Malfacini, Marco
(2023)
Development of sexing systems functional to mass production of Aedes albopictus sterile males, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Salute, sicurezza e sistemi del verde, 35 Ciclo. DOI 10.48676/unibo/amsdottorato/10551.
Documenti full-text disponibili:
|
Documento PDF (English)
- Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato.
Download (3MB)
|
Abstract
Aedes albopictus is a vector able to transmit several arboviruses. Due to its high impact on human health, it is important to develop an efficient control strategy for this pest. Nowadays, control based on chemical insecticides is limited by the number of available active principles and the occurrence of resistance. A valuable alternative to the conventional control strategies is the sterile insect technique (SIT) which relies on releasing sterile males of the target insect. Mating between wild females and sterile males results in no viable offspring. A crucial aspect of SIT is the production of a large number of sterile males with a low presence of females that can bite and transmit viruses.
The present thesis aimed to find, implement and study the most reliable mechanical sex sorter and protocol to implement male productivity and reduce female contamination. In addition, I evaluated different variables and sorting protocols to enable female recovery for breeding purposes. Furthermore, I studied the creation of a hyper-protandric strain potentially able to produce only males. I also assessed the integration of artificial intelligence with an optical unit to identify sexes at the adult stage. All these applications helped to realise a mass production model in Italy with a potential weekly production of 1 million males.
Moreover, I studied and applied for aerial sterile male release in an urban environment. This technology could allow the release of males in a wide area, overcoming environmental and urban obstacles. However, the development and application of drone technologies in a metropolitan area close to airports, such as in Bologna area, must fit specific requirements.
Lastly, at Réunion Island, during a Short Term Scientific Mission France (AIM-COST Action), Indian Ocean, I studied the Boosted SIT application. Coating sterile males with Pyriproxyfen may help spread the insecticide into the larval breeding sites.
Abstract
Aedes albopictus is a vector able to transmit several arboviruses. Due to its high impact on human health, it is important to develop an efficient control strategy for this pest. Nowadays, control based on chemical insecticides is limited by the number of available active principles and the occurrence of resistance. A valuable alternative to the conventional control strategies is the sterile insect technique (SIT) which relies on releasing sterile males of the target insect. Mating between wild females and sterile males results in no viable offspring. A crucial aspect of SIT is the production of a large number of sterile males with a low presence of females that can bite and transmit viruses.
The present thesis aimed to find, implement and study the most reliable mechanical sex sorter and protocol to implement male productivity and reduce female contamination. In addition, I evaluated different variables and sorting protocols to enable female recovery for breeding purposes. Furthermore, I studied the creation of a hyper-protandric strain potentially able to produce only males. I also assessed the integration of artificial intelligence with an optical unit to identify sexes at the adult stage. All these applications helped to realise a mass production model in Italy with a potential weekly production of 1 million males.
Moreover, I studied and applied for aerial sterile male release in an urban environment. This technology could allow the release of males in a wide area, overcoming environmental and urban obstacles. However, the development and application of drone technologies in a metropolitan area close to airports, such as in Bologna area, must fit specific requirements.
Lastly, at Réunion Island, during a Short Term Scientific Mission France (AIM-COST Action), Indian Ocean, I studied the Boosted SIT application. Coating sterile males with Pyriproxyfen may help spread the insecticide into the larval breeding sites.
Tipologia del documento
Tesi di dottorato
Autore
Malfacini, Marco
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
SIT, Sterile Insect Technique, Aedes, albopictus, biological control.
URN:NBN
DOI
10.48676/unibo/amsdottorato/10551
Data di discussione
27 Marzo 2023
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Malfacini, Marco
Supervisore
Co-supervisore
Dottorato di ricerca
Ciclo
35
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
SIT, Sterile Insect Technique, Aedes, albopictus, biological control.
URN:NBN
DOI
10.48676/unibo/amsdottorato/10551
Data di discussione
27 Marzo 2023
URI
Statistica sui download
Gestione del documento: