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Abstract

We start in Chapter 2 to investigate linear matrix-valued SDEs and the Itô-stochastic
Magnus expansion. This is the content of Kamm, Pagliarani and Pascucci (2021, 2022).
The Itô-stochastic Magnus expansion provides an efficient numerical scheme to solve matrix-
valued SDEs. We show convergence of the expansion up to a stopping time τ and provide
an asymptotic estimate of the cumulative distribution function of τ . Moreover, we show how
to apply it to solve SPDEs with one and two spatial dimensions by combining it with the
method of lines with high accuracy. We will see that the Magnus expansion allows us to
use GPU techniques leading to major performance improvements compared to a standard
Euler-Maruyama scheme.

In Chapter 3, we study a short-rate model in a Cox-Ingersoll-Ross (CIR) framework for
negative interest rates. It is based on Di Francesco and Kamm (2021, 2022). We define
the short rate as the difference of two independent CIR processes and add a deterministic
shift to guarantee a perfect fit to the market term structure. We show how to use the Gram-
Charlier expansion to efficiently calibrate the model to the market swaption surface and price
Bermudan swaptions with good accuracy.

Chapter 4 is based on Kamm (2022) and Kamm and Muniz (2022). We are taking two
different perspectives for rating transition modelling. In Section 4.4, we study inhomogeneous
continuous-time Markov chains (ICTMC) as a candidate for a rating model with deterministic
rating transitions. We extend this model by taking a Lie group perspective in Section 4.5, to
allow for stochastic rating transitions.

In both cases, we will compare the most popular choices for a change of measure technique
and show how to efficiently calibrate both models to the available historical rating data and
market default probabilities.

At the very end, we apply the techniques shown in this thesis to minimize the collateral-
inclusive Credit/ Debit Valuation Adjustments under the constraint of small collateral post-
ings by using a collateral account dependent on rating triggers.
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Introduction 1
To introduce the topic of this thesis, let us consider the following situation:
Suppose that there are three parties, a bank, a company and another entity. The company

asks the bank for a loan, which it agrees to, receiving interest on the notional in return.
The contract between the company and bank is such that the interest rate changes with
the market, resulting in a so-called floating position for the company. The company finds
another entity, which agrees to swap the floating position with the company. This means
that the new entity will pay the floating position to the company and receives a fixed amount
from the company. If the payments due to the market interest rates get smaller than the
fixed payments, the entity can profit from this interest rate swap. Otherwise, the entity will
lose money and therefore takes over the risk inherited from the floating interest rates of the
company. The risk for the company coming from the interest rates is therefore eliminated,
since it will receive the floating position from the entity and can transfer it to the bank.

In a perfect world, this would be the end of the story. However, in the real world it can
happen that the entity due to some reason is not able to pay the floating position to the
company, for example if interest rates get very high. This situation is called default of an
entity and a famous example of such an event was during the financial crisis in 2007, when
Lehman Brothers defaulted.

Taking the possibility into account that any counterparty can default, is the subject of val-
uation adjustments for pricing financial derivatives. There are several types of valuation ad-
justments, called Credit Valuation Adjustment (CVA), Debit Valuation Adjustment (DVA),
Funding Valuation Adjustment (FVA), Capital Valuation Adjustment (KVA), . . . The entire
family of valuation adjustments is therefore denoted by XVA, where the “X” is a variable for
the different types of the valuation adjustments.

In this thesis, we will focus on collateral-inclusive CVA and DVA. To reduce the potential
loss in the event of a default, an effective method is to post collateral. This is a financial
security, which usually is cash or bonds, counter-balancing the exposure to the contracting
counterparty. For example, if interest rates get very high and the company and the entity
agreed to post collateral, the entity would need to post more collateral into a secondary
account to mitigate a potential loss due to a default. If the default would have happened in
this situation, the company could take the collateral mitigating its loss and could pay the
interest to the bank.

Now, that we understand the dangers of default events and the benefit of posting collateral,
let us have a look at the general formula of collateral-inclusive bilateral CVA1 (cf. Brigo,
Morini and Pallavicini (2013): pp. 312 ff. Chapter 13.2.3 CCVA and CDVA Definitions)

1We disregard the possibility of rehypothecation for simplicity and use the convention X+ = max (X, 0),
X− = min (X, 0).
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CVAt (r,V,C) := EQ
[

LGD exp
(
−
∫ τ

t
rsds

)
1τ<T

(
V+

τ − C+
τ

)+
∣∣∣∣Gt

]
. (1.0.1)

The evaluation of the CVA takes place under a risk-neutral measure Q and the filtration Gt

is the enlarged filtration containing information about both the default and the market.
The time of default prior to the end of contracts T > 0 of the entity is denoted by τ , the

value of the portfolio at time t between the counterparty and the entity (there could be more
than one swap contract) is denoted by Vt, the collateral account at time t by Ct and the
discount factor seen from time t up to time u by exp (−

∫ u
t rsds). This discount factor serves

also as the numeraire under the aforementioned risk-neutral measure Q. We will consider the
loss-given-default (LGD) as a deterministic constant, which is usually set to 0.6.

To evaluate the CVA, we will use a Monte-Carlo approach and simulate the short-rate rt,
the value of the portfolio Vt, the collateral Ct, as well as the time of default τ . This divides
the thesis into finding a suitable short-rate model and suitable definition of the collateral
process.

Interest rate model. For the discount factor appearing in (1.0.1) we want to be able to
account for negative interest rates. In a joint work with Marco Di Francesco, we propose
in Chapter 3 a short-rate model based on the difference of two Cox-Ingersoll-Ross (CIR)
processes, i.e. r(t) := x(t)− y(t)

dz(t) = kz(θz − z(t))dt+ σz

√
z(t)dWz(t),

where z ∈ {x, y} are two CIR processes with standard independent Brownian motions Wz

under the risk-neutral measure Q, as well as kz, θz, σz ∈ R>0.
The CIR model and extensions have been studied extensively in the literature due to

the fact that a single CIR process is guaranteed to be positive. Historically, this was a
desirable feature of an interest rate model. However, recently a paradigm-shift occurred and
the possibility of negative interest rates arose. Of course, other factors, such as its analytical
tractability and a slightly skewed non-normal distribution made CIR models a popular choice
among short-rate models.

We want to preserve as many of the advantageous features of the original CIR model as
possible, and decided to use two independent CIR processes and take the difference of them
both. Taking the difference of two positive processes makes it possible to reach negative
values. In Section 3.3, we show an endogenous short-rate model, meaning that the zero-
coupon curve will be an output of the model. Such models are valuable for fast vanilla option
pricing and benchmarking. Afterwards, we show in Section 3.4 how to extend the endogenous
model by adding a so-called deterministic shift, i.e. r(t) = x(t) − y(t) + f(t), where f(t) is
a function containing the market instantaneous forward rate. This allows for a perfect fit to
the market zero-coupon curve and gives the possibility to calibrate the short-rate model to
market volatilities. In particular, we show how to calibrate this model to the market swaption

2



surface by applying the Gram-Charlier expansion. We will see a close match of Bermudan
swaption prices obtained by Bloomberg’s Hull-White one factor model and our CIR model.
For Constant Maturity Swaps (CMS) we will see similar good results making this simple
model a good choice for our application.

Collateral model. Collateral is a good way to minimize CVA and DVA. In fact, setting
Ct = Vt would ensure that the CVA is always zero. This scenario is called perfect collateral-
ization for this reason. However, there are some problems intertwined with this choice. One
problem is that collateral cannot be posted in continuous time. Therefore, a rebalancing of
the collateral account takes place at pre-set discrete points in time. In between these posting
dates the CVA will not be zero anymore and the further the posting dates are apart from each
other, the greater the CVA can be. Moreover, suppose that we have counterparties with a lot
of contracts, e.g. their portfolio has a value of one million Euros. A perfect collateralization
forcing a counterparty to post a million Euros would put a lot of stress on the counterparty
maybe also increasing its probability to default.

A second problem, which will be at the heart of this thesis, is the simple fact that posting
collateral is expensive. Let us consider a bank with several clients. This bank would like
to avoid to post collateral of several million Euros to its clients, since this money could be
reinvested and in the case of cash collateral postings, this money usually has to be borrowed.

Conclusively, collateral itself will not decrease the risk of default but decreases the potential
loss at default and the size of the valuation adjustments. Hence, we are interested in a
minimization of CVA over the collateral under the constraint of posting as little collateral as
possible, while simultaneously keeping the potential loss small. One possibility to engage this
vaguely formulated optimization problem, is to introduce another measure of a counterparty’s
risk, namely a concept named rating.

A rating is an indicator of the creditworthiness of an entity. A high rating associates less
risk to an entity to not fulfill its financial obligations and a low rating a high risk. Ratings
are usually denoted by letters A, B, . . . , D, where A denotes the best rating and D denotes
the worst rating. The rating D is special. It means that an entity has defaulted, i.e. it can
not fulfill its financial obligation towards a contracting party.

With this new indicator of creditworthiness, we would like to model the collateral as Ct :=
f (Vt, Xt), where Xt is a stochastic process simulating the rating of an entity at time t.
Depending on the current rating of the entity, we will set a certain threshold of unsecured
money. For example, if the entity is in the best rating, we can set the threshold to infinity,
corresponding to an uncollateralized scenario, and if the entity is close to default, we can set
the threshold to zero and force a perfectly collateralized scenario. By adjusting the thresholds,
this serves as a good compromise for posting as little collateral as possible while keeping the
potential loss small. But even setting the thresholds to zero for one rating prior to default
does not ensure a perfect collateralization, since immediate jumps from high ratings to low
ratings are a possibility. We will discuss this phenomenon in Section 4.7.2.

Now, that we have a plan to tackle the constraint optimization problem, we have to under-
stand how we can use the available historical and market data to calibrate a rating process

3



(Ω,R,Rt,P)
Rating model under P

(Ω,R,Rt,Q)
Rating model under Q

Default probabilitiesRating Matrices

Change of measure
Input ∈ RKInput ∈ RK×K

Figure 1.1.: Overview of different data for rating modelling.

of an entity and how to model such a process, which is the content of Chapter 4.

There are two major sources of data available. On the one hand, under the risk-neutral
measure we have estimates of the probability of default of an entity if Credit Default Swap
(CDS) quotes are available in the market. On the other hand, under the historical measure
we have access to so-called rating matrices published by rating agencies, such as Moody’s,
S&P and Fitch. Rating matrices have entries containing the probability of transitioning from
an initial rating to another rating in a certain amount of time. For example, one gets an
estimation of the probability of transitioning from the best rating directly to default in one
year.

These matrices are obtained from historical data of a sector of entities. In particular, there
are different rating matrices for the financial sector and the corporate sector. In Figure 1.1,
we give an overview, how this data can be used to calibrate a rating model. One approach
in the literature introduced by Jarrow, Lando and Turnbull (1997) is to model ratings
as a Continuous Time Markov Chain (CTMC). In this setting, the rating matrices can be
viewed as the transition operators associated to the CTMC and the default data available
under the risk-neutral measure corresponds to the default column of this transition operator
after applying a change of measure to the CTMC.

In Section 4.4, we will demonstrate how to use a simple inhomogeneous CTMC (ICTMC)
to model the ratings of an entity. The proposed model is leveraging on the expertise of Luca
Caputo, Jerome Vincent Maetz and Michael Belk, who are part of the XVA Quantitative
team of Banco Santander in Madrid. In this approach, the transition operators are assumed
to be deterministic and can be calibrated to rating matrices after some work on the data.
We will discuss the issues coming from the rating data in more detail in Section 4.3. For the
change of measure we will compare two different techniques leading to very different rating
models under the risk-neutral measure.

In Section 4.5, we will extend the ICTMC model further, which is joint work with Michelle
Muniz. We will take a novel, geometrical point of view of this problem and show how to
model stochastic rating transitions leading to matrix-valued SDEs in a certain subset of a
Lie group.

Matrix-valued SDEs. In a joint work with Stefano Pagliarani and Andrea Pascucci, we will
begin in this thesis by studying matrix-valued linear Itô-SDEs in Chapter 2. To be more
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precise, we will consider

dXt = BtXtdt+
q∑

j=1
A

(j)
t XtdW

j
t , X0 = Id ∈ Rd,d (1.0.2)

where W j
t are independent standard Brownian motions and the matrix-valued processes

Bt, A
j
t , j = 1, . . . , q ∈ N are progressively measurable, bounded processes.

Under these assumptions a unique solution is guaranteed and we want to find a specific
expression of the solution. We will, like in the scalar case, show that the solution has an
exponential representation Xt := exp (Yt) for small times t > 0 depending on a stopping time
and Yt can be expressed by a series representation of Itô processes. This method is called
Magnus expansion. The truncation of the series representation of Yt will give rise to a numer-
ical scheme for (1.0.2), which has parallel-in-time and parallel-in-simulation features. Using
GPUs and multiple CPUs, we show that this can lead to major performance improvements
compared to standard Euler-Maruyama techniques, while having an excellent accuracy, and
apply it to solving SPDEs with one and two spatial dimensions. We demonstrate in the
case of the stochastic heat equation and the stochastic Langevin equation the merits of this
numerical scheme.

The deterministic counterpart of the Magnus expansion is often applied in situations, where
a certain geometry needs to be preserved by the numerical scheme. In fact, this gave us the
idea to study rating transitions from a Lie group perspective.

Aim and contribution of this thesis. First of all, to the best of our knowledge, this is the
first time that the Itô-stochastic Magnus expansion has been derived for the general setting
of progressively measurable and bounded coefficients. We show for a wide class of parabolic
SPDEs that it leads to significant numerical improvements, making SPDE models viable for
many applications.

Second, we show that a simple short-rate model by subtracting two CIR processes leads to
very good results in a negative interest rate framework.

Third, we extend the class of models used for rating modelling. In the literature, usually
time-homogeneity is assumed and we show that this can be overcome by a simple ICTMC
model. Additionally, to the best of our knowledge, this is the first time that rating models
were considered from a Lie group perspective, which gives rise to an entirely new methodology
to define rating models. Moreover, we show that it is feasible to calibrate stochastic and fully
inhomogeneous rating transition models to the available data. We compare the impact of the
most popular choices for the change of measure used in the literature and show the benefit
of using stochastic models over simpler ICTMC models.

In total, we will see a variety of different concepts and techniques, ranging from matrix-
valued SDEs, SPDEs, the Gram-Charlier expansion, the stochastic simulation algorithm to
Machine learning for time-series analysis and matrix Lie groups.
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The Itô-Stochastic Magnus
Expansion 2

The Magnus expansion is a classical tool to solve non-autonomous linear differential equa-
tions. Generalizations of the Magnus expansion to Stratonovich SDEs are well-known and
were proposed by several authors (see for instance Ben Arous (1989), Blanes et al. (2009),
Burrage and Burrage (1999), Wang et al. (2020) and the references given in Section 2.1).
In this chapter, we derive the Magnus expansion for Itô SDEs under general assumptions,
which do not guarantee an explicit Itô-Stratonovich conversion, namely progressively mea-
surable stochastic coefficients. Our main results are the convergence of the stochastic Magnus
expansion up to a stopping time τ and a novel asymptotic estimate of the cumulative dis-
tribution function of τ . The latter improves some previous estimates obtained in purely
Markovian settings and is based on an application of Morrey’s inequality. We also show, how
the Magnus expansion in conjunction with the method of lines can be efficiently applied to
the numerical solution of stochastic partial differential equations (SPDEs) in Section 2.4.3
and Section 2.4.4.

Let d, q ∈ N and consider the linear matrix-valued Itô SDEdXt = BtXtdt+A
(j)
t XtdW

j
t ,

X0 = Id,
(2.0.1)

with A(1), . . . , A(q), B being real (d × d)-matrix-valued bounded stochastic processes, Id the
identity (d× d)-matrix and W = (W 1, . . . ,W q) a q-dimensional standard Brownian motion.
In (2.0.1), as well as anywhere throughout the chapter, we use Einstein summation convention
to imply summation of terms containing W j , over the index j from 1 to q.

In the deterministic case, i.e. A(j) ≡ 0, j = 1, . . . , q, (2.0.1) reduces to the matrix-valued
ODE 

d
dtXt = BtXt,

X0 = Id,
(2.0.2)

which admits in the time-homogeneous case an explicit solution in terms of the matrix expo-
nential. Namely, if Bt ≡ B, the unique solution to (2.0.2) reads as

Xt = etB, t ≥ 0.

However, in the non-autonomous case, the ODE (2.0.2) does not admit an explicit solution.
In particular, if Bt is not constant, the solution Xt typically differs from e

∫ t

0 Bsds. This is
due to the fact that, in general, Bt and Bs do not commute for t ̸= s. As it turns out, a
representation of the solution in terms of a matrix exponential is still possible, at least for
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short times, i.e.

Xt = eYt , (2.0.3)

for t ≥ 0 suitably small and Yt a real valued (d×d)-matrix. Moreover, Y admits a semi-explicit
expansion as a series of iterated integrals involving nested Lie commutators of the function
B at different times. Such representation is known as Magnus expansion (Magnus (1954))
and its first terms read as

Yt =
∫ t

0
Bsds+ 1

2

∫ t

0
ds

∫ s

0
[Bs, Bu]du

+ 1
6

∫ t

0
ds

∫ s

0
du

∫ u

0

([
Bs, [Bu, Br]

]
+
[
Br, [Bu, Bs]

])
dr + · · · , (2.0.4)

where [A,B] := AB − BA denotes the Lie commutator. The Magnus expansion has a wide
range of physical applications and the related literature has grown increasingly over the last
decades (see, for instance, the excellent survey paper Blanes et al. (2009) and the references
given therein).

In the stochastic case, when j = 1, Bt ≡ 0 and A is constant, i.e. At(ω) ≡ A, the Itô
equation (2.0.1) reduces to

dXt = AXtdWt,

X0 = Id,

whose explicit solution can be easily proven to be of the form (2.0.3), with

Yt = −1
2A

2t+AWt, t ≥ 0.

In general, when the matrices A(j)
t , A

(j)
s , Bt, Bs with t ̸= s do not commute, an explicit

solution to (2.0.1) is not known. For instance, in the non-commutative case, neither the
equation dXt = Bdt+AXtdWt,

X0 = Id,
(2.0.5)

nor the equation dXt = AtXtdWt,

X0 = Id,
(2.0.6)

admit an explicit solution, save some particular cases (see for instance the example in Sec-
tion 2.4.2).

Among the approximation tools that were developed in the literature to solve stochastic
differential equations, including (2.0.1), some Magnus-type expansions that extend (2.0.3)-
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(2.0.4) were derived in different contexts. We now go on to describe our contribution to this
stream of literature, and then to firm our results within the existing ones. In particular, a
detailed comparison with existing stochastic Magnus expansions previously derived by other
authors will be provided below, in Section 2.1.

Description of the main results. In this chapter, we derive a Magnus-type representation
formula for the solution to the Itô SDE (2.0.1), which is (2.0.3) together with

Yt = Y
(1)

t + Y
(2)

t + Y
(3)

t + · · · t ∈ [0, τ ], (2.0.7)

for τ suitably small, strictly positive stopping time. In analogy with the deterministic Magnus
expansion, the general term Y (n) can be expressed recursively, and contains iterated stochastic
integrals of nested Lie commutators of the processes B,A(j) at different times.

In the case j = 1, the first two terms of the expansion read as

Y
(1)

t =
∫ t

0
Bsds+

∫ t

0
AsdWs,

Y
(2)

t = 1
2

∫ t

0

([
Bs,

∫ s

0
Budu+

∫ s

0
AudWu

]
−A2

s

)
ds

+ 1
2

∫ t

0

[
As,

∫ s

0
Budu+

∫ s

0
AudWu

]
dWs.

For example, in the case of SDE (2.0.5) the latter can be reduced to

Y
(1)

t = Bt+AWt,

Y
(2)

t = [A,B]
(1

2 tWt −
∫ t

0
Wsds

)
− 1

2A
2t.

Notice that the last expressions do not contain stochastic integrals. In fact, in the general
autonomous case, and if j = 1, all the iterated stochastic integrals in Y (n) can be solved
for any n ∈ N (cf. Kloeden and Platen (1992): p. 171 Corollary 5.2.4 ). Therefore, in
this case the expansion becomes numerically computable by only approximating Lebesgue
integrals, as opposed to approximating stochastic integrals. As we shall see in the numerical
tests in Section 2.4.2, this feature allows us to choose a sparser time-grid in order to save
computation time. This feature is also preserved in some non-autonomous cases as illustrated
in Kamm, Pagliarani and Pascucci (2021).

In Section 2.4.1, we will discuss how the Magnus expansion can be applied parallel-in-time
and parallel-in-simulation for small time intervals. Additionally, we explain how to apply
the Magnus expansion iteratively to overcome the restraints due to its convergence radius,
which we will see in Theorem 2.0.1, and why this method holds an advantage over the Euler-
Maruyama scheme in Section 2.4.2–2.4.4. Furthermore, we will demonstrate how to utilize
GPUs to speed up the scheme by taking advantage of its parallel-in-time features. These
speed-ups will be most relevant in the case of solving SPDEs numerically, while preserving
a high level of accuracy. We will show in Section 2.4.3 and Section 2.4.4 that the Magnus
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expansion can be applied for a wide range of SPDEs. In all cases, it is faster and more
accurate than a corresponding Euler-Maruyama scheme.

As it often happens when deriving convergent (either asymptotically or absolutely) ex-
pansions, a formal derivation precedes the rigorous result: that is what we do for Equations
(2.0.3)-(2.0.7) in Section 2.2.1. Just like the derivation of the deterministic Magnus expansion
relies on the possibility of writing the logarithm Y as the solution to an ODE, in the stochastic
case the first step consists in representing Y as the solution to an SDE. Such representation
of Y will be more involved compared to the deterministic case because of the presence of the
second order derivatives of the exponential map coming from the application of Itô’s formula.
This is a distinctive feature of our derivation with respect to other analogous results in the
Stratonovich setting where the standard chain-rule applies. With the SDE representation
for Y at hand, the expansion (2.0.7) stems, like in the deterministic case, from applying a
Dyson-type perturbation procedure to the SDE solved by Y .

In the deterministic case, the convergence of the Magnus expansion (2.0.4) to the exact
logarithm of the solution to (2.0.2) was studied by several authors, who proved progressively
sharper lower bounds on the maximum t̄ such that the convergence to the exact solution is
assured for any t ∈ [0, t̄]. At the best of our knowledge, the sharpest estimate was given in
Moan and Niesen (2008), namely

t̄ ≥ sup
{
t ≥ 0 |

∫ t

0
∥Bs∥ ds < π

}
, (2.0.8)

where ∥Bs∥ denotes the spectral norm. Note that the existence of a real logarithm of Xt is
an issue that underlies the study of the convergence of the Magnus expansion. We state here
our main result, proven in Section 2.3, which deals with these matters in the stochastic case,
when the coefficients B,A(j) in (2.0.1) are progressively measurable processes. We defer a
comparison with previous convergence results for stochastic Magnus-type expansions to the
next subsection. We denote byMd×d the space of the (d×d)-matrices with real entries. Also,
for anMd×d-valued stochastic process M = (Mt)t∈[0,T ], we set ∥M∥T := ∥∥M∥F ∥L∞([0,T ]×Ω),
where ∥·∥F denotes the Frobenius norm.

Theorem 2.0.1. Let A(1), . . . , A(q) and B be bounded, progressively measurable,Md×d-valued
processes defined on a filtered probability space (Ω,F ,P, (Ft)t≥0) equipped with a standard q-
dimensional Brownian motion W = (W 1, · · · ,W q). For T > 0 let also X = (Xt)t∈[0,T ] be the
unique strong solution to (2.0.1) (see Lemma 2.3.3). There exists a strictly positive stopping
time τ ≤ T such that:
1. Xt has a real logarithm Yt ∈Md×d up to time τ , i.e.

Xt = eYt , 0 ≤ t < τ ; (2.0.9)

2. the following representation holds P-almost surely:

Yt =
∞∑

n=0
Y

(n)
t , 0 ≤ t < τ, (2.0.10)
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where Y (n) is the n-th term in the stochastic Mangus expansion as defined in (2.2.20)
and (2.2.23)–(2.2.25);

3. there exists a positive constant C, only dependent on ∥A(1)∥T , . . . , ∥A(q)∥T , ∥B∥T , T
and d, such that

P(τ ≤ t) ≤ Ct, t ∈ [0, T ]. (2.0.11)

The first point of Theorem 2.0.1 tells us that the Magnus expansion only converges up to
a stopping time: to overcome this restriction, the numerical implementation of the Magnus
expansion requires to apply it iteratively in time. Clearly, by (2.0.11) the convergence of
the Magnus expansion is problem-dependent, meaning that there is no universal best time
step-size for the Magnus expansion. The second point of Theorem 2.0.1 actually yields the
numerical scheme by truncating the infinite series (2.0.10). We will see that in practice it is
sufficient to consider only two or three terms to obtain a good degree of accuracy.

The proof of the first point in Theorem 2.0.1 relies on the continuity of X together with a
standard representation for the matrix logarithm. The key point in the proof of the second
point consists in showing that Xϵ,δ

t and its logarithm Y ϵ,δ
t are holomorphic as functions of

(ϵ, δ), where Xϵ,δ
t represents the solution of (2.0.1) when A(j) and B are replaced by ϵA(j) and

δB, respectively. Once this is established, the representation (2.0.10) follows from observing
that, by construction, the series in (2.0.10) is exactly the formal power series of Y ϵ,δ

t at
(ϵ, δ) = (1, 1). To prove the holomorphicity of Xϵ,δ

t we follow the same approach typically
adopted to prove regularity properties of stochastic flows. Namely, in Lemma 2.3.3 we state
some maximal Lp and Hölder estimates (with respect to the parameters) for solutions to SDEs
with random coefficients and combine them with the Kolmogorov continuity theorem. Finally,
the proof of the third point owes one more time to the Lp estimates in Lemma 2.3.3 and to
a Sobolev embedding theorem to obtain pointwise estimates with respect to the parameters
(ϵ, δ) above.

Theorem 2.0.1 has been used in the recent paper Yang et al. (2021) (cf. Lemma 1) where
a semi-linear non-commuative Itô-SDEs is studied and Euler, Milstein and derivative-free
numerical schemes are developed, with a convergence analysis for those schemes.

In the last part of the chapter, we perform numerical tests with the Magnus expansion.
In particular, Section 2.4.3 is devoted to the application of the stochastic Magnus expansion
to the numerical solution of parabolic stochastic partial differential equations (SPDEs). The
idea is to discretize the SPDE only in space, which is usually called method-of-lines, and
then approximate the resulting linear matrix-valued SDE by truncating the series in (2.0.9)-
(2.0.10). In Section 2.4.4 we add another spatial dimension to the SPDE in Section 2.4.3
and show that the Magnus expansion is an efficient tool for solving even two-dimensional
SPDEs. The goal here is to propose the application of stochastic Magnus expansion as novel
approximation tools for SPDEs; we study the error of this approximating procedure only
numerically. In the case where an explicit benchmark is available, we perform several tests
with different parameter choices for the step-size of the iterated Magnus expansion. However,
we defer the theoretical error analysis to further studies.
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2.1. Literature Review

The rest of the chapter is structured as follows. In Section 2.2.1 we prove the key
Lemma 2.2.1 with a representations for the first and second order differentials through which
the terms Y (n) in (2.0.9)-(2.0.10) will be defined, and some preliminary results that will be
used to derive the expansion. Additionally, we will show how to derive the Magnus expan-
sion formulas (2.0.9)-(2.0.10) formally. With the help of further auxiliary results, we prove
in Section 2.3 the main result Theorem 2.0.1. Afterwards, in Section 2.4 we first introduce
numerical scheme stemming from the truncation of the Magnus expansion series and discuss
possible ways to implement this method in Section 2.4.1. This is followed by a numerical test
for an SDE with non-commuting coefficients of different generality in Section 2.4.2. Last but
not least, we apply the Magnus expansion to the numerical solution of SPDEs with one and
two spatial dimension in Section 2.4.3 and Section 2.4.4, respectively.

In the next section, we will review the literature in more detail.

2.1. Literature Review

Stochastic generalizations of the Magnus expansion were proposed by several authors. To
the best of our knowledge, we recognize mainly two streams of research.

The beginning of the first one can be traced back to the work Ben Arous (1989), where
the author derived exponential stochastic Taylor expansions (see also Azencott (1982),
Kloeden and Platen (1992) for general stochastic Taylor series) of the solution of a system
of Stratonovich SDEs with values on a manifold M, i.e.dXt = B(Xt)dt+A(j)(Xt) ◦ dW j

t ,

X0 = x0,
(2.1.1)

with B,A(j) being smooth, deterministic and autonomous vector fields on M.
The stochastic flow of (2.1.1) is represented in terms of the exponential map of a stochastic

vector field Y , i.e.

Xt(x0) = expYt(x0),

the vector field Y being expressed by an infinite series of iterated stochastic integrals multi-
plying nested commutators of the vector fields B,A(j). This representation is proved up to
a strictly positive stopping time and extends some previous results in Doss (1977), Suss-
mann (1988) for the commutative case and in Yamato (1979), Kunita (1980), Fliess
and Normand-Cyrot (1982) for the nilpotent case. Refinements of Ben Arous (1989)
were proven in Castell (1993) making the expansion of Y more explicit. Later, numerical
methods based on these representations were proposed in Castell and Gaines (1995) and
Castell and Gaines (1996). Such techniques, known as Castell-Gaines methods, require
the approximation of the solution to a time-dependent ODE besides the approximation of it-
erated stochastic integrals. Truncating the expansion of Y at a specified order, these schemes
turn out to be asymptotically efficient in the sense of Newton (1991).
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2.1. Literature Review

If M = Md×d and the vector fields are linear, then (2.1.1) reduces to the Stratonovich
version of (2.0.1) with B,A(j) constant matrices, and the representation of X given in Ben
Arous (1989) can be seen as a stochastic Magnus expansion, in that the exponential map of
Y reduces to the multiplication by a matrix exponential. In fact, in this case the expansion
in Ben Arous (1989) becomes explicit in terms of iterated stochastic integrals, and can be
shown to coincide with the expansion in this paper by applying Itô-Stratonovich conversion
formula. In the very interesting paper Lord, Malham and Wiese (2008), the authors study
several computational aspects of numerical schemes stemming from the truncated Magnus
expansion, in which the iterated stochastic integrals are approximated by their conditional
expectation. Besides showing that asymptotic efficiency holds for an arbitrary number of
Brownian components, they compare the theoretical accuracy with the one of analogous
schemes based on Dyson (or Neumann) series, which are obtained by applying stochastic
Taylor expansion directly on the equation. They find that, although the theoretical accuracy
of Magnus schemes is not superior, Magnus-based approximations seem more accurate than
their Dyson counterparts in practice. They also discuss the computational cost deriving from
approximating the iterated stochastic integrals and the matrix exponentiation, in relation to
different features of the problem such as the dimension and the number of Brownian motions,
as well as to the order of the numerical scheme.

The second stream of literature is explicitly aimed at extending the original Magnus re-
sults to stochastic settings and can be traced back to Burrage and Burrage (1999) where
the Magnus expansion is derived via formal arguments for a linear system of Stratonovich
SDEs with deterministic coefficients. Clearly, in the autonomous case such expansion coin-
cides with the one obtained by Ben Arous (1989), whereas in the non-autonomous case,
B ≡ 0 and j = 1, it is formally equivalent to the deterministic Magnus expansion (2.0.4)
with all the Lebesgue integrals replaced by Stratonovich ones. The authors of Burrage
and Burrage (1999) do not address the convergence of the Magnus expansion, but rather
study computational aspects of the resulting approximation, in particular in comparison
with Runge-Kutta stochastic schemes. Marjanovic and Solo (2018) consider the Itô SDE
(2.0.1) with constant coefficients, and propose to resolve via Euler method the SDE (2.2.16)
for the logarithm of the solution. In Wang et al. (2020) the Magnus expansion for the
Stratonovich version of (2.0.1) with deterministic coefficients is applied to solve non-linear
SDEs; however, the error analysis of the truncated expansion seems flawed, since the fact
that the Magnus series converges only up to a positive stopping time is overlooked. In Muniz
et al. (2022a), a general procedure for designing higher strong order methods for Itô SDEs
on matrix Lie groups is outlined by applying Runge-Kutta-Munthe-Kaas methods. Most
recently an extension to the non-linear case was derived in Muniz et al. (2022b).

We now go on to discuss the contribution of this chapter with respect to the existing
literature. In the first place, Theorem 2.0.1 on the convergence of the Magnus expansion
requires very weak conditions on the coefficients, which are stochastic processes satisfying
the sole assumption of progressive measurability. This is a novel aspect compared to the
results in Ben Arous (1989), Castell (1993), which surely cover a wider class of SDEs,
but under the assumption of time-independent deterministic coefficients. We point out that
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2.2. Preliminaries and Formal Derivation

this feature is also relevant in light of the fact that our result is stated for Itô SDEs as opposed
to Stratonovich ones. Indeed, while this difference might appear as minor in the Markovian
case, where a simple conversion formula exists (cf. Correales and Escudero (2018) and
Kuo (2006)), it becomes substantial in the case of progressively measurable coefficients. We
also point out that, even in the Markovian non-autonomous case, convergence issues were
not discussed in Burrage and Burrage (1999) and Lord, Malham and Wiese (2008).

Another novel aspect of our result concerns the estimate (2.0.11) for the cumulative distri-
bution function of the stopping time τ up to which the Magnus series converges to the real
logarithm of the solution: this kind of estimate was unknown even in the autonomous case.
In Ben Arous (1989): Theorem 11 (see also Castell (1993)) an asymptotic estimate for
the truncation error of the logarithm was provided, which in the linear case studied in this
paper would read as

Yt =
N∑

n=1
Y

(n)
t + t

N+1
2 Rt, t < T,

with R bounded in probability. Although this type of result holds for the general SDE (2.1.1),
it is weaker than Theorem 2.0.1 in the linear case. In fact, it can be obtained by (2.0.11)
together with the standard estimate

∥∥∥sup0≤s≤t ∥Y
(n)

s ∥F
∥∥∥

L2(Ω)
≤ Ct

N+1
2 , but not the other

way around.
A rigorous error analysis of the Magnus expansion is left for future research, as well as

applications to non-linear SDEs (see Wang et al. (2020) for a recent attempt in this direction).
The results of this chapter have recently found applications in the study of so-called sig-

nature cumulants Friz, Hager and Tapia (2022), semi-linear Itô SDEs Yang et al. (2021),
linear SDEs on matrix Lie groups Muniz et al. (2022a), stochastic modelling of motion in
turbulent flows Campana (2022), stability of multi-variate geometric Brownian motion Bar-
rera, Högele and Pardo (2022) and modelling rating transition matrices in quantitative
finance Kamm and Muniz (2022).

2.2. Preliminaries and Formal Derivation

In this section, we define the terms in the expansion (2.0.10) and prove Theorem 2.0.1.
Let Md×d be the vector space of (d × d) real-valued matrices. Throughout the paper we

denote by [·, ·] the standard Lie commutator, i.e.

[M,N ] := MN −NM, M,N ∈Md×d,

and by ∥·∥ the spectral norm onMd×d. Also, we denote by βk, k ∈ N0, the Bernoulli numbers
defined as the derivatives of the function x 7→ x/(ex − 1) computed at x = 0. For sake of
convenience we report the first three Bernoulli numbers: β0 = 1, β1 = −1

2 , β2 = 1
6 . Note also

that β2m+1 = 0 for any m ∈ N.
We now define the operators that we will use in the sequel. For a fixed Σ ∈Md×d, we let:
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2.2. Preliminaries and Formal Derivation

• adj
Σ :Md×d →Md×d, for j ∈ N0, be the linear operators defined as

ad0
Σ(M) := M,

adj
Σ(M) :=

[
Σ, adj−1

Σ (M)
]
, j ∈ N.

To ease notation we also set adΣ := ad1
Σ;

• eadΣ :Md×d →Md×d be the linear operator defined as

eadΣ(M) :=
∞∑

n=0

1
n!adn

Σ(M) = eΣMe−Σ, (2.2.1)

where eΣ := ∑∞
j=0

Σj

j! is the standard matrix exponential;

• LΣ :Md×d →Md×d be the linear operator defined as

LΣ(M) :=
∫ 1

0
eadτΣ(M)dτ =

∞∑
n=0

1
(n+ 1)!adn

Σ(M); (2.2.2)

• QΣ :Md×d ×Md×d →Md×d be the bi-linear operator defined as

QΣ(M,N) := LΣ(M)LΣ(N) +
∫ 1

0
τ
[
LτΣ(N), eadτΣ(M)

]
dτ (2.2.3)

=
∞∑

n=0

∞∑
m=0

adn
Σ(M)

(n+ 1)!
adm

Σ (N)
(m+ 1)! +

∞∑
n=0

∞∑
m=0

[adn
Σ(N), adm

Σ (M)]
(n+m+ 2)(n+ 1)!m! . (2.2.4)

In the next lemma, we provide explicit expressions for the first and second order differentials
of the exponential map Md×d ∋ M 7→ eM . We recall that this map is smooth and in
particular, it is continuously twice differentiable.

Lemma 2.2.1. For any Σ ∈ Md×d, the first and the second order differentials at Σ of the
exponential map Md×d ∋M 7→ eM are given by

M 7→ LΣ(M) eΣ = eΣ L−Σ(M), M ∈Md×d, (2.2.5)

(M,N) 7→ QΣ(M,N) eΣ = eΣ Q−Σ(N,M), M,N ∈Md×d, (2.2.6)

where LΣ and QΣ are the linear and bi-linear operators as defined in (2.2.2)-(2.2.3).

We point out that this result, though very basic, is novel and of independent interest (for
instance it was recently employed in Friz, Hager and Tapia (2022)).

Proof. The first part of the statement, concerning the first order differential, is a classical
result; its proof can be found in Blanes et al. (2009): Lemma 2 among other references.

We prove the second part.
Fix M ∈ Md×d and denote by ∂MeΣ the first order directional derivative of eΣ w.r.t. M ,
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2.2. Preliminaries and Formal Derivation

i.e.

∂MeΣ := d

dt
eΣ+tM

∣∣∣
t=0

.

By the first part, we have

∂MeΣ = LΣ(M) eΣ, Σ ∈Md×d. (2.2.7)

We now show that, for any M,N ∈Md×d, the second order directional derivative

∂N,MeΣ := d

dt
∂MeΣ+tN

∣∣∣
t=0

is given by

∂N,MeΣ = QΣ(N,M) eΣ, Σ ∈Md×d. (2.2.8)

We have

d

dt
∂MeΣ+tN = d

dt

(
LΣ+tN (M) eΣ+tN

)
= LΣ+tN (M)LΣ+tN (N) eΣ+tN +

( d
dt
LΣ+tN (M)

)
eΣ+tN . (2.2.9)

We use the definition (2.2.2) and exchange the differentiation and integration signs to
obtain

d

dt
LΣ+tN (M) =

∫ 1

0

d

dt
eadτ(Σ+tN)(M)dτ

(by (2.2.1))

=
∫ 1

0

d

dt

(
eτ(Σ+tN)Me−τ(Σ+tN)

)
dτ

=
∫ 1

0

(
d

dt
eτ(Σ+tN)

)
M e−τ(Σ+tN)dτ +

∫ 1

0
eτ(Σ+tN)M

d

dt
e−τ(Σ+tN)dτ

(by employing the two expressions in (2.2.5) for the first-order differential)

=
∫ 1

0
τLτ(Σ+tN)(N) eτ(Σ+tN)M e−τ(Σ+tN)dτ

−
∫ 1

0
τeτ(Σ+tN)M e−τ(Σ+tN) Lτ(Σ+tN)(N)dτ

=
∫ 1

0
τ
[
Lτ(Σ+tN)(N), eadτ(Σ+tN)(M)

]
dτ.

This, together with (2.2.9), proves (2.2.8).
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2.2. Preliminaries and Formal Derivation

To conclude, we prove equality (2.2.4). It is enough to observe that

∫ 1

0
τ LτΣ(N) eadτΣ(M)dτ =

∫ 1

0
τ

∞∑
n=0

∞∑
m=0

adn
τΣ(N)

(n+ 1)!
adm

τΣ(M)
m! dτ

=
∫ 1

0

∞∑
n=0

∞∑
m=0

adn
Σ(N)

(n+ 1)!
adm

Σ (M)
m! τn+m+1dτ

=
∞∑

n=0

∞∑
m=0

adn
Σ(N)adm

Σ (M)
(n+m+ 2)(n+ 1)!m! .

The identity QΣ(M,N) eΣ = eΣ Q−Σ(N,M) follows from repeating the same proof but using
eΣ L−Σ(M) instead of LΣ(M) eΣ in (2.2.7) and the skew-symmetry of the commutator.

□

Proposition 2.2.2 (Itô formula). Let Y be an Md×d-valued Itô process of the form

dYt = µtdt+ σj
t dW

j
t . (2.2.10)

Then we have

deYt =
(
LYt (µt) + 1

2

q∑
j=1

QYt

(
σj

t , σ
j
t

))
eYtdt+

q∑
j=1

LYt

(
σj

t

)
eYtdW j

t .

or equivalently by using the identities for the derivative operators in Lemma 2.2.1

deYt = eYt

(
L−Yt (µt) + 1

2

q∑
j=1

Q−Yt

(
σj

t , σ
j
t

))
dt+

q∑
j=1

eYt L−Yt

(
σj

t

)
dW j

t .

Proof. The statement follows from an adaption of the proof of the multi-dimensional Itô
formula (see, for instance, Pascucci (2011)) combined with Lemma 2.2.1 and applied to the
exponential process eYt . □

We also have the following inversion formula for the operator LΣ.

Lemma 2.2.3 (Baker, 1905). Let Σ ∈ Md×d. The operator LΣ is invertible if and only if
the eigenvalues of the linear operator adΣ are different from 2mπ, m ∈ Z \ {0}.

Furthermore, if the spectral norm ∥Σ∥ < π, then

L−1
Σ (M) =

∞∑
k=0

βk

k! adk
Σ(M), M ∈Md×d. (2.2.11)

For a proof to Lemma 2.2.3 we refer the reader to Blanes et al. (2009).

2.2.1. Formal Derivation

In this section, we perform formal computations to derive the terms Y (n) appearing in the
ME (2.0.10). Although such computations are heuristic at this stage, they are meant to
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2.2. Preliminaries and Formal Derivation

provide the reader with an intuitive understanding of the principles that underlie the ex-
pansion procedure. Their validity will be proven a fortiori, in Section 2.3, in order to prove
Theorem 2.0.1.

Let (Ω,F ,P, (Ft)t≥0) be a filtered probability space. Assume that, for any ϵ, δ ∈ R, the
process Xϵ,δ =

(
Xϵ,δ

t

)
t≥0

solves the Itô SDE

dX
ϵ,δ
t = δBtX

ϵ,δ
t dt+ ϵA

(j)
t Xϵ,δ

t dW j
t ,

Xϵ,δ
0 = Id,

(2.2.12)

and that it admits the exponential representation

Xϵ,δ
t = eY ϵ,δ

t (2.2.13)

with Y ϵ,δ being an Md×d-valued Itô process. Clearly, if (ϵ, δ) = (1, 1), then (2.2.12)-(2.2.13)
reduce to (2.0.1)-(2.0.3).

Assume now that Y ϵ,δ is of the form (2.2.10). Then, our assumption and Proposition 2.2.2
yields

dXt = δBtX
ϵ,δ
t dt+ ϵA

(j)
t Xϵ,δ

t dW j
t

= δBt exp
(
Y ϵ,δ

t

)
dt+ ϵA

(j)
t exp

(
Y ϵ,δ

t

)
dW j

t

= d exp
(
Y ϵ,δ

t

)
=

L
Y ϵ,δ

t
(µt) + 1

2

q∑
j=1

Q
Y ϵ,δ

t

(
σj

t , σ
j
t

) exp
(
Y ϵ,δ

t

)
dt+ L

Y ϵ,δ
t

(
σj

t

)
exp

(
Y ϵ,δ

t

)
dW j

t .

Now, if we compare the coefficients we have

ϵA
(j)
t = L

Y ϵ,δ
t

(
σj

t

)
, j = 1, . . . , q, (2.2.14)

δBt = L
Y ϵ,δ

t
(µt) + 1

2

q∑
j=1

Q
Y ϵ,δ

t

(
σj

t , σ
j
t

)
. (2.2.15)

Inverting now (2.2.14)-(2.2.15), in accord with Lemma 2.2.3, one obtains

σj
t = L−1

Y ϵ,δ
t

(
ϵA

(j)
t

)
= ϵ

∞∑
k=0

βk

k! adk
Y ϵ,δ

t

(
A

(j)
t

)
, j = 1, . . . , q,

µt = L−1
Y ϵ,δ

t

δBt −
1
2

q∑
j=1

Q
Y ϵ,δ

t

(
σj

t , σ
j
t

)
=

∞∑
k=0

βk

k! adk
Y ϵ,δ

t

(
δBt −

1
2

q∑
j=1

∞∑
n=0

∞∑
m=0

(adn
Y ϵ,δ

t

(
σj

t

)
(n+ 1)!

adm
Y ϵ,δ

t

(
σj

t

)
(m+ 1)!

+

[
adn

Y ϵ,δ
t

(
σj

t

)
, adm

Y ϵ,δ
t

(
σj

t

)]
(n+m+ 2)(n+ 1)!m!

))
.
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2.2. Preliminaries and Formal Derivation

Equivalently, Y ϵ,δ solves the Itô SDEdY
ϵ,δ

t = µϵ,δ
(
t, Y ϵ,δ

t

)
dt+ σϵ

j

(
t, Y ϵ,δ

t

)
dW j

t ,

Y ϵ,δ
0 = 0,

(2.2.16)

with

σϵ
j(t, ·) = ϵ

∞∑
n=0

βn

n! adn
·
(
A

(j)
t

)
, j = 1, . . . , d, (2.2.17)

µϵ,δ(t, ·) =
∞∑

n=0

βn

n! adn
·

δBt −
1
2

q∑
j=1

Q·
(
σϵ

j(t, ·), σϵ
j(t, ·)

) . (2.2.18)

We now assume that Y ϵ,δ admits the representation

Y ϵ,δ
t =

∞∑
n=0

n∑
r=0

Y
(r,n−r)

t ϵrδn−r, (2.2.19)

for a certain family (Y (r,n−r))n,r∈N0 of stochastic processes. In particular, setting (ϵ, δ) =
(1, 1), (2.2.19) would yield

Yt =
∞∑

n=0
Y

(n)
t with Y

(n)
t :=

n∑
r=0

Y
(r,n−r)

t . (2.2.20)

Remark 2.2.4. Note that it is possible to re-order the double series
∞∑

n=0

n∑
r=0

Y
(r,n−r)

t according to any arbitrary choice, for the latter will be proved to be absolutely

convergent. The above choice for Y (n) contains all the terms of equal order by weighing ϵ and
δ in the same way. A different choice, which respects the probabilistic relation

√
∆t ≈ ∆Wt,

corresponds to weighing δ as ϵ2. This would lead to setting

Y
(n)

t :=
⌊n

2 ⌋∑
r=0

Y
(n−2r,r)

t

in (2.2.20).

Remark 2.2.5. Observe that, if the function (ϵ, δ) 7→ Y ϵ,δ
0 is assumed to be continuous P-

almost surely, then the initial condition in (2.2.16) implies

Y
(i,j)

0 = 0 P-a.s., i, j ∈ N0,

and thus

Y
(n)

0 = 0 P-a.s., n ∈ N0.

We now plug (2.2.19) into (2.2.16) and collect all terms of equal order in ϵ and δ. Let us do
this for the first three orders in more detail to get an intuition for the general formula. Also
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as a side-note, this is in general a good way to compute the expansion formulas for specific
cases as done in the appendix of Kamm, Pagliarani and Pascucci (2022) in the case of
constant processes At and Bt.

Order 1. Let us derive the first-order Magnus expansion, meaning we are interested in all
terms with the first power of ϵ and δ. Therefore, with a slight abuse of notation, we will in
the following only write down the necessary terms for the function σϵ

j and µϵ,δ
j . Additionally,

we keep Einstein’s summation convention over all the terms involving A(i)
t for readability.

We start with inserting Y (0)
t ≡ 0 into (2.2.17). Notice, that the zero matrix commutes with

all matrices and therefore by definition of ad0
Y (A) = A

σϵ
j

(
t, Y

(0)
t

)
= ϵA

(j)
t .

Similarly, we have for (2.2.18)

µϵ,δ
(
t, Y

(0)
t

)
= δBt − ϵ2

(
A

(j)
t

)2
,

because A(j)
t commutes with itself. Since,the Itô-correction term is of order ϵ2 it will not be

part of the first-order Magnus expansion and we have

ϵ1δ0 : Y
(1,0)

t =
∫ t

0
A(j)

s dW j
s , (2.2.21)

ϵ0δ1 : Y
(0,1)

t =
∫ t

0
Bsds, (2.2.22)

after setting our bookkeeping parameters to ϵ = δ = 1.

Order 2. Let us start again by plugging Y (1)
t into (2.2.17) and only consider the terms up

to order 2, i.e. ϵ, δ, δ2, ϵδ and ϵ2

σϵ
j

(
t, Y

(1)
t

)
≈ 1

0!ad0
Y

(1)
t

(
ϵA

(j)
t

)
− 1

2ad1
Y

(1)
t

(
ϵA

(j)
t

)
= ϵA

(j)
t −

1
2
[
Y

(1)
t , ϵA

(j)
t

]
= ϵA

(j)
t −

1
2ϵ

2
[∫ t

0
A(i)

s dW i
s , A

(j)
t

]
− 1

2ϵδ
[∫ t

0
Bsds,A

(j)
t

]
,
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where we already discarded the possible terms of higher order. For (2.2.18) we get

µϵ,δ
(
t, Y

(1)
t

)
≈ 1

0!ad0
Y

(1)
t

(δBt)−
1
2ad1

Y
(1)

t

(δBt)

− 1
2

(
1
0!

(ad0
Y

(1)
t

(
σϵ

j

(
t, Y

(1)
t

))
1!

ad0
Y

(1)
t

(
σϵ

j

(
t, Y

(1)
t

))
1!

+

[
ad0

Y
(1)

t

(
σϵ

j

(
t, Y

(1)
t

))
, ad0

Y
(1)

t

(
σϵ

j

(
t, Y

(1)
t

))]
2

))

= δBt −
1
2ϵδ

[∫ t

0
A(i)

s dW i
s , Bt

]
− 1

2δ
2
[∫ t

0
Bsds,Bt

]
− 1

2

((
σϵ

j

(
t, Y

(1)
t

))2
+ 0

)
≈ δBt −

1
2ϵδ

[∫ t

0
A(i)

s dW i
s , Bt

]
− 1

2δ
2
[∫ t

0
Bsds,Bt

]
− 1

2ϵ
2
(
A

(i)
t

)2
.

Now, we collect again the terms corresponding to the order two expansion and integrate, i.e.

ϵ2δ0 : Y
(2,0)

t = −1
2

∫ t

0

(
A(j)

s

)2
ds+ 1

2

∫ t

0

[
A(j)

s ,

∫ s

0
A(i)

r dW i
r

]
dW j

s ,

ϵ1δ1 : Y
(1,1)

t = 1
2

∫ t

0

[
Bs,

∫ s

0
A(j)

r dW j
r

]
ds+ 1

2

∫ t

0

[
A(j)

s ,

∫ s

0
Brdr

]
dW j

s ,

ϵ0δ2 : Y
(0,2)

t = 1
2

∫ t

0

[
Bs,

∫ s

0
Brdr

]
ds,

for any t ≥ 0, where we used, one more time, Einstein summation convention to imply
summation over the indexes i, j and Remark 2.2.5 to set all the initial conditions equal to
zero.

Order 3. Repeating the same argument as for order two leads to
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ϵ3δ0 : Y
(3,0)

t = 1
4

∫ t

0

[∫ t

0

(
A(i)

s

)2
ds,A

(k)
t

]
dW k

s

− 1
4

∫ t

0

[∫ t

0

[
A(i)

s ,

∫ s

0
A(j)

r dW j
r

]
dW i

s , A
(k)
t

]
dW k

s

+ 1
12

∫ t

0

[∫ s

0
A(j)

r dW j
r ,

[∫ s

0
A(i)

r dW i
r , A

(k)
s

]]
dW k

s

+ 1
12

∫ t

0

[
A(k)

s ,

[
A(k)

s ,

∫ s

0
A(j)

r dW j
r

]]
− 3

[(
A(k)

s

)2
,

∫ s

0
A(j)

r dW j
r

]
ds,

ϵ2δ1 : Y
(2,1)

t = 1
12

∫ t

0

[
A(k)

s ,

[
A(k)

s ,

∫ s

0
Brdr

]]
− 3

[(
A(k)

s

)2
,

∫ s

0
Brdr

]
ds

+ 1
4

∫ t

0

[∫ s

0

(
A(j)

r

)2
dr,Bs

]
ds

+ 1
12

∫ t

0

[∫ s

0
Brdr,

[∫ s

0
A(i)

r dW i
r , A

(j)
s

]]
+
[∫ s

0
A(i)

r dW i
r ,

[∫ s

0
Brdr,A

(j)
s

]]
dW j

s

+ 1
12

∫ t

0

[∫ s

0
A(i)

r dW i
r ,

[∫ s

0
A(j)

r dW j
r , Bs

]]
ds

− 1
4

∫ t

0

[∫ s

0

[
A(i)

r ,

∫ r

0
A(j)

u dW j
u

]
dW i

r , Bs

]
ds

− 1
4

∫ t

0

[∫ s

0

[
A(i)

r ,

∫ r

0
Budu

]
dW i

r , A
(j)
s

]
dW j

s

− 1
4

∫ t

0

[∫ s

0

[
Br,

∫ r

0
A(j)

u dW j
u

]
dr,A(i)

s

]
ds

ϵ1δ2 : Y
(1,2)

t = 1
12

∫ t

0

[∫ s

0
Brdr,

[∫ s

0
A(j)

r dW j
r , Bs

]]
+
[∫ s

0
A(j)

r dW j
r ,

[∫ s

0
Brdr,Bs

]]
ds

− 1
4

∫ t

0

[∫ s

0

[
Br,

∫ r

0
A(j)

u dW j
u

]
dr,Bs

]
ds

− 1
4

∫ t

0

[∫ s

0

[
A(j)

r ,

∫ r

0
Budu

]
dr,Bs

]
ds

− 1
4

∫ t

0

[∫ s

0

[
Br,

∫ r

0
Budu

]
dr,A(j)

s

]
dW j

s

+ 1
12

∫ t

0

[∫ s

0
Brdr,

[∫ s

0
Brdr,A

(j)
s

]]
dW j

s

ϵ0δ3 : Y
(0,3)

t = 1
12

∫ t

0

[∫ s

0
Brdr,

[∫ r

0
Budu,Bs

]]
ds

+ 1
4

∫ t

0

[∫ s

0

[∫ r

0
Budu,Br

]
dr,Bs

]
ds

Order n. Proceeding by induction, one can obtain a recursive representation for the general
term Y (r,n−r) in (2.2.19), namely:

Y
(r,n−r)

t =
∫ t

0
µr,n−r

s ds+
∫ t

0
σr,n−r,j

s dW j
s , n ∈ N0, r = 0, . . . , n, (2.2.23)
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where the terms σr,n−r,j , µr,n−r are defined recursively as

σr,n−r,j
s :=

n−1∑
i=0

βi

i! S
r−1,n−r,i
s

(
A(j)), (2.2.24)

µr,n−r
s :=

n−1∑
i=0

βi

i! S
r,n−r−1,i
s (B)− 1

2

q∑
j=1

n−2∑
i=0

βi

i!

r∑
q1=2

n−r∑
q2=0

Sr−q1,n−r−q2,i(Qq1,q2,j), (2.2.25)

with

Qq1,q2,j
s :=

q1∑
i1=2

q2∑
i2=0

i1−1∑
h1=1

i2∑
h2=0

q1−i1∑
p1=0

q2−i2∑
p2=0

p1+p2∑
m1=0

q1−i1−p1+q2−i2−p2∑
m2=0(

Sp1,p2,m1
s

(
σh1,h2,j

s

)
(m1 + 1)!

Sq1−i1−p1,q2−i2−p2,m2
s

(
σi1−h1,i2−h2,j

s

)
(m2 + 1)!

+

[
Sp1,p2,m1

s

(
σi1−h1,i2−h2,j

s

)
, Sq1−i1−p1,q2−i2−p2,m2

s

(
σh1,h2,j

s

)]
(m1 +m2 + 2)(m1 + 1)!m2!

)
,

and with the operators S being defined as

Sr−1,n−r,0
s (A) :=

A if r = n = 1,

0 otherwise,

Sr−1,n−r,i
s (A) :=

∑
(j1,k1),...,(ji,ki)∈N2

0
j1+···+ji=r−1
k1+···+ki=n−r

[
Y (j1,k1)

s ,
[
. . . ,

[
Y (ji,ki)

s , As
]
. . .
]]

=
∑

(j1,k1),...,(ji,ki)∈N2
0

j1+···+ji=r−1
k1+···ki=n−r

ad
Y

(j1,k1)
s

◦ · · · ◦ ad
Y

(ji,ki)
s

(As), i ∈ N.

Remark 2.2.6. All the processes Y (r,n−r), with n ∈ N and r = 0, . . . , n, are well defined ac-
cording to the recursion (2.2.23)-(2.2.24)-(2.2.25), as long as B and A(1), . . . , A(q) are bounded
and progressively measurable stochastic processes.

Example 2.2.7. As we already pointed out in the introduction, in the case j = 1 and B ≡ 0,
the SDE (2.0.1) admits an explicit solution given by

Yt = −1
2A

2t+AWt, t ≥ 0,

and the terms in the ME (2.2.20) read as

Y
(1)

t = AWt, Y
(2)

t = −1
2A

2t, Y
(n)

t = 0, n ≥ 3.

In particular, the Mangus expansion coincides with the exact solution with the first two
terms.
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2.3. Convergence Analysis

In this section, we prove Theorem 2.0.1. To avoid ambiguity, only in this section, we denote
byMd×d

R andMd×d
C the spaces of (d×d)-matrices with real and complex entries, respectively;

on these spaces we shall make use of the Frobenius norm denoted by ∥·∥F . We say that a
matrix-valued function is holomorphic if all its entries are holomorphic functions. We recall
that W = (W 1, . . . ,W q) is a q-dimensional standard Brownian motion and A(1), . . . , A(q), B

are boundedMd×d
R -valued progressively measurable stochastic processes defined on a filtered

probability space (Ω,F ,P, (Ft)t≥0). Also recall that, for any Md×d
R -valued process M =

(Mt)t∈[0,T ], we set ∥M∥T := ∥∥M∥F ∥L∞([0,T ]×Ω).
We start with two preliminary lemmas.

Lemma 2.3.1. Assume that Y = (Y ϵ,δ
t )ϵ,δ∈R, t∈R≥0 is a Md×d

R -valued stochastic process that
can be represented as a convergent series of the form (2.2.19). If Y solves the SDE (2.2.16) up
to a positive stopping time τ , then Y (r,n−r) in (2.2.19) are Itô processes and satisfy (2.2.23)-
(2.2.24)-(2.2.25) for any t < τ .

Proof. We prove (2.2.23)-(2.2.24)-(2.2.25) only for n = 0, 1. Namely, we show that (2.2.21)
and (2.2.22) hold up to time τ , P-a.s. The representation for the general term Y (r,n−r) follows
by induction.

Since Y is of the form (2.2.19) then Y
(0,0)

t = Y 0,0
t for any t < τ . Moreover, since Y solves

the SDE (2.2.16) then Y 0,0 ≡ 0 on [0, τ [, P-a.s. Thus Y (0)
t ≡ 0 holds up to time τ , P-a.s.

Now, (2.2.16) yields

Y ϵ,0
t = ϵ

∫ t

0
A(j)

s dW j
s + ϵRϵ

t , t ∈ [0, τ [, P-a.s., (2.3.1)

where

Rϵ
t =

∫ t

0

( ∞∑
k=1

βk

k! adk
Y ϵ,0

s

(
A(j)

s

))
dW j

s

− ϵ

2

∫ t

0
L−1

Y ϵ,0
s

(
Q

Y ϵ,0
s

( ∞∑
k=0

βk

k! adk
Y ϵ,0

s

(
A(j)

s

)
,

∞∑
k=0

βk

k! adk
Y ϵ,0

s

(
A(j)

s

)))
ds.

Note that, again by (2.2.16), R0 ≡ 0 P-a.s. Moreover, representation (2.2.19) implies conti-
nuity of ϵ 7→ Y ϵ,0

t near ϵ = 0, which in turn implies the continuity of ϵ 7→ Rϵ
t . Thus we have

lim
ϵ→0

Rϵ
t = R0

t P-a.s. This, together with (2.3.1) and (2.2.19) implies that (2.2.21) necessarily
holds, up to time τ , P-a.s.

Similarly, (2.2.16) yields

Y 0,δ
t = δ

∫ t

0
Bsds+ δQδ

t , t ∈ [0, τ [, P -a.s.,

with
Qδ

t =
∫ t

0

( ∞∑
k=1

βk

k! adk
Y 0,δ

s
(Bs)

)
ds
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and the same argument employed above yields (2.2.22) up to time τ , P-almost surely. □

Lemma 2.3.2. Let M ∈Md×d
C be nonsingular and such that ∥M − Id∥ < 1 where ∥·∥ is the

spectral norm. Then M has a unique logarithm, which is

logM =
∞∑

n=1
(−1)n+1 (M − Id)n

n
(2.3.2)

= (M − Id)
∫ ∞

0

1
1 + µ

(µId +M)−1dµ. (2.3.3)

In particular, we have

∥logM∥ ≤ − log
(
1− ∥M − Id∥

)
. (2.3.4)

Proof. The first representation is a standard result. The second representation stems from
the factorization M = V JV −1 with J in Jordan form, under the assumption that M has no
non-positive real eigenvalues, i.e. λ ∈ C\]−∞, 0] for any λ eigenvalue of M . Alternatively, see
Higham (2008): p. 269 Theorem 11.1 together with the substitution rule using f(t) := 1

1+t .
Now, ∥M − Id∥ < 1 implies that there are no non-positive real eigenvalues, because it

implies with the definition of the spectral norm that for all v ∈ Rd with |v| = 1

1 > ∥M − Id∥ = max
|ṽ|=1

|(M − Id) ṽ|
|ṽ|

≥ |Mv − v| ,

which in turn implies that, if λ is a real eigenvalue of M and v is one of its normalized
eigenvectors, then

1 > |Mv − v| = |λv − v| = |λ− 1| |v| = |λ− 1| .

The inequality (2.3.4) follows from applying the triangular inequality to (2.3.2), the sub-
multiplicativity of the spectral norm and using log (1− x) = −∑∞

k=1
xk

k , x ∈ (0, 1), for the
scalar logarithm. □

We have one last preliminary lemma, containing some technical results concerning the
solutions to (2.2.12). These are semi-standard, in that they can be inferred by combining
and adapting existing results in the literature.

Lemma 2.3.3. For any T > 0 and ϵ, δ ∈ C, the SDE (2.2.12) has a unique strong solution
(Xϵ,δ

t )t∈[0,T ]. For any p ≥ 1 and h > 0 there exists a positive constant κ, only dependent on
∥A(1)∥T , . . . , ∥A(q)∥T , ∥B∥T , d, T , h and p, such that

E
[
∥Xϵ,δ

t −Xϵ′,δ′
s ∥2p

F

]
≤ κ

(
|t− s|p +

(∣∣ϵ− ϵ′∣∣+ ∣∣δ − δ′∣∣)2p )
, (2.3.5)

E
[

sup
0≤u≤t

∥Xϵ,δ
u −X

ϵ,δ
0 ∥

2p
F

]
≤ κtp(|ϵ|+ |δ|)2p, (2.3.6)

for any 0 ≤ t, s ≤ T and ϵ, δ, ϵ′, δ′ ∈ C with |ϵ| , |δ| , |ϵ′| , |δ′| ≤ h.
Up to modifications, (Xϵ,δ

t )ϵ,δ∈C, t∈[0,T ] is a continuous process such that:
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i) for any t ∈ [0, T ], the function (ϵ, δ) 7→ Xϵ,δ
t is holomorphic;

ii) the functions (t, ϵ, δ) 7→ ∂ϵX
ϵ,δ
t and (t, ϵ, δ) 7→ ∂δX

ϵ,δ
t are continuous;

iii) for any p ≥ 1 and h > 0 there exists a positive constant κ only dependent on ∥A(1)∥T , . . . , ∥A(q)∥T ,
∥B∥T , d, T , h and p, such that

E
[

sup
0≤s≤t

{
∥∂ϵX

ϵ,δ
s ∥

2p
F + ∥∂δX

ϵ,δ
s ∥

2p
F

}]
≤ κtp(|ϵ|+ |δ|)p, (2.3.7)

for any t ∈ [0, T ] and |ϵ| , |δ| ≤ h.

Proof. Existence of the solution and estimates (2.3.5)-(2.3.6) of the moments follow from the
results in Section 5, Chapter 2 in Krylov (2008) (in particular, see Corollary 5 on page 80
and Theorem 7 on page 82).

The second part of the statement is a refined version of the Kolmogorov continuity theorem
in the form that can be found for instance in Section 2.3 in Kunita (2019). □

Remark 2.3.4. The existence and uniqueness for the solution to (2.0.1) is a particular case of
the previous result.

We are now in the position to prove Theorem 2.0.1.

Proof of Theorem 2.0.1. We fix h > 1, T > 0, and let (Xϵ,δ
t )ϵ,δ∈C, t∈[0,T ] be the solution of the

SDE (2.2.12) as defined in Lemma 2.3.3. Moreover, for t ∈ ]0, T ], we set Qt,h := ]0, t[×Bh(0)
where Bh(0) = {(ϵ, δ) ∈ C2 | |(ϵ, δ)| < h}.

Part (i): as Xϵ,δ
0 = Id, by continuity the random time defined as

τ := sup
{
t ∈ [0, T ]

∣∣∣∥Xϵ,δ
s − Id∥F < 1− e−π for any (s, ϵ, δ) ∈ Qt,h

}
(2.3.8)

is strictly positive. Furthermore, again by continuity,

(τ ≤ t) =
⋃

(s,ϵ,δ)∈Q̃t,h

(
∥Xϵ,δ

s − Id∥F ≥ 1− e−π
)
, t ∈ [0, T ],

where Q̃t,h is a countable, dense subset of Qt,h, which implies that τ is a stopping time.
Let (t, ϵ, δ) ∈ Qτ,h: by Lemma 2.3.2 applied to M = Xϵ,δ

t we have

Y ϵ,δ
t := logXϵ,δ

t =
∞∑

n=1
(−1)n+1

(
Xϵ,δ

t − Id

)n
n

=
(
Xϵ,δ

t − Id

) ∫ ∞

0

1
1 + µ

(
µId +Xϵ,δ

t

)−1
dµ. (2.3.9)

Notice that Xϵ,δ
t (and therefore also Y ϵ,δ

t ) is real for ϵ, δ ∈ R: in particular, Yt = Y 1,1
t is real

and this proves Part (i).
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Part (ii): since (ϵ, δ) 7→ Xϵ,δ
t is holomorphic, we can differentiate (2.3.9) to infer that (ϵ, δ) 7→

Y ϵ,δ
t is holomorphic as well: indeed, we have for (t, ϵ, δ) ∈ Qτ,h

∂ϵY
ϵ,δ

t = ∂ϵX
ϵ,δ
t

∫ ∞

0

1
1 + µ

(
µId +Xϵ,δ

t

)−1
dµ

+
(
Xϵ,δ

t − Id

) ∫ ∞

0

1
1 + µ

(
µId +Xϵ,δ

t

)−1(
∂ϵX

ϵ,δ
t

)(
µId +Xϵ,δ

t

)−1
dµ,

and similarly by differentiating w.r.t. to δ. Then the expansion of Y ϵ,δ
t in power series at

(ϵ, δ) = (0, 0) is absolutely convergent on Bh(0) and the representation (2.2.19) holds on
Qτ,h for some random coefficients Y (r,n−r)

t . To conclude we need to show that the latter
are as given by (2.2.23)-(2.2.24)-(2.2.25). Then (2.0.10) will stem from (2.2.19) by setting
(ϵ, δ) = (1, 1).

In light of Lemma 2.3.2, the logarithmic map is continuously twice differentiable on the
open subset of Md×d

C of the matrices M such that ∥M − Id∥ < 1: thus Y ϵ,δ
t admits an Itô

representation (2.2.10) for (t, ϵ, δ) ∈ Qτ,h. Then Proposition 2.2.2 together with (2.2.12) yield
(2.2.14)-(2.2.15) P-a.s. up to τ for any (ϵ, δ) ∈ Bh(0) ∩ R2. Furthermore, by estimate (2.3.4)
of Lemma 2.3.2 we also have

∥∥∥Y ϵ,δ
t

∥∥∥ < π for t < τ . Therefore, we can apply Baker’s Lemma
2.2.3 to invert L

Y ϵ,δ
t

in (2.2.14)-(2.2.15) and obtain that Y ϵ,δ solves (2.2.16) up to τ for any
(ϵ, δ) ∈ Bh(0) ∩ R2. Part (ii) then follows from Lemma 2.3.1.

Part (iii): for t ≤ T let

ft(ϵ, δ) := max
s∈[0,t]

∥Xϵ,δ
s − Id∥F , Mt := sup

(ϵ,δ)∈Bh(0)
ft(ϵ, δ).

By definition (2.3.8), we have with the Markov inequality

P(τ ≤ t) ≤ P
(
Mt ≥ 1− e−π) ≤ 1

(1− e−π)2E
[
M2

t

]
, (2.3.10)

and therefore (2.0.11) follows by suitably estimating E
[
M2

t

]
. To prove such an estimate we

will show in the last part of the proof that ft belongs to the Sobolev space W 1,2p(Bh(0)) for
any p ≥ 1 and we have

E
[
∥ft∥2p

W 1,2p(Bh(0))
]
≤ Ctp, t ∈ [0, T ], (2.3.11)

where the positive constant C depends only on ∥A(1)∥T , . . . , ∥A(q)∥T , ∥B∥T , d, T , h and p.
Since ft ∈W 1,2p(Bh(0)) and Bh(0) ⊆ R4, by Morrey’s inequality (cf., for instance, Corollary
9.14 in Brezis (2011)) for any p > 2 we have

Mt ≤ c0∥ft∥W 1,2p(Bh(0)), (2.3.12)

where c0 is a a positive constant, dependent only on p and h (in particular, c0 is independent
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of ø). Combining (2.3.11) with (2.3.12), for a fixed p > 2 we have

E
[
M2

t

]
≤ c2

0E
[
∥ft∥2W 1,2p(Bh(0))

]
≤

(by Hölder inequality)

≤ c2
0Ct, t ∈ [0, T ].

This last estimate, combined with (2.3.10), proves (2.0.11).

To conclude, we are left with the proof of (2.3.11). First we have

E
[ ∫

Bh(0)
|ft(ϵ, δ)|2pdϵ dδ

]
=
∫

Bh(0)
E
[
|ft(ϵ, δ)|2p]dϵ dδ ≤ Ctp, (2.3.13)

where we used the estimate (2.3.6) of Lemma 2.3.3 in the last inequality. Fix now t ∈ ]0, T ],
(ϵ, δ), (ϵ′, δ′) ∈ Bh(0) such that ft(ϵ′, δ′) ≤ ft(ϵ, δ) and set

t̄ ∈ arg max
0≤s≤t

∥Xϵ,δ
s − Id∥F , t̃ ∈ arg max

0≤s≤t
∥Xϵ′,δ′

s − Id∥F .

Note that the arg max above do exist in that the process gs(ϵ, δ) := Xϵ,δ
s − Id is continuous

in s and we have

∣∣ft(ϵ, δ)− ft(ϵ′, δ′)
∣∣ =

∣∣∣∥gt̄(ϵ, δ)∥F − ∥gt̃
(ϵ′, δ′)∥F

∣∣∣ ≤ ∣∣∥gt̄(ϵ, δ)∥F − ∥gt̄(ϵ′, δ′)∥F
∣∣

≤ ∥gt̄(ϵ, δ)− gt̄(ϵ′, δ′)∥F ≤ sup
0≤s≤t

∥gs(ϵ, δ)− gs(ϵ′, δ′)∥F

≤
∣∣(ϵ, δ)− (ϵ′, δ′)

∣∣ sup
0≤s≤t

sup
|ϵ̄−ϵ|≤|ϵ′−ϵ|
|δ̄−δ|≤|δ′−δ|

∥∇gs(ϵ̄, δ̄)∥F ,

where ∇ = ∇ϵ,δ. This, as (s, ϵ, δ) 7→ ∇gs(ϵ, δ) is continuous on Qt,h, implies ft ∈W 1,2p(Bh(0))
and yields the key inequality

|∇ft(ϵ, δ)| ≤ sup
0≤s≤t

∥∇Xϵ,δ
s ∥F , (ϵ, δ) ∈ Bh(0).

Therefore, we have

E
[ ∫

Bh(0)
|∇ft(ϵ, δ)|2p dϵ dδ

]
=
∫

Bh(0)
E
[
|∇ft(ϵ, δ)|2p ]dϵ dδ

≤
∫

Bh(0)
E
[

sup
0≤s≤t

∥∇Xϵ,δ
s ∥

2p
F

]
dϵ dδ ≤ Ctp,

where we used the estimate (2.3.7) of Lemma 2.3.3 in the last inequality. This, together with
(2.3.13), proves (2.3.11) and conclude the proof. □
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2.4. Numerical Tests

We present here some numerical tests in order to confirm the accuracy of the approximate
solutions to (2.0.1) stemming from the truncation of the series (2.0.10).

In Section 2.4.2, we highlight the features of the Magnus expansion with respect to different
types of the coefficient processes At and Bt, namely general processes, Ct := C · ct, for
C ∈ Rd×d and ct a scalar stochastic process, C = A,B, c = a, b, which we will call separable
coefficients and the case of constant coefficients At ≡ A, Bt ≡ B. We will see that the
expansion formulas can be refined with more knowledge about the coefficient functions, which
leads to increased accuracy and decreased computational times for the Magnus schemes.

We also show, how this approximation can be applied to approximate the solutions to
stochastic partial differential equations (SPDEs) of parabolic type with one spatial dimension
in Section 2.4.3 and kinetic SPDEs with two spatial dimensions in Section 2.4.4.

For the numerical tests we will implement the exponential of the truncated Magnus expan-
sion up to order n = 1, 2 and 3, i.e.

X(n) := e
∑n

i=1 Y (i)
, n = 1, 2, 3, (2.4.1)

and compare it with a benchmark solution to (2.0.1).

Error and notations. Throughout this section we will employ the following tags:

1. exact to denote the time-discretization of an explicit solution, if available;
2. euler for the solution obtained with a corresponding Euler-Maruyama scheme;
3. m1, m2 and m3 for the time-discretization of the Magnus approximations in (2.4.1), up

to order 1,2 and 3, respectively.

For the numerical error analysis we will make use of the following notations. Let us denote
by Xref and by Xapp a benchmark and an approximate solution, respectively.

In Section 2.4.3 and Section 2.4.4 we will show how a space-discretization for SPDEs
based on finite-difference techniques will result in matrix-valued SDEs. We will impose zero-
boundary conditions for these discretizations leading to errors in the vicinity of the boundary.
Therefore, we will only use a central part with varying size of the whole solution matrix at a
given time, which is illustrated in Figure 2.1. To vary the size we introduce a new parameter
κ = 0, 1, . . . indicating the 2−κ-th central part of the solution matrix Xd

t ∈ Rd×d, which
we will consider for our error analysis and denote the corresponding truncated matrix by
Xref,d,κ

t , Xapp,d,κ
t ∈ R⌊

d
2κ ⌋×⌊ d

2κ ⌋. Also we set

Iκ :=
{⌊

d

2 −
d

2κ+1

⌋
, . . . ,

⌊
d

2 + d

2κ+1

⌋}
to collect the corresponding indices.
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Xd,κ
t

i =
⌊

d
2 −

d
2·2κ

⌋

i =
⌊

d
2 + d

2·2κ

⌋

j =
⌊

d
2 −

d
2·2κ

⌋
j =

⌊
d
2 + d

2·2κ

⌋

d
2κ = Xd

t

d
2κ

Figure 2.1.: Graphical representation of Xd,κ
t compared to Xd

t for the error analysis to disre-
gard boundary effects.

For our error analysis we consider the following three norms:

MEd,κ
t := 1

M

M∑
m=1

∣∣∣Xref,d,κ
t,m −Xapp,d,κ

t,m

∣∣∣ ∈ R⌊
d

2κ ⌋×⌊ d
2κ ⌋

AMEd,κ
t := 1

|Iκ|2
∑
i,j

(
MEd,κ

t

)
ij
∈ R

Errd,κ
t := 1

M

M∑
m=1

∥∥∥Xref,d,κ
t,m −Xapp,d,κ

t,m

∥∥∥
F∥∥∥Xref,d,κ

t,m

∥∥∥
F

∈ R, (2.4.2)

where ∥·∥F denotes the Frobenius norm. The first one is a matrix consisting of a mean
absolute error between the reference solution and the approximation for each point in the
grid Iκ × Iκ by taking the mean over all trajectories. The second error is the average of
the first error for the corresponding grid indicated by κ. The larger κ the further away we
are from the spatial boundary, as illustrated in Figure 2.1. The third error is the mean of a
relative error between the reference solution and the approximation taking all points in the
region corresponding to κ into account. It will serve as our main error norm in this section.
In particular, we will set κ = 0 in Section 2.4.2 and κ = 4 in Section 2.4.3 and Section 2.4.4.

The remainder of this section is structured as follows: In the next Section 2.4.1 we will
discuss how to implement the Magnus expansion and its parallel-in-time and parallel-in-
simulation features, as well as, how to deal with the convergence radius of the Magnus
expansion. Afterwards, we show in Section 2.4.2 experiments in the case of matrix-valued
SDEs with different types of coefficient functions At and Bt. This is followed in Section 2.4.3
and Section 2.4.4 by an application to solving SPDEs in one and two spatial dimensions
by applying the so-called method of lines, leading to matrix-valued SDEs, which can be
approximated by the Magnus schemes.

29



2.4. Numerical Tests

2.4.1. Numerical Scheme and Features

In this section, we will explain how to best implement the numerical schemes based on the the
truncation of the Magnus expansion series (2.0.10). In the follwing numerical experiments in
Section 2.4.2–2.4.4 we will see good evidence that three terms of the Magnus expansion will
lead to satisfactory results. Therefore, we will refer to m2 (n = 2) as the Magnus expansion
using two terms and m3 (n = 3) as the one using three terms. An order one expansion is
usually not sufficient.

The idea of the Magnus expansion relies on the assumption that we can express the solution
as the exponential of some unknown Itô process Yt, which we will refer to as the Magnus
logarithm from now on. This leads to two different steps in the implementation of the
scheme: First, we compute the Magnus logarithm for a fixed order Y (n)

t and second we apply
the matrix exponential at the desired times t.

Note that contrary to the Euler-Maruyama scheme, we do not need to solve an equation for
the Magnus logarithm, we just need to compute iterated Lesbegue and stochastic integrals,
as well as the commutators of our coefficients.

Single step Magnus expansion. Let us focus on Figure 2.2 for the moment. Suppose we
know that the Magnus expansion will be convergent from t0 = 0 till t11 = T . Then we use first
a cumulative integration scheme, such as cumsum for a Riemann-sum approximation of the
Lebesgue integrals and the stochastic integrals to obtain values of the Magnus logarithm Yti ,
i = 1, . . . , 11 for all points in our time grid.1 This is usually quite fast and can be evaluated in
parallel for all trajectories. Depending on the size of the time grid, the number of simulations
and the matrix dimensions, it can be a good idea to use a GPU for this computation.

Now, having the Magnus logarithm evaluated, we can choose for the second step when
we want to evaluate the solution of the matrix-valued SDE (2.0.1) by taking the matrix
exponential. Therefore, all the selected points in time, say t3, t7, t11, can be evaluated in
parallel-in-time and parallel-in-simulation.2 Using a threaded CPU environment will almost
always lead to a speed-up compared to sequential schemes. If a GPU can further decrease the
computational time depends again on all the problem parameters and the chosen algorithm
for matrix exponentiation.

Usually, the evaluation of a full matrix exponential is more expensive then the evaluation
of the Magnus logarithm at one point in time. Therefore, the less matrix-exponentials the
better for the overall computational time.

1More details about the implementation can be found on https://github.com/kevinkamm/
StochasticMagnusExpansion/blob/main/AB_const/AB_const_magnus.m.

2More details about the implementation can be found on https://github.com/kevinkamm/
StochasticMagnusExpansion/blob/main/AB_const/m_exp.m.
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t0
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Yt8
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Yt10

t11

Xt11

Yt11

Figure 2.2.: Graphical representation of the evaluation of the Magnus logarithm and expo-
nential.

Iterated Magnus expansion. Since the Magnus expansion is only convergent up to a strictly
positive stopping time, the convergence radius can be quite small for some problems. There-
fore, let us first of all note that if Xt is the solution to

dXt = BtXtdt+AtXtdWt, X0 = I,

then by simple substitution X̃t := Xt · X̃0 is the solution to

dXt = BtXtdt+AtXtdWt, X0 = X̃0,

where X̃0 is a bounded matrix-valued random variable, because the integration acts component-
wise.

This allows us to split the evaluation of the SDE on the interval [0, T ] into smaller sub-
intervals (t0, t3], (t3, t7], (t7, t11]. As illustrated in Figure 2.2, we will evaluate the Magnus
expansion consecutively on each of them, i.e. use the terminal evaluation highlighted in blue
as the initial point of the next sub-interval till the next terminal time highlighted in red.

We will call this method iterated Magnus expansion.3 On each sub-interval, the Magnus
expansion still has the usual parallel-in-time features, which we saw in the single step method.
Furthermore, due to its relatively large convergence region in time, we can use fewer iterations
compared to other iterative methods, e.g. for the Euler-Maruyama scheme, which we will see
in Section 2.4.2–2.4.4.

Initial datum. In Matlab 2022a the full matrix exponential is computed by a scaling and
squaring adjusted Padé-approximation, which uses matrix-matrix multiplications.

If in the application of the Magnus expansion the final step involves a multiplication by a
single vector, meaning

Ut := Xt · v ≈ exp (Yt) v

it is in general a good idea to avoid the calculation of the full matrix exponential. Just by
looking at the definition of the matrix exponential, we can see that matrix-matrix multipli-

3More details about the implementation can be found on https://github.com/kevinkamm/IteratedMagnus/
blob/main/SDEconst/magnusConstCS.m.
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cations can be replaced by matrix-vector multiplications, i.e.

exp (A) v ≈
(
I +A+ 1

2A
2 + 1

6A
3 + · · ·

)
v = v +Av + 1

2A (Av) + 1
6A (A (Av)) + · · ·

This reduces the computational effort tremendously and we recommend the algorithm called
expmvtay2 by Ibáñez et al. (2022) for a fast and GPU-applicable method.4

We also tested expmv by Al-Mohy and Higham (2011) and a Krylov-subspace implemen-
tation called expv. However, for our purposes, expmvtay2 was more accurate and significantly
faster than the other methods.

Computational device. We already hinted at the possibilities to either use one or more
GPUs or CPUs for the Magnus logarithm or the matrix exponentiation.

Table 2.1.: Heuristic for choosing the computational device for the Magnus expansion with
M = 100 simulations.

X0 ∈ Rd×d X0 ∈ Rd×1

expm log expmvtay2 log
full if d ∈ [400, 1000]

GPU, otherwise
CPU

if d ≤ 200 CPU,
otherwise GPU

if d ∈ [400, 1000]
GPU, otherwise

CPU

if d ≤ 200 CPU,
otherwise GPU

sparse CPU (GPU not
allowed)

if d ≤ 200 CPU,
otherwise GPU

if d > 104 GPU,
otherwise CPU

if d > 104 GPU,
otherwise CPU

Based on our computer architecture with M = 100 simulations, we found the following
settings in Table 2.1 to work fastest in the case of separable and constant coefficients, which
we will define in Section 2.4.2.5

We can see, that we distinguish between four different cases for the corresponding device
for computing the Magnus logarithm and the matrix (-vector) exponential by considering full
or sparse coefficient processes At and Bt, as well as the two cases coming from either a vector
as initial datum or a matrix.

For each case the computational device is dependent on the matrix dimension of At and
Bt. For example in the case of full coefficient functions and a matrix as initial datum, we
suggest to use a GPU if the matrix dimension is in the interval [400, 1000]. The upper limit
comes from a restraint of available memory on the GPU. Note that in Matlab 2022a expm

cannot be computed with sparse matrices as input on a GPU and even though one can use
sparse inputs on a CPU, the outputs will in general not be sparse anymore.

In the case of general coefficients, we always recommend to use a GPU for the evaluation of
the logarithm, because one has to evaluate many matrix multiplications. For the evaluation
of the exponential, we suggest to follow Table 2.1.

4More details about the implementation can be found on https://github.com/kevinkamm/IteratedMagnus/
blob/main/SDEconst/expmvtay2.m.

5More details about the implementation can be found on https://github.com/kevinkamm/IteratedMagnus/
blob/main/SDEconst/compMode.m.
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2.4.2. Application to Matrix-Valued SDEs

In this section, we will apply the Magnus expansion to different SDEs of the form (2.0.1)
with one Brownian motion. To have an explicit solution as a benchmark for the Magnus
expansion, we will first show, that in the case of 2 × 2 upper triangular matrices one can
solve SDE (2.0.1) explicitly by applying an inhomogeneous extension of the Doleans-Dade
exponential, which is known as Yoeurp and Yor’s formula (cf. Duan and Yan (2008): p. 2
Theorem 1.1 ) in the case of continuoues semimartingales. Let us briefly recall the result and
apply it to our example.

Lemma 2.4.1. Let Zt, Z0 = 0, and Ht be continuous semimartingales. Then the unique
solution of the linear inhomogeneous scalar SDE

Xt = Ht +
∫ t

0
XsdZs

is given by

Xt = Et (Z)
(
H0 +

∫ t

0
E−1

s (Z) dGs

)

where Et (Z) := exp
(
Zt − 1

2 ⟨Z⟩t
)

denotes the Doleans-Dade exponential or stochastic expo-
nential and E−1

t (Z) := Et (−Z· + ⟨Z⟩·) its inverse, as well as

Gt := Ht − ⟨H,Z⟩t

This result can be verified by applying Itô’s formula.
Now, let us consider the following example

dXt = BtXtdt+AtXtdt, X0 :=
(
x11

0 x12
0

0 x22
0

)
,

Bt :=
(
b11

t b12
t

0 b22
t

)
, At :=

(
a11

t a12
t

0 a22
t

)
,

(2.4.3)

where aij
t and bij

t are bounded progressively measurable real-valued processes and xij
0 ∈ R for

i, j = 1, 2.
Let us consider each component of the equation, i.e.

dXij
t =

(
bi1

t X
1j
t + bi2

t X
2j
t

)
dt+

(
ai1

t X
1j
t + ai2

t X
2j
t

)
dWt.

In the case of the lower left corner of the equation, i.e. i = 2, j = 1 we have

dX21
t = b22

t X
21
t dt+ a22

t X
21
t dWt, X21

0 = 0.

Since X21
0 = 0, we see that a solution is given by X21

t ≡ 0 and therefore by uniqueness the
solution. This simplifies the equations for the diagonal entries. Hence, their solutions are
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Table 2.2.: Upper triangular case with general coefficients as in (2.4.4). Computational times
and errors for each component with ∆Int

t = 10−3 and M = 1000 simulations.
euler euler m2

Step size ∆t = 10−3 ∆t = 10−4 ∆t = 0.1
(XT )11 ErrT = 1 · 10−3 ErrT = 2 · 10−4 ErrT = 3 · 10−4

(XT )22 ErrT = 4 · 10−4 ErrT = 5 · 10−5 ErrT = 1 · 10−4

(XT )12 ErrT = 1.3 · 10−2 ErrT = 3.9 · 10−3 ErrT = 7.3 · 10−3

Comp. Time 0.16 s 1.95 s 1.65 s

given by the Doleans-Dade exponential

Xii
t := xii

0 Et

(∫ ·

0
bii

s ds+
∫ ·

0
aii

s dWs

)
.

The upper right corner remains inhomogeneous with the now known X22
t . Thus, we can apply

Lemma 2.4.1 in the case Ht := x12
0 +

∫ t
0 b

12
s X

22
s ds+

∫ t
0 a

12
s X

22
s dWs Zt =

∫ t
0 b

11
s ds+

∫ t
0 a

11
s dWs.

Apart from computing stochastic and Lebesgue integrals, we now have an explicit solution
to this problem, to which we will compare the Euler-Maruyama scheme and the Magnus
expansion. We will compare three different examples depending on the choice of aij

t and bij
t

to demonstrate the behaviour of the Magnus expansion.

Case 1: general coefficients. In our formal derivation in Section 2.2 of the Magnus expan-
sion, we encountered the general formulas of the expansion. In this paragraph, we will put
this general formula of order 2 to the test and compare it to the Euler-Maruyama scheme.
We consider

At :=
(

0.0892 g(WA,1
t ) 0.4015 g(WA,2

t )
0 0.0169 g(WA,3

t )

)
, g(x) :=

√
1 + 1

1 + x2

Bt :=
(

0.9234 f(WB,1
t ) 0.3813 f(WB,2

t )
0 0.5403 f(WB,3

t )

)
, f(x) := 1 + 1

1 + x2 ,

(2.4.4)

where WC,i
t , C = A,B, i = 1, 2, 3, are independent Brownian motions.

The values in the matrices At and Bt were chosen at random, with the uniform distribution
and will remain the same throughout the following two tests, as well. Since, we want to test
the general formula, we decided to apply a bounded function to a different standard Brownian
motion in each entry of the upper triangular matrix.

In Table 2.2, we can see the results of our experiment.6 We can see the mean relative error
ErrT for each entry in the matrix, i.e. (XT )12 corresponds to the individual process in the
upper right corner of the matrix-valued process Xt. We compare m2 with step size ∆t = 0.1
using an integration-discretization of ∆Int

t = 10−3 to euler with ∆t = 10−3 and ∆t = 10−4.
In all cases, we can see a slightly better accuracy of euler with step size 10−4 compared

6More details about the implementation can be found on https://github.com/kevinkamm/IteratedMagnus/
blob/main/SDEgeneral/main.m.
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to m2 and slightly higher computational time for M = 1000 simulations. Additionally, m2 is
almost an order more accurate than euler with step size 10−3 but significantly slower.

Another test with everything the same but ∆Int
t = 10−4, showed an increase in accuracy

for the Magnus expansion. In the upper right corner the error was 2.5 · 10−3 and on the
diagonal the error was of order 2 ·10−7, however the computational time increased to roughly
12 seconds.

The reason for the good accuracy in the diagonal entries is due to the fact that At and
Bt being upper triangular implies that the commutator commutes on the diagonal. With
each further commutation another off-diagonal is set to zero, which can lead to exact—up to
discretization errors of the integrals—results of the Magnus expansion in the corresponding
entries.

Conclusively, the Magnus expansion of order 2 can be useful even in the most general case,
especially if there are some structural properties as being upper triangular or nilpotency, and
the accuracy of the scheme is very good. But it depends on the specific problem if it is faster
than the Euler-Maruyama scheme. An expansion of order 3 is out of question in this general
setting, because its computational effort would be too high.

Case 2: separable coefficients. We will see that the more we know about the problem, the
more the Magnus expansion can gain from it. We will now consider the case of separable
coefficients, i.e.

At := Aat, Bt := B bt,

for A,B ∈ Rd×d constant matrices and at, bt are scalar, progressively measurable and bounded
processes with values in R. In this case, the general expansion formulas seen in Section 2.2.1
simplify a lot, i.e. for order one we have:

Y
(1)

t = A

∫ t

0
asdWs +B

∫ t

0
bsds.

This is already a huge benefit compared to the general case, because only one Lebesuge and
one stochastic integral has to be computed instead of d× d each.

For order two, we see an even greater simplification, because the scalar processes at and bt

commute and we have

Y
(2)

t = −1
2A

2
∫ t

0
a2

sds+ 1
2 [B,A]

(∫ t

0
bs

∫ s

0
ardWrds−

∫ t

0
as

∫ s

0
brdrdWs

)
.
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Table 2.3.: Upper triangular case with separable coefficients as in (2.4.5). Computational
times and errors for each component with ∆Int

t = 10−4 and M = 1000 simulations.
euler euler m2 m3

Step size ∆t = 10−3 ∆t = 10−4 ∆t = 0.1 ∆t = 0.1
(XT )11 ErrT = 1 · 10−3 ErrT = 1 · 10−4 ErrT = 3 · 10−15 ErrT = 3 · 10−15

(XT )22 ErrT = 4 · 10−4 ErrT = 5 · 10−5 ErrT = 2 · 10−15 ErrT = 2 · 10−15

(XT )12 ErrT = 1.5 · 10−2 ErrT = 5.2 · 10−3 ErrT = 4.1 · 10−3 ErrT = 1.9 · 10−3

Comp. Time 0.18 s 1.98 s 0.5 s 1.2 s

Now, the order three expansion is numerically feasible and reads as

Y
(3)

t = 1
12 [[B,A] , A]

∫ t

0
a2

s

∫ s

0
brdrds+ 1

4
[
B,A2

] ∫ t

0
a2

s

∫ s

0
brdrds

− 1
4
[
B,A2

] ∫ t

0
bs

∫ s

0
a2

rdrds−
1
12 [[B,A] , A]

∫ t

0

∫ s

0
ardWr

∫ s

0
brdrasdWs

+ 1
12 [[B,A] , A]

∫ t

0

(∫ s

0
ardWr

)2
bsds+ 1

4 [[B,A] , A]
∫ t

0

∫ s

0
ar

∫ r

0
bududWrasdWs

− 1
4 [[B,A] , A]

∫ t

0

∫ s

0
br

∫ r

0
audWudrasds+ 1

12 [[B,A] , B]
∫ t

0

∫ s

0
brdr

∫ s

0
ardWrbsds

− 1
4 [[B,A] , B]

∫ t

0

∫ s

0
br

∫ r

0
audWudrbsds+ 1

4 [[B,A] , B]
∫ t

0

∫ s

0
ar

∫ r

0
bududrbsds

− 1
12 [[B,A] , B]

∫ t

0

(∫ s

0
brdr

)2
asdWs.

In our test, we want to stay as close as possible to the general coefficient case, to have a
bit of comparability. In particular, we chose for two independent Brownian motions W 1

t , W 2
t

A :=
(

0.0892 0.4015
0 0.0169

)
, at := f(W 1

t ), g(x) :=
√

1 + 1
1 + x2

B :=
(

0.9234 0.3813
0 0.5403

)
, bt := g(W 2

t ), f(x) := 1 + 1
1 + x2 .

(2.4.5)

In Table 2.3 we can see the results of our experiment.7 We can see the mean relative error
ErrT for each entry in the matrix, i.e. (XT )12 corresponds to the individual process in the
upper right corner of the matrix-valued process Xt. We compare m2 and m3 with step size
∆t = 0.1 using a integration-discretization of ∆Int

t = 10−4 to euler with ∆t = 10−3 and
∆t = 10−4.

In all cases, we can see for the solution in the upper right corner a slightly better accu-
racy of m2 and m3 compared to euler with step size 10−4. On the diagonal however, the
Magnus expansion of order two is already exact up to discretization errors, which have now
a significantly smaller impact than in the general coefficient case.

Comparing the computational times, we can see that m2, m3 is almost four, twice times as

7More details about the implementation can be found on https://github.com/kevinkamm/IteratedMagnus/
blob/main/SDEseparable/main.m.
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Table 2.4.: Upper triangular case with constant coefficients as in (2.4.6). Computational
times and errors for each component with ∆Int

t = 10−3 and M = 1000 simulations.
Component euler euler m2 m3
Step size ∆t = 10−3 ∆t = 10−4 ∆t = 1 ∆t = 1
(XT )11 ErrT = 5 · 10−5 ErrT = 4 · 10−4 ErrT = 3 · 10−18 ErrT = 3 · 10−18

(XT )22 ErrT = 1 · 10−5 ErrT = 1 · 10−4 ErrT = 3 · 10−19 ErrT = 3 · 10−19

(XT )12 ErrT = 1.8 · 10−2 ErrT = 5.2 · 10−3 ErrT = 3.2 · 10−2 ErrT = 2.1 · 10−3

Comp. Time 0.055 s 0.56 s 0.082 s 0.086 s

fast as euler with step size 10−4, respectively, and three, six times slower than euler with
step size 10−3.

Again, we can see that the Magnus expansion has a good accuracy and an Euler scheme
with comparable error is now slower than the Magnus schemes.

If at := g(t) and bt := f(t) are deterministic polynomials, then the stochastic integrals can
be expressed by possibly iterated Lebesgue integrals by using Itô’s formula, see Lemma A.1.1.
A special case with f ≡ 1 ≡ g is part of the next paragraph.

Case 3: constant coefficients. Now, we consider the case, where At and Bt are constant
matrices, i.e.

A :=
(

0.0892 0.4015
0 0.0169

)
, B :=

(
0.9234 0.3813

0 0.5403

)
. (2.4.6)

The first three terms of the Magnus expansion read as

Y
(1)

t = Bt+AWt, Y
(2)

t = [B,A]
(∫ t

0
Wsds−

1
2 tWt

)
− 1

2A
2t,

Y
(3)

t = [[B,A] , A]
(1

2

∫ t

0
W 2

s ds−
1
2Wt

∫ t

0
Wsds+ 1

12 tW
2
t

)
+ [[B,A] , B]

(∫ t

0
sWsds−

1
2 t
∫ t

0
Wsds−

1
12 t

2Wt

)
. (2.4.7)

and a detailed derivation can be found in the appendix of Kamm, Pagliarani and Pas-
cucci (2022) or apply Lemma A.1.1 to the expansion formulas from the separable case with
at ≡ 1 ≡ bt and collect all terms. As we can see, in order to discretize Y (n) it is not necessary
to approximate stochastic integrals. This allows us to use a sparser time grid compared to
the previous cases, for which the discretization of stochastic integrals were necessary.

In Table 2.4 we can see the results of our experiment.8 We can see the mean relative error
ErrT for each entry in the matrix, i.e. (XT )12 corresponds to the individual process in the
upper right corner of the matrix-valued process Xt. We compare m2 and m3 with step size
∆t = 1 using an integration-discretization of ∆Int

t = 10−4 to euler with ∆t = 10−3 and
∆t = 10−4.

8More details about the implementation can be found on https://github.com/kevinkamm/IteratedMagnus/
blob/main/SDEconst/main.m.
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In all cases, we can see for the solution in the upper right corner a slightly better accuracy of
m3 compared to euler with step size 10−4. On the diagonal however, the Magnus expansion
of order two is already exact up to machine precision and this time there are no discretization
errors, since the integrals were solved explicitly.

Comparing the computational times, we can see that m2, m3 are both almost six times as
fast as euler with step size 10−4, and only slightly slower than euler with step size 10−3.

Conclusively, in all the previous tests we could see that the Magnus expansion has a good
accuracy and an Euler scheme with comparable error is slower than the Magnus schemes.
Additionally, the more we now about the problem and the more we can refine the expansion
formulas, the greater the computational advantage.

Remark 2.4.2. In Kamm, Pagliarani and Pascucci (2021) we performed additional tests
and highlighted the parallel-in-time features of the Magnus expansion. In particular, we
showed a test where the upper right corner of the SDE (2.4.3) is deterministically depen-
dent on time and the other entries are constant. In such a case, the stochastic integrals in
the Magnus expansion formulas can be rewritten as Lebesgue integrals, which improves the
performance similar to the constant case.

2.4.3. Application to One-Dimensional SPDEs

The aim of this subsection is to apply the Magnus expansion for the numerical solution of
parabolic stochastic partial differential equations (SPDEs) with one spatial dimension.9 We
derive an approximation scheme for the general case of variable coefficients and perform sev-
eral tests in the case of the stochastic heat-equation, for which an exact solution is available.

Let (Ω,F ,P, (Ft)t≥0) be a filtered probability space endowed with a real Brownian motion
W . We consider the stochastic Cauchy problemdut(x) = Btut(x)dt+ Atut(x)dWt, t > 0, x ∈ R,

u0(x) = ϕ(x),
(2.4.8)

where Bt is the elliptic linear operator acting as

Btut(x) = 1
2g

xx
t (x)∂xxut(x) + fx

t (x)∂xut(x) + ht(x)ut(x), (2.4.9)

and At is the first-order linear operator acting as

Atut(x) = σx
t (x)∂xut(x) + σt(x)ut(x). (2.4.10)

The coefficients (h, fx, gxx, σ, σx) are random fields indexed by (t, x) ∈ [0,∞[×R and the
initial datum ϕ is a random field on R. A classical solution to (2.4.8) is understood here as
a predictable and almost-surely continuous random field u = ut(x) over [0,∞[×R, such that

9More details about the implementation can be found on https://github.com/kevinkamm/IteratedMagnus/
tree/main/SPDE1d.
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ut ∈ C2(R) a.s. for any t > 0 and

ut(x) = ϕ(x) +
∫ t

0
Bsus(x)ds+

∫ t

0
Asus(x)dWs, t ≥ 0, x ∈ R. (2.4.11)

There is a vast literature on SPDEs and problems of the form (2.4.8), under suitable mea-
surability, regularity and boundedness assumptions on the coefficients and on the initial da-
tum: see, for instance, Krylov and Rozovskii (1977), Mikulevicius (2000), Chow (2015),
Pascucci and Pesce (2020) and the references therein.

Note that, in analogy with deterministic PDEs, the solution of the Cauchy problem (2.4.8)
can be written, in some cases, as a convolution of the initial datum with a stochastic funda-
mental solution p(t, x; 0, ξ), i.e.

ut(x) =
∫
R
p(t, x; 0, ξ)ϕ(ξ)dξ, (t, x) ∈ ]0,∞[×R, (2.4.12)

with p(t, x; 0, ξ) being a random field that solves the SPDE in (2.4.8) with respect to the
variables (t, x) and which approximates a Dirac delta centered at ξ as t approaches 0.

In the following subsections, we will demonstrate how to derive an SDE of the form (2.0.1)
to approximate the SPDE (2.4.8) and apply the Magnus expansion to it. In the end, we will
recall the Euler-Maruyama scheme for the approximating SDE.

Space discretization and Magnus expansion. We proceed in this paragraph by the so-
called method of lines. In this context, it means that we discretize the spatial derivatives but
do not discretize time.

Therefore, we introduce the following homogeneous grid Xnx
ax,bx

with nx + 2 points on the
subset [ax, bx] ⊂ R for the space variable

Xnx
ax,bx

:= {xnx
i ∈ [ax, bx] : xnx

i = ax + i∆x, i = 0, . . . , nx + 1} , ∆x := bx − ax

nx + 1 , (2.4.13)

Moreover, let us define

unx,1
t := (ut(xi))i=1,...,nx

, ϕnx,1 := (ϕ(xi))i=1,...,nx
.

We consider the nx × 1-dimensional SDE

dUnx,1
t = BtU

nx,1
t dt+AtU

nx,1
t dWt, Unx,1

0 = ϕnx,1, (2.4.14)

where At and Bt are matrix-valued processes, which will be defined via space-finite differences
in the next paragraph in a way that Unx,1

t ≈ unx,1
t with respect to a suitable norm.

Since ϕnx,1 is now a vector in Rnx,1 we can use the standard basis ej ∈ Rnx to express it
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as a linear combination, i.e. there exists λj ∈ R, j = 1, . . . , nx, such that

ϕnx,1 =
nx∑

j=1
λjej .

Since the SDE (2.4.14) is linear, we can solve (2.4.14) taking the standard basis vectors as
initial datum first, multiply the solution by its corresponding coordinate λj and add up the
nx-solutions to obtain the solution for the Cauchy-problem with initial datum ϕnx,1.

In fact, this is equivalent to solving a matrix-valued SDE first and multiply it by the initial
datum to obtain the solution to the Cauchy problem, i.e.

dXt = BtXtdt+AtXtdWt, X0 = I ∈ Rnx×nx , (2.4.15)

Unx,1
t = Xtϕ

nx,1.

Now, the SDE (2.4.15) corresponds to the approximation of the fundamental solution p (t, x; 0, ξ)
and can be approximated with the Magnus expansion, i.e. Xt ≈ exp (Yt).

We will derive At andBt by means of finite-difference techniques, leading to sparse matrices,
which will be advantageous for the implementation and is subject of the next paragraph.

Derivation of At and Bt. The idea is to discretize the first and second-order derivatives,
for which we will use central differences with zero-boundary conditions. Therefore, let us
introduce the following matrices corresponding to the finite differences

Dx := 1
2∆xtridiagnx,nx (−1, 0, 1) ∈ Rnx×nx , Dxx := 1

(∆x)2 tridiagnx,nx (1,−2, 1) ∈ Rnx×nx

Additionally, we will introduce the following matrix-valued processes corresponding to the
coefficient functions on the discretized spatial grid for t ≥ 0

Zw
t := diagnx,nx

(
(zw

t (xi))i=1,...,nx

)
for Z = F,G,H,Σ, z = f, g, h, σ, respectively, and w ∈ {x, xx}.

Let us start with discretizing the first-order derivative with respect to x. First, we re-
place the partial derivative by the first-order central differences and assume zero-boundary
conditions, leading to

fx
t (xi)∂xut(xi) ≈ fx

t (xi)
ut(xi+1)− ut(xi−1)

2∆x

for all i = 1, . . . , nx. As aforementioned, we need to extract the correct matrix-valued process
for the equation (2.4.15).

In our notations, a derivative in x is a multiplication of the corresponding finite-difference
matrix from the left to unx,1

t , i.e.(
ut(xi+1)− ut(xi−1)

2∆x

)
i=1,...,nx

= DxUnx,1
t .
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The coefficients are now a multiplication from the left-hand side with the diagonal matrix
F x

t corresponding to the values ft(xi), i.e. we have

(fx
t (xi)∂xut(xi))i=1,...,nx

≈ F x
t D

xUnx,1
t .

This reasoning holds true for all other derivatives as well and conclusively, we have

Bt := Ht + F x
t D

x + 1
2G

xx
t Dxx, At := Σt + Σx

tD
x.

Euler-Maruyama To also have an approximation for the fundamental solution, we derive the
Euler-Maruyama scheme for (2.4.15). In this case, we have to discretize the time-derivative
as well and with the same notation and reasoning from above we obtain

Xtk+1 ≈ Xtk
+
(
Htk

+ F x
tk
Dx + 1

2G
xx
tk
Dxx

)
Xtk

∆t+
(
Σtk

+ Σx
tk
Dx
)
Xtk

∆Wtk
, (2.4.16)

where ∆t := tk+1 − tk > 0 for any k and ∆Wtk
:= Wtk+1 −Wtk

.

Preliminaries for the numerical tests. In the following numerical experiments we will use
the notations in Table 2.5 in the plots and descriptions.

For the space grid Xnx
ax,bx

we will use a symmetric grid around zero with a cut-off region of
[−4, 4] and d grid points.

Regarding the integration discretization ∆Int
t , we have observed that the computational

times in general increase with smaller discretization but the final errors change insignificantly
for ∆Int

t < 10−5.
We suggest to use an integration-discretization equal to 10−4 or 10−5 in the separable

coefficient case and to 10−3 or 10−4 in the constant coefficient case. Henceforth, we will set
it to ∆Int

t = 10−4 for all tests.
We have verified a linear behaviour (with a slope less than one until the GPU is fully

saturated) in the number of simulations M . In our experiments, we decided to use M = 100
simulations and display always the average computational times for one simulation.

Also the computational effort with respect to the finite time horizon T scales linearly for
all methods. Thus, we use T = 1 as our terminal time.

We used for the calculations Matlab 2022a with the Parallel Computing Toolbox running
on Debian GNU/Linux 10 (buster), on a machine with the following specifications: processor
2x AMD EPYC 7301 CPU @ 2.20 GHz, 256 GB RAM and a NVIDIA Tesla V100 PCIe (32 GB
HBM2 RAM). We limit ourselves to 12 CPU cores to highlight that the Magnus expansion
not only works very well on clusters but also on an average desktop computer.

The next subsection is structured as follows: First, we derive the explicit solution of the
fundamental solution of the heat equation. Then, we discuss the impact of the step-size ∆t

for the iterated Magnus scheme regarding computational times and errors. Next, we look at
the boundary effects over time. This is followed by a comparison of the Magnus scheme with
the Euler-Maruyama scheme with different sizes of the space grid. Last but not least, we will
show a similar behaviour in the separable coefficient case compared to the constant case.
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Table 2.5.: Notations for the numerical experiments.
euler Euler-Maruyama scheme (2.4.16)
m1 Iterated Magnus scheme of order 1
m2 Iterated Magnus scheme of order 2
m3 Iterated Magnus scheme of order 3
M Number of simulations
d Number of grid points in X
∆t step-size of euler or Magnus
∆Int

t discretization of the Lebesgue and stochastic integrals for Magnus
M2, x Magnus order 2 with step-size ∆t = x
M3, x Magnus order 3 with step-size ∆t = x
E, x euler with step-size ∆t = x

2.4.3.1. The Magnus Expansion for the Stochastic Heat Equation with Constant
Coefficients

In this subsection, we apply the Magnus expansion to the stochastic heat equation.10

We consider a special case of (2.4.8) with

h ≡ fx ≡ σ ≡ 0, gxx
t (x) := a ∈ R>0, σx

t (x) := σ ∈ R>0, (2.4.17)

leading to

dut = a

2∂xxut(x)dt+ σ∂xut(x)dWt, t > 0, x ∈ R,

with a > σ2, whose stochastic fundamental solution is given explicitly by

p(t, x; 0, ξ) := 1√
2π(a− σ2)t

exp
(
−(x+ σWt − ξ)2

2 (a− σ2) t

)
, t > 0, x, ξ ∈ R. (2.4.18)

The components of Xt in (2.4.15) can be regarded as approximations of the integrals
of the fundamental solution of the SPDE in (2.4.8), when it exists, on each sub-interval
[1
2(xj−1 + xj), 1

2(xj + xj+1)], namely

(Xt)i,j ≈
∫ 1

2 (xd
j +xd

j+1)

1
2 (xd

j−1+xd
j )

p (t, xi; 0, ξ) dξ, i, j = 1, . . . , d. (2.4.19)

The processes At and Bt in (2.4.15) now read as

At ≡
a

2 (∆x)2


−2 1 · · · 0

1 −2 . . . ...
... . . . . . . 1
0 · · · 1 −2

 , Bt ≡
σ

2∆x


0 1 · · · 0

−1 0 . . . ...
... . . . . . . 1
0 · · · −1 0

 .

10More details about the implementation can be found on https://github.com/kevinkamm/IteratedMagnus/
blob/main/SPDE1d/Const/Code/main.m.
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In particular, they do not commute and are constant for fixed d.
Having an exact benchmark solution we will now perform some numerical tests to judge the

performance of the iterated Magnus scheme.11 Henceforth, the parameters for the stochastic
heat equation will be a = 1.1 and σ = 1√

10 , so that a− σ2 = 1 > 0.

Computational effort and errors with respect to the number of iterations. For this ex-
periment we fix the number of grid points to d = 200 but vary the step-size of the Magnus
scheme ∆t. In Figure 2.3 we can see the corresponding results. The left y-axis shows the
average computational times for one simulation in a log scale and the right y-axis the mean
relative errors Errd,4

T also in a log scale. The computational times (in seconds) of m2 are
depicted in light blue and of m3 in dark blue. Moreover, the mean relative errors for m2 are
orange and for m3 red.
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Figure 2.3.: Constant coefficients as in (2.4.17): Computational times and errors of the Mag-
nus expansion for varying step-size ∆t with fixed spatial dimension d = 200.

We can see an almost constant error up until step size 0.05. At 0.05 the error for m2 starts
to increase and explodes around 0.1. Similarly, for m3 we see an explosion around 0.0125.
The explosions for large step-sizes are not surprising, since the step-size is determined by
the underlying stopping times for the convergence of the Magnus scheme. Therefore, this
experiment indicates that any step-size less than 0.05, 0.1 for d = 200 is well within the
convergence radius of m2, m3, respectively, and yields stable results.

For other spatial dimensions d this breaking point might be different. Moreover, we can
see that the computational time increases more and more for smaller step-sizes, while the
error for both methods stays almost constant and close to each other.

This suggests that one should choose the step-size as large as possible for the iterated
11More details about the implementation can be found on https://github.com/kevinkamm/IteratedMagnus/

blob/main/SPDE1d/Const/Code/coefficients.m, function exactHeatEquation1.
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Magnus scheme to gain the maximal performance. However, being too greedy will lead to
blow-ups of some trajectories.

Also as a side note, usually if one increases the spatial dimension d, then one has to choose
a smaller time step-size for the Magnus methods as well: this will be shown in Figure 2.6–2.8.

Mean errors and boundary effects over time. For this experiment we fix the grid points
in each space grid to d = 300.

In Figure 2.5, we can see the mean absolute errors of the entire spatial grid as a two-
dimensional plot. A deep blue color indicates a small error and a bright yellow color an error
up to 10−1. The black rectangle is the corresponding region for κ = 1. The black number
within the rectangle is the average mean absolute error of the corresponding region. The
picture on the left-hand side is the area of errors at t = 0.25 and on the right-hand side at
t = 1.

We can see that the errors on the diagonal from the upper right to the lower left corners
are decreasing over time. To explain this, one should note that the fundamental solution of
the heat equation starts as a dirac-delta and spreads out over time (see Figure 2.4). We can
see that the Magnus expansion is able to recover from its initial larger errors on the diagonal
over time and the error is smoothing out.

Comparison to the Euler-Maruyama scheme For this experiment, we will compare different
choices of parameters for both the Magnus scheme and Euler-Maruyama scheme. There are
essentially two major parameters contributing to the possible accuracy. One is the time step-
size of the individual schemes and the other one the space discretization. Hence, we compare
Euler and Magnus methods with different time step-sizes for different space discretizations
d = 100, 200, 300 to increase the level of accuracy. In the Figures 2.6, 2.7 and 2.8 the left
y-axis shows the average computational times in a log scale and the right y-axis the mean
relative errors Errd,4

T also in a linear scale. The computational times (in seconds) are depicted
in the left blue columns and the mean relative errors in the red right columns for each method.

As mentioned in Table 2.5, “E, x” denotes Euler with step-size ∆t = x and “M2, x”, “M3,
x” denotes Magnus with step-size ∆t = x for order 2 and 3, respectively. In Figure 2.6 we
compare the errors and computational times of the methods with spatial dimension d = 100,
in Figure 2.7 with d = 200 and in Figure 2.8 with d = 300.

Let us focus on Figure 2.6 with d = 100. We can see that four different methods are
compared: the Euler method with step-size ∆t = 10−3 and ∆t = 10−4, as well as the
Magnus method with step-size ∆t = 0.1 of order 2 and order 3. It is notable that the
Euler method with step-size ∆t = 10−4 and the Magnus methods perform almost the same
with respect to the error. The Euler method with step-size ∆t = 10−3 is exploding already.
Overall, the Magnus methods were the fastest methods. The Magnus methods are roughly
70 times faster than the Euler method with step-size ∆t = 10−4 and has a slightly better
accuracy. Surprisingly, the Magnus method of order 3 is faster than order 2 in this picture,
but the computational times are small, so this can be attributed to some fluctuations of the
computational device or internal caching of Matlab.
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Figure 2.4.: One trajectory of the fundamental solution of the constant heat equation (2.4.18)
at t = 0.5 (upper left), t = 1 (upper right), t = 1.5 (bottom left) and t = 2 (bottom right).

Figure 2.5.: Constant coefficients as in (2.4.17): Absolute Errors of m3 compared to exact
using d = 300 grid points at t = 0.25 (left) and t = 1 (right).
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Figure 2.6.: Constant coefficients as in (2.4.17): Computational times and errors of the Mag-
nus expansion and Euler scheme for d = 100.
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Figure 2.7.: Constant coefficients as in (2.4.17): Computational times and errors of the Mag-
nus expansion and Euler scheme for d = 200.
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Figure 2.8.: Constant coefficients as in (2.4.17): Computational times and errors of the Mag-
nus expansion and Euler scheme for d = 300.

Now, let us consider Figure 2.7 with d = 200. Again, we can see that two Euler methods
and two Magnus methods are compared to each other but this time we have a step-size
∆t = 0.05 for the Magnus methods. Similar to Figure 2.6, we can see that the Euler method
with step-size ∆t = 10−3 is exploding and the Magnus methods are best in terms of accuracy.
However, this time the Euler method with step-size ∆t = 10−4 has roughly twice the error
compared to the Magnus methods and is still 70 times slower than the Magnus methods.

In Figure 2.8 with d = 300 the Euler method with step-size ∆t = 10−3 is also exploding.
Therefore, we compare the Euler method with step-size ∆t = 10−4 to the Magnus method
with with step-size ∆t = 0.025 with order two and three. This time the Euler method is six
times worse in terms of accuracy and 50 times slower than Magnus.

Overall, from these observation it is clear that an Euler scheme with a fine time-discretization
is essential to make it comparable to the iterated Magnus scheme in terms of accuracy. More-
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Figure 2.9.: Variable coefficients as in (2.4.20): Computational times and errors compared to
Euler with ∆t = 10−5 of the Magnus expansion for varying step-size ∆t with fixed spatial
dimension d = 200.

over, increasing the number of grid points is leading to less accurate errors using the Euler
method with step-size ∆t = 10−4 compared to the Magnus schemes with corresponding step-
sizes, while the Magnus methods remain roughly 50 times faster in all tests.

2.4.3.2. The Magnus Expansion for the Stochastic Heat Equation with Separable
Coefficients

In this brief subsection, we will perform some tests in the case of separable coefficients.12 In
particular, we choose bounded, smooth coefficients of the form

h ≡ fx ≡ σ ≡ 0,

gxx
t (x) := a · f (Bt) , a ∈ R≥0, f(x) :=

(
1 + 1

x2 + 1

)
,

σx
t (x) := σ · g (Bt) , a ∈ R≥0, g(x) :=

√(
1 + 1

x2 + 1

)
,

(2.4.20)

with Bt a standard Brownian motion and a = 1.1, σ = 1√
10 satisfying gxx(x)− (σx(x))2 > 0,

as in the constant coefficient case.
Analog to Figure 2.3, we show in Figure 2.9 the case of varying step-sizes for the Magnus

method with fixed spatial discretization d = 200. The average computational times of m2 and
m3 in seconds, per simulation, are again depicted in light blue and dark blue, respectively.
The errors are this time with respect to the Euler method with ∆t = 10−5, since an exact
solution is not available, and again illustrated as orange for m2 and red for m3.
12More details about the implementation can be found on https://github.com/kevinkamm/IteratedMagnus/

blob/main/SPDE1d/Separable/Code/main.m.
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Table 2.6.: Separable coefficients as in (2.4.20): Computational times and errors com-
pared to Euler with ∆t = 10−5 of the Magnus expansion for different matrix dimension
d = 100, 200, 300.

Method Mean Rel. Error (in %) Comp. Time (in sec./simulation)
d = 100

euler, ∆t = 10−3 0.193 % 0.152
euler, ∆t = 10−4 0.049 % 1.611
euler, ∆t = 10−5 – 16.85
m2, ∆t = 0.1 0.018 % 0.13
m3, ∆t = 0.1 0.018 % 0.24

d = 200
euler, ∆t = 10−3 ∞% 0.81
euler, ∆t = 10−4 0.049 % 8.11
euler, ∆t = 10−5 – 82.7
m2, ∆t = 0.025 0.019 % 0.241
m3, ∆t = 0.025 0.019 % 0.242

d = 300
euler, ∆t = 10−3 ∞% 2.8
euler, ∆t = 10−4 0.05 % 28.54
euler, ∆t = 10−5 – 286.28
m2, ∆t = 0.01 0.019 % 4.28
m3, ∆t = 0.01 0.019 % 5.0

We can see that Figure 2.9 looks almost identical to Figure 2.3. The only difference is,
that the explosion of the Magnus methods happens earlier than in the constant coefficient
case due to the different convergence radius.

Any method with step size less or equal than 0.025 yield roughly the same error but the
computational effort increases with decreasing step size.

In our next experiment, similarly to Figure 2.14–2.16, we show in Table 2.6 the mean
relative errors and computational times for d = 100, 200, 300. This time we use an Euler
method with ∆t = 10−5 as our reference solution and compare an Euler method with ∆t =
10−4, as well as m2 and m3 to it. The results are given in Table 2.6.

We can see that computational times are higher for the Magnus scheme than in the constant
coefficient case. This increase of computational effort can be attributed to the more complex
expansion formulas and the smaller step size for the corresponding space grid. The Euler
scheme did not suffer from a performance decrease.

All in all, we come to the same conclusion as in the constant coefficient case. The accuracy
of the Magnus schemes is very high and it is faster than an Euler method with similar
accuracy.
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2.4.4. Application to Two-Dimensional SPDEs

In this section, we investigate the application of the Mangus expansion to the numerical solu-
tion of a class of hypoelliptic stochastic partial differential equations (SPDEs) that naturally
arise in physics and mathematical finance.13 The deterministic prototype of such SPDEs is
the classical Langevin equation

1
2∂vvut + v∂xu − ∂tut = 0, (2.4.21)

where the variables t ≥ 0, x ∈ R and v ∈ R respectively stand for time, position and velocity,
and the unknown ut = ut(x, v) stands for the density of a particle in the phase space. Notice
that (2.4.21) is a degenerate, non-uniformly parabolic PDE. Perturbations of (2.4.21) with
variable coefficients appear in linear and non-linear form in several applications in kinetic
theory (cf. Lions (1994), Desvillettes and Villani (2001) and Cercignani (1988)); also,
(2.4.21) describes path-dependent financial derivatives such as Asian options and volatility
contracts (cf. Pascucci (2011) and Di Francesco and Pascucci (2004)).

We consider here the stochastic version of (2.4.21), which is the kinetic SPDE

dut =
(
at

2 ∂vv + v∂x + bt∂v + ct

)
utdt+ (σt∂v + βt)utdWt, (2.4.22)

where at, bt, ct, σt and βt are non-constant (i.e., for example, at = at(x, v)) and possibly ran-
dom coefficients. Here W denotes a Wiener process defined on a complete probability space
(Ω,F ,P) endowed with a filtration (Ft)t≥0 satisfying the usual conditions. SPDE (2.4.22)
naturally appears in stochastic filtering theory: as shown in Pascucci and Pesce (2022a);
Pascucci and Pesce (2022b), the fundamental solution of (2.4.22) is the conditional transi-
tion density of a two-dimensional stochastic process representing the position and the velocity
of a particle under partial observation.

The numerical solution of (2.4.22) is a challenging issue, as standard techniques, such as
Euler methods, can be excessively time-consuming due to the two spatial variables.

We proceed similar to the previous section. First, we show how to discretize a more general
parabolic-type SPDE by an SDE of the type (2.0.1). After that, we show the numerical exper-
iments in the special case of the stochastic Langevin equation with constant coefficients where
the exact solution is available in closed form. In this case we will perform several tests con-
cerning the parameters of the Magnus expansion and discuss their impact. Then we compare
the performance of the iterated Magnus expansion with that of standard Euler-Maruyama
schemes. In Section 2.4.4.2 we consider a more general case with separable coefficients.

Now, let us show how to derive a numerical scheme for a general parabolic SPDE by
combining space-discretization and Magnus expansion. We will perform some formal com-
putations, which hold even for a fairly general class of SPDEs. Since the computations are
understood in a formal manner, we do not impose any further conditions on the coefficients

13More details about the implementation can be found on https://github.com/kevinkamm/MagnusSPDE2D/
blob/main/IteratedMagnus/main.m.
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of the following type of SPDE

dut(x, v) =
(
ht(x, v)ut(x, v) + fx

t (x, v)∂xut(x, v) + fv
t (x, v)∂vut(x, v)

+ 1
2g

xx
t (x, v)∂xxut(x, v) + gxv

t (x, v)∂xvut(x, v) + 1
2g

vv
t (x, v)∂vvut(x, v)

)
dt

+
(
σt(x, v)ut(x, v) + σx

t (x, v)∂xut(x, v) + σv
t (x, v)∂vut(x, v)

)
dWt

u0(x, v) = ϕ(x, v).

(2.4.23)

In the following subsections, we will demonstrate how to derive an SDE of the form (2.0.1)
to approximate the SPDE (2.4.23) and apply the Magnus expansion to it. In the end, we will
recall the Euler-Maruyama scheme for the approximating SDE.

Space discretization and Magnus expansion. As in Section 2.4.3, we will use the method
of lines, meaning that we discretize the space variables but not time. After that we will
vectorize the equation to derive a matrix-valued equation. We introduce the following two
homogeneous grids for position and velocity respectively: Xnx

ax,bx
with nx + 2 points on the

subset [ax, bx] ⊂ R, Vnv
av ,bv

with nv + 2 points on the subset [av, bv] ⊂ R:

Xnx
ax,bx

:= {xnx
i ∈ [ax, bx] : xnx

i = ax + i∆x, i = 0, . . . , nx + 1} , ∆x := bx − ax

nx + 1 , (2.4.24)

Vnv
av ,bv

:=
{
vnv

j ∈ [av, bv] : vnv
j = av + j∆v, j = 0, . . . , nv + 1

}
, ∆v := bv − av

nv + 1 . (2.4.25)

Let us denote by vec the isomorphism of transforming a matrix to a larger column-vector by
stacking each column in the matrix below each other, i.e.

vec : Rnx×nv → Rnx·nv×1,

A = [aij ] 7→ vec(A) := [a1,1, . . . , anx,1, a1,2, . . . , anx,2, . . . , a1,nv , . . . , anx,nv ]⊤.

Moreover, let us define

unx,nv
t := (ut(xi, vj))i=1,...,nx

j=1,...,nv

, ϕnx,nv := (ϕ(xi, vj))i=1,...,nx
j=1,...,nv

, Φnxnv := vec (ϕnx,nv ) .

We consider the nxnv-dimensional SDE

dUnxnv
t = BtU

nxnv
t dt+AtU

nxnv
t dWt, Unxnv

0 = Φnxnv , (2.4.26)

where At and Bt are (nxnv×nxnv)-matrix-valued processes, which will be defined via space-
finite differences in the next paragraph in a way that Unxnv

t ≈ vec (unx,nv
t ) with respect to

a suitable norm. This equation can be solved by first computing its fundamental solution,
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then by multiplying it with the initial datum, i.e.

dXt = BtXtdt+AtXtdWt, X0 = I ∈ Rnxnv×nxnv ,

Unxnv
t = XtΦnxnv .

The fundamental solution now can be approximated with the Magnus expansion, i.e. Xt ≈
exp (Yt). Since At and Bt will be very large in this case, we will utilize the sparsity of
At and Bt, as well as using a special algorithm specifically designed to compute the matrix-
exponential times a vector denoted by expmvtay2, which does not need to compute the whole
matrix-exponential first. This is crucial for the implementation and explained in further detail
in Ibáñez et al. (2022).

Derivation of At and Bt. The idea is to discretize the first and second-order space deriva-
tives, for which we will use central differences with zero-boundary conditions. Therefore, let
us introduce the following matrices corresponding to the finite differences

Dx := 1
2∆xtridiagnx,nx (−1, 0, 1) , Dv := 1

2∆v tridiagnv ,nv (−1, 0, 1) ,

Dxx := 1
(∆x)2 tridiagnx,nx (1,−2, 1) , Dvv := 1

(∆v)2 tridiagnv ,nv (1,−2, 1) .

Additionally, we will introduce the following matrices corresponding to the coefficient func-
tions on the discretized space grid

Zw
t := (zw

t (xi, vj))i=1,...,nx
j=1,...,nv

, Σw
t := (σw

t (xi, vj))i=1,...,nx
j=1,...,nv

for Z = F,G,H, z = f, g, h, respectively, and w ∈ {x, v, xx, xv, vv}.

Let us start with discretizing the first-order derivative with respect to x. First, we re-
place the partial derivative by the first-order central differences and assume zero-boundary
conditions, leading to

fx
t (xi, vj)∂xut(xi, vj) ≈ fx

t (xi, vj)ut(xi+1, vj)− ut(xi−1, vj)
2∆x

for all i = 1, . . . , nx and j = 1, . . . , nv. As aforementioned, we need to extract the correct
coefficient matrix for the vectorized equation (2.4.26).

In our notations, a derivative in x is a multiplication of the corresponding finite-difference
matrix from the left to unx,nv

t , i.e.(
ut(xi+1, vj)− ut(xi−1, vj)

2∆x

)
i=1,...,nx
j=1,...,nv

= Dxunx,nv
t .
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Using the Kronecker product, it is well-known for compatible matrices D1UD2 = C that

vec (C) = vec (D1UD2) =
(
D⊤

2 ⊗D1
)

vec (U) .

In our case, this leads to

vec (Dxunx,nv
t ) = (Inv ⊗Dx)Unxnv

t .

Now, we need to deal with the coefficients as well. Denoting by ⊙ the Hadamard, or
elementwise, product, it is easy to see that

vec (F x
t ⊙ (Dxunx,nv

t )) = vec (F x
t )⊙ vec (Dxunx,nv

t ) = diag (vec (F x
t )) vec (Dxunx,nv

t ) .

Using these two observations together yields

(fx
t (xi, vj)∂xut(xi, vj))i=1,...,nx

j=1,...,nv

≈ diag (vec (F x
t )) (Inv ⊗Dx)Unxnv

t .

This reasoning holds true for all other derivatives as well, i.e. an operation in x is a matrix
multiplication from the left and in v it is the matrix multiplication from the right with the
transposed matrix.

Conclusively, we have

Bt := diag (vec (Ht)) + diag (vec (F x
t )) (Inv ⊗Dx) + diag (vec (F v

t )) (Dv ⊗ Inx)

+ 1
2diag (vec (Gxx

t )) (Inv ⊗Dxx) + diag (vec (Gxv
t )) (Dv ⊗Dx)

+ 1
2diag (vec (Gvv

t )) (Dvv ⊗ Inx) ,

At := diag (vec (Σt)) + diag (vec (Σx
t )) (Inv ⊗Dx) + diag (vec (Σv

t )) (Dv ⊗ Inx) .

Remark 2.4.3. We can see that the sparsity of Bt and At is mostly determined by the finite-
difference matrices due to the elementwise product of the coefficient functions. The coefficient
functions can further reduce or increase the sparsity by zero entries or cancellations. Addi-
tionally, this implies that the number of non-zero diagonals is independent of the size of Bt

and At respectively even though the density of non-zero elements will decline for increasing
dimensions.

An illustration of the sparsity pattern can be seen in Figure 2.10: In the upper left corner is
the pattern for A, followed by B, [B,A], [[B,A] , A] and [[B,A] , B]. The blue lines represent
non-zero entries. The pictures are ordered by the number of non-zero diagonals, i.e. a
diagonal with at least one non-zero entry, which are 2, 5, 5, 8 and 10 respectively. We can
see that the sparsity decreases with the order of the commutator.

Euler-Maruyama In this case, we do not need to vectorize the equation but we have to
discretize the time-derivative as well. With the same notation and reasoning from above we
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Figure 2.10.: Sparsity patterns of A, B and commutators of the SPDE from Section 2.4.4.1
with coefficients (2.4.28) and d = 50. nz stands for the number of non-zero entries.
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Table 2.7.: Notations for the numerical experiments.
euler Euler-Maruyama scheme (2.4.27)
m1 Iterated Magnus scheme of order 1
m2 Iterated Magnus scheme of order 2
m3 Iterated Magnus scheme of order 3
M Number of simulations
d Number of grid points in X and V
∆t step-size of euler or Magnus
∆Int

t discretization of the integrals for Magnus
M2, x Magnus order 2 with step-size ∆t = x
M3, x Magnus order 3 with step-size ∆t = x
E, x euler with step-size ∆t = x

obtain

unx,nv
tk+1

≈ unx,nv
tk

+
(
Htk
⊙ unx,nv

tk
+ F x

tk
⊙
(
Dxunx,nv

tk

)
+ F v

tk
⊙
(
unx,nv

tk
(Dv)⊤

)

+ 1
2G

xx ⊙
(
Dxxunx,nv

tk

)
+Gxv

tk
⊙
(
Dxunx,nv

tk
(Dv)⊤

)
+ 1

2G
vv
tk
⊙
(
unx,nv

tk
(Dvv)⊤

))
∆t

+
(

Σtk
⊙ unx,nv

tk
+ Σx

tk
⊙
(
Dxunx,nv

tk

)
+ Σv

tk
⊙
(
unx,nv

tk
(Dv)⊤

))
∆Wtk

, (2.4.27)

where ∆t := tk+1 − tk > 0 for any k and ∆Wtk
:= Wtk+1 −Wtk

.

Preliminaries for the numerical tests. In the following numerical experiments, we will use
the notations in Table 2.7 in the plots and descriptions.

For the space grids Xnx
ax,bx

and Vnv
av ,bv

we will use symmetric grids centered around zero with
a cut-off region of [−4, 4] and d grid points each.

Regarding the integration discretization ∆Int
t we have observed that the computational

times in general increase with smaller discretization but the final errors change insignificantly
for ∆Int

t < 10−5.
We suggest to use an integration-discretization equal to 10−4 or 10−5 in the separable

coefficient case and to 10−3 or 10−4 in the constant coefficient case. Henceforth, we will set
it to ∆Int

t = 10−4 for all tests.
We have verified a linear behaviour (with a slope less than one until the GPU is fully

saturated) in the number of simulations M . In our experiments, we decided to use M = 100
simulations and display always the average computational times for one simulation.

Also the computational effort with respect to the finite time horizon T scales linearly for
all methods. Thus, we use T = 1 as our terminal time.

We used for the calculations Matlab 2022a with the Parallel Computing Toolbox running
on Debian GNU/Linux 10 (buster), on a machine with the following specifications: processor
2x AMD EPYC 7301 CPU @ 2.20 GHz, 256 GB RAM and a NVIDIA Tesla V100 PCIe (32 GB
HBM2 RAM). We limit ourselves to 12 CPU cores to highlight that the Magnus expansion
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not only works very well on clusters but also on an average desktop computer.
The next subsection is structured as follows: First, we derive the explicit solution of the

Langevin equation. Then, we discuss the impact of the number of intervals ∆t for the iterated
Magnus scheme regarding computational times and errors. Next, we look at the boundary
effects over time. This is followed by a comparison of the Magnus scheme with the Euler-
Maruyama scheme with different sizes of the space grid.

2.4.4.1. The Magnus Expansion for the Stochastic Langevin Equation with Constant
Coefficients

In this subsection, we apply the Magnus expansion to the stochastic Langevin equation. For
further details and a solution theory in Hölder spaces under the weak Hörmander condition
we refer the reader to Pascucci and Pesce (2022b).

In the constant coefficient case, the Langevin SPDE can be recovered from (2.4.23) by
setting

h ≡ fv ≡ gxx ≡ gxv ≡ σ ≡ σx ≡ 0, fx(x, v) := −v, gvv ≡ a ∈ R>0, σv(x, v) ≡ σ ∈ R>0.

(2.4.28)

In this special case, there exists an explicit fundamental solution Γ for 0 < σ <
√
a (cf.

Pascucci and Pesce (2022b): p. 4 Proposition 1.1.), which is given by

Γ (t, z; 0, ζ) := Γ0 (t, z −mt(ζ)) ,

Γ0
(
t, (x, v)

)
:=

√
3

πt2(a− σ2) exp
(
− 2
a− σ2

(
v2

t
− 3vx

t2
+ 3x2

t3

))

where ζ := (ξ, η) is the initial point and

mt(ζ) :=
(
ξ + tη − σ

∫ t
0 Wsds

η − σWt

)
.

Having the fundamental solution, we can solve the Cauchy-problem by integrating against
the initial datum, i.e.

ut(z) =
∫
R2

Γ(t, z; 0, ζ)ϕ(ζ)dζ, z = (x, v).

To get an explicit solution (up to the stochastic integral
∫ t

0 Wsds) for the double integral we
will choose ϕ to be Gaussian, i.e.

ϕ (ξ, η) := exp
(
−
(
ξ2 + η2)

2

)
. (2.4.29)

The formula for the exact solution is lengthy and its specific form is not instructive for
the following experiments, therefore we decided to exclude it from this presentation. The
interested reader can find it in the corresponding Matlab 2022a code, which is publicly
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available.14

Having an exact benchmark solution we will now perform some numerical tests to judge the
performance of the iterated Magnus scheme. Henceforth, the parameters for the stochastic
Langevin equation will be a = 1.1 and σ = 1√

10 , so that a− σ2 = 1 > 0.

Computational effort and errors with respect to the number of iterations. For this ex-
periment, we fix the number of grid points in each space grid to d = 200 but vary step-size of
the Magnus scheme ∆t. In Figure 2.11 we can see the corresponding results. The left y-axis
shows the average computational times for one simulation in a log scale and the right y-axis
the mean relative errors Errd,4

T also in a log scale. The computational times (in seconds) of
m2 are depicted in light blue and of m3 in dark blue. Moreover, the mean relative errors for
m2 are orange and for m3 red.
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Figure 2.11.: Constant coefficients as in (2.4.28): Computational times and errors of the
Magnus expansion for varying step-size ∆t with fixed spatial dimension d = 200.

We can see that the mean relative errors start to fluctuate for a step-size larger than 0.065
for m2 and see an explosion of m2 around 0.085. For m3 this phenomenon starts outside
of the picture. The fluctuations begin right after ∆t = 0.1 and an explosion can be seen
after ∆t = 0.33. The explosions for large step-sizes are not surprising, since the step-size
is determined by the underlying stopping times for the convergence of the Magnus scheme.
The fluctuations beforehand are most likely due to an interplay between error propagations
due to larger step-sizes and the necessary Taylor-terms in expmv, and it indicates that m3 is
more stable than m2. Therefore, this experiment indicates that any step-size less than 0.05,
0.1 for d = 200 is well within the convergence radius of m2, m3, respectively, and yields stable
results.
14More details about the implementation can be found on https://github.com/kevinkamm/MagnusSPDE2D/

blob/main/IteratedMagnus/exact.m.
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For other spatial dimensions d this breaking point might be different. Moreover, we can see
that the computational time increases more and more for smaller step-size, while the error
for both methods stays almost constant and close to each other.

This suggests that one should choose the step-size as large as possible for the iterated
Magnus scheme to gain the maximal performance. However, being too greedy will lead to
blow-ups of some trajectories.

Also as a side note, usually with increasing spatial dimension d, one has to choose a smaller
time step-size for the Magnus methods as well: this will be shown in Figure 2.14–2.16.

Mean errors and boundary effects over time. For this experiment we fix the grid points
in each space grid to d = 300.

In Figure 2.13 we can see the mean absolute errors of the entire spatial grid as a two-
dimensional plot. A deep blue color indicates a small error and a bright yellow color an error
up to 10−2. The black rectangle is the corresponding region for κ = 1. The black number
within the rectangle is the average mean absolute error of the corresponding region. The
picture on the left-hand side is the area of errors at t = 0.25 and on the right-hand side at
t = 1.

We can see that the errors in the upper right and lower left corners are significantly in-
creasing over time. To explain this, one should note that the Langevin equation with this
specific initial datum looks like a two-dimensional Gaussian (see Figure 2.12) at first and its
shape changes on the diagonal from the lower left corner to the upper right corner over time
more than on the other diagonal. Therefore, the cut-off region is getting too small for larger
times leading to boundary effects in the error plots. This also explains why the upper left
and lower right corner remain a stable small error. In the center of the error plots we can see
an increasing error over time. If this is due to the boundary effects, error propagation due
to the iterated scheme, the error due to the order 3 truncation or the algorithm used for the
matrix-vector exponential is not apparent in this illustration, we suspect a mixture of all of
them.

Comparison to the Euler-Maruyama scheme For this experiment, we will compare different
choices of parameters for both the Magnus scheme and Euler-Maruyama scheme. There are
essentially two major parameters contributing to the possible accuracy. One is the time step-
size of the individual schemes and the other one the space discretization. Hence, we compare
Euler and Magnus methods with different time step-sizes for different space discretizations
d = 100, 200, 300 to increase the level of accuracy. In the Figures 2.14, 2.15 and 2.16 the
left y-axis shows the average computational times in a log scale and the right y-axis the
mean relative errors Errd,4

T also in a linear scale. The computational times (in seconds) are
depicted in the left blue columns and the mean relative errors in the red right columns for
each method.

As mentioned in Table 2.7, “E, x” denotes Euler with step-size ∆t = x and “M2, x”, “M3,
x” denotes Magnus with step-size ∆t = x for order 2 and 3, respectively. In Figure 2.14 we
compare the errors and computational times of the methods with spatial dimension d = 100,
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Figure 2.12.: One trajectory of the constant Langevin equation (2.4.28) at t = 0.5 (upper
left), t = 1 (upper right), t = 1.5 (bottom left) and t = 2 (bottom right).

Figure 2.13.: Constant coefficients as in (2.4.28): Absolute Errors of m3 compared to exact
using d = 300 grid points at t = 0.25 (left) and t = 1 (right).
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Figure 2.14.: Constant coefficients as in (2.4.28): Computational times and errors of the
Magnus expansion and Euler scheme for d = 100.

in Figure 2.15 with d = 200 and in Figure 2.16 with d = 300.
Let us focus on Figure 2.14 with d = 100. We can see that four different methods are

compared: the Euler method with step-size ∆t = 10−3 and ∆t = 10−4, as well as the Magnus
method with step-size ∆t = 0.1 of order 2 and order 3. It is notable that the Euler method
with step-size ∆t = 10−4 and the Magnus methods perform almost the same with respect to
the error. The Euler method with step-size ∆t = 10−3 has roughly double the error of the
method with step-size ∆t = 10−4 but is ten times faster. Overall, the Magnus methods were
the fastest methods. The Magnus method of order two, three is 70, 42 times, respectively,
faster than Euler method with step-size ∆t = 10−4 and has a slightly better accuracy.

Now, let us consider Figure 2.15 with d = 200. Again, we can see that two Euler methods
and two Magnus methods are compared but this time we have a step-size ∆t = 0.05 for the
Magnus methods. Similarly, to Figure 2.14, we can see that the Euler method with step-size
∆t = 10−3 performed worst and the Magnus methods best in terms of accuracy. However, this
time the Euler method with step-size ∆t = 10−4 has twice the error compared to the Magnus
methods and is 25, 23 times slower than the Magnus method with order 2, 3, respectively.

In Figure 2.16 with d = 300 the Euler method with step-size ∆t = 10−3 is exploding, since
its stability criterion is violated and its errors is∞. Therefore, we compare the Euler method
with step-size ∆t = 10−4 to the Magnus method with with step-size ∆t = 0.025 with order
two and three. This time the Euler method is four times worse in terms of accuracy and 30, 27
times slower than Magnus with order two, three, respectively. We also performed tests with
an Euler method using step-size ∆t = 10−5. Its accuracy was still slightly worse compared
to the Magnus methods and its computational time ten times slower than the Euler scheme
in the figure. This results in a speed-up of order 250 of the Magnus method compared to an
Euler scheme with similar accuracy.

Overall, from these observations it is clear that an Euler scheme with a fine time-discretization
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Figure 2.15.: Constant coefficients as in (2.4.28): Computational times and errors of the
Magnus expansion and Euler scheme for d = 200.
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Figure 2.16.: Constant coefficients as in (2.4.28): Computational times and errors of the
Magnus expansion and Euler scheme for d = 300.
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is essential to make it comparable to the iterated Magnus scheme in terms of accuracy. More-
over, increasing the number of grid points is leading to less accurate errors using the Euler
method with step-size ∆t = 10−4 compared to the Magnus schemes with corresponding step-
sizes, while the Magnus methods remain roughly 30 times faster in all tests.

Remark 2.4.4. If we have a close look at all tests from above we can see that all of them share
a common feature, namely for reasonable parameters m2 and m3 were always close. Therefore,
this leads to a natural step-size control in time by comparing the results of Magnus order
2 to order 3. If they are closer than a given tolerance then the step-size is small enough,
otherwise make it smaller by a given factor.

With this method, the computation of the Magnus logarithms up to order 3 can be reused
for Magnus order 2. However, two matrix-vector exponentials for each trajectory are necessary
to determine if the time-step is rejected. For implementations with a lot of trajectories, one
can think about using less randomly chosen trajectories to determine the correct step-size to
increase the overall performance.

Remark 2.4.5. The Magnus expansion holds an advantage over all other finite-difference
method in the deterministic case. Inspecting the approximation formulas in the case A ≡ 0
reveals immediately that the Magnus expansion is exact, at order 1, up to the initial space
discretization for x and v, meaning that its accuracy is far more superior than e.g. explicit
and implicit Euler-schemes.

2.4.4.2. The Magnus Expansion for the Stochastic Langevin Equation with Separable
Coefficients

In this brief subsection, we will perform some tests in the case of variable coefficients.15 In
particular, we choose bounded, smooth coefficients of the form

h ≡ fv ≡ gxx ≡ gxv ≡ σ ≡ σx ≡ 0,

fx(x, v) := −v, gvv(x, v) = a · f(Bt), σv(x, v) ≡ σ · g(Bt),

f(x) := 1 + 1
1 + x2 , g(x) :=

√
1 + 1

1 + x2 (2.4.30)

with Bt a standard Brownian motion, a = 1.1, σ = 1√
10 satisfying gvv(x, v)− (σv(x, v))2 > 0,

as in the constant coefficient case. We will also use the same initial condition as in (2.4.29).
In this case, the coefficient processes At and Bt look like

Bt := B1 +B2bt,

B1
t := diag (vec (F x)) (Inv ⊗Dx) , B2

t := 1
2diag (vec (Gvv)) (Dvv ⊗ Inx) ,

At := Aat, A := diag (vec (Σv)) (Dv ⊗ Inx)

where at := f (Bt) and bt := g (Bt).
15More details about the implementation can be found on https://github.com/kevinkamm/IteratedMagnus/

blob/main/SPDE2d/Separable/Code/main.m.
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Figure 2.17.: Separable coefficients as in (2.4.30): Computational times and errors compared
to Euler with ∆t = 10−5 of the Magnus expansion for varying step-size ∆t with fixed spatial
dimension d = 200.

For this experiment, we decided to only show the first two orders of the Magnus expansion,
which read as follows: For the order one expansion we have

Y
(1)

t = A

∫ t

0
asdWs +B1t+B2

∫ t

0
bsds.

The second order expansion is given by

Y
(2)

t = −1
2A

2
∫ t

0
a2

sds+ 1
2 [B1, A]

(∫ t

0

∫ s

0
ardWrds−

∫ t

0
sasdWs

)
+ 1

2 [B2, A]
(∫ t

0
bs

∫ s

0
ardWrds−

∫ t

0
as

∫ s

0
brdrdWs

)
+ 1

2 [B1, B2]
(∫ t

0

∫ s

0
brdrds−

∫ t

0
sbsds

)
.

Analog to Figure 2.11, we show in Figure 2.17 the case of varying step-sizes for the Magnus
method with fixed spatial discretization d = 200. The average computational times of m2 and
m3 in seconds, per simulation, are again depicted in light blue and dark blue, respectively.
The errors are this time with respect to the Euler method with ∆t = 10−5, since an exact
solution is not available, and again illustrated as orange for m2 and red for m3.

The computational times look similar to the constant coefficient case and we can notice a
continuous increase for smaller step sizes.

The errors look different than in the constant coefficient case, where it was almost constant
for small step sizes. Here, we see that the errors decrease with smaller step sizes, which might
be due to the increased complexity of the formulas.

In our next experiment, similarly to Figure 2.14–2.16, we show in Table 2.8 the mean
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Table 2.8.: Separable coefficients as in (2.4.30): Computational times and errors com-
pared to Euler with ∆t = 10−5 of the Magnus expansion for different spatial dimension
d = 100, 200, 300.

Method Mean Rel. Error (in %) Comp. Time (in sec./simulation)
d = 100

euler, ∆t = 10−3 0.158 % 0.47
euler, ∆t = 10−4 0.041 % 4.62
euler, ∆t = 10−5 – 49.6
m2, ∆t = 0.1 0.663 % 0.258
m2, ∆t = 0.05 0.320 % 0.179

d = 200
euler, ∆t = 10−3 ∞% 2.46
euler, ∆t = 10−4 0.042 % 25.11
euler, ∆t = 10−5 – 25.17
m2, ∆t = 0.025 0.162 % 1.32
m2, ∆t = 0.01 0.066 % 2.13

d = 300
euler, ∆t = 10−3 ∞% 7.13
euler, ∆t = 10−4 0.041 % 69.8
euler, ∆t = 10−5 – 725.74
m2, ∆t = 0.01 0.064 % 3.272
m2, ∆t = 0.005 0.032 % 4.906

relative errors and computational times for d = 100, 200, 300. This time we use an Euler
method with ∆t = 10−5 as our reference solution and compare an Euler method with ∆t =
10−4, as well as m2 and m3 to it. The results are given in Table 2.8. As we already noticed in
Figure 2.17, we have contrary to Figure 2.14–2.16 the possibility to reduce the error of the
Magnus scheme by reducing the step size ∆t. Therefore, we show two different step sizes for
m2 for each grid size d. We can see for d = 100 that a smaller step size does not necessarily
imply a larger computational time, if the step sizes are rather large. This can be explained
by the fact that the computation of the matrix-vector exponential takes longer, since more
Taylor terms are required to achieve the target accuracy. Another important difference is
the error of m2. It is larger than the error of the euler schemes and a lot worse than in our
previous tests. For larger dimensions, we can see a similar behaviour of m2 to our previous
tests and come to the same conclusions as in the constant coefficient case. The Magnus
expansion is faster than the Euler scheme, and performs well in terms of accuracy.

In Kamm, Pagliarani and Pascucci (2022) we performed another test in the case of
deterministic autonomous coefficients, but with space dependency, giving similar results as
in the constant case as well.
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2.5. Conclusion

In this chapter, we have seen how the Itô-stochastic Magnus expansion can be derived and
have shown that it is convergent up to a strictly positive stopping time. In our numerical
experiments, we demonstrated that order two or three is usually sufficient to yield accurate
results. Additionally, we have shown, how the restrictions coming from the stopping time
can be overcome in practice by applying the Magnus expansion iteratively. Furthermore, we
found that the Magnus expansion can be applied for a wide class of problems very efficiently
by considering different generalities of the coefficient processes At and Bt. Especially in the
case of one and two dimensional SPDEs, we saw significant improvements in terms of both
accuracy and computational effort compared to the Euler-Maruyama scheme using a single
GPU.
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The Cox-Ingersoll-Ross Model in a
Negative Interest Rate Framework 3

The Cox-Ingersoll-Ross model (hereafter referred to as CIR model) has been regarded as
the reference model in interest rate modelling by both practitioners and academics for several
decades, not only because of its analytical tractability as an affine model, but also because
of its derivation from a general equilibrium framework (see for example Cox, Ingersoll
and Ross (1981)), among other reasons. The well-known feature of the CIR model that
ultimately led to this chapter is that interest rates never become negative. This long-standing
paradigm of non-negative interest rates made the CIR model and its extensions one of the
most appropriate models for interest rate modelling.

Today, however, negative interest rates are very common and thus the need for models that
can handle this paradigm shift is highly desirable, provided that they have as few shortcomings
as possible compared to the original CIR models.

We can categorize short-rate models into two different classes: endogenous and exogenous.
In endogenous models the observed term-structure is an output depending on the model
parameters and in exogenous models the observed term-structure is an input.

In this chapter, we propose a simple endogenous and exogenous model to address the
problem of negative interest rates. The principle idea is to subtract two independent CIR
processes to account for negative interest rates, which leads to an endogenous model and is
described in Section 3.3. Applying the deterministic-shift extension technique (cf. Brigo
and Mercurio (2006)) to this model and its calibration to swaption prices will be subject
of Section 3.4.

To fix notations let us recall basic interest rate related market instruments. For this we
will follow Brigo and Mercurio (2006): pp. 2 ff. closely.

3.1. Market Instruments

In this section, we will briefly recall some interest rate instruments, which we will need for
our further discussions. So let us start by introducing the bank account as in Brigo and
Mercurio (2006): pp. 2 ff. which can be regarded as the natural choice of numeraire (cf.
Björk (2004): pp. 154 ff.).

Definition 3.1.1. We define M(t) to be the value of a bank account at time t ≥ 0. We
assume M(0) = 1 and

M(t) = exp
(∫ t

0
rsds

)
.

where rt is a possible negative stochastic process called instantaneous (spot) rate or short

65



3.1. Market Instruments

rate. Moreover, the (stochastic) discount factor D(t, T ) is given by

D(t, T ) = M(t)
M(T ) = exp

(
−
∫ T

t
rtds

)
.

In the next subections, we will first introduce zero-coupon bonds in Section 3.1.1, followed
by interest rate swaps in Section 3.1.2 and a variant called constant maturity swaps in Sec-
tion 3.1.3. Afterwards, we will elaborate more on swaptions in Section 3.1.4 and Bermudan
swaptions in Section 3.1.5.

3.1.1. Zero-Coupon Bonds

The most essential instrument for us will be the so-called zero-coupon bonds (cf. Brigo and
Mercurio (2006): p. 4 Definition 1.2.1. Zero-coupon bond.).

Definition 3.1.2. A T -maturity zero-coupon bond is a contract that guarantees its holder
the payment of one unit of currency at time T , with no intermediate payments. The contract
value at time t < T is denoted by P (t, T ) and we have P (T, T ) = 1 for all T .

Let us make the following quick observation: Both the discount factor, as well as a zero-
coupon bond will yield one unit of currency at the time T , i.e. D(T, T ) = P (T, T ). However,
this is in general not true for t < T . The zero-coupon bond is the value or price of a contract,
while the discount factor is the time t amount of one unit of currency at time T . Therefore,
if we view this from today, i.e. t = 0, the zero-coupon price will be a real number, but the
discount factor will still be stochastic. Their relation is given by (cf. Björk (2004): p. 370
Proposition 23.3 (Risk-neutral valuation))

P (t, T ) = EQ
[
e−
∫ T

t
r(s)dsP (T, T )

∣∣∣∣Ft

]
= EQ

[
e−
∫ T

t
r(s)ds

∣∣∣∣Ft

]
= EQ [D(t, T )| Ft]

under a risk-neutral measure Q. Therefore, they coincide if the short-rate is deterministic.

Definition 3.1.3. The instantaneous forward interest rate at time t for the maturity T > t

is denoted by f(t, T ) and is defined as

f (t, T ) := − (∂T lnP ) (t, T ) ,

so that we also have

P (t, T ) = exp
(
−
∫ T

t
f (t, u) du

)
.

3.1.2. Interest Rate Swaps

We are following Miron and Swannell (1991): pp. 9 ff. Björk (2004): pp. 428 ff. Chapter
27.7 Swaps, Brigo and Mercurio (2006): pp. 19 ff. and Schrager and Pelsser (2006):
pp. 3 ff. in this section. Let us start by considering an example of an interest rate swap and
discover all necessary features of this financial instrument meanwhile.
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Fix1 = 0 Fix2 = 9.98 Fix3 = 10 Fix4 = 10.03 Fix5 = 9.95 Fix6 = 9.95

Float1 Float2 Float3 Float4 Float5 Float6

1. Trade Date: 01. Feb 19
2. Termination Date: 05. Feb 24
3. Effective Date: 05. Feb 19
4. Fixed Rate: 9.84 %
5. Fixed Rate day-count fraction: Actual/360
6. Principal: 100 $
7. Payment Days: anually or modified business day including last excluding first

Figure 3.1.: Example of an interest rate swap.

Example 3.1.4. This example (cf. Miron and Swannell (1991): p. 28 Example 1 ) with all
relevant parameters will be illustrated in Figure 3.1. Lets call our two participants in this
swap contract Fix (Fixed Rate Payer) and Float (Floating Rate Payer) and take the view
of Fix.

Moreover, assume that Fix borrowed money for 5 years from another counterparty and
pays interest every year. Now, this interest rate can change as time progresses and therefore
introduces a certain amount of risk.

In order to minimize the risk arising from this contract Fix wishes to rather pay a fixed
amount of interest on his borrowings every year. Thus, he wants to swap his floating, risky
position to a fixed position.

In order to do this he agrees with Float upon a 5-year interest rate swap at 01. Feb 19,
which will be effective on the 05. Feb 19. The fixed and floating payments will be made each
year on 05. Feb except if its a weekend or holiday, then on the next following business day,
which is responsible for e.g. the payment date 07. Feb 22.

There are several different conventions regarding the day-count (cf. Brigo and Mercu-
rio (2006): pp. 5–6 ), in this example we have the actual day difference (including leap years)
divided by 360 (which comes from the convention that one month has 30 days).

The day-count convention comes into play when we calculate the fixed payments via

Principle · Fixed Rate ·Day-count convention(date1, date2).
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3.1. Market Instruments

The first payments will be made at 05. Feb 20, therefore

Fix2 = 100 · 9.84
100 ·

365
360 ≈ 9.98.

With this formula one can calculate the other fixed rates as well and are displayed in Figure 3.1
as the values of Fixi, i = 1, . . . , 6.

Therefore, the risk of changes in the LIBOR will now be shifted to Float.
We have seen that the only parameter—which was previously given—to decide whether

this contract is fair, is the fixed rate.

Now, let us put our observation in Example 3.1.4 into more technical terms.
A swap is a financial contract between two counterparties with fixed resettlement dates

T0, T1, . . . , TN , N ∈ N. The contract itself contains two cashflows, one—called the floating
leg—are payments of future interest rates and the other—called the fixed leg—is a fixed
amount of payments. The receiver of a swap will receive at the fixed dates the amount of
the fixed leg and pays the amounts of the floating leg to the other counterparty, giving it
its name: the floating leg is swapped for the fixed leg. Additionally, a payer swap refers to
the case, when the floating leg is received and the fixed rate payed. We will distinguish the
different kinds by introducing the factor ζ, which will be equal to +1 in case of a payer swap
and −1 in case of a receiver swap.

Such a contract with maturity T0 and tenor TN − T0 and resettlements T0, . . . , TN is com-
monly called a T0 × (TN − T0) swap.

The net value of a T0 × (TN − T0) payer and receiver swap at time t < T0 is given by

SwapTN
T0

(t;K, ζ) := ζ

(
P (t, T0)− P (t, TN )−K

N∑
i=1

αiP (t, Ti)
)

(3.1.1)

where αi = Ti − Ti−1 is the day-count convention and K the fixed rate, see for instance
Björk (2004): pp. 429 ff. To ease notation, we will suppress the explicit dependency on the
T0 and TN whenever there is no confusion.

A particular fixed rate K, called par or forward swap rate, is of special interest and is
usually quoted in the market. It is the one, such that SwapTN

T0
(t;K, ζ) = 0, i.e. the contract

is fair and is independent of ζ. We will denote it a bit more generally by

RN
n (t) := P (t, Tn)− P (t, TN )∑N

i=n+1 αiP (t, Ti)
, n = 0, . . . , N − 1.

Moreover, we will denote the so-called accrual factor or present value of a basis point by

SN
n (t) :=

N∑
i=n+1

αiP (t, Ti), n = 0, . . . , N − 1.

3.1.3. Constant Maturity Swaps

In this section, we recall the definition of a constant maturity swap. For more details, we
refer the reader to Brigo and Mercurio (2006): pp. 557 ff. Section 13.7 Constant-Maturity-
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Swaps and Tanaka, Yamada and Watanabe (2010): pp. 7 ff.

Definition 3.1.5. A constant maturity swap (CMS) is a variant of an interest rate swap
between two parties, such that at each payment date starting at T0 and ending at TN a fixed
rate K is swapped with a c-year swap rate.1

Analogously, we distinguish between payer and receiver CMS. In receiver CMS the fixed
rate is received and the floating rate paid, vice versa for payer CMS.

Also, we will assume annual settlements between the effective date T0 and maturity TN

and denote the payment dates by T := {T0, T1, . . . , TN}. The net value of a T0×TN + c CMS
with fixed rate K and index c at time 0 under the risk-neutral measure is

CMSTN
T0

(0;K, c, ζ) := EQ
[

N∑
i=1

exp
(
−
∫ Ti−1

0
r(s)ds

)
ζαi

(
Ri−1+c

i−1 (Ti−1)−K
)]
. (3.1.2)

By rearranging (3.1.2), we can compute the par CMS rates by setting it to zero and solve for
K, i.e.

K =
EQ

[∑N
i=1 αi exp

(
−
∫ Ti−1

0 r(s)ds
)
Ri−1+c

i−1 (Ti−1)
]

EQ
[∑N

i=1 αi exp
(
−
∫ Ti−1

0 r(s)ds
)]

=
EQ

[∑N
i=1 αi exp

(
−
∫ Ti−1

0 r(s)ds
)
Ri−1+c

i−1 (Ti−1)
]

∑N
i=1 αiP (0, Ti−1)

.

3.1.4. Swaption

Now, we are able to discuss swaptions (cf. Björk (2004): pp. 430 ff.).

Definition 3.1.6. A T0 × (TN − T0) payer, receiver swaption with swaption strike K is a
contract, which at maturity T0 gives the holder the right to enter into a T0× (TN −T0) payer,
receiver swap with fixed rate K.2

Its arbitrage free price at time t < T0 is given by

SwaptionTN
T0

(t;K, ζ) = EQ
[

exp
(
−
∫ T0

t
r(s)ds

)(
ζ
(
RN

0 (T0)−K
))+

SN
0 (T0)

∣∣∣∣∣Ft

]
(3.1.3)

While this formulation is often beneficial for Monte-Carlo simulations, it can be useful to
remove the stochastic discount factor in (3.1.3) by a clever change of measure. For fixed T0,
the T0-forward measure QT0 is defined as the martingale measure for the numeraire process
P (t, T0) (cf. Björk (2004): pp. 403 ff. Chapter 26.4 Forward measure) and we have the
following:

1More details about the implementation can be found on https://github.com/kevinkamm/CIR--/blob/
main/constantMaturitySwap.m.

2More details about the implementation can be found on https://github.com/kevinkamm/CIR--/blob/
main/swaption_matrix.m.
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Proposition 3.1.7. For any T0-claim X we have

EQ
[
e−
∫ T0

t
r(s)dsX

∣∣∣∣Ft

]
= P (t, T0)EQT0 [X| Ft] .

Thus, the price at time t < T0 of a payer (ζ = 1), receiver (ζ = −1) swaption under the
T0-forward measure is given by

Swaption (t;K, ζ) = P (t, T0)EQT0
[(
ζ
(
RN

0 (T0)−K
))+

SN
0 (T0)

∣∣∣∣Ft

]
(3.1.4)

3.1.5. Bermudan Swaption

In this section, we want to discuss how to compute the prices of Bermudan swaptions by
using the Least-Square-Monte-Carlo (LSMC) technique. A popular choice of literature on
this subject is e.g Brigo and Mercurio (2006): pp. 588 ff. Section 13.15 LFM: Pricing
Bermudan Swaptions, Glasserman (2004): pp. 421 ff. Chapter 8 Pricing American Options
or more recently Gatarek and Jabłecki (2021) and Oosterlee and Grzelak (2019):
pp. 422 ff. Section 13.3.2 European and Bermudan option example.

Now, let us define which type of Bermudan swaptions we are interested in.

Definition 3.1.8. A TN no-call T0 or TN ncT0 Bermudan swaption with annual exer-
cise dates gives its holder the right but not the obligation to enter at any time T N

E :=
{T0, T1, . . . , TN−1} into an interest rate swap with first reset T ∈ TE , last payment TN and
fixed rate K.3

Let us give a quick example of a 10 nc 2 Bermudan swaption with annually spaced exercise
dates. The holder can exercise this option starting from year 2 and afterwards at the beginning
of each consecutive year but not later than year 9. After exercising the option, the holder
enters into a swap contract—for simplicity with annual settlements—ending at year 10.

Accordingly, the price at time t of a TN ncT0 Bermudan swaption is the solution to the
following optimal stopping problem

BSwaptionTN
T0

(t;K, ζ) := sup
τ∈T N

E
τ stopping time

EQ
t

[
e−
∫ τ

t
r(s)dsSN

τ (τ)
(
ζ
(
K −RN

τ (τ)
))+

]
,

where the filtration is generated by the forward swap rate, i.e. Ft := σ
(
RN

s (s) : s ≤ t
)

augmented such that it satisfies the usual hypothesis.
For the implementation we are interested in the special case of today’s price, i.e. t = 0.

We will use backward induction to compare the exercise value to the continuation value and
compute the conditional expectations by the least square Monte Carlo (LSMC) method (cf.
Longstaff and Schwartz (2001)). Let us be more precise:

3More details about the implementation can be found on https://github.com/kevinkamm/CIR--/blob/
main/bermudanSwaption.m.
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We know that the price at time TN−1 is given by

BSwaptionTN
T0

(TN−1;K, ζ) = EQ
TN−1

[
e

−
∫ TN−1

TN−1
r(s)ds

SN
N−1(TN−1)

(
ζ
(
K −RN

N−1 (TN−1)
))+

]

= P (TN−1, TN )
(
ζ
(
K −RN

N−1 (TN−1)
))+

by definition and measurablility as well as the fact that the stopping time can only be equal
to TN−1 in this case. This gives us the opportunity to inductively calculate the Bermudan
swaption price backwards. Thus, let us now assume that BSwaptionTN

T0
(Ti+1;K, ζ) for i =

N − 2, . . . , 0 is known.

We would like to compare the so-called continuation value, which is the expected future
payoff if the option is not exercised to the exercise value at all times T N

E , and is defined as

c(Ti) := EQ
Ti

[
e

−
∫ Ti+1

Ti
r(s)dsBSwaptionTN

T0
(Ti+1;K, ζ)

]
.

Since the optimal stopping time will pathwise choose the maximum of continuing the option
or exercising it, we have a dynamic programming principle

BSwaptionTN
T0

(Ti;K, ζ) =


P (TN−1, TN )

(
ζ
(
K −RN

N−1 (TN−1)
))+

, i = N − 1

max
(
c(Ti), SN

i (Ti)
(
ζ
(
K −RN

i (Ti)
))+

)
, i = 0, . . . , N − 2.

The price at time t = 0 is then given by

BSwaptionTN
T0

(0;K, ζ) = EQ
[
e−
∫ T0

0 r(s)dsBSwaptionTN
T0

(T0;K, ζ)
]
.

For completeness we explain how to approximate the conditional expectation with the
LSMC method in Appendix B.5. For the numerical implementation we choose the polynomial
basis.

Now, let us give a short literature review concerning short-rate modelling.

3.2. Literature Review

Historically, the theory of interest-rate modelling started on the assumption of specific one-
dimensional dynamics for the instantaneous spot rate process r. These models are convenient
for defining all fundamental quantities (rates and bonds) by no-arbitrage arguments as the ex-
pectation of a functional of the process r. Indeed, the price at time t > 0 of a contingent claim
with payoff HT , T > t, under the risk-neutral measure Q is given by (cf. Pascucci (2011):
p. 356 Definition 10.46 )

Ht = EQ
[
e−
∫ T

t
r(s)dsHT

∣∣∣∣Ft

]
, (3.2.1)
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where EQ [ ·| Ft] denotes the conditional expectation with respect to some filtration Ft under
measure Q. In particular, choosing HT := P (T, T ) = 1, where P (t, T ) denotes a zero-coupon
bond.

The literature on interest rate modelling is very vast and our short literature review is
by no means exhaustive. We refer to Björk (2004), Brigo and Mercurio (2006) and
Hull (2006) for a comprehensive review and description of these models.

Among all possible classifications, we can divide these models into two major categories:
the endogenous and exogenous models. In chronological order, the first short-rate models
belong to the first group: the Vasicek model Vasicek (1977), the Dothan model and the Cox,
Ingersoll & Ross (CIR) Cox, Ingersoll and Ross (1985). In particular, the CIR model has
been regarded as the reference model in interest rate modelling by both practitioners and
academics for several decades for several reasons. First of all, it was derived from a general
equilibrium framework. Secondly, it generates more realistic interest rate distributions with
skewness and fatter tail with respect to normal distribution. Thirdly, it avoids negative
interest rates. There is a rich literature on extensions to the classical CIR model in order to
obtain more sophisticated models, which could fit the market data better, allowing to price
interest rate derivatives more accurately.

There is a rich literature on extensions to the classical CIR model in order to obtain
more sophisticated models, which could fit the market data better, allowing to price interest
rate derivatives more accurately. For example, Baker et al. (1996) proposed a three-factor
model; Brigo and Mercurio (2006) proposed a jump diffusion model (JCIR). In order
to include time dependent coefficients. Brigo and Mercurio (2001a) proposed to add a
deterministic function. This model, called CIR++, is able to fit the observed term structure
of interest rates exactly, while preserving the positivity of the short-rate process. Brigo and
El-Bachir (2006) generalized the CIR++ model by adding a jump term described by a
time-homogeneous Poisson process and Brigo and Mercurio (2006) studied the CIR2++
model by adding another risk-factor. Another way to generalize the CIR model by including
time dependent coefficients in equation (3.4.1) was introduced by Jamshidian (1990) and
Maghsoodi (1996), which are known as extended CIR models.

But in the last decade the financial industry encountered a paradigm shift by allowing the
possibility of negative interest rates, making the classical CIR model unsuitable.

Recently, Orlando et al. suggest in several papers (cf. Orlando, Mininni and Bu-
falo (2019a), Orlando, Mininni and Bufalo (2019b) and Orlando, Mininni and Bu-
falo (2020)) a new framework, which they call CIR# model, that fits the market term-
structure of interest rates. Additionally, it preserves the market volatility, as well as the ana-
lytical tractability of the original CIR model. Their new methodology consists in partitioning
the entire available market data sample, which usually consists of a mixture of probability
distributions of the same type. They use a technique to detect suitable sub-samples with
normal or gamma distributions. In a next step, they calibrate the CIR parameters to shifted
market interest rates, such that the interest rates are positive, and use a Monte Carlo scheme
to simulate the expected value of interest rates.

Beside historical reasons, endogenous models are important for their simplicity and analyti-
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cal tractability, in particular for the possibility of pricing bonds and bond options analytically.
But there are some drawbacks. Since these models use only a few constant parameters, they
are not able to reproduce simultaneously a given term-structure and volatility curve satisfac-
torily. Moreover, some shapes of the zero-coupon curve can never be reproduced (for example
an inverted shape curve with the Vasicek model). The need for an exact fit to the currently
observed yield curve led some authors to introduce exogenous term-structure models. The
first model was proposed by Ho & Lee (see Ho and Lee (1986)), but we believe the most
popular among practitioners is the Hull & White extended Vasicek model (see Hull and
White (1990)). A generalization of this model with a good calibration to swaption market
prices was found in Di Francesco (2012), while Mercurio and Pallavicini in Mercurio
and Pallavicini (2005) proposed a mixing Gaussian model coupled with parameter uncer-
tainty. Moreover, in Russo and Torri (2019) the authors calibrate a one- and two-factor
Hull-White model using swaptions under a market-consistent framework compatible with
negative interest rates.

On the one hand, these models can handle negative interest rates with a very good ana-
lytical tractability. On the other hand, the distribution of continuously compounded interest
rates show all the undesirable features of the Gaussian distribution.

3.3. Endogenous Model

In this section, we tackle negative interest rates by using the difference of two independent
CIR processes.

We will propose a term structure in the risk-neutral world suitable for the difference of two
independent affine processes and obtain a pricing formula for default-free zero-coupon bonds
by deriving the associated Riccati equations arising from this no-arbitrage framework. In the
special case of two CIR processes we will then solve the Riccati equations explicitly, which
preserves the analytical tractability of its non-negative interest rate counterpart.

Afterwards, we will show some numerical experiments to demonstrate the merits of this
approach in practice.

Let us consider the following affine dynamicsdx(t) = (λx(t)x(t) + ηx(t)) dt+
√
γx(t)x(t) + δx(t)dWx(t)

x(0) = x0,
(3.3.1)

dy(t) = (λy(t)y(t) + ηy(t)) dt+
√
γy(t)y(t) + δy(t)dWy(t)

y(0) = y0,
(3.3.2)

where henceforth throughout the whole section Wy and Wx are two independent standard
Brownian motions on a stochastic basis

(
Ω,F , (Ft)t∈[0,T ] ,Q

)
, Q is a martingale measure

for the zero-coupon market (see for instance the martingale approach for short-rate mod-
elling described in Björk (2004): p. 374 Chapter 23 Result 24.1.1.) and T > 0 is a finite
time horizon. The initial values x0, y0 ∈ R are real-valued constants and the coefficients
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λz, ηz, γz, δz, z ∈ {x, y}, are all real-valued deterministic functions, such that (3.3.1) and
(3.3.2) are well-defined.

Furthermore, let the instantaneous short-rate process be given by

r(t) := x(t)− y(t). (3.3.3)

In the case where y ≡ 0, this reduces to the standard affine one-factor short rate model class.
If additionally δx(t) ≡ 0, λx(t) ≡ −kx ηx(t) ≡ kxθx and γx(t) ≡ σ2

x, where kx, σx, θx ∈ R≥0,
it reduces to the standard CIR model

dx(t) = kx(θx − x(t))dt+ σx

√
x(t)dWx(t), (3.3.4)

which lets (3.3.3) preserve all the features of a standard CIR model in a non-negative interest
rate setting.

3.3.1. Description of the Main Results

The main result consists of two main parts. First of all, we derive the zero-coupon bond
price for (3.3.3) in the case of the difference of (3.3.1) and (3.3.2) being two independent
CIR processes as in (3.3.4). Secondly, we provide numerical experiments to demonstrate the
features of this model in Section 3.3.3.

Theorem 3.3.1. Let
(
Ω,F , (Ft)t∈[0,T ] ,Q

)
be a stochastic basis, where Q is a martingale

measure as above, making the discounted zero-coupon price processes martingales, T > 0 a
finite time horizon and let the σ-algebra (Ft)t∈[0,T ] fulfill the usual conditions and support
two independent standard Brownian motions Wx and Wy.

The price of a zero-coupon bond in the model r(t) = x(t) − y(t) with x and y being two
independent CIR processes as in (3.3.4) is given by

P (t, T ) = Ax(t, T )e−Bx(t,T )x(t)Ay(t, T )eBy(t,T )y(t), (3.3.5)

where t ≤ T and for z ∈ {x, y}

Az(t, T ) =

 ϕz
1e

ϕz
2(T −t)

ϕz
2

(
eϕz

1(T −t) − 1
)

+ ϕz
1

ϕz
3

Bz(t, T ) = eϕz
1(T −t) − 1

ϕz
2

(
eϕz

1(T −t) − 1
)

+ ϕz
1

(3.3.6)

with ϕz
i ≥ 0, i = 1, 2, 3, z ∈ {x, y}, defined as

ϕx
1 :=

√
k2

x + 2σ2
x, ϕx

2 := kx + ϕx
1

2 , ϕx
3 := 2kxθx

σ2
x

ϕy
1 :=

√
k2

y − 2σ2
y , ϕy

2 := ky + ϕy
1

2 , ϕy
3 := 2kyθy

σ2
y

.

(3.3.7)
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Remark 3.3.2. As stated in Theorem 3.3.1, we only need for pricing the zero-coupon bonds
that the coefficients ϕz

i , z ∈ {x, y}, i = 1, 2, 3, are real, positive and defined as in (3.3.7).
However, for the numerical implementation, we will assume henceforth the so-called Feller-

condition as well, i.e. 2kzθz ≥ σ2
z for both CIR processes.

The Feller-condition has no impact on the existence and uniqueness of the solutions to
(3.3.4) or on the validity of (3.3.5) but guarantees that the solution remains strictly positive
instead of just non-negative, whose violation can cause problems in some numerical schemes.

We tested for the presented data the case, when we do not assume the Feller-condition
as well and could not see an improvement in terms of accuracy compared to the case where
we assumed it. However, this might be due to our chosen data, because the Feller-condition
was only slightly violated. Therefore, we decided to impose the Feller-condition for our
numerical tests and leave a detailed investigation of the violation of this condition with
different numerical schemes for future research.

For a thorough discussion on the Feller-condition and existence and uniqueness of the
solution to (3.3.4), we refer to Andersen, Jäckel and Kahl (2010), Gikhman (2011) and
Liao (2018).

The technical part of the proof is quite standard and is reported in Section B.1 with
a description of how to derive this result in Section 3.3.2. Formula (3.3.5) provides the
necessary ingredient for the numerical experiments in Section 3.3.3 to calibrate the model to
the market term structure.

This remainder of the section is organized as follows. In Section 3.3.2 we introduce the
model in a general affine model setup and describe our main result Theorem 3.3.1. We will
derive the Riccati equations associated with the proposed term structure suitable for the
difference of two independent affine processes and solve those explicitly in a CIR framework.

After that, in Section 3.3.3, we will conduct some numerical experiments. First, we calibrate
our model via (3.3.5) to the market data at 30/12/2019 and 30/11/2020 in Section 3.3.3.2.
Subsequently, we simulate the model by using the Euler-Maruyama scheme in Section 3.3.3.3
and study the mean, variance and distribution of the model in Section 3.3.3.4. Then we price
swaptions in Section 3.3.3.5 and summarize the results of the sections in Section 3.3.4.

3.3.2. A Model for Negative Interest Rates

We will now describe how Theorem 3.3.1 can be derived. As aforementioned, we consider all
dynamics under the risk-neutral measure Q and give now a heuristic argument, why it makes
sense to choose the term structure in Theorem 3.3.1 as in (3.3.5).

Suppose, that x(t) and y(t) are both independent affine processes. Then the price of a
zero-coupon bond for each of them separately (cf. Brigo and Mercurio (2006) p. 69) is
given by

P (t, T ) = EQ
[
e−
∫ T

t
z(s)ds

∣∣∣∣Ft

]
= Az(t, T )e−Bz(t,T )z(t), (3.3.8)

where z ∈ {x, y} and EQ
t denotes the conditional expectation with respect to Ft under the
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measure Q. Now, consider r(t) = x(t)− y(t), then we have by linearity and independence

P (t, T ) = EQ
[
e−
∫ T

t
r(s)ds

∣∣∣∣Ft

]
= EQ

[
e−
∫ T

t
(x(s)−y(s))ds

∣∣∣∣Ft

]
= EQ

[
e−
∫ T

t
x(s)ds

∣∣∣∣Ft

]
EQ

[
e
∫ T

t
y(s)ds

∣∣∣∣Ft

]
.

If we concentrate in (3.3.8) only on the right-hand side, it would make sense for two inde-
pendent processes x and y that we can apply these formulas with a change of sign in front of
By, leading to

P (t, T ) != Ax(t, T )e−Bx(t,T )x(t)Ay(t, T )eBy(t,T )y(t).

In the following Lemma we will make this argument rigorous.

Lemma 3.3.3. Let everything be as in Theorem 3.3.1 but let x(t) and y(t) follow the general
affine dynamics described in (3.3.1) and (3.3.2).

Then, the price of a Zero-coupon bond is given by

P (t, T ) = EQ
[
e−
∫ T

t
r(s)ds

∣∣∣∣Ft

]
= Ax(t, T )e−Bx(t,T )x(t)Ay(t, T )eBy(t,T )y(t), (3.3.9)

where Az and Bz, z ∈ {x, y}, are deterministic functions and are a classical solution to the
following system of Riccati equations

−1−Bx(t, T )λx(t)− (∂tBx) (t, T ) + 1
2B

2
x(t, T )γx(t) = 0, Bx(T, T ) = 0

−Bx(t, T )ηx(t) + 1
2B

2
x(t, T )δx(t) + ∂t (logAx) (t, T ) = 0, Ax(T, T ) = 1

1 +By(t, T )λy(t) + (∂tBy) (t, T ) + 1
2B

2
y(t, T )γy(t) = 0, By(T, T ) = 0

By(t, T )ηy(t) + 1
2B

2
y(t, T )δy(t) + ∂t (logAy) (t, T ) = 0, Ay(T, T ) = 1.

(3.3.10)

The proof of this Lemma is referred to Section B.1. The independence of x and y ensures
that the Riccati equations for Ax and Bx are decoupled from the ones for Ay and By, making
it possible to use the existing literature on explicit solutions in the context of short rate
models to construct easily a solution for our difference process (3.3.3) in the case where x
(3.3.1) and y (3.3.2) are CIR processes.

Remark 3.3.4. One can immediately use Lemma 3.3.3 to construct solutions to other popular
one-factor affine short rate models, where an explicit solution is available, e.g. the Vasicek
model, provided that x and y are independent.

Introducing dependence between x and y suggests a coupling of Ax and Bx to Ay and By

and might have an impact on the analytical tractability, but is left for future research.

It is well-known that the processes x(t) and y(t) are non-negative for every t ≥ 0 (see for
instance Cox, Ingersoll and Ross (1985) or Jeanblanc, Yor and Chesney (2009)). We
underline that even if the processes x(t) and y(t) are positive, the instantaneous spot rate
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Figure 3.2.: An example of a trajectory with negative interest rates r = x− y and its decom-
position in x and −y, obtained with the market data on 30/12/2019 and parameters given
in Table 3.2.

r(t) could be negative since it is defined as the difference of x(t) and y(t) for every t > 0,
which is illustrated in Figure 3.2 together with several percentiles of r(t).

3.3.3. Numerical Tests

We will now perform some numerical experiments in our model.4 In Section 3.3.3.1 we will
briefly discuss the market data, which we will use to perform all numerical tests in the sub-
sequent sections. Afterwards, we will describe the calibration procedure of our model to
the zero-coupon curves at 30/12/2019 and 30/11/2020 in Section 3.3.3.2. This is followed
by a short subsection on simulating the model with the Euler-Maruyama scheme in Sec-
tion 3.3.3.3 and we investigate the mean, variance and distribution of the short rate model
in Section 3.3.3.4. Last but not least, Section 3.3.3.5 will show results on pricing swaptions
in our model.

We used for the calculations Matlab 2022a with the (Global) Optimization Toolbox run-
ning on Windows 10 Pro, on a machine with the following specifications: processor Intel(R)
Core(TM) i7-8750H CPU @ 2.20 GHz and 2x32 GB (Dual Channel) Samsung SODIMM
DDR4 RAM @ 2667 MHz.

3.3.3.1. Market Data

To obtain the market zero-coupon bond term structure, we first build the EUR Euribor-swap
curve which is created from the most liquid interest rate instruments available in the market
and constructed as follows: We consider deposit rates and Euribor rates with maturity from

4More details about the implementation can be found on https://github.com/kevinkamm/CIR-/blob/main/
main.m.
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one day to one year and par-swap rates versus six-month Euribor rates with maturity from
two years to thirty years. Then the zero interest curve and the zero-coupon bond curve
are calculated using a standard “bootstrapping” technique in conjunction with cubic spline
interpolation of the continuously compounded rate (cf. Miron and Swannell (1991) for
more details).

We choose two different dates and we take the data at the end of each business day. In
particular, we test our model at 30/12/2019 and at 30/11/2020. At the first date, the zero
interest rates were negative up to year six, while at the second date the entire zero interest
rate structure was negative. In Table B.11 and in Table B.12 we report the zero interest rate
curve and the zero-coupon bond curve at the two different dates.

Furthermore, in Section 3.3.3.5 we need the market volatility surface to compute the market
swaption prices with Bachelier’s formula and the strikes to compute the model swaption
prices. The volatility surface, strikes and market swaption prices, are for both dates in the
Appendix in Table B.2, Table B.3, Table B.4, Table B.5, Table B.6 and Table B.7, respectively.

All data has been downloaded from Bloomberg and is used in the following subsections for
our numerical experiments. We start in the next subsection with calibrating our model to
the zero-coupon curve.

3.3.3.2. Calibration

In this subsection, we will discuss how we calibrate our model to the market zero-coupon
curve given in Table B.11 and Table B.12 by using the formula derived in (3.3.5).

Let us denote Π := [ϕx
1 , ϕ

x
2 , ϕ

x
3 , ϕ

y
1, ϕ

y
2, ϕ

y
3, x0, y0]T ∈ R8. We will formulate the calibration

procedure as a constraint minimization problem in R8 for the parameters Π with objective
function

f(Π) :=
n∑

i=1

(
PM (0, Ti)
P (Π; 0, Ti)

− 1
)2

, (3.3.11)

where n ∈ N is the number of time points, where market data is available, and Ti, i = 1, . . . , n
are these maturities. The market zero-coupon curve is denoted by PM (0, Ti) and P (Π; 0, Ti)
is the price of a zero-coupon bond in our model given by (3.3.5) with parameters Π.

The objective function describes the relative square difference between the market zero-
coupon bond prices and the theoretical prices from the model given by (3.3.5).

The set of admissible parameters A will consist of the following constraints arising from
the well-definedness of the formulas (3.3.7):

1. First of all, let us note that there is a one-to-one correspondence between the parameters
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Π and kz, σz and θz if one is looking for positive real solutions only. We have

kx = 2ϕx
2 − ϕx

1 , ky = 2ϕy
2 − ϕ

y
1,

σx =
√

2
(
ϕx

2ϕ
x
1 − (ϕx

2)2
)
, σy =

√
−2
(
ϕy

2ϕ
y
1 − (ϕy

2)2
)
,

θx = −ϕ
2
xϕ

3
x(ϕ1

x − ϕ2
x)

ϕ1
x − 2ϕ2

x

, θy =
ϕ2

yϕ
3
y(ϕ1

y − ϕ2
y)

ϕ1
y − 2ϕ2

y

.

(3.3.12)

2. We require σz ∈ R≥0, z ∈ {x, y}. By rearranging (3.3.12), these conditions are equiva-
lent to ϕx

1 ≥ ϕx
2 and ϕy

2 ≥ ϕ
y
1;

3. A positive mean-reversion speed, i.e. kz ≥ 0, is equivalent to 2ϕz
2 ≥ ϕz

1, z ∈ {x, y};
4. The Feller condition 2kzθz ≥ σ2

z is equivalent to ϕz
3 ≥ 1, z ∈ {x, y};

5. A positive mean for each CIR process, i.e. θz ≥ 0, is by positivity of σ2
z and kz equivalent

to ϕz
3 ≥ 0, which is already satisfied by the Feller condition;

6. The parameter ϕz
1, assuming that it is real-valued, is positive by definition, meaning

that by the positivity of the mean reversion speed, ϕz
2 will be as well. Therefore, all ϕ

are positive;
7. As both CIR processes xt and yt, individually, are positive processes, we additionally

require x0 ≥ 0 and y0 ≥ 0.
The advantage of using the parameters Π instead of kz, σz and θz is that we can rewrite these
conditions as a system of linear inequality constraints in matrix notation A · Π ≤ 0 (where
less-or-equal sign is to be understood in a element-wise sense), where

A :=


−1 1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0
1 −2 0 0 0 0 0 0
0 0 0 1 −2 0 0 0


with lower bounds Πi ≥ 0, i = 1, . . . , 8, and Π3 = ϕx

3 ≥ 1, as well as Π6 = ϕy
3 ≥ 1.

In total, the set of admissible parameters is given by

A :=
{

Π = [Π1, . . . ,Π8]T ∈ R8
≥0 : Π3 ≥ 1,Π6 ≥ 1 and A ·Π ≤ 0

}
. (3.3.13)

Finally, a solution Π∗ to the calibration problem is a minimizer of

min
Π∈A

f (Π) . (3.3.14)

To solve (3.3.14) numerically, we want to use Matlab’s function fmincon in the (Global)
Optimization Toolbox. In order to use this function, we need an initial guess of the parameter
Π and the computational time will depend on that choice. In Table 3.1 we present a few
choices for initial guesses of Π. The first row for each date 30/12/2019 or 30/11/2020 refers
to Matlab’s function ga in the (Global) Optimization Toolbox, which uses a generic global
optimization algorithm to find a solution of (3.3.14) without starting from an initial guess,
which takes a long time to compute, roughly 35 to 43 seconds. In the following three rows
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Table 3.1.: Calibration times and corresponding mean relative errors (MRE) for different
initial parameters at 30/12/2019 and 30/11/2020.

Inital Parameter Times (in s) MRE (in %)
Calibration at 30/12/2019

ga 42.136 0.142014 %
0.50001 0.50001 1.5 0.50001 0.50001 1.5 0.50001 0.50001 0.287 0.143798 %

1 1 2 1 1 2 1 1 0.229 0.146769 %
1e-05 1e-05 1 1e-05 1e-05 1 1e-05 1e-05 0.276 0.145207 %

0.048808 0.72079 1.4275 0.64469 0.32152 1.4794 0.2556 0.25427 0.334 0.146509 %
0.66073 0.78158 1.5547 0.3779 0.24209 1.249 0.74017 0.63334 103.949 0.14374 %

Calibration at 30/11/2020
ga 35.842 0.135885 %

0.50001 0.50001 1.5 0.50001 0.50001 1.5 0.50001 0.50001 0.280 0.137577 %
1 1 2 1 1 2 1 1 0.188 0.138228 %

1e-05 1e-05 1 1e-05 1e-05 1 1e-05 1e-05 40.864 0.13642 %
0.87647 0.89591 1.4508 0.10496 0.63629 1.3009 0.3297 0.74067 0.185 0.140284 %
0.51541 0.83366 1.9624 0.79757 0.13068 1.6517 0.54064 0.43674 0.342 0.14292 %

are three manual initial guesses. We can see that the first two choices work for both dates
exceptionally fast (0.3 seconds) and the accuracy is almost identical to all other choices,
making this model a good choice if live calibration to the data is needed, which we also
use in the following numerical experiments. In the last two rows we used random starting
parameters to demonstrate that the error remains stable but the computational time varies.

For the algorithms used by Matlab we refer the reader to Gilli, Maringer and Schu-
mann (2011), in the context of financial mathematics.

The results of the aforementioned calibration procedure are displayed in Table 3.2 for both
dates 30/12/2019 and 30/11/2020. On the left-hand side, one can see the parameters Π∗

and on the right-hand side the corresponding model parameters derived from Π∗. At both
dates we obtain good results in fitting the market term structure. The mean relative error
(MRE), i.e. 1

n

∑n
i=1

∣∣∣ P M (0,Ti)
P (Π∗;0,Ti) − 1

∣∣∣, over the entire term structure is 0.144 % at the first date
and 0.138 % at the second date.

3.3.3.3. Euler-Monte-Carlo Simulation

In order to forecast the future expected interest rate, we use the Euler-Maruyama scheme
to simulate the instantaneous spot rate r (3.3.3). We refer to Dereich, Neuenkirch and
Szpruch (2012) and the references therein for a list of different Euler-type methods to
simulate a CIR process. In our experiments, we simulate the processes x(t) and y(t) by the
truncated Euler scheme defined as follows:

First of all, we fix a homogeneous time grid 0 = t0 ≤ t1 ≤ · · · ≤ tN = T for the interval [0, T ]
with N+1 time points and mesh ∆ti := ti+1− ti ≡ ∆ := T

N for all i = 0, . . . , N−1. Secondly,
we simulate the two independent Brownian motions Wz, z ∈ {x, y}, and define their time
increment as ∆Wz(ti) := Wz(ti+1)−Wz(ti). In total, we compute r(ti+1) := x(ti+1)− y(ti+1)
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Table 3.2.: Calibration parameters Π∗, model parameters and mean relative errors (MRE)
at 30/12/2019 and 30/11/2020, obtained with the market data given in Table B.11 and
Table B.12.

Parameter 30/12/2019 30/11/2020
ϕx

1 0.710501 0.767497
ϕx

2 0.644564 0.699649
ϕx

3 1.60862 1.6014
x0 0.268914 0.257145
ϕy

1 0.468673 0.523363
ϕy

2 0.533206 0.594629
ϕy

3 1.50249 1.49966
y0 0.280095 0.270007

f (Π∗) 3.247465e− 04 3.548162e− 04
MRE 0.144 % 0.138 %

Parameter 30/12/2019 30/11/2020
kx 0.578626 0.631802
σx 0.291551 0.308122
θx 0.118155 0.120319

ky 0.59774 0.665895
σy 0.262334 0.291125
θy 0.0864925 0.0954364
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Figure 3.3.: A comparison of the market zero-coupon prices (Table B.11) to the model zero-
coupon prices with absolute errors at 30/12/2019 with parameters given in Table Table 3.2.
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Figure 3.4.: A comparison of the market discount factors (Table B.11) to the mean of the
model discount factors with absolute errors at 30/12/2019 with parameters given in Table 3.2
by using (3.3.15) with ∆ = 1

256 and M = 10000.

for i = 0, . . . , N − 1, where

x(ti+1) = x(ti) + kx(θx − x(ti))∆ti + σx

√
max(x(ti), 0)∆Wx(ti)

y(ti+1) = y(ti) + ky(θy − y(ti))∆ti + σy

√
max(y(ti), 0)∆Wy(ti).

(3.3.15)

We choose the max inside the square-root to ensure that the square-root remains real, because
due to discretization effects the positivity of x(ti) and y(ti) might be violated.

In the following experiments we choose ∆ = 1
256 and use M = 10000 samples for each of

the Brownian motions. In Figure 3.4 we show the mean and 99.9 % confidence interval (under
the assumption of the central limit theorem) of the model discount factors, i.e. D (0, T ) :=
exp

(
−
∫ T

0 r(s)ds
)

with simulated short rate r(s), compared to the market discount factors,
i.e. DM (0, T ) = PM (0, T ) from Table B.11, at 30/12/2019. One can see that the mean does
not differ from the market discount factors very much till 5 years with an error of magnitude
0.005 and increases slightly to a magnitude of 0.05 afterwards till 30 years.

A more detailed comparison of the mean absolute errors, i.e. the absolute value of the
difference of the mean over all simulations of our model to the market data, at each maturity
can be found in the appendix in Table B.1.
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Figure 3.5.: Mean and standard deviation of r(t) using the calibrated parameters in Table 3.2,
obtained with (3.3.16) and (3.3.17). The left picture shows the results at 30/12/2019 and the
right at 30/11/2020.

Figure 3.6.: Distribution of the simulated short rate r(t) compared to the normal distribution
at t = 30 using the calibrated parameters in Table 3.2, ∆ = 1

256 and M = 10000. The left
picture shows the results at 30/12/2019 and the right at 30/11/2020.

3.3.3.4. Mean and Variance

The Fs-conditional mean and variance of the CIR process are well-known (cf. Brigo and
Mercurio (2006): p. 66 Equation 3.23 ) and are given by

EQ [z(t)| Fs] = z(s)e−kz(t−s) + θz

(
1− e−kz(t−s)

)
VarQ [z(t)| Fs] = z(s)σ

2
z

kz

(
e−kz(t−s) − e−2kz(t−s)

)
+ θz

σ2
z

2kz

(
1− e−kz(t−s)

)2
,

where z ∈ {x, y}. In the case of the difference of two CIR processes we have

EQ [r(t)| Fs] = EQ [x(t)− y(t)| Fs] = EQ [x(t)| Fs]− EQ [y(t)| Fs] (3.3.16)

and by independence

VarQ [r(t)| Fs] = VarQ [x(t)| Fs] + VarQ [y(t)| Fs] . (3.3.17)

In Figure 3.6 we show for each date the histogram of the short rate distribution after 30 years.
To describe the distribution of r(t) after 30 years better, we also compare it to the density of
a normal random variable with the same mean and variance. As one expects, the distribution
of r shows a slight skewness and fatter tail with respect to the normal distribution.
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Table 3.3.: 30/12/2019: difference between swaption model price and swaption market price

Maturity
Tenor 1 2 5 7 10

1 4.82602 % 3.72741 % 1.56009 % 0.601718 % −0.554628 %
2 4.70047 % 3.56775 % 1.18057 % 0.0467543 % −1.37405 %
5 3.60511 % 2.4125 % −0.249531 % −1.64559 % −3.50471 %
7 3.23362 % 1.97696 % −0.945175 % −2.48803 % −4.54551 %
10 2.85895 % 1.49467 % −1.69265 % −3.37829 % −5.63478 %
15 2.63259 % 1.17927 % −2.21714 % −4.05043 % −6.53224 %
20 2.48029 % 1.01554 % −2.47166 % −4.39298 % −6.98019 %

Table 3.4.: 30/11/2020: difference between swaption model price and swaption market price

Maturity
Tenor 1 2 5 7 10

1 4.87829 % 3.71571 % 1.62322 % 0.745822 % −0.307305 %
2 4.62191 % 3.4627 % 1.22337 % 0.167669 % −1.18931 %
5 3.82762 % 2.596 % −0.0624237 % −1.4526 % −3.34358 %
7 3.45837 % 2.13705 % −0.80375 % −2.35496 % −4.46368 %
10 3.24577 % 1.77121 % −1.56541 % −3.3177 % −5.74088 %
15 3.02788 % 1.4328 % −2.26341 % −4.2787 % −7.03714 %
20 3.16548 % 1.42331 % −2.6344 % −4.8421 % −7.85129 %

3.3.3.5. Pricing Swaptions

In this subsection, we test if our model is market consistent, in the sense whether the model
is able to reproduce market swaption prices or not.

We compare market swaption prices to model swaption prices with different tenors (1, 2, 5, 7, 10
years) and maturities (1, 2, 5, 7, 10, 15, 20 years). The market swaption prices (Table B.6 and
Table B.7) are computed by Bachelier’s formula from normal volatilities quoted in the mar-
ket (Table B.2 and Table B.3) whereas the model swaption prices are from the simulated
future zero-coupon prices in (3.3.5). The difference between market price to model prices for
30/12/2019 and 30/11/2020 are reported in Table 3.3 and Table 3.4, respectively. We notice
that, similar to one-factor short interest rate model, our model fails to capture the full swap-
tion volatility surface. This result is not surprising, since the model uses essentially a single
volatility factor due to the fact that the model parameters are constant and the Brownian
motion are independent.

3.3.4. Conclusion

In this section, we propose a new model to handle the challenges arising from negative
interest rates, while preserving the analytical tractability of the original CIR model without
introducing any shift to the market interest rates. The strength of our model is that it is very
simple, fast to calibrate and fits the present market term structure very well for an essentially
one-factor short rate model.

Let us briefly summarize our discoveries of the numerical section. We show that the
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3.4. Exogenous Model

distribution of the short rate after 30 years has similar features compared to the original CIR
model in terms of skewness and fat tail. Moreover, we notice that we require an extension of
the model to price swaptions more accurately, which is part of the next section.

3.4. Exogenous Model

In this section, we transform the endogenous model from Section 3.3 into an exogenous one,
in which the observed term-structure is an input, to fit the short-rate model to the swaption
surface.

A basic strategy for this, is the inclusion of time-dependent parameters to exactly reproduce
the observed term-structure. In fact, matching the term-structure exactly is equivalent to
solving a system with an infinite number of equations. However, this is only possible by
introducing an infinite number of parameters or, equivalently, a deterministic function of time.
We follow the method illustrated in Brigo and Mercurio (2006): pp. 95 ff. Section 3.8 A
General Deterministic-Shift Extension to extend any time-homogeneous short-rate model, so
as to exactly reproduce any observed term-structure of interest rates while preserving the
possible analytical tractability of the original model.

To be more precise, we consider the CIR dynamics for z ∈ {x, y}

dz(t) = kz(θz − z(t))dt+ σz

√
z(t)dWz(t), z(0) = z0 (3.4.1)

under a martingale measure Q with kz, θz, σz ∈ R>0 and define the short-rate as

r(t) := x(t)− y(t) + ψ (t) , (3.4.2)

where Wy and Wx are two independent standard Brownian motions on a stochastic basis(
Ω,F , (Ft)t∈[0,T ] ,Q

)
and ψ(t) := fM (0, t)− f(0, t) is a deterministic function defined as the

difference of the market and model instantaneous forward rate.
Since the market term-structure is now an input, we can calibrate the model parameters

to the swaption surface. However, simple Monte-Carlo techniques are in general very slow
and memory demanding. Therefore, we resort to an approximation formula known as Gram-
Charlier expansion (cf. Tanaka, Yamada and Watanabe (2010)) in our model. This allows
for a fast and accurate calibration procedure.

3.4.1. Description of the Main Results

In this section, we will first of all extend the results of Section 3.3 by using a deterministic
shift extension. The zero-coupon price in the extended model (3.4.2) is given in the next
Lemma.

Lemma 3.4.1. Let
(
Ω,F , (Ft)t∈[0,T ] ,Q

)
be a stochastic basis, where Q is a martingale mea-

sure, T > 0 a finite time horizon and let the σ-algebra (Ft)t∈[0,T ] fulfill the usual conditions
and support two independent standard Brownian motions Wx and Wy. The price of a zero-
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coupon bond in the model r(t) := x(t)− y(t) + ψ(t) is given by

P (t, T ) = PM (0, T )
PM (0, t)

PCIR-(0, t)
PCIR-(0, T )P

CIR-(t, T ),

where PCIR-(t, T ) is the zero-coupon price from Theorem 3.3.1 and PM (0, T ) the market
zero-curve.

The derivation of this result is straightforward and referred to Section 3.4.2.
We will see that it is necessary to study the so-called swap moments to derive the Gram-

Charlier expansion. In our model, we will find explicit formulas allowing for fast swaption
pricing and it is part of the next technical Lemma.

Lemma 3.4.2. Let everything be as in Lemma 3.4.1. The so-called swap moments at time
t < T0 of order m ∈ N are given by

Mm(t) := EQT0
[(

SwapTN
T0

(T0;K, ζ)
)m∣∣∣Ft

]
=
(
PCIR-(0, T0)
PM (0, T0)

)m 1
PCIR- (t, T0)∑

0≤k0,...,kN ≤N
k0+···+kN =m

m!
k0! · · · kN ! ã

k0
0 · · · ã

kN
N

(
Mx(t, T0)e−Nx(t,T0)x(t)My(t, T0)eNy(t,T0)y(t)

)

where we suppress the dependency of Nz,Mz on ki for readability. The coefficients ãi are
given by

ã0 := ζ
PM (0, T0)
PCIR-(0, T0) , ãN := −ζ (1 +KαN ) PM (0, TN )

PCIR-(0, TN ) , ãi := −ζKαi
PM (0, Ti)
PCIR-(0, Ti)

,

for i = 1, . . . , N − 1, year fractions αi, fixed swap rate K and swap type ζ = 1 for a payer
swap and ζ = −1 for a receiver swap.

Moreover, the functions Mz, Nz, z ∈ {x, y} are defined as

Mz(t, T0) = az

(
ϕz

1 exp (ϕz
2(T0 − t))

ϕz
1 + ϕz

2 (exp (ϕz
1(T0 − t))− 1) (1 + bz (ϕz

1 − ϕz
2))

)ϕz
3
, az =

N∏
j=0

Az(T0, Tj)kj

Nz(t, T0) = bzϕ
z
1 + (exp (ϕz

1(T0 − t))− 1) (1 + bz (ϕz
1 − ϕz

2))
ϕz

1 + ϕz
2 (exp (ϕz

1(T0 − t))− 1) (1 + bz (ϕz
1 − ϕz

2)) , bz =
N∑

j=0
kjBz(T0, Tj),

where Az, Bz are the functions defined in Theorem 3.3.1. The swap cumulants cl(t) at time
t are now given by the formulas in Section B.4 by setting µi := M l(t), l = 1, . . . ,m.

For the proof of this Lemma we follow Tanaka, Yamada and Watanabe (2010) closely,
which is referred to Section 3.4.3.1.

The main result of this section is the approximation of swaption prices by the Gram-
Charlier expansion with short-rate (3.4.2), which follows immediately from Lemma 3.4.2 by
using Proposition 3.4.4 and is referred to Section 3.4.3.2.

Theorem 3.4.3. Let everything be as in Lemma 3.4.2.
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The time t price of a T0× (TN −T0) payer (ζ = 1) and receiver (ζ = −1) swaption is given
by

SwaptionTN
T0

(t;K, ζ) = P (t, T0)
(
C1N

(
C1√
C2

)
+
√
C2φ

(
C1√
C2

)(
1 +

∞∑
l=3

(−1)lqlHl−2

))
,

where N denotes the cdf of the normal distribution, φ is the pdf or the normal distribution
and Hl are the probabilist’s Hermite polynomials (see Section B.3). The coefficients q0 = 1,
q1 = q2 = 0, and for n ≥ 3

qn =
⌊n

3 ⌋∑
m=1

∑
k1+···+km=n

ki≥3

Ck1 · · ·Ckm

m!k1! · · · km!

( 1√
C2

)n

for Cl := cl(t)P (t, Tn)l with cl(t) being the swap cumulants from Lemma 3.4.2 for fixed t ≥ 0.

This formula will provide the necessary ingredient for the numerical experiments in Section
3.4.4 making it possible to calibrate the model to the swaption surface very efficiently. After
successfully calibrating the model, we apply it to find constant maturity swap rates in Section
3.4.4.4 and Bermudan swaption pricing in Section 3.4.4.5 using the Least-Square Monte Carlo
technique. We will see a good performance of this model compared to the reference data
downloaded from Bloomberg.

We performed tests on two different dates 30/12/2019 and 30/11/2020. At the first date,
the market zero rates were partially negative and at the second date they were completely
negative. We saw similar numerical results at both dates and decided for the sake of brevity
to only present the results at 30/12/2019. For the interested reader we will make the data
at 30/11/2020 as well as the code of the numerical implementation available online.5

The section is organized as follows. In Section 3.4.2, we first introduce the deterministic
shift extension and the corresponding zero-coupon price.

In Section 3.4.3, we will derive the Gram-Charlier expansion. This is done by first recalling
how a probability density of a random variable can be approximated by Hermite polynomials.
We will see that it is necessary to study the cumulants or equivalently the moments of this
random variable. In our case, this will be the swap moments and we will show, how to derive
them from the so-called bond moments by solving some Riccati equations, which will have
explicit solutions in our model, making it possible to compute swaption prices very fast.

After that, in Section 3.4.4, we will conduct some numerical experiments. First, we calibrate
our model to the market swaption surface at 30/12/2019 in Section 3.4.4.2. Subsequently, we
simulate the model by using the Euler-Maruyama scheme in Section 3.4.4.3 and compute CMS
rates in Section 3.4.4.4. We conclude our numerical tests by pricing Bermudan swaptions in
Section 3.4.4.5. Finally, we summarize the results of the chapter in Section 3.5 and discuss
possible extensions for future research.

5More details about the implementation can be found on https://github.com/kevinkamm/CIR--.
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3.4.2. A Model for Negative Interest Rates with Perfect Fit to the
Term-Structure

Let us define α := (αx, αy), αz := (kz, θz, σz), z ∈ {x, y}. We want to use the general deter-
ministic shift extension by Brigo and Mercurio (2006): pp. 95 ff. Chapter 3.8 A General
Deterministic-Shift Extension or Brigo and Mercurio (2001b) in the case of multifactor
models. We note that contrary to the presented ideas in the aforementioned papers, we
do not need to introduce another probability space for our purposes and will use the same
risk-neutral measure for all dynamics.

Thus, we are interested in the following short rate model on (Ω,F ,Q)

r(t;α) := rCIR-(t;α) + ψ (t;α) = x(t;αx)− y(t;αy) + ψ (t;αx) , ψ (0;α) = 0, (3.4.3)

where rCIR- denotes the short-rate model without the deterministic shift extension. We will
suppress the dependency on the parameters α for readability whenever there is no confusion.

Likewise, we recall from Theorem 3.3.1 that the price of the zero-coupon bond for the
non-extended model is given by

PCIR-(t, T ) = Ax(t, T )e−Bx(t,T )x(t)Ay(t, T )eBy(t,T )y(t).

Analogue to Brigo and Mercurio (2001b): p. 5 Theorem 3.1 we derive easily the price of
a zero-coupon bond in the short-rate model (3.4.3) for given parameters α

P (t, T ) = EQ
[

exp
(
−
∫ T

t
r(s)ds

)∣∣∣∣∣Ft

]
= EQ

[
exp

(
−
∫ T

t
x(s)− y(s) + ψ(s)ds

)∣∣∣∣∣Ft

]

= exp
(
−
∫ T

t
ψ(s)ds

)
PCIR-(t, T )

because ψ is deterministic.
To ensure a perfect fit to the initial term-structure, we set as in Brigo and Mercu-

rio (2001b): pp. 5–6 Corollary 3.2

ψ(t;α) = fM (0, t)− fα(0, t),

where fM (0, t) is the instantaneous market forward rate and

fα(0, t) = −∂T (Ax(0, t))
Ax(0, t) + ∂T (Bx(0, t))x(0)− ∂T (Ay(0, t))

Ay(0, t) − ∂T (By(0, t)) y(0)

is instantaneous market rate for rCIR- (see Section B.2).
More conveniently, we observe that this is equivalent to asking that the following equation

holds

exp
(
−
∫ T

t
ψα(s)ds

)
= PM (0, T )

PM (0, t)
PCIR-(0, t)
PCIR-(0, T ) ,
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where we used P z(t, T ) = exp
(
−
∫ T

t fz(t, s)ds
)
, z ∈ {M,CIR-}.

In total, this leads to the following formula for the zero-coupon price of the deterministic
shift extended model

P (t, T ) = PM (0, T )
PM (0, t)

PCIR-(0, t)
PCIR-(0, T )P

CIR-(t, T ) (3.4.4)

and P (0, T ) = PM (0, T ) is guaranteed.

3.4.3. Gram-Charlier Expansion

We will use all the results available in Tanaka, Yamada and Watanabe (2010): pp. 3 ff.
Section 2.1 Gram-Charlier expansion and apply them to our case.

Let us first of all make the following observation: The payer (ζ = 1) and receiver (ζ = −1)
swap value (3.1.1) can both be rewritten as

SwapTN
T0

(t;K, ζ) :=
N∑

i=0
aζ

iP (t, Ti),

where aζ
i are equal to

aζ
0 := ζ, aζ

N := −ζ (1 +KαN ) , aζ
i := −ζKαi, i = 1, . . . , N − 1.

Now, with this notation, we can rewrite the swaption prices (3.1.4) to get

Swaption(t;K, ζ) = P (t, T0)EQT0
[(

SwapTN
T0

(T0;K, ζ)
)+
∣∣∣∣Ft

]
!= P (t, T0)

∫ ∞

0
xf(x)dx,

for an unknown density function f . For the remainder of this section we will drop the depen-
dency on ζ, K, T0 and TN to ease the notation. The idea of the Gram-Charlier expansion is to
approximate this density function f by using the orthonormal basis of Hermite polynomials
(see Appendix B.3), which is the content of the next Proposition (cf. Tanaka, Yamada and
Watanabe (2010): p. 3 Proposition 2.1 and Cheng (2013): p. 5 Proposition 2.1.2 ).

Proposition 3.4.4. Assume that a random variable Y has the continuous density function
f and has finite cumulants ck, k ≥ 1. Then the following holds:

1. f can be expanded as

f(x) =
∞∑

n=0

qn√
c2
Hn

(
x− c1√

c2

)
φ

(
x− c1√

c2

)
,

where Hn are the probabilist’s Hermite polynomials and φ the probability density func-
tion of the standard normal distribution, as well as q0 = 1, q1 = q2 = 0, and for
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n ≥ 3

qn = 1
n!E

[
Hn

(
Y − c1√

c2

)]
=
⌊n

3 ⌋∑
m=1

∑
k1+···+km=n

ki≥3

ck1 · · · ckm

m!k1! · · · km!

(
1
√
c2

)n

.

2. For any a ∈ R

E [Y 1Y ≥a] = c1N
(
c1 − a√
c2

)
+√c2φ

(
c1 − a√
c2

)

+
∞∑

n=3
(−1)n−1 qnφ

(
c1 − a√
c2

)[
aHn−1

(
c1 − a√
c2

)
−
√
c2Hn−2

(
c1 − a√
c2

)]
,

where furthermore N denotes the cumulative distribution function of the standard nor-
mal distribution.

In particular, we have

q3 = c3

3!c
3
2
2

, q4 = c4

4!c
4
2
2

, q5 = c5

5!c
5
2
2

, q6 = c6 + 10c2
3

6!c
6
2
2

, q7 = c7 + 35c3c4

7!c
7
2
2

.

Therefore, all we have to do is determine the swap cumulants. This will be done in
several steps: First, we will use the fact that cumulants can be computed from moments, see
Appendix B.4. Second, we compute the so-called swap moments in Equation (3.4.5), which
in turn are computed from so-called bond moments. Last but not least, in order to compute
the bond moments, we need to derive a new system of Riccati equations in Equation (3.4.7).

3.4.3.1. Bond and Swap Moments

Since, cumulants can be expressed by moments, vice versa (see Appendix B.4), we will study
the Swap moments in this section, which we denote by

Mm(t) := EQT0 [ (Swap(T0))m| Ft] = EQT0

( N∑
i=0

aiP (T0, Ti)
)m

∣∣∣∣∣∣Ft

 .
It can be shown by induction that the m-th power can be rewritten as(

N∑
i=0

aiP (T0, Ti)
)m

=
∑

0≤i1,...,im≤N

ai1 · · · aim

(
m∏

k=1
P (T0, Tik

)
)
.

Now, notice that all ai are Ft measurable and therefore

Mm(t) =
∑

0≤i1,...,im≤N

ai1 · · · aimEQT0

[
m∏

k=1
P (T0, Tik

)
∣∣∣∣∣Ft

]
(3.4.5)

and we will call EQT0 [∏m
k=1 P (T0, Tik

)| Ft] the bond moments.

90



3.4. Exogenous Model

Similar to Cheng (2013): pp. 44–46 we will reduce the problem to finding the bond
moments for the short-rate model without a determinstic-shift extension by using (3.4.4)

Mm(t) =
∑

0≤i1,...,im≤N

ai1 · · · aimEQT0

[
m∏

k=1
P (T0, Tik

)
∣∣∣∣∣Ft

]

=
∑

0≤i1,...,im≤N

ai1 · · · aimEQT0

[
m∏

k=1

PM (0, Tik
)

PM (0, T0)
PCIR-(0, T0)
PCIR-(0, Tik

)P
CIR-(T0, Tik

)
∣∣∣∣∣Ft

]

=
(
PCIR-(0, T0)
PM (0, T0)

)m ∑
0≤i1,...,im≤N

ai1 · · · aim

m∏
k=1

PM (0, Tik
)

PCIR-(0, Tik
)E

QT0

[
m∏

k=1
PCIR-(T0, Tik

)
∣∣∣∣∣Ft

]

=
(
PCIR-(0, T0)
PM (0, T0)

)m ∑
0≤i1,...,im≤N

a∗
i1 · · · a

∗
im
EQT0

[
m∏

k=1
PCIR-(T0, Tik

)
∣∣∣∣∣Ft

]
,

where a∗
ik

= aik

P M (0,Tik
)

P CIR-(0,Tik
) .

Thus, we only have to calculate the bond moments for the CIR- model.

For a numerical implementation, the m-fold sum over all permutations of ik is unfavorable.
Therefore, we rewrite it as follows: By definition, there will always be m coefficients aik

in
the m-fold sum but it is possible to get e.g. ai1 twice, etc. Hence, fixing indices for a0 up to
aN we can sum over the powers of all occurrences, which have to sum up to m. However, the
individual products of the coefficients can appear multiple times as well, e.g. for m = 2, N = 2
summing over all permutations would lead to two times the term a0a1, since we encounter
i0 = 0, i1 = 1 and i1 = 1, i0 = 0. Finally, we derive similar to Cheng (2013): p. 28 Remark
4.2.1 the following expression

∑
0≤i1,...,im≤N

ai1 · · · aim

(
m∏

k=1
P (T0, Tik

)
)

=
∑

0≤k0,...,kN ≤N
k0+···+kN =m

m!
k0! · · · kN !a

k0
0 · · · a

kN
N

 N∏
j=0

P (T0, Tj)kj

.

Finding this set of indices is known as subset sum problem, which is NP-hard but can be
solved by e.g. dynamical programming.6 The interested reader is referred to Curtis and
Sanches (2017) for recent developments using a GPU for large subset sum problems. In
our case, m will be at most 7 and due to annual payments N will be at most equal to the
maximal tenor plus one, i.e. 11, which is considered as a small subset sum problem for
which we will utilize a simpler implementation. Even with semi-annual payments a simple
implementation with dynamic programming is sufficient, since we will need to calculate the
subset sum problems only once and pass it to the calibration procedure.

Now, let us derive the Riccati equation for the bond moments. First of all, notice that the

6More details about the implementation can be found on https://github.com/kevinkamm/CIR--/blob/
main/subsetSum.m.
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affine structure of P (t, T ) is preserved

N∏
j=0

PCIR- (T0, Tj)kj

=
N∏

j=0

(
Ax(T0, Tj)e−Bx(T0,Tj)x(T0)Ay(T0, Tj)eBy(T0,Tj)y(T0)

)kj

=

 N∏
j=0

Ax(T0, Tj)kj

 e−
∑N

j=0 kjBx(T0,Tj)x(T0)

 N∏
j=0

Ay(T0, Tj)kj

 e∑N

j=0 kjBy(T0,Tj)y(T0)

=: Ax (T0, {k0, . . . , kN}) e−Bx(T0,{k0,...,kN })x(T0)Ay (T0, {k0, . . . , kN}) eBy(T0,{k0,...,kN })y(T0)

(3.4.6)

By Proposition 3.1.7 we have also for t ≤ T0

EQT0

 N∏
j=0

PCIR- (T0, Tj)kj

∣∣∣∣∣∣Ft


= 1
PCIR- (t, T0)E

Q
[
e−
∫ T0

t
rCIR-(s)dsAx (T0, {k0, . . . , kN}) e−Bx(T0,{k0,...,kN })x(T0)

Ay (T0, {k0, . . . , kN}) eBy(T0,{k0,...,kN })y(T0)
∣∣∣∣Ft

]
!= 1
PCIR- (t, T0)Mx(t, T0)e−Nx(t,T0)x(t)My(t, T0)eNy(t,T0)y(t).

We notice that by martingale pricing the discounted price process
e−
∫ t

0 rCIR-(s)dsMx(t, T0)e−Nx(t,T0)My(t, T0)eNy(t,T0) has to be a martingale. Since it has an
affine structure as well, it places us exactly in the same situation as in the derivation of
Lemma 3.3.3 seen in Section 3.3 with the difference of variable terminal conditions.

Therefore, we have the same Riccati equation but different terminal values dependent on
k0, . . . , kN .

For generic terminal values az, bz ∈ R≥0 the explicit solution is given by

Mz(t, T0) = az

(
ϕz

1 exp (ϕz
2(T0 − t))

ϕz
1 + ϕz

2 (exp (ϕz
1(T0 − t))− 1) (1 + bz (ϕz

1 − ϕz
2))

)ϕz
3
, Mz(T0, T0) = az

Nz(t, T0) = bzϕ
z
1 + (exp (ϕz

1(T0 − t))− 1) (1 + bz (ϕz
1 − ϕz

2))
ϕz

1 + ϕz
2 (exp (ϕz

1(T0 − t))− 1) (1 + bz (ϕz
1 − ϕz

2)) , Nz(T0, T0) = bz.

(3.4.7)

As seen from our derivation in Equation (3.4.6), the terminal values t = T0 are equal to

az = Az (T0, {k0, . . . , kN}) , bz = Bz (T0, {k0, . . . , kN}) , z ∈ {x, y} ,

and we can now compute the bond moments and therefore the swap moments for the Gram-
Charlier expansion. Thus, using the one-to-one relationship between moments and cumulants
in Section B.4, we have an explicit formula for the swap cumulants and we can apply Propo-
sition 3.4.4, which is part of the next subsection.

92



3.4. Exogenous Model

3.4.3.2. Expansion Formula

As described in Tanaka, Yamada and Watanabe (2010), we can now use Proposition 3.4.4
to formulate the Gram-Charlier expansion formula:

Swaption(t;K, ζ) = P (t, T0)
(
C1N

(
C1√
C2

)
+
√
C2φ

(
C1√
C2

)(
1 +

∞∑
l=3

(−1)lqlHl−2

))

where we replace the cn in Proposition 3.4.4 by Cn := cn(t)P (t, T0)n for n ≥ 1 and the swap
cumulants cn(t) are derived from the swap momentsMm(t) using their one-to-one relationship
shown in Section B.4.

In the following, we will denote by

GC (L;K, ζ) := P (t, T0)
(
C1N

(
C1√
C2

)
+
√
C2φ

(
C1√
C2

)(
1 +

L∑
l=3

(−1)lqlHl−2

))

the L-th order of the Gram-Charlier expansion of the T0 × (TN − T0) swaption with strikes
K and swaption type ζ with annual payment dates .

3.4.4. Numerical tests

We will now perform some numerical experiments in our model.7 In Section 3.4.4.1 we will
briefly discuss the market data, which we will use to perform all numerical tests in the
subsequent sections. Afterwards, we will describe the calibration procedure of our model
in Section 3.4.4.2. This is followed by a short subsection on simulating the model with the
Euler-Maruyama scheme in Section 3.4.4.3 and in Section 3.4.4.4 we investigate the par rates
of constant maturity swaps (CMS). Last but not least, we compare the model Bermudan
swaption prices to Bloomberg’s Hull-White one factor model prices in Section 3.4.4.5.

We used for the calculations Matlab 2022a with the (Global) Optimization Toolbox run-
ning on Windows 10 Pro, on a machine with the following specifications: processor Intel(R)
Core(TM) i7-8750H CPU @ 2.20 GHz and 2x32 GB (Dual Channel) Samsung SODIMM
DDR4 RAM @ 2667 MHz. All calculations were sped-up by multiprocessing on a single
CPU whenever possible.

3.4.4.1. Market Data

To obtain the market zero-coupon bond term-structure, we first build the EUR Euribor-swap
curve which is created from the most liquid interest rate instruments available in the market
and constructed as follows: We consider deposit rates and Euribor rates with maturity from
one day to one year and par-swap rates versus six-month Euribor rates with maturity from
two years to thirty years. Then the zero interest curve and the zero-coupon bond curve
are calculated using a standard “bootstrapping” technique in conjunction with cubic spline

7More details about the implementation can be found on https://github.com/kevinkamm/CIR--/blob/
main/main.m.
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interpolation of the continuously compounded rate (cf. Miron and Swannell (1991) for
more details).

We tested the model at two different dates 30/12/2019 and 30/11/2020, because at
30/12/2019 the market zero rates were partially negative (up to year six) and on 30/11/2020
they were completely negative. This enables us to test the compatibility of the model in the
most relevant different scenarios. However, since the results on 30/12/2019 and 30/11/2020
are very similar, we decided to present only the results on 30/12/2019 and make all the data
at 30/11/2020 available online to shorten the presentation.

As aforementioned, we will calibrate the model to swaption prices (Table B.6). They are
computed by Bachelier’s formula from normal volatilities quoted in the market (Table B.2)
and the swaption strikes can be found in Table B.4.

After the calibration, we will assess the performance of the model by comparing its predic-
tion of par CMS rates to Bloomberg’s CMS rates in Section 3.4.4.4 and pricing Bermudan
swaptions. The benchmark for Bermudan swaption prices will be Bloomberg’s Hull-White
one factor model alongside the corresponding strikes. The values are displayed in Table B.8,
Table B.9 and Table B.10, respectively.

All data has been downloaded from Bloomberg and is used in the following subsections for
our numerical experiments. We start in the next subsection with calibrating our model to
the swaption surface.

3.4.4.2. Calibration

In this subsection, we will discuss how we use the Gram-Charlier expansion to calibrate our
model to parts of the swaption surface in Table B.6. Since we are using a deterministic shift
extension, a perfect fit to the market zero-coupon curve (see Table B.11) is always guaranteed.
Let us denote the parameter vector by Π := [ϕx

1 , ϕ
x
2 , ϕ

x
3 , ϕ

y
1, ϕ

y
2, ϕ

y
3, x0, y0]T ∈ R8

>0. We will
formulate the calibration procedure as a constraint minimization problem in R8

>0 for the
parameters Π with objective function

f(Π) :=
∑
l∈L

∑
T0∈M

∑
TN ∈T

(
MarketSwaptionTN

T0
(K, ζ)

GCTN
T0

(l,Π;K, ζ)
− 1

)2

, (3.4.8)

where L ⊂ N is a set of natural numbers containing the orders of the Gram-Charlier expansion,
M is a set of maturities and T a set of final times. We will go into further details how to
choose these sets in Remark 3.4.5.

The objective function describes the relative square difference between the market swaption
prices and the theoretical prices derived by the Gram-Charlier expansion using the short-rate
model (3.4.3). We would like to note that one could also think of different objective functions,
which might lead to slightly different results. For instance, we tested absolute squared errors
but the results were similar.

The set of admissible parameters A will be the same as in Section 3.3.3.2, which we will
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recall briefly for the convenience of the reader: We set

A :=


−1 1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0
1 −2 0 0 0 0 0 0
0 0 0 1 −2 0 0 0


with boundary conditions Πi ≥ 0, i = 1, . . . , 8, and Π3 = ϕx

3 ≥ 1, as well as Π6 = ϕy
3 ≥ 1,

leading to the set of admissible parameters

A :=
{

Π ∈ R8
≥0,Π3,Π6 ≥ 1 : A ·Π ≤ 0

}
. (3.4.9)

Finally, a solution Π∗ to the calibration problem is a minimizer of

min
Π∈A

f (Π) . (3.4.10)

Before we present some results, we would like to make the following remark on the choices
of L, M and T .

Remark 3.4.5. As always in calibration procedures with parametrized models, there is the
notion of over- and underfitting to the data. Overfitting usually occurs when there are more
parameters than independent values to calibrate to. For example, we saw a very good fit to
a single swaption price. Underfitting on the other hand, occurs when the model is not able
to fit to the whole data, e.g. fitting this model to the entire swaption surface.

In our experiments, we determined that 4 up to 6 values performed best with regards to
the Bermudan swaption pricing (Section 3.4.4.5) and finding the CMS par rates (Section
3.4.4.4). This is not very surprising, since the model has in total 8 parameters but since the
two CIR processes are independent and subtracted to deal with the negative interest rates it
has essentially 4 parameters to model the data.

Therefore, we decided to perform tests on columns of the swaption surface and excluded
short maturities. Additionally, removing the last maturity in the column from the calibration
increased the speed of the optimization with usually the same accuracy. Moreover, we per-
formed tests on several diagonals of the swaption surface with similar results and therefore
decided to focus only on columns in this paper.

Another aspect of this calibration procedure is the question which orders to use of the
Gram-Charlier expansion. Since it is an orthogonal expansion, there is no a-priori error
estimate of the truncated expansion formula. This also means that increasing the order
might not be beneficial for the accuracy. Through comparing the Gram-Charlier swaption
prices with Monte-Carlo swaption prices (see Table 3.7) using the same parameters, we found
both prices to be closer too each other if we were using the order three, five and seven in the
calibration procedure. A non-rigorous and heuristic idea behind this reasoning is that if the
three orders are close too each other then the expansion “converges” to the correct price of
the swaption in a loose sense.

To conclude, to avoid over- and underfitting we will calibrate to columns of the swaption
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Table 3.5.: Computational times and values of (3.4.8) using different initial points and differ-
ent swaption columns in Table B.6 and corresponding strikes Table B.4 in the case of payer
swaptions and maturities ranging from 5 to 15.

Method
Tenor 1 2 5 7 10

ga f(Π)=
3.94e-2
in 76.2 s

f(Π)=
7.12e-2
in 85.8 s

f(Π)=
5.75e-2
in 100 s

f(Π)=
2.27e-2
in 168 s

f(Π)=
1.79e-2
in 891 s

ga & fmincon f(Π)=
3.94e-2
in 76.6 s

f(Π)=
7.92e-2
in 87.6 s

f(Π)=
6.61e-3
in 118.6 s

f(Π)=
1.12e-3
in 206.6 s

f(Π)=
8.04e-4
in 945.9 s

I1 & fmincon f(Π)=
7.90e-2
in 0.9 s

f(Π)=
4.78e-2
in 0.8 s

f(Π)=
6.62e-3
in 2.47 s

f(Π)=
1.10e-3
in 52 s

f(Π)=
3.00e-4
in 181 s

I2 & fmincon f(Π)=
8.62e-1
in 0.3 s

f(Π)=
5.80e-1
in 1.35 s

f(Π)=
6.55e-3
in 33.3 s

f(Π)=
1.12e-3
in 49.9 s

f(Π)=
6.95e-4
in 93.9 s

surface starting with maturity five and ending with maturity 15. Moreover, to have a “stable”
Gram-Charlier swaption price we will use the orders three, five and seven in all experiments.

To solve (3.4.10) numerically, we would like to use Matlab’s function fmincon in the
(Global) Optimization Toolbox. In order to use this function, we need an initial guess of
the parameter Π and the computational time will depend on that choice.

Our experiments showed that initial guesses with small admissible values worked best for
fmincon. Therefore, we use the following hand-made parameters as initial points for fmincon

I1 := [0.1, 0.095, 0.3, 0.095, 0.1, 0.3, 0.01, 0.01]T , I2 := 1
2I1

and compare the performance to parameters found by Matlab’s function ga. For the algo-
rithms, e.g. the interior point algorithm for fmincon, used by Matlab we refer the reader to
Gilli, Maringer and Schumann (2011), in the context of financial mathematics.

In Table 3.5 we show the value of (3.4.8) after the calibration procedure and its compu-
tational time in seconds in the case of a payer swaption at 30/12/2019. We display four
different choices of initial points, first of all only using ga, second ga as an initial point for
fmincon, third I1 as initial point for fmincon and last but not least I2 for fmincon. We
can see that the model fits the swaption values best using columns with larger tenor but
the computational time increases as well for all methods. Also we can see that our choices
I1 and I2 in conjunction with fmincon outperforms ga with respect to accuracy and it is
significantly faster than the combination of ga and fmincon. Therefore, we will use in the
following experiments only fmincon with I1 or I2 to present the results. In Table 3.6 we show
the results of (3.4.10) with initial point I1 using fmincon for reproducibility.
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Table 3.6.: Calibrated parameters Π∗ using I1 with fmincon and different swaption columns
in Table B.6 and corresponding strikes Table B.4 in the case of payer swaptions and maturities
ranging from 5 to 15.

Π∗
Tenor 1 2 5 7 10

ϕx
1 0.082 0.114 0.109 0.113 0.118
ϕx

2 0.0477 0.0947 0.0846 0.0899 0.092
ϕx

3 1.05 1.13 1.99 2 2
ϕy

1 0.155 0.0241 0.584 0.00192 0.00741
ϕy

2 0.165 0.0521 0.597 0.00851 0.00151
ϕy

3 1.33 1.19 1.26 1.78 1.73
x0 0.000126 0.00147 0.00017 0.000107 0.00151
y0 0.000128 0.0024 0.0021 0.0991 0.0988

Table 3.7.: Average absolute errors of Monte-Carlo prices compared to Gram-Charlier prices
and market prices using the parameters shown in Table 3.6.

Methods
Tenor 1 2 5 7 10

MC − GC3 4.96e-4 1.17e-3 5.48e-4 6.23e-4 6.18e-4
MC − GC5 2.90e-4 1.07e-4 9.54e-4 2.93e-4 3.57e-4
MC − GC7 7.65e-4 1.05e-3 2.14e-4 1.97e-4 2.86e-4

MC − Market 3.93e-4 8.99e-4 4.58e-4 3.85e-4 3.73e-4

3.4.4.3. Euler-Monte-Carlo Simulation

In order to forecast the future expected interest rate for e.g. pricing Bermudan swaptions in
Section 3.4.4.5, we use the same Euler-Maruyama scheme as in Section 3.3.3.3 to simulate
the instantaneous spot rate r (3.4.2).

In all of our experiments, we will use M = 10000 simulations and mesh size ∆ = 1
256 . On

the one hand, looking at the fast calibration times using the Gram-Charlier approximation
in Section 3.4.4.2, it is clear that Monte-Carlo methods cannot compete with respect to
speed. On the other hand, since the Gram-Charlier expansion has no a-priori error bound
let us now validate the calibration results by computing the Monte-Carlo prices with the
parameters obtained by the Gram-Charlier expansion in Table 3.6. In Table 3.7 we compare
the swaption prices obtained by selected orders of the Gram-Charlier expansion to the Monte-
Carlo prices and also the Monte-Carlo prices to the market prices. To compare the prices,
we will use an average absolute error, i.e. for X,Y ∈ Rd1,d2

∥X − Y ∥ := 1
d1d2

d1∑
i=1

d2∑
j=1
|Xij − Yij |.

The average absolute error between the Gram-Charlier orders and the Monte-Carlo prices
are usually of order 10−4 and the Monte-Carlo prices compared to the market prices usually
of order 10−4, as well. It is important to note while reading this table that the prices
themselves are usually of order 10−2, therefore the accuracy is usually up to two significant
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Table 3.8.: CMS rates computed with a calibration using I2 and fmincon to the column with
tenor 7 of the payer swaption surface with maturities ranging from 5 to 15.

Effective Date Tenor Index Bloomberg’s CMS Rate Model CMS Rate Abs Error
0 5 5 0.00145 0.00154 8.91e-05
0 10 5 0.00472 0.00499 0.000273
0 5 10 0.00465 0.0047 4.67e-05
0 10 10 0.00732 0.00738 6.06e-05
3 5 5 0.00562 0.00584 0.000226
3 5 10 0.00824 0.00825 8.32e-06
5 10 5 0.00999 0.01 3.64e-05
5 5 5 0.00958 0.00847 0.00112
5 5 10 0.011 0.0101 0.000912

orders. Hence, this validates the parameters obtained by the calibration with the Gram-
Charlier expansion and we can proceed with finding CMS rates in the next subsection using
Monte-Carlo techniques.

3.4.4.4. Pricing Constant Maturity Swaps (CMS)

From Section 3.1.3, we know the par CMS rates. In our case, we have P (0, T ) = PM (0, T ) by
the deterministic shift extension and therefore we can calculate the par CMS rates as follows

K =
EQ

[∑N
i=1 αi exp

(
−
∫ Ti−1

0 r(s)ds
)
Ri−1+c

i−1 (Ti−1)
]

∑N
i=1 αiP (0, Ti−1)

=
EQ

[∑N
i=1 αi exp

(
−
∫ Ti−1

0 r(s)ds
)
Ri−1+c

i−1 (Ti−1)
]

∑N
i=1 αiPM (0, Ti−1)

.

In our experiment, we will use Monte-Carlo simulation for the short-rate (3.4.2) and display
the results in Table 3.8 using the initial parameters I2 for fmincon in the case of payer
swaptions. In the first column we see the effective date T0, in the second the tenor T , such
that TN = T0 + T and in the third column the index c for the CMS. The next column shows
Bloomberg’s CMS rates, which is followed by the model CMS rates. In the last column we
can see the absolute error of market and model rates. We can observe that the majority of
CMS rates are very close to each other, telling us that the model performs well on average
using just one column of the swaption data for the calibration. Using different columns in
the calibration for all different CMS rates would improve the results further.

3.4.4.5. Pricing Bermudan Swaptions

For the definition of Bermudan swaptions and how to price them, we refer the reader to
Section 3.1.5.

In Table 3.9 we can see the average absolute error of the Bermudan swaption prices in our
model compared to Bloomberg’s prices. We used as initial points I1 and I2 for fmincon in
the case of receiver and payer swaptions with different tenors. We can see that the average

98



3.5. Conclusion

Table 3.9.: Average absolute errors of Monte-Carlo Bermudan swaption prices and
Bloomberg’s HW1 Bermudan swaption prices using the I1 and I2 as initial points for fmincon.

Methods
Tenor 1 2 5 7 10

I1 & fmincon
(Payer)

0.0254 0.0129 0.0014 0.0073 0.203

I2 & fmincon
(Payer)

0.00196 0.00991 0.00269 0.00279 0.0088

I1 & fmincon
(Receiver)

0.948 0.0642 0.0036 0.0021 0.0102

I2 & fmincon
(Receiver)

0.00615 0.0149 0.0033 0.0021 0.0071

Table 3.10.: Absolute errors of Monte-Carlo Bermudan payer swaption prices and Bloomberg’s
HW1 Bermudan swaption prices using the I1 as initial points for fmincon calibrated to the
column with tenor equal to 5.

Maturity
Tenor 2 5 7 10

1 1.295e-03 5.452e-04 6.337e-04 2.488e-03
3 1.026e-03 6.628e-04 9.348e-04 2.931e-03
5 1.284e-03 1.404e-03 1.629e-04 3.605e-03
7 9.416e-04 1.191e-03 4.314e-06 2.271e-03
10 1.267e-03 1.305e-03 1.603e-03 2.470e-03

errors are very sensitive with respect to the calibrated parameters by looking at the results
of I1 and I2 for a fixed tenor. Additionally, we notice that usually the results are better, if
we choose I2 as an initial point. The best results on average are found while calibrating to
the columns of the swaption surface with tenor 5 or 7. In Table 3.10 we show the absolute
errors for the individual payer Bermudan swaptions using I1 as initial point calibrated to the
column with tenor 5 and see an overall good match. Particularly, the column with tenor 7
in Table 3.10 is very accurate.

We focused in this experiment on the average errors only and not on specific Bermundan
swaptions. If one desires to do so, there might be better choices which swaption prices to
use for the calibration. Usually, the so-called co-terminal swaption prices are used to achieve
better results for a specific Bermudan swaption. Since we are satisfied with the average
performance of the model, we will not perform these individual tests for the sake of brevity.

3.5. Conclusion

In this chapter, we studied two different short-rate models. First, we considered a simple
endogenous model in Section 3.3. We saw a good fit to the market term structure but
some difficulties to match the swaption surface. In Section 3.4, we extended this short-rate
by applying the deterministic-shift extension. We derived the swaption prices by using the
Gram-Charlier expansion in this model and calibrated it to columns of the market swaption
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surface. The calibration is fast and accurate. Using Monte-Carlo techniques, we obtained
close CMS rates compared to Bloomberg’s rates. Also compared to Bloomberg’s Bermudan
swaption prices via the HW1 model, our model performed very well.

At the very end of this thesis in Section 5.2.2, we will discuss some opportunities for future
research.
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Rating Transition Modelling 4
In this chapter, we will discuss rating transition modelling and apply it to compute credit

and debit valuation adjustments (hereafter referred to as CVA and DVA) of a portfolio of
trades between two parties having signed a collateral agreement dependent on ratings.

A rating is an indicator of the creditworthiness of an entity. A high rating associates less
risk to an entity to not fulfill its financial obligations and a low rating a high risk. Ratings
are usually denoted by letters A, B, . . . , D, where A denotes the best rating and D denotes
the worst rating. The rating D is special. It means that an entity has defaulted, i.e. it can
not fulfill its financial obligation towards a contracting party. In this chapter, we use the
terms default and bankruptcy of an entity synonymous, implying that a defaulted company
cannot recover from this state.

To keep this presentation as simple as possible in this chapter, we consider only four
different ratings: A, B, C, D ordered from best to worst rating and identify them by integers
{1, 2, . . . ,K}, whenever it is more convenient. But it is straightforward to use more ratings.

For our main application to collateralized XVA, it is important to model the rating changes
of an individual entity or an entire sector on a continuous time scale. This can be done in
two different ways. On the one hand, one can define a process Xt, which tells us at each time
and trajectory the current rating of a company. The natural state-space of these processes
is therefore discrete and the time axis is continuous. On the other hand, one can model the
transition probabilities Rt of a sector at each point in time and derive a rating process using
these transition probabilities. The state-space of this type of model is then a matrix whose
entries are the probability of transitioning from one rating to another starting at an initial
time t0 (usually today) till a future time t. An example of such a t − t0 rating matrix is
given in Table 4.1. We can see that the individual rows sum up to one, meaning that all

From
To A B C D

A 0.9395 0.0566 0.0037 2.7804e-04
B 0.0092 0.9680 0.0211 0.0017
C 6.2064e-04 0.0440 0.8154 0.1400
D 0 0 0 1

Table 4.1.: Example of a one year rating transition matrix.

rows are valid probability distributions. These type of matrices are called stochastic for this
reason. The last row corresponds to our idealized assumption that a defaulted entity cannot
recover, i.e. the default state is absorbing. Rating agencies publish these type of matrices
usually once a year for a few time frames. Short-term rating matrices are usually published
with time frames of 1, 3, 6, 12 months and long-term rating matrices with time frames of
1, 2, 3, 5, 10 years. We see a lot of uncertainty in the historical data published by the agencies
increasing with larger time frames, which we will discuss in more detail in Section 4.2.
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We recognize two different approaches to rating modelling in the literature which is de-
scribed in Bielecki, Jeanblanc and Rutkowski (2003): p. 76 Section 4.12.1 Standing As-
sumptions in more details. On the one hand, one can model ratings in an HJM-framework,
independently proposed by Bielecki and Rutkowski (2000) and Schönbucher (2003).
On the other hand, there are intensity-based models, introduced by the pioneering work of
Jarrow, Lando and Turnbull (1997). As this chapter can also be viewed as an intensity
approach, let us explain this in more details alongside a short illustration in Figure 4.1.

Rating Transi-
tion Matrices

Xt CTMC

Rt Transi-
tion operator

At generator

Xt rating process

Rt process
in Lie Group

At SDE in
Lie Algebra

Calibration Calibration

Figure 4.1.: Illustration how our approach compares to the literature.

In the intensity approach (left-hand side in Figure 4.1), usually the rating process Xt is
modelled by a continuous-time Markov chain (CTMC). This seems quite natural, because its
state space is discrete. Another feature of this approach is that due to the Markovianity, one
can describe a CTMC fully by its transition operators Rt. Transition operators tell us for
a given initial time and state the probability to transition to another state at a later time.
This is exactly, what rating transition matrices describe. Assuming time-homogeneity of the
CTMC, it is easy to derive a so-called generator A of the transition operator, which gives a
full characterization of the CTMC. This leads to an analytically and numerically tractable
model. We will discuss this approach for inhomogeneous CTMCs in Section 4.4 in more
detail.

However, in this setting the transition operators and generators are deterministic and in
the special case of homogeneous CTMCs (the most common assumption in the literature),
the generator is constant. While this makes it possible to calibrate the model directly to the
published rating matrices, it limits the possibility for modelling time-dependent features or
uncertainty.

In Section 4.5, we show how to model the rating transitions with a stochastic process (right-
hand side in Figure 4.1) and notice that generators of CTMCs have values in a suitable
subspace of the Lie algebra of stochastic matrices. This allows us to formulate Itô-SDEs
taking values in R≥0 and to apply a basis transformation to the desired Lie algebra leading
to a process At. The exponential map, i.e. the matrix exponential, maps the model in the
Lie algebra to the proper Lie group of stochastic matrices resulting in a stochastic model Rt.
For the calibration, we need to study the distribution of the time series of historical rating
matrices, for which we use a TimeGAN and is referred to Section 4.3.

Before we start with modelling rating transitions, let us briefly review the relevant literature
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first.

4.1. Literature Review

As mentioned in the introduction, this chapter belongs to the intensity-based models. There-
fore, let us briefly summarize the available literature on the intensity-based approach, focusing
particularly on those results which provide context to our results.

The characteristic of this approach is that the historical and risk-neutral measure are given
and the rating model itself is defined under a third measure, which is calibrated to the
risk-neutral measure. Usually, Markov processes are used in this framework, in particular
CTMCs, whose generator takes the role of the intensities known from default modelling.
However, contrary to default modelling, one is not only interested in the first jump time of
the process but in all transitions over time from one state to another.

In Jarrow, Lando and Turnbull (1997), the authors propose a continuous-time Markov
chain model for the rating process. To tackle the problem of historical versus risk-neutral
data, they start with a CTMC under the historical measure and assume that there exists
a risk-neutral generator given by At = diag (µ1(t), . . . , µK−1(t), 1)A, where A denotes the
generator under the historical measure and µi(t) are positive integrable functions. In the
main application the µi are assumed to be constants which amounts to assuming that the
rating process is a time-homogeneous CTMC. The coefficients µi, which are calibrated to
credit risky bonds, can be thought as risk-premia relating the historical measure to the risk-
neutral measure, although the underlying change of measure is not described explicitly in
the paper (a rigorous proof that such a change of measure exists can be found in Bielecki,
Crépey and Herbertson (2011): p. 12 Example 2.9.).

In Bielecki, Cialenco and Iyigunler (2012), the authors are interested in bilateral
CVA under rating triggers, as well, but are focusing on so-called Close-outs, namely clauses
dictating the termination of the portfolio whenever a given credit rating is reached by one
of the parties. To model the rating evolution, they use a Markov copulas for multivariate
time-homogeneous Markov chains to include the possibility of calibrating the rating processes
of different sectors in a consistent way. We will discuss this issue further in Section 4.7.

For the necessary change of measure they apply, in contrast to Jarrow, Lando and
Turnbull (1997), an exponential change of measure technique proposed by Palmowski
and Rolski (2002). We will show the implications of both variants in this chapter.

In more recent works of Bielecki, Jakubowski and Niewęgłowski (2015a, 2015b),
conditional Markov chains and Markov copulas approaches are proposed and analysed in a
more general mathematical framework.

A detailed overview of CTMC approaches can be found in Bielecki, Crépey and Her-
bertson (2011) in which they also discuss the time-inhomogeneous case briefly. Additionally,
in Bielecki and Rutkowski (2004): pp. 351 ff. Chapter 12 Markovian Models for Credit
Migrations is a detailed overview of further models for credit migrations.

We will compare our results of Section 4.4 mainly to Jarrow, Lando and Turnbull (1997)
and Bielecki, Cialenco and Iyigunler (2012). Also, we will elaborate how the different
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change of measure techniques therein relate to each other.
Like Bielecki, Cialenco and Iyigunler (2012), we are using CTMCs in Section 4.4,

but for simplicity we are not using a copula approach, which would be more realistic and is
subject to future research. However, we are using a simple inhomogeneous extension instead
of time-homogeneous CTMCs. For the calibration they are restricting the space of possible
parameters, which will not be necessary in our case and allows for better calibration results.

To the best of our knowledge, the approach of modelling rating transitions starting from an
SDE in a appropriate subspace of the Lie algebra of stochastic matrices is completely novel
in rating transition modelling. We will discuss this approach in Section 4.5 in more detail.
Additionally, the application of a Deep-Neural-Network (DNN) to learn the distribution of
historical rating transition matrices seems entirely novel in this community, as well.

4.2. Historical and Market Data

In this section, we will discuss what kind of data is available for the calibration of a rating
transition model. We will discuss two different sources of data: First, the historical data in
form of so-called rating matrices, and second, default probabilities from Credit Default Swap
quotes (CDS) in the risk-neutral world. The default probabilities can be considered as a
subset of the rating transition data, since it will only represent the last column of the rating
transition model after a proper change of measure.

Under the historical measure, we will discuss two different approaches to obtain rating ma-
trices from historical rating data. One is called the cohort method, which is the most popular
one among rating agencies, and the other method is called Aalen-Johansen estimation.

4.2.1. Historical Data

Rating agencies, such as S&P, Moody’s and Fitch are required by “Rule 17g-7 of the Securities
Exchange Act of 1934”1 to publish the history of rating changes for some entities. The data
set can be downloaded from the websites of the rating agencies and consists of rating histories
of individual entities in different sectors, e.g. financial and corporate. We will use the data
set from S&P with focus on the corporate sector. The data is structured like follows: for each
entity it consists of a list of time stamps when a rating was changed or confirmed. Therefore,
we can extract the historical ratings for each individual company for each day.

There are two major methods how to process this data, the Aalen-Johansen estimation
and the cohort method, which is part of the next subsection.

4.2.1.1. Cohort Method

The cohort method is computed from the aforementioned rating histories as follows (cf.
Lando and Skødeberg (2002): pp.2 ff. Equation 1 ): Suppose, we have Ni ∈ N entities
with a rating i at the beginning of the year, s = 0. Now, we look at time t > s, e.g. the

1Please visit https://www.sec.gov/structureddata/rocr-publication-guide.html for more details. Last
accessed: 19.05.2022 12:23 CET.
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end of the same year, how these entities have changed their rating. We denote by Nij the
number of entities, who transition from rating i to rating j and compute the corresponding
transition probability as

pij(s, t) := Nij

Ni
.

However, in practice it can happen for various reasons that ∑j Nij < Ni, which implies that
the transition matrices P (s, t) := (pij(s, t))ij do not have row sums equal to one. One reason
why this is possible is the fact that companies can decide themselves that they do not want
to be rated anymore by the rating agencies. We call this situation withdrawal of an entity.

Therefore, we see in the published rating matrices by the rating agencies that rows usually
will not sum up to one and for large times only sum up to around 0.5. A natural question is
how to repair these matrices, because for modelling rating transitions it is important that the
rating matrices do not loose probability mass over time to use familiar concepts as Markov
chains.

This problem is discussed in more details in Israel, Rosenthal and Wei (2001) and a
simple reconstruction as in Algorithm 4.1 is recommended for small withdrawal rates.

Input : RH
t ∈ RK,K with row-sums less or equal to 1

Output: RA
t ∈ RK,K with row-sums equal to 1

for i← 1 to K do
wd ← 1−∑K

j=1

(
RH

t

)
ij

;

if wd > 0 then
y ←

(
RH

t

)
i,j=1,...,K

;

y (y == 0)← 1e−10;
b ← y∑K

j=1 yj

· wd;(
RA

t

)
i,j=1,...,K

←
(
RH

t

)
i,j=1,...,K

+ b

else if wd < 0 then(
RA

t

)
i,j=1,...,K

←
(
RH

t

)
i,j=1,...,K

;(
RA

t

)
i,i
←
(
RA

t

)
i,i

+ wd

else(
RA

t

)
i,j=1,...,K

←
(
RH

t

)
i,j=1,...,K

end
end

Algorithm 4.1: Adjustment of the historical rating matrices.
They also note that in general the data, after repairing it, does not yield a valid generator,

which is known as embedding problem in the literature. The concept of a Markov chain
generator is introduced in Section 4.4 but for the moment the reader may view it as a matrix
logarithm of a stochastic matrix.

In general, the embedding problem is still an open problem, which is deeply connected to
root finding techniques. The paper by Lencastre et al. (2016) provides a nice overview of
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the known conditions on the existence of a Markov generator for both the homogeneous and
inhomogeneous case. At this point in time, it has only been solved for 2×2 and 3×3 matrices
in general. A condition for 4 × 4 can be found in Casanellas, Fernández-Sánchez and
Roca-Lacostena (2021) with a good overview of the existing literature.

Therefore, an adjustment to either the rating matrices or the extracted generator is nec-
essary, which we will come back to in Section 4.4.1.2. Another numerical approach to ap-
proximate a generator can be found in Kreinin and Sidelnikova (2001). They use a best
approximation technique in a suitable space for transition matrices.

We will discuss at the very end in Chapter 5 another approach for repairing the rating
matrices by using the techniques shown in this chapter.

4.2.1.2. Aalen-Johansen Estimator

After extracting these rating trajectories, we apply the so-called Aalen-Johansen estimator
(cf. Lando and Skødeberg (2002)) to the processed data to compute the rating transition
matrices with a given time span. Let us come back to the data set with the historical ratings
and let us set our initial time to the first of January of a specific year and compute the
rating transitions over one year to get an average rating transition matrix of one year in the
corporate sector.

The Aalen-Johansen estimator (cf. Lando and Skødeberg (2002): pp.8 ff. Section 4 ) is a
non-parametric estimator of the transition probabilities of a time-inhomogeneous continuous-
time Markov chain (ICTMC) and we will assume that the historical rating transition data
can be modelled by an ICTMC. The rating transition probabilities starting at time s up to
time t are then estimated by

P (s, t) :=
m∏

k=1
(I + ∆A (Tk)),

where Tk is the jump time in the interval [s, t] and m ∈ N is the number of jumps, as well as
the estimated generator

∆A (Tk) :=



−∆N1(Tk)
Y1(Tk)

∆N12(Tk)
Y1(Tk)

∆N13(Tk)
Y1(Tk) · · · ∆N1K(Tk)

Y1(Tk)
∆N21(Tk)

Y2(Tk) −∆N2(Tk)
Y2(Tk)

∆N23(Tk)
Y2(Tk) · · · ∆N2K(Tk)

Y2(Tk)
...

... . . . · · ·
...

∆NK−1,1(Tk)
YK−1(Tk)

∆NK−1,2(Tk)
YK−1(Tk) · · · −∆NK−1(Tk)

YK−1(Tk)
∆NK−1,K(Tk)

YK−1(Tk)
0 0 · · · · · · 0


.

The jump process ∆Nij (Tk) denotes the number of transitions from rating i to rating j at
time Tk and ∆Ni (Tk) counts the total number of transitions away from rating i at time Tk.
The jump process Yi (Tk) denotes the number of entities with rating i right before time Tk.
The last row is zero, because we assume an absorbing default rating. So each time a rating
changes in the underlying data, the estimated generator is updated accordingly.

We have seen in Section 4.2.1.1 that the cohort method is not guaranteed to produce
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stochastic matrices. The Aalen-Johansen estimator overcomes this problem naturally, by
updating after each rating change. Therefore, this method ensures that rows sum up to one,
which will be important later on.

However, we found that our results from both the cohort method and the Aalen-Johansen
estimation differ from the rating matrices which are published by the agencies. We confirmed
with S&P that they also use unpublished sensitive rating data and remove correlation struc-
tures from data, for which additional knowledge of the entities and their relation towards
each other is necessary.

Therefore, the results presented in this chapter serve as an illustration how this method-
ology can be applied but the underlying data needs some work for an implementation in
practice.

4.2.2. Market Data

In the market, Credit Default Swap (CDS) quotes can be found. This means we have some
information of the default probabilities of an entity under the risk-neutral measure.

The default probabilities for the different initial ratings are obtained from market CDS
spreads. Specifically, we considered the spreads for the the financial sector, without distin-
guishing by geography. To derive default probabilities from spreads, standard bootstrapping
procedures (cf. Brigo and Mercurio (2006): pp.764 ff. Chapter 22.3 ) can be applied.

In particular, financial providers such as ICE2 compute default probabilities for companies
with different initial rating. Similar to the rating agencies, these probabilities are computed
in a sector, such as the financial sector or the corporate sector.

Therefore, we can consider them as available market data and we test our numerical imple-
mentation with the three different synthetic data sets. The default probabilities in Table C.5
are designed to have slightly elevated probabilities of default compared to the historical ones.

In Table C.6, we keep the default probability for rating C but increase the ones for B and
C a bit more. We consider this as the mild case of the three data sets.

Our last data set, Table C.7, serves as a test of robustness with unrealistic high probabilities
of default.

4.3. Rating Properties and Rating Matrix Generation

In this section, we will explain how to generate synthetic rating transition matrices from
historical data and discuss properties of short-term rating matrices.

In Section 4.3.1, we will give a brief introduction to the relevant Deep-Neural-Network
(DNN) architectures, which we will use to generate synthetic rating matrices. This DNN
is called TimeGAN and we will build a training data set for this DNN by applying the
Aalen-Johansen estimator to the historical ratings seen in Section 4.2.1.

Afterwards, in Section 4.3.2 we will discuss some properties of rating matrices in the train-
ing data set and the synthetic data.

2Please visit https://www.theice.com/index for more details. Last accessed: 15.08.2022 16:28 CET.
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4.3.1. TimeGAN

In this section, we show how one can use a generative adversarial network (GAN) for time
series data to obtain fake rating transition matrices from paths of a Brownian motion.3 In
particular, we chose a network called TimeGAN by Yoon, Jarrett and Schaar (2019) to
learn the rating distributions from the historical data.

The TimeGAN is supposed to learn a function

f(tk,Wtk
(ω)) = Rtk

(ω)

mimicking the historical rating matrices RH
tk

for k = 1, . . . , n, n ∈ N. After the learning
phase, we can use a path of the Brownian motion W to generate synthetic rating matrices
at the points in time tk.

Training data. We use the technique described in Section 4.2.1.2 to compute rating matrices
with time spans of 1, 3, 6, 12 months starting in 2011 till the end of 2019. For the one month
rating matrices, we start at each month in a year and compute the transition probabilities
with the Aalen-Johansen estimator till the next month. For the three month rating matrices
we proceed similar but starting every three months and so on, such that data is not used twice
for the rating matrices with respective time spans. After computing all these matrices we
end up with 108 matrices for one month, 36 for three months, 18 for six months and nine for
one year. After that, we build a set of time series data by considering all the permutations of
the rating matrices leading to a data set of roughly 630000 different time sequences of rating
matrices.

We are aware that this approach might raise some eyebrows but rating data is scarce and
it is not unusual to assume independence of the rating events which justifies this approach.
We will discuss the impact of this choice in Section 4.3.2 further, while studying properties
of rating matrices.

Remark 4.3.1. One can alternatively use the rating matrices which are published by the
rating agencies from e.g. the last 10 years. However, these are usually only available for long
term rating matrices, i.e. 1 up to 10 years. However, as discussed in Section 4.2.1.1, these
matrices have imperfections due to the withdrawal of entities. So one idea could be to repair
them with an heuristic method and build up a training data set by again considering the
permutations of the time series.

The TimeGAN combines an autoencoder with a generative adversarial network using recur-
rent neural networks linked by a supervising network. We would like to give a short intuition
how these networks work together in our case and refer the reader to Yoon, Jarrett and
Schaar (2019) for the details.

Autoencoder. For a detailed treatment of Variational Autoencoders (VAE) we refer the
reader to Kingma and Welling (2019).

3More details about the implementation can be found on https://github.com/kevinkamm/RatingML/blob/
main/DeepNeuralNetwork/main.py.
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Embedder Recovery

Figure 4.2.: Illustration of a VAE network.

Generator Discriminator

Figure 4.3.: Illustration of a GAN network.

The principle network architecture in an application without time series data is illustrated
in Figure 4.2. There are two different networks linked to each other, one called embedder or
encoder and the other one called recovery or decoder. The idea is to introduce a bottleneck
between these networks. This forces the network to learn principle components of the data
and helps with denoising as well as dimensionality reduction. For the training phase, the data
is first embedded, recovered and afterwards compared to the original data to minimise the
difference of both. After the training phase, the recovery network can be used to generate
rating matrices from their embedded features. We will see how the generator network of
the generative adversarial network can be used to generate fake features in the next two
paragraphs.

Generative Adversarial Network. For a detailed treatment of Generative Adversarial Net-
works (GAN) we refer the reader to Goodfellow (2017).

The principle network architecture in an application without time series data is illustrated
in Figure 4.3. There are two different networks linked to each other, one called generator
and the other one called discriminator. The idea is to play these networks against each
other. The generator network has a few random numbers as input and outputs fake data.
The discriminator network will get the fake data from the generator as an input, as well as
the real data. Then it is learning to distinguish between fake and real data by outputting
a probability of the data being real. Since we know which of the input data is fake and
which is real we can optimize the prediction of the discriminator network. The generator
on the other hand is learning how to fool the discriminator, i.e. making it believe that the
fake data point was real. After the learning phase and when the discriminator is not very
confident anymore in distinguishing between fake and real, the generator network can be used
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to produce synthetic data.

Supervisor. The supervisor network does not have a special network architecture and it is
placed in-between the embedder and recovery network, as well as between the generator and
the discriminator network to establish a link between them. This makes it also possible in
the training of the entire network to compare the supervised networks to the unsupervised
networks. Another implication of this approach is that the generator network of the GAN is
not generating the rating matrices directly but the features of the rating matrices. As afore-
mentioned, combining the trained generator with the trained recovery network will enable us
to generate synthetic rating matrices.

Recurrent networks. For a detailed treatment of Recurrent Neural Networks (RNN) and a
comparison of Long-Short-Term-Memory (LSTM) to Gated-Recurrent-Units (GRU) we refer
the reader to Chung et al. (2014).

So far, we have discussed how the supervised VAE and GAN can be used together at a
single point in time to generate synthetic rating matrices. RNNs enable us to use time series
data and all the aforementioned networks are augmented with GRUs in our implementation
to take the time series of rating matrices into account. GRUs consist of two different gates.
One is called the update gate and the other one is called forget gate. The update gate decides
how much of the new temporal information is added to the time sequence. The forget gate
has the possibility to forget the previous times in the time sequence, making the current point
in time independent of the past.

Hyperparameters and network architecture. It is not the purpose of this paper to “over-
optimize” the procedure, since it is a first step using these modern techniques for rating
transitions. Additionally, for its next use case of rating triggers, an additional source of
market data will be available and the current architecture might need some adjustments. We
leave it up to the reader to change the hyperparameters and network architectures, because
we are satisfied with the performance of the current setting, which is discussed in Section 4.3.2
in greater detail. We chose the following settings for our experiments.
1. We used 40 epochs in total and noticed that 10 epochs take roughly 1 hour in the

training step.
2. We found that a batch size of 128 was a good middle-ground between speed and realistic

rating matrices.
3. For the embedder we used three GRU layers. The first and last with 3 units and the

second one with 2 units. The output dense layer has 4 units and a sigmoid activation
function.

4. For the recovery we used three GRU layers. The first and last with 3 units and the
second one with 2 units. The output dense layer has K2 = 16 units and a sigmoid
activation function.

5. For the supervisor we used two GRU layers, each with 4 units. The output dense layer
has 4 units and a sigmoid activation function.
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6. For the generator we used three GRU layers, each with 4 units. The output dense layer
has 4 units and a sigmoid activation function. As an input we take the values of a
Brownian path at t = 1, 3, 6, 12 months.

7. For the discriminator we used three GRU layers, each with 4 units. The output dense
layer has a single unit and a sigmoid activation function.

8. All optimizers were Adam (cf. Kingma and Ba (2014)) with the standard learning
rate 1e− 4.

As aforementioned, for the training of the network we refer the reader to Yoon, Jarrett
and Schaar (2019) and note that we used the standard loss functions indicated in this paper
to obtain a purely data driven network.

4.3.2. Rating Properties

To estimate the quality of the TimeGAN, we observed from the historical data that short
term rating matrices up to one year should have the following properties:
1. It is more likely to stay in the initial rating than changing to another: This means

rating matrices are strongly diagonally dominant, i.e. for i = 1, . . . ,K

[Rt (ω)]ii ≥
∑
j ̸=i

[Rt (ω)]ij . (4.3.1)

2. Downgrading is more likely than upgrading: This means that the sum of the upper
triangular matrix is bigger than the sum of the lower triangular matrix, i.e.

∑
i<j

[Rt (ω)]ij ≥
∑
i>j

[Rt (ω)]ij . (4.3.2)

3. Lower rated entities are more likely to default: This means that the default column is
increasing from best starting rating to lowest, i.e.

[Rt (ω)]1K ≤ [Rt (ω)]2K ≤ · · · ≤ [Rt (ω)]KK . (4.3.3)

4. The rating spreads more over time: We measure this by looking for decreasing diagonal
elements, i.e. for all s < t and all i = 1, . . . ,K

[Rs (ω)]ii ≥ [Rt (ω)]ii . (4.3.4)

These properties are not strict in the sense that they can be violated on some occasions.
Moreover, one might think of other properties for rating matrices. Also for long term rating
matrices (more than 1 year) these properties might not hold true anymore. This makes it
very hard to define rigorous conditions for rating matrices in general and is subject to future
research and economical validation.

In Table 4.2, we can see a summary of the rating properties (4.3.1)–(4.3.4) for the training
data set. The numbers represent the percentages of time-sequences satisfying the conditions
averaged over all initial ratings. For the rating spreads over time, we consider time steps
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4.3. Rating Properties and Rating Matrix Generation

from 0 to 1 month, 1 to 3, 3 to 6 and 6 to 12 and write down the percentages for t = 1, 3, 6, 12
respectively. We can see that all of the rating matrices in the training data set were strongly
diagonally dominant and nearly all had monotone increasing default columns.

The majority of the rating matrices put more emphasis on downgrading for time spans
between one month and six months, while for one year all of them satisfied the condition.

For the increasing rating spread we see the biggest violations of the property. This is most
likely due to the fact that we consider all permutations of the data. It might be beneficial to
filter these sequences out of the training set.

Table 4.2.: Rating properties for training data. Average percentage of the time series fulfilling
the conditions (4.3.1)–(4.3.4).
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1 100 % 87.96 % 100 % 100 %
3 100 % 97.22 % 99.9 % 85.81 %
6 100 % 94.44 % 100 % 83.18 %
12 100 % 100 % 100 % 90.53 %

In Table 4.3, we see exactly the same table for TimeGAN using M = 12000 synthetic
time-sequences. Even though we did not impose any hard constraints, e.g. that rows must
sum up to one, the DNN learned the conditions (4.3.1)–(4.3.4) very well, as well as that rows
must sum to one. The only criterion which was not always satisfied was again (4.3.4) but
less severe than for the training data. Since these properties are almost always satisfied, we
did not optimize the hyperparameters or network architecture any further.

Table 4.3.: Rating properties for TimeGAN with M = 12000. Average percentage of the time
series fulfilling the conditions (4.3.1)–(4.3.4) and average row sums.
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1 100 % 100 % 100 % 100 % 0.9999
3 100 % 100 % 100 % 100 % 0.9996
6 100 % 100 % 100 % 93.2 % 1.0002
12 100 % 100 % 100 % 93.33 % 1.0017
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4.4. Deterministic Rating Transitions

We begin this section by describing the features making CTMCs a good choice for a rat-
ing model. First, it is a natural choice to consider a discrete state-space consisting of all
ratings and a continuous-time framework. Moreover, rating transition probabilities have to
be time- and state-dependent to reflect the different intensities associated with the differ-
ent rating-changes over time. About this dependency, two aspects must be considered (see
Schönbucher (2003): Section 8.2 for more details): time homogeneity and the Markov
property. Both assumptions are not completely realistic although time homogeneity can be
seen as a stronger restriction than the Markovianity assumption.

As far as calibration is concerned, it is desirable for the model to be consistent with all
the available data, namely both the historical rating transition matrices and the market
quoted credit spreads (either coming from bonds or from credit default swaps). For this to
be feasible, one needs a change of measure formula, preferably preserving some of the features
of the model (for instance, Markovianity).

Finally, numerical and/or analytical tractability of the model is certainly a fundamental
need. This led us to consider Markov processes for the rating process. CTMCs are then a
natural choice in view of the above (continuous-time, a discrete state-space and Markovian-
ity). As far as time dependence is concerned, we propose a simple non-homogeneous CTMC
model, namely a piecewise-homogeneous CTMC (PHCTMC).

Let us briefly recall the relevant terminology of ICTMCs
(cf. Bielecki and Rutkowski (2004): pp. 326 ff. Chapter 11 Markov Chains). An ICTMC
is a Markov process (Xt)t∈[0,T ] with a discrete state space S. We will only consider the case
of a finite state space, i.e. S = {1, . . . ,K}. The functions pij(s, t) := P (Xt = j|Xs = i)
are called transition functions and their time-derivative from above is called generator of
the ICTMC, i.e. Aij(t) := limh↓0

pij(t,t+h)−δij

h , i, j = 1, . . . ,K and δij is the Dirac-delta.
We have the following immediate properties of generator: Aij(t) ≥ 0 for all i ̸= j and
Aii(t) = −∑j ̸=iAij(t).

For the change of measure we have the following result from Ding and Ning (2021):
pp. 13–15 Section 3 The Equivalent Martingale Measure or Bielecki and Rutkowski (2004):
pp. 334 ff. Chapter 11.2.5 Change of Probability Measure:

Theorem 4.4.1. Let (Xt)0≤t≤T be an ICTMC on the probability space (Ω,F , (Ft) ,P) taking
values in S := {1, . . . ,K} with generator AP

t :=
(
AP

i,j(t)
)

i,j=1,...,K
. Define

Lκ
t := exp (−Mt)

∏
0<u≤t

1 +
K∑

i,j=1
κij(u) (Hij(u)−Hij(u−))

,
where
1. the stochastic processes κi,j(t) are bounded, real-valued and F-predictable, such that

κij(t) > −1 and κii(t) = 0;
2. the number of jumps from rating i to j are Hij(t) := ∑

0≤u≤t 1Xu−=i1Xu=j;
3. Mt :=

∫ t
0
∑K

i,j=1 κij(u)AP
i,j(u)1Xu=idu.
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Then Lκ
t is a strictly positive martingale under P satisfying EP [LT ] = 1 and the equivalent

probability measure Qκ given by

dQκ

dP

∣∣∣∣
Ft

= Lκ
t

P-almost surely, is well-defined.
Furthermore, Xt is an ICTMC under Qκ as well with generator

Aκ
i,i(t) = −

∑
i ̸=j

Aκ
i,j(t)

Aκ
i,j(t) = (1 + κi,j(t))AP

i,j(t).

We can see that for any admissible family κ := (κij)i,j=1,...,K we get a valid change of
measure and know the generator of the ICTMC after the change of measure as well.

As aforementioned, there are two major examples of this change of measure in the rating
community.

Example 4.4.2. On the one hand, if we set κij(t) := hi(t)−1 for strictly positive deterministic
functions hi(t) > 0, i ̸= j, we recover the change of measure by Jarrow, Lando and
Turnbull (1997), which we will call JLT change of measure from now on.

On the other hand, if we set κij(t) := hi(t)
hj(t) − 1 we get a time-inhomogeneous version of the

exponential change of measure technique by Palmowski and Rolski (2002), which we will
call exponential change of measure throughout the entire chapter.

The reason for choosing only K different functions hi is due to the fact that after the
change of measure we know only data with respect to the default column, and there seems
to be no meaningful way to use an entire matrix κij .

With this change of measure formula, we can calibrate the model (see Section 4.4.1.2) under
the historical measure P and risk-neutral measure Q by finding the appropriate functions κ,
such that Qκ and Q are close with respect to the default probabilities.

4.4.1. Numerical Implementation of ICTMCs

After establishing the change of measure in Theorem 4.4.1 for the general case of ICTMCs,
we will now consider piecewise homogeneous CTMCs (PHCTMC) X in this section.4 To be
more precise, let T0 ∈ [0, T ] be the initial time and Tk, k = 1, . . . , n be the points in time
when historical rating matrices—denoted by RH

t —are available in an increasing order with
Tn = T , then X· is assumed to be homogeneous on each [Tk, Tk+1) k = 0, . . . , n− 1.

We used for the calculations Matlab 2022a with the (Global) Optimization Toolbox run-
ning on Windows 10 Pro, on a machine with the following specifications: processor Intel(R)
Core(TM) i7-8750H CPU @ 2.20 GHz and 2x32 GB (Dual Channel) Samsung SODIMM
DDR4 RAM @ 2667 MHz.

4More details about the implementation can be found on https://github.com/kevinkamm/
LieRatingTriggers/blob/main/ICTMC/main.m.
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4.4. Deterministic Rating Transitions

This section is organized as follows: First, we have a look at the rating matrices generated
by the TimeGAN and a minor adjustment to the data in Section 4.4.1.1. Then, we will
calibrate a PHCTMC to the market data in Section 4.4.1.2 and we compare the exponential
change of measure to the JLT change of measure in Section 4.4.2.

4.4.1.1. Historical and Market Data

Appendix C.1 contains the collection of the rating matrices under the historical measure and
default probabilities under the risk-neutral measure, which we use in this section.

To be more precise, we will use the expected rating transition matrices generated by the
TimeGAN explained in Section 4.3.1 as our historical data. For this, we generated 10000
rating matrices and took the mean. The results are reported in Table C.1–C.4 for the one,
three, six and twelve month transition matrices.

Since these matrices have small imperfections in terms of row sums, which can be seen
in Table 4.3, we apply Algorithm 4.1 to them to derive valid rating transition matrices.
This adjustment can be considered as minor, since the imperfections are very small but it is
important for extracting a valid generator.

For the default probabilities, we use artificial data to illustrate the behaviour of the model
in a variety of different situations. In particular, the default probabilities in Table C.5 are
designed to be close to the default probabilities under the historical measure, in Table C.6
we have larger default probabilities for the two best ratings and in Table C.7 we consider an
unrealistic case of very high default probabilities to judge the robustness of the model.

4.4.1.2. Calibration

The calibration procedure has the following two steps: First, we have to extract the generator
of the TimeGAN data and then calibrate the ICTMC using the previously obtained generators
for the change of measure in Theorem 4.4.1 to the default probabilities Table C.5–C.7.

Let us first of all fix some notations throughout this section: RA
t will be the adjusted rating

matrix with row-sum equal to one and At will denote the approximation of the generator of
RA

t .
As discussed in Section 4.2.1.1, not all given datasets yield a valid generator or there are

numerical errors, which will the case for our dataset. This means even though in theory
there would exist a unique generator, which we compute by taking the matrix logarithm (cf.
Al-Mohy and Higham (2012) and Al-Mohy, Higham and Relton (2013)) of RA

t , the
numerical scheme to compute a matrix logarithm can result in small negative off-diagonal
values. Therefore, another repair is needed, which is described in Algorithm 4.2. First,
we set the diagonal and any negative entries of the matrix logarithm of RA

t to zero. For
a justification of setting the negative entries to zero we refer to Israel, Rosenthal and
Wei (2001): p. 6 Section 3 The Non-Negativity Condition. Then, we sum up the rows and
set the new diagonal to the negative value of the sums.

A more sophisticated approach is presented in Kreinin and Sidelnikova (2001) by using
a best-approximation approach in a suitable space.
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Input : RA
t ∈ RK,K

Output: At ∈ RK,K approximated generator of RA
t

At ← logm
(
RA

t

)
;

At (At < 0)← 0;
for i← 1 to K do

(At)ii ← −
∑

j ̸=i (At)ij ;
end
At ← At;

Algorithm 4.2: Approximation of the historical generators.
For our particular dataset obtained by the TimeGAN the first adjustment in Algorithm 4.1

and the second adjustment in Algorithm 4.2 are negligible. As aforementioned, the first one
only corrects small errors of the DNN and the second one only corrects the numerical errors
of the matrix logarithm in our case.

These techniques could also be applied to rating matrices published by rating agencies.
First, Algorithm 4.1 can be applied to remove the withdrawal column and Algorithm 4.2
ensures a valid generator. The larger the withdrawal resulting from the cohort method, the
larger the impact of those two adjustments. We performed some tests on short term rating
matrices published by Fitch in Kamm (2022) and discussed this issue in more details.

Calibrating the PHCTMC Now, we want to calibrate the PHCTMC simultaneously under
historical measure to the adjusted rating data RA

t and under the risk-neutral measure to the
default probabilities PD(t) ∈ RK,1 for each initial rating.

Let us start under the historical measure P.

As aforementioned, let T0 ∈ [0, T ] be the initial point and Tk, k = 1, . . . , n be the points
in time, when rating matrices are available in an increasing order with Tn = T , then X· is
assumed to be homogeneous on each [Tk, Tk+1) k = 0, . . . , n− 1.

Now, by the Chapman-Kolmogorov equation we get

RP
T0,T = RP

T0,T1 ·R
P
T1,T2 · · ·R

P
Tn−1,Tn

=
n∏

k=1
RP

Tk−1,Tk
. (4.4.1)

By homogeneity on each sub-interval we know that the evolution system will reduce to a
semigroup and its generator will be time-constant with an explicit formula

RP
Tk−1,t = RP

t−Tk−1 = exp
(
AP

k (t− Tk−1)
)
, t ∈ [Tk−1, Tk). (4.4.2)

Hence, to extract these generators from the TimeGAN data, we solve

RP
T0,Tk

!= RA
Tk
,

which is by (4.4.2) under the assumption that RP
T0,Tk−1

is invertible and
(
RP

T0,Tk−1

)−1
· RA

Tk
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has a matrix logarithm equivalent to

AP
k =

log
((
RP

T0,Tk−1

)−1
·RA

Tk

)
Tk − Tk−1

, RP
T0,Tk−1 =

k−1∏
l=1

RP
Tl−1,Tl

.

This yields an iterative scheme on the P-side and we will use the same procedure described
in Algorithm 4.2 to retrieve valid generators at each time.

On the risk-neutral side we proceed similarly. The generator on the Q-side is assumed to
have the same properties as the one on the P-side, hence the change of measure formula in
Theorem 4.4.1 will be piecewise constant on each sub-interval, as well, such that we solve a
minimization problem at each time Tk by finding the appropriate values 1 + κij ∈ R>0.

Additionally, let us assume that the default state is absorbing, i.e. we have eT
KR

A
t ei = δKi,

i = 1, . . . ,K, t ≥ 0, and therefore Atei = 0. Hence, we can choose the values corresponding
to the last row (κK,j)j freely in each interval and will assume (κK,j)j ≡ 0 without altering
the following minimization problem for finding the right change of measure:

min
1+κij∈R>0,

(κKj)j
=0,

Ak∈A

∥∥∥RQκ

T0,Tk−1
· exp (Aκ

k (Tk − Tk−1)) · eK − PD (Tk)
∥∥∥

µQ
+
∥∥∥Ak −AP

k

∥∥∥
µP
, (4.4.3)

A :=
{
A ∈ RK,K : for all i, j = 1, . . . ,K AK,j = 0, Ai,j ≥ 0 for i ̸= j and Ai,i ≤ 0

}
.

Aκ
k :=

(Aκ
k)i,i = −∑i ̸=j (Aκ

k)i,j

(Aκ
k)i,j = (1 + κi,j) (Aκ

k)i,j .

RQκ

T0,Tk−1
=

k−1∏
l=1

RQκ

Tl−1,Tl
.

The norms ∥·∥µQ
, ∥·∥µP

are weighted norms and defined as follows: Let X ∈ RK,K , x ∈ RK,1

and MP ∈ RK,K
≥0 , as well as mQ ∈ RK,1

≥0 , we set

∥X∥µP
:=
∥∥∥MP ⊙X

∥∥∥
F
,

∥x∥µQ
:=
∥∥∥mQ ⊙ x

∥∥∥
2
,

where ⊙ denotes the elementwise or Hadamard product. The idea of using weighted sums in
the calibration procedure is explained in Remark 4.4.3 in more detail.

Moreover, after this iterated calibration, the whole right-generator of the ICTMC is then
defined as AP

t = ∑n
k=1A

P
k 1[Tk−1,Tk)(t), P = P,Q and to evaluate the evolution system one

has either to use (4.4.1) or solve the Kolmogorov forward equation with the inhomogeneous
generator AP

t .

Remark 4.4.3. Let us explain why we decided to include the generator under the measure P
in the calibration procedure.

Having now two different components in the objective function, we added the possibility to
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add weights corresponding to the user’s trust in the data, e.g. they may depend on liquidity
and the size of the data set from which the data is obtained. If the data is assumed to be
trustworthy, one can choose the individual weight parameter to be large, which ensures a
better fit in this particular entry.

Another aspect for using this penalized calibration procedure, which is explained in more
detail in Kamm (2022), is the following: If we would use rating matrices by the rating agencies
directly and adjust them with Algorithm 4.1 and Algorithm 4.2, then this adjustment has
been done in an arbitrary way and impacts the final results. In the case, where MP ≡ +∞,
i.e. the calibration is without the generator under P, we got in Kamm (2022) peculiar results
after the change of measure. Sometimes entire columns of the resulting rating matrices were
zero, which does not make sense, since companies with the best rating usually have the
highest probability to stay in their rating. Therefore, we added the generator under P to
the calibration procedure to mitigate the effects of the initial choice of data reconstruction
leading to a significant improvement and making the model feasible for a direct application
to historical data.

Remark 4.4.4. We tried different versions of (4.4.3). In particular, we adjusted Ak by Al-
gorithm 4.2 in the objective function but this led to a decrease in accuracy and increase
in computational time. Moreover, we added the condition that the sum of each row in the
generator is supposed to be zero to the constraints, which led to badly conditioned matrices
and unpredictable behaviour in the calibration algorithm.

Therefore, we decided to leave it unconstrained but keep the bounds on the matrix entries
and adjust the outcome of the calibration for the generator under P by Algorithm 4.2, which
leads to the presented results.

To make this more precise, we did not add the constraint to A that all rows must sum to
zero. Therefore, the matrix Ak as an output of the calibration procedure is not necessarily a
valid generator but we use Algorithm 4.2 after the calibration procedure to repair it. Let us
denote this adjustment Ãk for the moment.

The average error of this final adjustment ( 1
K2
∑

k,i,j

∣∣∣Ãk −Ak

∣∣∣) after the calibration pro-
cedure was of magnitude 10−4, when summing the absolute values of the differences of all
entries and dividing by the number of entries, i.e. the error of this adjustment is negligible
and makes the calibration algorithm more robust and justifies why we did not include the
“sum to zero”-constraint in A.

In particular, these choices make it possible to implement the calibration procedure as a
weighted non-linear least squares problem.

We used Matlab 2022a’s function fmincon to solve the minimization problem with bounds
(4.4.3) and display the corresponding errors in Table 4.4. For the errors we used the Frobenius
norm to compare the resulting rating matrices under P to the adjusted rating matrices and the
Euclidean norm to compare the resulting probabilities of default with the exponential change
of measure to the market data under Q. We divided both norms by the number of entries, i.e.
K2 for the Frobenius norm and K for the Euclidean norm. The total computational time for
the calibration was 1.38 seconds and we can see a good fit to the data under both measures.
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Table 4.4.: Calibration errors using rating matrices Table C.1–C.4. First row is the error of
fmincon, second the mean error of the model rating transitions and adjusted market rating
transitions and the third row contains the errors of the model and probabilities of default in
Table C.6 using the exponential change of measure.

Error
Time

t = 1
12 t = 3

12 t = 6
12 t = 1

fmincon 1.7e− 06 1.21e− 06 2.95e− 06 2.94e− 06
1

K2

∥∥∥RP
t −RA

t

∥∥∥
RK,K

7.17e− 06 2.55e− 06 0.000144 0.00087
1
K

∥∥∥RQ
t eK − PD(t)

∥∥∥
RK

4.89e− 05 1.89e− 05 1.35e− 05 8.76e− 05

For the other probabilities of default and the JLT change of measure, we saw similar good
results and discuss the model performance in more details in Section 4.4.2.

4.4.2. Comparison of Exponential and JLT Change of Measure

We already discussed in Section 4.4.1.2 that the calibration errors seen in Table 4.4 were very
good in all cases.

However, to judge the performance of the model and the chosen change of measure, it
is important to look at the entire evolution of the rating matrices under the risk-neutral
measure. This we can see in Figure 4.4–4.6. Each figure contains sub figures of the entries in
the rating transition matrices. For example, the sub figure in the upper left corner of each
figure describes the transition from A to A from today till T = 1. The last row of the rating
matrices is excluded, since its constant. All the figures contain the two different changes of
measure. The blue bold line corresponds to the exponential change of measure and the red
dashed line to the JLT change of measure.

Let us focus on Figure 4.4. This is the case of similar probabilities of default under the
historical and risk-neutral measure. We expect that nothing extreme happens, meaning that
the rating matrices under the risk-neutral measure should look similar to the ones under the
historical measure in Table C.1–C.4. If we compare the value in the upper left corner at T = 1
to the rating matrix under P in Table C.4, we can see that the exponential change of measure
performs much better than the JLT change of measure. It seems that the JLT change of
measure overestimates the impact on the rating transitions apart from the default column.
However, both changes of measures are very close to each other except for the transition from
A to A and look like valid options for a change of measure.

In Figure 4.5 we can see that in the row, both changes of measure behave very different
from each other. As in Figure 4.4, the JLT change of measure alters the rating matrix apart
from the default column very much and the values of the transitions do not match the ones
under the measure P at all.

Let us focus on the third sub figure in the second row for the moment. We can see the
transition from B to C. Both changes of measure are showing a large deviation from the
values under the measure P. This leads to less entities staying in their starting rating.

However, for this case, where we increased the default probability quite a lot compared to
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Figure 4.4.: Comparison of JLT and exponential change of measure for default data set one
(Table C.5) under the risk-neutral measure.
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Figure 4.5.: Comparison of JLT and exponential change of measure for default data set two
(Table C.6) under the risk-neutral measure.
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Figure 4.6.: Comparison of JLT and exponential change of measure for default data set three
(Table C.7) under the risk-neutral measure.

Table C.5, this behaviour is expectable for the second row.
We would suggest to use the exponential change of measure in this case, because the first

row seems to be a lot more consistent than in the JLT case.
For Figure 4.6, we used an extreme and unrealistic case of default probabilities under the

risk-neutral measure (Table C.7). The exponential change of measure seems to be more well-
behaved than the JLT change of measure, which exhibits strange curves for the transition
probabilities in almost all entries.

For example, in the sub figure corresponding to the change from B to B, it does not
make much sense that under the JLT change of measure, the probability to stay at B has its
minimum at t = 0.5 and increases afterwards. We would expect a monotone decrease like we
see for the exponential change of measure.

All in all, we suggest to use the exponential change of measure, since the JLT change of
measure seems to overestimate the impact on the rating transition matrix apart from the
default column.

Rating properties. Now, let us discuss the rating properties (4.3.1)–(4.3.4). Under the
historical measure, all the properties were satisfied perfectly in all cases.

Having a closer look at Figure 4.4–4.6 for the exponential change of measure, we can already
judge the properties (4.3.1)–(4.3.4).

All the properties were perfectly satisfied in all cases, except for the strong diagonal dom-
inance (4.3.1) of the matrices.

As we can see in Figure 4.6, where we use the extreme case Table C.7 as the market default
probabilities, (4.3.1) is satisfied till t = 0.5 but after that the second and third row do not
satisfy it anymore. This is to be expected for this extreme case and the model behaves

121



4.5. Stochastic Rating Transitions

reasonable.
However, if we have a look at Figure 4.5, where we use the mild case Table C.6 as the

market default probabilities, (4.3.1) is satisfied everywhere except starting from t = 0.5 in
the second row. This behaviour is unexpected and requires further investigation. Also, under
the JLT change of measure this issue remains unchanged.

We will see in Section 4.5.2.4 a different model, which will not have this problem in the
mild case Table C.6.

4.5. Stochastic Rating Transitions

This section is structured as follows: In Section 4.5.1, we give a gentle introduction to matrix
Lie groups and notice that the stochastic matrices form a subgroup of a matrix Lie group.
We will see, how simple SDEs in R will lead to a stochastic and fully inhomogeneous model
for rating transitions. In this framework, the change of measure is obtained by the standard
Girsanov theorem.

Afterwards, we perform some numerical experiments in Section 4.5.2. The first step is to
calibrate the rating process to the distributions learned by the TimeGAN, which is subject
of Section 4.5.2.1. Then, in Section 4.5.2.2 and Section 4.5.2.3 we perform one test for each
of the two methods proposed in Section 4.5.1 and assess their quality. In Section 4.5.2.4, we
show how to calibrate the model to market default probabilities by using an analogue of the
JLT and exponential change of measure seen in Section 4.4.1.2.

4.5.1. SDEs on the Lie Group of Stochastic Matrices

In this section, we show how an SDE can help to interpolate the generated rating matrices
in time. This is a desirable feature for several applications, because it gives access to rating
matrices of any time span or can help to forecast transition matrices with larger time spans.

To guarantee that our SDE will produce stochastic matrices, we noticed that this is a
special kind of geometry and the proper tools are readily available in the matrix Lie group
literature. We will recall all the necessary results first.

We consider the group G = {R ∈ GL(K) : R1 = 1}, 1 = [1, . . . , 1]⊤ ∈ RK , which is a
matrix Lie group according to Coletti, Carneiro and Yepes (2020), i.e. a subgroup of

R(K−1)2

≥0

R(K−1)2

g≥0

g G≥0

G

expCoordinates Ai

Basis Ei

Figure 4.7.: Illustration of the relationship between R(K−1)2

≥0 , g≥0 and G≥0.
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the general linear group GL(K) which is a differentiable manifold and for which the product
is a differentiable mapping G × G → G. The tangent space at the identity of a Lie group
is called the Lie algebra and is in this case given by g = TIG = {A ∈ RK×K : A1 = 0}.
The Lie algebra g is a vector space with dim(g) = K(K − 1) since basis matrices for g

can be formulated as Eij − Eii for i, j = 1, . . . ,K with i ̸= j, where Eij are elementary
matrices. This makes the Lie algebra g together with the matrix commutator, [·, ·] : g×g→ g,
[A1, A2] = A1A2 − A2A1, isomorphic to RK(K−1). The matrix exponential exp: g → G,
exp(A) = ∑∞

k=0A
k/A!, maps elements from the Lie algebra to the Lie group and is a local

diffeomorphism in a neighbourhood of A = 0. Analogue to Section 2.2, the directional
derivative of the matrix exponential along an arbitrary matrix H ∈ g is given by

(
d

dA
exp(A)

)
(H) = exp(A)L−A(H) with L−A(H) =

∞∑
k=0

1
(k + 1)!adk

−A(H).

where adA : g→ g, adA(H) = [A,H] denotes the adjoint operator, which is used iteratively,

ad0
A(H) = H, adk

A(H) = adA

(
adk−1

A (H)
)

= [A, adk−1
A (H)]

for k ≥ 1. For more details on Lie groups and Lie algebras we refer the interested reader to
Hall (2003).

Consider the following SDE in the Lie algebra g

dAt = B(t, At)dt+
(K−1)2∑

i=1
Cj(t, At)dSi

t , L0 = 0, (4.5.1)

where B,C ∈ g and Si
t are one-dimensional general semimartingales. Applying a numerical

scheme, e.g. the Euler-Maruyama scheme, to get an approximation Atk+1 of (4.5.1) after one
time step5 and computing Rtk+1 = Rtk

exp(Atk+1) would result in a numerical method for
solving

dRt = Rt

L−At (B(t, At)) + 1
2

(K−1)2∑
i=1

Q−At

(
Ci (t, At) , Ci (t, At)

) dt
+

(K−1)2∑
i=1

Rt L−At

(
Ci(t, At)

)
dW i

t , R0 = I,

(4.5.2)

which can be easily verified by applying Proposition 2.2.2 to Rt = R0 exp(At) ∈ G in the
case Si

t = W i
t a Brownian motion. As this approach preserves the geometry of the Lie group

G opposed to applying the Euler-Maruyama scheme directly to (4.5.2), this method was
called the geometric Euler-Maruyama scheme in Marjanovic and Solo (2018). Higher
order schemes based on this approach can be found in Muniz et al. (2022a) and Muniz
et al. (2022b).

5More details about the implementation can be found on https://github.com/kevinkamm/
LieRatingTriggers/blob/main/Lie/gEMP.m.
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Since we are interested in stochastic matrices that are elements of G≥0 := {R ∈ G : Rij ∈
[0, 1], i, j = 1, . . . ,K}, we now consider a subset of the Lie algebra g, namely g≥0 := {A ∈ g :
Aij ≥ 0, i ̸= j, Aii ≤ 0, AKj = 0, i, j = 1, . . . ,K}. Note that additional to the usual properties
of generator matrices we choose the last line of matrices A ∈ g≥0 to be zero because applying
the matrix exponential exp to these matrices will generate matrices that have the last unit
vector in the last line. This choice is in accordance with our assumption that the default state
is absorbing. With this assumption the dimension of g≥0 is now dim(g≥0) = (K−1)2 because
as before basis matrices can be denoted by Eij − Eii but for i = 1, . . . ,K − 1, j = 1, . . . ,K
and i ̸= j. Similarly to before, there exists an isomorphism between g≥0 and R(K−1)2 , which
is illustrated on the left-hand side in Figure 4.7. We will denote the basis for g≥0 by Ei,
i = 1, . . . , (K − 1)2. The fact that for any A ∈ g≥0 we have exp (A) ∈ G≥0 is well-known and
a proof can be found in Stroock (2005): pp. 86 ff. Chapter 4.2.5: Solving Kolmogorov’s
Equation.

Direct exponential mapping. For the interpolation of the generated rating matrices we
consider the SDE (4.5.1) again and discuss some conditions for the solution At to be evolving
in g≥0 such that exp(At) ∈ G≥0. Therefore, we make the assumption that the equation is
decoupled in the following sense:

dAt = B(t, At)dt+
(K−1)2∑

i=1
Ci(t, At)dSi

t =
(K−1)2∑

i=1

(
bi(t, Ai

t)dt+ ci(t, Ai
t)dSi

t

)
Ei, (4.5.3)

where Ei denotes the basis vectors of g≥0. If the solution Ai
t of dAi

t = bi(t, Ai
t)dt+ci(t, Ai

t)dSi
t is

P-almost surely positive for all t ≥ 0 and for all i then At ∈ g≥0 and RSDE
t := exp (At) ∈ G≥0.

Let us show two examples:
1. Let bi(t, x) ≡ bi ∈ R≥0, ci(t, x) ≡ ci ∈ R≥0: In this case, Ai

t = bit + ciS
i
t and the

condition Ai
t ≥ 0 leads to bit + ciS

i
t ≥ 0 for all t P-almost surely. Further assuming

Si
t ≥ 0 would be one example.

2. Ai
t are CIR-processes, i.e. Si

t = W i
t and dAi

t = ai
(
bi −Ai

t

)
dt+ σi

√
Ai

tdW
i
t .

For this simple approach there is a price to pay, namely RSDE
t cannot be viewed as an

evolution system of a Markovian rating process, since the Chapman-Kolmogorov equation
is not necessarily satisfied. Or in other words, the associated rating process will not be
memoryless and it is difficult to sample it.

Geometric Euler-Maruyama. In order to preserve the Chapman-Kolmogorov equation, one
could use the aforementioned geometric Euler-Maruyama scheme and defineRSDE

t = R0 exp(At).
However, to ensure that RSDE

t ∈ G≥0, which is equivalent to ensuring that the approximation
for Lt is in g≥0, we need an additional assumption. For the Euler-Maruyama scheme to have
results in g≥0 it would be necessary that all increments ∆Atk

≥ 0, i.e. At ≥ 0 must have
monotonically increasing paths in time, as well.

A class of processes satisfying this condition easily, would be all jump processes with
positive jumps only. Another possibility could involve processes with stochastic coefficients
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of the form

dAi
t = ai(t, Y i

t )dt, ai(t, y) ≥ 0 (4.5.4)

dY i
t = bi(t, Y i

t )dt+ ci(t, Y i
t )dSi

t , Y i
0 = yi

0 (4.5.5)

In this case, Ai
t are positive, pathwise-increasing, continuous stochastic processes for any

semimartingale Si
t .

Remark 4.5.1. Let us note that decoupling the SDE in the Lie algebra does not mean that
the SDE in the Lie group will be decoupled as well. On the contrary, one can see by the
definition of the matrix exponential and the matrix multiplication therein that the resulting
SDE will be fully coupled.

From a computational point of view, the decoupling in the Lie algebra is very advantageous,
because all SDEs can be solved in parallel. Since we want to calibrate the SDE in the Lie
group to historical rating matrices, it will be very important that the SDEs in the Lie algebra
can be solved very fast.

From an analytical point of view, this approach translates the problem of defining an SDE
with values in the space of stochastic matrices to simple SDEs taking values in R, where a
vast amount of literature and standard analytical tools are available.

Girsanov’s theorem. As in Section 4.4, we need to derive the dynamics of our model (4.5.2)
under a second measure Q. For this we apply the standard Girsanov theorem to our SDEs
in R. Let us show this in a special case of the decoupled SDE (4.5.3).

Let the SDE in the Lie algebra satisfy the dynamics under P

dAP
t =

(K−1)2∑
i=1

(
bi(t, AP,i

t )dt+ ci(t, AP,i
t )dW i

t

)
Ei,

where W i
t are independent standard Brownian motions. Denote Wt :=

(
W 1

t , . . . ,W
(K−1)2

t

)
and let Ft be the natural filtration of Wt. Furthermore, assume that the process

Lt := exp
(∫ t

0
κs · dWs −

1
2

∫ t

0
|κs|2 ds

)

is a P martingale satisfying EP [Lt] = 1 for adapted, measurable and square integrable pro-
cesses κs ∈ R(K−1)2 . The measure Qκ given by

dQκ

dP

∣∣∣∣
Ft

:= Lt

is well-defined and

W κ
t := Wt −

∫ t

0
κsds

is a Brownian motion under the measure Qκ.
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Moreover, assume that the processes κ are such that the dynamics of the SDE in the Lie
algebra g≥0 denoted by Aκ

t are well defined. Then we have under the new measure

dAκ
t =

(K−1)2∑
i=1

(
bi(t, Aκ,i

t ) + ci(t, Aκ,i
t )κi

tdt+ ci(t, Aκ,i
t )dW κ,i

t

)
Ei

=: Bκ(t, Aκ
t )dt+

(K−1)2∑
i=1

Ci(t, Aκ
t )dW κ,i

t ,

where Bκ(t, Aκ
t ) := ∑(K−1)2

i=1

(
bi(t, Aκ,i

t ) + ci(t, Aκ,i
t )κi

t

)
Ei and Ci(t, Aκ

t ) := ci(t, Aκ,i
t )Ei.

Moreover, the dynamics of Rt under the measure Qκ are given by

dRκ
t = Rκ

t

L−Aκ
t

(Bκ(t, Aκ
t )) + 1

2

(K−1)2∑
i=1

Q−Aκ
t

(
Ci (t, Aκ

t ) , Ci (t, Aκ
t )
) dt

+
(K−1)2∑

i=1
Rκ

t L−Aκ
t

(
Ci(t, At)

)
dW κ,i

t .

One sufficient condition for this change of measure to be valid is the positivity of Aκ,i
t P-almost

surely for all t ≥ 0 and i = 1, . . . , (K − 1)2.
We will see in Section 4.5.2.4, how to apply this for the calibration to the market default

probabilities.

4.5.2. Numerical Tests

In this section, we conduct two experiments, one for the direct exponential mapping and one
for the geometric Euler approach. We calibrate the resulting rating models RSDE

t to RGAN
t

at t = 1, i.e. 1 year, by matching the first four moments. This is described in Section 4.5.2.1
in more details. In Section 4.5.2.2, we show one example for the direct method using CIR
processes on g≥0 and in Section 4.5.2.3 we show another example for the geometric Euler
approach using a constant drift and volatility. In both sections, we will discuss the fit to
the TimeGAN rating matrices by looking at their corresponding distributions at 1, 3, 6, 12
months and study the properties of rating matrices introduced in Section 4.3.

After that, in Section 4.5.2.4 we calibrate RgEM
t under the risk-neutral measure to default

probabilities using an analogue of the JLT and exponential change of measure. We will
discuss their impact on the distribution of the rating matrices and on the rating properties
for three different cases of market default probabilities.

We used for the calibration of the rating SDE Matlab 2022a with the (Global) Optimiza-
tion Toolbox and for the training of the TimeGAN (Intel-)Python 3.9 with
Tensorflow 2.8.0 running on Windows 10 Pro, on a machine with the following specifica-
tions: processor Intel(R) Core(TM) i7-8750H CPU @ 2.20 GHz and 2x32 GB (Dual Channel)
Samsung SODIMM DDR4 RAM @ 2667 MHz, and a NVIDIA GeForce RTX 2070 with
Max-Q Design (8 GB GDDR6 RAM).

Contrary to Section 4.4.1.2, we are calibrating in this section the rating model separately

126



4.5. Stochastic Rating Transitions

under both measures. This means we are first calibrating the model parameters under the
historical measure in Section 4.5.2.1 and afterwards in Section 4.5.2.4 we calibrate the change
of measure variables to match the market default probabilities.

4.5.2.1. Calibration of the Rating SDE under the Historical Measure

Before we start to explain how we calibrate RSDE
t to RGAN

t , let us explain why we do not
calibrate directly to the historical data. Suppose that we select one specific time series of
historical rating matrices and try to fit our model in a least-square sense in expectation.
Then, the randomness should be eliminated by the optimizer since we want to fit all the
different trajectories to one time sequence. This is not the way to go, if we desire a stochastic
model for the rating transitions. Another approach would be considering all of the training
data set, sample as many trajectories, and calibrate again in a least-square sense. There is no
reason why each of the random trajectories should match the particular rating matrix where
it is subtracted from, maybe it would match another one perfectly. So comparing trajectories
does not make much sense either.

Hence, it makes more sense to compare distributions or moments of the data and the model.
Now, the problem with using the historical rating matrices directly in this approach would be
that at each specific point in time, we only have a few available matrices. Take for example
the one year rating matrices, we only have 9 different matrices. Discussing a distribution of
such a sample size is not very insightful.

Therefore, we rely on the ability of the TimeGAN to learn the behaviour of the time series
of rating matrices. As aforementioned, considering the time series allows us to artificially
inflate the data set by using all the permutations in time for the training. After the learning
phase, we can sample fake time series data, getting an arbitrary number of different rating
matrices at each point in time. Now, it makes sense to compare the moments of the fake
rating matrices to the ones obtained at each point in time from RSDE

t .
To be more precise, we use the standard estimators for mean, variance and moments of

higher order in our experiments, i.e. for k = 3, . . . , n, n ∈ N,

[µ1(t)]ij := 1
M

M∑
w=1

[Rt(w)]ij ,

[µ2(t)]ij := 1
M − 1

M∑
w=1

(
[Rt(w)]ij − [µ1(t)]ij

)2
,

[µk(t)]ij := 1
M

M∑
w=1

(
[Rt(w)]ij − [µ1(t)]ij

)k
.

Let Π denote the parameter set. Then, our objective function fn : Π → Rn·(K−1)·K is given
by

fk : Π→ R(K−1)·K , fk(p) := vec
(
µSDE

k (t; p)− µGAN
k (t)

)
fn(p) := [w1 · f1(p), . . . , wn · fn(p)]T ,
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where wk ∈ R≥0 are weights and our minimisation problem can be formulated as a non-linear
least square problem

min
p∈Π
∥fn(p)∥22 . (4.5.6)

Of course, this procedure can be generalized by considering multiple points in time. Since
this minimisation problem is very dependent on the performance of the DNN and its ability
to learn the distribution of rating transition matrices from the historical data, one can also
think of a penalized version of (4.5.6). For example, one can add another least-square term
for the most recent time series, i.e.

min
p∈Π

λ1 ∥fn(p)∥22 + λ2
1
M

M∑
w=1

n∑
k=1

∥∥∥RSDE
tk

(w; p)−RH
tk

∥∥∥2

F
,

where ∥·∥F denotes the Frobenius norm and λ1, λ2 ≥ 0 are weights. We will make the code
publicly available and leave this experiment for the reader.

Remark 4.5.2. As aforementioned, using rating matrices with more than four ratings is
straightforward in this approach. Since the SDEs in the Lie algebra are decoupled and can be
computed in parallel, solving them will not lead to a major performance bottleneck compared
to fewer ratings. The more relevant issue is that the number of parameters in the calibration
increases quadratically, making it more and more important to use some principle component
analysis to make the calibration more efficient. A possibility to use the autoencoder of the
TimeGAN comes to mind, this is however subject to future research.

Also, it is straightforward to remove the condition that the default rating is absorbing. In
this case, we would need (K − 1) ·K decoupled SDEs in the Lie algebra.

4.5.2.2. The Case of Direct Exponential Mapping.

Let us now consider RCIR
t := exp (At), where

dAi
t = ai

(
bi −Ai

t

)
dt+ σi

√
Li

tdW
i
t .

Each of the SDEs have a parameter for the mean-reversion bi, mean-reversion speed ai and
volatility σi, which are all assumed to be positive, and their own standard Brownian motion
W i

t .6 The Brownian motions are assumed to be mutually independent. During our calibration
procedure we allow the Feller-condition to be violated for simplicity. The parameter set
is therefore given by positive real numbers ΠCIR := R3·(K−1)2

≥0 by stacking the individual
parameters below each other. We found during our experiments that values between zero
and one worked best. We calibrated RCIR

t for t = 1, i.e. for the 12 month rating transitions,
by matching the moments up to order 4. For the variance, we added a weight w2 = 10 and set
w1 = w3 = w4 = 1 to put more emphasis on the variance. The corresponding parameters after
the calibration procedure with M = 1000 trajectories for RCIR

t and M = 10000 trajectories
6More details about the implementation can be found on https://github.com/kevinkamm/RatingML/blob/

main/LieSDE/Direct_CIR/main.m.
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Figure 4.8.: Trajectories of calibrated RCIR
t with parameters as in Table 4.5.

for RGAN
t can be found in Table 4.5. The first column explains to which basis element the

coefficients belong. To be more precise, 2-3 means that the initial rating is 2 and at t = 1 we
transition to rating 3. The minimisation error (4.5.6) in this case was 1.1764e− 04, telling us
that the moments up to order 4 match very well and it took roughly 15.6214 seconds using
lsqnonlin with the Trust-Region-Reflective algorithm.

Table 4.5.: Parameters of RCIR after calibration at t = 1 to RGAN using n = 4 moments.
From-To a b sigma

1-2 1.01e-01 8.78e-02 6.46e-03
1-3 4.66e-02 3.66e-02 2.89e-01
1-4 2.65e-01 2.14e-01 1.40e-01
2-1 2.71e-01 2.13e-01 1.76e-01
2-3 3.07e-02 2.56e-02 9.98e-03
2-4 1.59e-01 1.40e-01 1.53e-01
3-1 3.79e-02 3.45e-02 5.14e-02
3-2 6.60e-02 6.17e-02 1.69e-01
3-4 4.02e-01 3.83e-01 2.75e-01

In Figure 4.8, we can see the trajectories of RCIR
t over time for each entry in the rating

matrix except for the last row. The upper left corner are the transition probabilities from A
to A, right next to it from A to B and so on. The grey lines are a cloud of 1000 trajectories
of RCIR

t and the blue line is one trajectory. The green dashed line is the mean at each time of
the process and the red dots are the means of RGAN

t at t = 1, 3, 6, 12 months. We can see that
the paths are rough and the mean-reversion of the CIR processes is apparent as well, since
the blue line tends to come back to the green dashed line illustrating its mean. Also, we see
again a good fit over time to RGAN

t by comparing how close the mean of RCIR
t is compared

to the mean of RGAN
t .
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Remark 4.5.3. We modelled the rating transition by starting with an SDE on the positive half-
space of the Lie algebra of stochastic matrices. Another approach could involve modelling the
SDE on the appropriate half-space of the Lie group directly. To do this, it would be necessary
to use SDEs respecting the underlying geometry, i.e. Stratonovich-SDEs, since they obey the
chain rule, or the Itô counterpart by Itô-Stratonovich conversion.

In this line of research, numerical methods such as Runge-Kutta-Munthe-Kaas (RKMK)
(cf. Muniz et al. (2022b)) or the Magnus expansion are available.

The advantage of studying these SDEs directly on the Lie group are that one can check
more easily if the SDE will satisfy the rating matrix properties.

Remark 4.5.4. We would like to point out that similar to Section 4.4.1.2, we could calibrate the
Lie model directly on the level of generator. For this, we would compute the matrix logarithm
of the generated matrices by the TimeGAN and, if necessary, obtain valid elements of the
Lie algebra by applying Algorithm 4.2.

This will lead to a significant performance improvement and we expect similar results
in terms of accuracy. However, we decided in this section to show that it is numerically
feasible to circumvent the issues arising from the embedding problem by computing the
rating transitions in each step of the calibration. Also, for the PHCTMC, we could compute
the transition matrices in each step of the calibration with the same drawback of reduced
performance.

Analysis of the rating distributions and properties Since we expect that downgrades are
more likely than upgrades, we expect that the rating distributions should be skewed with one
tail being fatter than the other. We can see this in both Figure 4.9 (t = 0.5) and Figure 4.10
(t = 1). Each of the figures are ordered as the entries for the rating matrices excluding the
last row. This means that the upper left sub figure shows the transitions for A to A, the one
right next to it A to B and so on. The red columns are the histogram of RGAN

t and the blue
columns illustrate the histogram of RCIR

t . We fitted beta distributions to the histograms.
The red solid line is the according beta distribution of RGAN

t and the blue dashed line the
beta distribution of RCIR

t .
Let us focus for the moment on Figure 4.10, i.e. the rating transitions for one year. The

distributions using RGAN look like they have two modes and suggest a mixture Gaussian
model. Therefore, the beta distributions do not describe the data very well. However, we
have no intuition why the rating transitions should have two modes and consider it as subject
for further investigation.

For RCIR
t we see a close match of the beta distribution to the histograms and match our

initial intuition that the model should have one tail being fatter than the other.
In Figure 4.9, we see in most of the sub figures a good match of the shapes of the beta

distributions of RGAN and RCIR even though the CIR processes have constant coefficients
and are calibrated to the moments of RGAN at t = 1. We saw the same for t = 1, 3 months
and therefore decided not to put the figures to shorten the presentation.

Let us now assess the quality of the model rating matrices as for the training data set
and TimeGAN by (4.3.1)–(4.3.4). Table 4.6 is structured exactly like Table 4.2. We can
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Figure 4.9.: Histograms of rating transition probabilities at 6 months.

see similar results to Table 4.3. Almost all the conditions are satisfied perfectly except for
(4.3.4), where only 7 % violated the condition at t = 6, 12 months. Another downside of this
method can be seen in Figure 4.8 by focusing on the blue trajectory in the default-column. It
seems possible that the default is not absorbing because the trajectories are not monotonically
increasing, only the mean is increasing. This could be viable if we allow companies to recover
from default over time provided that they were not bankrupt to begin with. In fact, this
would be more realistic, because otherwise either every entity would eventually default or at
some point no entity would default anymore. Also it could be interesting to study conditions
in this setting to ensure monotone increasing paths in the default column, which is subject
to future research. We will see in the next section that the geometric Euler approach will not
suffer from this problem.

Table 4.6.: Rating properties for RCIR. Average percentage of the time series fulfilling the
conditions (4.3.1)–(4.3.4).
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3 100 % 100 % 100 % 100 %
6 100 % 100 % 100 % 93.22 %
12 100 % 100 % 100 % 93.34 %
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Figure 4.10.: Histograms of rating transition probabilities at 12 months.

4.5.2.3. The Case of the Geometric Euler Maruyama Scheme.

Let us now consider RgEM
t and assume that each of the SDEs are given by

dAi
t =

∣∣∣Y i
t

∣∣∣ai
dt

dY i
t = bidt+ σidW

i
t , Y i

0 = 0.

They have a parameter for a constant drift bi, power ai and volatility σi, which are all assumed
to be positive, as well as mutually independent Brownian motions W i

t .7 The parameter set
is therefore given by positive real numbers ΠgEM := R3·(K−1)2

≥0 by stacking the individual
parameters below each other. We found during our experiments that values between zero
and two worked best. We calibrated RgEM

t for t = 1, i.e. for the 12 month rating transitions,
by matching the moments up to order 4. For the variance, we added a weight w2 = 10 and set
w1 = w3 = w4 = 1 to put more emphasis on the variance. The corresponding parameters after
the calibration procedure with M = 1000 trajectories for RgEM

t and M = 10000 trajectories
for RGAN

t can be found in Table 4.7. The first column explains to which basis element the
coefficients belong. To be more precise, 2 − 3 means starting rating is 2 and at t = 1 we
transition to rating 3. The minimisation error (4.5.6) in this case was 4.56342e− 05., telling
us that the moments up to order 4 match very well and it took roughly 983.269 seconds using
lsqnonlin with the Trust-Region-Reflective algorithm.

In Figure 4.11, we can see the trajectories of RgEM
t over time for each entry in the rating

matrix except for the last row. The upper left corner are the transition probabilities from A
to A, right next to it from A to B and so on. The grey lines are a cloud of 1000 trajectories
of RgEM

t and the blue line is one trajectory. The green dashed line is the mean at each time
7More details about the implementation can be found on https://github.com/kevinkamm/

LieRatingTriggers/blob/main/Lie/main.m.
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Table 4.7.: Parameters of RgEM after calibration at t = 1 to RGAN using n = 4 moments.
From-To a b sigma

1-2 1.47e+00 6.10e-02 3.52e-02
1-3 2.00e+00 1.84e-04 1.69e-04
1-4 1.05e+00 1.11e-01 4.02e-02
2-1 1.25e+00 1.75e-01 4.25e-02
2-3 1.92e+00 9.68e-03 7.33e-03
2-4 1.26e+00 8.41e-02 3.09e-02
3-1 1.96e+00 1.04e-02 1.04e-02
3-2 1.89e+00 2.70e-02 2.68e-02
3-4 7.72e-01 6.61e-02 1.32e-01

of the process and the red dots are the means of RGAN
t at t = 1, 3, 6, 12 months. We can

Figure 4.11.: Trajectories of calibrated RgEM
t with parameters as in Table 4.7.

see that the paths are much smoother compared to Figure 4.8. Also, we see again a good
fit at the terminal time to RGAN

t by comparing how close the mean of RgEM
t is compared to

the mean of RGAN
t . For t = 1, 3, 6 months, we see a slight deviation of their corresponding

means, suggesting that we should either use time-dependent parameters or different SDEs.

Analysis of the rating distributions and properties In Figure 4.12 and Figure 4.13, we
can see the analogue of Figure 4.9 and Figure 4.10 from Section 4.5.2.2. We used the same
trajectories of RGAN

t in these plots to be able to compare both methods amongst each other.
Let us focus for the moment on Figure 4.13, i.e. the rating transitions for one year. For

RgEM
t we see a close match of the beta distribution to the histograms as well. Also, we see a

very good fit of the beta distributions of RGAN and RgEM towards each other. This fit looks
even closer than in Figure 4.10 for RGAN and RCIR.

In Figure 4.12, the six month rating transitions, we see a worse fit to the data than we
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saw in Figure 4.9 using RCIR
t . This suggests that one should either use a different underlying

SDE for Y i
t or introduce time-dependent parameters.

Figure 4.12.: Histograms of rating transition probabilities at 6 months.

Figure 4.13.: Histograms of rating transition probabilities at 12 months.

Most remarkably all the conditions (4.3.1)–(4.3.4) were satisfied perfectly for this model.
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4.5.2.4. Calibration of the Rating SDE under the Risk-Neutral Measure

In this subsection, we will consider again RgEM
t and assume that each of the SDEs are given

by

dAi
t =

∣∣∣Y i
t

∣∣∣ai
dt

dY i
t = bidt+ σidW

i
t , Y i

0 = 0.

Let us assume that the processes κt ≡ κ ∈ R(K−1)2 are constant, then the dynamics of Ai
t

are given by

dAκ,i
t =

∣∣∣Y κ,i
t

∣∣∣ai
dt

dY κ,i
t = (bi + σiκi) dt+ σidW

κ,i
t .

In this case, no further conditions on κ are required to ensure a valid change of measure
such that At ∈ g≥0. The process RgEM,κ

t can now again be computed by the geometric Euler
method.

Like in Example 4.4.2, we will consider an analogy of the JLT change of measure and
exponential change of measure in this setting.

To see how this can be done analogue to Example 4.4.2, let us define

D :=
(K−1)2∑

k=1
κkEk ∈ RK×K .

and denote the entries of D by dij , i, j = 1, . . . ,K. Let us consider a vector h ∈ RK , such
that hK = 1.8

Now, for the JLT change of measure each row of D has the same parameter κk. To make
this more precise, set κk, k = 1, . . . , (K − 1)2, such that dij = hi for all j = 1, . . . ,K,
i = 1, . . . ,K − 1 with i ̸= j.

Similarly, for the exponential change of measure we set κk, k = 1, . . . , (K − 1)2, such that
dij = hi

hj
for all j = 1, . . . ,K, i = 1, . . . ,K − 1 with i ̸= j and furthermore assume hi ̸= 0.

For the calibration under Q, we assume that ai, bi, σi are already known from the calibration
under the historical measure as seen in Section 4.5.2.1. Therefore, we are looking for the values
of h, such that the default probabilities of our model, i.e. the last column of RgEM,h

t , are
close to the market default probabilities PD(t). We will consider here for simplicity the case,
where we calibrate at the terminal time T = 1 year.

To be more precise, we are looking for a solution to the minimization problem

min
h∈RK−1\{0}

∥∥∥RgEM,h
T eK − PD(T )

∥∥∥2

2
. (4.5.7)

As in Section 4.4.1.2, we are considering the three different cases of the market default
8More details about the implementation can be found on https://github.com/kevinkamm/

LieRatingTriggers/blob/main/Lie/gEMQ.m.
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Table 4.8.: Parameters of RgEM after calibration at t = 1 to market default probabilities using
the coefficients Table 4.7.
PD(T ) Exp. change of measure JLT change of measure

error (4.5.7) h error (4.5.7) h
Table C.5 9.831e-09 [1.976, 3.086, 1.018] 6.868e-08 [1.362, 3.122, 1.060]
Table C.6 2.102e-11 [38.750, 16.853, 1.002] 3.007e-08 [34.514, 17.273, 1.006]
Table C.7 6.054e-12 [94.27, 41.80, 2.30] 5.395e-11 [72.74, 41.21, 13.01]

probabilities in Table C.5–C.5 using the JLT and exponential change of measure.
The computational times for the calibration using lsqnonlin with the Trust-Region-

Reflective algorithm were in all cases around 120 seconds.
In Table 4.8, we can see the results of the calibration (4.5.7). The errors were all excellent

and usually the fit to the market default probabilities was a bit smaller for the exponential
change of measure than for the JLT change of measure. However, for these small errors the
difference is negligible. We can also see the calibrated parameters h corresponding to the
different changes of measure. We did not print the last value of hK , since it is equal to one.
For each row, we notice that the values of h are not too different for the different changes of
measure. This can be explained by the fact that in the JLT change of measure each row is
multiplied by hi, i = 1, . . . ,K, and for the exponential change of measure the default column
is multiplied by hi

hK
= hi

1 = hi as well. Since this is the column on which we calibrate, we can
expect similar values.

However, since the structure of the change of measure differs a lot from each other, we
can expect a very different impact on the rest of the rating transition matrix. Similar to
Figure 4.4–Figure 4.6, we can see in Figure 4.14–4.16 the evolution of the mean over M = 1000
trajectories from t = 0 up to t = 1 year corresponding to the market default probabilities
Table C.5–C.7, respectively. The yellow dashed line corresponds to the mean under the
historical measure to compare the impact of the individual change of measure. The blue bold
line depicts the JLT change of measure and the dark red bold line the exponential change of
measure. The bright red crosses are the market default probabilities at t = 1. Each figure is
divided into a matrix of sub figures corresponding to the entries in the rating matrix, i.e. the
upper left corner describes the transition probabilities from A to A at each time t and the
one right next to it from A to B, and so on. The last row of the rating matrix is excluded,
since its constant.

Aside from the difference that we are only calibrating at the terminal time instead of at
1, 3, 6, 12 months, the results look similar to those for the ICTMC. In Figure 4.4, where the
default probabilities under the risk-neutral measure were close to the ones under the historical
measure, we see that both changes of measure impact the entire rating matrix very similar.
This changes for Figure 4.5 and Figure 4.6. The JLT change of measure overestimates the
impact on the rating matrix apart from the default column.

Let us now compare the sub figure for the transition from B to C in Figure 4.5 to Fig-
ure 4.15. As a reminder, in the ICTMC case, we saw large transition probabilities up to
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Figure 4.14.: Comparison of JLT and exponential change of measure of the mean over all
trajectories of RgEM

t using the market default probabilities Table C.5.

50 %, which were far from the ones under the historical measure. In this model, this is far
more well-behaved with transition probabilities reaching only 20 % at maximum. This is why
we suggest even if the potential user is only interested in deterministic rating transitions to
consider the mean of RgEM

t as a possible candidate.
All in all, we come to the same conclusion as for the ICTMC model. The exponential change

of measure seems to be closer to the transition probabilities under the historical measure,
which we deem to be more consistent. Therefore, we suggest to use the exponential change
of measure and will exclude further tests for the JLT change of measure.

Analysis of the rating distributions and properties. Let us now have a closer look at the
distributions and rating properties for the exponential change of measure.

For the rating distributions, we consider the second market default probabilities in Ta-
ble C.6, which are slightly more elevated compared to the historical default probabilities.
The other cases show similar results. In Figure 4.17, the histogram of the distribution of
RgEM

t under measure Qh is corresponding to the light blue columns and a fitted beta distri-
bution to this histogram is illustrated by the dark blue dashed line. In purple, we show the
fitted beta distribution under the measure P. The top picture shows the distributions at six
months and the bottom picture at one year. Both pictures contain again sub figures corre-
sponding to the entries in the rating matrix, where the last row is again excluded. We can see
that the change of measure impacts both, the mean and the spread of the distribution under
the new measure. The larger the difference between the risk-neutral and historical default
probabilities, the greater the impact. This can be seen by comparing the first and second row
to the third row. In the third row, we kept a close default probability under both measures
and the distributions both look similar at t = 0.5 and t = 1 years.
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Figure 4.15.: Comparison of JLT and exponential change of measure of the mean over all
trajectories of RgEM

t using the market default probabilities Table C.6.
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Figure 4.16.: Comparison of JLT and exponential change of measure of the mean over all
trajectories of RgEM

t using the market default probabilities Table C.7.
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Table 4.9.: Rating properties for RgEM using the exponential change of measure calibrated
to the market default probabilities Table C.5. Average percentage of the time series fulfilling
the conditions (4.3.1)–(4.3.4).
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1 100 % 100 % 98.3 % 100 %
3 100 % 100 % 99.36 % 100 %
6 100 % 100 % 99.96 % 100 %
12 100 % 100 % 100 % 100 %

In the first and second row, we see the greatest difference for the the default probabilities
and the diagonal elements. The other distributions are slightly shifted but more similar to
the historical transitions, which matches the observation we made in Figure 4.14–4.16.

Now, we have a closer look at the rating properties (4.3.1)–(4.3.4). Table 4.9–4.11 contain
the summaries of the rating properties using Table C.5–C.7 as the default probabilities, re-
spectively. The numbers represent the percentages of time-sequences satisfying the conditions
averaged over all initial ratings. For the rating spreads over time, we consider time steps from
0 to 1 month, 1 to 3, 3 to 6 and 6 to 12 and write down the percentages for t = 1, 3, 6, 12
respectively.

We can see in all three tables that almost all the properties are satisfied after the change
of measure. For the monotone default column, we see in all three tables slight violations and
we checked that the violation of this property for almost all the trajectories were between A
and B with a small magnitude.

In Table 4.11, we can see for the first time a violation of the strongly diagonal dominant
property. With these huge changes of the probability of default, it is not surprising and
we confirmed that almost no trajectory resulted in strong diagonal dominance in the third
row, which we can also see in Figure 4.16. The other rows still remained diagonal dominant
explaining the 75 %. Since this situation with so large probabilities of default is unrealistic
and only serves as a test of robustness, we find that the behaviour of the model is as expected.

We conclude that the model can deal with small, medium and large probabilities of default
under the risk-neutral measure using the exponential change of measure in a satisfactory
manner. Also, we find again evidence that the conditions (4.3.1)–(4.3.4) describe a rating
model well for realistic data, and violations occur for unrealistic cases as expected.
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Figure 4.17.: Histograms of rating transition probabilities at 6 months (top figure) and 12
months (bottom figure) of RgEM

t using the market default probabilities Table C.5.
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Table 4.10.: Rating properties for RgEM using the exponential change of measure calibrated
to the market default probabilities Table C.6. Average percentage of the time series fulfilling
the conditions (4.3.1)–(4.3.4).
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1 100 % 100 % 95.4 % 100 %
3 100 % 100 % 98.96 % 100 %
6 100 % 100 % 99.63 % 100 %
12 100 % 100 % 95.46 % 100 %

Table 4.11.: Rating properties for RgEM using the exponential change of measure calibrated
to the market default probabilities Table C.7. Average percentage of the time series fulfilling
the conditions (4.3.1)–(4.3.4).
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4.6. Simulation of the Rating Process

In this section, we show how to simulate the PHCTMC from Section 4.4 and the doubly
stochastic rating model with RgEM

t as stochastic transition operators from Section 4.5.

We will first show, how to use the so-called stochastic simulation algorithm (SSA) for our
PHCTMC in Section 4.6.1 and use the same algorithm to approximate the Lie model by an
PHCTMC for each trajectory.

4.6.1. Simulation of the PHCTMC

There are several techniques in the literature concerning the efficient simulation of ICTMCs
and its forward equation. For a detailed discussion, we refer to Li, Lin and Zio (2012) and
Arns, Buchholz and Panchenko (2010) among many others. However, for our PHCTMC
described in Section 4.4.1.2, we will use the Gillespie Stochastic Simulation Algorithm (SSA)
(cf. Gillespie (2007)), which is also called Kinetic Monte Carlo (KME) method, on each
sub-interval, where the PHCTMC is homogeneous. It turns out that this approach is very
fast, because our state space has few states.9 The algorithm is displayed in Algorithm 4.3
and works as follows:

Remember that our PHCTMC is homogeneous on each interval [Tk−1, Tk], k = 1, . . . , n,
and now iterate over those intervals, i.e. assume that we are already at t = Tk−1 with current
rating i. On each sub-interval we proceed as follows:

1. If t ≤ Tk and (Ak)ii ̸= 0 draw two uniform random numbers r1, r2, otherwise end and
set Ri0

t = i on [t, Tk];
2. Retrieve the exponentially distributed transition waiting time with parameter − (Ak)ii

as

τ = − log (r1)
− (Ak)ii

= log(r1)
(Ak)ii

.

If t+ τ ≥ Tk set Ri0 = i and go to the next interval, starting with step (i), else continue
to calculate the next state;

3. Now, sample from the discrete state transition distribution
[

(Ak)ij

−(Ak)ii

]
j ̸=i

. This can be

done by choosing the first integer j, such that ∑j
k=1,k ̸=i

(Ak)ij

−(Ak)ii
> r2, which is equivalent

to

min
j

j∑
l=1,l ̸=i

(Ak)il > − (Ak)ii r2.

Now, go back to (i) with Ri0
t+τ = j.

9More details about the implementation can be found on https://github.com/kevinkamm/
LieRatingTriggers/blob/main/ICTMC/ssa.m.
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Input : A ∈ Rn,K,K generator, i0 ∈ {1, . . . ,K} initial state, M ∈ N number of
trajectories

Output: Ri0
t ∈ [0, T ]× R1,K,M trajectories of the simulated PHCTMC starting in i0

for m← 1 to M do
i← i0;
for k ← 1 to n do

while t < Tk do
if Ak,i,i == 0 then

\\Absorbing state
t← Tk;

else
\\Calculate waiting time
r1 ← Uniform (0, 1);
τ ← log(r1)

Ak,i,i
;

\\Update time
if t+ τ ≥ Tk then

t← Tk;
break;

else
t← t+ τ ;

end
\\Calculate state transition;
temp← cumsum

(
Ak,i,j=1,...,i−1,i+1,...,K

−A(k,i,i)

)
;

r2 ← Uniform (0, 1);
j ← findFirst (temp ≥ r2);
if j < i then

i← j;
else

i← j + 1;
end

end
update

(
Ri0

t

)
;

end
update

(
Ri0

t

)
;

end
end

Algorithm 4.3: Iterative SSA for the PHCMTC starting in {1, . . . ,K}.

Let us now judge the accuracy of this simulation technique and let us have a look at
Table 4.12. The errors were computed by first calculating the transition matrices from the
simulated rating processes Ri,P

t , P = P,Q, by counting how many trajectories are at each
state and dividing by the total amount of trajectories. The result of this is denoted by RSim,P

t
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Table 4.12.: Simulation errors of the PHCTMC using Table C.6 as market default proba-
bilities. First row is the mean error of the model rating transitions and simulated rating
transitions under the historical measure. The second row contains the errors under the risk-
neutral measure of the model and simulated rating transitions.

Error
Time

t = 1
12 t = 3

12 t = 6
12 t = 1

1
K2

∥∥∥RP
t −R

Sim,P
t

∥∥∥
RK,K

0.000513 0.000536 0.000648 0.0014
1

K2

∥∥∥RQ
t −R

Sim,Q
t

∥∥∥
RK,K

0.000667 0.000891 0.000852 0.00123

and we used the Frobenius norm divided by the squared number of ratings to evaluate the
error. We can see in all cases a close fit to the calibrated transition matrices.

We calculated the SSAs for each initial rating in parallel on a CPU and samplingM = 10000
trajectories took roughly 1 second.

In Figure 4.18, we can see an example of the simulated PHCTMC Xt under the historical
measure in the top figure and under the risk-neutral measure in the bottom picture. We used
the exponential change of measure with the mild probabilities of default in Table C.6. The
grey lines illustrate M = 10000 different paths of the PHCTMC Xt and the highlighted paths
in different colors are some particular examples of trajectories. Comparing the transitions
under the risk-neutral measure to the historical ones, reveal a huge difference. We can see
by the deep grey areas in the bottom picture that a lot more transitions occurred under
the risk-neutral measure. Consistently to Figure 4.5, we can see at the right-hand side the
probability distribution of the ratings at t = 1 year and recognize the large probability to
transition from B to C. The model presents another unexpected behaviour. By the gradient
of the grey areas in time from a dark grey to a light grey color, we can judge that the number
of transitions reduce over time. We believe that this should be reversed for a more realistic
model. And will show in the next subsection that RgEM

t exhibits this desired behaviour.

4.6.2. Simulation of the Lie Model

By construction RgEM
t yields pathwise valid transition operators of an ICTMC, since the

Chapman-Kolmogorov identity is satisfied. We will approximate this fully inhomogeneous
CTMC by an PHCTMC conditional on a path of the transition operator.

Like in a nested Monte-Carlo simulation for doubly stochastic processes, we will first sample
M1 ∈ N generators RgEM

t and simulate conditioned on each path M2 ∈ N trajectories of the
rating model with Algorithm 4.3. In total, we will have M := M1 ·M2 ∈ N paths.

We calculated the nested SSA10 for each initial rating in parallel on a CPU and sampling
M = M1 ·M2 with M1 = 1000 different rating transition operators simulated by RgEM

t and
M2 = 10000 SSA trajectories took roughly 64 minutes using a machine with 64 CPU cores.

Let us now judge the accuracy of this simulation technique in this setting. Therefore, let
us have a look at Table 4.13. The errors were computed by first calculating the transition
10More details about the implementation can be found on https://github.com/kevinkamm/

LieRatingTriggers/blob/main/Lie/nestedSSA.m.
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Figure 4.18.: Simulated trajectories of PHCTMC Xt calibrated to TimeGAN’s data set start-
ing in rating B. The top picture is under measure P and the bottom picture is under measure
Q using Table C.6 as market default probabilities.

Table 4.13.: Simulation errors of RgEM
t using Table C.6 as market default probabilities. First

row is the mean error of the model rating transitions and simulated rating transitions under
the historical measure. The second row contains the errors under the risk-neutral measure of
the model and simulated rating transitions.

Error
Time

t = 1
12 t = 3

12 t = 6
12 t = 1

1
K2

∥∥∥RP
t −R

Sim,P
t

∥∥∥
RK,K

7.7545e-04 0.0017 0.0030 0.0052
1

K2

∥∥∥RQ
t −R

Sim,Q
t

∥∥∥
RK,K

8.3978e-04 0.0023 0.0044 0.0083
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matrices from the simulated rating processes Ri,P
t , P = P,Q, by counting how many trajec-

tories are at each state and dividing by the total amount of trajectories. The result of this is
denoted by RSim,P

t and we used the Frobenius norm divided by the squared number of ratings
and the mean over all trajectories to evaluate the error. We can see slightly worse errors than
in Table 4.12, which is to be expected, since the model is more complicated. However, the
errors are still satisfactorily small.

Simulating this model takes a lot longer than simulating a PHCTMC with one deterministic
generator, which is expected, since we are sampling 1000-times more paths. As a side note,
sampling only 100 · 100 = 10000 paths takes roughly 16 seconds with 6 CPU cores. In our
experiments, we found that the inner simulations for the SSA M2 should at least be 1000 to
guarantee a small simulation error.

In Figure 4.19, we can see an example of the simulated ratings Xt using RgEM
t under

the historical measure in the top figure and under the risk-neutral measure in the bottom
picture. We used the exponential change of measure with the mild probabilities of default
in Table C.6. The grey lines illustrate M = 100 · 100 = 10000 different paths of Xt and the
highlighted paths in different colors are some particular examples of trajectories. Similar to
Figure 4.18, we can see that the transitions under the risk-neutral measure compared to the
historical ones, reveal a huge difference. We can see by the deep grey areas in the bottom
picture that a lot more transitions occurred under the risk-neutral measure. Consistently to
Figure 4.15, we can see at the right-hand side the probability distribution of the ratings at
t = 1 year and recognize the large probability to transition from B to C. Compared to the
PHCTMC in the previous section, we see a much smoother behaviour and the number of
transitions seem to increase the more we progress in time, which seems to be more realistic.
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Figure 4.19.: Simulated trajectories Xt using the transition operators from RgEM
t starting in

rating B. The top picture is under measure P and the bottom picture is under measure Q
using Table C.6 as market default probabilities.
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4.7. Application to Rating Triggers for Collateral-Inclusive
Bilateral Valuation Adjustments

In this section, we study bilateral credit and debit valuation adjustments (hereafter referred
to as CVA and DVA) of a portfolio of trades between two parties having signed a collateral
agreement dependent on ratings. The main references for the general theory of XVA are
Oosterlee and Grzelak (2019): pp. 375 ff. Chapter 12.3 Credit Valuation Adjustment
and Risk Management and Brigo, Morini and Pallavicini (2013): pp. 305 ff. Chapter
13 Collateral, Netting, Close-Out and Re-Hypothecation. Recall that CVA and DVA are
adjustment to the fair price of a financial portfolio accounting for the potential loss in case
of default of the counterparty and the owner, respectively. These are usually defined as an
average of the exposure (positive and negative, respectively) weighted by the probability of
default. The two parties usually sign a so-called netting agreement, so as to consider the
exposure at portfolio level (as opposed to trade-wise). Attached to the netting agreement,
one often has a Credit Support Annex (CSA) by which each of the two parties further agrees
to interchange securities (referred to as collateral) to reduce the exposure of the other party.
In the case of bankruptcy, the collateral account can be used to mitigate the losses of the
non-defaulting party, although collateral is often non-segregated and therefore also at risk.
Since posting collateral is another expense for an entity, it is desirable to keep the postings
as small as possible while simultaneously keeping the losses due to a default event small as
well. To this goal, more and more CSAs specify thresholds of permitted unsecured exposure
in terms of the credit quality of the parties: the higher the credit quality of a party, the
smaller the amount collateral it has to post (and the larger the unsecured exposure of the
other party).

A customary way to measure the credit quality of an entity is to use credit ratings. A
high rating means that the entity is very likely to fulfill its financial obligations towards its
contracting party, while a low rating associates an increasing risk for meeting the aforemen-
tioned obligations. In this line of thought, the default can be viewed as the worst possible
rating. CSAs dependent on ratings are said to have rating triggers: a change of rating of one
of the parties triggers a change of threshold of that party.

Since the exposure depends on the amount of collateral posted or received, to compute
CVA and DVA in presence of a CSA with rating triggers, it is necessary to model the rating
processes of the contracting parties. For this, we proposed two different models in Section 4.4
and Section 4.5 by considering deterministic and stochastic rating transition models, respec-
tively.

In this section, we will use RgEM
t as our rating transition model and refer to Kamm (2022)

for similar tests in the PHCTMC model seen in Section 4.4.
Since the doubly-stochastic rating process Xt corresponding to RgEM

t is pathwise Marko-
vian, we would like to point out that the memoryless property of such processes make them
somewhat unrealistic as models for the rating process, since an entity with a history of suc-
cessive downgrades is more likely to be considered risky than a competitor with long-time
constant rating. We have already seen one possibility to calibrate a non-Markovian model
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by using RCIR
t as a rating transition model but we will leave further studies of this model for

future research. Also self-exciting processes, such as Hawkes processes, could be explored to
account for the increasing riskiness for fast successive downgrades.

In most of the literature, time-homogeneous models for rating transitions are considered.
However, it is empirically evident that a time homogeneity assumption is often violated. We
have already seen in our previous experiments that we can calibrate our fully inhomogeneous
model in a meaningful way to the data, which is an improvement to the existing models in
the literature.

For a more detailed discussion of the Markovianity and time-homogeneity we refer the
reader to Lencastre et al. (2014).

Throughout this section, we are taking the point of view of a bank having a portfolio of
deals with a counterparty. The two parties have signed a netting set agreement with a CSA
having rating-dependent thresholds. The stochastic process representing the future mark-
to-market of the portfolio is denoted by Vt. We will assume that both contracting parties
are subject to default and the default time will be denoted by τB and τC for the bank and
the counterparty, respectively. Additionally, we will suppose that the same rating matrices
apply to both, i.e. they are in the same industrial sector and the consideration of two different
sectors is discussed in Remark 4.7.1. For our illustration, we will assume that the bank has the
highest rating today, whereas the counterparty has a mid-range rating today, since we expect
a bank to default less likely than the majority of companies. The evolution of their ratings
over time will be denoted by XB

t and XC
t , respectively, and we will set Xt :=

(
XB

t , X
C
t

)
to

shorten notation.
Let Ct be the stochastic process representing the value of the collateral account. In par-

ticular Ct > 0 if the collateral is received by the bank. We will assume for simplicity that Ct

depends on V only through the value Vt: more precisely we will suppose that Ct := f (Vt, Xt).
In particular to avoid path dependencies, we assume there are no minimum transfer amounts,
the impact of this assumption being not material for our purposes.

We will discuss the following three scenarios of collateral agreements:
1. uncollateralized, i.e. no collateral is interchanged and f ≡ 0;
2. perfectly collateralized, i.e. collateral is posted instantaneously at a discrete set of times,

e.g. daily, and is equal to the mark-to-market (Vt = Ct), f(v, r) = v;
3. rating-trigger dependent, more precisely we will focus on the case of thresholds depend-

ing on rating (see below for a description of f in this case).
The relation of the bank to the counterparty is illustrated in Figure 4.20 and reads as

follows11:
To illustrate the impact of collateral in risk mitigation, let us assume instantaneous posting

and no rehypothecation of collateral for simplicity. Assume the counterparty (but not the
bank) defaults at time τ . Then on the one hand we have the value of the portfolio Vτ and
on the other hand we have the value of the collateral account Cτ . We distinguish four cases:

• Vτ ≥ 0, Cτ ≥ 0: the portfolio generates a positive exposure for the bank but this is
11We will use the same conventions as in Brigo, Morini and Pallavicini (2013): pp. 310 ff. Chapter 13.2

Bilateral CVA Formula under Collateralization, in particular X+ = max (X, 0) and X− = min (X, 0).
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Bank Counterparty

Portfolio Vt

Collateral
Account Ct

Potential
Loss Vt − Ct

(Vt − Ct)+ (Vt − Ct)−

f (V
t , X

t ) −
< 0:

post collateral

C
t > 0 in favor for

f (Vt, X
t)
+ >

0:

post collatera
l

Ct
< 0 in favor for

Vt >
0 creditor on default Vt < 0 creditor on default

Figure 4.20.: Illustration of bank and counterparty relations in terms of exposure and collat-
eral agreements.

mitigated by the collateral (which can be fully retrieved by the bank because of no
rehypotecation). Therefore the outstanding claim is Vτ − Cτ .

• Vτ ≥ 0, Cτ ≤ 0: although the portfolio generates a positive exposure for the bank, the
bank had posted collateral just before default. Because of no rehypothecation, the bank
can fully get back its collateral and the outstanding claim is therefore Vτ .

• Vτ ≤ 0, Cτ ≥ 0: the counterparty gets back the collateral posted to the bank and also
gets the value of the portfolio |Vτ |.

• Vτ ≤ 0, Cτ ≤ 0: the counterparty keeps the collateral posted by the bank and also gets
the remaining value of the portfolio |Vτ − Cτ |.

The behaviour in case of default of the bank is symmetrical.
Additionally, the individual collateral postings depending on the collateral agreement are

depicted by f (Vt, Xt)−, meaning that the bank has to post collateral if this value is greater
than zero and its analogue for the counterparty is given by f (Vt, Xt)+.

A comprehensive explanation of all default events in this bilateral setup can be found in
Brigo, Morini and Pallavicini (2013): pp. 311–312 Chapter 13.2.1 Collection of CVA
Contributions.

Next, we will discuss the impact of rating triggers compared to the aforementioned scenarios
of collateral agreements on collateral-inclusive CVA, DVA and BVA, followed by a discussion
on the pre-default distribution of the rating processes in Section 4.7.2.

4.7.1. XVA with Different Collateral Agreements

We are interested in the impact of rating triggers on BVA, CVA and DVA (Collateralized
Bilateral, Credit, Debit Valuation Adjustments) without the possibility of rehypothecation
and zero interest rate at mid-market to simplify the investigation.12

12More details about the implementation can be found on https://github.com/kevinkamm/
LieRatingTriggers/blob/main/Lie/main.m.
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Before we dive into this topic, let us first of all discuss our benchmark portfolio. Since our
main purpose is to analyse the general behaviour of the rating model, we are not interested in
setting up an accurate model for the computation of Vt. In particular, the Vt that we consider
does not represent the value of a portfolio of real deals. Rather we decided to simulate Vt

using a number of independent Brownian motions with different volatilities and life-times li

to account for the cash-flows of the portfolio. To be more precise13

Vt := V0 + σ0W
0
t +

n∑
i=1

σiW
i
t1t≤li ,

where V0 ∈ R≥0 is the initial value, W i, i = 0, . . . , n, n ∈ N, are independent Brownian
motions, σi ∈ R are volatilities and li ∈ [0, T ] are uniformly distributed random variables
describing the different life-times of the cash-flows. In the experiment we use V0 = 0, n = 24
and σi are the standard normal random variables multiplied by 10 for scaling and its sign
indicates a positive or negative cash-flow (from the bank perspective). Also, notice that we
designed the portfolio in such a way that at least one cash-flow survives till T by not adding
a finite life-time to W 0

t .
Now, let us briefly recall the relevant definitions of XVA

(cf. Brigo, Morini and Pallavicini (2013): p. 314 Equation 13.4, p. 316 Equation 13.10 )
without re-hypothecation

BVA (t, T,C) := DVA (t, T,C)− CVA (t, T,C) , (4.7.1)

DVA (t, T,C) := −EQ
[
1τ=τB<T LGDB

(
V −

τ − C−
τ

)−∣∣∣Gt

]
, (4.7.2)

CVA (t, T,C) := EQ
[
1τ=τC<T LGDC

(
V +

τ − C+
τ

)+
∣∣∣∣Gt

]
, (4.7.3)

where Gt is the filtration containing all the default-free market information plus default mon-
itoring. These values are calculated under a risk-neutral measure Q, which explains why we
were interested in changing the measure of our rating model from the historical probabilities
P to the risk-neutral measure in the first place.

The evaluation of the collateral account at the exact time of the default event, i.e. Cτ ,
might seem confusing. We could imagine a scenario in which bonds or stocks could be used as
collateral, making it necessary to evaluate the collateral account at the default event. In our
case, we will assume that the collateral account will be a pure cash account, meaning that
upon a default event the value will not be updated from its previous value Cτ−. Therefore,
it is very important to study the distribution of ratings prior to default, which is subject to
Section 4.7.2.

We now describe the function f (Vt, Xt) in the case of rating-triggers dependent agreements,
following Brigo, Morini and Pallavicini (2013): pp. 316 ff. Chapter 13.5.2 Collateral-
ization Through Margining. Let rx

i ≥ 0, x ∈ {B,C}, i = 1, . . . ,K denote the threshold for
the party x in case x has rating i: this means that the maximum unsecured exposure of the

13More details about the implementation can be found on https://github.com/kevinkamm/
LieRatingTriggers/blob/main/Lie/portfolio.m.
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other party will be at most rx
i .

Now, we introduce the rating triggers ρx with corresponding thresholds rx
i as

ρx(i) :=
K∑

j=1
rx

j 1j(i).

As a small example, setting for all i = 1, . . . ,K and x = {B,C} the thresholds rx
i = +∞

lead to the uncollateralized scenario and rx
i = 0 to the perfectly collateralized scenario.

The amount of collateral to be posted by the bank at time tj is then

(
Vtj + ρB(XB

tj
)
)−
− C−

tj−.

For the counterparty we have analogously(
Vtj − ρC(XC

tj
)
)+
− C+

tj−.

As aforementioned, we assume for simplicity that the value Ctj of the collateral account at
time tj is equal to Cβ(tj) where β(u) is the last collateral posting date before u. In particular,
we assume there is no remuneration on the collateral account. We then have

Ct0 := 0, Ctn
:= 0, Cu− := Cβ(u).

Ctj
:= Ctj− +

((
Vtj + ρB(XB

tj
)
)−
− C−

tj−

)
+
((

Vtj − ρC(XC
tj

)
)+
− C+

tj−

)
.

This can be rewritten as

Ctj =
(
Vtj + ρB(XB

tj
)
)−

+
(
Vtj − ρC(XC

tj
)
)+

=: f
(
Vtj , Xtj

)
.

We will use in all experiments 365 posting dates per year. In Figure 4.21, one can see one
trajectory of the portfolio, collateral account and individual postings by both counterparties
in the top picture. The picture in the middle indicates the ratings of both counterparties over
time for this particular trajectory and the bottom picture shows the corresponding threshold
for each point in time. The orange boxes are magnifications of the indicated sections in the
figure.

One can see that for this choice of trajectory, the bank has no rating transition and the
counterparty has many, ranging through all thresholds defined in Table 4.14.

At the section “Zoom A”, one can see that neither the bank nor the counterparty has
to post collateral. In the region, where the portfolio is negative, the bank does not have
to post collateral, since the allowed threshold is not exceeded. Same for the counterparty
in the region, where the portfolio is positive. In section “Zoom B”, the portfolio gets too
negative and the threshold for the bank is exceeded, such that the bank has to post collateral
(green dots). After that the portfolio gets positive and the counterparty has to post collateral
instead of the bank. At “Zoom C”, the rating of the counterparty is improving and we can
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Table 4.14.: Rating thresholds for both counterparties. Values in Euro.
A B C D

Bank
10 · 106 5 · 106 0 0

Counterparty
10 · 106 5 · 106 0 0
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Figure 4.21.: One trajectory of a collateral agreement with rating triggers. The top picture
shows the collateral account and portfolio over time, the middle one the rating evolution and
the bottom one the corresponding rating thresholds.

see that it has to post less collateral than beforehand, which is apparent from the distance
between the black bold (the portfolio) and blue dashed line (the collateral account). After
that at around t = 0.7 the ratings drops back to B and the distance between the exposure
and collateral gets smaller again. At “Zoom D”, the rating of the counterparty drops further
to C, forcing the perfectly collateralized scenario, since the threshold is zero for this rating.
Therefore, the dashed blue line follows the black bold line perfectly, whenever its above zero.
At the very end we can see that the rating of the bank drops to B without any impact.

In Table 4.15 are the values of DVA (4.7.2), CVA (4.7.3) and BVA (4.7.1) using the Loss-
Given-Default LGDB = 0.6, LGDC = 0.6 and M = 10000 simulations for the three collateral
agreements: no collateralization, perfect collateralization and collateralization with rating
triggers.

One can see that the collateralization with rating triggers lies in between the values of the
uncollateralized case and the perfectly collateralized case, which is the expected behaviour,
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Table 4.15.: XVA with the different collateral agreements (no, perfectly and rating triggers)
using Table C.6 as market default probabilities and LGDB = 0.6, as well as LGDC = 0.6
with M = 10000 simulations and thresholds defined in Table 4.14.

XVA Uncollateralized Rating Triggers Perfectly collateralized
DVA 1015922 587335 351276
CVA 896413 376938 271492
BVA 119509 210397 79784

because as illustrated in Figure 4.21 one has a possible transition from unsecured money to
the perfectly collateralized scenario, where rating thresholds are zero. The difference to the
perfectly collateralized case is that there can be transitions from high ratings to default in
one instant, which will be subject of the next subsection.

Remark 4.7.1. In this framework of rating transition modelling, it is straightforward to include
the possibility of counterparties in two different sectors, e.g. financial and corporate.

Suppose we are in the setting of Section 4.5.2.4 and define two independent processes in
the Lie algebra, whose components are

dA1,i
t =

∣∣∣A1,i
t

∣∣∣a1
i
dt, dY 1,i

t = b1
i dt+ σ1

i dW
1,i
t ,

dA2,i
t =

∣∣∣A2,i
t

∣∣∣a2
i
dt, dY 2,i

t = b2
i dt+ σ2

i dW
2,i
t .

The Brownian motions W j,i
t , i = 1, . . . , (K − 1)2, j = 1, 2, are assumed to be mutually

independent.
Now, instead of defining two individual changes of measures for both processes, we will

define κ :=
(
κ1, κ2) ∈ R2(K−1)2 and Wt :=

(
W 1,1

t , . . . ,W
1,(K−1)2

t ,W 2,1
t , . . . ,W

2,(K−1)2

t

)⊤
.

The Girsanov transform now takes again the form

Lt := exp
(∫ t

0
κs · dWs −

1
2

∫ t

0
|κs|2 ds

)
and the corresponding measure is given by

dQκ

dP

∣∣∣∣
Ft

:= Lt,

where Ft := σ (Wt) with Qκ Brownian motion W κ
t := Wt −

∫ t
0 κsds.

The dynamics of A1
t and A2

t under this new measure are given by

dAκ,1,i
t =

∣∣∣Aκ,1,i
t

∣∣∣a1
i
dt, dY κ,1,i

t =
(
b1

i + σ1
i κ

1,i
s

)
dt+ σ1

i dW
κ,1,i
t ,

dAκ,2,i
t =

∣∣∣Aκ,2,i
t

∣∣∣a2
i
dt, dY κ,2,i

t =
(
b2

i + σ2
i κ

2,i
s

)
dt+ σ2

i dW
κ,2,i
t .

This means that we can repeat the calibration procedure described in Section 4.5.2.1 and
Section 4.5.2.4 simultaneously for both processes using data from two different sectors, while
ensuring that they have dynamics under the same risk-neutral measure Qκ.
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This trick is not possible for the ICTMC model and copula methods as in Bielecki,
Cialenco and Iyigunler (2012) have to be considered, which is subject to future research
in our model.

4.7.2. Pre-Default Rating Distribution

As it is apparent from the definition of the rating thresholds, it is important to study the
distribution of the rating process one time-instant prior to default, because this will determine
the unsecured amount of money at the default event. We will call this henceforth pre-default
distribution and will also compare the distribution under P to the one under Q with the help
of Figure 4.22, which were obtained by Monte-Carlo simulation.

Now, let us have a closer look at Figure 4.22. First of all, one can see the pre-default
distribution under the measure P in the top picture and under the measure Q in the bottom
picture. Disregarding the individual colors, the probability of being in a certain rating prior
to default is given by the total height of the column. The composition of the individual colors
of each column indicates the contribution of each starting rating, e.g. in the third column
we can see that the most prominent contributions are resulting from the initial rating C, but
there are contributions of the other ratings as well.

In the market, it can be observed that the default probabilities in the risk-neutral world are
usually higher than the default probabilities quoted under the historical measure in the rating
matrices. This phenomenon has an impact in our model on all other ratings as well, which
can already be seen in Figure 4.19 by the spread of the grey lines indicating all simulated
trajectories. In the risk-neutral world there seem to be more transitions than in the historical
world causing this spread of grey lines. The reason for this is that the calibration of this
model has essentially one parameter for each rating because hi ∈ RK . Therefore, the higher
probability of default under the measure Q compared to the one under P has a significant
impact on the other ratings as well.

We can see that under the measure P, the top picture, almost all the defaults had a prior
rating of C, while under the measure Q, this is still the most prominent case but significantly
smaller. It is more likely under the measure Q that a company starting with a high rating
defaults and this without transitioning to the rating prior to default first, which is indicated
by the different heights of the each individual color for each rating.

It is yet an open question and needs thorough economical investigation whether this be-
haviour makes sense or not, because it has a significant impact on the performance of col-
lateralization with rating triggers. To be more precise, the more likely it is that a company
starting in a good rating defaults without first transitioning to a rating, where a low threshold
is defined, the more unsecured money we have at a default event.

In Kamm (2022), we show similar results using the PHCTMC from Section 4.4 with the
exponential change of measure.
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Figure 4.22.: Pre-default distribution using RgEM
t . The upper picture is under the historical

measure and the lower plot under the risk-neutral measure using the exponential change of
measure with Table C.6 as market default probabilities.
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4.8. Conclusion

In this chapter, we have seen two methods to compute rating transition matrices from his-
torical rating data of companies, namely the cohort method (Section 4.2.1.1) and the Aalen-
Johansen estimation (Section 4.2.1.2). We have discussed the issue of the withdrawal of
companies and demonstrated how to use a TimeGAN for a time-series analysis of the histor-
ical Aalen-Johansen rating transition matrices. We used the generative abilities of the DNN
to get information about the distribution of the historical data and calibrated two different
models to it under the historical measure.

The first model was a piecewise homogeneous continuous-time Markov chain (Section 4.4)
with deterministic transition operators. We have demonstrated how the most popular change
of measure techniques perform on our dataset and found an improvement by introducing a
penalized calibration procedure.

For the second model, we formulated rating transitions as processes on Lie groups by using
its relation to its Lie algebra and imposing SDEs there. We showed two different approaches,
first the direct exponential mapping in Section 4.5.2.2 and showed numerical results using
CIR processes in the Lie algebra. Afterwards, we demonstrated, how the geometric Euler
method can be applied to preserve the Chapman-Kolmogorov equations in Section 4.5.2.3.
In Table 4.16, we compare the two methods and their features.

RCIR
t RgEM

t

Simple method with fast calibration More complex with slower calibration
Needs only Li

t to be positive Requires that Li
t has monotonically increas-

ing paths
Satisfies all rating properties well Satisfies all rating properties perfectly
Does not satisfy the Chapman-Kolmogorov
equations

Satisfies Chapman-Kolmogorov equations

Default column is not absorbing Default column is absorbing

Table 4.16.: Comparison of RCIR
t and RgEM

t .

In the case of RgEM
t , we showed similar to Section 4.4, how to apply the Jarrow-Lando-

Turnbull and exponential change of measure technique to account for the CDS quotes (Sec-
tion 4.5.2.4). We found, as in the case of ICTMCs, that the exponential change of measure
performed very well.

Afterwards, we showed in Section 4.6 how to simulate the PHCTMC model and the Lie
model using their generator and process in the Lie algebra by using a (nested) stochastic
simulation algorithm.

In the end, in Section 4.7.1 we used the rating process Xt obtained from the SSA to compute
CVA and DVA. We saw, as expected, an improvement using rating triggers compared to the
uncollateralized case and discussed the influence of the pre-default distribution.

For future research, we could try to learn the historical generators instead of the rating
transitions. In this case, we would be able to calibrate the SDE on the Lie algebra to the
fake generators. Also novel neural network architectures called DeepONets (cf. Lu, Jin and
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Karniadakis (2019)) could be thought of in this framework.
Another line of research could involve adding an additional network to the TimeGAN,

which outputs the calibrated parameters of the target SDE directly. It would be beneficial
to link the Autoencoder or Supervisor network to this new network to exploit dimensionality
reductions, especially in the case of larger rating transition matrices.
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Conclusion and Future Research 5
In this thesis, we studied three different topics. In Chapter 2, we have seen how to de-

rive the Itô-stochastic Magnus expansion for general linear matrix-valued SDEs, provided
a convergence result up to a strictly positive stopping time, and gave an asymptotic error
bound for the cumulative distribution function of the stopping time. We have demonstrated
that the numerical scheme arising from the truncation of the Magnus series expansion can
be applied to solve SPDEs with one and two spatial dimensions accurately and efficiently. In
particular, we have shown detailed experiments in the case of the stochastic heat equation
and the stochastic Langevin equation.

This was followed by a model for negative interest rates based on the difference of two
independent CIR processes in Chapter 3. We have seen that in this affine setting the analytical
tractability of the original CIR process for short-rate modelling is preserved and gave evidence
in Section 3.3 that the model can reproduce the market term-structure with negative interest
rates. We extended the model in Section 3.4 by a deterministic shift, making it exogenous, and
calibrated it with the aid of the Gram-Charlier expansion to the market swaption surface.
The model resulted in a good fit to Bermudan swaption prices compared to Bloomberg’s
Hull-White one factor model and a good accuracy for constant maturity swaps.

In Chapter 4, we studied rating transition modelling in detail. We have discussed problems
arising from the market data and shown how to use a TimeGAN to analyse the historical
rating matrices by applying the Aalen-Johansen estimator to the historical rating time series
data of individual entities. We took two different perspectives of modelling rating transi-
tions. In Section 4.4, we started from the point of view of a rating model for an entity
and impose that it evolves like an inhomogeneous continuous-time Markov chain. This lead
to deterministic transition operators and generators, which we calibrated with a penalized
method simultaneously to rating matrices under the historical measure and to market de-
fault probabilities under the risk-neutral measure. We have shown the impact of the two
most popular choices of change of measure on the rating transition evolution under the risk-
neutral measure and concluded that the exponential change of measure behaves better than
the Jarrow-Lando-Turnbull change of measure.

In Section 4.5, we began our investigation of rating transition models starting from SDEs
taking values in R, used a basis transformation to translate the dynamics to a positive half-
space of a Lie algebra and applied the exponential map to define a fully inhomogeneous
and stochastic rating transition model. We discussed its calibration and showed a differ-
ent technique for the calibration procedure by splitting the individual calibrations under the
historical measure and the risk-neutral measure. For the calibration under the historical mea-
sure, we used the moments of the distributions of rating matrices learned by the TimeGAN
and demonstrated in three different cases of market default probabilities the behaviour of the
model. We confirmed our conclusion from the ICTMC model that the exponential change of
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measure leads to more reasonable results than the JLT change of measure.
Last but not least, we applied our results from Section 4.5 in the case of RgEM

t to compute
CVA and DVA with rating triggers. We have shown that the rating dependent thresholds
of unsecured money balances the issue of minimizing the potential loss at default under the
constraint of small collateral postings. In Section 4.7.2, we discussed that the large jumps
from high ratings to default exclude the possibility of the rating trigger model to reach the
same value of XVA as in the perfectly collateralized case.

5.1. A Unified Model for XVA

For the evaluation of collateral-inclusive bilateral Credit-/Debit Valuation adjustments in
markets with possible negative interest rates, we propose the following model:

Use RgEM
t as the rating transition model with the exponential change of measure technique

to unify default and rating models under the risk-neutral measure consistent with historical
data.

For the discount factor, we suggest to use the difference of two independent CIR processes
with deterministic shift extension calibrated to the market swaption surface.

The short-rate model may be correlated to the Brownian motions appearing in RgEM
t ,

whose impact is left for future research. More opportunities for future research are discussed
in the next section.

5.2. Future Research

There are a lot of opportunities for future research. We will discuss briefly some possibilities
in the next subsections starting with the Magnus expansion. This is followed by opportunities
for future research in the negative interest rate framework in Section 5.2.2. Afterwards, we
will discuss applications and extensions of the rating transition model in Section 5.2.3–5.2.6.

5.2.1. Magnus Expansion

For the Magnus expansion there are many possibilities for future research. On the one hand,
we could try to extend the results to a non-linear setting. Attempts in this direction have
been made in Wang et al. (2020) and Yang et al. (2021).

On the other hand, it would be interesting to study the Magnus expansion for matrix-valued
SDEs with jumps or with respect to the fractional Brownian motion.

This would yield a novel numerical scheme for SPDEs with jumps or rough SPDEs with
maybe the same benefits as we have seen in Section 2.4.3 and Section 2.4.4.

Another possibility could involve a Magnus expansion for Backward SDEs (BSDEs).

5.2.2. Negative Interest Rate Model

Also, in this framework, there are multiple opportunities for further research. One possibility
could be to use multiple risk-factors, possibly unsymmetrical for the negative and positive
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component. To be more precise, we could decide to use two positive CIR processes and one
negative, i.e. r(t) = x1(t) + x2(t) − y(t). Adding correlations and time-dependent features
are also another line of research. Also other methods than the Gram-Charlier expansion for
the calibration to the swaption surface could be explored.

5.2.3. Default Model from Rating Transitions

Instead of using doubly stochastic processes (Cox processes) for hazard rates to model default
probabilities, we could use a rating model instead. Since the last column of the rating matrices
contains the probabilities of default, we can consider rating models as a superset of default
models. With our consideration of stochastic rating transitions, we have an analogue to the
Cox processes used for hazard rate models.

This could lead to a new calibration procedure, since we could price Credit-Default-Swaps
with a rating model. In this case, a risk-neutral measure could be derived in the rating model
instead of taking the approach of calibrating the change of measure parameters by matching
default probabilities. Also the volatilities of the rating model could be calibrated in this way,
as we have seen for the interest rate models.

5.2.4. Characterization of Rating Transition Models

In Section 4.3, we started to investigate properties of a rating model. In the literature, this
aspect is not much explored. Currently, we try to find a set of properties, which is fully
characterizing short-term rating transition models.

We would like to use these properties to train neural networks with soft-constraints instead
of fully data driven ones like the TimeGAN.

Also, this is important for studying different SDEs in the Lie algebra. We showed in this
thesis only one example for the geometric Euler-Maruyama scheme but gave no justification
for the structure of Yt in (4.5.5) apart from good numerical results.

With a full characterization of short-term rating models, we can discuss the class of SDEs
ensuring these properties. Also we hinted at other properties, such as self-excitement as a
possible feature, which can be added. Additionally, jump-diffusions could be investigated to
take rare events into account, such as the Covid pandemic.

5.2.5. Stochastic Reconstruction of Rating Matrices

We have discussed an issue with the cohort method for computing rating matrices from
historical data. Since this is the method employed by the majority of rating agencies, it is
necessary to study defect rating matrices in more detail.

We are currently investigating the possibility to repair the defect rating matrices in a
stochastic way by training a DNN. One idea could be to use the Discriminator network of
the trained TimeGAN combined with its Autoencoder to have a data-driven judge of what
makes a rating matrix a rating matrix. In this case, we would like to train another generator
network using a defect rating matrix as input and stochastically adding values to it, which
are judged by the TimeGAN discriminator. Training this conditional generator could lead to
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Table 5.1.: Information mismatch under the historical and risk-neutral measure.
Historical data Risk-neutral data

Entity (unobserved) observed
Sector observed (unobserved)

a feasible reconstruction of the defect rating matrices. Then, we can apply all the techniques
from Chapter 4 to these reconstructed rating matrices.

A justification for a stochastic repairing method is the fact that the withdrawal of an entity
adds a stochastic uncertainty to the defect rating matrix, since we do not know, in which
rating it would have been at the end of the evaluation period.

Instead of using the TimeGAN discriminator as a judge of a good rating matrix, we also
would like to use a characterization of a rating matrix discussed in Section 5.2.4.

5.2.6. Information Mismatch and Filtering

In this thesis, we have modelled rating transition for an entire market sector, such as the
financial or corporate sector, since rating matrices are only computable for entire sectors
with both the Aalen-Johansen estimator and the cohort method. They were fundamental for
the calibration under the historical measure. For the risk-neutral calibration, we explained
in Section 4.2.2 that we consider sector default probabilities instead of entity data.

It would be more realistic to calibrate the rating triggers for computing CVA and DVA
based on entity data instead of sector data.

In Table 5.1, we summarized this issue, i.e. direct entity data is only known under the risk-
neutral measure and sector data is only directly known under the historical measure. However,
we additionally know historical ratings of an entity and can compute default probabilities
under the risk-neutral measure, indicated by the brackets in the table. This gives us some
hope to use a filtering approach to define rating triggers which are customized for specific
counterparties. We noticed in (4.5.5) a close connection to the Langevin dynamics. If we
disregard for the moment the fact that Ai

t has to be positive and set ai(t, y) ≡ y with
dY i

t = σidW
i
t , we are exactly arriving at the prototype leading to the stochastic Langevin

equation arising in filtering problems. This is explained in more detail in Pascucci and
Pesce (2022b). We would like to exploit this close connection and are currently studying
the filtering problem.

Since the Magnus expansion yields an efficient scheme for solving the stochastic Langevin
equation, we even have access to more complicated models, which in turn would be feasible
for an implementation in practice.

Another idea is inspired by Giles and Reisinger (2012). We could imagine that a model
for a single entity is an analogue to a particle of a larger system. Each particle obeys an SDE
and the entire system evolves like an SPDE. If we have enough particles this could lead to
an SPDE on the Lie group instead of an SDE.
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The Itô-Stochastic Magnus
Expansion A
A.1. Auxiliary Results

The next lemma is useful, if one wants to express stochastic integrals as Lebesgue integrals
and is based on Itô’s formula.

Lemma A.1.1. For p, p1, p2, q, q1, q2 ∈ N0 we have∫ t

0
spW q

s dWs = 1
q + 1

(
tpW q+1

t −
∫ t

0

[
q(q + 1)

2 spW q−1
s + pW q+1

s sp−1
]
ds

)
(A.1.1)∫ t

0
sp1

∫ s

0
rp2W q

r drds = 1
1 + p1

(
t1+p1

∫ t

0
sp2W q

s ds−
∫ t

0
s1+p1+p2W q

s ds

)
(A.1.2)

∫ t

0
sp1W q1

s

∫ s

0
rp2W q2

r drdWs = 1
q1 + 1

(
tp1W q1+1

t

∫ t

0
sp2W q2

s ds

−
∫ t

0
sp1+p2W q1+q2+1

s ds

− q1(q1 + 1)
2

∫ t

0
sp1W q1−1

s

∫ s

0
rp2W q2

r drds

− p1

∫ t

0
sp1−1W q1+1

s

∫ s

0
rp2W q2

r drds

)
.

(A.1.3)

Proof. Note that (A.1.1) is a special case of (A.1.3) by setting p = p1 + 1, q = q1 and
p2 = q2 = 0.

Now, we show (A.1.2). With Itô’s product rule we get

d

(
sp1

∫ s

0
rp2W q

r dr s

)
= sp1

∫ s

0
rp2W q

r drds+ s d

(
sp1

∫ s

0
rp2W q

r dr

)
+ 0

= sp1

∫ s

0
rp2W q

r drds+ s d

(
sp1sp2W q

s ds+
∫ s

0
rp2W q

r drp1s
p1−1ds

)
= (1 + p1) sp1

∫ s

0
rp2W q

r drds+ s1+p1+p2W q
s ds.

Rearranging the equation yields the claim.

Next, we show (A.1.3). With Itô’s product rule we get

d

(
sp1W q1

s

∫ s

0
rp2W q2

r drWs

)
= sp1W q1

s

∫ s

0
rp2W q2

r drdWs +Wsd

(
sp1W q1

s

∫ s

0
rp2W q2

r dr

)
+ d

〈
·p1W q1

·

∫ ·

0
rp2W q2

r dr,W·

〉
s
.
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A.1. Auxiliary Results

Now, use Itô’s product rule and Itô’s formula on the the following term

d

(
sp1W q1

s

∫ s

0
rp2W q2

r dr

)
= sp1W q1

s d

(∫ s

0
rp2W q2

r dr

)
+
∫ s

0
rp2W q2

r drd (sp1W q1
s ) + 0

= sp1+p2W q1+q2
s ds+

∫ s

0
rp2W q2

r dr

(
sp1

(
q1W

q1−1
s dWs + q1(q1 − 1)

2 W q1−2
s ds

)

+W q1
s

(
p1s

p1−1ds

)
+ 0

)

=
∫ s

0
rp2W q2

r drsp1q1W
q1−1
s dWs +

[
sp1+p2W q1+q2

s +
∫ s

0
rp2W q2

r drsp1 q1(q1 − 1)
2 W q1−2

s

+
∫ s

0
rp2W q2

r drW q1
s p1s

p1−1
]
ds

For the quadratic variation from above we have

d

〈
·p1W q1

·

∫ ·

0
rp2W q2

r dr,W·

〉
s

=
∫ s

0
rp2W q2

r drsp1q1W
q1−1
s ds.

In total, we have

d

(
sp1W q1

s

∫ s

0
rp2W q2

r drWs

)

= (1 + q1)sp1W q1
s

∫ s

0
rp2W q2

r drdWs +
[
sp1+p2W q1+q2+1

s + q1(q1 + 1)
2 sp1W q1−1

s

∫ s

0
rp2W q2

r dr

+ p1

∫ s

0
rp2W q2

r drW q1+1
s sp1−1

]
ds.

Rearranging the equation yields the claim. □
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The Cox-Ingersoll-Ross Model in a
Negative Interest Rate Framework B
B.1. Derivation of the Riccati Equations and Coefficients

Let everything be as in Lemma 3.3.3. In particular, let

P (t, T ) != Ax(t, T ) exp (−Bx(t, T )x(t))Ay(t, T ) exp (By(t, T )y(t)) .

To derive the Riccati equations (3.3.10) we use the fact, that we are modelling under the
martingale measure Q, therefore the discounted price process exp

(
−
∫ t

0 r(s)ds
)
P (t, T ) needs

to be a martingale.

By independence of x and y, as well as Itô’s formula we derive after some algebra

d

[
exp

(
−
∫ t

0
r(s)ds

)
Ax(t, T ) exp (−Bx(t, T )x(t))Ay(t, T ) exp (By(t, T )y(t))

]

= Ax(t, T ) exp
(
−
∫ t

0
x(s)ds−Bx(t, T )x(t)

)[
exp

(∫ t

0
y(s)ds+By(t, T )y(t)

)[

Ay(t, T )
[
y(t)dt+By(t, T )dy(t) + y(t) (∂tBy) (t, T )dt+ 1

2B
2
y(t, T )d ⟨y⟩t

]

+ (∂tAy) (t, T )dt
]]

+Ay(t, T ) exp
(∫ t

0
y(s)ds+By(t, T )y(t)

)[
exp

(
−
∫ t

0
x(s)ds+Bx(t, T )x(t)

)[

Ax(t, T )
[
−x(t)dt−Bx(t, T )dx(t)− x(t) (∂tBx) (t, T )dt+ 1

2B
2
x(t, T )d ⟨x⟩t

]

+ (∂tAx) (t, T )dt
]]
.

Now, in order to be a martingale the parts of bounded variation have to vanish, which leads
us after rearranging the terms to

0 != y(t)
[
Ax(t, T )Ay(t, T )

[
1 +By(t, T )λy(t) + (∂tBy) (t, T ) + 1

2B
2
y(t, T )γy(t)

]]

+ x(t)
[
Ay(t, T )Ax(t, T )

[
− 1−Bx(t, T )λx(t)− (∂tBx) (t, T ) + 1

2B
2
x(t, T )γx(t)

]]

+Ax(t, T )Ay(t, T )
[
By(t, T )ηy(t) + 1

2B
2
y(t, T )δy(t)−Bx(t, T )ηx(t) + 1

2B
2
x(t, T )δx(t)

]
+Ax(t, T ) (∂tAy) (t, T ) +Ay(t, T ) (∂tAx) (t, T ).
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B.1. Derivation of the Riccati Equations and Coefficients

Thus, we derive the following Riccati System

1 +By(t, T )λy(t) + (∂tBy) (t, T ) + 1
2B

2
y(t, T )γy(t) = 0, By(T, T ) = 0,

−1−Bx(t, T )λx(t)− (∂tBx) (t, T ) + 1
2B

2
x(t, T )γx(t) = 0, Bx(T, T ) = 0,

By(t, T )ηy(t) + 1
2B

2
y(t, T )δy(t)−Bx(t, T )ηx(t) + 1

2B
2
x(t, T )δx(t)

+ ∂t (logAy) (t, T ) + ∂t (logAx) (t, T ) = 0.

A solution to the last equation can be found by further assuming that the individual x and
y parts will be zero, leading to two separate equations

By(t, T )ηy(t) + 1
2B

2
y(t, T )δy(t) + ∂t (logAy) (t, T ) = 0, Ay(T, T ) = 1,

−Bx(t, T )ηx(t) + 1
2B

2
x(t, T )δx(t) + ∂t (logAx) (t, T ) = 0, Ax(T, T ) = 1.

We will now turn to the special case of the CIR processes (3.3.4). We see immediately that
the equations for x are in the usual form and defining λx(t) ≡ −kx, ηx(t) ≡ kxθx, γx(t) ≡
σ2

x, δx(t) ≡ 0 yields the explicit solution from the literature (cf. Brigo and Mercurio (2006)
p. 66 equation (3.25)).

Concerning the y terms, we make the following educated guess and verify, that it solves
the equation:

A(t, T ) =
( 2h exp ((k + h)(T − t)/2)

2h+ (k + h) (exp ((T − t)h)− 1) ,
) 2kθ

σ2

B(t, T ) = 2 (exp ((T − t)h)− 1)
2h+ (k + h) (exp ((T − t)h)− 1) ,

h =
√
k2 − 2σ2,

where we will drop the index for indicating that we are considering the y coefficients for
readability and assume that k2 ≥ 2σ2.

Verification for B We will first check the formula for the Riccati equation in B:

We will now simplify the nominator and the denominator of ∂tB + 1
2σ

2B2 − kB, which is
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B.1. Derivation of the Riccati Equations and Coefficients

given by

∂tB + 1
2σ

2B2 − kB =

σ2
(
2 e

√
k2−2 σ2 (T −t) − 2

)2

2
((

e
√

k2−2 σ2 (T −t) − 1
) (

k +
√
k2 − 2σ2

)
+ 2
√
k2 − 2σ2

)2

− 2 e
√

k2−2 σ2 (T −t)√k2 − 2σ2(
e

√
k2−2 σ2 (T −t) − 1

) (
k +
√
k2 − 2σ2

)
+ 2
√
k2 − 2σ2

−
k
(
2 e

√
k2−2 σ2 (T −t) − 2

)
(
e

√
k2−2 σ2 (T −t) − 1

) (
k +
√
k2 − 2σ2

)
+ 2
√
k2 − 2σ2

+
e

√
k2−2 σ2 (T −t)√k2 − 2σ2

(
k +
√
k2 − 2σ2

) (
2 e

√
k2−2 σ2 (T −t) − 2

)
((

e
√

k2−2 σ2 (T −t) − 1
) (

k +
√
k2 − 2σ2

)
+ 2
√
k2 − 2σ2

)2 .

After bringing the terms to the common denominator, we consider now the nominator of
this transformation

1
2σ

2
(
2 exp

(√
k2 − 2σ2τ

)
− 2

)2

−
(
2
√
k2 − 2σ2 exp

(√
k2 − 2σ2τ

)
+ k

(
2 exp

(√
k2 − 2σ2τ

)
− 2

))
((

exp
(√

k2 − 2σ2τ
)
− 1

) (
k +

√
k2 − 2σ2

)
+ 2

√
k2 − 2σ2

)
+ exp

(√
k2 − 2σ2τ

)√
k2 − 2σ2

(
k +

√
k2 − 2σ2

) (
2 exp

(√
k2 − 2σ2τ

)
− 2

)
= 2h k − 2 k2 − 2 k2 e2 h τ + 2σ2 + 4σ2 eh τ + 2σ2 e2 h τ − 2h k e2 h τ ,

where we substituted τ := T − t and h :=
√
k2 − 2σ2. The denominator can be simplified in

the same way, leading to

2 k2 − 2h k + 2 k2 e2 h τ − 2σ2 − 4σ2 eh τ − 2σ2 e2 h τ + 2h k e2 h τ .

In total, we see that the denominator differs only by a sign, hence ∂tB+ 1
2σ

2B2−kB = −1,
which yields the claim.

Verification for A The formula can be derived by just integrating and taking the exponen-
tial.

(
2he 1

2 τ(k+h)

(eτ h − 1) (h+ k) + 2h

) 2 k θ
σ2

,

where h :=
√
k2 − 2σ2 and τ := T − t.
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B.2. Instantaneous Forward Rate

Let us just take the logarithm and derivative to verify this formula:

log (A(τ)) = τ
(
2 k2 θ + 2 k θ h

)
2σ2 −

2 k θ ln
(
eτ h h− k + h+ k eτ h

)
σ2 +

2 k θ ln
(
2
√
k2 − 2σ2

)
σ2 .

Now, taking the derivative yields

∂τ (log (A (τ))) =
2 k θ

(
eτ h − 1

)
eτ h h− k + h+ k eτ h

= kθ
2
(
eτ h − 1

)
(eτ h − 1) (h+ k) + 2h.

After undoing the substitution for τ this is equal to kθB, which yields the claim.

B.2. Instantaneous Forward Rate

The definition of the instantaneous forward rate (cf. Brigo and Mercurio (2006) p. 13
equation (1.23)) is given by

f(t, T ) := −∂T log (P (t, T )) .

By (3.3.5) we therefore have

f(t, T ) = −∂T

(
log

(
Ax(t, T )e−Bx(t,T )x(t)Ay(t, T )eBy(t,T )y(t)

))
= −∂T (log (Ax(t, T ))−Bx(t, T )x(t))− ∂T (log (Ay(t, T )) +By(t, T )y(t))

= −∂T (Ax(t, T ))
Ax(t, T ) + ∂T (Bx(t, T ))x(t)− ∂T (Ay(t, T ))

Ay(t, T ) − ∂T (By(t, T )) y(t).

Let z ∈ {x, y} and consider the case of the CIR model (3.3.4). Then those derivatives are
given by the following expressions: Let us calculate the derivative of Az first

∂T (Az(t, T ))

= ϕ3
z

(
ϕ1

zϕ
2
ze

ϕ2
z(T −t)

ϕ1
z + ϕ2

z

(
eϕ1

z(T −t) − 1
) − (

ϕ1
z

)2
ϕ2

ze
ϕ1

z (T −t)eϕ2
z(T −t)(

ϕ1
z + ϕ2

z

(
eϕ1

z(T −t) − 1
))2
)(

ϕ1
ze

ϕ2
z(T −t)

ϕ1
z + ϕ2

z

(
eϕ1

z(T −t) − 1
))ϕ3

z−1

.

Hence, we get

−∂T (Ax(t, T ))
Ax(t, T ) =

ϕ2
zϕ

3
z

(
ϕ1

z − ϕ2
z

) (
e(T −t)ϕ1

z − 1
)

ϕ1
z + ϕ2

z

(
e(T −t)ϕ1

z − 1
) .

Now, we compute the derivative of Bz

∂T (Bz(t, T )) =
(
ϕ1

z

)2
e(T −t)ϕ1

z(
ϕ1

z + ϕ2
z

(
e(T −t)ϕ1

z − 1
))2 .
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B.3. Hermite Polynomials

B.3. Hermite Polynomials

In this short section we briefly recall the probabilist’s Hermite polynomials, which are key to
the Gram-Charlier expansion.

Definition B.3.1. The (probabilist’s) Hermite polynomials Hn(x) are defined as H0(x) ≡ 1
and for n ≥ 1

(−1)n (φ(x))−1
(
dn

dxn
φ

)
(x),

where φ(x) := 1√
2π

exp
(
−x2

2

)
.

Notice, that they are orthogonal with respect to the Gaussian measure, i.e.∫
R
Hm(x)Hn(x)φ(x)dx = δnmn!.

In particular,

H1(x) = x,H2(x) = x2 − 1, H3(x) = x3 − 3x,H4(x) = x4 − 6x2 + 3,

H5(x) = x5 − 10x3 + 15x,H6(x) = x6 − 15x4 + 45x2 − 15, H7(x) = x7 − 21x5 + 105x3 − 105x.

B.4. Cumulants and Moments

Let us denote by µi the moments and by ci the cumulants. Their relationship towards each
other is determined by the moment generating function (cf. Smith (1995)) like follows

M(t) = 1 +
∞∑

i=1
µi
ti

i! = exp
( ∞∑

i=1
ci
ti

i!

)
= exp (K(t)) .

Therefore, assuming that the moments µi are known we can compute the cumulants ci by
differentiating the formula from above

ci = di

dti
log (M(t))

∣∣∣∣∣
t=0

.

Since, we only need a few of them, we can compute the formulas and implement them directly,
leading to

c1 = µ1, c2 = µ2 − µ2
1, c3 = 2µ3

1 − 3µ2µ1 + µ3, c4 = −6µ4
1 + 12µ2µ

2
1 − 4µ3µ1 − 3µ2

2 + µ4,

c5 = 24µ5
1 − 60µ2µ

3
1 + 20µ3µ

2
1 + 30µ2

2µ1 − 5µ4µ1 − 10µ2µ3 + µ5

c6 = −120µ6
1 + 360µ2µ

4
1 − 120µ3µ

3
1 − 270µ2

2µ
2
1 + 30µ4µ

2
1 + 120µ2µ3µ1 − 6µ5µ1 + 30µ3

2 − 10µ2
3

− 15µ2µ4 + µ6

c7 = 720µ7
1 − 2520µ2µ

5
1 + 840µ3µ

4
1 + 2520µ2

2µ
3
1 − 210µ4µ

3
1 − 1260µ2µ3µ

2
1 + 42µ5µ

2
1 − 630µ3

2µ1

+ 140µ2
3µ1 + 210µ2µ4µ1 − 7µ6µ1 + 210µ2

2µ3 − 35µ3µ4 − 21µ2µ5 + µ7.
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B.5. Least Square Monte Carlo Method (LSMC)

B.5. Least Square Monte Carlo Method (LSMC)

In this section, we will demonstrate how to approximate the conditional expectation via
LSMC. Let us first of all recall the following facts about the conditional expectation (cf.
Pascucci (2011): pp. 654 ff.):

Let X ∈ L2 (Ω,F ,Q) and A ⊆ F be a sub-σ-algebra.

1. Then the conditional expectation is the L2-best approximation, i.e.

EQ
[(
X − EQ [X| A]

)2
]
≤ EQ

[
(X − Y )2

]
for all Y ∈ L2 (Ω,A,Q).

2. Furthermore, the factorization Lemma tells us that there exists a function u, such that

EQ [Y |R] = u(R)

and combined with the argument above

u(R) = arg min
v(·)

EQ
[
|v(R)− Y |2

]

where v(·) runs over all measurable functions.

The idea is now to approximate the function u(x). Therefore, fix a basis (bi(x))i=1,...,n and
set bn(·) := [b1(·), . . . , bn(·)]. Then, we approximate u by u(x) ≈ λT bn(x) where λ solves the
least square problem

λ = arg min
α∈Rn

EQ
[∣∣∣αT bn(R)− Y

∣∣∣2] .
The problem we encounter is that in this least square problem we have random variables.

So we can numerically deal with this problem by simulating those random variables, if it is
possible, and view this least square problem as finding a linear regression for data points
introduced by the realizations of the random variables.

Thus, let yi be realizations of Y and set y = [y1, . . . , ym]T . Additionally, let bij = bi(rj),
where rj is a realization of R, and define the matrix b = [bij ]i=1,...,n;j=1,...,m.

Then the above least square problem reads

λ = arg min
α∈Rn

|bα− y|2 .

This is known as ordinary least square problem and the optimal solution is given by

λ =
(
bT b

)−1
bT y.

This tells us how to approximate the conditional expectation via a Monte Carlo linear re-
gression approach.
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B.6. Mean Error of Discount Factors

B.6. Mean Error of Discount Factors

Table B.1.: Mean error of discount factors (DF) of our model with parameters given in Table
3.2 at 30/12/2019 and 30/11/2020.

Maturity (in years) Mean Error of DF at 30/12/2019
0.0833333 0.000409963

0.25 0.00112268
0.5 0.00161849
0.75 0.00137477

1 0.000814101
1.25 0.000328491
1.5 1.4362e − 05
1.75 5.62967e − 05

2 0.000402274
2.25 0.000824884
2.5 0.0011063
2.75 0.00133005

3 0.00143482
3.25 0.0018223
3.5 0.00242705
3.75 0.00303645

4 0.00354305
4.25 0.00409665
4.5 0.00461513
4.75 0.00491301

5 0.00502117
5.25 0.00485501
5.5 0.0048752
5.75 0.00549422

6 0.00642713
6.25 0.00743045
6.5 0.00841358
6.75 0.00945159

7 0.010154
7.25 0.0105884
7.5 0.0111652
7.75 0.0116295

8 0.0120698
8.25 0.0125788
8.5 0.0132799
8.75 0.0138392

9 0.0146873
9.25 0.0156794
9.5 0.0166502
9.75 0.0174248
10 0.0180652
15 0.0251373
20 0.0331911
25 0.0160001
30 0.00094742

Mean Error of DF at 30/11/2020
0.000560815
0.00119113
0.00144972
0.00113393
0.000550498
0.000398677
0.000571146
0.000805009
0.00125292
0.00191315
0.00288173
0.00356734
0.00401817
0.00441028
0.00477583
0.00512345
0.00537247
0.0051572
0.00473785
0.00449665
0.00423046
0.00398605
0.00410309
0.00442951
0.00477755
0.00495872
0.00514248
0.00546137
0.00596334
0.006623

0.00753078
0.00803137
0.00842589
0.00889094
0.00938679
0.00983092
0.0100521
0.0103367
0.0109601
0.0117957
0.0126498
0.0314676
0.0233781
0.0174282
0.00846645
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B.7. Market Data

Table B.2.: Market data containing the volatility surface for the swaption pricing at
30/12/2019 in bps.

Maturity
Tenor 1 2 3 4 5 7 10

1 17.5 21.8 26.8 31.4 35.2 40.2 45.6
2 25.4 29.3 33.5 36.4 39.5 43.5 47.5
3 34 36.7 39.2 41.1 43.2 46.2 49.3
4 40 41.5 43.4 44.8 46.2 48.4 50.9
5 43.7 44.6 45.8 47 48.4 50.1 52.3
7 49.7 49.8 50.5 51.4 52.1 53.1 54.4
10 54.6 54.4 54.7 54.9 55.1 55.2 55.6
15 54.8 54.4 54.5 54.4 54.2 54.2 54.4
20 53.6 53.2 53.4 53 52.9 52.8 52.5

Table B.3.: Market data containing the volatility surface for the swaption pricing at
30/11/2020 in bps.

Maturity
Tenor 1 2 3 4 5 7 10

1 16.4 18.7 21.6 24.4 26.9 31.5 36.5
2 21.2 24.2 27.4 29.9 31.7 35.9 40.6
3 27.3 29.9 32.4 34.3 36 39.5 43.3
4 32.4 34.6 36.6 38.2 39.5 42 45.5
5 36.7 38.5 39.9 41 42.2 44.4 47.3
7 43.4 44.2 45 45.8 46.6 47.9 49.7
10 48.5 48.6 49.2 49.7 50.1 50.6 51.7
15 50.3 50.1 50.6 50.7 50.7 51 51.3
20 49.8 49.7 50 50 50 49.9 49.6

Table B.4.: Market data containing the swaption strikes at 30/12/2019.

Maturity
Tenor 1 2 5 7 10

1 −0.260793 % −0.195187 % −0.011405 % 0.140129 % 0.330514 %
2 −0.129665 % −0.0782444 % 0.139932 % 0.273273 % 0.449172 %
5 0.268095 % 0.38307 % 0.556996 % 0.655339 % 0.757978 %
7 0.547079 % 0.611571 % 0.76683 % 0.830788 % 0.891069 %
10 0.880582 % 0.907944 % 0.967521 % 0.988131 % 0.992003 %
15 1.04232 % 1.04153 % 1.01776 % 0.985317 % 0.924744 %
20 0.925377 % 0.901441 % 0.827386 % 0.778437 % 0.721445 %
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B.7. Market Data

Table B.5.: Market data containing the swaption strikes at 30/11/2020.

Maturity
Tenor 1 2 5 7 10

1 −0.558066 % −0.544838 % −0.455765 % −0.37221 % −0.238803 %
2 −0.531679 % −0.502856 % −0.386908 % −0.294521 % −0.162606 %
5 −0.315638 % −0.264729 % −0.117094 % −0.0324645 % 0.0536401 %
7 −0.117189 % −0.0652544 % 0.0603589 % 0.1157 % 0.150538 %
10 0.150213 % 0.179568 % 0.225372 % 0.223805 % 0.196761 %
15 0.234862 % 0.219855 % 0.16784 % 0.12791 % 0.0641018 %
20 0.0500327 % 0.0277677 % −0.0398808 % −0.0837531 % −0.134806 %

Table B.6.: Market data containing the swaption prices at 30/12/2019.

Maturity
Tenor 1 2 5 7 10

1 0.000702236 0.00175071 0.00706456 0.0112631 0.0181169
2 0.0014433 0.00333027 0.0111956 0.017189 0.0265694
5 0.00391314 0.00796766 0.0214221 0.0308074 0.0453508
7 0.00521117 0.0104082 0.0268942 0.0380283 0.0548627
10 0.00668368 0.0132567 0.0330802 0.045932 0.0651091
15 0.00781681 0.0154396 0.0378811 0.0525334 0.0743464
20 0.00840243 0.0166069 0.0407885 0.0565876 0.0795953

Table B.8.: Bloomberg’s Hull-White one factor prices of receiver Bermudan swaptions at
30/12/2019.

Maturity
Tenor 2 5 7 10

1 0.21% 1.06% 1.85% 3.28%
3 0.57% 1.83% 2.86% 4.63%
5 0.87% 2.48% 3.71% 5.72%
7 1.11% 3.03% 4.43% 6.65%
10 1.4% 3.62% 5.2% 7.59%

Table B.9.: Bloomberg’s Hull-White one factor prices of payer Bermudan swaptions at
30/12/2019.

Maturity
Tenor 2 5 7 10

1 0.25% 1.4% 2.55% 4.76%
3 0.6% 2.08% 3.42% 5.74%
5 0.9% 2.7% 4.16% 6.59%
7 1.13% 3.2% 4.75% 7.18%
10 1.41% 3.72% 5.33% 7.91%
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B.7. Market Data

Table B.7.: Market data containing the swaption prices at 30/11/2020.

Maturity
Tenor 1 2 5 7 10

1 0.000661505 0.00151259 0.00547626 0.00900521 0.0149394
2 0.00121578 0.00278226 0.00916199 0.0145571 0.0235389
5 0.00336776 0.00707345 0.0194074 0.0285692 0.0433793
7 0.0047279 0.00963075 0.0253482 0.0364087 0.0537919
10 0.00630168 0.0126162 0.0323949 0.0456958 0.0665005
15 0.00790807 0.0157371 0.0397201 0.0558865 0.0802858
20 0.00898181 0.017927 0.0451252 0.0631302 0.0898938

Table B.10.: Market data containing the Bermudan swaption strikes at 30/12/2019.

Maturity
Tenor 2 5 7 10

1 −0.194% 0.00912% 0.14% 0.33%
3 0.0789% 0.274% 0.432% 0.561%
5 0.335% 0.534% 0.644% 0.767%
7 0.612% 0.771% 0.84% 0.894%
10 0.926% 1.01% 0.994% 1.02%
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B.7. Market Data

Table B.11.: Market data containing the zero rate curve and zero coupon curve at 30/12/2019.
Maturity (in years) Zero rate (in %) Zero-coupon price

0.083333 −0.469999993219972 1.0004001991529
0.25 −0.388000020757318 1.00096969387991
0.5 −0.324999983422458 1.00163343819125
0.75 −0.314333918504417 1.00237481461989

1 −0.322000007145107 1.00323926670136
1.25 −0.323286440253412 1.00405360258242
1.5 −0.316161320131414 1.00476558980205
1.75 −0.303842297803669 1.00535001652119

2 −0.289547047577798 1.00582418019158
2.25 −0.275860329135469 1.00623288634409
2.5 −0.262835313503729 1.006604855007
2.75 −0.249892233800608 1.00691299093433

3 −0.236451346427202 1.00713375064174
3.25 −0.222084053437044 1.00725039326453
3.5 −0.20696636298112 1.00728054250496
3.75 −0.191425434683623 1.00721781901104

4 −0.175788428168744 1.00706740209126
4.25 −0.160311330630236 1.00684531811395
4.5 −0.144965462482105 1.00655553463348
4.75 −0.129650957156002 1.00618948972951

5 −0.114267959725112 1.00573933685071
5.25 −0.0987154224631581 1.00520062530541
5.5 −0.0828875612342017 1.00457454544122
5.75 −0.0666773874613114 1.00384671986489

6 −0.0499779242090881 1.00300667524933
6.25 −0.0327643402378897 1.00205088034181
6.5 −0.0153403983915723 1.00099833086134
6.75 0.00190798987986796 0.999871102605028

7 0.0185949131264351 0.998698306220564
7.25 0.0344518735623467 0.997505079039002
7.5 0.0496800311054812 0.996279818846146
7.75 0.0645979575189415 0.995003816465917

8 0.0795242260210216 0.993656440330286
8.25 0.0947347900819295 0.992214008696662
8.5 0.110335148849572 0.990662992494919
8.75 0.126388167535652 0.988997743889118

9 0.142956722993404 0.987213788328959
9.25 0.160050573928316 0.985308478446392
9.5 0.177466994199449 0.983284710270437
9.75 0.194950156980411 0.981173005874126
10 0.212244223803282 0.979004189945635
15 0.473523046821356 0.931543316237289
20 0.611338950693607 0.885166902653398
25 0.652327481657267 0.849865688031976
30 0.640345783904195 0.825611308910539
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B.7. Market Data

Table B.12.: Market data containing the zero rate curve and zero coupon curve at 30/11/2020.
Maturity (in years) Zero rate (in %) Zero-coupon price

0.083333 −0.499999988824129 1.00041207460911
0.24444 −0.526142632588744 1.00130160930003

0.5 −0.507755391299725 1.00252751322004
0.75 −0.503638433292508 1.00378359716281

1 −0.517199980095029 1.00519888845098
1.24444 −0.524928161568994 1.00658242962185

1.5 −0.525975602238304 1.00791998180754
1.75 −0.522984338103072 1.00920759910672

2 −0.518596358597279 1.01045317135578
2.24444 −0.514924664329897 1.01166557509739

2.5 −0.511966253088758 1.0128933501334
2.75 −0.509189122195153 1.01412683679008

3 −0.50606126897037 1.01533680279481
3.24722 −0.502153361016866 1.0164921683478

3.5 −0.497446840398652 1.01760034898714
3.75 −0.492025761253245 1.01867206863544

4 −0.485974224284291 1.01969106459461
4.24444 −0.479376664922526 1.02062910472473

4.5 −0.47231881015648 1.02152663951854
4.75 −0.464886791550967 1.02238363928715

5 −0.457166694104671 1.02318805666289
5.24444 −0.449221897941854 1.02391569856637

5.5 −0.441024916645461 1.0246017102629
5.75 −0.432525547282481 1.02524040701367

6 −0.423673586919904 1.02581359580938
6.24444 −0.414435069675712 1.02629288605375

6.5 −0.404840884313273 1.02671307570551
6.75 −0.394938214854612 1.02707383363012

7 −0.384774198755622 1.02736441987847
7.24722 −0.37439006592308 1.02757527517123

7.5 −0.363803462582268 1.02771717281163
7.75 −0.353026057560157 1.0277994267812

8 −0.342069566249847 1.02781095336332
8.24444 −0.330958580803831 1.02773379298185

8.5 −0.319769247063562 1.02760240180053
8.75 −0.308590599271419 1.02742329257773

9 −0.297511671669781 1.02719551414522
9.24444 −0.286599750659389 1.02691014728746

9.5 −0.275835084599585 1.02659173861864
9.75 −0.265176203111905 1.02623638422587
10 −0.254581612534821 1.02583261454546
15 −0.0622837862465531 1.00939445284171
20 0.0184025324415416 0.996324084241296
25 0.0234601888223551 0.994148968990786
30 −0.00393075206375215 1.00118069913068
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Rating Transition Modelling C
C.1. TimeGAN and Default Data

In this appendix, we list the rating matrices used for Section 4.4.

Table C.1.: Expected rating matrix under measure P for one month using TimeGAN.

From
To A B C D

A 99.481 % 0.523 % 0.000 % 0.000 %
B 0.097 % 99.665 % 0.235 % 0.003 %
C 0.000 % 0.326 % 98.626 % 0.983 %
D 0.000 % 0.000 % 0.000 % 100.000 %

Table C.2.: Expected rating matrix under measure P for three months using TimeGAN.

From
To A B C D

A 98.720 % 1.278 % 0.003 % 0.000 %
B 0.226 % 99.201 % 0.544 % 0.019 %
C 0.001 % 0.937 % 96.198 % 2.697 %
D 0.000 % 0.000 % 0.000 % 100.000 %

Table C.3.: Expected rating matrix under measure P for six months using TimeGAN.

From
To A B C D

A 97.381 % 2.601 % 0.014 % 0.000 %
B 0.444 % 98.439 % 1.047 % 0.057 %
C 0.008 % 2.262 % 91.357 % 6.485 %
D 0.000 % 0.000 % 0.000 % 100.000 %
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C.1. TimeGAN and Default Data

Table C.4.: Expected rating matrix under measure P for twelve months using TimeGAN.

From
To A B C D

A 95.142 % 4.801 % 0.056 % 0.004 %
B 0.812 % 97.142 % 1.883 % 0.184 %
C 0.071 % 4.648 % 84.422 % 11.532 %
D 0.000 % 0.000 % 0.000 % 100.000 %

Table C.5.: Dataset one of default probabilities under measure Q for 1, 3, 6, 12 months.

From
To D

(
t = 1

12

)
D
(
t = 3

12

)
D
(
t = 6

12

)
D
(
t = 12

12

)
A 0.005 % 0.015 % 0.031 % 0.061 %
B 0.075 % 0.225 % 0.444 % 0.868 %
C 1.378 % 4.077 % 7.987 % 15.336 %
D 100.000 % 100.000 % 100.000 % 100.000 %

Table C.6.: Dataset two of default probabilities under measure Q for 1, 3, 6, 12 months.

From
To D

(
t = 1

12

)
D
(
t = 3

12

)
D
(
t = 6

12

)
D
(
t = 12

12

)
A 0.512 % 1.531 % 3.053 % 6.065 %
B 0.754 % 2.245 % 4.440 % 8.682 %
C 1.378 % 4.077 % 7.987 % 15.336 %
D 100.000 % 100.000 % 100.000 % 100.000 %

Table C.7.: Dataset three of default probabilities under measure Q for 1, 3, 6, 12 months.

From
To D

(
t = 1

12

)
D
(
t = 3

12

)
D
(
t = 6

12

)
D
(
t = 12

12

)
A 2.400 % 7.200 % 14.400 % 28.800 %
B 3.042 % 9.125 % 18.250 % 36.500 %
C 4.708 % 14.125 % 28.250 % 56.500 %
D 100.000 % 100.000 % 100.000 % 100.000 %
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