strategy to decouple
problem in such a way that we can then sum over the spins. However, since we wish to maintain
optimality (and in particular the Nishimori identities), we must identify another channel such
that for any interpolation time t the model comes from an inference problem in the BOS.

Definition 1.4 (Adaptive interpolation for WSM). Let t ∈ [0, 1], ϵ ∼ Uniform[sN ,2sN ] with

sN ∝ N− 1
16 . Define

Qϵ(t) = ϵ+ µ

∫ t

0

ds qϵ(s) . (1.118)

with qϵ(s) ≥ 0 any non negative function of s to be chosen later.
The interpolating inference problem is defined by the observations

yij =

√
(1− t)µ

2N
σ∗
i σ

∗
j + zij (1.119)

yi =
√
Qϵ(t)σ

∗
i + z̃i (1.120)

with zi
iid∼ N (0, 1) and independent on any other random variable. The related Hamiltonian is

−Ht(σ; z, z̃,σ
∗) =

N∑
i,j=1

(√
(1− t)µ

2N
zij +

(1− t)µ

2N
σ∗
i σ

∗
j

)
σiσj +

N∑
i=1

(√
Qϵ(t)z̃i +Qϵ(t)σ

∗
i

)
σi .

(1.121)

(1.121) induces an interpolating Gibbs measure denoted by ⟨·⟩N,ϵ,t.
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The ϵ-perturbation in the Hamiltonian has been introduced to “avoid” criticalities along the
interpolation. Let us now check the corresponding interpolating pressure at the two ends.

Lemma 1.12. Denote

p̄N(t) =
1

N
E log

∑
σ∈{−1,+1}N

exp (−Ht(σ; z, z̃,σ
∗)) (1.122)

where E is over all the quenched disorder, expect ϵ, and

ψ(q) := E log 2 cosh(Z
√
q + qσ∗) , Z ∼ N (0, 1) , σ∗ ∼ δ1 + δ−1

2
. (1.123)

Then

p̄N(t = 0) = p̄N(µ) +O(sN) (1.124)

p̄N(t = 1) = ψ (Qϵ(1)) = ψ

(
µ

∫ 1

0

dt qϵ(t)

)
+O(sN) (1.125)

with Z ∼ N (0, 1).

Proof. Let us begin with p̄N(t = 0). p̄N(t = 0) is Lipschitz in ϵ. Indeed, using integration by
parts we can show that

∂p̄N(t = 0)

∂ϵ
=

1

2N

N∑
i=1

E[1− ⟨σ(1)
i σ

(2)
i ⟩N,ϵ,t=0 + ⟨σiσ∗

i ⟩N,ϵ,t=0] ,

from which, using a Nishimori identity on the second term in the square brackets, we get

∂p̄N(t = 0)

∂ϵ
=

1

2N

N∑
i=1

[1 + E⟨σiσ∗
i ⟩N,ϵ,t=0] ∈ [0, 1] . (1.126)

Hence, (1.124) follows straightforwardly by a first order Taylor expansion in ϵ.
The proof for (1.125) follows the same lines. In particular, it is sufficient to prove that ψ is

Lipschitz. This involves the remarkable identity

Eσ∗ tanh (z
√
q + qσ∗) = E tanh2 (z

√
q + qσ∗) (1.127)

that is itself a Nishimori identity of a one body, or side information, channel. We have that

∂ψ

∂q
(q) =

1 + Eσ∗ tanh
(
z
√
q + qσ∗)

2
∈ [0, 1] . (1.128)

(1.125) then follows again from a first order Taylor expansion.
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We have seen that derivatives of the pressure make renormalized spin sums appear. It is
thus convenient to introduce the following standard quantity.

Definition 1.5 (Mattis magnetization (or overlap)). Given a sample from the posterior measure
(1.115), σ, and an instance of the ground truth σ∗, the Mattis magnetization is the quantity

mN(σ,σ
∗) =

1

N

N∑
i=1

σiσ
∗
i . (1.129)

The definition extends to generic priors, different than Rademacher.

The Mattis magnetization is an overlap, just like the one defined for SK, but instead of being
between two replicas of the system, it is between the ground truth and a replica of the system.
Thanks to the Nishimori identities, we know that actually there is no difference between the
two quantities in law, in fact

E⟨σiσ∗
i ⟩N = E⟨σ(1)

i σ
(2)
i ⟩N (1.130)

whenever E⟨·⟩N is the quenched posterior average of an inference problem in the BOS. We are
now ready to state a sum rule for the adaptive interpolation:

Proposition 1.13 (Sum rule for WSM, Ising spins). For any choice of the (non-negative)
function qϵ(t), the pressure of the WSM (with Ising spins) (1.117) obeys the following sum rule:

p̄N(µ) = O(sN) + ψ(Qϵ(1)) +
µ

4

∫ 1

0

dt
[
(1− qϵ(t))

2 − 2q2ϵ (t)
]
+
µ

4

∫ 1

0

dtRϵ(t) , (1.131)

with a remainder

Rϵ(t) := E⟨(mN(σ
∗,σ)− qϵ(t))

2⟩N,ϵ,t . (1.132)

Proof. Thanks to the previous Lemma, in particular to (1.124) and (1.125), it is sufficient to
compute the derivative of the interpolating pressure and to re-integrate it to evaluate the finite
increment to subtract from p̄N(1).

Using integration by parts over the Gaussian disorder one gets

˙̄pN(t) = −µ
4

[
1− E⟨q2N(σ, τ )⟩N,ϵ,t

]
+
µ

2
qϵ(t) [1− E⟨qN(σ, τ )⟩N,ϵ,t]

− µ

2
E⟨m2

N(σ
∗,σ)⟩N,ϵ,t + µqϵ(t)E⟨mN(σ

∗,σ)⟩N,ϵ,t .
(1.133)

Since the interpolating model is build to be on the Nishimori line for any t we are allowed to
use the Nishimori identities, that in particular imply E⟨mk

N(σ
∗,σ)⟩N,ϵ,t = E⟨qkN(σ, τ )⟩N,ϵ,t for

any k. These yields

˙̄pN(t) =
µ

2
q2ϵ (t)−

µ

4
(1− qϵ(t))

2 − µ

4
E⟨(mN(σ

∗,σ)− qϵ(t))
2⟩N,ϵ,t . (1.134)

The result is then directly implied by the fundamental theorem of integral calculus.



1.4. THE SPIKED WIGNER MODEL 43

Notice that, exactly as for the SK model, the sum rule presents a remainder whose vanishing
is in direct connection with the replica symmetry (breaking) of the model. In this case though,
thanks to Bayes-optimality and the Nishimori identities one can show that the overlap (Mattis
magnetization) does indeed concentrate in a specific measure, for a specific choice of qϵ(t).

The one interesting for our purposes is made according to the following ODE

Q̇ϵ(t) = µE⟨mN(σ
∗,σ)⟩N,ϵ,t , Qϵ(0) = ϵ . (1.135)

Notice that we cannot choose since the very beginning qϵ(t) = E⟨mN(σ
∗,σ)⟩N,ϵ,t, since the

brackets themselves depend on qϵ(t). Hence, we have to formalize the choice using an ODE as
done above. It can be proved that the previous ODE has a unique solution on [0, 1]. In fact, the
velocity field on the r.h.s. is smooth, Lipschitz and non-decreasing in Qϵ(t) for any fixed N . In
order to keep the this introduction light, we defer the proof of this fact into Appendix A.1, where
it is done in a more generic setting. All this is to say that the choice qϵ(t) = E⟨mN(σ

∗,σ)⟩N,ϵ,t

is indeed licit.

Lemma 1.14 (Concentration WSM, Ising spins). Denote Eϵ(·) := 1
sN

∫ 2sN
sN

dϵ (·), and choose

the interpolation functions according to (1.135). Then it holds that

EϵE
〈
(mN(σ

∗,σ)− E⟨mN(σ
∗,σ)⟩N,ϵ,t)

2
〉
N,ϵ,t

N→∞−−−→ 0 . (1.136)

The proof of this fact is important but rather technical. We refer again the reader to
Appendix A.1 for it. For the moment, we only mention that this result can be proved in general
Inference problems in the Bayes optimal setting [39, 40], and that an L2 type of concentration
for the pressure is needed.

Lemma 1.15 (L2-concentration of WSM pressure, Ising spins). There exists a positive constant
C > 0 such that

E

 1

N
log

∑
σ∈{−1,+1}N

exp (−Ht(σ; z, z̃,σ
∗))− p̄N(t)

2 ≤ C

N
. (1.137)

The previous is a simple consequence of Efron-Stein concentration inequality. See the proof
of Lemma 4.8 for an exhaustive example. Notice moreover, that (1.136) is expressed in ϵ-average,
similarly to what happens in classical thermodynamic stability results [41], precisely to “tame”
the behaviour of the fluctuations close to critical points.

With the Lemmas above, we can rigorously prove the replica symmetric variational formula
for the asymptotic pressure of the spiked Wigner model. As it is clear from the proof, the
concentration (1.136) is sufficient to imply a finite dimensional variational principle, in contrast
to what happens in the SK model, that has no underlying planted signal x∗.
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Theorem 1.16 (Thermodynamic limit for WSM, Ising spins). In the thermodynamic limit, the
pressure of the WSM satisfies the replica symmetric variational principle

p̄N(µ)
N→∞−−−→ sup

x≥0
p(µ;x) , (1.138)

where the variational potential p is

p(µ;x) :=
µ

4
(1− x)2 − µx2

2
+ ψ(µx) . (1.139)

Proof. The proof consists in finding two bounds matching in the thermodynamic limit.

Lower Bound : choose qϵ(t) = x ∈ R≥0. The sum rule (1.131) with this choice simplifies to

p̄N(t) = O(sN) + ψ(µx) +
µ

4
(1− x)2 − µx2

2
+

+
µ

4

∫ 1

0

E⟨(x−mN(σ,σ
∗))2⟩N,ϵ,t ≥ p(µ;x) +O(sN) (1.140)

where we used also the second equality in (1.125). The previous bound is uniform in x. So we
just let N → ∞ to get rid of O(sN) and we optimize w.r.t. x ≥ 0.

Upper bound : We start by proving that ψ is convex in its argument, that will be needed later.
Observe that the following remarkable identity holds:

Eσ∗ tanh3(z
√
q + qσ∗) = E tanh4(z

√
q + qσ∗) , (1.141)

again because it is a Nishimori identity of a side information Gaussian channel. Then, using
this and Gaussian integration by parts one can prove that

d2ψ

dq2
(q) =

1

2
E
[
(1− tanh2(z

√
q + qσ∗))2

]
> 0 . (1.142)

Once the convexity is proved, we use Jensen’s inequality in the sum rule to extract the integral
inside ψ in (1.125) at the expense of an inequality:

p̄N(µ) ≤ O(sN) +

∫ 1

0

dt
[
ψ(µqϵ(t)) +

µ

4
(1− qϵ(t))

2 − µ

2
q2ϵ (t)

]
+

∫ 1

0

dtRϵ(t) =

= O(sN) +

∫ 1

0

dt p(µ; qϵ(t)) +

∫ 1

0

dtRϵ(t) ≤ O(sN) + sup
x≥0

p(µ;x) +

∫ 1

0

dtRϵ(t) .

(1.143)

What remains to do now is to choose the qϵ(t) accurately, in such a way to make Rϵ(t) disappear.
The choice is made according to (1.135). The remainder thus acquires the familiar form:

E
〈
(mN(σ

∗,σ)− E⟨mN(σ
∗,σ)⟩N,ϵ,t)

2
〉
N,ϵ,t

. (1.144)
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We then average over ϵ on both sides of (1.143) and by Fubini’s Theorem we exchange Eϵ with
the t-integral of the remainder in order to be able to use (1.136):

p̄N(µ) ≤ O(sN) + sup
x≥0

p(µ;x) +

∫ 1

0

dtEϵE
〈
(mN(σ

∗,σ)− E⟨mN(σ
∗,σ)⟩N,ϵ,t)

2
〉
N,ϵ,t

. (1.145)

Finally, by dominated convergence the last term vanishes when N → ∞ and this completes the
proof.

Now we have to reconnect the statistical pressure to the mutual information of the problem.
Revising our steps that led to the definition of the pressure, it is not difficult to see what are
the terms to re-add:

1

N
IN(X

∗,Y)
N→∞−−−→ i(µ) := log 2 +

µ

2
− sup

x≥0
p(µ;x) . (1.146)

1.4.2 Spin glasses on the Nishimori line

The WSM free entropy was computed omitting on purpose the fact that the entire problem
can be made independent of the ground truth when the prior is Rademacher, as a consequence
of a simple gauge transformation. We preferred to present the proofs as above because they
generalize easier to the case of generic priors and the information channels are more evident.

The mentioned gauge transformation leaves the statistical properties of the model totally un-
changed. More specifically, considering the Hamiltonian (1.121) for example, without changing
the laws of the quenched random variables one can operate the transformation

zij 7→ σ∗
i σ

∗
j zij , σi 7→ σiσ

∗
i , z̃i 7→ σ∗

i z̃i . (1.147)

The same operation can be made on the original Hamiltonian of course, and on ψ with Z 7→ Zσ∗

and using the parity of the hyperbolic cosine:

ψ(q) = E log 2 cosh(Z
√
q + q) . (1.148)

Doing so, the interpolating Hamiltonian becomes

−Ht(σ; z, z̃,σ
∗) =

N∑
i,j=1

Jij(t)σiσj +
N∑
i=1

hi(t)σi (1.149)

with Jij(t)
iid∼ N

(
(1−t)µ
2N

, (1−t)µ
2N

)
, hi(t)

iid∼ N (Qϵ(t), Qϵ(t)). We thus get a spin-glass model on

the Nishimori line, namely with all the coupling parameters with mean equal to their variance
[29, 19]. The very same gauge symmetry has also other consequences, among which

E⟨σi⟩2N,ϵ,t = E⟨σiτi⟩N,ϵ,t = E⟨σiσ∗
i ⟩N,ϵ,t = E⟨σi⟩N,ϵ,t,σ∗=1 = E⟨σi⟩2N,ϵ,t,σ∗=1 . (1.150)

On the Nishimori line, a spin-glass enjoys a whole family of identities as the one above, and
correlation inequalities [42] that will be displayed in the following chapter.
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Chapter 2

Convex multi-species spin glass on the
Nishimori line

In this chapter we investigate the properties of the elliptic multi-species Sherrington-Kirkpatrick
model along the Nishimori line [43], namely the sub-manifold of the phase space in which mean
and variance of the random parameters, interactions and magnetic fields, coincide. The multi-
species version of a mean field model is simply obtained by relaxing the full invariance under
the symmetric group into the weaker one of the product of the symmetric groups on a given
partition of the system. The ratios of the sizes of the sets in the partition over the size of
the entire system, also called form factors, are kept fixed in the thermodynamic limit. The
ellipticity condition provides the positivity and monotonicity properties that allow to study the
system with interpolation methods [7, 21, 18] and obtain a Parisi like solution for Gaussian
centered interactions and deterministic magnetic fields [44, 45] (see also [46] for a case with a
ferromagnetic mean of the interactions).

The choice to study the model on the Nishimori line [29] reflects the importance of this
sub-manifold of the phase space due to its ubiquitous appearance in error correcting codes [29],
signal processing and inference problems [47, 17].

The main results, Theorem 2.6 and Lemma 2.5 in Section 2.3, are the proof of the variational
expression for the pressure per particle in the thermodynamic limit and the self-averaging of
the magnetization per particle. The techniques we use to prove them are obtained by merging
methods whose origins belong both to statistical mechanics and high dimensional inference [48,
49, 13, 11, 19, 9, 7, 42, 50], and among them the Guerra interpolation scheme and the adaptive
interpolation introduced in the previous chapter have a particular relevance.

In Section 2.1 we introduce the multi-species setting and give the definition of the model
together with its main properties, such as the self-averaging of the pressure and the Nishimori
identities. In Section 2.2 we extend the adaptive interpolation method our multi-dimensional
model and we use it to compute the exact solution in Section 2.3, by writing the pressure in the
thermodynamic limit in terms of a finite-dimensional variational principle. Finally we study the
main properties of the extremizers of our variational expression. The conclusions summarise the

47
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results and specify the connection of our model with the spatially coupled spiked model [51, 52,
47, 33]. In the Appendix A.1 the reader can find the details of the proof of the concentration
of the magnetization in the thermodynamic limit, which ultimately leads to replica symmetry.
For completeness the properties of the mono-species case (SK) on the Nishimori line, already
introduced in the previous chapter, are studied in Appendix A.2.

2.1 Definitions and basic properties

Consider a set Λ of indices with cardinality |Λ| = N . Let us partition Λ in K disjoint subsets:

Λ =
K⋃
r=1

Λr, Λr ∩ Λs = ∅ ∀r ̸= s, |Λr| =: Nr, αr :=
Nr

N
∈ (0, 1) (2.1)

Each subset will be called species from now on. The model is defined by the following Gaussian
Hamiltonian:

HN(σ) := −
K∑

r,s=1

∑
(i,j)∈Λr×Λs

J̃rs
ij σiσj −

K∑
r=1

∑
i∈Λr

h̃riσi, σ ∈ {+1,−1}N =: ΣN (2.2)

J̃rs
ij

iid∼ N
(µrs

2N
,
µrs

2N

)
, h̃ri

iid∼ N (hr, hr) (2.3)

where µrs and hr are positive real numbers, and the K × K matrix µ = (µrs)r,s=1,...,K can be
assumed to be symmetric without loss of generality. Throughout this Chapter, as can be seen
from the previous definitions, the family of Gaussian variables (2.3) are assumed to be in a
special line where mean values and variances are tied to be identical. One can see that this
condition, in the context of statistical mechanics, is known as Nishimori line and was introduced
in [53] for the SK model with Bernoulli couplings. For the Gaussian SK at inverse temperature β

and random couplings Jij
iid∼ N

(
J0
2N
, J
2N

)
the Nishimori line is defined by βJ = J0 (see Paragraph

4.3 in [29]) which is equivalent to (2.3) when K = 1, which explains also why we set β = 1
throughout this chapter, and the next one, without loss of generality.

It is also convenient to rewrite the Hamiltonian (2.2) in terms of centered Gaussians. To do
that we introduce the following notation for species magnetizations and overlaps that will be
used throughout:

mr(σ) :=
1

Nr

∑
i∈Λr

σi, qr(σ, τ ) :=
1

Nr

∑
i∈Λr

σiτi (2.4)

m(σ) := (mr(σ))r=1,...,K , q(σ, τ ) := (qr(σ, τ ))r=1,...,K (2.5)

where bold characters here and below stand for vectors and σ, τ ∈ ΣN := {−1, 1}N . We also
set:

∆ := (αrµrsαs)r,s=1,...,K , α̂ := diag(α1, α2, . . . , αK) , h := (hr)r=1,...,K . (2.6)
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We will call ∆ the effective interaction matrix because it encodes the interactions and relative
sizes of the species in our model and we notice that it is positive definite if and only if µ is. See
Figure2.1 for a scheme.

Figure 2.1: Scheme of the structure of the interactions.

With these notations we can write a Hamiltonian in terms of centered Gaussian variables
which is equivalent in distribution to the one in (2.2):

HN(σ) = − 1√
2N

K∑
r,s=1

∑
(i,j)∈Λr×Λs

Jrs
ij σiσj −

K∑
r=1

∑
i∈Λr

hriσi+

− N

2
(m,∆m)−N(α̂h,m) , Jrs

ij
iid∼ N (0, µrs) , hri

iid∼ N (0, hr) . (2.7)

The last expression allows us to identify the model with a multi-species Sherrington-Kirkpatrick
model (SK) with the addition of a ferromagnetic interaction and a positive external field whose
intensity coincide with the variances of the random terms.

Now we define the main quantity under investigation, the random and average quenched
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pressure densities:

pN :=
1

N
log

∑
σ∈ΣN

exp (−HN(σ)) (2.8)

p̄N(µ,h) := EpN (2.9)

where we emphasize the dependence of the quenched pressure on the mean parameters µrs, h
and the symbol E stands for the Gaussian expectation with respect to the disorder. We denote
the Boltzmann-Gibbs expectation as:

⟨·⟩N :=

∑
σ∈ΣN

e−HN (σ)(·)
ZN

, ZN :=
∑
σ∈ΣN

e−HN (σ) . (2.10)

In this setting the self-averaging of the pressure can be proved in its strongest form, as antici-
pated. We recall that the proof of replica symmetry relies on this property and on the Nishimori
identities as well.

Remark 2.1. While throughout this chapter and the next one we keep the form factors αr’s
constant as N → ∞, all the results hold also under the weaker hypothesis that Nr/N → αr ∈
(0, 1). Indeed any vanishing correction to αr doesn’t change the thermodynamic limit of the
quenched pressure density (2.9). This can be seen proving by interpolation method that at
given N the quenched pressure is a Lipschitz function of ∆ w.r.t. the entrywise matrix norm∑

r,s≤K |∆r,s|.

Proposition 2.1. There exists C = C(µ, h) > 0 such that for every x > 0

P (|pN − p̄N(µ,h)| ≥ x) ≤ 2 exp

(
−Nx

2

4C

)
. (2.11)

As a consequence

E[(pN − p̄N(µ,h))
2] ≤ 8C

N
. (2.12)

Proof. The random pressure pN is a Lipschitz function of the independent standard Gaussian
variables Ĵ = (Jrs

ij /
√
µrs)i,j,r,s , ĥ = (hri/

√
hr)i,r . Indeed:

N2 ∥∇Ĵ ,ĥ pN∥2 ≤ N

(
(1,∆1)

2
+ (α̂h,1)

)
≡ C N (2.13)

The inequality (2.11) then follows by a standard concentration property of the Gaussian measure
(see Theorem 1.3.4 in [20]). A tail integration finally leads to (2.12).
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2.1.1 Nishimori identities and correlation inequalities

Here we will list some identities and inequalities on the Nishimori line. The identities were
introduced in the original work by H. Nishimori [53], while the inequalities were noticed and
proved much later [42, 50]. The proof of the Nishimori identities that is most suitable for our
model can be found in Paragraph 2.6 of [19]. In particular, for our purposes, we will need

E[⟨σi⟩2nN ] = E[⟨σi⟩2n−1
N ] , n = 1, 2, 3, . . . (2.14)

E[⟨σiσj⟩2N ] = E[⟨σiσj⟩N ] (2.15)

E[⟨σi⟩N⟨σiσj⟩N ] = E[⟨σi⟩N⟨σj⟩N ] (2.16)

for all i, j ∈ Λ. In particular they imply that:

E[⟨qs⟩N ] =
∑
i∈Λs

1

Ns

E[⟨σi⟩N⟨τi⟩N ] =
∑
i∈Λs

1

Ns

E[⟨σi⟩2N ] =
∑
i∈Λs

1

Ns

E[⟨σi⟩N ] = E[⟨ms⟩N ] (2.17)

E[⟨qrqs⟩N ] =
∑

(i,j)∈Λr×Λs

E[⟨σiσj⟩N⟨τiτj⟩N ]
NrNs

=
∑

(i,j)∈Λr×Λs

E[⟨σiσj⟩2N ]
NrNs

= E[⟨mrms⟩N ] (2.18)

and finally:

E
〈
(q,∆q)

〉
N
= E

〈
(m,∆m)

〉
N
. (2.19)

The previous identities strongly suggest that the model has a unique order parameter, that can
be regarded as a magnetization or equivalently an overlap. We will choose the first point of
view. This intuitive statement will acquire a precise meaning when we will write the sum rule
for the quenched pressure.

Following [54, 42, 50] (see Theorem 2.18 in [19] for a straightforward proof) we obtain the
so-called type I and II correlation inequalities respectively:

∂p̄N
∂hr

=
1

2N

∑
i∈Λr

E[1 + ⟨σi⟩N ] =
αr

2
[1 + E⟨mr⟩N ] ≥ 0 (2.20)

∂2p̄N
∂hr∂hs

=
αr

2

∂

∂hs
E⟨mr⟩N =

1

2N

∑
(i,j)∈Λr×Λs

E[(⟨σiσj⟩N − ⟨σi⟩N⟨σj⟩N)2] ≥ 0 . (2.21)

Analogous identities and inequalities hold for the first and second derivatives w.r.t. µrs. The
pressure and the first moment are monotonically increasing with respect to the Nishimori pa-
rameters µrs, hr. In particular the magnetization is always increasing w.r.t. the external field
mean:

∂E⟨mr⟩N
∂hs

≥ 0 . (2.22)

This monotonicity will be a key ingredient to prove replica symmetry.
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2.2 Adaptive interpolation and sum rule

In this section we build up an interpolating model with some specific features. The method
here employed is an extension of the standard Guerra-Toninelli interpolation [21], also called
adaptive interpolation technique, developed in [13] by J. Barbier and N. Macris.

Definition 2.1 (Interpolating model). Let t ∈ [0, 1]. The hamiltonian of the interpolating
model is:

Ht(σ) := −
√
1− t√
2N

K∑
r,s=1

∑
(i,j)∈Λr×Λs

Jrs
ij σiσj − (1− t)

N

2
(m,∆m)+

−
K∑
r=1

∑
i∈Λr

(√
Qϵ,r(t)J

r
i +Qϵ,r(t)

)
σi −

K∑
r=1

∑
i∈Λr

hriσi −N(α̂h,m) (2.23)

with Jr
i

iid∼ N (0, 1) independent of all the other Gaussian random variables, and

Qϵ(t) := ϵ+ α̂−1∆

∫ t

0

qϵ(s) ds, ϵr ∈ [sN , 2sN ], sN ∝ N− 1
16K .

Here Qϵ =: (Qϵ,r)r=1,...,K , while qϵ := (qϵ,r)r=1,...,K denotes a vector of K non-negative functions
that will be suitably chosen in the following.

Remark 2.2. We notice that the interpolating model is on the Nishimori line for any t ∈ [0, 1].
Indeed (2.23) equals in distribution the following Hamiltonian

H̃σ(t) = −
K∑

r,s=1

∑
(i,j)∈Λr×Λs

J̃rs
ij (t)σiσj −

K∑
r=1

∑
i∈Λr

J̃ ϵ,r
i (t)σi −

K∑
r=1

∑
i∈Λr

h̃riσi (2.24)

where

J̃rs
ij (t)

iid∼ N
(
(1− t)µrs

2N
,
(1− t)µrs

2N

)
, J̃ ϵ,r

i (t)
iid∼ N (Qϵ,r(t), Qϵ,r(t)) (2.25)

and h̃ri is defined in (2.3). Given t ∈ [0, 1], H̃σ(t) is a linear combination of independent
non-centered Gaussian random variables where mean equals variance. Therefore the Nishimori
identities (2.14), (2.15) and (2.19) can be used by replacing ⟨·⟩ with the Gibbs measure induced

by the interpolating hamiltonian (2.23), that is ⟨·⟩(ϵ)N,t. Notice also that the role played by the
functions Qϵ(t) is that of an external magnetic field.

The corresponding interpolating pressure will be denoted as

p̄N,ϵ(t) :=
1

N
E log

∑
σ

e−Ht(σ) . (2.26)

In the previous equation and in the following we drop the explicit dependence on qϵ(t) to lighten
the notation. Let us check the interpolating pressure at extremal values:
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Lemma 2.2 (Interpolating pressure at t = 0, 1). Setting

ψ(Q) := Ez log 2 cosh
[
z
√
Q+Q

]
, z ∼ N (0, 1) (2.27)

we have the following:

p̄N,ϵ(1) =
K∑
r=1

αr ψ(Qϵ,r(1) + hr) =

= O(sN) +
K∑
r=1

αrψ

((
α̂−1∆

∫ 1

0

qϵ(t) dt+ h

)
r

) (2.28)

p̄N,ϵ(0) = O(sN) + p̄N(µ,h) . (2.29)

Proof. Each ϵr can be regarded as the mean (or variance) of a small magnetic field.
At t = 1 the system is free, non interacting. Its pressure can be explicitly computed. Take

zri
iid∼ N (0, 1). Then:

p̄N,ϵ(1) =
1

N
E log

K∏
r=1

∑
σ∈ΣNr

exp

(∑
i∈Λr

(√
Qϵ,r(1)J

r
i +Qϵ,r(1)

)
σi+

+
∑
i∈Λr

(
√
hrz

r
i + hr)σi

)
=

=
K∑
r=1

αr

Nr

E log
∑

σ∈ΣNr

exp

(∑
i∈Λr

(
Jr
i

√
Qϵ,r(1) + hr +Qϵ,r(1) + hr

)
σi

)
where the last equality follows from the fact that Jr

i and zri are independent standard Gaussian
random variables. Finally:

p̄N,ϵ(1) =
K∑
r=1

αrEz log 2 cosh

[
z
√
Qϵ,r(1) + hr +Qϵ,r(1) + hr

]
, z ∼ N (0, 1) .

By (2.20) the derivatives of the pressure w.r.t. magnetic fields are bounded by αr and then we
can get rid of the explicit dependence on ϵr at the expense of a term O(sN), thus getting (2.28).

Analogously, by setting t = 0, the interpolating Hamiltonian simply reduces to the original
one (2.7) except for the ϵr’s that can be neglected again at the expense of terms O(sN).

Proposition 2.3 (Sum rule). For any choice of the function qϵ(t), the quenched pressure of
the model (2.9) obeys to the following sum rule:

p̄N(µ,h) = O(sN) +
K∑
r=1

αrψ(Qϵ,r(1) + hr)+

+

∫ 1

0

dt

[
(1− qϵ(t),∆(1− qϵ(t)))

4
− (qϵ(t),∆qϵ(t))

2

]
+

1

4

∫ 1

0

dtRϵ(t, µ, h) (2.30)
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where the remainder is:

Rϵ(t, µ, h) = E
〈
(m− qϵ(t),∆(m− qϵ(t)))

〉(ϵ)
N,t
. (2.31)

Proof. The proof consists in computing the first derivative by using Gaussian integration by
parts for the terms containing the disorder.

˙̄pN,ϵ(t) = −1

4
E
〈
(1,∆1)− (q,∆q)

〉(ϵ)
N,t

− 1

2
E
〈
(m− qϵ(t),∆(m− qϵ(t)))

〉(ϵ)
N,t

+

+
1

2
(qϵ(t),∆qϵ(t)) +

1

2
E
〈
(1,∆qϵ(t))− (qϵ(t),∆q)

〉(ϵ)
N,t

=

= −1

4
(1− qϵ(t),∆(1− qϵ(t))) +

1

2
(qϵ(t),∆qϵ(t))+

+
1

4
E
〈
(q− qϵ(t),∆(q− qϵ(t)))

〉(ϵ)
N,t

− 1

2
E
〈
(m− qϵ(t),∆(m− qϵ(t)))

〉(ϵ)
N,t

Using the Nishimori identities (2.14) and (2.15) we can sum the last two terms together:

˙̄pN,ϵ(t) = −1

4
(1− qϵ(t),∆(1− qϵ(t))) +

1

2
(qϵ(t),∆qϵ(t))+

− 1

4
E
〈
(m− qϵ(t),∆(m− qϵ(t)))

〉(ϵ)
N,t︸ ︷︷ ︸

Rϵ(t,µ,h)

. (2.32)

The sum rule then follows from a simple application of the Fundamental Theorem of Calculus
and the previous Lemma:

p̄N,ϵ(0) = O(sN) + p̄N(µ,h) = p̄N,ϵ(1)−
∫ 1

0

dt ˙̄pN,ϵ(t) . (2.33)

2.3 Solution of the model

In this section we present the rigorous derivation of the thermodynamic limit of the model under
the hypothesis of a positive semi-definite effective interaction matrix: ∆ ≥ 0. First, we need a
couple of lemmas listed below.

Lemma 2.4 (Liouville’s formula). Consider two matrices whose elements depend on a real
parameter: Φ(t), A(t). Suppose that Φ satisfies:

Φ̇(t) = A(t)Φ(t) (2.34)

Φ(0) = Φ0 (2.35)
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Then:

det(Φ(t)) = det(Φ0) exp

{∫ t

0

dsTr(A(s))

}
(2.36)

Definition 2.2 (Regularity of ϵ 7−→ Qϵ(·)). We will say that the map ϵ 7−→ Qϵ(·) is regular if

det

(
∂Qϵ(t)

∂ϵ

)
≥ 1 ∀t ∈ [0, 1] (2.37)

Remark 2.3. Choosing Qϵ as the solution of the following ODE:

Q̇ϵ(t) = α̂−1∆E⟨m⟩(ϵ)N,t, Qϵ(0) = ϵ (2.38)

the map ϵ 7−→ Qϵ(·) turns out to be regular. Indeed

d

dt

∂Qϵ(t)

∂ϵ
=

∂

∂Qϵ(t)
α̂−1∆E⟨m⟩(ϵ)N,t︸ ︷︷ ︸
=:A(t)

∂Qϵ(t)

∂ϵ
; (2.39)

since Qϵ,r(t) can be regarded as the variance of a magnetic field on the Nishimori line in (2.24)
and the entries of α̂−1 and ∆ are non-negative we have:

TrA(t) ≥ 0 , (2.40)

by the correlation inequalities of type II (2.21), (2.22). Finally using Liouville’s formula we get:

det

(
∂Qϵ(t)

∂ϵ

)
= det

(
∂Qϵ(0)

∂ϵ

)
︸ ︷︷ ︸

=1

exp

{∫ t

0

dsTr(A(s))

}
≥ 1 (2.41)

We stress that the sign of ∆ plays no role yet, since we have used only the positivity of its
entries so far.

Lemma 2.5 (Concentration). Suppose ϵ 7−→ Qϵ(·) is a regular map. Consider the quantity:

Lr :=
1

Nr

∑
i∈Λr

(
σi +

Jr
i σi

2
√
Qϵ,r(t)

)
, Jr

i
iid∼ N (0, 1) (2.42)

and introduce the ϵ-average:

Eϵ[·] =
K∏
r=1

(
1

sN

∫ 2sN

sN

dϵr

)
(·) . (2.43)
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We have:

EϵE
〈(

Lr − E⟨Lr⟩(ϵ)N,t

)2 〉(ϵ)
N,t

−→ 0 , when N → ∞ (2.44)

and

E
〈(

Lr − E⟨Lr⟩(ϵ)N,t

)2 〉(ϵ)
N,t

≥ 1

4
E
〈(

mr − E⟨mr⟩(ϵ)N,t

)2 〉(ϵ)
N,t

(2.45)

therefore the magnetization (or the overlap) concentrates in ϵ-average.

The proof, simple but lengthy (see Appendix A.1), is based on controlling the thermal and
disorder-related fluctuations of Lr. This implies the control of the fluctuations of the magne-
tization thus ensuring the replica symmetry of the model. We stress that the only hypothesis
used up to now is the positivity of the matrix elements of ∆.

The role of ϵ is that of a regularizing perturbation and it is crucial for the proof. Its introduc-
tion intuitively allows to avoid critical points where the limiting pressure presents singularities
and concentration may not occur, thus helping us to select always the stable state of the system.
Indeed, for vanishing external magnetic fields h = 0 and in absence of ϵ, the system can remain
stuck in a vanishing average magnetization state because of the resulting spin flip symmetry in
the Hamiltonian. However, as we shall see, in the appropriate range of parameters the latter
is thermodynamically unstable, meaning that any arbitrarily small magnetic field would bring
the magnetization to positive values.

We have laid the ground for our main result: the computation of the quenched pressure
in the thermodynamic limit in form of a finite dimensional (due to the concentration lemma)
variational principle.

Theorem 2.6 (Thermodynamic limit). On the Nishimori line, when ∆ ≥ 0, the thermodynamic
limit of the pressure p̄(µ, h) := limN→∞ p̄N(µ,h) exists and:

p̄(µ, h) = sup
x∈RK

≥0

p̄(µ, h;x) (2.46)

where

p̄(µ, h;x) :=
(1− x,∆(1− x))

4
− (x,∆x)

2
+

K∑
r=1

αrψ((α̂
−1∆x+ h)r) (2.47)

with the following stationary condition:

x− Ez tanh
(
z
√
α̂−1∆x+ h+ α̂−1∆x+ h

)
∈ Ker∆ , z ∼ N (0, 1) (2.48)

Proof. Let us divide the proof in two steps.
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Lower Bound: We initially fix qϵ(t) = x ∈ RK
≥0 in (2.30). Up to orders O(sN) we find:

p̄N(µ,h) = O(sN) +
(1− x,∆(1− x))

4
− (x,∆x)

2
+

+
K∑
r=1

αrEz log 2 cosh
(
z
√
(α̂−1∆x+ h)r + (α̂−1∆x+ h)r

)
+

+
1

4

∫ 1

0

dtRϵ(t, µ, h) (2.49)

We have exploited the result in Lemma 2.2. Being ∆ positive semi-definite, the remainder has
a positive sign, for it is a quadratic form exactly with matrix ∆.

Hence:

p̄N(µ,h) ≥ O(sN) +
(1− x,∆(1− x))

4
− (x,∆x)

2
+

K∑
r=1

αrψ((α̂
−1∆x+ h)r)

Then, taking the lim infN→∞ on both sides and optimizing with supx we get the first bound:

lim inf
N→∞

p̄N ≥ sup
x

{
(1− x,∆(1− x))

4
− (x,∆x)

2
+

K∑
r=1

αrψ((α̂
−1∆x+ h)r)

}
. (2.50)

Upper Bound: We recall a key observation: ψ(·) is a convex function. With the tools we
have introduced, this can finally be seen as a consequence of the correlation inequalities (2.20)
(2.21) on the Nishimori line. In fact, ψ(Q) can be recast in the following way:

ψ(Q) = Ez log
∑
σ=±1

eσ(z
√
Q+Q) = Ez(Q) log

∑
σ=±1

eσz(Q), z(Q) ∼ N (Q,Q) .

This is a simple 1-particle, free system on the Nishimori line. For this model we have:

∂ψ

∂Q
=

1

2
Ez[1 + ⟨σ⟩] , ∂2ψ

∂Q2
=

1

2
E[(1− ⟨σ⟩2)2] , ⟨σ⟩ =

∑
σ=±1 e

σz(Q)σ∑
σ=±1 e

σz(Q)
= tanh z(Q) . (2.51)

This allows us to use Jensen’s inequality to extract the integral in Qϵ,r(1) from the terms
containing ψ in (2.28) (in Lemma 2.2). More explicitly

K∑
r=1

αrψ

((
α̂−1∆

∫ 1

0

qϵ(t) dt+ h

)
r

)
≤

K∑
r=1

αr

∫ 1

0

ψ
((
α̂−1∆qϵ(t) + h

)
r

)
dt .
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By inserting the previous inequality in the sum rule (2.30) we have that:

p̄N(µ,h) ≤ O(sN) +

∫ 1

0

dt

[
(1− qϵ(t),∆(1− qϵ(t)))

4
− (qϵ(t),∆qϵ(t))

2
+

+
K∑
r=1

αrψ((α̂
−1∆qϵ(t) + h)r)

]
+

1

4

∫ 1

0

dtRϵ(t, µ, h) ≤

≤ O(sN) + sup
x

{
(1− x,∆(1− x))

4
− (x,∆x)

2
+

K∑
r=1

αrψ((α̂
−1∆x+ h)r)

}
+

+
1

4

∫ 1

0

dtRϵ(t, µ, h) (2.52)

If we finally take the expectation Eϵ on both sides of the previous inequality we get:

p̄N(µ,h) ≤ O(sN) + sup
x

{
(1− x,∆(1− x))

2
− (x,∆x)+

+
K∑
r=1

αrψ((α̂
−1∆x+ h)r)

}
+

1

2
Eϵ

∫ 1

0

dtRϵ(t, µ, h) (2.53)

Recall that the remainder, defined in (2.31), depends on the functions qϵ(t). This time we

choose qϵ(t) according to a different criterion. We would like to have: ∆qϵ(t) = ∆E⟨m⟩(ϵ)N,t. In
this way we could use the concentration Lemma 2.5. This can be achieved through the following
ODE:

Q̇ϵ(t) = α̂−1∆E⟨m⟩(ϵ)N,t =: F(t,Qϵ(t)), Qϵ(0) = ϵ (2.54)

As seen in (2.21), the derivatives of F are positive and bounded for any fixed N . This guarantees
the existence of a unique solution over [0, 1].

Then, exchanging the two integrals by Fubini’s theorem in (2.53), and applying Lemma 2.5
we get:

lim sup
N→∞

p̄N ≤ sup
x

{
(1− x,∆(1− x))

4
− (x,∆x)

2
+

K∑
r=1

αrψ((α̂
−1∆x+ h)r)

}
.

The two bounds match and this proves (2.46). Moreover, using the properties (2.51) the gradient
of (2.46) is:

∇xp̄(µ, h;x) = −∆

2
(1− x)−∆x+

∆

2
1+

+
∆

2
Ez tanh

(
z
√
α̂−1∆x+ h+ α̂−1∆x+ h

)
=

=
∆

2

[
−x+ Ez tanh

(
z
√
α̂−1∆x+ h+ α̂−1∆x+ h

)]
(2.55)

and it vanishes exactly when (2.48) holds.
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Remark 2.4. Notice that the positive definiteness of ∆ is used to ensure the positivity of the
remainder in (2.49), that ultimately leads to the lower bound. It is evident that if the sign of
∆ is not definite the technique used does not produce any bound. In that case indeed, there is
a direction along which the quadratic form in (2.47) can blow up to infinity. Thus, one should
expect a min−max principle as happens for bipartite systems, e.g. the Wishart model [17]
and the bipartite SK in its replica symmetric phase [55, 56, 57, 58], that notoriously have a
non-elliptic interaction structure.

Proposition 2.7. Let ∆ be strictly positive definite in (2.47). Denote by ρ(A) the spectral
radius of a matrix A and by Hxp̄ the Hessian matrix of p̄. The following implication holds:

ρ(α̂−1∆) < 1 ⇒ Hxp̄(µ, h;x) < 0, ∀x ∈ RK
≥0 (2.56)

or equivalently p̄(µ, h;x) is strictly concave w.r.t. x.

Proof. The Hessian matrix can be computed starting from the gradient (2.55) and using prop-
erties (2.51):

Hxp̄(µ, h;x) = −∆

2
+

1

2
∆D(x,h)α̂−1∆ =

=
1

2
∆1/2

[
−1+∆1/2α̂−1D(x,h)∆1/2

]
∆1/2 (2.57)

D(x,h) := diag

{
Ez

(
1− tanh2

(
z
√
α̂−1∆x+ h+ α̂−1∆x+ h

)
r

)2}
r=1,...,K

. (2.58)

Since similar matrices have the same spectral radius we have:

ρ
(
∆1/2α̂−1D(x,h)∆1/2

)
= ρ(α̂−1D(x,h)∆) =

= ρ
(
D1/2(x,h)α̂−1/2∆α̂−1/2D1/2(x,h)

)
. (2.59)

Now we use the fact that, for symmetric matrices, the spectral radius coincides with the matrix
norm induced by the Euclidean norm:

ρ
(
∆1/2α̂−1D(x,h)∆1/2

)
= ∥D1/2(x,h)α̂−1/2∆α̂−1/2D1/2(x,h)∥ ≤

≤ ∥D(x,h)∥∥α̂−1/2∆α̂−1/2∥ = ∥D(x,h)∥ρ
(
α̂−1/2∆α̂−1/2

)
≤

≤ ρ
(
α̂−1/2∆α̂−1/2

)
. (2.60)

Finally, exploiting again matrix similarity:

ρ
(
∆1/2α̂−1D(x,h)∆1/2

)
≤ ρ

(
α̂−1∆

)
< 1 (2.61)



60 CHAPTER 2. CONVEX MULTI-SPECIES SPIN GLASS ON THE NISHIMORI LINE

by hypothesis. The previous one implies that:

−1+∆1/2α̂−1D(x,h)∆1/2 < 0 (2.62)

whence, for any test vector v:(
v,∆1/2

[
−1+∆1/2α̂−1D(x,h)∆1/2

]
∆1/2v

)
=

=
(
∆1/2v,

[
−1+∆1/2α̂−1D(x,h)∆1/2

]
(∆1/2v)

)
< 0 . (2.63)

Remark 2.5. The previous proposition implies that, whenever ∆ is invertible, h = 0 and
ρ(α̂−1∆) < 1, the point x = 0 is the unique maximizer of (2.47). On the contrary, when
ρ(α̂−1∆) > 1 we have

Hxp̄(µ, 0; 0) =
1

2
∆1/2

[
−1+∆1/2α̂−1∆1/2

]
∆1/2

and the matrix in square brackets has at least one positive eigenvalue, therefore x = 0 becomes
an unstable saddle point for the variational pressure, thus signalling a phase transition. Notice
that this instability can be generated both varying the parameters ∆rs and the form factors αr.

Remark 2.6. If ∆ is non singular, our variational pressure (2.47) goes to −∞ as ∥x∥ → ∞,
because the concave quadratic form always dominates the sum of the terms containing ψ, which
is Lispchitz with Lip(ψ) ≤ 1 (again by (2.51)). This, together with the regularity of p̄ ensures
that there is a global maximum satisfying the fixed point equation:

x = Ez tanh
(
z
√
α̂−1∆x+ h+ α̂−1∆x+ h

)
=: T(x;h) . (2.64)

The Jacobian matrix of T(·;h) is:

DT(x;h) = D(x,h)α̂−1∆ (2.65)

and satisfies:

ρ(DT(x;h)) = ρ(D(x,h)α̂−1∆) ≤ ρ(α̂−1∆) (2.66)

as proved in Proposition 2.7. Equality holds at h = 0 and x = 0. Hence when ρ(α̂−1∆) < 1 the
iteration of T(·;h) converges to a fixed point. If this does not hold, we still have that at one
local maximum point, say x∗:

Hxp̄(µ, h;x
∗) < 0 or ρ(∆1/2α̂−1D(x∗,h)∆1/2) = ρ(DT(x∗;h)) < 1 . (2.67)

The latter implies that the iteration xn+1 = T(xn;h) converges to x∗ (locally) provided that
∥x0 − x∗∥ < δ with δ sufficiently small.
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Remark 2.7. Our parameters lie in RK
≥0, thus the vanishing gradient condition a priori allows

us only to find maximizers of (2.47) in the interior, namely when xr > 0 ∀ r = 1, . . . , K. More
rigorously, the necessary conditions for a point x̄ ∈ RK

≥0 to be a maximizer are:{
∂xr p̄(µ, h; x̄) =

1
2
[∆(−x̄+T(x̄;h))]r ≤ 0

x̄r∂xr p̄(µ, h; x̄) =
1
2
xr [∆(−x̄+T(x̄;h))]r = 0

(2.68)

If we notice that Tr(x;h) ≥ 0 these conditions imply:{
(T(x̄;h),∆(−x̄+T(x̄;h))) ≤ 0

(x̄,∆(−x̄+T(x̄;h))) = 0
⇒ (−x̄+T(x̄;h),∆(−x̄+T(x̄;h))) ≤ 0 . (2.69)

However, since ∆ > 0 we must necessarily have:

(−x̄+T(x̄;h),∆(−x̄+T(x̄;h))) = 0 ⇔ −x̄+T(x̄;h) = 0 . (2.70)

From the previous we can see that the consistency equation (2.64) is necessarily satisfied also
by maximizers on the boundary.

2.4 Concluding remarks

Although it was presented as a spin-glass, the multi-species model dealt with above admits
an inferential interpretation. We saw in Chapter 1 that our case K = 1, i.e. SK on the
Nishimori line, is equivalent, thanks to the Z2 gauge symmetry, to the spiked Wigner model
with Rademacher prior ρ = 1/2(δ1 + δ−1). For generic K instead, the corresponding inference
problem originates from the Gaussian channel

yij(µrs) =

√
µrs

2N
σ∗
i σ

∗
j + zij , zij

iid∼ N (0, 1) , (i, j) ∈ Λr × Λs (2.71)

where (µrs)r,s=1,...,K are non-negative numbers, σ∗ ∈ {±1}N (the ground truth) is the signal we
want to recover through the observations yij. Here µrs play the role of an index dependent signal-
to-noise ratio, which gives the model, and in particular the noise, more structure. However, the
noise elements remain independent. Up to constants, the Gibbs measure associated to our
Hamiltonian (2.2) corresponds to the posterior distribution in the Bayes-optimal setting and
the pressure corresponds to the mutual information, exactly as we have seen in the previous
chapter.

We mention that model we take into account was studied under some specific assumptions
on the µrs, listed in Paragraph 2.3 in [33] (see also [47]). The thermodynamic properties the
authors focus on are obtained by first considering the infinite volume limit of each block and
then sending the number of blocks to infinity thus recovering the limiting mutual information
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of the spiked Wigner model, i.e. the case with homogeneous (µrs = µ) signal-to-noise ratio. In
the present work instead, in the case of a Rademacher planted signal and the only positive def-
initeness assumption on the matrix µ, the model is studied and solved for arbitrary number of
species and form factors. The positivity assumption on µ rules out some interesting non-elliptic
structures such as restricted Boltzmann machines. We will show in the next chapter how to deal
with these peculiar class of non-convexities, proving a replica symmetric variational formula for
the pressure of the deep Boltzmann Machine on the Nishimori line [59].



Chapter 3

The deep Boltzmann machine on the
Nishimori line

The direct problem of a deep (restricted) Boltzmann machine can be considered as a special
case of the mean field multi-species spin glass model [44, 60, 45]. Specifically the set of spins
is arranged into a geometry made of consecutive layers and only interactions among spins
belonging to adjacent layers are allowed. In particular intra-layer interactions are forbidden.
Such architectural assumption makes it impossible to fulfill the positivity hypothesis under
which the results of [44, 45] and the previous chapter were obtained. In fact, the positivity
property requires dominant intra-group interactions with respect to inter-group ones. While
the general deep (restricted) Boltzmann machine is still an unsolved problem (see nevertheless
[55, 56, 26, 61, 57, 58, 62, 63] for centered Gaussian interactions), we present here its exact and
rigorous solution on the Nishimori line [59]. In the previous chapter we have fully solved the
elliptic multi-species model on the Nishimori line, where the property of replica symmetry, i.e.
the concentration of the overlap, was shown to hold. Such property indeed is fully general on
the Nishimori line, see [40] on this respect, and does not rely on any positivity assumption of the
interactions. While the positivity properties carry with them the typical bounds of Guerra’s
method [7, 21], here the technical support to control and solve the model is based only on
the Nishimori identities [54, 53, 29], among which (2.14)-(2.16), and correlation inequalities
[42], such as (2.20)-(2.21). We hereby provide the first exact solution of a disordered Statistical
Mechanics model in a deep architecture and describes how the relative size of the layers influences
the phase transition. Furthermore, the model admits an inferential counter part as usual: it
can be seen as a deep spatially coupled spiked Wigner model [47, 33] with K layers, which in
the case K = 2 coincides with the Wishart model (rank-one non-symmetric matrix estimation
[17]).

The chapter is organized as follows. In Section 3.1 we introduce the model and we present
the main results in three theorems. In section 3.2.1 we decline the adaptive interpolation sum
rule (2.30) in the multi-species setting to the one needed for the DBM. The proofs are contained
in Section 3.2 and Section 3.3 collects some conclusions and perspectives.

63
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3.1 Definitions and results

The setting is that of the multi-species model. We refer the reader to Section 2.1 for the details.
In this chapter we call the disjoint sets of the partition layers, and denote them by {Lr}r=1,...,K

with cardinality |Lr| = Nr, such that
∑K

r=1Nr = N . We recall the form of the Hamiltonian for
the reader’s convenience:

HN(σ) := −
K∑

r,s=1

∑
(i,j)∈Lr×Ls

J̃rs
ij σiσj −

K∑
r=1

∑
i∈Lr

h̃riσi (3.1)

where the interaction coefficients and the external fields are independent Gaussian random
variables distributed as follows

J̃rs
ij

iid∼ N
(µrs

2N
,
µrs

2N

)
, h̃ri

iid∼ N (hr, hr) . (3.2)

The peculiarity of the DBM is that µ has the following tridiagonal structure:

µ =


0 µ12 0 · · · 0
µ21 0 µ23 · · · 0

0 µ32 0
. . . 0

...
...

. . . . . . µK−1,K

0 0 0 µK,K−1 0

 (3.3)

and is assumed to be symmetric without loss of generality. The geometrical architecture of the
model is illustrated in Figure3.1. Besides the effective interaction matrix ∆ (2.6) we introduce

M := (µrsαs)r,s=1,...,K (3.4)

Notice that ∆ and M are tridiagonal matrices too.
The first result of this chapter is the computation of the random pressure (2.8) in the

thermodynamic limit.

Theorem 3.1 (Solution of the model). The random pressure (2.8) of a K-layer deep Boltzmann
machine on the Nishimori line converges almost surely in the thermodynamic limit and its value
is given by a K-dimensional variational principle:

lim
N→∞

pN
a.s.
= lim

N→∞
p̄N(µ,h) = sup

xo

inf
xe

pvar(x;µ,h) , (3.5)

where xo and xe denote the vectors of the odd and even components of the order parameter
x ∈ [0, 1)K respectively,

pvar(x;µ,h) :=
K∑
r=1

αr ψ ((Mx)r + hr) +
K∑
r=1

∆r,r+1

2
[(1 − xr)(1 − xr+1) − 2xrxr+1] (3.6)
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Figure 3.1: Graph of the interactions between layers.

and for any x ≥ 0

ψ(x) := Ez log 2 cosh
(
z
√
x+ x

)
, z ∼ N (0, 1) . (3.7)

Moreover, defining x̄ as the solution of the variational problem (3.5), we have

lim
N→∞

E⟨qr⟩N = lim
N→∞

E⟨mr⟩N = x̄r (3.8)

for every r = 1, . . . , K and for all the points of the phase space (µ, α̂,h) where x̄ is h-
differentiable and the matrix ∆ is invertible.

The proof of Theorem 3.1 relies on the adaptive interpolation method [13] combined with
the concentration result Lemma 2.5. The main difference with the convex case presented in the
previous chapter is that the matrix ∆ is not definite, indeed its eigenvalues have alternating
signs. This entails that the remainder identified by interpolation has not a definite sign and
cannot be discarded a priori at the expense of an inequality. Moreover, the concentration of the
overlap strongly depends on the notion of regularity in Definition 2.2 of the path followed by
the adaptive interpolation. Hence one has to carefully choose a path that is regular and allows
also to exploit the convexities of the two sums involved in the functional (3.6).
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Secondly, we focus on the properties of the consistency equation obtained from the optimiza-
tion problem (3.5) when the matrix ∆ is invertible, that is when K is even. The stability of the
optimizers of (3.5) is a more delicate problem with respect to the convex multi-species case, due
to the min-max nature of the variational principle. In the following, given a square matrix A
we denote by ρ(A) its spectral radius and by A(eo) the submatrix of A obtained by keeping only
even rows and odd columns of A. An analogous definition is given for A(oe), A(oo), A(ee). Notice
that, when K is even, ∆(eo) is an upper triangular K/2 × K/2 square matrix with non-zero
diagonal elements and therefore it is invertible. Similar considerations hold for the sub-matrix
∆(oe) = [∆(eo)]T . We prove the following

Theorem 3.2. Let K be even and h = 0. If ρ([M2](oo)) < 1 then x = 0 is the unique solution
to the variational problem (3.5). Conversely, if ρ([M2](oo)) > 1 then the solution of (3.5) is a
vector x = x̄(M) with strictly positive components satisfying the consistency equation:

xr = Ez tanh
(
z
√

(Mx)r + (Mx)r

)
∀ r = 1, . . . , K (3.9)

where z denotes a standard Gaussian random variable.

The proof of Theorem 3.2 amounts to the computation of the Hessian matrix of an auxiliary
function introduced later and in a check of its eigenvalues. The peculiar form of the consistency
equations due to the structure (3.3) plays a central role. Theorem 3.2 implies the existence of
a phase transition in our model localized at zero magnetic field and unitary spectral radius as
discussed in Remark 3.1 below. The following Proposition further clarifies the structure of the
phase transition and how the system’s geometry, encoded in the form factors αr’s, can influence
it.

Proposition 3.3. For any given interaction matrix µ , we have

sup
α1,...,αK

ρ
(
[M2](oo)

)
=

1

4
max

r
µ2
r,r+1 (3.10)

where the sup on the l.h.s. is taken over the form factors α1, . . . , αK ≥ 0 ,
∑K

r=1 αr = 1 and the
max on the r.h.s. is taken over r = 1, . . . , K − 1 . Furthermore the sup on the l.h.s. of (3.10)
is attained if and only if one of the following conditions is verified:

a) there exists r∗ ∈ {1, . . . , K − 1} such that

αr∗ = αr∗+1 =
1

2
, µr∗, r∗+1 = max

r
µr,r+1 ; (3.11)

b) there exists r∗ ∈ {2, . . . , K − 1} such that

αr∗ = αr∗−1 + αr∗+1 =
1

2
, µr∗−1, r∗ = µr∗, r∗+1 = max

r
µr,r+1 . (3.12)
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Remark 3.1. For even K, Proposition 3.3 together with Theorems 3.1 and 3.2 show that if
the interaction strengths µr,r+1 < 2 for all r = 1, . . . , K − 1, then the magnetisations and the
overlaps vanish as N → ∞ for every choice of the form factors (α1, . . . , αK) ∈ (0, 1)K . By
Theorem 3.2 x̄ is not identically zero on the space of parameters (µ, α̂) , hence the limiting
quenched pressure (3.5) cannot be an analytic function.

Proposition 3.3 also shows that as soon as µr,r+1 > 2 for some r = 1, . . . , K − 1, then, by
suitably localizing only two extensive layers near the maximal interaction (condition (3.11)),
their magnetisations and overlaps turn out to be positive in the limit N → ∞.

Finally, we prove a uniqueness result that holds for arbitrary spectral radius.

Theorem 3.4. Let hr > 0 ∀ r = 1, . . . , K . The consistency equation

xr = Ez tanh
(
z
√

(Mx)r + hr + (Mx)r + hr

)
∀ r = 1, . . . , K (3.13)

admits a unique solution x = x̄(M,h) ∈ (0, 1)K.

3.2 Proofs

We start with some simple lemmas. The convexity of ψ will be crucial in the proof of Theorem
3.1. In particular, we recall that

Lemma 3.5. The function

f(x) :=
K∑
r=1

αr ψ((Mx)r) (3.14)

is convex for x such that Mx ≥ 0 component-wise.

Proof. ψ is convex on R≥0 by equation (2.51). Then, using the linearity of (Mx)r , it is easy to
verify that for any λ ∈ [0, 1] and x1,x2 ∈ A we have:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) . (3.15)

In addition, for Theorem 3.4 we also need:

Lemma 3.6. Let z be a standard Gaussian random variable. The function

F (h) := E tanh
(
z
√
h + h

)
(3.16)

is strictly positive, increasing and concave for h > 0.
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Proof. Since F = 2ψ′ − 1 , positivity and monotonicity follow from equations (2.51). The
concavity instead follows from the sign of the third derivative of ψ can be obtained avoiding
Gaussian integration by parts. Indeed by setting y = z

√
h+ h, replacing z

2
√
h
+ 1 = y+h

2h
in the

computations and using the identities (2.14) for n = 2, 3 and (2.51) one finds:

ψ′′′(h) = −1

h
E
[(
1− tanh2 y

)2
y tanh y

]
− E

[(
1− tanh2 y

)2
tanh2 y

]
< 0 . (3.17)

Remark 3.2. As a consequence the function F is invertible on [0,∞) . Its inverse F−1 is non
negative and increasing on [0, 1) . Moreover one has

lim
x→1−

F−1(x) = +∞ . (3.18)

3.2.1 Specializing the interpolation

The interpolating model is the same as the one in Definition 2.1, and yields exactly the same
sum rule (2.30). However, the tridiagonal form of ∆ allows us to specialize the latter as follows:

p̄N(µ,h) = O(sN) +
K∑
r=1

αr ψ (Qϵ,r(1) + hr) +

+
K∑
r=1

∆r,r+1

2

∫ 1

0

dt [(1− qϵ,r(t))(1− qϵ,r+1(t))− 2qϵ,r(t)qϵ,r+1(t)] +

+
K∑
r=1

∆r,r+1

2

∫ 1

0

dtE
〈
(mr − qϵ,r(t)) (mr+1 − qϵ,r+1(t))

〉(ϵ)
N,t

,

(3.19)

or better, using the notation introduced for Theorem 3.2,

p̄N(µ,h) = O(sN) +
K∑
r=1

αr ψ (Qϵ,r(1) + hr) +

+
1

2

∫ 1

0

dt
[
(1o − qϵ,o(t),∆

(oe)(1e − qϵ,e(t)))− 2(qϵ,o(t),∆
(oe)qϵ,e(t))

]
+

+
1

2

∫ 1

0

dt E
〈
(mo − qϵ,o(t),∆

(oe)(me − qϵ,e(t)))
〉(ϵ)
N,t

,

(3.20)

where again the subscripts o, e denote the odd or even components of a vector, 1 := (1)r=1,...,K .
We also denote

Qϵ,o(t) = ϵo +M (oe)

∫ t

0

qϵ,e(s) ds , Qϵ,e(t) = ϵe +M (eo)

∫ t

0

qϵ,o(s) ds . (3.21)
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The sum rules (3.19), (3.20) motivate the definition of the variational pressure (3.6) that for
future convenience can be rewritten as:

pvar(x;µ,h) =
K∑
r=1

αr ψ ((Mx)r + hr) +
(1o − xo,∆

(oe)(1e − xe))

2
− (xo,∆

(oe)xe) . (3.22)

Remark 3.3. The variational function pvar is convex in the even components xe and the odd
components xo separately. This is due to the fact that the two bilinear forms in (3.22) have
vanishing second derivatives w.r.t. pure odd or even components, while the terms containing ψ
are convex by Lemma 3.5.

3.2.2 Proof of Theorem 3.1

The almost sure equality in (3.5) holds regardless of the convexity of the problem, thanks to
Proposition 2.1.

Lower bound. We select a path contained in [0, 1)K by means of the following coupled ODEs

Q̇ϵ,e(t) = M (eo) xo =: fe(t,Qϵ(t)) , Qϵ,e(0) = ϵe (3.23)

Q̇ϵ,o(t) = M (oe) E⟨me⟩t =: fo(t,Qϵ(t)) , Qϵ,o(0) = ϵo , (3.24)

where f(t,Q) is the velocity field of the ODE. The perturbation is here introduced as an initial
condition in order to have the interpolating functions in the form (3.21). Notice that fe is
constant, while fo is a positive Lipschitz function of Qϵ(t) ∈ (0,∞)K thanks to identity (2.21)
(where N is fixed). Therefore, by Cauchy-Lipschitz’s theorem, the system of ODEs (3.23)-(3.24)
has a unique global solution Qϵ(t) , t ∈ [0, 1] , whose components are positive.

By (3.23)-(3.24) we have ∆(eo)qϵ,o(t) = ∆(eo)xo and ∆(oe)qϵ,e(t) = ∆(oe)E⟨me⟩t , hence:∫ 1

0

dt
(
1o − qϵ,o(t) , ∆

(oe)(1e − qϵ,e(t))
)

=

(
1o − xo , ∆

(oe)

(
1e −

∫ 1

0

dtE⟨me⟩t
))

(3.25)

and reasoning in a similar way for the other t-integrations appearing in the sum rule (3.20) we
obtain:

p̄N = O(sN) + pvar

(
xo ,

∫ 1

0

dtE⟨me⟩t
)

+

∫ 1

0

dtRϵ(t) ≥

≥ O(sN) + inf
xe

pvar (xo,xe) +

∫ 1

0

dtRϵ(t) ,

(3.26)

where the reminder is

Rϵ(t) =
1

2
E
〈 (

(mo − xo) , ∆
(oe) (me − E⟨me⟩t)

) 〉
t
. (3.27)
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Using Cauchy-Schwartz’s inequality,

|Rϵ(t)| ≤
1

2

∥∥µ(oe)
∥∥ E1/2⟨|α̂(oo)(mo − xo)|2⟩t E1/2⟨|α̂(ee)(me − E⟨me)⟩t|2⟩t , (3.28)

thus, provided that the map ϵ 7→ Qϵ(t) is regular, the remainder Rϵ(t) vanishes in ϵ-average as
N → ∞ by Lemma 2.5. To show that Qϵ is regular we introduce the following matrix fields:

Φϵ(t) :=
∂Qϵ(t)

∂ϵ
, Aϵ(t) :=

∂ f(t,Qϵ(t))

∂Qϵ(t)
(3.29)

Applying the chain rule we have:

Φ̇ϵ(t) =
∂ Q̇ϵ(t)

∂ϵ
= Aϵ(t) Φϵ(t) , Φϵ(0) = 1 , (3.30)

hence, by Liouville’s formula (2.4) the Jacobian det(Φϵ(t)) is

det
(∂Qϵ

∂ϵ
(t)
)

= exp

{∫ t

0

ds Tr
(
Aϵ(s)

)}
. (3.31)

Now, using equations (3.23)-(3.24) one can compute:

Tr
(
Aϵ(t)

)
=

K∑
r=1

(
Aϵ(t)

)
r,r

=
∑
r odd

∂
(
M (oe) E⟨me⟩t

)
r

∂ Qϵ,r(t)
=

=
∑
r odd

∑
r′even

Mrr′
∂ E⟨mr′⟩t
∂ Qϵ,r(t)

≥ 0

(3.32)

where non-negativity is a consequence of the correlation inequality (2.21), since Qϵ,r(t) can be
seen as the variance of an external field on the Nishimori line in the interpolating Hamiltonian
(2.23). Combining (3.31) and (3.32), it follows that Qϵ is regular, as desired (see Definition
2.2).

Now, averaging on ϵ (we consider it uniform over [sN , 2sN ]
K) and tanking the lim infN→∞

in inequality (3.26) we have

lim inf
N→∞

p̄N ≥ inf
xe

pvar (xo,xe) + lim inf
N→∞

Eϵ

∫ 1

0

dtRϵ(t) . (3.33)

The last term vanishes by Fubini’s theorem, dominated convergence and Lemma 2.5. Finally,
optimizing w.r.t. xo we get:

lim inf
N→∞

p̄N ≥ sup
xo

inf
xe

pvar (xo,xe) . (3.34)
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Upper bound. Now, we set

Q̇ϵ,e(t) =M (eo)F (M (oe)E⟨me⟩t + ho) , Qϵ,e(0) = ϵe (3.35)

Q̇ϵ,o(t) =M (oe)E⟨me⟩t , Qϵ,o(0) = ϵo . (3.36)

In (3.35) the application of F , defined in (3.16), to the vector M (oe)E⟨me⟩t + ho has to be
understood as component-wise. For future convenience let us set

D(x,h) := diag {F ′ ((Mx)r + hr)}r=1,...,K . (3.37)

With a slight abuse of notation we will stress the dependence of D(oo)(x,h) and D(ee)(x,h) on
the even and odd components of x respectively as follows

D(oo)(x,h) ≡ D(oo)(xe,h) , D(ee)(x,h) ≡ D(ee)(xo,h) . (3.38)

M (eo)F (M (oe)E⟨me⟩t + ho) is a positive function of Qϵ(t) with bounded derivatives for fixed N
thanks to Lemma 3.6, indeed

∂

∂Qϵ,r

F (M (oe)E⟨me⟩t + ho) = D(E⟨me⟩t,h)(oo)M (oe)∂E⟨me⟩t
∂Qϵ,r

. (3.39)

This ensures the existence of a unique global solution over [0, 1] to the system of ODEs (3.35)-
(3.36). Moreover, the latter implies also that the map ϵ 7−→ Qϵ(·) is still regular, because F ′ is

positive as proved in Lemma 3.6 and ∂E⟨me⟩t
∂Qϵ,r

≥ 0 thanks again to (2.21). This guarantees the

positivity of the trace in (3.31) and forces the remainder Rϵ in ϵ-average to vanish by Lemma
2.5. Using Jensen’s inequality, by the convexity of ψ we have

K∑
r=1

αrψ

((
M

∫ 1

0

qϵ(t) dt+ h

)
r

)
≤

K∑
r=1

αr

∫ 1

0

ψ ((Mqϵ(t) + h)r) dt (3.40)

and inserting it into the sum rule (3.20) we get

p̄N ≤ O(sN) +

∫ 1

0

dt pvar(Fϵ,o(t),E⟨me⟩t) +
∫ 1

0

Rϵ(t) dt =

= O(sN) +

∫ 1

0

dt inf
xe

pvar(Fϵ,o(t),xe) +

∫ 1

0

Rϵ(t) dt , (3.41)

where Fϵ,o(t) := F (M (oe)E⟨me⟩t + ho) for brevity. As far as the last equality is concerned, we
used the following:

inf
xe

pvar(Fϵ,o(t),xe) = pvar(Fϵ,o(t),E⟨me⟩t) . (3.42)
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This is a consequence of the convexity of pvar in xe (see Remark 3.3). In fact, a computation of
the gradient of pvar w.r.t. xe evaluated at E⟨me⟩t yields:

∂pvar
∂xe

(Fϵ,o(t),xe)

∣∣∣∣
E⟨me⟩t

=
∆(eo)

2
[1o + Fϵ,o(t)]+

+
∆(eo)

2
[−1o + Fϵ,o(t)]−∆(eo)Fϵ,o(t) = 0 , (3.43)

where we explicitly notice that the first term comes from the derivative of ψ (2.51). Then,
taking the sup of pvar over the odd components and the ϵ-average we get:

p̄N ≤ O(sN) + sup
xo

inf
xe

pvar (xo,xe) + Eϵ

∫ 1

0

Rϵ(t) dt . (3.44)

Applying Lemma 2.5, Fubini’s theorem and dominated convergence the two bounds match after
sending N → ∞.

Proof of (3.8). Equations (2.20) and (2.21) imply that the quenched pressure is convex in
each hr. Hence it is possible to exchange the derivative w.r.t. hr in (2.20) with the N → ∞ limit
where x̄ is differentiable in hr (see Lemma IV.6.3 in [64]). Since for invertible ∆ the optimal
order parameter must be a critical point of pvar (see Proposition 3.7 below) by (2.51) and (3.6)
we have that:

lim
N→∞

∂p̄N
∂hr

=
∂

∂hr
pvar(x̄(M,h);µ,h) =

∂pvar
∂x

∣∣∣∣
x̄(M,h)

∂x̄(M,h)

∂hr
+
∂pvar
∂hr

=
∂pvar
∂hr

=

= αr ψ
′((M x̄(M,h))r + hr) =

αr

2

[
1 + Ez tanh

(
z
√
(M x̄)r + hr + (M x̄)r + hr

)]
=

=
αr

2
[1 + x̄r] . (3.45)

A comparison with (2.20) and the Nishimori identity (2.14) lead to the identification:

lim
N→∞

E⟨qr⟩N = lim
N→∞

E⟨mr⟩N = x̄r . (3.46)

Remark 3.4. Assume for now that K is even. Observe that the entire proof could have been
carried out also by computing all the infxe over the convex set:

A := {xe |M (oe)xe + ho ≥ 0 component-wise} ⊇ [0, 1)K/2 , (3.47)

on which all the functions involved are still real and well defined. This freedom is essentially
due to the convexity of pvar in xe. Indeed, pvar has always a critical point in the domain A for
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any fixed xo ∈ [0, 1)K/2, that must coincide with its minimum point by convexity as can be seen
by direct inspection

∂pvar
∂xe

∣∣∣∣
x̄e

=
∆(eo)

2

[
−xo + F (M (oe)x̄e + ho)

]
= 0 ⇔ x̄e = [M (oe)]−1(F−1(xo)− ho) . (3.48)

The inequality (3.26), that leads to the lower bound, clearly holds also for xe ∈ A ⊇ [0, 1)K/2.
The validity of (3.42) is less trivial and is due to the special choice Fϵ,o(t). In this case in fact,
the critical point falls inside [0, 1)K/2 and this lets us extend the domain of xe to A without any
loss of generality thanks to the mentioned convexity in xe. We will see later that even with this
extension the point that realizes the sup inf lies inside the cube [0, 1)K .

3.2.3 Proof of Theorem 3.2

For this proof we rely on Remark 3.4, this will ease our computations. Let us write the gradient
of (3.6)

∂pvar(x;µ,h)

∂xr
=

(
∆

2
(−x+ F (Mx+ h))

)
r

=

=
∆r,r+1

2
[−xr+1 + F ((Mx)r+1 + hr+1)] +

∆r,r−1

2
[−xr−1 + F ((Mx)r−1 + hr−1)] . (3.49)

where we have used (2.14) and (2.51). In absence of external magnetic field (h = 0) x = 0 is
a critical point for pvar, namely a solution to the consistency equation obtained by equating
(3.49) to 0.

First of all, by Remark 3.3 and Remark 3.4 we infer that the optimization w.r.t. the even
components xe is always stable, in the sense that there is always one optimizer once the odd
components xo are fixed and it belongs to A. Define now the auxiliary function:

π(xo;µ,h) := inf
xe∈A

pvar(xo,xe;µ,h) = pvar(xo, x̄e;µ,h) , (3.50)

with x̄e defined in (3.48). The following proposition investigates the possibility to have boundary
solutions to the variational problem.

Proposition 3.7. Let K be even. The points xo at which the supxo
π(xo;µ,h) is attained fulfill

the consistency equation:

x̄e = F (M (eo)xo + he) . (3.51)

As a consequence the necessary condition for x to realize the supxo
infxe

pvar(xo,xe;µ,h) is to
be a critical point, namely to satisfy (3.51).
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Proof. Using (3.48), the gradient of π is:

∂π(xo;µ,h)

∂xo

=
∂pvar
∂xo

+
∂pvar
∂xe

∣∣∣∣
x̄e

∂x̄e

∂xo

=
∆(oe)

2

[
−x̄e + F (M (eo)xo + he)

]
=

=
α̂(oo)

2

[
−F−1(xo) + ho +M (oe)F (M (eo)xo + he)

]
. (3.52)

We start by considering the case h = 0. One can immediately rule out the possibility that
the sup is attained at the right border, i.e. x2l−1 → 1− for some l, because thanks to (3.18)
∂x2l−1

π → −∞. Then, the necessary condition for a point xo ∈ [0, 1)K/2 to realize the sup is
that:

−F−1(xo) +M (oe)F (M (eo)xo) ≤ 0 , (3.53)

component-wise, where equality holds for those components for which x2l−1 > 0. If we set
M0,1 =MK,K+1 = 0, the generic 2l − 1 component of the previous is given by

− F−1(x2l−1) +M2l−1,2l−2F (M2l−2,2l−3x2l−3 +M2l−2,2l−1x2l−1)+

+M2l−1,2lF (M2l,2l−1x2l−1 +M2l,2l+1x2l+1) (3.54)

whence we understand that if x2l−1 = 0 the only chance for the previous to be non positive
is to have also x2l−3 = x2l+1 = 0 because F is positive and monotonic. On the contrary, if
x2l−1 > 0 first the corresponding gradient component must vanish; second by looking at the
2l + 1 component for instance

− F−1(x2l+1) +M2l+1,2l+2F (M2l+2,2l+3x2l+3 +M2l+2,2l+1x2l+1)+

+M2l+1,2lF (M2l,2l+1x2l+1 +M2l,2l−1x2l−1) (3.55)

we see that the last term is strictly positive. Necessarily, x2l+1 must be strictly positive too
with the corresponding gradient component that vanishes, and so on. Similar considerations
hold for x2l−3. Finally, iterating these arguments, we infer that the supremum is attained at a
point xo such that:

xo = 0 or x̄e = F (M (eo)xo) . (3.56)

The first in particular implies that also x̄e = 0 . In both cases we can say that (3.51) is satisfied.

When any hr is strictly positive it is immediate to see that there is a component of (3.52) with
a positive contribution, the corresponding component of xo must then be positive. Therefore
one iterates the same arguments as above obtaining again (3.51). In any case, by (3.48) the
sup inf is attained at critical points of pvar.
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The Jacobian matrix of F (Mx+ h) is

DF (Mx+ h) = D(x,h)M . (3.57)

Thanks to the convexity of ψ, D(x,h), defined in (3.37), is diagonal, positive definite, invertible
and its spectral radius is bounded by 1. From (3.52), an application of the Inverse Function
Theorem leads to the Hessian matrix

Hxoπ =
∆(oe)

2

[
−∂x̄e

∂xo

+
∂

∂xo

F (M (eo)xo + he)

]
=

∆(oe)

2

[
−[M (oe)]−1[D(oo)(x̄e,h)]

−1 +D(ee)(xo,h)M
(eo)
]
. (3.58)

Thanks to the peculiar tridiagonal form of M we also have that

[D(x,h)M ](oe)[D(x,h)M ](eo) = [(D(x,h)M)2](oo) , (3.59)

from which by a simple rearrangement we can write the Hessian in its final form

Hxoπ =
α̂(oo)[D(x̄e,h)

(oo)]−1

2

[
−1+ (D(x,h)M)2

](oo)
=

=
[α(oo)]1/2[D(oo)]−1/2

2

[
−1+ S(oo)

]
[α(oo)]1/2[D(oo)]−1/2 (3.60)

with

S(oo) := [D(oo)]1/2[α̂(oo)]−1/2∆(oe)D(ee)[α̂(ee)]−1∆(eo)[α̂(oo)]−1/2[D(oo)]1/2 (3.61)

where for brevity we have neglected all the dependencies after the second equality in (3.60) and
used (3.59). (3.60) uses only symmetric matrices in order to make manifest the global sign of
the Hessian. It remains to show that the spectral radius of S(oo) is controlled by that of [M2](oo).
S(oo) is symmetric because ∆(oe) = [∆(eo)]T , thus its spectral radius coincides with the matrix
norm induced by the Euclidean scalar product. Then by norms sub-multiplicativity and matrix
similarity one easily gets

ρ
(
S(oo)

)
≤ ρ

(
D(oo)

)
ρ
(
[α̂(oo)]−1/2∆(oe)D(ee)[α̂(ee)]−1∆(eo)[α̂(oo)]−1/2

)
≤

≤ ρ
(
M (oe)D(ee)M (eo)

)
= ρ

(
D(ee)M (eo)M (oe)

)
=

= ρ
(
[D(ee)]1/2[α̂(ee)]−1/2∆(eo)α̂(oo)−1∆(oe)[α̂(ee)]−1/2[D(ee)]1/2

)
. (3.62)

Iterating the same arguments we get to

ρ
(
S(oo)

)
≤ ρ

(
M (eo)M (oe)

)
= ρ

(
M (oe)M (eo)

)
< 1 , (3.63)
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where the last equality follows again by matrix similarity. The previous implies that the matrix
[−1+ S](oo) in (3.60) is negative definite, making Hxoπ negative definite too, and hence π is
concave under the hypothesis ρ([M2](oo)) < 1. In turn, this ensures uniqueness of the solution to
the consistency equation (3.51) and to the variational problem (3.5). In particular when h = 0,
x = 0 is the unique solution.

Conversely, for h = 0 and ρ([M2](oo)) > 1 the Hessian has at least one positive eigenvalue at
the origin xo = 0, but this is in general not enough to ensure xo = 0 does not realize the sup
anymore. One has to check that there is a direction of increment of π that intersects the cube
[0, 1)K/2, otherwise the system could remain stuck on the border at xo = 0 due to the positivity
constraints on the variables.

It is easy to see that [M2](oo) is irreducible, because its associated graph is strongly connected,
and it has non negative entries. Hence, by Perron-Frobenius Theorem the eigenvector v relative
to the largest eigenvalue ρ([M2](oo)) is component-wise strictly positive, thus pointing inside the
cube, and by a Taylor expansion around xo = 0 we have:

π(ϵv;µ, 0)− π(0;µ, 0) =
ϵ2

2

(
v,
α̂(oo)

2
v

)[
−1 + ρ([M2](oo))

]
+ o(ϵ2) (3.64)

that is positive form small enough ϵ > 0. Finally, by Proposition 3.7 the solution shifts in favour
of a point x = x̄(M) ∈ (0, 1)K .

3.2.4 Proof of Proposition 3.3

Proposition 3.3 relies on an algebraic lemma, which we write here for convenience. Its proof
can be found in [56] (see Lemma 1 therein).

Lemma 3.8. Let P ≥ 2, x1, . . . , xP ≥ 0 and b1, . . . , bP−1 ≥ 0 . Set S ≡ ∑P
p=1 xp and B ≡

maxp=1,...,P−1 bp . Then:
P−1∑
p=1

bp xp xp+1 ≤ B S2

4
. (3.65)

Moreover we have equality in (3.65) if and only if one of the following conditions is verified:

a) there exists p∗ ∈ {1, . . . , P − 1} such that

xp∗ = xp∗+1 =
S

2
, bp∗ = B ; (3.66)

b) there exists p∗ ∈ {2, . . . , P − 1} such that

xp∗ = xp∗−1 + xp∗+1 =
S

2
, bp∗−1 = bp∗ = B . (3.67)
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Proof of Proposition 3.3. Denote by ρ the spectral radius of the matrix [M2](oo). We have

ρ ≤
∥∥[M2](oo)

∥∥
∞ . (3.68)

As [M2](oo) is a tridiagonal matrix, its ∞-norm can be easily computed leading to

∥∥[M2](oo)
∥∥
∞ = max

r

∑
s

(M2)2r−1,2s−1 = max
r

2r∑
p=2r−3

b(r)p αp αp+1 ≤ µ̂2

4
, (3.69)

where we set µ̂2 ≡ maxr µ
2
r,r+1 and for every r, p

b(r)p ≡ δp, 2r−3 µ2r−3, 2r−2 µ2r−2, 2r−1 + δp, 2r−2 µ
2
2r−2, 2r−1+

+ δp, 2r−1 µ
2
2r−1, 2r + δp, 2r µ2r−1, 2r µ2r, 2r+1 .

(3.70)

For convenience we set αp ≡ 0 for p /∈ {1, . . . , K} and µp,p+1 ≡ 0 for p /∈ {1, . . . , K − 1}. The

last inequality in (3.69) follows by Lemma 3.8, since b
(r)
p ≤ µ̂2 and

∑
p αp = 1 . Therefore ρ ≤ µ̂2

4

combining inequalities (3.68), (3.69).

Now assume that ρ = µ̂2

4
. In particular the inequality in (3.69) must be saturated, hence

there exists r such that
2r∑

p=2r−3

b(r)p αp αp+1 =
µ̂2

4
. (3.71)

Then by Lemma 3.8, condition (3.11) or (3.12) must be verified.
Vice-versa assume that condition (3.11) or (3.12) holds true. In this case notice that many

of the αr’s are zero, since
∑K

r=1 αr = 1 . Thus the matrix [M2](oo) notably simplifies and one

can check directly that µ̂2

4
is (the only non-zero) eigenvalue. This proves ρ = µ̂2

4
.

Remark 3.5. It is not difficult to realize that Theorem 3.1 holds also when αr → 0 for some r.
Indeed, by (3.28) and Lemma 2.5 we see that it is sufficient to require:

α2
r E
〈(

Lr − E⟨Lr⟩(ϵ)N,t

)2 〉(ϵ)
N,t

−→ 0 as N → ∞ . (3.72)

The proof of Lemma 2.5 consists in showing that (see inequalities (A.11) and (A.24) in [43]):

α2
r EϵE

〈(
Lr − ⟨Lr⟩(ϵ)N,t

)2 〉(ϵ)
N,t

= O

(
αr

NsKN

)
(3.73)

α2
r EϵE

[(
⟨Lr⟩(ϵ)N,t − E⟨Lr⟩(ϵ)N,t

)2]
= O

(
1

s
4K/3
N N1/3

)
. (3.74)

The previous equalities both vanish in the thermodynamic limit with the choice sN ∼ N−1/16K

for instance, independently on αr. Hence the remainder of the interpolation in the proof still
goes to 0 with no variation in the hypothesis.
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When a form factor, say αr, vanishes the related component of the order parameter xr
disappears from the variational pressure (3.6). Moreover, if the corresponding Lr is an inter-
mediate layer one can see that the system decouples into two independent DBMs because the
effective interaction matrix ∆ becomes block diagonal and the convex ψ-term related to the
mentioned layer is weighed by αr. The global variational pressure is thus constant in xr in the
thermodynamic limit.

3.2.5 Proof of Theorem 3.4

Uniqueness of the solution of the consistency equation for positive external fields can be proven
adapting the strategy used in [56], where the replica symmetric equation of a deep Boltzmann
machines was proved to admit a unique solution when the couplings and the external fields are
centred Gaussian random variables. In particular the layers structure permits to “decouple”
the interactions as shown in the following

Remark 3.6. The consistency equation (3.13) is equivalent to the following:xr = E tanh
(
z
√

Θr(a)xr + hr + Θr(a)xr + hr

)
r = 1, . . . , K

αr xr ar = αr+1 xr+1 r = 1, . . . , K − 1
(3.75)

where we have introduced the auxiliary variables a1, . . . , aK−1 > 0 and the functions

Θr(a) ≡



∆12 a1 for r = 1

∆r,r−1

ar−1

+ ∆r,r+1 ar for r = 2, . . . , K − 1

∆K−1,K

aK−1

for r = K

. (3.76)

Indeed, using the definition of the matrix M , it can be easily verified that (Mx)r = Θr(a)xr
for r = 1, . . . , K , for a satisfying the second relation in (3.75).

The proof of Theorem 3.4 relies on the following

Lemma 3.9. Let z be a standard Gaussian random variable. For every t, h > 0 the equation

x = E tanh
(
z
√
t x+h + t x+h

)
(3.77)

has a unique positive solution that we denote by x = x̄(t, h) > 0 . Moreover x̄ is strictly
increasing as a function of both t > 0 and h > 0.

of Theorem 3.4. Equation (3.77) rewrites as x = F ( t x + h) , where F (h) ≡ E tanh(z
√
h + h) .

By Lemma 3.6, F takes values in (0,1), is strictly increasing and concave. It follows that
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equation (3.77) admits a unique solution in (0, 1) and in particular we can show that the
function f(x) ≡ 1

x
F ( t x+ h) is strictly decreasing for x > 0 . Indeed by Lemma 3.6 we have:

x2 f ′(x) = t x F ′(t x+ h)− F (t x+ h) < 0 in x = 0 , (3.78)

d

dx
(x2 f ′(x)) = t2 xF ′′(t x+ h) < 0 (3.79)

hence

x2 f ′(x) = t x F ′(t x+ h)− F (t x+ h) < 0 ∀x > 0 . (3.80)

Now denoting by x̄(t, h) the unique positive solution of equation (3.77), we can prove its mono-
tonicity with respect to both parameters by differentiating the self-consistent equation

x̄(t, h) = F ( t x̄(t, h) + h) , (3.81)

which leads to

(1− t F ′(t x̄+ h))
dx̄

dt
= x̄ F ′(t x̄+ h) (3.82)

(1− t F ′(t x̄+ h))
dx̄

dh
= F ′(t x̄+ h) . (3.83)

Lemma 3.6 ensures that (3.82), (3.83) are positive quantities, hence to conclude it suffices to
show that 1 − t F ′(t x̄ + h) > 0. Indeed, dividing the inequality (3.80) by x, evaluating it at
x = x̄(t, h) and using the self-consistent equation (3.81), one finds precisely:

0 > tF ′(t x̄+ h)− F (t x̄+ h)

x̄
= t F ′(t x̄+ h)− 1 . (3.84)

Proof of Theorem 3.4. By Lemma 3.9, the first line of (3.75) is equivalent to:

xr = x̄
(
Θr(a), hr

)
∀ r = 1, . . . , K (3.85)

where x̄ is uniquely defined and strictly increasing with respect to both its arguments. On the
other hand the second line of (3.75) rewrites as:

α1 x1 a1 · · · ar = αr+1 xr+1 ∀ r = 1, . . . , K − 1 . (3.86)

It is convenient to set X1(a1) ≡ α1 x̄
(
Θ1(a) , h1

)
= α1 x̄

(
∆1,2 a1 , h1

)
and for r ≥ 2

Xr

(
1

ar−1

, ar

)
≡ αr x̄

(
Θr(a) , hr

)
= αr x̄

(
∆r,r−1

ar−1

+∆r,r+1 ar , hr

)
. (3.87)
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Therefore equation (3.75) is equivalent to the following:

X1(a1) a1 · · · ar = Xr+1

(
1

ar
, ar+1

)
∀ r = 1, . . . , K − 1 . (3.88)

We will show by induction on r ≥ 1 that for any given ar+1 ≥ 0 there exists a unique ar =
ār(ar+1) > 0 such that 

ar−1 = ār−1(ar)
...

a1 = ā1(a2)

X1(a1) a1 · · · ar−1 ar = Xr+1

(
1

ar
, ar+1

) (3.89)

and moreover ār is a strictly increasing function with respect to ar+1 . The uniqueness of so-
lution of (3.88) will follow immediately by stopping the induction at r = K − 1 and choosing
aK = 0 and the Theorem will be proven thanks to Remark 3.6.

• Case r = 1: given a2 ≥ 0, let’s consider the equation

X1(a1) a1 = X2

(
1

a1
, a2

)
. (3.90)

By Lemma 3.9 the left-hand side of (3.90) is a strictly increasing function of a1 > 0 and takes
all the values in the interval (0,∞), while the right-hand side is a decreasing function of a1 > 0
and takes non-negative values. Therefore there exists a unique a1 = ā1(a2) > 0 solution of
(3.90). Now taking derivatives on both sides of (3.90) and using again Lemma 3.9, one finds:

dā1
da2

=
∂

∂a2
X2

( 1

a1
, a2

)[ ∂

∂a1

(
X1(a1) a1

)
− ∂

∂a1
X2

( 1

a1
, a2

)]−1

∣∣a1=ā1(a2)

> 0 (3.91)

hence ā1 is a strictly increasing function of a2 .

• For r > 1 , r − 1 ⇒ r. Fix ar+1 ≥ 0 . By inductive hypothesis ā1, . . . , ār−1 are well-
defined and strictly increasing functions. Defining the composition Al ≡ āl ◦ · · · ◦ ār−1 for every
l = 1, . . . , r − 1, equation (3.89) rewrites as:

(
X1 ◦ A1

)
(ar) A1(ar) · · · Ar−1(ar) ar = Xr+1

(
1

ar
, ar+1

)
. (3.92)

By inductive hypothesis and Lemma 3.9, the left-hand side of (3.92) is a strictly increasing
function of ar > 0 and takes all the values in the interval (0,∞), while the right hand-side of
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(3.92) is a decreasing function of ar > 0 and takes non-negative values. Therefore for every
ar+1 ≥ 0 there exists a unique ar = ār(ar+1) > 0 solution of (3.92). Now taking derivatives on
both sides of (3.92) one finds:

dār
dar+1

=
∂

∂ar+1

Xr+1

( 1

ar
, ar+1

)
·

·
[
∂

∂ar

((
X1 ◦ A1

)
(ar) A1(ar) · · · Ar−1(ar) ar

)
− ∂

∂ar
Xr+1

( 1

ar
, ar+1

)]−1

∣∣ ar=ār(ar+1)

(3.93)

which, using again the inductive hypothesis and Lemma 3.9, entails that ār is a strictly increasing
function of ar+1 .

3.3 Concluding remarks

The solution we found consists in an ordinary min-max variational principle over K real positive
numbers for the thermodynamic limit of the free entropy. The properties of the optimizer show
the presence of a phase transition related to the interaction strength and to the relative size of
each layer defining the geometry of the system. In particular we discovered that the geometry
of the system may tune the phase transition.

We mention that in the recent paper [65] the mutual information for a wide class of inference
problems is rigorously computed by means of a variational principle. While it is possible to
obtain our model as an instance of the one considered there, the variational principle presented
has no clear correspondence to ours. We finally mention that a subsequent work [66] contains
a general result that extends the one contained here. In particular the authors compute the
limiting free energy with a Hamilton-Jacobi approach which proves to be effective also when
dealing with lack of convexity in the interactions. On the other hand, the simplicity of our
setting allows us to carry out a thorough study of the variational formula by locating the phase
transition and investigating its dependency on the geometry of the system as in Theorem 3.2,
Proposition 3.3 and Theorem 3.4.
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Chapter 4

Mismatched rank one matrix
estimation

We have seen so far that the Nishimori line is, in some sense, a privileged sub-region of the
phase space of a spin glass, where replica symmetry can be shown to hold under fairly mild
hypothesis [67, 39, 40]. As a consequence we were able to find rigorously finite dimensional
variational principles to express the free entropy of such models. Our proofs were based on the
validity of the Nishimori identities and correlation inequalities of the first and second type, that
in turn derive from Bayes-optimality, i.e. from the fact that the Statistician knows every detail
of the generative process of the data.

There are different ways to break Bayes-optimality. For instance (i) the Statistician may
ignore the signal-to-noise ratio [68, 69]. Or, (ii) they use a Gaussian likelihood, whereas the
noise is not Gaussian [70]. Thirdly, (iii) they adopt a wrong prior for the signal components.
These particular settings, referred to as mismatched, have recently attracted interest from the
Statistical Physics and Inference communities [71, 72, 73, 74].

In this chapter we work within the case (iii), i.e. a mismatched spiked Wigner model where
the Statistician has no apriori knowledge of the signal and tries to reconstruct it only through
Ising spins. Instead of using a max-likelihood approach to estimate the signal, which would
correspond to the search of the ground state of a given Hamiltonian, we choose a typical con-
figuration of the system at finite temperature, or equivalently we adopt the receiver’s posterior
mean as the estimator, as a Bayes-optimal Statistician would. The emerging Statistical Me-
chanics model turns out to be the sum of an SK with a two-body mean-field Mattis interaction.
The main result is the rigorous exact solution of this model described by two natural order pa-
rameters represented by the overlap distribution and the Mattis magnetization. We show that,
while the first obeys a functional variational principle of Parisi type, the second is obtained
through a classical one dimensional optimization problem. The proof relies on the crucial prop-
erty of self-averaging of the Mattis magnetization. When the distribution of the ground truth
signal is Gaussian the phase space is investigated and a tricritical point is identified separating
paramagnetic, glassy and ferromagnetic phases.

83
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4.1 Definitions and Main Results

Let us recall some basic definitions. Consider a system of N interacting Ising spins described by
a Sherrington-Kirkpatrick Hamiltonian with external random iid magnetic fields and a further
two body interaction of Mattis type induced by the same magnetic fields. More specifically,
to each site i = 1, . . . , N we associate a spin σi ∈ {+1,−1}. The state of the system will
be completely identified by the vector σ = (σ1, . . . , σN) ∈ {+1,−1}N =: ΣN . Furthermore,
we assume that the spins have a uniform prior distribution, namely P(σi = +1) = 1/2. The
Hamiltonian of the model hereby studied is

HN(σ;µ, ν, λ) ≡ HN(σ) = −
N∑

i,j=1

(
zij

√
µ

2N
σiσj +

ν

2N
σiσjξiξj

)
− λ

N∑
i=1

ξiσi , (4.1)

with µ, ν ≥ 0, λ ∈ R, zij
iid∼ N (0, 1) and ξi

iid∼ Pξ independent of the zij’s, where Pξ is any
distribution such that E[ξ41 ] < ∞. The zij’s and ξi’s play the role of quenched disorder in this
model. The model is going to be described by the couple of order parameters

qN(σ, τ ) =
1

N
σ · τ =

1

N

N∑
i=1

σiτi , mN(σ|ξ) =
1

N

N∑
i=1

σiξi (4.2)

where σ , τ ∈ ΣN and ξ = (ξ1, . . . , ξN). In what follows we will refer to mN(σ|ξ) as Mattis
magnetization. One can now separate the three contributions in the Hamiltonian (4.1), thus
obtaining

HN(σ) = −√
µ

N∑
i,j=1

zij√
2N

σiσj −
Nν

2
m2

N(σ|ξ)−NλmN(σ|ξ) , (4.3)

where an SK-like term

HSK
N (σ) := −

N∑
i,j=1

zij√
2N

σiσj (4.4)

at temperature
√
µ is clearly recognizable.

We will denote the random and quenched pressures of the model respectively as follows:

pN(µ, ν, λ) =
1

N
log

∑
σ∈ΣN

exp

[
−√

µHSK
N (σ) +

Nν

2
m2

N(σ|ξ) +NλmN(σ|ξ)
]

(4.5)

p̄N(µ, ν, λ) = EpN(µ, ν, λ) (4.6)

where the expectation in the latter is taken w.r.t. all the disorder: E ≡ EξEZ. For the reader’s
convenience, we report here the definitions of the quenched pressure of an SK model with
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random magnetic fields ξi
iid∼ Pξ and its limit:

p̄SKN (β, h) :=
1

N
E log

∑
σ∈ΣN

exp

[
−βHSK

N (σ) + h

N∑
i=1

ξiσi

]
, (4.7)

P(β, h) := inf
χ∈M[0,1]

P(χ; β, h) = lim
N→∞

p̄SKN (β, h) , (4.8)

where M[0,1] and P(χ; β, h) are as in Section 1.2.3. The main result of the chapter is the
variational principle for the thermodynamic limit of (4.6).

Theorem 4.1 (Variational solution). If E[ξ41 ] < +∞ then

pN(µ, ν, λ)
L2

−→ lim
N→∞

p̄N(µ, ν, λ) =: p(µ, ν, λ) = sup
x∈R

φ(x;µ, ν, λ) (4.9)

where

φ(x;µ, ν, λ) := −νx
2

2
+ P(

√
µ, νx+ λ) . (4.10)

From the form of the variational principle we can deduce also the differentiability properties
of the limiting pressure that we have collected in the following

Corollary 4.2. p(µ, ν, λ) is λ-differentiable if and only if φ( · ;µ, ν, λ) has a unique supremum
point x = x̄(µ, ν, λ) and in that case

x̄ =
∂

∂h
P(

√
µ, h)

∣∣∣∣
h=νx̄+λ

= lim
N→∞

E⟨mN(σ|ξ)⟩N . (4.11)

p(µ, ν, λ) is ν-differentiable if and only if φ( · ;µ, ν, λ) has at most two symmetric supremum
points {x̄,−x̄} and it holds

∂

∂ν
p(µ, ν, λ) =

x̄2

2
. (4.12)

Let ξ ∼ Pξ be centered and ν > 0. If φ( · ;µ, ν, λ = 0) has at most two symmetric supremum
points {x̄,−x̄} then p(µ, ν, 0) is µ-differentiable and it holds

∂

∂µ
p(µ, ν, 0) =

1

4

(
1−

∫
q2dχ∗(

√
µ, νx̄; q)

)
. (4.13)

where χ∗(β, h) denotes the unique Parisi measure solving the Parisi variational principle in
(4.8) for β =

√
µ, h = νx̄.
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The proof of (4.9) relies on the adaptive interpolation. We stress that the latter has proved
to be particularly successful in the optimal setting, but to our best knowledge, up to [75] it was
not applied in the mismatched setting.

From a Statistical Mechanics viewpoint, a similar model was studied in [46] where the author
solves a Sherrington-Kirkpatrick model with an added ferromagnetic interaction, that can be
derived from (4.1) setting Pξ = δ√J with J > 0 as the interaction strength.

Notice that the variational principle in (4.9) is one dimensional, as far as x is concerned,
suggesting thus the self-averaging of an order parameter to be identified with the Mattis mag-
netization as in (4.11). Indeed, the following concentration result holds.

Proposition 4.3. Let ϵ ∈ [sN , 2sN ] with sN = 1
2
N−α, α ∈ (0, 1/2). Denote by ⟨·⟩N,y the

Boltzmann-Gibbs measure induced by the Hamiltonian HN(σ;µ, ν, λ+ y) for any y ∈ R. Then

lim
N→∞

1

sN

∫ 2sN

sN

dϵE
〈
(mN(σ|ξ)− E⟨mN(σ|ξ)⟩N,ϵ)

2
〉
N,ϵ

= 0 , (4.14)

for all µ, ν ≥ 0 and λ ∈ R.

The proofs of Theorem 4.1, Corollary 4.2 and Proposition 4.3 can be found in Section 4.3.2
and require bounds on the fluctuations of mN(σ|ξ).

4.1.1 The Gaussian case

Theorem 4.1 contains a variational representation for the thermodynamic limit of the quenched
pressure density pN(µ, ν, λ) under mild assumption on the distribution of the family ξ. We
should notice that despite the fact the variational problem is one dimensional, the potential
φ(x;µ, ν, λ) in (4.10) contains a very complicated object, namely the pressure of a SK model
which is given by the Parisi formula. For these reasons it can be very hard in general to
obtain analytical information on the solution of the above variational problem. For instance,
an important question is when, once the potential φ(x;µ, ν, λ) is evaluated at the optimal value
for x, the Parisi term is solved by a non fluctuating order parameter, i.e. is replica symmetric.
The purpose of this subsection is to obtain some detailed insights on the model by studying
it on some analytically accessible case, in particular for a specific choice of the family ξ that
allows a quantitative description of the phase diagram. We choose the family ξ to be i.i.d
centered Gaussian, Pξ = N (0, a), and we set ν = µ and λ = 0. The above choice for the
parameters µ, ν, λ and its link with high dimensional inference problems is discussed in Sect.
4.2. We will show that in this setting one can use the nice result in [22] on the sharpness of the
de Almeida-Thouless line for Gaussian centered external magnetic fields for the SK model, to
perform an in-depth analysis of the variational problem in Theorem 4.1. With a slight abuse
of notation, we denote the corresponding quenched pressure by p̄N(µ, a). We show that it is
possible to identify the regions in the phase plane (µ, a) where P defined in (4.8) can be replaced
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with its replica symmetric version, thus obtaining the following replica symmetric potential

φRS(x;µ, a) := −µx
2

2
+
µ(1− q(x, µ, a))2

4
+ E log cosh

(
z
√
µq(x, µ, a) + µξx

)
(4.15)

where q(x, µ, a) is uniquely defined, thanks to the Latala-Guerra lemma [20], by the consistency
equation

q(x, µ, a) = E tanh2
(
z
√
µq(x, µ, a) + µξx

)
, (4.16)

for any x > 0 and we extend it to x = 0 by continuity. The properties of φRS are hereby
collected:

Proposition 4.4. The following properties hold:

1. φRS(−x;µ, a) = φRS(x;µ, a);

2. lim|x|→∞ φRS(x;µ, a) = −∞;

3. there exists a unique maximum point, up to reflection, x = x̄(µ, a) ≥ 0 which is either 0
or satisfies

q(x̄(µ, a), µ, a) = 1− 1

µa
; (4.17)

4. the solution of (4.17) exists and is unique if and only if

a ≥ 1

µ(1− q(0, µ, 0))
. (4.18)

The previous is always fulfilled if a ≥ 1/µ and a ≥ 1;

5. under the hypothesis (4.18) the solution to (4.17) is stable:

d2φRS(x;µ, a)

dx2

∣∣∣∣
x=±x̄(µ,a)

< 0 . (4.19)

Finally, we give a sharp criterion to establish when the replica symmetric potential can be
used to obtain the solution to the variational problem.

Proposition 4.5. Define the function

AT (µ, a) := µE cosh−4
(
z
√
µq(x̄(µ, a), µ, a) + µξx̄(µ, a)

)
. (4.20)

Then

lim
N→∞

p̄N(µ, a) = sup
x∈R

φRS(x;µ, a) iff AT (µ, a) ≤ 1 . (4.21)

The proofs of Propositions 4.4 and 4.5 can be found in Section 4.3.3. The previous results
for Gaussian ξi’s and their consequences can be gathered together in the phase diagram in
Figure 4.1 which will be studied in detail in the dedicated Section 4.4.
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4.2 Mismatched Setting in High Dimensional Statistical

Inference

The Hamiltonian (4.1) with ν = µ (which is not restrictive, one can reabsorb ν in the ξi’s) and
λ = 0 can be derived also from the spiked Wigner model in a mismatched setting as anticipated.

Figure 4.1: Model phase diagram when ξi
iid∼ N (0, a). Green region: fully paramagnetic phase, where the

Parisi overlap distribution is a Dirac delta centered at 0 as well as the Mattis magnetization. White region:

ferromagnetic, replica symmetric phase. Here, the Parisi overlap distribution is still a Dirac located according

to (4.16) and (4.17). The distribution of the Mattis magnetization is instead a sum of two deltas centered at

x̄ and −x̄ with 1/2 coefficients, namely the solutions of (4.17). The model therefore turns out to be replica

symmetric in the green and white areas. The blue region is delimited by µ = 1 and the blue curve drawn (here

only qualitatively) by (4.18), which is above the green dashed hyperbola µ = 1/a. In this region the model is in

a replica symmetry breaking phase, i.e. the Parisi distribution is no longer concentrated at a single point and x̄

solves the more general variational principle (4.9). With reference to Proposition 4.5, the dash-dotted red line

AT (µ, a) = 1, here drawn qualitatively, must contain the entire RSB phase, hence it must lie above (or at most

touch) the blue curve. The analogy with the SK model (see Remark 4.6 below) would suggest the presence of a

mixed phase in the red region where x̄ ̸= 0 and the overlap fluctuates.
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More specifically the Statistician has access to the N2 quantities

yij :=

√
µ

2N
ξiξj + zij , zij

iid∼ N (0, 1) . (4.22)

She also knows how the observations are generated, namely she is aware of the law (4.22) and
consequently of the conditional distribution

pY|ξ=x(y) =
exp

[
−1

2

∑N
i,j=1

(
yij −

√
µ
2N
xixj

)2]
(2π)N2/2

, (4.23)

for some value x. However, she does not know the distribution of the ξi’s and assumes them
to be binary ±1 as the σi’s with equal prior probability. Thus, according to Bayes’ rule, the
(wrong) posterior distribution used by the Statistician is

Pξ|Y=y(σ) =
exp

[
−1

2

∑N
i,j=1

(
yij −

√
µ
2N
σiσj

)2]
2N(2π)N2/2pY(y)

, (4.24)

where

pY(y) =
1

2N

∑
σ∈ΣN

exp
[
−1

2

∑N
i,j=1

(
yij −

√
µ
2N
σiσj

)2]
(2π)N2/2

. (4.25)

A straightforward computation shows that the posterior distribution (4.24) can be rewritten as
a random Boltzmann-Gibbs measure whose Hamiltonian is precisely HN(σ;µ, µ, 0).

It is important to stress that nor the posterior (4.24) neither the so called evidence (4.25)
are correct, in the sense that there is a mismatch between the receiver’s prior and Pξ. The true
distribution of the yij’s is instead

p∗Y(y) =

∫
dPξ(x)

exp
[
−1

2

∑N
i,j=1

(
yij −

√
µ
2N
xixj

)2]
(2π)N2/2

, (4.26)

with dPξ(x) =
∏N

i=1 dPξ(xi). With these notations one can proceed with the computation of
the cross entropy density

1

N
H(p∗Y, pY) = − 1

N

∫
dy p∗Y(y) log pY(y) , (4.27)

a quantity that can be evaluated only by a third party observer aware of both Pξ and the
mismatched prior. By inserting pY and the (4.22) in the (4.27) one obtains

1

N
H(p∗Y, pY) = − 1

N
EZEξ log

∑
σ∈ΣN

exp
[
−1

2

∑N
i,j=1

(
zij +

√
µ
2N

(ξiξj − σiσj)
)2]

2N(2π)N2/2

=
N

2
log 2πe+

µ

4
E2

ξ [ξ
2
1 ] +

µ

4
+O

(
1

N

)
+ log 2− 1

N
EZEξ log

∑
σ∈ΣN

e−HN (σ;µ,µ,0) .

(4.28)
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The first term is the Shannon entropy of the noise, whereas the last one is, up to a sign, the
quenched pressure p̄N(µ, µ, 0). In the optimal setting, namely when Pξ = (δ1 + δ−1)/2, (4.27) is
just the entropy of the observations and the quantity µ

4
+ µ

4
+ log 2− p̄N(µ, µ, 0) is the mutual

information 1
N
I(Y, ξ) between the ground truth signal and the observations up to O

(
1
N

)
.

Using integration by parts it is straightforward to show that

d

dµ

H(p∗Y, pY)

N
=

E2
ξ [ξ

2
1 ]− 2E⟨m2

N(σ|ξ)⟩N + E⟨q2N(σ, τ )⟩N
4

=
1

4N2
E∥ξ ⊗ ξ − ⟨σ ⊗ σ⟩N∥2F .

(4.29)

The previous equation relates the cross entropy (4.27) to the theoretical expected Mean Square
Error (MSE) in Frobenius’ norm that the receiver would make using the Bayesian a posteriori
estimator ⟨σ ⊗ σ⟩ = (⟨σiσj⟩)Ni,j=1 for the ground truth diad ξ ⊗ ξ = (ξiξj)

N
i,j=1. As seen in

Proposition 1.9, estimation performed in the matched setting produces a MSE which is the
smallest possible which entails that the MSE (4.29) is sub-optimal [71]. It is worth stressing
again that the MSE (4.29) can be evaluated only by the aforementioned third party observer,
since it derives directly from H(p∗Y, pY).

The MSE in the high dimensional limit can be evaluated using Theorem 4.1 and the following

Lemma 4.6. Let I be an open real interval, {gn}n∈N a sequence of differentiable functions
defined on I converging pointwise to a differentiabile function g. Suppose there exists a differ-
entiable function f on I such that {gn + f}n∈N is a sequence of convex differentiable functions
on I. Then limN→∞ g′n(x) = g′(x).

Proof. The statement follows immediately from an application of Griffith’s Lemma (see for
instance [64], Lemma IV.6.3) to the sequence g̃n = gn + f .

For our cross entropy density sequence, which is not convex due to the lack of Nishimori
identities, one can prove that

H̃(p∗Y, pY)

N
=

H(p∗Y, pY)

N
− µ log µ (4.30)

is concave by a direct computation of its second derivative w.r.t. µ. We leave the details of
the computation to the interested reader. Hence the previous Lemma, under the hypothesis for
µ(ν)-differentiability of p(µ, ν, λ = 0) in Corollary 4.2, implies that

lim
N→∞

1

4N2
E∥ξ ⊗ ξ − ⟨σ ⊗ σ⟩∥2F =

d

dµ

[µ
4
E2

ξ [ξ
2
1 ] +

µ

4
− p(µ, µ, 0)

]
=

=
1

4
E2

ξ [ξ
2
1 ] +

1

4
− x̄2

2
− 1

2
√
µ
∂β P(β, µx̄)|β=√

µ =

=
1

4
E2
ξ [ξ

2
1 ] +

1

4
− x̄2

2
− 1

4

(
1−

∫
q2dχ∗(

√
µ, µx̄; q)

)
, (4.31)
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where we have replaced the derivative of the Parisi functional w.r.t. β as prescribed by Corollary
4.2. We finally come up with

lim
N→∞

1

4N2
E∥ξ ⊗ ξ − ⟨σ ⊗ σ⟩∥2F =

1

4
E2

ξ [ξ
2
1 ]−

x̄2

2
+

1

4

∫
q2dχ∗(

√
µ, µx̄; q) . (4.32)

4.3 Proofs

4.3.1 Tools

In this section we show how to interpolate our model with a simple SK model with random iid
magnetic fields following an adaptive path. The advantage of this approach in this mismatched
setting is the possibility to confine the replica symmetry breaking phenomena in the SK part
of the model which is exhaustively studied in the literature. The ultimate purpose of the inter-
polation hereby illustrated is thus to linearize the squared magnetization in the Hamiltonian.

The interpolating model is defined by means of the Hamiltonian

HN(t;σ) : = HN(σ;µ, (1− t)ν, λ+Rϵ(t)) =

=
√
µHSK

N (σ)− (1− t)
Nν

2
m2

N(σ|ξ)− (λ+Rϵ(t))NmN(σ|ξ)
(4.33)

where

Rϵ(t) = ϵ+ ν

∫ t

0

ds rϵ(s) , ϵ ∈ [sN , 2sN ] , sN =
N−α

2
(4.34)

with α ∈ (0, 1/2) and where the interpolating function rϵ will be suitably chosen (see Remark
4.3 below for instance). The related interpolating pressure is:

p̄N(t) : = p̄N(µ, (1− t)ν, λ+Rϵ(t)) =
1

N
EξEZ log

∑
σ∈ΣN

exp [−HN(t;σ)] . (4.35)

As done in Proposition 4.3, the Boltzmann-Gibbs averages relative to (4.33) will be denoted by
⟨·⟩N,Rϵ(t).

Remark 4.1. The interpolation strategy that we use in this work is profoundly different from
the typical one of the statistical inference literature within the Bayes optimal setting. In that
case one interpolates directly at the level of the channel, namely of (4.22), to compare it with a

one body channel of the type yi =
√
Rϵ(t)ξi+zi with zi

iid∼ N (0, 1). Traveling along a trajectory
that keeps an inferential interpretation ensures that the model is on the Nishimori line at any
t where all the precious properties of that line, identities and correlation inequalities, provide a
crucial analytical tool to obtain a finite dimensional variational principle.

In the present case instead the structural complexity of the mismatched setting implies that
we cannot count in the very first place on the Nishimori line properties nor on a global absence
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of fluctuations for the order parameters. The strategy to achieve the solution and overcome this
difficulty is to build an interpolation scheme that, albeit not coming from a Gaussian channel
of type (4.22), is able to isolate a pure SK part, described by the Parisi solution, plus a classical
one dimensional variational principle.

Remark 4.2. In what follows, we will exploit the fact that the quenched pressure has bounded
derivative in the external biases λ. Indeed, thanks to Cauchy-Schwartz inequality and to E[ξ41 ] <
∞ we have∣∣∣∣ ddλp̄N(µ, ν, λ)

∣∣∣∣ = |E⟨mN⟩N | ≤
1

N

N∑
i=1

|E⟨σiξi⟩N | ≤
1

N

N∑
i=1

√
E[ξ2i ] =

√
E[ξ21 ] =:

√
a . (4.36)

The previous bound holds for all µ, ν ≥ 0 and λ ∈ R. In particular, it holds for ν = 0, namely
for the SK model where this implies that p̄SKN (·, h) is Lipschitz in h and so will be its limit
P(·, h). Furthermore, since the interpolating model (4.33) is of the type (4.1) it inherits these
Lipschitz properties on its quenched pressure (4.35).

Proposition 4.7. The following sum rule holds:

p̄N(µ, ν, λ) = p̄SKN (
√
µ, λ+Rϵ(1))−

ν

2

∫ 1

0

dt[r2ϵ (t)−∆ϵ(t)] +O(sN) (4.37)

where

∆ϵ(t) := E
〈
(mN(σ|ξ)− rϵ(t))

2
〉
N,Rϵ(t)

. (4.38)

Proof. Let us begin by computing the first derivative

˙̄pN(t) = E
〈
− ν

2
m2

N(σ|ξ) + νrϵ(t)mN(σ|ξ)
〉
N,Rϵ(t)

=
ν

2
r2ϵ (t)−

ν

2
∆ϵ(t) . (4.39)

Remark 4.2 implies that

p̄N(0) = p̄N(µ, ν, λ) +O(sN) ; (4.40)

p̄N(1) =
1

N
E log

∑
σ∈ΣN

exp

[
−√

µHSK
N (σ) + (Rϵ(1) + λ)

N∑
i=1

ξiσi

]
= p̄SKN (

√
µ,Rϵ(1) + λ).

(4.41)

An application of the fundamental theorem of calculus yields the result.

Remark 4.3. By looking at the remainder ∆ϵ(t) in the sum rule one may be led to choose the
interpolating function as

rϵ(t) = E⟨mN(σ|ξ)⟩N,Rϵ(t) (4.42)
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in order to apply Proposition 4.3 in some suitable form and make ∆ϵ(t) vanish in the thermody-
namic limit. As for the multi-species models treated earlier, the choice (4.42) can be formalized
by means of the ODE

Ṙϵ(t) = νE⟨mN(σ|ξ)⟩N,Rϵ(t) =: GN(t, Rϵ(t)) , Rϵ(0) = ϵ , (4.43)

which has always a solution by Cauchy-Lipschitz theorem because the velocity field GN is
Lipschitz for fixed N in the spatial coordinate Rϵ

∂

∂Rϵ

GN(t, Rϵ(t)) = νNE
〈
(mN(σ|ξ)− ⟨mN(σ|ξ)⟩N,Rϵ(t))

2
〉
N,Rϵ(t)

≥ 0 . (4.44)

Furthermore, by Liouville’s formula (see Lemma 2.4) and the previous equation we know that
the Jacobian ∂ϵRϵ satisfies

∂Rϵ(t)

∂ϵ
= exp

{∫ t

0

ds
∂GN(s, Rϵ(s))

∂Rϵ

}
≥ 1 . (4.45)

Equations (4.43), (4.44) and (4.45) together provide a rigorous justification to the choice (4.42).

4.3.2 Proofs of Theorem 4.1, Corollary 4.2 and Proposition 4.3

All of the above results require the L2 convergence of the random pressure towards the limit
of its expectations and a preliminary control on the fluctuations of the Mattis magnetization
which are respectively contained in the two following lemmas.

Lemma 4.8 (Self-averaging of the pressure). If E[ξ41 ] <∞ then

E
[
(pN(µ, ν, λ)− p̄N(µ, ν, λ))

2] ≤ K(µ, ν, λ)

N
, K(µ, ν, λ) = C1µ+ C2ν

2 + C3λ
2 (4.46)

with C1, C2, C3 > 0.

Proof. The random pressure pN is a function of the random variables (Z, ξ). For this proof
we stress this dependency by writing pN(Z, ξ). Define Z(ij) = (z12, z13, . . . , z

′
ij, . . . , zN,N−1) and

ξ(i) = (ξ1, ξ2, . . . , ξ
′
i, . . . , ξN) where z

′
ij ∼ N (0, 1) and ξ′i ∼ Pξ are independent of anything else.

Then, by Efron-Stein inequality

E
[
(pN(µ, ν, λ)− p̄N(µ, ν, λ))

2] ≡ V[pN(Z, ξ)] ≤

≤ 1

2

N∑
i,j=1

E
[(
pN(Z

(ij), ξ)− pN(Z, ξ)
)2]

+
1

2

N∑
i=1

E
[(
pN(Z, ξ

(i))− pN(Z, ξ)
)2]

. (4.47)
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Let us focus on the terms in the first sum. By Lagrange’s mean value theorem we have that
there exists a z̃ij ∈ (min(zij, z

′
ij),max(zij, z

′
ij)) such that

(
pN(Z

(ij), ξ)− pN(Z, ξ)
)2

=

(
∂pN
∂zij

∣∣∣∣
z̃ij

)2

(zij − z′ij)
2 =

=

(
1

N

√
µ

2N
⟨σiσj⟩N,z̃ij

)2

(zij − z′ij)
2 ≤ µ

2N3
(zij − z′ij)

2 (4.48)

where by ⟨·⟩N,z̃ij we mean the Boltzmann-Gibbs measure where zij has been replaced with z̃ij in
the Hamiltonian (4.1). In a really similar fashion we estimate the second set of terms. Again,
let ξ̃i ∈ (min(ξi, ξ

′
i),max(ξi, ξ

′
i))

(
pN(Z, ξ

(i))− pN(Z, ξ)
)2

=

(
∂pN
∂ξi

∣∣∣∣
ξ̃i

)2

(ξi − ξ′i)
2 =

=

[
ν

N2

(
N∑

j ̸=i,1

ξj⟨σiσj⟩N,ξ̃i
+ ξ̃i

)
+
λ

N
⟨σi⟩N,ξ̃i

]2
(ξi − ξ′i)

2 =

=

[
ν

N2

(
N∑

j ̸=i,1

ξj⟨σiσj⟩N,ξ̃i
+ ξ̃i

)
+

λ

N2

N∑
j=1

⟨σi⟩N,ξ̃i

]2
(ξi − ξ′i)

2 . (4.49)

Notice that in the square bracket we have an overall sum of 2N terms. We can use Jensen’s
inequality to bring the square inside the sums. The last line of the previous is bounded by

2N

[
ν2

N4

(
N∑

j ̸=i,1

ξ2j ⟨σiσj⟩2N,ξ̃i
+ ξ̃2i

)
+
λ2

N4

N∑
i=1

⟨σi⟩2N,ξ̃i

]
(ξi − ξ′i)

2 (4.50)

whence, exploiting the fact that ξ̃2i ≤ max(ξ2i , ξ
′2
i ) ≤ ξ2i + ξ′2i

(
pN(Z, ξ

(i))− pN(Z, ξ)
)2

≤ 2

N3

[
ν2

(
N∑
j=1

ξ2j + ξ′2i

)
+Nλ2

]
(ξi − ξ′i)

2 . (4.51)

From the previous equation one can clearly see that ξ appears at most at the 4th power on the
r.h.s. Hence, thanks to the hypothesis, inserting the estimates (4.48) and (4.51) into (4.47) we
get the claimed inequality.

Lemma 4.9. Let y ∈ [y1, y2], δ ∈ (0, 1) and denote by ⟨·⟩N,y the Boltzmann-Gibbs expectation
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associated to the Hamiltonian HN(σ;µ, ν, λ+ y). Then

E
〈
(mN(σ|ξ)− ⟨mN(σ|ξ)⟩N,y)

2
〉
N,y

=
1

N

d2

dy2
p̄N(µ, ν, λ+ y) (4.52)

E
[
(⟨mN(σ|ξ)⟩N,y − E⟨mN(σ|ξ)⟩N,y)

2] ≤ 12K(µ, ν, |λ|+ |y|+ 1)

δ2N
+

+ 8
√
a
d

dy
[p̄N(µ, ν, λ+ y + δ)− p̄N(µ, ν, λ+ y − δ)]

(4.53)

with a := Eξ21.

Proof. The concentration property (4.53) can be obtained from the self-averaging and the con-
vexity properties of the pressure density, proved in Lemma 4.8, using a well-know argument in
spin glass theory [10, 11], already employed in the optimal setting in Appendix A.1. The version
of that argument applied here is analogous to the one appearing in [76]. In order to lighten
the notation we neglect subscripts in the brackets for this proof. (4.52) follows from a simple
computation of the second derivative on the r.h.s. Let us skip directly to (4.53). It is easy to
see that both pN and p̄N are convex in the external biases λ. We first evaluate the difference∣∣∣∣ ddy [pN(µ, ν, λ+ y)− p̄N(µ, ν, λ+ y)]

∣∣∣∣ = |⟨mN⟩ − E⟨mN⟩| . (4.54)

The difference between two convex differentiable functions can be bounded (see Lemma 3.2 in
[18]) from above as follows∣∣∣∣ ddy [pN(µ, ν, λ+ y)− p̄N(µ, ν, λ+ y)]

∣∣∣∣ ≤ 1

δ

∑
u=y±δ, y

|pN(µ, ν, λ+ u)− p̄N(µ, ν, λ+ u)|+

+
d

dy
(p̄N(µ, λ+ y + δ)− p̄N(µ, λ+ y − δ)) (4.55)

for any δ > 0. For our purposes, it is sufficient to restrict ourselves to δ ∈ (0, 1). By squaring
both sides, averaging w.r.t. the disorder and using Jensen’s inequality we get

E
[
(⟨mN⟩ − E⟨mN⟩)2

]
≤ 4

δ2

∑
u=y±δ, y

E
[
(pN(µ, ν, λ+ u)− p̄N(µ, ν, λ+ u)2

]
+

+ 4

[
d

dy
(p̄N(µ, ν, λ+ y + δ)− p̄N(µ, ν, λ+ y − δ))

]2
. (4.56)

By Lemma 4.8, each of the three terms in the first sum of the previous equation can be bounded
by K(µ, ν, |λ| + |y| + 1)/N and this explains the first term in (4.53). Concerning the second,
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notice that the derivative in the square brackets is positive thanks to the convexity of p̄N and
bounded as seen in Remark 4.2. The previous considerations imply that[

d

dy
(p̄N(µ, ν, λ+ y + δ)− p̄N(µ, ν, λ+ y − δ))

]2
≤

≤ 2
√
a

[
d

dy
(p̄N(µ, ν, λ+ y + δ)− p̄N(µ, ν, λ+ y − δ))

]
, (4.57)

which concludes the proof.

We start with Proposition 4.3 that is a direct consequence the previous Lemma.

Proof of Proposition 4.3. For future convenience we introduce the notation Eϵ[·] = 1
sN

∫ 2sN
sN

(·).
We first decompose the quenched variance

E
〈
(mN(σ|ξ)− E⟨mN(σ|ξ)⟩N,ϵ)

2
〉
N,ϵ

= E
〈
(mN(σ|ξ)− ⟨mN(σ|ξ)⟩N,ϵ)

2
〉
N,ϵ

+

+ E
[
(⟨mN(σ|ξ)⟩N,ϵ − E⟨mN(σ|ξ)⟩N,ϵ)

2] . (4.58)

The first term in the r.h.s. of the previous equation is the contribution due to the thermal
fluctuations in the model, whilst the second one is due to the disorder.

Thermal fluctuations: Consider (4.52) with y ≡ ϵ ∈ [sN , 2sN ] and take the expectation Eϵ of
both sides:

∆T := EϵE
〈
(mN(σ|ξ)− ⟨mN(σ|ξ)⟩N,ϵ)

2
〉
N,ϵ

=
1

NsN

∫ 2sN

sN

dϵ
d2

dϵ2
p̄N(µ, ν, λ+ ϵ) (4.59)

Now, recalling that the derivatives of the pressure are bounded (see (4.36)) we immediately
conclude that

∆T = O
(

1

NsN

)
. (4.60)

Disorder fluctuations: Analogously take (4.53) with y ≡ ϵ ∈ [sN , 2sN ] and average w.r.t. ϵ on
both sides. Considering that ϵ ≤ 1 we have

∆D := EϵE
[
(⟨mN(σ|ξ)⟩N,ϵ − E⟨mN(σ|ξ)⟩N,ϵ)

2] ≤ 12K(µ, ν, |λ|+ 2)

δ2N
+

+
8
√
a

sN

∫ 2sN

sN

dϵ
d

dϵ
[p̄N(µ, ν, λ+ ϵ+ δ)− p̄N(µ, ν, λ+ ϵ− δ)] . (4.61)



4.3. PROOFS 97

The last integral can be explicitly computed and then bounded by 4δ
√
a thanks to Lagrange’s

mean value theorem and (4.36). Hence

∆D = O
(

1

δ2N
+

δ

sN

)
(4.62)

which is optimized when δ = (sN/N)1/3 (consistently with δ ∈ (0, 1)). This choice leads to

∆D = O
(

1

s
2/3
N N1/3

)
= O

(
N

2α−1
3

)
. (4.63)

The latter and (4.60) both vanish in the N → ∞ limit for α ∈ (0, 1/2).

We are finally ready for the proof of Theorem 4.1.

Proof of Theorem 4.1. The variational principle is proven by means of two bounds that match
in the thermodynamic limit. The lower bound follows from the classical sum rule combined
with the positivity of the square. The upper bound is obtained with the adaptive interpolation
method. For the sake of clarity we consider each of them separately and then we prove (4.11).

Lower bound: Let us consider the sum rule (4.37) with the choice rϵ(t) = x constant in t.
Furthermore observe that the remainder ∆ϵ(t) is always positive, so we discard it at the expense
of an inequality:

p̄N(µ, ν, λ) ≥ p̄SKN (
√
µ, λ+ ϵ+ νx)− νx2

2
+O(sN) . (4.64)

As explained in Remark 4.2 p̄SKN is Lipschitz in its second entry. This allows us to reabsorb the
perturbation ϵ into O(sN). By sending N → ∞ one obtains the bound

lim inf
N→∞

p̄N(µ, ν, λ) ≥ −νx
2

2
+ P(

√
µ, νx+ λ) (4.65)

which is uniform in x. We can optimize it by taking the supx∈R on the r.h.s.

Upper bound: From (4.52) we see that any quenched pressure of the type (4.6) is convex in its
third entry. Then, starting from the sum rule (4.37) we can use Jensen’s inequality on the SK
quenched pressure to obtain an upper bound

p̄N(µ, ν, λ) ≤ O(sN) +

∫ 1

0

dt

[
−νr

2
ϵ (t)

2
+ p̄SKN (

√
µ, λ+ ϵ+ νrϵ(t))

]
+
ν

2

∫ 1

0

dt∆ϵ(t) . (4.66)
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As done in the lower bound, we throw the dependence on ϵ in p̄SKN into O(sN) and use Guerra’s
uniform bound p̄SKN ≤ P [7]:

p̄N(µ, ν, λ) ≤ O(sN) +

∫ 1

0

dt

[
−νr

2
ϵ (t)

2
+ P(

√
µ, λ+ νrϵ(t))

]
+
ν

2

∫ 1

0

dt∆ϵ(t) ≤

≤ O(sN) + sup
x∈R

φ(x;µ, ν, λ) +
ν

2

∫ 1

0

dt∆ϵ(t) . (4.67)

The only remaining dependency on the interpolation path is in ∆ϵ(t). To make the two bounds
match we have to make sure the remainder vanishes in the limit. Hence, as suggested in Remark
4.3, we choose rϵ(·) as in (4.42). At this point we can decompose ∆ϵ(t) as done in the proof of
Proposition 4.3

∆ϵ(t) = E
〈 (
mN(σ|ξ)− ⟨mN(σ|ξ)⟩N,Rϵ(t)

)2 〉
N,Rϵ(t)

+

+ E
[(
⟨mN(σ|ξ)⟩N,Rϵ(t) − E⟨mN(σ|ξ)⟩N,Rϵ(t)

)2]
. (4.68)

Let us first bound the ϵ-average of the first term on the r.h.s. Using (4.52) and the inequality
(4.45) on the Jacobian we get

1

sN

∫ 2sN

sN

dϵE
〈 (
mN(σ|ξ)− ⟨mN(σ|ξ)⟩N,Rϵ(t)

)2 〉
N,Rϵ(t)

=

=
1

NsN

∫ 2sN

sN

dϵ
d2

dy2
p̄N(µ, (1− t)ν, λ+ y)

∣∣∣∣
y=Rϵ(t)

≤

≤ 1

NsN

∫ R2sN
(t)

RsN
(t)

dy
d2

dy2
p̄N(µ, (1− t)ν, λ+ y) = O

(
1

NsN

)
(4.69)

where the last equality follows from the bound on derivatives (4.36).
For the second term in the r.h.s. of (4.68) we use (4.53) and take its ϵ-average:

1

sN

∫ 2sN

sN

dϵE
[(
⟨mN(σ|ξ)⟩N,Rϵ(t) − E⟨mN(σ|ξ)⟩N,Rϵ(t)

)2] ≤ O
(

1

Nδ2

)
+

+
8
√
a

sN

∫ 2sN

sN

dϵ
d

dy
[p̄N(µ, (1− t)ν, λ+ y + δ)− p̄N(µ, (1− t)ν, λ+ y − δ)]

∣∣∣∣
y=Rϵ(t)

. (4.70)

Now, thanks again to inequality (4.45) and to the fact that the derivative of the square bracket
is positive the integral in the previous equation can be bounded by∫ R2sN

(t)

RsN
(t)

dy
d

dy
[p̄N(µ, (1− t)ν, λ+ y + δ)− p̄N(µ, (1− t)ν, λ+ y − δ)] ≤ 4

√
aδ . (4.71)
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The last inequality follows from an application of the mean value theorem and (4.36). Equations
(4.69), (4.70) and (4.71) together imply that

Eϵ[∆ϵ(t)] = O
(

1

NsN
+

1

Nδ2
+

δ

sN

)
, (4.72)

that vanishes in the thermodynamic limit for δ = (sN/N)1/3 and sN = 1/2N−α with α ∈ (0, 1/2)
as seen for Proposition 4.3. With this information, we take the ϵ-average on both sides of (4.67)
and by Fubini’s Theorem and dominated convergence we have

lim sup
N→∞

p̄N(µ, ν, λ) ≤ sup
x∈R

φ(x;µ, ν, λ) . (4.73)

The two bounds, together with Lemma 4.8, conclude the proof of the variational principle
(4.9).

Remark 4.4. The upper bound in the proof of (4.9) can also be obtained by adapting the ele-
gant technique used in [46]. We opted instead for a proof that explicitly identifies the physical
meaning of the vanishing distance between the upper and lower bounds in terms of the fluc-
tuation of the order parameter. Such crucial thermodynamic property (Proposition 4.3) holds
independently of the solution and it is at the origin of the (ordinary) variational principle in
(4.9).

Remark 4.5. Since for ν > 0 P(β, h) is h-Lipschitz we have

lim
|x|→∞

φ(x;µ, ν, λ) = −∞, (4.74)

therefore the supremum of φ( · ;µ, ν, λ) will be attained at a finite x̄ ∈ R. Furthermore the
necessary condition for x̄ to be a maximum point is

x̄ = ∂hP(
√
µ, h)|h=νx̄+λ (4.75)

that in turn implies x̄ ∈ [−√
a,
√
a] by (1.64). Hence one can take the supremum only over

[−√
a,
√
a].

Proof of Corollary 4.2.

λ-differentiability: Set Ω(µ, ν, λ) := argmax[−√
a,
√
a] φ( · ;µ, ν, λ). Then, since p(µ, ν, λ) is convex

in λ, by Danskin’s theorem (see [46] for instance) we have that the left and right derivatives
satisfy respectively

d

dλ−
p(µ, ν, λ) = min

x∈Ω(µ,ν,λ)

∂

∂λ
φ(x;µ, ν, λ) = min

x∈Ω(µ,ν,λ)

∂

∂h
P(

√
µ, h)|h=νx+λ (4.76)

d

dλ+
p(µ, ν, λ) = max

x∈Ω(µ,ν,λ)

∂

∂λ
φ(x;µ, ν, λ) = max

x∈Ω(µ,ν,λ)

∂

∂h
P(

√
µ, h)|h=νx+λ . (4.77)
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If Ω(µ, ν, λ) is a singleton then p(µ, ν, λ) is differentiable. Conversely, suppose that p(µ, ν, λ) is
differentiable and that there are at least two distinct values x1, x2 ∈ Ω(µ, ν, λ), x1 < x2. Then
we have

d

dλ−
p(µ, ν, λ) ≤ ∂

∂h
P(

√
µ, h)|h=νx1+λ = x1 < x2 =

∂

∂h
P(

√
µ, h)|h=νx2+λ ≤ d

dλ+
p(µ, ν, λ)

(4.78)

that is a contradiction.
Assume now that there is a unique maximum point x̄. Thanks to the convexity of the

sequence p̄N in λ and Danskin’s theorem we can write

lim
N→∞

E⟨mN(σ|ξ)⟩N = lim
N→∞

d

dλ
p̄N(µ, ν, λ) =

d

dλ
p(µ, ν, λ) =

∂

∂λ
φ(x̄;µ, ν, λ) =

=
∂

∂λ
P(

√
µ, νx̄+ λ) =

∂

∂h
P(

√
µ, h)|h=νx̄+λ = x̄ ,

(4.79)

where it is understood that only explicit dependence on λ is taken into account when the partial
derivative is taken.

ν-differentiability: The proof relies on Danskin’s theorem and is a straightforward consequence
of that of Proposition 2 in [46].

µ-differentiability at λ = 0: Notice that when ξ is centered then φ(x;µ, ν, 0) is symmetric in
x. The result then follows easily again from Danskin’s Theorem (as in Theorem 2 in [46]) and
from the differentiability properties w.r.t. β =

√
µ of the Parisi pressure in Theorem 14.11.6 of

[23] and [25].

4.3.3 Proof of Proposition 4.4 and Proposition 4.5

Proof of Proposition 4.4. The fact that φRS is an even function of x follows directly from the
symmetry of the random variable ξ. By Remark 4.5, when |x| → ∞, the term −µx2/2 is
dominant in (4.15) bringing φRS to −∞. As a consequence the maximum point(s) of φRS are
critical point(s). The vanishing derivative condition yields

dφRS

dx
= −µx+ µEξ tanh

(
z
√
µq(x, µ, a) + µξx

)
= −µx+ µ2ax (1− q(x, µ, a)) = 0 (4.80)

that is

x = 0 or q(x, µ, a) = 1− 1

µa
. (4.81)

Since the function is q(x, µ, a) increasing for x ≥ 0, the positive solution x̄(µ, a) of (4.17) exists
and is unique up to reflection if and only if

lim
x→0+

q(x, µ, a) ≤ 1− 1

µa
(4.82)
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which is equivalent to (4.18).
Consider now a ≥ 1. If 1/a ≤ µ ≤ 1 we have q(0, µ, 0) = 0, thus (4.18) is clearly satified.

Furthermore, it turns out that

µ > 1 ⇒ AT (µ, 0) > 1 . (4.83)

In fact for a = 0 (4.1) reduces to an SK model with zero external magnetic field at temperature√
µ. Fix µ > 1 and assume that AT (µ, 0) ≤ 1. Then for any ϵ > 0 by the monotonicity of

q(x, µ, a)

µE cosh−4
(
z
√
µq(ϵ, µ, 1) + ϵ2µ2

)
< AT (µ, 0) ≤ 1 . (4.84)

[22] implies that the Parisi measure is χ∗(
√
µ, ϵµ) = δq(ϵ,µ,1) and χ

∗(
√
µ, ϵµ) −→ δq(0,µ,0) weakly.

Since P(β, h) is continuous in h and the Parisi functional P(χ; β, h) is weakly continuous we
have that

P(
√
µ, 0) = lim

ϵ→0
P(

√
µ, ϵµ) = P(δq(0,µ,0);

√
µ, 0) . (4.85)

However for µ > 1 we have P(
√
µ, 0) < P(δq(0,µ,0);

√
µ, 0) thus the latter is a contradiction

coming from the assumption AT (µ, 0) ≤ 1. This proves (4.83). Hence

1 < µE cosh−4(z
√
µq(0, µ, 0)) ≤ µE cosh−2(z

√
µq(0, µ, 0)) = µ(1− q(0, µ, 0)) (4.86)

from which, when a ≥ 1,

q(0, µ, 0) < 1− 1

µ
≤ 1− 1

µa
. (4.87)

Finally, the solution to (4.17) is stable w.r.t. the optimization, indeed

d2φRS(x;µ, a)

dx2

∣∣∣∣
x=x̄(µ,a)

= −µ+ µ2a (1− q(x, µ, a))− µ2ax̄(µ, a)
dq

dx
(x̄(µ, a), µ) =

= −µ2ax̄(µ, a)
dq

dx
(x̄(µ, a), µ) < 0 (4.88)

thanks to the monotonicity of q(x, µ, a). The result for x = −x̄(µ, a) follows by symmetry.

Proof of Proposition 4.5. By proposition 4.4 there exists a unique (non negative) maximum
point x̄(µ, a) of φRS(x;µ, a). Given (µ, a) ∈ R≥0 ×R≥0 we introduce the following subset of the
real line:

RS(µ, a) =
{
x ∈ R |µE cosh−4

(
z
√
µ q(x, µ, a) + µ2x2a

)
≤ 1
}
. (4.89)
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Clearly by definition AT (µ, a) ≤ 1 ⇐⇒ x̄(µ, a) ∈ RS(µ, a). We start assuming that
x̄(µ, a) ∈ RS(µ, a). Let us denote by φ(x;µ, a) the variational potential (4.10) specialized in
the current setting, namely with ν = µ, λ = 0 and ξ ∼ N (0, a). From (4.65) we already know
that

lim inf
N→∞

p̄N(µ, a) ≥ φ(x;µ, a) (4.90)

uniformly on x. Hence we can optimize (4.90) only over the region RS(µ, a) obtaining the lower
bound:

lim inf
N→∞

p̄N(µ, a) ≥ sup
x∈RS(µ,a)

φ(x;µ, a) . (4.91)

The choice of restricting the supremum to the region RS(µ, a) allows us to replace in (4.91)
the function φ with its its replica symmetric version φRS. Indeed again by [22] the AT condition
is sufficient for the validity of the the replica symmetric solution of the SK model. Then from
(4.91) one gets the lower bound

lim inf
N→∞

p̄N(µ, a) ≥ sup
x∈RS(µ,a)

φRS(x;µ, a) . (4.92)

For the upper bound we can exploit the fact that the pressure of the SK model is always
bounded from above by the replica symmetric one [7]. Hence from the upper bound (4.73) we
get

lim sup
N→∞

p̄N(µ, a) ≤ sup
x
φRS(x;µ, a) = sup

x∈RS(µ,a)

φRS(x;µ, a) . (4.93)

where the last equality follows from the assumption x̄(µ, a) ∈ RS(µ, a). Summarising we just
proved that

AT (µ, a) ≤ 1 =⇒ lim
N→∞

p̄N(µ, a) = sup
x∈RS(µ,a)

φRS(x;µ, a) . (4.94)

Notice that in the previous equality the supremum can be taken on the whole real line since we
are assuming that x̄(µ, a) ∈ RS(µ, a).

Conversely, suppose that x̄(µ, a) ∈ (RS(µ, a))c. We are going to prove the replica symmetric
solution cannot hold. By Theorem 4.1 we know that

lim
N→∞

p̄N(µ, a) = sup
x∈R

φ(x;µ, a) = φ(x̃(µ, a);µ, a). (4.95)

where x̃(µ, a) denotes a point where the supremum is attained. By Remark 4.5 one can say that
x̃(µ, a) ∈ [−√

a,
√
a]. Let’s consider two cases, first suppose that x̃(µ, a) ∈ RS(µ, a), then using

the result in [22] we have that

φ(x̃(µ, a);µ, a) = φRS(x̃(µ, a);µ, a) < sup
x∈R

φRS(x;µ, a) (4.96)
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where the last inequality follows from the assumption x̄(µ, a) ∈ (RS(µ, a))c. On the other hand
if x̃(µ, a) ∈ (RS(µ, a))c it is known [28] that the pressure of the SK model is strictly smaller
that its replica symmetric version, therefore

φ(x̃(µ, a);µ, a) < φRS(x̃(µ, a);µ, a) ≤ sup
x∈R

φRS(x;µ, a) . (4.97)

In conclusion, we have just proved that

AT (µ, a) > 1 ⇒ lim
N→∞

p̄N(µ, a) < sup
x∈R

φRS(x;µ, a) . (4.98)

4.4 Phase Diagram

This section collects the consequences of Propositions 4.4 and 4.5 and resumes how the phase
diagram in Figure 4.1 is drawn.

When a ≤ 1 the condition (4.18) is not trivial and identifies a curve that lies above µ = 1/a.
Below this curve, for µ > 1, the unique stable maximizer of φRS is x̄(µ, a) = 0. The resulting
q(0, µ, a) ≡ q(0, µ, 0) has to be intended as the stable solution to the consistency equation for
the overlap of an SK model at temperature

√
µ in absence of external magnetic field, which is

known to be RSB for µ > 1. Hence by (4.83)

AT (µ, a) = AT (µ, 0) = µE cosh−4(z
√
µq(0, µ, 0)) > 1 . (4.99)

This in turn implies the replica symmetry breaking in our model. The de Almeida-Thouless
red line in the diagram represents the condition AT (µ, a) = 1 and must lie above, or at most
coincide with, the curve (4.18) since it must contain the entire RSB phase. The red region could
contain a mixed phase in analogy with the SK model as explained in Remark 4.6.

From (4.99) it is also clear that in an RS phase we must have x̄(µ, a) ̸= 0 for µ > 1 otherwise
AT (µ, a) > 1. Similarly, for a ≥ 1 and 1/a < µ ≤ 1, x̄(µ, a) = 0 cannot be the solution to
(4.17) either since

q(0, µ, a) = q(0, µ, 0) = 0 < 1− 1

µa
. (4.100)

Contrarily, in the green region, that is replica symmetric by Proposition 4.5, the unique possible
maximizer is x̄(µ, a) = 0 because µ ≤ 1/a. Moreover, we have the following

Corollary 4.10 (of Proposition 4.5). The model is always replica symmetric for any a ≥ 1.
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Proof. Recall that for µ ≤ 1 one has trivially AT (µ, a) ≤ 1. In addition to that, thanks to
Proposition 4.4 for a ≥ 1 and µ ≥ 1 ≥ 1/a we can always assume (4.17). Hence

AT (µ, a) ≤ µE cosh−2
(
z
√
µq(x̄(µ, a), µ, a) + µ2x̄(µ, a)2a

)
=

= µ [1− q(x̄(µ, a), µ, a)] = µ− µ+
1

a
=

1

a
≤ 1 . (4.101)

The thesis follows from Proposition 4.5.

Remark 4.6. Let us consider Pξ = (δ√a + δ−√
a)/2, or equivalently ξi =

√
aτi with τi = ±1. In

this case, one can gauge away the signs of the variables ξi’s in (4.1) by means of the Z2 gauge
transformation

zij 7→ zijτiτj , σi 7→ σiτi (4.102)

obtaining the Hamiltonian

H̃N(σ) = −
N∑

i,j=1

(
zij

√
µ

2N
σiσj +

µa

2N
σiσj

)
D
= −

N∑
i,j=1

Jijσiσj , Jij
iid∼ N

( µa
2N

,
µ

2N

)
. (4.103)

The latter describes an SK model with a peculiar parameterization. To see this it suffices to
consider the parameterization [29], namely

βHSK
N (σ) = −

N∑
i,j=1

Jijσiσj , Jij
iid∼ N

(
βJ0
2N

,
β2J2

2N

)
(4.104)

and to identify 1/βJ = T/J = 1/
√
µ and J0/J =

√
µa. This means that if we draw the phase

diagram of the model (4.103) with
√
µa and 1/

√
µ on the x and y axes respectively we re-obtain

the well known phase diagram of the SK model. In this diagram for instance the curves for
fixed a are a family of hyperbolas, and among them a = 1 corresponds to the Nishimori line.
It is then a simple exercise to show that the phase diagram of the SK model redrawn in the
parameterization (4.103) is qualitatively similar to the one in Figure 4.1, meaning that the same
phases are disposed in the same positions. In particular the Nishimori line is the vertical line
a = 1.

We finally notice that the model studied in [46] can be seen as a special inference problem
in a non-optimal setting where the receiver uses his own Rademacher guess to retrieve a binary
signal of which he does not know the amplitude.

We conclude the analysis with the study of the behavior of the solution x̄(µ, a) of the
variational problem (4.21) around the critical point (µ, a) = (1, 1). By Proposition 4.4 we have
that lim(µ,a)→(1,1) x̄(µ, a) = 0. Notice that the replica symmetric solution x̄(µ, a) represents the
limiting behaviour of the Mattis magnetization when AT (µ, a) ≤ 1 and it is not identically
vanishing iff condition (4.18) is satisfied. By Proposition 4.4 and Corollary 4.10 the above
conditions are always satisfied if µa ≥ 1 and a ≥ 1. Then it holds
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Proposition 4.11. Assuming that µa ≥ 1 and a ≥ 1 then x̄(µ, a) is the unique (up to reflection)
solution of

E tanh2 (Y (x, µ, a)) = 1− 1

µa
, Y (x, µ, a) = z

√
µ− 1

a
+ µxξ (4.105)

where z ∼ N (0, 1), ξ ∼ N (0, a) are independent Gaussian. Moreover for (µ, a) → (1, 1) we
have

(x̄(µ, a))2 =
(µ− 1

a
)
[
1
µ
− 1 + 2(µ− 1

a
)(1 + o(1))

]
t(µ, a)(1 + o(x̄(µ, a)))

(4.106)

where t(µ, a) = µ2aE
(
2− cosh

(
2z
√
µ− 1

a

))
cosh−4

(
z
√
µ− 1

a

)
.

Proof. Clearly (4.105) holds by Proposition 4.4. Using a Taylor expansion of tanh2(b+y) around
y = 0 up to order 3 one obtains

E tanh2 (Y (x, µ, a)) = E tanh2 (Y (0, µ, a)) + t(µ, a)x2 + g(x, µ, a)

where g(x, µ, a) = (µx)4

4!
E ∂4

∂y4
tanh2(y)

∣∣
y=y(z,ξ,x,µ,a)

ξ4. Since | ∂4

∂y4
tanh2(y)| ≤ costant uniformly on

y, we have that g(x, µ, a) = o(x3). Then one can write

E tanh2 (Y (x, µ, a)) = E tanh2

(
z

√
µ− 1

a

)
+ t(µ, a)x2(1 + o(x)) (4.107)

The term E tanh2
(
z
√
µ− 1

a

)
can be represented using Taylor expansion of tanh2(y) around

y = 0 up to order 4 obtaining

E tanh2

(
z

√
µ− 1

a

)
= (µ− 1

a
)− 2(µ− 1

a
)2(1 + o(1)) (4.108)

Combining (4.107) and (4.108) one obtains (4.106).

The previous Proposition and in particular the expansion (4.106) can be used to obtain the
critical behavior of x̄(µ, a) as (µ, a) → (1, 1) with the constraint µa ≥ 1 and a ≥ 1. As an
example fixing a = 1 one gets

lim
µ→1+

x̄(µ, 1)

µ− 1
= 1. (4.109)

Analogously if µ = 1 and a→ 1+

lim
a→1+

x̄(1, a)√
2(1− 1

a
)
= 1. (4.110)
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More generally one can consider a family of hyperbolas

µα(a) =
α

a
+ 1− α, α ≤ 1 (4.111)

and define xα(a) = x̄(µα(a), a). Then expansion (4.106) leads to

lim
a→1+

(
xα(a)
1
a
− 1

)2

= (α− 1)(α− 2) . (4.112)

The critical behavior around (1, 1) of the magnetization along the above directions is therefore
the same of the optimal setting.

4.5 Concluding remarks

To begin with, we point out that main result here, a nested variational principle over a distri-
bution and a real number, can be extended beyond the Rademacher prior assumption, leading
to an SK model with soft spins [77] with a Mattis interaction.

The variational principle (4.9) pinpoints the presence of the replica symmetry breaking phase
in a mismatched inference problem. This is expected to have implications on the algorithms usu-
ally implemented to retrieve signal components, such as Approximate Message Passing (AMP).
Indeed we have observed, with preliminary numerical tests, that in the RSB phase of the model
with Gaussian signal distribution ten thousand iterations of AMP are not sufficient to reach
convergence: the values of the local magnetizations keep oscillating. On the contrary less than
a hundred were enough in the RS phase, thus supporting the picture in Figure 4.1. The rigorous
characterization of the AMP convergence, done by E. Bolthausen [78] for the SK model, seems
to be related to the Almeida-Thouless line and is left for future work.

It is interesting to notice that the model studied here is equivalent, through a Hubbard-
Stratonovič transformation as done in [79, 80], to a Boltzmann Machine with one hidden analogic
neuron linked to a visible layer of neurons in mean field disordered interaction, i.e. a non-
restricted Boltzmann Machine. Our result extends also to a finite number of hidden analogic
neurons and leads to a model that includes SK and Hopfield terms. In this regard we mention
that the SK term can indeed be generated starting from the Hopfield model adding a form of
synaptic noise [81, 82] (see eq. (8) in [82] in particular) that blurs the interactions, built from
the patterns, precisely as in (4.22).



Chapter 5

Bayes-optimal limits in structured PCA

5.1 Introduction and related works

Thanks to their universality features spiked models, and their generalizations, find numerous
applications in other central problems such as community detection [83, 84], group synchro-
nization [85, 86], sub-matrix localization or high-dimensional clustering [87]; see [88, 89] for
more. In this chapter we focus on a rank-one estimation problem, with a spike given by X∗X∗⊺,
X∗ ∈ RN , based on the data

Y =
λ

N
X∗X∗⊺ + Z ∈ RN×N (5.1)

with some additive noise Z. Notice that, out of convenience, we have already re-scaled the
observations Y so that they have O(1) eigenvalues.

As described in Chapter 1, the spectral properties of finite rank perturbations of large
random matrices like (5.1) were intensively investigated in random matrix theory. To the
previously mentioned references we may add [90, 91, 92, 93, 94, 38, 95, 96].

Besides the spectral estimator, i.e. the eigenvector corresponding to the leading eigenvalue of
the perturbed matrix, there exists a whole family of iterative algorithms, known as approximate
message passing (AMP), that can be tailored to take further advantage of prior structural
information known about the signal. AMP algorithms were first proposed for estimation in
linear models [97, 98, 99, 100, 101, 102], but have since been applied to a range of statistical
estimation problems, including generalized linear models [103, 104, 105, 106, 107, 108, 109] and
low-rank matrix estimation [110, 111, 112, 88, 113, 114]. An attractive feature of AMP is that
under suitable model assumptions, its performance in the high-dimensional limit is precisely
characterized by a succinct deterministic recursion called state evolution [99, 78, 115]. Using
the state evolution analysis, it has been proved that AMP achieves Bayes-optimal performance
for some models [110, 116, 113, 103], and a conjecture from statistical physics posits that for a
wide range of estimation problems, AMP is optimal among polynomial-time algorithms.
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The references mentioned above rely on the assumption of Gaussian identically and inde-
pendently distributed (i.i.d.) noise Zij ∼ N (0, 1), under which the model identified by (5.1) is
the well-known spiked Wigner model [30, 117, 14]. This independence, or “absence of struc-
ture”, in the noise has many advantages from the theoretical point of view due to the numerous
simplifications it generates.

In order to relax this property, we can seek inspiration from the Statistical Physics literature
on disordered systems. An idea that we studied in Chapter 2 and 3, that was imported also
in high dimensional inference [118], is that of giving an inhomogeneous variance profile to the
noise matrix elements (we mention that this idea in inference is similar to the earlier definition
of “spatially coupled systems” [51, 52] in coding theory, see [47, 33] for its use in the present
context). This procedure makes the (Zij) no longer identically distributed, but it leaves them
independent. This is an important step towards more structure in the noise (and therefore
the data). Yet, the independence assumption is a rather strong one. Actually, [118] showed
that for a broad class of observation models, as long as the independence assumption holds,
the model is information-theoretically equivalent to one with independent Gaussian (possibly
inhomogeneous) noise.

One way to go beyond this last assumption is to consider noises that belong to the wider class
of rotationally invariant matrices. Since the appearance of the seminal works [119, 120, 121],
there has been a remarkable development in this direction, as evidenced by the rapidly growing
number of papers on spin glasses [122, 123, 124, 125, 126, 127] and inference [38, 95, 128, 129,
130, 131, 132, 133, 134] that try to take into account structured disorder, including [135] on
which this chapter is based. Indeed, we hereby consider a spiked model in which the noise matrix
Z is drawn from an orthogonal matrix ensemble different from the Gaussian orthogonal ensemble
(which is the only rotationally invariant ensemble such that the matrix entries are independent).
Intuitively, the presence of dependencies in the noise should be exploitable by an algorithm that
is sharp enough to see patterns within it and use them to retrieve the sought rank one matrix
more efficiently. Going in that direction, in [132] the author proposed a version of AMP designed
for rotationally invariant noises (using earlier ideas of [124, 123]) and provided also a rigorous
state evolution analysis for it. Furthermore, in a recent work [70], the authors performed a
rigorous analysis of a Bayes estimator and an AMP, both assuming Gaussian noise, whereas
the actual noise in the data was drawn from a generic orthogonal matrix ensemble. However,
besides intuition and the mentioned works, to our best knowledge there is little theoretical
understanding of the true role played by noise structure in spiked matrix estimation and more
generically in inference. In particular, prior to [135] there was no theoretical prediction of
optimal performance to benchmark practical inference algorithms.

Notations. Bold notations are reserved for vectors and matrices. By default a vector x is
a column vector, and its transpose x⊺ is therefore a row vector. Thus the usual L2 norm

∥x∥2 = x⊺x and xx⊺ is a rank-one projector. The notation x
W2−→ X denotes convergence of

the empirical distribution of the random vector x to the random variable X in Wasserstein-2
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distance. Symbol ∝ means “equality up to a constant” (often, a normalization constant) and
:= is an equality by definition. Tr is the usual trace operator. For a vector x, the matrix
diag(x) is diagonal with x on its diagonal. For a diagonal matrix A and a function F : R 7→ R
the matrix F (A) is diagonal with F applied componentwise to each diagonal entry of A. A
function F applied to a real symmetric N ×N matrix diagonalizable as M = UAU⊺ acts in the
standard way: F (M) := UF (A)U⊺. EA is an expectation with respect to the random variable
A; E is an expectation with respect to all random variables entering the ensuing expression.
For a function F of one argument we denote F ′ its derivative. Notations like i ≤ N always
implicitly assume that the index i starts at 1. Notation [t] := {1, 2, · · · , t} = {i ≤ t}. Powers for
vectors apply componentwise (this is however not the case for matrices). We often compactly
write E(· · · )2 = E[(· · · )2] ≥ (E(· · · ))2 and similarly for other functions, we denote equivalently
E[f(· · · )] and Ef(· · · ). Matrix IN is the identity of size N .

5.1.1 Probabilistic model of PCA with structured noise

Consider a vector X∗ = (X∗
i )i≤N whose components are drawn i.i.d. from a given distribution

PX with support bounded uniformly in N . Two cases will be considered: the factorized case

dPX(X
∗) =

∏
i≤N

dPX(X
∗
i ) =

∏
i≤N

PX(X
∗
i )dX

∗
i ,

and the case where dPX is the uniform measure over the N -sphere of radius
√
N . If not specified

the first case is assumed. We will always consider priors with unit second moment∫
dPX(x)x

2 = 1.

This is just a convention as if one wants to consider a different normalization, it can simply be
included through a proper rescaling of the SNR λ.

The inference task we are interested in is the retrieval of the rank-one spike P∗ := X∗X∗⊺

from the following observed matrix

Y =
λ

N
P∗ + Z, (5.2)

where Z is a unknown noise matrix, λ ≥ 0 is the SNR. Whenever Z is a Wigner matrix this
model corresponds to the usual Wigner spike model. But here we no longer assume that the
noise is unstructured (namely, has independent entries). More specifically, we will assume that
is drawn from a certain orthogonal rotationally invariant random matrix ensemble defined by a
potential V : R 7→ R and a density (with normalization constant CV )

dPZ(Z) = CV dZ exp
(
− N

2
TrV (Z)

)
. (5.3)
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Rotational invariance means that Z equals in distribution U⊺ZU for any orthogonal matrix U
(this follows from the trace in the exponent) [35]. More precisely, when changing variables from
matrix Z to eigenvalues D and eigenbasis O via Z = O⊺DO we have

dPZ(D,O) = CV dO dD exp
(
− N

2
TrV (D)

)∏
i<j

|Di −Dj|. (5.4)

The measure dO is the Haar measure, i.e., uniform measure over the orthogonal group O(N),
and the last term coupling all eigenvalues in a pairwise long-range fashion is the Vandermonde
determinant. Note that only the special case V (x) = x2/(2σ) corresponding to the Gaussian
orthogonal ensemble induces independent (Gaussian distributed) matrix entries (up to symme-
try). Any other potential generates dependencies among matrix elements and thus structure.
E.g., if we take V (x) = x4/4,

dPZ(Z) = CV dZ
∏
i,j,k,l

exp
(
− N

8
ZijZjkZklZli

)
(5.5)

which clearly is not factorizable over matrix entries.
We now introduce the Bayesian framework which we are going to analyse. Let the projector

P := xx⊺. This allows us to write the posterior measure of the inference problem:

dPX|Y (x | Y) =
CV

PY (Y)
dPX(x) exp

(
− N

2
TrV

(
Y − λ

N
P
))
. (5.6)

Because both the prior PX(x) matches the density of the signal and the likelihood PY |X matches
the noise density PZ and moreover the SNR λ is known, the posterior written above is the
“correct” one and we are in the Bayesian-optimal setting. Studying the limits of inference in
this setting draws a fundamental line between what is information-theoretically possible and
what is not in terms of performance of inference. The evidence reads

PY (Y) = CV

∫
dPX(x) exp

(
− N

2
TrV

(
Y − λ

N
P
))
. (5.7)

One of the main object of interest is the free entropy (or minus the free energy), which is
nothing else than minus the Shannon entropy of the data, and in this chapter will be denoted
as

FN(Y) := −H(Y) = E lnPY (Y). (5.8)

As usual, the free entropy is related to the mutual information by an additive constant corre-
sponding to the entropy of the noise:

I(P∗;Y) = −FN(Y)−H(Y | X∗)

= −FN(Y)−H(Z)

= −FN(Y)− lnCV +
N

2
ETrV (Z). (5.9)
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Using the explicit form of the observation model (5.2) the free entropy reads

FN(Y) = E ln

∫
dPX(x) exp

(
− N

2
Tr
[
V
(
Z+

λ

N
(P∗ −P)

)
− V (Z)

])
+ lnCV − N

2
ETrV (Z). (5.10)

We extracted the noise entropy in the second line so that we can isolate the mutual information
and to make the argument of the integrated exponential of order N . In this way the problem
is naturally mapped onto a statistical mechanics model with extensive Hamiltonian given by
minus the log-likelihood:

HN(x;Z,X
∗) :=

N

2
Tr
[
V
(
Z+

λ

N
(P∗ −P)

)
− V (Z)

]
. (5.11)

Indeed, our Hamiltonian can be rewritten as

1

2
Tr(P∗ −P)

∫ λ

0

dtV ′
(
Z+

t

N
(P∗ −P)

)
.

The difference between the two projectors has only two eigenvalues of order N and the matrix
inside the potential derivative has O(1) eigenvalues, hence the previous is of O(N) too. The
free entropy is thus directly linked to the expected log-partition function associated to this
Hamiltonian:

E lnZ(Y) := E ln

∫
dPX(x) exp

(
−HN(x;Z,X

∗)
)
. (5.12)

The notation ; in HN(x;Z,X
∗) emphasizes that Z,X∗ are quenched variables while x fluctuates

according the Gibbs-Boltzmann distribution associated to this Hamiltonian (i.e., the posterior).
The same notation with same meaning for Hamiltonians will be used later on.

5.1.2 A concrete example: the quartic ensemble

Analysing this model for a generic potential V is possible through the novel methodology pre-
sented in this chapter. But as it will become apparent, if we take a generic polynomial potential
V , the higher the order of this polynomial, the more technical and cumbersome it becomes. So
for the sake of pedagogy we focus in the present contribution on a very concrete example of non
trivial correction to the i.i.d. noise hypothesis. As a matter of fact, the simplest inference prob-
lem with correlated noise elements is that with the quartic matrix potential: for two positive
real numbers µ and γ we restrict our analysis to the potential

V (x) =
µ

2
x2 +

γ

4
x4. (5.13)
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Figure 5.1: Asymptotic spectral density (5.14) of the random noise ensemble defined by the
potential (5.13) from less structured (with independent entries) at (µ = 1, γ = 0), corresponding
to the standard semi-circle law, to the more structured (µ = 0, γ = 16/27) (recall relation (5.17).

This was first introduced by Brézin et al in [136] to study the planar approximation of quantum
field theories with large internal symmetry groups. We could have also considered a non-
symmetric potential with a cubic term too, but for simplicity we restrict ourselves to that case
as symmetry will slightly simplify the computations (but there is no barrier to applying our
methods to that a more general, possibly non-even, potential).

The matrix ensemble defined by (5.13) has a known Stieltjes transform S and asymptotic
eigenvalue density ρ, see, e.g., [35]: if Z is a sequence of matrices of increasing size N drawn
from (5.3) with the above quartic potential and whose sequence of eigenvalues is (Di)i≤N , then

1

N

∑
i≤N

δDi,x
N→∞−−−→ ρ(x) =

1

2π
(µ+ 2a2γ + γx2)

√
4a2 − x2, (5.14)

S(z) =
∫
dρ(x)

z − x
=

1

2

(
µz + γz3 − (µ+ 2a2γ + γz2)

√
z2 − 4a2

)
, (5.15)

for a z lying outside of the support of ρ, and where

a2 :=

√
µ2 + 12γ − µ

6γ
. (5.16)

It is evident that when γ → 0+ one has a2 → 1/µ and consequently ρ(x) → ρsc(x) the standard
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semi-circle law, see Figure 5.1. In principle the choice of γ and µ is totally free, as long as1

γ > 0. However, we are interested in a noise with unit variance in order to be able to make
a meaningful comparison with models with unstructured noise. By enforcing this unitarity
constraint one finds a relation between γ and µ:

γ = γ(µ) =
1

27

(
8− 9µ+

√
64− 144µ+ 108µ2 − 27µ3

)
. (5.17)

With this choice one can check that∫
dρ(x)x2 = 1 for any µ ∈ [0, 1].

When (µ = 1, γ(1) = 0) we recover the pure Wigner case already analyzed in great details. On
the contrary (µ = 0, γ(0) = 16/27) corresponds to a purely quartic case with unit variance,
and to the “most structured” ensemble in our restriced class of noise ensembles. Therefore, µ
can be thought of as a parameter allowing to interpolate between unstructured and structured
noise ensembles. Even for this simple family of potentials, as soon as µ < 1, neither the Bayes-
optimal nor the algorithmic limits of inference are known (except for those of a simple spectral
algorithm, see [38]).

5.1.3 Main results

Our main contributions can be divided in two categories: those on the fundamental, information-
theoretic, limitations of inference in structured PCA and, complementary to that, novel algo-
rithmic ideas allowing to match these Bayes-optimal limits efficiently. Both require conceptual
insights and technical advances that we emphasize. We gather here these results and state them
informally; we refer to the main sections for precise statements.

Information-theoretic results

• Our analysis of the information-theoretic (Bayes-optimal) performance based on the non-
rigorous replica method yields first a low-dimensional variational formulation for the free
entropy (log-partition function) of the model when PX is factorized:

Result 1 (Free entropy). The free entropy (i.e., minus Shannon entropy of the data) verifies in
the limit of large size the following characterization:

1

N
FN(Y) = − 1

N
H(Y)

N→∞−−−→ extr fρ(τ )

1We use implicitly the convexity of the potential, which requires µ, γ > 0, to obtain the density of eigenvalues
[35]. But we believe that this condition can be relaxed if one can get an associated well-defined asymptotic
spectral density and that our analysis would still hold.
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where τ ∈ R13 and for an explicit real-valued function fρ : R13 7→ R depending on the noise
asympotic spectral density ρ. See (5.60) for the complete statement. Here and everywhere in
the chapter extr stands for the following “extremization” procedure: if f : Rk 7→ R then

extr f(τ ) := f(τ ∗) where τ ∗ := argmax
{τ∈Rk :∇f(τ )=0}

f(τ ).

We will see that, despite the apparent complication, the 13-dimensional system of equations
defining τ ∗ will reduce to a much simpler 3-dimensional one thanks to the Nishimori identities.
The reduction of the replica saddle point equations is done in Section 5.3.3. As a consequence
only three scalar quantities will remain after reduction, one denoted m and called “magnetiza-
tion” quantifying the overlap between the minimum mean-square error (MMSE) estimator and
the signal.

• From the solution of this variational problem we deduce our second main result, namely,
an asympotically exact expression for the minimum mean-square error of inference of the
hidden spike with factorized prior:

Result 2 (Minimum mean-square error). The minimum mean-square error verifies

lim
N→∞

1

2N2
E∥X∗X∗⊺ − E[X∗X∗⊺ | Y]∥2F =

1

2
(1−m2)

where m is one component of the solution τ ∗ to the variational problem for the free entropy,
studied in Section 5.3.3.

The main technical and conceptual novelties which lead to these formulas are:

• To the best of our knowledge, we provide the first adaptation of the replica method to the
analysis of the fundamental limits of inference in a model with a noise having strongly
dependent random entries (instead of a measurement operator, or matrix of covariates, in
a regression setting). See Section 5.3.

• If the structure of the noise (i.e., its statistical properties) is encoded by a polynomial po-
tential V of order K+1, then this induces in the posterior distribution k-wise interactions
between the signal’s estimator entries, for all k ≤ K + 1. Said differently, the underly-
ing factor graph is an hypergraph with hyperedges of degrees K + 1, K, . . . , 1. However,
we discovered that by exploiting the low-rank structure of the signal, all these interac-
tions can be reduced to effective pair-wise interations. This allows to reduce the model
to an Ising model more convenient for theoretical analysis (a similar reduction is useful
for algorithmic approaches too, see next section). The reduction we propose is general
and systematic for low-rank signals corrupted by rotational invariant noise matrices. See
Section 5.3.1.
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• Our analysis can be mainstreamed once we have identified a key integral that we refer to
as the inhomogeneous spherical integral. This exactly solvable integral is a generalization
of the standard low-rank spherical integral appearing in random matrix theory (as it is
related to the R-transform) [35], in spin-glasses [121, 124, 123, 125, 137], the theory of
large-deviations for matrix-valued stochastic processes [138, 139] and matrix models in
high-energy physics [140, 141, 142]. Given the breadth of applications of this integral, we
foresee that the generalization we propose and analyze in Section 5.2 may have applications
well beyond the present setting, for the study of models where rotationally invariant
matrices with non-independent matrices appear.

• Another important conclusion from our analysis is the fact that for signals X∗ whose law
is rotation-invariant (such as Gaussian or uniformly spherically distributed), the simple
spectral PCA procedure of [38] is Bayes-optimal:

Result 3 (Optimality of spectral PCA for rotation-invariant priors). Let X∗ be a standard
Gaussian vector or uniformly sampled on the sphere of radius

√
N . Then its inference from

Y can be optimally achieved from the naive spectral algorithm that constructs an estimator
Cνν⊺ of P∗ from the eigenvector ν = ν(Y) of Y with leading eigenvalue λmax and that is then
properly rescaled by a certain factor C = C(λ, ρ), see [38].

This is verified both by the replica method and an exact computation based on Gaussian
integration and a saddle point method, see Section 5.3.4. We remark that this statement is
incorrect for other priors PX .

Algorithmic results

On the algorithmic side our contributions are the following:

• We analytically show that the existing Approximate Message Passing algorithms [132,
133], whose iterates are based on the data matrix Y, do not saturate the Bayes-optimal
performance predicted by our replica theory. See Section 5.4.

• We employ in Section (5.5) the AdaTAP formalism of Opper et al [124] to analyze the
model from the algorithmic perspective. What the analysis shows is that, like in the
replica method, one can reduce the model with interactions of order higher than two to a
pure quadratic Ising model with an effective interaction matrix J(Y) which is a non-trivial
matrix polynomial of the data Y. This explains the reason why the previously proposed
AMP algorithms are sub-optimal: the data Y is not the best choice of matrix to use in the
AMP iterates, despite being the most natural one. The Bayes-optimal choice is instead
J(Y) obtained from our theory, which cannot be guessed a-priori. We informally state
this fact as one of our main results:
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Result 4 (Bayesian-optimal processing of data and optimal AMP). Consider the matrix esti-
mation model under structured noise (5.2). Given the observed matrix of data Y, the optimal
choice of matrix to use in a Bayesian inference algorithm such as AMP is not Y but instead a
proper polynomial of it, i.e., J(Y) =

∑
k≤K ckY

k, with coefficients (ck)k∈[K] depending on V .
For example, when the potential V is given by (5.13) we show in Sections 5.5.1 and 5.5.2 that
the optimal choice is

J(Y) = µλY − γλ2Y2 + γλY3.

Employing this matrix in the AMP iterates leads to a Bayesian-optimal inference algorithm
whose complexity scales as the dimension N , see the result below.

• After having defined the Bayesian-optimal AMP recursion, we provide a rigorous state
evolution recursion to track its asymptotic performance. We highlight that, since the
data matrix Y is replaced by the polynomial J(Y), we cannot apply the state evolution
result of [132]. More specifically, the Onsager correction terms will have a different form
than the ones of [132], and their derivation requires a novel analysis.

Result 5 (State evolution of the Bayes-optimal AMP (BAMP)). Consider the Bayesian-optimal
Approximate Message Passing (BAMP) algorithm defined by the recursion

f t = J(Y)ut −
∑
i≤t

ct,iu
i, ut+1 = gt+1(f

t), t ≥ 1. (5.18)

When a proper choice of coefficients {ct,j}j∈[t] is considered, for a large family of functions (gt)t≥1

and ψ, the following holds almost surely:

lim
N→∞

1

N

∑
i≤N

ψ(u1i , . . . , u
t+1
i , f 1

i , . . . , f
t
i , X

∗
i ) = Eψ(U1, . . . , Ut+1, F1, . . . , Ft, X

∗).

Equivalently the joint empirical distribution over the N rows of the N × (2t + 2) matrix
(u1, . . . ,ut+1, f1, . . . , f t,X∗) converges in a certain sense to the (2t + 2)-dimensional random
vector (U1, . . . , Ut+1, F1, . . . , Ft, X

∗) when N increases. Here

Ui+1 = gi+1(Ft) and (F1, . . . , Ft) = (µ1, . . . , µt)X
∗ + (W1, . . . ,Wt)

with (Wi)i≤t a multivariate Gaussian vector whose covariance as well as (µi)i≤t can be computed
via a deterministic state evolution recursion.

The precise rigorous statement can be found in Section 5.6. The idea of the argument is to
construct an auxiliary AMP which tracks the quantities (Yj−1ut)t≥1,j≤K−1. By decomposing the
iterates of this auxiliary AMP into a component aligned with previous iterates, a component in
the direction of the signal and independent Gaussian noise, we obtain the form of the Onsager
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correction and the state evolution. From this result we can rigorously predict the performance
of the novel AMP algorithm we propose. The optimality of the pre-processed matrix J(Y)
and associated AMP is then confirmed by the perfect matching of the fixed point of the state
evolution recursion tracking the AMP mean-square error and our replica prediction for the
MMSE.

Two important remarks are in order. First, we emphasize that the BAMP algorithm (5.18)
we propose is not the usual AMP of [132] where the data matrix Y is just replaced by the pre-
processed matrix J(Y). Indeed, the correct Onsager coefficients {ct,i} entering BAMP require a
novel type of “multi-stage” state evolution recursion which is completely different from the one
in [132], see Section 5.6. The novel acronym we introduce emphasizes that crucial distinction.

Secondly, it is true that our replica prediction for the MMSE is non-rigorous. However, our
state evolution analysis of BAMP is fully rigorous (just like the analysis of the AMP in [132]). By
comparing their asymptotic fixed point performance by state evolution in Section 5.7, we show
that BAMP improves over the AMP in [132]. This improvement is thus a rigorous conclusion,
while the conjecture is that, thanks to this improvement, BAMP saturates the Bayes-optimal
performance.

Comments on the potential universality of our results

We comment the hypotheses under which our results are conjectured valid, and then extrapolate
on the more general settings in which the results may still hold.

We start with a remark concerning the insensitivity of our results to the “statistical details”
of the noise eigenvalues. Let us precise the hypotheses on the distribution of the noise, in
particular on its eigenvalues, under which our results are conjectured valid. As seen from
(5.4) the eigenvalues of the noise are strongly dependent due to the Vandermonde determinant.
However, we conjecture that all our results still hold if one considers instead a simpler ensemble
where the N eigenvalues are drawn i.i.d. from ρ(x)dx, see (5.14). The reason is that all the
analysis and results rely only on the weak convergence of the empirical density of eigenvalues of
the ensemble under consideration towards ρ. Hence, as long as this is the case, our results must
hold, even if we do not rigorously prove it. To formally show it, from now on we consider that
the diagonal matrix D of eigenvalues of the noise is deterministic with the sole constraint that
the empirical density of its diagonal entries converges towards ρ(x)dx. This of course includes as
special cases the two aforementioned settings (i.i.d. and coupled by Vandermonde determinant).
We therefore work in this chapter under the following hypothesis.

Hypothesis 5.1 (Distribution of the noise). The noise RN×N ∋ Z = O⊺DO in model (5.2) is a
symmetric rotationally invariant matrix, namely, it is equal in law to U⊺ZU for any orthogonal
matrix U ∈ O(N) (the group of N×N orthogonal matrices). Equivalently, O is drawn from the
Haar (uniform) measure over O(N). Moreover, we only require for its (possibly deterministic)
eigenvalues (Di)i≤N that their empirical law N−1

∑
i≤N δDi,x is tending weakly as N → ∞ to

a probability measure with support bounded uniformly in N and with density ρ with respect
to the Lebesgue measure. As mentioned earlier, for the purpose of having a uniform measure
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of SNR when tuning (µ, γ(µ)) we will consider cases where
∫
dρ(x)x2 = 1 despite this is not

necessary for the analysis to hold.

A second remark concerns the rotational invariance of the noise. We believe that our results
may extend beyond this hypothesis to cases where the noise eigenbasis may be invariant under
more restrictive transformations (such as permutation invariant), or even “almost determinis-
tic”. This intuition comes from a very recent line of work concerning linear regression and phase
retrieval with structured matrices of covariates. Indeed, the authors of [143, 144, 145] show that
in this context, the class of rotationally invariant matrices leads to the same performance as a
much broader class of almost deterministic matrices (with the same spectral density), also when
AMP or its linearized version are used as inference algorithm. This is a different setting from
the one we consider, since in our setup the structured matrix is the noise, but it nevertheless
suggests that our predictions should remain true more generically. The confirmation of this
universality is left for future work.

What is conjectured exact, and what is rigorous

We end this section with a remark concerning the level of rigor of our derivations. Most of our
results are based on non-rigorous but well established methods from the statistical mechanics of
mean-field disordered systems, in particular the replica method at the replica symmetric level,
and the theory of Anderson-Thouless-Palmer equations. For a general background on these
techniques we refer to [6, 146, 147, 148]. It is important to keep in mind that despite being non-
rigorous, the results obtained from these techniques are conjectured to be exact in the present
setting of Bayesian-optimal inference (or equivalently, statistical mechanical models living on
their Nishimori line [29]), in the asymptotic large size limit N → ∞.

This widely admitted asymptotic exactness, first proved for the Sherrington-Kirkpatrick
model, spreads in numerous fields and in particular in the analysis of high-dimensional inference.
In this context we have already mentioned a plethora of rigorous results confirm the validity
of replica predictions, and we may add even more [117, 149]. In particular, replica symmetric
formulas for the free entropy, mutual information and minimum mean-square error have been
systematically proved thanks to a combination of concentration techniques specifically adapted
to the context of inference together with rigorous versions of the cavity method [20, 18, 150],
(adaptive) interpolation techniques or Hamilton-Jacobi approaches [151, 66, 152]. From this
rapidly growing literature, we conjecture that it is only a matter of time before our replica-
based predictions are proven.

Concerning our algorithmic results on the novel approximate message passing we propose
(BAMP), the results are completely rigorous; full proofs are provided as appendix. They are
based on the theory of message passing algorithms and associated state evolution recursions
[99], in particular the most recent results for structured matrices as considered here [132, 133].
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5.2 The inhomogeneous spherical integral

In this section we derive the expression of a useful general integral that will play a crucial role
along the whole analysis, and that we believe may have an interest on its own. For the reader
interested in the information-theoretic and algorithmic analyses directly, this section can be
skipped at first reading as only its main results (5.21), (5.22) and (5.32) will be used in the rest.

Indices ℓ, ℓ′ ≤ n will always indicate the “replica dimension” (with n which always remains
finite), while i, j, k ≤ N index the “spin dimension” (where N will diverge).

5.2.1 Definition and variational characterization

Let O ∼ Haar(O(N)) be drawn from the Haar measure over the orthogonal group of N × N
matrices. Consider a fixed matrix x ∈ RN×n with rows xi ∈ Rn, i ≤ N , and columns xℓ ∈ RN ,
ℓ ≤ n. Assume it has the column-wise overlap structure

x⊺
ℓxℓ′ = Nqℓℓ′ , ℓ, ℓ′ ≤ n. (5.19)

We let q = (qℓℓ′)ℓ,ℓ′≤n := N−1x⊺x. Every vector is considered a column vector, so, e.g., (Ox)i
is a n-dimensional column-vector corresponding to the transpose of the ith row of the N × n
matrix Ox, while (Ox)⊺i is a row-vector.

Let the matrices Cℓℓ′ = diag((Ci,ℓℓ′)i≤N), Ci = (Ci,ℓℓ′)ℓ,ℓ′≤n, and the “external fields” hℓ =
(hi,ℓ)i≤N , hi = (hi,ℓ)ℓ≤n all having entries bounded uniformly in N . The sequence (hi ∈ Rn,Ci ∈
Rn×n)i≤N is assumed to have an empirical law tending to that of the random (h ∈ Rn,C ∈
Rn×n): for any continuous bounded function f : Rn×n × Rn 7→ Rk with k independent of N ,

1

N

∑
i≤N

f(Ci,hi)
N→∞−−−→ Ef(C,h).

We denote by R ∋ IN = IN(q, (Cℓℓ′)ℓ,ℓ′≤n, (hℓ)ℓ≤n) = IN(q, (Ci,hi)i≤N) the generalized
low-rank spherical integral, which is defined as

IN :=
1

N
lnEO exp

∑
i≤N

(
(Ox)⊺iCi(Ox)i + (Ox)⊺ihi

)
=

1

N
lnEO exp

( ∑
ℓ,ℓ′≤n

(Oxℓ)
⊺Cℓℓ′Oxℓ′ +

∑
ℓ≤n

(Oxℓ)
⊺hℓ

)
=

1

N
lnEO exp

( ∑
i,j,k≤N

∑
ℓ,ℓ′≤n

OijOikxj,ℓ′xk,ℓCi,ℓℓ′ +
∑
i,j≤N

∑
ℓ≤n

Oijxj,ℓhi,ℓ

)
. (5.20)

Calling the columns (xℓ)ℓ≤n “replicas”, the matrices (Ci)i≤N , (Cℓℓ′)ℓ,ℓ′≤n are coupling them
(after the replicas have been jointly rotated by the random O). Therefore we call them “replica
coupling matrices”.
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As N → ∞ with n fixed this integral is given by

IN
N→∞−−−→ IC,h(q), (5.21)

with variational formula

IC,h(q) :=
1

2
extrq̃

(
Trqq̃+ Eh⊺(q̃− 2C)−1h− E ln det(q̃− 2C)

)
− 1

2
(n+ ln detq). (5.22)

The extremum is over symmetric matrices such q̃ − 2C is positive definite for all C living on
its domain.

We remark that it may be the case that the extremum over q̃ is actually attained on the
boundary of the optimization domain, in which case the optimization requires more care than
what is done in (5.34) to solve it (as (5.34) assumes the extremum to lie inside the optimization
domain). This is however not expected in the settings of this chapter. When this phenomenon
happens, in the standard low-rank spherical integral this leads to a “sticking phenomenon”
where the solution of the optimization is dependent on the maximum eigenvalue of the full-rank
random matrix entering the integral’s definition, see [138].

5.2.2 Special cases

Low-rank HCIZ integral

The special case hi = 0 and replica coupling matrices Ci = CDi for i ≤ N corresponds to the
standard rank-n spherical (or HCIZ) integral:

IN =
1

N
lnEO exp

∑
i,j,k≤N

∑
ℓ,ℓ′≤n

OijOikxj,ℓ′xk,ℓCℓℓ′Di

=
1

N
lnEO exp

∑
ℓ,ℓ′≤n

Cℓℓ′(Oxℓ)
⊺DOxℓ′

=
1

N
lnEO expTrO⊺DO(xCx⊺),

where D = diag((Di)i≤N) and xCx⊺ is an arbitrary rank-n symmetric matrix (arbitrary given
that x and C are so). Its asymptotic expression can also be obtained from the results of [138]
after diagonalizing xCx⊺ and depends only on the limit of the empirical distribution of (Di)
and on the n non-zero eigenvalues of xCx⊺.
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Low-rank spherical integral with external field and diagonal replica coupling

Taking diagonal replica coupling matrices Ci = InDi/2 gives (a generalization of) the spherical
integral with external field found in [Prop. 2.7, [125]]:

IN =
1

N
lnEO exp

∑
ℓ≤n

(1
2
(Oxℓ)

⊺DOxℓ + (Oxℓ)
⊺hℓ

)
. (5.23)

Low-rank spherical integral with non-diagonal replica coupling and replica symmet-
ric overlap

Let the N × N diagonal matrices A = diag((Ai)i≤N) and similarly for B. The empirical
law of (Ai, Bi)i≤N tends to that of (A,B). Of particular interest to us corresponds to taking
ℓ ∈ {0, . . . , n}, hi = 0 and replica coupling matrices with only non-zero entries being

(Ci)ℓ0 = (Ci)0ℓ =
Ai

2
for 1 ≤ ℓ ≤ n, (Ci)ℓℓ =

Bi

2
(1− δℓ,0), (5.24)

or equivalently,

C0ℓ = Cℓ0 =
A

2
and Cℓℓ =

B

2
for 1 ≤ ℓ ≤ n, Cℓℓ′ = 0 else. (5.25)

Note that this is not a special case of the standard rank-n spherical integral of the first example:
here Ci cannot be written as C times a function of i; instead different entries of Ci vary with i
differently. In this case the generalized spherical integral reads (the sum over ℓ below starts at
ℓ = 1)

IN =
1

N
lnEO exp

∑
ℓ≤n

(
(Ox0)

⊺AOxℓ +
1

2
(Oxℓ)

⊺BOxℓ

)
. (5.26)

So the 0th replica plays here a special role (it corresponds to the planted signal).

We consider a “replica symmetric structure” for the overlap matrix parametrized by the
vector (v0, v,m, q) ∈ R4:

q =



v0 m m m . . . m
m v q q . . . q
m q v q . . . q
m q q v . . . q
...

...
...

...
. . .

...
m q q q . . . v


∈ R(n+1)×(n+1), (5.27)
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and, coherently, we assume that the extremum over q̃ is attained for a matrix having the same
structure with different constants (ṽ0, ṽ, m̃, q̃). Its determinant can be easily computed via
Gauss’ reduction:

ln detq = ln v0 + n ln(v − q) + ln
(
1 + n

v0q −m2

v0(v − q)

)
. (5.28)

We also need to compute

Trqq̃ = v0ṽ0 + n(2mm̃+ vṽ + (n− 1)qq̃). (5.29)

Letting C be defined as (5.24) but with the random variables A,B replacing Ai, Bi, the last
missing term is obtained similarly as (5.28): under the replica symmetric stucture for q̃,

E ln det(q̃− 2C) = ln ṽ0 + n ln(ṽ −B − q̃) + E ln
(
1 + n

ṽ0q̃ − (m̃− A)2

ṽ0(ṽ −B − q̃)

)
.

Combining everything in the variational formula (5.22), and taking into account that q here
is a (n + 1) × (n + 1) matrix, we obtain the following expression for the generalized spherical
integral with replica coupling (5.24), and under a replica symmetric structure for the overlap
and conjugate matrices (thus the upperscript):

IN → IRS
A,B(q) :=

1

2
extr(ṽ0,ṽ,m̃,q̃)

{
v0ṽ0 − ln ṽ0 + n(2mm̃+ vṽ + (n− 1)qq̃)

− nE ln(ṽ −B − q̃)− E ln
(
1 + n

ṽ0q̃ − (m̃− A)2

ṽ0(ṽ −B − q̃)

)}
− 1 + ln v0

2
− n

2

(
1 + ln(v − q)

)
− 1

2
ln
(
1 + n

v0q −m2

v0(v − q)

)
. (5.30)

By definition (5.26) of IN this formula has to cancel when n = 0. Thus

extrṽ0
{
v0ṽ0 − ln ṽ0

}
− 1− ln v0 = 0. (5.31)

The saddle point equation over ṽ0 then yields ṽ0 = 1/v0, in which case this latter formula indeed
cancels. So the simplified formula reads

IRS
A,B(q) =

1

2
extr(ṽ,m̃,q̃)

{
n(2mm̃+ vṽ + (n− 1)qq̃)− nE ln(ṽ −B − q̃)

− E ln
(
1 + n

q̃ − v0(m̃− A)2

ṽ −B − q̃

)}
− n

2

(
1 + ln(v − q)

)
− 1

2
ln
(
1 + n

v0q −m2

v0(v − q)

)
. (5.32)
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5.2.3 Derivation of the variational formula

Let x̃ℓ := Oxℓ the columns of x̃ = Ox. Under the law of O at fixed x, these random vectors
are uniform among all vectors having the overlap structure of (xℓ). Thus their law conditional
on x is just a function of the symmetric overlap q = (qℓℓ′):

P (x̃ | x) = P (x̃ | q) = 1

Z(q)

1,n∏
ℓ≥ℓ′

δ(Nqℓℓ′ − x̃⊺
ℓ x̃ℓ′) =

1

Z(q)
δ(Nq− x̃⊺x̃)

with normalization

Z(q) =

∫
dx̃ δ(Nq− x̃⊺x̃).

Using the Fourier representation of the Delta function, the integral to compute reads (below q̃
is a n× n symmetric matrix with complex entries)

exp(NIN) =
1

Z(q)

∫
dx̃ δ(Nq− x̃⊺x̃) exp

∑
i≤N

(
x̃⊺
iCix̃i + x̃⊺

ihi

)
=

1

Z(q)

∫
dx̃dq̃ exp

(N
2
Trqq̃− 1

2
Trx̃⊺x̃q̃+

∑
i≤N

(
x̃⊺
iCix̃i + x̃⊺

ihi

))
=

1

Z(q)

∫
dq̃ exp

(N
2
Trqq̃

)∏
i≤N

∫
dx̃i exp

(
− 1

2
x̃⊺
i (q̃− 2Ci)x̃i + x̃⊺

ihi

)
.

We will soon evaluate the q̃-integral by saddle-point approximation. We now assume that the
dominating saddle-point belongs to a set

Dϵ := {q̃ ∈ Rn×n : q̃− 2C ≻ ϵIn for all C living on its domain},

for some arbitrarily small ϵ > 0 but independent of N . Thus restricting the integral to this
domain yields a sub-leading correction exp o(N). For q̃ ∈ Dϵ a Gaussian integration over x̃ is
possible: exp(NIN) equals

(2π)Nn/2eo(N)

Z(q)

∫
Dϵ

dq̃ exp
N

2

1

N

∑
i≤N

(
Trqq̃+ h⊺

i (q̃− 2Ci)
−1hi − ln det(q̃− 2Ci)

)
=

(2π)Nn/2eo(N)

Z(q)

∫
Dϵ

dq̃ exp
{N
2
E
(
Trqq̃+ h⊺(q̃− 2C)−1h− ln det(q̃− 2C)

)}
.

We used the convergence of the empirical law of the sequence (Ci,hi)i to turn the above empirical
mean into a statistical expectation over (C,h), including the correction in the exp o(N); this
is possible because over Dϵ the summand is a bounded continuous function of (Ci,hi). As N
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diverges at fixed n we can estimate the integral by saddle-point and reach that the generalized
spherical integral is

IN → 1

2
extrq̃

(
Trqq̃+ Eh⊺(q̃− 2C)−1h− E ln det(q̃− 2C)

)
− 1

2
extrq̃

(
Trqq̃− ln det q̃

)
(5.33)

where the term − lnZ(q)/N from the normalization has been obtained by simply setting C
and h to all-zeros in the first optimization problem. The extremum is over n × n symmetric
matrices q̃ such q̃− 2C is positive definite for all C on its domain.

Assuming that the extremum is attained inside the optimization domain we can perform the
extremization using ln detA = Tr lnA. The extremum is solution of the matrix equation

q = Eh⊺(q̃− 2C)−2h+ E(q̃− 2C)−1. (5.34)

The second extremization leads instead to q̃ = q−1. Thus the result.

5.3 Information-theoretic analysis by the replica method

Let us start with a remark. Express the noise Z = O⊺DO in terms of its random Haar
distributed basis O and eigenvalues D, so that the observation model becomes

Y =
λ

N
P∗ +O⊺DO. (5.35)

When the signal is rotationally invariant we can consider the noise diagonal right away by
absorbing O into x,X∗. If the law PX is uniform on the sphere, then this joint rotation does
not change the distribution of x,X∗ which greatly simplifies the analysis. In this simpler case,
the replica method is not needed as the computation of the free entropy can be carried out
simply using a saddle point method. We provide this analysis in Section 5.3.4. The rotational
invariance of the Gaussian law implies that also that case could be treated similarly by direct
computation. On the contrary, for other priors than spherical or Gaussian this is no longer
possible and the replica method is needed.

In order to deal with such non-rotational invariant priors we are going to adapt an approach
developed by Kabashima in [153, 131] to study certain inference models where rotational in-
variant random matrices appear as quenched disorder. The main difference compared to the
works is the fact that because they consider (generalized) linear regression, the structured ma-
trix plays the role of covariates/data and therefore does not influence the form of the likelihood
when writing the posterior. A novelty of the present setting is the fact that because the struc-
tured matrix is now the noise itself, the likelihood is a function of its statistics which in turn
complicates the analysis.
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The goal here is to compute the log-partition function (5.12) using the replica trick

lim
N→∞

1

N
E lnZ = lim

N→∞

1

N
lim
n→0

∂n lnEZn = lim
n→0

∂n lim
N→∞

1

N
lnEZn. (5.36)

The expectation is with respect toY or equivalently the independentO,x0 (recallD is determin-
istic). The last equality assumes the commutation of the two limits. Another key assumption
of the method is that we are going to make the computation considering n ∈ N and then assume
an analytic continuation to n in a small neighborhood of 0. Before doing all that we are going
to first re-express our model in a form more convenient for analysis.

5.3.1 An equivalent quadratic model

The Hamiltonian (5.11) of the model can be written in a more convenient way by introducing
the following shorthand notations for order parameters. Despite at the moment only vector x
has been introduced, soon a family of vectors (xℓ) will be introduced when “replicating” the
system. So we directly introduce the order parameters for these:

vℓ = v(xℓ) :=
1

N
∥xℓ∥2, (5.37)

M(k)ℓ =M(k)(xℓ,Z) :=
1

N
x⊺
ℓZ

kxℓ, (5.38)

κℓ = κ(xℓ,x0,Z) :=
1

N
x⊺
ℓZx0, (5.39)

qℓℓ′ = q(xℓ,xℓ′) :=
1

N
x⊺
ℓxℓ′ , (5.40)

where the replica indices 0 ≤ ℓ, ℓ′ ≤ n with the identification x0 := X∗.
We now treat the quadratic and quartic part of the matrix potential separately. Let us

denote

∆ :=
1

N
(P∗ −P), Mℓ :=M(1)ℓ.

The quadratic part yields a contribution:

N

4
Tr[(Z+ λ∆)2 − Z2] =

1

2

[
λ(x⊺

0Zx0 − x⊺Zx) +Nλ2
( 1

2N2
(∥x0∥4 + ∥x∥4)− q201

)]
= −Nλ

2
M1 +

Nλ2

2

(1
2
(v20 + v21)− q201

)
+ o(N). (5.41)

The subscript 1 indicates that only one replica x1 := x is involved yet, and by convention it is
replica number one. We used that by the law of large numbers, and thanks to the symmetry of
the chosen matrix potential, we can assert that

M(2k+1)0 = oN(1), M(2)0 = 1 + oN(1)
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due to our choice of normalization, so in particular M0 = M(1)0 = oN(1). Again by the law of
large numbers we have

v0 = E(X∗
1 )

2 + oN(1) = 1 + oN(1).

The quartic contribution is more complicated due to the non-commutativity of matrices:

N

8
Tr[(Z+ λ∆)4 − Z4]

=
N

8
Tr[λ4∆4 + 4λ3Z∆3 + 4λ2Z2∆2 + 4λZ3∆+ 2λ2Z∆Z∆]

=
N

8

[
λ4(2q401 + v41 + 1− 4q201(v

2
1 + 1− v1))

+ 4λ3(M0(1− q201)−M1(v
2
1 − q201) + 2q01(v1 − 1)κ1)

+ 4λ2
(
M(2)0 + v1

1

N
x⊺Z2x− 2q01

1

N
x⊺Z2x0

)
+ 4λ

(
M(3)0 −

1

N
x⊺Z3x

)
+ 2λ2(M2

0 +M2
1 − 2κ21)

]
. (5.42)

Note that the only three terms which we did not write in a compact form using order parameters
are linear and quadratic forms in x that do not appear elsewhere to a power greater than 1.
This is because introducing order parameters for these would add useless redundancy in the final
equations (but it is necessary for the other order parameters due to powers of them appearing
in the Hamiltonian). Let

fℓ = f(q0ℓ, vℓ,Mℓ, κℓ) := γ
λ4

8

(
2q40ℓ + v4ℓ − 4q20ℓ(v

2
ℓ + 1− vℓ)

)
− γ

λ3

2
Mℓ(v

2
ℓ − q20ℓ)

+ γλ3q0ℓ(vℓ − 1)κℓ + γ
λ2

4
M2

ℓ − γ
λ2

2
κ2ℓ + µ

λ2

2

(1
2
v2ℓ − q20ℓ

)
− µ

λ

2
Mℓ. (5.43)

Plugging the contributions we computed into (5.11) shows that the Hamiltonian is equivalently
written as

HN(x;Z,x0) = Nf1 + γ
λ

2
x⊺(λv1Z

2 − Z3)x− γq01λ
2x⊺Z2x0 + C + o(N), (5.44)

where we have put all irrelevant constants inside C. We will neglect the o(N) contribution in
the following as it yields a subleading correction to the free entropy. Also the constant C is
irrelevant, so we simply forget about it. Keep in mind that at the moment f1 is still a function
of x. This model is thus not (yet) quadratic in x due to terms such as M1(x,Z)

2 appearing in
f1.

We now use delta functions to fix various order parameters. We are going to use repeatedly
the Fourier representation of the delta function, namely

δ(x) =
1

2π

∫
dx̂ exp(ix̂x). (5.45)
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Because the integrals we will end-up with will always be at some point evaluated by saddle
point, implying a deformation of the integration contour in the complex plane, tracking the
imaginary unit i in the delta functions will be irrelevant. Similarly, the normalization 1/(2π)
will always contribute to sub-exponential corrections in the integrals at hand. Therefore, we
will allow ourselves to formally write

δ(x) =

∫
dx̂ exp(rx̂x) (5.46)

for a convenient constant r, keeping in mind these considerations (again, as we evaluate the
final integrals by saddle point, the choice of r ends-up being irrelevant).

We denote jointly τ := (v1,M1, κ1, q01) and τ̂ for their Fourier conjugates. Coming back to
the the partition function for this equivalent model (5.44), it can be re-expressed using delta
functions as ∫

dPX(x)dτ exp
(
−HN(x;Z,x0)

)
× δ(Nq01 − x⊺x0)δ(Nv1 − ∥x∥2)δ(NM1 − x⊺Zx)δ(Nκ1 − x⊺Zx0)

=

∫
dPX(x)dτdτ̂ exp

(
−HN(τ , τ̂ ,x;x0,Z)

)
, (5.47)

where

HN(τ , τ̂ ,x;x0,Z) := Nh(τ , τ̂ ) + x⊺J1(τ , τ̂ ,Z)x+ x⊺J0(τ , τ̂ ,Z)x0 (5.48)

and

h(τ , τ̂ ) := f1 − q̂01q01 −
v̂1v1
2

− M̂1M1

2
− κ̂1κ1, (5.49)

J1(τ , τ̂ ,Z) :=
v̂1
2
IN +

M̂1

2
Z+ γ

λ2

2
v1Z

2 − γ
λ

2
Z3, (5.50)

J0(τ , τ̂ ,Z) := q̂01IN + κ̂1Z− γq01λ
2Z2. (5.51)

So what this shows is that by introducing new variables (order parameters and conjugate Fourier
parameters), the original model turns out being equivalent to an extended system with Hamil-
tonian (5.48). The key point of all this analysis is that by introducing the new variables τ , τ̂ we
have turned the interactions between the (xi)i≤N into purely quadratic ones. This form is now
more approriate to be solved using (generalizations of) known techniques. We emphasize that
despite the algebraic manipulations leading from (5.11) to (5.48) are cumbersome, given a more
complicated polynomial potential V the very same strategy could be applied but would require
the introduction of more order parameters. Yet, the equivalent model would still collapse into
a quadratic one of the above form but with a more complicated function h and matrices J1,J0

(still being polynomials of the noise Z of order one less than the order of V ). The reason is
that the key mechanisms behind these simplifications when expanding the original Hamiltonian
(5.11) are stemming from the low-rank structure of the spike.
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5.3.2 Replica symmetric free entropy using the inhomogeneous spher-
ical integral

Having reduced the model to a quadratic one, we are now ready to replicate the system to
compute the free entropy. The partition function Z is now computed using the equivalent
model (5.48). The expected replicated partition function is

EZ(x0,Z)
n =

∫ n∏
ℓ=0

dPX(xℓ)
∏
ℓ≤n

dτ ℓdτ̂ ℓ EZ exp
(
−
∑
ℓ≤n

HN(τ ℓ, τ̂ ℓ,xℓ;x0,Z)
)
, (5.52)

with replicas (xℓ, τ ℓ, τ̂ ℓ)ℓ≤n and shared quenched disorder x0,Z. What we do next is to replace
Z by O⊺DO and fix the overlap structure between replicas

x⊺
ℓxℓ′ = Nqℓℓ′ , ℓ, ℓ′ ≤ n (5.53)

by introducing further variables and their Fourier conjugates (this is already taken care of for
the overlaps x⊺

ℓx0 with the planted signal). The purpose will become clear soon. Redefining
τ ℓ := (vℓ,Mℓ, κℓ) and similarly for τ̂ ℓ, and defining the overlaps q = (qℓℓ′)0≤ℓ<ℓ′≤n and similarly
for q̂, the log-partition function can be recast as

EZn =

∫
dqdq̂

∏
ℓ≤n

dτ ℓdτ̂ ℓ expN
(∑

ℓ≤n

( v̂ℓvℓ
2

+
M̂ℓMℓ

2
+ κ̂ℓκℓ − fℓ

)
+

∑
0≤ℓ<ℓ′≤n

q̂ℓℓ′qℓℓ′
)

×
∫ n∏

ℓ=0

dPX(xℓ) exp
(
−

∑
0≤ℓ<ℓ′≤n

q̂ℓℓ′x
⊺
ℓxℓ′ −

1

2

∑
ℓ≤n

v̂ℓ∥xℓ∥2
)

× EO exp
∑
ℓ≤n

(
(Ox0)

⊺AℓOxℓ +
1

2
(Oxℓ)

⊺BℓOxℓ

)
(5.54)

where the N ×N “replica coupling matrices” are

Aℓ := −κ̂ℓD+ γq0ℓλ
2D2, (5.55)

Bℓ := −M̂ℓD− γλ2vℓD
2 + γλD3. (5.56)

We now assume a replica-symmetric ansatz which should lead to the correct solution due to
the strong concentration-of-measure effects taking place in the Bayes-optimal setting as well as
the Nishimori identities [29, 40]. It means that we assume that the saddle point over the order
parameters dominating the partition function as N → ∞, which are finitely many, lies in the
subset verifying the following (note the minus sign introduced for −q̂ and −m̂ for convenience):
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for all ℓ ̸= ℓ′ = 1, . . . , n

Replica Symmetry Ansatz:



Mℓ =M, M̂ℓ = M̂,

κℓ = κ, κ̂ℓ = κ̂,

vℓ = v, v̂ℓ = v̂,

qℓℓ′ = q, q̂ℓℓ′ = −q̂,
q0ℓ = m, q̂0ℓ = −m̂.

(5.57)

Using this ansatz, the matrices (Aℓ,Bℓ)ℓ≤n become independent of ℓ. We thus call their
common value A,B. As a consequence the term EO( · ) at the third line in (5.54) is recognized
to be what we call an inhomogeneous spherical integral defined and analyzed in a devoted
Section 5.2.2. From Section 5.2 we know that the result of such integral depends only on
the overlap structure; this is the reason why we fixed it earlier. We will thus replace it by
expNIRS

A,B(n, v,m, q) whose formula is (5.32) and which is parametrized by the random variables
(below D ∼ ρ)

A = −κ̂D + γmλ2D2, (5.58)

B = −M̂D − γλ2vD2 + γλD3. (5.59)

Notice that at this point the only x-integrals remaining (second line of (5.54)) are completely
factorized over the spin indices i. Hence after taking the saddle point the log-replicated free
entropy becomes in the limit N → ∞

1

N
lnEZn → extr

{
n
( v̂v
2

+
M̂M

2
+ κ̂κ− m̂m+

1− n

2
q̂q − f(m, v,M, κ)

)
+ IRS

A,B(n, v,m, q) + ln

∫ n∏
ℓ=0

dPX(xℓ)e
q̂
∑

ℓ<ℓ′≤n xℓxℓ′+m̂
∑

ℓ≤n x0xℓ− v̂
2

∑
ℓ≤n x2

ℓ

)}
where the extremum is over all scalars in (5.57). The last line can be treated by a Hubbard-
Stratonovič transform (i.e., Gaussian integral formula) to decouple the integral over the replica
indices. Doing so it becomes

E
(∫

dPX(x) exp
(√

q̂Zx− q̂ + v̂

2
x2 + m̂X0x

))n
,

with Z ∼ N (0, 1), X0 ∼ PX .
We now consider the limit of number of replicas going to 0 assuming the analytic continuation

of our formulas from integer n to real. To expand the latter term we use lnEXn = nE lnX +
O(n2). The inhomogeneous spherical integral given by (5.32) (with v0 = 1) also has to be
expanded in n. We get

IRS
A,B(n, v,m, q) =

n

2
extr(ṽ,m̃,q̃)

{
2mm̃+ vṽ − qq̃ − E ln(ṽ −B − q̃)

− E
q̃ − (m̃− A)2

ṽ −B − q̃

}
− n

2

(
1 + ln(v − q)

)
− n

2

q −m2

v − q
+O(n2)
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with an expectation over D ∼ ρ entering A,B. Now we plug the previous expressions in the
log-replicated partition function and expand up to O(n) the resulting expression:

1

N
lnEZn → extr

{
n
( v̂v
2

+
M̂M

2
+ κ̂κ− m̂m+

1− n

2
q̂q − f(m, v,M, κ)

)
+ IRS

A,B(n, v,m, q) + nE ln

∫
dPX(x) exp

(√
q̂Zx− q̂ + v̂

2
x2 + m̂X0x

)}
+O(n2).

One can check that as it should limN→∞N−1 lnEZn vanishes when n → 0. Taking the n-
derivative (recall (5.36)) and then sending n → 0 the final formula for the free entropy is
obtained (and recalling that we dropped irrelevant constants along the computation):

1

N
E lnZ → extr

{ v̂v
2

+
M̂M

2
+ κ̂κ− m̂m+

q̂q

2
+mm̃+

vṽ

2
− qq̃

2

− γ
λ4

8

(
2m4 + v4 − 4m2(v2 + 1− v)

)
+ γ

λ3

2
M(v2 −m2)

− γλ3m(v − 1)κ− γ
λ2

4
M2 + γ

λ2

2
κ2 − µ

λ2

2

(1
2
v2 −m2

)
+ µ

λ

2
M

+ E ln

∫
dPX(x) exp

(√
q̂Zx− q̂ + v̂

2
x2 + m̂X0x

)
− 1

2
E ln(ṽ − q̃ + M̂D + γλ2vD2 − γλD3)− 1

2
ln(v − q)− q −m2

2(v − q)

+
1

2
E

(m̃+ κ̂D − γmλ2D2)2 − q̃

ṽ − q̃ + M̂D + γλ2vD2 − γλD3

}
+ constant. (5.60)

The extremization is intended over the set of 13 variational parameters v, v̂, ṽ, m, m̂, m̃,
q , q̂, q̃, M , M̂ , κ, κ̂. However, as we shall see later the saddle point equations will reduce
only to two, because thanks to the Nishimori identities the saddle point values of many order
parameters can be found right away. This is a specific and rather convenient feature of the
Bayesian-optimal setting.

5.3.3 Replica saddle point equations

Define the following random local measure

⟨ · ⟩m̂,q̂,v̂ =

∫
dPX(x)e

√
q̂Zx+m̂xX0− q̂+v̂

2
x2
( · )∫

dPX(x)e
√
q̂Zx+m̂xX0− q̂+v̂

2
x2

, (5.61)

the randomness being Z ∼ N (0, 1) and X0 ∼ PX , and the random functions (random in D ∼ ρ)

H = (ṽ − q̃ + M̂D + γλ2vD2 − γλD3)−1, (5.62)

Q = γmλ2D2 − κ̂D − m̃. (5.63)
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Below follow the saddle point equations obtained by equating to 0 the gradient w.r.t. the
variational parameters of the variational free entropy in (5.60). The parameter associated to
each equation are reported in the round parenthesis:

(m) µλ2m+ γλ4m(v2 + 1− v −m2)− γλ3Mm− m̂+ m̃+
m

v − q

− γλ3(v − 1)κ+ γλ2EQHD2 = 0

(m̂) m = EX0⟨X⟩m̂,q̂,v̂

(m̃) m = EQH

(q) q̂ − q̃ =
q −m2

(v − q)2

(q̂) q = E⟨X⟩2m̂,q̂,v̂

(q̃) q = E(Q2 − q̃)H2

(v) − µλ2v − γλ4(v3 −m2(2v − 1)) + 2γλ3Mv + v̂ + ṽ − 1

v − q
− m2 − q

(v − q)2

− γλ2EHD2 − 2γmλ3κ+ γλ2ED2(q̃ −Q2)H2 = 0

(v̂) v = E⟨X2⟩m̂,q̂,v̂

(ṽ) v = E[H +H2(Q2 − q̃)]

(M) µλ+ γλ3(v2 −m2)− γλ2M + M̂ = 0

(M̂) M = ED[H +H2(Q2 − q̃)]

(κ) κ̂ = γλ3m(v − 1)− γλ2κ

(κ̂) κ = EDQH

As in any replica symmetric mean-field theory, the physical meaning of some order param-
eters makes it possible to fix their values to their expectation, obtainable using the Nishimori
identities and, as a consequence, to drastically reduce this 13-dimensional system. To begin
with, recall that we fixed v to be the squared norm of a sample from the posterior re-scaled by
the number of components. Assuming concentration effects take place as they should in this
optimal setting, and denoting the posterior mean by ⟨ · ⟩, using the Nishimori identity we have
that

v = lim
N→∞

1

N
E⟨∥x∥2⟩ = lim

N→∞

1

N
E∥X∗∥2 = 1. (5.64)

We have v̂ = 0 because the constraint v = 1 is enforced by the prior without the need of a delta
constraint. The (κ)-equation can then be used to directly eliminate κ̂ by inserting κ̂ = −γλ2κ
into Q. The Nishimori identity also imposes

m = EX0⟨X⟩m̂,q̂,0 = q = E⟨X⟩2m̂,q̂,0. (5.65)
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It is not difficult to realize that for this to be true one also needs necessarily m̂ = q̂. So we have
8 variables left. The most tricky parameter is M , that we introduced to decouple the four body
interactions in the Hamiltonian. Notice first that (recall definitions (5.38) and (5.40))

1

N
E⟨x⊺Zx⟩ = 1

N
E
〈
x⊺
(
Y − λ

N
P∗
)
x
〉

=
1

N
EX∗⊺YX∗ − λE

〈( 1

N
x⊺X∗

)2〉
= λ

(
1− E

〈( 1

N
x⊺X∗

)2〉)
+O

( 1

N

)
.

We used that by the Nishimori identity

E⟨x⊺Yx⟩
N

=
EX∗⊺YX∗

N
=

1

N
EX∗⊺

( λ
N
X∗X∗⊺ + Z

)
X∗ = (E(X∗

1 )
2)2λ = λ. (5.66)

Indeed, by diagonalizing the noise,

EX∗⊺ZX∗ = E
∑
i≤N

s2iDi = E∥X∗∥2ED1 = 0,

where s is a uniform spherical vector of same norm as X∗, and ED1 = 0 by symmetry. By
concentration happening on the Nishimori line [40] we have

E
〈( 1

N
x⊺X∗

)2〉
=
(
E
〈 1

N
x⊺X∗

〉)2
+ oN(1) = m2 + oN(1).

Hence

M = lim
N→∞

1

N
E⟨x⊺Zx⟩ = λ(1−m2). (5.67)

The (M)-equation together with the other identities implies M̂ = −µλ. To summarize the
Nishimori identities and concentration properties enforce five constraints:

v = 1, v̂ = 0, m = q, m̂ = q̂, M = λ(1−m2) (5.68)

and we have 6 variables left. Our updated definitions of Q and H are

Q = γmλ2D2 + γλ2κD − m̃, (5.69)

H = (ṽ − q̃ − µλD + γλ2D2 − γλD3)−1. (5.70)

Using the Nishimori identities we see from the (ṽ) and (q̃)-equations that

m = EH2(Q2 − q̃) ⇒ EH = 1−m. (5.71)
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The latter has to be interpreted as an equation for the quantity Ṽ := ṽ − q̃ as a function of
m. Furthermore, one can now express m̃ as a function of κ and m. In fact from equation (m̃),
unfolding Q and then solving for m̃, one gets

m̃ =
γλ2

1−m
ED(mD + κ)H − m

1−m
. (5.72)

Plugging this back into the (m)-equation we get m̂, equation (5.78). We stress that inside H
there is still an m dependency through Ṽ .

With all these simplifications we can close the equations on (m,κ) only:

(m̂) m = EX0⟨X⟩m̂,m̂,0 (5.73)

(κ̃) κ = EDQH, (5.74)

where the random variables Q = Q(m,κ,D) and H = H(m,D) are

Q = γmλ2D2 + γλ2κD − γλ2

1−m
ED(mD + κ)H +

m

1−m
, (5.75)

H = (Ṽ − µλD + γλ2D2 − γλD3)−1, (5.76)

with Ṽ = Ṽ (m) and m̂ = m̂(m,κ) being determined respectively by

EH = 1−m, (5.77)

m̂ = γλ2EHD
(mD + κ

1−m
+DQ

)
+ µλ2m. (5.78)

Then the replica prediction for the MMSE is

lim
N→∞

1

2N2
E∥X∗X∗⊺ − E[X∗X∗⊺ | Y]∥2F =

1

2
(1−m2). (5.79)

From (5.78) it is evident that when γ = 0 and µ = 1 (to preserve unit variance of the noise),
κ and m̂ decouple, m̂ = λ2m, and the equation (5.73) reduces to the standard replica saddle
point equation for the Wigner spike model.

There would be also an equation for q̃, that is decoupled though, meaning that q̃ is a simple
function of m and κ in the end:

(q) q̃ = m̂(m,κ)− m

1−m
. (5.80)

5.3.4 Spectral PCA is optimal for rotation-invariant signals

In this section we show that spectral PCA [38] is optimal for inferring X∗ such that X∗ equals in
law OX∗ for any orthogonal matrix O. This is the case for Gaussian and spherically uniformly
distributed X∗.
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To do so, we first show that the previous computations can be straightforwardly modified
to accommodate the case of spherical prior. Let us assume that the signal X∗ is uniformly
distributed on a sphere of radius

√
N . We denote the uniform measure on this sphere by ω.

Thanks to the invariance property of the measure on the sphere under rotations we know that x
equals in lawOx for x ∼ ω and any orthogonal matrixO. Therefore, we can directly diagonalize
the noise without loss of generality and work with the equivalent model

Y =
λ

N
P∗ +D. (5.81)

In this way we can get rid of O and as a consequence replicating the system and the inho-
mogeneous spherical integral becomes useless. Only Gaussian integrations and a saddle point
estimation are needed.

The partition function is (5.48)–(5.51) but with the diagonal matrix D replacing Z (the
constraint ∥x∥2 = N is taken care of by the Hamiltonian):∫

dxdτdτ̂ exp
(
−Nh(τ , τ̂ )− x⊺J1(τ , τ̂ ,D)x− x⊺J0(τ , τ̂ ,D)x0

)
. (5.82)

Because now J1 and J0 are diagonal matrices, the x-integral in the partition function is just a
Gaussian integral: it is (up to an irrelevant multiplicative constant)∫

dτdτ̂ expN
(
− h(τ , τ̂ )− 1

2N

∑
i≤N

ln J1,i +
1

4N

∑
i≤N

x20,i
J2
0,i

J1,i

)
(5.83)

with v1 = 1 (appearing in h). Because x0 is a uniform spherical vector combined with the
convergence of the empirical law of (Di) we have

− 1

2N

∑
i≤N

ln J1,i +
1

4N

∑
i≤N

x20,i
J2
0,i

J1,i
= −1

2
E ln J1,1 +

1

4
E
J2
0,1

J1,1
+ oN(1).

Thus saddle point estimation of (5.82) yields

1

N
lnZ → const + extr

{
− f(m, 1,M, κ) + m̂m+

v̂v

2
+
M̂M

2
+ κ̂κ

− 1

2
E ln

(
v̂ + M̂D + γλ2D2 − γλD3

)
+

1

2
E

(m̂+ κ̂D − γλ2mD2)2

v̂ + M̂D + γλ2D2 − γλD3

}
, (5.84)

where recall that f is defined by (5.43). Note that this strategy does not require the replica
method, and it could also be applied in the case of Gaussian prior PX = N (0, 1), due to its
rotational invariance.

At this point, the saddle point equations can be written and simplified similarly as in the
previous section. After doing so and from the numerical solution of the saddle point equations,



5.3. INFORMATION-THEORETIC ANALYSIS BY THE REPLICA METHOD 135

one can deduce that: (i) in the case of spherical and Gaussian priors the MMSE is the same;
and (ii) this MMSE matches the performance of the spectral PCA algorithm studied in [38].
Additionally, (iii) the MMSE obtained from this exact approach matches the replica prediction
of the previous section in the case of Gaussian prior (a special case of factorized PX tackled
by our replica theory). This further confirms the validity and consistency of our methodology.
Therefore we conclude that spectral PCA is Bayes-optimal in the special case of rotationally
invariant priors and noise.

Let us provide a further argument in support of Bayes-optimality of PCA in the present
setting. In this argument we consider the noise eigenvalues as quenched random variables, and
we are going to average over them. We first notice that the MMSE estimator is diagonal in the
basis of the matrix of data Y. Indeed, letting Y be diagonalized as Y = U⊺SU then using the
posterior (5.6),

E[X∗X∗⊺ | Y] =
CV

PY (Y)

∫
dPX(x) exp

(
− N

2
TrV

(
S− λ

N
(Ux)(Ux)⊺

))
xx⊺

=
CV

PY (Y)
U⊺
(∫

dPX(x) exp
(
− N

2
TrV

(
S− λ

N
xx⊺

))
xx⊺

)
U (5.85)

where we changed Ux to x, which leaves the prior invariant by rotational invariance. We would
then like to see that the matrix

L =
CV

PY (Y)

∫
dPX(x) exp

(
− N

2
TrV

(
S− λ

N
xx⊺

))
xx⊺

is a diagonal. Indeed, because S = diag(s1, . . . , sN) is diagonal, TrV (S − (λ/N)xx⊺) can be
easily seen (see, e.g., the steps leading to (5.151)) to be a polynomial of degree k of the k
variables (∑

i≤N

x2i ,
∑
i≤N

six
2
i , . . . ,

∑
i≤N

sk−1
i x2i

)
.

Then, for every 1 ≤ j ≤ N , the integrand that defines L takes the same value for x and the
point x′ which results from changing the sign of the j-th coordinate of x. We thus have that L
is a diagonal matrix.

For 1 ≤ k ≤ N , let uk be the eigenvector of the k-largest eigenvalue of Y. Then we can
express L(Y) as diag(γ1(Y), . . . , γN(Y)), where by definition we have that

E[X∗X∗⊺ | Y] =
∑
k≤N

γkuku
⊺
K , (5.86)

i.e., γk = u⊺
kE[X∗X∗⊺ | Y]uk with the ordering γ1 ≥ γ2 ≥ · · · ≥ γN . This therefore means that

the “matrix magnetization” may be written according to

1

N2
ETr(E[X∗X∗⊺ | Y]X∗X∗⊺) =

1

N2

∑
k≤N

E[(u⊺
kX

∗)2γk].
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We would like now to compute the asymptotic magnetization of the Bayes estimator. For
this we will use Nishimori identities and a bound over the projections ofX∗ onto the eigenvectors
of Y that we verify numerically. More specifically, we will assume that there is some constant
K > 0 such that for all k ≥ 2 it holds that

(u⊺
kX

∗)2 ≤ K. (5.87)

As mentioned before, inequality (5.87), which is an explicit rate of convergence for the limit
in [38, Theorem 2], has been verified through many numerical experiments for different noise
potentials and SNRs. In every case, a bound of this type is observed, although for experiments
close to the corresponding phase transition, the constant K takes larger values and the quantity
bounded exhibits a larger variance (this type of behavior is expected to hold very close to the
transition point).

Now, notice that by Nishimori identities the following holds

Eγk = E(u⊺
kX

∗)2. (5.88)

Also, by [38, Theorem 2] we have that (below R is the R-transform associated with the noise
spectral density ρ)

1

N2
E[γ1(u⊺

1X
∗)2] =

1

N

(
1− R′(1/λ)

λ2

)
Eγ1 +

1

N
E
[
γ1

((u⊺
1X

∗)2

N
− 1 +

R′(1/λ)

λ2

)]
,

where the second term on the r.h.s. is a vanishing function of N . If we use (5.88) and [38,
Theorem 2] a second time, we get that

lim
N→∞

1

N2
E[γ1(u⊺

1X
∗)2] =

(
1− R′(1/λ)

λ2

)2
.

On the other hand, by inequality (5.87) and the Nishimori identities (5.88) we get

1

N2

∑
2≤k≤N

E[γk(u⊺
kX

∗)2] ≤ K

N2

∑
2≤k≤N

Eγk =
K

N2

∑
2≤k≤N

E(u⊺
kX

∗)2.

that by [38, Theorem 2], vanishes in the limit. We then conclude that

1

N2
ETr(E[X∗X∗⊺ | Y]X∗X∗⊺) =

(
1− R′(1/λ)

λ2

)2
+ oN(1).

This in turn implies that

lim
N→∞

1

2N2
E∥E[X∗X∗⊺ | Y]−X∗X∗⊺∥2 = 1−

(
1− R′(1/λ)

λ2

)2
,

which is the MSE of the optimally scaled PCA estimator [38].
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5.4 Sub-optimality of the previously proposed AMP

Consider the following AMP iteration for t ≥ 1:

f t = Yut −
t∑

i=1

bt,iu
i, ut+1 = ht+1(f

t). (5.89)

Here, f t = (f t
1, . . . , f

t
N),u

t+1 = (ut+1
1 , . . . , ut+1

N ) ∈ RN and the denoiser function ht+1 : R →
R is continuously differentiable, Lipschitz and applied component-wise, namely ht+1(f

t) =
(ht+1(f

t
1), . . . , ht+1(f

t
N)). The time-dependent AMP estimate of the spike P∗ is (ut)⊺ut.

The Onsager coefficients {bt,i}i∈[t],t≥1 are carefully chosen so that, conditioned on the signal,
the empirical distribution of the components of iterate f t is Gaussian. The form of these Onsager
coefficients was derived by [123] using non-rigorous dynamic functional theory techniques, and
a rigorous state evolution result was recently proved in [132]. More formally, assume that

X∗ W2−→ X∗. Then, the state evolution result of [132] gives that

(f1, . . . , f t)
W2−→ (F1, . . . , Ft) := µtX

∗ +Wt, (5.90)

where µt = (µ1, . . . , µt) and Wt = (W1, . . . ,Wt) is a multivariate Gaussian with zero mean and
covariance Σt = (σij)i,j≤t independent of X

∗. Furthermore, the mean vectors {µt}t≥1 and the
covariance matrices {Σt}t≥1 are tracked by a deterministic state evolution recursion. We refer
to [132] for more details on this AMP and associated state evolution. Such details won’t be
crucial for our argument, as we are going to focus directly on the fixed point performance, and
not on the dynamics.

For this section, we restrict the analysis to (i) Rademacher prior PX = 1
2
(δ1+δ−1), and (ii) a

“large enough” signal-to-noise ratio. We remark that our methodology extends to more generic
factorized priors. However, since our goal is to prove sub-optimality of AMP, this setting suffices.
Moreover, we will further restrict our proof of sub-optimality to (iii) the “one-step memory”
version of the AMP in [132]. This means that the denoiser ht+1 in (5.89) is allowed to depend
only on the past iterate f t. A more general “multi-step memory AMP” was proposed in [133],
where the denoiser ht+1 can depend on all the past iterates f1, . . . , f t. We remark that the
analysis of [123] suggests that the fixed points of both these versions are the same; the longer
memory of the latter AMP being only useful to improve its convergence properties. Therefore,
despite our analysis below holds under hypotheses (i)–(iii), we conclude more generically that
the existing AMP algorithms for structured PCA in [132, 133] are sub-optimal, and this is the
case for most SNR values and prior/signal’s distributions that are not rotationally invariant2.
From the findings in the following sections, the reason for the sub-optimality of these AMPs

2We do not discard the possibility that for very peculiar choices of SNR regimes and/or priors these generically
sub-optimal AMPs end-up being optimal, but that would be for highly specific setting-dependent reasons. One
case where the AMPs of [132], and also the spectral PCA algorithm [38], are actually optimal is when the prior
is rotationally invariant (spherical or Gaussian prior), see Section 5.3.4.



138 CHAPTER 5. BAYES-OPTIMAL LIMITS IN STRUCTURED PCA

will become clear. Essentially, the data Y is not the best choice of matrix to use in the AMP
iterates, despite being the most natural one.

5.4.1 Analysis of the one-step AMP fixed point performance

In this section we analyse the AMP algorithm (5.89) for structured PCA proposed in [132], with
a posterior mean denoiser with a single-step memory term:

ht+1(f
t
i ) = E[X | f t

i ]. (5.91)

In [132, Section 3] it is shown that the fixed point of this AMP algorithm is, for λ sufficiently
large, described by the following system:

1−∆∗ = mmse
(λ2∆2

∗
Σ∗

)
, Σ∗ = ∆∗R

′
(λ∆∗(1−∆∗)

Σ∗

)
. (5.92)

Here, R′(·) denotes the derivative of the R transform of the (limiting) distribution of the noise
eigenvalues D. For details about the R-transform, the interested reader is referred to [154]. The
above is related to the asymptotic overlap of the AMP estimator through

lim
t→∞

lim
N→∞

∣∣∣ 1
N
X∗⊺x̂t

∣∣∣ = lim
t→∞

lim
N→∞

1

N
∥x̂t∥2 = ∆∗ (5.93)

and thus the AMP mean-square error is

lim
t→∞

lim
N→∞

1

2N2
E∥x̂t(x̂t)⊺ −X∗X∗⊺∥2 = 1

2
(1−∆2

∗). (5.94)

In the case of Rademacher prior the explicit form of the posterior-mean denoiser is

ht+1(f
t) = tanh

(f tµt

σ2
tt

)
(5.95)

where (µt, σtt) are the mean and variance of the (empirically) “Gaussian observation” f t com-
puted from the state evolution of [132]. The associated mmse function is (below Z ∼ N (0, 1)
is a standard Gaussian random variable and X∗ ∼ 1

2
(δ−1 + δ1))

mmse(x) = 1− E
[
X∗
∫
dPX(x)x e

Zx
√
m̂+m̂xX∗− m̂

2
x2∫

dPX(x)e
Zx

√
m̂+m̂xX∗− m̂

2
x2

]
(5.96)

= 1− E tanh(x+
√
xZ). (5.97)

We now consider the limit (λ,∆∗,Σ∗) → (∞, 1, 1) which indeed is a fixed point of (5.92) as
we verify at the end of this section. Moreover it is unique, see [132, Theorem 3.1]. It implies
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x := λ2∆2
∗/Σ∗ → λ2 → ∞. We have in this limit

mmse(x) = 1−
∫
dt
e−

1
2x

(t−x)2

√
2πx

tanh(t)

=

√
π

2

e−
x
2√
x
(1 +O(1/x))

= exp
(
− x

2
(1 + ox(1))

)
. (5.98)

We plug this in the first equation of (5.92) which gives at leading order

∆∗ = 1− exp
(
− λ2

2
(1 + oλ(1))

)
. (5.99)

It just remains to check that (λ,∆∗,Σ∗) = (∞, 1, 1) is indeed the unique fixed point of (5.92)
in the large SNR regime. From our analysis we already know that this fixed point is consistent
with the first equation of (5.92). So we simply need to verify the second one, namely,

R′(λ(1−∆∗)(1 + oλ(1))
)
→ 1 (5.100)

as λ→ ∞. From (5.99) we have in this limit λ(1−∆∗) → 0 exponentially fast in λ, and it can
be readily verified that R′(0) = 1, as the noise distribution D has unit second moment. This
ends the argument.

5.4.2 Analysis of the replica Bayes-optimal fixed point

We now analyse in the same large SNR regime the replica fixed point equations that we recall
below for convenience: let us rename Ṽ := ṽ − q̃ as they always appear together. We consider
that all quantities below are at their saddle point values maximizing the replica free entropy
(5.60).

Let us recall the outcome of the Section 5.3.3 on the saddle point equations. Consider the
random variables (random through their dependence in D)

Q = γmλ2D2 + γλ2κD − γλ2

1−m
ED(mD + κ)H +

m

1−m
, (5.101)

H = (Ṽ − µλD + γλ2D2 − γλD3)−1. (5.102)

For a given value of the parameter m, the saddle point equations require Ṽ = Ṽ (m) to be the
solution of the implicit equation

EH = 1−m. (5.103)
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Using this implicit solution, H is a function H(m) and Q = Q(m,κ). Let Z ∼ N (0, 1) and
X∗ ∼ PX . The saddle point equations over the order parameters (m,κ) read

m = 1−mmse(m̂), (5.104)

κ = EDQH, (5.105)

where mmse(m̂) is the same function (5.97) as before and

m̂ = m̂(m,κ) = γλ2EH
(mD2 + κD

1−m
+D2Q

)
+ µλ2m. (5.106)

Recall that the replica prediction for the MMSE is (5.79). In the regime λ → ∞ we thus
necessarily have m→ 1−. Since the solution (m,κ) of the replica saddle point equations yields
the MMSE (5.79) which must be at least as good as the AMP MSE (5.94) then m ≥ ∆∗. Thus
from (5.99) we deduce

1−m = O
(
exp

(
− λ2

2
(1 + oλ(1))

))
. (5.107)

The support of the density of D is bounded, therefore from (5.102) it is then clear that for
(5.103) to be verified under the scaling (5.107) in the large λ limit, the solution Ṽ of (5.103)
must verify

λ2

Ṽ
= oλ(1). (5.108)

Thus from (5.103) we obtain

(1−m)Ṽ = E
(
1 +

γλD2(λ−D)− µλD

Ṽ

)−1

= 1 + oλ(1) (5.109)

from which we deduce using (5.107) that

Ṽ = Θ
( 1

1−m

)
= Ω

(
exp

(λ2
2
(1 + oλ(1))

))
. (5.110)

This also implies that in the limit of large SNR, H becomes deterministic:

H = Ṽ −1 +O
( λ2
Ṽ 2

)
. (5.111)

This equality means that H can be written as Ṽ −1 plus a possibly random term dependent of
D, which can be bounded by a non-random constant of order O(λ2/Ṽ 2). Similarly for Q: using
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that κ is bounded (recall that it is the limit of the expectation of (5.39)), (5.111) and (5.109),
we get the following deterministic scaling in the large SNR regime:

Q =
m

1−m
+O(λ2). (5.112)

Using all these scalings together with the fact that ED = 0 and κ is bounded (actually it can
now be seen from the (κ̂)-equation of Section 5.3.3 that κ = oλ(1)) we reach, using ED2 = 1
and (5.108), (5.109),

m̂ = γλ2EH
(mD2 + κD

1−m
+D2Q

)
+ µλ2m

= γλ2
(
Ṽ −1 +O

( λ2
Ṽ 2

))( 2m

1−m
+O(λ2)

)
+ µλ2m

= γλ2
( 2m

Ṽ (1−m)
+O

(λ2
Ṽ

)
+O

(λ2
Ṽ

× 1

Ṽ (1−m)

)
+O

( λ4
Ṽ 2

))
+ µλ2m

= γλ2(2m+ oλ(1)) + µλ2m

= λ2(2γ + µ)(1 + oλ(1)) (5.113)

where also used m = 1 + oλ(1), see (5.107). Recall m = 1 − mmse(m̂) as well as the scaling
(5.98). So we have

m = 1− exp
(
− λ2

2
(2γ + µ)(1 + oλ(1))

)
. (5.114)

By comparing with (5.99) we see that m ̸= ∆∗. Moreover, since m is the Bayes-optimal overlap,
it has to be the case that m ≥ ∆∗, namely, 2γ + µ ≥ 1. From (5.17) it can be verified
that 2γ + µ > 1 strictly for µ < 1. Equality holds for the pure Wigner case (µ = 1, γ = 0), as
expected. This ends the proof that the MMSE (5.79) is asympotically in λ strictly exponentially
smaller than the MSE of AMP with one-term memory (5.94) whenever µ < 1, γ > 0.

5.4.3 What is actually doing this sub-optimal AMP? Mismatched
estimation with Gaussian likelihood

In the same spirit as [70], we study here a mismatched estimation where the statistician assumes
the noise to be Gaussian, thus a wrong likelihood, whereas the noise is drawn from the quartic
ensemble with potential (5.13). In the same way as we did for the quartic potential, the
mismatched posterior associated to (5.2) is written as

dP̄X|Y (x|Y) =
1

Z̄(Y)
dPX(x) exp

(λ
2
TrYxx⊺ − λ2

4N
∥x∥4

)
(5.115)
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where we have re-absorbed x-independent terms in the normalization. The corresponding log-
partition function is

E ln Z̄(Y). (5.116)

Notice that we have barred some quantities to distinguish them from their Bayes-optimal ana-
logues. We further stress that, with Gaussian likelihood, the spin-glass model that arises already
contains only two body interactions.

We aim at approximating (5.116). Indeed, we are going to perform a replica symmetric
computation, which has no a-priori reasons to be exact as we are not anymore in the Bayesian-
optimal setting [40] (nor the mismatched posterior is log-concave [72]; Chapter 4 serves as a
counter-example). We denote jointly τ = (v1, q01) and τ̂ their Fourier conjugates. The partition
function can then be expressed using deltas to fix the τ parameters and expanding Y as in (5.2).
Up to irrelevant constants it reads

Z̄(Y) =

∫
dPX(x)dτdτ̂ exp

(
− H̄N(τ , τ̂ ,x;x0,Z)

)
(5.117)

where

H̄N(τ , τ̂ ,x;x0,Z) := Nh̄(τ , τ̂ ) + x⊺J̄(τ , τ̂ ,Z)x+ q̂01x
⊺x0 (5.118)

and

h̄(τ , τ̂ ) :=
λ2

4
v21 −

λ2

2
q201 − q01q̂01 −

v1v̂1
2
, (5.119)

J̄(τ , τ̂ ,Z) :=
v̂1
2
IN − λ

2
Z. (5.120)

While replicating we will need as before to fix the entire overlap structure (and not only q01),
i.e., (Nq)ℓℓ′ = Nqℓℓ′ = x⊺

ℓxℓ′ , the diagonal elements being denoted as vℓ. As usual, we also
introduce the corresponding Fourier conjugates q̂. The expected replicated partition function
then reads as

EZ̄n =

∫
dqdq̂ expN

(∑
ℓ≤n

(λ2
2
q20ℓ −

λ2

4
v2ℓ +

vℓv̂ℓ
2

)
+

∑
0≤ℓ<ℓ′≤n

q̂ℓℓ′qℓℓ′
)

×
∫ n∏

ℓ=0

dPX(xℓ) exp
(
−

∑
0≤ℓ<ℓ′≤n

q̂ℓℓ′x
⊺
ℓxℓ′ −

1

2

∑
ℓ≤n

v̂ℓ∥xℓ∥2
)

× EO exp
(λ
2
TrODO⊺

∑
ℓ≤n

xℓx
⊺
ℓ

)
. (5.121)

In the last line we recognize a rank-n (standard) spherical integral, see Section 5.2.2 and [138].
Recall the spectrum is deterministic with empirical law tending weakly to ρ. Hence we can use
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the results from Section 5.2.2, with the difference that C = In
λ
2
D is virtually a scalar random

variable, and thus w.l.o.g. we can also assume q, and thus q̃ to be diagonal in (5.22). If we aim
for a replica symmetric ansatz

Replica Symmetric Ansatz:


vℓ = v, v̂ℓ = v̂

q0ℓ = m, q̂0ℓ = −m̂
qℓℓ′ = q, q̂ℓℓ′ = −q̂ (ℓ ̸= ℓ′)

(5.122)

then q has a non degenerate eigenvalue v + (n − 1)q and n − 1 degenerate eigenvalues v − q.
Within this ansatz we can thus replace the mentioned spherical integral with

EO exp
(λ
2
TrODO⊺

∑
ℓ≤n

xℓx
⊺
ℓ

)
= expN

(
(n− 1)ID(v − q) + ID(v − q + nq)

)
= expNn

(
ID(v − q) + I ′D(v − q)q +O(n)

)
(5.123)

as done in [124], where ID(·) are rank-one spherical integrals. The rest can be treated exactly
as in Section 5.3.2, yielding

lim
N→∞

1

N
E ln Z̄(Y) = extr

{λ2
2
m2 − λ2

4
v2 +

v̂v

2
− m̂m+

q̂q

2
+ ID(v − q)

+ qI ′D(v − q) + E ln

∫
dPX(x) exp

(√
q̂Zx− q̂ + v̂

2
x2 + m̂X0x

)}
(5.124)

where extremization is intended over m, m̂, q, q̂, v, v̂. With the same notation for the local
measure (5.61), the fixed point equations read

(m) m̂ = λ2m (5.125)

(m̂) m = EX0⟨X⟩m̂,q̂,v̂ (5.126)

(q) q̂ = 2qI ′′D(v − q) (5.127)

(q̂) q = E⟨X⟩2m̂,q̂,v̂ (5.128)

(v) v̂ = λ2v − 2I ′D(v − q)− 2qI ′′D(v − q) (5.129)

(v̂) v = E⟨X2⟩m̂,q̂,v̂. (5.130)

The computation above follows the same lines as that in [124], with the only difference being
the presence of a planted signal. In case of Gaussian likelihood, the term arising from the
spike though is easily tractable, as well as the term containing the fourth norm of the estimator
(see (5.115)). This suggests that the AMP algorithm designed in [132], whose aim was to
make the results in [124, 123] rigorous, has to match the performance predicted by our replica
computation, measured by the MSE

lim
N→∞

1

2N2
E∥X∗X∗⊺ − Ē[X∗X∗⊺ | Y]∥2F =

1

2
(1− 2m2 + q2). (5.131)
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in the large N limit, where the Ē denotes the expectation w.r.t. (5.115), and m and q solve
(5.125)–(5.130).

An alternative to (5.125)–(5.130), which turns out to be more practical from the numerical
point of view, can be obtained by keeping q as it is, without diagonalizing it. In this case one
needs the entire formula (5.22), with q̃ having the same RS structure as q, in a similar fashion
as that of Section 5.2.2. The spherical integral then takes the form (up to constants)

EO exp
(λ
2
TrODO⊺

∑
ℓ≤n

xℓx
⊺
ℓ

)
∝ exp

(
Nn extr

{vṽ − qq̃

2
− 1

2
E ln(ṽ − q̃ − λD)

− q̃

2
E(ṽ − q̃ − λD)−1 − 1

2
ln(v − q)− q

2(v − q)
+O(n)

})
(5.132)

where extremization is w.r.t. the tilded variables only, for now. Consequently, the free entropy
rewrites as follows

lim
N→∞

1

N
E ln Z̄(Y) = extr

{λ2
2
m2 − λ2

4
v2 +

(v̂ + ṽ)v

2
− m̂m+

(q̂ − q̃)q

2

− 1

2
E ln(ṽ − q̃ − λD)− q̃

2
E(ṽ − q̃ − λD)−1 − 1

2
ln(v − q)− q

2(v − q)

+ E ln

∫
dPX(x) exp

(√
q̂Zx− q̂ + v̂

2
x2 + m̂X0x

)}
. (5.133)

Here instead, extremization is intended over the tilded and hatted variables, together with
m, q, v.

The fixed point equations are

(m) m̂ = λ2m (5.134)

(m̂) m = EX0⟨X⟩m̂,q̂,v̂ (5.135)

(q) q̂ − q̃ =
q

(v − q)2
(5.136)

(q̂) q = E⟨X⟩2m̂,q̂,v̂ (5.137)

(q̃) q = −q̃E(ṽ − q̃ − λD)−2 (5.138)

(v) v̂ + ṽ − λ2v − 1

v − q
+

q

(v − q)2
= 0 (5.139)

(v̂) v = E⟨X2⟩m̂,q̂,v̂ (5.140)

(ṽ) v − E(ṽ − q̃ − λD)−1 + q̃E(ṽ − q̃ − λD)−2 = 0. (5.141)

Plugging (q̃) into (ṽ) we readily see that

v − q = E(Ṽ − λD)−1 (5.142)
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that works as an equation for Ṽ := ṽ − q̃ as a function of v, q. Analogously, we can plug (q)
into (v) obtaining

v̂ + q̂ = λ2v +
1

v − q
− Ṽ (5.143)

that determines v̂ + q̂ as a function of v and q, thanks to the above equation for Ṽ . Finally,
from (q̃) and (q) we have respectively

q̃ = − q

E(Ṽ − λD)−2
(5.144)

q̂ =
q

(v − q)2
+ q̃. (5.145)

Notice that, being in a mismatched setting, there cannot be any simplifications due to the
Nishimori identities.

It is not difficult to verify a posteriori that the systems (5.125)–(5.130) and (5.134)–(5.141)
are equivalent. The extremization over the tilded variables has indeed the purpose of reproduc-
ing ID and its derivatives. From (5.142) one can infer

Ṽ = RλD(v − q) +
1

v − q
(5.146)

where RλD denotes the R-transform of λD, and deriving both sides w.r.t. v one also has

Ṽ ′ = − 1

E(Ṽ − λD)−2
= R′

λD(v − q)− 1

(v − q)2
. (5.147)

Therefore, from (5.144)

q̃ = qR′
λD(v − q)− q

(v − q)2
⇒ q̂ = qR′

λD(v − q), (5.148)

and from (5.143)

v̂ + q̂ = λ2v −RλD(v − q), (5.149)

both in perfect agreement with (5.127) and (5.129), as long as RλD = 2I ′D [138].
The system of fixed point equations (5.134)–(5.141) can be solved numerically as follows:

(i) initialize m = m0, q = q0, v = v0 (the latter being identically 1 if we use a Rademacher
prior); (ii) solve (5.142) for Ṽ ; (iii) compute q̂, q̃, m̂ and v̂+ q̂ from (5.145), (5.144), (5.134) and
(5.143) respectively; (iv) update the values of m, q, v through (m̂), (q̂) and (v̂) obtaining m1, q1

and v1; (v) repeat the steps (i)–(iv) starting from m = m1, q = q1 and v = v1, thus obtaining
m2, q2 and v2, and so forth.
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Figure 5.2: Comparison between the fixed point of the AMP algorithm in [132] and that obtained
via the replica computation (cf. (5.134)–(5.141)), for i.i.d. Rademacher distributed (X∗

i )i. The
agreement between these two fixed points is excellent when the SNR is between 2 and 3.

The numerics arising from this procedure though turns out to be delicate for extreme values
of the overlap, namely when v−q is really small, which in turn happens when λ is large (typically
> 3 for Rademacher prior). The equation that seems to generate numerical instability is (5.145),
and in particular the two contributions there appearing. With reference to the Rademacher
prior, and the related Figure 5.2, when λ > 3 the overlap gets close to ∼ 0.999. At this
value 1/(v − q)2 ∼ 106. q̃, that is also contributing to (5.145), on the contrary becomes really
negative, and is such that q̂ is typically ∼ 10 near λ ∼ 3. The subtraction of these two big
numbers apparently dooms the iterations for larger SNRs. This was not the case in the Bayes-
optimal setting, thanks to the simplifications introduced by the Nishimori identities. Indeed,
from (5.75), (5.76), (5.77) and (5.78) we see that 1 −m appears at most at the first power in
denominators. The only issue there was that Ṽ can grow exponentially fast, and this can be
solved by allowing for a wide range of search of the solution of (5.77).

The fixed point of the MSE arising from (5.134)–(5.141) is compared with the fixed point
(5.92), which corresponds to the MSE of the AMP proposed in [132]. The match between these
two computations is excellent, as long as the SNR is not too large, because of the aforementioned
numerical issues in iterating (5.134)–(5.141). The plot of Figure 5.2 is a compelling numerical
confirmation of the arguments put forward in this section. The conclusion is the following: the
AMP algorithm of [132] is solving a replica symmetric approximation to the TAP equations
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associated with the mismatched posterior distribution (5.115).

5.5 Towards an optimal AMP: AdaTAP formalism

We have previously shown that the AMP found in the literature for structured PCA [132]
is sub-optimal. In this section we understand the fundamental reason behind this issue by
generalizing the Adaptive Thouless-Anderson-Palmer (AdaTAP) formalism of [124, 123]. Using
our new insights we will then be able in the next section to cure the issue and derive a Bayes-
optimal AMP. Like in the replica method and in particular Section 5.3.1, a key ingredient will
be to reduce the model to a quadratic one of the Ising type.

5.5.1 The AdaTAP single-instance free entropy

Recall that the posterior distribution is given by (5.6). Denoting p := xx⊺/N and v := ∥x∥2/N
the trace of the matrix potential (5.13) can be expanded as follows:

TrV (Y − λp) = C +
µ

2
Tr
{
λ2v2 − 2λYp

}
+
γ

4
Tr
{
λ4v4 − 4λ3v2Yp+ 4λ2vY2p− 4λY3p+ 2λ2YpYp

}
where C is independent of x. Define the matrix polynomial:

R(v,Y) := −(µλ+ γλ3v2)Y + γλ2vY2 − γλY3. (5.150)

Then

− N

2
TrV (Y − λp) ∝ −N

4
λ2v2

(
µ+

γλ2v2

2

)
− x⊺R(v,Y)x

2
− N

4
γλ2
(x⊺Yx

N

)2
. (5.151)

The partition function of the model defined by (5.12) can then be written in the form

Z ∝
∫
dPX(x)dvdfδ(Nv − ∥x∥2)δ(Nf − x⊺Yx)

× exp
(
− N

4
λ2v2

(
µ+

γλ2v2

2

)
− 1

2
x⊺R(v,Y)x− N

4
γλ2f 2

)
=

∫
dvdv̂dfdf̂ exp

(
Nv̂v +Nf̂f − N

4
λ2v2

(
µ+

γλ2v2

2

)
− N

4
γλ2f 2

)
×
∫
dPX(x) exp

(
− v̂∥x∥2 − f̂x⊺Yx− 1

2
x⊺R(v,Y)x

)
=

∫
dvdv̂dfdf̂ exp

(
Nv̂v +Nf̂f − N

4
λ2v2

(
µ+

γλ2v2

2

)
− N

4
γλ2f 2

)
×
∫
dPX(x) exp

(1
2
x⊺J(v, v̂, f̂ ,Y)x

)
, (5.152)
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where the overall symmetric interaction matrix of this “Ising model” is

J(v, v̂, f̂ ,Y) := −R(v,Y)− 2v̂IN − 2f̂Y. (5.153)

Now, defining the free entropy at fixed (v, v̂, f̂)

ΦN(v, v̂, f̂ ,Y) := ln

∫
dPX(x) exp

(1
2
x⊺J(v, v̂, f̂ ,Y)x

)
, (5.154)

because the prior is factorized and we have an Ising-type of model, we can directly use the
AdaTAP result [124]: it tells us that

ΦN(v, v̂, f̂ ,Y) = −extrm,τ ,V

{1
2
m⊺J(v, v̂, f̂ ,Y)m

+
1

2
ln det

(
Ω− J(v, v̂, f̂ ,Y)

)
− 1

2
V⊺m2 +

1

2

∑
i≤N

ln(τi −m2
i )

−
∑
i≤N

ln

∫
dPX(x) exp

(1
2
Vix

2 +
(
(J(v, v̂, f̂ ,Y)m)i − Vimi

)
x
)}

+ oN(1). (5.155)

The extremization is over (m, τ ,V) ∈ RN × (RN
≥0)

2, m2 = (m2
i )i≤N , and the diagonal matrix

Ω := diag(V + (τ −m2)−1). (5.156)

Let the bracket notation ⟨ · ⟩ be used as expectation with respect to the posterior (5.6), while
⟨ · ⟩\i is the mean with respect to the Gibbs measure of the “cavity graph” where (Jij)j are set
to 0. Define also the cavity fields

hi := (Jx)i.

The various variables at their extremum values are (asymptotically exact approximations to)
the marginals means, second moments and variances of the cavity fields

mi = ⟨xi⟩, τi = ⟨x2i ⟩, Vi = ⟨h2i ⟩\i − ⟨hi⟩2\i.

From the AdaTAP free entropy at fixed (v, v̂, f̂) we can compute the total log-partition function
by saddle-point and get

1

N
lnZ(Y) ∝ oN(1)

+ extr
{
v̂v + f̂f − 1

4
λ2v2

(
µ+

γλ2v2

2

)
− 1

4
γλ2f 2 + ΦN(v, v̂, f̂ ,Y)

}
(5.157)

where the extremization is over (v, v̂, f, f̂).
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5.5.2 Saddle point: reduction to an Ising model, AdaTAP equations
and optimal pre-processing of the data

By extremization of the AdaTAP single-instance free entropy (5.157) we derive the AdaTAP
equations. We start with the intensive parameters. The extremization with respect to f is
trivial and gives

f̂ =
1

2
γλ2f.

So the leading order of the AdaTAP free entropy simplifies to

extrv,v̂,f

{
v̂v +

1

4
γλ2f 2 − 1

4
λ2v2

(
µ+

γλ2v2

2

)
+ ΦN

(
v, v̂,

1

2
γλ2f,Y

)}
. (5.158)

The remaining saddle point equations can simply be written down. But this is not necessary
as the solution of the three remaining intensive order parameters at the saddle point is simply
deduced from their physical meaning, concentration properties, and the Nishimori identity: in
the large size limit,

v → lim
N→∞

1

N
E⟨∥x∥2⟩ = lim

N→∞

1

N
E∥X∗∥2 = 1,

as well as (recall (5.66))

f → lim
N→∞

1

N
E⟨x⊺Yx⟩ = λ.

Moreover we know that
v̂ → 0

because the prior is already enforcing the constraint that v = ∥x∥2/N → 1 in (5.152) without
the need to introducing a further, redundant, delta constraint; note that for Rademacher or
spherical prior this is simply true as no delta function is needed. Therefore the AdaTAP free
entropy becomes

1

8
γλ4 − 1

4
µλ2 + ΦN

(
1, 0,

1

2
γλ3,Y

)
+ oN(1). (5.159)

From this AdaTAP free entropy we see that the values of the marginal means and variances
correspond to the solution of the variational problem (5.155) with interaction matrix

J
(
1, 0,

1

2
γλ3,Y

)
= µλY − γλ2Y2 + γλY3 =: J(Y). (5.160)

So we end-up with the following effective partition function of an Ising-like model:∫
dPX(x) exp

(1
2
x⊺J(Y)x

)
. (5.161)

This shows that the original model is equivalent to an Ising model with interaction matrix J(Y),
which can thus be interpreted as a Bayes-optimal pre-processing of the data. This will be verified
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in Section 5.6, as the use of J(Y) instead of Y will turn AMP into an optimal algorithm. Ising
models like this are precisely studied in [124] and we can therefore again exploit directly the
AdaTAP formalism. Let

ηi(J,m, Vi) :=

∫
dPX(x)x e

1
2
Vix

2+((Jm)i−Vimi)x∫
dPX(x)e

1
2
Vix2+((Jm)i−Vimi)x

, (5.162)

gi(J,m, Vi) :=

∫
dPX(x)x

2 e
1
2
Vix

2+((Jm)i−Vimi)x∫
dPX(x)e

1
2
Vix2+((Jm)i−Vimi)x

. (5.163)

The associated AdaTAP equations over (m, τ ,V), namely the saddle point equations associated
with the AdaTAP free entropy (5.155) with J(v, v̂, f̂ ,Y) replaced by J = J(Y), read

mi = ηi(J,m, Vi), (5.164)

τi = gi(J,m, Vi), (5.165)

τi −m2
i =

(
[diag(V + (τ −m2)−1)− J]−1

)
ii
, (5.166)

where the last equation is understood as an implicit equation for V.

5.5.3 Simplifying the AdaTAP equations by self-averaging of the
Onsager reaction term

The variances Vi are expected to be self-averaging with respect to the interaction matrix, i.e.,
in the large size limit Vi = V̄ := limN→∞ EJVi. The computation we are going to carry out
now could be performed in various ways leading to different but equivalent expressions. For
pedagogical reasons we take a path that remains as close as possible to the approach of [124].
Following this reference we compute the expectation of the AdaTAP equation for V. In this
section, all quantities V, m and τ are fixed to a solution of the AdaTAP equations (5.164)–
(5.166).

We start from the convenient identity(
[Ω− J]−1

)
ii
= ∂Ωii

ln det(Ω− J). (5.167)

We are going to average the right-hand side. As for a Gaussian model there is no spin glass
phase and strong concentrations take place, the quenched and annealed averages match [124]:
we can thus simply compute the logarithm of the average of the determinant. A Gaussian
identity then gives

E det(Ω− J)−1/2 =

∫
dz

(2π)N/2
exp

(
− 1

2
z⊺Ωz

)
E exp

(1
2
z⊺Jz

)
. (5.168)

We denote J =
∑

k≤3 ckY
k where c = (µλ,−γλ2, γλ). The term we need to compute therefore

reads

E exp
(1
2
z⊺Jz

)
= E exp

1

2
(z⊺(c1Y + c2Y

2 + c3Y
3)z) (5.169)
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Define the order parameters

p :=
1

N
z⊺X∗, v :=

1

N
∥z∥2, pD :=

1

N
(Oz)⊺DOX∗. (5.170)

We also have ∥X∗∥2/N = 1 + oN(1). Our goal is to identify the generalized spherical integral
(5.20). Replacing Y by λp∗+O⊺DO (with p∗ := X∗X∗⊺/N) we expand the various terms. The
first term is then simply

c1z
⊺
(
λp∗ +O⊺DO

)
z = c1

(
λNp2 + (Oz)⊺DOz

)
. (5.171)

The second term is

c2z
⊺
(
λ2(∥X∗∥2/N)p∗ + λp∗O⊺DO+ λO⊺DOp∗ +O⊺D2O

)
z

= c2
(
Nλ2p2 + 2NλppD + (Oz)⊺D2Oz

)
+ o(N). (5.172)

Finally the last term is a bit more cumbersome:

c3z
⊺
(
λ3(∥X∗∥4/N2)p∗ + λ2p∗O⊺DOp∗ + λ2(∥X∗∥2/N)O⊺DOp∗ + λO⊺D2Op∗

+ λ2(∥X∗∥2/N)p∗O⊺DO+ λp∗O⊺D2O+ λO⊺DOp∗O⊺DO+O⊺D3O
)
z

= c3
(
Nλ3p2 + λ2p2(OX∗)⊺DOX∗ + 2λp(Oz)⊺D2OX∗

+ 2Nλ2ppD + λNp2D + (Oz)⊺D3Oz
)
+ o(N). (5.173)

Combining all we reach

E exp
(1
2
z⊺Jz

)
=

∫
dτdτ̂ exp

(
NK +

1

2
v̂∥z∥2 − N

2
v̂v + o(N)

)
× EO exp

(
(Oz)⊺Cz,zOz+ (OX∗)⊺C∗,∗OX∗ + (OX∗)⊺Cz,∗Oz

)
(5.174)

with dτ := (dp, dv, dpD) and dτ̂ := (dp̂, dv̂, dp̂D), and (all coupling matrices below are N × N
and symmetric)

K :=
1

2

(
µλ2p2 − γλ2(λ2p2 + 2λppD) + γλ(λ3p2 + 2λ2ppD + λp2D) + p̂p+ p̂DpD

)
,

C∗,∗ :=
1

2
γλ3p2D,

Cz,z :=
1

2

(
µλD− γλ2D2 + γλD3

)
,

Cz,∗ :=
1

2

(
− p̂IN − p̂DD+ 2γλ2pD2

)
.

Note the asymmetry for the variable v̂ compared to the other hat-variables, which has not been
injected in the definition of the coupling matrices as the others, but instead leads to a term
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appearing explicitly in (5.174) (both choices are equivalently valid ones). The term averaged
over O is an inhomogeneous spherical integral as studied in Section 5.2. In particular, we are
in the case of Section 5.2.2 with ℓ ∈ {0, 1} with the exception that X∗ also (playing the role of
the 0th replica) has a non-zero self-coupling. So this trivial modification of the computation of
Section 5.2.2 yields

Ee
1
2
z⊺Jz =

∫
dτdτ̂ exp

(
NK +

1

2
v̂∥z∥2 − N

2
v̂v +NIC(p, v, p̂, p̂D) + o(N)

)
where the 2× 2 random coupling matrix C has entries

2C00 = γλ3p2D, (5.175)

2C11 = µλD − γλ2D2 + γλD3, (5.176)

2C01 = 2C10 =
1

2
(−p̂− p̂DD + 2γλ2pD2), (5.177)

with D ∼ ρ drawn from the noise asymptotic spectral density, and

IC(p, v, p̂, p̂D) =
1

2
extr(ṽ0,ṽ,p̃)

{
ṽ0 + 2p̃p+ ṽv

− E ln
(
(ṽ0 − 2C00)(ṽ − 2C11)− (p̃− 2C01)

2
)}

− 1

2
ln(v − p2)− 1. (5.178)

One can check that IC is null when C00 = C11 = C01 as it should. Therefore equation (5.168)
becomes at leading exponential order

lnE det(Ω− J)−1/2

= ln

∫
dz

(2π)N/2
dτdτ̂ exp

(
− 1

2
z⊺(Ω− v̂IN)z+NK − N

2
v̂v +NIC + o(N)

)
= ln

∫
dτdτ̂ exp

(
NK − N

2
v̂v +NIC − 1

2
ln det(Ω− v̂IN) + o(N)

)
= extr

{
NK − N

2
v̂v +NIC − 1

2
ln det(Ω− v̂IN)

}
+ o(N),

where we used Gaussian integration followed by a saddle point estimation. By the aforemen-
tioned strong concentration properties of the Gaussian model, this is also equal to−1

2
lnE det(Ω−

J) ≈ −1
2
E ln det(Ω− J) so we reach at leading order

E ln det(Ω− J) ≈ extr
{
− 2NK +Nv̂v − 2NIC + ln det(Ω− v̂IN)

}
= extr(v̂,v)

{
Nv̂v +

∑
i≤N

ln(Ωii − v̂)− 2NG̃(v)
}

(5.179)

where the extremization is over all variables and

G̃(v) := extr(p,pD,p̂,p̂D)

{
IC(p, v, p̂, p̂D) +K(p, pD, p̂, p̂D)

}
. (5.180)
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This is the analogue of the G-function appearing, e.g., in [124]. The extremization over v̂ in
(5.179) yields that at the saddle point,

v =
1

N

∑
i≤N

1

Ωii − v̂
.

Moreover, combining the TAP equation (5.166) with (5.167) and (5.179) we have

E(τi −m2
i ) = ∂Ωii

E ln det(Ω− J) =
1

Ωii − v̂
(5.181)

where v̂ is evaluated at its saddle point value. Therefore, summing over i the last identity and
recalling the definition of Ωii we reach

χ̄ :=
1

N
E
∑
i≤N

(τi −m2
i ) = v =

1

N
E
∑
i≤N

1

Vi + (τi −m2
i )

−1 − v̂
. (5.182)

Under the concentration assumption Vi = V̄ for all i ≤ N , this identity implies

Vi = v̂. (5.183)

Additionally the saddle point equation for v extracted from (5.179) yields

v̂ = 2∂vG̃(v)|v=χ̄ ⇒ Vi = V̄ := 2∂vG̃(v)|v=χ̄. (5.184)

The variable χ̄ is instance-independent and can be deduced from our replica theory: it is equal
to twice the MMSE (5.79), namely,

χ̄ = 1−m2 (5.185)

where m is solution to the replica fixed point equations (5.73)–(5.78). Computing V̄ from
(5.184) is then easy, as taking a derivative w.r.t. v of G̃(v) is straightforward: all the quantities
appearing on the right-hand side of (5.180) are at the saddle point, so it simply amounts to a
partial derivative of (5.178). It gives

V̄ = ṽ − 1

1−m2 − p2
(5.186)

where ṽ = ṽ(p, v) takes its saddle point value from (5.178) while p = p(v) from (5.180) with
v = χ̄ fixed.

Thanks to these simplifications the AdaTAP equation reads in the large size limit

mi = ηi(J,m, V̄ ). (5.187)
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Or, when written in a fashion closer to the form of AMP algorithms, the AdaTAP equations
read

f = Jm− V̄m, m = ηV̄ (f), (5.188)

where the “denoiser”, which is applied component-wise above, is

ηV̄ (f) :=

∫
dPX(x)x e

1
2
V̄ x2+fx∫

dPX(x)e
1
2
V̄ x2+fx

. (5.189)

5.6 Approximate message passing, optimally

We will now describe an AMP algorithm that matches the replica prediction for the minimum
mean-square error. We therefore conjecture it to be Bayes-optimal. The main difference between
this new AMP and the previously proposed one for structured PCA is that it is constructed
from iterates based on the pre-processed matrix J(Y) rather than Y as in [132]. Consequently,
the Onsager reaction terms will have to be adapted.

5.6.1 BAMP: Bayes-optimal AMP

The AdaTAP approach described in Section 5.5 suggests that, in order to achieve Bayes-optimal
performance, one should consider the BAMP iteration which is of the form

f t = J(Y)ut −
t∑

i=1

ct,iu
i, ut+1 = gt+1(f

t), t ≥ 1. (5.190)

As in the AMP iteration (5.89), the denoiser function gt+1 : R → R is continuously differen-
tiable, Lipschitz and applied component-wise. Crucially, the Onsager coefficients {ct,i}i∈[t],t≥1

need to ensure that, conditioned on the signal, the empirical distribution of the iterate f t is
Gaussian, namely, the convergence result in (5.90) holds for some mean vector µt and covari-
ance matrix Σt.

We highlight that the matrix Y in (5.89) is replaced by the matrix J(Y) in (5.190). This
means that the state evolution result of [132] cannot be applied and the Onsager coefficients
{ct,i}i∈[t],t≥1 will have a different form with respect to {bt,i}i∈[t],t≥1.

In what follows, we will consider the general case in which J(Y) is an arbitrary polynomial
of degree K in Y, namely,

J(Y) =
∑
i≤K

ciY
i.

To compute {ct,i}i∈[t],t≥1 and obtain a state evolution result for the iteration (5.190), the key
idea is to map the first T iterations of (5.190) to the first K×T iterations of an auxiliary AMP
with iterates (z̃t, ũt)t∈[KT ] and denoisers {h̃t+1}t∈[KT ], whose state evolution can be deduced
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from [132]. The denoisers {h̃t+1}t∈[KT ] of this auxiliary AMP are chosen so that, for t ∈ [T ] and
ℓ ∈ [K],

lim
N→∞

1

N
∥ũK(t−1)+ℓ −Yℓ−1ut∥22 = 0. (5.191)

More specifically, for t ∈ [T ] and ℓ ∈ {2, . . . , K}, the denoiser h̃K(t−1)+ℓ giving ũK(t−1)+ℓ is a
linear combinations of the past iterates ũ1, . . . , ũK(t−1)+ℓ−1 and of z̃K(t−1)+ℓ−1; furthermore, the
coefficients of these linear combinations are chosen to ensure that ũK(t−1)+ℓ ≈ Yℓ−1ut. Hence,
from z̃Kt and (ũK(t−1)+ℓ)ℓ∈{2,...,K}, one obtains (Yℓut)ℓ∈[K] (up to an oN(1) error). As a result,
J(Y)ut can be expressed as a linear combination of (ũ1, . . . , ũKt, z̃Kt), which in turn is a linear
combination of (i) the past iterates {ui}i∈[t], (ii) the signal X∗, plus (iii) independent Gaussian
noise. By inspecting the coefficients of this linear combination, one deduces (i) the values of the
Onsager coefficients {ct,i}i∈[t],t≥1 (as the coefficients multiplying the past iterates {ui}i∈[t]), (ii)
the mean µt (as the coefficient multiplying the signal X∗), and (iii) the covariance matrix Σt

(as the covariance matrix of the remaining noise terms). Finally, by making h̃Kt+1 depend on
gt+1, we enforce that ũ

Kt+1 ≈ ut+1. We highlight that the auxiliary AMP is employed purely as
a proof technique. Its formal description is deferred to Appendix B.2.1, and its state evolution
follows in Appendix B.2.2.

For simplicity, we assume to have access to an initialization u1 ∈ RN , which is independent
of the noise Z and has a strictly positive correlation with X∗, i.e.,

(X∗,u1)
W2−→ (X∗, U1), E[X∗ U1] := ϵ > 0, E[U2

1 ] = 1. (5.192)

The requirement (5.192) is rather standard in the analysis of AMP algorithms. However, as
having access to such an initialization is often impractical, a recent line of work has designed
AMP iterations which are initialized with the eigenvector of the data matrix Y associated to
the largest eigenvalue, see [113, 155, 133]. By following the approach detailed in [155], one can
design a Bayes-optimal AMP with spectral initialization. As this would be out of the scope of
the current contribution – whose goal is to obtain an algorithm with a Bayes-optimal fixed point
– we will not pursue this extension here.

5.6.2 Onsager coefficients and state evolution recursion

We now detail the calculation of the Onsager coefficients {ct,i}i∈[t],t≥1 and of the state evolution
parameters µt,Σt associated to the AMP algorithm (5.190). We obtain these quantities from the
state evolution recursion of the auxiliary AMP which, up to a oN(1) error, tracks (Y

ℓ−1ut)ℓ∈[K]

and, as such, has a number of iterationsK times larger. To express the latter, we define a number
of auxiliary quantities: the vector µ̃Kt ∈ RKt, the matrices ∆̃Kt, Φ̃Kt, Σ̃Kt, B̃Kt ∈ RKt×Kt, and
the coefficients {αi,j}j∈[i],i∈[Kt], {βi,j}j∈[⌊(i−1)/K⌋+1],i∈[Kt], {γi}i∈[Kt], {θi,j}i∈[t],j∈[Kt]. The quanti-

ties µ̃Kt, ∆̃Kt, Φ̃Kt, Σ̃Kt, B̃Kt are directly connected to the state evolution of the auxiliary AMP
(see the remark at the end of Appendix B.2.2). Furthermore, the coefficients {αi,j}j∈[i],i∈[Kt],
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{βi,j}j∈[⌊(i−1)/K⌋+1],i∈[Kt], {γi}i∈[Kt], {θi,j}i∈[t],j∈[Kt] allow for a useful (approximate) decomposi-
tion of the vectors (Yℓut)ℓ∈[K−1], see the remark at the end of this section.

We start with the initialization
Ũ1 := U1, (5.193)

where U1 satisfies (5.192), and we set

µ̃1 := λϵ, (∆̃1)1,1 := 1, (Φ̃1)1,1 := 0, (B̃1)1,1 := κ̄1, (Σ̃1)1,1 := κ̄2,

α1,1 := 0, β1,1 := 1, γ1 := 0.
(5.194)

Here and in what follows, we denote by {κ̄k}k≥1 the sequence of free cumulants associated to
D. The free cumulants can be recursively computed from the moments, see e.g. [154, Section
2.5].

For t ≥ 1, let us define

ŨK(t−1)+1+ℓ := Z̃K(t−1)+ℓ + µ̃K(t−1)+ℓX
∗ +

K(t−1)+ℓ∑
j=1

(B̃K(t−1)+ℓ)K(t−1)+ℓ,jŨj, ℓ ∈ [K − 1], (5.195)

ŨKt+1 := gt+1

(
µtX

∗ +
Kt∑
j=1

θt,jZ̃j

)
, (5.196)

(Z̃1, . . . , Z̃Kt) ∼ N (0, Σ̃Kt) and independent of X∗, U1. (5.197)

We note that the function gt+1 in (5.196) is the AMP denoiser in (5.190). Let us also define

µ̃K(t−1)+1+ℓ = λE[ŨK(t−1)+1+ℓX
∗], (5.198)

(∆̃K(t−1)+1+ℓ)K(t−1)+1+ℓ,j = (∆̃K(t−1)+1+ℓ)j,K(t−1)+1+ℓ = E[ŨK(t−1)+1+ℓŨj], (5.199)

j ∈ [K(t− 1) + 1 + ℓ],

(Φ̃K(t−1)+1+ℓ)K(t−1)+1+ℓ,j = E[∂Z̃j
ŨK(t−1)+1+ℓ], j ∈ [K(t− 1) + ℓ], (5.200)

B̃K(t−1)+1+ℓ =

K(t−1)+ℓ∑
j=0

κ̄j+1Φ̃
j

K(t−1)+1+ℓ, (5.201)

Σ̃K(t−1)+1+ℓ =

2(K(t−1)+ℓ)∑
j=0

κ̄j+2

j∑
k=0

(Φ̃K(t−1)+1+ℓ)
k∆̃K(t−1)+1+ℓ(Φ̃

⊺
K(t−1)+1+ℓ)

j−k. (5.202)

Now, we obtain µ̃K(t−1)+1, ∆̃K(t−1)+1, Φ̃K(t−1)+1, B̃K(t−1)+1, Σ̃K(t−1)+1 by setting ℓ = 0 in (5.198)–

(5.202) (and by using the initialization (5.194) for t = 1). This allows us to define ŨK(t−1)+2 by

setting ℓ = 1 in (5.195). Next, we obtain µ̃K(t−1)+2, ∆̃K(t−1)+2, Φ̃K(t−1)+2, B̃K(t−1)+2, Σ̃K(t−1)+2

by setting ℓ = 1 in (5.198)–(5.202). This allows us to define ŨK(t−1)+2 by setting ℓ = 2 in (5.195).

We iterate this procedure until we have obtained (µ̃K(t−1)+ℓ, ∆̃K(t−1)+ℓ, Φ̃K(t−1)+ℓ, B̃K(t−1)+ℓ,
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Σ̃K(t−1)+ℓ)ℓ∈[K] and (ŨK(t−1)+1+ℓ)ℓ∈[K−1]. We note that, for any i ≥ 1, B̃i and Σ̃i are the top left

sub-matrices of B̃i+1 and Σ̃i+1, respectively.
At this point, for ℓ ∈ [K−1], we compute the quantities {αK(t−1)+1+ℓ,j}j∈[K(t−1)+ℓ], {βK(t−1)+1+ℓ,j}j∈[t],

γK(t−1)+1+ℓ as

αK(t−1)+1+ℓ,j = δK(t−1)+ℓ,j +

K(t−1)+ℓ∑
i=1

i ̸≡1(modK)

αi,j (B̃K(t−1)+ℓ)K(t−1)+ℓ,i, j ∈ [K(t− 1) + ℓ], (5.203)

βK(t−1)+1+ℓ,j = (B̃K(t−1)+ℓ)K(t−1)+ℓ,K(j−1)+1 +

K(t−1)+ℓ∑
i=1

i ̸≡1(modK)

βi,j (B̃K(t−1)+ℓ)K(t−1)+ℓ,i, j ∈ [t], (5.204)

γK(t−1)+1+ℓ = µ̃K(t−1)+ℓ +

K(t−1)+ℓ∑
i=1

i ̸≡1(modK)

(B̃K(t−1)+ℓ)K(t−1)+ℓ,iγi. (5.205)

In (5.203), δi,j denotes the Kronecker symbol (δi,j = 1 if i = j and 0 otherwise), and αi,j is
assumed to be 0 if j ≥ i; in (5.204), βi,j is assumed to be 0 if j > ⌈(i− 1)/K⌉.

Recall that {ci}Ki=1 are the coefficients of the polynomial J(Y) (inY), i.e., J(Y) =
∑K

i=1 ciY
i.

Finally, we are ready to express µt, {θt,j}j∈[Kt]:

µt =
K∑
i=1

ci

(
µ̃K(t−1)+i +

K(t−1)+i∑
k=1

γk (B̃K(t−1)+i)K(t−1)+i,k

)
, (5.206)

θt,j =
K∑
i=1

ci

(
δK(t−1)+i,j +

K(t−1)+i∑
k=1

αk,j (B̃K(t−1)+i)K(t−1)+i,k

)
, j ∈ [Kt]. (5.207)

As before, αi,j is assumed to be 0 if j ≥ i. This allows us to define ŨKt+1 via (5.196) and, after
setting βKt+1,t = 1, βKt+1,j = 0 for all j ∈ [t− 1], αKt+1,j = 0 for all j ∈ [Kt+1] and γKt+1 = 0,
the definition of the state evolution recursion is complete.

From the state evolution recursion defined above, we can derive the Onsager coefficients
{ct,j}j∈[t] as

ct,j =
K∑
i=1

ci

K(t−1)+i∑
k=1

βk,j (B̃K(t−1)+i)K(t−1)+i,k, j ∈ [t]. (5.208)

At this point, we are ready to present our result concerning the characterization of the
iterates of the AMP algorithm (5.190), with Onsager coefficients given by (5.208), in the high-
dimensional limit N → ∞: we prove that the convergence (5.90) holds, where µt is given by
(5.206) and Wt =

∑Kt
j=1 θt,jZ̃j, with {θt,j, Z̃j}j∈[Kt] described by the recursion above. Equiva-

lently [156, Corollary 7.21], the convergence can be expressed in terms of pseudo-Lipschitz test
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functions. A function ψ : Rm → R is pseudo-Lipschitz of order 2, denoted by ψ ∈ PL(2), if
there exists a constant C > 0 such that

∥ψ(x)− ψ(y)∥2 ≤ C
(
1 + ∥x∥2 + ∥y∥2

)
∥x− y∥2,

for all x,y ∈ Rm.

Theorem 5.1 (State evolution of the BAMP). Let Y be given by (5.2) and which verifies
Hypothesis 5.1, and let J(Y) =

∑K
i=1 ciY

i. Consider the AMP algorithm (5.190), with initial-
ization (5.192), Onsager coefficients {ct,j}j∈[t] given by (5.208) and where, for t ≥ 1, gt+1 is
continuously differentiable and Lipschitz. Then, the following limit holds almost surely for any
PL(2) function ψ : R2t+2 → R, for t ≥ 1 as N → ∞:

1

N

∑
i≤N

ψ(u1i , . . . , u
t+1
i , f 1

i , . . . , f
t
i , X

∗
i ) → Eψ(U1, . . . , Ut+1, F1, . . . , Ft, X

∗). (5.209)

Equivalently, as N → ∞, the joint empirical distribution of (u1, . . . ,ut+1, f1, . . . , f t,X∗) con-
verges almost surely in Wasserstein-2 distance to (U1, . . . , Ut+1, F1, . . . , Ft, X

∗). Here, for i ∈ [t],
Ui+1 = gi+1(Ft) and (F1, . . . , Ft) = µtX

∗ + (W1, . . . ,Wt), with Wt =
∑Kt

j=1 θt,jZ̃j and where µt

can be computed via (5.206), {θt,j}j∈[Kt] via (5.207) and {Zj}j∈[Kt] is given by (5.197).

The proof of Theorem 5.1 is deferred to Appendix B.2.3. A few remarks are now in
order. First, we highlight that (5.209) directly implies a high-dimensional characterization
of the performance of the AMP (5.190). In fact, by taking the pseudo-Lipschitz functions
ψ(Ut+1, X

∗) = (Ut+1 −X∗)2, ψ(Ut+1, X
∗) = Ut+1 ·X∗ and ψ(Ut+1, X

∗) = (Ut+1)
2, we obtain the

limit mean-square error and overlap of the AMP iterates as

lim
N→∞

1

2N2
E∥X∗(X∗)⊺ − ut(ut)⊺∥2F =

1

2

(
1− 2

(
E[Ut ·X∗]

)2
+ (E[(Ut)

2])2
)
,

lim
N→∞

|⟨X∗,ut⟩|
∥ut∥ · ∥X∗∥ =

|E[Ut ·X∗]|√
E[(Ut)2]

.
(5.210)

Next, note that Theorem 5.1 holds for any family of denoisers {gt+1}t≥1, subject to some
mild regularity requirement. A natural choice is to pick the posterior mean

gt+1(f) = E[U∗ | Ft = f ]. (5.211)

Such a choice requires estimating the state evolution parameters µt, {θt,j}j∈[Kt] and Σ̃Kt. These
parameters, as well as the Onsager coefficients (5.208), can be estimated consistently from
the data. To do so, first we obtain ∆̃Kt and Φ̃Kt by replacing expectations with empiri-
cal averages in (5.199) and (5.200), respectively. Next, we compute B̃Kt and Σ̃Kt by plug-
ging in such estimates in (5.201) and (5.202), respectively. Having done that, we obtain
{αK(t−1)+1+ℓ,j}j∈[K(t−1)+ℓ],ℓ∈[K−1], {βK(t−1)+1+ℓ,j}j∈[t],ℓ∈[K−1], {γK(t−1)+1+ℓ}ℓ∈[K−1] via (5.203)-(5.205).
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Finally, µt, {θt,j}j∈[Kt] and {ct,j}j∈[t] can be computed from (5.206), (5.207) and (5.208), respec-
tively.

As a final remark, we provide an interpretation of the coefficients {αi,j}, {βi,j}, {γi}. As
a by-product of the argument proving Theorem 5.1, we will show that, for ℓ ∈ [K − 1], (cf.
(B.20)–(B.21))

lim
N→∞

∥Yℓut−∑K(t−1)+ℓ
j=1 αK(t−1)+1+ℓ,j z̃

j−∑t
j=1βK(t−1)+1+ℓ,ju

j−γK(t−1)+1+ℓX
∗∥2

N
= 0. (5.212)

This formalizes the fact that Yℓut can be approximately expressed as a linear combination of (i)
the past iterates {uj}j∈[t], (ii) the signal X∗, plus (iii) independent Gaussian noise (represented
by the z̃j’s). The quantities {αi,j}, {βi,j}, {γi} represent the coefficients of this linear combi-
nation. The characterization (5.212) allows to subtract from J(Y)uk just the right Onsager
terms, so that this difference equals a component in the direction of the signal (whose size is
captured by µt) plus independent Gaussian noise (given by the linear combination of the z̃j’s
via the coefficients {θi,j}).

5.7 Numerics

For all experiments in this section, random instances of Y are generated according to the model
(5.2). The signal has Rademacher prior, i.e., i.i.d. entries X∗

i ∼ 1
2
(δ1+ δ−1). The noise matrices

Z = O⊺DO are generated by first drawing N i.i.d. eigenvalues (Di)i≤N according to the density
(5.14), and then multiplying from left and right the diagonal matrix of eigenvalues D by a
random Haar distributed orthogonal matrix O sampled independently for each realization. As
mentioned at the end of Section 5.1.3, the results are expected to be the same if we were to
draw Z according to the harder to sample3 measure (5.3).

5.7.1 Spectral properties of the pre-processed matrix J(Y)

Let us discuss the effect on the spectrum of Y that has the application of the optimal pre-
processing function J(·); clearly, this function does not influence the eigenvectors of Y which
therefore has the same basis as J(Y). From Figures 5.3 and 5.4, the effect is clear: the function
J (Figure 5.4, middle plots (b)) “cleans” the eigenvalues of the data Y (Figure 5.4, upper plots
(a)) by shifting the non-informative bulk eigenvalues of Y to negative values, while the largest,
informative, eigenvalue is further separated from the bulk. This results in the histograms (Figure
5.4, lower plots (c)) for the processed data J(Y). It thus becomes much easier to distinguish
the informative eigenvalue, which may be of interest for smaller instances where the finite-size
effects are stronger.

3This can be done using the Dyson Brownian motion, see [35].
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Figure 5.3: Ranked eigenvalues of the data matrix Y (orange) and the optimally pre-processed
matrix J(Y) (blue) for N = 4000 for (left) λ = 2 and (right) λ = 5. The gap between the
largest detached eigenvalue on the extreme right and the second highest one is much bigger for
the pre-processed matrix. Moreover, all the eigenvalues of J(Y) in its non-informative bulk are
negative.

Since the eigenbasis of Y remains untouched by the pre-processing, an algorithm based on
spectral analysis only, like PCA, applied to J(Y) cannot hope to produce an improvement in
performance. However, algorithms that exploit prior structural information about the signal,
such as AMP, seem to be sensible this extra “detaching speed” of the leading eigenvalue from
the bulk resulting from the pre-processing, thus getting better results as hereby reported.

5.7.2 BAMP improves over the existing AMP and matches the replica
prediction for the MMSE

The plots of Figure 5.5 consider the quartic ensemble discussed in Section 5.1.2 for three values
of the parameter µ, namely, µ ∈ {0, 0.5, 1} (recall γ = γ(µ) is fixed by relation (5.17)). Again,
in all cases the signal X∗ is assumed to have a Rademacher prior. The estimators of the spike
X∗X∗⊺ are compared in terms of the MSE (y-axis) achieved at the fixed point, as a function
of the SNR λ (x-axis). All algorithms are run for N = 8000 and the results are averaged over
ntrials = 50 independent trials; the state evolution recursions (and the replica prediction as well)
correspond to N → ∞. We compare the following inference procedures:

• In black, we plot the replica prediction (5.79), obtained as the fixed point of (5.73)–(5.78).

• In red, we plot the performance of the BAMP algorithm described in Section 5.6, where
gt+1 is the posterior mean denoiser (5.211). More specifically, the red line corresponds
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(a) Empirical spectral density of Y. The largest, informative, eigenvalue is emphasized.

(b) The function J(x) = µλx−γλ2x2+γλx3 with (µ = 0, γ(0) = 16/27) is used to optimally pre-process
the (eigenvalues of the) data Y and obtain J(Y). The dashed curve indicates 0. By comparison with
the plots (a) above, we understand that the noise bulk will be pushed to negative values, while the
spike towards the right, which results in a “cleaning” effect.

(c) Empirical spectral density of the pre-processed matrix J(Y). The largest eigenvalue is emphasized
and well separated from the negative bulk by the application of J(x).

Figure 5.4: Effect of the optimal pre-processing J(x) on the eigenvalues of Y. All experiments
are for the most structured noise ensemble (µ = 0, γ(0) = 16/27) and N = 4000. The left
column corresponds to λ = 2, while the right column to λ = 5.



162 CHAPTER 5. BAYES-OPTIMAL LIMITS IN STRUCTURED PCA

to the fixed point of the MSE given by the state evolution recursion discussed in Section
5.6.2 (cf. (5.210)), and the red stars denote the MSE obtained by running the BAMP
algorithm (5.190).

• In blue, we plot the performance of the AMP proposed in [132]. More specifically, the blue
line corresponds to the fixed point of the MSE (5.92) obtained by choosing the posterior
mean denoiser with a single-step memory term (5.91). The blue diamonds denote the
MSE obtained by running the AMP (5.89) with this single-step denoiser.

• Finally, the green squares denote the MSE obtained by running the AMP in [133], which
consists in employing the following posterior mean denoiser with a multi-step memory
term in the iteration (5.89):

ht+1(f1, . . . , ft) = E[X∗ | (F1, . . . , Ft) = (f1, . . . , ft)]. (5.213)

We note that all algorithms converge rapidly: 10 iterations are sufficient to reach the corre-
sponding fixed points. A few remarks concerning the numerical results displayed in Figure 5.5
are now in order:

• In all settings, the fixed point of the BAMP state evolution (in red) matches the replica
prediction (in black). This is a strong numerical evidence supporting our conjecture that
the proposed BAMP algorithm is Bayes-optimal. These theoretical curves for N → ∞ are
also remarkably close to the MSE achieved by the BAMP algorithm (5.190) at N = 8000.

• When µ = 0, i.e., the noise is sufficiently far from being independent Gaussian, there is
a clear performance gap between our proposed BAMP (in red) and the existing AMP
algorithms [132, 133] (single-step denoiser in blue, and multi-step in green). As predicted
by our theory, this gap is reduced for µ = 0.5, and all curves collapse for µ = 1.

• Finally, we note that the BAMP algorithm exhibits a numerical instability for low SNR.
More specifically, when µ = 0 and λ = 2.3, 5 out of the 50 trials of the iteration (5.190) do
not reach the fixed point of state evolution (and are therefore discarded). Furthermore, by
inspecting Figure 5.5c, one notices that the curve representing the BAMP state evolution
detaches from the replica prediction as the SNR get smaller than 2.3. As expected,
considering an initialization closer to the fixed point mitigates the issue. This numerical
instability is likely due to the state evolution of BAMP corresponding to the recursion of
an auxiliary AMP that triples the number of iterations. This fact leads to an amplification
of the numerical errors.

Let us re-emphasize that all these results hold in the Bayesian-optimal setting where all
hyper-parameters of the model are known and optimally used. In practical situations this
may not be the case. In particular the statistical properties of the correlated noise Z may be
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(c) µ = 0.

Figure 5.5: Performance comparison between the replica prediction for the MMSE (in black), the
proposed BAMP (in red), and the existing AMP [132, 133] (in blue and green). BAMP matches
the Bayes-optimal MSE predicted via the replica method, and it outperforms the existing AMP
when the noise is not Gaussian. This improvement is more evident as the noise distribution
gets further from a Wigner distribution. Taken all together, these numerical results provide an
empirical confirmation of the (Bayes-)optimality of the proposed BAMP algorithm.

only partially known, preventing one to obtain the coefficients (ck) defining the optimal pre-
processing of the data J(Y) =

∑
k≤K ckY

k as done in Section 5.5. In Appendix B.1 we provide
a learning procedure based on expectation maximization to overcome this issue and which can
be of help to practitioners aiming at using BAMP in more realistic situations. Its testing is left
for future work.
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Chapter 6

Matrix factorization

Consider the problem of reconstructing the two factors D ∈ RN×P and A ∈ RP×M composing a
matrix Y∗ = DA ∈ RN×M from noisy observations of it, Y. Assuming that Y∗’s elements are
blurred by Gaussian additive independent noise of variance σ2, the Bayes posterior measure of
matrix factorization reads as

dPD,A|Y(d, a) ∝
N∏
i=1

M∏
j=1

e−
1

2σ2 (Yij−(da)ij)
2

dPD(d)dPA(a) (6.1)

where possible constraints, such as sparsity, may be enforced via the priors PD and PA.

The need to factorize a given matrix manifests itself in several concrete tasks. In fact, a
possible strategy to denoise large matrices, i.e. to estimate simply Y∗ from Y, is to find a more
convenient representation of the data at disposal [157]. In this context, we mention dictionary
learning [158, 159, 160], that aims to find two factors D and A of Y∗ such that the columns of
D form an over-complete basis of RN (P > N) and A is sparse. Furthermore, also Boltzmann
machines are an instance of the implementation of the same strategy [161, 162]: given a set
of observations on their visible units, while training they create an internal representation on
the hidden units. The core idea of representation learning, and presumably the reason of its
effectiveness [163, 164, 165], is the extraction of characteristic features, e.g. the over-complete
basis in D, that if properly recombined can reconstruct the data, or even some of their missing
parts, as in recommender systems [166]. Another motivation for studying matrix factorization
is to find new ways of training deep networks. Given a desired output, the process of learning
can be decomposed layer by layer, in which the task in each layer is to find a set of synaptic
weights together with the internal representation of the data in the previous layer. This is a
matrix factorization task (complicated by the non-linearity), that one can hope to turn into
a self-consistent solution of deep network training, following what was done for multi-layer
generalized linear estimation [167].

The analysis that follows can be carried out for the generic D-A problem in (6.1). However,

165
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for the sake of clarity we present it here in its symmetric version, that is when

Y =
ξξ⊺√
N

+
√
∆Z ∈ RN×N (6.2)

with ∆ ≥ 0, ξ = (ξµi )
µ≤P
i≤N , ξµi

iid∼ Pξ and Z = (Zij)i,j≤N , Zij ∼ N (0, 1 + δij) all independent. We
shall restrict to the family of priors Pξ = (1− ρ)δ0 +

ρ
2
[δ1/√ρ + δ−1/

√
ρ], ρ ∈ (0, 1]. If we imagine

µ as a “time” index, the symmetric matrix ξξ⊺/N in (6.2) can help us capture the correlation
between the time series (ξti)

t≤P and (ξtj)
t≤P of two quantities, that might be stock prices of

two different assets for instance [168, 169]. Therefore, studying the performance of denoising
procedures for sample covariance matrices as ξξ⊺/N is of paramount importance to establish
their reliability and hence to characterize the main dynamical modes of a stochastic process.

We have already studied the finite rank (P ) case, i.e. the spiked Wigner model, and we now
know that in the Bayes-optimal setting the average means square error made by a Statistician
is the least possible, and AMP algorithms saturate such information theoretical bounds. The
most challenging regime so far though is that of extensive rank, namely when P/N → α > 0 as
N grows. A possible route to tackle the denoising problem of ξξ⊺ in this regime was introduced
in [170] and it amounts to restrict the class of possible estimators for the hidden matrix to the
rotational invariant ones. Such estimators are indeed called Rotationally Invariant Estimators
(RIE). RIEs have the peculiarity of being diagonal on the same eigenbasis OY of Y. What
remains to do then is to find a good cleaning procedure to produce estimates of the eigenvalues
λ̂S of the hidden matrix and finally recompose the estimator: Ŝ = OYλ̂SO

⊺
Y. Notice however,

that RIEs do not answer completely to the matrix factorization problem, their only goal is
denoising, and no representation of the data is searched for. Furthermore, in general they are
not Bayes-optimal if there is no rotational invariance encoded in the prior Pξ.

Bayes-optimal limits for (symmetric) matrix factorization have been investigated through
perturbative [112, 171] and non-perturbative approaches [172], but the high rank regime seems
to be an insurmountable obstacle to the production of closed formulae for the information
theoretically optimal reconstruction performances. A substantial difficulty is indeed introduced
by the use of a prior over the entire matrix ξ. Therefore, as opposed to that we propose here
an alternative strategy: being ξ composed by P vectors ξµ, µ = 1, 2, . . . , P , we aim for one
of them at a time. Assuming that we are able to get efficiently an estimate of the first one,
say ξP , denoted by ηP , we can build a rank one contribution and subtract it from Y ≡ Y(0),
obtaining Y(1/P ) = Y(0)−ηPηP⊺/

√
N . Then we iterate the process until, if possible, we have

an estimate ηµ for each ξµ. We will refer to this iterative scheme as decimation.

Using decimation we show that probabilistic symmetric matrix factorization is possible, that
it has a better performance in denoising w.r.t. the RIE in some range of the model parameters,
and that a strong sparsity, tuned by ρ, can make the system more robust against noise.
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6.1 Definition of the problem

In this chapter we deal with the Gaussian observation channel

Y = Y∗ +
√
∆Z =

ξξT√
N

+
√
∆Z ∈ RN×N (6.3)

where ∆ ≥ 0 will be referred to as noise-to-signal ratio and Zij ∼ N (0, 1 + δij) are all inde-
pendent. Let us assume that the Statistician was able to estimate, in a way we shall clarify
soon, the last R (= 0, 1, . . . , P − 1) patterns without loss of generality, denote the estimates
by (ηµ)Pµ>P−R and the fraction of retrieved patterns as t = R/P . We define the modified
observations according to our procedure now appear as

Y(t) =
P∑

µ=1

ξµξµT

√
N

−
P∑

µ=P (1−t)+1

ηµηµT

√
N

+
√
∆Z . (6.4)

For the moment we assume that in order to obtain the estimates ηµ the Statistician samples
from the Boltzmann-Gibbs distribution

dµ(x) =
1

ZN

dPξ(x) exp

[
β

2
√
N
TrY(t)xxT − β

∥x∥4
4N

+
βv̂

2
(N − ∥x∥2)

]
, dPξ(x) :=

N∏
i=1

dPξ(xi)

(6.5)

that corresponds to the posterior distribution of a strongly mismatched inference problem, where
the Statistician tries to reconstruct an extensive rank matrix with only a rank one matrix.
Notice that we have also artificially introduced a Lagrange multiplier v̂ w.r.t. which we require
stationarity. This allows us to enforce the constraint

E
〈∥x∥2

N

〉
= 1 (6.6)

with ⟨·⟩ the expectation w.r.t. (6.5) and E averages over all the remaining quenched noise.
The Lagrange multiplier v̂ is needed because, as mentioned above, this kind of estimation is
mismatched, thus the Nishimori identities break down and (6.6) would not be true in general in
absence of v̂. Another good reason to introduce it is that, although the Statistician is performing
a mismatched estimation, she is Bayes optimal and she knows her estimates should be properly
normalized as in (6.6). Furthermore, as we shall see in the following, the introduction of v̂
simplifies a lot the fixed point equations, and extends the range of parameters α,∆ in which
retrieval is possible when β = 1/∆, that is a somehow natural choice of parameters.



168 CHAPTER 6. MATRIX FACTORIZATION

Let us further expand the Hamiltonian at the exponent in (6.5):

−HN(x) =

√
∆

2
√
N

N∑
i,j=1

Zijxixj +
1

2N

P∑
µ=1

(
N∑
i=1

ξµi xi

)2

− 1

2N

P∑
µ=P (1−t)+1

(
N∑
i=1

ηµi xi

)2

− ∥x∥4
4N

+
v̂

2
(N − ∥x∥2) . (6.7)

The previous Hamiltonian is really similar to that of the classical Hopfield model [173], except
for the presence of the first noise terms and the η-terms at the end of the first line. For
this reason we shall refer to the ξµ’s also as patterns. If the Statistician has “good enough”
estimates ηµ of the R patterns, namely with a good overlap with the corresponding ξµ, then

− β
2N

∑P
µ=P (1−t)+1

(∑N
i=1 η

µ
i xi

)2
acts as a repulsion from those very same patterns, penalizing

them in probability. Therefore, we expect the estimates to condense onto the other P −R non
retrieved patterns, and in particular, in analogy with the Hopfield model, onto a finite number
of them.

It is convenient at this point to introduce the Mattis magnetizations

mµ(x) =
1

N

N∑
i=1

ξµi xi , µ = 1, . . . , P (6.8)

pµ(x) =
1

N

N∑
i=1

ηµi xi , µ = P (1− t) + 1, . . . , P . (6.9)

The Hamiltonian then takes the useful form

−HN(x) =

√
∆

2
√
N

N∑
i,j=1

Zijxixj +
N

2

P∑
µ=1

(mµ(x))2 − N

2

P∑
µ=P (1−t)+1

(pµ(x))2

− ∥x∥4
4N

+
v̂

2
(N − ∥x∥2) . (6.10)

Notice that the ηµ’s depend in general on the specific instances of the ξµ’s, so they must be
treated as quenched noise with a dependency on the ξµ’s that we need to model. First off,
we argue that conditionally on the patterns (ξµ)µ the randomness in ηµi is only through ξµi .
Secondly, define the first two conditional moments

Eη|ξ[η
µ
i ] = mµ

i , Eη|ξ[(η
µ
i )

2] = vµi . (6.11)

ηµ tends to align to ξµ whose components are i.i.d. from a centered prior and therefore each of
them has vanishing expectation. A further justification to this assumption will be given after
the computation of the free entropy of the model (see Remark 6.2). So, to sum up

Eξ[η
µ
i ] = EξEη|ξ[η

µ
i ] = 0 . (6.12)
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Since the Statistician enforces the condition (6.6) at each step of decimation, it holds also that

1

N

N∑
i=1

(ηµi )
2 ≃ 1 (6.13)

with high probability, thus can conjecture the following consistency constraint:

E[vµi ] = 1. (6.14)

At the R = tP step of decimation, the ηP (1−t)+1 estimate for the ξP (1−t)+1 pattern is found. We
define thus the error

ϵ(t) =
1

2N

N∑
i=1

(
η
P (1−t)+1
i − ξ

P (1−t)+1
i

)2
=

=
1

2N

N∑
i=1

[(η
P (1−t)+1
i )2 + (ξ

P (1−t)+1
i )2]− 1

N
ηP (1−t)+1 · ξP (1−t)+1 . (6.15)

According to the previous considerations, the first normalized sum equals 2 with high proba-
bility, whereas the normalized scalar product is expected to converge to the equilibrium Mattis
magnetization of the R-th step of decimation. Hence

ϵ̄(t) := Eϵ(t) = 1− E[mP (1−t)+1
i ξ

P (1−t)+1
i ] . (6.16)

Analogous relations hold for other values τ ∈ [0, t) corresponding to some decimation step.
Within this framework the decimation recursion goes as follows. From 0-th to first step:

• start at t = 0, which means R = 0 patterns recovered yet;

• sample the first estimate ηP from (6.5) with Y(0) = Y;

• obtain Y(1/P ) = Y(0)− 1√
N
ηPηP⊺.

From R-th to R + 1-th step:

• sample ηP−R from (6.5) with Y(t) = Y(R/P ) = Y((R−1)/P )− 1√
N
ηP−R+1ηP−R+1 ⊺, the

last contribution coming from the R-th step;

• obtain Y((R + 1)/P ) = Y(R/P )− 1√
N
ηP−RηP−R ⊺.

Remark 6.1. There are three noise sources in the decimation procedure:

• the original noise Z, which is there by definition of the problem;
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• interference among the patterns: this phenomenon appears because of the high rank
nature of the Hopfield-like interaction [174, 175]. In the (large) N dimensional space of
configurations of x the directions pointed by the ξµ’s act as attractors, meaning that
they gather a lot of probability according to (6.5). However, when these directions are
a finite ratio of all the N independent ones, intereference phenomena may occur. One
way to understand it is from a geometrical point of view: an estimate ηµ cannot have an
extensive O(N) projection on every direction (ξµ)Pµ=1, otherwise it would have a super-

extensive norm. The other projections must be at most of order O(
√
N), but they are

very numerous, so when summed together they give back another O(N) contribution that
acts as a noise, whose intensity depends on α;

• the decimation procedure itself: each time we subtract a rank one contribution of the type
1√
N
ηµηµ ⊺ we are decreasing the effective rank of the hidden high rank matrix we want to

estimate. This goes in the right direction, since from the previous point we also expect
the patterns interference to decrease. However, the estimates ηµ are noisy versions of ηµ

themselves, hence each subtraction adds inevitably some more noise.

From the previous considerations we understand that the viability of decimation is strongly
affected by the interplay between the last two noise sources listed above. In fact, the whole point
of the replica computation that follows is to compare the contributions of the two mentioned
noise sources.

6.2 Replica symmetric free entropy

The goal of this section is the computation of the large N limit of free entropy

p̄N =
1

N
E log

∫
dPξ(x) exp [−βHN(x)] , (6.17)

where E is taken w.r.t. all the disorder: Z, ξ,η. In order to do it, we employ the replica method.
We recall it is based on the following identity:

p̄N,n :=
1

nN
logEZn

N
n→0−−→ 1

N
E logZN = p̄N . (6.18)

The limit would require n to be a real (or at least rational) parameter, but we will carry out the
computations as if it were an integer. We will also assume to be able to exchange the N → ∞
limit with the n→ 0 one. If we accept these premises, we have the great advantage of having an
annealed expectation in front of the partition function, at the cost of analysing a “replicated”
system. Hence, from now on we will focus on the quantity

EZn
N := EZEξ,η

∫ n∏
a=1

dPξ(xa) exp

[
−β

n∑
a=1

HN(xa)

]
. (6.19)
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The strategy now is to carry out the averages w.r.t. the quenched disorders first. To avoid
proliferation of many terms in the exponential, we need to treat them separately. Let us begin
with the first noise terms in (6.10), and the related EZ average

EZ exp

(
β
√
∆

2
√
N

N∑
i,j=1

Zij

n∑
a=1

xa,ixa,j

)
= exp

(
β2∆

4N

N∑
i,j=1

n∑
a,b=1

xa,ixa,jxb,ixb,j

)

= exp

(
Nβ2∆

4

n∑
a̸=b

Q2(xa,xb) + β2∆
n∑

a=1

∥xa∥4
4N

)
.

(6.20)

Now we take care of the penalizing p-terms in (6.10). After replicating, their contribution
to the partition function is

A :=
P∏

µ=P (1−t)+1

n∏
a=1

e−
Nβ
2

(pµ(xa))2 =
P∏

µ=P (1−t)+1

n∏
a=1

∫
dsµa√
2π
e−

(s
µ
a )2

2
+i
√

β
N
sµa

∑N
j=1 η

µ
j xa,j . (6.21)

Notice that, thanks to the introduction of the auxiliary Gaussian variables (sµa)a≤n,P (1−t)<µ≤P ,
the exponential is now decoupled over the particle indices j. We now take the expectation of A
w.r.t. η, conditioning on ξ, keeping in mind our assumptions on the ηµ’s:

Eη|ξ[A] =
P∏

µ=P (1−t)+1

n∏
a=1

∫
dsµa√
2π
e−

(s
µ
a )2

2

N∏
i=1

Eηµi |ξ
µ
i
exp

(
i

√
β

N
ηµi

n∑
a=1

sµaxa,i

)

=
P∏

µ=P (1−t)+1

n∏
a=1

∫
dsµa√
2π

exp

(
−(sµa)

2

2
+

N∑
i=1

logEηµi |ξ
µ
i
ei
√

β
N
ηµi

∑n
a=1 s

µ
axa,i

)
.

(6.22)

Now we can expand the exponential inside the log up to second order, the remaining terms will
be of sub-leading order and thus neglected in the following:

Eη|ξ[A] =
P∏

µ=P (1−t)+1

n∏
a=1

∫
dsµa√
2π

exp

(
−(sµa)

2

2
+

n∑
a=1

isµa

√
β

N

N∑
i=1

mµ
i xa,i

−β
2

n∑
a,b=1

sµas
µ
b

N∑
i=1

(vµi − (mµ
i )

2)

N
xa,ixb,i

)

=
P∏

µ=P (1−t)+1

n∏
a=1

∫
dsµa√
2π

exp

[
−1

2

n∑
a,b=1

sµas
µ
b

(
δab + β

N∑
i=1

(vµi − (mµ
i )

2)

N
xa,ixb,i

)

+
n∑

a=1

isµa

√
β

N

N∑
i=1

mµ
i xa,i

]
. (6.23)
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To continue, we need to assume condensation on a finite number of patterns that are not
the condensed ones, say the first k without loss of generality. We focus now on the remaining
ones, those with µ > k:

B := exp

[
βN

2

n∑
a=1

P∑
µ=k+1

(mµ(xa))
2

]
=

=

∫ P∏
µ=k+1

n∏
a=1

dzµa√
2π

exp

[
−

n∑
a=1

P∑
µ=k+1

(zµa )
2

2
+

√
β

N

n∑
a=1

P∑
µ=k+1

zµa

N∑
i=1

xa,iξ
µ
i

]
. (6.24)

Putting A and B together, their overall average over (ξµ)µ>k takes the form

E(ξµ)µ>k
[AB] =

∫ P∏
µ=P (1−t)+1

n∏
a=1

dsµa√
2π

∫ P∏
µ=k+1

n∏
a=1

dzµa√
2π
e
− 1

2

∑n
a=1

(∑P
µ=P (1−t)+1

(s
µ
a )2

2
+
∑P

µ=k+1
(z

µ
a )2

2

)

exp

[
N∑
i=1

P∑
µ=k+1

logEξµi
e
√

β
N

∑n
a=1 xa,i(ξ

µ
i z

µ
a+iχ(µ>P−R)mµ

i s
µ
a)−χ(µ>P−R)

∑n
a,b=1 s

µ
as

µ
b

∑N
i=1

β(v
µ
i
−(m

µ
i
)2)xa,ixb,i

2N

]
.

(6.25)

If we call Eξm
µ 2
i =: M̄µ 2, a further expansion of the exponential yields:

E(ξµ)µ>k
[AB] =

∫ P∏
µ=P (1−t)+1

n∏
a=1

dsρa√
2π

exp

−1

2

P∑
µ=P (1−t)+1

sµ ·
(
1+ β(1− M̄µ 2)Q

)
sµ


∫ P∏

µ=k+1

n∏
a=1

dzµa√
2π

exp

{
−

P∑
µ=k+1

n∑
a=1

(zµa )
2

2
+
β

2

P∑
µ=k+1

n∑
a,b=1

zµaz
µ
bQ(xa,xb)+

+iβ
P∑

µ=P (1−t)+1

Eξ[ξ
µ
1m

µ
1 ]

n∑
a,b=1

zµas
µ
bQ(xa,xb)−

β

∆

P∑
µ=P (1−t)+1

n∑
a,b=1

(M̄µ)2sµas
µ
bQ(xa,xb)


(6.26)

Notice that M̄µ disappears from the computation. We can now perform a Gaussian integration
over the variables zµ = (zµa )a≤n:

E(ξµ)µ>k
[AB] =

∫ P∏
µ=P (1−t)+1

n∏
a=1

dsρa√
2π

exp

−1

2

P∑
µ=P (1−t)+1

sµ ·
(
1+ βQ+ β2Q

E2
ξ[ξ

µ
1m

µ
1 ]

1− βQ
Q

)
sµ


× exp

[
−αN

2
log det (1− βQ)

]
.

(6.27)
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Finally, after an integration over the remaining Gaussian variables sµ we get

E(ξµ)µ>k
[AB] = exp

[
−α(1− t)N

2
log det (1− βQ)

−1

2

P∑
µ=P (1−t)+1

log det

(
1− (1−

(
1− ϵ̄

(
1− (µ− 1)

P

))2

)β2Q2

) . (6.28)

It remains to analyze the contribution given by (ξ)µ≤k:

C := exp

[
βN

2

n∑
a=1

k∑
µ=1

(mµ(xa))
2

]
=

=

∫ n∏
a=1

k∏
µ=1

dmµ
a

√
βN

2π
exp

[
n∑

a=1

k∑
µ=1

(
−Nβ (m

µ
a)

2

2
+ βmµ

a

N∑
i=1

ξµi xa,i

)]
. (6.29)

Before plugging the contributions coming from A, B and C into EZn
N we need to introduce

a collection of Dirac deltas to fix the desired order parameters, that are organized in the overlap
matrix (Q(xa,xb))

n
a,b=1:

1 =

∫ ∏
a≤b≤n

dqabδ(Q(xa,xb)− qab) =

∫ ∏
a≤b≤n

Ndrabdqab
4πi

exp

[
−1

2

n∑
a,b=1

rab(Nqab −
∑
i

xa,ixb,i)

]
.

(6.30)

Hence, the averaged replicated partition function, at leading exponential order in N , takes the
form

EZn
N =

∫ ∏
a≤b≤n

Ndrabdqab
4πi

∫ n∏
a=1

k∏
µ=1

dmµ
a

√
Nβ

2π
exp

[
−N

2

∑
a,b

rabqab −
βN

2

n∑
a=1

k∑
µ=1

(mµ
a)

2

]

× exp

−1

2

P∑
µ=P (1−t)+1

log det

(
1− (1−

(
1− ϵ̄

(
1− (µ− 1)

P

))2

)β2Q2

)
× exp

[
−α(1− t)N

2
log det (1− βQ) +Nβ2∆

n∑
a̸=b,1

q2ab
4

+Nβ
n∑

a=1

(βv̂
2
(1− qaa) +

β∆− 1

4
q2aa

)]

×
N∏
i=1

∫ k∏
µ=1

dPξ(ξ
µ
i )

n∏
a=1

dPξ(xa,i) exp

[
1

2

n∑
a,b=1

rabxa,ixb,i + β

k∑
µ=1

n∑
a=1

mµ
aξ

µ
i xa,i

]
.

(6.31)
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Notice that in the last line there is the product of N identical integrals (indexed by i). With a
little abuse of notation, since the overlaps have been fixed by the deltas, we denoteQ = (qab)

n
a,b=1.

We can finally express the replicated free entropy with a variational principle coming from a
saddle point argument applied to the formula above:

p̄n := lim
N→∞

p̄N,n =
1

n
Extr

{
− 1

2

∑
a,b

rabqab −
β

2

n∑
a=1

k∑
µ=1

(mµ
a)

2 − α(1− t)N

2
log det (1− βQ)

+ β

n∑
a=1

( v̂(1− qaa)

2
+
β∆− 1

4
q2aa

)
− αt

2R

P∑
µ=P (1−t)+1

log det

(
1− (1−

(
1− ϵ̄

(
1− (µ− 1)

P

))2

)β2Q

)

+ β2∆
n∑

a̸=b,1

q2ab
4

+ log

∫ k∏
µ=1

Eξµ

∫ n∏
a=1

dPξ(xa) exp

[
1

2

n∑
a,b=1

rabxaxb + β

k∑
µ=1

n∑
a=1

mµ
aξ

µxa

]}
.

(6.32)

The normalized sum over µ = P (1 − t) + 1, . . . , P on the second line can be turned into an
integral in the large N limit as follows:

p̄n : = lim
N→∞

p̄N,n =
1

n
Extr

{
− 1

2

∑
a,b

rabqab −
β

2

n∑
a=1

k∑
µ=1

(mµ
a)

2 − α(1− t)N

2
log det (1− βQ)

+ β
n∑

a=1

( v̂(1− qaa)

2
+
β∆− 1

4
q2aa

)
− αt

2

∫ t

0

dτ log det
(
1− (1− (1− ϵ̄(τ))2)β2Q2

)
+ β2∆

n∑
a̸=b,1

q2ab
4

+ log

∫ k∏
µ=1

Eξµ

∫ n∏
a=1

dPξ(xa) exp

[
1

2

n∑
a,b=1

rabxaxb + β
k∑

µ=1

n∑
a=1

mµ
aξ

µxa

]}
.

(6.33)

The extremization is taken w.r.t. the collection of parameters (rab, qab)
n
a,b=1, (m

µ
a)

n,k
a=1,µ=1. Within

the replica symmetric ansatz{
rab = r , a ̸= b

raa = −u

{
qab = q , a ̸= b

qaa = v
mµ

a = mµ , (6.34)

the matrix Q assumes the form

Q =


v q q . . . q
q v q . . . q
q q v . . . q
...

...
...

. . .
...

q q q . . . v

 ∈ Rn×n, (6.35)
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whose eigenvalues can be easily found by Gauss’ reduction to triangular form:

EigQ = diag

v − q, v − q, . . . , v − q︸ ︷︷ ︸
n−1

, v + (n− 1)q

 . (6.36)

from which it follows that

det (1− βQ) = (1− β(v − q))n
[
1− n

βq

1− β(v − q)

]
(6.37)

det
(
1− (1− (1− ϵ̄(τ))2)β2Q2

)
=
[
1− (1− (1− ϵ̄(τ))2)β2(v − q)2

]n−1

×
[
1− (1− (1− ϵ̄(τ))2)β2 (v + (n− 1)q)2

]
.

(6.38)

Further simplifications occur for the other terms in the replicated free entropy. In particular
the remaining log integral has to be treated as follows:

∫ k∏
µ=1

Eξµ

∫ n∏
a=1

dPξ(xa) exp

[
r

2

n∑
a̸=b,1

xaxb −
u

2

n∑
a=1

x2a + β
k∑

µ=1

mµξµ
n∑

a=1

xa

]
=

=

∫ k∏
µ=1

Eξµ

∫ n∏
a=1

dPξ(xa) exp

r
2

(
n∑

a=1

xa

)2

− u+ r

2

n∑
a=1

x2a + β
k∑

µ=1

mµξµ
n∑

a=1

xa

 =

= EZ

∫ k∏
µ=1

Eξµ

n∏
a=1

∫
dPξ(xa) exp

[
√
rZxa −

u+ r

2
x2a + β

k∑
µ=1

mµξµxa

]
=

= EZEξ

[∫
dPξ(x) exp

((
Z
√
r + βm · ξ

)
x− u+ r

2
x2
)]n

(6.39)

where Z ∼ N (0, 1), ξ = (ξ1, . . . , ξk), m = (m1, . . . ,mk) . Finally, expanding at first order in n
one has:

p̄n := Extr
{rq + uv

2
− β

k∑
µ=1

(mµ)2

2
− β2∆q2

4
− α(1− t)

2

[
log (1− β(v − q))− βq

1− β(v − q)

]

− αt

2

∫ t

0

dτ

[
log
(
1− (1− (1− ϵ̄(τ))2)β2 (v − q)2

)
− 2β2q(v − q)(1− (1− ϵ̄(τ))2)

1− β2(1− (1− ϵ̄(τ))2)(v − q)2

]

+ β
( v̂(1− v)

2
+
β∆− 1

4
v2
)
+ EZ,ξ log

∫
dPξ(x) exp

((
Z
√
r + βm · ξ

)
x− u+ r

2
x2
)}

+O(n) .

(6.40)
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Hence, finally

p̄ := lim
n→0

p̄n = Extr
{rq + uv

2
− β

k∑
µ=1

(mµ)2

2
− α(1− t)

2

[
log (1− β(v − q))− βq

1− β(v − q)

]

− β2∆q2

4
− αt

2

∫ t

0

dτ

[
log
(
1− (1− (1− ϵ̄(τ))2)β2 (v − q)2

)
− 2β2q(v − q)(1− (1− ϵ̄(τ))2)

1− β2(1− (1− ϵ̄(τ))2)(v − q)2

]

+ β
( v̂(1− v)

2
+
β∆− 1

4
v2
)
+ EZ,ξ log

∫
dPξ(x) exp

((
Z
√
r + βm · ξ

)
x− u+ r

2
x2
)}

,

(6.41)

where extremization is intended over r, q, u, v, v̂ and (mµ)µ≤k.

6.2.1 Fixed point equations

In order to have the fixed point equations in compact form define the following local random
measure

⟨·⟩ξ,Z =

∫
dPξ(x)e

(Z
√
r+βm·ξ)x− r+u

2
x2
(·)∫

dPξ(x)e
(Z

√
r+βm·ξ)x− r+u

2
x2

(6.42)

Then the stationarity conditions coming from (6.41) are

v = 1 (6.43)

v = E⟨X2⟩ξ,Z (6.44)

mµ = Eξµ⟨X⟩ξ,Z (6.45)

q = E⟨X⟩2ξ,Z (6.46)

r =
α(1− t)β2q

(1− β(v − q))2
+ β2∆q

+ αt

∫ t

0

dτ
2qβ2(1− (1− ϵ̄(τ))2)

1− β2(1− (1− ϵ̄(τ))2)(v − q)2

[
1 +

2β2(v − q)2(1− (1− ϵ̄(τ))2)

1− β2(1− (1− ϵ̄(τ))2)(v − q)2

] (6.47)

u = βv̂ + β(1− β∆)v − α(1− t)β
1− β(v − 2q)

(1− β2(v − q))2

− αt

∫ t

0

dτ

[
2vβ2(1− (1− ϵ̄(τ))2)

1− β2(1− (1− ϵ̄(τ))2)(v − q)2
+ q

4β4(v − q)2(1− (1− ϵ̄(τ))2)2

(1− β2(1− (1− ϵ̄(τ))2)(v − q)2)2

]
.

(6.48)

The first one in particular can be directly eliminated. Notice that the effect of decimation is
visible only in the variables u and r that affect the local measure (6.42).
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The value of the Mattis magnetization mµ depends on the errors ϵ̄ made on the pattern re-
construction, namely on the magnetizations, corresponding to the previous steps of decimation.
The representation of their contributions in integral form holds only in the thermodynamic
limit, for it is a limit of a Riemann sum. For all practical purposes, we will make finite size
simulations and use the discretized form present in (6.32), starting from step 0, when no pattern
has been retrieved yet.

Remark 6.2 (Assumptions on decimation). If the Statistician builds her estimates starting from
the posterior Boltzmann-Gibbs distribution (6.5), then the assumptions we have made on the
ηµ’s mean that each site i is asymptotically decoupled from the others and interacts only with
a random mean field, composed by a Gaussian contribution, whose variance is tuned by r, and
a magnetic field produced by the other (possibly) magnetized sites. Notice that r comprises all
the three noise sources as discussed in Remark 6.1 and treats them as independent (the global
variance is the sum of the three contributions). Hence, asymptotically it is reasonable that the
sampling from (6.5) is equivalent to the one from a local measure like (6.42), from which our
assumptions on the ηµ’s easily follow. Furthermore, in the case of one pattern condensation
k = 1, we are now able to relate ϵ̄ to the Mattis magnetization m found at the R + 1-th step:

ϵ̄((R + 1)/P ) = 1−m. (6.49)

Therefore the magnetization and ϵ̄(t) depend on the history of the decimation process. Once a
magnetization is found, it can be used to perform the step R + 2, and so on, till the patterns
are all retrieved with a certain accuracy. Hence, starting from the 0-th step, we can study a
flow in t (that becomes ideally continuous when N → ∞) of the magnetization values.

6.2.2 Sanity checks

First off, we need to prove that in case there is only one pattern P = 1, and therefore α = 0,
our computation coincides with the Bayes-optimal one (β = 1/∆). Let us set ourselves on the
0-th step. In that case one has

r =
q

∆
, u = v̂ , (6.50)

and the free entropy can be simplified to

p̄ = Extr
{ q2
4∆

− m2

2∆
+

v̂

2∆
+ EZ,ξ log

∫
dPξ(x) exp

((
Z

√
q

∆
+
m

∆
ξ

)
x−

(
q + v̂

∆

)
x2

2

)}
.

(6.51)

The local measure becomes

⟨·⟩Z,ξ =
∫
dPξ(x) exp

((
Z
√

q
∆
+ m

∆
ξ
)
x−

(
q+v̂
∆

)
x2

2

)
(·)∫

dPξ(x) exp
((
Z
√

q
∆
+ m

∆
ξ
)
x−

(
q+v̂
∆

)
x2

2

) . (6.52)
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It is easy to realize now that there is a consistent solution to the simplified system of fixed point
equations with the previous local measure:

q = m = Eξ⟨X⟩Z,ξ , v̂ = 0 , (6.53)

that corresponds to enforce the Nishimori identities. Notice that this would hold also for any
finite rank case P = K with one pattern condensation. We stress that the effect of decimation
is sensible only in the extensive rank case as it is clear from (6.41) and the consequent fixed
point equations. The reason is that, if we subtract a finite number of p-like terms in (6.10), we
are penalizing a finite number of directions in a space of dimension growing to infinity. This
is not enough to create an additional noise contribution, since the system can easily find other
favoured directions to termalize in. In other words, the pµ(x)’s give a sub-extensive contribution
that can be neglected in the finite rank case.

Another really important thing to check, in order to have a well defined zero temperature
limit β → +∞, is that u + r = O(β), which is not trivial given the O(β2) contributions in
(6.47)-(6.48). Summing them together we see that

r + u = βv̂ − β2∆(1− q) + β − α(1− t)β

1− β(1− q)
− αt

∫ t

0

dτ

[
2β2(1− q)(1− (1− ϵ̄(τ))2)

1− β2(1− (1− ϵ̄(τ))2)(1− q)2

]
(6.54)

where we imposed v = 1. From the expression of the free entropy (6.41) we see that we can only
accept solutions for q such that β(1− q) < 1, otherwise the logarithm gives rise to a singularity.
Hence C := β(1− q) = O(1). Using this definition the previous formula becomes

r + u = βv̂ + β(1−∆C)− α(1− t)β

1− C
− αt

∫ t

0

dτ

[
2βC(1− (1− ϵ̄(τ))2)

1− (1− (1− ϵ̄(τ))2)C2

]
. (6.55)

From the fixed point equation (6.44) with v = 1, v̂ must be at most of order O(1), since it only
has to compete with the other two terms in the previous equation.

Finally, as in the standard Hopfield model, when Pξ = N (0, 1) the only magnetization value
we can accept is zero. In fact, in that case we can integrate by parts in (6.45) obtaining:

mµ = βmµ
(
E⟨X2⟩ξ,Z − E⟨X⟩2ξ,Z

)
= mµβ(v − q) . (6.56)

The latter implies wither m = 0 or

q = v − 1

β
, (6.57)

which is not possible, since it would make the log term in the first line of (6.41) explode. The
only case when m ̸= 0 is acceptable is α = 0, i.e. for finit rank. Indeed, using (6.44) and
choosing β = 1/∆, we recover the PCA overlap q = 1−∆ [37, 38].
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6.2.3 The zero temperature limit

In this section we study the β → ∞ limit of the free entropy with a prior in the form

Pξ = (1− ρ)δ0 +
ρ

2

[
δ−1/

√
ρ + δ1/√ρ

]
, ρ ∈ (0, 1] . (6.58)

It can be easily verified that Pξ is symmetric, and thus centered, and has unit variance as
required by our analysis. ρ is a parameter measuring sparsity in the ξ’s. If ρ = 1 then we
recover the Ising case, sparsity being totally absent.

For future convenience we introduce the notations

C := β(1− q) ∈ [0, 1) , (6.59)

r̄ := r/β2 (6.60)

U :=
u+ r

β
(6.61)

where q is intended as the stationary value of the overlap solving the fixed point equations.
Denote m = (mµ)kµ=1, where k is the maximum number of condensed patterns. In the low
temperature limit the free entropy, re-scaled by β, and evaluated at the stationary values of the
parameters involved has the form

1

β
p̄ = − r̄C

2
+
U

2
+
α(1− t)

2(1− C)
− 1

4
− m2

2
+

∆C

2
+ Γ + αt

∫ t

0

dτ
C(1− (1− ϵ̄(τ))2)

1− (1− (1− ϵ̄(τ))2)C2
(6.62)

where

Γ =
1

β
Eξ,Z log

∫
dPξ(x) exp

[
β
(
Z
√
r̄ +m · ξ

)
x− βU

2
x2
]
=

=
1

β
Eξ,Z log

[
1− ρ+ ρ cosh

β√
ρ

(
Z
√
r̄ +m · ξ

)
exp

(
−βU

2ρ

)]
. (6.63)

When β → ∞ we have to distinguish two cases in the Z average:

Γ = O(β−1)+
1

β
Eξ

(∫ ∞

−m·ξ/
√
r̄+U/2

√
r̄ρ

+

∫ −m·ξ/
√
r̄−U/2

√
r̄ρ

−∞

)
dz√
2π
e−

z2

2 ×

× log

[
1− ρ+ ρ cosh

β√
ρ

(
z
√
r̄ +m · ξ

)
e−

βU
2ρ

] (6.64)

The O(β−1) instead comes from the contribution:

1

β

∫ −m·ξ/
√
r̄+U/2

√
r̄ρ

−m·ξ/
√
r̄−U/2

√
r̄ρ

dz√
2π
e−

z2

2 log

[
1− ρ+ ρ cosh

β√
ρ

(
z
√
r̄ +m · ξ

)
e−

βU
2ρ

]
(6.65)
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that can be bounded from below by

1

β

∫ −m·ξ/
√
r̄+U/2

√
r̄ρ

−m·ξ/
√
r̄−U/2

√
r̄ρ

dz√
2π
e−

z2

2 log [1− ρ] (6.66)

and from above by 0. Hence, it vanishes linearly in β−1 as β → ∞.
Let us now focus on the first integral in (6.64). The hyperbolic cosine and the exponential

in U dominate on the other terms in the log. Taking into account the exponential growth in
the selected range of z-values the first integral can be approximated with:

Eξ

∫ ∞

−m·ξ/
√
r̄+U/2

√
r̄ρ

dz√
2π
e−

z2

2

(
Z
√
r̄ +m · ξ√

ρ
− U

2ρ

)
=

√
r̄

2πρ
Eξe

− 1
2r̄

(
U

2
√
ρ
−m·ξ

)2

+

+ Eξ

(
m · ξ√
ρ

− U

2ρ

)∫ ∞

−m·ξ/
√
r̄+U/2

√
r̄ρ

dz√
2π
e−

z2

2 . (6.67)

The second integral in (6.64) can be treated similarly. Putting all the terms together one gets

1

β
p̄ = − r̄C

2
+

∆C

2
+
U

2
+
α(1− t)

2(1− C)
− 1

4
− m2

2
+

√
r̄

2πρ
Eξ

[
e
− 1

2r̄

(
U

2
√
ρ
−m·ξ

)2

+ e
− 1

2r̄

(
U

2
√
ρ
+m·ξ

)2
]
+

+ Eξ
m · ξ
2
√
ρ

[
erf

(
m · ξ + U

2
√
ρ√

2r̄

)
+ erf

(
m · ξ − U

2
√
ρ√

2r̄

)]

− U

4ρ
Eξ

[
2 + erf

(
m · ξ − U

2
√
ρ√

2r̄

)
− erf

(
m · ξ + U

2
√
ρ√

2r̄

)]
+ αt

∫ t

0

dτ
C(1− (1− ϵ̄(τ))2)

1− (1− (1− ϵ̄(τ))2)C2
.

(6.68)

Considering the all the parameters are evaluated at their stationary values, the previous formula
can be further simplified by looking at the limiting version of the fixed point equations. Starting
from (6.46), (6.59) and (6.60) we see that

C = β(1− q) = β(E⟨X2⟩Z,ξ − E⟨X⟩2Z,ξ) = E
βZ√
r
⟨X⟩Z,ξ = E

Z√
r̄
⟨X⟩Z,ξ = 2

∂Γ

∂r̄
(6.69)

where we used v = 1 and reversed Gaussian integration by parts. Hence:

C =
1√
2πρr̄

Eξ

[
exp

(
−
(
U/2

√
ρ−m · ξ√
2r̄

)2
)

+ exp

(
−
(
U/2

√
ρ+m · ξ√
2r̄

)2
)]

. (6.70)

The value of r̄ can be found directly from (6.47) by multiplying it by β−2:

r̄ =
α(1− t)

(1− C)2
+∆+ αt

∫ t

0

dτ
2(1− (1− ϵ̄(τ))2)

1− (1− (1− ϵ̄(τ))2)C2

[
1 +

2C2(1− (1− ϵ̄(τ))2)

1− (1− (1− ϵ̄(τ))2)C2

]
. (6.71)
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There are at least two ways to determine the value of U . Here we proceed from (6.44) with
v = 1. In particular, from (6.63) it follows that

1 = E⟨X2⟩Z,ξ = −2
∂Γ

∂U
=

1

2ρ

[
2 + erf

(
m · ξ − U

2
√
ρ√

2r̄

)
− erf

(
m · ξ + U

2
√
ρ√

2r̄

)]
(6.72)

that is

Eξ

[
erf

(
U/2

√
ρ−m · ξ√
2r̄

)
+ erf

(
U/2

√
ρ+m · ξ√
2r̄

)]
= 2(1− ρ) . (6.73)

We stress that the l.h.s. of the previous equation is monotonic in U , and thus (6.48) has a
unique solution for fixed sparsity parameter ρ. Finally, from (6.45) and (6.63)

m = Eξ⟨X⟩Z,ξ =
∂Γ

∂m
= Eξ

ξ

2
√
ρ

[
erf

(
m · ξ − U/2

√
ρ√

2r̄

)
+ erf

(
U/2

√
ρ+m · ξ√
2r̄

)]
. (6.74)

If we insert these conditions in (6.68) we get

p̄

β
=

α(1− t)

2(1− C)2
+∆C − 1

4
+

m2

2
+ 2αt

∫ t

0

dτ
C(1− (1− ϵ̄(τ))2)

(1− (1− (1− ϵ̄(τ))2)C2)2
. (6.75)

Notice that sparsity does not appear explicitly in p̄/β, it affects its value only through m and
C. If we wish to analyze the model in a Bayes-optimal fashion, meaning trying to recover finite
rank results, it is sufficient to set ∆ = 1/β → 0 in the low temperature limit, and the form of
the previous expression reduces to the well known free entropy in the low temperature limit of
the Hopfield model for t = 0, where again no sparsity appears.

6.3 0-th step phase diagrams

In order to be viable, decimation needs to start in a region of the α-∆(-β) phase diagram of the
0-step model where pattern retrieval is possible, otherwise our estimates will be orthogonal to
the ground truth we seek, and the subtraction of the corresponding rank one contribution only
introduces noise. For this reason the 0-th step acquires a great importance in the analysis. For
t = 0 the RS free entropy becomes

p̄ = Extr
{rq + uv

2
− β

k∑
µ=1

(mµ)2

2
+
β2∆(v2 − q2)

4
− α

2

[
log (1− β(v − q))− βq

1− β(v − q)

]
+ β

( v̂(1− v)

2
− v2

4

)
+ EZ,ξ log

∫
dPξ(x) exp

((
Z
√
r + βm · ξ

)
x− u+ r

2
x2
)}

.

(6.76)
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and the fixed point equations for u and r simplify to

r =
αβ2q

(1− β(1− q))2
+ β2∆q (6.77)

u = βv̂ + β(1− β∆)v − αβ
1− β(1− 2q)

(1− β(1− q))2
, (6.78)

where we have already enforced the constraint v = 1.
Another important feature of these models to be understood is their robustness against the

interference among patterns (and decimation noise after the 0-th step). This can be evaluated in
the low temperature limit, that will tell us what is the maximum value of α, that measures indeed
the interference, that we can bear still having a positive magnetization, and a corresponding
reconstruction error smaller than one.

6.3.1 The pure Ising case

In this subsection we analyze the case when ρ = 1, that corresponds to the Rademacher prior
Pξ =

δ−1+δ1
2

. The local measure (6.42) simplifies to

⟨·⟩ξ,Z =
∑
x=±1

e(Z
√
r+βm·ξ)x

cosh (Z
√
r + βm · ξ)(·) (6.79)

and the value of u becomes irrelevant. Furthermore v = 1 is verified by default, which means
v̂ = 0. Hence we just have to analyze the three equations

mµ = Eξµ tanh
(
Z
√
r + βm · ξ

)
(6.80)

q = E tanh2
(
Z
√
r + βm · ξ

)
(6.81)

r = β2∆q +
αβ2q

(1− β(1− q))2
. (6.82)

The previous system of fixed point equations can be solved iterating (6.80) and solving (6.81)
by dichotomy at each step. Notice that, a part from the noise contribution whose amplitude
is governed by β2∆q in (6.82), the equations have the same form of those of the Hopfield
model. Then, as intuition would suggest, the phase diagram should be characterized by the
same regions.

To start with, we choose β = 1/∆ and the related phase diagram is depicted in Figure 6.1.
The blue curve represents the transition line from the spin glass phase above it, where the
expected overlap q > 0 and m = 0, and the retrieval phase below it. Between the blue and the
red curves there exists a metastable state with a non vanishing magnetization, although it is
not dominant in probability, meaning that there is a solution to the fixed point equations with
zero magnetization that has a bigger associated free entropy. Finally, below the red curve there
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Figure 6.1: Phase diagram at t = 0, with ρ = 1 and β = 1/∆.

is a stable state with non vanishing magnetization. Strictly speaking, from a thermodynamic
point of view, the blue line is not a true transition line, because the spin glass state remains
stable. However, it is still possible that a sharp enough algorithm can find a configuration with
non zero magnetization even right below the blue curve.

Concerning the low temperature limit, the r.h.s. of equation (6.73) vanishes when ρ = 1,
and thanks to the monotonicity of the l.h.s. in U we know that the only solution is U = 0.
Notice that if we select ∆ = 1/β → 0 then the fixed point equations turn into those of the
well-known low temperature limit of the Hopfield model:

C =

√
2

πα
(1− C)Eξ exp

[
−(1− C)2

2α
(m · ξ)2

]
, (6.83)

m = Eξξerf

(
m · ξ√
2α

(1− C)

)
, (6.84)

Hence, the model behaves exactly as the Hopfield model and shares its very same storage
capacity αc ≃ 0.138, and value below which the patterns become pure states αF ≃ 0.051.

Another possibility is to study the model with ∆ fixed and β → ∞, namely to study the
performance of the Ground State (GS) search. With reference to Figure 6.2, the dashed blue
curve represents as before the “transition” from the spin glass phase to the retrieval one, and
below the red curve the magnetized state dominates the probability. The curves touch the x-axis
at the values αc and αF respectively, as expected. See the following section for an explanation
of the other curves. We find another curious transition that occurs at α = 0, ∆ = ∆̄, that is
related to the performance of GS search algorithms. To determine ∆̄ we specialize our formulae
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Figure 6.2: α-∆ phase diagram at zero temperature.

to the case of condensation onto a single pattern, ρ = 1 and α = 0:

r̄ = ∆ (6.85)

C =

√
2

∆π
exp

(
−m

2

2∆

)
(6.86)

m = erf

(
m√
2∆

)
, (6.87)

from which we see that m has decoupled from C. The equation for m admits a solution only
when the r.h.s. has a derivative greater than 1 w.r.t. m at m = 0, namely

2

π∆
≥ 1 ⇒ ∆ ≤ ∆̄ =

2

π
. (6.88)

This transition happens below the Bayes-optimal threshold ∆BO = 1, that we have for α = 0
in Figure 6.1. As we shall see later, even if it is clear that the presence of additional noise ∆
here compromises the stability of the magnetized state, the GS search has a better performance
than the choice β = 1/∆.

6.3.2 Sparse prior

When ρ < 1, the equations modify non trivially, because the constraint v = 1 is no longer
automatically satisfied, and it is enforced by a non zero value of v̂. The first and second
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moment of the local measure become

⟨X⟩ξ,Z =

√
ρ sinh
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Z
√

r
ρ
+ m·ξ

∆
√
ρ

)
e−

r+u
2ρ

1− ρ+ ρ cosh
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Z
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√
ρ

)
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r+u
2ρ

(6.89)

⟨X2⟩ξ,Z =

cosh

(
Z
√

r
ρ
+ m·ξ

∆
√
ρ

)
e−

r+u
2ρ

1− ρ+ ρ cosh

(
Z
√

r
ρ
+ m·ξ

∆
√
ρ

)
e−

r+u
2ρ

. (6.90)

Now all the equations (6.44)-(6.48) come into play. The entire system of fixed point equations
can be solved iterating (6.45) and solving exactly and simultaneously (6.44), (6.46) at each
iteration step. By doing so, one would obtain a picture similar to that in Figure 6.1, with αc

and αF depending on ρ. Using the fixed point equations from the previous subsection we draw a
phase diagram in the α-∆ plane with β → ∞ as in Figure 6.2. The cyan dashed line for instance
is the transition from the spin glass phase to the retrieval phase when ρ = 0.1, whereas the solid
magenta line stands for the transition to the true ferromagnetic phase. The values of αc and
αF have shifted sensibly in the positive direction, signalling that sparsity increases robustness
against patterns interference. In Figure 6.2 we observe, as for the Ising case, transitions in ∆
when α = 0 that are below the optimal threshold that up to now we know only numerically.
Notice that, contrary to what happens at ρ = 1, the dashed lines and the corresponding solid
lines do not intersect the y-axis in the same point. Though it might look unusual at first sight,
we recall that sparsity induces similar gaps even in the low rank case [32, 47, 88, 176], where
a solution with non-vanishing magnetization can appear even before the information theoretic
threshold. Here the theoretic thresholds of the decimation procedure are represented by the
solid lines.

Figure 6.3 describes αc and αF as functions of ρ, that are the intersections of the dashed
and solid lines in Figure 6.2 with the x-axis (∆ = 0). Looking at Figure 6.3 we realize that αc

and αF can both become large, exceeding the standard limits of the Hopfield model, when ρ
approaches zero, confirming that a strong sparsity can increase the storage capacity.

Let us focus on the limit ρ → 0 in the hypothesis of condensation only onto one pattern.
Fix α > 0. First, we need to expand the fixed point equations using the sparse Ising prior on ξ.
Equation (6.73) becomes for instance

2(1− ρ)erf

(
U

2
√
2r̄ρ

)
+ ρ

[
erf

(
U/2−m√

2r̄ρ

)
+ erf

(
U/2 +m√

2r̄ρ

)]
= 2(1− ρ) . (6.91)

The equation for C is

C =
2(1− ρ)√

2πr̄ρ
e−

U2

8r̄ρ +
ρ√
2πr̄ρ

[
e
−
(

U/2+m√
2r̄ρ

)2

+ e
−
(

U/2−m√
2r̄ρ

)2
]

ρ→0−−→ 0 , (6.92)
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Figure 6.3: αc and αF as functions of ρ.

since U has to be non zero when ρ→ 0 by (6.91) and C ∈ [0, 1). This implies also that r̄
ρ→0−−→ α

by (6.71), recalling that t = ∆ = 0. Notice that, when ρ → 0 the first erf term in (6.91) is
exponentially close to 2(1− ρ). Using the asymptotics for erf

erf(x) = 1− e−x2

√
πx

+ . . . (6.93)

which entails that

ρ

[
erf

(
U/2−m√

2r̄ρ

)
+ erf

(
U/2 +m√

2r̄ρ

)]
= O

(
e−K/(2r̄ρ)

)
(6.94)

with some constant K > 0. The only way for the previous to hold is that one of the two erf in
the square brackets go exponentially fast to −1, or in other words that

U

2
< m . (6.95)

This is already sufficient to prove that the magnetization goes to 1. Indeed, one has

m =
1

2

erf(m− U/2√
2r̄ρ

)
︸ ︷︷ ︸

→∞

+erf

(
m+ U/2√

2r̄ρ

) ρ→0−−→ 1 . (6.96)

We have just shown that for any fixed α, there is a sufficiently small ρ that induces a non
vanishing magnetization. In other words, αc as a function of ρ has to approach ∞ when ρ→ 0.
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Remark 6.3. Here the introduction of the prior information on the second moment through v̂
is crucial to enlarge the retrieval region in the phase diagram α-∆. As an example for ρ = 0.05
fixed, at α = 0.3 and ∆ = 0.4, in presence of the v = 1 constraint, the fixed point equations
under the hypothesis of one pattern condensation produce a magnetization m ≃ 0.970. If we
remove the constraint instead, by setting v̂ = 0, the equilibrium magnetization vanishes.

6.4 Decimation performance

In this section we discuss the viability of the decimation procedure and list the numerical results
obtained from the fixed point equations (6.44)-(6.48). Analogously to what discussed in Section
6.3, (6.44)-(6.48) can be solved by iterating (6.45) and solving exactly (6.44), (6.46) at each
iteration step. In order to implement a truly recursive decimation we need to discretize the
integrals in (6.47) and (6.48) as follows

r =
α(1−R/N)β2q

(1− β(1− q))2
+ β2∆q

+
1

N

P∑
µ=P−R+1

2qβ2(1− (1− ϵ̄(τµ))2)

1− β2(1− (1− ϵ̄(τµ))2)(1− q)2

[
1 +

2β2(1− q)2(1− (1− ϵ̄(τµ))2)

1− β2(1− (1− ϵ̄(τµ))2)(1− q)2

]
(6.97)

u = βv̂ + β(1− β∆)v − α(1−R/N)β
1− β(1− 2q)

(1− β(1− q))2

− 1

N

P∑
µ=P−R+1

[
2vβ2(1− (1− ϵ̄(τµ))2)

1− β2(1− (1− ϵ̄(τµ))2)(1− q)2
+ q

4β4(1− q)2(1− (1− ϵ̄(τµ))2)2

(1− β2(1− (1− ϵ̄(τµ))2)(1− q)2)2

]
,

(6.98)

where τµ = 1− µ−1
P

. When R = 0 by convention we set the sums to 0, and the analysis from the
previous section holds. In what follows we consider only one pattern condensation. Furthermore,
we stress that despite the magnetized state can be not truly stable in the thermodynamic limit,
it is still a critical point for the free entropy. At the end of the procedure we have P values
of magnetizations, and reconstruction errors on each pattern (ϵ̄(τµ))Pµ=1. We can use them to
evaluate the theoretical Mean Square Error (MSE) associated with decimation. We define the
matrix MSE as follows

MSE(η) =
1

2N

∥∥∥∥ηη⊺

N
− ξξ⊺

N

∥∥∥∥2
F

, (6.99)
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where we adopted Ŝ = ηη⊺
√
N

as an estimator for ξξ⊺√
N
. The subscript F denotes the Frobenius’

norm. Expanding the average of the previous formula we can evaluate the expected MSE

EMSE(η) =
1

2N3

N∑
i,j=1

P∑
µ,ν=1

E[ηµi ηνi η
µ
j η

ν
j + ξµi ξ

ν
i ξ

µ
j ξ

ν
j ]−

1

N3

N∑
i,j=1

P∑
µ,ν=1

Eξµi ηνi ξ
µ
j η

ν
j . (6.100)

Concerning the four ξ’s contribution, the only chance to have non zero expectation is that
µ = ν or i = j, because ξµi are i.i.d. from a centered distribution. Hence, neglecting the
diagonal contributions µ = ν and i = j that are sub-leading, a simple computation yields

1

2N3

N∑
i,j=1

P∑
µ,ν=1

Eξµi ξνi ξ
µ
j ξ

ν
j =

α + α2

2
+O

(
1

N

)
. (6.101)

By our assumptions on the estimates η (see Remark 6.2) we analogously get

1

2N3

N∑
i,j=1

P∑
µ,ν=1

Eξµi ξνi ξ
µ
j ξ

ν
j =

α + α2

2
+O

(
1

N

)
, (6.102)

1

N3

N∑
i,j=1

P∑
µ,ν=1

Eξµi ηνi ξ
µ
j η

ν
j = α2 +

1

N

P∑
µ=1

(1− ϵ̄(τµ))2 +O

(
1

N

)
. (6.103)

Finally, the average matrix MSE takes the form

EMSE(η) = α

(
1− 1

P

P∑
µ=1

(1− ϵ̄(τµ))2

)
+O(N−1) (6.104)

or in integral form in the thermodynamic limit

EMSE(η) = α− α

∫ 1

0

dτ(1− ϵ̄(τ))2 . (6.105)

6.4.1 Flow of magnetization

Each decimation step is associated with an equilibrium value of the Mattis magnetization, and
a corresponding reconstruction error. To begin with consider a Rademacher prior Pξ =

δ−1+δ1
2

and β = 1/∆. As it is clear from Figure 6.4, the magnetization increases along the decimation
procedure, meaning that the amount of noise we add while decimating is less compared the one
we remove by diminishing the effective rank of the hidden matrix ξξ⊺√

N
. This confirms, at least

for a simple binary prior, that decimation is a viable option for symmetric matrix factorization.
The points and error bars are obtained by sampling the decimation Gibbs measure (6.5)

with an AMP algorithm with an informative initialization, pointing in the direction of one of
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Figure 6.4: Magnetization vs decimation step, condensation on a single pattern. N = 2000,
P = 60, ∆ = 1/β = 0.15, ρ = 1.

the patterns. Obviously, such initialization is not accessible to the Statistician that aims for the
patterns, but it is still a good way to sample (6.5) and to verify numerically that we correctly
evaluated the decimation noise contribution. To obtain error bars we run AMP 400 times,
generating each time a new spike independently, for the entire decimation, thus obtaining 400
different values of magnetization for each decimation step. Error bars correspond to 1 standard
deviation of such samples.

There are at least two possible objections to this test:

• the size of the system considered is N = 2000, hence with 0.03 we only have rank P = 60,
which is not truly a high rank regime;

• the range of ∆ under scrutiny, the one where the starting magnetization is non-vanishing,
is not really satisfactory.

We can answer to both by introducing a strong sparsity in the ground truth, that increases
robustness to noise in general, allowing for larger α’s and a wider ∆ range.

6.4.2 Decimation vs Rotationally Invariant Estimators (RIE)

A problem that is strongly related to dictionary learning is matrix denoising. Matrix denoising
requires to clean a matrix S ∈ RN×N , that we suppose to have O(1) eigenvalues, from the noisy
observation

YD = S+
√
∆Z (6.106)
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with Z a Wigner matrix with O(1) eigenvalues (one could actually take any rotationally invariant
matrix). Notice that the task is somehow simpler than factorization, which instead requires in
addition to find the rank factorization of S. However, it is clear that decimation can carry out
both tasks.

In absence of additional information on the matrix S than the observations YD, a possible
strategy is to look for an estimator Ŝ that diagonalizes on the same eigenbasis of YD:

YD = OλYO
⊺ ⇒ Ŝ = Oλ̂SO

⊺ . (6.107)

It remains then to estimate the eigenvalues λ̂S. In [170] the authors propose the cleaning
procedure

λ̂S = λY − 2∆H[ρY](λY) (6.108)

where

H[ρY](x) := P.V.

∫
dyρY(y)

x− y
(6.109)

is (proportional to) the Hilbert transform of ρY, the density of eigenvalues of YD, and it is
applied component-wise to the diagonal matrix elements in (6.108). Ŝ is thus called Rotationally
Invariant Estimator (RIE).

Now, if we take S = ξξ⊺

N
(that has indeed O(1) eigenvalues) we can compare numerically the

performances of the RIE with that of decimation. The MSE is a random quantity, hence for
each value of ∆ that we tested (see Figure 6.5a) we repeated the same numerical experiment 30
times starting from independently generated ξξ⊺

N
, in order to be able to estimate its fluctuations

and exclude possible compatibility between the decimation MSE and the RIE’s.
With reference to Figure 6.5a, the red curve represents the MSE associated with the RIE

when Pξ is Rademacher. Error bars are too small to be appreciated in the plot. The blue and
the green curves are instead the MSEs associated with the decimation procedures at β = 1/∆
and β → +∞ respectively. The low temperature one turns out to have the best predicted
performance. In a Bayes-optimal setting this would obviously be not the case. However, since
at each decimation step we have an associative memory model, it is somehow reasonable that the
best results are attained at really low temperature, when it is easier to retrieve patterns. The
cyan and yellow data points are obtained through an AMP that samples at β = 10, whose error
bars are still invisible, and β = 20 respectively. The latter in particular is in good agreement
with our theoretical prediction within the confidence of 1 standard deviation. In Figure 6.5a
both MSEs are really small and the range of ∆ which is accessible (that grants non-vanishing
magnetization) is rather narrow. Furthermore, as anticipated, it can be objected that α = 0.03,
with finite size experiments, is not really an extensive rank regime.

For this reason we repeated the same experiment with a strongly sparse prior, ρ = 0.05, and
α = 0.4. In this way when N = 1000 the rank is 400, as in Figure 6.5b. The latter illustrates
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(a) N = 2000, P = 60, Rademacher prior. (b) N = 1000, P = 400, strongly sparse Rademacher
prior: ρ = 0.05.

Figure 6.5: Comparison between RIE and decimation performances for matrix denoising.

again the comparison between RIE’s and the predicted decimation performances. The colors
are associated as before. We see that the ordering of the performances does not change, but the
MSEs are bigger and the difference between those of the finite temperature sampling β = 1/∆
and the low temperature sampling is no longer that large if compared to the MSEs themselves.

Recall that decimation is possible only if we start from an (α,∆), be it for β = 1/∆ or
β → ∞, such that the first magnetization is non-zero, whereas it is always possible to build a
RIE starting from YD. In fact, for larger values of ∆ the first magnetization may vanish, and
so do all the following ones yielding a trivial estimator. Nevertheless, when viable, decimation
not only has a better performance than the RIE, but it retrieves also the factors composing the
hidden matrix.

6.5 Concluding remarks

In this chapter we have proposed a novel iterative procedure to carry out (symmetric) high rank
matrix factorization. The main idea is that of abandoning the Bayes-optimal setting, to reduce
the problem to a Hopfield-like model in which the high rank effects induced by the coupling
matrix are known. However, as the reader will have noticed at this point, the Hopfield model
works as an associative memory model, i.e. it is able to retrieve the patterns in some regions if
a hint on their directions is given. It is clear that no hint is accessible to a Statistician the wants
to infer them. With an uninformative start, algorithms such as AMP typically remain stuck in
some mixture states, in which the x-configuration has a finite overlap with an odd (> 1) number
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of patterns, that is undesirable for inference. Nevertheless, our theoretical analysis clearly shows
that those maxima of the free entropy corresponding to magnetized states are there in some
range of parameters, and hence it is indeed theoretically possible to retrieve the hidden matrix.

In a continuation [177] (or completion) of the present work, we designed an algorithm, a
“ground state oracle”, able to find the ground states of the neural network models at each
decimation step without any prior hint. The algorithm works for binary spins and is based on
simulated annealing. In order to prevent the oracle to get stuck in the aforementioned mixture
states, we inserted an energy-based restarting criterion: once a candidate pattern is found we
compute its energy and compare it with the one of a ground state, which is theoretically known.
If it is too high we discard the result and start over. We defer the reader to the preprint [177]
for further details. One drawback of the ground state oracle is that it needs a number of restarts
growing exponentially in the number of signal components. We were able to run the algorithm
with N up to ∼ 2000, and the execution time depends also on the noise level ∆.



Appendix A

Multi-species on the Nishimori line

A.1 Proof of the Concentration Lemma

Proof of Lemma 2.5. Let us split the proof into three steps for the sake of clarity. As anticipated,
it is convenient to split the total fluctuation of Lr into two parts, thus proving that:

EϵE
〈(

Lr − ⟨Lr⟩(ϵ)N,t

)2 〉(ϵ)
N,t

−→ 0 as N → ∞ (A.1)

EϵE
(
⟨Lr⟩(ϵ)N,t − E⟨Lr⟩(ϵ)N,t

)2
−→ 0 as N → ∞ . (A.2)

From this moment on, we neglect sub and superscripts in the Gibbs brackets as well as t-
dependencies. We start by proving the inequality (2.45).

Proof of inequality (2.45): To begin with, we compute:

E[⟨Lr⟩] =
1

Nr

∑
i∈Λr

E
〈
σi +

Jr
i σi

2
√
Qϵ,r

〉
= E⟨mr⟩+

1

2
E[1− ⟨mr⟩] =

1

2
E[1 + ⟨mr⟩] (A.3)

where integration by parts has been used.
Then, we proceed with:

E⟨L2
r⟩ =

1

N2
r

∑
i,j∈Λr

E
〈
σiσj +

Jr
i σiσj√
Qϵ,r

+
Jr
i J

r
j σiσj

4Qϵ,r

〉
= E⟨m2

r⟩︸ ︷︷ ︸
R1

+
1

N2
r

∑
i,j∈Λr

E
〈Jr

i σiσj√
Qϵ,r

〉
︸ ︷︷ ︸

R2

+

+
1

N2
r

∑
i,j∈Λr

E
〈Jr

i J
r
j σiσj

4Qϵ,r

〉
︸ ︷︷ ︸

R3

. (A.4)
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We treat the three terms R1, R2 and R3 separately with repeated integrations by parts.

R2 =
1

N2
r

∑
i,j∈Λr

E [⟨σj⟩ − ⟨σiσj⟩⟨σi⟩] = E⟨mr⟩ − E⟨mr⟩2 (A.5)

where we have used the Nishimori identity (2.16).

R3 =
1

4N2
r

∑
i,j∈Λr

E

δij
=1︷ ︸︸ ︷

⟨σiσj⟩
Qϵ,r

+ Jr
j

(⟨σj⟩ − ⟨σi⟩⟨σiσj⟩)√
Qϵ,r

 =
1

4NrQϵ,r

+

+
1

4N2
r

∑
i,j∈Λr

E
[
1− ⟨σj⟩2 − ⟨σi⟩(⟨σi⟩ − ⟨σj⟩⟨σiσj⟩)− ⟨σiσj⟩(⟨σiσj⟩ − ⟨σi⟩⟨σj⟩)

]
=

=
1

4NrQϵ,r

+
1

4
− 1

2
E⟨mr⟩+

1

2
E⟨mr⟩2 −

1

4
E⟨m2

r⟩ . (A.6)

Hence:

R1 +R2 +R3 =
1

4
+

1

4NrQϵ,r

+
3

4
E⟨m2

r⟩+
1

2
E⟨mr⟩ −

1

2
E⟨mr⟩2 . (A.7)

Summing up all the contributions:

E⟨L2
r⟩ − (E⟨Lr⟩)2 =

1

4NrQϵ,r

+
3

4
E⟨m2

r⟩ −
1

2
E⟨mr⟩2 −

1

4
(E⟨mr⟩)2 =

=
1

4NrQϵ,r

+
1

4
(E⟨m2

r⟩ − (E⟨mr⟩)2) +
1

2
(E⟨m2

r⟩ − E⟨mr⟩2) ≥
1

4
E
〈
(mr − E⟨mr⟩)2

〉
. (A.8)

Proof of (A.1): Notice that:

∂p̄N,ϵ

∂Qϵ,r

=
1

N
E
〈∑

i∈Λr

(
σi +

Jr
i σi

2
√
Qϵ,r

)〉
= αrE⟨Lr⟩ =

αr

2
E[1 + ⟨mr⟩], Jr

i
iid∼ N (0, 1) (A.9)

∂2p̄N,ϵ

∂Q2
ϵ,r

= αrNrE⟨(Lr − ⟨Lr⟩)2⟩ −
1

4NQ
3/2
ϵ,r

∑
i∈Λr

E⟨Jr
i σi⟩ . (A.10)
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From the last one, after an integration by parts and using the regularity of the map ϵ 7−→ Qϵ(·)
and Lemma 2.4 we get:

EϵE⟨(Lr − ⟨Lr⟩)2⟩ ≤
1

NrαrsKN

K∏
s=1

∫ Q2sN ,s

QsN ,s

dQϵ,s
∂2p̄N,ϵ

∂Q2
ϵ,r

+ Eϵ
1

4Nrϵr
E[1− ⟨mr⟩] ≤

≤ 1

NrαrsKN

K∏
s ̸=r,1

∫ Q2sN ,s

QsN ,s

dQϵ,s

[
∂p̄N,ϵ

∂Qϵ,r

∣∣∣∣
Q2sN ,r

− ∂p̄N,ϵ

∂Qϵ,r

∣∣∣∣
QsN ,r

]
+

log 2

4NrsN
≤

≤ 2Kr(∆)

NrsKN
+

log 2

4NrsN
= O

(
1

NrsKN

)
−→ 0 (A.11)

where:

K∏
s ̸=r,1

(Q2sN ,s −QsN ,s) ≤ Kr(∆) . (A.12)

Proof of (A.2): Let pN,ϵ be the random interpolating pressure, such that EpN,ϵ = p̄N,ϵ. Define:

p̂N,ϵ = pN,ϵ − αr

√
Qϵ,r

∑
i∈Λr

|Jr
i |
Nr

, ˆ̄pN,ϵ = Ep̂N,ϵ (A.13)

∂2p̂N,ϵ

∂Q2
ϵ,r

= αrNr⟨(Lr − ⟨Lr⟩)2⟩+
αr

4Q
3/2
ϵ,r

∑
i∈Λr

|Jr
i | − Jr

i ⟨σi⟩
Nr

≥ 0 . (A.14)

Let us evaluate: ∣∣∣∣∂p̂N,ϵ

∂Qϵ,r

− ∂ ˆ̄pN,ϵ

∂Qϵ,r

∣∣∣∣ ≥ αr |⟨Lr⟩ − E⟨Lr⟩| −
αr|Ar|
2
√
Qϵ,r

(A.15)

where:

Ar :=
1

Nr

∑
i∈Λr

[|Jr
i | − E|Jr

i |] . (A.16)

Thanks to the independence of the Jr
i it is immediate to verify that ∃ a ≥ 0 s.t.:

E[A2
r] ≤

a

Nr

. (A.17)

Using Lemma 3.2 in [18], with notations used in [13]:∣∣∣∣∂p̂N,ϵ

∂Qϵ,r

− ∂ ˆ̄pN,ϵ

∂Qϵ,r

∣∣∣∣ ≤ 1

δ

∑
u∈{Qϵ,r+δ,Qϵ,r,Qϵ,r−δ}

[|p̂N,ϵ − ˆ̄pN,ϵ|+ αr

√
u|Ar|]+

+ C+
δ (Qϵ,r) + C−

δ (Qϵ,r) (A.18)
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with:

C±
δ (Qϵ,r) = | ˆ̄p′N,ϵ(Qϵ,r ± δ)− ˆ̄p′N,ϵ(Qϵ,r)| (A.19)

| ˆ̄p′N,ϵ| =
∣∣∣∣∣αr

2
E[1 + ⟨mr⟩]−

αrE|Jr
1 |

2
√
Qϵ,r

∣∣∣∣∣ ≤ αr

(
1 +

C

2
√
sN

)
(A.20)

C±
δ (Qϵ,r) ≤ αr

(
2 +

C√
sN

)
(A.21)

where for simplicity we have kept the dependence on Qϵ,r only, ˆ̄p
′
N,ϵ is the derivative w.r.t. it and

δ > 0. Notice that δ will be chosen strictly smaller than sN , so that Qϵ,r−δ ≥ ϵ−δ ≥ sN−δ > 0.
Then, using (A.15), (A.16) and (A.18), and thanks to the fact that (

∑p
i=1 νi)

2 ≤ p
∑p

i=1 ν
2
i ,

we get:

α2
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9
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We first evaluate the two terms containing C±
δ :

Eϵ[C
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dQϵ,s[ ˆ̄pN,ϵ(Q2sN ,r + δ)− ˆ̄pN,ϵ(Q2sN ,r − δ)+

− ˆ̄pN,ϵ(QsN ,r + δ) + ˆ̄pN,ϵ(QsN ,r − δ)] ≤ 8α2
rKr(∆)

sKN
δ

(
2 +

C√
sN

)2

. (A.23)

Taking the expectation EϵE in (A.22), and defining Wr s.t. Qϵ,r ≤ Wr, we get:

α2
r

9
EϵE |⟨Lr⟩ − E⟨Lr⟩|2 ≤

3

δ2

[
S

N
+
α2
rWra
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]
+

+
8α2

rKr(∆)

sKN
δ

(
2 +

C√
sN

)2

+
α2
ra log 2

4NrsN
. (A.24)

We can make the r.h.s. vanish by choosing for example: δ = s
2K/3
N N−1/3. The choice sN ∝

N−1/16K makes the r.h.s. (A.24) behave like O(N−1/4).
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A.2 The monospecies case

In the case K = 1 the equation (2.46) reduces to:

lim
N→∞

p̄N(µ,h) = sup
x∈R≥0

{
µ
(1− x)2

4
− µx2

2
+ ψ(µx+ h)

}
(A.25)

while (2.48) simply becomes:

x = Ez tanh
(
z
√
µx+ h+ µx+ h

)
:= T (x;µ, h) . (A.26)

We collect the main results on this model in the following proposition.

Proposition A.1. Define:

p̄var(x;µ, h) = µ
(1− x)2

4
− µx2

2
+ ψ(µx+ h) . (A.27)

The following hold:

1. if µ < 1 then p̄var is concave in x. Equivalently if µ < 1 then T (x;µ, h) is a contraction,
and if further h = 0 then x = 0 is its fixed point;

2. the stable solution of the consistency equation (A.26) is continuous at (µ, h) = (1, 0):

lim
(µ,h)→(1,0)

x̄(µ, h) = 0 = x̄(1, 0) ; (A.28)

3. for fixed h = 0, the magnetization goes to 0 linearly with µ− 1 as µ→ 1+, more precisely:

x̄ = (1 + o(1))
µ− 1

µ2
(A.29)

where o(1) goes to 0 when µ → 1+. Therefore the critical exponent β (in the Landau
classification) is 1, which means that the derivative of the magnetization w.r.t. µ does not
diverge at the critical point, it only jumps from 0 to 1 and then decreases;

4. Along the line (µ, λ(µ − 1)), λ > 0 in the plane (µ, h) the magnetization goes to 0 as
follows:

x̄ =

√
λ(µ− 1)

µ2
(1 + o(1)) (A.30)

when µ→ 1+, therefore with a critical exponent 1/2;
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5. For fixed µ = 1 and h→ 0+ the magnetization behaves as:

x̄2 = h(1 + o(1)) (A.31)

where o(1) → 0 when h → 0+. Therefore we have a critical exponent δ = 2 (according to
Landau’s classification).

Proof. 1. The fist assertion follows immediately from (2.56), since α̂ ≡ 1 and ∆ ≡ µ. Then, by
(2.51):

dT

dx
(x;µ, h) = µEz

[(
1− tanh2

(
z
√
µx+ h+ µx+ h

))2]
≤ µ < 1

that implies T is a contraction. It is easy to see that if h = 0 then x = 0 is a solution of the
fixed point equation which must be unique by Banach’s fixed point theorem.

2. Using continuity and monotonicity of T (see (2.51)):

lim sup
(µ,h)→(1,0)

x̄(µ, h) = T ( lim sup
(µ,h)→(1,0)

x̄(µ, h); 1, 0)

lim inf
(µ,h)→(1,0)

x̄(µ, h) = T ( lim inf
(µ,h)→(1,0)

x̄(µ, h); 1, 0)

hence both lim sup(µ,h)→(1,0) x̄(µ, h) and lim inf(µ,h)→(1,0) x̄(µ, h) satisfy the consistency equation:

m = Ez tanh(z
√
m+m)

whose solution m = 0 is unique, since the derivative of T (m; 1, 0) is ≤ 1 and equality holds only
at m = 0. We conclude that there exists

lim
(µ,h)→(1,0)

x̄(µ, h) = 0 = x̄(1, 0) . (A.32)

3. We first notice that

E tanh2
(
z
√
Q+Q

)
= E tanh

(
z
√
Q+Q

)
, Q ≥ 0 , z ∼ N (0, 1) (A.33)

which simply follows from the third relation in (2.51) and the identity (2.14). Indeed, the
quantity in (A.33) is nothing but the quenched average magnetization of a free system. Now,
by computing the first and second derivatives of the map T (x;µ, 0) and using (A.33) we get:

T ′(0;µ, 0) = µ , T ′′(0;µ, 0) = −2µ2

x̄ = µx̄− µ2x̄2(1 + o(1)) ⇒ x̄ = (1 + o(1))

(
µ− 1

µ2

)
,

which implies that, in proximity of µ = 1, the magnetization goes to 0 with a critical exponent
β = 1 (not to be confused with inverse absolute temperature) and with slope 1.
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4. An analogous expansion of T yields:

x̄ = T (x̄;µ, λ(µ− 1)) = µx̄+ λ(µ− 1)− (µ2x̄2 + o(µ− 1))(1 + o(1))

which in turn entails:

x̄2 =
λ(µ− 1)

µ2
(1 + o(1)) .

5. Here by o(1) we mean a quantity that approaches 0 as h→ 0+. As in the previous steps:

x̄ = T (x̄; 1, h) = x̄+ h− (x̄2 + o(h))(1 + o(1)) ,

then we get:

x̄2 = h(1 + o(1)) ⇒ δ = 2 .
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Appendix B

Structured PCA

B.1 Learning the optimal pre-processing J(Y) by expec-

tation maximization

Until now we have assumed that we are in the Bayesian-optimal setting where, in particular, the
polynomial potential V defining the noise statistics is completely known and correctly exploited.
As seen from section 5.5.2, given a potential V we could deduce from the AdaTAP formalism
an optimal polynomial

J = J(Y) =
∑
k≤K

ckY
k

to pre-process the dataY before using it in AMP. The Bayes-optimal case corresponds to matrix
(5.160), i.e., J = c1Y + c2Y

2 + c3Y
3 with c = (µλ,−γλ2, γλ).

We here consider an extension of the previously derived AMP to a case where V is not
known and therefore the optimal J cannot be deduced by the AdaTAP approach as we did in
Section 5.5.2. What is known instead is an upper bound on the order of V . In the base-case
model studied in details in the present paper the order is four. The procedure we propose below
will not be tested numerically yet, but we believe it may be of interest to practitioners eager to
improve the Bayes-optimal AMP for more practical settings than the specific ones studied here.

To directly learn the coefficients (ck)k≤K from the data, we propose to use an expectation
maximization (EM) approach, with a routine inside AMP performing the parameter estimation
by maximizing the current estimate of the free entropy, i.e., of the log-likelihood of the observed
data lnP (Y | c).

Assume that, at the AMP iterate t, the current estimate of the unknown coefficients c =
(ck)k≤K is c(t) = (ck(t))k≤K , the AMP estimate of the marginal means is m(t), and of the
Onsager reaction term is V̄ (t) (which is related to the set of Onsager coefficients, see Section
5.6.2). Let also the data matrix polynomial currently used by AMP be

J(t) :=
∑
k≤K

ck(t)Y
k.

201
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From the analysis of Section 5.5.3 we know that at the saddle point we can safely replace
the Onsager reaction term Vi by V̄ in the AdaTAP equations. When this is plugged back
into (5.181), this identity implies that also the following concentration is consistently valid:
E(τi −m2

i ) = τi −m2
i , which is also equal by exchangeability to N−1

∑
i≤N E(τi −m2

i ). Let us
call χ̄(t) the AMP estimate of the variance E(τi −m2

i ). Applying these simplifications to the
AMP iterates we get that the matrix Ω(t) := diag(V(t) + (τ (t) −m(t)2)−1) can be simplified
as

Ω(t) = (V̄ (t) + χ̄(t)−1)IN .

From section 5.5.1 the AdaTAP approximation to the free entropy at iterate t then reads, using
these simplifications, as

ΦN(t, c(t)) =
1

2
m(t)⊺J(t)m(t) +

1

2
ln det

(
Ω(t)− J(t)

)
− 1

2
V̄ (t)

∑
i≤N

mi(t)
2 +

1

2
χ̄(t)

−
∑
i≤N

ln

∫
dPX(x) exp

(1
2
V̄ (t)x2 +

(
(J(t)m(t))i − V̄ (t)mi(t)

)
x
)
. (B.1)

The free entropy ΦN(t, c(t)) is the current best approximation to the marginal log-likelihood of
the data lnP (Y | c), which we thus aim at maximizing with respect to the unknown parameters,
all other quantities being fixed at their current values:

∂ckΦN |t,c(t) = m(t)⊺Yk
(1
2
m(t)− η(J(t),m(t), V̄ (t))

)
− 1

2
Tr
(
Yk(Ω(t)− J(t))−1

)
, (B.2)

where we used (5.162) and the notation η(J(t),m(t), V̄ (t)) = (ηi(J(t),m(t), V̄ (t))i≤N . Because
J is diagonalizable in the same basis as the data Y, the eigenvalues of which are denoted
σi = σi(Y), we have

Tr
(
Yk(Ω(t)− J(t))−1

)
=
∑
i≤N

σk
i

V̄ (t) + χ̄(t)−1 −∑ℓ≤K cℓ(t)σ
ℓ
i

. (B.3)

Then

∂ckΦN |t,c(t) = m(t)⊺Yk
(1
2
m(t)− η(J(t),m(t), V̄ (t))

)
− 1

2

∑
i≤N

σk
i

V̄ (t) + χ̄(t)−1 −∑ℓ≤K cℓ(t)σ
ℓ
i

. (B.4)

We aim at maximizing the free entropy so given a learning rate ζ > 0 the learning rule finally
reads

ck(t+ 1) = ck(t) + ζ∂ckΦN |t,c(t). (B.5)
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B.2 Proofs for BAMP

B.2.1 Auxiliary AMP

The iterates of the auxiliary AMP are denoted by z̃t, ũt ∈ RN , and they are computed as follows,
for t ≥ 1:

z̃t = Zũt −
t∑

i=1

b̄t,iũ
i, ũt+1 = h̃t+1(z̃

1, . . . , z̃t,u1,X∗). (B.6)

The iteration (B.6) is initialized with ũ1 = u1, where u1 satisfies (5.192). For t ≥ 1, the
functions h̃t+1 : Rt+2 → R are applied component-wise, and they are recursively defined as

h̃K(t−1)+1+ℓ(z1, . . . , zK(t−1)+ℓ, u1, x
∗) = zK(t−1)+ℓ + (B̃K(t−1)+ℓ)K(t−1)+ℓ,1 u1

+

K(t−1)+ℓ∑
i=2

(B̃K(t−1)+ℓ)K(t−1)+ℓ,i h̃i

(
z1, . . . , zi−1, u1, x

∗
)
+ µ̃K(t−1)+ℓx

∗, ℓ ∈ [K − 1],

h̃Kt+1(z1, . . . , zKt, u1, x
∗) = gt+1

(
µtx

∗ +
Kt∑
i=1

θt,izi

)
.

(B.7)

The idea is that the choice (B.7) for the denoisers {h̃t+1}t≥1 ensures that ũK(t−1)+ℓ tracks the
quantity Yℓ−1ut for ℓ ∈ [K] and t ≥ 1, where {ut} are the iterates of the AMP iteration (5.190)
we are interested in analyzing.

In (B.7), gt+1 is the denoiser of the AMP (5.190). The parameters (B̃K(t−1)+ℓ, µ̃K(t−1)+ℓ,

µt, θt,i) come from the state evolution recursion detailed in Section 5.6.2: B̃K(t−1)+ℓ is given by
(5.201), µ̃K(t−1)+ℓ by (5.198), µt by (5.206) and θt,i by (5.207). We now discuss how to obtain
the coefficients {b̄t,i}ti=1 needed in (B.6). Let us define the matrix Φ̄t ∈ Rt×t as

(Φ̄t)i,j = 0, for i ≤ j, (Φ̄t)i,j = ⟨∂jũi⟩, for i > j, (B.8)

where, for j < i, the vector ⟨∂jũi⟩ ∈ RN denotes the partial derivative of h̃i : Ri+1 → R with
respect to the j-th input (applied component-wise). Then, the vector (b̄t,1, . . . , b̄t,t) is given by
the last row of the matrix B̄t ∈ Rt×t defined as

B̄t =
t−1∑
j=0

κj+1Φ̄
j
t . (B.9)

where {κk}k≥1 denotes the sequence of free cumulants associated to the matrix Z.

B.2.2 State evolution of auxiliary AMP

Using Theorem 2.3 in [133], we provide a state evolution result for the auxiliary AMP (B.6).
In particular, we show in Proposition B.1 that the joint empirical distribution of (z̃1, . . . , z̃t)
converges to a t-dimensional Gaussian N (0, Σ̂t).
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The covariance matrices {Σ̂t}t≥1 are defined recursively, starting with Σ̂1 = κ̄2E[U2
1 ], where

U1 is defined in (5.192). Given Σ̂t, let

(Ẑ1, . . . , Ẑt) ∼ N (0, Σ̂t) and independent of (X∗, U1),

Ûs = h̃s

(
Ẑ1, . . . , Ẑs−1, U1, X

∗
)
, for s ∈ {2, . . . , t+ 1},

(B.10)

where h̃s is defined via (B.7) and we set Û1 = U1. Let Φ̂t+1, ∆̂t+1 ∈ R(t+1)×(t+1) be matrices
with entries given by

(Φ̂t+1)i,j = 0, for i ≤ j, (Φ̂t+1)i,j = E[∂jÛi], for i > j,

(∆̃t+1)i,j = E[Ûi Ûj], 1 ≤ i, j ≤ t+ 1,
(B.11)

where ∂jÛi denotes the partial derivative ∂Ẑj
h̃i(Ẑ1, . . . , Ẑi−1, U1, X). Then, we compute the

covariance matrix Σ̂t+1 as

Σ̂t+1 =
2t∑
j=0

κ̄j+2

j∑
i=0

(Φ̂t+1)
i∆̂t+1(Φ̂

⊺

t+1)
j−i. (B.12)

It can be verified that the t× t top left sub-matrix of Σ̂t+1 is given by Σ̂t.

Proposition B.1 (State evolution for auxiliary AMP). Consider the auxiliary AMP in (B.6)
and the state evolution random variables defined in (B.10). Let ψ̃ : R2t+2 → R be a PL(2)
function. Then, for each t ≥ 1, we almost surely have

lim
N→∞

1

N

N∑
i=1

ψ̃(z̃1i , . . . , z̃
t
i , ũ

1
i , . . . , ũ

t+1
i , X∗

i )

= E[ψ̃(Ẑ1, . . . , Ẑt, Û1, . . . , Ût+1, X
∗)]. (B.13)

Equivalently, as N → ∞, almost surely:

(z̃1, . . . , z̃t, ũ1, . . . , ũt+1, X∗)
W2−→ (Ẑ1, . . . , Ẑt, Û1, . . . , Ût+1, X

∗). (B.14)

Furthermore,

(Ẑ1, . . . , Ẑt, Û1, . . . , Ût+1, X
∗)

d
= (Z̃1, . . . , Z̃t, Ũ1, . . . , Ũt+1, X

∗), (B.15)

where (Z̃1, . . . , Z̃t, Ũ1, . . . , Ũt+1, X
∗) are obtained via (5.195)–(5.197).

Proof. The result follows from Theorem 2.3 in [133]. In fact, Assumption 2.1 of [133] holds be-

cause of the model assumptions on Z, Assumption 2.2(a) holds because (X∗, ũ1) = (X∗,u1)
W2−→
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(X∗, U1) from (5.192), and Assumption 2.2(b) follows from the definition of h̃t+1 in (B.7) and
the fact that gt+1 is continuously differentiable and Lipschitz. As the auxiliary AMP in (B.6)
is of the standard form for which the state evolution result of Theorem 2.3 in [133] holds, we
readily obtain (B.14). The equivalence between (B.14) and (B.13) follows from [156, Corollary
7.21]. Finally, by inspecting the state evolution recursions (5.195)–(5.197) and (B.10) giving
(Z̃1, . . . , Z̃t, Ũ1, . . . , Ũt+1, X

∗) and (Ẑ1, . . . , Ẑt, Û1, . . . , Ût+1, X
∗) respectively, (B.15) is readily

obtained.

Proposition B.1 gives that the state evolution recursion discussed in Section 5.6.2 (cf.
(5.195)–(5.197)) coincides with the state evolution tracking the iterates of the auxiliary AMP
algorithm (B.6). In particular, ∆̃3t = ∆̂3t, Φ̃3t = Φ̂3t, and Σ̃3t = Σ̄3t. Furthermore, in the
proof of Theorem 5.1 contained in Appendix B.2.3, we will show that B̄3t → B̃3t as N → ∞.

B.2.3 Proof of Theorem 5.1

We start by presenting a useful technical lemma.

Lemma B.2. Let F : Rt → R be a Lipschitz function, and let ∂kF denote its derivative with
respect to the k-th argument, for 1 ≤ k ≤ t. Assume that ∂kF is continuous almost everywhere
in the k-th argument, for each k. Let (V

(m)
1 , . . . , V

(m)
t ) be a sequence of random vectors in Rt

converging in distribution to the random vector (V1, . . . , Vt) as m → ∞. Furthermore, assume
that the distribution of (V1, . . . , Vt) is absolutely continuous with respect to the Lebesgue measure.
Then,

lim
m→∞

E[∂kF (V (m)
1 , . . . , V

(m)
t )] = E[∂kF (V1, . . . , Vt)], 1 ≤ k ≤ t. (B.16)

The result was proved for t = 2 in [99, Lemma 6]. The proof for t > 2 is basically the same,
see also [156, Lemma 7.14]. At this point, we are ready to give the proof of Theorem 5.1.

Proof of Theorem 5.1. We show that, for any PL(2) function ψ : R2t+2 → R, the following limit
holds almost surely for t ≥ 1:

lim
N→∞

∣∣∣ 1
N

N∑
i=1

ψ
(
u1i , u

2
i , . . . , u

t+1
i , f 1

i , f
2
i , . . . , f

t
i , X

∗
i

)
− 1

N

N∑
i=1

ψ
(
ũ1i , ũ

K+1
i , . . . , ũKt+1

i , f̃ 1
i , f̃

2
i , . . . , f̃

t
i , X

∗
i

)∣∣∣ = 0,

(B.17)

where we have defined for s ∈ {1, . . . , t},

f̃ s = µsX
∗ +

Ks∑
i=1

θs,iz̃
i. (B.18)
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From here till the end of the argument, all the limits hold almost surely, and we use C to denote
a generic positive constant, which can change from line to line and is independent of N . By
using that ψ is pseudo-Lipschitz, we have that∣∣∣ 1

N

N∑
i=1

ψ
(
u1i , u

2
i , . . . , u

t+1
i , f 1

i , f
2
i , . . . , f

t
i , X

∗
i

)
− 1

N

N∑
i=1

ψ
(
ũ1i , ũ

K+1
i , . . . , ũKt+1

i , f̃ 1
i , f̃

2
i , . . . , f̃

t
i , X

∗
i

)∣∣∣
≤ C

N

N∑
i=1

(
1 + |X∗

i |+ 2|u1i |+
t∑

k=1

(
|fk

i |+ |f̃k
i |+ |uk+1

i |+ |ũKk+1
i |

))
·
( t∑

k=1

(
|fk

i − f̃k
i |2 + |uk+1

i − ũKk+1
i |2

))1/2
≤ C(4t+ 3)

[
1 +

∥X∗∥2
N

+
t∑

k=1

(∥fk∥2
N

+
∥f̃k∥2
N

+
∥uk+1∥2
N

+
∥ũKk+1∥2

N

)]1/2
·
( t∑

k=1

(∥fk − f̃k∥2
N

+
∥uk+1 − ũKk+1∥2

N

))1/2
,

(B.19)

where the last step uses twice Cauchy-Schwarz inequality. We now inductively show that as
N → ∞: (i) each of the terms in the last line of (B.19) converges to zero, and (ii) the terms
within the square brackets in (B.19) all converge to finite, deterministic limits. To achieve this
goal, we will also show that, for k ∈ [t] and ℓ ∈ [K − 1],

lim
N→∞

∥Yℓuk − ũK(k−1)+1+ℓ∥2
N

= 0, (B.20)

lim
N→∞

∥ũK(k−1)+1+ℓ−∑K(k−1)+ℓ
j=1 αK(k−1)+1+ℓ,j z̃

j−∑k
j=1βK(k−1)+1+ℓ,ju

j−γK(k−1)+1+ℓX
∗∥2

N
= 0. (B.21)

The limit (B.20) formalizes the idea discussed in Section 5.6.1 (see (5.191)) that the iterate
ũK(k−1)+1+ℓ of the auxiliary AMP tracks the quantity Yℓuk, where uk is the iterate of the AMP
we wish to analyze, up to an oN(1) error. The limit (B.21) formalizes the interpretation of the
coefficients {αi,j}, {βi,j}, {γi} provided at the end of Section 5.6.2 (see (5.212)).
Base case (t = 1). We have that

Yu1 − ũ2 = Zu1 + λ
⟨X∗,u1⟩

N
X∗ − z̃1 − (B̃1)1,1u

1 − µ̃1X
∗

=
(
λ
⟨X∗,u1⟩

N
− µ̃1

)
X∗ +

(
b̄1,1 − (B̃1)1,1

)
u1,

(B.22)
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where the first equality uses the definition of Y and of h̃2 (see (B.7)), and the second equality
uses (B.6) and that ũ1 = u1. Hence, by triangle inequality,

∥Yu1 − ũ2∥2
N

≤ 2
(
λ
⟨X∗,u1⟩

N
− µ̃1

)2∥X∗∥2
N

+ 2
(
b̄1,1 − (B̃1)1,1

)2∥u1∥2
N

≤ C
((
λ
⟨X∗,u1⟩

N
− µ̃1

)2
+
(
b̄1,1 − (B̃1)1,1

)2)
,

(B.23)

where the last inequality uses that (X∗,u1) converges in W2 to a pair of random variables with
finite second moments. As µ̃1 = λϵ (cf. (5.194)), we have

lim
N→∞

λ
⟨X∗,u1⟩

N
= λE[U1X

∗] = λϵ = µ̃1. (B.24)

Furthermore, note that (B̃1)1,1 = κ̄1 (cf. (5.194)) and b̄1,1 = κ1 (cf. (B.9)). Hence, by the
model assumptions, as N → ∞, κ1 → κ̄1 and, therefore, b̄1,1 → (B̃1)1,1. By combining this
observation with (B.23) and (B.24), we obtain that (B.20) holds for k = 1 and ℓ = 1.

By using (5.203)–(5.205), we readily obtain that α2,1 = 1, β2,1 = (B̃1)1,1 and γ2 = µ̃1. Hence,
by using the definition (B.7) of h̃2, we obtain that (B.21) holds for k = 1 and ℓ = 1.

Next, by using the definitions of Y, of the auxiliary AMP (B.6) and of h̃3 (cf. (B.7)), we
have

Y2u1 − ũ3 = Y(Yu1 − ũ2) +Yũ2 − z̃2 − (B̃2)2,1u
1 − (B̃2)2,2ũ

2 − µ̃2X
∗

= Y(Yu1 − ũ2) + Zũ2 − z̃2 − (B̃2)2,1u
1 − (B̃2)2,2ũ

2 +
(
λ
⟨X∗, ũ2⟩

N
− µ̃2

)
X∗

= Y(Yu1 − ũ2) +
(
b̄2,1 − (B̃2)2,1

)
u1 +

(
b̄2,2 − (B̃2)2,2

)
ũ2 +

(
λ
⟨X∗, ũ2⟩

N
− µ̃2

)
X∗.

(B.25)

Hence, by triangle inequality,

∥Y2u1 − ũ3∥2
N

≤ C
(∥Y(Yu1 − ũ2)∥2

N
+
(
b̄2,1 − (B̃2)2,1

)2∥u1∥2
N

+
(
b̄2,2 − (B̃2)2,2

)2∥ũ2∥2
N

+
(
λ
⟨X∗, ũ2⟩

N
− µ̃2

)2∥X∗∥2
N

)
:= C(T1 + T2 + T3 + T4).

(B.26)

Consider the first term. As Y has bounded operator norm and (B.20) holds for k = 1 and
ℓ = 1, we have that T1 → 0 as N → ∞.

Consider the second and third terms. The following chain of equalities holds

lim
N→∞

(Φ̄2)2,1 = lim
N→∞

⟨∂1ũ2⟩ = E[∂1Û2] = E[∂1Ũ2] = (Φ̃2)2,1. (B.27)

Here, the first equality uses the definition (B.8); the second equality follows from Lemma B.2,
as ũ2 converges in W2 (and therefore in distribution) to Ũ2 and ∂1Ũ2 is continuous; the third
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equality uses (B.15); and the fourth equality uses the definition of (Φ̃2)2,1 in (5.200). By the
model assumptions, as N → ∞, κj → κ̄j for all j. Thus, by combining (B.27) with the
definitions of B̄2 and B̃2 in (B.9) and (5.201), respectively, we conclude that, as N → ∞,
b̄2,i → (B̃2)2,i for i ∈ {1, 2}. By Proposition B.1, ∥ũ2∥2/N converges to a finite limit, hence we
conclude that T2, T3 → 0 as N → ∞.

Consider the fourth term. Then,

lim
N→∞

λ
⟨X∗, ũ2⟩

N
= λE[X∗ Ũ2] = µ̃2.

Here, the first equality uses Proposition B.1 and the second equality uses the definition of µ̃2 in
(5.198). As ∥X∗∥2/N = 1, we conclude that T4 → 0 as N → ∞. This proves that the RHS of
(B.26) vanishes and gives that (B.20) holds for k = 1 and ℓ = 2.

By using (5.203)–(5.205), we readily obtain that α3,1 = (B̃2)2,2, α3,2 = 1, β3,1 = (B̃2)2,1 +
(B̃2)2,2 (B̃2)1,1 and γ3 = µ̃2 + µ̃1 (B̃2)2,2. Hence, by using the definition (B.7) of h̃3, we obtain
that (B.21) holds for k = 1 and ℓ = 2.

The proof of (B.20)–(B.21) for k = 1 and ℓ ∈ {3, . . . , K−1} follows from similar arguments.
In particular, we write

Yℓu1 − ũ1+ℓ = Y(Yℓ−1u1 − ũℓ) +Yũℓ − z̃ℓ − (B̃ℓ)ℓ,1u
1 −

ℓ∑
j=2

(B̃ℓ)ℓ,jũ
j − µ̃ℓX

∗

= Y(Yℓ−1u1 − ũℓ) + Zũℓ − z̃ℓ − (B̃ℓ)ℓ,1u
1 −

ℓ∑
j=2

(B̃ℓ)ℓ,jũ
j +
(
λ
⟨X∗, ũℓ⟩
N

− µ̃ℓ

)
X∗

= Y(Yℓ−1u1 − ũℓ) +
(
b̄ℓ,1 − (B̃ℓ)ℓ,1

)
u1 +

ℓ∑
j=2

(
b̄ℓ,j − (B̃ℓ)ℓ,j

)
ũj

+
(
λ
⟨X∗, ũℓ⟩
N

− µ̃ℓ

)
X∗,

(B.28)

which by triangle inequality gives

∥Yℓu1 − ũ1+ℓ∥2
N

≤ C
(∥Y(Yℓ−1u1 − ũℓ)∥2

N
+
(
b̄ℓ,1 − (B̃ℓ)ℓ,1

)2∥u1∥2
N

+
ℓ∑

j=2

(
b̄ℓ,j − (B̃ℓ)ℓ,j

)2∥ũj∥2
N

+
(
λ
⟨X∗, ũℓ⟩
N

− µ̃ℓ

)2∥X∗∥2
N

)
.

(B.29)

As Y has bounded operator norm and ∥Yℓ−1u1 − ũℓ∥2/N → 0 (by the previous step), we have
that

lim
N→∞

∥Y(Yℓ−1u1 − ũℓ)∥2
N

= 0.
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Next, by following passages analogous to those in (B.27), we have that limN→∞ Φ̄ℓ = Φ̃ℓ. As
κj → κ̄j for all j, this implies that limN→∞ B̄ℓ = B̃ℓ. Hence, for all j ∈ [ℓ], as ∥ũj∥/N is
bounded, we have that

lim
N→∞

((
b̄ℓ,1 − (B̃ℓ)ℓ,1

)2∥u1∥2
N

+
ℓ∑

j=2

(
b̄ℓ,j − (B̃ℓ)ℓ,j

)2∥ũj∥2
N

)
= 0.

Finally, as

lim
N→∞

λ
⟨X∗, ũℓ⟩
N

= λE[X∗ Ũℓ] = µ̃ℓ,

we conclude that the last term in the RHS of (B.29) vanishes as well, which proves that (B.20)
holds for k = 1 and a generic ℓ ∈ {3, . . . , K − 1}. Furthermore, by using (5.203)–(5.205) and
the definition (B.7) of h̃ℓ+1, one can readily verify that (B.21) holds for k = 1 and a generic
ℓ ∈ {3, . . . , K − 1}.

By using (B.6) and the definition of Y, we have that

YKu1 − z̃K −
K∑
i=1

b̄K,iũ
i − µ̃KX

∗ = Z
(
YK−1u1 − ũK

)
+
(
λ
⟨X∗,YK−1u1⟩

N
− µ̃K

)
X∗. (B.30)

Hence, by using the definition of µ̃K in (5.198) and (B.20) with k = 1, ℓ = K − 1, we obtain

lim
N→∞

∥YKu1 − z̃K −∑K
i=1 b̄K,iũ

i − µ̃KX
∗∥2

N
= 0. (B.31)

Recall that J(Y) =
∑K

j=1 cjY
j. Then, by combining (B.20) with k = 1 and (B.31), we have

lim
N→∞

∥J(Y)u1 −∑K
j=1 cj

(
z̃j +

∑j
i=1 b̄j,iũ

i + µ̃jX
∗)∥2

N
= 0. (B.32)

By following the same argument as in (B.27), we have that limN→∞ Φ̄K = Φ̃K . As κj → κ̄j for
all j, this implies that limN→∞ B̄K = B̃K . Therefore,

lim
N→∞

∥∥∥∥ K∑
j=1

cj
(
z̃j +

j∑
i=1

b̄j,iũ
i + µ̃jX

∗)− K∑
j=1

cj
(
z̃j +

j∑
i=1

(B̃j)j,iũ
i + µ̃jX

∗)∥∥∥∥2
N

= 0.
(B.33)

Recall that ũ1 = u1 and (B.21) holds for k = 1. Hence, by plugging in the formulas for c1,1, µ1

and {θ1,i}i∈[K] (cf. (5.208), (5.206) and (5.207)), we have

lim
N→∞

∥∥∥∥ K∑
j=1

cj
(
z̃j +

j∑
i=1

(B̃j)j,iũ
i + µ̃jX

∗)− c1,1u
1 − µ1X

∗ −
K∑
i=1

θ1,iz̃
i

∥∥∥∥2
N

= 0.
(B.34)
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By combining (B.32)–(B.34) with the definitions of f1 and f̃1(cf. (5.190) and (B.18)), we con-
clude that

lim
N→∞

∥f1 − f̃1∥2
N

= 0. (B.35)

As g2 is Lipschitz, (B.35) immediately implies that

lim
N→∞

∥u2 − ũK+1∥2
N

= 0. (B.36)

An application of the triangle inequality gives that, for any i ≥ 1,

∥f̃ i∥ − ∥f i − f̃ i∥ ≤ ∥f i∥ ≤ ∥f̃ i∥+ ∥f i − f̃ i∥,
∥ũKi+1∥ − ∥ui+1 − ũKi+1∥ ≤ ∥ui+1∥ ≤ ∥ũKi+1∥+ ∥ui+1 − ũKi+1∥.

(B.37)

Thus, by using (B.37) with i = 1 and Proposition B.1, we obtain that

lim
N→∞

∥f1∥2
N

= lim
N→∞

∥f̃1∥2
N

= E
[(
µ1X

∗ +
K∑
i=1

θ1,iZ̃i

)2]
,

lim
N→∞

∥u2∥2
N

= lim
N→∞

∥ũK+1∥2
N

= E[(ŨK+1)
2],

(B.38)

which concludes the base step.
Induction step. Assume towards induction that (B.20)–(B.21) hold for k ∈ [t], ℓ ∈ [K − 1] and
that, for k ∈ [t],

lim
N→∞

∥fk − f̃k∥2
N

= 0, (B.39)

lim
N→∞

∥uk+1 − ũKk+1∥2
N

= 0, (B.40)

lim
N→∞

∥fk∥2
N

= lim
N→∞

∥f̃k∥2
N

= E
[(
µkX

∗ +
Kk∑
i=1

θk,iZ̃i

)2]
, (B.41)

lim
N→∞

∥uk+1∥2
N

= lim
N→∞

∥ũKk+1∥2
N

= E[Ũ2
Kk+1]. (B.42)

We now show that (B.39)–(B.42) hold for k = t+ 1, and that (B.20)–(B.21) hold for k = t+ 1,
ℓ ∈ [K − 1]. By doing so, we will have proved also the induction step and consequently that
(B.17) holds.

Using similar passages as in (B.22), we obtain

Yut+1 − ũKt+2 = Zut+1 + λ
⟨X∗,ut+1⟩

N
X∗ − z̃Kt+1 −

Kt+1∑
i=1

(B̃Kt+1)Kt+1,iũ
i − µ̃Kt+1X

∗

= Z(ut+1 − ũKt+1) +
(
λ
⟨X∗,ut+1⟩

N
− µ̃Kt+1

)
X∗ +

Kt+1∑
i=1

(
b̄Kt+1,i − (B̃Kt+1)Kt+1,i

)
ũi.

(B.43)
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Hence, by triangle inequality,

∥Yut+1 − ũKt+2∥2
N

≤ C
(∥Z(ut+1 − ũKt+1)∥2

N

+
(
λ
⟨X∗,ut+1⟩

N
− µ̃Kt+1

)2∥X∗∥2
N

+
Kt+1∑
i=1

(
b̄Kt+1,i − (B̃Kt+1)Kt+1,i

)2∥ũi∥2
N

)
:= C(T̄1 + T̄2 + T̄3).

(B.44)

Consider the first term. Since ∥Z∥op ≤ C, the induction hypothesis (B.40) implies that T̄1 → 0
as N → ∞.

Consider the second term. The following chain of equalities holds:

lim
N→∞

λ
⟨X∗,ut+1⟩

N
= lim

N→∞
λ
⟨X∗, ũKt+1⟩

N
= λE[X ŨKt+1] = µ̃Kt+1. (B.45)

Here, the first equality uses (B.40) together with the fact that ∥X∗∥2/N = 1; the second
equality follows from Proposition B.1; and the third equality uses the definition of µ̃Kt+1 in
(5.198). Finally, using (B.45) and again that ∥X∗∥2/N = 1 gives that T̄2 → 0 as N → ∞.

Consider the third term. By following the same argument as in (B.27), we have that
limN→∞ Φ̄Kt+1 = Φ̃Kt+1. As κj → κ̄j for all j, this implies that limN→∞ B̄Kt+1 = B̃Kt+1.
By using the induction hypothesis (B.42), which shows that ∥ũi∥2/N converges to a finite limit,
we conclude that T̄3 → 0 as N → ∞. This proves that the RHS of (B.44) vanishes and gives
that (B.20) holds for k = t+ 1 and ℓ = 1.

For ℓ ∈ {2, . . . , K − 1}, by following passages similar to (B.28), we have

Yℓut+1 − ũKt+ℓ+1 = Y(Yℓ−1ut+1 − ũKt+ℓ) +
Kt+ℓ∑
i=1

(
b̄Kt+ℓ,i − (B̃Kt+ℓ)Kt+ℓ,i

)
ũi

+
(
λ
⟨X∗, ũKt+ℓ⟩

N
− µ̃Kt+ℓ

)
X∗,

which by triangle inequality gives

∥Yℓut+1 − ũKt+ℓ+1∥2
N

≤ C
(∥Y(Yℓ−1ut+1 − ũKt+ℓ)∥2

N

+
Kt+ℓ∑
i=1

(
b̄Kt+ℓ,i − (B̃Kt+ℓ)Kt+ℓ,i

)2∥ũi∥2
N

+
(
λ
⟨X∗, ũKt+ℓ⟩

N
− µ̃Kt+ℓ

)2∥X∗∥2
N

)
.

(B.46)

The first term on the RHS of (B.46) vanishes as Y has bounded operator norm and we have just
proved in the previous step that ∥Yℓ−1ut+1 − ũKt+ℓ∥2/N → 0. To bound the second term, note
that, by following the same argument as in (B.27), we have that limN→∞ Φ̄Kt+ℓ = Φ̃Kt+ℓ. As
κj → κ̄j for all j, this implies that limN→∞ B̄Kt+ℓ = B̃Kt+ℓ. By using the induction hypothesis
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(B.42), we have that ∥ũi∥2/N converges to a finite limit for i ∈ [Kt + ℓ − 1]. Furthermore, as
∥Yℓ−1ut+1 − ũKt+ℓ∥2/N → 0, we also have that ∥ũKt+ℓ∥2/N converges to a finite limit. As a
result, the second term on the RHS of (B.46) vanishes. Finally, we can write a chain of equalities
analogous to (B.45) with Kt+ ℓ in place of Kt+ 1, from which we deduce that the third term
vanishes. This concludes the proof that (B.20) holds for k = t+ 1 and ℓ ∈ [K − 1].

For ℓ ∈ [K − 1], by definition (B.7) of hKt+1+ℓ, we have

ũKt+1+ℓ = z̃Kt+ℓ + µ̃Kt+ℓX
∗ +

Kt+ℓ∑
i=1

(B̃Kt+ℓ)Kt+ℓ,iũ
i. (B.47)

Let us define:

ûKt+1+ℓ := z̃Kt+ℓ + µ̃Kt+ℓX
∗ +

t+1∑
i=1

(B̃Kt+ℓ)Kt+ℓ,K(i−1)+1u
i

+
Kt+ℓ∑
i=1

i ̸≡1(modK)

(B̃Kt+ℓ)Kt+ℓ,i

( i−1∑
j=1

αi,j z̃
j +

⌈(i−1)/K⌉∑
j=1

βi,ju
j + γiX

∗
)
.

(B.48)

Then, by using the recursive definitions (5.203)–(5.205), we readily have that the RHS of (B.48)
is equal to

Kt+ℓ∑
j=1

αKt+1+ℓ,j z̃
j +

t+1∑
j=1

βKt+1+ℓ,ju
j + γKt+1+ℓX

∗. (B.49)

Recall that, by induction hypothesis, (B.40) holds for k ∈ [t], and (B.21) holds for k ∈ [t] and
ℓ ∈ [K − 1]. Thus, by using the expressions in (B.47) and (B.48) for ℓ = 1, one readily obtains
that

lim
N→∞

∥ũKt+2 − ûKt+2∥2
N

= 0. (B.50)

Since the RHS of (B.48) is equal to the expression in (B.49) for ℓ = 1, we conclude that (B.21)
holds for k = t+ 1 and ℓ = 1. At this point, we have that (B.21) holds for k ∈ [t], ℓ ∈ [K − 1]
and also for k = t + 1, ℓ = 1. Hence, by using the expressions in (B.47) and (B.48) for ℓ = 2,
we obtain

lim
N→∞

∥ũKt+3 − ûKt+3∥2
N

= 0. (B.51)

Since the RHS of (B.48) is equal to the expression in (B.49) for ℓ = 2, we conclude that (B.21)
holds for k = t + 1, ℓ = 2. By iterating this procedure for ℓ ∈ {3, . . . , K − 1}, we obtain that
(B.21) holds for k = t+ 1, ℓ ∈ [K − 1].
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By using (B.6) and the definition of Y, we have that

YKut+1 − z̃K(t+1)−
K(t+1)∑
i=1

b̄K(t+1),iũ
i − µ̃K(t+1)X

∗

= Z
(
YK−1ut+1 − ũK(t+1)

)
+
(
λ
⟨X∗,YK−1ut+1⟩

N
− µ̃K(t+1)

)
X∗.

(B.52)

Hence, by using (B.20) with k = t + 1, ℓ = K − 1 and the definition of µ̃K(t+1) in (5.198), we
obtain

lim
N→∞

∥YKut+1 − z̃K(t+1) −∑K(t+1)
i=1 b̄K(t+1),iũ

i − µ̃K(t+1)X
∗∥2

N
= 0. (B.53)

As J(Y) =
∑K

j=1 cjY
j, by combining (B.53) with (B.20) with k = t+ 1, ℓ ∈ [K − 1], we have

lim
N→∞

∥J(Y)ut+1 −∑K
j=1 cj

(
z̃Kt+j +

∑Kt+j
i=1 b̄Kt+j,iũ

i + µ̃Kt+jX
∗)∥2

N
= 0. (B.54)

By following the same argument as in (B.27), we have that limN→∞ Φ̄Kt+j = Φ̃Kt+j for all
j ∈ [K]. As κj → κ̄j for all j, this implies that limN→∞ B̄Kt+j = B̃Kt+j for all j ∈ [K].
Therefore, (B.54) implies that

lim
N→∞

∥J(Y)ut+1 −∑K
j=1 cj

(
z̃Kt+j +

∑Kt+j
i=1 (B̃Kt+j)Kt+j,iũ

i + µ̃Kt+jX
∗)∥2

N
= 0. (B.55)

Recall that (B.40) holds for k ∈ [t] by the induction hypothesis and (B.21) holds for k ∈ [t+1],
ℓ ∈ [K − 1] (thanks to the induction hypothesis and the argument above). Hence, by plugging
in the formulas for {ct+1,i}i∈[t+1], µt+1 and {θt+1,i}i∈[K(t+1)] (cf. (5.208), (5.206) and (5.207)), we
have

lim
N→∞

∥J(Y)ut+1 −∑t+1
i=1 ct+1,iu

i − µtX
∗ −∑K(t+1)

i=1 θt+1,iz̃
i∥2

N
= 0. (B.56)

By recalling the definitions of f t+1 and f̃ t+1 (cf. (5.190) and (B.18)), (B.56) implies that

lim
N→∞

∥f t+1 − f̃ t+1∥2
N

= 0. (B.57)

As gt+2 is Lipschitz, (B.57) also gives that

lim
N→∞

∥ut+2 − ũK(t+1)+1∥2
N

= 0. (B.58)

Then, by using (B.37) with i = t + 1 and Proposition B.1, we obtain that (B.41) and (B.42)
hold for k = t + 1, thus concluding the inductive proof. The result we have just proved by
induction, combined with (B.19), gives that (B.17) holds.



214 APPENDIX B. STRUCTURED PCA

Another application of Proposition B.1, together with (B.17), gives that

lim
N→∞

1

N

N∑
i=1

ψ
(
ũ1i , ũ

K+1
i , . . . , ũKt+1

i , f̃ 1
i , f̃

2
i , . . . , f̃

t
i , X

∗
i

)
= E[ψ(Ũ1, ŨK+1, . . . , ŨKt+1, F1, . . . , Ft, X

∗)],

(B.59)

where we recall that, by the definition in the theorem statement, for s ∈ {1, . . . , t},

Fs = µsX
∗ +

Ks∑
i=1

θs,iZ̃i. (B.60)

As Us+1 = gs+1(Fs), we have ŨKs+1 = Us+1 for all s ∈ [t], and the proof is complete.
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eigenvalue for nonnull complex sample covariance matrices”. In: The Annals of Probability
33.5 (2005), pp. 1643–1697. doi: 10.1214/009117905000000233.

[38] Florent Benaych-Georges and Raj Rao Nadakuditi. “The eigenvalues and eigenvectors of
finite, low rank perturbations of large random matrices”. In: Advances in Mathematics
227.1 (2011), pp. 494–521. issn: 0001-8708. doi: https://doi.org/10.1016/j.aim.
2011.02.007.

https://doi.org/10.1088/0305-4470/11/5/028
https://doi.org/10.1214/aos/1009210544
https://doi.org/10.1214/aos/1009210544
https://doi.org/10.1109/ITW.2016.7606798
https://doi.org/10.1214/19-AOS1826
https://doi.org/10.1214/19-AOS1826
https://doi.org/10.1017/9781108768900
https://doi.org/10.1007/978-3-319-70885-0
https://doi.org/10.1007/978-3-319-70885-0
https://doi.org/10.1214/009117905000000233
https://doi.org/https://doi.org/10.1016/j.aim.2011.02.007
https://doi.org/https://doi.org/10.1016/j.aim.2011.02.007


220 REFERENCES

[39] Jean Barbier. “Overlap matrix concentration in optimal Bayesian inference”. In: In-
formation and Inference: A Journal of the IMA 10.2 (May 2020), pp. 597–623. issn:
2049-8772. doi: 10.1093/imaiai/iaaa008.

[40] Jean Barbier and Dmitry Panchenko. “Strong Replica Symmetry in High-Dimensional
Optimal Bayesian Inference”. In: Communications in Mathematical Physics 393 (Aug.
2022), pp. 1–41. doi: 10.1007/s00220-022-04387-w.

[41] Michael Aizenman and Pierluigi Contucci. “On the Stability of the Quenched State in
Mean Field Spin Glass Models”. In: Journal of Statistical Physics 92 (Jan. 1998). doi:
10.1023/A:1023080223894.

[42] Satoshi Morita, Hidetoshi Nishimori, and Pierluigi Contucci. “Griffiths inequalities for
the Gaussian spin glass”. In: Journal of Physics A Mathematical General 37 (2004).

[43] Diego Alberici, Francesco Camilli, Pierluigi Contucci, and Emanuele Mingione. “The
multi-species mean-field spin-glass on the Nishimori line”. In: Journal of Statistical
Physics 182.1 (2021), pp. 1–20.

[44] Adriano Barra, Pierluigi Contucci, Emanuele Mingione, and Daniele Tantari. “Multi-
Species Mean Field Spin Glasses. Rigorous Results”. In: Annales Institut Henri Poincaré
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[128] Marylou Gabrié, Andre Manoel, Clément Luneau, Jean Barbier, Nicolas Macris, Flo-
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[134] Ramji Venkataramanan, Kevin Kögler, and Marco Mondelli. “Estimation in rotationally
invariant generalized linear models via approximate message passing”. In: International
Conference on Machine Learning. 2022, pp. 22120–22144.

[135] Jean Barbier, Francesco Camilli, Marco Mondelli, and Manuel Saenz. “Bayes-optimal
limits in structured PCA, and how to reach them”. In: (2022). doi: 10.48550/ARXIV.
2210.01237.
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è che solitamente passa troppo in fretta. Sei veramente la mia fonte di tranquillità.
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Per finire, ringrazio tutti coloro che mi hanno sopportato nei miei periodi di irrequietudine,
tra cui i miei coinquilini, i miei colleghi, e i miei amici. Vorrei menzionare anche Armand e
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