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A B S T R A C T

With the CERN LHC program underway, there has been an acceleration of data growth
in the High Energy Physics (HEP) field. By the end of Run 2 the CERN experiments
were already operating at the Peta-Byte (PB) level, producing O(100) PB of data each year.
The upcoming HL-LHC program will extend it further to the exascale, and the usage of
Machine Learning (ML) in HEP will be critical. ML techniques have been successfully used
in online and offline reconstruction programs, detector simulation, object reconstruction,
identification, Monte Carlo generation, and beyond. Nevertheless, the development of a
ML project and its implementation for production use is a highly time-consuming task
and requires specific skills. Generally, HEP analysts do not have the skills in data science to
tackle such challenges on their own. Furthermore, complicating this scenario is the existing
gap between HEP and ML communities which is partly due to the fact that HEP data is
stored in ROOT data format, which is mostly unknown outside of the HEP community.

The work presented in this thesis is focused on the development of a ML as a Service
(MLaaS) solution for HEP, aiming to provide a cloud service that allows HEP users to
run ML pipelines via HTTP calls. These pipelines are executed by using the MLaaS4HEP
framework, which allows reading data, processing data, and training ML models directly
using ROOT files of arbitrary size from local or distributed data sources. Such a solution
would help to bridge the gap between ML and HEP communities, by providing HEP users
non-expert in ML with a tool that allows them to apply ML techniques in their analyses in
a streamlined manner.

Over the years the MLaaS4HEP framework has been developed, validated and tested
and new features have been added. A first MLaaS solution has been developed by auto-
matizing the deployment of a platform equipped with the MLaaS4HEP framework. Then,
a service with APIs has been developed, so that a user after being authenticated and au-
thorized can submit MLaaS4HEP workflows producing trained ML models ready for the
inference phase. A working prototype of this service is currently running on a VM of
INFN-Cloud and is compliant to be added to the INFN Cloud portfolio of services.

The thesis is structured as follows:

Chapter 1 provides an overview of the data science world and in particular of ML.
Examples of the different types of learning are provided with a particular focus on
supervised learning techniques.

Chapter 2 is focused on cloud computing and the reason why it is a paradigm on the
rise nowadays. Details on the main technologies it relies on are provided, as well as the
structure of cloud native applications. Finally, the theme of cloud security is discussed,
deepening the life cycle of an identity, in particular, the authentication and authorization
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phases.

Chapter 3 is focused on the HEP world. In particular, details are provided on some HEP
analyses which have subsequently been taken as use cases. Then, an overview of the LHC
experiments is provided with a particular focus on CMS and all the technologies behind
the CMS computing model. Finally, data science tools and applications of ML techniques
in HEP are discussed.

Chapter 4 represents the original contribution of this thesis. It describes the architecture
of the MLaaS4HEP framework, its validation, testing, and new features integration. The
development phases of a MLaaS solution are then described, firstly by automatizing the
deployment of a platform equipped with the MLaaS4HEP framework, and later by de-
veloping a service with APIs that allows an authenticated and authorized user to submit
MLaaS4HEP workflows to train ML models and use them to make predictions.
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1
M A C H I N E L E A R N I N G

Machine Learning (ML) has transformed the way a business and organization operates,
becoming a useful means to understand patterns and trends in complex data that should
be used to succeed or maximize profits [1], as well as to make scientific discoveries. For
example, ML techniques are used to understand how a customer thinks and behaves, to
predict the future profits or losses that a company may face. This is what happens, for
example, if you visit the Amazon web page and you begin to search and view some
products. Indeed you will be presented with other products that are similar to what you
were looking at. These recommendations are not coded into the system but are suggestions
given by a ML model. The model will look at all your history and use that information to
show you similar products.

Nowadays the terms “Artificial Intelligence” (AI) and “ML” are often used interchange-
ably. Although these are connected, there are meaningful differences. AI is the capability
of a computer system to make human-like decisions and therefore mimic human cognitive
functions, such as problem-solving and learning [2]. With AI a computer system uses logic
and math to simulate the reasoning that allows people to learn from new information and
make decisions. ML is an application of AI. Indeed, ML is referred to how a computer
system develops its intelligence, i.e. it is the process of using mathematical models of data
to help a computer learn without direct instruction. This allows a computer system to
continue learning and improving on its own based on experience.

In this chapter, we introduce the world of data science and the figure of data scientist,
where ML plays a key role. To follow, we define ML and we retrace its history. Then, we
give an overview of the different types of learning in ML, and considering the content
of the original contribution of this thesis described in Ch. 4, we deepen the topic of the
supervised learning approach. Here we cover some of the most used algorithms, and how
they are trained and evaluated.

1.1 data science

The terms “data science” and “data mining” are often used interchangeably. Providing
a high-level definition, data science is the set of fundamental principles that guide the
extraction of knowledge from data, whereas data mining is the extraction of knowledge
from data using technologies that incorporate these principles [3]. Anyway in general, the
term “data science” is more broadly applied than “data mining”.

1



2 machine learning

Fig. 1.1: Data science Venn diagram. It shows an overview of the skills required in the data science
domain.

Data science combines several fields, including statistics, scientific methods, computer
science, ML, and data analysis to extract value from data. See Fig. 1.1 for the data science
Venn diagram that shows an overview of the skills required in the data science domain.

The typical data science lifecycle comprehends several steps [4–6].

1. Problem understanding. Understand the problem that needs to be tackled, identify
the central objectives of the project, and ask relevant questions.

2. Data collection. Collect data from different sources.

3. Data cleaning. Clean and prepare data, e.g. by managing inconsistencies between
values and missing values.

4. Data exploration. Explore data by plotting histograms or distribution curves to visu-
alize the general trend of data. This allows you to understand data and start to
formulate hypotheses.

5. Data transformation and feature engineering. Use the domain knowledge to trans-
form raw data into informative features that represent the problem. In ML, a feature
is an attribute or a measurable property of a phenomenon being observed.

6. Predictive modeling. Build one or more models (e.g. ML models), evaluate the per-
formance using one or more metrics, and use it/them to make predictions.

7. Findings report. Lastly, present the obtained results, e.g. through reports or present-
ations.

The process described so far is iterative as probably during the first iteration of the
lifecycle new insights can be obtained that can help to better tackle one or more steps of the
lifecycle to generate more powerful insights and obtain better results. Additionally, parts
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of the lifecycle can be automated and this practice is commonly referred to as Automated
ML (AutoML)

The ultimate goal of data science is to improve decision-making, and this is of direct in-
terest to businesses. Data-driven decision-making is the practice of basing decisions on the
analysis of data rather than purely on intuition. Those involved in data science are called
data scientists, who combine a wide range of skills to analyze the collected data. In 2012,
the Harvard Business Review published an article with title “Data Scientist: The Sexiest
Job of the 21st Century” [7] that highlighted how the role of data scientist was becoming
more and more requested in the job market. This professional figure was relatively new at
the time, but as more companies tried to make sense of data, they realized they needed
people who could combine analytics, programming, and experimentation skills [8]. Since
there was not yet a well-defined career path for people who knew to program and ana-
lyze such data, data scientists had different educational backgrounds. The most common
qualification in an informal survey of 35 data scientists at the time was a Ph.D. in experi-
mental physics, but there were also psychologists, astronomers, and meteorologists. Most
had PhDs in some scientific field, were good at math, and knew how to code. Ten years
later, the job is more in demand than ever by recruiters and employers. From 2012 to 2019
postings for data scientists on Indeed had risen by 256%, and the U.S. Bureau of Labor
Statistics predicts that data science will have more growth than any other field between
2022 and 2029. And also the wages are pretty good: indeed for example in California, the
median salary for an experienced data scientist is approaching $200,000.

The data scientist job has changed over the years.

• Its scope has been redefined. In 2012, a data scientist was supposed to do all re-
quired tasks in a data science application. Nowadays instead, there is a proliferation
of related jobs to tackle many of the data scientist tasks, including data engineer,
data analyst, data-oriented product managers, ML engineer, and AI specialist. In the
“Jobs on the Rise” reports for 2021 and 2022, LinkedIn stated that some of these jobs
are more popular than data scientists in U.S. This proliferation is due to the fact that
no single worker can have all the skills needed to successfully implement a complex
AI or analytics system. As a result, companies need to identify all the different roles
necessary to effectively deploy data science models in their businesses, and make
sure they are present and collaborating in teams.

• It has become better institutionalized. In 2012, there were no degree programs in
data science and data scientists were recruited from other fields. Now there are hun-
dreds of degree programs (most are master’s degree programs but there are also
Ph.D. programs) in data science or in related fields of AI and analytics. There is also
a huge number of certificates and online courses in data science-related fields.

• The technology it relies on has made great strides. One reason why the data sci-
entist job is changing over time is that the technologies used by data scientists are
changing. Some technology trends were already there in 2012, e.g. the use of open
source tools and the move to cloud-based data storage and processing, but there are
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others that have caught on in recent years, e.g. some parts of the data science process
are increasingly automated.

• The ethics of data science has grown. A major change in data science over the
past decade is the need for an ethical dimension. Probably the turning point for
data science ethics was the U.S. presidential election in 2016, where data scientists
attempted to influence voters using social media. Since that time, great attention has
been paid to issues of transparency, algorithmic bias, and responsible use of analytics
and AI.

An interesting and wide survey conducted by Kaggle over 25,000 data scientists and ML
engineers in 2021 gives an overview of the figure of data scientist nowadays [9]. In the
following, the main information extracted from the survey are reported.

• The 82% of users identify as men.

• More than half of all data scientists are between the ages of 22 and 34.

• Data scientists live and work all around the globe: 24.4% of them reside in India,
12.2% in the U.S., and 4.3% in Brazil. These countries are the three most representat-
ive ones.

• Over 62% of data scientists obtained either a Master’s or a doctoral degree.

• Coursera remains the most popular ongoing data science learning resource, followed
by Kaggle Learn Courses.

• Over 60% of data scientists have not more than 5 years of programming experience,
and over 75% not more than 10 years.

• More than 55% of data scientists have less than three years experience in ML.

• The mean salary for data scientists in the U.S. is between $150,000 and $200,000

• Over half of companies where data scientists work have less than 250 employees.

• Over half of data scientists still work at companies with five or fewer people on
the data science team, whereas one in five work on a team with more than 20 data
scientists.

• Over 70% of data scientists have spent money in the last five years on cloud comput-
ing products.

• Amazon Web Services, Google Cloud Platform, and Microsoft Azure are the three
big players in cloud computing, where Amazon Web Service is the most used.

• Over 40% of data scientists use ML solutions offered by cloud providers, and the
most popular choice of such products is Amazon SageMaker (see Sec. 2.2.2.1).

• Jupyter-based Integrated Development Environments (IDEs) is the go-to tool for data
scientists, with over 73% of Kaggle data scientists using it. Then, Visual Studio Code
(VSCode) is in the second position with 38%.
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1.1.1 Data engineering and Big Data

Data engineering is the process of designing and building systems that allow people to
collect, process, and analyze raw data from multiple sources and formats. Data engineering
and processing are critical to supporting data science, but they are more general than data
science [3]. The latter needs access to data and often benefits from sophisticated data
engineering that data processing technologies can facilitate, but such technologies are not
data science per se. Indeed, the use of data processing technologies is a key factor for many
data-oriented business tasks that do not involve data-driven decision-making or extracting
knowledge, e.g. modern web system processing, and efficient transaction processing.

Big data essentially are datasets that are too large for traditional data processing solu-
tions and therefore require new processing solutions. As traditional technologies, big data
technologies (e.g. Hadoop, Spark, and MongoDB) are used for many tasks, including data
engineering, and only occasionally are used to implement data mining techniques, even if
this has been happening more and more often in recent times, given the growth of data
produced.

Big data is often described by at least five characteristics, known as the 5Vs of big data.

• Volume. The size and amount of data being produced and analyzed is dramatically
increasing. According to a study published by the International Data Corporation
(IDC) in 2021 [10, 11], an amount of 64.2 ZB1 of data was created or replicated in
2020, and “the amount of digital data created over the next five years will be greater
than twice the amount of data created since the advent of digital storage”.

• Velocity. It refers to the speed at which data is generated, distributed, and collected.
In many cases, sets of big data are updated on a real- or near-real-time basis, instead
of daily, weekly or monthly updates typically made in traditional data warehouses.

• Variety. It refers to the many types of data that are available, including structured
data (e.g. transactions and financial records), unstructured data (e.g. text, documents,
and multimedia files), and semi-structured data (e.g. web server logs and streaming
data from sensors).

• Value. The worth and usefulness of information that can be gathered by the pro-
cessing and analysis of data.

• Veracity. It refers to the assurance of integrity/quality/accuracy of data. As data
is collected from multiple sources, its accuracy must be verified before using it for
business insights.

Other characteristics of big data can be added, e.g. valence, variability, and volatility.
Volume, velocity, and variety of data generated and distributed over the internet give
insight into how people are using technology in their daily lives. You can see an overview
in Fig. 1.2 referred to data of 2020.

1 1 ZB = 1021 B, i.e a million of PB.
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Fig. 1.2: Representation offered by the DOMO company about how much data is created every
minute in our increasingly data-driven world in 2020 [12].

1.2 what is machine learning and when to use it?

After this introduction to the data science world, let’s focus our attention on the main
topic of this chapter, i.e. ML. The definition of ML is relatively difficult to summarize as
it is often provided and explained differently by different people or groups. Here is a first
general one:

[Machine Learning is the] field of study that gives computers the ability to learn
without being explicitly programmed.

Arthur Samuel, 1959

And here is a more engineering-oriented definition:

A computer program is said to learn from experience E with respect to some task
T and some performance measure P, if its performance on T, as measured by P,
improves with experience E.

Tom Mitchell, 1997

To better understand the latter definition, let’s see how a ML program works, taking the
spam filter as an example [13]. The spam filter uses a given set of examples of spam emails
(that can be flagged by the user) and a set of examples of regular emails (i.e. not spam)
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to learn how to flag emails as spam. The set of emails that the system uses to learn is
called training set. Each element/example in the training set is called a training instance (or
sample). In this situation, the task T of the filter is to flag spam new emails, the experience
E is the training set, and the performance measure P needs to be defined (e.g. the ratio of
correctly classified emails can be used).

Problems like the recognition of spam emails can be also tackled using traditional pro-
gramming techniques. Let’s see when the use of ML is great.

• When existing traditional solutions require long lists of rules or a lot of fine-tuning.
Often a ML algorithm simplifies the code and performs better than a traditional
approach.

• When a traditional approach does not give a good solution.

• When dealing with a fluctuating environment. In this situation, a ML solution can
adapt better to new data.

• When dealing with complex problems and with a large amount of data.

ML involves the use of ML algorithms and models [14]. These two terms are often
used interchangeably but have different concepts behind them. An “algorithm” in ML is
a procedure (i.e. a program) that is run on data to create a ML “model”. Algorithms learn
from data or are fit on a dataset. Instead, a ML “model” is the output of a ML algorithm
run on data, it represents what is learned by a ML algorithm. The model is what is saved
after running a ML algorithm on training data: it represents the rules, numbers, and any
algorithm data structures required to make predictions. Training a model means running
an algorithm to find the parameters of the model that will make it best fit the training
data.

1.3 timeline of machine learning history

ML was first conceived from the mathematical modeling of Neural Networks (NN) [15,
16]. In 1943, the logician Walter Pitts and the neuroscientist Warren McCulloch published
the first mathematical modeling of a NN in order to create algorithms that mimic the
processes of human thought.

In 1950, Alan Turing proposed the “Turing test” which aimed to determine if a com-
puter has real intelligence. To pass the test, a computer must be able to fool a human into
believing that it too is human. In 1952, Arthur Samuel wrote the first computer learning
program. It consisted in the checkers game where an IBM computer improved at the game
the more it played, understanding which moves led to winning strategies and incorporat-
ing those moves into its program. In 1956, John McCarthy met many well-known scientists
and researchers for six to eight weeks at Dartmouth college to brainstorm about thinking
machines. This event is considered the birth of AI. In 1957, Frank Rosenblatt designed the
first NN for computers called “Perceptron”, which received visual inputs like images, and
created in response output like labels.
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In 1963, Donald Michie developed the MENACE program able to learn how to perfectly
play a match of the tic-tac-toe game. In 1967, the “nearest neighbor” algorithm was written,
that granted computers the ability to use very basic pattern recognition. In particular, this
algorithm was used to plan routes for traveling salesman.

In 1970, the mathematician and computer scientist Seppo Linnainmaa published the
general method for automatic differentiation of discrete connected networks of nested
differentiable functions. This corresponds to the modern version of backpropagation. In
1973, the British government cut the funds for research on AI in its universities. This event
started the so-called “AI winter”. In 1979, a group of researchers at Stanford University
created a robot called “the Chart” able to navigate obstacles within a room. In the same
year, Kunihiko Fukushima published a work on neocognitron, that is a hierarchical and
multilayered type of Artificial NN (ANN) used for pattern recognition tasks.

In 1981, Gerald Dejong introduced the explanation-based learning where a computer
learns to analyze training data and formulate a general rule to discard information it be-
lieves unimportant. In 1982, John Hopfield popularized the so-called “Hopfield network”,
a type of Recurrent NN (RNN), first introduced in 1974. In 1985, Terry Sejnowski created
the NetTalk program which learns to pronounce words similar to how babies do. In 1986,
two psychologists David Rumelhart and James McClelland introduced a framework called
parallel distributed processing which uses NN models for ML purposes. In 1989, Chris-
topher Watkins developed a model-free reinforcement algorithm called Q-learning, that
looks for the best action to take in any state.

In 1992, Gerald Tesauro developed the TD-Gammon program, based on an ANN, able
to play the backgammon game and rival the best players of this game. In 1995 two papers
were published: one about random decision forests (a method of ensemble learning) writ-
ten by Tim Kam Ho, and one about Support Vector Machines (SVMs) written by Vladimir
Vapnik and Corinna Cortes. In 1996, a chess-playing computer program developed by IBM,
called Deep Blue, beat Garry Kasparov who was the world champion of chess at the time.
In 1997, Sepp Hochreiter and Jurgen Schmidhuber published a paper about their work on
the Long Short-Term Memory (LSTM) architecture, a type of RNN. In 1998, a team led by
Yann LeCun released the MNIST dataset which became widely adopted as an evaluation
benchmark for handwriting recognition.

In 2002, the first open-source software library for ML, called Torch, was released. In 2006,
the Netflix prize competition was launched, where the goal was to create a ML algorithm
more accurate than Netflix’s proprietary recommendation software for users. In the same
year, Geoffrey Hinton coined the term “deep learning” referring to the algorithms that
help computers in recognizing different types of objects and text characters in videos
and pictures. In 2009, Fei-Fei Li invented the ImageNet database to help visual object
recognition.

In 2010, Anthony Goldbloom and Ben Hamner launched the Kaggle platform, originally
used for ML competitions. In 2011, using a combination of Natural Language Processing
(NLP) and information retrieval techniques, IBM’s Watson beat two champions on the Jeop-
ardy game show. In 2012, a deep Convolutional NN (CNN) called AlexNet was introduced
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in the ImageNet Large Scale Visual Recognition Challenge that dramatically improved ac-
curacy in AI image recognition. In the same year, the Google Brain team, launched in 2011,
created a NN that learns to recognize cats by watching images taken from frames of You-
Tube videos. In 2014, Facebook developed DeepFace, a software algorithm able to identify
individuals on photos as accurately as a human can. In the same year, Google unveiled its
proprietary platform Sibyl for massively parallel ML, internally used by Google to predict
users’ behavior and provide recommendations. In the same year, Ian Goodfellow and his
colleagues designed the Generative Adversarial Network (GAN), that use two NNs pitted
one against the other in order to generate new and artificial instances of data that can
pass for real data. They are widely used in image, video, and voice generation. In 2016,
the AlphaGo program developed by Google DeepMind became the first program to beat a
professional human Go player using a combination of ML and tree search techniques. The
AlphaGo algorithm managed to win five games out of five in the Go competition against
the European champion Fan Hui.

1.3.1 Rise of Machine Learning

According to a study carried out by Fortune Business Insights [17], the global ML market
size was valued at $15.44 billion in 2021, and it is expected to grow up to $209.91 billion
by 2029. The global impact of the COVID-19 pandemic was unprecedented, with ML tech-
nology seeing higher than expected demand compared to pre-pandemic levels: the global
ML market exhibited a higher growth of 36% in 2020 compared to 2019. This is attributed
to a significant acceleration in the ML technology adoption in many areas, e.g. healthcare
and automotive. In the pandemic scenario, the application of AI technology helped to cope
with the difficult situation. For example, several countries are currently using population
surveillance methods based on AI to track and trace COVID-19 cases.

Nowadays, ML (as well as also data science and AI) is becoming more and more popular,
as also highlighted by Google Trends which tracks the popularity of searched terms (see
Fig. 1.3).

ML is among the core technologies at the basis of most worldwide activities aiming
at extracting actionable insight from data. There are many examples, such as detecting
tumors in brain scans, identifying people based on pictures or voice recordings, automatic-
ally marking offensive comments on discussion forums, automatically summarizing long
documents, creating a personal assistant or a chatbot, forecasting business revenue for the
next few years, detecting credit card fraud, recommending a product that might interest a
customer, and many others. Therefore, although AI and ML algorithms have been around
for a long time, why has not the increase we see today happened earlier?

• Rise of Big Data. There is an abundance and growing of data collected and stored
right now, data that has not been collected for individuals or at scale before. They
can come from a myriad of sources, e.g. transaction processing systems, documents,
customer databases, emails, medical records, internet clickstream logs, mobile apps,
and social networks [19]. Big data also includes machine-generated data, e.g. server
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Fig. 1.3: Interest over time for ML, AI, and data science in terms of search frequency on Google.
The numbers on the y-axis represent the search interest with respect to the highest point
of the graph in relation to the indicated period. The value 100 indicates the highest search
frequency of the term, 50 indicates half of the searches, while a score of 0 indicates that not
enough data was found for the term. The plot is produced using official data from Google
Trends [18].

and network log files, data from sensors on industrial equipment, manufacturing
machines, and internet of things devices.

• Technology progresses. The development of big data technologies, and the devel-
opment of computing resources (based on CPUs and GPUs) which over time have
become increasingly abundant and cheaper, have made the processing of big data
possible as well as the use of increasingly complex models, considerably reducing
the time required for single operations. In addition, the rise of cloud computing al-
lowed access to storage and computing power with pay-as-you-go pricing enabling
the “democratization” of resources (which anyone can access, by paying).

1.4 machine learning libraries and frameworks

There are many libraries and frameworks that provide access to many ML algorithms
through different programming languages. According to a report by the SlashData com-
pany [20], about 70% of ML developers and data scientists use Python as programming
language for ML. In comparison, only 17% use R. As result, Python-based tools dominate
the ML domain. According to the survey conducted by Kaggle in 2021 [9], Scikit-learn is
the most used ML library, followed by TensorFlow, XGBoost, Keras, and PyTorch (see Fig.
1.4). Tensorflow, Keras, and Pytorch are designed for NNs, are open-source, and provide
GPU support.

• TensorFlow is a framework developed by Google and released in 2015. It is based on
graph computation, and thanks to TensorBoard it allows a developer to better visu-
alize the NN construction and it makes the debugging easier. Moreover, Tensorflow
allows the usage of other algorithms besides NNs, like Decision Forests.
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Fig. 1.4: ML frameworks and libraries percentage usage according to the survey conducted by
Kaggle in 2021 [9].

• Keras is a library released in 2015. Up until version 2.4, Keras supported multiple
backends, including TensorFlow and Theano, but as of the official version 2.6, only
TensorFlow is supported. Keras functions are a wrapper to TensorFlow framework,
meaning that a user can define an algorithm with Keras, which is easier to use, then
drop down into TensorFlow when he/she needs to use a feature that Keras does not
have.

• PyTorch is a framework based on Torch library and on tensor computing, developed
by the Facebook AI research group and open-sourced on GitHub in 2017.

• Scikit-learn is an open-source library released in 2007 that includes a variety of ML
algorithms, and also tools for model selection and data pre-processing. It is based
on other libraries, like Matplotlib, Pandas, and NumPy. It does not provide any GPU
support.

• XGBoost (eXtreme Gradient Boosting) is an open-source library released in 2014
which provides an implementation of Gradient Boosted Decision Trees (more details
in Sec. 1.8.1.5). It provides GPU support.

1.5 types of learning

There are different types of learning in ML, which can be classified into categories that are
not exclusive and can be freely combined by following some simple criteria.
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• Whether ML algorithms are trained with human supervision, hence supervised, un-
supervised, semisupervised, and reinforcement learning.

• Whether ML algorithms can learn incrementally on the fly, hence online and batch
learning.

• Whether ML algorithms work by comparing new data points to known data points,
or by detecting patterns in training data and building a predictive model, hence
instance-based and model-based learning.

1.5.1 Supervised/unsupervised learning

Depending on the amount and type of supervision that ML algorithms get during the
training, four main categories can be identified: supervised, unsupervised, semisupervised,
and reinforcement learning.

1.5.1.1 Supervised learning

In supervised learning, the training data given to the algorithm includes the desired solu-
tions, called labels. There are two different types of supervised learning tasks: classification
and regression. In the former, classification algorithms are used to predict/classify discrete
values, such as true or false, male or female, spam or not spam. In the latter, regression
algorithms are used to predict continuous values, such as age, price, and salary. Some of
the most important supervised learning algorithms are: Linear Regression, Logistic Regres-
sion, SVM, k-Nearest Neighbor (kNN), Decision Tree and Random Forest, NN. Some NN
architectures can be unsupervised, e.g. autoencoders, and also semisupervised.

Supervised learning algorithms are used in many areas, e.g. image- and object-
recognition, predictive analytics, sentiment analysis, and spam detection, just to mention
a few.

Let’s see now a couple of examples to better understand supervised problems [21]. Let’s
suppose to have a collection of data about Italian housing prices and plot the data (see Fig.
1.5) where the size of different houses in square meters is shown on the x-axis, and the
price of different houses in thousands of euros is shown on the y-axis. Given this data, we
want to know how much value we can get for a house of 150 square meters. A learning
algorithm can fit a straight line to data (pink straight line in Fig. 1.5), and based on that
it looks like the house can be sold for about €275,000. A better solution that the learning
algorithm can find is to fit a quadratic function or a second-order polynomial to data (blue
curved line in Fig. 1.5). If we use this model to make a prediction we can state that the
house can be sold for about €325,000. Each of these two different approaches is an example
of a supervised learning algorithm: the term “supervised” here refers to the fact that we
gave the algorithm a dataset containing the right answers, i.e. for each entry in this dataset
we knew the right price, that is used by the algorithm to learn how to produce predictions
for new houses. This is also a regression problem since here we are trying to predict a
continuous value output, i.e. the price of a house. In this example, to simplify we used
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Fig. 1.5: Example of regression problem tackled in supervised learning. Details in the text.

prices as discrete values, but usually the price of a house is a scalar number in the domain
of the real numbers.

As another example of supervised learning, let’s suppose to look at medical records
where we want to predict the nature of breast cancer as benign or malignant. We can take
the medical dataset and plot the size of the tumor on the x-axis and a binary value (1 or
0) on the y-axis depending on the malignant/benign nature of the tumor, as in Fig. 1.6 in
which four examples of benign tumors and four examples of malignant tumors are shown.
Let’s suppose to have a patient with a breast tumor with a known size, and we want to
know which is the probability that this breast tumor is benign or malignant. This is an
example of classification problem since we are trying to predict a discrete value output,
i.e. 0 or 1 (benign or malignant). In typical classification problems, often it happens to
have more than two values as possible output. For example, let’s suppose to have 3 types
of breast cancers, and we want to predict the discrete values of 0 (benign), 1, 2, and 3
(all malignant). This is still a classification problem, or better a multiclass classification
problem: these other discrete values in the output set correspond to no cancer, or cancer
of type 1, or 2, or 3. In these examples, we are using only one attribute (i.e. the tumor size)
to predict whether an additional tumor in the dataset is benign or malignant.

Typically, in ML problems there are many attributes (i.e. features). In our example, ad-
ditionally we could know the age of the patient and add it as information to the size of
the tumor (see Fig. 1.7). In this example, a learning algorithm should be able to throw
a straight line through the data displayed on a two-dimensional plot that best separate
malignant tumors from benign tumors.

In real-life cases, there are many more attributes (e.g. in our example we can have tumor
thickness, uniformity of cell size of the tumor, uniformity of cell shape of the tumor), up
to a very large number.
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Fig. 1.6: Example of classification problem tackled in supervised learning. Details are in the text.

Fig. 1.7: Example of classification problem tackled in supervised learning with two features. Details
are in the text.

1.5.1.2 Unsupervised learning

In unsupervised learning, the training data is unlabeled [13]. Unsupervised learning is
concerned with recognizing patterns in data, and the objective is not to forecast a particular
variable, rather it is to understand the environment represented by the data. The different
approaches to unsupervised learning with some of the most important related algorithms
are: clustering (e.g. K-Means, DBSCAN), anomaly and novelty detection (e.g. One-class
SVM), visualization and dimensionality reduction (e.g. Principal Component Analysis -
PCA), association rule learning (e.g. Apriori).

Unsupervised learning algorithms are used in many areas, e.g. market segmentation,
recommender systems, genetic and species grouping in biology, and computer security
research, just to mention a few.
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Fig. 1.8: Example of clusters based on two features that group similar visitors.

Let’s take an example where you have data about your blog visitors and you want to
detect groups of similar visitors. A clustering algorithm can be used where you do not
tell the algorithm which group a visitor belongs to, but the algorithm itself will find those
connections without your help. For example, it might notice that 30% of your visitors
are young females who love novels and generally read your blog in the afternoon, while
30% are cooking lovers who visit during the weekends. Using a hierarchical clustering
algorithm, it may also break down each group into smaller groups, and this may help
you target the posts you write for each group. See Fig. 1.8 for a simple representation of
boundaries drawn by a clustering algorithm based on two features, which divide visitors
into four different groups.

A different approach can be explained through the so-called “cocktail party problem”.
In this example, a party takes place in a room full of people where everyone is talking at
the same time, so with overlapping voices, making it difficult for everyone to understand
what others are saying. There are microphones in the room, at different distances from each
speaker, that record a different combination of any speaker’s voice with different volumes
depending on the distance. In this condition, a specific unsupervised learning algorithm
that implements Independent Component Analysis (ICA) can be used to find structures in
microphone recordings, identifying the source voice patterns, despite the different volume
levels in different microphone recordings, to ultimately disentangle them.

1.5.1.3 Semisupervised learning

In semisupervised learning, the training data is partially labeled. Usually, labeling data is
time-consuming and costly, and so could happen to have plenty of unlabeled instances,
and few labeled instances. Most semisupervised learning algorithms are combinations
of supervised and unsupervised algorithms. For example, Deep Belief Networks (DBNs)
are based on unsupervised components, called Restricted Boltzmann Machines (RBMs),
stacked on top of one another. RBMs are trained sequentially in an unsupervised manner
and subsequently, the whole system is fine-tuned using supervised learning techniques.
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Fig. 1.9: Example of semisupervised learning with two classes, purchasers (A) and non-purchasers
(B). Details are in the text.

Semisupervised learning algorithms are used in many areas, e.g. speech analysis, web
content classification, protein sequence classification, and text document classifier, just to
mention a few.

Let’s take an example where we are interested in predicting whether a customer will pur-
chase a particular product using some features, like age, income level, and so on [22]. Sup-
pose further that we have a small amount of labeled data (where labels indicate whether
customers bought the product or not) and a much larger amount of unlabeled data. We can
use unsupervised learning to cluster potential customers. In this situation two clusters, A
and B, are formed: the purchasers from the labeled data all correspond to points in cluster
A (blue triangles in Fig. 1.9) while the non-purchasers from the labeled data all correspond
to points in the other Cluster B (orange squares in Fig. 1.9). We might reasonably classify
all individuals in Cluster A as buyers and all individuals in Cluster B as non-buyers, even
those of unlabeled data (gray circles in Fig. 1.9).

Another example is Google Photos [13]. Once you upload all your family photos to this
service, it automatically recognizes that the same person A shows up in photos 2, 7, and
21, while another person B shows up in photos 4, 8, and 14. This one just described is
the unsupervised part of the algorithm (clustering). Subsequently, the system asks you
who these people are, and after you provide the information, the service is able to name
everyone in every photo, resulting in a useful tool for searching photos.

1.5.1.4 Reinforcement learning

In reinforcement learning, the learning system (called agent) learns to behave in an en-
vironment by performing actions and seeing the results. For each good action, the agent
gets a reward in return, and for each bad action, the agent gets a penalty. The agent
must learn by itself what is the best strategy, called policy, to get the maximum reward
over time. Some of the main used reinforcement learning algorithms are Q-Learning and
State–action–reward–state–action (SARSA).
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Reinforcement learning algorithms are used in many areas, e.g. autonomous driving,
industry automation, trading and finance, and gaming, just to mention a few.

Let’s take as example of reinforcement learning a toddler learning not to touch a hot
cup of milk [23]. The toddler’s experience typically includes a set of occasions when the
toddler is in front of a hot cup of milk and has to decide whether to touch the cup or
not. Presumably, every time he touches it, the result is a high level of pain, and every
time he does not touch it, a much lower level of pain results (i.e. that of an unsatisfied
curiosity). Eventually, the toddler learns that it is best for him not to touch the hot cup.
The training examples do not explain what the toddler should do, but instead classify
the different actions that he takes. However, he uses the examples to reinforce the better
actions, learning what he should do in similar situations.

Reinforcement learning algorithms are particularly useful for learning how to play a
game. Imagine a situation in chess where you can choose between different actions and
you want to identify the best action. It is not a trivial task to find which action is the best
at a certain stage of the game, so we cannot easily create supervised learning examples.
Instead, if you use reinforcement learning, all you need to do is to take some action and
report how well things went, creating in this way a training example. The task of the
reinforcement learning algorithm is to find the best line of play using the information
coming from the different examples.

1.5.2 Batch and online learning

Depending on whether a system can learn incrementally from a stream of incoming data
or not, two types of learning are identified: online learning and batch learning [13].

In online learning, the ML model is incrementally trained by feeding it data instances
sequentially, and this can be done individually or in small groups called mini-batches.
This approach is great for systems that receive data as a continuous flow and when you
have limited computing resources, since the learning is fast and cheap. Indeed, once an
online learning system has learned about new data instances, they can be discarded as the
system does not need them anymore. Online learning algorithms can also be used when
dealing with huge datasets that cannot fit in the RAM of the training node. An important
parameter of online learning algorithms is the learning rate, i.e. how fast the algorithms
should adapt to changing data. With a high learning rate, the algorithm rapidly adapts to
new data, but it also tends to quickly forget the old data. Conversely, with a low learning
rate, the algorithm learns more slowly, but it will also be less sensitive to noise (i.e. random
fluctuations) in new data or to outliers2.

In batch learning (also called offline learning), the ML algorithm is incapable of learning
incrementally and therefore the ML model must be trained using all the available data.
Since it generally takes a lot of time and computing resources, it is typically done offline.
If you want a batch learning algorithm to know about new data, the model should be
trained from scratch on the full dataset (containing both old and new data), and replace

2 Sample that differs significantly from the others.
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the old trained ML model with the new one. Unfortunately, training a ML model using the
entire dataset can take many hours and a lot of computing resources (and therefore also
a high cost), so if the ML model needs to adapt to rapidly changing data, a more reactive
solution is needed and an online learning algorithm should be used.

1.5.3 Instance-based versus model-based learning

Depending on the ability of a ML algorithm to generalize to new data, two types of learn-
ing are identified: instance-based and model-based learning.

In instance-based learning, a ML algorithm learns the samples by heart and then gener-
alizes to new cases by using a similarity measure to compare them to the learned samples.

In model-based learning, a model of given examples is built and then used to make
predictions. More in detail the steps to perform are: study the data, select the algorithm/s
fully specifying the architecture, define a performance measure/metric (that can be either
a utility/fitness function that measures how good the model is or a cost function that
measures how bad it is), train the model/s on the training data, and finally apply the
model to make predictions on new cases. This is what a typical ML project looks like.

1.6 issues in machine learning projects

When a data scientist decides to use ML to address a specific problem, he/she may be faced
with a number of issues, which can be summarized in bad data and bad ML algorithm.

• Insufficient quantity of training data. A ML algorithm to work properly generally
needs a lot of data: even for simple problems you typically need thousands of ex-
amples, while for complex problems (e.g. image or speech recognition) you may
need millions of examples.

• Nonrepresentative training data. Training data must be representative of new cases
you want to generalize to and this is not always easy to have. If not, you will have
sampling noise when the sample is too small, while you will have sampling bias with
very large samples.

• Poor-quality data. If training data is full of errors, outliers, and noise (e.g., due to
poor measurements quality), a ML algorithm will have difficulty detecting the under-
lying patterns. For this reason, a crucial phase in the data science lifecycle is to clean
up the training data.

• Irrelevant features. A ML algorithm will only be capable to learn if the training data
contains enough relevant features and not too many irrelevant features. So a critical
part of the success of a ML project is coming up with a good set of features, and this
process is called feature engineering.

• Overfitting training data. We say overfitting when the model performs well on the
training data but it does not generalize well. If the training set is noisy or if it is too
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small, then the model is likely to detect patterns in the noise itself, and obviously,
these patterns will not generalize to new instances. The aim is to have the right
balance between perfectly fitting the training data and keeping the model simple
enough to ensure generalization. The means used to reduce the risk of overfitting is
called regularization and the amount of regularization to apply during the learning
can be controlled by a specific hyperparameter. A hyperparameter is a parameter
specific of the ML algorithm (not of the model), and it is not affected by the learning
procedure itself: it is set before training and remains constant during training. If you
set a very large value for the regularization hyperparameter, the learning algorithm
will almost certainly not overfit the training data, but at the same time, it will be less
likely to find a good solution. Hyperparameters tuning is a crucial part of building
a good ML model.

• Underfitting training data. Underfitting occurs when your model is too simple to
learn the underlying structure of data. The problem can be fixed by selecting a more
powerful model (with more parameters), using better features (feature engineering),
and reducing constraints on the model (e.g. reducing regularization).

1.7 feature engineering techniques

Feature engineering is the process of selecting, manipulating, and transforming raw data
into features that can be used to improve the performance of ML models. There are several
techniques that help in this procedure and should be adopted or at least tried in ML
projects [24].

• Imputation. Imputation deals with handling missing values in data. Actually, some-
times this phase is considered a part of the data cleaning phase in the data science
lifecycle. There are two types of imputation: categorical and numerical. In the former,
missing categorical values are generally replaced by the most commonly occurring
value in other records. In the latter, missing numerical values are generally replaced
by the mean of the corresponding value in other records (or for example with a 0).

• Discretization. It consists of grouping sets of data together into a bin according to
some logic. This could help prevent data from overfitting but comes at the cost of
loss of granularity of data.

• Categorical encoding. It is the technique used to encode categorical features into
numerical values that usually are simpler for an algorithm to be understood. One
Hot Encoding is a popular technique of categorical encoding where categorical val-
ues are converted into simple numerical 1’s and 0’s without loss of information. As
drawbacks it could result in a great increase in the number of features, and in the
creation of highly correlated features.

• Feature splitting. Splitting features into two or more features can sometimes improve
the value of the features themselves.
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• Creating and adding features. It involves deriving new features from existing ones.
This can be done by using simple mathematical operations to obtain for example the
mean, median, mode, sum, difference, or product of values of two or more features.

• Dimensionality reduction. As the number of features or dimensions grows, the
amount of data a model has to generalize grows exponentially (a problem known
as the “curse of dimensionality”). There are two options to reduce dimensionality:
feature elimination and feature extraction. In the former, statistical-based feature se-
lection methods can be used to evaluate the relationship between features, in order
to select only those that have the strongest relationship with the target and to remove
highly correlated features. In feature extraction, new features are created to replace
the original ones. A common technique adopted is PCA: it linearly transforms the
data into a new coordinate system (of new features) where most of the variation in
data can be described with fewer dimensions than the initial data.

• Handling outliers. Outliers are unusually low or high values in the dataset that are
unlikely to occur in normal scenarios. The presence of outliers could negatively affect
your prediction and they must be handled appropriately. There are various methods
of handling outliers, e.g. removal and replacing (where the outliers are treated as
missing values and replaced by using appropriate imputation).

• Variable transformations. They could help to normalize skewed data. A popular
method is the logarithmic transformation, which allows you to compress larger num-
bers and relatively expand smaller numbers. This results in less skewed values, espe-
cially in the case of heavy-tailed distributions.

• Scaling. After a scaling operation, the continuous features become similar in terms of
range. This operation is not required for many algorithms, but for example distance-
based algorithms like k-NN and k-Means require scaled continuous features as
model input. The commonly used processes of scaling are normalization and stand-
ardization. In the former, all the values in a feature are rescaled in the range 0 to 1
according to Eq. 1.1. In the latter, all the values in a feature are rescaled according to
Eq. 1.2 (where µ is the mean and σ is the standard deviation of the training samples),
so they have unit variance.

Xnew =
X− Xmin

Xmax − Xmin
(1.1)

Xnew =
X− µ

σ
(1.2)

1.8 focus on supervised learning

In Sec. 1.1, we described the data science lifecycle as a series of steps, and the key phase
in extracting knowledge from data is what we called predictive modeling. This can be
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Fig. 1.10: ML algorithms percentage usage according to the survey conducted by Kaggle in 2021
[9].

achieved by exploiting ML algorithms typically with model-based learning, that in turn
consists of a series of phases, as described in Sec. 1.5.3. Considering the content of the
original contribution of this thesis described in Ch. 4, in this section we describe the pre-
dictive modeling phase in the specific case of supervised learning (with a focus on the
classification task), giving an overview of how most common algorithms works in Sec.
1.8.1, which are the typical metrics used to evaluate a trained model in Sec. 1.8.2, and how
a typical training and testing procedure works in Sec. 1.8.3.

1.8.1 Most common algorithms

As already introduced in Sec. 1.5.1.1, there are two different types of supervised learning
tasks: classification and regression. Some regression algorithms can be used for classifica-
tion, and vice versa.

In the following sections, we provide details on some of the most used algorithms: Linear
Regression, Logistic Regression, SVM, kNN, Decision Tree and Random Forest, and NN.
See Fig. 1.10 for a representation of the percentage usage of the main ML algorithms (not
only of type supervised) according to the survey conducted by Kaggle in 2021 [9].

1.8.1.1 Linear Regression

A Linear Regression model makes a prediction by simply computing a weighted sum of
the input features, plus a constant called the bias term (also called the intercept term), as
shown in Eq. 1.3.
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ŷ = θ0 + θ1x1 + θ2x2 + ... + θnxn (1.3)

where ŷ is the predicted value, n is the number of features, xi is the ith feature value,
θj is the jth model parameter (including the bias term θ0 and the feature weights θ1, θ2, ...,
θn). This equation can be written more concisely using the vectorized form, as shown in
Eq. 1.4.

ŷ = hθ(x) = θ · x (1.4)

where θ is the model parameter vector, x is the instance feature vector with x0 always
equal to 1, θ · x is the dot product of the vectors θ and x (also written as θᵀx, where θᵀ is
the transpose of θ), hθ is the hypothesis function using the model parameter θ. We recall
that training a model means setting the parameters so that the model best fits the training
set, and for this purpose a measure of how well (or poorly) the model fits the training
data should be chosen. The most common performance measure of a regression model
is the Root Mean Square Error (RMSE), which is the square root of the Mean Squared
Error (MSE). The MSE of a Linear Regression hypothesis hθ on a training set X of size m is
calculated with Eq. 1.5. To train a Linear Regression model, the value of θ that minimizes
the RMSE should be computed, and it is simpler to minimize the MSE than the RMSE,
since both lead to the same result.

MSE(X, hθ) =
1
m

m

∑
i=1

(
θᵀx(i) − y(i)

)2
(1.5)

In order to find the value of θ that minimizes the cost function, there is a closed-form
solution, i.e. a mathematical equation that directly gives the result, called Normal Equation
(Eq. 1.6).

θ̂ = (XᵀX)−1 Xᵀy (1.6)

In this equation, θ̂ is the value of θ that minimizes the cost function, and y is the vector
of target values (containing y(1), ..., y(m)). The computational complexity of inverting the
XᵀX matrix is about O

(
n2.4) to O

(
n3) (where n is the number of features) depending

on the implementation, whereas using the Singular Value Decomposition (SVD) technique
[25] the computational complexity is aboutO

(
n2). Both the Normal Equation and the SVD

approach become very slow when the number of features increases. However, there is a
very different way to train a Linear Regression model that is better suited for cases where
there are many features or too many training instances to fit in memory, called Gradient
Descent.

The basic idea of Gradient Descent is to iteratively adjust parameters to minimize a cost
function. It starts by filling θ with random values (called random initialization), then it
measures the local gradient of the error function with regard to the parameter vector θ,
and it goes gradually with small steps in the direction of the descending gradient (the
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Fig. 1.11: Representation of how Gradient Descent works. The model parameters are initialized
randomly and are adjusted repeatedly to minimize the cost function. The learning step
size is proportional to the slope of the cost function so that gradually the steps get smaller
as the parameters get closer to the minimum.

steepest slope), each time attempting to decrease the cost function (e.g. MSE) until the
algorithm converges to the minimum (see Fig. 1.11).

An important parameter in Gradient Descent is the learning step size, proportional to
the slope of the cost function and to the learning rate hyperparameter. If the learning
rate is too small, then the algorithm will take many iterations to converge and therefore
it will take a long time, whereas if the learning rate is too high, it might jump across the
concavity and end up on the other side. This might cause the algorithm to diverge failing
to find a good solution. Finally, not all cost functions have a regular shape and they can
have more than one local minimum, making convergence to the global minimum difficult.
Fortunately, in a Linear Regression model, the MSE cost function is a convex function,
so there are no local minima but only one global minimum, and since it is a continuous
function with a slope that never changes abruptly, the Gradient Descent is guaranteed
to approach the global minimum. A good practice when using Gradient Descent is to
make sure that all features have a similar scale (and therefore implement feature scaling if
necessary), otherwise it will take much longer to converge.

To implement Gradient Descent, the gradient vector of the MSE with regard to the vector
of parameters θ must be computed (Eq. 1.7), which contains all the partial derivatives of
the cost function, one for each model parameter θj.

∇θMSE (θ) =
2
m

Xᵀ (Xθ− y) (1.7)

Finally, the θ vector after a Gradient Descent step is computed with Eq. 1.8

θ(next step) = θ− η∇θMSE (θ) (1.8)

where η is the learning rate. Eq. 1.7 involves calculations over the full training set X
at each Gradient Descent step, and for this reason the algorithm is called Batch Gradient
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Fig. 1.12: Example of Stochastic, Mini-batch, and Batch Gradient Descent paths in a two-
dimensional parameters space [26].

Descent. As a result, it is very slow on very large training sets. However, Gradient Des-
cent scales well with the number of features, so training a Linear Regression model using
Gradient Descent when dealing with many features is much faster than using the Normal
Equation or SVD decomposition.

Another solution is the Stochastic Gradient Descent which selects a random instance in the
training set at every step and computes the gradient on that single instance, getting much
faster. On the other hand, due to its stochastic (random) nature, this algorithm is much
less regular than Batch Gradient Descent. Indeed, instead of smoothly decreasing until it
reaches the minimum, the cost function goes up and down, decreasing only on average.
And when it is close to the minimum, it continues to bounce around, never settling down
(red line in Fig. 1.12). Stochastic Gradient Descent is useful when the cost function is very
irregular since it can help the algorithm to jump out of local minima, and has a better
chance of finding the global minimum than Batch Gradient Descent.

The last Gradient Descent algorithm is the Mini-batch Gradient Descent. At each step it
computes the gradient on small random sets of instances called mini-batches, resulting
in less erratic progress in parameter space and a bit closer to the minimum than with
Stochastic GD (green line in Fig. 1.12), but it may be harder for it to escape from local
minima.

A Linear Regression model can be also used to fit nonlinear data, e.g. you can just add
powers or products of features as new features, and then train the linear model on the
extended set of features. This is called Polynomial Regression.

We have already introduced the concept of overfitting in Sec. 1.6. It happens when the
model performs well on the training data but it does not generalize well. To reduce over-
fitting we have to regularize the model (i.e., to constrain it): indeed the fewer degrees of
freedom the model has, the harder it will be for it to overfit data. To regularize a polyno-
mial model you can simply reduce the number of polynomial degrees. For a linear model,
regularization is typically obtained by constraining the weights of the model. There are
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three main ways to do it in Linear Regression models, called Ridge Regression, Lasso
Regression, and Elastic Net.

In the Ridge Regression (also called L2), a regularization term (also called l2 penalty)
equal to α ∑n

i=1 θ2
i is added to the cost function, where the α hyperparameter controls how

much you want to regularize the model: when α = 0 the Ridge Regression is simply
Linear Regression, whereas for large values of α all weights become very close to zero and
the model becomes a flat line going through the data mean. The Ridge Regression cost
function (identified with J(θ)) is:

J(θ) = MSE(θ) + α
1
2

n

∑
i=1

θ2
i (1.9)

In the Lasso Regression (also called L1), a regularization term (also called l1 penalty) equal
to α ∑n

i=1 |θi| is added to the cost function, which becomes:

J(θ) = MSE(θ) + α
n

∑
i=1
|θi| (1.10)

The Lasso Regression tends to eliminate the weights of the least important features,
setting them to zero. In other words, it performs feature selection producing a sparse
model (i.e. with few nonzero feature weights).

In the Elastic Net Regression, the regularization term is a mix of both Ridge and Lasso
regularization terms, that can be controlled by the mix ratio term r. The Elastic Net cost
function is:

J(θ) = MSE(θ) + rα
n

∑
i=1
|θi|+

1− r
2

α
n

∑
i=1

θ2
i (1.11)

Now the question is, when should you use plain Linear Regression (i.e., without regu-
larization), Ridge, Lasso, or Elastic Net Regression? In general, it is always good to have
at least a little bit of regularization. Ridge is a good default, but if you think that only a
few features are useful, then you should use Lasso or Elastic Net. Moreover, Elastic Net is
in general preferred over Lasso because Lasso behaves erratically when the number of fea-
tures is greater than the number of training instances or when several features are highly
correlated.

1.8.1.2 Logistic Regression

Logistic Regression (also called Logit Regression) is commonly used to estimate the prob-
ability that an instance belongs to a particular class. When the estimated probability is
greater than 50%, then the model predicts that the instance belongs to that class (also
called the positive class, labeled with “1”), if not it predicts that the instance does not
belong to that class (and so it belongs to the negative class, labeled with “0”). In this way,
the model becomes a binary classifier. A Logistic Regression model is similar to a Linear
Regression model since it computes a weighted sum of the input features adding a bias
term, but at the end, it gives as output the logistic of the result (see Eq. 1.12).
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Fig. 1.13: Logistic function [13].

p̂ = hθ(x) = σ (xᵀθ) (1.12)

The logistic σ(·) is a sigmoid function that gives a number between 0 and 1 as output. It
is defined by Eq. 1.13 and the trend can be seen in Fig. 1.13.

σ(t) =
1

1 + exp(−t)
(1.13)

The objective of the Logistic Regression training is to set the parameter vector θ so that
the model gives high probabilities for positive instances (y = 1) and low probabilities for
negative instances (y = 0). The cost function over the whole training set is called log loss
and is reported in Eq. 1.14.

J(θ) = − 1
m

m

∑
i=1

[
y(i)log

(
p̂(i)
)
+
(

1− y(i)
)

log
(

1− p̂(i)
)]

(1.14)

There is no closed-form equation to compute the value of θ that minimizes this cost
function (equivalent to the Normal Equation), but since the cost function J(θ) is convex,
the Gradient Descent or any other optimization algorithm is guaranteed to find the global
minimum. Once the gradient vector containing all the partial derivatives is computed, it
can be used in the Batch, Mini-batch or Stochastic Gradient Descent algorithm. Moreover,
Logistic Regression models can be regularized using l1 or l2 penalties.

The decision boundary of a Logistic Regression model is a hyperplane in the space of
the θi parameters. For example, the decision boundary is linear when dealing with two
features.

The Logistic Regression model can be generalized to support multiple classes directly.
This model is called Softmax Regression and the corresponding cost function is called cross
entropy.

1.8.1.3 Support Vector Machine

The SVM is a powerful and versatile ML algorithm, capable to perform linear or nonlinear
classification, regression, and even outlier detection. In particular, it is well suited for clas-
sification of complex small- or medium-sized datasets. The idea of a Linear SVM classifier
can be explained using Fig. 1.14, where two classes can be easily separated with a straight
line.
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Fig. 1.14: Difference between boundaries obtained by two different linear classifiers (left) and the
boundary given by SVM (right).

The plot on the left shows the decision boundaries of two linear classifiers (e.g. Logistic
Regression): they are fine nevertheless are so close to some instances that the models will
probably not perform as well on new instances. Whereas the plot on the right shows the
decision boundary of a Linear SVM classifier: here the straight line not only separates
the two classes but also stays as far away as possible from the closest training instances.
Adding more training instances outside the “street” (area bounded by the two dashed
lines) will not affect the decision boundary, since it is fully determined by the instances
crossed by the dashed lines (that are circled in the right plot of Fig. 1.14). These instances
are called support vectors.

Moreover, SVMs are sensitive to the scale of the features, so make sure that all features
have a similar scale (and therefore implement feature scaling if necessary).

If we strictly impose that all instances must be off the street, this is called hard margin
classification, but it only works if the data is linearly separable, and it is sensitive to outliers.
To avoid issues, a more flexible model can be used that can find a good balance between
keeping the street as large as possible and limiting the margin violations (i.e. instances on
the wrong side or in the middle of the street). This is called soft margin classification. The
SVM algorithm has many hyperparameters and one of them allows to manage the margin
violations.

Although Linear SVM classifiers are efficient and perform very well in many cases,
many datasets are not linearly separable. As we have already seen for Linear Regression,
one approach is to add more features (e.g. polynomial features) in such a way that this
can result in a linearly separable dataset. But this approach is not always good: indeed at
a low polynomial degree, it cannot deal with very complex datasets, whereas with a high
polynomial degree it produces a huge number of features making the model very slow.
Fortunately, in SVMs you can change the kernel hyperparameter to have the same results
without actually adding new features. The most common kernels you can use are: Linear,
Polynomial, Gaussian RBF, and Sigmoid.

SVC, NuSVC, and LinearSVC are classes in Scikit-learn that implement SVC, and are
capable of performing binary and multi-class classification on a dataset (see Fig. 1.15)

One method to implement an online SVM classifier (which means learning increment-
ally, typically as new instances arrive) is to use Stochastic Gradient Descent (e.g., using
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Fig. 1.15: Decision boundaries obtained by different implementations of SVC in Scikit-learn [27].

the SGDClassifier of Scikit-learn) to minimize the cost function of a Linear SVM classifier.
It does not converge as fast as the LinearSVC class, but it can be useful to handle huge
datasets that do not fit in memory.

1.8.1.4 K-Nearest Neighbors

The k-Nearest Neighbors (kNN) is an instance-based learning algorithm that can be used
for regression and classification problems. Let’s focus on the classification case. The prin-
ciple behind kNN is to find a k number of training samples closest in distance to the new
point, and predict the label from these: a new data point is assigned the data class which
has the most representatives within the nearest neighbors of the point [28]. Therefore kNN
does not attempt to construct a real model. Being a non-parametric method, it is often suc-
cessful in classification situations where the decision boundary is very irregular. Moreover,
it performs best with a low number of features. The standard Euclidean distance is the
most common choice as a metric to compute the distance, but any other metric can be
chosen. The optimal choice of the value for the k parameter is highly data-dependent: in
general, a larger value suppresses the effects of noise, but at the same time makes the
classification boundaries less distinct.

1.8.1.5 Decision Tree and Random Forest

Decision Trees are powerful algorithms capable of fitting complex datasets, can perform
both classification and regression tasks, and even multioutput tasks.

Decision Trees use a tree structure to represent a number of possible decision paths
and an outcome for each path. Let’s take a concrete example to better understand their
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Fig. 1.16: How a Decision Tree makes predictions with the Iris Dataset.

logic and to see how a Decision Tree of Scikit-learn makes predictions in a classification
problem, using the Iris Dataset provided by Scikit-learn [29] (see Fig. 1.16). This dataset
consists of petal and sepal length and width values for three different types of irises flowers
(setosa, versicolor, and virginica), stored in a 150x4 numpy.ndarray. Scikit-learn uses the
Classification and Regression Tree (CART) algorithm which produces only binary trees, i.e.
non-leaf nodes always have two children.

The starting point is at the root node on the top of Fig. 1.16 (depth 0). This node asks
for each entry in the dataset whether the flower petal length is smaller than 2.45 cm. If it
is, then you move down to the left child node (depth 1, left) which is a leaf node, which
means that it does not have any child nodes. Such a node does not ask any questions, but
combines the predicted class to all the flowers that fall in this node, in this case, an Iris
setosa. Let’s go back and suppose that the flower petal length is not smaller than 2.45 cm.
In this case, you move down to the right child node which is a non-leaf node and it asks
another question, i.e. is the petal width smaller than 1.75 cm? If it is, the flower is predicted
to be an Iris versicolor (depth 2, on the left), and if not is predicted to be an Iris virginica
(depth 2, on the right).

In Fig. 1.16 each node has a samples attribute, which counts how many training instances
it applies to, a value attribute, which tells how many training instances of each class the
node applies to, the class attribute, which tells the predicted class for the instances falling
into the node, and the gini attribute, which measures the node impurity. A node is called
“pure” (when gini=0) if all training instances belong to the same class. The Gini impurity
is computed with Eq. 1.15.

Gi = 1−
n

∑
k=1

pi,k
2 (1.15)

where Gi is the gini score of the ith node and pi,k is the ratio of instances of class k
among the training instances in the ith node. We can see that in the Fig. 1.16 the leaf nodes
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Fig. 1.17: Decision Boundaries of the Decision Tree discussed in the text with a non-leaf node of
depth 2 [13].

of depth 2 are not pure, so two additional non-leaf nodes are necessary at least. See Fig.
1.17 for the decision boundaries given by a Decision tree with two non-leaf nodes of depth
2.

Moreover, a Decision Tree can estimate the probability that an instance belongs to a
given class k: firstly it finds in the tree the leaf node for that instance, and then it returns
the ratio of training instances of class k in this node.

But how does the CART algorithm training work? It starts by splitting the training set
into two subsets using a single feature k and a threshold tk. The values of k and tk are
chosen by searching the pair (k, tk) that produces the purest subsets weighted by their
size. The cost function that the algorithm tries to minimize is given by Eq. 1.16.

J (k, tk) =
mle f t

m
Gle f t +

mright

m
Gright (1.16)

where Gle f t/right measures the impurity of the left/right subset, whereas mle f t/right is
the number of instances in the left/right subset. Once the CART algorithm has found the
best pair and split the training set into two parts, then it splits the subsets using the same
logic, and so on, stopping once it reaches the maximum depth (or reaches the value set for
other hyperparameters). At the same time, these hyperparameters are used to regularize
the model which allows avoiding overfitting. Other algorithms begin with training the
Decision Tree without restrictions, and then pruning (deleting) unnecessary nodes. A node
which children are all leaf nodes is defined as unnecessary if the purity improvement it
gives is not statistically significant.

The computational complexity of a CART is O(n×m log2(m)) where n is the number of
features whereas m is the training set size. Instead of using the Gini impurity, the entropy
impurity can be selected.

Hi = −
n

∑
k=1

pi,klog2 (pi,k) pi,k 6= 0 (1.17)

Most of the time using one impurity measure instead of the other does not make a big
difference, and they lead to similar trees. In such cases, the Gini impurity can be preferred
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since it is slightly faster to compute. But when they differ, entropy tends to produce slightly
more balanced trees.

Decision Trees are intuitive, and their decisions are easy to interpret: for this reason
they are often called white box models, in contrast to Random Forests or NN which are
considered black box models. Decision Trees make good predictions and you can easily
check the calculations that they performed to make the predictions. Anyway, they have
a few limitations: they produce orthogonal decision boundaries making them sensitive
to training set rotation. Then, Decision Trees are very sensitive to small variations in the
training data. Random Forests can limit this instability by averaging predictions over many
trees, as described in the following.

Ensemble Learning and Random Forest

Ensemble Learning is a technique where the predictions of a group of predictors (called
ensemble), such as classifiers or regressors, are aggregated. An Ensemble Learning al-
gorithm is called Ensemble method and it often gives better predictions than the best
individual predictor.

Let’s suppose to have trained a few different classifiers (e.g Logistic Regression, SVM,
kNN, and other classifiers). One simple way to create a better classifier is to aggregate the
predictions of each classifier, and predict the class that gets the most votes. This majority-
vote classifier is called a hard voting classifier, and often it achieves higher accuracy than
the best classifier in the ensemble. Indeed, despite that each classifier is a weak learner
(i.e. that it can do only slightly better than random guessing), the ensemble can be a
strong learner (which achieves high accuracy) if the weak learners are in sufficient number
and sufficiently diverse. Moreover, if all classifiers are able to estimate class probabilities,
then we can tell the voting classifier to predict the class with the highest class probability,
averaged over all the individual classifiers. This is called soft voting and it often achieves
higher performance than hard voting because it gives more weight to highly confident
votes.

Another approach to get a diverse set of classifiers instead of using very different train-
ing algorithms is to use the same training algorithm for every predictor and train them
on different random subsets of the training set. This method is called bagging (short for
bootstrap aggregating) when the sampling is done with replacement, whereas is called
pasting when the sampling is done without replacement. In both cases, the training in-
stances are sampled several times across multiple predictors, but only with bagging the
training instances are sampled several times for the same predictor. After that all predict-
ors are trained, the ensemble makes a prediction for a new instance by aggregating the
predictions of all predictors, which typically means to take the statistical mode in case
of classification (i.e. the most frequent prediction, as in the hard voting classifier) or the
average in case of regression. It turns out that individually each predictor has a higher
bias than if it was trained on the original training set, but the ensemble has a similar bias
and a lower variance than a single predictor trained on the original training set (see Sec.
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1.8.3 for the description of bias vs variance in ML models). Another good feature is that
the predictors can all be trained (and can make predictions) in parallel, scaling very well.

With the bagging method, some instances may be sampled multiple times for a given
predictor, while others may not be sampled at all (called out-of-bag instances). Since a
predictor never sees the out-of-bag instances during the training, it can be evaluated on
these instances. Furthermore, each predictor can be trained on a random subset of the in-
put features, and this is particularly useful when you are dealing with high-dimensional
inputs (such as images). The sampling of both training instances and features is called Ran-
dom Patches method, whereas keeping all the training instances but sampling the features
is called Random Subspaces method. Sampling features give even more predictor diversity,
resulting in a bit more bias but with a lower variance.

Random Forest is an ensemble of Decision Trees, generally trained via the bagging
method (or sometimes pasting). This algorithm introduces extra randomness when grow-
ing trees: instead of searching for the very best feature when splitting a node, it searches
for the best feature among a random subset of features. This gives a greater tree diversity,
which results in a higher bias but a lower variance, generally yielding an overall better
model. Furthermore, it is possible to make trees even more random by adding random
thresholds for each feature rather than searching for the best possible thresholds (as De-
cision Trees do). A forest of such trees is called an Extremely Randomized Trees ensemble
(or Extra-Trees for short). This technique leads to more bias but a lower variance, and it
makes Extra-Trees much faster to train than regular Random Forests, as finding the best
possible threshold for each feature in every node is a time-consuming task. Another great
quality of Random Forests is that they make it easy to measure the relative importance of
each feature by looking at how much the tree nodes use that feature to reduce impurity
on average (across all trees in the forest).

Boosting refers to any Ensemble method that combines several weak learners into a
strong learner. The most of boosting methods trains predictors sequentially, each of them
trying to correct its predecessor. Among the many boosting methods available, the most
popular are AdaBoost (short for Adaptive Boosting) and Gradient Boosting.

In the technique adopted by Adaboost, a new predictor pays more attention to the
training instances that the predecessor underfitted, i.e. the hard cases. When training an
AdaBoost classifier, firstly the algorithm trains a base classifier (e.g. a Decision Tree) and
uses it to make predictions on the training set, then it increases the relative weight of mis-
classified training instances. Afterwards it trains a second classifier, it updates the instance
weights, and so on. As a drawback this sequential learning technique cannot be parallel-
ized and it does not scale (or only partially), since each predictor can only be trained after
that the previous predictor has been trained and then evaluated.

Another popular boosting algorithm is Gradient Boosting, where instead of adjusting
the instance weights at each iteration as AdaBoost does, it tries to fit the new predictor to
residual errors made by the previous predictor. The Python library XGBoost gives a very
popular and optimized implementation of Gradient Boosting. It aims to be extremely fast,
scalable, and portable and it is often present in solutions that win ML competitions. It
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Fig. 1.18: Representation of a biological neuron [13].

considers the potential loss for all possible splits to create a new branch (especially useful
in case of thousands of features, therefore thousands of possible splits), and it looks at the
distribution of features across all data points in a leaf, using this information to reduce
the search space for possible feature splits. It allows many hyperparameter settings to be
investigated quickly and it is designed to limit overfitting.

An additional Ensemble method we report is called stacking (short for stacked gener-
alization), that instead of using trivial functions (such as hard voting) to aggregate the
predictions of all predictors in an ensemble, trains a model to perform this aggregation.

1.8.1.6 Neural Network

An ANN is a ML algorithm inspired by networks of biological neurons found in our
brains. A biological neuron is a cell just like any other cell of our body, and it comprises
three major parts: the cell body (also called soma), the dendrites, and the axon (see Fig.
1.18). The cell body is where the nucleus lies, where the DNA of the neuron is housed. The
dendrites are like fibers branched in different directions and are connected to many cells.
The axon is a very long extension which length may be just a few times longer than the cell
body, or up to tens of thousands of times longer. At the end of the axon, there are synapses
that allow contact with the dendrites. Neurons produce short electrical impulses that travel
along axons and cause synapses to release chemical signals called neurotransmitters. When
a neuron receives enough of these neurotransmitters within a few milliseconds, it emits its
own electrical impulses. The axon transmits the signal to the dendrites of other neurons,
whereas dendrites receive the signals from the axons of the surrounding neurons.

If the individual biological neurons are taken singularly, they seem to behave in a simple
way, but since they are organized in a network of billions of neurons, where each neuron is
typically connected to thousands of other neurons, this structure allows them to perform
highly complex computations.



34 machine learning

In 1943, McCulloch and Pitts first proposed a very simple model of the biological neuron,
known as artificial neuron. But it was in 1957 that the first ANN was invented (the Per-
ceptron), based on a slightly different artificial neuron called Threshold Logic Unit (TLU),
or sometimes Linear Threshold Unit (LTU). The inputs and output of the neuron are
numbers, and each input connection is associated with a weight. The TLU computes the
weighted sum of its inputs, then applies a step function to this sum, and outputs the result,
i.e.:

hw(x) = step(z) z = xᵀw (1.18)

Two simple step functions that are commonly used are the Heaviside and the sign func-
tion. Assuming the threshold=0, they are defined as

heaviside(z) =

0 if z < 0

1 if z ≥ 0
sgn(z) =


−1 if z < 0

0 if z = 0

+1 if z > 0

(1.19)

Thanks to the step function, a single TLU can be used for simple binary classification.
A Perceptron is composed of a single layer of TLUs where each TLU is connected to all
inputs. A fully connected layer (or dense layer) is a layer of neurons, where each of them is
connected to every neuron in the previous layer, i.e. its input neurons. The input neurons
form the input layer and simply output whatever input they are fed. An extra bias fea-
ture is generally added (x0 = 1), which typically is represented by a neuron (called bias
neuron) that outputs 1 all the time. A Perceptron makes it possible to efficiently compute
the outputs of a layer of artificial neurons for several instances at once according to the
following equation:

hW ,b(X) = φ(XW + b) (1.20)

where φ is the activation function, X is the matrix of input features (one row per instance
and one column per feature), W contains the weights except for the bias (one row per
input neuron and one column per artificial neuron in the layer), and b is the vector with
the weights connected to the bias neuron (one bias term per artificial neuron).

Perceptrons are trained taking into account the error made by the network when it
makes a prediction, by reinforcing those connections that help to reduce the error. The
Perceptron receives one training instance at a time and makes its predictions for each
instance. Then for each output neuron that produced a wrong prediction, it reinforces
the weights of the inputs that would have contributed to the correct prediction. The rule
followed is

wi,j
(next step) = wi,j + η

(
yj − ŷj

)
xi (1.21)
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Fig. 1.19: Architecture of a MLP with two inputs, one hidden layer with four neurons, and three
output layers [13].

where wi,j is the weight between the ith input neuron and the jth output neuron, η is
the learning rate, yj is the target output of the jth output neuron for the current training
instance, ŷj is the output of the yth output neuron for the current training instance, and
xi is the ith input value of the current training instance. The decision boundary of each
output neuron is linear, so actually, Perceptrons are not capable to learn complex patterns,
but if the training instances are linearly separable, the Perceptrons converge to a solution.
Contrary to Logistic Regression classifiers, Perceptrons do not output a class probability
since they make predictions based on a threshold. This is one of the reasons to prefer
Logistic Regression over Perceptrons.

Some of the limitations of the Perceptrons can be removed by stacking multiple Per-
ceptrons. The resulting ANN is called MultiLayer Perceptron (MLP), composed of one
input layer, one or more layers of TLUs (called hidden layers), and one final layer of TLUs
(the output layer). See Fig. 1.19 for an example of MLP. Each layer except the output one
includes a bias neuron, and it is fully connected to the next layer. As the signal flows only
in one direction (from the inputs to the outputs), this architecture is an example of a Feed-
forward NN (FNN). When an ANN contains many hidden layers, it is called Deep NN
(DNN), and the part of ML that uses such ANN is called deep learning.

A MLP is trained using the backpropagation algorithm. It handles one mini-batch at a time,
and it goes through the full training set multiple times (each pass through the full training
set is called epoch). At the beginning, the weights of all the hidden layers are initialized
randomly, or otherwise, the training would fail. Each mini-batch is passed to the network
input layer and then to the first hidden layer. Here the algorithm computes the output of
all the neurons for each instance of the mini-batch, then the result is passed to the next
layer where the output is computed and passed to the next layer, and so on until we get
the output by the output layer. This is the forward pass where all intermediate results are
stored since they are needed for the backward pass. At this point the algorithm measures
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Fig. 1.20: Comparison of activation functions (step, sigmoid, tanh and ReLU) and their derivatives
[13].

the output error of the network (using a loss function), and then by applying the chain
rule3 it computes how much each output connection contributed to the error. Then, the
algorithm measures the error contribution coming from each connection in the previous
hidden layer, working backward. This procedure is repeated for each hidden layer until it
reaches the input layer. In this reverse pass performed for every training instance in the
mini-batch, the algorithm measures the error gradient across all the weights of the network
by propagating the error gradient backward through the network. Lastly, the algorithm
performs a Gradient Descent step for the entire batch to adjust all the connection weights
in the network, using the computed error gradients. The whole process is repeated for
each batch and each epoch.

In order to make this algorithm properly work, the step function as activation function
should be replaced. Indeed it contains only flat segments and therefore it is not possible to
calculate the gradient. Other activation functions are commonly used: the logistic/sigmoid
function (see Eq. 1.13), the hyperbolic tangent function (tanh(z) = 2σ(2z) − 1) and the
Rectified Linear Unit function (ReLU(z) = max(0, z)). The first two have a well-defined
nonzero derivative everywhere, enabling the Gradient Descent to make some progress at
every step. The ReLU function is continuous but not differentiable at z = 0 (the slope
changes abruptly, so the Gradient Descent can bounce around). However, it works very
well, it is fast to compute, and the fact that it does not have a maximum output value
helps to reduce some issues during Gradient Descent. For these reasons, it has become the
default activation function. See Fig. 1.20 for a comparison of such activation functions and
their derivatives.

Activation functions are important for ANNs since they add some nonlinearity between
layers (without them it is like having a single layer and it is impossible to solve complex

3 The chain rule allows finding the derivative of a composite function [30]. Considering the composite function
h = g ( f (x)), its derivative is given by the chain rule: dh

dx = dh
du · du

dx . Here u is the output of the inner function
f (hence u = f (x)) which is then fed as input to the next function g to give h (hence h = g (u)). Therefore,
the chain rule relates the net output h to the input x through an intermediate variable u. Now, to generalize
the chain rule to higher dimensions let’s consider the case where x ∈ Rm and u ∈ Rn, that is the inner
function f maps m inputs to n outputs, while the outer function g receives n inputs to produce an output h.

For i = 1, ..., m and for j = 1, ..., n the chain rule becomes: ∂h
∂xi

= ∑j
∂h
∂uj
· ∂uj

∂xi
.
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problems), which theoretically allows to sufficiently large DNN to approximate any con-
tinuous function.

MLPs can be used for both regression and classification tasks. In regression tasks, when
a single value should be predicted (e.g. the price of a house) just a single output neuron is
needed, whereas for multivariate regression one output neuron per output dimension is
needed. Moreover generally you do not want to use any activation function for the output
neurons so that they are free to output any range of values. The loss function typically
used during training is the MSE.

For a binary classification problem, only a single output neuron is needed where usually
a logistic activation function is used: in this way the output will be a number between 0
and 1, which can be interpreted as the estimated probability of the positive class. MLPs can
be also used for multiclass classification tasks. Generally, if each instance can belong only
to a single class, one output neuron for each positive class is dedicated and the softmax
activation function [31] is used at the end of the whole output layer. Regarding the loss
function, the log-loss (also called cross-entropy loss) is generally used as default.

But how many layers and how many neurons per layer does a NN need to give good
results? For many problems, using a single hidden layer can give reasonable results: indeed
a MLP with just one hidden layer (but with enough neurons) can theoretically model even
the most complex functions. But for complex problems, DNN can model complex functions
using far fewer neurons than shallow nets, enabling them to perform much better with the
same amount of training data. The number of neurons in the input and in output layers
is determined by the type of input and output the given task requires. Regarding the
neurons per hidden layer, one approach is to size layers to form a pyramid, with fewer
and fewer neurons in each layer moving towards the output layer. However, it seems that
using the same number of neurons in all hidden layers performs just as well in most cases
(or even better), and as an advantage, there is only one hyperparameter to tune (instead
of one per layer). Moreover, depending on the dataset, sometimes it can help to have the
first hidden layer bigger than the others, and in general better performance is reached by
increasing the number of layers instead of the number of neurons per layer. Typically, a
simple and efficient approach is to pick a model with more layers and neurons than you
actually need, then use other techniques (e.g. early stopping and regularization) to prevent
it from overfitting.

There are many other hyperparameters of a MLP that can be chosen and adjusted. The
most important ones are: learning rate, optimizer, activation function, and number of iter-
ations.

• Learning rate. Generally, the optimal value for the learning rate is about half of the
maximum learning rate (i.e. the value above which the training algorithm diverges).

• Optimizer. It is a good practice to try and evaluate other optimizers than the Mini-
batch Gradient Descent. The most popular algorithms are: momentum optimization,
Nesterov Accelerated Gradient, AdaGrad, RMSProp, Adam and Nadam optimiza-
tion.
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• Batch size. Often large values of batch size lead to training instabilities (especially at
the beginning of training) and the produced model may not generalize as well as a
model trained with small batch size. Anyway, a good strategy can be to try to use a
large batch size, using learning rate warmup (i.e. starting the training with a small
learning rate, then increasing it), and if training is not stable or the final performance
is not good, try to use a small batch size instead.

• Activation function. We have already discussed activation functions earlier in this
Section, providing some examples for different tasks.

• Number of iterations (also called epochs). A good practice is to use a large value
and then use the early stopping (for more details, see Sec. 1.8.3).

To avoid overfitting in training ANNs, it is a common practice to implement l1 or l2
regularization and the dropout. The latter is the most popular regularization technique for
DNN where at each training step, each neuron (including the input neurons, but excluding
the output neurons) has a given probability of being temporarily “dropped out”, i.e. it will
be completely ignored during that training step but it may be active during the next step.
In case of overfitting, a way to remove it is to increase the dropout rate. Conversely, the
dropout rate should be decreased if the model underfits the training set.

There are many other types of ANN, with an increasing complexity, which description
goes beyond the scope of this thesis. In conclusion of this Section where we explored the
main ML algorithms for supervised learning tasks, we show in Fig. 1.21 a comparison of
decision boundaries produced by different ML algorithms of the Scikit-learn library on
three different sets of data.

1.8.2 Performance metrics

To evaluate the goodness of a model and its performance, a proper set of metrics must be
chosen. Classification and regression are the two types of supervised learning which have
their respective set of metrics.

Regression models have continuous output, so the metrics should be based on calculat-
ing some sort of distance between the predicted value and the true one. Since the work
of this thesis described in Ch. 4 focuses on a classification problem, the most common
regression metrics are only listed, and are the following:

• Mean Absolute Error (MAE),

• MSE (see Sec. 1.8.1.1),

• RMSE (see Sec. 1.8.1.1),

• Coefficient of determination R2 (R squared).

In binary classification problems, there are two classes of data, and each of them is as-
signed a label, i.e. 1 and 0, to distinguish the two classes also called positive and negative.
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Fig. 1.21: Decision Boundaries using different ML algorithms from the Scikit-learn library, for three
different sets of data. The plots show training points in solid colors and testing points
semi-transparent. On the bottom right corner of each plot, the classification Accuracy
of the model on the test set is reported (see Sec. 1.8.2 for the classification Accuracy
definition).
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Fig. 1.22: Confusion matrix.

All measures of performance in binary classification problems are based on four variables
obtained from the predictions of the ML model on a set of labeled data: TP (True Positive),
TN (True Negative), FP (False Positive), FN (False Negative). TP refers to how many pos-
itive class samples the model predicted correctly. TN refers to how many negative class
samples the model predicted correctly. FP refers to how many negative class samples the
model predicted incorrectly, and it represents the Type-I error in statistical nomenclature.
FN refers to how many positive class samples the model predicted incorrectly, and it rep-
resents the Type-II error in statistical nomenclature.

Confusion Matrix is a tabular visualization of the ground-truth labels versus model pre-
dictions. Each row of the confusion matrix represents the instances in a predicted class and
each column represents the instances in an actual/true class. In each cell of the confusion
matrix, the values we previously defined are reported, i.e. TP, FP, FN, and TN (see Fig
1.22).

To calculate the evaluation metrics of a multiclass classification problem, the problem
should be firstly broken into multiple binary classification problems, also called the One-
vs-Rest (OVR) strategy. In OVR, the true and predicted classes are re-calculated for each
class, combining all other classes in a single class producing essentially a binary classific-
ation output. This is performed for each class in the multiclass classification, converting
the multiclass output into multiple binary classification outputs equal to the number of
classes.

The most common classification metrics are: Accuracy, Precision, Recall, F1 score, Area
Under the Receiver Operating Characteristic (ROC) Curve (AUC).

1.8.2.1 Accuracy

Classification Accuracy is the most common performance metric for classification prob-
lems. It is defined as the number of correct predictions divided by the total number of
predictions, i.e.:
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Accuracy =
TP + TN

TP + TN + FP + FN
(1.22)

In most cases, Accuracy is just fine and it is sufficient to evaluate a model. Nevertheless,
Accuracy is not a useful metric when dealing with the so-called “skewed classes”. Let’s
consider the problem of cancer classification, where we have features of medical patients
and we want to decide whether they have cancer or not. Let’s suppose to train a logistic
regression model that has a 1% of error on a test set. This means a 99% of correct diagnosis
(and also 99% of Accuracy), so a very good model. But let’s suppose that only 0.5% of
patients really have cancer. Our model gives a worst Accuracy result compared to another
model that simply predicts for all the patients do not to have cancer, which obtains an
Accuracy of 99.5%. So when a non-learning algorithm (i.e. that always predicts 0 or 1) is
better than a simple learning algorithm, it means we are in the peculiar case of skewed
classes, and in such cases, an Accuracy metric that increases is not always an indicator
of improvements in the model. For this reason, other metrics are necessary to have better
information about a model.

1.8.2.2 Precision

The Precision metric is defined as the ratio of correctly predicted positive samples to the
total positive samples, i.e.:

Precision =
TP

TP + FP
(1.23)

Intuitively, precision is the ability of the model not to label as positive a sample that
is negative, and its value should be as high as possible. Taking the previous example,
precision would answer the question: “among all patients predicted to have cancer, how
many actually have it?”. A model that predicts the label 0 to all the samples, gives TP = 0
and Precision=0.

1.8.2.3 Recall

The Recall metric, also called Sensitivity or True Positive Rate (TPR), is defined as the ratio
of correctly predicted positive samples to all samples in the positive class, i.e.:

Recall =
TP

TP + FN
(1.24)

Intuitively, recall is the ability of the classifier to find all the positive samples, and its
value should be as high as possible. Taking the previous example, precision would answer
the question: “among all patients that actually have cancer, how many did the model
predict to have it?”. A model that predicts the label 0 to all the observations, gives TP = 0
and Recall=0.

1.8.2.4 F1

The F1 score is the harmonic mean of Precision and Recall, i.e.:
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F1 = 2 · Precision · Recall
Precision + Recall

(1.25)

Whereas the regular mean treats equally all values, the harmonic mean gives much more
weight to low values. In this way, the model will only get a high F1 score if both recall and
precision are high. The F1 score favors models that have similar precision and recall, but
this is not always what we want: in some contexts, we want to mostly care about precision,
and in other contexts, we want to mostly care about recall. But we cannot have both with
a high value: increasing the precision reduces the recall and vice versa. This is called the
precision/recall trade-off.

To understand this trade-off it is necessary to define the concept of decision threshold. It is
a cut off on the probability predicted by the ML model for an observation to be classified,
for example, as either 0 or 1. In general, for binary classification problems, the threshold
value is set by default at 0.5, meaning that all the values equal to or higher than the
threshold are mapped to 1 and all the others are mapped to 0. But for some classification
problems, a such default threshold value is not optimal and the result is a poor model
performance. So we can vary the value of the threshold to have a higher precision or a
higher recall. This decision threshold can be applied not necessarily to the aforementioned
probability, but also to other scores produced by the model for each sample. For example,
Scikit-learn does not let directly set the threshold on the probability, but it gives access to
the decision score that it uses to make predictions so that you can adjust the threshold on
this score.

1.8.2.5 Area Under the ROC Curve

A ROC curve is a graph showing the performance of a classification model at all classific-
ation thresholds (see Fig. 1.23). This curve plots two parameters, the TPR (i.e. the Recall
metric, see Eq. 1.24) and the False Positive Rate (FPR) defined as:

FPR =
FP

FP + TN
(1.26)

AUC measures the entire two-dimensional area underneath the entire ROC curve from
(0,0) to (1,1). AUC ranges in value from 0 to 1. A model that gives 100% wrong predictions
has an AUC of 0, a model that gives 100% correct predictions has an AUC of 1, whereas
a model that makes predictions randomly has an AUC of 0.5. In the last case, the ROC
curve is the diagonal line connecting the points (0,0) and (1,1). Therefore, the larger the
area under the ROC curve, the better the model.

AUC is classification-threshold-invariant, as it measures the quality of the model pre-
dictions regardless of the classification threshold chosen [33]. This feature is not always
desirable, like when there are wide disparities in the cost of FN vs FP and we want to
minimize one type of classification error.
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Fig. 1.23: ROC curve [32].

1.8.3 Training and evaluation of a ML model

To evaluate how well a model generalizes, we have to try it out on new samples. One way
to do it is to use the model in production and monitor how well it performs. This is not a
good idea if the model is really bad, and putting it into production is not always an easy
and fast task. A more common solution is to divide the input data into three parts called
training, validation, and test set.

The training set is used to train the ML model, while the test set is used to test it. In
particular, the test set is used to get an estimate of the generalization error that a model
will make on new instances before the model is launched in production. The estimate of
the generalization error is computed with the loss function in the test set.

The validation set is used to evaluate (e.g. using the metrics reported in Sec. 1.8.2)
and compare several candidates of models trained on the training set (where different
algorithms and hyperparameters are used). Then, the best model is selected and trained
on the set composed of training and validation sets, producing the final model. The latter
is then evaluated on the test set to get an estimate of the generalization error.

A proper balance in the dimension of the three sets should be found. For example,
if the validation set is too small, then model evaluations will be imprecise, while if the
validation set is too large, then the trained models risk not having learned enough from
the data. The most common size solutions adopted, calculated in relation to the input data
size, are: 80%-10%-10%, 70%-15%-15%, and 60%-20%-20% for training, validation, and test
set respectively.

Another solution that can be adopted is the k-fold cross-validation which uses many small
validation sets. The set composed of training and validation sets is randomly divided into
k equal-sized subsets called “folds”. Then each model is evaluated once per fold after it
is trained on the rest of the data, i.e. using the k-1 folds. This process is repeated k times,
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Fig. 1.24: Example of decomposition of the generalization error in bias, variance, and irreducible
error [34].

each time varying the fold used for the validation and using the remaining ones for the
training. By averaging out all the evaluations of the model, a much more accurate measure
of its performance can be obtained, but at the same time, it takes longer to complete the
whole procedure (there are k training processes).

The k-fold cross-validation procedure gives an estimate of the generalization perform-
ance of the model. The training set can be also used to have an estimate of the gener-
alization error but this will not be a good estimate since the training set contains only
samples that the model has already seen during the training and no new samples. If a
model has good performance on training data but does not generalize according to the
cross-validation metrics, then the model is overfitting. If the model performs poorly on
both, then it is underfitting. This is one way to tell whether a model is too simple or too
complex.

An important result of statistics is the model generalization error that can be expressed
as the sum of three errors: bias (due to wrong assumptions), variance (due to the model
excessive sensitivity to small variations in training data), and irreducible error (due to the
noisiness of the data itself). Reducing the model complexity increases the bias and reduces
the variance, whereas increasing the model complexity typically increases the variance and
reduces the bias. To have a good model a data scientist needs to find a good bias/variance
trade-off (see Fig. 1.24).

Another way to see if the model is too simple or too complex and if it is suffering from
high bias (underfitting) or high variance (overfitting), is to use the learning curves which are
plots of model performance on the training and validation sets as a function of the training
set size, or the training iteration. In Fig. 1.25, the two plots give a simplified overview of
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Fig. 1.25: Examples of learning curves. The learning diagram on the left shows a situation of high
bias and underfitting: the training and validation error curves are very close and higher
than the desired error. The learning diagram on the right shows a situation of high vari-
ance and overfitting: there is a large gap between training and validation error curves
where the former is lower than the desired error.

the learning curves behavior (actually in real life they are more noisy). In the case of high
bias, the training and validation error curves are very close and higher than the desired
error. In this case, getting more data will not help much the model and the two errors will
remain high, with the validation error higher than the training error but closer and closer.
Whereas in the case of high variance, the training and validation error curves are divided
by a large gap that can be reduced by getting more data. Nevertheless, the validation
error curve will remain higher than the training error curve and the difference remains
significant.

A way used to avoid overfitting in iterative learning algorithms, like Gradient Descent,
is to stop the training as soon as the validation error reaches the minimum. This technique
is called early stopping. With Stochastic and Mini-batch Gradient Descent, the curves are
not so smooth and it could be difficult to know whether the minimum is being reached or
not. One solution is to stop only after the validation error is above the minimum for some
time and you are confident that the model will not get better. At this point, we can use the
model parameters related to the point where the validation error was at the minimum.





2
C L O U D C O M P U T I N G

To understand why the cloud metaphor is used to denote the technological revolution we
are now seeing, we have to look at what a network actually is from an engineering per-
spective [35]. When multiple computers are connected in a network, this happens through
multiple nodes. These are computers or other electronic devices that have the capability
to connect to other devices or computers and route communication traffic between com-
puters. Every node in the network mainly receives data from one endpoint and routes them
to another. Rather than try to summarize all the elements that constitute the network, a
metaphor was needed to symbolize an amorphous collection of machines. For this reason,
the concept of cloud was introduced, which is also simple to draw and visualize. Drawing
a cloud was a convenient and fast way to illustrate devices connected to a network.

The other side of the coin is that the term cloud was born from a marketing perspective
and used as a general term to describe very different solutions that all had in common
the use of Internet. In this perspective cloud computing can be identified today as the on-
demand delivery of IT resources over the Internet with pay-as-you-go pricing [36]. Instead
of buying, owning, and maintaining physical data centers and servers, the user can access
technology services, such as computing power, storage, and databases, on an as-needed
basis from a cloud provider.

In this chapter, we go into detail about cloud computing, giving an overview of the his-
tory of the term and describing its different types and uses. Particular attention is given to
the primary technology components cloud computing relies on that go beyond the cloud
computing itself which, however, in turn has contributed to their development. In the last
part of the chapter, we focus on two aspects: the rise of cloud native applications based on
microservices (Sec. 2.7) and the thematic of security in cloud computing (Sec. 2.8). The lat-
ter involves several aspects, and considering the content of the original contribution of this
thesis described in Ch. 4, greater attention is given to the authentication and authorization
phase of users and applications, that allows access to cloud services to be appropriately
filtered.

2.1 a brief history of cloud computing

The origin of the idea related to cloud computing can be traced back to around the 1950s,
when the computer scientist John McCarthy came up with the theory of “time-sharing”. At
that time, computers were both huge and hugely expensive, so not every company could
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afford to have one. According to the idea of time“time-sharing” users could rent the right
to use the computational power of the computer, and share the cost of running it.

In the 1960s, J.C.R Licklider developed the ARPANET (Advanced Research Projects
Agency Network): his vision was for a global computer network such that users could
access programs and data from anywhere. Around this time, John McCarthy also stated
that “computation may someday be organized as a public utility”, like gas, electricity, and
water.

If computers of the kind I have advocated become the computers of the future,
then computing may someday be organized as a public utility just as the tele-
phone system is a public utility. [...] The computer utility could become the basis
of a new and important industry.

John McCarthy, MIT’s centennial celebration in 1961

In the 1970s, the creation of “virtual machines” (VMs) took the time-sharing model
to a new level, allowing multiple computing environments to be hosted in one physical
environment.

The ARPANET was formally decommissioned in 1990, after partnerships with the tele-
communication and computer industry had assured expansion in the private sector and
future commercialization of an expanded world-wide network, known as the Internet. In
1989 the World Wide Web was born at CERN and in January 1991 the first web servers
outside CERN were switched on.

The first public mention of the cloud was in 1994 in an article in the Wired magazine
about a company called General Magic. The company was founded by the creators of
the Macintosh computer, Bill Atkinson and Andy Herzfeld. Their idea was that “a lot of
different areas are converging on an electronic box that is in your pocket, that is with you
all the time, that supports you in some way”. Obviously at that time no “electronic box”
would be able to do much computing that would be very interesting, so that had to be done
on a server to which the device connected through a network. The product envisioned by
General Magic was called Telescript and was a system to tie together all sorts of networks
into one standardized interface that people would use to connect.

Now, instead of just having a device to program, we now have the entire Cloud
out there, where a single program can go and travel to many different sources
of information and create sort of a virtual service.

Bill and Andy’s Excellent Adventure II, Wired 1994

In this quote there is not only the word “cloud” but also elements about the concept of
cloud: the ability to access information and functionality from any device at any location.
The particular technology offered by General Magic, however, did not catch on and the
company was liquidated in the early 2000s.

In 1996, when the Internet and browsers were catching on, the Compaq company took
the concept and word “cloud” to build a strategy on it. Marketing executive Steve Favol-
oro and technologist Sean O’Sullivan envisioned that file storage and business software
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would move to the Internet and they were investigating on how their company would
benefit from this. This was the start of the multibillion-dollar business selling servers to In-
ternet providers. The term cloud is found in one of the internal document titled “Internet
Solutions Division Strategy for Cloud Computing”.

In 1997, another definition of cloud computing came from Professor Ramnath Chellapa
of Emory University. He referred to cloud computing as the “computing paradigm where
the boundaries of computing will be determined by economic rationale rather than tech-
nical limits alone”.

In 1999, Salesforce became the first company to offer applications over the Internet.
Three years later, the industry grew massively with video, music and other media be-
ing hosted and delivered online. In 2002, Amazon launched the Amazon Web Services
(AWS) platform, a suite of enterprise-oriented services that provide remotely provisioned
storage, computing resources, and business functionality [37]. Finally in 2006 the term
“cloud computing” emerged in the commercial area. In this year Amazon launched its
Elastic Compute Cloud (EC2) services that enabled organizations to “lease” computing ca-
pacity and processing power to run their enterprise applications. Google Apps also began
providing browser-based enterprise applications in the same year, and three years later,
the Google App Engine became another historic milestone. In 2007 a small start up called
Netflix launched its video streaming website. Subsequently IBM launched SmartCloud,
Apple launched iCloud, Microsoft launched Microsoft Azure, and then also other compan-
ies like Oracle and HP joined the game. In July 2010, Rackspace Hosting and NASA jointly
launched an open source cloud software initiative known as OpenStack, intended to help
organizations offering cloud computing services running on standard hardware.

“Cloud is the powerhouse that drives today’s digital organizations” said the Sid Nag,
research vice president at Gartner firm. Nowadays cloud computing infrastructure is the
backbone of the delivery pipeline of just about every digital service, from social media
and streaming entertainment to connected cars and autonomous Internet of Things (IoT)
infrastructure. “Worldwide end-user spending on public cloud services is forecast to grow
20.4% in 2022 to total $494.7 billion, up from $410.9 billion in 2021, according to the latest
forecast from Gartner. In 2023, end-user spending is expected to reach nearly $600 billion”
[38].

2.2 definition of cloud computing

The IT consultancy Gartner was one of the first to define cloud computing in 2008, sub-
sequently slightly updated:

Cloud computing is a style of computing in which scalable and elastic IT-enabled
capabilities are delivered as a service using Internet technologies.

Gartner Glossary

This definition highlights some of the key aspects of cloud computing: scalability, elasti-
city, and delivered as a service over the Internet.
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A more precise and comprehensive definition is the one by the National Institute of
Standards in Technology (NIST). This definition received industry-wide acceptance and it
became the de facto standard definition of what is and what is not cloud.

When agencies or companies use this definition they have a tool to determine
the extent to which the information technology implementations they are con-
sidering meet the cloud characteristics and models. This is important because by
adopting an authentic cloud, they are more likely to reap the promised benefits
of cloud — cost savings, energy savings, rapid deployment and customer em-
powerment. And matching an implementation to the cloud definition can assist
in evaluating the security properties of the cloud.

NIST computer scientist Peter Mell, October 2011

NIST published its original definition back in 2009, followed by 15 drafts in more than
three years [39]:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications, and services) that can be rapidly provi-
sioned and released with minimal management effort or service provider inter-
action.

The NIST Definition of Cloud Computing, September 2011

Then the definition continues in describing the cloud model: it is composed of five
essential characteristics, three service models, and four deployment models.

2.2.1 Essential characteristics

The essential characteristics were meant as the properties a cloud solution should have.

• On-demand self-service. It means that customers can use cloud computing without
human contact with service providers, thanks to an user-friendly self-service system
that allows to access various cloud resources as needed.

• Network access. It is the ability of network infrastructure to connect with a wide
variety of devices, among which mobile phones, laptops, tablets and workstations, to
enable seamless access to computing resources across these diverse platforms. Broad
network access is what makes the cloud available to any device from any location.

• Resource pooling. It means that “provider’s computing resources are pooled to
serve multiple consumers using a multi-tenant model, with different physical and
virtual resources dynamically assigned and reassigned according to consumer de-
mand. There is a sense of location independence in that the customer generally has
no control or knowledge over the exact location of the provided resources but may
be able to specify location at a higher level of abstraction (e.g., country, state, or data
center)”. Without this the goal of energy savings would not be realized.
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• Rapid elasticity. It is the ability to “scale rapidly outward and inward commensurate
with demand”. For instance if a service like a website suddenly has a lot more users
because of a flash sale, it needs to be able to scale up the computing power to handle
this quickly, and when the sale is over it should scale back down. Not all cloud
services come with this automatically.

• Measured service. It means that the customer should only pay for what they use
to avoid paying for a machine standing idle in a data center. Typically this is done
on a pay-per-use or charge-per-use basis. In practice vendors are not always mak-
ing it as transparent, as NIST would have wanted them to (“resource usage can be
monitored, controlled, and reported, providing transparency for both the provider
and consumer of the utilized service”). It can be very difficult or impossible for a
customer to validate the correctness of the metering. The unit used to measure can
differ greatly, e.g. it can be storage, processing, bandwidth, and active user accounts.

Although these characteristics were helpful eleven years ago for distinguishing between
old-fashioned hosting and cloud solutions, the lines are more blurred today. In practice,
these characteristics are good guidelines of what can be expected from most cloud solu-
tions today, but they are not an accurate reflection of all cloud computing. We need to
think these characteristics as common characteristics that we would expect to find most
often.

2.2.2 Service models

There are three main types of cloud computing services, and each of them provides differ-
ent levels of control, flexibility, and management so that users can select the proper set of
services for their needs. A schematic representation of the three different service models
and what users can manage is shown in Figure 2.1.

• Infrastructure as a Service (IaaS). It is the most basic form where computing re-
sources are provided and the cloud consumer installs and manages the needed soft-
ware. IaaS provisions storage, compute, and networking services through either a vir-
tualized image (for more details on virtualization see Sec. 2.4.3), a container (for more
details on containers see Sec. 2.4.5) or directly on the computer systems (also known
as “bare-metal”) [41]. The general purpose of an IaaS environment is to provide
consumers with a high level of control and responsibility over its configuration and
utilization [37]. The IT resources provided are generally not preconfigured, leaving
the administrative responsibility directly upon the consumer. This model is therefore
aimed at those consumers that require a high level of control over the cloud-based
environment they intend to create.

• Platform as a Service (PaaS). This service model refers to a platform that can be used
to program applications by the consumer. It is possible to write code and configure
the service, whereas the vendor manages the underlying infrastructure. PaaS vendors
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Fig. 2.1: Diagram of the three different cloud computing service models: Infrastructure as a Service,
Platform as a Service, Software as a Service [40]. Each of them has different levels of control,
flexibility, and management by the users compared to on-premises solutions.

create a “ready-to-use” environment typically comprised of already deployed and
configured IT resources, and where pre-packaged products and tools (like libraries)
used to support the entire delivery lifecycle of custom applications are already in
place. By working within a ready-made platform, the cloud consumer is spared the
setting up and maintaining the bare infrastructure IT resources provided via the IaaS
model. Conversely, the cloud consumer is granted a lower level of control over the
underlying IT resources that host and provision the platform.

• Software as a Service (SaaS). It is a model where everything is managed by the
vendor and users have only limited options to configure the software. The applica-
tions offered are products of the vendor and are accessible from various client devices
through either a thin client interface, such as a web browser (e.g., web-based email),
or a program interface. Some SaaS examples: Gmail and in general Google Apps,
Office365, social media such as Facebook, Twitter, Instagram, etc.

Many specialized variations of the three cloud service models emerged, e.g. Func-
tion as a Service (FaaS), Database-as-a-Service (DaaS), Communication-as-a-Service(CaaS),
Integration-Platform-as-a-Service(IPaaS), Testing-as-a-Service(TaaS). In particular, in Sec.
2.2.2.1 we focus on the ML as a Service (MLaaS) model.

2.2.2.1 Machine Learning as a Service

The amount of data generated is continuously growing from global data sources like social
media, web sites, mobile applications, with the risk that these data become useless without
proper preparation and processing [42]. Many different ML algorithms are used to extract
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valuable knowledge from data (see Ch. 1), e.g. for scientific modeling, consumer behavior,
energy consumption forecasting, related article recommendation and user trends. Large
companies could have enough resources to invest in their own ML solutions, but small
companies, developers and researchers in general have difficulties when try to understand
how ML works and when building their own solutions or integrating with third-party
ones. In addition, ML can require computational resources with impracticable costs. One
way to solve these issues is by using a MLaaS solution. In this situation multiple users will
use the same platform, computational resources can be shared or allocated on demand,
reducing overall costs. Users can have access to ML solutions efficiently from anywhere, at
any time, without worrying about the implementation and computing resources, focusing
mainly on the data itself.

MLaaS is a well-known concept in industry: the MLaaS market was valued at USD 2.26
billion in 2021, and it is expected to reach USD 16.7 billion by 2027 [43]. Major IT compan-
ies offer such solutions to their customers, e.g Amazon SageMaker, Microsoft Azure ML
Studio, Google AI Platform, and IBM Watson ML Studio are prominent implementations
of this concept. Usually, MLaaS is used as an umbrella definition of various cloud-based
platforms that provide a web service to users interested in ML tasks. These platforms al-
lows to perform ML pipelines, i.e. a sequence of steps typically taken when a user faces a
ML problem, like pre-processing the data, identifying the most important features for the
task, choosing a ML model, tuning parameters of the model, training the model, evaluating
and using it for inference. Depending on the chosen solution a MLaaS system can cover
the full spectrum between extreme simplicity (turn-key, nonparametric solutions) and full
customization (fully tunable systems) [44]. Some are simple black-box systems where the
classifier used is not even revealed, whereas others offer users the choice in everything.

Leading cloud providers offer MLaaS solutions with different interfaces and Application
Programming Interfaces (APIs), mostly designed to cover standard use cases, e.g. classific-
ation, regression, clustering, anomaly detection, performed in different sectors like natural
language processing and computer vision (see Figure 2.2).

These platforms simplify and make ML accessible to even non-experts, ensuring af-
fordability and scalability as these services inherit the strengths of the underlying cloud
infrastructure. Moreover, the MLaaS solutions are well integrated with the rest of the pro-
vider’s portfolio of services which thus offers a complete solution. There are several aspects
in which the MLaaS platforms help users [46].

• Data management. As many companies are moving data from on-premise storage to
cloud storage systems, the need to properly organize data arises. MLaaS platforms
are products of cloud providers which offer cloud storage, and at the same time they
provide ways to properly access and process data for ML usage.

• Access to ML tools. There is a wide range of ML tools that users can try for different
use cases. Data scientists do not need to worry about the actual computations of the
operations because they are abstracted by MLaaS providers.
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Fig. 2.2: Comparison of some services offered by common MLaaS providers: Amazon, Microsoft
Azure, Google Cloud AI, IBM Watson [45].

• Ease of use. MLaaS offers data scientists the means to get started quickly with ML
without having to take care of software installation processes. With MLaaS the pro-
vider’s data centers handle the actual computation, without impacting on the user’s
on-premises resources.

• Cost efficiency. MLaaS is beneficial because users only pay for resources when they
are actually used.

The popularity of DevOps among the software development community gave birth to
the term “MLOps” [45]. DevOps is an approach for software development to optimize
software development processes by focusing on short and fast releases, applying a high
level of automation to routine tasks. Further information on DevOps is provided in Sec.
2.6. MLOps applies the same principles to ML, which led to the emergence of automated
data management, model training/deployment, and monitoring. MLaaS providers offer
tools for MLOps practitioners to manage ML pipelines.

In the following we provide a brief overview of some of the most used platforms offering
MLaaS solutions.

Amazon Sagemaker
Originally Amazon provided the Amazon ML platform for ML tools but has not updated
it anymore since 2021. The service is still functional but does not accept new users. This
is because the Amazon SageMaker platform and all of its corresponding services are su-
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perior to Amazon ML, and basically deliver the same functionality to users. SageMaker
offers an environment that simplifies ML workflows by providing tools for quick model
building and deployment. The ML algorithms provided are optimized to run efficiently
with extremely large data in a distributed environment, as well as the users can add their
own methods and run models leveraging the Sagemaker deployment features [47].

Microsoft Azure ML Studio
Azure ML Studio, is a development environment that creates a resourceful playground
both for entry-level and experienced data scientists. Most operations in Azure ML Studio
can be completed using a graphical user-friendly drag-and-drop interface, which also al-
lows to visualize each step within the workflow. It also allows to run ML models on Azure,
on-premise, or even Edge devices. It integrates well with Visual Studio and Github to make
it easy for software engineers to access and track the development. Azure ML offers the
AI Gallery, i.e. a hub of ML solutions and data science model templates provided by the
Azure community. One of the main benefits of using Azure is the variety of algorithms
available to play with.

Google AI Platform
Google AI Platform comprehends tools for ML that previously existed separately, like
Google Cloud AutoML. AutoML is a cloud-based ML platform that offers a variety of
ML products for beginner data scientists, it is fully integrated with all Google’s services
and it stores data in the cloud. The trained models can be deployed via the REST API
interface. Although many languages and frameworks are supported, its focus is clearly on
Tensorflow, Google’s product.

IBM Watson ML Studio
IBM Machine Learning platform is organized like the previous providers, but does not sup-
port the video analysis APIs. The platform offers two approaches: automated and manual
(for expert practitioners). Watson Studio has an AutoAI system that brings a fully auto-
mated interface for data processing and model building that needs little to no training.

All the MLaaS solutions described above offer multiple services, many of which are in
common. These include the integration with Jupyter notebook to easy access data for
exploration and analysis, and to program ML models using popular frameworks. Anyway
these solutions differ in terms of available algorithms, of required skill sets, and in tasks
they can cover. For this reason there is no best platform at all and the choice depends on
the specific use case. Without forgetting that the velocity of change is impressive and could
happen that a user chooses one vendor and suddenly another one will roll out something
that matches his/her business needs. And using a MLaaS solution may not necessarily
be the best choice for a given use case. The user can adopt MLaaS for some part of the
workflow and other tools for others. Lastly, when not to use MLaaS [46]?

• When data need to be secure and on-premises;
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• when you need a lot of customization (but in some cases MLaaS could still be useful);

• when you need to optimize training or serving costs of complex algorithms and so
it is preferable to take the whole infrastructure on-premises.

When to use MLaaS?

• When you are already using services from a cloud provider and integrating their
MLaaS services to your system would be a good addition;

• when some/many use cases can be outsourced to an API;

• when you are dealing with a large amount of data and you need to carry out tests
frequently on data;

• when you run a microservice-based architecture in your company, MLaaS would
help in proper management of some of those services.

2.2.3 Deployment models

A cloud deployment model is a specific configuration of environment parameters such as
the accessibility and proprietorship of the deployment infrastructure and size. This means
that deployment types vary depending on who controls the infrastructure and where it is
located.

• Public cloud. A public cloud is defined as computing services offered by third-party
providers over the public Internet, making them available to anyone who wants to
use or purchase them [48]. They may be free or sold on-demand, allowing custom-
ers to pay only for the CPU cycles, storage, or bandwidth they consume. Public
clouds can save companies from the expensive costs of having to purchase, manage,
and maintain on-premises hardware and application infrastructure, of which the
cloud provider is held responsible. Public clouds can also be deployed faster than
on-premises infrastructures and with an almost infinitely scalable platform.

• Community cloud. A community cloud is similar to a public cloud except that its
access is limited to a specific community of cloud consumers. It is owned, managed,
and operated by one or more organizations in the community, a third party, or a
combination of them.

• Private cloud. A private cloud is owned by a single organization enabling it to use
cloud computing technology as a means of centralizing access to IT resources by dif-
ferent parts, locations, or departments of the organization. It gives businesses many
of the benefits of a public cloud, including self-service, scalability and elasticity, with
the additional control and customization available from dedicated resources over a
computing infrastructure hosted on-premises [49]. Moreover, private clouds deliver
a higher level of security and privacy through both company firewalls and internal



2.3 why cloud computing? 57

hosting to ensure operations and sensitive data is not accessible to third-party pro-
viders. One drawback is that the IT department of the company is held responsible
for the cost and accountability of managing the private cloud, so private clouds re-
quire the same staffing, management and maintenance expenses as traditional data
center ownership.

• Hybrid cloud. A hybrid cloud technology strategy merges a private cloud or an on-
premises infrastructure, or both, with a public cloud environment to create a single
cloud computing environment. For instance, a cloud consumer may choose to deploy
cloud services processing sensitive data to a private cloud and other, less sensitive
cloud services, to a public cloud.

Additional variations of the four base cloud deployment models can exist, like the vir-
tual private cloud, inter-cloud and multi-cloud. The latter involves multiple public cloud
computing platforms or providers to handle various business tasks. A business might per-
form some tasks using AWS, another set of tasks with Google Cloud Platform, and yet
other tasks with Microsoft Azure.

2.3 why cloud computing?

The cloud is transforming and will continue to transform the computing industry becom-
ing the default place to go. To better understand the reasons of this evolution, we need
to focus to what drives the adoption of the cloud [35]. Nowadays for a company the al-
ternative to a cloud solution is to use an on-premises data center. Even companies that
have the scale to run a competitive on-premises data center like Netflix have moved to the
cloud. Different companies have different priorities, but most will have at least one of the
following arguments as a key driver for adopting the cloud over on-premises solutions.

• Economy. The economic concerns are generally primary drivers of cloud adoption.
The cloud helps users move from CAPEX to OPEX, meaning that costs are moved
from capital expenses (CAPEX), that are initial investments, to operational expenses
(OPEX), or ongoing costs. This is a very important aspect since one of the key metrics
used to evaluate a company by investors and shareholders is the cash flow: the better
the cash flow, the better the valuation of the company. Another aspect is that a server
is a depreciating asset, meaning that it is something that loses its value over time.
Cost is more predictable in the cloud. Typically there is a monthly fee, although that
can vary with consumption for some types of cloud services. OPEX based on the
cloud are easier to scale with changes in the market. Indeed if a company suddenly
sees a loss in the revenue, a cloud model based on paying monthly fees and on con-
sumption is easier to scale than a CAPEX model, where capital has been committed
at the beginning of a multiyear period. Moreover, lower levels of CAPEX will inevit-
ably lead to lower levels of debt improving the company credit rating. Consequently,
investment in the cloud can be seen as part of a virtuous circle from an economic
perspective. Another economic driver is the concept of economy of scale. The basic
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idea is that the cost of adding one unit of infrastructure decreases with the number
of units already managed.

• Security. It is opinion of many that cloud is insecure compared to on-premise, but
recent advances in securing the cloud and changes in risk are changing that concep-
tion. A company relying on its own data center needs to keep on top of all threats
and attacks, 24/7, and this is difficult and costly as the local IT security department
needs to be staffed with specialists. In the cloud, some threats are easier to mitig-
ate. Moreover, cloud vendors now offer systems that will run reports, identify places
where personally identifiable information may be stored on internal resources, and
log who accessed the information and when. They also have the possibility to auto-
matically detect other vulnerabilities in the system configurations that would other-
wise have taken an extensive audit to detect. Encryption and Identity and Access
Management (IAM), which makes sure that only authenticated and authorized users
can access system resources and data, are offered into the cloud by default whereas
they should be set up and maintained on-premises.

• Resilience. Generally organizations need to make sure that their operations do not
cease in the face of a natural or other disaster, so they need to ensure the resilience
of their IT operations. The natural disasters like hurricanes, flooding, earthquakes
or volcanic eruptions have the potential to completely destroy a data center. For this
not to happen a company has to build at least one backup site. This site needs to
run exactly the same system setup as the primary one and there has to be automatic
failover when the primary site fails. This is both expensive and difficult to implement.
In the cloud, this is in some cases virtually reduced to a few clicks that will give users
even better geographical redundancy than was feasible for the company alone. Users
can do this at the individual server level and can chose to have the failover in a
specific geographic region. Moreover, it is possible to specify a template of the VMs
that should spin up in the event of a server failure, saving costs and energy for the
company. Another example of usage of the cloud for the resilience feature is for
backups.

• Elasticity. We already described this aspect as one of the five essential characteristics
of a cloud solution. From the economic point of view elasticity avoid to make im-
portant CAPEX and to pay system resources that initially are not needed, but at the
same time when an high demand occurs it is important to integrate more resources
fast enough and at the right locations to scale with demand. Then, when the demand
decreases again, the resource consumption contracts. This dynamic is difficult to im-
plement in an on-premises data center since resources or licenses that are no longer
needed can not simply be returned. Connected to elasticity is the concept of agil-
ity that means both the ability to quickly react to changing market conditions and
the fact that system resources are available on demand when needed. In the cloud,
when a particular database is needed, it is not necessary first to contact sales at the
software company, get a quote, purchase it, and install it. All of this is reduced to
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searching for it on the website of the cloud provider and then clicking it. With this
kind of usage it is easier to support innovation. Indeed an experiment, a proof of
concept, can be carried out and once it is no longer needed, it can be deleted and
no further payments have to be made. This makes innovation and experimentation
much cheaper.

• Sustainability. An emerging driver is the cloud sustainability in terms of energy
consumption. There are different reasons for that. First of all, a cloud provider may
ensure a much better utilization of resources. When a single user turns on his/her
own computer, the CPU runs no matter if it is used or not. In a company where
people work for eight hours, the computing resources will be used only in that time
frame. This means that a traditional server running 24/7 is using three times as much
energy as is needed. In the cloud, thanks to the elasticity and pooled resources, it is
possible to secure a much better utilization since multiple customers can use the
same machines. When utilization drops, machines will turn off and come back up
again when usage increases again. Moreover, it is easier to have efficient energy
consumption into larger data centers by reducing the energy for cooling, capturing
the excess heat and turning it into hot water, setting up solar cells to harvest energy.
For example, Microsoft vowed to be carbon negative by 2030, which means that they
will produce more clean energy than they consume.

2.4 cloud-enabling technologies

Modern-day clouds are supported by a set of primary technology components that were
born and matured prior to the advent of cloud computing, although cloud computing ad-
vancements helped further evolve these cloud-enabling technologies [37]. In the following
subsections we provide details of such technologies.

2.4.1 Broadband networks and Internet architecture

All clouds must be connected to a network and this implies a dependency on internet-
working. Internetwork, or the Internet, allow for remote provisioning of IT resources and
is supportive of network access. Cloud consumers can access the cloud using private and
dedicated network links in LANs, but most clouds are Internet-enabled. The Internet topo-
logy became a dynamic and complex aggregate of highly interconnected Internet Service
Providers (ISPs), where smaller branches extend from these major nodes of interconnec-
tion through smaller networks until reaching the Internet-enabled electronic devices. Two
fundamental components used to construct the internetworking architecture are connec-
tionless packet switching and router-based interconnectivity. The former is the data trans-
mission process where the data flow (which goes from the sender to the receiver) is divided
into packets of a limited size that are received and processed through network switches
and routers, then queued and forwarded from one intermediary node to the next. Each
packet carries the necessary location information, such as the Internet Protocol (IP) or Me-
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dia Access Control (MAC) address. The latter refers to routers that allow to process and
forward each packet individually, even when successive packets are part of the same data
flow, while maintaining the network topology information that locates the next node on
the communication path between the source and destination node.

The communication path that connects a cloud consumer with its cloud provider involve
multiple ISP networks determined at runtime, and the interaction with other network
technologies:

• physical networks, such as Ethernet, that connect adjacent nodes and are used to
transmit IP packets;

• transport layer protocols, such as the Transmission Control Protocol (TCP), that use
the IP to provide a communication support for the navigation of data packets across
the Internet;

• application layer protocols, such as Hypertext Transfer Protocol (HTTP), that use
transport layer protocols to standardize and allow specific transferring methods of
data packet over the Internet.

In a traditional on-premise deployment model, applications and various IT solutions
are commonly hosted on centralized servers and storage devices that resides in the data
center of the organization. End-user devices, like laptops and smartphones, access the IT
resources of data center through the corporate network, which provides Internet connectiv-
ity. Organizations adopting this deployment model can directly access the network traffic
to and from the Internet on which they have complete control, and can safeguard their
corporate networks using firewalls and monitoring software.

In a cloud environment, cloud providers configure IT resources to be accessible for
both internal and external users through an Internet connection. This internetworking
architecture benefits internal users who require ubiquitous access to corporate IT solutions,
as well as cloud consumers who want to provide Internet-based services to external users
(see Figure 2.3). Moreover, the Internet connectivity offered by cloud providers is superior
compared to the connectivity of individual organizations.

Nowadays the most widespread way of accessing VMs in the cloud across every cloud
vendor is to use the Secure Shell (SSH) protocol, developed to provide an encrypted way
of connecting to a remote computer using a client/server model through a network.

2.4.2 Web technology

Web technology is used as both the implementation means and the management interface
for cloud services. The World Wide Web is a system of interlinked IT resources that are
accessed through the Internet, where the Web browser client and the Web server are the ba-
sic components. Other components used to improve Web application characteristics, such
as scalability and security, reside between the client and the server, e.g. proxies, caching
services, gateways, and load balancers.
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Fig. 2.3: The internetworking architecture of an Internet-based cloud deployment model [37]. In-
ternet connects non-proximate cloud consumers, end-users, and the network of the cloud
provider.

Common Web browser operations are performed using three elements: Uniform Re-
source Locator (URL) as identifier pointing Web-based resources, HTTP as primary com-
munication protocol used to exchange content and data throughout the World Wide Web
between client and server, and Markup Languages (e.g. HTML, XML) as lightweight means
of expressing Web-centric data and metadata. A Web browser can request to execute an ac-
tion, like read, write, update, or delete, on a Web resource on the Internet identified by an
URL. The request is sent using HTTP to the resource host. The Web server locates the Web
resource and performs the requested operation, followed by a response being sent back to
the client which may be comprised of content that includes HTML and XML statements.

A distributed application that uses Web-based technologies (and generally that relies
on Web browsers for the presentation of user-interfaces) is typically considered a Web
application. Such applications can be found in all kinds of cloud-based environments thanks
to their high accessibility. A common architecture of Web applications is based on three
layers: the presentation layer which represents the user-interface, the middle layer which
implements the application logic, and the data layer which is comprised of persistent data
stores (e.g. databases). PaaS ready-made environments allow cloud consumers to develop
and deploy Web applications. Unlike Web applications, Web services do not necessarily
have a user interface since it is used as a component in an application.



62 cloud computing

2.4.2.1 Overview of HTTP

HTTP is a protocol that enables a client and server to communicate over a network, and it
is the foundation of any data exchange on the Web. A typical flow over HTTP involves a
client machine making a request to a server, which then sends a response message.

• Each HTTP request made by a client across the Internet carries with it a series of
encoded data containing different types of information [50]. A typical HTTP request
contains: the HTTP version type, a URL, an HTTP method, HTTP request headers,
and optionally the HTTP body. The URL locates an existing resource on the Internet
and includes the information needed to access the resource. Generally a URL for
HTTP (or HTTPS) is made up of three or four components: a scheme, i.e. the protocol
to be used to access the resource on the Internet (it can be HTTP or HTTPS), a host
which identifies the host that holds the resource (e.g. www.example.com) and can
be followed by a port number, a path which identifies the specific resource in the
host, a query string which provides a string of information (made by key-value pairs
separated by an &) that the resource can use for some purpose (e.g. parameters for a
search or data to be processed). The HTTP method indicates the action that the HTTP
request expects from the server. Three of the most common HTTP methods are GET ,
POST and DELETE . A GET request expects some information back in return while a
POST request typically indicates that the client is submitting information to the web

server (such as username and password inserted in a form). Lastly, a DELETE request
is used to delete a resource. HTTP headers contain text information stored in key-
value pairs. They communicate core information, such as what browser the client is
using or authentication credentials. The body of a request is the part containing any
other information being submitted to the web server.

• An HTTP response is what a web client (often browser) receives from an Internet
server as answer to an HTTP request. A typical HTTP response contains: an HTTP
status code, HTTP response header,s and optionally the HTTP body. HTTP status
codes are 3-digit codes with the following meaning: 1xx Informational, 2xx Suc-
cess, 3xx Redirection, 4xx Client Error, 5xx Server Error. The “x” refers to a number
between 0 and 9. For example, after a client requests a web page, if the request is
properly completed the response has the status code 200 OK . If the response starts
with a “4” or a “5” means there is an error and the web page will not be displayed,
e.g. 404 NOT FOUND status code appears when making a typo in the URL. Similarly
to an HTTP request, an HTTP response comes with headers that convey information
like the language and format of the data being sent in the response body. Success-
ful HTTP response to a GET request generally has a body containing the requested
information, and in most web requests it is an HTML data which a web browser
translates into a web page.

The HTTP protocol was designed in the early 1990s and then it has evolved over time
[51]. It is an application layer protocol sent over TCP, or over a TLS-encrypted TCP connec-
tion (hence HTTPS, used for secure communications), though theoretically any transport
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protocol can be used. Due to its extensibility, it is used to fetch hypertext documents, im-
ages and videos or to post content to servers, like with HTML form results.

HTTP is a client-server protocol where requests are sent by a user-agent (or a proxy
on behalf of it). The user-agent is any tool that acts on behalf of the user. This role is
primarily performed by the Web browser, but it may also be performed by tools used by
Web developers, e.g. cURL that allows to send requests by command line. The server ap-
pears as only a single machine virtually, but it may actually be a collection of servers that
share the load (load balancing), or a complex piece of software that interrogates other com-
puters (like a cache, a DB server, or a e-commerce server), partially or totally generating
the document on demand.

Numerous computers and machines transfer the HTTP messages between client and
server, and most of them operate at the transport, network, and physical levels, becom-
ing transparent at the HTTP layer but with a potential significant impact on performance.
Those operating at the application layers are generally called proxies, which can be trans-
parent, forwarding the requests they receive without altering them, or non-transparent, in
which case they will modify the request in some way before passing it to the server. Prox-
ies can perform several functions: caching, filtering, load balancing, authentication, and
logging.

The basic features of HTTP can be summarized as the following.

• HTTP is simple. HTTP is generally designed to be simple and human readable, even
with the added complexity introduced in HTTP/2.

• HTTP is extensible. HTTP headers make this protocol easy to extend. New function-
ality can also be introduced with a simple agreement between client and server on a
new header semantics.

• HTTP is stateless, but not sessionless. HTTP is stateless, i.e. there is no link between
two requests being successively carried out on the same connection. But while the
core of HTTP itself is stateless, HTTP cookies allow the use of stateful sessions. Us-
ing header extensibility, cookies can be added to the workflow allowing to create a
session for each HTTP request to share the same context or the same state.

2.4.2.2 Application Programming Interfaces

An API is a set of rules that define how applications or devices can connect to and com-
municate with each other, creating an interface that provides a specific service to other
pieces of software [52]. In practice an API is the messenger that delivers the request of the
client to the server, and then delivers the response back to client. Whereas a user interface
is designed for use by humans, APIs are designed for use by a computer or application.
How do APIs work? A client application makes an API call in order to get the desired
information. Then, after receiving a valid request, the API makes a call to an external pro-
gram or web server, which subsequently will send back a response to the API with the
requested information. Lastly, the API transfers the data to the client.

APIs can be classified according to the system and use case they are designed for [53].
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• Database APIs. They enable communication between an application and a database
management system. Developers work with databases by writing queries in order to
access data, change tables, etc.

• Operating systems APIs. They define how applications use the resources and ser-
vices of the operating system. Every OS has its set of APIs.

• Remote APIs. They are designed to interact through a communications network. Re-
mote means that the resources being manipulated by the API are somewhere outside
the computer making the request.

• Web APIs. This is the most common class of APIs. They provide machine-readable
functionality and data transfer between web-based systems, representing a client-
server architecture. Web APIs mainly deliver requests from web applications and
responses from servers using HTTP.

In terms of release policies, web APIs can be divided in three main categories: public,
private, and partner. Public APIs are open source and are available for any third-party
developer. Private APIs are designed to improve solutions and services within an organiz-
ation, remaining hidden from external users. Partner APIs are openly promoted but shared
with business partners who have signed an agreement with the publisher.

API specifications detail the functional and expected behavior of an API, as well as the
fundamental design philosophy and supported data types. They contain both documenta-
tion and API definitions. Protocols provide users with a set of defined rules for API calls
that specify the accepted data types and commands. In the following, some of the most
used protocols are described.

• SOAP. APIs designed with Simple Object Access Protocol (SOAP) use XML for their
message format and receive requests through HTTP or SMTP. SOAP simplifies the
sharing of information for apps running in different environments or written in dif-
ferent languages.

• REST. Representational State Transfer (REST) is a set of web API architecture prin-
ciples, meaning that there are no official standards (unlike those with a protocol).
To be a REST API (also known as a RESTful API), an API must follow six architec-
tural constraints [54, 55]. Uniform interface, i.e. API requests for the same resource
should look the same, no matter where the request comes from. Client-server de-
coupling, i.e. client and server applications must be completely independent of each
other, where the client only should know the Uniform Resource Identifier (URI) of
the requested resource and the server application shouldn’t modify the client applic-
ation. Statelessness, i.e. each request must include all the information necessary for
processing it, and server applications are not allowed to store any data related to a
client request. Cacheability, i.e. resources should be cacheable on the client-side or
server-side when it is possible, with the aim to improve performance on the client-
side while increasing scalability on the server-side. Layered system architecture, i.e.
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the calls and responses go through different layers intended as intermediaries in
the communication loop between client and server. Code on demand (optional), i.e.
in certain cases responses can contain not only static resources, but also executable
code, which should only run on-demand. RESTful systems support multiple formats
to store and exchange data (e.g. plain text, XML, HTML, YAML, JSON), while SOAP
only allows XML, and this is one of the reasons why REST is a prevailing choice for
building public APIs these days.

• gRPC. Developed by Google and released for public use in 2015, gRPC is an open-
source Remote Procedure Call (RPC) to achieve high-speed communication between
microservices. gRPC allows developers to integrate services programmed in differ-
ent languages. It uses the Protobuf (protocol buffers) messaging format, which is a
highly-packed and highly-efficient messaging format for serializing structured data.
Firstly, developers need to define the structure of the data they want to serialize, then
they use the protocol buffer compiler to generate the data access classes in the pro-
gramming language of their choice. Lastly, the data is compressed and serialized in
binary format at runtime. gRPC is designed for HTTP/2, a major revision of HTTP
that provides significant performance benefits over HTTP 1.x.

2.4.3 Data center technology

There are many advantages in grouping IT resources in close proximity with one another
rather than having them geographically dispersed: power sharing, higher efficiency in the
usage of shared IT resources, and improved accessibility for IT personnel, just to mention
a few. Modern data centers have specialized IT infrastructures used to house centralized IT
resources, such as databases, servers, and networking devices. Data centers are typically
characterized by many technologies and components. In the following we provide the
description of some of them.

• Virtualization. Data centers consist of both physical and virtualized IT resources.
Virtualization is the process of converting a physical IT resource into a virtual IT
resource, i.e. abstracting the physical computing and networking IT resources as vir-
tualized components that are easier to allocate, operate, and control. Most types of
IT resources can be virtualized, including server, storage, network and power. Let’s
consider the case of creation and deployment of a virtual server1, performed using
a virtualization software. The first step is the allocation of physical IT resources, fol-
lowed by the installation of an operating system. A virtual server has its own guest
operating systems, independent of the operating system in which it was created.
Both the guest operating system and the application software running on the virtual
server are unaware of the virtualization process. Indeed the virtualized IT resources
are installed and executed as if they were in a separate physical server, resulting in
an uniformity of execution, i.e. programs run on physical systems as they would on

1 The terms virtual server and VM are used synonymously throughout this thesis.
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virtual systems. The virtualization software runs on a physical server called a host
or physical host, which make accessible the underlying hardware. This software is
sometimes referred to as a Virtual Machine Monitor (VMM), but most commonly
known as a hypervisor. Thanks to the hardware independence, a virtual server can
be easily moved to another host, automatically resolving hardware-software incom-
patibility issues. Virtual servers are created as virtual disk images containing binary
file copies of hard disk content. These images can be accessed from the host operating
system and can be used to replicate, migrate, and back up the virtual server. A key
aspect of virtualization is that such technology enables different virtual servers to
share one physical server, i.e. multiple virtual servers can be simultaneously created
in the same host. This process is called server consolidation and it is commonly used
to increase optimization of available IT resources, load balancing and hardware util-
ization. This fundamental capability unlock common cloud features, e.g. on-demand
usage, resource pooling, scalability, elasticity, and resiliency.

• Standardization and modularity. Data centers are built using standardized com-
modity hardware and designed with modular architectures, aggregating multiple
identical building blocks of facility infrastructure and equipment to support growth,
scalability and speedy hardware replacements. Standardization and modularity are
key factors for reducing investment and operational costs since they allow to have
economies of scale for the acquisition, deployment, operation, and maintenance pro-
cesses.

• Automation. Data center automation is the process by which routine workflows and
processes of a data center (e.g. scheduling, monitoring, maintenance, application de-
livery) are managed and executed without human administration [56]. Automation
increases agility and operational efficiency in a data center, reducing the time IT
needs to perform routine tasks and enables to rapidly deliver to users on demand
services in a repeatable, automated manner. There are many configuration manage-
ment tools for a data center automation, representing at the same time a key aspect
of a DevOps project, like Ansible, Puppet, and Chef (we provide more details in
Sec. 2.6). In this context it is worth mentioning OpenStack as open source cloud
computing platform, which enables to control large pools of compute, storage, and
networking resources in a data center through a dashboard or through the Open-
Stack APIs. It helps to build a cloud infrastructure or manage local resources as if
they were a cloud by automating the building and management of virtual servers
and other virtualized infrastructures.

• Remote operation and management. Most of the operational and administrative
tasks of IT resources in data centers are controlled using remote consoles and man-
agement systems. Technical personnel are not required to enter the rooms of the data
center, except to perform highly specific tasks, e.g. equipment handling and cabling
or hardware-level installation and maintenance.
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• High availability. To sustain availability data centers are designed to operate with
high levels of redundancy. Data centers usually have redundant, uninterruptable
power supplies, cabling, and environmental control subsystems in anticipation of
system failures.

2.4.4 Multi-tenant technology

The multi-tenant application design is used to allow multiple users (tenants) to access
the same application simultaneously. Each tenant has his/her own view of the applica-
tion, that uses, administers, and customizes it while remaining unaware of other tenants
that use the same application. In such applications, tenants do not have access to data
and configuration information that is not their own. Tenants can individually customize
features of the application, e.g user interface, business process, data model, and access
control. In general a multi-tenant application architecture is significantly more complex
compared to a single-tenant application one. Indeed, in the former the sharing of various
elements (including portals, data schemas, middleware, and databases) by multiple users
is needed, while maintaining security levels that segregate individual tenant operational
environments.

Multi-tenancy is sometimes mistaken for virtualization but they are different concepts.
Virtualization means that multiple virtual copies of the server environment can be hos-
ted by a single physical server and each copy can be provided to different users, can
be configured independently, and can contain its own operating system and applications.
Multi-tenancy means that a physical or virtual server hosting an application can be used
by multiple different users, each of whom is as if they had exclusive use of the application.

2.4.5 Containerization

Containerization is a type of virtualization used to deploy and run applications and cloud
services without the need to deploy a virtual server for each of them. The multiple isolated
user-space instances or isolated runtimes that can coexist in the operating system kernel of
a physical or virtual server are mainly known as containers. When a cloud service executes
within a container, from its point of view it is as if was running on a real computer, and it
can only see the content of the container and the devices attached to the container. On the
contrary, a cloud service running on a physical or virtual server operating system can see
all of the provided resources, e.g. connected devices, ports, folders, files, network shares,
and CPUs.

Containers are an abstraction at the application or service layer which package code and
dependencies together, and they can be spun up and retired very quickly according to
predefined specifications, much faster than virtual servers. Moreover, an efficient resource
utilization is achieved by significantly reducing the CPU, memory and storage usage foot-
print compared to virtual servers, as the user can restrict the amount of resources each
container consumes. Indeed, if VMs are used to run applications independently (one ser-
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vice per VM) they are underutilized, and resizing a VM is not an easy task for a production
application. On the other hand, containers can run with very minimal CPU and memory
requirements, multiple containers can be run inside a VM for application segregation, and
resizing a container takes seconds.

A single process of a cloud service is usually deployed in each container, though more
than one service/process can be deployed in each. A cloud service deployed in a container
normally shares the same lifecycle with the container, i.e. it will start, stop, pause or resume
when the container does.

2.4.5.1 Docker

Docker is the most common open source platform for building, deploying, and man-
aging containerized applications. It is developed by Dotcloud, it is written in the Go
programming language and takes advantage of several features of the Linux kernel, like
namespaces and control groups, to create containers. The basic terminology to understand
how Docker works, that can be similarly extended to other container solutions, is the fol-
lowing [57].

• Docker Engine. It is a specialized software deployed in the operating system of a
physical or virtual server to abstract the required resources, and enable the defini-
tion and deployment of containers. Docker Engine acts as a client-server application
with a server running a long-running daemon process, with APIs which defines in-
terfaces that programs can use to talk to and instruct the Docker daemon, and with
a Command Line Interface (CLI) client. The CLI uses the Docker APIs to create
and manage Docker objects, e.g images, containers, networks, and volumes [58]. The
Docker client and daemon communicate using REST APIs over UNIX sockets or a
network interface.

• Dockerfile. It is a simple text file containing the list of CLI instructions that Docker
Engine will run in order to assemble the Docker image, thus automatizing the de-
ployment.

• Docker image. It contains executable application source code as well as all the librar-
ies, tools, and dependencies that the application code needs to run as a container. A
Docker image is an immutable (unchangeable) file, and due to their read-only qual-
ity it is sometimes referred to as snapshot. A Docker image is organized in a layered
fashion and every instruction on a Dockerfile is an additional layer in the image. It
is possible to build a Docker image from scratch, but most of the time the image is
based on a parent image which can be pull down from common repositories.

• Docker container. It is the running instance of a Docker image. While Docker images
are read-only files, containers are live, ephemeral, executable content. By default,
a container is relatively well isolated from other containers and its host machine,
though the user can control how isolated a container storage, network or other un-
derlying subsystems are from other containers or from the host machine [59].
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Fig. 2.4: Representation of the client-server architecture adopted by Docker [59]. Through the REST
APIs or the CLI the Docker client talks to the Docker daemon, which builds, runs, and
distributes Docker containers. The images used to run a container are retrieved from a
registry, which is Docker Hub by default.

• Docker registry. It is a storage and distribution system for Docker images. A user can
define his/her own private registry though Docker is configured to look for images
on Docker Hub by default. Docker Hub is the Docker public registry of images with
over 100 thousands images provided by commercial software vendors, open source
projects, individual developers and Docker itself. The users can share their images
using Docker Hub and download the desired image from a specific project, or use
one of them as a starting point for any containerization project.

For a schematic representation of the client-server architecture adopted by Docker, see
Fig. 2.4.

A container is a process with enough isolation of userspace components to give the
feeling of a separate operating system [60]. A real-world analogy could be an apartment
building. Even though it is a single big building, each flat is isolated and it is owned by
individual households with their own identity. Other people do not have visibility into a
flat unless they allowed in. Similarly, this can be related to a single host containing multiple
containers. To isolate containers with their CPU, memory, IP address, mount points, and
processes two Linux kernel features are needed, which are called namespaces and Control
Groups (CGroups).

• Namespaces sets boundaries for the containers, as they are responsible of mount
points, users, IP address, processes management, etc. Each container will have its
namespace, and the processes running inside that namespace will not have any priv-
ileges outside that namespace.

• When starting a container the resources used by it, e.g. CPU, memory, network, and
IO resources, can be restricted using CGroups. If no limits are set up, it is the kernel
that prioritizes and allocates resources for the services, and when multiple contain-
ers are running, a single container might use all the host resources, leaving other
containers to crash because of resource unavailability.
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If an application is made of multiple processes that are deployed in multiple containers
and they all reside on the same host, a user can choose to adopt Docker Compose to
manage the application’s architecture. The user writes a YAML file where specifies the
configuration of the services included in the application, then with a single command
he/she can deploy and run containers from the configuration.

2.4.5.2 Alternatives to Docker

Although Docker is a robust standalone ecosystem of its own, which provides an extensive
tool kit for managing the containerization process, there are alternatives to Docker that
offer unique use cases and features, e.g. Podman, Singularity, LXD, Containerd, Buildah,
BuildKit, Kaniko and RunC.

Let’s take the example of Podman. Podman is an open source project of Red Hat and it
is a relative newcomer to the containerization scene, with the first version being released in
2019. For a comparison, the first version of Docker was released in 2013. Docker and Pod-
man have different philosophies and working approaches [61]. Podman relies on “pods”,
used to organize separate containers under a common denomination to manage them as
single unit. Docker is an all-in-one platform, whereas Podman relies on specialized tools
for specific duties, e.g it uses Buildah to build container images. Docker is a monolithic
and independent tool with all the benefits and drawbacks implied, handling all of the con-
tainerization tasks throughout their entire cycle. Docker has a client-server logic mediated
by a daemon, while Podman needs another tool (systemd) to manage services and support
running containers in background. Recently Docker added rootless mode to its daemon
configuration (previously Docker containers run only as root) but Podman used this ap-
proach first and promoted it as a fundamental feature. Rootless containers are considered
safer than containers with root privileges.

Docker is the most popular and used platform for building, deploying, and managing
containerized applications but nowadays its hegemony is no longer so obvious. This can
be emphasized by the recent decision of Red Hat to no longer support the docker package
for Red Hat Enterprise Linux (RHEL) 8 in favor of Podman, adopted as the preferred,
maintained, and supported container runtime.

It is worth briefly describe the Singularity solution compared to Docker. Singularity is
a framework that is mostly focused on bare-metal High Performance Computing (HPC)
cluster systems. For an overview about what HPC is, see Sec. 2.5.2. Singularity was de-
veloped to increase “mobility of compute” in scientific applications [62] by enabling en-
vironments to be completely portable via a single image file and allowing for seamless
integration with any scientific computational resources [63]. The architecture of Singular-
ity is such that common users can safely run their containers on an HPC cluster system
without the possibility of root privilege escalation. Singularity uses a simpler approach
than Docker without the daemon process, and it makes use of Linux kernel namespace
feature to isolate processes. Singularity can be used to run massively parallel applications
which leverage fast InfiniBand interconnections and GPUs. These applications suffer a
minimal performance loss since Singularity was designed to run “close to the hardware”.
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2.4.5.3 Portability, compatibility and supportability

Portability, compatibility, supportability are three key aspects of containers [64]. Portabil-
ity is related to the fact that a container image can be consumed by almost any container
engine, like Docker and Podman. Compatibility concerns the content inside the container
image and it extends to the processor architecture, the operating system, and its version.
For example, running a RHEL 8 container image on a RHEL 4 container host or a Win-
dows container image on a Fedora container host or an x86 container image binaries on
a POWER container host can give problems even though the image is portable. Contain-
ers do not offer a compatibility guarantee and portability does not guarantee compatibility.
Container images are collections of files, e.g. libraries and binaries, specific to the hardware
architecture and operating system. When the container image is run, the binaries inside
the image run as a process just as they would on a normal operating system. Thus, there
must be compatibility between the container image and container host. For this reason a
good practice for a developer is to use different base images for different container hosts.
The third aspect is the supportability, that is “what vendors can provide, in terms of test-
ing, patching, security, performance, and architecture, as well as ensuring that images and
binaries are built in a way that they run correctly on a given set of container hosts (such
as processor, operating system, and kernel version)” [64].

2.4.5.4 Container orchestration

A single application can be made up of hundreds or even thousands of containers [41].
Containers are a good way to bundle and run applications but, in a production environ-
ment, they should be managed by a system which ensure that there is no downtime. For
example, if a container goes down, another container needs to start. Containers orchestra-
tion platforms are used to streamline processes like the installation, scaling, monitoring,
and management of containerized applications. While Docker includes its own orchestra-
tion tool (called Docker Swarm), most developers choose Kubernetes instead, the most
popular container orchestration platform. Kubernetes (also called “k8s” or “kube” by de-
velopers) is an open source platform for managing containerized workloads and services.
It was created by Google and in 2014 it became open source. Kubernetes allows to create
a cluster, i.e. a set of worker machines called nodes, which run containerized applications.
Every cluster has at least one worker node. Kubernetes defines the set of running con-
tainers in a cluster as “pods”, which are hosted by the worker node(s). Any pod can be
composed of multiple, tightly coupled containers (an advanced use case) or just a single
container (a more common use case). Containers in the same pod will share the same
compute resources and they can communicate between each other. “The control plane
manages the worker nodes and the pods in the cluster. In production environments, the
control plane usually runs across multiple computers and a cluster usually runs multiple
nodes, providing fault-tolerance and high availability” [65]. Kubernetes uses replication
controllers to horizontally scale an application as needed. This means that if a single pod
becomes overloaded, Kubernetes can automatically replicate it and deploy it to the cluster.
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In addition to supporting healthy functioning during periods of heavy load, Kubernetes
pods are also often replicated continuously to provide failure resistance to the system,
delivering distributed systems resiliently [66].

The market is monopolized by Kubernetes, which became de facto standard across
many businesses because of its functionality, large and growing ecosystem, and portability
between on premises, multiple public cloud, environments, and private clouds. Kuber-
netes is not the only player in the market, since that different competitors and alternatives
are also available, e.g. Amazon ECS, Docker Swarm, Nomad, etc.

2.5 computing paradigms and the cloud

Many solutions have been developed over the years to efficiently provide computational
power and meet the different needs of users, industries, and research institutes. In the
following, we briefly describe two different computing environments, High Throughput
Computing (HTC) and HPC, and the most recent quantum computing. Lastly, the compar-
ison and connection with cloud computing is presented.

2.5.1 High Throughput Computing

HTC is the use of many computing resources over long periods of time to accomplish
a computational task, that is easily broken up into smaller, independent components. In
HTC sequential jobs can be individually scheduled on many different computing resources.
Grid computing has emerged as synonymous to HTC. Grid computing is a group of net-
worked computers working together as a virtual supercomputer to perform large tasks. It
is especially useful when different experts need to collaborate on a project but do not have
the means to share data and computing resources in a single site [67]. By joining forces
despite the geographical distance, the distributed teams are able to leverage their own re-
sources that contribute to a bigger effort. Hence the concept of Virtual Organization (VO)
as “dynamic collection of multiple organizations providing coordinated resource sharing”
[68]. Virtualization refers to seamless integration of geographically distributed and hetero-
geneous systems, which allow services provided by the grid to be used in a transparent
way. This means that users are not aware of the location of computing resources, and there
is just one entry point to the grid system from the users’ perspective. They just have to
submit their service request at this node, and then it is up to the grid system to locate
the available computing resources, needed to serve the users’ requests. VOs are meant as
multi-institutional entities, and the organizations that form a VO may have heterogeneous
resources in terms of hardware, operating system and network bandwidth. Moreover, or-
ganizations can join or leave a VO per their requirements and convenience, so a VO is a
dynamic entity.

A grid must optimize the resources under its disposal to achieve the maximum possible
throughput. Resource management includes the submission of a job remotely, checking
its status while it is in progress, and obtaining the output when it has finished the exe-
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cution. The selection of resources used to run a job is based on a number of factors, e.g.
the location of data. A job should be assigned to a resource located close to data instead
of transferring large amounts of data over the network, which can lead to significant per-
formance overheads. Hence the concept of data grid. A data grid can be defined as a grid
for managing and sharing a large amount of distributed data, where several copies of data
can be created in geographically distributed areas. This can be used to increase the file
transfer speed and the overall computational efficiency. Indeed, if a user needs the data
for any computational purpose, it can be accessed from the nearest machine hosting the
data. Other key factors in the allocation of appropriate resources for a job are the resources
availability and the scheduling policy of the grid. Let’s suppose that the node executing
the job crashes due to some reason. When a failure is detected the grid makes provision
for automatic resubmission of jobs to other available resources.

Another important aspect related to the definition of HTC itself is that a user’s request
can be broken into multiple independent subtasks, each of which could be run on a differ-
ent machine, then the results from each of these subtasks can be combined to produce the
desired output.

2.5.2 High Performance Computing

HPC delivers a great number of computing resources to peak computing capability for
a short period, allowing to perform computationally intensive operations across shared
resources. An important aspect of HPC is related to the networking of computational
nodes which uses extremely fast connections so that communicating data does not become
a significant bottleneck to completing a large-scale computation. HPC can be run on a
single node, but its real power comes from connecting multiple HPC nodes into a cluster
or supercomputer with parallel data processing capabilities [69]. HPC clusters are used for
simulations, AI inferencing, and data analytics that may not be feasible on a single system.
HPC played a central role in academic research for decades, solving complex problems
and spurring discoveries and innovations.

2.5.3 Quantum computing

Quantum computing is a type of computation in which operations can exploit the phe-
nomena of quantum mechanics, such as superposition, interference, and entanglement [70].
Devices that perform quantum computations are known as quantum computers. There are
several models of doing quantum computation, with the most widely used being quantum
circuits and are based on the quantum bit, or “qubit”, which is analogous to the bit in clas-
sical computation. A qubit can be in a 1 or 0 quantum state, or in a superposition of the
1 and 0 states. However, when it is measured it is always 0 or 1 and the probability of
either outcome depends on the qubit’s quantum state immediately prior to measurement.
Quantum computers are built to solve very complex problems that no classical computer
could solve in any feasible amount of time, a feat known as “quantum supremacy”, that
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Google claimed to have reached in 2019. Complex problems are problems with lots of
variables interacting in complicated ways, e.g modeling the behavior of single atoms in a
molecule because of all the different electrons interact with one another.

2.5.4 Connection with cloud computing

There are many differences between cloud and grid computing: the former follows a client-
server architecture, where resources are used in a centralized pattern and the users pay
for the use, while the latter follows a distributed architecture, where resources are used
in a collaborative pattern and the users do not pay for use. Anyway, cloud-based grid
computing is possible and it implies the use of computers in a public cloud service, or a
hybrid of public cloud and internally owned computers, to collectively accomplish large
tasks [71].

And what about HPC and cloud computing? A dedicated HPC cluster has a high-
performance tuned setup, where the operating system run on bare-metal hardware and
is customized to make full use of the available hardware. In the cloud, PaaS server farms
usually run hypervisors as hosts for various types of guest VMs, and the overhead of VMs
compared to bare-metal is of course a serious performance disadvantage [62]. Anyway
today there are HPC cloud services that can support the most complex and challenging
workloads. Throughput for HPC can be accelerated in the cloud, where on-demand avail-
ability of computing resources enables jobs to move forward instead of languishing in a
queue. An additional advantage of HPC in the cloud is the ability to run workloads on
HPC hardware preselected and configured by the cloud service provider [69].

In quantum computing the cloud is the way for researchers, engineers, and other experts
to gain access to the prohibitively expensive quantum hardware at an affordable price,
also enabling a quantum enthusiast with a laptop in his/her bedroom to test the power of
quantum computers in a cloud computing environment.

2.6 devops

Nowadays the term DevOps is more and more common, especially in companies. It is the
contraction of the words “Development” (Dev) and “Operations” (Ops), and it was intro-
duced in 2009 by Patrick Debois. DevOps is a set of practices aimed at reducing the barriers
between developers, who want to innovate and deliver faster, and operations teams, who
must guarantee the stability of production systems and the quality of the system changes
[72]. Before DevOps the two teams had quite different goals and incentives, which often
conflicted with each other [73]. Developers tended to focus on shipping new features fast,
whereas operations teams cared mostly to make services stable and reliable over the long
term. In some cases security policies in place prevented software developers from even
having access to the logs or metrics of their own applications running in production, who
then had to ask permission from the operations team to debug the application and deploy
any fixes. As cloud computing became more popular, the industry changed and the adop-
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Fig. 2.5: Phases of the DevOps working methodology [74].

tion of DevOps allowed to produce a deployment of higher quality, saving money for the
companies.

The DevOps movement is based on three axis.

• Collaboration. The idea is not to have specialized teams (one of developers, one
of operations, one of testers, and so on) but to reach the multidisciplinarity where
people have the same objective, i.e. deliver added value to the final product as quickly
as possible.

• Process. To expect a rapid deployment, the teams must follow agile development
processes with an iterative approach that allows for better functionality, quality, and
rapid feedback. The DevOps process includes several phases, which are carried out
cyclically and iteratively throughout the life of the project: planning and prioritizing
functionalities, Continuous Integration (CI) with Continuous Delivery (CD) or Con-
tinuous Deployment, coding, testing, deployment, and continuous monitoring. See
Fig 2.5 for a schematic representation of the DevOps phases.

• Tools. The choice of tools and products used by teams is an important phase in
DevOps, and should avoid communication gaps between the members of the team.

In this scenario, developers need to exploit the monitoring tools used by operations
teams to detect performance problems as soon as possible, whereas on the other hand
operations team must automate the process of creating and updating the infrastructure
integrating the code into a code manager. This process is called Infrastructure as a Code (IaC),
and can only be done in collaboration with developers who know the infrastructure that is
needed for applications. Therefore operations team must be integrated into processes and
tools of the application release.
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IaC consists in writing the code of the provisioning and configuration of resources that
compose an infrastructure, helping in automatizing the deployment in a repeatable and
consistent manner. Using IaC has several advantages: standardizing the infrastructure con-
figuration reduces the risk of errors, the code that describes the infrastructure is versioned
and controlled in a source code manager and it is integrated into CI/CD pipelines, de-
ployments that make infrastructure changes are faster and more efficient, there is a better
management/control and a reduction in infrastructure costs. IaC also brings benefits to a
DevOps team by allowing Ops to be more efficient in terms of infrastructure improvement
tasks rather than spending time on manual configuration. It gives Dev the possibility to
upgrade their infrastructures and make changes without having to ask for more Ops re-
sources. IaC also allows the creation of self-service, ephemeral environments that will give
developers and testers more flexibility to test new features in isolation and independently
of other environments. The languages and tools that are used to write the configuration
of the infrastructure can be of different types, i.e. scripting (e.g. use Bash or PowerShell
scripts with Azure CLI or Azure PowerShell), declarative (e.g. Ansible and Puppet), and
programmatic (e.g. use TypeScript, Java, Python, or C# in Pulumi or Terraform CDK tools).

Now let’s focus on other key steps in the DevOps process, i.e. CI, CD, and continuous
deployment.

• CI is an automatic process that allows checking the completeness of the application
code every time a team member makes a change. This verification must be done as
fast as possible. To set up CI two elements are needed: a Source Code Manager (SCM)
that will centralize the code of all the team members (e.g. Git), and an automatic
build manager (CI server) that supports continuous integration (e.g. Jenkins, GitLab
CI, GitHub Actions, and Travis CI). Each team member will work on the application
code daily, iteratively, and incrementally, focusing attention on specific tasks/features
that should be developed in different branches. Then the members archive or commit
their code regularly, preferably with small commits that can be easily fixed in case
of error and finally integrated into the code of the application. Integrating all the
commits is the starting point of the CI process, which is executed by the CI server,
and needs to be automated and triggered at each commit. The server takes the code,
builds the application package, and performs unit tests. This CI process should run
fast so that developers can obtain quick feedback on the integration of their code and
not block the entire team.

• CD is the phase in which the application is automatically deployed in one or more
non-production environments, also called staging environments. CD often starts with
an application package prepared by CI, which is installed following a list of auto-
mated tasks. Unlike CI, the CD aims to test the entire application with all of its
dependencies. This is very visible in applications composed of many microservices.
Here CI will only test the microservices under development, whereas once deployed
in a staging environment the entire application can be tested and validated, as well
as the microservices that it is composed of. Nowadays it is very common to link
CI to CD in an integration environment, where CI at the same time deploys in an
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Fig. 2.6: Diagram showing the cyclical steps of CI/CD [72]. In CI the code is pushed into the SCM
by the team members, whereas the build and test are executed by the CI server. Then
follows the CD process as a continuation of CI. The package generated by CI is stored in a
package manager, and afterward it is deployed in different environments.

environment. Here developers can execute not only unit tests, but also verify the
application as a whole at each commit. In CD, deploying the application in each sta-
ging environment can be triggered automatically (following a successful execution
in a previous environment), or manually (e.g. for sensitive environments). In a CD
process, the deployment to the production environment, that is for the end user, is
triggered manually by approved users. To better understand the cyclical steps of the
CI/CD process, see Fig. 2.6.

• Continuous deployment is an extension of CD, where the entire CI/CD pipeline is
automatized from the developer’s commits to the deployment in production through
all of the verification steps. It results in an automated end-to-end deployment. This
practice is rarely implemented in enterprises since it requires a great variety of tests
for the application.

2.6.1 Source Code Manager

In Sec. 2.6 we introduced the figure of SCM, which plays an important role in the code
development inside a DevOps team. It provides a mechanism to keep track of file changes,
enables multiple team members to work simultaneously on the same file, and provides UI-
or web-based interfaces for developers to visually see the differences between two versions
of the same file [75]. Another feature is the version control safeguard to prevent loss of
work due to conflict overwriting. It works by tracking changes coming from each developer,
identifying areas of conflict, and preventing overwrites. SCM will then communicate these
points of conflict back to the developers so that they can safely review and address them
[76]. Once SCM has started tracking all the changes in a project over time, a detailed
historical record of the project life is created, that can be used to undo changes to the
codebase and revert the codebase back to a previous point in time. Every change over
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a project life time is archived by the SCM, which provides valuable record keeping for
project release version notes. A clean and maintained history log can be used as release
notes offering insight and transparency into the progress of a project and can be shared
with end users. The use of an SCM reduces team communication overhead and increases
release velocity. With SCM developers can work independently on separate branches of
feature development, eventually merging them together.

By far, the SCM and version control system most widely used in the world is Git. Git is
an open source project originally developed in 2005 by Linus Torvalds, the creator of the
Linux operating system kernel. A staggering number of software projects rely on Git, in-
cluding commercial as well as open source projects. Github, on the other hand, is the most
famous cloud-based hosting service (which is currently owned by Microsoft) of source
code that allows users to host repositories in the cloud, enabling Git-based workflows and
CI tools. Other common alternatives to GitHub are Bitbucket and GitLab, while other SCM
tools alternative to Git are Subversion and CVS.

The best practices in using a SCM can be summarized as the following.

• Commit often. Commits are snapshots where the codebase can be reverted to if
needed. They are easy to make and should be made frequently to capture small
updates in a codebase, giving many opportunities to revert or undo the work.

• Make sure you are working on the latest version. SCM enables rapid updates from
multiple developers and it is easy to have a local copy of the codebase fall behind the
global copy. A good practice is to git pull or fetch (taking the Git nomenclature as an
example) the latest code before making updates. This will help to avoid conflicts at
merge time.

• Make detailed notes. Each commit has a corresponding log entry where developers
add a descriptive and explanatory log message, which should explain the “why” and
“what” of the commits content. These log messages become the history of the project
development and leave a trail for future contributors.

• Review changes before committing. SCM offers a “staging area” that can be used to
collect a group of edits to manage and review before creating the commit snapshot.
In this way, the staging area provides a buffer area to help refine the contents of the
commit.

• Use branches. Branching is a powerful SCM mechanism that allows users to cre-
ate and work on a separate line of development, which generally contains different
product features. When the development on a branch is complete, it is then merged
into the main line of development.

2.7 cloud services

One of the most important benefits businesses gain from cloud computing is the ability
to modularize application services so that they can be linked together to create a cohesive
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environment, and they can be developed and deployed virtually anywhere [41]. The ori-
ginal concept developed in the early 2000s was the Service Oriented Architecture (SOA).
It was intended to create small modular services that could work independently of each
other but at the same time could be integrated together, rather than build monolithic ap-
plications full of dependencies. In this way, each service can be developed and deployed
by small independent teams. SOA was born as a way to make on-premises applications
development and deployment more agile.

This way of building services required a new approach to software development and
deployment where the code needs to be designed as lightweight code. Once cloud services
began to be used more and more, it became clear that this new model of computing
needed an even more comprehensive and sophisticated way of developing, deploying, and
managing services. The movement toward a service orientation and containerization has
brought the development of new management frameworks that simplify and streamline
the service and other workloads. This requires a more sophisticated approach to managing
APIs as the fundamental means that defines services and provides access to applications
[77]. Another key requirement is that application services should be designed for the cloud,
hence the term cloud native, where services take advantage of the underlying distributed
nature of the cloud to improve agility, flexibility, and modularity.

2.7.1 Cloud native applications

Cloud native applications are designed to be modular, distributed, deployed, and man-
aged in an automated way, characteristics that require technologies that go beyond what
is typical for the development of traditional software. Even though a monolithic applica-
tion can be moved to the cloud, there is no gain in terms of costs and flexibility. The best
way to gain value from the cloud is to think modular, which is why microservices are
so important for cloud computing. The future will be towards a cloud native approach,
where cloud applications are meant as a collection of multiple, independent microservices
that will help organizations to fully exploit the advantages of the cloud. Microservices are
applications with code that is independent of each other and of the underlying developing
platform, and are designed to support one discrete, bounded piece of application function-
ality. Although these microservices are independent, they can be connected in a coordin-
ated fashion to provide all the functionality the application is intended to deliver. Each
microservice runs a unique process and it is equipped with well-defined and standardized
APIs. All these services are defined in a catalog so that developers can more easily locate
the right service and understand the usage rules. The usage of microservices simplifies
the deployment of additional instances, the application of changes when they are needed,
and the development of the application itself. Microservices are designed to be packaged
within containers, and orchestration platforms are often used to streamline processes like
the installation, scaling, monitoring, and management of containerized applications.

The idea of cloud native was introduced by the Cloud Native Computing Foundation
(CNCF), an organization founded in 2015 whose members are some of the most import-



80 cloud computing

ant companies in the public and private cloud market, e.g. Google, Twitter, Huawei, Intel,
Cisco, IBM, and Docker. A software framework is defined cloud native when it is de-
signed with microservices, containers, dynamic orchestration, and continuous delivery of
software. Every part of a cloud native application is housed within its own container and
dynamically orchestrated with other containers to optimize how resources are used. Tradi-
tionally, developers used VMs to create cloud services, but VMs sit on a layer of software
(including the operating system, middleware, and tools) which makes them more complex
and slows down the process of continuous integration and rapid development of applic-
ations. With the growth of cloud native applications, the use of containers is increasing
dramatically. Containers are much smaller than VMs, and can be spun up more quickly.
Because a cloud native environment is based on containerization, it is not physically tied to
a specific hardware or operating system. Therefore cloud native applications are designed
to work in different cloud environments, and to be moved more easily between different
cloud environments and between on-premises and the cloud, even because they carry with
them all of their dependencies.

A cloud native application exploits the benefits of cloud technology, such as the distrib-
uted and scalable architecture the cloud platform provides, in order to offer the highest
levels of performance, flexibility, scalability, and reusability. Cloud native applications are
built to run on hardware that is modular and automated, enabling them to become both
resilient and predictable. Traditional applications do not offer those benefits. The technolo-
gies used to create and deploy cloud native applications provide an abstraction layer away
from the underlying software and hardware infrastructures so that the developers can fo-
cus exclusively on building their applications without the need to deal with dependencies
of the underlying infrastructure.

DevOps methodologies are a necessary component of cloud native applications and the
adoption of this approach involves the integration of processes, tools, and developers. De-
vOps creates an environment where software can be written, tested, and released quickly,
enabling the CI/CD for a cloud native application as the software modules created can be
released continuously and in an automated fashion.

In a highly distributed environment consisting of microservices, the ability to commu-
nicate between services becomes critical if the benefits of the cloud are to be fully realized.
APIs serve this purpose as they are the mode of communication among microservices and
containers. Moreover, at the IaaS level APIs are used to provide control and distribution
mechanisms for resources (like provisioning), whereas at the SaaS level APIs furnish the
ability to connect applications with the underlying infrastructure and eventually the cloud
resources.

2.8 security

Cloud computing is one of the greatest innovations of modern computing, but with all its
many benefits come several responsibilities. One main responsibility is the management
of security [78]. Cloud security is a set of procedures and technology designed to address
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Fig. 2.7: Cloud shared responsibility model [80].

external and internal threats to business security. Organizations need cloud security as
they move toward their digital transformation strategy with the integration of cloud-based
tools and services as part of their infrastructure [79]. In modern-day enterprises, there has
been a growing transition to cloud-based environments and to IaaS, Paas, or SaaS com-
puting models. In this scenario, the understanding of security requirements for keeping
data safe has become critical. While third-party cloud computing providers may take on
the management of the underlying infrastructure by following best security practices and
taking active steps, organizations need to make their own considerations when protecting
data, applications, and workloads running on the cloud.

The most basic security question a user of a cloud service must answer is: “What aspects
of security am I responsible for?”. In an on-premises environment (and in a private cloud),
the organization that owns the data center and the resources is the entire responsible for
everything. But when you move from an on-premises environment to a cloud environment
there is a more complicated shared responsibility model for security (see Fig. 2.7).

Adopting IaaS, PaaS, and SaaS solutions, the cloud provider has complete responsibil-
ity for physical infrastructure security, which often involves controls beyond what many
companies can reasonably do on-premises, e.g. by integrating biometric access [80]. Like-
wise, if the provider offers virtualized environments, the virtualized infrastructure security
controls keeping the user’s virtual environment separate from other virtual environments
are responsibility of the provider. Network security is shown as a shared responsibility
in the IaaS section of Fig 2.7. There are several layers of networking, and the responsibil-
ity for each lies with a different party. The cloud provider has its own network which is
its responsibility, but usually there is a virtual network on top, and it is the customer’s
responsibility to add reasonable security zones and put in the proper rules for access
between them. Many implementations use also firewalls, and transport encryption which
are the customer’s responsibility. Operating system security is customer’s responsibility
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for IaaS, and it is the provider’s responsibility for PaaS and SaaS. Middleware is used in
this context as a generic term referred to the software in the middle between the operating
system and the application, e.g. databases, application servers, or queuing systems, that
are not directly used by end users but are used to develop solutions for end users. Using
PaaS, the middleware security is often a shared responsibility: the provider might keep
the software up to date but the customer retains the responsibility for security-relevant set-
tings such as encryption. The application layer is what the end user actually uses, and only
for the SaaS case vulnerabilities at this layer (such as cross-site scripting or SQL injection)
are the provider’s responsibility. Even if all of the other layers have high levels of secur-
ity, a vulnerability at the application security layer can easily expose all of the underlying
information. Lastly, data access security is always responsibility of the customer.

The root cause of many security incidents is an assumption that the cloud provider
is handling something when it turns out nobody was handling it. Many real-world ex-
amples of security incidents stemmed from a poor understanding of the shared respons-
ibility model. In addition to this aspect, there are other elements that represent a chal-
lenge in cloud security. For example, it is easy to lose track of how users’ data is accessed
and by whom since many cloud services are accessed outside of corporate networks and
eventually through third parties. Then, as public cloud environments house multiple cli-
ent infrastructures under the same umbrella, it is possible that users’ hosted services can
get compromised by malicious attackers as collateral damage when they target other busi-
nesses. Moreover, misconfigurations like leaving default administrative passwords in place
or not creating appropriate privacy settings are important issues for security, representing
the cause of 86% of breached records in 2019.

2.8.1 Tools for securing the cloud

Modern cloud vendors offer an increasing number of tools enabling customers to secure
their cloud systems. The aim is to guarantee confidentiality, i.e. keep something a secret,
integrity, i.e. keep information intact, and accessibility, i.e keep the system available. In the
following, we cover the major categories of tools commonly used to secure the cloud and
not only [35].

2.8.1.1 Identity and Access Management

IAM is a tool which purpose is to have a central directory of identities or users of an
organization, and a record of what they are allowed to do in different systems. This area
is already standardized around a number of different protocols, and ensures that there
are functions like Single Sign-On (SSO) and password reset. The area contains information
about users, such as credentials, where they are working, their email and telephone, and
defines which users are “valid”. To gain access to a system, authentication needs to take
place verifying that users are who they say they are and that they are active. There are
multiple ways to authenticate, from the simplest username and password to the more ad-
vanced two-factor and biometric authentication. Access management systems handle user
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authentication. Identity management systems handle the assignment and maintenance of
roles for users in different systems, i.e. what that user is authorized to do inside a system.

2.8.1.2 Traffic management

A large part of IT solutions are made up of systems or components communicating with
other systems or components, and if the flow of information is not strictly controlled, it
will be easy to breach the confidentiality and integrity of solutions. For this reason, it is
important having a traffic management tool which main function is to specify rules for
how communication is allowed to take place within a virtual network, and between it and
the Internet. One of the most known tools is the firewall, which specifies not only which
IP addresses and ports are accessible by whom, but also what type of traffic is acceptable
with the aim to control and detect unwanted traffic.

2.8.1.3 Encryption

The purpose of encryption is to keep data confidential using a cryptographic key. There
are different types of encryption with different strengths, and the most common are en-
cryption in transit and at rest. The purpose of the former is to prevent wiretapping: even
if someone is listening to the transmission, they will not be able to understand the nature
of the communication if it is encrypted in transit. The latter aims at encrypting data stored
on disk, in a database, on a filesystem, or on another type of storage medium, to avoid
unauthorized access to the stored data. The encryption can be done manually, but many
services encrypt data simply by turning on a flag when configuring the database, for ex-
ample. Then there are key-management tools used to store keys and rotate them with a
certain frequency.

Now let’s focus on encryption in transit. SSL (Secure Sockets Layer) encryption, and
its more modern and secure replacement, the TLS encryption, protect the confidentiality
and integrity of data sent over the Internet or a computer network. Although SSL was
deprecated in 2015 and replaced by TLS, the term “SSL” is still commonly used for this
technology. Recent versions of all major web browsers currently support TLS, and it is
increasingly common for web servers to support TLS by default. TLS uses a combination
of symmetric and asymmetric cryptography, as this provides a good compromise between
performance and security when transmitting data securely. Asymmetric encryption is used
to establish a secure session between a client and a server, whereas symmetric encryption
is used to exchange data within the secured session. To use SSL/TLS encryption a website
must have an SSL/TLS certificate. Once installed, the certificate enables the client and
server to securely negotiate the level of encryption in the following steps: the client contacts
the server using a secure URL (starting with “https://”), the server sends the client its
certificate and public key, the client verifies this with a Trusted Root Certification Authority
to ensure the certificate is legitimate, the client and server negotiate the strongest type of
encryption that each can support, the client encrypts a session (secret) key with the server
public key, and sends it back to the server, the server decrypts the client communication
with its private key and the session is established, the session key (symmetric encryption)
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Fig. 2.8: TLS handshake [82].

is subsequently used to encrypt and decrypt data transmitted between the client and server
[81]. The process described so far is called TLS handshake and can be visualized in Fig.
2.8.

The most common public key (asymmetric) encryption used in SSL/TLS is the RSA (oth-
ers are e.g. DSA and ECC), while AES is the most commonly used symmetric encryption
algorithm. Even though asymmetric encryption provides more protection to the keys, it is
slower compared to symmetric encryption. For this reason, asymmetric encryption is used
to exchange the secret key, which can be used to establish symmetric encryption for fast
data transfer, making faster the encryption and decryption of data. Symmetric encryption
is commonly used to encrypt and decrypt local data, and data at rest.

The SSL/TLS certificate of the server is an X.509 digital certificate issued by a trusted
third party known as a Certificate Authority (CA) which asserts the authenticity of the
public key [83]. It may happen that a server uses a self-signed certificate which needs to be
explicitly trusted by the client (when an untrusted certificate is encountered, the browser
should display a warning). A CA acts as a trusted third party that provides clients (known
as relying parties) assurance they are connecting to a server managed by a validated entity.

To have more detailed information on how TLS works, see [84].

2.8.1.4 Security assessment and protection

One of the benefits of the cloud is that vendors develop a good understanding of com-
mon threats and recognize emerging threats faster: they know exactly how security works,
much more than any single company would, and provide useful products to the customers.
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One type of such products looks at the configuration of the infrastructure in the custom-
ers’ account and identifies potential issues, e.g. it will look for open ports to the Internet,
missing security patches, and elevated privileges. Other security assessment tools focus on
data: they can scan for sensitive data that may be out of place in databases or file shares
without proper access control. Lastly, there are threat protection products.

2.8.2 Good security practices for the cloud

Tools are not sufficient alone to secure the cloud and it is always useful to adopt good
security practices. In the following, we provide a list of some of practices to keep in mind
in general, but particularly in the cloud.

• Manage data securely. The first step of managing data securely is to make an invent-
ory of data you have. A data catalog is a good way to gather insights into available
data. Moreover, this will help to identify sensitive data that must be handled satis-
fying the regulatory requirements, provided for example by the EU General Data
Protection Regulation (GDPR) or the US Health Insurance Portability and Account-
ability Act (HIPAA).

• Minimize access to system resources. Rather than allowing unrestricted access to
a system resource, a good way to lower risk is to limit access to precisely what is
necessary for the user.

• Implement the least privilege. A user should only have the required set of permis-
sions to perform the actions for which he/she is authorized, and no more. Permis-
sions can be added as needed, and should be revoked when no longer used.

• Segregate duties. Segregation of duties is mandatory in certain industries, and in
general it is a good practice. In the context of system development, it means that
people developing the systems must be different from those who administer them
in production, and this for example allows to limit exposure to sensitive data. Se-
gregation is also used to separate tasks of developers from those testing the finished
systems, as the latter are more efficient at discovering defects in the design and func-
tion of a system than the developers who created it.

• Backup data. Backing up data is a way to make sure that system resources are avail-
able even in case of a catastrophic failure.

• Log and review system access. Logging does not just allow having a trace of what
went wrong when a system crashes. Indeed, access logs can also be used to detect
suspicious patterns and proactively counteract, and determine the extent of a breach
in order to take efforts to mitigate it. Thus reviewing logs is important but it can
be a daunting task. For this, there are solutions that automate the process. Several
breaches today are so sophisticated that it can take months before they are discovered,
but a proper log review can help for early detection. Then there is the forensic use of
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logs when investigations are carried out after a breach or abuse has been discovered
or suspected. Moreover, it is important to make sure logs are not altered by the
criminal, otherwise their utility greatly diminishes.

• Maintain systems. The threat landscape changes continually and this implies that
solutions need to be maintained and to keep evolving, especially in the cloud where
Internet connectivity makes everything more exposed. A traditional form of main-
tenance consists of continuous upgrades and patches aimed at addressing identified
vulnerabilities.

• Move towards DevSecOps. Historically, security practices often have been intro-
duced at the end of the development lifecycle. However, with the rise of more soph-
isticated cybersecurity attacks and with development teams moving to shorter and
more frequent iterations on applications, DevSecOps is now becoming a go-to prac-
tice for ensuring application security. DevSecOps is the seamless integration of secur-
ity testing and protection during the software development and deployment lifecycle.
For example, developers can run security tests in the development stage or in pro-
duction phase in near-real time so they can immediately discover all instances of a
vulnerability soon after the vulnerability is announced.

2.8.3 The life of an identity

We have already introduced the concept of IAM in Sec. 2.8.1 as a tool used to protect online
resources from unauthorized access, playing an important part in a comprehensive security
model [85]. It is a set of services supporting the creation, modification, and removal of
identities and accounts, as well as the authentication and authorization needed to access
resources. In this section, we want to deepen all these aspects related to the life of an
identity.

The concepts of identity, identifier, and account are closely related but slightly different.
The term “identifier” is used to refer to a single attribute whose purpose is to uniquely
identify a person or entity within a specific context, e.g. common identifiers used for
people are the name, age, address, email address, and passport number. The term “iden-
tity” is used to refer to a collection of attributes related to a specific person or entity in a
particular context. These attributes may be used for the authentication and authorization
phase as well as to convey information about the identity to applications. A given person
may have more than one identity, just as a person might take on different characters in
different social contexts. The term “account” is a local construct within a given application
or application suite that is used to perform actions within that context, and that has one
or more identities associated with it. To summarize, a person logs in to use an account
that has various identity attributes associated with it and which enables them to perform
actions within a system.

The life of an identity is characterized by a series of events, shown in Fig. 2.9, that we
describe in the following.
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Fig. 2.9: Events in the life of an identity.

• Provisioning. The first step in the life of an identity is its creation. The act of creat-
ing an account and associating identity profile attributes with the account is often
referred to as provisioning. Provisioning can be done by having users register or
by leveraging an external identity service. Let’s take as an example a user named
Ginevra who wants to use some online banking services. The first step is to create an
online account at her bank by filling out an account registration form with identity
information, including username, password, her name, home address, phone num-
ber, and email address. This data will be used to provision an online account at the
bank associated with Ginevra’s personal identity. Ginevra could create multiple on-
line accounts at her bank for different identities, for example she can create a second
identity as a small business owner and use it for a second online account.

• Authorization. We use the term authorization to mean granting privileges that gov-
ern what an account is allowed to do. When Ginevra creates her online account, the
bank authorizes her account to access the application to view her financial situation,
whereas she is not authorized to view account information for other customers of
the bank. Typically the authorization for an account is done at the time an account is
created and can be updated over time.

• Authentication. To access an online content that is not publicly available a user needs
to authenticate, and this implies the use of credentials. The credentials may involve
something the user knows (i.e. a password), something the user has (e.g. a numeric
code generated from a previously registered device, such as a mobile phone), and/or
something the user is (i.e. biometric information, such as a fingerprint). After Ginevra
establishes her online identity and account at the bank, she can access the bank online
services, e.g. using the username and password established during the registration
step. The username indicates the account she wants to use, while the knowledge of
the password demonstrates her right to use that account.
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• Access Policy Enforcement. Whereas the authorization specifies what a user or en-
tity is allowed to do, the access policy enforcement checks that the user’s requested
actions are allowed by the privileges he/she has been authorized to use. If Ginevra
attempts to access the stock trading services from the bank online application but
she does not have the permissions, this would be denied as she is not authorized to
access those services, and the application might display a message indicating she is
not allowed to view that service, possibly with information on how to sign up for it.

• Sessions. Once a user has been authenticated and authorized, he/she can perform
various actions within an application. Anyway, typically Web applications only al-
low a user to remain active for a limited period of time before requiring the user
to authenticate again. This is done by creating a session for the user, which tracks
information such as whether the user has been authenticated and when the authen-
tication occurred, which enables an application to know when the user should be
prompted to re-authenticate. The length of time a user can remain active before re-
authentication is known as session limit or session timeout, and it typically varies
by the sensitivity of the data in the application. Session limit help to protect against
users who walk away from their screen without logging off, and provides a means
of checking that he/she is still the legitimate user at the keyboard.

• Single Sign-On. After a user accesses an application, he/she may wish to do some-
thing else involving another application. SSO is the ability to log in once and then
access additional applications or protected resources with the same authentication
requirements without the need to reenter the credentials. SSO is possible when a
set of applications delegates the authentication to the same entity. An authenticated
session used to access multiple resources via SSO is commonly called an SSO session.
The term “federated identity” is commonly used in SSO terminology to mean that an
identity is trusted across multiple IT systems or even organizations. When Ginevra
accesses her bank web site, SSO would provide an easy access to multiple banking
services. If Ginevra signed up for the investment newsletter service at her bank, she
could log in to access first the bank online application to view her account balance,
and then access the investment newsletter without having to sign in again.

• Stronger Authentication. Forms of authentication, such as with username and pass-
word, are considered relatively weak because they involve a single factor (the pass-
word) which can be captured and easily used by others. Stronger forms of authen-
tication, such as step-up and multi-factor authentication, involve other factors, e.g.
something the user has and/or something the user is. Authentication that requires
multiple factors is known as multi-factor authentication: typically it involves a pass-
word as well as the possession of a device, such as a laptop or mobile phone, or
possibly a biometric factor, such as a fingerprint or voiceprint. Instead, step-up au-
thentication elevates an existing authentication session to a higher level of assurance
by authenticating with a stronger form of authentication. For example, Ginevra might
initially log in with a username and password to view her account balance on the
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bank web site. If at a later time she attempts to transfer a large amount of money out
of her account, she might enter a stronger authentication factor, such as a special one-
time use code generated by an application on her phone. This elevates her session to
a higher level of authentication assurance, providing a higher degree of confidence
that the user who requests access or performs a transaction is the legitimate account
owner.

• Logout. When a user is done with an application, he/she terminates the session by
logging out and this terminates the user’s application session. If the user returns
to the application, he/she has to authenticate again before being granted access. In
situations where SSO is used, there may be multiple sessions to terminate and it is a
design decision which sessions should be terminated when the user logs out of the
application.

• Account Management and Recovery. During the course of life of an identity, vari-
ous attributes of the user profile for the identity could change. For example, a user
may need to update the email address or phone number, may periodically change
the password or mobile device used in the authentication process. Account manage-
ment consists of features which allow users and administrators to view and update
user profile attributes associated with an identity. It may happen that a user forgets
his/her password or lose the device that is required for the authentication process,
and therefore the user needs to establish new credentials. Account recovery is a
mechanism to validate a user is the legitimate owner of an account through second-
ary means and then allow the user to create new credentials, e.g. an account recovery
link can be sent to the user’s email that will enable him/her to reset the credentials.

• Deprovisioning. There may come a time when a user has to close his/her account,
which means that the user’s account and associated identity information must be
deprovisioned so that they can no longer be used. Deprovisioning can take the form
of completely deleting the account and the associated identity information, or simply
disabling the account.

2.8.4 OAuth 2.0 and API authorization

Modern applications are often designed around APIs, which provide access to valuable
data or services. Typically in the past, a user often had to share his/her credentials with
the application to enable an API call on his/her behalf. This gave the application an un-
necessary amount of access and the responsibility of safeguarding the credential. Let’s see
how the OAuth 2.0 protocol/framework changed this scenario providing a better solution
for authorizing applications to call APIs.

The OAuth 2.0 authorization framework was published in 2012 and was designed to
enable an application to obtain authorization to call third-party APIs. Using OAuth 2.0 an
application can obtain a user’s consent to call an API on his/her behalf without the need
of his/her credentials. Moreover, an application can obtain authorization to call an API on
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its own behalf if it owns the content to be accessed. OAuth 2.0 introduces four actors in a
typical OAuth flow.

• Resource owner. A user, or other entity, who owns protected resources at the re-
source server.

• Resource server. A service, with an API, storing protected resources to be accessed
by an application.

• Client. An application which has to access resources at the resource server on the
resource owner’s behalf or on its own behalf. In the following, the term application
is used interchangeably with the term client.

• Authorization server. A service trusted by the resource server that authorizes the
client to call the resource server. It authenticates the client and requests consent from
the resource owner when the client makes requests on the resource owner’s behalf.
With OAuth 2.0, the authorization server and resource server may be operated by the
same entity.

With OAuth 2.0, when a client calls an API on behalf of a user, it sends an authorization
request to an authorization server. The authorization server handles the access request for
the API and returns a token that can be used by the client to access the API. In the author-
ization request, the client provides an indication, known as scope , of what it wants from
the API. The authorization server evaluates the request and, in case the client is author-
ized, returns a token to the client in which the scope refers to the access that is actually
granted. Moreover, if the client asks for a content owned by the user, the authorization
server authenticates the user and then asks him/her to give the consent for the client to
access the requested data. This authentication step ensures that the user giving the consent
is the owner of the resource being accessed. If the user agrees to the requested access, the
client receives a token to call the API on behalf of the user. This token is called access
token and it allows the client to make API requests within the scope of what the user
authorized when he/she gave the consent for the request. This approach eliminates the
need for the user to share credentials with the application and gives the user more control
over what the application can access. For a schematic representation of the authorization
process with OAuth 2.0, see Fig. 2.10

The OAuth 2.0 framework defines four methods by which a client obtains authorization
to call an API. To represent the authorization each method uses a different type of cre-
dential, known as authorization grant, and the choice depends on the use case and type
of application. The four authorization grant types are: authorization code grant, implicit
grant, resource owner password credentials grant, and client credentials grant. For a full
description of how the four authorization grant types work, see [85].

OAuth 2.0 defines two security tokens and an intermediary authorization code.

• Access token. It is a token that represents the authorization obtained by the client
to call an API and it is used by the client to access the API. Access tokens have an
expiration.
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Fig. 2.10: Authorization process with OAuth 2.0.

• Refresh token. It is an optional token that provides a convenient way for clients to
obtain a new access token when the previous one has expired, minimizing the risk
if an access token is compromised. The handling of refresh tokens may vary across
individual authorization servers: some of them release refresh tokens automatically,
and others expect an application that explicitly requests a refresh token.

• Authorization code. It is an intermediary code returned to an application and used
once to obtain an access token, and optionally a refresh token.

OAuth 2.0 has two main token profiles: OAuth 2.0 Bearer Token Profile and OAuth 2.0
MAC Token Profile. The former is the most popular and almost all OAuth 2.0 deploy-
ments today are based on it. As the name suggests, anyone who “bears” the token can
use it, so it is essential not to lose it. Bearer tokens should always be used over TLS to
avoid losing them in transit. Once the bearer access token is obtained from the authoriz-
ation server, the client can use it to talk to the resource server in three ways. The most
popular way is to include the access token in the HTTP authorization header, i.e. adding
Authorization: Bearer <access_token> . Otherwise, the access token can be included as a

query parameter or can be sent as a form-encoded body parameter. A bearer token can be
a reference token or a self-contained token: the former is an arbitrary string, and the latter
is a JSON Web Token (JWT). We describe the format of JWTs in depth in Sec. 2.8.4.1. When
the access token is a reference token, the resource server needs to validate the token by
talking to the authorization server (or the token issuer). Whereas when the access token is
a JWT, the resource server can validate the token by itself by verifying the signature of the
JWT.

The OAuth 2.0 access token is only intended for API access, for authorizing API calls,
and not for passing information about the authentication event or the user (at least in
absence of any proprietary additions to the base protocol that some providers have imple-



92 cloud computing

mented). OpenID Connect (OIDC), described in Sec. 2.8.5, can be used to authenticate a
user to an application.

2.8.4.1 JSON Web Token

JWT is an open standard that defines a self-contained and compact means to securely
transmit information between parties as a JSON object [86]. Again, JWT is a standard [87],
meaning that all JWTs are tokens but not vice versa. Using JWTs offers several advantages
over other types of tokens, e.g. Simple Web Tokens (SWTs) and Security Assertion Markup
Language (SAML) tokens.

• JWTs are more compact. JSON is less verbose than XML, so after it is encoded, a
JWT is smaller than a SAML token (which is based on the XML format).

• JWTs are more secure. JWTs can use an X.509 certificate (containing a public/private
key pair) for signing, or they can be symmetrically signed by a shared secret using
the HMAC algorithm. Thus the information contained within the JSON object can
be verified and trusted as it is digitally signed.

• JWTs are more common. JSON parsers are common in most programming languages
as they map directly to objects.

• JWTs are easier to process. JWTs are used at the Internet scale and are easier to
process on users’ devices, especially mobile.

JWTs can be used for various purposes.

• Authentication. When a user successfully logs in using his/her credentials, an ID
token is returned, which is always a JWT according to the OIDC specs.

• Authorization. When an application requests to access services or resources (e.g.
APIs) on behalf of a user, in every request it must pass an access token, which can be
in the form of a JWT. SSO widely uses JWT due to the small overhead of the format,
and its ability to be easily used across different domains.

• Information Exchange. JWTs are a good way to securely convey information between
parties as they can be signed, which means you can be confident that the senders are
who they say they are, and the structure of a JWT allows you to verify that the content
has not been tampered with.

There are some common best practices for a proper usage of tokens, and therefore also
of JWTs: keep them secret and safe, do not add sensitive data to the payload, give tokens
an expiration, send them over HTTPS connections, use the stored token for future calls
until it expires rather than requesting a new token.

JWTs consist of three concatenated Base64URL-encoded strings, separated by dots: the
header, containing metadata about the type of token and the cryptographic algorithms
used to protect the token content, the payload, as a set of statements (called claims) about
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the entity (typically the user) and the permissions granted, the signature, used to validate
that the token is trustworthy and has not been tampered with.

The JWTs claims are pieces of information asserted about a subject and appear as name/-
value pair, where the name is always a string and the value can be any JSON value. Typ-
ically, when we talk about a claim in the context of a JWT, we mean the name (or key).
There are two types of JWT claims. Custom claims, which are non-registered public or
private claims. Registered claims, which are standard claims registered with the Internet
Assigned Numbers Authority (IANA) and defined by the JWT specification. There are
seven registered claims that are not mandatory, but are recommended in order to ensure
interoperability with third-party or external applications. These are: iss (issuer), the is-
suer of the JWT; sub (subject), the subject of the JWT, i.e. the user; aud (audience), the
recipient of the JWT; exp (expiration time), the time after which the JWT expires; nbf

(not before time), the time before which the JWT must not be accepted for processing; iat

(issued at time), the time at which the JWT was issued and can be used to determine the
age of the JWT; jti (JWT ID), the unique identifier that can be used to prevent the JWT
from being replayed, and allows a token to be used only once.

A useful tool to decode, verify and generate JWTs can be found here [88].

2.8.5 OpenID Connect and user authentication

As described in Sec. 2.8.4, OAuth 2.0 provides a framework for authorizing applications
to call APIs, but it is not designed for authenticating users to applications. The OIDC
protocol provides an identity service layer on top of OAuth 2.0 to delegate user authen-
tication to an OAuth 2.0 authorization server, and return to the application claims about
the authenticated user and authentication event in a standard format. [85]. OIDC is the
third generation of OpenID, has become standard since 2014, and currently is the most
popular Identity Federation protocol. Most of the applications developed in the last few
years are supporting OIDC [84]. OIDC is very attractive, as it is much easier to use than
SAML, and does not require the heavy XML handling that SAML does [89]. SAML is a
mature technology dating back to 2005 and supports a wide range of identity functionality.
It is an open standard for authentication (and, if required, authorization) which provides
SSO access to web applications through identity federation. Anyway, now that OIDC and
OAuth 2.0 exist, modern applications using APIs will benefit from implementing these
newer protocols.

Now let’s see how OIDC works. When a user accesses an application, it redirects the
user’s browser to an authorization server that implements OIDC to authenticate the user.
OIDC calls such an authorization server (also known as identity provider) an OpenID
Provider. After the authentication, the user’s browser is redirected back to the application.
Moreover, the application request that the claims about the authenticated user be returned
in a security token called ID token. Alternatively, the application can request an OAuth
2.0 access token and then use it to call the UserInfo endpoint of the OpenID Provider to
obtain the claims.
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Since OIDC is a layer on top of OAuth 2.0, an application can use an OpenID Provider
for both user authentication and API authorization. The provider can issue to the API an
access token with custom claims containing information about the user, so that an access
policy at the level of individual users can be enforced, ensuring that a user only accesses
the articles he/she is allowed to view.

ID tokens are encoded in the JWT format. The payload section of the JWT contains
claims about the user and the authentication event. The OIDC specification defines a set of
claims for ID tokens (we have already seen and described some of them in Sec. 2.8.4.1) and
additional standard claims can be added, e.g. user’s name, email, and picture (see [90] for
further details). Custom claims can be also defined and added by the OpenID Provider. A
comparison between an example of ID token and access token is shown in Fig. 2.11, both
in the form of JWT. We recall that ID tokens are always JWTs, whereas access tokens can
be a string of any structure, such as a JWT.

OIDC defines three different flows by which an application can interact with an OpenID
Provider to make an authentication request: authorization code flow, implicit flow, and
hybrid flow. See [84] for more details on how they work.
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Fig. 2.11: Comparison between an example of ID token and access token, both in the form of JWT
[91]. We can notice that the payload in the ID token contains information about the user,
such as the name, whereas the access token contains the scope field where it is defined
which access is granted to the application.





3
H I G H E N E R G Y P H Y S I C S AT T H E L A R G E H A D R O N
C O L L I D E R

Elementary particle physics or High Energy Physics (HEP) is the study of fundamental
particles and forces that constitute matter and radiation. It is called “high energy” because
experimentally very high energy probes are needed for such study. Progresses in HEP re-
quires complex accelerators to create very high-energy collisions to uncover evidence of
new particles and forces, as well as very intense lower-energy beams for precision meas-
urements that can reveal subtle inconsistencies between experiments and theory.

The European Organization for Nuclear Research, known as CERN, is an European re-
search organization that hosts the largest particle physics laboratory in the world, and it
is based in a northwest suburb of Geneva on the Franco-Swiss border. The CERN conven-
tion was signed in 1953 by 12 founding states (including Italy) and entered into force on
29 September 1954. Today CERN has 23 member states. In 2021, the CERN community
counted 16,200 members of which almost 2700 were scientific, technical, and administrat-
ive staff members, and more than 11,100 were users of 115 different nationalities from
institutes in 77 countries who contributes to CERN’s scientific mission [92].

The main function of CERN is to provide particle accelerators and other infrastructure
needed for HEP research, and for this reason several experiments have been built at CERN
through international collaborations. CERN hosts the largest and highest-energy particle
collider in the world, called Large Hadron Collider (LHC). Collectively, LHC experiments
operations produce about 200 PB of data each year that must be stored, processed, and
analyzed. In order to allow physicists spread all over the world to have access to computing
power and storage needed to conduct their research activities, CERN exploits a grid-based
computer network infrastructure called Worldwide LHC Computing Grid (WLCG). Such
distributed infrastructure and the computing software play a vital role in reconstructing
and simulating collision data, and analyzing both in order to unlock the secrets hidden in
the vast quantity of highly complex data produced by the experiments at CERN.

In this chapter, an overview of the Standard Model of particle physics is given, with
additional insights on three physics analyses taken as use cases for the MLaaS4HEP frame-
work (see Ch. 4). A description of the LHC experiments (and particularly CMS) is also
provided. Afterwards, details on the CMS computing model (and its evolution towards
HL-LHC) and the tools used for HEP analysis (in particular those related to data science)
are provided. Lastly, Lastly, an overview of ML applications in HEP is given.
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3.1 standard model and top quark

The Standard Model [93, 94] explains how the basic building blocks of the matter interact,
governed by fundamental forces [95]. The basic building blocks of matter are the irredu-
cibly smallest detectable particles, called elementary particles. Elementary particles are
classified as bosons and fermions based on their spin (integer and half-integer respect-
ively), and are grouped based on the fundamental interactions they are subject to.

Fermions are 12, divided into 6 quarks and 6 leptons, in addition to other 12 that are the
anti-particle counterparts. There are three generations of elementary particles, and each
generation contains two types of leptons and two types of quarks. The lightest and most
stable particles are in the first generation, whereas the heavier and less stable particles
belong to the second, and third generations. All stable matter in the universe is made up
of particles that belong to the first generation. The six quarks are: up (u), down (d), charm
(c), strange (s), top (t) and bottom (b). Quarks come in three different “colors” and only
mix in ways that form colorless objects. The six leptons are: electron (e), electron neutrino
(νe), muon (µ), muon neutrino (νµ), tau (τ), and tau neutrino (ντ). The electron, the muon,
and the tau all have an electric charge and a sizeable mass, whereas the neutrinos are
electrically neutral and have a very tiny mass.

In the universe, there are four fundamental forces (strong, weak, electromagnetic, and
gravitational) that work over different ranges, and have different strengths. The gravita-
tional force is the weakest but it has an infinite range. The electromagnetic force also has
an infinite range, but it is stronger than gravity. The weak and strong forces are effect-
ive only over a very short range and dominate only at the level of subatomic particles.
Despite its name, the weak force is much stronger than gravity but is the weakest among
the other three. As the name suggests the strong force is the strongest of all four funda-
mental interactions. Except for gravitational, fundamental forces result from the exchange
of force-carrying particles, which are bosons: particles of matter transfer discrete amounts
of energy by exchanging bosons with each other. Each fundamental force has its corres-
ponding boson: the strong force is carried by the gluons (g), the electromagnetic force by
the photon (γ), and the weak force by the W and Z bosons. Although not yet found, the
“graviton” should be the corresponding force-carrying particle of the gravitational force.
The Standard Model includes the electromagnetic, strong, and weak forces, and all their
carrier particles, explaining extremely well how these forces act on all particles.

However, gravity is not part of the Standard Model, and trying to fit gravity into this
framework proved to be a difficult challenge. The quantum theory (used to describe the
micro world) and the general theory of relativity (used to describe the macro world) are
difficult to fit into a single framework, and no one has managed to make them mathem-
atically compatible in the context of the Standard Model. But fortunately when it comes
to the tiny scale of particles, the effect of gravity is so weak that is negligible. Only when
the matter is in bulk, at the scale of the human body or of the planets, the effect of grav-
ity dominates. So the Standard Model still works well despite the exclusion of one of the
fundamental forces.
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Fig. 3.1: Schematic view of the particles belonging to the Standard Model [96].

The Standard Model includes also the Higgs boson, the particle which explains why
the other elementary particles, except photon and gluons, are massive. See Fig. 3.1 for a
schematic view of the elementary particles belonging to the Standard Model.

In the following, an overview of the physics goal of three HEP analyses is given. Such
analyses are then chosen as use cases for the MLaaS4HEP framework, as described in Ch.
4.

3.1.1 Top quark production and fully hadronic channel

The top quark is the most massive of all observed elementary particles (approximately 173
GeV). The large value of its mass makes the top quark contribution dominant in loop cor-
rections to many observables, like the W boson mass. Furthermore, precise measurements
of the W boson and the top quark masses are related to the mass of the Higgs boson and
are used to evaluate the self-consistency of the SM. Its existence was postulated in 1973 by
Makoto Kobayashi and Toshihide Maskawa, and was discovered in 1995 by the CDF and
D0 experiments operating at Tevatron [97]. Kobayashi and Maskawa won the 2008 Nobel
Prize in Physics for the prediction of the top and bottom quark.

At the LHC, top quarks are mostly produced in pairs via the strong interaction with a
production cross section σtt̄ ≈ 830 pb for

√
s = 13 TeV1. However, there is a significant

number of top quarks produced singly via the weak interaction (σt ≈ 300 pb for
√

s = 13

1
√

s is the center-of-mass energy.
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Fig. 3.2: Feynman diagrams for tt̄ production at LHC (gluon-gluon fusion in the left and central
diagrams, whereas qq̄ annihilation in the right diagram).

TeV). At leading order, there are only a few processes that describe the production of tt̄:
the dominant production mechanism is from the gluon-gluon fusion (≈ 90%), whereas
qq̄ annihilation accounts for about 10%. See Fig. 3.2 for the Feynman diagrams of such
processes.

The top quark decays through the weak interaction almost exclusively to a W boson and
a bottom quark. The final states of tt̄ are classified by the decay products of the W boson,
which can decay to either leptons or quarks. Three final states are distinguished as follows.

• Dilepton channel. Both W bosons decay to a lepton-neutrino doublet (branching
ratio BR ≈ 5%):

tt̄ → W+b W−b̄ → l̄νlb l′ν̄l′ b̄ with l = e, µ

• Single-lepton channel. Only one W decays to a lepton-neutrino doublet (BR ≈ 30%):

tt̄ → W+b W−b̄ → l̄νlb qq̄′b̄

or:
tt̄ → W+b W−b̄ → qq̄′b̄ lνlb

• All-jets (or fully hadronic) channel. Both W bosons decay hadronically, as represen-
ted in Figure 3.3 (BR ≈ 46%):

tt̄ → W+b W−b̄ → q′q̄b q′q̄b̄ → j1 j2 j3 j4 j5 j6,

producing 6 jets2 (“ji” above) in the final state.

In the fully hadronic channel, the decay products would be six distinct (i.e. “resolved”)
jets, but if the top quarks have large transverse momentum (pT), the particles coming
from the decay t → W+b and those coming from the decay t̄ → W−b̄ will receive a large
boost and emerge quite collimated, giving two distinct wide jets. Wide jets coming from
particles with a relevant Lorentz boost are thus called “boosted jets”. During the LHC Run
2 of proton-proton (pp) collisions at 13 TeV, jets with pT up to few TeV can be observed,
and at such high pT the decay products of top quarks can be so collimated that standard
reconstruction methods start to be less efficient.

2 A jet is a physics object defined as a spray of collimated particles produced by the fragmentation and hadron-
ization of quarks and gluons originated by a hard collision.
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Fig. 3.3: Feynman diagram for tt̄ all-jets decay.

The study of such boosted jet allows us to test the Standard Model under extreme con-
ditions, but it may also provide observations of Beyond the Standard Model (BSM) signals.
In the CMS experiment, an official analysis was conducted on the fully hadronic channel,
where also people from the University of Bologna were involved [98]. In such analysis,
the signal events are the tt̄ pairs that decay in the fully hadronic channel, while the back-
ground is composed of Quantum ChromoDynamics (QCD)3 multi-jet production that is
largely produced at LHC.

3.1.2 Higgs boson and challenging analyses

The Higgs boson is considered the most relevant discovery of the last few years in HEP.
After almost 50 years from its prediction (occurred in 1964 by Peter Higgs and other five
scientists), it was discovered by the ATLAS and CMS collaborations in 2012 at the CERN
LHC [99, 100]. Since then, many analyses have been performed to measure its properties
with higher precision. At LHC, the Standard Model Higgs boson can mainly be created
in four different processes or production modes: gluon-gluon fusion (ggH), vector boson
fusion (VBF), Higgs-strahlung (VH), and top-antitop-Higgs (tt̄H) associated production
(see Fig. 3.4). The first mode is the most probable and the last one is the rarest (see Fig.
3.5 for the different production modes of the Higgs boson and the corresponding cross
sections).

In the Standard Model, the Higgs boson is predicted to couple with fermions via
Yukawa-like interaction which gives the mass to fermions proportionally to the coupling.
To verify the Standard Model, it is important to measure the coupling of the Higgs boson
to other particles and check their consistency with the prediction of the Standard Model
[101]. In the original discovery, the Higgs boson was seen decaying into γγ, WW, and

3 QCD is the theory of the strong interaction between quarks mediated by gluons.
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Fig. 3.4: Leading order Feynman diagrams for the main production modes of the Standard Model
Higgs boson at LHC: ggH (upper left), VBF (upper right), VH (lower left), and tt̄H (lower
right).

Fig. 3.5: In the table on the left, the cross sections for all possible production modes of the Higgs
boson are shown. In the table of the right, the branching ratios for all possible decay
channels of the Higgs boson are reported. All these values are obtained considering

√
s =

13 TeV and considering a Higgs boson of 125 GeV [102].

ZZ, that are all boson pairs. Anyway, the dominant decay channel for the Higgs boson is
predicted to be H → bb̄, with a branching ratio of about 58.4% (see Fig. 3.5 for branching
ratio of all possible decay channels of the Higgs boson).

3.1.2.1 Higgs boson Machine Learning challenge

The Higgs Boson ML challenge was a competition held in 2014, organized by a group of
ATLAS physicists and data scientists, and hosted by the Kaggle platform. The Higgs decay
channel chosen in this challenge was H → ττ, which is challenging for two main reasons.
First, since neutrinos cannot be directly detected, their presence in the final state makes it
difficult to evaluate the mass of the Higgs candidate. Second, the Z boson can also decay
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in two taus, and this happens much more frequently than the Higgs decay. Moreover, since
the mass of a Z (91 GeV) is not very far from the mass of the Higgs (125 GeV), the two
decays produce similar events which are difficult to separate. In the challenge, a specific
topology among the many possible ones is chosen, i.e. events where one tau decays into an
electron or a muon and two neutrinos, and the other tau decays in hadrons and a neutrino.

The signal and background samples are Monte Carlo simulated events using the official
ATLAS full detector simulator. The signal sample contains events in which Higgs bosons
were produced. The background sample was generated by other known processes which
can produce events that mimic the signal. For simplicity, only three background processes
are used in the challenge. The first set of events comes from the decay of the Z boson in two
taus. The second set contains events with a pair of top quarks, which can have hadronic
tau and lepton in their decay. The third set involves the W boson decay, where one electron
or muon and a hadronic tau can appear simultaneously only through imperfections in the
procedure of particle identification.

In the challenge, the Approximate Median Significance (AMS) metric [101] is used to
evaluate the quality of the classifier. The AMS metric is defined by Eq. 3.1, where s and
b represent the estimated number of signal and background events respectively, whereas
breg is a regularization term set to 10 for the challenge.

AMS =

√
2
((

s + b + breg
)

ln
(

1 +
s

b + breg

)
− s
)

(3.1)

3.1.2.2 tt̄H(bb̄) in boosted, fully-hadronic final states

The tt̄H production is very important in the study of the top-Higgs Yukawa coupling, as
other production mechanisms (e.g. gluon-gluon fusion) involve loop-level diagrams where
contributions from BSM physics could enter the loops unnoticed. The highest branching
ratio (≈ 25%) is given by the all-hadronic decay channel with H → bb̄ and all-hadronic tt̄
(see Fig. 3.6). In the final state, there are at least eight partons4 (more might arise from the
initial and final state radiation) where four of them are bottom quarks. Despite the highest
branching ratio, the all-jets final state is very challenging. There are large uncertainties due
to the presence of many jets and it is dominated by the large QCD multi-jet production at
LHC, but at the same time, it represents the unique possibility to fully reconstruct the tt̄H
system as all decay products are observable.

In the CMS experiment, an official analysis (where also people from the University of
Bologna were involved) was conducted on the tt̄H(bb̄) channel in the all-jets final state
where at least one of the jets is a boosted jet, and where the Higgs boson decays in a
pair of well resolved jets identified as a result of the hadronization of bottom quarks. For
the identification of tt̄H(bb̄) events containing a resolved-Higgs decay a ML model based
on Boosted Decision Tree was used in this CMS analysis [96, 103, 104] and the training
was done within the TMVA framework (see Sec. 3.4). The Monte Carlo simulation gives

4 The name “parton” was proposed by Richard Feynman in 1969 referring to any particle constituent within the
proton, neutron, and other hadrons. Today these particles are referred to as quarks and gluons.
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Fig. 3.6: Feynman diagram for the tt̄H(bb̄) decay

the events used for training, and the events are selected among the tt̄H sample and the
two dominant background samples, namely QCD and tt̄, respectively. The tt̄H events with
the resolved Higgs boson matching to the system of two b-tagged jets are considered
signal events, whereas unmatched tt̄H events, all the QCD, and tt̄ events are considered
background events. Both signal and background events are required to pass some selection
criteria, e.g. to pass the signal trigger, to have at least a boosted jet, to contain no leptons,
etc. This selection is aimed to select boosted all-jets-like events.

3.2 large hadron collider and its experiments

LHC is a particle accelerator and collider located in a circular tunnel 27 km long and
around 100 m underground, the same tunnel that housed the Large Electron-Positron
(LEP) collider in the 80s and 90s (see Fig. 3.7). Inside LHC two high-energy particle beams
travel at close to the speed of light before they are made to collide. The beams travel
in opposite directions in separate beam pipes, which are two tubes kept at an ultrahigh
vacuum [105]. The beams are guided in the accelerator ring by a strong magnetic field
maintained by superconducting electromagnets. LHC is mainly used to make bunches of
protons collide, but for a short period of the year, heavy ions are used.

LHC is the last stage in the CERN’s accelerator complex (see Fig. 3.8). The accelerator
complex at CERN is a succession of machines that accelerate particles to ever higher en-
ergies. Each machine increases the energy of a beam of particles before injecting it into
the next machine. In LHC, particle beams are accelerated up to the energy of 6.8 TeV per
beam.

From the very beginning of the project conception, LHC has had a detailed plan of
upgrades based on specific research objectives and technology improvements, which have
gradually led the machine to be more and more powerful [108]. However, over the years,
there have been some adjustments and delays on the originally planned upgrades due
to various obstacles encountered, e.g. in the supply of materials, in the installation of
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Fig. 3.7: The LHC tunnel [106].

Fig. 3.8: The LHC accelerator complex at CERN [107].

detectors, and during the operations of data-taking. The LHC plan is divided into three
different data taking period, called Runs, with two Long Shutdowns (LSs) connecting the
different Runs (see Fig. 3.9). During a LS, all planned upgrades on LHC and detectors are
integrated. We are currently at the beginning of Run 3, which will last for almost three
years. Subsequently, another LS will lead to a new phase called High-Luminosity LHC
(HL-LHC). In the HL-LHC phase, the expected luminosity will be a factor of 5 and 7.5 the
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Fig. 3.9: Current LHC and HL-LHC schedule [109].

nominal luminosity5 during Run 4 and Run 5, respectively. This means that the number of
events produced at HL-LHC will considerably increase, and at the same time also the data
to be stored and analyzed will increase, which will have also a higher complexity.

The two beams inside LHC are brought into collision inside four detectors: A Large
Ion Collider Experiment (ALICE), A Toroidal LHC ApparatuS (ATLAS), Compact Muon
Solenoid (CMS), and LHC beauty (LHCb).

ALICE is a detector of 10,000 tonnes, 26 m long, 16 m high, and 16 m wide, dedicated
to heavy-ion physics at the LHC [110]. For part of each year, the LHC provides collisions
between lead ions, recreating conditions similar to those just after the Big Bang. Collisions
in the LHC generate temperatures more than 100,000 times hotter than the center of the
Sun, and under such conditions protons and neutrons “melt” freeing the quarks from
their bonds with the gluons, creating the so-called quark-gluon plasma. The existence of
this plasma and its properties are key issues in the theory of QCD, for understanding the
phenomenon of confinement and the problem of chiral-symmetry restoration.

ATLAS is a detector of 7,000 tonnes, 46 m long, 25 m high, and 25 m wide, and it is
the largest volume particle detector ever constructed [111]. It is a general-purpose detector
which investigates a wide range of physics, from the search for extra dimensions to Higgs
boson and particles that could make up dark matter.

Regarding the CMS detector, we provide a more detailed description in Sec. 3.2.1.
LHCb is a detector of 5,600 tonnes, 21 m long, 10 m high, and 13 m wide, and it is spe-

cialized in investigating the slight differences between matter and antimatter by studying
the beauty quark [112]. Instead of surrounding the entire collision point with an enclosed
detector as ATLAS and CMS do, the LHCb experiment uses a series of subdetectors to

5 Luminosity is the ratio of the number of events detected in a certain period of time to the cross section. The
ATLAS and CMS experiments have a designed luminosity of 1034cm−2s−1.
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Fig. 3.10: The CMS detector [113].

mainly detect forward particles, i.e. those produced forwards by the collision in one dir-
ection. The first subdetector is mounted close to the collision point, whereas the others
follow one behind the other for a length of 20 m.

The LHC serves other smaller experiments: TOTEM, LHCf, MoEDAL, and FASER. There
is a diverse and rich experimental program connected to the accelerator complex, not only
related to LHC experiments: most of the other accelerators in the chain have their own
experimental halls, where beams are used for experiments at lower energies.

3.2.1 The Compact Muon Solenoid experiment

CMS is a detector of 14,000 tonnes, 28.7 m long, 15 m wide, and 15 m high [113] (see Fig.
3.10). It is a general-purpose detector covering a broad physics program like ATLAS, but
unlike ATLAS it uses different technical solutions and a different design of the magnet-
system.

CMS is built around a huge superconducting solenoid (which generates a magnetic
field of about 4 T) and is composed of several layers of detectors that identify the different
particles and that allow building a picture of the collision events. The detector acts as a
giant filter where each layer is designed to stop or track different types of particles coming
from pp and heavy-ion collisions. To work correctly (i.e. detect and identify particles), CMS
needs the following systems (starting from the collision point and going outwards):

• a high-resolution vertex detector, to give an accurate reconstruction of the decay
vertex of the heaviest particles;

• a high-quality central tracking system (tracker), to give accurate momentum meas-
urements of charged particles;
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Fig. 3.11: Schematic representation of the systems that make up CMS [114].

• a high-resolution method, to measure the energy of electrons and photons, called
electromagnetic calorimeter (ECAL);

• a hadron calorimeter (HCAL), to measure the energy of particles coming from the
hadronic shower;

• a high-performance system to detect and measure muons.

See Fig. 3.11 for a schematic representation of the systems that make up CMS.
When there are collisions at LHC, about one billion of pp interactions occur every second

in the CMS detector [95, 108, 115]. Indeed, LHC beams cross with a frequency of 40 MHz
(every 25 ns), and at each crossing 20-60 pp interactions happen, called pileup. Among
the huge number of collisions, potentially interesting events are selected through a trigger
system. The CMS trigger system is organized into two levels, represented by the Level-1
(L1) trigger and the High-Level Trigger (HLT). The first one is based on custom electronics
and performs data selection in a fast and automatic way by selecting data according to the
physics of interest. The L1 trigger uses coarsely segmented data from the muon system
and the calorimeters while it keeps the high-resolution data in pipeline memories in the
front-end electronics. With the L1 trigger, the frequency of acquired data is reduced to ≈
100 kHz. Then, the events are passed to the next trigger system. HLT is a software system
implemented on a farm of thousands of commercial processors. The HLT consists of a
streamlined version of the offline reconstruction algorithms, that are optimized to comply
with the strict time requirements of the online selection. The HLT contains many trigger
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paths, each corresponding to a dedicated trigger, consisting of several steps (i.e. software
modules). Each module performs a well-defined task, such as the reconstruction of physics
objects (e.g. electrons, muons, jets, and missing transverse energy). The HLT reduces the
rate of events to ≈ 1 kHz.

3.3 cms computing model

When there are collisions at LHC, the experiments produce a huge amount of data that
must be stored and later analyzed by scientists. For example, in CMS during Run 3, the
HLT throughput can be even higher than 2 GB/s. In addition to raw data coming from the
detector, there is data obtained from processing raw data, data from Monte Carlo simula-
tions, and data produced by the analyses of the users. To manage all this data, a complex
computing infrastructure has been designed and deployed, composed of computing cen-
ters distributed worldwide, known as WLCG. Currently, almost 1.5 EB of data is stored in
disks and tapes of the WLCG [116].

Moreover, each LHC experiment must be equipped with a solid computing model. It
includes the description of all the functionalities, the needed software, middleware, and
hardware that must be available to enable the collection, distribution, and access of the
data in order to streamline the analysis of this data and the production of the desired
physics output [95]. All the interactions among each specific component of the overall
system, and their management through a certain number of tools and services in real time
are also part of the computing model of each LHC experiment.

On top of a set of components that constitute the so-called “middleware layer”6 (com-
mon across experiments), each experiment may also decide to add application layer soft-
ware solutions that are experiment-specific and perform very specific functionalities that
cannot be offered by the middleware layer. While common components are designed and
developed by international projects to coherently and smoothly operate on WLCG re-
sources, application layer components are developed by software architects and developers
of each experiment collaboration. It is the responsibility of the experiment to make sure
that these components can be operated in computing centers around the world in an effi-
cient way, and not disruptive of the activities of other experiments. All these very complex
set-up and operations are driven by the WLCG management in close collaboration with
the software/computing management of each LHC experiment.

3.3.1 Grid technologies and WLCG

The WLCG project is a global collaboration for the building and maintaining of the data
storage and analysis infrastructure required by the experiments at the LHC. The main pur-
pose of this infrastructure is to provide computing resources to store, distribute and ana-

6 The software that allows users to access computers distributed across the globe over high-performance net-
works is called “middleware”, as it sits between the operating systems of the computers and the physics
application software.
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lyze the data produced by the LHC to all the collaboration users regardless of where they
are. The idea of a shared computing infrastructure is the basis of the concept of Grid. The
WLCG cooperates with several Grid projects, e.g. the European Grid Infrastructure (EGI)
and Open Science Grid (OSG). As previously mentioned, middleware projects provide the
software layers on top of which the experiments add their own (and different) application
layer. At the middleware layer, the main building blocks that make up the infrastructure,
i.e. the logical elements of a Grid site, are the following.

• Computing Element (CE). It manages the user’s requests for computational power
in a Grid site. This power is provided by the use of computer clusters organized
in farms and managed by software tools. The CE manages the processing requests
(called “jobs”) submitted by the user and the interactions with the services of the
Grid.

• Worker Node (WN). This is where the computation actually takes place on a site
farm. Here, scripts can be run to configure the environment.

• Storage Element (SE). It gives access to storage and data on a site. Data is stored
on tapes and disks: tapes are used as long-term secure storage media, while disks
are used for quick access to data for analysis. The Storage Resource Manager (SRM)
service offers a common interface to access data remotely.

• User Interface (UI). It is the machine on which a user interacts with the Grid.
Through the UI a user can access remote computing resources.

• Central services to help users access computing resources. Examples are information
systems, data catalogs, workload management systems, and data transfer solutions.

A job submitted by a user may include requests like storage, processing capacity, avail-
ability of analysis software, etc. The computing Grid establishes the user’s identity, checks
his/her credentials, and searches for available sites that can provide the resources reques-
ted by the user. User does not have to worry about where computing resources are located
as long as he/she needs are served.

The security on the Grid is based on X.509 proxies which provide authentication for
both users and services. The user is endowed with a Grid certificate (issued by the CERN
Grid Certification Authority) which is used to get a proxy needed to access the reques-
ted services. The authorization is based on the Virtual Organization Management Sys-
tem (VOMS), which contains the list of all users of the Grid registered to the recognized
VOs (e.g. CMS) and the tasks they can execute on the Grid itself. Since 2017, the WLCG
authorization working group started planning the evolution towards JWTs as means for
authentication/authorization on the WLCG [117]. The transition will be gradual and the
migration of all the services is expected to be completed in 2026.

3.3.1.1 WLCG Tiers

The WLCG is composed of centers belonging to a few levels, called “Tiers”, labeled with 0,
1, 2, and 3 (see Fig. 3.12). Each Tier is a computer center made up of computing resources
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Fig. 3.12: The Tier structure of WLCG [118].

(storage capacity, CPU power, and network connectivity) and provides a specific set of
services, different from one level to another.

The structure made by Tiers was formalized by the MONARC model, which provided
for a rigid hierarchy. According to the MONARC model, the numeric label associated with
the Tier is intended to indicate the quantity and level of functionalities and services offered
by the Tier to the community (and also, ultimately, its “size”): the lower the number the
higher the quantity and level of services. For example, a Tier-1 implements and offers more
storage, CPU, network, additional services, and related availability and support levels
compared to a Tier-2. Moreover, a computer center that takes part in WLCG for one or more
LHC experiments could theoretically cover different roles and perform different functions
for each experiment. For instance, a Tier could have the function of Tier-1 for CMS and
Tier-2 for LHCb. Currently, the CMS distributed computing has overcome the original
MONARC model, blurring the roles of Tier-1s and Tier-2s, and enabling greater flexibility
in the type of workflows that can be executed at each Tier level [119]. CMS has reduced the
functional differences between Tiers, while maintaining some operational characteristics,
e.g. the site support level.

In the following, more details about the different levels of Tiers are provided.

Tier-0
The Tier-0 is located at CERN, and since 2012 it was extended via a link with the Wigner
Research Centre for Physics in Budapest. The latter guarantees greater availability, thus
allowing the Tier-0 to be operational even in case of CERN issues. The role of the Tier-0 is
to receive raw data from detectors and store them on tapes, perform prompt reconstruction,
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as well as distributes the raw data and the reconstructed output to Tier-1s. Despite all data
from the LHC passes through this central hub, it provides less than 20% of the Grid total
computing capacity.

In CMS, part of the data is processed offline within 48 hours at the Tier-0 via the so-called
prompt reconstruction, while the rest is copied to tape (or “parked”) for later processing
[120]. The idea behind partial prompt reconstruction is to reconstruct promptly at the Tier-
0 only a small fraction of the events recorded (an amount which is just enough to ensure
data quality and the preparation of analyses), parking the rest on tape to then reconstruct
all events at the end of the year, when improved calibrations are available. Data is stored
in two copies, one at CERN (the so-called cold copy) and one distributed to Tier-1s (the
so-called hot copy).

In order to offer secure and efficient transfers from the Tier-0 to the Tier-1s, a dedicated
high-performance network infrastructure based on fiber optic, the so-called LHC Optical
Private Network (LHCOPN), was designed and deployed. Although it was initially con-
ceived for Tier-0 to Tier-1 connections only, it was later expanded to cover also all the
Tier-1 to Tier-1 connections, adding a crucial redundancy to the overall system. CMS trans-
fer rates from CERN to Tier-1s exceeded 16 Gbps at their peaks during 2018.

Tier-1
The Tier-1 pool consists of 13 computer centers located in different parts of the world, of
which 7 were available to CMS during Run-2 (KIT in Germany, PIC in Spain, CCIN2P3 in
France, INFN-CNAF in Italy, ASGC in Taiwan, RAL in the UK, and FNAL in the USA).
They are responsible to store and reprocess raw and reconstructed data, distribute data to
Tier 2s, and safe-keep a part of simulated data produced at these Tier 2s. In Tier-1 sites,
the “hot copies” of real and simulated data are stored on both disk caches (for performant
access) and tapes (for persistent archive).

Tier-2 and Tier-3
Tier-2s are typically located at laboratories, universities, and other scientific institutes that
can store sufficient data and provide adequate computing power for specific analysis tasks.
They manage a proportional share of the production and reconstruction of simulated
events. There are around 160 Tier-2 sites around the world, of which about 50 are used
by CMS. Individual scientists can access the Grid through local computing resources (e.g.
Tier-3), which can be local clusters in a university department or even (in principle) an
individual PC. Unlike Tier-2 centers, a Tier-3 site does not sign any Memorandum of Un-
derstanding with WLCG, meaning that there is no formal engagement between WLCG
and Tier-3 resources. This implies no check on availability and therefore a great flexibil-
ity in site management. A Tier-3 is a good resource for the local community of physics
end-users and analysts.



3.3 cms computing model 113

3.3.1.2 Opportunistic resources, cloud resources, and HPCs

The WLCG experiments benefit from a relatively large amount of opportunistic resources,
with large fluctuations between experiments (on average 20% beyond the CPU pledge level)
[121]. Opportunistic resources today are largely provided in the form of Grid resources at
WLCG sites and Tier-3s, but in part they are made accessible through non-Grid interfaces,
e.g. cloud and HPC facilities.

Commercial cloud facilities can be an opportunity for their elastic capabilities, although
it is not obvious whether this flexibility is necessary for the expected needs of HL-LHC
(it is likely to be specific to the experiment). Given the costs of today’s cloud providers,
commercial cloud resources are not economically a good alternative to on-premise. So far,
cloud resources have been integrated in some cases as an extension of WLCG facilities,
and in other cases directly with the workload management systems of the experiments.

Today, HPCs are used in production by CMS for all kinds of central workflows, e.g.
event generation, simulation, digitization, reconstruction, and creation of analysis formats
[120]. In recent years, HPC machines contributed significantly to the processing of Run 2
data and the generation of the related Monte Carlo samples: between 5 and 10% of the
total used computing power dedicated to these activities came from HPCs. Italy was the
second largest provider of HPC resources to CMS during 2019 and 2020 with the Marconi
A2 machine at INFN-CINECA. Substantial national and supra-national investments have
been made in this area and the nascent exascale machines are on the horizon, which will
be part of the future scientific computing infrastructure.

3.3.2 CMS data types

To extract useful information for a HEP analysis, a physicist must combine a variety of
blocks, e.g. reconstructed information from raw data of the detector (specified by a com-
bination of trigger paths and possibly further selected by cuts on the reconstructed quantit-
ies), Monte Carlo samples which simulate the physics signal under study, and background
samples (specified by the simulated physics process). This information is stored in event
collections and datasets.

An event collection may correspond to the event data from a particular trigger selection
from a given “run” (corresponding to a single bunch crossing). This could very easily be
any type of user-defined “ntuple”. A dataset is defined as any set of event collections that
are grouped and analyzed together depending on physics attributes, e.g. their trigger path
or Monte Carlo physics generator, or on the fact that they are a particular object model
representation of those events. An event collection is the smallest unit within a dataset that
a user can select, and generally, the reconstructed information needed for the analysis is
all contained in one or a few event collection(s).

Data is stored in ROOT files (for more details see Sec. 3.4.1), and the smallest unit in
computing space is called “file block” which corresponds to a group of ROOT files likely
to be accessed together. This needs a mapping from the physics abstraction of the event
(event collection or dataset) to the file location.
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Starting from raw data produced by the online system, successive stages of processing
refine this data, apply calibrations, and create higher-level physics objects [122]. The event
information from each step in the simulation and reconstruction chain is logically grouped
into the so-called data tier, where each one contains different levels of information about
the same event. Every bit of data in an event must be written in a supported data format.
A data format is essentially a C++ class that defines a data structure (a data type with data
members). The term data format can be used to mean the format of data written using the
class (intended as a sort of template), or to the instantiated class object itself. CMS uses a
number of event data formats with varying degrees of detail, size, and refinement. A data
tier may contain multiple data formats.

The three main data tiers in CMS are the following.

• RAW. It contains the raw detector information (e.g. detector particles hits). In the
vast majority of cases, RAW data is not used directly for analysis.

• RECO (RECOnstructed data). It is the output of the first pass of processing at the Tier-
0. This layer contains reconstructed physics objects, but still contains many details
about the event. RECO data can be used for analysis, but in general, its size is too
big for frequent use.

• AOD (Analysis Object Data). It is a “distilled” version of the RECO event informa-
tion, which provides a trade-off between event size and the complexity of available
information in order to optimize flexibility and speed for analyses. The AOD con-
tains enough information about the event to support all the physics analyses.

Since in Run 2 the data produced would have increased by a factor of ≈ 10 compared
to Run 1, and to avoid the intermediate ntuples that were produced by analysis groups
from AOD files, a new data format was introduced in 2014 for the beginning of Run 2. The
motivation for the MiniAOD format is to have a small and quickly derived data format on
which the majority of CMS analyses can run. This format was intended to have enough
information to serve about 80% of CMS analyses, while dramatically simplifying the disk
and I/O resources needed for the analyses. The MiniAOD size is approximately 10% of
the size of the AOD format (see Fig. 3.13).

In 2018, CMS introduced a new compact event data tier, named NanoAOD, intending
to serve the needs of a substantial fraction of its physics analyses with a per-event pay-
load of about 1-2 kB, ≈ 20 times smaller than MiniAOD [124, 125]. NanoAOD achieves
such a strong data reduction by keeping only high-level information about physics objects,
e.g. jets and leptons, dropping their individual constituents, and reducing the precision of
the stored variables. The content of a NanoAOD file takes the form of a flat ROOT TTree
with no specific dictionary needed for I/O, miming the typical format of user ntuples.
Conventions on column (branches) names are used to group information belonging to the
same high-level object: branches from the same object have all the same length in an event
and no further array nesting within branch elements is allowed. The current content of
NanoAOD consists of all physics objects, including jets, electrons, muons, photons, trigger
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Fig. 3.13: Evolution of data formats and their respective event sizes [123].

Fig. 3.14: Results of surveys of adoption of the NanoAOD data tier, or plans to do so in the near or
far future, by physics analyses since 2017 [120].

information, missing transverse energy, and more. The NanoAOD event content under-
goes a continuous process of tuning, based on the experience accumulated with analyses
adopting it. For a detailed description of the NanoAOD data tier content, see [126]. In the
last years, the portion of the analyses using NanoAOD has increased substantially (see Fig.
3.14): currently, the percentage of analyses that have adopted NanoAOD is 30%.

3.3.3 CMS data processing tasks

CMS executes a variety of tasks on its distributed computing infrastructure for reconstruct-
ing and simulating collision data and analyzing both.

• The generation task is the first step in simulating collision data. It uses Monte Carlo
event generators, which are software packages provided by the theoretical particle
physics community, to generate events from theoretical principles. CMS relies on
several event generators, e.g. Pythia, POWHEG, and MadGraph.

• The simulation task takes the output of the generation task and models the energy de-
position of the particles interacting with the material in the CMS detector. Two types
of simulation exist in two separate frameworks: Geant4-based and a parameterized
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fast Monte Carlo chain, known as “fastsim” in CMS. The fastsim is a full Monte
Carlo processing chain, which is combined with a parameterized digitization and
reconstruction (steps described below), relying on a simplified geometry. This type
of data processing chain is much faster than the regular one: the datasets obtained
with it give the output of the standard simulation and reconstruction at about the
level of 10% approximately 6 times faster.

• The digitization task consists in modeling the electronic processing of the signal pro-
duced by the energy depositions. Moreover, it simulates the effect of additional pp
interactions within the same (in-time) or neighboring (out-of-time) bunch crossings
(pileup).

• The reconstruction task executes all the algorithms necessary to interpret signals as
due to the interaction of identifiable particles with the detector. Reconstruction out-
put comes in several different formats designed for the different needs of the analyses
tasks, i.e. RECO, AOD, MiniAOD, and NanoAOD.

• The analysis task reduces the size of the reconstruction output by filtering events
and eliminating the information not required for a particular physics measurement.
Properties of specific events are calculated and information is reduced to graphs or
histograms, building a statistical interpretation of the results.

• With the increasing success of deep learning methods to address HEP challenges,
CMS is investigating and developing ML-based applications at all levels. Before being
deployed and embedded within the data processing steps, models need to be trained:
this additional data processing step is called ML training.

3.3.4 CMS services and operations

As already mentioned in Sec. 3.3, the integration of resources at CMS computing cen-
ters into a single and coherent system is based on the Grid middleware which presents
a standardized interface to storage and CPU facilities at each WLCG site. At the same
time, however, a number of CMS-specific distributed computing services operate above
the generic Grid layer, enabling higher-level data and workload management functions.
These services, in some cases, require CMS-specific software agents to run at the sites, in
addition to generic Grid services. An overview of the CMS computing services compon-
ents is shown in Fig. 3.15. In the next two paragraphs, some of the most important services
will be briefly presented, with the caveat that this is only a general high-level overview,
and some existing additional services (which could rapidly evolve over the years) are not
mentioned.

3.3.4.1 Data management

CMS requires tools to catalog existing data, track the location of corresponding physical
data files on-site storage systems, and manage and monitor the flow of data between
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Fig. 3.15: Overview of the CMS computing services [127].

sites. A multi-tiered catalog system, the Dataset Bookkeeping System (DBS), is used to
provide the connection between abstract datasets or event collections and physical files. It
provides a standardized and queryable means of cataloging and describing event data. It
is the primary means of data discovery for the user, which answers the question “what
data of this type exists in the system?”. In particular, it must express the relationships
between datasets and event collections as well as their mapping to the packaging units of
file blocks and files. A second functionality of the catalog system is needed to provide the
mapping between file blocks to the particular sites at which they are located, including the
possibility of replicas at multiple sites. For this, Local File Catalog at each site are used to
map logical files onto physical files in local storage.

The Data Aggregation Service (DAS) is a service used in CMS to allow a data search
through a query language. The Physics Experiment Data Export (PhEDEx), is a reliable
and scalable dataset replication system in production for CMS since 2004, then replaced
by Rucio in 2020 to meet the technical and scale needs of CMS.

3.3.4.2 Workflow management

The management of grid jobs is handled by a complex system, which nowadays has com-
pletely migrated towards the use of “pilots” on an HTCondor infrastructure. The goal is to
schedule jobs onto resources based on CMS policy and priorities, to assist in monitoring
the status of those jobs, and to ensure that site-local services can be accurately discovered
by the application once it starts executing in a batch at the site. All these issues should be
invisible to the user.

The centrally-steered production activities are very different, in terms of concepts and
tools used, from the distributed analysis. In the former case, the actual management of
the whole task is performed by a WMCore/WMAgent infrastructure, while in the latter
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case, the preparation, submission, and monitoring of the job are done via the CMS CRAB
distributed analysis toolkit. The distributed analysis comprises many jobs running on the
Grid that are intrinsically independent of each other. This fact allows for the distribution
of the workload based on the capabilities of the computing center and the location of the
input data. When the analysis has been assigned to a specific computing center, a CRAB
job wrapper performs the environment configuration, then runs the user analysis on the
local dataset, and delivers the requested data to the user. CRAB takes care of interfacing
with the user environment, provides data-discovery and data-location services, manages
the status reporting, monitoring, and user job output that can be saved on a user-selected
storage element. Through a simple configuration file, a physicist can thus access data
available on remote sites as easily as he/she can access local data: all the complexities of
the infrastructure are hidden users as much as possible. A client-server architecture is also
available, so the job is not directly submitted to the Grid but to a dedicated CRAB server,
which, in turn, manages the job on behalf of the user, interacting with the services of the
Grid.

3.3.5 Computing towards HL-LHC

Over the next few years, many challenges will need to be addressed from the computing
perspective in order to be prepared for the upcoming HL-LHC phase [121].

• Fitting within a restricted cost envelope for computing. It has been clear for several
years that the budget outlook for the HL-LHC computing will be limited, with the
key message from funding agencies that the LHC community must keep comput-
ing costs within a “flat-budget” scenario in long term. This is a real challenge as a
number of factors conspire against it. The overall level of requirements for comput-
ing resources is significantly higher in Run 4 than in Run 3, for several reasons. The
naive cost improvements we were previously used to, following the Moore’s Law7,
are no longer applicable. Currently, the affordability of computing on the HL-LHC
timescale is almost impossible to predict with any certainty: for many components,
it is not technology that drives the prices, but market forces, lack of availability, and
uncertainty about the future of some technologies.

• Managing Exabyte scale data. The expectation from both ATLAS and CMS during
Run 4 is close to 1 EB of data to be collected each year, to which derived and sim-
ulated data are added. Thus each experiment will be in a multi-Exabyte per year
regime of data to be managed, representing a significant challenge compared to the
current situation. There are several strategies focused on addressing this challenge,
that can be grouped into: efficient and more cost effective data management, re-
duction in the size of derived data that is to be distributed, and management of
operations costs. In the future, data management must be able to serve data to het-
erogeneous compute resources, from a pool of large scale data stores with automated

7 The number of transistors in a dense integrated circuit doubles about every two years.
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and policy-driven replication and load balancing within and between the stores (the
so-called “Data Lake”). This will enable the optimization of managed data in larger
sites with large storage systems and experienced staff, as well as a more effective
provision of compute at both traditional grid sites, or opportunistic use of clouds
and HPC sites without the need to install special data services in them. This should
result in better use of available funds for compute services at many sites, without
the need for expensive storage systems or additional staff. In this scenario, there is a
change of strategy which moves away from replicating data “everywhere” to serving
data when and where it is needed. The latter is more efficient as only data that is
actually being processed will be transferred. Moreover, another way to reduce the
amount of data transfers and management, and the need for large managed storage
systems is the adoption of small analysis datasets, e.g. based on NanoAOD in CMS.

• Heterogeneous computing and portability. In recent years, the era of “x86-only”
processor dominance has begun to change. Even within the “x86” processors, the
introduction of vector units, multi-threading, and other forms of parallelism sup-
port has meant that most of HEP software does not use all available processing at
maximum efficiency. Furthermore, the introduction of new types of processors (e.g.
non-x86-64 architectures), and the ubiquity of coprocessors (e.g. GPUs) has made
it clear that the software must be adapted to make use of the available processing,
and also to be able to port it to a more parallel environment. To do that effectively,
in most cases, re-engineering of the software and algorithms is required. There is a
common software portability challenge that needs to be addressed, regardless of the
type of facility used (Grid, HPC, or cloud).

• Common software tools and services. Another aspect of the software challenge is
to continue to build common software solutions. During Run 1 and Run 2, common-
alities arose, in addition to the long standing examples of Geant4 and ROOT: there
are examples of common event generators, run-time libraries, use of CVMFS for soft-
ware delivery, and the birth of a project towards common data management service.
It is very important to continue to identify the commonalities and benefit from them,
since the effort for many competing but similar solutions are expensive. Additionally,
it is important to note that other related sciences are now facing similar challenges to
HL-LHC and the commonalities between LHC experiments can bring benefits, and
eventually build a stronger overall community.

3.3.5.1 Evolution of the CMS computing model

The increase in granularity of the CMS detector and the higher complexity of the colli-
sion events that there will be in the HL-LHC phase pose challenges in the areas of data
acquisition, processing, simulation, and analysis [120]. These challenges cannot be solved
only by increasing the computing resources available to CMS, but they must be followed
by major improvements in the computing model and computing software tools, as well
as data processing software and common software tools. In CMS, there are various R&D
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activities with the aim to reduce resource needs in the HL-LHC era, or mitigate risks, and
enable the efficient use of HPCs and accelerators. In the following, we provide details of
some of them.

• In order to reduce storage requirements, one focus is on reducing the size of the RAW
events in collaboration with CMS sub-detectors experts. The overall impact of this
R&D would be a 15% reduction in the RAW data size. Concerning the other main
data formats (AOD, MiniAOD, and NanoAOD), advances in the ROOT columnar
storage point to a 20% reduction in size for each of these tiers. This reduction is
possible thanks to the adoption of the new columnar format RNtuple (see Sec. 3.4.1).
Moreover, a goal of CMS is the largest possible adoption of the slimmest analysis
format, NanoAOD, aiming to reach 50% of the analyses by the end of Run 3.

• In order to reduce the requirements in terms of CPU, there are several R&D lines
covering, e.g. generators code performance improvements, Geant4 improvements,
optimization of reconstruction code, and adoption of the mkFit tracking tool.

• Following the successful deployment of GPUs in HLT for Run 3, CMS aims to use
accelerators, e.g. GPUs, for part of its offline data processing chain. The goal is to
take advantage of heterogeneous architectures, at HPCs or elsewhere, for instance
at future WLCG centers. The main elements necessary to achieve this goal are the
support of heterogeneity in the data processing framework, an adequate program-
ming model, and an enabling computing infrastructure. Then, once the applications
can efficiently offload calculations on accelerators and a diverse distributed system
(also made up of heterogeneous platforms) is under control, the focus can shift to
maximizing the amount of code that can be offloaded.

• It is very likely that HPCs will be a substantial component of the future HEP distrib-
uted computing infrastructure. In this direction, examples of R&D activities cover the
evolution of the workload management system, and the scalability of the submission
infrastructure.

CMS developed a mathematical model that can be used to predict the computing re-
source needs of the experiment given a small number of input parameters. It is used for
annual resource requests, as well as for projecting the needs into the HL-LHC era. The
expected results of ongoing development activities are incorporated into the model to
assess their impact on overall resource needs. Two scenarios for the projections are con-
sidered. The first one, called Baseline Scenario, is the extrapolation of the current comput-
ing model, practices and software performance to the HL-LHC era, without including the
benefits from current developments. The second one, called Weighted Probable Scenario, is
the scenario that includes the weighted probable impact of the R&D activities. The results
aggregate the resources of Tier-0, Tier-1s, and Tier-2s.

Fig. 3.16 shows the projections of the CPU, disk and tape needs of CMS in Run 4 and
Run 5, according to the LHC schedule. In all projections plots, the gray band represents the
foreseen capacity of resources assuming a flat budget (with a 10% to 20% annual resource
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increase). The Weighted Probable Scenario represents a possible solution to the HL-LHC
computing challenge and is already very promising (as can be seen from plots of Fig. 3.16),
even only considering today’s R&D. However, projections are affected by uncertainties
(particularly those relating to market trends of computer hardware), and approaching
the lower part of the availability band does not necessarily imply solving the HL-LHC
computation challenge.

Fig. 3.17 shows the breakdown of CPU, disk and tape usage in 2031 for the Baseline
Scenario. Reconstruction is the biggest CPU consumer, tape usage is driven by RAW data,
whereas most disk is used for Monte Carlo simulations.

3.4 tools for analysis in hep

Each LHC experiment has its collection of software used to cover many different tasks.
For example, the CMS experiment collection of software is called CMSSW, which contains
the needed tools for simulation, calibration, and alignment, as well as the reconstruction
modules that process event data so that physicists can do analysis [129]. A key ingredient
for a HEP analysis is represented by the ROOT framework, which provides the data format
commonly used to store HEP data, as well as tools to access and analyze such data. In the
last years, other tools have been added to the HEP analysis landscape, to be traced back
to the exponential growth of data science. In Sec. 3.4.1 we provide an overview about the
ROOT framework, in Sec. 3.4.2 about common data science tools used in HEP analysis,
and in Sec. 3.4.3 about the future of HEP analysis tools.

3.4.1 The ROOT framework

ROOT is a framework born at CERN (the first public release was at the end of 1995),
mainly written in C++, and is a fundamental ingredient of most HEP workflows, in areas
such as data persistency, modeling, graphics, and analysis [130]. The ROOT project has a
key role in the HEP community with excellent and active connections with the experiments
including direct investment from them. The main characteristics of the ROOT framework
are reported below [131, 132].

• ROOT is used to save data (and any C++ object) in a compressed binary form in
a ROOT file. In the same file, the object format is also saved, therefore the code
for the C++ classes corresponding to all objects saved in the file can be generated
automatically (this means that ROOT is a self-descriptive file format). In a ROOT
file, plain tables (named ntuples, as in mathematics), TTree data, RNTuple data, and
non-event data (such as histograms) can be stored. TTree provides a tree data struc-
ture, which is extremely powerful for fast access to huge amounts of data, orders
of magnitude faster than accessing a normal file (considering HEP use cases, ROOT
I/O is faster than potential alternatives such as HDF5 or Parquet). TTree represents
a columnar dataset, consisting of a list of independent columns called branches, rep-
resented by the TBranch class. Branches can store simple variables or more complex
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Fig. 3.16: Updated projections of CPU, disk, and tape needs into HL-LHC [128].
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Fig. 3.17: Breakdown of CPU, disk, and tape usage in 2031 for the Baseline scenario. Reconstruction
is the biggest CPU consumer, tape usage is driven by RAW data, whereas most disk is
used for Monte Carlo simulations. [128].

objects, including other trees. The RNTuple class is the designated successor of the
TTree class, which introduces a new data format and new data access APIs, that are
backward incompatible with TTree. This break in compatibility allows to reach space
savings, increase the read/write speed, and improve the robustness of the APIs for
the decades to come. The RNTuple development started in 2018 and the training of
physicists is planned for 2024.

• The ROOT data format allows for storing experiment-specific and data management
specific metadata, and integrates well with the experiment computing models.

• You can access the data saved into one or several ROOT files from the PC, from the
web, or from large-scale file delivery systems, e.g. the WLCG. ROOT trees spread
across several files can be concatenated and accessed as a single object, allowing for
loops across huge amounts of data.

• The ROOT core I/O integrates with 3rd party components which are important for
the I/O of LHC experiments. As remote access protocol, it integrates XRootD (cru-
cial for production workflows), whereas Davix for HTTP access (used in particular
for training, outreach, and open science). As authentication plugins, it uses X.509
certificates and SciTokens.
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• Several mathematical and statistical tools are provided to operate on data. The po-
tential offered by a C++ application and the parallel processing are available for any
type of data manipulation.

• Results can be displayed with histograms, scatter plots, and fitting functions. ROOT
graphics is easy to use and can be adjusted real time with a few clicks.

• ROOT provides a set of bindings so that it can be seamlessly integrated with existing
languages such as Python and R.

• ROOT provides the TMVA library that offers interfaces and implementations of su-
pervised ML techniques. The package includes for example MLPs, Boosted/Bagged
decision trees, and SVMs.

• ROOT’s RDataFrame provides a modern and high-level interface for the analysis of
data stored in TTree, CSV, and other data formats, both in C++ and Python [133].
RDataFrame allows to apply filters and creating custom columns starting from an
input dataset. Users can exploit all the resources available on their machines trans-
parently, thanks to the multi-threading and other low-level optimizations that RData-
Frame offers.

3.4.2 Data science tools for analysis

The HEP analysis software landscape is changing [134]. Although physicists have used
data science tools like NumPy, SciPy, Pandas, Matplotlib, Spark, and Hadoop over the
past 15-20 years, these tools have only become an important part of the HEP analysis
ecosystem in the past 4-5 years. The reasons for this change can be summarized in two
major influences. Externally the HEP world, data analysis tools have focused on Python
and array-oriented programming. Internally the HEP world, some organizations have me-
diated the spread of data science software, helping physicist-developers to find each other,
reduce duplication, and use the tools developed by others. These organizations are act-
ively supporting the development of such software, especially for the core components
that enable specialized tools.

The first of these organizations is the HEP Software Foundation (HSF), conceived in
2015, that in 2017 produced a roadmap white paper (published as an article in 2019 [135])
on the software and computing challenges that will be faced during the 2020s. The HSF’s
primary mission is communication: helping project developers to work towards a com-
mon vision, particularly across experiment boundaries. Then, there is the Python in HEP
(PyHEP) working group, which brings together a community of developers and users of
Python in particle physics (embracing a broad community, from HEP to the Astroparticle
and Intensity Frontier communities), with the purpose of improving the sharing of know-
ledge and expertise. Activities-wise, it organizes workshops and meetings on both HEP
domain-specific and data science packages. Another organization is DIANA/HEP and
its successor IRIS-HEP, funded by the NSF in 2015 and 2018, respectively, to support the
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Fig. 3.18: Timeline of developments in scientific Python (dashed green line), GPUs and ML
(magenta), big data (orange), and data science in HEP (blue), overlaid on the HSF, DI-
ANA/HEP, IRIS-HEP, LHC, and HL-LHC timelines [134].

development of HEP software by funding software developers, creating an intellectual
hub for sharing knowledge, and offering education and training. The main directly fun-
ded software products include Awkward Array [136] and Uproot [137]. DIANA/HEP and
IRIS-HEP organize meetings held by physicists and occasionally draw data scientists from
industry to share techniques and tools. It is worth mentioning other two organizations,
SWIFT-HEP and Scikit-HEP, and a few projects, e.g. Coffea, FAST-HEP, and zfit.

Major developments in the data science landscape (comprehensive of scientific Python,
big data, GPUs, and ML) roughly coincide with the development and Run 1 of LHC,
from the late 1990s to 2015. The HSF, DIANA/HEP, and IRIS-HEP that contributed to the
development of data science-oriented software in HEP were active after 2015 (see Fig. 3.18).

Moreover, the usage of Python in HEP ramped up in the years following 2015, and
in particular, it overcame C++ for CMS users in 2019. This can be seen from Fig. 3.19,
where CMS users are identified as those who fork the GitHub repository of CMSSW, i.e.
cms-sw/cmssw. This way of identifying CMS users is certainly reductive and it does not
actually consider the entire collaboration, but it shows a trend that can be generalized
with proper caution. Moreover, here each repository is considered either entirely Python
or entirely C++, but in reality, most are mixed.

HEP analysis culture is in the midst of a transition, which is confirmed by other aspects,
such as the following.

• HEP data analysts are becoming averse to monolithic frameworks. A framework
(e.g. ROOT) provides all the essentials in one package but requires users to fit their
workflows into it. On the contrary, data science libraries and toolkits have a very
modular mindset.
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Fig. 3.19: Number of GitHub repositories created by CMS physicists by language (exclusive cat-
egories), that shows the rise of Python and Jupyter notebooks. [134].

• In HEP analyses, a columnar approach to data (typical of R and Pandas DataFrame
model) is more and more visible.

• It has become common for HEP developers to describe their tools as “declarative”. In
computer science, a declarative language (e.g. SQL) describes calculations regardless
of the order in which they would be calculated. In HEP, it could mean a separa-
tion of the event loop from the calculations performed on each event, as in ROOT’s
RDataFrame, or on a partition of events, as in Coffea’s Processor.

Among data science tools, key players are ML frameworks and libraries. The use of ML
in HEP analyses has become common over the past two decades [135]. In such period, the
majority of HEP analyses that exploited ML have used the implementation of algorithms
offered by the TMVA package included in ROOT, but recently many HEP analysts have
started using non-HEP ML packages (e.g. Scikit-learn, XGBoost, Tensorflow, Keras, and
PyTorch), confirmed by the growing number of published results based on externally de-
veloped tools. The use of non-HEP solutions leads to the necessity of adapting HEP data,
commonly stored in ROOT files, to the external software, breaking analysis workflows
and introducing difficulties in the analysis software development. To solve this issue two
approaches were followed: both converters have been written to integrate some externally
trained models into HEP tools (e.g. [138]), and interfaces between HEP and external tools
have been developed [139].

A great advantage of using external ML tools is the size of the community that uses
and supports them, being able to easily keep up with industry advances and profit from
the cutting edge of ML research. Moreover, the industrial efforts to develop and maintain
ML tools rely on resources far beyond that of basic research. As disadvantages, there is
no guaranteed support for external tools over the lifetime of HEP experiments, and it can
be difficult to adapt such tools to HEP-specific requirements that may not be among the
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Fig. 3.20: The table lists various ML tools (columns) and data formats (rows). The × indicates
that a native solution exists, while X indicates that the conversion from one data-format
to another is possible. The notation used for data-formats is the following: T trees, F
flat tables, M sparse matrices, C column-wise arrays, R row-wise arrays, S static data
structures. The table is updated to 2019 [139].

priorities of the ML community. Instead, the use of internal tools allows to keep decisions
about long-term support within the community, and the tools can be adapted to the spe-
cific needs of HEP. On the other side, to include any new algorithm or idea it should be
ported before it can be used and evaluated.

An approach for HEP users is to use TMVA, also because also interfaces between TMVA
and common external ML tools have been built. This solution has the advantage of al-
lowing the use of a homogeneous interface which requires a little training overhead for
those who already have knowledge in TMVA. However, many researchers prefer to con-
vert their data into the formats used by external tools and work exclusively with them (see
Fig. 3.20 for the file formats that common ML tools support). This has the advantage of
working as close as possible with the tools of the ML community and their documenta-
tion. Middleware solutions have been developed to provide such conversion, e.g. PyROOT,
root_numpy, Uproot, and root2hdf5.

The training of ML algorithms takes a considerable amount of time and paralleliza-
tion at various levels is desired, such as parallelizing computations within a single model.
Another type of parallelism is data parallelism, which targets the processing phase of the
training with data partitioning and model training using distributed workers. Frameworks
like Apache Spark and ideas such as batch training offer good solutions for these tasks.
Moreover, CERN developed its interactive framework called Service for Web Based Ana-
lysis (SWAN), which may play an important role in the adoption of ML tools in HEP work-
flows. It allows for rapid prototype development and testing of ML tools, and provides a
straightforward means to visualize models and data.

3.4.2.1 Towards Machine Learning as a Service for High Energy Physics

MLaaS solutions are not yet widely used in HEP, although various R&D activities are un-
derway within HEP aimed at providing HEP analysts with tools or services to accomplish
ML tasks [140].

For instance, the hls4ml project targets ML inference on FPGAs, whereas the SonicCMS
project is designed to provide Services for Optimal Network Inference on Co-processors.
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Both aim at optimizing only the inference phase rather than the entire ML pipeline, i.e.
from reading data to training models to serving predictions.

Another solution uses the Spark platform for data processing and ML training [141].
Although it seems very promising, it needs data ingestion into the CERN EOS file system
or HDFS/Spark infrastructure, therefore data located at WLCG sites or outside of such
dedicated infrastructure cannot be easily accessed. Moreover, Spark- based libraries (BigDL
and Analytics Zoo) may be required on top of Keras APIs, thus limiting the flexibility of
choosing the ML framework on the user side.

In a CMS work [142], a DNN used for a jet tagging algorithm relies on the TensorFlow
queuing system with a custom operation kernel for reading ROOT trees and feeding them
into a NN written in Keras. It represents an interesting approach for a specific use case,
but it is not an “as a Service” solution.

In 2021, a CERN project made available a solution for training and serving ML work-
loads with Kubeflow, which runs in production in the private cloud of CERN based on
OpenStack [143, 144]. This solution is based on Kubeflow, an open source ML platform
built on top of Kubernetes, that provides components for all the required ML steps: data
loading and pre-processing, distributed model training, storage and versioning, and lastly
model serving. Each component is containerized and managed as a microservice.

3.4.3 The future of HEP analysis tools

The rise of the tools described in Sect. 3.4.2 shows that there has been a change in the
software used by the HEP world in recent years. However, this does not mean that the
trend will continue to rise: there is good reason to believe it will smooth out, with physi-
cists using Python as an interface whereas C++ for performance and accelerator access (e.g.
GPUs), freely mixing HEP-specific ROOT routines with external ML solutions and other
tools from the data science world. In the following, we discuss what changes are expected
for different sectors.

3.4.3.1 File formats

History teaches us that file formats tend to be conservative. Thus, it is expected that ROOT
files will continue to play a major role in HEP. For many years, ROOT TTrees had been
unique in their ability to efficiently store (usually columnar) nested, variable-length data
structures with a direct interpretation in C++. Now, there are also Apache Arrow and
Parquet that can efficiently represent (always columnar) nested data structures in memory,
in a language-independent way. As non-domain-specific formats, they are also recognized
in all scientific fields and are supported by interdisciplinary libraries like Scikit-Learn,
TensorFlow, and Pandas. Looking at the HEP world, ALICE’s O2 analysis framework uses
Arrow as its primary data model for Run 3.

This does not mean that all HEP experiments will switch from ROOT to Parquet, but
only that analysts prefer to mix ROOT, Arrow, Parquet, and HDF5 in their analysis work-
flows, and so a lightweight software is needed to accommodate that. Uproot is a Python
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implementation of ROOT I/O well established among HEP physicists, capable of reading
and writing TTree data that are sufficiently independent of C++ and allowing conversion
to Parquet/Arrow format. Uproot, by using Awkward Array, avoid the creation of Python
objects for every entry of a TTree during conversion, which affects the conversion rate by
a factor of hundreds [145].

Moreover, ROOT data will not always be TTrees. Indeed, as we said in Sec. 3.4.1, the
ROOT team is developing RNTuple as a replacement for the TTree class, which addresses
TTree’s shortcomings compared to Parquet. To guarantee the same fluency in the conver-
sion between RNTuples and Arrow/Parquet as we currently have between TTrees and
Arrow Parquet, more effort will be needed in this area.

3.4.3.2 Databases

Typically, HEP collaborations centrally produce datasets with basic physical quantities
stored as primitive types. Many analyses share some subsets of such quantities, but each
analysis may also require some specific variables that are not computed by default. A
database would allow to store and access each variable independently, eliminating any
duplication of disk space, processing, and effort. Each collaboration could centralize its
analyses data into a global, federated, and extensible database, with automatic replication,
provenance tracking, versioning, caching, and improved metadata handling. Some projects
are working in this direction, e.g. Striped, ServiceX, SkyhookDM, and Coffea.

3.4.3.3 Distributed computing

Data analytics software products of the industry tackle the problem of scaling to large
datasets, aka big data, and common examples are Apache Spark and Hadoop. In HEP, the
Coffea developers experimented with big data scale-out mechanisms, including Spark and
Dask. Of these, Dask has been the most successful so far, with more analyses that have
opted to use Dask as backend. RDataFrame is a good interface to organize and distribute
tasks written in C++ (on Spark and Dask).

High-throughput data processing problem should be tackled with open source industry
tools. Three IRIS-HEP projects (i.e. ServiceX, SkyhookDM, and coffea-casa) use generic
data science tools to build HEP-specific workflows. They mix Docker, Kubernetes, Helm,
Flask, Kafka, and other tools alongside ROOT, XCache, Rucio, and Uproot to deliver
columns of data to the analyses as Arrow or Awkward Array buffers, Parquet, or ROOT
files. A similar solution is the one adopted by the R&D project INFN Analysis Facility,
which uses Dask to distribute RDataFrame payloads, and offers the possibility to be used
as an HTCondor batch system or through a JupyterHub interface[146].

3.4.3.4 Acceleration

It might surprise that Python emerged as a language used also for large-scale data analysis,
particularly ML, despite having many language features that prevent fast computation. De-
velopers have learned to split programs into a fast and simple part in a compiled extension,
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and a slow and complex part in pure Python. However, data analysts in general need low
barriers to optimizing their code. Numba provides the lowest barrier to compilation, as it
just-in-time compiles the Python code for CPU and GPU backends. Many HEP packages
use Numba to accelerate Python code, including Scikit-HEP’s Awkward Array. Neverthe-
less, Numba has some drawbacks which do not always make it an optimal choice. The Julia
language would be ideal for HEP (small groups of physicists investigated Julia for years),
as it combines Python’s dynamism with C++’s speed, but lacks the very large worldwide
community that Python and C++ have. This situation could result in the development of
a HEP language on the HL-LHC’s timescale.

3.5 machine learning in hep

The data collected by HEP experiments is complex and high dimensional. Typically in
HEP data analyses, a sequence of boolean decisions is performed to select the data of in-
terest, followed by a statistical analysis [147]. These operations are done by plotting the
distributions of single observed quantities and are motivated by physics considerations,
that cannot be easily extended to higher dimensions. For several decades, physicists have
tried to improve their analyses by exploiting algorithms that utilize multiple variables sim-
ultaneously. In HEP, this approach is often referred to as multivariate analysis (MVA), but
however outside of HEP this is considered an example of ML. Physicists have used differ-
ent ML algorithms, nevertheless the Boosted Decision Trees implemented in the software
package TMVA have been the most common choice. These tools provided an important
solution for many data analysis tasks (just think that the analyses that led to the discovery
of the Higgs boson by the CMS and ATLAS collaborations used Boosted Decision Trees),
but it was understood that their capabilities were limited: they often failed to match the
performance of traditional solutions, especially when the dimensionality of data gets large.
In recent years, there has been an increasing use of ML techniques in HEP analyses, thanks
to the availability of ML tools beyond TMVA and the rise of deep learning. Indeed, it was
possible to enable the training of very large NNs that greatly outperformed the previous
state of the art, in order to handle higher-dimensional and more complex problems than
previously possible. There are different types of DNN used in HEP: MLP, CNN, RNN, and
Graph NN (GNN) [139]. Additionally, NNs are used in generative models, where a NN
is trained to reproduce the multidimensional distribution of the instances in the training
set. Variational AutoEncoders (VAE) and Generative Adversarial Networks (GAN) are two
examples of such kind of models used in HEP.

3.5.1 Machine Learning applications in HEP

A useful collection of papers where ML approaches have been applied in experimental,
phenomenological, or theoretical analyses is provided by the “Living Review of Machine
Learning for Particle Physics” [148]. The breakdown of papers reported in this collection
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Fig. 3.21: Plot showing the breakdown of 236 papers collected in the “Living Review of ML for
Particle Physics” [148] for different areas of data analysis, where ML techniques have
been used to tackle classification problems.

for different areas of data analysis about classification and regression tasks is shown in Fig.
3.21 and Fig. 3.22 respectively.

In the following, we provide details about some areas of application of ML techniques
in HEP, and where they can play a significant role in advancing the current state of the art.

3.5.1.1 Event selection

ML techniques for classification purposes have a great application in extracting small sig-
nals with complex topologies from huge backgrounds (event selection) as happens at the
LHC experiments. In the past few years, many studies have shown that traditional shallow
networks (consisting of 1 or 2 hidden layers) using physics-inspired engineered (“high-
level") features, are outperformed by DNNs based on the higher-dimensional features
which receive less pre-processing (“lower-level"). Before the advent of deep learning, such
pre-processing was necessary as shallow networks performance with low-level features
fell short.

An early study [149] compared the performance of shallow networks and DNNs in
distinguishing a cascading decay of new exotic Higgs bosons from the dominant back-
ground. This study used a dataset in which a large set of basic low-level features were
reduced to a smaller set of physics-inspired high-level engineered features. It was found
that DNNs using the lower-level features significantly outperformed shallow networks
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Fig. 3.22: Plot showing the breakdown of 87 papers collected in the “Living Review of ML for
Particle Physics” [148] for different areas of data analysis, where ML techniques have
been used to tackle regression problems.

Fig. 3.23: In the plot on the left, DNNs performance in signal-background classification compared
to shallow networks (NN) with a variety of low- and high-level features is shown. In the
plot on the right, the comparison of the distributions of invariant mass of events selected
by a DNN (DN21) using only object momentum to a shallow network (NN7) trained
using this feature at equivalent background rejection, is shown [149].

that used physics-inspired features such as reconstructed invariant masses (see Fig. 3.23).
The high-level engineered features captured real insights, but at the same time sacrificed
some useful information.

Another approach can be found in [150], where a GNN was implemented for classifica-
tion and reconstruction in the IceCube detector. Here the events were represented as point
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Fig. 3.24: Examples of jet image inputs from the jet substructure classification problem described
in [151]. The background jets (plot on the left) are characterized by a large central core of
energy deposited by a single hard hadronic parton, whereas the signal jets (plot on the
right) tend to have a subtle secondary deposition due to the two-prong hadronic decay of
a vector boson with high-pT . The use of image-analysis techniques, such as CNNs, allows
for powerful analysis of this high-dimensional input data.

cloud graphs and the GNN was capable to distinguish neutrino events from cosmic-ray
backgrounds, classify different neutrino event types, and reconstruct the deposited energy,
direction, and interaction vertex. For neutrino event classification, the GNN increased the
signal efficiency by 18% at a fixed background rate, compared to current IceCube methods
that use BDTs.

3.5.1.2 Jet classification

ML has been applied to a wide range of jet classification problems, in order to identify jets
from heavy (c, b, t) or light (u, d, s) quarks, gluons, and W, Z, and H bosons. Traditionally
these classification problems have been grouped into flavor tagging (which discriminates
between b, c, and light quarks), jet substructure tagging (which discriminates between jets
from W, Z, t, and H), and quark-gluon tagging. In 2014, a study [151] recognized that the
projective tower structure of calorimeters present in almost all modern HEP detectors was
similar to the pixels of an image (see Fig. 3.24). This representation of data allowed phys-
icists to leverage advances in image classification such as CNN. While the image-based
approach has been successful, the actual detector geometry is not perfectly regular. There-
fore, some pre-processing is required to represent the jet as an image. Both ATLAS and
CMS have since commissioned flavor-tagging NNs that rely on individual tracks or, in the
CMS case, particle-flow candidates. For example, CMS’s DEEPFLAVOR first embeds each
flow candidate with a shared transformation, and then combines the high-level variable
candidates in a single dense network.
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3.5.1.3 Track and event reconstruction

Track-reconstruction algorithms are among the most CPU and data intensive of all low-
level reconstruction tasks. The initial stage of track reconstruction involves finding hits (or
points) where some charge is deposited on a sensing element. In the pixel sensors that
form the innermost layer of the detector, neighboring hits are clustered into pixel clusters
which then form track seeds. These seeds form a starting point for a Kalman filter, which
extends the seeds into full tracks that spread up to the calorimeters. The whole procedure
can be viewed as a sequence of clustering algorithms. In cases where multiple tracks pass
through the same pixel cluster, ATLAS uses NNs to return a measurement for each track
rather than assigning each to the cluster center.

Thanks to these algorithms and careful tuning, track reconstruction is nearly 100% ef-
ficient and incorrectly reconstructed tracks are rare, meaning that the clustering aspect
of tracking is largely solved. However, reducing the CPU overhead remains a significant
problem, especially within high-level trigger farms. Within ATLAS and CMS, these are
clusters of O

(
104) processors that must reconstruct O

(
105) events per second. To keep

CPU costs manageable, the experiments reconstruct tracks only in limited regions of the
detector. Such regions are selected on the basis of their proximity to muons or to calor-
imeter energy deposits which are consistent with relatively rare physical signatures, e.g
leptons or high-pT jets.

In the CMS experiment, a Particle Flow (PF) event-reconstruction algorithm [152] has
been deployed to identify and reconstruct individually each particle arising from the LHC
pp collision by combining the information (i.e. tracks and calorimeter clusters) from all
the subdetectors. In general, a given particle gives rise to several PF elements in the vari-
ous subdetectors, and the reconstruction of a particle proceeds with a link algorithm that
connects all the PF elements. The link algorithm is limited in terms of CPU time and is
thus restricted to the nearest neighbors (tracks and clusters). ML-based reconstruction ap-
proaches using GNNs have been proposed for PF reconstruction. For example, in [153]
a novel end-to-end trainable, machine-learned particle-flow algorithm (MLPF) has been
introduced. It is based on a parallelizable, computationally efficient, and scalable GNN
optimized using a multi-task objective on simulated events. Details about the implementa-
tion of a similar MLPF algorithm for CMS can be found in [154]. A good correspondence
between the MLPF algorithm and the PF was found both at the particle and object level. A
positive aspect of the MLPF model is that it runs natively on a GPU and has an approxim-
ately linear scaling of runtime and memory with increasing particle multiplicity.

3.5.1.4 Fast inference on designed hardware

With the start of the HL-LHC phase, the instantaneous luminosity of the LHC is expected
to increase up to ≈ 7.5·1034cm−2s−1. Therefore, new strategies for data acquisition and pro-
cessing will be needed, in preparation for the higher number of signals produced within
the detectors [155]. Following the rapid rise of ML through deep learning algorithms, the
study of processing technologies and strategies to accelerate deep learning and inference
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is well underway. In particular, much effort has been made to convert learning models into
specific firmware code [156], capable of running on fast hardware like Field Programmable
Gate Arrays (FPGAs).

In CMS, new reconstruction algorithms are being developed, aimed at better perform-
ance. For example, regarding the tracking of muons in the muon trigger, one of the figures
that is being improved is the accuracy of the pT measurement [157]. The implementation
of ML models on FPGAs is beneficial for two main reasons. Firstly, these models are able
to predict with improved precision the pT, as they exploit much more information col-
lected by the detector. Secondly, FPGA hardware promises lower latency than traditional
inference algorithms running on CPU, which is an important aspect of a trigger system.

A study from the ATLAS collaboration concerns the implementation of a CNN in an
FPGA to identify significant energy deposits in the Liquid-Argon (LAr) calorimeters [158]:
in this way, the fast inference enabled by the hardware solution might be able to handle
the enormous amount of signals coming from the HL LHC increased pileup.

3.5.1.5 Fast simulation

Simulation is the most intensive CPU operation in HEP. Therefore, a fast simulation is
really valuable as the full simulators (which faithfully describe the low-level interactions
of particles with matter) are very computationally intensive and consume a significant
fraction of the computing budgets of experimental collaborations. A promising approach is
based on GANs. The training of such a generative model (G) is accomplished through the
competition with an adversary network (A). The task of G is to generate simulated samples,
whereas A has the task to determine whether a given sample is from G or from the full
simulator. The two networks are put against each other: A attempts to identify differences
between the traditional samples and those generated by G, whereas G attempts to fool A
into accepting its events and in doing so learns to mimic the original sample generation.
However, the stability of a such training solution can be difficult to achieve and expert
knowledge is usually required to construct an effective network. Currently, some GAN
approaches are used in the simulation of electromagnetic showers in a calorimeter [159],
giving computational speed-ups while achieving a reasonable energy deposition model.
Similar approaches are also applied in the simulation of jet images [160].

3.5.1.6 Monitoring of detectors and data quality

LHC systems and detectors are complex machines that are equipped with monitoring sys-
tems. They constantly check that every parameter is in an acceptable range: from voltages
to reconstructed masses from known decays. A major challenge for monitoring systems is
that they must be able to recognize changes in data caused by equipment malfunctions.
If an observed variable distribution is different from the corresponding reference, the op-
erator investigates the discrepancy; if it has not been marked as previously addressed,
the incident is recorded and the relevant expert is contacted. Additionally, the system is
equipped with automatic alarms that go off when any large discrepancy is detected. False
alarms occur when the reference is not updated in time and the discrepancy is caused
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by a legitimate change in data taking conditions. A whole class of ML algorithms, called
anomaly detection, can be useful to monitor the conditions of the detector and also predict
eventual future anomalies. Some efforts have been already made for the CMS Data Qual-
ity Monitoring system of different subdetectors, using unsupervised learning methods, e.g.
VAEs [161].

3.5.1.7 Computing operations

Data operations are one of the main challenges for the upcoming HL-LHC. The adop-
tion of ML techniques in this field can help automate and improve the overall system
throughput, and reduce operational costs. ML can be applied in many areas of computing
infrastructure, workflow and data management.

For example, optimization of dataset placement and reduction of transfer latency can
lead to better usage of site resources and an increased throughput of analysis jobs. One of
the current examples is predicting the “popularity” of datasets (using information like the
number of accesses to a given dataset, the number of users per day recorded for a dataset,
and the total number of CPU hours spent on a given dataset) which helps reduce disk
resource utilization and the time for physics analysis (see [162] for an application in CMS
using ML techniques).

Data volume in data transfers is a current challenge for computing systems as thousands
of users need to access thousands of datasets across the Grid. There is a huge amount of
metadata collected by application components, e.g. information about failures and file ac-
cesses. The optimization of resource utilization based on this data, including Grid compon-
ents and software stack layers, can improve the overall operations. Understanding the data
transfer latencies and network congestion may improve the operational costs of hardware
resources.

Networks are going to play a crucial role in data exchange and data delivery to scientific
applications during the HL-LHC phase, and ML can help in several ways, e.g. identifying
anomalies in network traffic or predicting network congestion.

As we reported so far, there are many areas where ML can help and it is currently
helping computing operations. The Operational Intelligence (OpInt) project started as a
joint effort of several HEP experiments to increase the level of automation in computing
operations and reduce human interventions [163]. Technical and cross-experiment forums
are organized where people share ideas and experiences with the aim of developing tools
to automate computing operations, exploiting state-of-the-art technology where ML tech-
niques represent a key component.

One of the challenges this project has faced is the predictive maintenance in data centers.
In data centers, operations are many and of different types, managed by a set of services.
Such services produce log files reporting, with different granularity, the status of the single
activities that the services are managing. Log data is often unstructured, where the format
and semantics may vary significantly from service to service, making an approach towards
a general-purpose log-based anomaly detection system very challenging. Supervised ap-
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Fig. 3.25: Comparison of the number of abort requests between normal (good) days (plot on the
left) and anomaly (bad) days (plot on the right) [164].

proaches provide more accurate results at the cost of requiring a dataset with labeled
entries, which is a hard and restrictive requirement in the majority of real-world scenarios.

Supervised learning algorithms are used in [164] to provide a predictive maintenance
solution at the INFN-CNAF computing center. In this work, log data for different com-
ponents related to the SRM service is collected and analyzed for “normal” and “anomaly”
periods of time. Text data is parsed through filters and then converted into numeric format
through a One Hot Encoding procedure. Subsequently, such data is used as input for train-
ing several supervised ML models, which then are able to distinguish data coming from a
normal or anomaly period of time. For example, Fig. 3.25 shows in normal and anomaly
periods of time, the trend of the feature representing the number of abort requests. This
feature was previously identified using different approaches (PCA, feature importance,
Recursive Feature Elimination and chi-squared statistical test) as the one with the highest
discriminating power between normal and anomaly data.

In the case of unlabeled data, other techniques for anomaly detection (e.g. isolation
forest and SVMs) have been adopted in other solutions. Moreover, automated log parsing
offers promising results through NLP algorithms.

3.5.1.8 Sustainable Matrix Element method

Sustainable Matrix Element Method (ME) is a powerful technique which can be used for
making measurements of physical model parameters and direct searches for new phenom-
ena. It has been used extensively by collider experiments at the Tevatron for Standard
Model measurements and Higgs boson searches, and at the LHC for measurements in the
Higgs and top quark sectors.

The biggest difficulty in the ME method that has limited its applicability to searches for
BSM physics and precision measurements is that it is very computationally intensive. If
this limitation were overcome, it would allow for a more widespread use of ME methods
for LHC data analysis, particularly during the HL-LHC phase. Although the use of NNs
for numerical integration is not new, it is a technical challenge to design a sufficiently
rich network to encode the complexity of the ME calculation for a given process over the
phase space relevant to the signal process. DNNs are strong candidates for networks with
sufficient complexity to achieve good approximations [165]. Promising demonstration of
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the power of Boosted Decision Trees and GANs for improved Monte Carlo integration can
be found in [166].

3.5.2 Collaborating with other communities

Establishing a vibrant collaboration between ML and HEP communities with the aim to
further science has benefits for both. The HEP community can explore new research dir-
ections and applications of ML, novel algorithms, and find direct support for HEP chal-
lenges. At the same time, the ML community can benefit from a diverse set of particle
physics problems with unique challenges in terms of scale and complexity, contributing to
solving problems relevant to both communities. For example, the treatment of systematic
uncertainties is an important topic both for HEP and ML communities, and by working
together they can further progress in solving such problem. There are a number of ex-
isting examples of such kind of collaboration that have produced fruitful results through
mostly local connections. To obtain the maximum profit from these collaborations the HEP
community needs to define its problems in a language that the ML community can under-
stand, providing necessary information with clear and concise explanations. At the same
time, since the ML community has a significant amount of domain knowledge, the ideas
and solutions it provides should be presented in an understandable way for scientists
without in-depth knowledge.

There are different ways to promote and search for collaboration, and such collabora-
tions should be searched not only within the ML community, but also within the scientific
community itself.

• Conferences and workshops are a key aspect of the academic ML community, and
organizing or contributing to key conferences is a means of gaining interest. Organ-
izing mini-workshops or sessions within major ML conferences, e.g. NeurIPS [167],
would increase the familiarity of HEP within the ML community and help build
future collaborations.

• To engage the wider ML community, challenges such as the Higgs Boson ML chal-
lenge, the Flavor Physics challenge, and the TrackML Particle Tracking challenge
have been organized on Kaggle. These types of challenges attract considerable atten-
tion from the ML community and additional similar challenges should be organized
in the future.

• In HEP, there is a strong incentive to make public benchmark datasets, beyond just
challenges. Within the HEP community, common datasets enable comparisons of
algorithms and techniques, and this is very useful for R&D. Such datasets can also
be used for teaching, tutorials, and training. The CERN Open Data portal provides
more than two PB of open data from particle physics [168].

• Industry developed and adopted ML techniques, as well as it adopted dedicated spe-
cialized hardware and high-performance co-processors. Wide use of GPUs, FPGAs,
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and high core count co-processors would dramatically increase the performance of
ML applications relevant to the HEP community. Interactions with the industry bring
specific technology opportunities and access to specialized skills that can be difficult
to hire and support internally. CERN OpenLab [169] is a public-private partnership
that accelerates the development of cutting-edge ICT solutions for the worldwide
LHC community and broader scientific research. Through CERN Openlab, CERN
collaborates with the leading ICT companies and research institutes.

• Many communications mediums can be used to broadcast HEP challenges and at-
tract interested collaborators, e.g. popular forums like reddit, social media, personal
or official blogs, or direct contact with influential personalities.

• As each HEP experiment has different specific use cases, probably many of these are
sufficiently similar to each other that R&D can be done in common. Even when this
is not possible, experience with one type of problem can provide insights into how
to approach other problems. This is why the Inter-experiment ML forum (IML) was
created at CERN in 2016 [170].

• HEP should reach out to other scientific communities that have similar challenges,
e.g. astrophysics/cosmology, computational biology, and medium energy nuclear
physics. This can lead to more active partnerships in order to collaborate on ideas,
techniques, and algorithms.

3.5.3 Computing and hardware resources

At present, training of ML algorithms is mostly done using dedicated or private resources.
In order to try complex ML algorithms, more computing power is needed in both the train-
ing and evaluation phases. This implies the expansion of the current computing model to
include architectures that are well suited to ML tasks, e.g. Many Integrated Core (MIC),
GPUs, and Tensor Processing Units (TPUs). These architectures provide a significant com-
putational speed improvement for both training and evaluation of ML algorithms, but at
the same time require dedicated software configuration, hardware, and drivers. Moreover,
the bandwidth and locality of large data stores will need to be optimized to avoid bottle-
necks. Data placement and the need for dedicated hardware indicate that a transition to
HPC (or HPC-like) architectures may be required to achieve the desired performance.

The potential of deep learning methods is largely due to the ability to train these models
in a reasonable amount of time with large-scale parallelism. The training phase needs
repeated simultaneous access to many data elements and specialized hardware has been
developed to train deep learning models. The speed-up of the training process can be
achieved with faster and more capable hardware, parallelization of single training, and
splitting training over multiple nodes. Instead, inference can be an operation applied to
a single data element at a time and is performed only once. Inference requires less I/O
and is limited only by computing power and model complexity. As inference has real-
time applications in HEP, throughput and latency constraints are the main challenges. For
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inference, FPGAs are used in HEP experiments, e.g. in the trigger system of CMS, since
they provide an efficient and low-latency application of ML algorithms directly at the level
of hardware.

Many researchers in HEP are currently relying on private or university GPU clusters to
perform ML training. To support the growth of Deep Learning research for LHC physics,
CERN should invest in a cluster of at least a few hundred GPUs [171]. CERN is currently
providing HEP researchers with several solutions for using GPUs. The easiest way is to
access via SSH to lxplus-gpu.cern.ch, but it has limitations: there is no guarantee of
exclusive access to a node, no access to multiple GPUs at once (it is a problem for advanced
works with big models), there are some issues with Singularity containers, the memory-
usage is limited (jobs are killed when threshold exceeded), and it needs some ssh-keep-
alive setup (not a friendly entry point and quite annoying). Another solution is to submit
a job to the CERN batch service (using the HTCondor platform), but the cluster is very
small with many users for too few GPUs, and the GPUs do not communicate with each
other. Recently, SWAN made available a GPU server integrated into the Spark server, but
currently, it is not clear how many GPUs will have available. Another promising solution
is represented by the Kubeflow project at CERN [143], but currently, the access is limited to
one or two GPUs per (few) users. Since the GPUs solutions currently available at CERN are
not always sufficient to tackle ML projects, opportunistic resources can be also explored.

ML algorithms significantly benefit from the use of hardware accelerators but the risk
is that ML users would be hindered in developing new applications by writing platform-
dependent code. Indeed, various interfaces to different hardware architectures are required
to efficiently use the available computing resources. The Open Computing Language
(OpenCL) allows for the programming of high-level interfaces that can run on various
hardware platforms. Moreover, ML tools often provide different sets of APIs to develop
and train the models in one language, and various bindings to use trained models in other
programming languages.

Regarding other types of resources, current efforts in the HEP community are studying
the use of Cloud TPUs for a possible acceleration of the training stage. Moreover, there are
efforts to bring and expand the availability of HPC resources in HEP.
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T H E M L A A S 4 H E P S E RV I C E

As discussed in Sec. 3.5, ML is nowadays successfully used in many areas of HEP and will
play a significant role also in Run 3 and HL-LHC.

Building and developing a ML project and implementing it for production use requires
specific skills and is a highly time-consuming task [95]. Generally, HEP physicists do not
have the skills in data science to tackle such challenges on their own, while they are mainly
focused on HEP, data analysis (including statistics), and whose ultimate goal is to work for
a physics publication. Addressing the need to improve a physics data analysis and under-
standing that ML could be an interesting exploration is therefore only a first step towards
actually adopting ML in an analysis. The existence of such a gap between “two differ-
ent worlds” (HEP data analysts and ML community) is not so easy to bridge, although
currently there are many activities, collaborations, and organizations that are working to-
wards this direction (see Sec. 3.4.2 and Sec. 3.5.2). It would be helpful to provide HEP
physicists who are not experts in ML with a service (and in particular a MLaaS) that al-
lows them to exploit the potentiality of ML easily: such a solution would help to bridge
the aforementioned gap and to have wider use of ML techniques in HEP analyses.

MLaaS solutions have been discussed in detail in Sec. 2.2.2.1. MLaaS is used as an um-
brella of various ML tasks such as data pre-processing, model training and evaluation, and
inference available through REST APIs [140]. Major IT companies offer their customers
MLaaS solutions, which most of the time cover standard use cases, e.g. image classific-
ations, natural language processing, and computer vision. Although a custom ML code
can be provided to these platforms, its use in HEP is quite limited for several reasons.
For example, the ROOT data format cannot be used directly in any service provider’s
APIs. Therefore, the operational cost (e.g. data transformation from ROOT files to the data
format used by the MLaaS provider APIs), the data management, and data pre-processing
can be significant for large datasets. The flattening of data from the dynamic size event-
based tree format to the fixed-size data representation does not exist in MLaaS solution.
The ROOT data format is used to store HEP events in TTrees, which have tree-based data
structures where the size of individual events cannot be determined a-priory (e.g. the num-
ber of electrons can vary in each event). Instead, most of the existing ML algorithms rely
on a fixed-size data representation of individual events, so the event-based data structures
cannot be directly fed to ML frameworks, and special attention must be paid either at
the framework or at the data input level. In conclusion, off-the-shelf commercial solutions
most of the time are not applicable or are ineffective for HEP use cases (in terms of cost and
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functionality). This might change in the future, as various initiatives (e.g. CERN OpenLab)
continue to work closely with the most common service providers.

At the same time, there are various R&D activities underway within HEP aimed at
providing HEP analysts with tools or services to accomplish ML tasks. We reported some
of them in Sec. 3.4.2.1. Nevertheless none of these represent a MLaaS solution for HEP,
although the solution recently offered by CERN based on Kubeflow represents a valid
service towards MLaaS for HEP.

As there was no final product in 2017 that could be used as MLaaS for HEP and that
could cover the entire ML pipeline (in terms of reading data, processing data, training
ML models, and serving predictions), an R&D project within CMS started with the aim
of providing such an service. A first prototype of such a solution can be found in [95,
172]. These works describe an application on the signal-background discrimination in the
fully hadronic tt̄ decay at the CMS experiment (see 3.1.1). At that time the project was
at the very beginning and the prototype covered only the inference phase. Nevertheless,
this application on a specific use case showed the usefulness of a solution allowing HEP
analysts to use ML models external to TMVA.

The MLaaS solution proposed in [140] consists of two individual parts. The first part, the
Machine Learning as a Service for HEP (MLaaS4HEP) framework [173], covers the data
reading, data processing, and ML model training phases, in a completely model-agnostic
fashion, directly using ROOT files of arbitrary size from local or distributed data sources.
And, the second part, the TensorFlow as a Service (TFaaS) framework [174], can be used
to host pre-trained Tensor-based ML models and obtain predictions via HTTP calls.

This chapter, which contains the original contribution of the thesis, is totally focused on
the development of the MLaaS4HEP framework, and on the creation of a cloud service
that can be used to submit MLaaS4HEP workflows via HTTP calls. The description of the
TFaaS service is only reported for the completeness of the project.

In particular, in Sec. 4.1, the overall architecture is described. In Sec. 4.2 the application
of MLaaS4HEP on a real physics use case for its validation and test of performance is
discussed. In Sec. 4.3, additional studies and developments of the framework are described.
In Sec. 4.4.1, the work done with DODAS to automatize the deployment of a platform
where directly run MLaaS4HEP without any effort by the user is shown. In Sec. 4.5 the
work done for the realization of a working prototype of a cloud service for MLaaS4HEP
is presented. Lastly, in Sec. 4.6 final considerations on the project and future plans are
reported.

4.1 overall architecture

MLaaS4HEP provides transparent access to HEP datasets stored in the event tree-based
ROOT data format into existing Python-based ML frameworks of the user’s choice, which
usually are designed to operate with row-based data structures, e.g. NumPy arrays, CSV
files, and alike. It is based on the Uproot library and XRootD protocol to read small or
large tree-based ROOT files from local filesystems or remote sites. MLaaS4HEP has a
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modular design that opens up the possibility to train ML models on PB-size datasets
remotely accessible from WLCG sites without requiring data transformation to the user,
i.e. from ROOT data format to flat data format and subsequent storage of data to be used
by underlying ML framework. The caveat on the accepted input ROOT files is that their
content is in the form of a flat ROOT TTree, where no C++ object is stored inside, and no
further array nesting within branch elements is present. These conditions are fulfilled by
the typical user ntuples used for analysis and by the CMS NanoAOD data tier (see Sec.
3.3.2), which represents a common data tier in CMS and is already used by many analyses
(currently more than 30%). MLaaS4HEP transforms the Jagged Array representation of
ROOT data and feeds it into the ML framework via vector transformations applied to the
I/O stream. This opens up a possibility to use favorite non-HEP ML frameworks, train ML
models using distributed datasets, and therefore, attract non-HEP ML practitioners to be
engaged in HEP ML activities.

The TFaaS framework is independent of MLaaS4HEP. It provides access to any kind
of Tensor-based ML models to make inference via HTTP protocol. Although similar func-
tionalities exist in various industry solutions, most of them are integrated as part of their
service stack which may not be affordable or accessible to research communities, where an
efficient and scalable open-source alternative is desired.

The proposed modular architecture can be easily adapted to any HEP experiment either
as an entire pipeline or used partially, without requiring changes to existing frameworks
or infrastructure.

4.1.1 MLaaS4HEP architecture

The MLaaS4HEP framework has been implemented using the Python programming lan-
guage and the code is available in the GitHub repository [173].

As mentioned above, MLaaS4HEP allows the streaming of data from local or remote
data storage. The development of the reading part has been done using the Uproot lib-
rary (version 3 [175]). The Uproot library uses NumPy calls to quickly cast blocks of
data in ROOT files as NumPy arrays and among its features it allows a partial read-
ing of ROOT TBranches, non-flat TTrees, and histograms. It relies on data caching and
parallel processing to achieve high throughput, and data can be read from local ROOT
files or remotely via the XRootD protocol. A Python Generator has been implemented in
MLaaS4HEP, capable of reading chunks of data from either local or remote file(s), giving
as output a NumPy array with flat and Jagged Array attributes. Such an implementation
provides efficient access to large datasets, since it does not require loading the entire data-
set into the RAM of the training node. Additionally, it can be used to parallelize the data
flow into the ML workflow pipeline. The choice of chunk size should be determined by the
complexity of the processed events, the available network bandwidth, and the hardware
resources.

Subsequently, MLaaS4HEP takes care to transform HEP ROOT data presented as Jagged
Array into a flat data format used by ML frameworks. The Jagged Array is a compact rep-
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resentation of variable size event data produced in HEP experiments. The HEP tree-based
data representation is optimized for data storage but is not directly suited for ML frame-
works. Therefore, some data transformation is required to feed tree-based data structures
into the ML framework as a flat data structure, and a vector representation with padded
values has been implemented in MLaaS4HEP (see Fig. 4.1).

A priori we may not know how many particles are created in a physics event and at the
same time how much space is required to be allocated for particle attributes. Therefore,
care should be taken to flatten and pad ROOT events in the Jagged Array representation.
For that, a two-passes procedure has been implemented. In the first pass across all the
events, the maximum dimensionality of each Jagged Array attribute and the min/max
values of each attribute are determined. Even if this procedure may not be feasible for
very large datasets (at TB or PB scale), it can easily be replaced by alternative approaches
with approximate min/max and clipping procedures. In the second pass, the Jagged Array
attributes are mapped into a single vector representation with appropriate size (the max-
imum dimensionality computed for each attribute) and padding (e.g. using NaN values
or zeros), see Fig. 4.1. Furthermore, a proper normalization of each attribute is provided
during this phase. This layer can be easily abstracted as a Python decorator to allow for
multiple implementations of the normalization procedure that can be also provided dir-
ectly by the user. A separate masking vector is also saved to distinguish the assigned
padded values from the real values of the attributes. This masking vector may be import-
ant in some types of NNs, e.g. Autoencoders, where the position of padded values in the
input vector can be used in the decoding phase.

In this chapter, the term data pre-processing refers to data transformation from Jagged
Arrays to flat NumPy arrays with fixing of the dimensions, and data normalization.

Finally, the MLaaS4HEP framework uses data chunks with the proper proportion of
events presented in the input ROOT files to train the ML algorithms defined by the user
code (provided externally). MLaaS4HEP has been tested using MLPs written in Keras,
but in any case, it is abstracted to support any kind of Python-based ML framework and
algorithm (with a little effort in adjusting the code). Moreover, with the current implement-
ation, it can be used to tackle only classification problems. In the following, the ML training
workflow implemented in MLaaS4HEP is described using the terminology of NNs.

Three parameters, fixed a priori by the user, are used to control the data flow within
MLaaS4HEP. The Nchunk parameter controls the chunk size of data read from local or
remote storage, the Nbatch parameter defines the batch size, and Nepochs parameter defines
the number of epochs. The Nbatch and Nepochs parameters are used by the underlying ML
framework to control the training phase of the model using Nchunk events. The schematic
of the data flow used in the MLaaS4HEP workflow is shown in Fig. 4.2.

The first pass (indicated by 1© in Fig. 4.2) represents the part where the specs file is
created. This part is performed by reading all the ROOT files in chunks (with size Nchunk)
and the information stored in the specs file is updated chunk by chunk. The specs file
contains useful information about the ROOT files, e.g. the maximum dimension of each
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Fig. 4.1: Vector representation of an HEP event, consisting of flat attributes and Jagged Array attrib-
utes with padded values. The masking vector that stores the position of the padded values
is also saved [140].

Jagged branch, the maximum and minimum value for each branch, and the number of
events in each ROOT file1.

The second part of the flowchart (indicated by 2©) represents the ML training phase. At
the beginning of the cycle, when the events are not yet read, Nchunk events from the i-th file
fi are read and stored into the i-th chunk ci. Then, Nchunk · ni/Ntot events are taken from it,
where ni is the number of events from the file fi and Ntot is the total amount of events from
all files. Subsequently, these events are converted into NumPy arrays, with the necessary
transformation of the Jagged Arrays dimensions and normalization of the values (based
on the information computed during step 1© and stored in the specs file). The reading of
the events and their pre-processing is carried out for all the files fi. After creating a chunk
of Nchunk events properly mixed from the different files, the events are used to train the
ML model. The training phase is performed using batches of data of size Nbatch taken from
the created chunk and run for Nepochs epochs. In case Nchunk is not multiple of Nbatch, the
last batch used to train the ML model contains less than Nbatch events.

1 Once the specs file is produced, either via the aforementioned procedure or by studying Monte-Carlo distri-
butions to determine attribute dimensions and their min/max values, it can be reused for all files from the
given dataset during the ML training phase.
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Fig. 4.2: Schematic representation of the steps performed in the MLaaS4HEP workflow (see text for
details) [140].

Then the cycle starts again from the beginning of point 2©, and if all the events stored in
the chunk ci have already been read, Nchunk events are read from the file fi, otherwise, the
proper amount of events (Nchunk · ni/Ntot) is read from the chunk ci. The training process
continues until all events are read, creating at each cycle a new chunk of events that is used
to train the ML model for Nepochs epochs. At the end of the cycle, i.e. when all the events
from all files are read and the ML training for all the individual epochs is completed, the
final trained ML model is ready to be used in physics analysis.

In Appendix A, details on how to run a MLaaS4HEP workflow are reported.

4.1.2 TFaaS architecture

An inference layer can be implemented in various ways. It can be either tightly integrated
with application frameworks (e.g. both CMS and ATLAS experiments followed this ap-
proach in their CMSSW-DNN and LTNN solutions respectively) or it can be developed
as a Service (aaS) solution. The former has the advantage of reducing the latency of the
inference phase per processing event, but the latter can be easily generalized and become
independent from the internal infrastructure. For example, it can be easily integrated into
cloud platforms, can be used as a repository of pre-trained models, and even serve mod-
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els beyond the boundaries of experiments. However, the speed of the data inference layer
(i.e. the throughput of serving predictions) can vary based on the chosen technology. The
choice of the HTTP protocol ensures easy adaptation, whereas gRPC protocol can provide
the best performance but requires dedicated clients. The inference layer, which comple-
ments with MLaaS4HEP, has been implemented as a TensorFlow as a Service (TFaaS) [174]
based on the HTTP protocol.

Several ML frameworks have been evaluated and finally, the TensorFlow graphs have
been chosen for the inference phase. The TensorFlow model represents a computational
graph in a static form, i.e. the mathematical computations, the graph edges, and the data
flow are well-defined at run time. Reading TensorFlow models can be done in different pro-
gramming languages thanks to the support of the APIs provided by the TensorFlow library.
Moreover, the TensorFlow graphs are very well optimized for GPUs and TPUs. TFaaS has
been implemented using the Go programming language for the following reasons: the Go
language natively supports concurrency via goroutines and channels; it is the language de-
veloped and used by Google, and it is very well integrated with the TensorFlow library;
it provides a final static executable that greatly simplifies its deployment on-premises and
to various (cloud) service providers. Clients can upload their TensorFlow models to the
server and use them for their inference needs via the same interface. Both Python and C++
clients have been developed on top of REST APIs (end-points), and other clients can be
easily developed thanks to the HTTP protocol. The TFaaS framework can be used outside
of HEP to serve any type of TensorFlow-based models uploaded to the TFaaS service via
the HTTP protocol (even, for instance, image recognition ML models).

One TFaaS server hosted by CERN and one hosted by INFN are online ([176] and [177]
respectively). Moreover, TFaaS has been evaluated by CMS to be integrated in CMSSW as
an official ML inference tool.

4.2 validation and performance testing

To validate the results obtained with the MLaaS4HEP framework from the physics point
of view and to test its performance, a real physics use case must be chosen. Due to affinity
with the CMS analysis group, the tt̄ Higgs analysis (tt̄H(bb̄)) in the boosted, all-hadronic
final state has been chosen (see Sec. 3.1.2.2 for the details of the analysis).

4.2.1 MLaaS4HEP validation

The goal of the validation is to demonstrate that the MLaaS4HEP framework can provide a
valuable alternative and deliver comparable results with respect to the traditional analysis
(that followed a standard BDT-based procedure with TMVA) using a pre-defined set of
metrics.

Therefore, a dataset of 9 ROOT files from the resolved-Higgs analysis has been used,
where 8 ROOT files contained background events and 1 file contained signal events. All
the events contained in these ROOT files passed some selection criteria, briefly described in
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Sec. 3.1.2.2. Each file had 27 flat branches, with ≈ 350k events in total, and the total size of
the dataset was ≈ 28 MB. The ratio between the number of signal events and background
events was ≈ 10.8%.

Firstly, a generic ML algorithm has been used to compare the results obtained inside
and outside MLaaS4HEP. In particular, the following approaches have been explored:

• use MLaaS4HEP to read and normalize events, and to train the ML model;

• use MLaaS4HEP to read and normalize events, and a Jupyter notebook to perform
the training of the ML model outside MLaaS4HEP;

• use a Jupyter notebook to perform the entire pipeline without using MLaaS4HEP.

The dataset has been split into three parts: 64% for training, 16% for validation, and 20%
for test purposes, respectively. A Keras MLP has been used, with two hidden layers made
by 128 and 64 neurons, and with a 0.5 dropout regularization between layers (see Listing 5
for the definition of the algorithm). Finally, the model is trained for 5 epochs with a batch
size of 100 events, and the chunk size was set equal to the total number of events.

The results of this first validation are shown in Fig. 4.3, and show little or no difference
among different approaches. Therefore, this means that a user can decide to read and
normalize the events and train the ML model with or without MLaaS4HEP, with the same
result. Nevertheless, MLaaS4HEP offers an easy approach that perform the whole pipeline
without the user having to implement the single steps.

Subsequently, the MLaaS4HEP framework was used to train the same ML algorithm
with the same architecture but now with the chunk size fixed to 10k events. The Fig.s 4.4a,
4.4b, and 4.4c, show the computed loss, accuracy and AUC metrics, respectively.

It can be observed that as the accuracy and AUC increase, the loss decreases with the
number of chunks used for fitting the model, indicating that the ML model is actually
learning. However, it can be observed that these trends are not smooth, in particular they
show sawtooth shape patterns. These behaviors have been investigated by dropping one
by one the ROOT files from the dataset, and it was found that a particular ROOT file called
ttH_noDRmatch and containing background events is responsible alone for this effect. In
Fig.s 4.4d, 4.4e, 4.4f, it can be seen that when all files except the one mentioned above are
used the loss metric goes rapidly to 0, while the accuracy and the AUC go up to 1, respect-
ively. When only the ttH_noDRmatch file is used as a background file the performance is
lower: for example, the AUC score (see Fig. 4.4f) is between 0.7 and 0.8 during the training
compared to 0.9 and 1 in the former case.

Furthermore, in order to see eventual effects caused by the unbalancing of classes in the
data, an additional test has been performed by training the model with chunks made of
50% signal events and 50% of background events. This test confirmed the results obtained
before, i.e. the ttH_noDRmatch file causes the spikes in the trend of the metrics in Fig.s
4.4a, 4.4b, 4.4c. When this background file is not used, the ML model almost perfectly
distinguish signal from the background.

The effect of the ttH_noDRmatch file on overall performance is due to the fact that it has
a similar signature to signal events, with the only difference that signal events correspond



4.2 validation and performance testing 149

(a) Loss metric. (b) Accuracy metric.

(c) AUC metric.

Fig. 4.3: Comparison of the metrics (loss, accuracy, and AUC) scores for the training, validation,
and test sets for three different cases: (i) using MLaaS4HEP to read and normalize events,
and to train the ML model; (ii) using MLaaS4HEP to read and normalize events, and a
Jupyter notebook to perform the training of the ML model outside MLaaS4HEP; (iii) using
a Jupyter notebook to perform the entire pipeline without using MLaaS4HEP [140].

with the Higgs boson. Such attribute-level similarities influence the training process and
are responsible for the spikes observed in ML evaluation metrics.

The final goal of this validation was not to reproduce and/or match the exact AUC
number obtained in the official CMS physics analysis. It was found that the result (in
terms of AUC score) obtained using the MLaaS4HEP approach is comparable with the
result of the BDT implemented in TMVA and used in the official CMS physics analysis.

4.2.2 MLaaS4HEP performance

To test the MLaaS4HEP performance, all available ROOT files without any physics cuts
have been used: the corresponding dataset had ≈ 28.5M events with 74 branches (22 flat
and 52 Jagged), and a total size of ≈ 10.1 GB.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.4: Comparison of the metrics (loss, accuracy, and AUC) scores for the training plus validation,
and test set using all the events of the dataset, read in chunk of size 10k (see plots (a), (b)
and (c)). The plots (d), (e) and (f) show the comparison of the same metrics for three tests:
one without the ttH_noDRmatch ROOT file in the background files list, one with only the
ttH_noDRmatch ROOT file as background file, and finally, the third test (which repeats the
first two) with a symmetric composition (50% and 50%) of signal and background in each
data chunk (line with the × marker) [140].

All tests were performed using a macOS (laptop), 2.2 GHz Intel Core i7 dual-core, 8 GB
of RAM, and a CentOS 7 Linux, 4 VCPU Intel Core Processor Haswell 2.4 GHz, 7.3 GB of
RAM CERN VM. The ROOT files have been read from three data centers: Bologna (BO),
Pisa (PI), and Bari (BA). The average available bandwidth was ≈ 129 with the Standard
Deviation of Mean (SDOM) parameter equal to 4 Mbit/s and 639 (SDOM = 39) Mbit/s
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using macOS and CERN VM, respectively (in both cases the values have been obtained
after 10 trials).

Table 4.1 summarizes the I/O numbers obtained in the first step of the MLaaS4HEP
pipeline2 ( 1© in Fig. 4.2) using various setups and a chunk size of 100k events. It provides
values for the time taken to read the files, the time taken to compute specs values, the total
time taken to complete the step 1©, and the event throughput for the reading and specs
computing steps.

Reading time Specs comp. Time to complete

(s) time (s) step 1© (s)

macOS with local files 1633 (9) 958 (2) 2599 (11)

macOS with remote files (BO) 2365 (49) 974 (10) 3353 (57)

VM with local files 1131 (3) 963 (2) 2102 (5)

VM with remote files (BO) 2455 (68) 959 (2) 3427 (67)

VM with remote files (BA) 2304 (88) 961 (2) 3279 (89)

VM with remote files (PI) 2129 (41) 1044 (78) 3186 (83)

Mean event throughput Mean event throughput Mean event throughput for

for reading (evts/s) for specs comp. (evts/s) reading + specs comp. (evts/s)

macOS with local files 17608 (105) 29704 (63) 11055 (49)

macOS with remote files (BO) 12155 (261) 29245 (293) 8585 (149)

VM with local files 25493 (75) 29568 (73) 13690 (34)

VM with remote files (BO) 11716 (308) 29691 (70) 8396 (158)

VM with remote files (BA) 12538 (487) 29647 (65) 8801 (241)

VM with remote files (PI) 13503 (252) 27779 (1693) 9047 (228)

Table 4.1: Performance of the reading and specs computing phase with chunk size set to 100k
events, using the macOS system and the CERN VM. Each value reported in the cells
of the table represents the arithmetic mean of 5 trials with the corresponding SDOM
reported inside the round brackets. The mean event throughput is the mean of the values
obtained chunk by chunk in the phases of step 1© of in Fig 4.2. In cases of local storage,
the files were stored in a SSD 500 GB in the macOS case and in a Virtual Disk 52 GB in
the CERN VM case, respectively. Furthermore, BO, BA, and PI stand for various Italian
storage facilities with different WAN configurations (see the text for more details) [140].

Fig. 4.5 shows the mean event throughput for reading data as a function of chunk size
for different trials. In all cases, there are no significant peaks. Larger chunk sizes can lead
to certain problems, as in the case of the CERN VMs, where a limitation of the underlying
hardware can be reached, e.g. big memory footprint. Using local files gave lower reading
times and higher event throughput, while in the case of remote files the results were mostly
influenced by the available bandwidth (the link connectivity between the processing node
and the sites that host the data).

Fig. 4.6 shows the mean event throughput for reading data and computing the specs as
a function of chunk size for different trials. The trend is the same of Fig. 4.5 but the values
of throughput are lower since the time to computing the specs is added. In particular, the
mean event throughput for the specs computing was found in general in the range 29k-31k,
independent of the chosen platform, data location, and chunk size.

2 MLaaS4HEP pipeline and MLaaS4HEP workflow are used interchangeably in this thesis.
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Fig. 4.5: Mean event throughput for reading data as a function of the chunk size for different trials
of step 1© in Fig. 4.2. The data points represent the arithmetic mean of 5 trials whereas the
error bars represent the corresponding SDOM [140].

The performance studies of the second step of the MLaaS4HEP pipeline ( 2© in Fig. 4.2)
includes the data reading part, the data pre-processing step, and the time spent in the
MLaaS4HEP training step.

As already mentioned in Section 4.1.1, there is a loop on the ROOT files that allows
building the chunk used to train the ML model with the appropriate fraction of events.
When the chunk containing the events of the i-th ROOT file is empty or fully processed, a
new chunk of events is read from the i-th file, and the reading time is added to the total
time spent on creating the chunk (see Fig. 4.2). In other words, the time spent on creating
a chunk is the sum of n reading actions, and the time to pre-process the events. The event
throughput for the data reading part has been already given in Table 4.1 and shown in Fig.
4.5. The event throughput for creating a single data chunk and the event throughput for
pre-processing a single data chunk with a chunk size of 100k events are given in Table 4.2.
In Fig. 4.7, the event throughput for creating a chunk as a function of the chunk size for
different trials is shown.

The time spent for creating a chunk was almost the same for macOS and CERN VM,
and similar for local or remote files. Obviously, for remote files, the reading time increased
accordingly, and the time for creating the chunk increased, but this difference was pretty
much negligible. For example, around 90 seconds were spent to create a chunk of 100k
events, which corresponds to an event throughput of about 1.1k etvs/s, as given in Table
4.2. The choice of the chunk size is left to the user and there is no predefined best value
for it. A good practice would be to start with a lower value of chunk size (e.g. 1k) and
increase it gradually based on the resource availability.
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Fig. 4.6: Mean event throughput for reading data and computing the specs as a function of the
chunk size for different trials of step 1© in Fig. 4.2. The data points represent the arithmetic
mean of 5 trials whereas the error bars represent the corresponding SDOM.

event throughput for event throughput for

creating a chunk (evts/s) pre-processing a chunk (evts/s)

macOS with local files 1102 (11) 1157 (7)

macOS with remote files (BO) 1057 (17) 1138 (4)

VM with local files 1209 (11) 1247 (2)

VM with remote files (BO) 1110 (32) 1243 (5)

VM with remote files (BA) 1071 (19) 1153 (4)

VM with remote files (PI) 1152 (18) 1234 (5)

Table 4.2: Event throughput for the chunk creation and the pre-processing step with a chunk size
of 100k events. The difference between the two steps is based on the reading part, i.e. the
time for creating a chunk is the sum of the time of n reading actions from the ROOT files,
and the time of the pre-processing step. The values in the table represent the arithmetic
mean of the values obtained for 10 chunks and the corresponding SDOM is reported
inside the round brackets [140].

The actual ML training time is independent of the MLaaS4HEP framework as it is de-
termined by use of the underlying ML framework, e.g. Keras, the complexity of the ML
algorithm used and the available hardware resources. In particular, using the simple ML
algorithm introduced above and a chunk size of 100k events, for each chunk the time spent
to split properly the data for training, validation and test purpose was about 1s (and al-
most equal for MacOS and CERN VM), and the training time for 5 epochs was about 11s
and 13s for MacOS and CERN VM, respectively.

The heavy rewriting of the MLaaS4HEP code compared to the solution presented in
[178] resolved few bottlenecks. For example, the reading time has been improved by a
factor of 10. This resulted from better handling of Jagged Arrays by flattening the event
arrays and computing of the min/max values of each branch. Additionally, the data pre-
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Fig. 4.7: Event throughput for creating a chunk as a function of the chunk size for different trials.
The values represent the arithmetic mean of the values obtained for 10 chunks with the
SDOM error bars [140].

processing step has been improved by a factor of 2.8 by using lists comprehensions instead
of loops within the event.

On MacOS the MLaaS4HEP framework took about 86s to pre-process 100k events with
36%, 26%, 27%, and 6% breakdown used to extract and convert each event into a list of
NumPy arrays, the normalization step, setting the dimensions, and creating the masking
vectors, respectively.

In conclusion, using ≈ 10.1 GB of data (≈ 28.5M events) of the discussed physics ana-
lysis, the following results have been obtained:

• MLaaS4HEP framework is able to work with local and remote files;

• its throughput reaches ≈ 13.7k evts/s for reading the local ROOT files (with specs
computing) and ≈ 9k evts/s for remote files;

• the throughput of the pre-processing step is peaked at ≈ 1.2k evts/s.

4.2.2.1 MLaaS4HEP performance projection

Based on the studies presented in Sec. 4.2.2 and considering the case of the CERN VM
with local files, to process ≈ 10.1 GB of data (≈ 28.5M events) MLaaS4HEP took about 35
minutes for the first step of the pipeline ( 1© in Fig. 4.2), i.e. to obtain min/max boundaries
of all attributes across the processed events. The second step of the MLaaS4HEP pipeline
( 2© in Fig. 4.2) took about 7 hours. This time includes reading all data chunks from the
ROOT files, pre-processing the events, and feeding the data to the ML framework. Actual
ML training time depends on the algorithm provided by the user and does not represent
the MLaaS4HEP performance. In the studies reported in Sec. 4.2.2, it added an additional
hour to the total time. Therefore, making an estimate using the same hardware resources,
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the step 1© will take O(100) hours and O(100k) hours for datasets at TB and PB scale, and
the time for step 2© will be O(1k) hours and O(1M) hours, respectively (to which must be
added the time required to train the ML model).

These estimates suggest that further optimization of the MLaaS4HEP pipeline is re-
quired to process TB or PB scale datasets, and could involve I/O parallelization, distributed
ML training, and other optimization techniques (more details in Sec. 4.6). At this stage, the
goal was primarily to demonstrate the feasibility of the MLaaS4HEP pipeline, and to val-
idate its use in the context of a real physics use case rather than performing a real ML
training at the TB/PB scale.

4.3 further developments of mlaas4hep

The development of the MLaaS4HEP framework started in 2018 and in these years the
code has had many improvements. The most relevant package (dependency) MLaaS4HEP
relies on is Uproot, which in turn relies on the Awkward Array library. There have been
several releases of these two packages over the years (see Fig. B.1 for the timeline) and the
breaking point for the MLaaS4HEP compatibility with Uproot has been the transition from
Uproot version 3 (Uproot3) to version 4 (Uproot4) in the second half of 2020. This is mainly
due to the transition from Awkward Array version 0 (awkward0) to version 1 (awkward1),
which significantly changed the library interface, allowing it to handle a wider variety of
nested and variable-sized data, and perform more complex manipulations on them.

In order to keep MLaaS4HEP updated with all its dependencies and since Uproot4
offered interesting features for the MLaaS4HEP development, it was decided to update the
code to support Uproot4. Currently, the GitHub repository of the MLaaS4HEP framework
[173] contains the Uproot3 and Uproot4 branches to distinguish two versions of the code
corresponding to the two supported versions of Uproot. With the upgrade to Uproot4,
new methods and functionalities have been introduced and the code has been modified to
adopt the new syntax used by Uproot4 (see [108]). Let’s take as an example the method
used to distinguish if a branch is flat or Jagged. Uproot3 uses the JaggedArray type from
awkward0 to understand the nature of the branch, whereas Uproot4 uses AsJagged from
awkward1. In MLaaS4HEP, this results in the following transition:

isinstance(branch, awkward0.JaggedArray) #uproot3

isinstance(branch, uproot4.AsJagged) #uproot4

This is just an example and several functions have been subject to change. Thus, per-
formance tests for the updated MLaaS4HEP code have been performed using a CentOS
7 Linux, 4 VCPU Intel Xeon Processor Skylake 2.1 GHz, 7.1 GB of RAM CERN VM, and
considering the dataset used in the tests of Sec. 4.2.2 and stored locally.

Table 4.3 summarizes the I/O numbers obtained in the first step of the MLaaS4HEP
pipeline ( 1© in Fig. 4.2) using a chunk size of 50k events. Each value reported in the
cells of the table represents the arithmetic mean of 5 trials with the corresponding SDOM
reported inside the round brackets. The mean event throughput is the mean of the values
obtained chunk by chunk in the phases of step 1© in Fig. 4.2. Moreover, the values of
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event throughput for creating a single data chunk in the second step of the MLaaS4HEP
pipeline ( 2© in Fig. 4.2) using a chunk size of 50k events are also reported in Table 4.3. In
these cases, the values represent the arithmetic mean of the values obtained for 10 chunks
and the corresponding SDOM is reported inside the round brackets. The values in the
Table 4.3 show that in the reading phase there is a worse performance using Uproot4 than
using Uproot3 but in the chunk creation phase, there is better performance with Uproot4.

Uproot3 Uproot4

reading time (s) 1136 (2) 1301 (4)

specs comp. time (s) 653 (1) 607 (1)

time to complete step 1 (s) 1796 (3) 1914 (5)
mean event throughput
for reading (evts/s) 25304 (44) 21995 (73)

mean event throughput
for specs comp. (evts/s) 43604 (50) 46968 (50)

mean event throughput for
reading + specs comp. (evts/s) 16012 (24) 14980 (38)

event throughput for
creating a chunk (evts/s) 1197 (5) 1406 (14)

Table 4.3: Comparison of performance between Uproot3 and Uproot4 cases for the various phases
of the MLaaS4HEP pipeline (shown in Fig. 4.2), with chunk size set to 50k events, using
the CERN VM, and with the dataset stored locally. More details are in the text.

4.3.1 New pre-processing operations

The transition to Uproot4 allowed to introduce new pre-processing operations on events
in MLaaS4HEP [179], i.e.:

• new branches definition;

• application of cuts on branches, both new and existing ones.

As reported in Appendix A, the MLaaS4HEP workflow is run using the workflow.py

script which takes several arguments. An additional one can be used to introduce the new
pre-processing operations, i.e.:

./workflow.py --files=files.txt --labels=labels.txt --model=model.py --params=params.json

--fout output_model --preproc=preproc.json

An example of the preproc.json file is shown in Listing 1.

1 {

2 "new_branch": {

3 "JetLep": {

4 "def": "nJets + nLeptons",

5 "type": "flat",

6 "cut_1": "1<=JetLep<=5",

7 "remove": "False"

8 }

9 },

10 "flat_cut": {
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11 "nLeptons": {

12 "cut": "nLeptons!=2",

13 "remove": "False"

14 }

15 },

16 "jagged_cut": {

17 "jetPt": {

18 "cut": ["jetPt>250","any"],

19 "remove": "False"

20 }

21 }

22 }

Listing 1: Example of a preproc.json file provided by the user to apply pre-processing operations
on data. See the text for more details.

The file is structured in three main categories: new_branch, flat_cut, and jagged_cut. The
new_branch component allows the definition of new branches and gives the possibility to
apply cuts on them, whereas the flat_cut and jagged_cut components allow the application
of cuts on existing flat and Jagged branches respectively. If the user does not want to
create new branches or apply cuts on flat or Jagged branches, he/she just should remove
the corresponding category from the preproc.json file.

New branches can be defined through mathematical operations involving existing
branches. To create new branches, the user must provide a series of information in the
new_branch category:

• the name of the new branch;

• the mathematical definition of the new branch involving the existing branches, which
supports both basic operations (+, -, *, /, **) and NumPy functions [180];

• the type of the new branch (flat or Jagged);

• the cut to apply;

• remove or not the new branch after the cut;

• the list of branches to be removed after the creation of the new branch.

In case of cuts on Jagged branches, the user must specify the type of cut choosing
between all and any. The all type is used when the cut condition must be satisfied by all
the values of a given Jagged branch, whereas the any type is used when at least one element
in a given Jagged branch satisfies the cut condition. In case of multiple cuts, they must be
sorted using cut_i as key, where the i indicates the number of the cut. If the user does not
want to apply cuts on the new branch or does not want to remove any branches, then the
cut and keys_to_remove keys must be removed from the preproc.json file respectively.

To apply cuts on flat and Jagged branches, the structure to be used is similar to the
above. The following information must be provided:

• the name of the branch to cut on;
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• the cut to be applied;

• remove or not the branch after cutting.

To apply more than one cut within the same branch, just number the cut key using cut_i
as seen previously.

The proper functioning of the pre-processing operations introduced has been tested by
comparing the results obtained by MLaaS4HEP and ROOT, taking the same dataset used
in Sec. 4.2.2. The comparison on how to apply cuts on events between the Uproot and
ROOT approaches is shown in the Appendix B.2.

The event throughput for the different phases of the MLaaS4HEP pipeline is reported
in Table 4.4 considering different situations: without any cuts, with a cut on a flat branch,
with a cut on a Jagged branch, with a cut on a new flat branch, and with cuts on flat,
Jagged, and new flat branch (mixed cuts). The cuts are the same as reported in Listing 1.
In these tests, 50k events have been read with a chunk size of 5k events.

no cut flat cut Jagged cut new branch cut mixed cuts
mean event throughput
for reading (evts/s) 15157 (71) 15325 (56) 22505 (64) 19718 (51) 19375 (20)

mean event throughput
for specs comp. (evts/s) 44004 (52) 43600 (136) 947 (4) 878 (11) 944 (5)

mean event throughput for
reading + specs comp. (evts/s) 11273 (37) 11339 (29) 908 (3) 841 (10) 900 (5)

event throughput for
creating a chunk (evts/s) 1363 (3) 1395 (8) 125 (1) 124 (1) 124 (1)

Table 4.4: Event throughput for the different phases of the MLaaS4HEP pipeline (shown in Fig. 4.2)
and for different cuts applied. The total number of events read was set to 50k and the
chunk size was set to 5k events. The tests have been performed using the CERN VM and
considering the dataset stored locally.

The values in Table 4.4 shows a strong performance degradation when the cut on the
Jagged branch and on the new flat branch is applied (and consequently also in the case
of mixed cuts). The reason for this behavior is essentially related to a conversion issue:
by applying cuts on flat branches the same data type (i.e. Numpy ndarray) is kept for the
whole MLaaS4HEP workflow. However, this is no longer true when defining new branches
or applying cuts on Jagged branches because data is converted by Uproot to a type (i.e.
AwkwardArray) which in turn must be converted, event by event, causing the slowdown.
Thus, when the user needs to perform complex operations, e.g. creating new branches or
cutting on Jagged branches, and needs good time performance, it is preferable to perform
such operations outside MLaaS4HEP, especially when dealing with very large datasets.
Instead, when simple operations (e.g. cuts on flat branches) are required, the performance
is very similar to the case without cuts.

4.3.2 New training procedure

Considering the case of a NN, the current (named “original” in this subsection)
MLaaS4HEP training procedure is performed chunk by chunk where each chunk is used
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one at a time to train the model for Nepochs epochs, with Nepochs defined by the user. An
additional training procedure (named “standard” in this subsection) has been introduced,
in which for each epoch all the chunks are used. Both training approaches have pros and
cons. The original MLaaS4HEP training approach is useful when the dataset is large and
exceeds the amount of RAM of the training node, as only a chunk at a time is stored in
the memory and the chunk size can be adjusted to fit in the hardware resources. However,
the user should pay close attention to the ML model convergence and validate it after each
chunk [181]. The standard MLaaS4HEP training approach by using the entire dataset for
each epoch can guarantee the ML model convergence, but the dataset should fit into the
RAM of the training node. In terms of training speed, the original approach is faster than
the standard one (this effect is prominent when remote ROOT files are used), since after
having used a chunk for the training, that chunk is no longer read and used later. Since
MLaaS4HEP now comes with two training procedures, the user can try both and select the
best one for him/her use case.

To make a proper comparison of the two training approaches, the AUC and loss scores
are plotted in Fig. 4.8, using the ML algorithm in Listing 5 (but with an SGD optimizer),
and using the dataset introduced in Sec. 4.2.1. The plots of Fig.s 4.8a and 4.8b are obtained
using a chunk size of 100 events, whereas the plots of Fig.s 4.8c and 4.8d are obtained
using a chunk size of 100k events. The plots show that the two MLaaS4HEP training
approaches produce very similar results when the chunk size is set to 100k, whereas in
the case of 100 events as chunk size the standard approach shows improvements in the
performance with a smoother trend and better learning. This means that in the original
approach “large” chunks are enough for the model to learn from data, but when the
chunk size is decreased it results in a loosing of performance and less convergence. On
the contrary, the model benefits from a training procedure that foresees seeing all chunks
for each epoch. The trends obtained depend on the use case chosen, but generally when
two classes are difficult to distinguish it is always preferred to use small chunks to ensure
correct learning of the model.

Another factor to take care of is the time to perform all the MLaaS4HEP training pro-
cedure, and a trade-off between the time spent and the performance should be considered.
The time spent by MLaaS4HEP for the training procedure as a function of the number of
epochs is shown in Fig.s 4.9a and 4.9b (considering the same use case as before). In Fig.
4.9a, the values are obtained by fixing the chunk size to 100 events, while in Fig. 4.9b, the
chunk size was set to 100k. In both cases, the original MLaaS4HEP approach takes much
less time than the standard one since each chunk is read only one time and then discarded.
Moreover, with 100 events as chunk size the time is an order of magnitude greater than
with 100k events as chunk size for both training approaches. Thus the user should take
into consideration all these elements before choosing which approach to adopt.
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(a) (b)

(c) (d)

Fig. 4.8: AUC and loss metrics comparison between original and standard MLaaS4HEP training
approaches using the model in Listing 5 and an SGD optimizer. Plots (a) and (b) were
obtained by setting the chunk size to 100 events, while plots (c) and (d) setting the chunk
size to 100k events [108].

4.3.3 Generalization to other ML frameworks

As already mentioned, MLaaS4HEP is abstracted to support any kind of Python-based
ML framework and algorithm (with a little effort in adjusting the code). So far, in the tests
reported, only Keras MLPs have been used, and to enable the use of other frameworks
and algorithms the MLaaS4HEP framework needed additional work. Thanks to the new
implementations, MLaaS4HEP has been successfully tested using:

• MLP written in PyTorch;

• MLP, Gradient Boosting, AdaBoost, Random Forest, Decision Tree, kNN, SVM, and
Logistic Regression written in Scikit-learn;

• Gradient Boosting written in XGBoost.

See Appendix B.4 for more details on the definition of ML algorithms to be used in
MLaaS4HEP and for a PyTorch example.
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(a) (b)

Fig. 4.9: Comparison between original and standard training approaches in terms of training time.
In (a), the chunk size was set to 100 events, and in (b), the chunk size was set to 100k events
[108].

4.3.4 Providing metrics score

Since metrics are useful to quantify the goodness of trained ML models, it was considered
useful to add the possibility for the user to have MLaaS4HEP print some of the most
common metrics, i.e. AUC, Confusion Matrix, Precision, Recall, and F1.

4.3.5 MLaaS4HEP application on the Higgs Boson ML challenge

MLaaS4HEP has been successfully used to tackle the Higgs Boson ML challenge (see Sec.
3.1.2.1 for all the details of the analysis). In [108], the strategy adopted for the challenge
using MLaaS4HEP is described and it has been reproduced in a Jupyter notebook that can
be found in [182]. The notebook is designed to be run on Google Colab but can easily
be adapted to run on any platform. This application shows that MLaaS4HEP is also HEP
experiment agnostic: in fact, even if it is a CMS project, it can also be used with data of
other experiments adopting ROOT, like ATLAS. Moreover, the data of the challenge is
open data, meaning accessible also from outside the experiment and CERN itself. This
adds value to the MLaaS4HEP framework, as it can be used as a tool to show non-HEP
experts (e.g. during outreach events) how ML techniques can be applied to HEP problems.

4.4 towards a mlaas solution for mlaas4hep

The MLaaS4HEP performance reported in Sec. 4.2.2 is highly dependent on the available
hardware resources, and while it might be acceptable for datasets with a size of ≈ 10 GB,
it should be improved for larger datasets (e.g. at TB or PB scale) looking to the upcoming
HL-LHC. This improvement can be achieved by exploring different ways, such as adopting
new solutions in the code, investing in better and more expensive on-premise resources,
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Fig. 4.10: Schematic representation of the levels of a service. DODAS provides a solution at the PaaS
level, and integrating the MLaaS4HEP framework the results is towards a SaaS solution
[183].

or moving to the cloud. The “cloudification” operation has two benefits: it allows to use of
heterogeneous and potentially more performing resources but it also opens the doors to
the creation of an “as a Service” solution. At this stage, MLaaS4HEP is only a framework
that can be installed and used where the user prefers, but it is not a service (with APIs)
and it is not an “as a Service” solution. This section shows the work done [183] towards
a SaaS3 solution with MLaaS4HEP using the DODAS service [184]. In fact, by integrating
the MLaaS4HEP framework with the platform (i.e. a VM) provided by DODAS, the final
product is towards a SaaS (in particular, a MLaaS in this case) that allows the user to
run the MLaaS4HEP workflow without the need to install it and its dependencies (see Fig.
4.10). In the end, what will be missing for a real SaaS is to create a MLaaS4HEP service and
integrate it with DODAS which will manage the deployment of the final solution using
cloud resources.

The choice to use DODAS as PaaS was mostly driven by the proximity to the DODAS
working group and the ease of using its resources. At the same this work provides compli-
ance with the INFN-Cloud [185] portfolio of services, which opens up the possibility for
INFN-Cloud users to use the MLaaS4HEP framework “as a Service”.

4.4.1 DODAS

Dynamic On Demand Analysis Service (DODAS) is a PaaS tool for generating container-
based solutions on cloud and on-demand resources. It is designed for scientists looking to
easily leverage distributed and heterogeneous cloud resources, by automatizing the pro-
cess of provisioning, creating, managing, and accessing resources. Its development began

3 See Sec. 2.2.2 for the datails on the cloud service models.
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in the context of the INDIGO-DataCloud [186] project and its architecture has been real-
ized mostly using INDIGO building blocks. It implements a services composition model
based on templates, where services can be chosen depending on the use case, providing
in this way a customizable platform. The DODAS architectural pillars are the following.

• The PaaS Orchestrator is the DODAS entry point where user’s requests for the ap-
plication or service deployments, typically expressed in a TOSCA 4 template, are
taken in charge. Its role is to provide the best infrastructure for the deployment con-
sidering the requests of the users, the availability, and the state of health of the IaaS
services. The interaction with the infrastructure is delegated to the Infrastructure
Manager.

• The Infrastructure Manager (IM) is responsible to deploy customized virtual infra-
structures on different IaaS Cloud deployments, allowing support for various cloud
providers (e.g OpenStack, Amazon AWS, and Microsoft Azure). It facilitates the ac-
cess and usability of IaaS clouds by automating the Virtual Machine Image (VMI)
selection, deployment, configuration, software installation, monitoring, and update
of the virtual infrastructure.

• The Identity and Access Management service (IAM) manages identities, enrollment,
group membership, attributes, and policies for accessing distributed services and
resources. It supports federated authentication mechanisms behind the INDIGO Au-
thentication and Authorization Infrastructure (AAI). Users can authenticate with any
of the supported mechanisms (SAML, OIDC, X.509 certificates, and local username
and password), also using the credentials provided by existing Identity Federations
(e.g. IDEM and eduGAIN).

Resource abstraction and full automation are implemented by combining PaaS Orches-
trator and IM together. In this way, end users are able to leverage computational resources
without knowing the IaaS details. Cluster and services configuration is automated using
Ansible recipes. The combination of TOSCA and Ansible allows an easy procedure to
describe complex computing infrastructures.

4.4.2 Using DODAS for MLaaS4HEP claudification

For the MLaaS4HEP cloudification with DODAS, the following steps have been performed
(for more details see Appendix C and [187]):

1. create a Docker image able to run the MLaaS4HEP pipeline;

2. create an Ansible role to automatize the configuration and deployment of the con-
tainer with dependencies (e.g. download Docker, pull the Docker image, and run the
container);

4 Topology and Orchestration Specification for Cloud Applications (TOSCA) is an OASIS open standard used
to define the topology of services provisioned in IT infrastructures.



164 the mlaas4hep service

3. create a Tosca template to define the resource requirements (e.g. the number of CPUs
and memory size of the VM to be delivered to the user) and the input parameters
for the creation of the docker container (e.g. define a folder of the host file system to
be connected with the container);

4. create the deployment from the command line.

Therefore, DODAS has been used to automatize the overall deployment via the com-
mand line interface and to equip the user with a platform (leveraging cloud resources
available to the DODAS project) where run the MLaaS4HEP pipeline. In addition to SSH
access to the VM, a JupyterHub interface is provided which can be very useful in research
groups as it provides a user-friendly solution with a shareable Jupyter notebook, i.e. the
user can work in a shared environment with colleagues using the same cloud interface. It
integrates cloud storage for the management of the required files (e.g. ROOT files, and ML
algorithms definition) that can be shared with other users. It implements a token-based
access using the IAM service and it has the support for a customizable environment, i.e.
the user can choose the Docker image he/she wants (see Fig. C.2). Using this interface the
user can simply open a terminal and run the MLaaS4HEP pipeline.

Functional tests of this solution have been performed by deploying an Ubuntu 18 Linux,
8 AMD Opteron 62xx class CPU 2.6 GHz, 16 GB RAM VM with DODAS and running
the MLaaS4HEP pipeline on it. The average available bandwidth was ≈ 576 (16) Mbit/s
obtained in 6 trials. Table 4.5 summarizes the I/O numbers obtained in the first step of the
MLaaS4HEP pipeline ( 1© in Fig. 4.2) using a chunk size of 100k events. Each value reported
in the cells of the table represents the arithmetic mean of 5 trials with the corresponding
SDOM reported inside the round brackets. The mean event throughput is the mean of
the values obtained chunk by chunk in the phases of step 1© in Fig. 4.2. Moreover, the
values of event throughput for creating a single data chunk and the event throughput for
pre-processing a single data chunk in the second step of the MLaaS4HEP pipeline ( 2© in
Fig. 4.2) using a chunk size of 100k events are also reported in Table 4.5. In these cases,
the values represent the arithmetic mean of the values obtained for 10 chunks and the
corresponding SDOM is reported inside the round brackets. The dataset used is the same
as the tests of Sec. 4.2.2 and two cases have been considered: the dataset stored locally and
in the Pisa data center.

Regarding the ML training time, considering the simple ML algorithm used in Sec. 4.2.1
(see Listing 5) and a chunk size of 100k events, for each chunk the time spent to split
properly the data for training, validation, and test purpose was about 1.5 s, and the training
time for 5 epochs was about 27 s.

A comparison with the results reported in Tables 4.1 and 4.2 shows that the values
obtained with the VM deployed with DODAS are in general worse than the macOS and
CERN VM cases. The reason is that in the former case, the VM was shared with other
users and during the tests an exclusive usage of the resources was not possible. Anyway,
this was just a functional test to show the feasibility of the whole procedure, and not to
get the highest possible performance values.

For more details on the work of cloudification with DODAS see Appendix C.
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local files remote files (PI)

reading time (s) 1687 (1) 2538 (46)

specs comp. time (s) 2245 (38) 2376 (50)

time to complete step 1 (s) 3953 (35) 4937 (50)
mean event throughput
for reading (evts/s) 17111 (6) 11355 (209)

mean event throughput
for specs comp. (evts/s) 12697 (211) 12000 (251)

mean event throughput for
reading + specs comp. (evts/s) 7286 (69) 5828 (57)

event throughput for
creating a chunk (evts/s) 494 (2) 498 (4)

event throughput for
pre-processing a chunk (evts/s) 505 (1) 512 (1)

Table 4.5: Performance of the various phases of the MLaaS4HEP pipeline (shown in Fig. 4.2) with
chunk size set to 100k events, using the VM deployed with DODAS, and considering
data stored locally and in the Pisa data center. More details are in the text.

4.5 cloud native approach for mlaas4hep

The work described in Sec. 4.4.1 shows a general procedure to create an automated de-
ployment of a service applied in the specific case of the MLaaS4HEP framework. However,
MLaaS4HEP is not yet a service, meaning that it lacks the APIs through which a user can
interact with it. To be integrated into a cloud and to be designed as a cloud native applica-
tion, the final product should be developed in terms of interconnected microservices each
of them in charge of different tasks. The following microservices have been identified as
the pillars of such a service that should be implemented [179]:

• a MLaaS4HEP server, which allows to submit MLaaS4HEP workflow requests and
manage all the actions related to it;

• an authentication/authorization layer, which allows to authenticate the users and
authorize their requests to the MLaaS4HEP server;

• an XRootD Proxy server, which allows using X.509 proxies for the remote access of
data.

In Sec. 2.7.1, detailed information about cloud native applications and microservices has
already been provided. A cloud native application is based on containerization, i.e. every
part of such an application is housed within its own container. This allows them to work
in different cloud environments, and to be moved more easily between different cloud
environments and between on-premises and the cloud, even because they carry with them
all of their dependencies. Therefore, the services mentioned above must be developed as
containers.

The MLaaS4HEP service has been developed using the Flask framework (which allows
developing easily web applications in Python), building APIs that allow the user to manage
a MLaaS4HEP workflow by making HTTP calls via curl, i.e.:

• upload a folder with all the files needed to run a MLaaS4HEP workflow (e.g. the
input ROOT files and the definition of the ML algorithms);
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• delete the uploaded folder;

• submit a MLaaS4HEP workflow, which in turn is containerized and runs in back-
ground;

• monitor the status of the “job” (container);

• download the logs of the container;

• download the trained ML model.

The code of the MLaaS4HEP server is available in [188]. To run a MLaaS4HEP server
locally and run a MLaaS4HEP workflow, the following lines should be executed:

FLASK_ENV=development FLASK_APP=server.py flask run -p 8080

curl -H "Content-Type: application/json" -d @submit.json http://localhost:8080/submit

In this case, the MLaaS4HEP server (defined in the server.py file) listens on port 8080.
The submit API takes as argument a json file containing information about the resources
that the container (which runs the MLaaS4HEP workflow) can use (i.e. the memory size
and the number of CPUs), and the files to use for the workflow. A container for the
MLaaS4HEP server has not yet been developed, but it is expected to be done as it is a
requirement of a microservice.

The easiest and most efficient approach for the implementation of the authentication/au-
thorization layer is to “do not reinvent the wheel” and use existing solutions that rely on
industry standard, i.e. OAuth 2.0 and OIDC protocols. Therefore two reverse proxies have
been tested and successfully integrated: auth-proxy-server [189] (which is an R&D product
of CMS mainly focused on the needs of CMS) and OAuth2-Proxy [190]. To be as much gen-
eric as possible, the second option has been chosen for the continuation of the work. The
steps performed to properly integrate and use the OAuth2-Proxy with the MLaaS4HEP
server are the following.

• Register a client using oidc-agent [191], choosing https://cms-auth.web.cern.ch/ as the
authorization server. At this stage, the user is authenticated and gives authorization
to the client to talk with the authorization server.

• Obtain an access token for the registered client, setting the audience to the CLI-
ENT_ID.

• For TLS connections, get a certificate for the MLaaS4HEP server from a trusted, third-
party Certificate Authority (for simplicity, a self-signed certificate has been used, ob-
tained with the openssl package).

• Prepare a configuration file for the OAuth2-Proxy server setting the CLIENT_ID and
CLIENT_SECRET of the registered client (a similar one was prepared for the case of
TLS connections).

• Run the OAuth2-Proxy server using the pre-built Docker image.
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• Make a curl call to a MLaaS4HEP server API (e.g. /submit) passing the token previ-
ously obtained and using the port where the proxy is running, such as the following:

curl -L -k -H "Authorization: Bearer ${TOKEN}" -H "Content-Type: application/json"

-d @submit.json http://localhost:4180/submit

In this case, the OAuth2-Proxy server is listening on port 4180, so that when the user
submits the request is redirected to the authentication service that authorizes or not the
request. A proper authorization procedure has not been implemented at this stage, mean-
ing that the token claims are not inspected and all the requests for the resource server (i.e.
the MLaaS4HEP server) with a valid access token are accepted by the authorization server.
For more details on the authentication/authorization via tokens, see Secs. 2.8.4 and 2.8.5.

The last missing piece is an XRootD Proxy server that allows access to remote ROOT
files located on WLCG sites. For this task the existing compose-xrootd solution [192] has
been chosen, a product of the Italian CMS Computing R&D group. It consists of a Docker
compose of two services, xrootd proxy-cache server and X.509 proxy renewer. The former
behaves like a cache where X.509 proxies are stored and accessed by external services. The
latter checks at regular intervals (e.g. every 30 s) whether the X.509 proxy has expired or
not. If it is, the proxy is renewed.

After developing and configuring all the pieces of the overall service, they have been
connected to each other and deployed on a VM of the INFN-Cloud. To complete this
picture, a TFaaS server has also been deployed in the VM so that once a ML model has
been trained by MLaaS4HEP it is available for TFaaS to make inferences on the events
given by the user. A schematic representation of the current configuration is shown in Fig.
4.11.

A working prototype of such a solution is currently running on the INFN-
Cloud: the MLaaS4HEP server APIs can be reached at the following address
https://90.147.174.27:4433, while the TFaaS ones at https://90.147.174.27:8081

[193]. Once the user obtains an access token from the authorization server, he/she can
contact the MLaaS4HEP server or TFaaS using curl, e.g. in the following ways:

curl -L -k -H "Authorization: Bearer ${TOKEN_MLAAS}" -H "Content-Type:

application/json" -d @submit.json https://90.147.174.27:4433/submit

curl -L -k -H "Authorization: Bearer ${TOKEN_TFAAS}" -X POST -H "Content-type:

application/json" -d @predict_bkg.json https://90.147.174.27:8081/json

The former command allows training a ML model, whereas the latter allows using this
model to get the prediction on a given event (stored in the predict_bkg.json file).

For more details on the work related to the cloud native solution of MLaaS4HEP see
Appendix D.

4.6 final considerations and future plans

The MLaaS4HEP project is constantly evolving, both in improving the functionality of the
framework and in creating a real SaaS that can be used by many HEP users.
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Fig. 4.11: Solution connecting OAuth2-Proxy server, MLaaS4HEP server, XRootD Proxy server, and
TFaaS. Firstly, a client uploads a tarball with the necessary files to the MLaaS4HEP server,
then submits a MLaaS4HEP workflow which consists in running a Docker container in
the server, which can read remote ROOT files using valid X.509 proxies, and that trains
and saves the ML model. This model is accessed by the TFaaS service that uses it to make
inference. In front of the MLaaS4HEP server and TFaaS server, two OAuth2-Proxy servers
are used to handle user authentication and request authorization [179].

Regarding the development of the MLaaS4HEP code, a relevant aspect has been the close
contact with the people performing HEP analyses with whom can talk and discuss prob-
lems, and understand what they need from a ML service to be used in the analyses. Ideas
such as the creation of new branches and the application of cuts on branches emerged from
such discussions. Furthermore, the use of chat platforms such as [194] allowed discussions
with the Uproot developers to better understand the issues raised and how to deal with
them.

These forms of interaction have been a fundamental aspect for the evolution of
MLaaS4HEP and will continue to offer insights to add new functionality to the code and
improve it. The communicative aspect with people of the HEP world is crucial for the
success of the project and for this reason the MLaaS4HEP framework has been presented
in several international conferences and workshops, e.g. Large Hadron Collider Physics
(LHCP) [172], International Conference on High Energy Physics (ICHEP) [193], Interna-
tional Symposium on Grids & Clouds (ISGC) [179, 183], IML workshop [195–197], CMS
ML Town Hall workshop [198, 199] and workshop of data analysis at CMS Italia [200]. On
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these occasions, talking with people and presenting the developments of the project al-
lowed MLaaS4HEP to be known and to arouse interest. Currently, MLaaS4HEP is present
in the official CMS ML documentation [181] and in the Review of Particle Physics by the
Particle Data Group (PDG) [94].

Moreover, there are some working directions under investigation and development for
the MLaaS4HEP project.

• It is planned to provide a general inference service to the entire MLaaS4HEP service
described in Sec. 4.5, since TFaaS allows to use only Tensorflow/Keras algorithms.
For example, Torchserve has been successfully used to make inference with PyT-
orch models [201]. A reverse proxy server can be deployed to work with TFaaS and
Torchserve as backends. Other inference services supporting other frameworks can
be integrated or developed to broaden the spectrum of the supported solutions.

• It is planned to deploy the entire service with DODAS, to provide a SaaS in a more
appropriate way. In addition, a web application for the service with a proper graphic
interface should be developed to allow a more user-friendly solution.

• Since the entire MLaaS4HEP service should support the submission of multiple
requests by multiple users with a multi-tenant architecture, a resource scheduler
should be integrated. Moreover, the MLaaS4HEP framework code should be in part
redesigned to separate the part of reading with pre-processing of data and the part
of training the ML model into two different processes. This would allow to better
optimize the resource (even heterogeneous) for the single pieces of the workflow,
for example parallelizing the phase of reading with pre-processing of data and ex-
ploiting distributed ML training. These two processes should be containerized and
properly interconnected (see Fig. 4.12). Using Kubernetes would allow to schedule
the resource requests of the submitted workflows and control the processes offering
a scalable solution. In this direction, Kubeflow may provide a valid choice to follow
[202].

• The MLaaS4HEP framework is developed primarily to accept flat ROOT TTrees
as input for HEP classification problems. However, it is planned to enable
MLaaS4HEP to address also regressions problems and image classifications. Further-
more, MLaaS4HEP is equipped to read not only ROOT files but also Json, CSV, Avro,
and Parquet files both locally and from HDFS. Their use must be carefully tested
and requires further development. Nevertheless, a positive test has been done to
predict the activity of Rucio data placement reading Json files from HDFS with the
MLaaS4HEP framework [203].
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Fig. 4.12: Desirable solution connecting OAuth2-Proxy server, MLaaS4HEP server, XRootD Proxy
server, and an inference server working with multiple backends (i.e. TFaaS, Torchserve,
and others). The MLaaS4HEP workflow is split into two different containerized processes,
one for reading with pre-processing of the events and another for the training of the ML
model. The former writes handled data in an SSD storage for fast access of the latter. A
solution involving Kubernetes would allow to schedule the workflows and control the
processes offering a scalable solution.



C O N C L U S I O N S

This PhD thesis described the development of a MLaaS solution for HEP aiming to provide
a cloud service that allows HEP users to run ML pipelines via HTTP calls, consisting of
reading data, processing data, training ML models, and serving predictions directly using
ROOT files of arbitrary size from local or distributed data sources.

The development of the MLaaS4HEP framework is at the basis of such a project and
for an appropriate evaluation of its usability in the HEP world the tt̄ Higgs analysis
in the boosted, all-hadronic final state has been used. This use case allowed to validate
MLaaS4HEP from the physics point of view and to test its performance. To read ROOT
data MLaaS4HEP relies on Uproot and over the years several versions of this library have
been released. The migration from Uproot3 to Uproot4 caused a breaking point for the
compatibility of MLaaS4HEP with Uproot, and to solve this issue and to exploit the new
features introduced by this library, additional work has been done to maintain the code
updated. This allowed adding the possibility for the user to create new branches and apply
cuts on new and existing branches, responding to the needs of HEP analysts. Moreover, ad-
ditional improvements to the code have been integrated, e.g. a new ML training procedure
and new ML algorithms and frameworks are now supported.

The creation of a SaaS solution for MLaaS4HEP (and therefore a MLaaS) takes place
through a process of automating the platform deployment to be delivered to the user,
and this work has been done using DODAS as PaaS. The user can access the VM via
browser and exploit the JupyterHub interface to upload all the necessary data and run
MLaaS4HEP. Subsequently, since such a MLaaS solution should be deployed on a cloud
and should be equipped with APIs, a MLaaS4HEP service has been developed and joined
by other (micro)services: OAuth2-Proxy, XRootD Proxy, and TFaaS. In this way, a user
after being authenticated and authorized can submit MLaaS4HEP workflows using ROOT
data previously uploaded or read from distributed data sources, producing trained ML
models. These models are then accessible to TFaaS so that the user can use them to make
inferences.

A working prototype of this service is currently running on a VM of INFN-Cloud and
is compliant to be added to the INFN Cloud portfolio of services.
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MLaaS4HEP can be installed in any platform, for example using Anaconda and following
the recipe reported in Listing 2.

1 conda create -n env

2 conda activate env

3 conda config --add channels conda-forge

4 conda install pyarrow uproot=3.12 numba scikit-learn numpy pandas wget

5 pip install tensorflow

6

7 mkdir work_dir

8 cd work_dir

9 git clone https://github.com/vkuznet/MLaaS4HEP.git

10

11 export PYTHONPATH=$PYTHONPATH:$PWD/MLaaS4HEP/src/python/

12 export PATH=$PWD/MLaaS4HEP/bin:$PATH

Listing 2: How to install MLaaS4HEP with Anaconda.

The MLaaS4HEP workflow is performed by running the workflow.py script in the fol-
lowing way:

./workflow.py --files=files.txt --labels=labels.txt --model=model.py --params=params.json

--fout output_model

Several files must be passed to the workflow.py script as arguments (the name of the
files is arbitrary):

• files.txt stores the path of the input ROOT files (see an example in Listing 3);

• labels.txt stores the labels related to ROOT files content needed for classification
problems (see an example in Listing 4);

• model.py stores the definition of the custom ML algorithm to use in the training
phase (see an example in Listing 5);

• params.json stores the parameters on which MLaaS4HEP is based, e.g. number of
events to use, chunk size, batch size, the branches of the ROOT files to be selected
and/or excluded, redirector path for files located in remote storage (see an example
in Listing 6);

• output_model indicates where the ML model will be stored after the training proced-
ure.
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1 /store/user/lgiommi/ttHJetTobb_M125_13TeV_amcatnloFXFX_madspin_pythia8.root

2 /store/user/lgiommi/TT_TuneCUETP8M2T4_13TeV-powheg-pythia8.root

Listing 3: Example of input ROOT files.

1 1

2 0

Listing 4: Example of labels related to the ROOT files content.

1 from tensorflow import keras

2

3 def model(idim):

4 ml_model = keras.Sequential([keras.layers.Dense(128,activation=’relu’,input_shape=(idim,)),

5 keras.layers.Dropout(0.5),

6 keras.layers.Dense(64, activation=’relu’),

7 keras.layers.Dropout(0.5),

8 keras.layers.Dense(1, activation=’sigmoid’)])

9 ml_model.compile(optimizer=keras.optimizers.Adam(lr=1e-3),

10 loss=keras.losses.BinaryCrossentropy(),

11 metrics=[keras.metrics.BinaryAccuracy(name=’accuracy’),

12 keras.metrics.AUC(name=’auc’)])

13 return ml_model

Listing 5: Example of a MLP definition in Keras.

1 {

2 "nevts": 30000,

3 "shuffle": true,

4 "chunk_size": 10000,

5 "epochs": 2,

6 "batch_size": 100,

7 "branch": "boostedAk8/events",

8 "identifier": ["runNo","evtNo","lumi"],

9 "selected_branches": "",

10 "exclude_branches": "",

11 "hist": "pdfs",

12 "redirector": "root://xrootd.ba.infn.it",

13 "verbose": 1

14 }

Listing 6: Example of parameters used to run the MLaaS4HEP workflow

As mentioned in Sec. 4.1.1, the MLaaS4HEP workflow is composed of two phases. In the
first one, data is read from the input ROOT files to compute and write a specs file. In the
second one, chunks of events are created by proportionally reading events from the input
ROOT files and appropriately processing them. The output of MLaaS4HEP in verbose
mode reports the actions taken during the workflow. An example of such output using the
files shown in the listings is shown in Fig. A.1. The output produced for the initialization
of the ML model and for the training with the first chunk is shown in Fig.A.2.

An example of MLaaS4HEP usage with open data can be found in [204].
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Fig. A.1: Output of the MLaaS4HEP workflow using the files shown in the listings.

Fig. A.2: Output produced for the initialization of the ML model and for the training with the first
chunk.





B
D E TA I L S O N F U RT H E R D E V E L O P M E N T S O F
M L A A S 4 H E P

b.1 transition from uproot3 to uproot4

MLaaS4HEP needed a rewrite of parts of the code after the transition from Uproot3 to
Uproot4 which also allowed to introduce new features in MLaaS4HEP itself, as described
in Sec. 4.3. Fig. B.1 shows the timeline of the Uproot and Awkward Array packages.

Fig. B.1: Timeline of the Uproot and Awkward Array packages [205].

b.2 root vs uproot4 cuts

In the following, the codes that allowed to verify the validity of the cuts performed by
MLaaS4HEP with Uproot4 are reported by comparing them with ROOT. Here the cutting
conditions have been reproduced in a generic manner.

1 void script () {

2

3 // setting the output file

4 TFile* outputfile = new TFile("output_file.root ", "RECREATE");

5 TTree* tree_name = new TTree("tree_name", "tree_name");

6 Float_t branch_flat, branch_jagged

7 tree_name->Branch("branch_flat", &branch_flat , "branch_flat /F");

8 std::vector<int> branch_jagged;
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9

10 // setting the input file

11 TFile* inputfile = new TFile("input_file.root", "READ");

12 TTree* evt = (TTree*) inputfile->Get("input_tree_name");

13

14 // variables setting

15 float mybranch_flat = 0;

16 evt->SetBranchAddress("branch_flat", &mybranch_flat);

17 std::vector<int>* mybranch_jagged = 0;

18 evt->SetBranchAddress("branch_jagged ", &mybranch_jagged);

19 int events_after_cut = 0;

20

21 // loop over the events

22 for (Long64_t ievent = 0; ievent < 10000; ++ ievent){

23 bool keep_mybranch_flat = false ;

24 bool keep_mybranch_jagged = true ;

25

26 // get i-th entry in tree

27 evt->GetEntry (ievent);

28

29 // cut on flat branch

30 if (mybranch_flat >= cut_cond1){

31 keep_mybranch_flat = true ;

32 }

33

34 // a second for loop to access each element of the i-th event for a jagged branch

35 for(int idx =0; idx < mybranch_jagged -> size (); idx ++) {

36 if (mybranch_jagged->at(idx) >= cut_cond2){

37 keep_mybranch_jagged = false ; // all the elements must satisfy the cut

38 }

39 }

40

41 // check the condition of both cuts of the i-th event

42 if ((keep_mybranch_flat & keep_mybranch_jagged) == true){

43 // if the condition is satisfied, fill the output file with the i-th event

44 branch_flat = mybranch_flat;

45 for(int idx =0; idx < mybranch_jagged -> size(); idx ++) {

46 branch_jagged.push_back(mybranch_jagged->at(idx);

47 }

48 events_after_cut += 1;

49 tree_name->Fill();

50 branch_jagged.clear();

51 }

52 } // end loop over events

53

54 cout <<"Events after cut: " << events_after_cut <<endl;

55 inputfile->Close ();

56 outputfile->Write ();

57 outputfile->Close ();

58 delete outputfile ;

59 }

Listing 7: Performing cuts on a flat and a Jagged branch using ROOT.
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1 import uproot

2 import awkward as ak

3

4 tree = uproot.open ("/path/input_file.root")["input_tree_name"]

5 chunk_size = 10000

6

7 # here we set the cut on flat branch

8 gen = tree.iterate(step_size = chunk_size, cut="branch_flat >= cut_cond1", library ="ak")

9 for original_chunk in gen:

10 # here we set the cut on the jagged branch

11 chunk = original_chunk[ak.all(original_chunk["branch_jagged"] < cut_cond2, axis = 1)]

12 x =len(chunk)

13 print ("events after cut in a chunk: {}". format(x))

Listing 8: Performing cuts on a flat and a Jagged branch using Uproot4.

b.3 new training procedure

With the recent improvements to the MLaaS4HEP code, a new training approach has been
introduced, as described in Sec. 4.3.2. Now the training method the user wants to apply
can be selected by adding a new key (called training) within the params.json file. In case
the user decides to apply the newly introduced method, he/she needs to associate the
training key with the value standard. If the value associated with the key is different or the
key is not present, the original training mode will be carried out.

b.4 generalization to other ml frameworks

The ML algorithm definition must be provided to MLaaS4HEP in an external python file.
Such a python file contains the import of all the necessary dependencies and the definition
of the algorithm through a function called model which takes the needed parameters as
arguments. For example, for a MLP in Keras the input dimension is passed as argument
(e.g. called idim in Listing 5). Finally, once the algorithm is defined, the function needs to
return the classifier.

As reported in Sec. 4.3.3, thanks to the new implementations on the code, MLaaS4HEP
has been successfully tested using other algorithms from other frameworks and libraries,
in addition to MLPs in Keras.

The most common way to use a PyTorch algorithm is to provide its own class definition,
containing the structure of the algorithm and how it should be trained, and this can be
done easily by using the PyTorch nn.Module class. In the file with the definition of the
algorithm, the user can also define a custom method to train the model: in this case, the
training method should be called torch_train (see an example in Listing 9). If no training
method is provided, the default one is selected.

1 import torch

2 import torch.nn as nn
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3 import torch.nn.functional as fun

4 import os.path

5 from datetime import datetime

6

7 class ClassifierNN(nn.Module):

8

9 def __init__(self, idim,

10 activation=fun.relu):

11 super().__init__()

12

13 self.last_save = None

14 self.layout = (idim, 256, 128, 1)

15 self.inference_mode = True

16 self.activation = activation

17 self.layers = nn.ModuleList()

18 for num_nodes, num_nodes_next in zip(self.layout[:-1], self.layout[1:]):

19 self.layers.append(nn.Linear(num_nodes, num_nodes_next))

20

21 def forward(self, x):

22 for layer in self.layers[:-1]:

23 if not isinstance(x, torch.Tensor):

24 x = torch.Tensor(x)

25 x = self.activation(layer(x))

26

27 x = torch.sigmoid(self.layers[-1](x))

28 return x

29

30 def train(self, mode=True):

31 super(ClassifierNN, self).train()

32 self.inference_mode = False

33

34 def eval(self):

35 super(ClassifierNN, self).eval()

36 self.inference_mode = True

37

38 def torch_train(self, model, train_loader, val_loader):

39 epochs = 5

40 loss_func = nn.BCELoss()

41 optim = torch.optim.Adam(model.parameters(), lr=1e-3)

42 self.model.train()

43 for epoch in range(1, epochs+1):

44 mean_train_loss = 0.0

45 for i, (xs, ys) in enumerate(train_loader):

46 optim.zero_grad() # reset gradients

47 outputs = model(xs)

48 train_loss = loss_func(outputs, ys)

49 train_loss.backward() # gradient back propagation

50 optim.step()

51 mean_train_loss = (mean_train_loss * i + float(train_loss)) / (i + 1)

52

53 mean_val_loss = 0.0

54 for i, (xs, ys) in enumerate(val_loader):
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55 outputs = model(xs)

56 val_loss = loss_func(outputs, ys)

57 mean_val_loss = (mean_val_loss * i + float(val_loss)) / (i + 1)

58 print(’Epoch {}\nMean train/validation loss: {:.4f}/{:.4f}’.format(epoch,

mean_train_loss, mean_val_loss))

59

60 def model(idim):

61 torch_model = ClassifierNN(idim)

62 return torch_model

Listing 9: Example of a MLP written in PyTorch and successfully tested with MLaaS4HEP.

Moreover, the parameters passed to MLaaS4HEP and stored in the params.json file
need to be adjusted depending on the algorithm used. For example, the presence of epochs
and chunk_size parameter assumes that the defined algorithm knows the concept of epoch
and is capable of incremental learning. If not, the user should remove the epochs key and
change the value associated with the chunk_size key by setting it to -1: in this way, the
training of the model will be carried out using a single chunk containing all events.

b.5 providing metrics score

To print useful metrics (i.e. AUC, Confusion Matrix, Precision, Recall, and F1) for the
training and validation sets the user should add “metrics”: true in the params.json file.





C
D E TA I L S O N T H E M L A A S 4 H E P C L O U D I F I C AT I O N
W I T H D O D A S

All the material used for the MLaaS4HEP “cloudification” with DODAS can be found in
[187] and other useful information is in [184].

Fig. C.1: Schematic representation of the steps performed to automatize the deployment of the VM
equipped with MLaaS4HEP using DODAS.

Fig. C.1 shows the schematic representation of the steps performed to automatize the
deployment of the VM equipped with MLaaS4HEP using DODAS. The Dockerfile for the
creation of the Docker image to use for the deployment with DODAS is reported in Listing
10 and can be found in [206].

1 FROM continuumio/anaconda3

2 LABEL maintainer="Luca Giommi luca.giommi3@unibo.it"

3

4 # add environment

5 ENV WDIR=/workarea

6

7 # install several useful packages

8 RUN /opt/conda/bin/conda config --add channels conda-forge

9 RUN /opt/conda/bin/conda update --all

10 RUN /opt/conda/bin/conda install xrootd -y

11 RUN apt-get update && apt-get install -y libgtk2.0-dev && \

12 rm -rf /var/lib/apt/lists/* && \

13 /opt/conda/bin/conda install jupyter jupyterhub notebook -y && \
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14 /opt/conda/bin/conda install vim numpy pandas scikit-learn matplotlib pyyaml h5py keras -y

&& \

15 /opt/conda/bin/conda upgrade dask && \

16 /opt/conda/bin/conda install backports.lzma -y && \

17 pip install gdown && \

18 pip install tensorflow imutils

19

20 # install voms-clients

21 RUN apt-get update && apt-get install -y voms-clients

22

23 # install uproot

24 RUN /opt/conda/bin/conda install uproot==3.12

25

26 # install pytorch

27 RUN /opt/conda/bin/conda install pytorch -y

28

29 # build mlaas

30 WORKDIR ${WDIR}

31 RUN git clone https://github.com/vkuznet/MLaaS4HEP.git

32 ENV PYTHONPATH="${WDIR}/MLaaS4HEP/src/python:${PYTHONPATH}"

33 ENV PATH="${WDIR}/MLaaS4HEP/bin:${PATH}"

34

35 # run mlaas

36 WORKDIR ${WDIR}/folder_test

37 ENTRYPOINT ["python", "../MLaaS4HEP/src/python/MLaaS4HEP/workflow.py"]

Listing 10: Dockerfile for the creation of the Docker image to use for the deployment with DODAS.

The Ansible playbook created to automatize the configuration and deployment of the
container with dependencies has been converted into an Ansible role which consists of
four directories: defaults, meta, tasks, and tests. The relevant content is in two yaml files
stored in the defaults and tasks directories. In the former, the default values for several
parameters are provided (see Listing 11). In the latter, the actions to be performed in the
VM are listed, e.g. download Docker, pull the Docker image, and run the container (see
Listing 12)

1 run: "false"

2 work_dir: /tmp/work_dir

3 default_container_name: docker

4 default_container_image: felixfelicislp/mlaas_cloud:mlaas_jupyterhub

5 default_container_command: --files=files_test.txt --labels=labels_test.txt --model=keras_model.

py --params=params_test.json

Listing 11: Yaml file where default values for several parameters are defined.

1 - name: Install gdown with pip

2 pip: name=gdown

3

4 - name: install docker [Ubuntu]

5 shell:

6 cmd: curl https://get.docker.com | sh

7 creates: /usr/bin/docker
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8 warn: False

9

10 - name: install docker-py

11 pip: name=docker-py

12

13 - name: Creates working directory

14 file:

15 path: "{{ work_dir }}"

16 state: directory

17

18 - name: Download folder with data

19 command: "{{ item }}"

20 with_items:

21 - gdown https://drive.google.com/<folder_with_root_files>

22 - tar -xzvf folder_test.tar.gz

23 - rm folder_test.tar.gz

24 args:

25 chdir: "{{ work_dir }}"

26

27 - name: Pull default Docker image

28 docker_image:

29 name: "{{ default_container_image }}"

30 become: true

31

32 - name: Create default containers

33 docker_container:

34 detach: false

35 name: "{{ default_container_name }}"

36 image: "{{ default_container_image }}"

37 command: "{{ default_container_command }}"

38 volumes:

39 - "{{ work_dir }}/folder_test:/data/folder_test"

40 state: started

41 when: run=="true"

Listing 12: Yaml file where the tasks to be performed in the VM are defined.

The next step was to create a Tosca template, which consists of two yaml files containing
the information about the resource requirements and the needed information to run the
Docker container (see Linstings 13 and 14).

1 tosca_definitions_version: tosca_simple_yaml_1_2

2

3 imports:

4 - https://raw.githubusercontent.com/dodas-ts/dodas-apps/master/tosca-types/dodas_types.yml

5

6 node_types:

7 tosca.nodes.DODAS.MLaaS:

8 derived_from: tosca.nodes.SoftwareComponent

9 properties:

10 run:

11 type: string

12 default: "true"
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13 work_dir:

14 type: string

15 default: "/tmp/work_dir"

16 default_container_name:

17 type: string

18 default: "docker"

19 default_container_image:

20 type: string

21 default: "felixfelicislp/mlaas_cloud:mlaas_voms"

22 default_container_command:

23 type: string

24 default: "--files=files_test.txt --labels=labels_test.txt --model=keras_model.py --

params=params_test.json"

25 role_name:

26 type: string

27 required: false

28 default: mlaas_cloud

29 artifacts:

30 ml_role:

31 file: git+https://github.com/lgiommi/mlaas_cloud

32 type: tosca.artifacts.AnsibleGalaxy.role

33 interfaces:

34 Standard:

35 start:

36 implementation: https://raw.githubusercontent.com/dodas-ts/dodas-apps/master/tosca-

types/dodas_artifacts/ansible.yaml

37 inputs:

38 role_name: { get_property: [ SELF, role_name ] }

39 run: { get_property: [ SELF, run ] }

40 work_dir: { get_property : [SELF, work_dir]}

41 default_container_name: { get_property: [ SELF, default_container_name ] }

42 default_container_image: { get_property: [ SELF, default_container_image ] }

43 default_container_command: { get_property: [ SELF, default_container_command ] }

Listing 13: Tosca type.

1 tosca_definitions_version: tosca_simple_yaml_1_2

2

3 imports:

4 - https://raw.githubusercontent.com/lgiommi/mlaas_cloud/master/lgiommi-custom-type.yml

5

6 description: TOSCA template for MLaaS - LUCA

7

8 topology_template:

9 inputs:

10 num_cpus:

11 type: integer

12 default: 4

13 mem_size:

14 type: string

15 default: "8 GB"

16 server_image:
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17 type: string

18 # default: ost://cloud-api-pub.cr.cnaf.infn.it/94a76d1e-cacb-48ce-ad69-c0b26fd9bb53 #

ubuntu 16.04

19 default: ost://cloud-api-pub.cr.cnaf.infn.it/9ed8e7ef-e932-4850-9576-805668f7ce25 #

ubuntu 18.04

20

21 # MLaaS

22 run:

23 type: string

24 default: "true"

25 work_dir:

26 type: string

27 default: "/tmp/work_dir"

28 default_container_name:

29 type: string

30 default: "docker"

31 default_container_image:

32 type: string

33 default: "felixfelicislp/mlaas_cloud:mlaas_voms"

34 default_container_command:

35 type: string

36 default: "--files=files_test.txt --labels=labels_test.txt --model=keras_model.py --params

=params_test.json"

37

38 node_templates:

39 mlaas_install:

40 type: tosca.nodes.DODAS.MLaaS

41 properties:

42 run: { get_input: run }

43 work_dir: { get_input: work_dir }

44 default_container_name: { get_input: default_container_name }

45 default_container_image: { get_input: default_container_image }

46 default_container_command: { get_input: default_container_command }

47 requirements:

48 - host: vm_server

49

50 vm_server:

51 type: tosca.nodes.indigo.Compute

52 capabilities:

53 endpoint:

54 properties:

55 network_name: PUBLIC

56 ports:

57 jupyter:

58 protocol: tcp

59 source: 8888

60 grafana:

61 protocol: tcp

62 source: 3000

63 scalable:

64 properties:

65 count: 1
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66 host:

67 properties:

68 instance_type: "dodas.xlarge"

69 #num_cpus: { get_input: num_cpus }

70 #mem_size: { get_input: mem_size }

71 os:

72 properties:

73 image: { get_input: server_image }

74

75 outputs:

76 node_ip:

77 value: { get_attribute: [ vm_server, public_address, 0 ] }

78 node_creds:

79 value: { get_attribute: [ vm_server, endpoint, credential, 0 ] }

Listing 14: Tosca template.

Then, a configuration file to access DODAS has been written (among the information an
access token must be provided) and the deployment has been created from the command
line

dodas create lgiommi-template.yml

When the deployment is completed, the VM can be accessed by command line or using
a JupyterHub interface.

In particular, in the latter case, when a user connects to the VM via browser, he/she
is redirected to the authentication page with several available possibilities. Once the user
is authenticated, he/she can customize the environment by choosing the Docker image
and the memory size of the VM. Then, the system prepares and runs the deployment
in real time, and once the process is finished, a Jupyter notebook interface is shown to
the user with three directories: MLaaS4HEP which contains the code of the MLaaS4HEP
framework, whereas the public and private folders contain data to be shared or not to be
shared with other users, respectively. In this specific case, some ROOT files were stored in
the public directory so that all the users connecting to the same VM can see and share these
files. Lastly, the user can open the terminal and run the MLaaS4HEP workflow directly,
without having to install anything. Fig. C.2 shows a summary of the steps described so far
using the JupyterHub interface. A demo showing these steps can be found in [187].
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Fig. C.2: Summary of the steps in using the solution provided by DODAS with the JupyterHub
interface.





D
D E TA I L S O N T H E C L O U D N AT I V E S O L U T I O N O F
M L A A S 4 H E P

All the material used for the creation of the MLaaS4HEP service can be found in [188].
The Dockerfile used to create the image to run the MLaaS4HEP workflow is reported in

Listing 15.

1 FROM redhat/ubi8:latest

2 LABEL maintainer="Luca Giommi luca.giommi3@unibo.it"

3 ARG DEBIAN_FRONTEND=noninteractive

4

5 RUN yum update && yum install -y python3 python3-pip python3-devel git cmake pkg-config gcc-c++

6 RUN pip3 install --upgrade pip

7 RUN pip3 install sklearn tensorflow keras uproot

8 RUN yum install -y krb5-devel

9 RUN yum install -y libuuid-devel

10 RUN yum install -y libxml2-devel

11 RUN yum install -y openssl-devel

12 RUN yum install -y systemd-devel

13 RUN yum install -y zlib-devel

14 RUN pip3 install xrootd

15

16 ENV WDIR=/workarea

17 WORKDIR ${WDIR}

18

19 RUN git clone https://github.com/lgiommi/MLaaS4HEP.git

20 ENV PYTHONPATH="${WDIR}/MLaaS4HEP/src/python:${PYTHONPATH}"

21 ENV PATH="${WDIR}/MLaaS4HEP/bin:${PATH}"

22 WORKDIR ${WDIR}/MLaaS4HEP

23 RUN git checkout uproot4

24

25 ENV X509_CERT_DIR=${WDIR}/certificates

26 ENV X509_USER_PROXY=${WDIR}/folder_test/x509_proxy

27 WORKDIR ${WDIR}/folder_test

28 ENV PYTHONPATH="${WDIR}/folder_test:${PYTHONPATH}"

29 ENTRYPOINT ["python3", "../MLaaS4HEP/src/python/MLaaS4HEP/workflow.py"]

Listing 15: Dockerfile used to run MLaaS4HEP workflows.

The configuration file used to run the OAuth2-Proxy server for TLS connections is re-
ported in Listing 16, whereas the command used to run the proxy is:

docker run -v /data/oauth_proxy:/etc --net=host quay.io/oauth2-proxy/oauth2-proxy:latest
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--config=/etc/config_file.cfg --skip-jwt-bearer-tokens=true --ssl-insecure-skip-verify=true

--tls-min-version=TLS1.3

1 provider="oidc"

2 https_address = ":4433"

3 redirect_url = "https://90.147.174.27:4433/oauth2/callback"

4 oidc_issuer_url = "https://cms-auth.web.cern.ch/"

5 upstreams = [

6 "http://127.0.0.1:8080/"

7 ]

8 email_domains = [

9 "*"

10 ]

11 client_id = "<my_client_ID>"

12 client_secret = "<my_client_secret>"

13 cookie_name = "<my_cookie_name>"

14 cookie_secret = "<my_cookie_secret>"

15

16 tls_cert_file = "<my_server_certificate>"

17 tls_key_file = "<my_server_key>"

18

19 standard_logging = true

20 request_logging = true

21 auth_logging = true

22 pass_basic_auth = true

23 pass_user_headers = true

Listing 16: Configuration file of the OAuth2-Proxy server for TLS connections.

The Docker-compose file used to build the XRootD Proxy server that connects xrootd
proxy-cache server and X.509 proxy renewer is shown in Listing 17. These services are
started simply running:

docker-compose up -d

Among the actions performed, the action of checking the validity of the proxy and
the action of requesting a new proxy should be noted, summarized in the following two
commands:

voms-proxy-info --exists --valid 6:00 --file /etc/x509proxy/proxy/x509_proxy

voms-proxy-init --pwstdin --voms cms --cert usercert_test.pem --key usercert_test.key --debug

--out /etc/x509proxy/proxy/x509_proxy

1 version: ’3.7’

2 services:

3 cache:

4 depends_on:

5 - x509-refresh

6 image: dodasts/cache:v2

7 restart: always
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8 entrypoint:

9 - bash

10 - -c

11 - "mkdir -p /metadata; chown -R 999:998 /metadata; mkdir -p /data; chown -R 999:998 /data

; mkdir -p /etc/my_folder; chown -R 999:998 /etc/my_folder; cp /etc/grid-security/

certificates/* /etc/my_folder; cd /data; env; chown -R 999:998 /var/log/xrootd; chown -R

999:998 /etc/xrootd/conf; sudo -E -u xrootd /usr/bin/xrootd -l /var/log/xrootd/xrootd.log -

c /etc/xrootd/conf/xrootd.cfg -n xrd ; tail -f /var/log/xrootd/xrd/xrootd.log"

12 privileged: true

13 network_mode: "host"

14 volumes:

15 - type: bind

16 source: ./server_certificates

17 target: /etc/my_folder

18 - type: bind

19 source: ./metadata

20 target: /metadata

21 - type: bind

22 source: ./data

23 target: /data

24 - type: bind

25 source: ./logs

26 target: /var/log/xrootd

27 - type: bind

28 source: ./config

29 target: /etc/xrootd/conf

30 - type: bind

31 source: ./proxy

32 target: /etc/x509proxy

33 healthcheck:

34 test: ["CMD", "/bin/bash", "-c", "pgrep xrootd"]

35 interval: 30s

36 timeout: 10s

37 retries: 3

38 start_period: 30s

39 env_file:

40 - .env

41 x509-refresh:

42 image: dodasts/x509-renewer:v1

43 secrets:

44 - my_secret

45 restart: always

46 entrypoint:

47 - bash

48 - -c

49 - "cd /etc/certs && while true; do chown -R 999:998 /etc/x509proxy/proxy; voms-proxy-info

--file /etc/x509proxy/proxy --exists --valid 8:00 || cat /run/secrets/my_secret | voms-

proxy-init --pwstdin --voms cms --cert usercert_test.pem --key usercert_test.key --debug --

out /etc/x509proxy/proxy/x509_proxy; chown -R 999:998 /etc/x509proxy/proxy; sleep 600; done

"

50 environment:

51 - REPO_LIST=cms.cern.ch grid.cern.ch cms.dodas.infn.it
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52 privileged: true

53 healthcheck:

54 test: ["CMD", "/bin/bash", "-c", "voms-proxy-info --exists --valid 6:00 --file /etc/x509

proxy/proxy/x509_proxy"]

55 interval: 30s

56 timeout: 10s

57 retries: 3

58 start_period: 30s

59 volumes:

60 - type: bind

61 source: ./certs

62 target: /etc/certs

63 - type: bind

64 source: ./proxy

65 target: /etc/x509proxy/proxy

66

67 autoheal:

68 restart: always

69 environment:

70 - AUTOHEAL_CONTAINER_LABEL=all

71 volumes:

72 - /var/run/docker.sock:/var/run/docker.sock

73 image: willfarrell/autoheal

74

75 secrets:

76 my_secret:

77 file: ./certs/test.txt

Listing 17: Docker-compose file used to build the XRootD Proxy server

The TFaaS server is run using the following command:

docker run -v /data/models_repo:/data/models --rm -p 127.0.0.1:8083:8083

-i -t cmssw/tfaas:v01.01.06

Once the servers are up, the overall system can be used to send requests to MLaaS4HEP
endpoints [188] and TFaaS endpoints [174]. An example of a possible flux of requests and
the corresponding outputs is shown in Listing 18. For a demo version of the commands in
Listing 18, see [188, 207].

1 ### setup oidc-agent

2

3 oidc-agent

4 eval ’oidc-agent’

5

6 OIDC_SOCK=/tmp/oidc-VfwO5P/oidc-agent.55537; export OIDC_SOCK;

7 OIDCD_PID=55542; export OIDCD_PID;

8 echo Agent pid $OIDCD_PID

9 Agent pid 55546

10

11

12 ### Obtain a token for MLaaS4HEP_server and TFaaS

13



details on the cloud native solution of mlaas4hep 195

14 TOKEN_MLAAS=$(oidc-token luca_api2 --aud=a15f41c9-a974-48ec-967a-2a36d255d524)

15 TOKEN_TFAAS=$(oidc-token luca_api2 --aud=f343be72-8479-4c95-892b-9dfcda0faac1)

16

17

18 ### Check if there are models loaded in the TFaaS server

19

20 curl -L -k -H "Authorization: Bearer ${TOKEN_TFAAS}" https://90.147.174.27:8081/models

21

22 null

23

24

25 ### Prepare the folder with the necessary files

26

27 ls folder_to_upload

28

29 QCD_HT1000to1500.root QCD_HT2000toInf.root QCD_HT500to700.root TTBar.root files_local.txt

labels_local.txt params_local.json ttH_noDRmatch.root

30 QCD_HT1500to2000.root QCD_HT300to500.root QCD_HT700to1000.root ex_keras_model.py files_remote.

txt labels_remote.txt params_remote.json ttH_signal.root

31

32

33 ### File with the definition of the ML model

34

35 cat ex_keras_model.py

36

37 """

38 Basic example of ML model implemented via Keras framework

39 """

40 from tensorflow import keras

41

42 def model(idim):

43 "Simple Keras model for testing purposes"

44 ml_model = keras.Sequential([keras.layers.Dense(128, activation=’relu’,input_shape=(idim,),

name=’inputs’),

45 keras.layers.Dropout(0.5),

46 keras.layers.Dense(64, activation=’relu’),

47 keras.layers.Dropout(0.5),

48 keras.layers.Dense(1, activation=’sigmoid’)])

49 ml_model.compile(optimizer=keras.optimizers.Adam(lr=1e-3), loss=keras.losses.

BinaryCrossentropy(),

50 metrics=[keras.metrics.BinaryAccuracy(name=’accuracy’), keras.metrics.AUC(

name=’auc’)])

51 return ml_model

52

53

54 ### File with the name of local ROOT files

55

56 cat files_local.txt

57

58 ttH_signal.root

59 ttH_noDRmatch.root

60 TTBar.root
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61 QCD_HT700to1000.root

62 QCD_HT1500to2000.root

63 QCD_HT1000to1500.root

64 QCD_HT2000toInf.root

65 QCD_HT300to500.root

66 QCD_HT500to700.root

67

68

69 ### File with the path and name of remote ROOT files

70

71 cat files_remote.txt

72

73 /store/user/lgiommi/flatTree_ttHJetTobb_M125_13TeV_amcatnloFXFX_madspin_pythia8.root

74 /store/user/lgiommi/flatTree_TT_TuneCUETP8M2T4_13TeV-powheg-pythia8.root

75 /store/user/lgiommi/flatTree_QCD_HT300to500_TuneCUETP8M1_13TeV-madgraphMLM-pythia8.root

76 /store/user/lgiommi/flatTree_QCD_HT500to700_TuneCUETP8M1_13TeV-madgraphMLM-pythia8.root

77 /store/user/lgiommi/flatTree_QCD_HT700to1000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8.root

78 /store/user/lgiommi/flatTree_QCD_HT1000to1500_TuneCUETP8M1_13TeV-madgraphMLM-pythia8.root

79 /store/user/lgiommi/flatTree_QCD_HT1500to2000_TuneCUETP8M1_13TeV-madgraphMLM-pythia8.root

80 /store/user/lgiommi/flatTree_QCD_HT2000toInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8.root

81

82

83 ### File with labels of the ROOT files

84

85 cat labels_local.json

86

87 1

88 0

89 0

90 0

91 0

92 0

93 0

94 0

95 0

96

97

98 ### File with MLaaS4HEP parameters

99

100 cat params_local.json

101

102 {

103 "nevts": 30000,

104 "shuffle": true,

105 "chunk_size": 10000,

106 "epochs": 5,

107 "batch_size": 100,

108 "identifier":["runNo", "evtNo", "lumi"],

109 "branch": "events",

110 "selected_branches":"",

111 "exclude_branches": "",

112 "hist": "pdfs",
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113 "redirector": "root://stormgf1.pi.infn.it",

114 "verbose": 1

115 }

116

117

118 ### Load the folder to the MLaaS4HEP server

119

120 curl -L -k -H "Authorization: Bearer ${TOKEN_MLAAS}" -F "file=@folder_to_upload.tar.gz" https

://90.147.174.27:4433/upload?name=luca

121

122 Successfully uploaded!

123

124

125 ### Prepare a submission file

126

127 cat submit.json

128

129 {

130 "name": "luca",

131 "device": "cpu",

132 "memory": "3gb",

133 "cpus": "2",

134 "files": "files_local.txt",

135 "labels": "labels_local.txt",

136 "model": "ex_keras_model.py",

137 "params": "params_local.json"

138 }

139

140

141 ### Submit a MLaaS4HEP workflow using the loaded ROOT files

142

143 curl -L -k -H "Authorization: Bearer ${TOKEN_MLAAS}" -H "Content-Type: application/json" -d

@submit.json https://90.147.174.27:4433/submit

144

145 {

146 "process_name": "luca_1",

147 "job_id": 5557

148 }

149

150

151 ### Verify the status of the process

152

153 curl -L -k -H "Authorization: Bearer ${TOKEN_MLAAS}" https://90.147.174.27:4433/status_docker?

process_name=luca_1

154

155 {

156 "process_name": "luca_1",

157 "status": "Up 8 seconds"

158 }

159

160

161 ### Get back and save the logs of the process
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162

163 curl -L -k -H "Authorization: Bearer ${TOKEN_MLAAS}" -o logs.txt https://90.147.174.27:4433/

logs?process_name=luca_1

164 cat logs.txt | head -20

165

166 % Total % Received % Xferd Average Speed Time Time Time Current

167 Dload Upload Total Spent Left Speed

168 100 27881 100 27881 0 0 124k 0 --:--:-- --:--:-- --:--:-- 126k

169

170 2022-06-14 15:28:44.016611: W tensorflow/stream_executor/platform/default/dso_loader.cc:64]

Could not load dynamic library ’libcudart.so.11.0’; dlerror: libcudart.so.11.0: cannot open

shared object file: No such file or directory

171 2022-06-14 15:28:44.016674: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above

cudart dlerror if you do not have a GPU set up on your machine.

172 load ex_keras_model.py <function model at 0x7fd34d81df28> Simple Keras model for testing

purposes

173 DataGenerator: <MLaaS4HEP.generator.RootDataGenerator object at 0x7fd34d7d76a0> [14/Jun

/2022:15:28:46] 1655220526.0

174 model parameters: {"nevts": 30000, "shuffle": true, "chunk_size": 10000, "epochs": 5, "batch_

size": 100, "identifier": ["runNo", "evtNo", "lumi"], "branch": "events", "selected_

branches": "", "exclude_branches": "", "hist": "pdfs", "redirector": "root://stormgf1.pi.

infn.it", "verbose": 1}

175 Reading ttH_signal.root

176 # 10000 entries, 29 branches, 1.10626220703125 MB, 0.05584907531738281 sec, 19.808066664389877

MB/sec, 179.05399405758 kHz

177 # 10000 entries, 29 branches, 1.10626220703125 MB, 0.019169092178344727 sec, 57.7107249909827

MB/sec, 521.6731135184885 kHz

178 # 10000 entries, 29 branches, 1.10626220703125 MB, 0.016225099563598633 sec, 68.18215214612141

MB/sec, 616.3290376618224 kHz

179 ###total time elapsed for reading + specs computing: 0.09430861473083496; number of chunks 3

180 ###total time elapsed for reading: 0.09124016761779785; number of chunks 3

181

182 --- first pass: 38036 events, (29-flat, 0-jagged) branches, 29 attrs

183 <MLaaS4HEP.reader.RootDataReader object at 0x7fd34d7d79e8> init is complete in

0.1035768985748291 sec

184 writing specs specs-ttH_signal.json

185 write specs-ttH_signal.json

186 Reading ttH_noDRmatch.root

187 # 10000 entries, 29 branches, 1.10626220703125 MB, 0.046973228454589844 sec, 23.550908537204343

MB/sec, 212.8872195716171 kHz

188 # 10000 entries, 29 branches, 1.10626220703125 MB, 0.017837047576904297 sec, 62.020477450744515

MB/sec, 560.6308979602749 kHz

189 # 10000 entries, 29 branches, 1.10626220703125 MB, 0.01699066162109375 sec, 65.11001347103726

MB/sec, 588.5585990121239 kHz

190

191

192 ### Download the trained ML model

193

194 curl -L -k -H "Authorization: Bearer ${TOKEN_MLAAS}" -o luca_1.tar.gz https

://90.147.174.27:4433/model?process_name=luca_1

195 mkdir -p luca_1 && tar -xvf luca_1.tar.gz -C luca_1

196 ls luca_1
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197

198 % Total % Received % Xferd Average Speed Time Time Time Current

199 Dload Upload Total Spent Left Speed

200 100 147k 100 147k 0 0 680k 0 --:--:-- --:--:-- --:--:-- 717k

201

202 x ./

203 x ./assets/

204 x ./saved_model.pb

205 x ./keras_metadata.pb

206 x ./params.json

207 x ./variables/

208 x ./variables/variables.index

209 x ./variables/variables.data-00000-of-00001

210 assets keras_metadata.pb params.json saved_model.pb variables

211

212

213 ### Check the models loaded in the TFaaS server

214

215 curl -L -k -H "Authorization: Bearer ${TOKEN_TFAAS}" https://90.147.174.27:8081/models

216

217 [{"name":"luca_1","model":"saved_model.pb","labels":"","options":null,"inputNode":"","

outputNode":"","description":"","timestamp":"2022-06-14 15:29:17.456513917 +0000 UTC m

=+261933.688268477"}]

218

219

220 ### Choose an event to test inference using the trained ML model

221

222 cat predict_bkg.json

223

224 {

225 "values": [0.19563319290790765, 0.8628343629750731, 0.20469675544301077,

0.5979233885840486, 0.5624403641089002, 0.4966360687831127, 0.9971232134875923,

0.9641571184466814, 0.016140890033353065, 0.012642983007060364, 0.044779417127065256,

0.04623121102305415, 0.027365998536597175, 0.004034759345313149, 0.07267125173331217,

0.4668842294559054, 0.10894376909915392, 0.044679238817932156, 1.0, 0.9496461903794253,

0.9982200258458422, 0.5, 0.0, 0.0, 0.35235498377667923, 0.6612158851740676,

0.6065199265679636, 0.3931907707503391, 0.37482121042755157],

226 "model": "luca_1"

227 }

228

229

230 ### Obtain prediction for the selected event using TFaaS

231

232 curl -L -k -H "Authorization: Bearer ${TOKEN_TFAAS}" -X POST -H "Content-type: application/json

" -d @predict_bkg.json https://90.147.174.27:8081/json

233

234 [0.08601278]

235

236

237 ### Delete specs files to be prepared for reading remote ROOT files

238
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239 curl -L -k -H "Authorization: Bearer ${TOKEN_MLAAS}" https://90.147.174.27:4433/delete_specs?

name=luca

240

241 Specs deletion completed!

242

243

244 ### Submit a MLaaS4HEP workflow using remote ROOT files

245

246 curl -L -k -H "Authorization: Bearer ${TOKEN_MLAAS}" -H "Content-Type: application/json" -d

@submit_remote.json https://90.147.174.27:4433/submit

247

248 {

249 "process_name": "luca_2",

250 "job_id": 6138

251 }

252

253

254 ### Get back and save the logs of the process

255

256 curl -L -k -H "Authorization: Bearer ${TOKEN_MLAAS}" -o logs_remote.txt https

://90.147.174.27:4433/logs?process_name=luca_2

257 cat logs_remote.txt | head -20

258

259 % Total % Received % Xferd Average Speed Time Time Time Current

260 Dload Upload Total Spent Left Speed

261 100 2021 100 2021 0 0 12608 0 --:--:-- --:--:-- --:--:-- 13123

262

263 2022-06-14 15:29:40.371538: W tensorflow/stream_executor/platform/default/dso_loader.cc:64]

Could not load dynamic library ’libcudart.so.11.0’; dlerror: libcudart.so.11.0: cannot open

shared object file: No such file or directory

264 2022-06-14 15:29:40.371628: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above

cudart dlerror if you do not have a GPU set up on your machine.

265 load ex_keras_model.py <function model at 0x7fc254249f28> Simple Keras model for testing

purposes

266 DataGenerator: <MLaaS4HEP.generator.RootDataGenerator object at 0x7fc2541fe630> [14/Jun

/2022:15:29:42] 1655220582.0

267 model parameters: {"nevts": 30000, "shuffle": true, "chunk_size": 10000, "epochs": 5, "batch_

size": 100, "identifier": ["runNo", "evtNo", "lumi"], "branch": "boostedAk8/events", "

selected_branches": "", "exclude_branches": "", "hist": "pdfs", "redirector": "root://

stormgf1.pi.infn.it", "verbose": 1}

268 Reading root://stormgf1.pi.infn.it//store/user/lgiommi/flatTree_ttHJetTobb_M125_13TeV_

amcatnloFXFX_madspin_pythia8.root

269 # 10000 entries, 77 branches, 4.863739013671875 MB, 3.1020548343658447 sec, 1.5679087809117251

MB/sec, 3.223669642849594 kHz

270 # 10000 entries, 77 branches, 4.863739013671875 MB, 2.2151570320129395 sec, 2.1956633066560243

MB/sec, 4.514352642039505 kHz

271 # 10000 entries, 77 branches, 4.863739013671875 MB, 2.0409839153289795 sec, 2.3830364252958383

MB/sec, 4.899597652335311 kHz

272 ###total time elapsed for reading + specs computing: 8.13843321800232; number of chunks 3

273 ###total time elapsed for reading: 7.35819149017334; number of chunks 3

274

275 --- first pass: 948348 events, (22-flat, 52-jagged) branches, 328 attrs
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276 <MLaaS4HEP.reader.RootDataReader object at 0x7fc2541fe978> init is complete in

8.150626182556152 sec

277 writing specs specs-flatTree_ttHJetTobb_M125_13TeV_amcatnloFXFX_madspin_pythia8.json

278 write specs-flatTree_ttHJetTobb_M125_13TeV_amcatnloFXFX_madspin_pythia8.json

279 Reading root://stormgf1.pi.infn.it//store/user/lgiommi/flatTree_TT_TuneCUETP8M2T4_13TeV-powheg-

pythia8.root

280

281

282 ### Delete the loaded folder with all the material and the trained ML models

283

284 curl -L -k -H "Authorization: Bearer ${TOKEN_MLAAS}" https://90.147.174.27:4433/delete_folder?

name=luca

285 curl -L -k -H "Authorization: Bearer ${TOKEN_TFAAS}" -X DELETE https://90.147.174.27:8081/

delete -F "model=luca_1"

286 curl -L -k -H "Authorization: Bearer ${TOKEN_TFAAS}" -X DELETE https://90.147.174.27:8081/

delete -F "model=luca_2"

287 curl -L -k -H "Authorization: Bearer ${TOKEN_TFAAS}" https://90.147.174.27:8081/models

288

289 Folder deletion completed!

290 null

Listing 18: Example of requests to MLaaS4HEP and TFaaS and the corresponding outputs

Considering the commands run in Listing 18, before deleting the ML mod-
els from the TFaaS repository, it is possible to go to the web page of TFaaS
https://90.147.174.27:8081, check the ML models created by the MLaaS4HEP server
(see Fig. D.1), and inspect the ML models representation (see Fig. D.2).
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Fig. D.1: ML models created by the MLaaS4HEP service with the commands of Listing 18 and
loaded into the TFaaS repository.

Fig. D.2: Graph of a ML model loaded into TFaaS.
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