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Abstract
In the last two decades, authors have begun to expand classical stochastic frontier (SF)
models in order to include also some spatial components. Indeed, firms tend to concen-
trate in clusters, taking advantage of positive agglomeration externalities due to coop-
eration, shared ideas and emulation, resulting in increased productivity levels. Until
now scholars have introduced spatial dependence into SF models following two dif-
ferent paths: evaluating global and local spatial spillover effects related to the frontier
or considering spatial cross-sectional correlation in the inefficiency and/or in the error
term. In this thesis, we extend the current literature on spatial SF models introducing
two novel specifications for panel data. First, besides considering productivity and input
spillovers, we introduce the possibility to evaluate the specific spatial effects arising from
each inefficiency determinant through their spatial lags aiming to capture also knowledge
spillovers. Second, we develop a very comprehensive spatial SF model that includes both
frontier and error-based spillovers in order to consider four different sources of spatial
dependence (i.e. productivity and input spillovers related to the frontier function and
behavioural and environmental correlation associated with the two error terms). Finally,
we test the finite sample properties of the two proposed spatial SF models through sim-
ulations, and we provide two empirical applications to the Italian accommodation and
agricultural sectors. From a practical perspective, policymakers, based on results from
these models, can rely on precise, detailed and distinct insights on the spillover effects
affecting the productive performance of neighbouring spatial units obtaining interesting
and relevant suggestions for policy decisions.
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Introduction

Overview

In the last two decades, authors have begun to expand classical stochastic frontier models
(SF) in order to include also some spatial components. Indeed, firms tend to concentrate
in clusters, taking advantage of positive agglomeration externalities due to cooperation,
shared ideas and emulation, resulting in increased productivity levels. Thus, producers
cannot be regarded as isolated entities and the hypothesis of cross-sectional indepen-
dence underlying the basic SF model must no longer be considered valid. Until now au-
thors have introduced spatial dependence into SF models following two different paths:
evaluating global and local spatial spillover effects related to the frontier function (Ade-
tutu et al., 2015; Glass, Kenjegalieva, and Sickles, 2016; Gude, Alvarez, and Orea, 2018;
Ramajo and Hewings, 2018; Tsukamoto, 2019) or considering spatial cross-sectional cor-
relation in the inefficiency (Areal, Balcombe, and Tiffin, 2012; Fusco and Vidoli, 2013;
Schmidt et al., 2009) and/or in the error term (Orea and Alvarez, 2019).

Considering the first strand of literature, among the advantages of introducing the
spatial lag of Y (SAR term) and of X (SLX term) in SF models, the most interesting one
relates to the possibility of directly measuring direct and indirect effects originating from
the variables that determine firms’ productivity level and that also affect neighbouring
producers. Specifically, the SAR term enables to capture productivity spillovers while
the SLX term represents input spillovers, where the former refers to the attempt of less
efficient producers to emulate the best practices of the industry leader in order to increase
their productive capacity (Syverson, 2011), while the latter concerns the possibility that
an extensive local market for workers and specialized inputs can allow clustered firms to
better combine the productive factors reaching higher productivity levels (Porter, 1998).
Among the consequences deriving from not taking global productivity spillovers into
account, Glass, Kenjegalieva, and Sickles (2016) underlined that not introducing the spa-
tial lag of the dependent variable in SF models can result in biased estimates due to an
omitted variable bias.

On the other hand, considering spatial dependence in the error term is useful to take
unobserved but spatially correlated variables such as environmental and climatic condi-
tions or location-specific attributes into account. Moreover, introducing a spatial struc-
ture in the inefficiency error term allows capturing spatial correlation deriving from the
specific attributes that commonly characterize all the producers belonging to the same
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area and that affect firms’ efficiency. Between the cons of not considering these two
sources of spatial correlation, ignoring spatial dependence in the inefficiency term can
result in biased estimates of the inefficiency distribution and in different rankings of in-
efficiencies across agents (Areal, Balcombe, and Tiffin, 2012; Schmidt et al., 2009) while
estimating a SF model without including cross-sectional dependence in the disturbance
term can decrease the statistical efficiency of the model (Orea and Alvarez, 2019).

The aim of this thesis is to extend the current literature on spatial stochastic fron-
tier models by introducing new spatial terms and further developing existing models.
Specifically, in this work, we propose two different models for panel data: the Spatial
Durbin Stochastic Frontier Model introducing spatial dependence in the determinants
of firms’ efficiency (SDF-STE) and the Spatial Durbin Stochastic Frontier Model consid-
ering cross-sectional spatial dependence both in the inefficiency and in the error term
(SDF-CSD). Specifically, the thesis is organized as follows: Chapter 1 introduces the
economic setting, discussing the concepts of industrial clusters, spatial agglomeration
and spillover effects; Chapter 2 provides an overview of stochastic frontier (SF) mod-
els, starting from the baseline non-spatial specification up to recent developments in-
troducing different spatial structures; Chapter 3 focuses on the two proposed models,
the SDF-STE and the SDF-CSD model, describing the model specification, the estima-
tion techniques, and the computation of the marginal effects and of the technical effi-
ciency scores; Chapter 4 shows the results of the Monte Carlo simulations testing the
finite sample properties of the two novel spatial estimators; Chapter 5 contains an em-
pirical application of the SDF-STE model to the Italian accommodation sector; Chapter 6
presents an empirical application of the SDF-CSD model to the Italian agricultural sec-
tor. Moreover, Appendix A focuses on the link between the CES, the Cobb-Douglas and
the Trans-Log production function and Appendix B shows different methods that can be
used to compare non-nested models and provides an example using the two proposed
specifications. All the codes used to perform the simulation studies can be retrieved at
https://github.com/FedericaGalli17?tab=repositories.

Main Contributions

The SDF-STE Model

Positing in the first stream of research, in this thesis we propose a novel spatial SF
model for panel data which includes three spatial terms capturing global productiv-
ity spillovers, local input spillovers and determinants of inefficiency spillover effects.
Indeed, besides productivity and input spillovers, in economic geography literature,
knowledge spillovers, meaning “working on similar things and hence benefiting much from
each other’s research” (Griliches, 1992, p.29), are usually acknowledged as the third kind
of spatial effects. Knowledge and informational spillovers can increase firms’ perfor-
mance more than for isolated producers because the geographical concentration of firms
stimulates their innovative activity, spreading new knowledge through a tacit diffusion

https://github.com/FedericaGalli17?tab=repositories
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process (Hoover, 1948). Despite the general consensus of economists about the relevant
and positive role of knowledge spillovers in affecting clustered firms’ industrial activity
(Adams and Jaffe, 1996; Griffith, Harrison, and van Reenen, 2006; Levin and Reiss, 1988;
Spence, 1984), to our knowledge, they have not yet been introduced in spatial stochastic
frontier models. Specifically, firms’ innovative activity can be considered as one of the
main determinants of firms’ efficiency level and therefore, knowledge spillovers can be
identified as spatial effects arising from the factors that determine neighbouring firms’
efficiency. Therefore, we introduce the possibility to evaluate whether the determinants
of inefficiency of neighbouring firms affect the efficiency level of neighbours.

Hence, the first model developed in this thesis enables to evaluate different sources
of spatial dependence using a spatial Durbin specification and introducing spillover ef-
fects in the determinants of inefficiency (hereinafter denoted as Z variables). Specifically,
we propose a novel SF model for panel data (SDF-STE) which includes three spatial terms
capturing global productivity spillovers through the SAR term, local input spillovers
through the SLX term and determinants of inefficiency spillovers adding a new spatial
term, that is the spatial lag of the Z variables. In particular, we differentiate between
spillover effects influencing firms’ productivity and efficiency levels. Indeed, while both
global and local spatial spillovers are considered for the frontier function following Glass,
Kenjegalieva, and Sickles (2016), we concentrate on local spillover effects associated with
the determinants of firms’ inefficiency because spatial dependence influencing neigh-
bouring firms’ efficiency level mainly arises from local factors such as emulation, face-to-
face interactions, local cooperation, and individuals contact (Griliches, 1992). The SDF-
STE model can be estimated using a ML estimation approach. Moreover, direct, indirect
and total effects affecting firms’ productivity and efficiency levels respectively originat-
ing from the productive inputs and from the determinants of firms’ inefficiency can be
computed following the method proposed by LeSage and Pace (2009).

The first new feature of the SDF-STE model consists in introducing the possibility
of directly evaluating how each variable that determines the inefficiency level of neigh-
bouring firms also affects nearby producers. This is achieved by adding the spatial lag
of each inefficiency determinant in the inefficiency model. The second relevant feature
of the model concerns his general and comprehensive specification enabling to capture
different kinds of spatial spillovers across firms (i.e. productivity and input spillovers
affecting the frontier function and local spillovers in the Z variables). Moreover, this
model nests several existing spatial and non-spatial specifications, allowing to select the
model that best fits the data testing different restrictions through likelihood ratio tests.
From an applied perspective, the proposed spatial specification taking advantage of new
lagged variables can provide policymakers with interesting and relevant policy implica-
tions that could have not been obtained using previous spatial SF models. Indeed, unlike
the previous spatial SF models that allow evaluating the overall level of spatial depen-
dence affecting firms’ inefficiency level providing only generic information, the SDF-STE
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model allows evaluating the specific spatial effects arising from each inefficiency deter-
minant giving rise to precise, detailed and distinct insights concerning spatial spillovers
related to each variable of interest. This approach can be very useful for a variety of eco-
nomic problems dealing with agglomeration economies, knowledge and R&D spillovers,
technology diffusion, imitation, spatial networks and interactions, which are all relevant
and current research topics in firm-level microdata applications, in productivity and ef-
ficiency analysis, in business-strategy literature, and in the context of regional sciences.
The main methodological results concerning the SDF-STE model are summarized in the
following paper:

Galli, F. (2023). “A spatial stochastic frontier model introducing inefficiency spillovers”.
Journal of the Royal Statistical Society: Series C.

DOI: https://doi.org/10.1093/jrsssc/qlad012

The SDF-CSD Model

The second contribution developed in this thesis concerns a spatial Durbin stochastic
frontier model for panel data introducing cross-sectional dependence both in the in-
efficiency and in the error term (SDF-CSD). This specification merges together all the
different spatial structures mentioned before, obtaining a very comprehensive tool that
takes four different sources of spatial dependence into account. Specifically, the SDF-
CSD model introduces the spatial lag of Y and of X to capture global and local spatial
spillovers related to the frontier function as proposed by Glass, Kenjegalieva, and Sickles
(2016) and it also considers two spatial structures related to the inefficiency and to the er-
ror term in order to capture behavioural and environmental spatial correlation, following
Orea and Alvarez (2019).

The most appealing feature of this novel spatial model is that it allows capturing
spatial spillover effects while controlling for spatial correlation related to firms’ efficiency
and to unobserved but spatially correlated variables, bringing together the advantages
related to the two different modelling approaches described before. Thus, while previous
literature only considers frontier-based or error-based spillover effects, this is the first
work that merges together the two different approaches, obtaining a very comprehensive
specification never introduced before. Despite his complex spatial structure, one of the
most remarkable features of the SDF-CSD model is that thanks to the modelling approach
suggested by Orea and Alvarez (2019) for the two error terms, it can be estimated using
standard maximum likelihood algorithms and it allows to straightforwardly interpret
the effect of the inefficiency determinants. From an applied perspective, starting from
the SDF-CSD model and making some LR tests for nested models, it is possible to test
whether it is better to simplify the model specification considering only specific spatial
lags or if a comprehensive spatial SF model is required. Thus, it is possible to precisely
assess which kind of spatial effect is more appropriate for studying the phenomenon
under investigation without making a priori assumptions on the spatial structure of the

https://doi.org/10.1093/jrsssc/qlad012
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data. The main methodological results concerning the SDF-CSD model are summarized
in the following paper:

Galli, F. (2022). “A spatial stochastic frontier model including both frontier and error
based spatial cross-sectional dependence”. Spatial Economic Analysis.

DOI: http://dx.doi.org/10.1080/17421772.2022.2097729

Empirical Applications

In this thesis, an empirical application of the SDF-STE model is provided using data
on the Italian accommodation sector while the SDF-CSD model is applied to the Italian
agricultural sector. Estimating the SDF-STE model based on a sample of Italian hotels
makes it possible to evaluate productivity, inputs and knowledge spillovers occurring
in the Italian accommodation sector. In particular, by defining as determinants of hotels’
efficiency some variables referring to hotels’ innovative activity such as intangible capital,
human capital, patents and trademarks, we are able to measure direct and indirect effects
resulting from hotels’ internal innovation and influencing neighbouring accommodation
facilities. The main results of this empirical application are summarized in the following
paper:

Bernini, C., & Galli, F. (2023). “Innovation, productivity and spillover effects in the
Italian accommodation industry”. Economic Modelling 119, 106145.

DOI: https://doi.org/10.1016/j.econmod.2022.106145

On the other hand, we take advantage of the SDF-CSD model to analyse the level
of productivity of the Italian agricultural sector considering different kinds of spatial ef-
fects. In particular, this second model results to be particularly suitable for analysing the
Italian agricultural sector due to the strong importance of unobserved location-specific
attributes in this industry. Indeed, through the spatial structure attached to the ran-
dom disturbance term, it is possible to consider spatial cross-sectional dependence aris-
ing from unobserved features common to nearby areas affecting agricultural production
such as climatic, topographic, environmental, and soil conditions. Moreover, the spatial
structure related to the determinants of firms’ efficiency allows us to capture behavioural
spatial dependence arising from emulation behaviours of agricultural producers located
in nearby areas and from policies and institutions operating at the local level. Starting
from this empirical application, we extend the analysis paying particular attention to the
role of subsidies in the following paper:

Bernini, C. & Galli, F. (2022). "Subsidies, productive performance and spatial effects:
evidence from the Italian agricultural sector". Working paper

http://dx.doi.org/10.1080/17421772.2022.2097729
https://doi.org/10.1016/j.econmod.2022.106145
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Chapter 1

Productivity, Geographical Clusters
and Agglomeration Externalities

1.1 What Enhances Firms Productivity?

1.1.1 Evaluating Firms Productivity

“Productivity is quite literally a matter of survival for businesses” (Syverson, 2011, p. 327). In-
deed, more productive firms are more likely to survive, compared to their less productive
competitors. Therefore, evaluating the level of productivity of firms and understanding
the possible determinants of productivity has become a matter of primary interest to re-
searchers in many fields over the past couple of decades. Classically, productivity has
been defined as an output-input ratio, with the purpose of measuring how much output
is obtained from a given set of inputs. In analyzing productivity, the two main inputs
usually considered are labour and capital. In particular, labour can be measured as the
number of employees or employee hours while capital is traditionally measured as the
establishment’s book value or as its capital stock. However, in addition to these two ob-
servable inputs, there are a lot of different factors that contribute to determining firms’
productivity level, both internal and external to the firm, as described in Subsections 1.1.2
and 1.1.3, respectively.

Productivity can be measured both by using single-factor productivity measures
such as the marginal productivity of labour and capital or by multi-factor measures such
as total factor productivity (TFP). All these quantities can be easily estimated by specify-
ing a production function. A generic production function is

Yi = a f (Li, Ki), (1.1)

where Yi is the output of firm i with i = 1, ..., N, f is a generic function of two inputs,
labour (L) and capital (K), and a, representing total factor productivity, captures varia-
tions in the level of output that are not explained by shifts in the observable inputs that
act through f (.). The most common specifications for the production function, thanks
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to their good properties and fit, are the Cobb-Douglas function and the Transcendental
Logarithmic (Trans-Log) function.

The Cobb-Douglas Function

Considering labour (L) and capital (K) as inputs, the Cobb-Douglas production function
can be defined as in Eq.(1.2), where α and β represent the marginal productivity of capital
and labour, respectively, while α + β is a measure of returns to scale. In particular, the
returns to scale are increasing if α + β > 1 (a 1% increase in the inputs determines a
more than 1% increase in the level of output), constant if α + β = 1 (a 1% increase in the
inputs determines a 1% increase in the level of output), and decreasing if α + β < 1 (a 1%
increase in the inputs determines an increase in the level of output of less than 1%).

Y = aKαLβ (1.2)

Specifying the production function using a Cobb-Douglas specification, total factor
productivity can be estimated as

a =
Y

KαLβ
. (1.3)

Considering the log-form and introducing all the generic inputs xi for i = 1, ..., N,
the Cobb-Douglas function can be written as in Eq.(1.4), where the αis are the output
elasticities to inputs. Applying logarithms allows estimating the function in Eq. (1.4)
using standard least squares methods.

log Y = a +
N

∑
i=1

αi log xi (1.4)

An important limitation of the Cobb-Douglas function is that it assumes constant
elasticity of substitution between capital and labour. Indeed, the Cobb-Douglas produc-
tion function with constant return to scales is a special case of the CES production func-
tion when the substitution parameter ρ approaches zero in the limit and thus, the elastic-
ity of substitution σ equals 1. The derivation of the Cobb-Douglas production function
starting from the CES function is presented in detail in Appendix A.

The Trans-Log Function

A more flexible production function, which allows for variable elasticity of substitution,
is represented by the Trans-Log function, shown in Eq.(1.5). This production function is
an approximation of the CES function using a second-order Taylor polynomial at ρ =

0, where ρ represents the substitution parameter. As for the Cobb-Douglas case, also
the Trans-Log production function can be estimated using OLS because it is linear in
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parameters applying the double log form. More details on the derivation of the Trans-
Log function and on the elasticity of substitution are shown in Appendix A.

log Y = a +
N

∑
i=1

αi log xi +
1
2

N

∑
i=1

N

∑
j=1

γij log xi log xj (1.5)

The Trans-Log function reduces to a Cobb-Douglas if γij = 0 ∀ i = 1, ..., N; j =

1, ..., N. Moreover, as in the previous case, a represents TFP, the αis are the output elastic-
ities to inputs, while the γijs are measures of complementariness between the inputs xi

and xj.

The main limit of the Cobb-Douglas and of the Trans-Log production function is
that they do not take technical progress into account. However, it can be introduced
including an additional term capturing the temporal dynamic. Moreover, traditionally
only labour and capital are included as observable inputs, risking not to consider other
relevant factors influencing firms’ productivity levels. A detailed review of other internal
and external factors that contribute to affecting firms’ productivity is presented in the
next subsections.

1.1.2 Internal Factors

Among the factors that directly impact the productivity level of firms, those operating
within the plant play a fundamental role. Investigating the relationship between manage-
rial talent, best practices and productivity, Bloom and van Reenen (2007) demonstrated
that the correlation between firms’ management practices and TFP is statistically signif-
icant and strong. Indeed, higher scores in management practices are related to higher
levels of TFP, labour productivity, return to capital, sales growth, and probability of sur-
vival. Therefore, managers’ ability and talent can determine wide differences in firms’
productivity levels because of their leading role in handling labour, capital and interme-
diate inputs. In a similar way, several factors linked to human capital and labour quality,
such as the education of workers, training, courses, employees’ overall experience and
tenure at the firm, may impact productivity. In particular, Ilmakunnas, Maliranta, and
Vaini-Omäki (2004), using Finnish data, showed that workers’ education and age posi-
tively affect the productivity level of firms.

As well as labour quality, also the quality of capital and intangible capital (among
others, firms’ reputation, know-how and loyal customer base) are important features that
can influence productivity. In this framework, many researchers focused on analyzing
the impact of a particular type of capital, information technology (IT), on the productiv-
ity level of firms. Specifically, Jorgenson, Ho, and Stiroh (2008) and Oliner, Sichel, and
Stiroh (2007) demonstrated that aggregate U.S. productivity growth over the last decades
was influenced by a remarkable IT-related productivity gain. Conversely, smaller IT in-
vestments contributed to slowing down the productivity growth over the same period
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in the European Union (van Ark, O’Mahony, and Timmer, 2008). Among all possible in-
novative efforts of firms, R&D is the component that can more easily be observed; thus,
many studies on firm-level data investigated the connection between firms’ R&D and
productivity. In particular, Adams and Jaffe (1996) demonstrated that the positive impact
of R&D activities on firms’ productivity decreases as the distance between the research
labs and the plant increases and that productivity depends more on the intensity of R&D
than on its total amount. Between the unobservable sources of firms’ intangible capital,
learning by doing and informal research also play an important role. Indeed, also the
simple act of operating can boost productivity, in fact, experience can be fundamental
for managers to identify opportunities and design process improvements. For example,
Kellogg (2009), considering oil and gas drilling in Texas, found that when producers and
drillers work in pairs, the accumulated experience helps in increasing the productivity
level more than for producers and drillers working alone.

Product innovation is another important factor that can help in enhancing produc-
tivity because, consequently to innovation in the quality of products, firms can increase
the product price and therefore returns. Product innovation can be easily detected by
productivity measures reflecting price variations but also patents are often used as a use-
ful indicator. In this framework, Balasubramanian and Sivadasan (2011) demonstrated
that patent grants are connected to TFP growth, firm size enlargement and the largest
number of commodities produced. Similarly, also Bernard, Redding, and Schott (2010)
found a positive association between TFP and the variety of products offered by firms.

In addition to these factors, also plant characteristics and firm structure decisions
can impact productivity. For example, Atalay, Hortaçsu, and Syverson (2014), using
data for private non-agricultural establishments in the U.S., demonstrated that vertical
integration helps in boosting productivity while Schoar (2002) noted that conglomerated
firms tend to have longer-lasting productivity levels. Investigating firms’ specialization,
Maksimovic and Phillips (2002) found that specialized firms have a strong productive ad-
vantage in particular segments while conglomerate firms tend to perform well in several
industries but without showing exceptional results in any of these businesses.

1.1.3 External Factors

In addition to internal and controllable factors, also producers’ operating environment
can contribute to affecting firms’ productivity levels. These external factors may not di-
rectly impact productivity but certainly, they have a fundamental role in shaping the
context in which firms operate, and thus, they indirectly influence firms’ performance.

Competition and pressures from competitors are between the main external factors
affecting firms’ productivity (Porter, 1990). Indeed, the existence of a highly competi-
tive market raises the productivity bar so that any potential new firm has to achieve a
certain minimum productivity level to enter the market. Moreover, competition could
motivate managers and entrepreneurs to take innovative and more productive actions.
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In this framework, Syverson (2004a) demonstrated that, in denser markets, firms show
higher average productivity levels, higher lower-bound productivity levels and less pro-
ductivity dispersion. Likewise, Schmitz (2005), analyzing the U.S. iron mining industry
in 1980, found that competition led iron mining companies to improve their productivity
level. Indeed, in that period, Brazilian low-cost mines began to deliver Brazilian ore to
the American region of the Great Lakes, forcing major American ore producers to dras-
tically change their production processes in order to face foreign competitors. Therefore,
besides generating a selective effect, competition also concerns the presence of foreign
import companies that threaten the local equilibrium forcing local producers to improve
their production processes. For example, Pavcnik (2002) showed that trade liberalization
in Chile in the 1970s caused stronger productivity growth in the manufacturing industry
compared to other non-tradable sectors. Similarly, when Chinese firms began to export
their products, European industries decided to exit the market or start innovating. In
particular, between 1996 and 2007, in twelve European countries, TFP, the number of
patents, R&D investments and IT adoptions, raised importantly to compete with Chi-
nese producers (Bloom, Draca, and van Reenen, 2011). Moreover, comparing exporting
firms with non-exporting ones, exporters tend to be more productive than non-exporters
as de Loecker (2007a) found for Slovenian firms. Indeed, the author detected a strong
productivity growth in Slovenian exporting companies after entering foreign markets.

Several studies (Andersson and Lööf, 2011; Bronzini and Piselli, 2009; Glaeser, Laib-
son, and Sacerdote, 2002; Romer, 1990) investigated how regions’ intrinsic differences
can affect the productivity gap of firms. In particular, higher levels of research and devel-
opment, skilled human capital, good infrastructures, high quality of public institutions
and propensity to innovate, are between the main regional characteristics that positively
affect firms’ performance. These kinds of externalities, originating within a geographical
area, have been categorized by Jacobs (1969) as urbanization or localization economies.
Concentrating on Italy, Aiello, Pupo, and Ricotta (2014) found that location matters in
determining the level of TFP of firms using a multilevel modelling approach. Indeed, us-
ing data at the firm and regional level for Italian manufacturing firms between 2004 and
2006, they found that both territorial factors and the local environment in which firms are
located influence firms’ performance. Specifically, operating in a highly R&D-oriented re-
gion or in an area with an appropriate endowment of infrastructures and with efficient
public services positively influences TFP. These findings are also helpful in explaining
why firms located in the South of Italy are technologically lagging behind firms located
in the rest of the country.

Moreover, proper market regulation and smarter forms of regulation can induce
productivity growth. Indeed, as Knittel (2002) and Fabrizio, Rose, and Wolfram (2007)
showed, shifts in the regulatory environment can boost productivity while decades of
poor regulations can discourage firms to increase their productivity level (Bridgman, Qi,
and Schmitz, 2009).

Finally, other important external factors influencing firms’ productivity are spillover
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effects, meaning that firms’ practices can influence the productivity level of neighbouring
producers thanks to a tacit diffusion process. Alfred Marshall (1890), in his notable essay
"Principles of Economics", was the first economist who recognized and described spillover
effects related to the "industrial atmosphere" in which firms are embedded. Comparing
Marshallian (spillovers), Portieran (local competition) and Jacobian (geographical and re-
gional) externalities, Fazio and Maltese (2015), using micro-data from small and medium-
sized Italian firms, demonstrated that, in the long run, only spillover effects among firms
(Marshallian economies) matter in influencing firms’ total factor productivity level while
considering TFP growth, Jacobian and Porterian economies seems to be more effective.
Despite authors recognized possible different sources of spatial externalities, in the last
decades, spillover effects acquired a leading role in assessing firms’ productivity level
and researchers began to include and evaluate them in classical productivity models. Af-
ter the introduction of the concept of geographical clusters in Section 1.2, spatial spillover
effects are widely discussed in Section 1.3.

1.2 Geographical Clusters

Despite the growing globalization affecting goods, services, capital, technologies, cul-
tural practices and human beings all over the planet, firms’ innovative activity is still
more linked to a regional scale. Indeed, a high concentration of institutions, rivals, highly
specialized skills and knowledge helps in generating a long-lasting competitive advan-
tage for local clusters being part of the global economy. In the world, highly innovative
activities are mainly characterized by a regional connotation: Silicon Valley, the Research
Triangle, and Route 122 around Boston are just some striking examples.

1.2.1 What is a Cluster?

Firms tend to gravitate toward similar locations and to concentrate in clusters (Hender-
son, Kuncoro, and Turner, 1955; Henderson, Shalizi, and Venables, 2001; Isard, 1956;
Krugman, 1991). “Clusters are geographic concentrations of interconnected companies and in-
stitutions in a particular field” (Porter, 1998, p.78). Besides companies and institutions
of a particular field, clusters can also include firms producing complimentary products,
companies with related technologies and skills, manufacturers of specialized inputs, uni-
versities, training providers and technical support agencies. The borders of a cluster are
defined by the linkages between the main companies belonging to the same cluster and,
in most cases, they are enclosed within political boundaries, but they can also exceed
more than one state. Examples of firms clustering are the textile-related companies in
North and South Carolina, the high-performance auto companies in Southern Germany,
and the fashion shoe companies in Northern Italy. Figure 1.1 shows firms’ clustering in
the United States, as a further example. Going beyond Porter’s explanation of business
clusters, Engel (2015) defined clusters of innovation (COI) as: “Global economic hot spots
where new technologies germinate at an astounding rate and where pools of capital, expertise,
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FIGURE 1.1: U.S. Clusters Map
Source: http://clustermapping.us/content/clusters-101

and talent foster the development of new industries and new ways of doing business”. In par-
ticular, innovative clusters are characterized by high cooperation with educational and
research institutions like universities, great support from public institutions and wide
access to financing. Other fundamental features of COIs are their global dimension, the
great mobility of people inside them, and the presence of multinational companies and
interpersonal networks.

A further concept that addresses the role of location in fostering firms’ competitive-
ness and performance is the one of industrial districts. The notion of industrial districts
was first introduced by Giacomo Becattini in 1990 in his book "Industrial Districts and
Inter-Firm Collaboration in Italy" as "socio-territorial entities characterized by the active pres-
ence of both a community of people and a population of firms in one naturally and historically
bounded area with a dominant industrial activity". As the concept of cluster, also industrial
districts relate to the impact of agglomeration of economic activities and interactions be-
tween co-located firms on economic performance. The notions of industrial district and
cluster have often been used almost interchangeably. However, important differences
characterize the two concepts. First, the main feature of industrial districts concerns the

http://clustermapping.us/content/clusters-101
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co-location of small and medium sized enterprises that mainly operate in light manufac-
turing sectors (Porter and Ketels, 2009). Differently from clusters, industrial districts do
not include large companies in the regions but are characterized by a dense network of
small companies. Second, industrial districts are defined by companies operating in a
specific sector of activities that mainly belongs to the light manufacturing industry such
as the shoes and textiles sectors in the North of Italy. Besides the economic connotation
of industrial districts, also social and cultural factors characterize the concept of indus-
trial district. Indeed, industrial districts generate in specific areas where a particular case
of possible and likely social evolutions took place due to exogenous elements. The ac-
tors of industrial districts are therefore characterized by common values and a sense of
belonging to the local community and to the place where production actually occurs.
On the other hand, clusters usually emerge naturally from government or company ac-
tions, chance events, and the combination of beneficial endowments in a certain area
such as the presence of infrastructures and proximity to communication routes. More-
over, also the presence of a leading firm in an area can stimulate the formation of other
related firms nearby through a "true contagion" effect (Arbia, Espa, and Giuliani, 2021).
To sum up, industrial clusters can take a multitude of configurations, being composed
both by large and small companies belonging to different sectors and linked to different
production stages as well as by institutions and universities. The main characteristic of
industrial clusters relates to the diversity of economic actors belonging to the cluster that
reinforces the performance of each one thanks to knowledge spillovers, human contact
and exchange of ideas. Thus, industrial districts are just one type of a cluster while clus-
ters are a broader concept that includes different possible configurations of companies
and institutions (Porter and Ketels, 2009).
Spatial econometric models, like the ones proposed in this thesis, may be used to inves-
tigate spillover effects occurring both in clusters and in industrial districts. However,
depending on the specific case under study, it is important to select the most appropri-
ate spatial specification (i. e. choose a reasonable spatial weight matrix and include
meaningful spatial lags). Indeed, different spatial lags reflect different kinds of spatial
structures of the data such as local or global correlation schemes. For example, local ap-
proaches may be more suitable for analyzing spillover effects in industrial districts due to
their regional connotation while a global perspective may better fit clusters due to their
"contagion effect" characteristic.

1.2.2 Why Do Firms Cluster?

Alfred Marshall, studying the knitwear district of Northampton and the cutlery and
knitwear district of Sheffield, clearly identified which are the three main advantages for
clustered firms compared to firms operating alone:

• labour matching: firms’ concentration allows the formation of a shared market for
workers with industry-specific skills and thus, it guarantees a lower probability of
labour shortage and unemployment. Moreover, it is more likely for firms to find
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workers with a sufficient level of skills, increasing the matching between labour
demand and supply.

• input sharing: clusters can foster the production of non-tradable specialized inputs,
and suppliers or manufacturers of related inputs can enter the cluster, reducing
costs and guaranteeing firms wide accessibility and availability of specific products;

• knowledge spillovers: knowledge and informational spillovers can increase firms’
productivity more than for isolated producers. Indeed, the geographical concen-
tration of firms stimulates innovative activity, spreading new knowledge through a
tacit diffusion process.

Other reasons for firms’ agglomeration concern a concentrated customer base that
helps in lowering business-related risks, greater availability of skills, inputs, assets and
staff, local lenders and investors already aware of the cluster’s features and the exis-
tence of a significant local market. Another advantage for firms concerns cost reduction
thanks to lower transportation costs and to better access to a more diverse range of inputs
and complementary products. All these benefits related to agglomeration economies and
strong cluster environments foster entrepreneurship (Delgado, Porter, and Stern, 2010;
Feldman, Francis, and Bercovitz, 2005; Glaeser and Kerr, 2009). Indeed, specialized work-
ers belonging to the cluster can more easily recognize new opportunities related to prod-
ucts or services with whom they are familiar, and they can decide to start a new business.
The birth of new firms within the cluster benefits all the other members and amplifies all
the advantages outlined before, generating a positive feedback loop. Therefore, by clus-
tering, firms can obtain efficiency gains and higher profit margins (Delgado, Porter, and
Stern, 2010) and entrepreneurs entering the cluster can decrease risk, transaction costs
and perceive lower entry barriers (Howells and Bessant, 2012). Hence, paradoxically,
long-lasting advantages in an era of global competition are still local. An enduring com-
petitive advantage arises from geographic, cultural and institutional proximity thanks to
closer connections, greater motivation and better flows of information despite the grow-
ing advances in telecommunications, fast means of transportation, accessible markets
and global competition.

1.2.3 How Do Clusters Originate and Develop?

Clusters’ roots can derive both from historical circumstances or from unusual or stringent
local needs (Porter, 1990). For example, the origin of the biotechnology, engineering and
information technology cluster in Massachusetts can be traced back to the presence of
MIT or Harvard University while Finland’s environmental cluster resulted consequently
to a local huge pollution problem. The existence of prior clusters concerning related in-
dustries or suppliers can also stimulate the birth of new clusters. Moreover, they can even
result from random events, as exemplified by the telemarketing cluster in Omaha (Ne-
braska), which emerged thanks to the decision of the U.S. Air Force to place the Strategic
Air Command in that area.
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After the formation of a cluster, a self-reinforcing flow boosts its growth and de-
velopment. Indeed, a growing and promising cluster attracts new businesses, talented
entrepreneurs and individuals with new ideas or relevant skills. As a consequence, lo-
cal institutions specialize, specific suppliers emerge, and also qualified training courses
and infrastructures grow. In the development phase, firms specialized in different fields
sharing matching technologies often intersect, giving birth to a vibrant, dynamic and
competitive centre of innovation.

The most successful clusters can manage to keep their competitive advantage for
centuries despite the external and internal factors that threaten their evolution continu-
ously. Among the internal factors that can contribute to neutralizing clusters’ competi-
tive advantage, technological discontinuities are the most significant ones. Indeed, when
the scientific and technical expertise of a cluster becomes obsolete or research institu-
tions stagnate, clusters lose their competitive advantage. Besides technological discon-
tinuities, also cartels, restrictions to competition, collective inertia, rigidities and over-
consolidation can seriously affect clusters’ competitiveness. Considering the external
factors, demand shifts or changes in customers’ needs can represent other significant
threats.

1.3 Spillover Effects

Firms located in the same cluster and working on similar things tend to influence each
other and affect the productivity level of nearby producers. Indeed, firms tend to share
abilities and new knowledge with neighbours, and to benefit from an extensive local
market for workers and specialized inputs, allowing them to combine the production
factors more efficiently. These flows of information, knowledge, work and ideas are well-
known as agglomeration externalities or spillover effects.

In the last decades, several authors have theoretically and empirically shown that
the geographic concentration of firms leads to higher productivity levels, increased
propensity to innovate and major internationalisation choices. Among the others, Bap-
tista (2000, p. 516) underlined that "geographical proximity stimulates networking between
firms, thereby facilitating imitation and improvement". Moreover, Bartelsman, Haskel, and
Martin (2008) demonstrated that the productivity level of firms located in different coun-
tries converges faster to the productivity level of their domestic industry leader than to
the one of the global leader.

Spatial spillovers across nearby firms can first of all depend on emulation processes.
Indeed, less efficient producers can attempt to emulate the best procedures and practices
of the productivity leader in closely related industries gaining a productive advantage
(Syverson, 2011). Indeed, companies tend to keep an eye on the choices of other com-
panies because they work in high uncertainty conditions, having only partial and asym-
metric information (Leary and Roberts, 2014). Therefore, it is fundamental for them to
compare with other firms and to try to obtain information. Obliviously some frictions
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exist, and less efficient producers can’t fully replicate industry leaders’ best practices,
and emulation processes are far from perfect. The intensity of productivity spillovers
can depend on the size of the cluster, in fact, it has been demonstrated that there is a
positive association between the size of an industry in a region and the magnitude of
the externalities among firms belonging to that industry (Tveteras and Battese, 2006).
Crespi et al. (2008) and Keller and Yeaple (2009), showed that locating a firm nearby to
a multinational company helps in intercepting more easily free information flows while
Leary and Roberts (2014) demonstrated that peer effects are more evident between small
and medium enterprises (SME) because for SMEs it is easier to obtain information from
close firms. Moreover, Maté-Sanchez-Val, Lopez-Hernandez, and Mur-Lacambra (2017),
analyzing the financial behaviour of SMEs, found that also financial decisions of peers
strongly affect firms’ financial sphere. Between all the different kinds of agglomeration
externalities, knowledge spillovers are definitely those that have been more thoroughly
investigated by researchers.

Knowledge spillovers have been defined by Griliches (1992, p. 29) as "working on
similar things and hence benefiting much from each other’s research". Geographic proximity
is fundamental for the transmission of new knowledge because ideas and innovations
are best transmitted via face-to-face interactions and individuals’ contact (von Hipple,
1994). Indeed, it is easy to share information in an era where the world is continuously in
touch thanks to a highly developed telecommunication network but flows of knowledge
work in a different way. Indeed, knowledge is difficult to explain and codify through
digital channels and, as Glaeser et al. (1992, p. 1126) stated, "intellectual breakthroughs
must cross hallways and streets more easily than oceans and continents". Therefore, knowledge
spreads better within geographical boundaries because of its tacit and uncodified nature
(Baptista, 2000).

New knowledge can result from different internal sources such as learning by do-
ing and informal or formal research. Other key factors that can contribute to generating
internal new knowledge are a high degree of human capital, a highly skilled labour force
or a high presence of researchers, scientists and engineers inside the firm. Usually, only
formal research is taken into consideration in the analysis of firms’ performance due to
the complexity of quantifying the other sources. Typically, R&D expenditure is used as
a proxy for formal research because it is considered the most important activity gen-
erating new knowledge. Alternatively to R&D, some authors also use the number of
patents to evaluate firms’ innovative activity. Besides the internal sources of new knowl-
edge, several studies showed that knowledge spillovers have a relevant role in affecting
firms’ industrial activity (Levin and Reiss, 1988; Spence, 1984). Researchers commonly
agree on the idea that R&D investments can spread over a large number of productive
units. Adams and Jaffe (1996) demonstrated that both firms’ internal R&D level and the
level of R&D of other firms contribute to increasing firms’ TFP. Griffith, Harrison, and
van Reenen (2006), using patent data on UK firms, showed that the location in which
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firms innovate matters. Indeed, UK firms making R&D investments in the U.S. expe-
rienced faster productivity growth compared to firms with research labs located inside
their UK plants. In particular, the productivity growth of UK firms was correlated with
the growth of R&D stocks of American firms belonging to the same industry. These re-
sults suggest that for firms embedded in highly innovative clusters, it was easier to tap
into new knowledge from U.S. technological leaders. Moreover, Jaffe (1986) found that
the magnitude of spillovers between firms is a function of the "technological distance"
between them, while Adams and Jaffe (1996) hypothesized that positive returns related
to knowledge spillovers tend to decrease if the units are divided by institutional, cultural
or geographical boundaries.

Glaeser et al. (1992) recognized two different forms of agglomeration forces spread-
ing knowledge spillovers: productive specialization and diversification. Indeed, knowl-
edge spillovers can originate both between firms operating in the same industry and
among firms belonging to different sectors. Concentrating on industrial variety, it should
be underlined that the transfer of information and new knowledge among producers be-
longing to different industries can be effective only if the different industries located in
the same area share a similar technological and knowledge base. Otherwise, if the cog-
nitive distance between firms is too large, it is very difficult for positive externalities to
materialize (Nooteboom, 2000). Investigating the effect of firms’ specialization and diver-
sification on urban growth and local employment growth, most of the authors found that
is product diversification that boosts local growth rather than productive specialization.
Indeed, the variety of industries in a geographical cluster fosters knowledge spillovers,
innovative activity and economic growth (Jacobs, 1969). Moreover, according to Krug-
man (1991), cities are the most relevant geographic unit of observation for knowledge
spillovers because in cities there is a wide diversity of economic agents generating a large
number of spillovers. On the other hand, analyzing the role of industrial specialization
and diversification on firm-level productivity, Henderson (2003) and Martin, Mayer, and
Mayneris (2011) demonstrated that industrial specialization has a leading role in deter-
mining firms’ productivity while industrial diversification does not have any significant
effect.

Concentrating on the channels through which knowledge spillovers flow across
firms, Cohen and Levinthal (1989) stated that firms can make use of external knowledge
thanks to their capacity to get in touch with ideas developed in other firms and to convert
and adapt them to their industrial processes. In particular, Audretsch (1995), trying to
identify the way in which knowledge spillovers occur, focused on individuals gravitating
across firms, such as engineers, scientists, agents and workers. Indeed, individuals move
easily across establishments located in the same area, having the opportunity to build up
face-to-face relationships. Social activities are in fact one of the main mechanisms sug-
gested in literature through which knowledge spillover occurs. Specifically, managers
working in the same field can exchange ideas and learn from each other when they meet
at trade shows, conferences, seminars, talks and social and professional clubs, building a
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strong network based on public relations and business contacts. In this way, individuals
can share new ideas and knowledge, promoting the diffusion of intangible technological
skills and capabilities (Saxenian, 1990). One of the most striking examples of this process
is described by Saxenian (1994) that, concentrating on Silicon Valley, explained how the
young workers of the semiconductor industry were used to meet after work having an
aperitif and chatting about memories, circuits, RAM, tests, etc... Moreover, sociologists
argued that also cultural differences among regions can contribute to influencing the in-
novative performance of firms. Indeed, communication and major exchanges between
individuals help in transmitting knowledge, as demonstrated by the superior growth
of the Silicon Valley region compared to Boston’s Route 128, where individuals usually
have a more introverted and solitary character (Saxenian, 1990). Therefore, also cultural
differences have a relevant role in knowledge diffusion, influencing productivity growth
and technological change.

Finally, differently from the classical hypothesis of firms’ homogeneity adopted in
the traditional economic literature, in the last decades, several authors argued that dif-
ferent knowledge outflows can occur according to different firms’ individual character-
istics (Munari, Sobrero, and Malipiero, 2012; Wang and Lin, 2013). Indeed, firms’ het-
erogeneity, given by different organizational structures, sizes, technological levels and
propensity to innovate, can influence the nature and the intensity of knowledge spillovers
(Cainelli and Ganau, 2018, 2019). For example, firms with good technological capabilities
mostly contribute to increasing the flow of external knowledge within the cluster while
poorly innovative firms tend more to absorb new knowledge rather than spread it. There-
fore, it is fundamental to consider firms’ heterogeneity because, in analyzing knowledge
spillovers occurring within industrial districts, different asymmetric patterns can emerge
depending on the configuration of the cluster and the characteristics of the firms located
inside it.

Trying to explain the heterogeneous behaviour of knowledge spillovers among
firms with different characteristics, Acs and Audretsch (1994) found that firms of dif-
ferent sizes take advantage of knowledge spillovers differently. In particular, large firms
are more willing to exploit new knowledge originating from their own laboratories and
from private and large corporations while smaller companies tend to emulate larger com-
panies belonging to the same cluster or share knowledge between them. Furthermore,
larger firms are more able to absorb "advanced" external knowledge coming from univer-
sities and research centres due to their greater stock of accumulated knowledge. Besides
having an advantage related to knowledge acquisition, larger firms also have a leading
role in knowledge diffusion. Indeed, larger firms as multinational companies also act as
knowledge producers and disseminators. Therefore, small firms located in highly inno-
vative clusters are often able to easily start a new competitive business in highly tech-
nological markets such as biotechnology and computer software, undertaking a negligi-
ble amount of R&D investments thanks to knowledge spillovers originating from bigger
companies belonging to the cluster (Audretsch, 1995). Moreover, Baptista (2000) found
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that knowledge spillovers within a geographical region are particularly relevant in the
early stages of the industry life cycle while, according to Audretsch (1998), they tend to
disperse as the industry becomes more concentrated. On the contrary, Glaeser et al. (1992)
suggested that knowledge spillovers are further boosted by a high industrial concentra-
tion within a region, facilitating more and more firms’ innovative activity and knowledge
diffusion.
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Chapter 2

An Econometric Approach for
Productivity and Efficiency Analysis:
Stochastic Frontier Models

2.1 Foundations of Stochastic Frontier Models

2.1.1 Cross-Sectional Models

Stochastic frontier (SF) models are the parametric tool that is most commonly used by
researchers to analyse firms’ productivity and efficiency. SF models allow evaluating
firms’ output as a function of certain defined inputs (Aigner and Chu, 1968) and they can
be specified as in Eq.(2.1), where Yi represents the maximum output obtainable by firm i
with i = 1, ..., N, given the set of k inputs xi = (xi1, xi2, ..., xik) with associated unknown
parameter vector β (k × 1). Moreover, in order to consider firms’ random differences in
the level of output given the same vector of inputs, a disturbance term ε i is added to the
model specification.

Yi = f (xi, β) + ε i (2.1)

Aigner, Lovell, and Schmidt (1977) and Meeusen and van Den Broeck (1977) firstly
introduced the classical specification for the error term as being made up of two indepen-
dent components, as shown in Eq.(2.2) considering a production function. In particular,
vi (i = 1, ..., N) represents the random disturbance and it is assumed to be independently
and identically distributed as N (0, σ2

v ), while ui is assumed to be independently and
identically distributed as N+(0, σ2

u) or alternatively, it can follow an exponential distri-
bution. Thus, traditionally, ui must satisfy the condition ui ⩾ 0.

ε i = vi − ui (2.2)

Concerning the interpretation of these two components, the positive disturbance
ui reflects the fact that each firm’s output must lie on or below the frontier f (xi, β) +
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vi. Therefore, ui represents the deviation in the firm’s productivity level resulting from
factors under the firm’s control, such as technical and economic inefficiency. Conversely,
vi represents the random disturbance resulting from favourable or unfavourable external
events such as luck, climate, topography, and machine performance (Aigner, Lovell, and
Schmidt, 1977).

Further than considering a production function, also a cost function can be taken
into consideration. In this case, Yi collects the cost faced by the firm while xi is a vector
containing some cost determinants (for example prices of labour and capital). The main
difference with a production function approach concerns the way in which ε i is specified.
Indeed, for a cost function ε i = vi + ui with ui ⩾ 0 because ui represents the cost increase
due to inefficiency and thus, the inefficiency term has to be summed and not subtracted
to the cost function (Schmidt and Lovell, 1977; Stevenson, 1980).

Usually, SF models are log-transformed in order to obtain a linear specification for
f (xi, β) and are estimated using classic maximum likelihood techniques. In particular,
being the two error terms independent, the joint probability density function of vi and ui

can be obtained as the product of the two marginal distributions (i.e. normal and trun-
cated normal distribution, respectively). Subsequently, substituting in the joint probabil-
ity density function of ui and vi the expression vi = ε i − ui derived from Eq.(2.2), the
joint probability density function of ui and ε i can be obtained. Then, the joint probabil-
ity density function of ε = (ε1, ..., εN) can be found integrating out ui and multiplying
all the marginal distributions fεi(ε i) for i = 1, ..., N. Finally, the likelihood function can
be easily found substituting in the joint probability density function of ε, the expres-
sion ε i = Yi − xiβ, derived from the linear form of Eq.(2.1). In particular, following the
reparametrization proposed by Battese and Corra (1977)

σ2 = σ2
u + σ2

v (2.3)

λ =
σ2

u
σ2

u + σ2
v

, (2.4)

the loglikelihood function associated with the linear model in Eq.(2.1)-(2.2) can be
expressed as in Eq.(2.5), where Φ represents the cumulative distribution function of the
standard normal random variable, and Θ is the vector of all parameters.

L(Θ; y) = −N
2
(log 2π + log σ2)− 1

2σ2

N

∑
i=1

(Yi − xiβ)
2

+
N

∑
i=1

log

(
1 − Φ

(
(Yi − xiβ)

√
λ

σ
√

1 − λ

)) (2.5)

Furthermore, technical efficiency scores (TE) can be derived as shown in Eq.(2.6),
starting from the parameter estimates obtained maximising the loglikelihood function in
Eq.(2.5). Technical efficiency scores, following Battese and Coelli (1988), are defined as
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the ratio between the mean production of firm i given its level of inefficiency and inputs,
and the same quantity considering ui = 0 (i.e. technical inefficiency equals zero and then,
the firm is perfectly efficient).

TEi =
exp(xiβ + vi − ui)

exp(xiβ + vi)
= exp(−ui) (2.6)

2.1.2 Panel-Data Models

Starting from this first baseline specification, Schmidt and Sickles (1984) extended the
classic SF model introduced by Aigner, Lovell, and Schmidt (1977) in order to consider
also different time periods. Therefore, they first introduced a SF model for panel data, as
shown in Eq.(2.7) for i = 1, ..., N and t = 1, .., T, where i indexes firms and t indexes time
periods.

Yit = xitβ + vit − ui (2.7)

For T = 1 the model is exactly the stochastic frontier model proposed by Aigner,
Lovell, and Schmidt (1977) for cross-sectional data while for T > 1 it is a straightforward
generalization to panel data. The model can be estimated following different techniques
such as ordinary least squares treating (vit − ui) as the disturbance (although it is not
recommended), using a within estimator assuming the ui as fixed, using a generalized
least squares estimation treating the ui as random effects but without making any distri-
butional assumption on them, and by maximum likelihood assuming independence be-
tween the two errors and making specific distributional assumptions on the inefficiency
component.

A further step, proposed by Battese and Coelli (1995), consists in modelling the
mean of the technical inefficiency error term as function of some inefficiency determi-
nants zit (1 × m) with associated parameter vector ϕ (m × 1). Therefore, the model for
panel data in Eq.(2.7) including some exogenous determinants of technical inefficiency
can be expressed as

Yit = xitβ + vit − uit (2.8)

uit ∼ i.i.d. N+(zitϕ, σ2
u). (2.9)

In particular, this model can be rewritten as in Eq.(2.10), where wit is defined as an
i.i.d. truncated normal random variable with zero mean and variance σ2

u , and with point
of truncation equal to −zitϕ, so that wit ⩾ zitϕ.

Yit = xitβ + vit − (zitϕ + wit) (2.10)
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Reparametrizing the two variance parameters as in Eq.(2.3)-(2.4), the loglikelihood
function associated with Eq.(2.10) can be expressed as in Eq.(2.11) and the parameter
estimates can be obtained by implementing standard ML estimation techniques.

L(Θ; y) = −1
2

N

∑
i=1

Ti
(
log 2π + log σ2)− 1

2σ2

N

∑
i=1

Ti

∑
t=1

(Yit − xitβ + zitϕ)2

−
N

∑
i=1

Ti

∑
t=1

(
log Φ

(
zitϕ

σ
√

λ

)
− log Φ

(
(1 − λ)zitϕ − λ(Yit − xitβ)

σ
√

λ(1 − λ)

)) (2.11)

Starting from these non-spatial SF models assuming cross-sectional independence
among firms, in the last two decades, many authors began to claim that the assumption
of spatial independence is not appropriate, in fact, firms tend to cluster and share infor-
mation. Therefore, firms can’t be considered isolated entities and, in evaluating the level
of productivity of firms, firms’ location and interactions among nearby producers should
be taken into account. In particular, as highlighted by Schmidt et al. (2009) and Glass,
Kenjegalieva, and Sickles (2016), the omission of the spatial lag of the dependent variable
capturing global productivity spillovers can result in biased estimates due to an omit-
ted variable bias. Moreover, Fusco and Vidoli (2013) underlined that the violation of the
classical independence assumption does not allow the assessment of classical statistical
inference because the covariances of the SF errors can no longer be assumed to be zero.

At this point, it is worth discussing the difference between local and global spatial
spillovers, since we will mention them until the end of the thesis. In general, a (spatial)
spillover occurs when a causal relationship between the r-th characteristic of the i-th en-
tity located at position i in space exerts a significant influence on the outcome yj of an
agent located at position j. As explained by Sage (2014), we can distinguish between lo-
cal and global spatial effects depending on the underlying spatial process. We have local
spatial dependence when spatial spillovers do not exhibit endogenous feedback effects
and thus, spillovers only affect the neighbouring observations as defined by the spatial
weight matrix. On the other way, we have global spatial dependence when there are en-
dogenous feedback effects, and thus the r-th characteristic of the i-th entity impacts the
outcomes of all areas (neighbours of the neighbours of i, neighbours of the neighbours of
the neighbours of i, and so on) and not only peers defined by the spatial weight matrix.
Following this mechanism, a change in Xr for the i-th spatial unit leads to a system wide
change and results in a new long-run equilibrium. In general, we model local spillovers
by including the spatial lags of the explanatory variables in the model while we consider
global spatial effects when we introduce the spatial lag of the dependent variable. In
spatial models considering only local spillovers, the coefficients related to the spatial lag
of the explanatory variables can be straightforwardly interpreted as indirect effects since
they reflect the average spillover effects to neighbouring units. On the other hand, in spa-
tial models including the spatial lag of the dependent variable, direct and indirect effects
have to be computed separately after the estimation since the model parameters do not
coincide with the first partial derivatives due to the presence of endogenous interactions.
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Thus, marginal effects can be computed as proposed by LeSage and Pace (2009) by sum-
marizing the information contained in the matrix of partial derivatives associated with a
change in each of the explanatory variables.

2.2 Taking Spatial Effects into Consideration

2.2.1 Early Models

The study by Druska and Horrace (2004) represents the first contribution taking spa-
tial effects into consideration in evaluating firms’ productivity using SF models for
panel data. In particular, developing a spatial error stochastic frontier model with
time-invariant fixed effects, they allowed the productive output of firm i to be a func-
tion of the spatial lag of productivity shocks experienced by nearby firms setting uit =

(IN − ρM)−1ε it. Their SF model can be written as in Eq.(2.12)-(2.13), where M is a (N × N)

spatial weight matrix of known constants and ε it is a zero-mean disturbance. Moreover,
since they do not make any distributional assumption for the inefficiency component, the
cross-sectional specific effects αi can be interpreted as firm-level technical (in)efficiencies.
Using the Schmidt and Sickles (1984) estimator, they applied their SF model to Indone-
sian rice farms allowing for spillovers across farms based on geographic proximity and
weather conditions. Moreover, they suggested to compute technical inefficiency scores
as TEi = exp(αi − maxj αj), following the approach proposed by Schmidt and Sickles
(1984).

Yit = αi + xitβ + uit (2.12)

uit = ρMuit + ε it (2.13)

Following a similar approach, Glass, Kenjegalieva, and Sickles (2013) considered a
fixed effect SAR stochastic frontier model for panel data with time-variant technical ef-
ficiency, as shown in Eq.(2.14). Specifically, by adding the spatial lag of the dependent
variable, the authors succeeded in computing the direct, indirect and total marginal ef-
fects of the explanatory variables taking spatial autocorrelation into account but, as in
the previous case, they did not make any distributional assumption for the inefficiency
error term. Moreover, defined δit = αi + νit + ρit2, technical inefficiency scores can be
computed as TEit = δ̂it −maxi(δ̂it), after having obtained consistent parameter estimates
using standard ML techniques.

Yit = αi + νit + ρit2 + xitβ + λ
N

∑
j=1

wijYjt + ε it (2.14)

Likewise, Han, Ryu, and Sickles (2016) proposed a SAR stochastic frontier model
for panel data as shown in Eq.(2.15), assuming a time-invariant inefficiency term ui and
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without making any distributional assumption for it. Moreover, they allowed the spatial
weights wij,t to vary over time and implemented a quasi-maximum likelihood (QML)
estimation approach. Finally, defining αi = β0 − ui, they computed relative inefficiency
(or efficiency) measures as u∗

i = max(αi)− (αi).

Yit = ρ
N

∑
j=1

wij,tYjt + β0 + xitβ − ui + ε it (2.15)

Going beyond these first contributions taking into consideration spillover effects in
SF models without making any distributional assumption on the inefficiency term ui, in
the next two subsections we discuss two different strands of spatial SF models based on
distributional assumptions for both the two error terms. In particular, in subsection 2.2.2
we discuss spatial SF models considering global and local spatial dependence related to
the frontier function that allow capturing for spillover effects while in subsection 2.2.3
we introduce spatial SF models capturing spatial dependence in the inefficiency and/or
in the error term.

2.2.2 Considering Spatial Dependence in the Frontier Function

The study by Adetutu et al. (2015) represents the first work in this field. Specifically, they
introduced the spatial lag of the exogenous variables to take local spatial dependence into
consideration. The panel data model can be written as in Eq.(2.16) and it can be estimated
using standard procedures for non-spatial SF models.

Yit = α + TL(xit, t) + zitβ +
N

∑
j=1

wijxjtθ+
N

∑
j=1

wijqjtν + vit − uit (2.16)

In particular, α is the intercept, TL(xit, t) represents the technology using a translog
approximation, zit is a vector of exogenous characteristics of firm i at time t, and xjt and
qjt are vectors of inputs and exogenous characteristics of neighbouring firms j affecting
the productivity level of firm i. Finally, wij is the generic element of the spatial weight
matrix W, and α, β, θ and ν are the unknown parameter vectors to be estimated. As
in standard SF models, vit is assumed to be normally distributed with zero mean and
variance σ2

v , while uit follows a non-negative normal distribution with zero mean and
variance σ2

u . Moreover, vit and uit are both independently and identically distributed.
Despite this model takes local spatial dependence into consideration, it fails to account
for global spatial dependence, ignoring the endogenous autoregressive SAR term.

Glass, Kenjegalieva, and Sickles (2016) proposed a SAR stochastic frontier model
and a spatial Durbin stochastic frontier model for panel data accounting for both global
and local spatial dependence, as shown in Eq.(2.17) and in Eq.(2.18), respectively.

Yit = xitβ + ρ
N

∑
j=1

wijYjt + vit − uit (2.17)
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Yit = xitβ + ρ
N

∑
j=1

wijYjt +
N

∑
j=1

wijxjtθ+ vit − uit (2.18)

In particular, xit is a vector of firms’ exogenous variables, ∑N
j=1 wijYjt is the endoge-

nous spatial lag of the dependent variable (SAR term), ∑N
j=1 wijxjt is the exogenous spatial

lag of the independent variables, while ρ and θ are the scalar and the parameter vector
respectively associated with the SAR and the SLX terms. Therefore, in the SAR model
only the spatial lag of the dependent variable is taken into consideration while, using a
spatial Durbin specification, both the spatial lag of the independent variables and of the
dependent variable are taken into account. Moreover, the authors assumed the classical
error structure, so that vit ∼ i.i.d. N (0, σ2

v ) and uit ∼ i.i.d. N+(0, σ2
u). The unknown pa-

rameters have been estimated by implementing a two-step pseudo maximum likelihood
estimator.

The spatial Durbin SF model for panel data by Glass, Kenjegalieva, and Sickles
(2016) has been further developed by Ramajo and Hewings (2018) adding the ineffi-
ciency error term structure proposed by Battese and Coelli (1992). In particular, the inef-
ficiency term uit has been modelled using a time-varying decay specification, as shown
in Eq.(2.19), obtaining a very flexible spatial SF model for panel data.

uit = exp(−η(t − T))ui, ui ∼ N+(µ, σ2
u) (2.19)

Therefore, firms’ technical inefficiency level was assumed to increase or decrease
exponentially depending on the sign of the decay parameter η. In particular, if η > 0
inefficiency decreases over time at a rate of (100 × η)% per year, while if η < 0, technical
inefficiency increases exponentially across time.

A second development of the spatial Durbin SF model by Glass, Kenjegalieva, and
Sickles (2016) has been proposed by Gude, Alvarez, and Orea (2018). Specifically, the
authors introduced a generalized version of the spatial Durbin SF model for panel data
incorporating time-varying exogenous influences on both the degree of global and local
spatial spillovers for each time period t, as shown in Eq.(2.20).

Yit = λ(zit)(WY)it +
K

∑
k=1

βkxkit +
K

∑
k=1

θk(zit)(Wx)kit + vit − uit (2.20)

In particular, (WY)it stands for the endogenous spatial lag of the dependent vari-
able, and the autoregressive parameter λ depends on the vector zit of potential factors
determining global spatial spillovers. Moreover, also the parameter θk related to the ex-
ogenous SLX term is modelled depending on a vector of potential factors zit determining
local spatial spillovers. Similarly, also the standard deviation σuit of the inefficiency er-
ror term, defined as σuit = fit(bit)σu, is function of firms’ exogenous variables bit. This
model, accounting for heteroscedasticity in the inefficiency term, can be numerically es-
timated through standard maximum likelihood estimation techniques.
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Finally, Tsukamoto (2019) extended the spatial autoregressive stochastic frontier
model for panel data by incorporating a model for the mean of the inefficiency error term,
as proposed by Battese and Coelli (1995). Therefore, going beyond the standard spatial
autoregressive SF model shown in Eq.(2.17), the author included a vector of exogenous
variables zit explaining technical inefficiency in modelling the mean of the inefficiency
error term uit, as shown in Eq.(2.21).

uit ∼ i.i.d. N+(zitδ, σ2
u) (2.21)

Also in this case, the parameter estimates can be obtained numerically maximising
the log-likelihood function satisfying the first-order conditions.

2.2.3 Considering Spatial Correlation in the Error Terms

The second branch of literature introducing spatial effects in SF models does not consider
global and local spatial dependence related to the frontier function but assumes the in-
efficiency term and/or the error term to be spatially correlated. Schmidt et al. (2009) is
the first contribution in this field, making technical inefficiency depend on a parameter
that follows a prior distribution that captures unobserved spatial features. Specifically,
for each unit j located in municipality i, they modelled the firm output Yij as a function of
a vector xij of traditional inputs with associated parameter vector β and added a random
error term vij that follows a standard normal distribution and an inefficiency component
uij following an asymmetric normal distribution, independent from vij. Moreover, they
considered each uij as depending on unobserved local effects αi as shown in Eq.(2.22),
and allowed the inefficiency term to vary across different municipalities. Assuming con-
ditional autoregressive CAR priors for αi, the authors estimated the unknown parameters
using a Bayesian approach since the model does not have an analytical closed-form.

Yij = f (xij, β)− uij(αi) + vij (2.22)

Differently from the cross-sectional model proposed by Schmidt et al. (2009), Areal,
Balcombe, and Tiffin (2012) incorporated spatial dependence using an autoregressive
specification for the inefficiency error term as shown in the panel data SF model in
Eq.(2.23)-(2.24). In particular, ρ is the spatial parameter and uit and ũit are latent vari-
ables whose distributional form is unknown. To estimate the unknown parameters, the
authors assumed prior distributions for the latent errors and used a Gibbs sampler and
two Metropolis-Hastings steps.

Yit = xitβ + vit − uit (2.23)

uit = ρ
N

∑
j=1

wijujt + ũit (2.24)
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Similarly, Tsionas and Michaelides (2016) considered a SF model decomposing the
inefficiency error term into a spillover and an idiosyncratic component and developed a
Bayesian estimator to estimate it. In particular, the spillover component ρWu aimed at
capturing regional spillovers while the idiosyncratic term ũ was defined by a one-sided
random variable.

Rewriting the specification of Eq.(2.23)-(2.24) for cross-sectional data as shown in
Eq.(2.25), Fusco and Vidoli (2013) managed to solve the autoregressive error model of
Areal, Balcombe, and Tiffin (2012) with a maximum likelihood estimation technique in-
stead of using a Bayesian approach. Specifically, ũi was assumed to be distributed as
N (0, σ2

ũ) and spatial dependence was incorporated in the inefficiency term through an
autoregressive specification.

Yi = f (xi, βi) + vi − (1 − ρ
N

∑
j=1

wij)
−1ũi (2.25)

Moving from simple spatial models accounting for spatial dependence only in the
inefficiency error term, the study by Herwartz and Strumann (2014) included the SAR
term besides considering an autoregressive specification for the error term, obtaining a
SARAR model for panel data. In particular, they implemented a two-step procedure
to estimate it, obtaining technical inefficiency scores using a DEA approach in the first
step and then regressing these scores to account for two distinct channels of spatial de-
pendence using a SARAR specification, as shown in Eq.(2.26)-(2.27). The model in the
second stage is estimated by means of a ML approach. More in detail, Yit represents
technical efficiency and it is based on DEA inefficiency scores; xit is a vector contain-
ing observations on k explanatory exogenous variables; wi contains individual effects;
δt takes time effects into consideration, wijt and mijt are the generic elements of the two
(N × N) spatial weight matrices Wt and Mt and ε it follows a standard normal distribu-
tion with zero mean and variance σ2. Moreover, λt measures the effect of neighbouring
technical inefficiency scores on Yit, while ρt quantifies spatial autocorrelation due to simi-
lar unobservable factors affecting firms’ efficiency. Thus, in this specification, the authors
only made distributional assumptions on the error term ε it while inefficiency is measured
using a non-parametric approach.

Yit = λt

N

∑
j=1

wijtYjt + xitβ + wi + δt + vit (2.26)

vit = ρt

N

∑
j=1

mijtvjt + ε it (2.27)

The authors also proposed a one-step estimation procedure making distributional
assumptions on both the inefficiency term uit and the error term vit. However, in this
second model, only spatial dependence related to the inefficiency error term was consid-
ered. In particular, the authors started from the non-spatial model proposed by Wang
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and Ho (2010) shown in Eq.(2.28)-(2.29) in which the inefficiency term uit is modelled as
the product of a positive function hit = f (zitδ) of firms exogenous variables zit and of a
positive random variable u∗

i , varying across units but constant in time.

Yit = αi + xitβ + vit − uit (2.28)

uit = hitu∗
i , u∗

i ∼ N+(µ, σ2
u) (2.29)

Herwartz and Strumann (2014) added spatial effects in the specification of the ineffi-
ciency error term uit modelling the scaling function hit as function of region-specific ran-
dom effects with time-varying variance. Due to the non-linearity of the likelihood func-
tion, the authors estimated the unknown parameters using a simulated ML approach.

Finally, Orea and Alvarez (2019) succeeded in obtaining a SF model for panel data
with closed-form for the likelihood function considering cross-sectional effects in both
the inefficiency and the error term, as shown in Eq.(2.30)-(2.34). Specifically, the error
vector ṽt was defined as a multivariate normal random variable with variance-covariance
matrix Π accounting for unobserved but spatially correlated variables through Mγ. On
the other hand, inefficiency depends on an industry-specific error term ũt common to all
firms but varying in time and on cross-sectionally correlated firms’ exogenous variables
zit.

Yit = Xitβ + ṽit − h̃itũt (2.30)

ṽt = (ṽ1t, ..., ṽNt)
T ∼ MVN (0, Π) (2.31)

Π = σ2
v Mγ MT

γ , Mγ = (IN − γW)−1 (2.32)

ũt ∼ N+
(
0, σ2

u
)

(2.33)

h̃it = (IN − τW)−1 hit, hit = f (zitδ) (2.34)

Defining the inefficiency error term as the product of two components following
the scaling property (Wang and Schmidt, 2002) allows to obtain a closed form for the
likelihood function and to estimate the model using standard ML techniques.

2.2.4 Our proposal

In this thesis two novel spatial SF models for panel data are developed: the spatial Durbin
stochastic frontier model introducing spillover effects in the determinants of technical
inefficiency (SDF-STE) and the spatial Durbin stochastic frontier model accounting for
cross-sectional dependence in both the two error terms (SDF-CSD). The detailed specifi-
cation and the estimation procedure of both models are presented in Chapter 3.
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The SDF-STE model takes global and local spatial spillovers into consideration as
proposed by Glass, Kenjegalieva, and Sickles (2016) and furthermore, it includes the spa-
tial lag of the determinants of technical inefficiency, allowing to capture how the factors
that determine firms’ inefficiency level also affect neighbouring producers. Thus, the
main new feature of this model concerns the possibility of capturing the specific spillover
effects related to each inefficiency determinant distinguishing between spillovers affect-
ing firms’ production process and inefficiency level. While for the frontier function we
consider both global and local spatial dependence using a spatial Durbin specification
as proposed by Glass, Kenjegalieva, and Sickles (2016), for the inefficiency model we
only consider local spatial effects because spatial dependence influencing neighbouring
firms’ efficiency level mainly arises from local factors such as emulation, face-to-face in-
teractions, local cooperation, and individuals contact (Griliches, 1992). Thus, despite the
introduction of the new spatial lag in the inefficiency model, the computational effort of
estimating the SDF-STE model is fairly the same as estimating a spatial Durbin stochastic
frontier model since only local spatial feedbacks are considered in the inefficiency model
by introducing the exogenous spatial lag of the Z variables in the same fashion as the
SLX model. In sum, the inclusion of the spatial lag of the inefficiency determinants is
noteworthy from a conceptual and interpretative point of view in the face of a negligible
higher complexity in the modelling approach.

On the other hand, the SDF-CSD model extends the spatial SF model developed
by Orea and Alvarez (2019) including the SAR and SLX terms. Therefore, the SDF-CSD
model allows considering global productivity spillovers, local input spillovers and spa-
tial dependence related to both error terms, obtaining a very general specification that
merges together the two main approaches followed by scholars in this field of research.
The most appealing feature of this novel spatial model is that it allows capturing spatial
spillover effects related to the frontier function while controlling for spatial correlation
related to firms’ efficiency (i.e. behavioural correlation) and to unobserved but spatially
correlated variables (i.e. environmental correlation), distinguishing between four differ-
ent sources of spatial dependence. Thus, being the SDF-CSD the most general model in
this field in terms of number of spillover effects considered, in empirical applications, in-
stead of choosing a priori the kind of spatial structure to be included based on subjective
evaluations, it would be recommended to follow a general to specific approach starting
from this general and comprehensive model. Thus, estimating the SDF-CSD model and
making some LR tests can provide precise insights into which kind of spatial structure is
more adequate to study the phenomenon under investigation. As usual, following a gen-
eral to specific approach is more computationally expensive than starting by estimating
simpler models. However, in this case, the computational burden is not so heavy since
the SDF-CSD model can be estimated by adopting simple likelihood-based techniques.
The only downside concerns the computational time that, with four different spatial lags,
quickly increases as the number of spatial units and time periods raises.
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Chapter 3

The Proposed Modelling Approaches

3.1 A Spatial Durbin Stochastic Frontier Model Introducing
Spillover Effects in the Determinants of Firms’ Efficiency

3.1.1 Model Specification

The specification of the spatial Durbin stochastic frontier model for panel data (N indi-
viduals and T time periods) with spatially lagged determinants of technical inefficiency
(SDF-STE model) is defined in Eq.(3.1)-(3.4) for i = 1, . . . , N and t = 1, . . . , T.

Yit = Xitβ + ρ
N

∑
j=1

wijYjt +
N

∑
j=1

wijXjtθ + vit − uit (3.1)

vit ∼ i.i.d. N
(
0, σ2

v
)

(3.2)

uit ∼ i.i.d. N+ (µit, σ2
u
)

(3.3)

µit = Zitϕ +
N

∑
j=1

wijZjtδ (3.4)

Specifically, Yit is the production output of firm i at time t; Xit is a (1 × k) vector
containing the k production inputs used by firm i at time t with associated parameter
vector β (k × 1); ρ is the parameter associated with the SAR term, capturing global spa-
tial spillovers; wij is the element in the i-th row and j-th column of the row-normalized
and time-invariant block diagonal spatial weight matrix W containing non-negative spa-
tial weights to identify neighbours (indexed by j = 1, . . . , N) and elements equal to zero
on the main diagonal; θ is the parameter vector (k × 1) associated with the SLX term cap-
turing exogenous local spatial spillovers; vit is the normally distributed error term with
zero mean and variance σ2

v and uit, representing technical inefficiency, is distributed as a
truncated normal random variable with known mean µit and variance σ2

u . We model the
mean µit of the technical inefficiency error term uit as function of m exogenous determi-
nants represented by the Zit variables, with corresponding parameter vector ϕ (m × 1).
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Moreover, we add in Eq.(3.4) the spatial lag of the determinants of technical inefficiency
with associated parameter vector δ (m × 1) to capture spatial dependence arising from
the determinants of technical inefficiency of nearby firms. Through this term, it is pos-
sible to capture knowledge spillovers originating from nearby companies and affecting
firms’ efficiency levels. If we take a cost function into consideration instead of a pro-
duction function, only the sign before the technical inefficiency error term changes in the
specification of the SDF-STE model. Indeed, for a cost frontier, the inefficiency term has to
be summed and not subtracted because it represents the cost increase due to inefficiency.

Assumptions on Eq.(3.1)-(3.4), following Elhorst (2010), include (i) (INT − ρW) is
non-singular, where INT is the (NT × NT) identity matrix; (ii) row and columns sums
of W and (INT − ρW)−1, before W is row-normalized, are uniformly bounded in abso-
lute value as N goes to infinity (Kelejian and Prucha, 1998, 1999). For a symmetric W
the first assumption is always satisfied as long as the range of ρ is defined by

(
1

ωmin
, 1
)

,
where ωmin is the smallest real characteristic root of the spatial weight matrix W while the
upper bound equals 1 for row-normalized W. Assumption (ii) limits the cross-sectional
correlation, assuming that, when the distance separating two spatial units increases to
infinity, it converges to zero. In particular, if W is a distance inverse spatial weight ma-
trix, assumption (ii) can be guaranteed imposing a cut-off point d∗ in W so that wij = 0 if
dij > d∗, while assumption (ii) is always satisfied if W is a binary contiguity matrix.

The SDF-STE model nests several existing spatial and non-spatial SF models, as rep-
resented in Figure 3.1. Imposing δ = 0 and θ = 0 our model reduces to the spatial
autoregressive stochastic frontier model for panel data incorporating a model for tech-
nical inefficiency (SARF-TE) proposed by Tsukamoto (2019). If δ = 0 and ϕ = 0 our
model becomes the spatial Durbin stochastic frontier model (SDF) introduced by Glass,
Kenjegalieva, and Sickles (2016). Moreover, if δ = 0, ϕ = 0 and θ = 0 it coincides with
the spatial autoregressive stochastic frontier model (SARF) by Glass, Kenjegalieva, and
Sickles (2016). Imposing δ = 0, ρ = 0 and ϕ = 0 our model becomes the spatial stochastic
frontier model introduced by Adetutu et al. (2015) that only includes the spatial lag of
the exogenous variables (SLXF). Considering non-spatial SF model, if δ = 0, θ = 0 and
ρ = 0 our model reduces to the stochastic frontier production function with a model for
technical inefficiency effects (SF-TE) proposed by Battese and Coelli (1995). Finally, con-
sidering δ = 0, θ = 0, ρ = 0 and ϕ = 0 our model becomes the classical SF model by
Aigner, Lovell, and Schmidt (1977).

Therefore, following an approach similar to Manski (1993) for the general nesting
spatial (GNS) model, our comprehensive model allows for various parametric restric-
tions, enabling a large set of modifications. Indeed, by implementing likelihood ratio
tests and starting from our general specification, it is possible to select the model that best
fits the data. Moreover, while the GNS model usually suffers from overparameterization
issues since the significance levels of the variables included in the model tend to go down
becoming insignificant, we didn’t experience similar problems estimating our spatial SF
specification. Indeed, the GNS model includes the spatial lag of the dependent variable,
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of the explanatory variables and of the error term to capture the average strength of spa-
tial correlation among the errors. Differently, instead of considering the spatial lag of the
error term, our model introduces the spatial lag of the inefficiency determinants related
to the mean of the inefficiency error term. This spatial term does not add computational
complexity since we are simply enlarging the set of exogenous determinants of the inef-
ficiency model with new exogenous variables referring to neighbours. In sum, while the
GNS specification usually does not outperform simpler spatial specifications due to weak
identifiability, the SDF-STE model is not affected by overparameterization since two out
of three spatial lags relate to exogenous local spatial effects in the same fashion as the SLX
model. As an example, the empirical application in Chapter 5 shows that the SDF-STE
model outperforms all simpler nested specifications.

3.1.2 The Likelihood Function

The likelihood function associated with the SDF-STE model can be calculated starting
from the probability density functions of vit and uit. In particular, vit has a normal dis-
tribution with zero mean and variance σ2

v as shown in Eq.(3.5) while uit is distributed as
a truncated normal random variable with mean µit and variance σ2

u as shown in Eq.(3.6),
where Φ represents the cumulative distribution function of the standard normal random
variable.

fv(vit) =
1√

2πσ2
v

exp
(
−

v2
it

2σ2
v

)
(3.5)

fu(uit) =
1√

2πσ2
uΦ
(

µit
σu

) exp
(
− (uit − µit)

2

2σ2
u

)
, uit ⩾ 0 (3.6)

Therefore, the joint probability density function of vit and uit, assuming that vit and
uit are independent, can be calculated as the product of fv(vit) and fu(uit), as shown in
Eq.(3.7).

fuv(uit, vit) =
1

2πσuσvΦ
(

µit
σu

) exp
(
−

v2
it

2σ2
v
− (uit − µit)

2

2σ2
u

)
(3.7)

Substituting vit = ε it + uit in Eq.(3.7), starting from the relationship ε it = vit − uit,
the joint probability density function of ε it and uit can be defined as

fεu(ε it, uit) =
1

2πσuσvΦ
(

µit
σu

) exp
(
− (ε it + uit)

2

2σ2
v

− (uit − µit)
2

2σ2
u

)

=
1

2πσuσvΦ
(

µit
σu

) exp
(
− (uit − µ∗)2

2σ2
∗

−
ε2

it
2σ2

v
−

µ2
it

2σ2
u
+

µ2
∗

2σ2
∗

)
,

(3.8)
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where

µ∗ =
σ2

v µit − σ2
uε it

σ2
v + σ2

u
(3.9)

and

σ2
∗ =

σ2
v σ2

u
σ2

v + σ2
u

. (3.10)

Afterwards, the probability density function of ε it is obtained integrating out uit

from Eq.(3.8), as shown in Eq.(3.11a)-(3.11c).

fε(ε it) =
exp

(
− ε2

it
2σ2

v
− µ2

it
2σ2

u
+ µ2

∗
2σ2

∗

)
√

2π σuσv
σ∗

Φ
(

µit
σu

)
∫ ∞

0

exp(− (uit−µ∗)2

2σ2
∗

)√
2πσ2

∗
duit (3.11a)

=
exp

(
− ε2

it
2σ2

v
− µ2

it
2σ2

u
+ µ2

∗
2σ2

∗

)
√

2π(σ2
u + σ2

v )Φ
(

µit
σu

) Φ
(

µ∗
σ∗

)
(3.11b)

=
exp

(
− (εit+µit)

2

2(σ2
v+σ2

u)

)
√

2π(σ2
u + σ2

v )Φ
(

µit
σu

)Φ
(

µ∗
σ∗

)
(3.11c)

After having reparameterized Eq.(3.11c) following Eq.(3.12)-(3.13), the joint proba-
bility density function of ε can be obtained multiplying all the marginal distributions of
ε it and as shown in Eq.(3.14).

σ2 = σ2
u + σ2

v (3.12)

λ =
σ2

u
σ2

u + σ2
v

(3.13)

fε(ε) =
N

∏
i=1

T

∏
t=1

exp(− (εit+µit)
2

2σ2 )
√

2πσ2Φ
(

µit

σ
√

λ

)Φ

(
(1 − λ)µit − λε it

σ
√

λ(1 − λ)

)
(3.14)

Starting from fε(ε), the probability density function of Yit can be defined as the
product of fε(ε) and of the determinant of the Jacobian of the transformation from ε it to
Yit. Indeed, since ∂ε

∂Y = (INT − ρW), the endogeneity deriving from the inclusion of the
spatial lag of the dependent variable has to be taken into account. Thus, substituting in
Eq.(3.15) the expressions in Eq.(3.16)-(3.17) leads to the likelihood function of the SDF-
STE model.

fY(Y) = |INT − ρW|
N

∏
i=1

T

∏
t=1

exp(− (εit+µit)
2

2σ2 )
√

2πσ2Φ
(

µit

σ
√

λ

)Φ

(
(1 − λ)µit − λε it

σ
√

λ(1 − λ)

)
(3.15)
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µit = Zitϕ +
N

∑
j=1

wijZjtδ (3.16)

ε it = Yit − Xitβ − ρ
N

∑
j=1

wijYjt −
N

∑
j=1

wijXjtθ (3.17)

The final loglikelihood function, with Θ = (β, ρ, θ, ϕ, δ, λ, σ2) assuming that the
panel is balanced, is shown in Eq.(3.18).

L (Θ; y) = log |INT − ρW| − NT
2
(
log σ2 + log 2π

)
− 1

2σ2

N

∑
i=1

T

∑
t=1

(µit + ε it)
2

−
N

∑
i=1

T

∑
t=1

[
log Φ

(
µit

σ
√

λ

)
− log Φ

(
µit (1 − λ)− ε itλ

σ
√

λ (1 − λ)

)] (3.18)

If we take a cost function into consideration the loglikelihood function changes
slightly in a few signs, as represented in Eq.(3.19).

L (Θ; y) = log |INT − ρW| − NT
2
(
log σ2 + log 2π

)
− 1

2σ2

N

∑
i=1

T

∑
t=1

(−µit + ε it)
2

−
N

∑
i=1

T

∑
t=1

[
log Φ

(
µit

σ
√

λ

)
+ log Φ

(
µit (1 − λ)− ε itλ

σ
√

λ (1 − λ)

)] (3.19)

3.1.3 Estimation and First Derivatives

The parameter estimates can be obtained using a numerical maximization algorithm im-
plemented in standard software. Since the parameter space for an autoregressive process
is
(

1
ωmin

, 1
)

, where ωmin is the smallest eigenvalue of W, the autoregressive parameter

ρ should be bounded to the previous interval. Moreover, σ2 should be positive and
0 ≤ λ ≤ 1. Specifically, if λ equals zero the OLS model should be preferred to the SF
function because the variance of the inefficiency term is zero and therefore, the determi-
nants of firms’ efficiency can be included in the frontier function. Conversely, λ increases
until 1 if the inefficiency effects are likely to be highly significant. Finally, to make the
algorithm work better, the first derivatives of the loglikelihood function with respect to
the unknown parameters can be supplied to the program.

Defined mit and sit as

mit = µit(1 − λ)− ε itλ (3.20)

sit = σ
√

λ (1 − λ), (3.21)
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the first derivatives of the loglikelihood function can be calculated as shown in the
following equations.

∂L
∂β

=
T

∑
t=1

N

∑
i=1

 (µit + ε it)

σ2 +
λϕ
(

mit
sit

)
sitΦ

(
mit
sit

)
Xit (3.22)

∂L
∂ρ

= −Ttr
(
(IN − ρW)−1 W

)
+

T

∑
t=1

N

∑
i=1

 (µit + ε it)

σ2 +
λϕ
(

mit
sit

)
sitΦ

(
mit
sit

)
 N

∑
j=1

wijYij (3.23)

∂L
∂θ

=
T

∑
t=1

N

∑
i=1

 (µit + ε it)

σ2 +
λϕ
(

mit
sit

)
sitΦ

(
mit
sit

)
 N

∑
j=1

wijXij (3.24)

∂L
∂ϕ

=
T

∑
t=1

N

∑
i=1

− (µit + ε it)

σ2 −
ϕ
(

µit

σ
√

λ

)
Φ
(

µit

σ
√

λ

)
σ
√

λ
+

ϕ
(

mit
sit

)
(1 − λ)

Φ
(

mit
sit

)
sit

 Zit (3.25)

∂L
∂δ

=
T

∑
t=1

N

∑
i=1

− (µit + ε it)

σ2 −
ϕ
(

µit

σ
√

λ

)
Φ
(

µit

σ
√

λ

)
σ
√

λ
+

ϕ
(

mit
sit

)
(1 − λ)

Φ
(

mit
sit

)
sit

 N

∑
j=1

wijZij (3.26)

∂L
∂σ2 = −NT

2σ2 +
1

2σ2

N

∑
i=1

T

∑
t=1

 (µit + ε it)
2

σ2 +
ϕ
(

µit

σ
√

λ

)
Φ
(

µit

σ
√

λ

) µit

σ
√

λ
−

ϕ
(

mit
sit

)
Φ
(

mit
sit

) mit

sit

 (3.27)

∂L
∂λ

=
T

∑
t=1

N

∑
i=1

 ϕ
(

µit

σ
√

λ

)
Φ
(

µit

σ
√

λ

) µit

2σλ
√

λ
−

ϕ
(

mit
sit

)
Φ
(

mit
sit

) ( (µit + ε it)

sit
+

(1 − 2λ)mit
sit

2(1 − λ)λ

) (3.28)

3.1.4 Technical Efficiency Scores

The technical efficiency scores are defined as the ratio between the mean production Yit

of firm i at time t and the mean production Yit of firm i at time t in the case in which
inefficiency equals zero, as shown in Eq.(3.29). Therefore, technical efficiency scores equal
zero for fully inefficient firms and one for fully efficient firms.

TEit =
E(Yit|ui, Xit, t = 1, 2, ...)

E(Yit|ui = 0, Xit, t = 1, 2, ...)
(3.29)

Following Battese and Coelli (1988), the technical efficiency score of firm i in period
t is defined as TEit = E(exp(−uit)|ε it). Concentrating on the SDF-STE model, technical
efficiency scores can be calculated by substituting the parameter estimates in Eq.(3.30) for
a production function, or in Eq.(3.31) for a cost function.
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TEit = exp

[
−µit (1 − λ) + ε itλ +

1
2

(
σ
√
(1 − λ) λ

)2
]

·


Φ
(

µit(1−λ)−εitλ

σ
√

(1−λ)λ
− σ

√
(1 − λ) λ

)
Φ
(

µit(1−λ)−εitλ

σ
√

(1−λ)λ

)


(3.30)

TEit = exp

[
−µit (1 − λ)− ε itλ +

1
2

(
σ
√
(1 − λ) λ

)2
]

·


Φ
(

µit(1−λ)+εitλ

σ
√

(1−λ)λ
− σ

√
(1 − λ) λ

)
Φ
(

µit(1−λ)+εitλ

σ
√

(1−λ)λ

)


(3.31)

3.1.5 Marginal Effects

As evidenced by Elhorst (2014), in spatial models, the β estimates do not correspond to
the partial derivatives of Y with respect to X when the spatial lag of Y is included in
the model because changes in the generic regressor X of firm i influence the production
output of firm j. Thus, for spatial models including the spatial autoregressive term, the
estimated coefficients cannot be interpreted as elasticities. To show it, we rewrite the
SDF-STE model in matrix notation using the reduced form, as shown in Eq.(3.32).

Y = (INT − ρW)−1(Xβ + WXθ − Zϕ − WZδ − e + v) (3.32)

In particular, Y is a (NT × 1) vector, X is a (NT × k) matrix of inputs, Z is a (NT ×m)

matrix of exogenous determinants of technical inefficiency, W is the (NT × NT) spa-
tial weight matrix, I is a (NT × NT) identity matrix, v is a (NT × 1) random vec-
tor distributed as a multivariate normal random variable with zero mean and vari-
ance Iσ2

v , and e is a (NT × 1) random vector distributed as a multivariate truncated
normal random variable with zero mean and variance Iσ2

u with points of truncation
equal to −Zitϕ − ∑N

j=1 wijZjtδ, so that, eit ≥ −Zitϕ − ∑N
j=1 wijZjtδ. The definition u =

Zϕ + WZδ + e is consistent with specifying the inefficiency term u as a non-negative
truncation of a normal distribution with mean µ = Zϕ + WZδ and variance σ2

u (Battese
and Coelli, 1995). Moreover, β and ϕ are (k × 1) and (m × 1) vectors of unknown pa-
rameters related respectively to the input variables and to the determinants of technical
inefficiency, ρ is the parameter capturing global spatial spillovers, θ is a (k × 1) vector
of parameters capturing local spatial spillovers, and δ is a (m × 1) vector of unknown
parameters measuring spillover effects associated with the determinants of technical in-
efficiency.

The marginal effects of the generic regressor Xr (r = 1, . . . , k) on Y are defined as the
partial derivatives of Y with respect to Xr, as shown in Eq.(3.33).
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∂Y
∂Xr

= (INT − ρW)−1(INT βr + Wθr) (3.33)

LeSage and Pace (2009) proposed to compute the marginal effects of Xr on Y starting
from the matrix resulting from the right-hand side of Eq.(3.33). This matrix, referring for
simplicity of presentation to the generic time period t, is denoted as Sr(W)t and it can be
explicitly shown as in Eq.(3.34), where W is a N × N spatial weight matrix.

Sr(W)t = (IN − ρW)−1


βr · · · w1Nθr
...

. . .
...

wN1θr · · · βr

 (3.34)

Therefore, (i) the direct effect of Xr on Y can be computed as the average of the diag-
onal elements of the matrix resulting from the product on the right-hand side of Eq.(3.33),
(ii) the indirect effect can be found as the average of the sum of the non-diagonal elements
of Sr(W), (iii) the total effect is equal to the sum of the direct and the indirect effects.
Specifically, direct, total and indirect effects can be computed as shown in Eq.(3.35)-(3.36)-
(3.37), respectively, where i is a (NT × 1) vector of ones.

DE =
1

NT
tr(Sr(W)) (3.35)

TE =
1

NT
iTSr(W)i (3.36)

IE = TE − DE (3.37)

In this way, when the model is specified using logarithms, it is possible to interpret
these marginal effects as elasticities, evaluating the total impact of a covariate, the direct
effect and the indirect one, taking spatial spillovers into consideration.

Similarly to the β estimates, also the ϕ estimates of the inefficiency model cannot be
interpreted as elasticities due to the presence of the spatial lag of Y. In particular, given
the unconditional definition of u that considers the frontier feedback effects, u⋆ = (INT −
ρW)−1(Zϕ +WZδ + e), the first derivative of u⋆ with respect to a generic determinant Zr

equals

∂u
∂Zr

= (INT − ρW)−1(INTϕr + Wδr). (3.38)

The product on the right-hand side of Eq.3.38, considering a generic time period t
for simplicity of presentation, is defined as Mr(W)t and takes the following form

Mr(W)t = (IN − ρW)−1


ϕr · · · w1Nδr
...

. . .
...

wN1δr · · · ϕr

 (3.39)
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Therefore, ϕr and δr do not clearly coincide with the direct and indirect effect of the
generic determinant Zr on firms’ inefficiency level and hence, following LeSage and Pace
(2009), (i) the direct effect of Zr on u⋆ can be computed as the average of the diagonal
elements of the matrix on the right-hand side of Eq.(3.38), (ii) the indirect effect can be
computed as the average of the sum of the non-diagonal elements of Mr(W) and (iii) the
total effect is equal to the sum of the direct and indirect effects.

The following issue concerns the estimation of the corresponding standard errors
or t-values, which are needed to establish if the direct, indirect and total effects are sta-
tistically significant. In literature, there are two possible ways to compute the standard
errors of the marginal effects. The first procedure, proposed by LeSage and Pace (2009),
consists in simulating the distribution of the direct, indirect and total effects starting from
the variance-covariance matrix obtained from the maximum likelihood estimates of the
parameters. The variance-covariance matrix can be obtained through the analytical Hes-
sian matrix or it can be approximated by the Hessian matrix resulting from ML numerical
optimization algorithms. The simulation method requires to generate D combinations of
the parameters for d = 1, ..., D as defined in Eq.(3.40), in which the right-hand vector
contains the maximum likelihood estimates of the unknown parameters, P denotes the
upper-triangular Cholesky decomposition of the variance-covariance matrix associated
with the ML estimates, and η denotes a (J × 1) vector containing random draws from a
standard normal distribution, where J equals the number of parameters involved in the
procedure.



βd

ρd

θd

ϕd

δd

σ2
d

λd


= PTη +



β̂

ρ̂

θ̂

ϕ̂

δ̂

σ̂2

λ̂


(3.40)

Afterwards, the direct, indirect and total effects can be computed for every drawn
d with d = 1, ..., D as previously described, and the overall direct, indirect and total
effect can be approximated by calculating the mean values over the D draws. Finally,
the associated standard errors correspond to the standard deviations of the D draws, and
the t-statistics can be found by dividing the mean values of the direct, indirect and total
effects by the corresponding standard deviations.

The second method that can be used to compute the standard errors associated with
the marginal effects consists in using the delta method following Eq.(3.41), as proposed
by Glass, Kenjegalieva, and Sickles (2016). In particular, h represents the vector of the J
unknown parameters involved in the transformation, ĥ is a (J × 1) vector containing the
ML estimates of the parameters of interest, g is a generic function of the parameters (in



51

this case it corresponds to the transformation used to compute the marginal effects), ∂g(ĥ)
represents the (J × 1) vector of first partial derivatives and Σh is the (J × J) variance-
covariance matrix associated with the ML estimates of h.

√
N(g(h)− g(ĥ)) D−→ N (0, ∂g(ĥ)

′
Σh∂g(ĥ)) (3.41)

Starting from (3.41), the standard errors associated with the g transformation can be
found as

SDg(h) =

√
∂g(ĥ)

′
Σh∂g(ĥ) (3.42)

3.2 A Spatial Durbin Stochastic Frontier Model Introducing
Spatial Cross-Sectional Dependence in Both Error Terms

3.2.1 Model Specification

The spatial Durbin stochastic frontier model allowing for spatial cross-sectional depen-
dence both in the inefficiency and in the error term (SDF-CSD model) is specified as in
Eq.(3.43)-(3.47)

Yit = ρ
N

∑
j=1

wijYjt + Xitβ +
N

∑
j=1

wijXjtθ + ṽit − h̃itũt (3.43)

ṽt ∼ MVN (0, Π) (3.44)

Π = σ2
v Mγ MT

γ , Mγ = (IN − γW)−1 (3.45)

h̃it = (IN − τW)−1 hit, hit = f (Zit, ϕ) (3.46)

ũt ∼ N+
(
0, σ2

u
)

(3.47)

where Yit represents the production output (usually expressed in log-form) of firm i
at time t (i = 1, . . . , N and t = 1, . . . , T) and Xit is a 1 × k vector of production inputs used
by firm i at time t with associated parameter vector β (k × 1). In order to take spatial de-
pendence into consideration we include in the frontier function the spatial lag of the de-
pendent variable and the spatial lag of the production inputs, detecting global and local
spatial spillovers through ρ (1× 1) and θ (k× 1), respectively. In particular, wij represents
the generic element of the spatial weight matrix W, built as row-normalized (N × N) ma-
trix. Moreover, the vector ṽt = (ṽ1t, ..., ṽNt) represents the error term distributed as a mul-
tivariate normal random variable with variance-covariance matrix equal to Π accounting
for unobserved but spatially correlated variables thought the inclusion of Mγ, as defined
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in Eq.(3.45). Finally, assuming that the scaling property (Wang and Schmidt, 2002) holds,
the inefficiency error term uit is decomposed as the product of two components: a scaling
function h̃it and a basic distribution ũt. Specifically, h̃it depends on a positive function f of
firm exogenous variables Zit with associated parameter vector ϕ as specified in Eq.(3.46),
and on the spatial lag (IN − τW)−1 capturing spatial dependence in the variables that de-
termine technical efficiency. Therefore, this model allows both the technical inefficiency
error term uit = h̃itũt and the random noise ṽit to be cross-sectionally (spatially) cor-
related. Finally, as represented in Eq.(3.47), ũt is an industry-specific inefficiency term
following a truncated normal distribution with mean 0 and variance σ2

u . Therefore, in-
efficiency depends on an industry-specific error term common to all firms but varying
in time, and on firm-specific exogenous variables affecting also neighbouring producers.
The use of the scaling property in defining the inefficiency error term is fundamental to
obtaining a closed form for the likelihood function. Indeed, considering cross-sectional
dependence in the inefficiency error term generally precludes using standard maximum
likelihood techniques for the estimation of the unknown parameters. However, defining
uit using the scaling property helps in overcoming this issue and allows to estimate the
model using ML algorithms implemented in standard software.

As shown in Eq.(3.43)-(3.47), the main characteristic of the SDF-CSD model concerns
the inclusion of four different spatial lags, allowing to capture four different sources
of spatial dependence. This feature is highly relevant in empirical applications since
each spatial lag relates to a different spatial process. First, the ρ parameter associated
with the endogenous spatial lag of the dependent variable measures global productiv-
ity spillovers. Productivity spillovers may originate from collective behaviours result-
ing from face-to-face relationships, adoption of new similar technologies, exchange of
ideas, learning from others, and the transmission of knowledge and best practices be-
tween peers (Billé, Salvioni, and Benedetti, 2018; Cardamone, 2020; Skevas and Lansink,
2020). Second, input spillovers captured through the θ parameters refer to the possibil-
ity that a greater availability of specific products, input suppliers, assets and workers
with industry-specific skills in a certain area may influence firms’ production processes
(Marshall, 1890). Third, the spatial parameter τ associated with the spatial lag of the in-
efficiency component allows measuring behavioural spatial correlation related to firms’
efficiency. Indeed, emulation behaviours of firms located in neighbouring areas as well
as policies and institutions operating at the local level may affect peers’ efficiency level
(Areal, Balcombe, and Tiffin, 2012). Finally, the γ parameter in the random error struc-
ture captures environmental spatial dependence associated with spatial correlated but
unobserved variables such as soil conditions or climatic, topographic and environmental
characteristics (Schmidt et al., 2009). In sum, differently from previous simpler specifica-
tions, in empirical applications, the SDF-CSD model allows obtaining specific insights on
the different kinds of spatial effects occurring between neighbours.

For the SDF-CSD model specified in Eq.(3.43)-(3.47), the following conditions must
hold: (i) for a symmetric W, the spatial autoregressive parameters ρ, τ and γ must be
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within the range
(

1
ωmin

, 1
)

, where ωmin is the smallest eigenvalue of the spatial weight
matrix W while the upper bound equals 1 if W is row-normalized; (ii) cross-sectional
correlation must converge to zero when the distance separating two spatial units goes
to infinity (Kelejian and Prucha, 1998, 1999). The first condition ensures that (IN − ρW),
(IN − τW) and (IN − γW) are non-singular matrices and the second one guarantees that
the row and the column sums of W, (IN − ρW)−1, (IN − τW)−1 and (IN − γW)−1, before
W is row-normalized, are uniformly bounded in absolute value as N goes to infinity.
In particular, assumption (ii) is always satisfied when W is a binary contiguity spatial
weight matrix while for inverse distance matrices a cut-off point in the distance measure
should be introduced (Elhorst, 2010).

3.2.2 The Likelihood Function

The likelihood function corresponding to the SDF-CSD model can be obtained starting
from the probability density functions of ṽt and ut, where ṽt = (ṽ1t, ..., ṽNt) and ut =

(u1t, ..., uNt). In particular, ṽt follows a multivariate normal distribution with zero mean
and variance-covariance matrix equal to Π, as shown in Eq.(3.48) while the inefficiency
error term ut = h̃tũt is distributed as a truncated normal distribution with zero mean and
variance σ2

u as shown in Eq.(3.49), with h̃t = (h̃1t, ..., h̃Nt).

fṽ(ṽt) = 2π− N
2 |Π|− 1

2 exp
(
−1

2
ṽT

t Π−1ṽt

)
(3.48)

fu(ut) =
h̃t

0.5
√

2πσu
exp

(
− ũ2

t
2σ2

u

)
, ũt ⩾ 0 (3.49)

Assuming that ṽt and ut are independent, the joint probability density function of
ṽt and ut can be easily found as the product of the two preceding marginal distributions,
as shown in Eq.(3.50).

fṽu(ṽtut) =
h̃t(2π)−

N
2 |Π|− 1

2

0.5
√

2πσu
exp

(
−1

2
ṽT

t Π−1ṽt −
ũ2

t
2σ2

u

)
(3.50)

Therefore, the joint probability density function of εt and ut in Eq.(3.51) can be ob-
tained substituting ṽt = εt + ut = εt + h̃tũt in Eq.(3.50).

fεu(εtut) =
h̃t(2π)−

N
2 |Π|− 1

2

0.5
√

2πσu
exp

(
−1

2
(εt + h̃tũt)

TΠ−1(εt + h̃tũt)−
ũ2

t
2σ2

u

)
(3.51)

The probability density function of εt can be found integrating out ũt from Eq.(3.51),
as shown in Eq.(3.52), where Φ represents the cumulative distribution function of the
standard normal random variable and µ∗ and σ2

∗ are defined as in Eq.3.53-3.54.
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fε(εt) =
h̃t(2π)−

N
2 |Π|− 1

2

0.5
√

2πσu
exp

(
−1

2
εT

t Π−1εt

)

·

∫ ∞

0

exp
(
−1

2
εT

t Π−1h̃tũt −
1
2

h̃T
t ũT

t Π−1εt −
1
2

h̃T
t ũT

t Π−1h̃tũt −
ũ2

t
2σ2

u

)
dũt

=
(2π)−

N
2 |Π|− 1

2

0.5σu
exp

(
−1

2
εT

t Π−1εt

)
exp

(
µ2
∗

2σ2
∗

)
σ∗Φ

(
µ∗
σ∗

)
(3.52)

µ∗ =
−εT

t Π−1h̃t

h̃T
t Π−1h̃t +

1
σ2

u

(3.53)

σ2
∗ =

1

h̃T
t Π−1h̃t +

1
σ2

u

. (3.54)

The partial likelihood function, evaluated for each time period t at a time is shown
in Eq.(3.55)-(3.57) and it is equal to the product of the probability density function fε(εt)

and of the determinant of the Jacobian deriving from the transformation from εt to Y.

fY(Y) = |IN − ρW| (2π)−
N
2 |Π|− 1

2

0.5σu
exp

(
−εT

t Π−1εt

2

)
exp

(
µ2
∗

2σ2
∗

)
σ∗Φ

(
µ∗
σ∗

)
(3.55)

εt = (ε1t, ..., εNt) (3.56)

ε it = Yit − Xitβ − ρ
N

∑
j=1

wijYjt −
N

∑
j=1

wijXjtθ (3.57)

The resulting partial loglikelihood function is shown in Eq.(3.58) referring to the
generic time period t. The final loglikelihood function is equal to L(Θ; y) = ∑T

t=1 ℓt.

ℓt = log |IN − ρW| − N
2

log (2π)− 1
2

log |Π| − log(0.5σu)−
1
2

εT
t Π−1εt

+
1
2

(
µ2
∗

σ2
∗

)
+ log

[
σ∗Φ

(
µ∗
σ∗

)] (3.58)

Consistent parameter estimates can be derived by maximising the final loglikeli-
hood function. Since the parameter space for an autoregressive process is ( 1

ωmin
, 1) where

ωmin is the smallest eigenvalue of W, all the autoregressive parameters (ρ, τ, γ) should
be bounded to the previous interval to ensure that (IN − ρW), (IN − τW) and (IN − γW)

are non-singular matrices. Moreover, the two variance parameters σ2
u and σ2

v should only
take positive values. The estimation of spatial autoregressive models involves the com-
putation of the log-determinant resulting from the inclusion of the spatial lag of the de-
pendent variable leading to computationally expensive and time-consuming routines. In-
deed, log |IN − ρW| is the determinant of a large matrix and it needs to be recalculated at
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each iteration of the optimization procedure. One potential solution to speed up the com-
putation of the log-determinant, as suggested by Pace and Barry (1997) is to use a vector
of values for the log-determinant corresponding to different values of ρ calculated before
optimization belonging the interval (1/ωmin, 1), where ωmin is the smallest eigenvalue of
the spatial weight matrix W and the upper bound equals 1 for row-normalized spatial
weight matrices. This involves calculating the vector of log-determinants only once dur-
ing the estimation procedure and the final interpolated value for the log-determinant can
be computed considering a sufficiently fine grid for ρ (for a review on these numerical ap-
proaches see LeSage and Pace (2009)). After having adequately handled the computation
of the log-determinant, the unknown parameters of the SDF-CSD model can be simul-
taneously estimated numerically maximising the loglikelihood function using standard
software.

3.2.3 Technical Efficiency Scores

Following Orea and Alvarez (2019), technical efficiency scores can be found starting from
the Jondrow et al. (1982) estimator as TEit = exp(−E (uit|ε̂ it)), where the conditional
expectation of uit given ε̂ it is shown in Eq.(3.59). Specifically, ϕ represents the probability
density function of a standard normal random variable, h̃it = (IN − τ̂W)−1 f (Z, ϕ̂), µ∗

and σ2
∗ are computed substituting the parameter estimates in Eq.(3.53)-(3.54), and ε it in

Eq.(3.53) is computed as shown in Eq.(3.60).

E (uit|ε̂ it) = h̃itE (ũt|ε̂ it) = h̃it

µ∗ +
σ∗ϕ

(
µ∗
σ∗

)
ϕ
(

µ∗
σ∗

)
 (3.59)

ε̂ it = Yit − Xit β̂ − ρ̂
N

∑
j=1

wijYjt −
N

∑
j=1

wijXjt θ̂ (3.60)

3.2.4 Marginal Effects

As for the SDF-STE model, also for the SDF-CSD model, the β estimates cannot be in-
terpreted as marginal effects because when spatial lag of Y is included in the model,
changes in the generic regressor Xr of firm i also influence the production output of firm
j. To show this, the SDF-CSD model is written in the reduced form in Eq.(3.61), where Y
is a (NT × 1) vector representing firms’ output, X is a (NT × k) matrix containing the k
production inputs with associated parameter vector β (k × 1), W is the NT × NT spatial
weight matrix, I is an NT× NT identity matrix, ṽ is the error term distributed as shown in
Eq.(3.44)-(3.45) and u is the inefficiency error term specified following the scaling prop-
erty as described in the previous section. Moreover, ρ is the autoregressive parameter
capturing global spatial spillovers, θ is the parameter vector (k × 1) associated with input
spillovers, τ, belonging to the spatial structure included in the scaling function, is the pa-
rameter capturing behavioural correlation depending on spillovers effects related to the
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determinants of firms’ inefficiency and γ, embedded in the structure of ṽ, is the spatial
parameter capturing environmental spatial dependence associated with unobserved but
spatially correlated variables.

Y = (INT − ρW)−1(Xβ + WXθ + ṽ − u) (3.61)

Computing the first derivative of Y with respect to the generic regressor Xr leads
to the same expression shown in Eq.(3.33), and therefore, the computation of the direct,
indirect, and total effects of the X variables on Y can be computed as shown in Eq.(3.35)-
(3.36)-(3.37), following the method proposed by LeSage and Pace (2009). The related
standard errors or t-statistics can be computed either through the simulation method
proposed by LeSage and Pace (2009) or using the delta method, as previously described
in paragraph 3.1.5.

In order to compute the marginal effect of a generic Z variable on firms’ inefficiency
level, we consider the unconditional definition of firms’ inefficiency. Indeed, within
our SDF-CSD framework, the expression uit = (IN − τW)−1 f (Zit, ϕ)ũt provides a mea-
sure of uit that is conditional on the frontier feedback effects. Starting from the reduced
form in Eq.(3.61), the unconditional definition of the inefficiency error term is given by
u⋆

it = (IN − ρW)−1uit. Thus, the first derivative of u⋆
it with respect to Z, representing the

marginal effect of Z on u⋆
it, includes the spatial filter (IN − ρW)−1 related to the endoge-

nous spatial lag of Y, as shown in Eq.(3.62a)-(3.62c). However, it should be noted that
both the conditional and the unconditional definition of the inefficiency error term lead
to the same interpretation of ϕ.

∂ log(u∗)

∂Zit
=

∂ log((IN − ρW)−1(IN − τW)−1 exp(Zitϕ)ũt)

∂Zit
(3.62a)

=
∂ log((IN − ρW)−1)

∂Zit
+

∂ log((IN − τW)−1)

∂Zit
+

∂(Zitϕ)

∂Zit
+

∂ log(ũt)

∂Zit
(3.62b)

= ϕ (3.62c)

In particular, we specify f (Zit, ϕ) = exp(Zitϕ) and we apply the logarithm to u∗,
as suggested by Wang and Schmidt (2002), to generate a very simple expression for the
effect of the generic determinant Zr on firm’s inefficiency level. Indeed, the interpretation
of ϕ is straightforward, as it represents the marginal effect of Zr on the logarithm of the
level of technical inefficiency of firms.
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Chapter 4

Monte Carlo Simulations

4.1 SDF-STE Model

To verify the final sample properties of the first new spatial estimator, we run some Monte
Carlo experiments after having simulated NT data. In particular, we defined the input
variable X and the determinant of technical inefficiency Z as (NT × 1) standard normal
random vectors; W as a (NT × NT) block diagonal and row normalized spatial weight
matrix; the error term v as a (NT× 1) normal random vector with zero mean and variance
σ2

v and the error term e as a (NT × 1) truncated normal random vector with zero mean
and variance σ2

u with point of truncation equal to −Zitϕ − ∑N
j=1 wijZjtδ, so that, eit ≥

−Zitϕ − ∑N
j=1 wijZjtδ for i = 1, . . . , N and t = 1, . . . , T. Therefore, using a production

function approach, the dependent variable vector Y (NT × 1) is defined as

Y = (INT − ρW)−1(Xβ + WXθ + v − Zϕ − WZδ − e). (4.1)

To evaluate the impact of different choices on the estimation bias, the standard de-
viation (SD) and the mean squared error (MSE), three blocks of simulations were per-
formed. In particular, in the first block of simulations, we evaluated how considering
different values for N and T (N = 100, 200, 300 and T = 5, 10, 15) differently impact
the final sample properties of the estimated parameters. In this first block of simula-
tions, the true values of the parameters are fixed at {β = 0.50, ρ = 0.30, θ = 0.30, ϕ =

0.50, δ = 0.50, σ2
v = 0.10, σ2

u = 0.10}. Therefore, following the reparameterization shown
in Eq.(3.12)-(3.13) in Chapter 3, σ2 = 0.20 and λ = 0.50. Conversely, in the second block
of simulations, the true values of the parameters vary one by one along the different tri-
als considering three different true values (0.15,0.65, and 0.90), while N and T are fixed
at N = 100 and T = 10. All the simulations are performed using 1000 repetitions. In
these first two blocks of simulations, the spatial weight matrix W is defined as a binary
contiguity spatial weight matrix. Finally, in the third block of simulations, we consid-
ered different kinds of spatial weight matrices keeping N and T constants at N = 300
and T = 5 as well as the true values of the parameters. In particular, we took different
kinds of inverse distance spatial weight matrices into consideration, as inverse distance
truncated W and inverse distance W considering only the n nearest neighbours (further
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details are described below). The results of the three blocks of simulations, considering a
production frontier, are shown in Table 4.1 for different values of N and T, in Table 4.2for
different true values of the parameters, and in Table 4.3 for different choices of the spatial
weight matrix W.

The results of the first block of simulations in Table 4.1 show that the bias of all the
parameters is negligible, even considering small values for N and T such as T = 5 and
N = 100. Nevertheless, the bias reduces more and more as N and T increase, quickly
approaching zero. Likewise, also the SD and the MSE tend to decrease increasing the nu-
merosity of N and T and in particular, considering more time periods helps in obtaining
a faster reduction of the bias and of the MSE. All these features can also be observed in
Figure 4.1 which shows the results of the first block of simulations for different values of
N, with T fixed at T = 5 using some boxplots. In particular, the median estimate (red
continuous line) always approaches the true value of the parameters (green dotted line)
for θ, ϕ, δ and λ, while increasing N helps in obtaining a more accurate estimate of β, ρ

and σ2. Moreover, it is fundamental to consider a sufficiency high numerosity because
the box length (i.e. the interquartile range) reduces considerably as N increases and also
the occurrence of outliers decreases. Therefore, even if the parameter estimates are any-
how very near or equal to the true values, considering a sufficiently large sample is very
important to increase the efficiency of the estimates.

Table 4.2, collecting the results for the second block of simulations, shows that the
estimates are robust to different changes in the true value of one parameter at a time,
keeping all the others constant, even for a small numerosity (T = 5 and N = 100). Indeed,
the bias is always very near zero while the SD and the MSE remain fairly constant in all
the simulations belonging to this second block.

Finally, Table 4.3 shows the results of the simulations considering different kinds of
spatial weight matrices. If in the previous simulations a binary contiguity spatial weight
matrix was taken into consideration, here W indicates an inverse distance spatial weight
matrix, W50 and W30 indicate two inverse distance spatial weight matrices truncated
at 50 and 30km, respectively, and W250n, W100n and W50n stand for three inverse dis-
tance spatial weight matrices considering only the 250, 100, and 50 nearest neighbours,
respectively. All these spatial weight matrices are row standardized and they have been
created starting from a random sub-sample of 300 observations belonging to the North-
West macro-area from the AIDA sample used in the application discussed in Chapter 5.
Moreover, for all these simulations T is fixed at 5 and the number of replications is equal
to 1000 as in the previous cases.

The results show that the parameters that do not depend on the spatial weight ma-
trix W (β, ϕ, and the two variances σ2 and λ) are not affected by changes in the spatial
weight matrix. On the contrary, in most cases, the bias, the SD and the MSE of ρ, θ and
δ (i.e. the parameters that depend on the spatial weight matrix) tend to decrease as the
number of neighbours diminishes, considering the same typology of W. Moreover, for
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N = 300, the binary contiguity spatial weight matrix used in the results of the previ-
ous simulation is the one that minimizes the bias of ρ, θ and δ, compared to the other
specifications of W. However, the estimated parameters are still unbiased even consider-
ing different kinds of spatial weight matrices. Therefore, the choice of W has very little
impact on the final sample properties of the estimated parameters of the SDF-STE model.
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TABLE 4.1: SDF-STE Model: Monte Carlo Simulation Results
For different values of N and T

T=5 N=100 N=200 N=300

Bias SD MSE Bias SD MSE Bias SD MSE

β 0.0011 0.0180 3.06e-04 0.0001 0.0123 1.55e-04 0.0004 0.0104 0.0001

ρ -0.0013 0.0425 0.0017 -0.0002 0.0296 9.36e-04 -0.0010 0.0257 0.0007

θ 0.0008 0.0371 0.0013 0.0006 0.0251 7.36e-04 0.0007 0.0231 0.0006

ϕ 0.0004 0.0349 0.0012 -0.0002 0.0246 5.70e-04 -0.0005 0.0190 0.0004

δ 0.0007 0.0576 0.0032 0.0020 0.0445 0.0021 0.0011 0.0373 0.0014

σ2 -0.0023 0.0162 2.83e-04 -0.0001 0.0129 1.57e-04 -0.0002 0.0097 0.0001

λ -0.0007 0.0656 0.0045 0.0022 0.0489 0.0025 -0.0001 0.0393 0.0017

T=10 N=100 N=200 N=300

Bias SD MSE Bias SD MSE Bias SD MSE

β 0.0005 0.0126 0.0002 0.0010 0.0090 0.0001 -9.15e-05 0.0072 5.37e-05

ρ -0.0008 0.0289 0.0009 -0.0015 0.0213 0.0005 -4.62e-04 0.0182 3.20e-04

θ -4.10e-05 0.0251 0.0006 0.0011 0.0184 0.0004 1.62e-04 0.0159 2.42e-04

ϕ 0.0014 0.0246 0.0006 0.0010 0.0167 0.0003 4.71e-04 0.0134 1.79e-04

δ -0.0009 0.045 0.0022 0.0011 0.0332 0.0011 6.11e-04 0.0257 6.48e-04

σ2 -0.0003 0.0120 0.0001 -0.0003 0.0090 0.0001 -1.52e-04 0.0068 5.06e-05

λ 0.0015 0.0443 0.0020 0.0009 0.0345 0.0012 3.06e-04 0.0276 7.92e-04

T=15 N=100 N=200 N=300

Bias SD MSE Bias SD MSE Bias SD MSE

β 0.0004 0.0101 0.0001 -0.0010 0.0071 5.18e-05 2.30e-04 0.0070 3.39e-05

ρ -0.0010 0.0233 0.0007 -0.0011 0.0183 3.28e-04 1.33e-04 0.0185 2.45e-04

θ 0.0007 0.0204 0.0006 0.0012 0.0165 2.76e-04 -3.37e-04 0.0160 1.78e-04

ϕ -0.0005 0.0199 0.0004 0.0008 0.0134 1.88e-04 -2.42e-04 0.0137 1.28e-04

δ 0.0011 0.0367 0.0014 0.0020 0.0263 7.13e-04 -9.41e-04 0.0281 5.19e-04

σ2 -0.0002 0.0098 0.0001 4.81e-05 0.0072 5.30e-05 -5.67e-04 0.0067 3.29e-05

λ -0.0001 0.0354 0.0017 0.0016 0.0309 6.25e-04 -7.17e-04 0.0309 5.13e-04
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FIGURE 4.1: SDF-STE Model: Boxplots (T=5)
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TABLE 4.2: SDF-STE Model: Monte Carlo Simulation Results
For different values of the parameters (T=10, N=100)

β 0.15 0.65 0.90

Bias SD MSE Bias SD MSE Bias SD MSE

β -0.0001 0.0120 0.0002 0.0005 0.0127 0.0002 0.0004 0.0125 0.0001

ρ 0.0007 0.0302 0.0010 -0.0008 0.0286 0.0009 -0.0024 0.0314 0.0010

θ 0.0005 0.0211 0.0005 0.0001 0.0282 0.0008 0.0016 0.0375 0.0014

ϕ 0.0002 0.0253 0.0006 0.0014 0.0246 0.0006 0.0006 0.0265 0.0006

δ -0.0020 0.0451 0.0020 -0.0009 0.0449 0.0022 0.0033 0.0531 0.0026

σ2 -0.0012 0.0120 0.0001 -0.0003 0.0119 0.0001 -1.83e-05 0.0132 0.0001

λ -0.0025 0.0466 0.0024 0.0015 0.0440 0.0020 0.0018 0.0425 0.0025

ρ 0.15 0.65 0.90

Bias SD MSE Bias SD MSE Bias SD MSE

β -0.0004 0.0119 0.0001 0.0001 0.0125 0.0001 -1.76e-04 0.0120 0.0001

ρ -0.0014 0.0338 0.0011 -0.0011 0.0185 0.0004 -1.95e-04 0.0066 3.85e-05

θ 0.0016 0.0273 0.0007 0.0009 0.0247 0.0006 2.34e-04 0.0240 0.0006

ϕ 0.0009 0.0233 0.0005 -0.0009 0.0245 0.0006 1.93e-04 0.0246 0.0006

δ -0.0021 0.0453 0.0020 0.0033 0.0473 0.0020 2.59e-05 0.0453 0.0018

σ2 -0.0009 0.0118 0.0001 -0.0001 0.0149 0.0002 -2.52e-04 0.0166 0.0002

λ -0.0009 0.0461 0.0022 0.0022 0.0515 0.0029 -9.13e-04 0.0614 0.0039

θ 0.15 0.65 0.90

Bias SD MSE Bias SD MSE Bias SD MSE

β -0.0003 0.0123 0.0002 0.0001 0.0126 0.0001 0.0004 0.0135 0.0002

ρ -0.0009 0.0338 0.0011 -3.09e-05 0.0297 0.0009 -0.0016 0.0259 0.0006

θ 0.0001 0.0296 0.0009 -0.0001 0.0278 0.0009 0.0010 0.0275 0.0007

ϕ -0.0012 0.0232 0.0006 -0.0002 0.0233 0.0006 0.0005 0.0231 0.0006

δ 0.0014 0.0507 0.0029 0.0011 0.0469 0.0025 0.0014 0.0433 0.0020

σ2 -0.0002 0.0112 0.0001 -0.0012 0.0113 0.0001 -0.0008 0.0116 0.0001

λ 0.0007 0.0541 0.0026 -0.0009 0.0474 0.0022 0.0015 0.0485 0.0022

ϕ 0.15 0.65 0.90

Bias SD MSE Bias SD MSE Bias SD MSE

β 0.0006 0.0121 0.0001 -0.0003 0.0127 0.0002 0.0005 0.0136 0.0002

ρ 0.0008 0.0364 0.0011 -0.0001 0.0295 0.0009 -0.0001 0.0234 0.0006

θ 0.0007 0.0299 0.0008 0.0002 0.0271 0.0007 -0.0004 0.0246 0.0006

ϕ 0.0001 0.0273 0.0006 -0.0009 0.0243 0.0006 0.0016 0.0293 0.0009

δ 0.0005 0.0439 0.002 0.0008 0.0502 0.0028 -0.0016 0.0526 0.0031

σ2 -0.0015 0.0139 0.0001 -0.0011 0.0123 0.0002 -0.0006 0.0189 0.0004

λ -0.0042 0.0509 0.0024 -0.0008 0.0503 0.0024 0.0004 0.0352 0.0014



63

Table 4.2– continued from previous page

δ 0.15 0.65 0.90

Bias SD MSE Bias SD MSE Bias SD MSE

β -2.93e-05 0.0124 0.0001 -3.21e-05 0.0138 0.0002 0.0004 0.0134 0.0002

ρ 9.77e-05 0.0311 0.0009 0.0009 0.0269 0.0007 -0.0001 0.0265 0.0008

θ 5.69e-04 0.0277 0.0007 -0.0017 0.0293 0.0008 -0.0006 0.0251 0.0007

ϕ -5.83e-05 0.0245 0.0005 -0.0015 0.0292 0.0008 0.0015 0.0305 0.0010

δ 4.98e-04 0.0457 0.0019 0.0004 0.0542 0.0027 -0.0012 0.0524 0.0028

σ2 -7.56e-04 0.0136 0.0002 -0.0011 0.0191 0.0004 -0.0005 0.0181 0.0003

λ 9.08e-05 0.0457 0.0025 -0.0012 0.0378 0.0015 0.0005 0.0339 0.0013

σ2
v, σ2

u 0.80, 0.10 0.10, 0.80 0.11, 0.09

Bias SD MSE Bias SD MSE Bias SD MSE

β 0.0006 0.0302 0.0009 -0.0001 0.0173 0.0003 -0.0003 0.0124 0.0001

ρ -0.0016 0.0360 0.0014 0.0003 0.0233 0.0006 -0.0016 0.0317 0.0009

θ -0.0002 0.0511 0.0026 0.0015 0.0325 0.0010 0.0017 0.0279 0.0007

ϕ 0.0014 0.0501 0.0027 0.0015 0.0506 0.0024 0.0010 0.0237 0.0005

δ -0.0020 0.0930 0.0095 -0.0061 0.0925 0.0080 -0.0018 0.0456 0.0020

σ2 -0.0032 0.0428 0.0019 -0.0048 0.0552 0.0030 -0.0008 0.0122 0.0002

λ 0.0022 0.0343 0.0011 -0.0005 0.0161 0.0003 -0.0007 0.0495 0.0025
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TABLE 4.3: SDF-STE Model: Monte Carlo Simulation Results
Sensitivity to the choice of W

N=300, T=5 W W50 W30

Bias SD MSE Bias SD MSE Bias SD MSE

β 0.0007 0.0096 0.0001 0.0008 0.0098 0.0001 0.0008 0.0098 0.0001

ρ -0.0091 0.0492 0.0026 -0.0056 0.0306 0.0010 -0.0037 0.0256 0.0007

θ 0.0052 0.0534 0.0030 0.0043 0.0354 0.0013 0.0029 0.0299 0.0009

ϕ 0.0002 0.0210 0.0004 0.0002 0.0204 0.0004 0.0002 0.0205 0.0004

δ 0.0055 0.0878 0.0071 0.0045 0.0522 0.0027 0.0047 0.0439 0.0018

σ2 0.0011 0.0138 0.0002 0.0002 0.0102 0.0001 -0.0003 0.0095 0.0001

λ 0.0069 0.0564 0.0034 0.0040 0.0429 0.0018 0.0017 0.0381 0.0015

N=300, T=5 W250n W100n W50n

Bias SD MSE Bias SD MSE Bias SD MSE

β 0.0002 0.0095 0.0001 0.0002 0.0096 0.0001 0.0002 0.0096 0.0001

ρ -0.0031 0.0478 0.0026 -0.0020 0.0427 0.0020 -0.0016 0.0380 0.0015

θ -0.0005 0.0512 0.0027 -0.0010 0.0457 0.0021 -0.0010 0.0411 0.0017

ϕ -0.0012 0.0216 0.0004 -0.0012 0.0215 0.0004 -0.0012 0.0213 0.0004

δ -0.0032 0.0928 0.0083 -0.0028 0.0775 0.0059 -0.0021 0.0661 0.0044

σ2 0.0004 0.0129 0.0002 0.0001 0.0120 0.0001 -0.0001 0.0114 0.0001

λ 0.0021 0.0516 0.0033 0.0013 0.0480 0.0027 0.0011 0.0448 0.0023
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4.2 SDF-CSD Model

In order to test the finite sample properties of the SDF-CSD model we implemented some
simulation studies generating NT data. In particular, we defined for each time period t
with t = 1, . . . , T: the input variable X as a (N × 1) standard normal random vector; the
exogenous variable Z that explains technical inefficiency as a (N × 1) standard normal
random vector; h as an exponential function of the exogenous variable Z with associated
coefficient ϕ, and W as a (N × N) row-normalized spatial weight matrix. Moreover, we
specified v as a multivariate normal random vector (N × 1) with zero mean and variance-
covariance matrix equal to Π, as shown in Eq.(4.2)-(4.3).

v ∼ MVN(0, Π) (4.2)

Π = σ2
v (IN − γW)−1((IN − γW)−1)

T
(4.3)

The inefficiency error term ũ, common to all firms but varying in time, is generated
as a random value drawn from a truncated normal distribution with zero mean and vari-
ance σ2

u . Therefore, following the scaling property, the complete inefficiency error term
u (N × 1) accounting for cross-sectional dependence, is equal to the product of ũ, of the
positive function of firms’ exogenous variable h, and of the spatial filter (IN − τW)−1, as
shown in Eq.(4.4).

u = (IN − τW)−1 hũ = (IN − τW)−1 exp(Zϕ)ũ (4.4)

The dependent variable Y, for each time period t (t = 1, ..., T), is generated as an
(N × 1) vector, as

Y = (IN − ρW)−1(Xβ + WXθ + v − u). (4.5)

As for the SDF-STE model, if we consider a cost function instead of a production
approach, Y should be generated by summing u in the frontier function instead of sub-
tracting it. As before, also in this case we implemented three blocks of simulations fol-
lowing a production function approach. In particular, in the first block of simulations,
we let N and T vary across different values (N = 100, 200, 300 and T = 5, 10, 15), keeping
the true values of the parameters constant, while in the second one we consider differ-
ent true values for the parameters (0.15,0.65, and 0.90) with N and T fixed at N = 100
and T = 10. Finally, in the third block of simulations, we evaluate whether considering
different spatial weight matrices affects the final sample properties of the estimated pa-
rameters. In particular, in the first two blocks of simulations, W has been defined as a
binary contiguity spatial weight matrix, while in the third block of simulations, also in-
verse distance spatial weight matrices with different truncation criteria have been taken
into consideration, keeping the true values of the parameters and N and T constant. In



Chapter 4 - SDF-CSD Model

the first and third blocks of simulations, the true values of the parameters are fixed at
{β = 0.50, ρ = 0.30, θ = 0.30, ϕ = 0.50, τ = 0.30, γ = 0.30, σ2

u = 0.10, σ2
v = 0.20}.

All the simulations are performed using 1000 repetitions. Table 4.4 shows the results of
the Monte Carlo experiment for different values of N and T, Table 4.5 shows how the
final sample properties of estimated parameters are affected by changes in one true value
of the parameters at the time, keeping N and T constant, while Table 4.7 takes differ-
ent kinds of spatial weight matrices into consideration with T and N fixed at 5 and 300,
respectively.

The results in Table 4.4 show that β, θ, γ, σ2
u and σ2

v are estimated correctly even with
a very small numerosity of N and T while the estimation of the other parameters (ρ, ϕ, τ)
improves increasing N or considering more time periods. In particular, ρ, ϕ and τ tend
to be slightly underestimated with a very small N and T = 5 but overall, the bias of all
parameters approaches zero considering sufficiently high values for N and T. Likewise,
the SD and the MSE quickly tend to decrease as the numerosity of the sample increases.
These features can also be observed in Figure 4.2 fixing T = 5. Indeed, the median
estimate always approaches the true value of the parameter (green dotted line) for β

and τ. For ρ, θ, ϕ and γ the bias decreases as N increases while for the two variance
parameters, σ2

u and σ2
v , the median estimates slightly underestimate the true values of

the parameters. Moreover, increasing N also helps in reducing the interquartile range
(i.e. the variability) and thus, in increasing the estimation’s efficiency. Finally, also the
number of outliers decreases for sufficiently high values of N, in particular considering
ϕ, τ and σ2

v .

Table 4.5 shows how the results of the simulations change considering different true
values for the parameters, fixing N = 100 and T = 10. The results indicate that the esti-
mates are robust to different choices of the true values of β, ρ, θ and τ, even considering
N = 100. Indeed, the bias is always very near zero and the SD and the MSE are quite
stable across the different trials. On the contrary, if ϕ = 0.15, τ is underestimated (the bias
is −0.0245); if γ = 0.65, τ and γ are underestimated (the bias are −0.0581 and −0.0218,
respectively), and if γ = 0.90, ρ is overestimated (the bias is 0.0228) while τ is under-
estimated (the bias is −0.0413). Moreover, some problems can be detected by changing
the true values of the two variance parameters. In particular, σ2

u tend to be underesti-
mated (the bias are −0.0359 and −0.0316) in the first and in the third trial (σ2

u = 0.80
and σ2

v = 0.10; σ2
u = 0.50 and σ2

v = 0.50), while in the second simulation (σ2
u = 0.10 and

σ2
v = 0.80) ϕ is overestimated and γ is underestimated (the bias are 0.0282 and −0.0382).

Moreover, also the SD and the MSE associated with the biased parameter show quite high
values, indicating that we also have problems with the estimation’s efficiency. Therefore,
we repeated this second block of simulations considering a higher sample numerosity
(N = 300).

Table 4.6 shows that increasing the sample numerosity and thus considering N =

300, helps in obtaining less biased and more efficient estimates of the parameters. Indeed,
in all trials, the bias decreases and the SD is about half of the SD detected with N = 100. In
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particular, for ϕ = 0.15 the bias of τ decreases from −0.0245 to −0.0131, for γ = 0.65 the
bias of τ and γ decreases from −0.0581 and −0.0218 to −0.0130 and −0.0090, respectively,
while for γ = 0.90 the bias of ρ and τ reduces from 0.0228 and −0.0413 to 0.0082 and
−0.0114, respectively. Finally, considering the two variances, for σ2

u = 0.80 and σ2
v = 0.10,

the bias of σ2
u decreases from −0.0359 to −0.0153, for σ2

u = 0.10 and σ2
v = 0.80, the bias of

ϕ and τ reduces from 0.0282 and −0.0382 to 0.0113 and −0.0072, respectively, while for
σ2

u = 0.50 and σ2
v = 0.50, the bias of σ2

u from −0.0316 reaches the value of −0.0168 with
N = 300. Therefore, considering a sufficiently high sample numerosity is fundamental
to obtaining unbiased and more efficient estimates.

Finally, Table 4.7 shows the results of the simulations considering different kinds of
spatial weight matrices. Differently from the previous simulations taking a binary con-
tiguity spatial weight matrix into consideration, here, in the first sub-table of Table 4.7,
the spatial weight matrix is defined as a dense inverse distance or as a truncated inverse
distance matrix while in the second sub-table, the spatial weight matrix is an inverse dis-
tance matrix taking only the n nearest neighbours into consideration. In particular, W
indicates a dense inverse distance spatial weight matrix, W50 and W30 indicate two in-
verse distance spatial weight matrices truncated at 50 and 30 kilometres, respectively, and
W250n, W100n and W50n stand for three inverse distance spatial weight matrices consid-
ering only the 250, 100, and 50 nearest neighbours, respectively. As in the previous case,
all these spatial weight matrices have been created starting from a random sub-sample
of 300 observations belonging to the macro-area North-West of the AIDA sample used in
the application discussed in Chapter 5. Moreover, all these spatial weight matrices are
symmetric and row standardized, while T is fixed at 5 and the number of replications is
equal to 1000.

The results shown in Table 4.7 indicate that the bias of β, ρ, θ, ϕ and of the two vari-
ance parameters σ2

u and σ2
v is not affected by the choice of a dense inverse distance spatial

weight matrix or of an inverse distance truncated W. Conversely, τ and γ tend to be un-
derestimated if a large number of neighbours is taken into consideration. Indeed, the
bias of τ and γ is equal to −0.0661 and −0.0206 choosing a dense W, while it decreases to
−0.0172 and −0.0079 truncating W at 30 kilometres. Moreover, also the standard devia-
tions associated with these two parameters tend to be quite high considering a dense W
but they tend to decrease for W50 and W30. Similarly, τ and γ tend to be underestimated
when W is defined as an inverse distance spatial weight matrix considering the n nearest
neighbours and the number of neighbours is high, but the bias decreases for decreasing
n. Indeed, using W250n the bias associated with τ and γ is equal to −0.0545 and −0.0131
respectively, but it reduces to −0.0283 and −0.0034 for W50n. Thus, to obtain unbiased
and more efficient estimates for the unknown parameters using the SDF-CSD model it is
better to consider a binary contiguity spatial weight matrix or an inverse distance trun-
cated W. This issue has already been addressed by Mizruchi and Neuman (2008) that
suggested to prefer sparse spatial weight matrices when using spatial models. Indeed, in
accordance with our simulation results, they demonstrated that dense inverse distance
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matrices are likely to produce negatively biased parameter estimates and that this bias
becomes more severe at higher levels of network density. Moreover, as demonstrated
by the Monte Carlo simulations carried out by Elhorst (2010) to test the consistency of
the estimated parameters for the Manski model, estimating a model with spatial effects
among the dependent variable, the independent variables and the disturbance terms can
lead to inconsistent parameter estimates since the endogenous and the exogenous inter-
actions are hardly distinguishable from each other. Generally, the solution adopted in
empirical applications consists in simplifying the model by removing one of the three
spatial effects. Alternatively, it can be assumed that the spatial weight matrix W is not
identical among the different spatial terms. Therefore, we also try to consider separate
neighbourhood matrices to evaluate if the bias detected tends to diminish.

In the SDF-CSD model four different kinds of spatial effects are taken into consid-
eration: global spatial spillovers, local spatial spillovers, spatial dependence in the in-
efficiency term and spatial dependence in the error term, respectively captured by the
parameters ρ, θ, τ, and γ. Therefore, to test whether the bias of τ and γ reduces con-
sidering two different kinds of spatial weight matrices simultaneously, we consider all
the possible combinations of W and W0 associated with the four kinds of spatial effects
described above. As in the previous simulations, W represents a dense inverse distance
spatial weight matrix and W0 is a binary continuity spatial weight matrix. The results in
Table 4.8 indicate that considering two different kinds of spatial weight matrices is suf-
ficient to cut off the bias of γ, regardless of the combination of W and W0 chosen across
the four spatial effects. Conversely, to obtain an unbiased estimate of τ it is necessary
to consider a limited number of neighbours. Indeed, when a binary contiguity spatial
weight matrix is used to capture spatial dependence in the inefficiency term, the bias of
τ approaches zero, while if a dense W is taken into consideration, the bias of τ can reach
a value up to −0.0313. Nevertheless, it should be noticed that −0.0313 is half of the bias
detected in the simulation using a dense inverse distance spatial weight matrix for all
four spatial effects (−0.0661). Therefore, using different spatial weight matrices to dif-
ferentiate among the different kinds of spatial effects considered in the model is anyhow
beneficial. However, to obtain perfectly unbiased results it is necessary to associate to
τ a sparse spatial weight matrix, as a binary contiguity or an inverse distance truncated
spatial weight matrix. Moreover, considering two different kinds of spatial weight ma-
trices for the different spatial effects also helps in reducing the standard deviation of the
estimated parameters and the MSE. In conclusion, the only limitation in estimating the
SDF-CSD model without bias is to necessarily assume that the spillover effects associ-
ated with the inefficiency error term result from closest neighbours. Indeed, considering
a sparse spatial weight matrix for this spatial effect ensures unbiased estimates for all the
four spatial parameters included in the SDF-CSD model. This limitation should not be
considered too restrictive because spatial dependence influencing neighbouring firms’
efficiency level mainly arises from local factors such as local cooperation, face-to-face
interactions, and individual contact (Griliches, 1992). Indeed, geographic proximity is
fundamental for interaction, cooperation and for the transmission of new knowledge.
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TABLE 4.4: SDF-CSD Model: Monte Carlo Simulation Results
For different values of N and T

T=5 N=100 N=200 N=300

Bias SD MSE Bias SD MSE Bias SD MSE

β 0.0009 0.025 0.0007 0.0005 0.0197 0.0004 0.0005 0.0143 0.0003

ρ -0.0130 0.1390 0.0216 -0.0023 0.1145 0.0149 -0.0085 0.0769 0.0114

θ 0.0065 0.0747 0.0067 -0.0009 0.0604 0.0045 0.0035 0.0455 0.0034

ϕ 0.0119 0.1077 0.0127 0.0070 0.0691 0.0072 0.0127 0.0724 0.0054

τ -0.0173 0.2059 0.0494 -0.0158 0.1443 0.0287 0.0002 0.1468 0.0199

γ 0.0047 0.1534 0.0245 -0.0037 0.1108 0.0161 0.0052 0.0813 0.0127

σ2
u 0.0022 0.0370 0.0054 0.0044 0.0568 0.0052 -0.0001 0.0540 0.0048

σ2
v -0.0048 0.0128 0.0002 -0.0028 0.0094 0.0001 -0.0017 0.0075 0.0001

T=10 N=100 N=200 N=300

Bias SD MSE Bias SD MSE Bias SD MSE

β -0.0005 0.0174 0.0004 -0.0005 0.0133 0.0002 0.0003 0.0115 0.0001

ρ -0.0044 0.0956 0.0157 -0.0008 0.0766 0.0073 -0.0043 0.0678 0.0054

θ 0.0005 0.0527 0.0045 -0.0011 0.0425 0.0022 0.0019 0.0373 0.0017

ϕ 0.0097 0.0573 0.0048 0.0027 0.0339 0.0019 0.0026 0.0373 0.0015

τ -0.0092 0.0915 0.0254 -0.0094 0.0877 0.0123 -0.0015 0.0882 0.0092

γ -0.0017 0.0966 0.0170 -0.0030 0.0780 0.0081 0.0021 0.0702 0.0061

σ2
u 0.0014 0.0442 0.0029 0.0021 0.0755 0.0024 -0.0002 0.0502 0.0023

σ2
v -0.0027 0.0093 0.0001 -0.0013 0.0066 4.25e-05 -0.0009 0.0053 2.88e-05

T=15 N=100 N=200 N=300

Bias SD MSE Bias SD MSE Bias SD MSE

β -0.0004 0.0161 0.0003 -0.0002 0.0119 0.0001 2.66e-05 0.0094 0.0001

ρ -0.0043 0.0846 0.0085 0.0060 0.0724 0.0053 -0.0004 0.0577 0.0033

θ 0.0016 0.0515 0.0027 -0.0035 0.0386 0.0016 -0.0004 0.0332 0.0010

ϕ 0.0083 0.0758 0.0026 0.0055 0.0307 0.0013 -0.0030 0.038 0.0008

τ -0.0001 0.1422 0.0141 -0.0051 0.0883 0.0082 -0.0103 0.0874 0.0053

γ 0.0004 0.0998 0.0095 -0.0087 0.0742 0.0058 -0.0023 0.0631 0.0037

σ2
u -0.0020 0.0159 0.0019 -0.0011 0.0374 0.0016 -0.0004 0.0298 0.0015

σ2
v -0.0019 0.0078 0.0001 -0.0008 0.0055 3.06e-05 -0.0004 0.0044 1.69e-05



Chapter 4 - SDF-CSD Model

N=100 N=200 N=300

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

N=100 N=200 N=300
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N=100 N=200 N=300

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N=100 N=200 N=300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N=100 N=200 N=300

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

N=100 N=200 N=300
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N=100 N=200 N=300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
u
2

N=100 N=200 N=300

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

v
2

FIGURE 4.2: SDF-CSD Model: Boxplots (T=5)
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TABLE 4.5: SDF-CSD Model: Monte Carlo Simulations Results
For different values of the parameters (T=10, N=100)

β 0.15 0.65 0.90

Bias SD MSE Bias SD MSE Bias SD MSE

β -0.0002 0.0196 0.0004 -0.0003 0.0187 0.0004 -0.0001 0.0208 0.0005

ρ -0.0065 0.1161 0.0174 0.0014 0.0883 0.0112 -0.0037 0.0821 0.0076

θ -0.0010 0.0313 0.0011 -0.0031 0.0683 0.0057 0.0018 0.0804 0.0070

ϕ 0.0127 0.0570 0.0061 0.0094 0.0688 0.0050 0.0100 0.0572 0.0060

τ -0.0076 0.1758 0.0300 -0.0126 0.1445 0.0213 -0.0029 0.1372 0.0208

γ 0.0003 0.1295 0.0175 -0.0068 0.1043 0.0129 0.0011 0.0937 0.0084

σ2
u -0.0045 0.0578 0.0027 -0.0014 0.0481 0.0028 -0.0028 0.0589 0.0028

σ2
v -0.0033 0.0093 0.0001 -0.0024 0.0093 0.0001 -0.0022 0.0090 0.0001

ρ 0.15 0.65 0.90

Bias SD MSE Bias SD MSE Bias SD MSE

β -0.0015 0.0209 0.0004 0.0012 0.0187 0.0004 0.0011 0.0165 0.0003

ρ 0.0071 0.1292 0.0163 -0.0089 0.0466 0.0033 -0.0045 0.0150 0.0004

θ -0.0054 0.0692 0.0045 0.0044 0.0397 0.0020 0.0033 0.0286 0.0010

ϕ 0.0106 0.0562 0.0060 0.0098 0.0598 0.0060 0.0064 0.0668 0.0063

τ -0.0172 0.1782 0.0282 0.0058 0.1254 0.0203 0.0087 0.1134 0.0191

γ -0.0109 0.1361 0.0160 0.0081 0.0724 0.0059 0.0067 0.0486 0.0026

σ2
u -0.0035 0.0597 0.0028 -0.0022 0.0567 0.0029 0.0005 0.0567 0.0032

σ2
v -0.0029 0.0090 0.0001 -0.0014 0.0093 0.0001 -0.0009 0.0091 0.0001

θ 0.15 0.65 0.90

Bias SD MSE Bias SD MSE Bias SD MSE

β -0.0001 0.0191 0.0003 -0.0001 0.0210 0.0005 -0.0001 0.0197 0.0005

ρ -0.0085 0.1453 0.0218 -0.0023 0.0609 0.0040 -0.0015 0.0489 0.0023

θ 0.0038 0.0788 0.0061 -0.0002 0.0409 0.0017 -0.0004 0.0371 0.0013

ϕ 0.0050 0.1019 0.0046 0.0089 0.0576 0.0059 0.0084 0.1011 0.0059

τ -0.0154 0.1948 0.0330 -0.0016 0.1179 0.0172 -0.0010 0.1553 0.0155

γ -0.0016 0.1453 0.0227 0.0009 0.0734 0.0050 0.0008 0.0629 0.0035

σ2
u -0.0005 0.0412 0.0027 -0.0012 0.0594 0.0028 -0.0018 0.0314 0.0028

σ2
v -0.0031 0.0090 0.0001 -0.0018 0.0089 0.0001 -0.0016 0.0091 0.0001

ϕ 0.15 0.65 0.90

Bias SD MSE Bias SD MSE Bias SD MSE

β 0.0001 0.0184 0.0004 0.0001 0.0201 0.0004 0.0001 0.0173 0.0004

ρ -0.0079 0.095 0.0143 -0.0074 0.1126 0.0129 -0.0037 0.0794 0.0134

θ 0.0033 0.0532 0.0042 0.0034 0.0637 0.0039 1.46e-05 0.0436 0.0041

ϕ 0.0086 0.0502 0.0059 0.0028 0.0704 0.0027 0.0051 0.0420 0.0015

τ -0.0245 0.2699 0.0763 -0.0049 0.1356 0.0169 -0.0072 0.0675 0.0145

γ 0.0010 0.0962 0.0156 8.78e-06 0.1153 0.0142 -0.0015 0.0732 0.0150

σ2
u 0.0084 0.0864 0.0055 -0.0005 0.0342 0.0023 -0.0012 0.0352 0.0022

σ2
v -0.0024 0.0090 0.0001 -0.0022 0.0090 0.0001 -0.0026 0.0091 0.0001
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Table 4.5– continued from previous page

τ 0.15 0.65 0.90

Bias SD MSE Bias SD MSE Bias SD MSE

β -2.54e-05 0.0162 0.0004 -0.0004 0.0176 0.0004 -3.64e-05 0.0167 0.0003

ρ -0.0049 0.0786 0.0122 1.09e-05 0.0845 0.0153 0.0015 0.0772 0.0078

θ 0.0011 0.0501 0.0039 -0.0022 0.0459 0.0046 -0.0010 0.0459 0.0025

ϕ 0.0064 0.0546 0.0042 0.0065 0.0763 0.0051 0.0021 0.0420 0.0031

τ -0.0085 0.1684 0.0282 -0.0162 0.0504 0.0105 -0.0030 0.0172 0.0005

γ -0.0028 0.1007 0.0139 -0.0053 0.0793 0.0170 -0.0052 0.0864 0.0093

σ2
u -0.0001 0.0419 0.0026 0.0048 0.0351 0.0034 -0.0039 0.0820 0.0035

σ2
v -0.0026 0.0097 0.0001 -0.0028 0.0090 0.0001 -0.0018 0.0093 0.0001

γ 0.15 0.65 0.90

Bias SD MSE Bias SD MSE Bias SD MSE

β 0.0006 0.0212 0.0004 -0.0021 0.0195 0.0004 -0.0013 0.0174 0.0005

ρ -0.0108 0.1321 0.0140 0.0149 0.1001 0.0138 0.0228 0.0687 0.0082

θ 0.0043 0.0756 0.0043 -0.0070 0.0554 0.0035 -0.0092 0.0414 0.0025

ϕ 0.0083 0.0643 0.0043 0.0110 0.0625 0.0076 0.0081 0.0529 0.0112

τ -0.0024 0.1738 0.0231 -0.0581 0.3475 0.0939 -0.0413 0.1478 0.0452

γ 0.0088 0.1439 0.0158 -0.0218 0.0972 0.0113 -0.0168 0.0344 0.0430

σ2
u -0.0019 0.0427 0.0028 0.0085 0.0888 0.0057 0.0014 0.1332 0.0035

σ2
v -0.0024 0.0095 0.0001 -0.0015 0.0094 0.0001 -0.0004 0.0096 0.0001

σ2
u, σ2

v 0.80, 0.10 0.10, 0.80 0.50, 0.50

Bias SD MSE Bias SD MSE Bias SD MSE

β -0.0001 0.0152 0.0002 -0.0017 0.0359 0.0015 -1.25e-05 0.0295 0.0010

ρ -0.0032 0.0771 0.0061 0.0022 0.1390 0.0249 -0.0103 0.1216 0.0208

θ 0.0005 0.0443 0.0019 -0.0044 0.0871 0.0093 0.0023 0.0752 0.0068

ϕ 0.0027 0.0147 0.0004 0.0282 0.1124 0.0242 0.0105 0.0413 0.0031

τ -0.0008 0.0920 0.0069 -0.0382 0.2746 0.0795 -0.0048 0.1694 0.0266

γ 0.0012 0.0896 0.0070 -0.0114 0.1526 0.0253 0.0031 0.1372 0.0205

σ2
u -0.0359 0.3798 0.1170 0.0026 0.0836 0.0061 -0.0316 0.2596 0.0558

σ2
v -0.0010 0.0045 0.0000 -0.0165 0.0377 0.0018 -0.0090 0.0239 0.0006
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TABLE 4.6: SDF-CSD Model: Monte Carlo Simulations Results
For different values of the parameters (T=10, N=300)

β 0.15 0.65 0.90

Bias SD MSE Bias SD MSE Bias SD MSE

β -0.0001 0.0115 0.0001 0.0002 0.0109 0.0001 4.10e-05 0.0114 0.0001

ρ -0.0019 0.1003 0.0081 -0.0022 0.0596 0.0039 -0.0006 0.0585 0.0033

θ -0.0009 0.0234 0.0004 0.0009 0.0413 0.0019 0.0005 0.0554 0.0030

ϕ 0.0037 0.0287 0.0014 0.0040 0.0338 0.0018 0.0034 0.0366 0.0021

τ -0.0062 0.1453 0.0115 1.81e-06 0.0747 0.0084 -0.0018 0.0862 0.0080

γ -4.48e-05 0.1142 0.0086 -4.37e-05 0.0650 0.0042 -0.0019 0.0639 0.0037

σ2
u -0.0019 0.0739 0.0020 0.0009 0.0554 0.0024 0.0002 0.0530 0.0025

σ2
v -0.0015 0.0062 3.09e-05 -0.0010 0.0054 2.76e-05 -0.0010 0.0052 2.76e-05

ρ 0.15 0.65 0.90

Bias SD MSE Bias SD MSE Bias SD MSE

β -0.0006 0.0097 0.0001 0.0004 0.0106 0.0001 0.0003 0.0093 0.0001

ρ 0.0069 0.0620 0.0066 -0.0029 0.0324 0.0015 -0.0012 0.0120 0.0002

θ -0.0044 0.0345 0.0017 0.0021 0.0269 0.0008 0.0015 0.0188 0.0004

ϕ 0.0024 0.0205 0.0016 0.0033 0.0481 0.0014 0.0034 0.0579 0.0019

τ -0.0093 0.0626 0.0092 0.0015 0.0865 0.0067 0.0010 0.0851 0.0063

γ -0.0085 0.0629 0.0067 0.0021 0.0474 0.0026 0.0012 0.0311 0.0011

σ2
u -0.0012 0.1085 0.0023 -0.0016 0.0178 0.0024 -0.0005 0.0158 0.0026

σ2
v -0.0009 0.0052 2.84e-05 -0.0004 0.0056 3.07e-05 -0.0003 0.0055 2.99e-05

θ 0.15 0.65 0.90

Bias SD MSE Bias SD MSE Bias SD MSE

β 0.0002 0.0104 0.0001 0.0001 0.0115 0.0001 -0.0005 0.0117 0.0001

ρ 0.0017 0.1002 0.0106 0.0010 0.044 0.0018 0.0005 0.0318 0.0009

θ -0.0007 0.0531 0.0029 -0.0001 0.0273 0.0007 -0.0007 0.0220 0.0004

ϕ 0.0040 0.0362 0.0013 0.0020 0.0364 0.0013 -0.0013 0.0462 0.0016

τ -0.0099 0.1368 0.0136 -0.0015 0.0766 0.0046 -0.0059 0.0682 0.0044

γ -0.0061 0.1071 0.0113 -0.0025 0.0508 0.0025 -0.0013 0.0403 0.0014

σ2
u 0.0017 0.0385 0.0024 0.0033 0.0389 0.0025 0.0021 0.0331 0.0024

σ2
v -0.0015 0.0056 2.93e-05 -0.0007 0.0053 2.59e-05 -0.0005 0.0054 2.65e-05

ϕ 0.15 0.65 0.90

Bias SD MSE Bias SD MSE Bias SD MSE

β -0.0001 0.0113 0.0001 -0.0003 0.0103 0.0001 -0.0001 0.0109 0.0001

ρ -0.0005 0.0739 0.0050 0.0026 0.0581 0.0049 -0.0004 0.0680 0.0048

θ 0.0003 0.0397 0.0016 -0.0008 0.0326 0.0014 0.0003 0.0366 0.0015

ϕ 0.0032 0.0322 0.0015 0.0016 0.0243 0.0009 0.0015 0.0122 0.0004

τ -0.0131 0.1127 0.0231 -0.0090 0.0637 0.0066 -0.0049 0.0618 0.0055

γ -0.0017 0.0753 0.0057 -0.0046 0.0610 0.0054 -0.0020 0.0692 0.0053

σ2
u 0.0034 0.0833 0.0031 0.0008 0.0731 0.0021 -0.0004 0.0772 0.0021

σ2
v -0.0010 0.0052 2.71e-05 -0.0008 0.0053 2.83e-05 -0.0009 0.0053 2.70e-05
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Table 4.6– continued from previous page

τ 0.15 0.65 0.90

Bias SD MSE Bias SD MSE Bias SD MSE

β 0.0006 0.0115 0.0001 0.0004 0.0113 0.0001 0.0005 0.0098 0.0001

ρ -0.0038 0.0688 0.0054 -0.0017 0.0675 0.0046 -0.0007 0.0492 0.0028

θ 0.0008 0.0400 0.0017 -0.0002 0.0391 0.0014 0.0005 0.0292 0.0010

ϕ 0.0041 0.0327 0.0017 0.0036 0.0359 0.0017 0.0004 0.0287 0.0012

τ 0.0020 0.0934 0.0106 -0.0029 0.0534 0.0031 -0.0010 0.0117 0.0001

γ 0.0014 0.0735 0.0059 -0.0005 0.0715 0.0051 0.0002 0.0539 0.0034

σ2
u -0.0004 0.0721 0.0022 0.0009 0.0671 0.0024 0.0018 0.0629 0.0023

σ2
v -0.0012 0.0052 2.75e-05 -0.0011 0.0052 2.72e-05 -0.0010 0.0053 2.70e-05

γ 0.15 0.65 0.90

Bias SD MSE Bias SD MSE Bias SD MSE

β 0.0005 0.0119 0.0001 -0.0006 0.0109 0.0001 -0.0006 0.0107 0.0001

ρ -0.0068 0.0765 0.0051 0.0068 0.0746 0.0050 0.0082 0.0465 0.0019

θ 0.0033 0.0467 0.0017 -0.0028 0.0355 0.0013 -0.0031 0.0258 0.0006

ϕ 0.0024 0.0317 0.0013 0.0029 0.0412 0.0020 0.0027 0.0433 0.0028

τ 0.0014 0.1065 0.0087 -0.0130 0.0886 0.0097 -0.0114 0.0922 0.0099

γ 0.0057 0.0857 0.0060 -0.0090 0.0579 0.0038 -0.0065 0.0262 0.0006

σ2
u -0.0001 0.0550 0.0023 3.97e-05 0.0565 0.0024 0.0016 0.0688 0.0027

σ2
v -0.0008 0.0057 2.94e-05 -0.0005 0.0061 3.30e-05 0.0001 0.0058 3.11e-05

σ2
u , σ2

v 0.80, 0.10 0.10, 0.80 0.50,0.50

Bias SD MSE Bias SD MSE Bias SD MSE

β 0.0002 0.0071 0.0001 0.0005 0.0182 0.0004 0.0005 0.0145 0.0003

ρ -0.0034 0.0350 0.0024 -0.0094 0.0665 0.0144 -0.0093 0.0550 0.0102

θ 0.0014 0.0220 0.0007 0.0033 0.0477 0.0045 0.0036 0.0390 0.0031

ϕ 0.0011 0.0079 0.0001 0.0113 0.0593 0.0068 0.0045 0.0219 0.0008

τ 0.0019 0.0444 0.0027 -0.0072 0.1420 0.0322 0.0016 0.0823 0.0125

γ 0.0024 0.0443 0.0028 0.0043 0.0773 0.0143 0.0056 0.0652 0.0102

σ2
u -0.0153 0.4547 0.1213 -0.0014 0.0656 0.0031 -0.0168 0.2773 0.0502

σ2
v -0.0004 0.0027 7.29e-06 -0.0077 0.0240 0.0005 -0.0038 0.0144 0.0002



75

TABLE 4.7: SDF-CSD Model: Monte Carlo Simulation Results
Sensitivity to the choice of W (N=300, T=5)

W W50 W30

Bias SD MSE Bias SD MSE Bias SD MSE

β -0.0001 0.0119 0.0002 -0.0002 0.0127 0.0002 -0.0003 0.0136 0.0002

ρ -0.0020 0.1094 0.0326 0.0007 0.1148 0.0077 0.0011 0.0650 0.0050

θ 0.0004 0.0920 0.0135 -0.0029 0.0666 0.0041 -0.0024 0.0484 0.0025

ϕ 0.0041 0.0675 0.0089 -0.0015 0.1097 0.0054 -0.0012 0.0399 0.0045

τ -0.0661 0.2800 0.0723 -0.0255 0.1288 0.0263 -0.0172 0.0881 0.0196

γ -0.0206 0.1686 0.0364 -0.0106 0.0951 0.0098 -0.0079 0.0675 0.0063

σ2
u 0.0069 0.0891 0.0060 0.0027 0.0268 0.0050 0.0003 0.0831 0.0045

σ2
v -0.0017 0.0076 0.0001 -0.0015 0.0076 0.0001 -0.0015 0.0074 0.0001

W250n W100n W50n

Bias SD MSE Bias SD MSE Bias SD MSE

β -0.0005 0.0121 0.0002 0.0004 0.0122 0.0002 -0.0001 0.0125 0.0002

ρ -0.0096 0.1615 0.0304 -0.0128 0.1059 0.0240 -0.0135 0.1336 0.0175

θ 0.0016 0.1212 0.0129 0.0036 0.0839 0.0104 0.0055 0.0818 0.0076

ϕ 0.0054 0.0934 0.0087 0.0060 0.0571 0.0079 0.0019 0.1116 0.0080

τ -0.0545 0.3273 0.0730 -0.0372 0.2092 0.0531 -0.0283 0.1419 0.0429

γ -0.0131 0.2033 0.0333 -0.0062 0.1452 0.0258 -0.0034 0.1201 0.0187

σ2
u 0.0073 0.0526 0.0064 0.0081 0.1369 0.0056 0.0068 0.0270 0.0062

σ2
v -0.0015 0.0075 0.0001 -0.0015 0.0073 0.0001 -0.0016 0.0074 0.0001
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TABLE 4.8: SDF-CSD Model: Monte Carlo Simulations Results
Sensitivity to the choice of W, using two different W matrices (N=300, T=5)

W W W0 W0 W0 W0 W W W0 W W0 W

Bias SD MSE Bias SD MSE Bias SD MSE

β -0.0002 0.0115 0.0001 -0.0001 0.0126 0.0002 -0.0001 0.0125 0.0002

ρ -0.0040 0.0575 0.0038 -0.0003 0.0286 0.0009 -0.0004 0.0265 0.0007

θ 0.0027 0.0636 0.0042 -0.0002 0.0275 0.0008 0.0004 0.0586 0.0030

ϕ 0.0066 0.0471 0.0059 -0.0009 0.0781 0.0089 0.0020 0.0403 0.0036

τ -0.0003 0.0658 0.0126 -0.0310 0.0930 0.0348 -0.0037 0.0742 0.0095

γ 0.0007 0.0332 0.0011 -0.0066 0.0753 0.0055 -0.0065 0.0756 0.0056

σ2
u 0.0074 0.1130 0.0058 0.0101 0.0854 0.0070 0.0010 0.1419 0.0046

σ2
v -0.0007 0.0074 0.0001 -0.0007 0.0077 0.0001 -0.0007 0.0077 0.0001

W W0 W W0 W0 W W W0 W W0 W0 W

Bias SD MSE Bias SD MSE Bias SD MSE

β -0.0003 0.0125 0.0002 -0.0004 0.0122 0.0001 -0.0003 0.0122 0.0001

ρ -0.0046 0.0560 0.0032 -0.0012 0.0384 0.0016 -0.0038 0.0718 0.0065

θ -0.0003 0.0231 0.0005 0.0002 0.0546 0.0026 -0.0005 0.0225 0.0005

ϕ -0.0010 0.0749 0.0083 -0.0017 0.0756 0.0082 0.0026 0.0616 0.0049

τ -0.0296 0.1112 0.0374 -0.0302 0.0918 0.0334 -0.0045 0.0733 0.0090

γ -0.0004 0.0337 0.0012 0.0003 0.0490 0.0028 -0.0073 0.1163 0.0124

σ2
u 0.0095 0.0879 0.0063 0.0099 0.0925 0.0064 0.0029 0.1049 0.0052

σ2
v -0.0007 0.0077 0.0001 -0.0008 0.0077 0.0001 -0.0008 0.0076 0.0001

W W W W0 W0 W0 W0 W W0 W0 W W0

Bias SD MSE Bias SD MSE Bias SD MSE

β 0.0001 0.0140 0.0002 -0.0004 0.0126 0.0001 -0.0001 0.0116 0.0001

ρ -0.0030 0.0580 0.0044 0.0013 0.0286 0.0009 -0.0056 0.0685 0.0045

θ 0.0008 0.0359 0.0016 -0.0012 0.0275 0.0007 0.0056 0.0739 0.0049

ϕ -0.0016 0.0765 0.0085 0.0022 0.0781 0.0030 -0.0050 0.1017 0.0059

τ -0.0313 0.0923 0.0345 -0.0067 0.0930 0.0097 -0.0309 0.2600 0.0337

γ 0.0009 0.0633 0.0055 -0.0033 0.0753 0.0050 -0.0007 0.0332 0.0011

σ2
u 0.0102 0.0934 0.0065 0.0014 0.0854 0.0050 0.0080 0.0686 0.0062

σ2
v -0.0011 0.0077 0.0001 -0.0011 0.0077 0.0001 -0.0011 0.0076 0.0001
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Table 4.8– continued from previous page

W W W0 W W W0 W W W0 W W0 W0

Bias SD MSE Bias SD MSE Bias SD MSE

β 0.0001 0.0124 0.0002 0.0003 0.0117 0.0001 0.0000 0.0114 0.0001

ρ -0.0126 0.0805 0.0134 -0.0004 0.0831 0.0076 0.0012 0.0423 0.0018

θ 0.0051 0.0769 0.0070 -0.0002 0.0213 0.0004 -0.0016 0.0466 0.0022

ϕ 0.0012 0.0672 0.0062 0.0033 0.0971 0.0064 0.0006 0.0296 0.0044

τ -0.0050 0.0745 0.0093 -0.0282 0.2432 0.0388 -0.0102 0.0613 0.0137

γ -0.0020 0.1233 0.0188 -0.0151 0.1284 0.0135 -0.0041 0.0529 0.0029

σ2
u 0.0058 0.1004 0.0057 0.0060 0.0427 0.0056 0.0028 0.1769 0.0051

σ2
v -0.0009 0.0076 0.0001 -0.0012 0.0074 0.0001 -0.0010 0.0073 0.0001

W W0 W0 W0 W0 W W W

Bias SD MSE Bias SD MSE

β -0.0004 0.0116 0.0001 -0.0004 0.0114 0.0001

ρ -0.0034 0.0468 0.0023 0.0008 0.0219 0.0005

θ -0.0006 0.0199 0.0004 -0.0006 0.0505 0.0029

ϕ 0.0013 0.0515 0.0042 0.0021 0.0375 0.0075

τ -0.0061 0.0881 0.0092 -0.0237 0.0660 0.0285

γ 0.0015 0.0328 0.0011 -0.0053 0.0747 0.0051

σ2
u 0.0030 0.0672 0.0054 0.0081 0.2263 0.0067

σ2
v -0.0011 0.0072 0.0001 -0.0010 0.0073 0.0001

NB. In the title of each simulation we report the different spatial weight matrices respectively
associated with the four different spatial lags of the SDF-CSD model in the following order: spatial
lag of Y, spatial lag of X, spatial lag of u, spatial lag of v. In particular, W refers to a dense inverse
distance matrix while W0 refers to a binary contiguity matrix.
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Chapter 5

Innovation, Productivity and
Spillover Effects in the Italian
Accommodation Industry

5.1 Innovation, Productivity and Agglomeration in Tourism
Clusters

5.1.1 Tourism as a Clustered Industry

The tourism sector is one of the fastest growing and most profitable industrial sectors of
Italy, contributing to 13% of the Italian GDP (including indirect effects) and giving em-
ployment to 14.7% of the Italian workforce in 2017 (OECD, 2020). Moreover, Italy is the
fourth most visited country by international tourists, and it contains 55 World Heritage
Sites, which is more than any other country in the world. Small and medium enterprises
(SMEs) constitute the majority of Italian accommodation facilities and moreover, they
represent the "life blood of the travel and tourism industry worldwide" (Erkkila, 2004, p.23).
Tourism destinations can be seen as forms of industrial clusters, made up of groups of
SMEs that cooperate to build up a successful tourism product (Novelli, Schmitz, and
Spencer, 2006). Therefore, SMEs clusters, through networking, alliances, active collabo-
ration and innovation can succeed in successfully competing in the global tourism market
through local cooperation (Smeral, 1998). Indeed, SMEs located in tourism clusters can
accumulate new knowledge and innovate more easily than isolated hotels (Marco-Lajara
et al., 2019).

In recent tourism literature, tourism clusters have begun to be considered as a form
of industrial clusters (Jackson and Murphy, 2002; Shaw and Williams, 2009). Indeed,
a tourism destination is composed of a conglomeration of competing and collaborating
activities trying to cooperate to reach a greater exposure and to build up a successful
tourism product (Jackson and Murphy, 2006). Specifically, tourism clusters are defined
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as a set of linked activities such as accommodations, attractions, services, tour opera-
tors, travel agents and complementary products that contribute to the tourism experi-
ence (Wang and Fesenmaier, 2007). Moreover, many destinations also collaborate with
governments, residents, training centres and research institutions to further develop the
cluster’s competitive advantage. Hence, tourism clusters, similarly to manufacturing
clusters, benefit from the existence of positive spillover effects resulting from spatial
proximity, trust, and shared values that encourage cooperation, social contact, and im-
itation (Shaw and Williams, 2009). As a consequence, clustered hotels experiment higher
productivity levels thanks to enhanced knowledge and innovation sharing (Adam and
Mensah, 2013). Differently from manufacturing clusters, the birth of tourism clusters
depends on spontaneous concentration processes generating from positive customers
feedbacks in terms of demand (Yang, 2012). Other peculiarities of the tourism clusters
concern the intangible nature of the product sold, the inseparability between consump-
tion and production, and a high demand fluctuability and uncertainty (Zhang, Song, and
Huang, 2009). Therefore, hoteliers should carefully evaluate where to locate. Indeed, lo-
cating too close to competitors is risky due to the possibility of losing loyal customers to
established hotels, while locating too far from rivals does not allow to benefit from pos-
itive agglomeration spillovers. Specifically, Baum and Haveman (1997)’s results show
that new hotels tend to place near established hotels that are similar in terms of price and
that are different in terms of size as if the benefits of agglomeration economies are greater
than costs considering hotels of similar price while costs are greater than agglomeration
benefits if hotels locate too near to similarly-sized hotels.

Investigating the structure of tourism clusters, Michael (2003) identified tourism
clusters as diagonal clusters. Differently from horizontal and vertical clusters that refer
to the co-location of firms selling the same products and to the co-location of an indus-
try’s supply chain respectively, diagonal clusters are characterized by the concentration
of complementary or symbiotic firms. Therefore, even if the products offered can be
quite different, each firm adds value to the activity of the other firms, creating a net-
work in which separate products and services are linked together to form a unique item.
In this framework, a tourism destination can be seen as a diagonal cluster in the sense
that different industries belonging to the same destination (as transport, accommoda-
tion, restaurants, entertainment and attraction, etc.) work together to build up a valuable
tourism experience.

5.1.2 Innovation in the Tourism Sector

Authors have always recognized the importance of innovation in the tourism sector, both
for multinational companies and for SMEs (Poon, 1993, 1994). Indeed, innovation, as
well as investments in human capital and research and development, allows hotels to
remain competitive and to achieve higher profitability levels (Marco-Lajara et al., 2016).
Hence, innovation is fundamental to tourism development and competitiveness (Jackson
and Murphy, 2002, 2006), and it can be fostered by investments in physical capital, skills
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and human capital, technology and new knowledge, and by a fertile competitive envi-
ronment. In particular, as demonstrated by Blake, Sinclair, and Soria (2006), insufficient
investments in physical capital do not constrain increases in productivity, while skilled
workers are fundamental to competitiveness. Moreover, the lack of new knowledge is
the prevailing barrier to product and process innovation.

As underlined by Hjalager (2002), process innovation is more influential in the
tourism sector compared to product innovation. Specifically, process innovation refers
to quality improvements in existing operational processes used to produce goods and
services or to the introduction of new procedures. One of the most important sources of
process innovation in the hospitality sector is human resources. Good human resources
management practices are positively associated with employee and customer satisfac-
tion and with service quality, competitive advantage, better organizational performance
and lower turnover rates (Cho et al., 2006). Indeed, according to Wikhamn (2019), cus-
tomer satisfaction is positively affected by innovation and sustainable human resource
practices.

Anyhow, the tourism sector is characterized by low levels of research and develop-
ment, lack of resources, rapid changes in ownership, high labour mobility, low salaries,
low educational levels and reluctance to take risks (Weidenfeld, Williams, and Bultler,
2010). According to Orfila-Sintes, Crespì-Cladera, and Martinez-Ros (2005), three to
five stars hotels tend to be more innovative compared to smaller hotels while hotels be-
longing to a chain, hotels in leased properties, and hotels under management contracts
tend to overcome the average innovation rate. Similarly, also Sundbo, Orfila-Sintes, and
Sørensen (2007) demonstrated that the innovative performance of tourism firms is related
to size. Moreover, they also showed that the level of professionalism (i.e. the ability to
apply business and training plans, quality control systems, academic employees, and IT)
is a significant determinant of innovation in the tourism sector. Nevertheless, the tourism
sector is mainly composed of SMEs that hardly invest in R&D and therefore, due to the
complexity of innovating inside the firm, the external environment in which hotels are
embedded is a fundamental source of new knowledge and innovation.

In this framework, Sundbo, Orfila-Sintes, and Sørensen (2007) showed that the exis-
tence of a favourable network contributes to determining the innovativeness of tourism
firms. Similarly, analyzing survey data from 900 hospitality firms in Sweden, Backman,
Klaesson, and Öner (2017) showed that the most consistent firm-level variable that con-
tributes to increasing innovation in the hotel sector is the engagement in cooperation
with the other actors of the sector, such as suppliers, customers, competitors, and re-
search organizations. Moreover, Hameed, Nisar, and Wu (2021), investigating the link
between external knowledge, internal innovation and performance of 285 hotels situated
in Pakistan, demonstrated that external knowledge and internal innovation positively
affect firms’ open innovation performance, leading to service innovation and increased
business performance. In this framework, also Stojčić, Vojvodić, and Butigan (2019), ana-
lyzing the performance of the Croatian hospitality industry during the period 2012-2014,
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found that knowledge and skills transfer through organizations foster service innovation,
confirming that the external sources of knowledge are fundamental drivers of innovation.

5.1.3 Knowledge Sharing and Transmission

According to Argote and Ingram (2000), knowledge is embedded in three basic elements
of an organisation: members, tools, and tasks. Specifically, as underlined by Enz, Canina,
and Walsh (2006), the three main components of knowledge are (i) human capital, skills
and experiences, (ii) operational knowledge coded into processes, policies and proce-
dures and (iii) customer capital represented by the brand value. New knowledge can be
obtained by improving the quality of existing procedures or through R&D investments,
creating new working processes and registered trademarks (Marco-Lajara et al., 2016).
However, SMEs usually undertake few R&D investments due to their lack of financial
and human resources.

Theoretically, knowledge can be divided into explicit and tacit knowledge. Explicit
knowledge refers to the knowledge capital of an organisation and it is independent of
its workers (Cooper, 2006). Its main characteristics are that it is transferable and cod-
able in forms, documents, and electronic databases (Weidenfeld, Williams, and Bultler,
2010). On the other side, tacit knowledge is hard to formalize and codify and it is highly
intuitive, unarticulated, personal, and based on people’s learning and collaborative expe-
riences (Cooper, 2006). According to Nonaka (1991), tacit knowledge tends to be context-
specific, and it is very often converted into habits and routines. As identified by Weiden-
feld, Williams, and Bultler (2010), tacit and explicit knowledge can be transferred one into
another across neighbours in four ways: (i) tacit to tacit through socialisation, networks,
shared ideas, learning by observation, and individual contact; (ii) tacit to explicit through
meetings and brainstorming that allow the formalization of informal good practises; (iii)
explicit to explicit through the use of documents, papers, and databases; (iv) explicit to
tacit through new ideas generating from formal documents or learning by doing. While
it is quite easy to transfer explicit knowledge, tacit knowledge is less easy to interpret and
transfer among individuals and thus, it is a key source of competitive advantage (Shaw
and Williams, 2009). Nevertheless, tacit knowledge flows more easily in tourism clusters
thanks to shared ideas between individuals, learning by observation, human relation-
ships, imitation, and a stronger social and economic network (Yang, 2012).

Concentrating on the vehicles by which knowledge can be transferred across neigh-
bours, Kacker (1988) identified foreign direct investments and learning regions as the two
main channels. Indeed, transnational firms can benefit from knowledge coming from the
home country, reusing and transferring it. On the other hand, learning regions refer to
places where the concentration of hotels and the existence of a strong network of indi-
viduals trusting in common values generates a positive environment that facilitates learn-
ing and knowledge transfer. In particular, Hall and Williams (2008) recognized learning
by observation, imitation and demonstration, inter-firm exchanges, labour mobility, and
knowledge brokers as the four main channels of knowledge transfer that operate at the
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firm and individual level. Therefore, in the accommodation sector, neighbours’ emula-
tion, inter-firm exchanges and collaboration with competitors and suppliers are funda-
mental sources of knowledge. Indeed, in the tourism sector, imitation and emulation are
quite easy to adopt (Decelle, 2006; Hjalager, 2002) because the operational processes are
quite evident and also the technological level is basic (Weidenfeld, Williams, and Bultler,
2010). Moreover, the tourism sector is characterized by a strong seasonal fluctuation of
labour, and labour mobility contributes to boosting tacit knowledge transfers across firms
through the physical movements of workers with a high level of skills and capabilities,
also defined as "knowledgeable tourism workers" (Shaw and Williams, 2009). Finally,
also knowledge brokers, identified as those individuals who operate within and across
distinctive knowledge communities as consultants, representatives, and suppliers have a
key role in transmitting new knowledge (Tushman and Scanlan, 1981).

Despite the key role of recruiting skilled employees and belonging to a beneficial
network, as evidenced by Yang (2010), the exploitation and development of knowledge
inside the firm depend primarily on the individual attitudes to sharing and learning. In-
deed, some employees can feel insecure or scared to express their ideas and opinions,
others may be not interested in sharing, and these bad feelings can impede knowledge
transfer and acquisition. Therefore, it is fundamental for hotels managers to develop a
working climate that promotes cooperation and learning activities so that employees can
perceive the workplace as a familiar environment in which they can feel free and open
in discussing job-related matters (Yang, 2010) and where fairness, support, rewards, and
healthy job conditions are supported (Rhoades and Eisenberger, 2002). In this frame-
work, the role of the leader is fundamental (Yang, 2007b); indeed, the leader should pro-
mote good human relationships among employees and should stimulate his workers to
transfer their talents, ideas, and experiences, enabling knowledge creation through social
activities and training sessions (Roth, 2003). Therefore, human resource management
has a key role both in the recruiting phase, to acquire knowledgeable workers, and in
the management phase, to guarantee opportunities and new perspectives for employees
improving their level of satisfaction. By this way, it is possible to minimize staff’s po-
tential losses and to create a positive working environment that stimulates knowledge
creation and transfer (Yang, 2007a). Moreover, the intensity at which new knowledge
is assimilated depends on the absorptive capacity of hotels. According to Yang (2010),
absorptive capacity is the most important prerequisite for success in the accommodation
sector because identifying new sources of knowledge, assimilating them, and applying
them to commercial ends guarantees a successful knowledge transfer. The degree of ab-
sorptive capacity of hotels depends on factors such as the organizational structure, the
open-mindedness of the head, and management practices (Cooper, 2006). In this regard,
SMEs tend to have limited absorptive capacity but good flexibility and adaptability (Co-
hen and Levinthal, 1990). Specifically, absorptive capacity is positively associated with
hotels’ size (Marco-Lajara et al., 2019) and negatively associated with an extensive work-
related experience that prevents from adapting to new processes and ideas (Yang, 2010).
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5.1.4 Agglomeration Externalities and Productivity

Agglomeration economies are particularly relevant in the tourism sector because the ser-
vice offered is inseparable in time and space and because tourism demand and supply
are localized in specific concentrated places (Majewska, 2017). The tourism sector is char-
acterized by two different types of spatial agglomeration externalities: production en-
hancements and heightened demand (Chung and Kalnins, 2001, 2004; Marshall, 1890).
The former refers to an enhancement of the quality and efficiency of the services offered
in the accommodation sector due to knowledge spillovers, easier access to qualified com-
plementary services, a major availability of skilled employees and better coordination of
policies and related actions, while the latter concerns the fact that hotel districts tend
to attract larger pools of tourists. Therefore, production enhancement depends primar-
ily on information spillovers, enhanced cooperation, and joint problem solving, which
favour the adoption of efficient means of service delivery (Chung and Kalnins, 2001).
However, this first mechanism is characterized by distance decay. Thus, hotels that are
located beyond a certain radius may not benefit from these positive externalities (Adam
and Mensah, 2013).

On the other side, customers may prefer to choose places where they may find ho-
tel rooms at lower prices due to competition among clustered hotels and where there is
higher availability of services and attractions. Indeed, tourism agglomeration is also as-
sociated with diversity because denser tourism areas can provide a wider range of activ-
ities, services, and attractions (Yang, 2016). As a result, tourists tend to be more satisfied
with their travel experience leading to customer loyalty, repeat visits, and repurchas-
ing behaviours (Petrick and Backman, 2002), generating a self-reinforcing process that
produces new business opportunities that strengthen the tourism cluster (Yang, 2012).
Moreover, as the tourism cluster grows up, also public and private tourism-related insti-
tutions increase, providing more and more benefits and support to the local cluster (Tang
and Tang, 2006).

Focusing on the supply side, one of the main factors that contribute to generat-
ing positive agglomeration externalities among hotels located in clusters is knowledge
spillovers. Several recent studies analyzed the connection between tourism clusters, in-
ternal and external knowledge, and hotels’ productivity, finding different and contro-
versial results. Peiró-Signes et al. (2015), analyzing the impact of locating inside or out-
side U.S. tourism clusters on hotel economic performance using a concentration mea-
sure, suggested that belonging to a cluster improves hotels’ productivity. Moreover, they
demonstrated that the positive effect of agglomeration is more pronounced for luxury,
upscale hotels and chain-managed hotels while it is less evident for resorts and airport
locations. Differently, Baum and Mezias (1992), evaluating the impact of localized com-
petition on hotels’ failure rates for the Manhattan hotel industry in 1898-1990, found that
hotels located in denser regions tend to experience higher failure rates. Taking internal
and external knowledge into consideration, Marco-Lajara et al. (2016), using multiple lin-
ear regression, showed that internal knowledge such as human resources and the value
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of registered trademarks have a prevalent role in explaining hotels’ profitability com-
pared to R&D investments. Moreover, they found that external knowledge coming from
similar activities, universities, and technological research institutions significantly con-
tributes to hotel profitability, but they didn’t find a connection between knowledge com-
ing from capital alliances and vocational training centres and profitability. Moreover,
Marco-Lajara et al. (2019) demonstrated that agglomeration is positively associated with
hotel profitability but with a lower effect than the one expected. Considering external
knowledge, the authors didn’t find evidence of a significant positive effect of agglomer-
ation on the acquisition of external knowledge, and consequently on profitability. Differ-
ently, using longitudinal data from lodging firms located in Southern China, Zhang et al.
(2015) found that local entrepreneurs tend to imitate successful pioneering businesses.
Hence, tacit knowledge spillovers among hotels located in the same region contribute
to a successful local development of the tourism sector considering an extended time
period.

From a macroeconomic point of view, the tourism sector considerably contributes
to the economic regeneration and development of an entire nation (Thomas and Long,
2001). Therefore, several studies concentrated on the effect of tourism clusters and ag-
glomeration on local or national productivity. Investigating the impact of tourism ag-
glomeration economies on UK regional productivity, Kim et al. (2021) found a positive
effect of spatial agglomeration on hotel productivity due to knowledge spillovers and
skilled labour pooling using a spatial panel data model. Moreover, Yang (2012), using a
dynamic panel data model, showed a positive association between tourism agglomera-
tion and the development of Chinese provinces in the time period 2000-2009. The same
authors, in 2016, examining the impact of tourism agglomeration on labour productivity
in Chinese provinces from 2000 to 2011, found a positive association between agglom-
eration density and productivity level but they showed that the level of diversity of the
tourism industry negatively affects labour productivity.

Despite the recent and strong interest of researchers in investigating the impact of
external sources of innovation and agglomeration economies on the productive outcome
of hotels, a clear assessment of the magnitude, typology and sources of these spatial
effects is still lacking. Indeed, while scholars widely investigated the link between indus-
trial agglomeration, innovation, and productivity from an empirical perspective consid-
ering the manufacturing, agricultural, and high-tech sectors, this topic is still relatively
unexplored in the tourism sector (for a comprehensive review of previous studies on ag-
glomeration and innovation see Carlino and Kerr (2015) and Binder (2019) for a focus on
the tourism industry). However, for tourism-based countries such as Italy, begin aware
of the dynamics characterising neighbouring accommodation facilities is fundamental
both for hotels and destination managers and for policymakers. Hence, this study aims
at providing new micro-economic insights on how the different sources of innovation,
both internal and external to the firm, contribute to determining the economic perfor-
mance of Italian hotels, extending the current literature on industrial agglomeration to
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the accommodation sector at the firm level. In particular, we concentrate on the follow-
ing research questions: (Q1) what sources of internal innovation contribute to increasing
the productive performance of the Italian accommodation sector?; (Q2) what external in-
novative factors affect the efficiency level of neighbouring hotels; (Q3) do competition or
agglomeration forces prevail?

To investigate the nature and the extent of agglomeration externalities occurring
in the accommodation industry and affecting hotels’ productivity and efficiency levels,
we take advantage of the SDF-STE model developed in this thesis. The SDF-STE model
allows to precisely disentangling three different kinds of spatial spillover effects occur-
ring across neighbouring firms, i.e. productivity, inputs, and determinants of inefficiency
spillovers, thanks to the introduction of the spatial lag of the dependent variable, of the
input variables and of the inefficiency determinants, respectively. Through this model,
we are able to capture (i) the overall level of global spatial dependence in the sector; (ii)
spillover effects related to labour and capital; (iii) specific spatial effects related to the dif-
ferent sources of firms’ innovative activity (human capital and intangible capital invest-
ments, patents and trademarks filing). The main characteristic of the SDF-STE consists
in introducing the possibility of directly evaluating how each variable that determines
the inefficiency level of neighbouring firms also affects nearby producers, giving rise to
precise, detailed and distinct insights concerning spatial spillovers related to each source
of internal innovation.

5.2 Literature Review of Stochastic Frontier Models in the
Tourism Industry

Hotels’ productive efficiency has been mainly investigated using a non-parametric ap-
proach, the data envelopment analysis (DEA). Therefore, there are not many empirical
applications estimating a stochastic frontier model in this sector. Moreover, in the major-
ity of these contributions, the cost function approach has been preferred over the produc-
tion one. However, as emphasized by Barros (2005), firms have inputs under control and
they try to maximise the level of output conditional on the market demand, then, accord-
ing to the author, using a production function is "the natural choice". Moreover, it is very
difficult to define complex cost structures and to obtain reliable data on the prices of the
productive factors (Bernini and Guizzardi, 2010). Thus, in this empirical application, we
select a production function approach.

In tourism literature, Chen (2007) applied a stochastic frontier cost function to anal-
yse hotels’ efficiency in Taiwan, finding that the efficiency level of chain hotels is higher
than the one of independent hotels. Moreover, the authors did not find evidence of a sig-
nificant impact of hotels’ location and scale on their efficiency level. Differently, Barros
(2004), concentrating on Pousadas de Portugal, a Portuguese state-owned hotel chain,
and estimating a stochastic cost frontier model, found that location and economies of
scale are key factors in determining hotels’ efficiency. Moreover, using a one-stage cost
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approach to estimate efficiency scores for international hotels located in Taiwan in the pe-
riod 1997-2006, Hu et al. (2010) found that being located near international airports has a
positive effect on hotels’ efficiency, but not for hotels located outside metropolitan areas.
Evaluating time-varying cost efficiency of the lodging industry of Gran Canaria (Spain)
in the time period 1991-2002, Perez-Rodriguez and Acosta-Gonzalez (2007) estimated a
translog cost function using the models proposed by Battese and Coelli (1992) and Battese
and Coelli (1995) and showed that not all hotels of Gran Canaria work at the minimum
level of cost. Furthermore, they found that hotels’ efficiency increased during the period
of expansion of the accommodation sector of Gran Canaria, favoured by higher labour
productivity levels.

On the other hand, using a production function approach, Bernini and Guizzardi
(2010) analyzed the productive performance of the Italian tourism sector using a frontier
function with a model for technical inefficiency following the specification proposed by
Battese and Coelli (1995). They showed that the average technical efficiency score of Ital-
ian tourism firms is in line with international standards even if it tends to decrease over
time. This negative dynamic over time can depend on the general difficulty of tourism
firms in innovating and implementing quality-effective improvements. Moreover, the
authors demonstrated that the main drivers of efficiency are internal to the firm and
are related to human resources management, which plays a key role in determining a
good hotel performance. Furthermore, investigating how heterogeneity in the accom-
modation sector affects firms’ efficiency for hotels located in Emilia-Romagna, Bernini
and Guizzardi (2012), using a frontier production function estimated over different clus-
ters, demonstrated that seasonality is the environmental factor that mostly contributes to
influencing hotels’ productive processes. In addition to this, also hotels’ size and qual-
ity resulted to be important factors in explaining hotels’ efficiency, but mainly for non-
seasonal, medium/low star-rated, and small hotels.

Furthermore, in the last few years, authors have begun to apply also Bayesian esti-
mation techniques to stochastic frontier modelling (a detailed description of the theory
and implementation of Bayesian techniques to SF models can be found in Assaf, Oh,
and Tsionas (2017)). In this framework, using a Bayesian stochastic frontier approach
for estimating profit efficiency and its determinant for Spanish hotels in the time period
2010-2014, Arbelo, Arbelo-Pérez, and Pérez-Gómez (2018), demonstrated that greater ho-
tel size, belonging to a chain, and locating in a resort area are all factors that have a
positive effect on hotels’ efficiency level. Moreover, also customer satisfaction positively
contributes to hotels’ profit efficiency.

Pavlyuk (2012) is the only contribution using a spatial stochastic frontier model to
investigate the performance of tourism firms from a macroeconomic point of view. In
particular, the author analyzed the regional-specific factors affecting the number of visi-
tors within the Baltic States (Estonia, Latvia, Lithuania) using a stochastic frontier model
containing the spatial lag of the dependent variable both in the frontier function and in
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the efficiency model to evaluate how the number of tourists in neighbouring regions af-
fects both the model output and the efficiency level of a given region. The results show
that, in the Baltic States, the competition effects are stronger than the cooperation ones
both for the number of visitors to neighbouring regions and for regional efficiency levels.

Nevertheless, no studies have yet investigated the accommodation sector’s produc-
tive performance using a spatial stochastic frontier production function from a microe-
conomic perspective. Indeed, the current studies have only focused on standard linear
regression models, structural models, or concentration measures to investigate agglom-
eration externalities in tourism clusters leading to different and controversial results. Our
spatial stochastic frontier approach allows to separate the random error from inefficiency
and to simultaneously estimate the frontier function and the efficiency model, distin-
guishing between productivity and efficiency determinants. Moreover, differently from
other approaches, through the introduction of three different spatial terms, it is possible
to capture global productivity spillovers as well as indirect effects related to the input
variables and to the determinants of firms’ inefficiency. Therefore, in this study, we take
advantage of the SDF-STE model to disentangle the different kinds of spatial spillover
effects affecting the economic performance of Italian hotels. The results from this study
would be very useful for policymakers to design ad hoc place-based policies that exploit
the existence and the magnitude of the different spatial effects characterizing nearby ho-
tels to stimulate the productivity of the entire sector.

5.3 The Empirical Model

The econometric model used in this application is the spatial Durbin stochastic frontier
model introducing spillover effects in the determinants of firms’ efficiency (SDF-STE)
introduced in Chapter 3. The SDF-STE model results the be particularly suitable for this
empirical application because the spatial lag of the inefficiency determinants considered
in this model allows to precisely evaluate how the different sources of hotels’ innovation
influence neighbouring firms’ efficiency levels. Indeed, in this application, we consider as
inefficiency determinants different variables that measure hotels’ innovative activity such
as human capital and intangible investments and patents and trademark filing. Thus,
here we prefer the SDF-STE model to the SDF-CSD because, through the new spatial
lags of the Z variables in the inefficiency model introduced in the first one, we are able
to measure if, and to what extent, the different external sources of innovation influence
Italian hotels’ performance.

The model specification for the frontier function is shown in Eq.(5.1) for i, j =

1, ..., 5409 (i ̸= j) and t = 2011, ..., 2019. In particular, a translog specification is used to
model the frontier production function due to its higher flexibility compared to a Cobb-
Douglas specification. Indeed, the translog function allows for variable elasticity of sub-
stitution and makes it possible to obtain firm-specific elasticities to inputs and return to
scales.
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Yit = β0 + βLLit + βKKit + βLLL2
it + βKKK2

it + βLK LitKit + βtt + β2tt2 + βtLtLit

+ βtKtKit + ρ
N

∑
j=1

wijYjt + θL

N

∑
j=1

wijLjt + θK

N

∑
j=1

wijKjt − uit + vit
(5.1)

Specifically, as standard in the tourism literature (Bernini and Guizzardi, 2010; Ro-
get and Gonzales, 2006; Smeral, 2007) Yit is defined as the logarithm of the value-added
of hotel i at time t and Lit and Kit, representing the two production inputs, are the log-
arithms of the number of employees and of fixed assets, respectively. Following Glass,
Kenjegalieva, and Sickles (2016), we assume Hicks-neutral technical change and there-
fore the time trend variable t and its square are added to the specification of the frontier
function (t has a minimum value of 1 for the year 2011 and it increases by 1 for each year,
reaching a maximum value of 9 for 2019). Furthermore, also the interactions between
time and the two inputs are taken into consideration. Moreover, the spatial lag of the
dependent variable and the spatial lag of the two production inputs are introduced in the
model specification to take global and local spatial dependence into account. In particu-
lar, ρ captures global spatial dependence while θL and θK capture how the level of labour
and capital of firm i is influenced by the level of inputs of neighbouring firms j, with
j = 1, ..., N. To identify neighbouring hotels, we use a time-invariant row-standardized
inverse distance spatial weight matrix, having all zeros on the main diagonal. Therefore,
wij indicates the weight associated with each pair of spatial units i,j and before row-
normalization, it is equal to 1

dij
where dij is the distance between the two units expressed

in kilometres. While contiguity matrices are usually chosen when dealing with areal data,
defining W as an inverse distance matrix is a common specification when working with
points data as it allows to consider the relations of neighbours with all territorial units
considering the exact spatial position of each element in the sample. Moreover, using a
dense inverse distance matrix has several advantages. First of all, it implies not choosing
an arbitrary truncation point or a cut-off for the number of neighbours so that subjective
choices related to defining the neighbouring hotels do not affect the estimation results.
Second, compared to inverse squared or polynomial distance matrices, a simple inverse
distance matrix assumes that the relations between neighbouring observations are linear,
which means that the strength of the relationship varies proportionally to the distance.
Finally, with respect to matrices based on economic distance, it ensures that the spatial
weights are exogenous. However, in subsection 5.5.5 we test the robustness of our results
with respect to alternative spatial weight matrices. In particular, we define various trun-
cation points for W at a 200, 100, 50 and 30 kilometres radius around each spatial unit and
we consider the 400, 250, 100, 50 and 30 nearest neighbours. At last, uit is the inefficiency
error term distributed as a truncated normal random variable with mean µit and variance
σ2

u while vit is the normally distributed error term with zero mean and variance σ2
v , and

uit and vit are assumed to be independent random variables. We model the mean µit of
firms’ technical inefficiency as shown in Eq.(5.2).
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+ δhum

N

∑
j=1

wijHumjt + δInt

N

∑
j=1

wij Intjitt + δpat

N

∑
j=1

wijPatjt + δtrad

N

∑
j=1

wijTradjt

+ δsize

N

∑
j=1

wijSizejt + δdsize

N

∑
j=1
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+ ϕnocatNocatit + ϕnotur Noturit
(5.2)

We assume that the mean of the inefficiency error term depends on some determi-
nants under the firm’s control and on spillover effects coming from neighbours. Between
the internal factors affecting hotels’ efficiency, we consider the hotel’s size and a firm’s
innovative activity, proxied by patents and trademark filing, human capital exploitation,
and intangible investments. To measure a hotel’s innovative activity we include in the
model the following variables: Hum, Int, Pat and Trad. In particular, Hum proxies av-
erage firms’ investments for workers, and it is defined as the logarithm of the ratio be-
tween the total annual labour costs and the number of employees. In the absence of
data on the quality and education of workers for proxying human capital, firm income
statement data can be considered as the best approximation for measuring human re-
sources value (Lev and Schwartz, 1971; Wyatt and Frick, 2010). Labour costs (including
wages and training costs) per worker can be used as a proxy per human capital invest-
ments based on the assumption that firms with higher average labour costs per employee
tend to recruit highly skilled workers (Le and Pomfret, 2011; Sari, Khalifa, and Suyanto,
2016) since wages tend to vary more across firms for differences in human capital than
because of worker rents (Benkovskis, 2018; Hsieh and Klenow, 2009). Besides salaries,
incentives, study grants, awards and social security costs, labour cost measures gener-
ally include a substantial part of recruiting and training costs because they are usually
performed within the company by the firm’s staff (Garcia-Ayuso, Moreno-Campos, and
Sierra-Molina, 2000). Moreover, Lajili and Zeghal (2006) demonstrated that, between
other indices, indicators based on total labour expenditures are associated with higher
abnormal returns, indicating that investors tend to perceive labour costs as a measure
of human capital assets, rewarding it with greater market value. Thus, since the cost
of investing in human capital is proportional to the cost of labour (Rhee and Pyo, 2010;
Sydler, Haefliger, and Pruks, 2014), we can assume labour cost as a proxy variable for
human capital.

Following Bernini and Guizzardi (2010), the amount of firms’ investments in intan-
gibles (Int) is measured as the logarithm of the ratio between total capital (immaterial
plus material) and fixed capital. Therefore, this variable equals 0 for hotels that do not
make any investment in intangible capital while it shows increasing values as invest-
ments in immaterial capital raise. Firms’ innovative activity, competitiveness and suc-
cess may be strongly related to investments in intangible assets (Montresor and Vezzani,
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2016) because they allow new knowledge acquisition and process improvements. Intan-
gible capital represents, among other things, the value of a company’s information and
communication technology (ICT), firm’s organizational capital, and R&D investments.
ICT application in accommodation facilities allows to speed up hotels’ management pro-
cedures, upgrade the quality of economic operations, purchase tourist services online,
communicate hotels’ promotions and sales, recognize customers’ profiles and offer per-
sonalized services, etc., and thus, it supports hotels’ efficient functioning and competi-
tiveness (Jaremen, 2016; Soteriades, Aivalis, and Varvaressos, 2004). On the other hand,
R&D activity performed by hotels aims to raise the performance of existing operations
by means of new or improved technologies, new job profiles, collaborative structures,
and authority systems, to approach new markets and customer segments and to enable
additional advantages to be offered to customers such as more comprehensive facilities
and quality upgraded and speedier services (Hjalager, 2002). Examples of product and
process innovation in the hotel industry concern environmentally sustainable practices,
loyalty programs, computerised management and monitoring systems, robots for clean-
ing and maintenance, self-service devices, electronic marketing, use of ICT in operations,
automatic check-in and check-out, the introduction of touch sensitive machines, virtual
reality and smartphone apps, computerized reservation systems, technologies that en-
sure the mobility of people, luggage and goods such as x rays and iris-recognition, etc
(Hjalager, 2010; Jacob, Florido, and Aguiló, 2010; Jacob and Groizard, 2007; Jiménez-
Zarco, Martínez-Ruiz, and Izquierdo-Yusta, 2011). For a comprehensive review of hotels’
innovative activity see Medina-Munoz, Medina-Munoz, and Zuniga-Collazos (2013).

Focusing on product innovation, patents are a very commonly used indicator be-
cause patenting allows the firm to protect the newly developed products as trade secrets,
giving the innovative firm a competitive advantage (Hameed, Nisar, and Wu, 2021). As
demonstrated by Succurro and Boffa (2018), intellectual property is a powerful and com-
monly used tool in the accommodation sector aiming at developing a tourism brand
strategy and securing firms’ competitive advantage. In this framework, more and more
tourism firms rely on registered patents and/or trademarks to protect their innovative
activity. In particular, trademarks are useful for granting the owner the exclusive use of
the mark and for preventing its use by others, protecting valuable tools such as brands,
logos, catchphrases or slogans. Specifically, trademarks help to protect highly valuable
intangible assets, increasing hotels’ visibility and reputation (Marco-Lajara et al., 2016)
and thus, they can be used as an indicator for service innovation (Gotsch and Hipp,
2012). On the other hand, patents are related to product innovation. In particular, hotels
register patents related to accommodation services such as door security systems, free-
standing swimming pools, and elevators with self-load bearing systems, food and bev-
erage preparation and distribution services, internal organization devices and to tourism
management tools such as data protection systems and electrical devices. Therefore, to
capture intellectual properties related to product innovation we introduce in the model
a dummy variable (Pat) that equals 1 if, in the whole period considered (2011-2019), the
hotel has registered at least one patent, and 0 otherwise. In line with Pat, we measure
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registered trademarks by introducing in the model a dummy variable (Trad) that equals
1 if in the time period considered, the hotel has registered at least one trademark.

Finally, hotel size is proxied by the logarithm of the number of managers of the hotel
(Size) in line with Bernini and Guizzardi (2010, 2012). In addition, enterprises driven by
trained managers tend to use more capital and external finance and have different types
of customers, encouraging innovative practices and the introduction of new technologies
(Porta and Shleifer, 2008). Thus, besides measuring hotel size, the number of managers
can also be considered an additional indicator of innovation other than intangible in-
vestments, human capital, patents, and trademarks. Computing the logarithm implies
obtaining missing values for those hotels with zero managers. Therefore, following the
procedure suggested by Battese (1997), we substitute the missing values in Size with zero
values and we take those hotels having zero managers into consideration including in
the model a dummy variable (DSize) that equals 1 if the number of managers at the hotel
is zero and 0 otherwise.

Besides hotels’ size and innovative activity, we also take hotels’ location into consid-
eration. Specifically, hotels’ location is taken into account including in the model some
municipality dummy variables identifying the destination typology in which the hotel
is located using the tourism municipality classification carried out by ISTAT in 2019. In
particular, the dummy variable City refers to big cities with multidimensional tourism
demand, Cult to cultural, artistic, historical, or landscaped destinations, Sea to maritime
destinations, Lake to lake destinations, Mou to mountain destinations, CSea to destina-
tions that are both maritime and cultural, CMou to destinations that are both moun-
tain and cultural, More to destinations that have more than two characteristics, Nocat
to tourism destinations that cannot be categorized in this scheme, Notur to non-tourism
destinations and Therm refers to thermal destinations and it is identified as the reference
group.

Focusing on external influences, we also consider if and how the factors that con-
tribute to determining the level of efficiency of Italian hotels also affect neighbouring
hotels’ efficiency level, introducing in the model the spatial lag of Size, DSize, Hum, Int,
Pat and Trad. Therefore, the unknown parameters δSize, δDSize, δHum, δInt, δPat and δTrad

allow computing spillover effects affecting firms’ efficiency level resulting from being lo-
cated near to a big facility, near to a hotel making large investments in human capital
and/or in intangibles or near to highly innovative hotels that have registered patents or
trademarks in the period considered. Therefore, differently from previous models es-
timated in tourism literature, this modelling approach allows us to detect the specific
spillover effects affecting hotels’ efficiency level obtaining new clear insights on the ex-
istence of agglomeration and/or competition effects related to the different sources of
hotels’ innovation.

The unknown parameters (β, ρ, θ, ϕ, δ, σ2
u , σ2

v ) can be simultaneously estimated
maximizing the loglikelihood function shown in Eq.(3.18) in Chapter 3 using a numerical
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maximization algorithm implemented in Matlab. In particular, the two variance param-
eters have been reparameterized, following Battese and Coelli (1995), as σ2 = σ2

u + σ2
v

and λ = σ2
u/σ2. Testing various parameter restrictions through likelihood ratio tests, or

using the AIC or BIC information criteria, it can be tested whether it is better the consider
this general model introducing three different kinds of spatial spillover effects or simpler
nested specifications. In particular, if δ, θ = 0 our model reduces to the SARF-TE model
introduced by Tsukamoto (2019), if δ, ϕ = 0 this model becomes the SDF model estimated
by Glass, Kenjegalieva, and Sickles (2016), if δ, ϕ, θ = 0 it simplifies to the SARF model
by Glass, Kenjegalieva, and Sickles (2016), if δ, ϕ, ρ = 0 it becomes the SLXF model esti-
mated by Adetutu et al. (2015), if δ, θ, ρ = 0 this model reduces to the non-spatial SF-TE
model introduced by Battese and Coelli (1995), while if δ, ϕ, θ, ρ = 0 the SDF-STE model
collapses to the traditional non-spatial stochastic frontier model by Aigner, Lovell, and
Schmidt (1977).

Finally, it is well-known that the β estimates obtained from spatial models including
the spatial lag of the dependent variable cannot be interpreted in a meaningful way be-
cause they do not represent marginal effects. Indeed, when the spatial lag of Y is included
in the model, this endogenous interaction enters the computation of the first derivatives
and the β estimates do not coincide anymore with the marginal effects. In particular, the
first derivatives of the dependent variable with respect to labour (L) and capital (K), re-
ferring to a Translog specification, are shown in Eq.(5.3)-(5.4) respectively, using matrix
notation.

∂Y
∂L

= (INT − ρW)−1(INT · (1T
NT ⊗ (βL1NT + 2βLLL + βLKK + βtLt)) + θLW) (5.3)

∂Y
∂K

= (INT − ρW)−1(INT · (1T
NT ⊗ (βK1NT + 2βKKK + βLK L + βtKt)) + θKW) (5.4)

Therefore, starting from the two matrices obtained from the right-hand side of
Eq.(5.3)-(5.4), direct, indirect and total effects can be calculated as proposed by LeSage
and Pace (2009). In particular, direct effects can be found as the average of the diago-
nal element of that matrix, indirect effects can be defined as the average of the sum of
non-diagonal elements, while total effects are the sum of the previous two.

Similarly to the β estimates, we can also compute the direct, indirect, and total ef-
fects of the determinants of firms’ inefficiency on firms’ inefficiency level u following a
procedure similar to the previous one. Indeed, the spatial filter (INT − ρW)−1 also enters
in the first derivative of u with respect to Z and thus, the ϕ and the δ estimates do not
coincide with the direct and indirect effects of a generic determinant Z on u. In particular,
the first derivative of u with respect to a generic determinant of firms’ inefficiency Z is
shown in Eq.(5.5). Starting from the matrix obtained from the right-hand side of Eq.(5.5),
the marginal effects of the Z variables on u can be computed straightforwardly, following
a procedure analogous to the one described above.
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∂u
∂Z

= (INT − ρW)−1(ϕZ INT + δZW) Z = Hum, Int, Pat, Trad, Size (5.5)

5.4 Data and Variables

5.4.1 Data, Cleaning Procedure and Comparison with the Population

The data used for the analysis are collected from the AIDA-Bureau Van Dijk database,
which provides information on the consolidated accounts of Italian companies. In partic-
ular, we concentrated on the ATECO 55 sector, which refers to the Italian accommodation
industry, in the time period 2011-2019. The AIDA databank is largely used in empirical
research because of the high coverage of both the firms observed within sectors and bal-
ance sheet information. In our analysis the sample coverage is on average 12.7% in terms
of firms belonging to the Italian accommodation sector, reaching 12.65% for firms with
less than 200 employees and 57.89% for firms with more than 200 employees. These rates
are much higher than the coverage of alternative surveys such as the ISTAT survey on
Income Accounts of Enterprises, whose sample coverage is on average about 2% for all
Italian firms with less than 250 employees and 79% for all Italian firms over 250 employ-
ees. Moreover, only in the AIDA databank, the geographical localisation is provided,
allowing us to implement our spatial analysis. All these advantages motivated us to use
the AIDA databank for our analysis. Specifically, we downloaded all data referring to
firms belonging to the ATECO55 sector, that is the Italian accommodation sector, in the
time period 2011-2019.

Starting from a sample of more than 20,000 individual observations available yearly,
we ended up with a balanced panel of 5409 firms for each year due to a necessary clean-
ing procedure. Firstly, we dropped all the observations having missing values for the
value-added and for the number of employees in all the years of the analysis and we also
dropped all the observations having negative values for the value-added in at least one
year, ending up with a sample of 14,241 firms. Next, we interpolated the missing values
in the variables value added, number of employees, fixed capital, immaterial capital and
personnel costs and then we dropped all the observations still reporting at least one miss-
ing value in one year after the interpolation procedure. The percentage of interpolated
values is 12.4% in 2019, 5.9% in 2018, 8.7% in 2017, 11.2% in 2016, 13.6% in 2015, 15.1%
in 2014, 16.7% in 2013, 17.3% in 2012, 17.7% in 2011. The mean for the whole period is
13.2%. Afterwards, we dropped all the observations having value-added, fixed capital
and personnel costs less than one thousand and number of employees less than one to
avoid generating missing values computing logarithms. At the end of the procedure, we
obtained a final cleaned sample consisting of 5,409 observations. Finally, starting from
the addresses provided by the AIDA database, we geolocated each observation using
the R package "ggmap" which exploits the Google Geocoding API service of the Google
Cloud Platform Console to find the precise latitude and longitude of each firm.

Table 5.1 and Table 5.2 compare our sample with the corresponding population by
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TABLE 5.1: Comparison between Sample and Population
Number of Firms, Year 2011

Class of Employees

Macroarea 1-5 6-9 10-15 16-19 20-49 50-99 100-199 200+ Tot.

North-West

Pop. 5396 916 579 157 236 35 17 14 7350

Sample 362 189 226 74 129 29 12 9 1029

Cov. 6.71 20.63 39.03 47.13 54.66 82.86 70.59 64.29 14.00

North-East

Pop. 11487 1520 1074 311 584 87 20 5 15088

Sample 448 274 281 115 256 56 9 5 1442

Cov. 3.90 18.03 26.16 36.98 43.84 64.37 45.00 100.00 9.56

Center

Pop. 8405 878 575 149 238 50 16 15 10326

Sample 553 287 267 76 143 36 13 4 1378

Cov. 6.58 32.69 46.43 51.01 60.08 72.00 81.25 26.67 13.34

South

Pop. 5464 546 334 114 207 36 8 2 6711

Sample 402 185 162 87 151 34 8 2 1034

Cov. 7.36 33.88 48.50 76.32 72.95 94.44 100.00 100.00 15.41

Islands

Pop. 2602 262 142 43 76 17 5 2 3149

Sample 241 87 94 27 58 11 5 2 526

Cov. 9.26 33.21 66.20 62.79 76.32 64.71 100.00 100.00 16.70

Tot.

Pop. 33354 4122 2704 774 1341 225 66 38 42624

Sample 2006 1022 1030 379 737 166 47 22 5409

Cov. 6.01 24.79 38.09 48.97 54.96 73.78 71.21 57.89 12.69

Pop.=Population; Cov.=Coverage
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TABLE 5.2: Comparison between Sample and Population
Number of Employees, Year 2011

Class of Employees

Macroarea 1-5 6-9 10-15 16-19 20-49 50-99 100-199 200+ Tot.

North-West

Pop. 11596 6603 6969 2723 6802 14913 2301 6391 58298

Sample 4240 1403 2723 1282 3830 2001 1557 2365 19401

Cov. 36.56 21.25 39.07 47.08 56.31 13.42 67.67 37.01 33.28

North-East

Pop. 22536 11123 13015 5386 16603 5779 2819 2190 79451

Sample 828 2070 3405 1996 7589 3839 1217 2190 22280

Cov. 3.67 18.61 26.16 37.06 45.71 66.43 43.17 100.00 28.04

Center

Pop. 16090 6383 6909 2556 6930 3219 2273 4866 49226

Sample 2006 2146 3267 1319 4104 2267 1922 752 17914

Cov. 12.47 33.62 47.29 51.60 59.22 70.43 84.56 15.45 36.39

South

Pop. 10116 3974 4050 1989 6010 2461 1012 613 30225

Sample 2189 1382 1955 1497 4447 2282 1012 613 15822

Cov. 21.64 34.78 48.27 75.26 73.99 92.73 100.00 100.00 52.35

Islands

Pop. 4619 1894 1714 742 2273 1171 589 922 13924

Sample 551 638 1176 467 1705 804 589 922 7130

Cov. 11.93 33.69 68.61 62.94 75.01 68.66 100.00 100.00 51.21

Tot.

Pop. 64957 29977 32657 13396 38618 27543 8994 14982 231124

Sample 9814 7639 12526 6561 21675 11193 6297 6842 82547

Cov. 15.11 25.48 38.36 48.98 56.13 40.64 70.01 45.67 35.72

Pop.=Population; Cov.=Coverage
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FIGURE 5.1: Sample Coverage Map by Municipalities
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class of employees and macro area. In particular, the former shows the coverage of our
sample referring to the number of firms while the latter concerns the total number of em-
ployees. Population data were retrieved from the Industry and Services Census carried
out by Istat in 2011. Table 5.1 shows that firms’ coverage rate is lower for smaller hotels
(on average 6.01% for hotels from 1 to 5 employees) while it increases considering bigger
hotels, reaching the maximum value of 73.78% for hotels with 50-99 employees. Overall,
the representativeness of our sample is good, covering the 12.69% of the ATECO55 popu-
lation. Considering the number of employees in 2011, the coverage rate of our sample is
very good, reaching a value of 35.72% overall. As in the previous case, the coverage rate
is lower for smaller hotels (15.11%) compared to bigger ones but, considering the total
number of employees, the difference is less remarkable. Moreover, both for the number
of firms and for the total number of employees, the coverage rate is higher for hotels lo-
cated in the South of Italy and in the Islands while it is smaller for firms located in the
North-East of Italy.

Examining hotels’ coverage rate by Italian municipalities, Figure 5.1 shows that our
sample is quite evenly distributed in the Italian territory. In particular, 2969 out of 7904
Italian municipalities in the year 2018 do not have any tourism facility in their territory
(undefined category). Considering the coverage rate of our sample at the municipal level,
in 3528 municipalities of the remaining 4935 the coverage rate is smaller than 3%, while
in 1407 municipalities it is higher than 3%.

5.4.2 Descriptive Statistics

Table 5.3 describes all the variables used in the analysis (i.e. output, inputs and ineffi-
ciency determinants) and it shows some descriptive statistics. Only 2.1% of hotels from
our sample are very small hotels (i.e. hotels with a number of managers equal to zero)
and this is due to the data cleaning procedure that excluded the very small enterprises
from our sample (i.e. hotels with value-added, fixed capital and personnel costs less than
one thousand and the number of employees less than one). This feature can also be ob-
served looking at the 10th percentile of the value-added (more than 68 thousand euros)
which is quite near to the mean value (more than 323 thousand euros). Looking at the
number of employees, the 10th percentile is equal to 2 employees, while the mean and
the 90th percentile are equal to 8.67 and 33.12, respectively. Concentrating on the inno-
vative activity undertaken by firms, it can be observed that Hum, which proxies human
capital, has a very concentrated distribution between the 10th and the 90th percentiles,
with a mean cost for employees equal to more than 22 thousand euros per year. This
variable reflects hotels’ managers’ propensity to invest few resources in human capital,
pay low wages, invest little money in training and courses, and hire employees with low
educational levels. Moreover, many hotels from our sample invest very little money in
intangible capital, indeed, Int, proxying investments in intangible capital, has zero value
for 19.65% of units in our sample while the median annual expenditure on intangibles
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equals 18 thousand euros overall and 37 thousand euros for hotels investing in intangi-
bles. Nevertheless, the distribution of Int is positively skewed and the 90th percentile
equals 425 thousand euros per year, indicating that hotels’ innovative activity is higher
than usually believed. In addition, it can be noticed that the 16.8% and the 12.1% of ho-
tels from our sample have registered, in the time period considered, at least one patent
or trademark, respectively. Concentrating on the typology of destinations, according to
the municipality classification carried out by ISTAT, 20.4% of tourism facilities from our
sample are located in big cities, 20.1% are in maritime and cultural destinations, 15.6%
are in maritime destinations, 11.8% are not in categorizable destinations, 9.5% are in cul-
tural, landscaped, historical, or artistic destinations, 6.2% are located in destinations that
have more than two vocations, 5.6% are in cultural and mountain destinations, 4.9% are
in thermal destinations, 2.8% are in lake destinations, 2.6% are in mountain destinations
and only 0.5% of hotels are located in non-tourism destinations.

Figure 5.2 shows how firms’ innovative activity is distributed on the Italian territory
at the municipal level. In particular, the "undefined" category refers to municipalities that
do not contain any hotels while the "not in sample" category refers to municipalities that
are not covered by our sample data. Considering the remaining municipalities, Figure 5.2
shows that hotels investing in human capital are predominantly located in the North of
Italy (specifically in Trentino Alto Adige, on the coast of Veneto and in Emilia-Romagna)
and in the Center of Italy, mainly in Tuscany, Umbria, and Lazio. Concentrating on the
South of Italy, the Apulia region, the South of Sicily, and the Northern and Southern coast
of Sardinia are the areas in which hotels make larger investments in human capital. The
distribution of Int is similar to the one of Hum across Italy. The main difference concerns
the area of Trentino Alto Adige and in general all the North-East of Italy in which hotels
do not make as many investments in intangible capital as they do in human resources.
Conversely, hotels located on the coast of Campania tend to invest more in Int than in
human capital. Finally, in most municipalities, hotels do not register any patent (1046
municipalities) or trademark (1136 municipalities). As for Hum and Int, patenting is
more common in some municipalities of the North-East of Italy, of the Apulia region, and
of the West coast of Sicily while municipalities in which hotels register trademarks more
frequently are mostly located in Trentino Alto Adige, in the Center of Italy, in Apulia,
and in the Southern tip of Sicily and Sardinia.

Finally, Figure 5.3 shows the Local Moran statistic (LISA) significance cluster map at
a significance level of 5%, allowing to identify local geographical clusters and determin-
ing the degree of spatial dependence. Considering all the observations having a value-
added greater than zero in the year 2019 (7508), it can be noticed that only 1842 hotels
are not affected at all by local spatial dependence at a significance level of 5%. On the
other hand, local clusters located in the North-Center of Italy are high-high and low-high
clusters, indicating that hotels in this area are mainly surrounded by hotels having a high
level of value-added. Conversely, in the South-Center of Italy, there are low-low and
high-low clusters, suggesting that hotels located in the South-Center of Italy are mostly
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TABLE 5.3: Variables Description

Variable Definition Min 10th Perc. Mean 90th Perc. Max SD

Y log(ValueAdded) 0.001 4.23 5.78 7.32 12.01 1.25

L log(NumberEmployees) 0 0.69 2.16 3.50 7.47 1.08

K log(FixedCapital) 0 3.47 6.37 8.86 13.40 2.18

t Time 1 1 5 9 9 2.58

Hum log
(

PersonnelCosts
NumberEmployees

)
0 2.25 3.10 3.76 7.56 0.73

Int log
(

TotalCapital
FixedCapital

)
0 0 0.31 3.76 7.67 0.60

Pat 1 if PatentRights > 0 0 - 0.17 - 1 0.37

Trad 1 if RegisteredTrademarks > 0 0 - 0.12 - 1 0.33

Size log(NumberManagers) 0 0 0.54 1.39 3.76 0.67

DSize 1 if NumberManagers=0 0 - 0.02 - 1 0.14

City 1 if BigCity 0 - 0.20 - 1 0.40

Cult 1 if Cultural 0 - 0.10 - 1 0.29

Sea 1 if Sea 0 - 0.16 - 1 0.36

Lake 1 if Lake 0 - 0.03 - 1 0.17

Mou 1 if Mountain 0 - 0.03 - 1 0.16

CSea 1 if Cultural&Sea 0 - 0.20 - 1 0.40

CMou 1 if Cultural&Mountain 0 - 0.06 - 1 0.23

Therm 1 if Thermal 0 - 0.05 - 1 0.12

More 1 if MoreThanTwoVocations 0 - 0.06 - 1 0.24

Nocat 1 if NotCategorizable 0 - 0.12 - 1 0.32

Notur 1 if NonTourismDestination 0 - 0.01 - 1 0.07
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Int

FIGURE 5.2: Innovation across Italian Municipalities
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FIGURE 5.3: LISA Significance Cluster Map: Value Added 2019
(5% Significance Level)
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nearby to hotels with low levels of value-added. The area around Florence, in which
there are significant low-low and high-low clusters, is the only exception to this clear
separation into two areas characterized by two distinct typologies of local clusters (i.e.
high-high and low-high clusters in the North-Center and low-low and high-low clusters
in the South-Center of Italy).

5.5 Results

5.5.1 Estimation Results and Model Selection

Table 5.4 shows the estimation results of the SDF-STE model and of all the nested models,
starting from the two non-spatial specifications (SF and SF-TE), passing to spatial mod-
els that do not take the determinants of technical inefficiency into consideration (SLXF,
SARF, and SDF) and ending with the SARF-TE that includes a model for the determinants
of firms’ inefficiency but that only considers the spatial lag of Y as a spatial effect. Com-
paring the estimation results of the nested models, it can be noticed that the estimated β

and ϕ coefficients are quite robust to different model specifications. Nevertheless, the β

and the ϕ estimates cannot be interpreted in a meaningful way when the spatial lag of Y is
included in the model because they no longer represent simple partial derivatives. Thus,
in the next subsection, the related marginal effects are discussed separately. Consider-
ing the functional form of the production frontier, the interaction parameter βLK and the
parameters related to squared labour and capital (βLL and βKK) are always significantly
different from zero at a 1% significance level indicating that the translog specification
does not reduce to a Cobb-Douglas one. This insight is confirmed by the result of the
LR test that indicates rejecting the null hypothesis of reducing the model to a simpler
Cobb-Douglas specification at a 1% significance level (the test statistic equals 2214.9).

Concentrating on the spatial autoregressive parameter, it can be noticed that the es-
timates of ρ are positive and significant at the 1% significance level across all the models
introducing the SAR term, indicating that positive spillover effects occur at the global
level in the Italian accommodation sector. Moreover, ρ appears to be almost doubled if
the determinants of firms’ efficiency are not included in the model specification, in fact,
it equals 0.352 and 0.168 using respectively the SARF and the SARF-TE model while it
equals 0.604 and 0.351 using the SDF and the SDF-STE specification, respectively. In-
deed, as already observed by Tsukamoto (2019) for the SARF and the SARF-TE models,
when the determinants of firms’ efficiency are not considered in spatial stochastic frontier
models, the spatial autoregressive parameter absorbs some of the heterogeneity related
to technical inefficiency and it tends to be overestimated.

To compare the different nested models, different criteria can be used, such as the
Akaike Information Criteria (AIC), the Schwarz/Bayesian Information Criteria (BIC) or
alternatively, some Likelihood Ratio Tests for nested models can be implemented. Look-
ing at the AIC and BIC values contained in Table 5.5 for all the estimated nested models,
it can be noticed that the model specification that minimizes both information criteria is
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TABLE 5.4: Nested Models Results

SF SF-TE SLXF SARF SDF SARF-TE SDF-STE
Coef. t-stats Coef. t-stats Coef. t-stats Coef. t-stats Coef. t-stats Coef. t-stats Coef. t-stats

β0 3.635*** 38.63 6.665*** 7.68 2.929*** 30.17 1.630*** 6.46 1.404*** 16.06 6.095*** 15.41 5.467*** 13.71

βL 0.633*** 38.63 0.665*** 85.11 0.629*** 30.17 0.626*** 61.35 0.628*** 60.42 0.660*** 83.53 0.662*** 84.87

βK 0.070*** 10.64 0.077*** 17.04 0.071*** 10.95 0.073*** 12.03 0.074*** 12.11 0.077*** 17.13 0.077*** 17.20

βLL 0.090*** 42.76 0.057*** 40.43 0.089*** 44.50 0.089*** 49.33 0.090*** 49.78 0.057*** 40.50 0.057*** 40.57

βKK 0.019*** 31.50 0.010*** 25.00 0.019*** 31.17 0.019*** 37.00 0.019*** 37.20 0.010*** 25.00 0.010*** 22.50

βLK -0.050*** -33.40 -0.029*** -26.46 -0.050*** -33.60 -0.051*** -36.43 -0.051*** -36.57 -0.030*** -26.82 -0.029*** -29.00

βt 0.067*** 10.08 0.005 0.96 0.082*** 12.36 0.059*** 9.22 0.024*** 3.97 0.002 0.43 -0.005 -1.09

β2t -0.007*** -14.00 -0.001** -2.75 -0.009*** -17.40 -0.007*** -11.83 -0.004*** -7.60 -0.001*** -3.00 -0.001* -1.25

βtL 0.006*** 5.08 0.004*** 4.88 0.006*** 5.25 0.006*** 6.40 0.006*** 5.64 0.004*** 5.13 0.004*** 5.00

βtK 0.001** 2.00 0.001*** 3.50 0.001** 1.83 0.001** 2.00 0.001** 1.80 0.001** 3.25 0.001*** 3.00

ρ - - - - - - 0.352*** 10.14 0.604*** 31.30 0.168*** 8.48 0.351*** 18.30

θL - - - - 0.175*** 6.98 - - -0.340*** -15.10 - - -0.216*** -11.33

θK - - - - 0.049*** 4.64 - - -0.069*** -7.20 - - 0.006 0.78

ϕ0 - - 5.363*** 6.22 - - - - - - 5.784*** 14.64 5.251*** 13.23

ϕhum - - -0.653*** -210.74 - - - - - - -0.646*** -208.42 -0.647*** -208.58

ϕInt - - -0.116*** -29.05 - - - - - - -0.116*** -29.82 -0.115*** -29.54

ϕpat - - -0.054*** -9.38 - - - - - - -0.054*** -9.31 -0.054*** -9.53

ϕtrad - - -0.039*** -5.91 - - - - - - -0.037*** -5.55 -0.038*** -5.78

ϕsize - - -0.039*** -11.54 - - - - - - -0.037*** -10.46 -0.037*** -10.57

ϕdsize - - 0.069*** 4.73 - - - - - - 0.077*** 5.33 0.081*** 5.66

δhum - - - - - - - - - - - - 0.160*** 7.31

δInt - - - - - - - - - - - -0.072*** -2.71

δpat - - - - - - - - - - - - 0.099*** 2.80

δtrad - - - - - - - - - - - - 0.039 0.97

δsize - - - - - - - - - - - - -0.013 -0.70

δdsize - - - - - - - - - - - - -0.358*** -3.85

ϕcity - - -0.070*** -6.50 - - - - - - -0.076*** -7.04 -0.064*** -5.94

ϕcult - - 0.041*** 3.56 - - - - - - 0.008 0.73 0.016* 1.43

ϕsea - - -0.071*** -6.57 - - - - - - -0.109*** -10.07 -0.095*** -8.89

ϕlake - - -0.149*** -9.64 - - - - - - -0.160*** -10.36 -0.139*** -9.06

ϕmou - - 0.015 0.96 - - - - - - -0.017*** -1.09 -0.007 -0.45

ϕcsea - - -0.057*** -5.39 - - - - - - -0.099*** -9.47 -0.085*** -8.12

ϕcmou - - -0.058*** -4.50 - - - - - - -0.075*** -5.89 -0.065*** -5.04

ϕmore - - -0.040*** -3.17 - - - - - - -0.064*** -5.15 -0.047*** -3.77

ϕnocat - - 0.072*** 6.52 - - - - - - 0.041*** 3.69 0.052*** 4.71

ϕnotur - - 0.051* 1.60 - - - - - - 0.002 0.06 0.015 0.48

ϕtherm - - omit. - - - - - - - omit. - omit. -

σ2 0.705 - 0.203 - 0.694 - 0.678 - 0.660 - 0.200 - 0.199 -

λ 0.621 - 0.035 - 0.614 - 0.613 - 0.586 - 0.882 - 0.879 -

TE 0.64 - 0.67 - 0.64 - 0.64 - 0.64 - 0.61 - 0.62 -

∗ ∗ ∗ : pvalue ≤ 0.01; ∗∗ : pvalue ≤ 0.05; ∗ : pvalue ≤ 0.10; omit=omitted
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TABLE 5.5: AIC, BIC and Likelihood Ratio Tests

Model LL AIC BIC LL Test: H0 Num. Constraints Test Statistic Decision

SF -48071.51 96167.02 96272.54 δ, ϕ, θ, ρ = 0 26 36419.22 Reject

SF-TE -30197.16 60452.32 60707.32 δ, θ, ρ = 0 8 670.52 Reject

SLXF -47905.03 95838.06 95961.16 δ, ϕ, ρ = 0 24 36086.26 Reject

SARF -47414.20 94854.40 94968.71 δ, ϕ, θ = 0 25 35104.60 Reject

SDF -47221.12 94472.24 94604.14 δ, ϕ = 0 23 34718.44 Reject

SARF-TE -29944.60 59949.20 60212.99 δ, θ = 0 8 165.40 Reject

SDF-STE -29861.90 59799.80 60133.95 - - - -

the SDF-STE. Moreover, also using the Likelihood Ratio Test, we always reject the null
hypothesis of reducing the number of parameters of the SDF-STE model in favour of a
simpler specification. Therefore, our novel spatial estimator is the preferred one, being
the one that best fits the data. For completeness, in Appendix B we also estimate the
SDF-CSD model developed in this thesis using data on Italian hotels. However, while
through the SDF-STE we are able to measure the specific spatial effects arising from each
inefficiency determinant obtaining precise insights on spatial spillovers originating from
each source of hotels’ innovative activity, through the SDF-CSD we are only able to cap-
ture the overall level of spatial dependence related to hotels’ efficiency, hiding important
insights which instead have a central role in this empirical application given our research
objectives. Moreover, also the Vuong test for non-nested models and the Takeuchi infor-
mation criteria shown in Table B.1 confirms a better fit of the SDF-STE model compared
to SDF-CSD using these data.

5.5.2 Marginal Effects

Focusing on the marginal effects related to the preferred SDF-STE model, both direct and
indirect effects as well as total effects can be computed, as shown in Table 5.6. The direct
effects of labour and capital on hotels’ value-added are equal to 0.743 and 0.136, respec-
tively, while the indirect effects equal 0.071 and 0.082, respectively. Therefore, while the
direct effect of labour is much greater in magnitude than the one of capital (i.e. the ac-
commodation sector is a labour-intensive industry), the indirect effect of capital is slightly
higher than the one of labour, meaning that having bigger hotels as neighbours positively
influences firms’ productivity more than having as neighbours hotel that invest in labour.
Finally, the total effects of labour and capital are equal to 0.814 and 0.218, respectively.
Hence, the return to scale parameter equals 1.032 (significantly different from 1 at a 5%
significance level), indicating the presence of increasing returns to scale. Considering
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TABLE 5.6: Marginal Effects

Variable Direct Effect Indirect Effect Total Effect

Coef. t-stats Coef. t-stats Coef. t-stats

L 0.743*** 297.04 0.071*** 5.14 0.814*** 81.39

K 0.136*** 72.11 0.082*** 13.84 0.218*** 32.61

t 0.006*** 6.96 0.004*** 7.34 0.010*** 7.54

Hum -0.647*** -47.59 -0.103*** -5.30 -0.750*** -24.12

Int -0.116*** -9.30 -0.171*** -8.91 -0.287*** -10.04

Pat -0.054*** -4.22 0.122*** 4.78 0.069** 1.99

Trad -0.037*** -2.85 0.039* 1.31 0.002 0.05

Size -0.037*** -3.10 -0.040*** -2.76 -0.077*** -3.26

∗ ∗ ∗ : pvalue ≤ 0.01; ∗∗ : pvalue ≤ 0.05; ∗ : pvalue ≤ 0.10

technical change over years, it can be observed that the coefficient related to time is posi-
tive and significant considering both direct, indirect, and total effects, indicating that the
production frontier shifts upward during time thanks to technological change.

Moving to the determinants of hotels’ efficiency, Hum, Int, Pat, Trad, and Size, all
have a negative and significant direct effect on firm inefficiency level indicating that
all the different sources of internal innovation considered in this study, as well as size,
positively influence hotels’ performance. Human capital (−0.647) is the factor that con-
tributes most to negatively affecting the inefficiency level of Italian hotels followed by
investments in intangible capital (−0.116). Indeed, human capital is a key source of in-
novation in the accommodation industry because of the intangible nature of this sector
and of the simultaneity of production and consumption in service delivery (Ottenbacher,
2007). Specifically, in order to obtain a 10% increase in efficiency, Italian hotels need to
invest about 215 thousand euros in intangibles or alternatively, to increase labour in-
vestments per worker by around 3.60 thousand euros yearly. Moreover, in line with the
results of Orfila-Sintes, Crespì-Cladera, and Martinez-Ros (2005), we find that hotels’ size
is positively associated with efficiency as larger firms have the advantage of economies of
scale in innovation activities (Camisón-Zornosa et al., 2004). Finally, also the direct effects
related to registered patents and trademarks result to be positively associated with hotels’
efficiency level, increasing firm visibility and protecting product and service innovations
(Marco-Lajara et al., 2016).

Considering the indirect effects, our findings indicate that all the different sources
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of innovation considered in the study significantly impact neighbouring accommodation
facilities but with different effects. Indeed, while we detect positive spillovers related to
firms’ intangible investments, size, and human capital investments, innovative activity
associated with patents and trademarks generates negative spatial effects among neigh-
bouring hotels. Among the sources of innovation that generate positive feedback, Int is
the variable that contributes the most to positively affecting neighbours (−0.171). The
magnitude of the coefficient related to the indirect marginal effect of Int is greater than
the one associated with the direct effect, indicating that overall, positive spillovers gener-
ating from hotels’ innovative activity overcome direct internal effects. According to our
results, hotels benefit more from the innovative activity performed by neighbours than
from internal investments highlighting the fundamental role played by the few innova-
tors in the sector as knowledge and innovation disseminators. Thus, despite the difficulty
of innovating inside the firm due to the peculiarities of this industry, in the accommoda-
tion sector, it is fairly easy to adopt new knowledge coming from neighbours because the
operational processes are quite evident and also the technological level is basic (Decelle,
2006; Hjalager, 2002; Weidenfeld, Williams, and Bultler, 2010).

Besides having neighbours performing an intense innovative activity, also having
nearby hotels that invest in human capital generates a positive and significant spillover
effect (−0.103) but differently from Int, the direct effect associated with Hum greatly ex-
ceeds the indirect one. Therefore, positive feedback effects also generate from skilled hu-
man resources in neighbouring accommodation facilities thanks to social contact, shared
ideas between individuals, learning by observation, human relationships, and imitation
(Yang, 2012). However, internal investments in human capital retain a key role in this sec-
tor due to their direct connection with customer satisfaction, service quality, and better
organizational performance that in turn lead to increased hotel performance (Cho et al.,
2006). Finally, considering hotel size, the estimated coefficient for the indirect marginal
effect of Size indicates that, in line with the positive indirect effect related to capital, hav-
ing big hotels as neighbours positively influences a hotel’s performance. Indeed, bigger
hotels tend to be more innovative with respect to smaller and medium-sized hotels gen-
erating positive spillover effects that are beneficial to all neighbouring accommodation
facilities.

On the other hand, the indirect effects of Pat and Trad on hotels’ inefficiency are
both significant and positive (0.122 and 0.039, respectively), indicating that hotels are
disadvantaged when neighbouring firms registered trademarks or patents in the pre-
vious years. Therefore, the protective function performed by patents and trademarks
is found to be effective, because, in addition to providing innovative firms with a pro-
ductivity advantage, it also weakens neighbouring hotels through negative spillover ef-
fects. These results are in line with Haschka and Herwartz (2020) who demonstrated that
patent blocking might be crucial for innovative firms to strategically secure their techno-
logical expertise, generating negative competitive spillovers. Specifically, they showed
that there is a negative association between the successful performance of competitors
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and the efficiency of the innovative process of peers, proxied by patents. Indeed, patents
give innovative firms the exclusive right to commercialize the newly patented products
for a certain period of time. Similarly, registered trademarks are used to protect hotels’
highly valuable intangible assets and to differentiate firm services from potentially com-
peting services (Hameed, Nisar, and Wu, 2021).

To sum up, our results suggest that while the performance of Italian hotels is mainly
boosted by skilled labour and qualified human resources considering internal factors,
positive spatial effects are primarily linked to capital, and in particular, to intangible
capital, as far as external factors are concerned. Thus, despite the Italian accommodation
sector results to be a labour-intensive sector, also investments in fixed and intangible
capital are fundamental to driving the regeneration of this industry thanks to positive
spatial externalities arising from them.

5.5.3 TE Scores

Starting from the estimates of the SDF-STE model shown in Table 5.4, the technical effi-
ciency scores can be computed for each firm belonging to the sample and for each time
period as shown in Eq.(3.30) in Chapter 3 adapting the definition given by Battese and
Coelli (1988) to the SDF-STE model. The distribution of the TE scores is shown in the
upper panel of Figure 5.4. The mean value of the TE scores is 0.62 along all the time pe-
riods considered and their distribution is approximately normal with a heavier right tail
with respect to the left one. Considering the time trend of the average yearly TE scores,
it can be noticed from the lower panel of Figure 5.4 that the level of technical efficiency
of Italian hotels increased from 2012 to 2013, then remained quite stable until 2017, and
in the end, it decreased again in the last two years of the analysis.

Considering the geographical distribution of the TE scores across Italy, Figure 5.5
shows the average TE scores per municipality. It can be noticed that the most efficient
areas of Italy in terms of the accommodation sector are the regions of Trentino-Alto-
Adige, Lombardy, Emilia-Romagna, Tuscany, Umbria, and Apulia and the coastal ar-
eas of Veneto, Lazio, Sicily, and Sardinia. In general, hotels located both on the Tyrrhe-
nian and on the Adriatic coast reach high efficiency scores, while the only internal areas
achieving good efficiency levels belong to the regions of Trentino-Alto-Adige, Emilia-
Romagna, Tuscany, and Umbria.

Finally, Figure 5.6 represents the Lisa significance cluster map for the TE scores in
the year 2019 in order to investigate whether significant local spatial dependence oc-
curs across nearby tourism facilities in terms of efficiency levels. The results from this
exploratory spatial analysis reveal that the majority of Italian hotels are affected by sig-
nificant spatial dependence at a 5% significance level. Similarly to Figure 5.3 for the
value-added, also considering Italian hotels’ efficiency levels it appears that the North
of Italy is mostly characterized by high-high and low-high clusters, while low-low and
high-low clusters are mostly located in the Centre and in the South of Italy. Despite this
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FIGURE 5.4: TE Scores: Distribution and Time Trend
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FIGURE 5.5: TE Municipality Map
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FIGURE 5.6: LISA significance cluster map: TE Scores 2019
(5% Significance Level)
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clear division, there are some exceptions such as the area around Rome and the Tuscan
archipelago which are mostly characterized by the presence of high-high and low-high
clusters in spite of being located in the Center of Italy. Looking at the differences with
respect to Figure 5.3, it can be noticed that, in the Romagna Riviera, despite the pres-
ence of significant high-high and low-high productivity clusters, hotels mainly belong
to low-low and high-low clusters considering their efficiency level proxied by the TE
scores. Conversely, the area of Rome results to be characterized by the presence of low-
low and high-low productivity clusters and high-high and low-high efficiency clusters.
Moreover, spatial dependence is not significant in the central internal areas of Italy in
terms of productivity while significant low-low and high-low clusters occur considering
the TE scores. On the other hand, the region of Liguria, the Southern coast of Sardinia,
and the areas around Naples and Florence are characterized by significant productivity
clusters while there is no significant local spatial dependence in the efficiency level of
accommodation facilities located in these territories.

TABLE 5.7: Spatial Weight Matrices: Descriptive Statistics

Mean wij Min neigh. 10th perc. Mean neigh. 90th perc. Max neigh. Islands

W 0.0093 5409 5409 5409 5409 5409 0

W200t 0.0074 14 247 986.03 1603 2030 0

W100t 0.0066 5 104 341.29 526 733 0

W50t 0.0062 0 34 158.61 332 442 1

W30t 0.0059 0 12 98.53 263 412 4

W400n 0.0079 400 400 400 400 400 0

W250n 0.0073 250 250 250 250 250 0

W100n 0.0059 100 100 100 100 100 0

W50n 0.0049 50 50 50 50 50 0

W30n 0.0042 30 30 30 30 30 0

Mean wij is calculated before row-normalization;
neigh=neighbours; perc.=percentile

5.5.4 Does distance matter in shaping agglomeration externalities?

The effect of agglomeration externalities can vary depending on the spatial distance con-
sidered (Arbia, 1989). Indeed, it is interesting to evaluate if the magnitude of the spatial
effects detected before is robust to different specifications of the spatial weight matrix.
This further analysis can allow us to precisely identify how the indirect effects are af-
fected by the geographical distance considered. This information can be very relevant
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TABLE 5.8: Sensitivity to the Choice of W: Inverse Distance Truncated W

W W200t W100t W50t W30t

Coef. t-stats Coef. t-stats Coef. t-stats Coef. t-stats Coef. t-stats

β0 5.467*** 13.71 5.876 14.86*** 6.058*** 15.07 6.244*** 15.27 6.439*** 15.35

βL 0.662*** 84.87 0.661*** 84.76 0.662*** 84.83 0.661*** 84.76 0.661*** 84.71

βK 0.077*** 17.20 0.078*** 17.29 0.078*** 17.27 0.078*** 17.29 0.078*** 17.29

βLL 0.057*** 40.57 0.057*** 40.71 0.057*** 40.64 0.057*** 40.64 0.057*** 40.57

βKK 0.010*** 22.50 0.010*** 25.00 0.01*** 25.00 0.01*** 25.00 0.01*** 25.00

βLK -0.029*** -29.00 -0.030*** -29.60 -0.030*** -29.70 -0.030*** -29.60 -0.029*** -29.50

βt -0.005 -1.09 -0.001 -0.24 -0.001 -0.20 -0.001 -0.09 0.001 0.23

β2t -0.001* -1.25 -0.001** -2.00 -0.001** -2.00 -0.001** -2.00 -0.001** -2.00

βtL 0.004*** 5.00 0.004*** 5.00 0.004*** 5.00 0.004*** 5.00 0.004*** 5.00

βtK 0.001*** 1.25 0.001*** 3.00 0.001*** 3.00 0.001*** 3.00 0.001*** 3.00

ρ 0.351*** 18.30 0.253*** 18.06 0.212*** 17.82 0.171*** 9.23 0.132*** 15.13

θL -0.216*** -11.33 -0.146*** -10.57 -0.119*** -10.15 -0.091*** -9.23 -0.064*** -7.47

θK 0.006 0.78 0.008* 1.42 0.007* 1.49 0.005* 1.26 0.001 0.14

ϕ0 5.251*** 13.23 5.402*** 13.71 5.493*** 13.70 5.575*** 13.67 5.625*** 13.43

ϕhum -0.647*** -208.58 -0.646*** -208.26 -0.0645*** -208.06 -0.644*** -207.74 -0.644*** -207.87

ϕInt -0.115*** -29.54 -0.116*** -29.62 -0.115*** -29.59 -0.115*** -29.56 -0.115*** -29.56

ϕpat -0.054*** -9.53 -0.054*** -9.51 -0.053*** -9.33 -0.053*** -9.30 -0.053*** -9.30

ϕtrad -0.038*** -5.78 -0.038*** -5.89 -0.039*** -5.92 -0.039*** -6.00 -0.038*** -5.91

ϕsize -0.037*** -10.57 -0.036*** -10.37 -0.037*** -10.66 -0.038*** -10.94 -0.039*** -11.09

ϕdsize 0.081*** 5.66 0.080*** 5.58 0.079*** 5.51 0.080*** 5.54 0.077*** 5.35

δhum 0.160*** 7.31 0.116*** 7.55 0.085*** 6.50 0.055*** 4.95 0.036*** 3.74

δInt -0.072*** -2.71 -0.061*** -3.23 -0.060*** -3.71 -0.052*** -3.84 -0.032*** -2.69

δpat 0.099*** 2.80 0.094*** 3.51 0.070*** 3.03 0.037** 1.90 0.022* 1.31

δtrad 0.039 0.97 0.033 1.10 0.035* 1.34 0.020 0.89 0.009 0.44

δsize -0.013 -0.70 -0.026** -2.02 -0.020** -1.73 -0.012 -1.20 -0.015** -1.77

δdsize -0.358*** -3.85 -0.230*** -3.43 -0.182*** -3.14 -0.134*** -2.73 -0.108*** -2.59

ϕcity -0.064*** -5.94 -0.069*** -6.46 -0.066*** -6.22 -0.062*** -5.87 -0.059*** -5.63

ϕcult 0.016* 1.43 0.019** 1.62 0.017* 1.52 0.019** 1.63 0.024** 2.13

ϕsea -0.095*** -8.89 -0.096*** -8.94 -0.095*** -8.83 -0.089*** -8.41 -0.083*** -7.81

ϕlake -0.139*** -9.06 -0.133*** -8.67 -0.131*** -8.55 -0.134*** -8.76 -0.133*** -8.67

ϕmou -0.007 -0.45 -0.004 -0.25 -0.011 -0.72 -0.019 -1.25 -0.012 -0.78

ϕcsea -0.085*** -8.12 -0.085*** -8.38 -0.086*** -8.30 -0.080*** -7.71 -0.072*** -6.96

ϕcmou -0.065*** -5.04 -0.055*** -4.32 -0.060*** -4.66 -0.063*** -4.84 -0.061*** -4.77

ϕmore -0.047*** -3.77 -0.045*** -3.67 -0.045*** -3.68 -0.044*** -3.59 -0.040*** -3.24

ϕnocat 0.052*** 4.71 0.053*** 4.78 0.053*** 4.84 0.053*** 4.86 0.0542*** 4.97

ϕnotur 0.015 0.48 0.012 0.39 0.013 0.41 0.012 0.38 0.011 0.34

ϕtherm omit. omit. omit. omit. omit.

σ2 0.199 - 0.199 - 0.199 - 0.199 - 0.200 -

λ 0.879 - 0.888 - 0.886 - 0.885 - 0.882 -

∗ ∗ ∗ : pvalue ≤ 0.01; ∗∗ : pvalue ≤ 0.05; ∗ : pvalue ≤ 0.10; omit=omitted
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TABLE 5.9: Sensitivity to the Choice of W: Nearest Neighbours

W400n W250n W100n W50n W30n

Coef. t-stats Coef. t-stats Coef. t-stats Coef. t-stats Coef. t-stats

β0 5.969** 15.63 6.046*** 16.27 6.205*** 16.31 6.359*** 15.99 6.429*** 16.38

βL 0.662*** 84.87 0.662*** 84.87 0.662*** 84.87 0.662*** 84.87 0.663*** 85.00

βK 0.078*** 17.33 0.078*** 17.33 0.078*** 17.33 0.078*** 17.33 0.078*** 17.33

βLL 0.057*** 40.71 0.057*** 40.71 0.057*** 40.71 0.057*** 40.71 0.057*** 40.71

βKK 0.010*** 25.00 0.010*** 25.00 0.010*** 25.00 0.010*** 25.00 0.010*** 25.00

βLK -0.030*** -30.00 -0.03*** -30.00 -0.03*** -30.00 -0.03*** -30.00 -0.03*** -30.00

βt -0.001** -0.23 -0.001 -0.23 -0.001 -0.23 -0.001 -0.23 -0.001 -0.23

β2t -0.001*** -2.50 -0.001*** -2.50 -0.001*** -2.50 -0.001*** -2.50 -0.001*** -2.50

βtL 0.004*** 5.00 0.004*** 5.00 0.004*** 5.00 0.004*** 5.00 0.004*** 5.00

βtK 0.001*** 2.50 0.001*** 2.50 0.001*** 2.50 0.001*** 2.50 0.001*** 2.50

ρ 0.234*** 18.14 0.217*** 18.08 0.180*** 17.31 0.153*** 19.15 0.131*** 15.23

θL -0.132*** -10.39 -0.122*** -10.34 -0.101*** -9.90 -0.081*** -10.98 -0.067*** -7.98

θK 0.005*** 0.94 0.004 0.82 0.004 0.93 0.003 1.03 0.006** 1.71

ϕ0 5.442** 14.29 5.481*** 14.80 5.546*** 14.62 5.633*** 14.33 5.661*** 14.45

ϕhum -0.645*** -208.06 -0.645*** -208.06 -0.644*** -207.74 -0.644*** -207.74 -0.644*** -207.74

ϕInt -0.115*** -29.49 -0.115*** -29.49 -0.115*** -29.49 -0.116*** -29.49 -0.116*** -29.74

ϕpat -0.053*** -9.30 -0.053*** -9.30 -0.053*** -9.30 -0.052*** -9.30 -0.052*** -9.12

ϕtrad -0.038*** -5.85 -0.038*** -5.85 -0.039*** -6.00 -0.039*** -6.00 -0.039*** -6.00

ϕsize -0.037*** -10.57 -0.038*** -10.86 -0.038*** -10.86 -0.038*** -10.86 -0.038*** -10.86

ϕdsize 0.080*** 5.56 0.080*** 5.56 0.079*** 5.49 0.079*** 5.49 0.078*** 5.42

δhum 0.097*** 6.78 0.084*** 6.27 0.062*** 5.30 0.044*** 5.90 0.031*** 3.23

δInt -0.050*** -2.91 -0.052*** -3.25 -0.057*** -4.04 -0.044*** -4.56 -0.039*** -3.45

δpat 0.067*** 2.73 0.046** 2.02 0.024 1.22 0.020* 1.37 0.012 0.75

δtrad 0.045** 1.58 0.044** 1.65 0.028 1.20 0.033* 1.35 0.032** 1.70

δsize -0.017*** -1.39 -0.017* -1.48 -0.017** -1.65 -0.021** -1.81 -0.017** -1.98

δdsize -0.196** -3.06 -0.181*** -3.01 -0.151*** -2.87 -0.155*** -3.23 -0.144*** -3.42

ϕcity -0.067*** -6.32 -0.064*** -6.04 -0.058*** -5.52 -0.061*** -5.52 -0.063*** -6.06

ϕcult 0.015*** 1.32 0.014 1.23 0.017* 1.49 0.017* 1.49 0.018* 1.58

ϕsea -0.096*** -8.97 -0.095*** -8.88 -0.09*** -8.49 -0.089*** -8.49 -0.088*** -8.30

ϕlake -0.129*** -8.43 -0.133*** -8.69 -0.135*** -8.82 -0.135*** -8.82 -0.137*** -8.95

ϕmou -0.008** -0.51 -0.015 -0.95 -0.017 -1.08 -0.018 -1.08 -0.016 -1.01

ϕcsea -0.088*** -8.46 -0.087*** -8.37 -0.081*** -7.79 -0.079*** -7.86 -0.077*** -7.48

ϕcmou -0.060*** -4.65 -0.061*** -4.73 -0.063*** -4.88 -0.064*** -4.92 -0.063*** -4.92

ϕmore -0.045*** -3.63 -0.045*** -3.63 -0.044*** -3.58 -0.044*** -3.58 -0.044*** -3.58

ϕnocat 0.053*** 4.82 0.053*** 4.82 0.050*** 4.55 0.046*** 4.55 0.046*** 4.18

ϕnotur 0.012* 0.38 0.006 0.19 0.002 0.06 -0.002 -0.06 -0.002 -0.06

ϕtherm omit. omit. omit. omit. omit.

σ2 0.1994 0.199 0.199 0.199 0.199

λ 0.8881 0.895 0.896 0.916 0.908

∗ ∗ ∗ : pvalue ≤ 0.01; ∗∗ : pvalue ≤ 0.05; ∗ : pvalue ≤ 0.10; omit=omitted
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TABLE 5.10: Marginal Effects: Sensitivity to the Choice of W

W W200t W100t W50t W30t W400n W250n W100n W50n W30n

Direct 0.743*** 0.738*** 0.738*** 0.738*** 0.738*** 0.738*** 0.738*** 0.738*** 0.739*** 0.738***

Indirect 0.071*** 0.056*** 0.048*** 0.043*** 0.038*** 0.054*** 0.049*** 0.039*** 0.038*** 0.034***L

Total 0.814*** 0.794*** 0.079*** 0.782*** 0.776*** 0.792*** 0.787*** 0.777*** 0.777*** 0.772***

Direct 0.136*** 0.136*** 0.148*** 0.148*** 0.147*** 0.148*** 0.148*** 0.147*** 0.148*** 0.147***

Indirect 0.082*** 0.056*** 0.048*** 0.036*** 0.023*** 0.050*** 0.046*** 0.037*** 0.030*** 0.028***K

Total 0.218*** 0.192*** 0.196*** 0.184*** 0.170*** 0.198*** 0.194*** 0.184*** 0.178*** 0.175***

Direct 0.006*** 0.007*** 0.007*** 0.008*** 0.009*** 0.008*** 0.008*** 0.008*** 0.008*** 0.008***

Indirect 0.004*** 0.003*** 0.002*** 0.002*** 0.001*** 0.002*** 0.002*** 0.002*** 0.002*** 0.001***t

Total 0.010*** 0.010*** 0.009*** 0.010*** 0.010*** 0.010*** 0.010*** 0.010*** 0.010*** 0.009***

Direct -0.647*** -0.646*** -0.646*** -0.645*** -0.645*** -0.0646*** -0.645*** -0.645*** -0.645*** -0.645***

Indirect -0.103*** -0.063*** -0.065*** -0.066*** -0.056*** -0.069*** -0.070*** -0.066*** -0.063*** -0.061***Hum

Total -0.750*** -0.709*** -0.711*** -0.710*** -0.700*** -0.715*** -0.715*** -0.711*** -0.708*** -0.706***

Direct -0.116*** -0.117*** -0.117*** -0.116*** -0.116*** -0.116*** -0.116*** -0.116*** -0.117*** -0.117***

Indirect -0.171*** -0.120*** -0.106*** -0.085*** -0.053*** -0.099*** -0.097*** -0.094*** -0.072*** -0.061***Int

Total -0.287*** -0.236*** -0.222*** -0.202*** -0.169*** -0.216*** -0.213*** -0.210*** -0.189*** -0.178***

Direct -0.054*** -0.053*** -0.052*** -0.053*** -0.053*** -0.053*** -0.052*** -0.052*** -0.052*** -0.052***

Indirect 0.122*** 0.107*** 0.073*** 0.033 0.017 0.071*** 0.044** 0.017 0.013 0.006Pat

Total 0.0688** 0.054* 0.021 -0.019 -0.036 0.018 -0.008 -0.035 -0.039 -0.046*

Direct -0.037*** -0.038*** -0.038*** -0.039*** -0.038*** -0.038*** -0.038*** -0.039*** -0.039*** -0.038***

Indirect 0.039* 0.031 0.034 0.016 0.004 0.047* 0.045* 0.025 0.031 0.03Trad

Total 0.002 -0.007 -0.04 -0.023 -0.034 0.009 0.007 -0.013 -0.007 -0.008

Direct -0.037*** -0.037*** -0.038*** -0.039*** -0.039*** -0.037*** -0.038*** -0.038*** -0.038*** -0.039***

Indirect -0.040*** -0.048*** -0.035** -0.022* -0.023** -0.034*** -0.032*** -0.028** -0.031*** -0.025**Size

Total -0.077*** -0.084*** -0.073*** -0.061*** -0.062*** -0.071*** -0.070*** -0.067*** -0.069*** -0.064***

∗ ∗ ∗ : pvalue ≤ 0.01; ∗∗ : pvalue ≤ 0.05; ∗ : pvalue ≤ 0.10
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to policymakers in order to understand if place-based policies exploiting the existence of
spatial interactions tend to be more effective at the local or global level.

Therefore, we estimate the SDF-STE model in Eq. (5.1)-(5.2) considering different
kinds of spatial weight matrices. Specifically, we substitute the dense inverse distance
spatial weight matrix W used until now with different truncated inverse distance spa-
tial weight matrices considering only a certain radius around the ith observation or the
n nearest observations as neighbours. In particular, we define W200t, W100t, W50t, and
W30t as inverse distance spatial weight matrices truncated at 200, 100, 50, and 30 kilo-
metres respectively, while W400n, W250n, W100n, W50n, and W30n indicate inverse
distance spatial weight matrices considering only the 400, 250, 100, 50, and 30 nearest
neighbours, respectively. Some descriptive statistics for these different spatial weight
matrices are shown in Table 5.7. The most relevant difference between the two types of
spatial weight matrices previously defined concerns the fact that the number of neigh-
bours changes for each spatial unit using a truncated W while every unit has the same
number of neighbours in the second case. Moreover, starting from a truncation point of
50 km some units are considered islands (i.e. observations with no neighbours). How-
ever, in both cases, the mean spatial weight wij tends to decrease as the radius or the
number of nearest neighbours considered decreases.

Table 5.8 and Table 5.9 show how the estimation results are affected by different
choices of the spatial weight matrix. In particular, it can be noticed that the β and the ϕ

estimates are robust to different changes of W, as well as the estimates associated with the
two variance parameters σ2 and λ. Therefore, as expected, only the spatial parameters
ρ, θ, and δ are affected by different choices of the spatial weight matrix. Specifically, the
degree of global spatial dependence captured through ρ tends to decrease as the number
of neighbours considered in the analysis decreases, passing from a maximum value of
0.351 using a dense inverse distance W, to 0.132 and 0.131 considering W30t and W30n,
respectively. This is due to a reduction of the wij values used to weight the spatial units,
as shown in the first column of Table 5.7. Consequently to a reduction in the value of
ρ, also the estimated local spatial dependence associated with the two inputs (θ) and the
determinants of technical inefficiency (δ) modifies.

To interpret the estimated coefficients in a meaningful way, direct, indirect and total
marginal effects should be computed, as shown in Table 5.10. Results in Table 5.10 indi-
cate that considering a dense inverse distance spatial weight matrix leads to a slight over-
estimation of the indirect effects with respect to the case in which a sparse spatial weight
matrix is used. Indeed, while the direct effect of labour and capital are quite stable across
the different trials, the indirect effects of L and K pass from a maximum value of 0.071
and 0.082 to 0.034 and 0.023, respectively but they remain always positive and significant.
Similarly, also the direct effects associated with Hum, Int, Pat, Trad, and Size result to be
constant even if the spatial weight matrix changes while the indirect effects decrease as
the number of neighbours reduces. Considering the indirect effects of the determinants
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of hotels’ inefficiency on u, while the indirect effects associated with human capital, in-
tangible investments, and firms’ size are always negative and significant across all the
different trials, the indirect effect of patents results to be significant only using W, W200t,
W100t, W400n, and W250n and the indirect effect of trademarks only for W, W400n, and
W250n. Hence, patents and trademarks seem to generate negative spillovers and to effec-
tively protect new products and ideas only considering high distances, while the indirect
effect resulting from having neighbours that have registered trademarks and/or patents
is not significant for hotels that are very close to the innovative firm. Thus, negative spa-
tial spillovers generated from registered patents or trademarks apply at a global level
but are not significant at a local level. Indeed, at a local level, positive externalities due
to interpersonal contact and shared ideas at meetings and events can occur, eliminating
patents’ and trademarks’ blocking function.

To sum up, our results indicate that while the estimated direct effects are stable
across the different specifications of W, the indirect effects tend to raise in magnitude
as the geographical distance considered to identify neighbouring units increases. Thus,
spatial spillover effects occurring in the Italian accommodation sector tend to cumulate
across space, in line with the results of Cainelli and Ganau (2018) for the Italian manu-
facturing industry. Hence, it would be more effective for policymakers to develop plans
aiming at fostering the innovativeness of the whole sector at the national level without
focusing on single local areas to entirely exploit the existing spatial interactions.

5.5.5 Robustness Check

Besides spatial individual heterogeneity, unobserved individual-specific effects such as
entrepreneurial or managerial skills are likely relevant to hotel performance and the pro-
ductive outcome of hotels may be endogenously related to the input variables or to the
inefficiency determinants. Moreover, it is quite plausible that hotels with good prospects
can decide to locate in areas close to competitors to benefit from local advantages, gener-
ating endogeneity issues due to omitted variables. However, to date, in stochastic frontier
models literature, there are no current available methods dealing together with spatial
heterogeneity, individual heterogeneity and endogeneity.

However, given the relevant role of both individual effects and endogeneity issues,
in this section, we compare our results to other SF approaches that allow considering
individual-specific effects or controlling for possible endogeneity in order to test the ro-
bustness of our baseline estimates. Specifically, when dealing with individual hetero-
geneity we compare our non-spatial results corresponding to the Battese and Coelli (1995)
specification with those of the non-spatial true fixed effect stochastic frontier model intro-
duced by Greene (2005a) because, at the moment, there are no available spatial SF models
controlling for individual heterogeneity. On the other hand, following Castiglione and
Infante (2014) and de Vries and Koetter (2011), we partially attempt to control for the
presence of endogeneity by introducing in our SDF-STE model lagged input variables
and lagged determinants of inefficiency. Specifically, we model the productive outcome
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TABLE 5.11: Robustness Check with Fixed Effects

SF-TE Fixed Effects

Coeff. t-stats Coeff. t-stats

β0 6.665*** 7.68 6.826*** 5.17

βL 0.665*** 85.11 0.652*** 84.51

βK 0.077*** 17.04 0.081*** 18.17

βLL 0.057*** 40.43 0.054*** 39.34

βKK 0.010*** 25 0.010*** 24.07

βLK -0.029*** -26.46 -0.028*** -26.42

βt 0.005 0.96 0.006 1.48

β2t -0.001** -2.75 -0.001*** -3.35

βtL 0.004*** 4.88 0.004*** 5.28

βtK 0.001*** 3.5 0.001*** 3.55

ϕ0 5.363*** 6.22 5.206*** 6.13

ϕhum -0.653*** -210.74 -0.633*** -205.52

ϕInt -0.116*** -29.05 -0.110*** -27.61

ϕpat -0.054*** -9.38 -0.045*** -7.47

ϕtrad -0.039*** -5.91 -0.044*** -6.6

ϕsize -0.040*** -11.54 -0.048*** -13.03

ϕdsize 0.069*** 4.73 0.067*** 4.6

Dest. dummies yes - yes -

σ2 0.20 - 0.16 -

λ 0.86 - 0.85 -

∗ ∗ ∗ : pvalue ≤ 0.01; ∗∗ : pvalue ≤ 0.05; ∗ : pvalue ≤ 0.10
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TABLE 5.12: Robustness Check with Lagged variables

SDF-STE Lag-1 Lag-2

Coeff. t-stats Coeff. t-stats Coeff. t-stats

β0 5.467*** 13.71 β0 5.947*** 15.62 β0 5.372*** 12.57

βL 0.662*** 84.87 βL(t−1) 0.660*** 70.26 βL(t−2) 0.635*** 53.80

βK 0.077*** 17.20 βK(t−1) 0.058*** 10.87 βK(t−2) 0.053*** 8.22

βLL 0.057*** 40.57 βLL(t−1) 0.057*** 35.38 βLL(t−2) 0.059*** 32.72

βKK 0.010*** 22.50 βKK(t−1) 0.011*** 27.50 βKK(t−2) 0.011*** 22.40

βLK -0.029*** -29.00 βLK(t−1) -0.031*** -25.92 βLK(t−2) -0.032*** -24.46

βt 0.005 1.09 βt 0.009 1.27 βt 0.043*** 4.00

β2t -0.001** -1.25 β2t -0.003*** -5.00 β2t -0.006*** -7.13

βtL 0.004*** 5.00 βtL(t−1) 0.005*** 4.80 βtL(t−2) 0.006*** 4.69

βtK 0.001*** 3.00 βtK(t−1) 0.004*** 7.20 βtK(t−2) 0.004*** 6.50

ρ 0.351*** 18.30 ρ 0.359*** 18.03 ρ 0.367*** 17.40

θL -0.216*** -11.33 θL(t−1) -0.219*** -10.77 θL(t−2) -0.219*** -10.03

θK 0.006 0.78 θK(t−1) 0.007 0.78 θK(t−2) 0.006 0.62

ϕ0 5.251*** 13.23 ϕ0 5.749*** 15.44 ϕ0 5.269*** 12.52

ϕhum -0.647*** -208.58 ϕhum(t−1) -0.602*** -176.94 ϕhum(t−2) -0.583*** -149.36

ϕInt -0.115*** -29.54 ϕInt(t−1) -0.126*** -27.98 ϕInt(t−2) -0.129*** -25.31

ϕpat -0.054*** -9.53 ϕpat -0.081*** -12.42 ϕpat -0.106*** -14.28

ϕtrad -0.038*** -5.78 ϕtrad -0.057*** -7.70 ϕtrad -0.077*** -9.12

ϕsize -0.037*** -10.57 ϕsize -0.045*** -11.54 ϕsize -0.054*** -11.98

ϕdsize 0.081*** 5.66 ϕdsize 0.082*** 5.02 ϕdsize 0.081*** 4.39

δHum 0.160*** 7.31 δHum(t−1) 0.121*** 5.14 δHum(t−2) 0.108*** 4.15

δInt -0.072*** -2.71 δInt(t−1) -0.051*** -1.72 δInt(t−2) -0.03 -0.89

δPat 0.099*** 2.80 δPat 0.127*** 3.20 δPat 0.146*** 3.21

δTrad 0.039 0.97 δTrad 0.050 1.10 δTrad 0.039 0.75

δSize -0.013 -0.70 δSize -0.023 -1.10 δSize -0.032* -1.34

δdsize -0.358*** -3.85 δdsize -0.327*** -3.11 δdsize -0.307*** -2.55

Dest. dummies yes - Dest. dummies yes - Dest. dummies yes -

σ2 0.199 - σ2 0.225 - σ2 0.258 -

λ 0.879 - λ 0.371 - λ 0.515 -

∗ ∗ ∗ : pvalue ≤ 0.01; ∗∗ : pvalue ≤ 0.05; ∗ : pvalue ≤ 0.10
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TABLE 5.13: Robustness Check with Lagged variables and Fixed Effects

SF-TE FE and Lag-1 FE and Lag-2

Coeff. t-stats Coeff. t-stats Coeff. t-stats

β0 6.665*** 7.68 β0 6.737*** 16.21 β0 6.181*** 26.16

βL 0.665*** 85.11 βL(t−1) 0.652*** 74.5 βL(t−2) 0.634*** 63.08

βK 0.077*** 17.04 βK(t−1) 0.062*** 12.28 βK(t−2) 0.059*** 10.13

βLL 0.057*** 40.43 βLL(t−1) 0.054*** 35.15 βLL(t−2) 0.058*** 32.73

βKK 0.010*** 25.00 βKK(t−1) 0.011*** 24.6 βKK(t−2) 0.012*** 22.77

βLK -0.029*** -26.46 βLK(t−1) -0.030*** -25.15 βLK(t−2) -0.031*** -23.31

βt 0.005 0.96 βt 0.044*** 7.70 βt 0.101*** 11.25

β2t -0.001** -2.75 β2t -0.005*** -11.64 β2t -0.009*** -13.68

βtL 0.004*** 4.88 βtL(t−1) 0.003*** 3.76 βtL(t−2) 0.003*** 2.87

βtK 0.001*** 3.50 βtK(t−1) 0.004*** 8.21 βtK(t−2) 0.004*** 6.97

ϕ0 5.363*** 6.22 ϕ0 4.974*** 14.62 ϕ0 5.633*** 14.33

ϕhum -0.653*** -210.74 ϕhum(t−1) -0.578*** -166.44 ϕhum(t−2) -0.555*** -141.30

ϕInt -0.116*** -29.05 ϕInt(t−1) -0.123*** -27.28 ϕInt(t−2) -0.128*** -24.71

ϕpat -0.054*** -9.38 ϕpat -0.073*** -10.80 ϕpat -0.099*** -12.96

ϕtrad -0.039*** -5.91 ϕtrad -0.067*** -8.83 ϕtrad -0.088*** -10.20

ϕsize -0.040*** -11.54 ϕsize -0.059*** -14.19 ϕsize -0.070**** -14.75

ϕdsize 0.069*** 4.73 ϕdsize 0.068*** 4.13 ϕdsize 0.066*** 3.49

Dest. dummies yes - Dest. dummies yes - Dest. dummies yes -

σ2 0.20 - σ2 0.18 - σ2 0.21 -

λ 0.86 - λ 0.84 - λ 0.85 -

∗ ∗ ∗ : pvalue ≤ 0.01; ∗∗ : pvalue ≤ 0.05; ∗ : pvalue ≤ 0.10
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of period t as a function of labour and capital at time t − 1 and of the 1-year lag of intan-
gible investments and human capital. Furthermore, we also make a second robustness
check considering a two-year lag. Starting from individual effects, as shown in Table
5.11, our non-spatial estimates are robust to the different modelling approach and thus,
unobserved individual heterogeneity has a negligible impact on the estimation results.
Concerning endogeneity, the results shown in Table 5.12 confirm the robustness of our
estimates to simultaneity issues related to the input variables and to the determinants of
inefficiency. Finally, in Table 5.13 we show the results of the final robustness check con-
trolling for both individual fixed effects and endogeneity using lagged variables starting
from the non-spatial specification proposed by Battese and Coelli (1995). Overall, the
results are in line with our baseline estimates, showing that distortions arising from indi-
vidual unobserved effects and endogeneity are negligible.

5.6 Final Remarks

Scholars have widely acknowledged the relevance of spatial interactions in affecting the
productivity level of hotels belonging to tourism clusters. However, to date, no studies
have yet clearly identified the different typologies, the magnitude, and the sources of
these spatial effects. Thus, using georeferenced data and taking advantage of the SDF-
STE model, in this chapter we provide new insights on the spatial spillover effects related
to the determinants of hotels’ innovative activity.

Results from this analysis indicate that the Italian accommodation sector is a labour-
intensive sector with a high exploitation of internal human resources rather than invest-
ments in intangible capital. Therefore, to achieve higher profitability levels, hotels, from
an internal point of view, rely more on innovation related to human capital, knowledge-
able and skilled workers, and improved service quality than on product innovation gen-
erated by intangible investments (Q1). Considering spillover effects, we find that the
innovative activity performed by neighbours significantly spreads across space (Q2) gen-
erating both agglomeration and competition effects (Q3). In particular, our results show
that having nearby hotels that invest in labour and capital positively affects the level
of productivity of neighbouring hotels. Similarly, having neighbours who invest in hu-
man capital has a positive effect on hotels’ efficiency level as well as having neighbours
making intense innovative activity. In particular, we detect a greater positive indirect ef-
fect of intangible investments on firm efficiency compared to the direct one, meaning that
spillover effects generated by highly innovative hotels have a stronger cumulative impact
on neighbouring firms than on the innovator itself. Therefore, despite being a labour-
intensive sector, investments in intangible capital by a few innovative hotels contribute
to the development of the whole Italian accommodation sector. In addition, having big-
ger hotels as peers positively affect the efficiency level of nearby firms. Conversely, regis-
tered patents and/or trademarks generate negative spillovers across neighbours thanks
to a strong protection and blocking function. Thus, different sources of innovation gen-
erate different spatial effects, both positive and negative.
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Our findings have important implications both from a theoretical and a practical
perspective. From a scientific point of view, we empirically confirm the key role played
by innovation in the hotel sector as a promoter of competitive advantage in tourism des-
tinations. Moreover, in line with the industrial agglomeration theory, this paper extends
to the Italian accommodation industry previous findings on other industrial sectors re-
garding the relevance of firms’ location choices and of spatial interactions in influencing
the level of competitiveness of neighbouring units. New insights from this study on spa-
tial patterns affecting hotels’ performance concern (i) the evidence of significant spatial
effects both at the global and local level; (ii) the existence of different spillovers in terms
of magnitude and signs resulting from the different sources of internal innovation.

From a practical perspective, insights from this analysis can be useful both for ac-
commodation managers to improve their production processes by innovating and cre-
ating hotel networks and alliances, and for policymakers to design place-based policies
supporting hotels’ innovative activity and spatial interactions across tourism firms. Pub-
lic incentives for the tourism sector should be aimed at stimulating hotels’ innovative
activity due to its high association with hotel performance. Since innovation is still an
underdeveloped activity in the accommodation industry, external push factors are fun-
damental to spurring product and process innovation in the hospitality industry. Efficient
innovation policies in this sector should stimulate innovations that allow energy savings
and the sustainable management of resources in order to pursue sustainability, help hos-
pitality businesses to create synergies that help overcome the limitations deriving from
the small size, and motivate hotels’ managers to personalize their offer thanks to the pos-
sibility of profiling customers in an increasingly specific and detailed manner. In addi-
tion, other accessible innovations such as IT adoption, improvements in customer service
and in administrative practices, architectural and infrastructural renovation, and collabo-
ration with the other actors in the sector should be promoted. Policymakers should there-
fore encourage accommodation facilities to network and create a healthy competitive en-
vironment allowing the transmission of new knowledge and innovation. In particular,
innovative activity performed by bigger hotels tends to spread out to all neighbouring
small and medium-sized hotels that are more unwilling to innovate. Therefore, by re-
inforcing hotels’ networking and cooperation, the few big innovators in the sector may
act as role models and knowledge disseminators for all those small entrepreneurs who
are the main providers of hospitality services. This diffusion mechanism can foster and
sustain the growth of the tourism sector and consequently, of the whole Italian economy.
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Chapter 6

Productive Performance and Spatial
Effects: Evidence from the Italian
Agricultural Sector

6.1 The Main Characteristics of the Italian Agricultural Sector

6.1.1 Introduction to the Italian Agricultural Sector

The second empirical application of this thesis concentrates on the Italian agricultural
sector. Indeed, Italy is one of the largest agricultural producers among the EU 24 coun-
tries and the agricultural sector is the largest manufacturing sector in Italy. In particular,
in 2018 the total agricultural production reached EUR 55.8 billion while the total produc-
tion value reached 113.7 billion euros (fi-compass, 2020).

The Italian agricultural sector tends to be more concentrated in Northern regions
than in the whole country (Brasili and Fanfani, 2015) and it is characterized by inade-
quate resources and unqualified personnel, unable to develop new technologies (Car-
damone, 2020). Innovation tends to be generally assimilated by equipment and capital
goods rather than expressed by indicators such as R&D or patents (Maietta, 2015). Any-
way, innovation is essential to be competitive in foreign markets and to produce sustain-
able, healthy, and good-quality products that can meet consumers’ needs. Therefore, to
make up for the lack of new technologies and innovations that can lead to a more efficient
food production (Ciliberti, Bröring, and Martino, 2016), farms tend to share information,
knowledge and best practices (de Martino and Magnotti, 2018). As a consequence, inter-
nal R&D investments are replaced by external sources of knowledge (Acosta, Coronado,
and Romero, 2015) and thus, in the Italian agricultural sector, networking and collabora-
tion among firms have become essential practices that can help in spreading knowledge
and fostering innovation. In addition to peers, firms tend to borrow advanced expertise
also from other industries like the pharmaceutical, biotechnological or chemical sectors
(Rama, 2008). Moreover, also universities and research institutes have a central role in
sharing information and new knowledge with farms. Hence, Italian farms manage to
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be competitive despite their difficulties in innovating thanks to clustering, geographi-
cal proximity and to an intensive flow of productivity and knowledge spillovers (Carda-
mone, 2020). Therefore, in evaluating the level of productivity and efficiency of the Italian
agricultural industry, it is necessary to consider farms’ location and to take spatial depen-
dence into consideration due to the strong concentration and territorial specialization of
this sector.

6.1.2 The Main Determinants of Competitiveness

Concentrating on the agricultural sector, Latruffe (2010) widely discussed what are the
main factors, both internal and external to the farm, that contribute to determining firms’
competitiveness. Between the factors controllable by firms, a great debate concerns
farms’ size. Indeed, to take decisions concerning firms’ structural changes, it is important
to understand how the link between competitiveness and firm size works. Despite the
relevance of this issue, it is still not clear whether small farms perform better than big-
ger ones, or vice versa. Indeed, Buckwell and Davidova (1993) theorized that farms run
by family members have an advantage due to higher motivation given by family labour,
while Hall and LeVeen (1978) claimed that economies of scale and wider access to the
input market can favour bigger farms. Both theories were supported by several studies
and, in addition, other authors proved that the relationship between farms’ performance
and size is U-shaped (Latruffe et al., 2005). Probably, all these different results may de-
pend on the variety of indicators for size used by authors. Indeed, size can be measured
in many different ways, such as utilised agricultural area, total output produced, farm
value-added, herd size, labour, assets, etc... Scholars also found controversial results in-
vestigating the connection between farms’ degree of specialization and competitiveness.
Indeed, farm specialization can boost productivity because it makes the farmer special-
ize in a few particular activities, improving specific management skills (Brümmer, 2001),
while diversification can be beneficial to productivity because it reduces the risks related
to crop loss or disease (Bojnec and Latruffe, 2009). Moreover, many studies considered
the socio-demographic characteristics of the farmer as a proxy for farmers’ management
skills. In most cases, the effect of a farmer’s age on a farm’s efficiency is found to be
negative (Brümmer and Loy, 2000), probably due to the unwillingness of older farmers
to innovate and adopt new technologies. As expected, a farmer’s education is usually
found to be positively associated with productivity (Latruffe et al., 2004) while, consider-
ing gender, there seem to be no differences in farms run by women or men (Quisumbing,
1996).

Considering the external factors (i.e. not controllable by firms), factor endowments
and demand conditions play a fundamental role in affecting farms’ performance. Indeed,
resource availability is fundamental to generating competitive advantage, and changes
in buyers’ needs and preferences can influence firms’ productive processes and prac-
tices (Porter, 1990). For example, people’s belief that pasta was a low-calorie and low-fat
food, made the Italian pasta processing sector become a highly competitive industry over
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the period 1988-1992 (Venturini and Boccaletti, 1998). Moreover, also government inter-
ventions and public policies may have a strong influence on producers and may affect
competitiveness. Among others, public investments in R&D can help in spreading new
technologies among firms and can boost farms’ productivity. Besides public expendi-
tures in R&D, also investments in infrastructures can be beneficial for firms’ productivity
growth, in particular considering investments in public transportation (Latruffe, 2010).

Among existing public interventions related to agricultural production, scholars
principally concentrated on determining the effect of EU subsidies on farms’ perfor-
mance. Indeed, since 1962 the European Union started supporting agriculture and rural
areas through the EU Common Agricultural Policy (CAP). This European policy, account-
ing for roughly 40% of the EU budget, is considered one of the major drivers of change
in the agricultural sector, thanks to its direct effects on income and to the orientation of
farming activities. In particular, in the first phase, supports were paid per hectare and
only for specific crops while starting in 2003, the European Commission approved a ma-
jor reform of the CAP based on the decoupling of direct payments, meaning that income
payments were detached from the production of specific crops and from their yields.
Scholars largely concentrated on assessing the effectiveness of the CAP in supporting
farmers’ performance and in improving the environmental impact of agricultural pro-
duction which is one of the main goals of the CAP. Different theoretical studies (Ciaian
and Swinnen, 2009; Hennessy, 1998) suggested that subsidies can both have a positive
and a negative impact on farms. On one hand, subsidies can lower farmers’ motivation
to work efficiently, they can distort the production structure of farms leading to allocative
inefficiency and they can generate soft budget constraints that lead to an inefficient use
of resources. On the other hand, they can also act as a source of credit and allow farmers
to innovate thanks to increased credit access, reduced risk aversion, and higher produc-
tive investments. Results from empirical studies on this topic are mixed and inconclu-
sive. Brümmer and Loy (2000) found that the European farm credit program negatively
affected the technical efficiency of German farms over the period 1987-1994. Differentiat-
ing among coupled (before 2003) and decoupled (after 2003) subsidies, Rizov, Pokrivcak,
and Ciaian (2013) demonstrated that the CAP negatively affected the EU countries’ agri-
cultural sector until the implementation of the decoupling reform while, after the reform,
the link between subsidies and farms performance became more nuanced and in several
EU-15 countries it turned out to be positive. Examining specialised Dutch dairy farms
over the period 2009–2016, Skevas and Lansink (2020) found that a one-unit (i.e. €10,000)
increase in subsidies leads to a 2% decrease in farms’ technical inefficiency. Finally, con-
sidering the impact of the CAP post-2013, including the new ‘greening’ requirements for
direct payments, on agricultural land-use intensification and environment in Austria for
the period 2025–2040, Kirchner, Schönhart, and Schmid (2016) confirmed scholars’ con-
cern that the new CAP reform may fail to deliver better environmental outcomes than its
forerunners.

Finally, among the external factors influencing farms, location plays a fundamental
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role. Indeed, firms’ location and the environmental characteristics of the area in which
firms are embedded may determine various differences in farms’ performance. The ef-
fects of location, clustering, and spatial spillovers across nearby firms are described in
the next paragraph.

6.1.3 Spillovers and Geographical Location

In agricultural economics, it is fundamental to take spatial information into considera-
tion when evaluating firms’ productivity (Weiss, 1996). Indeed, several authors demon-
strated that the existence of networks and the geographical localization of firms have a
central role in determining the productivity level of the agricultural sector (Capitanio,
Coppola, and Pascucci, 2010; Triguero, Córcoles, and Cuerva, 2013). Agricultural pro-
duction is characterized by spatial dependence due to geographical phenomenons such
as soil characteristics, landscape configurations, climatic conditions, and location-specific
attributes such as cost of transportation, distance to the consuming centres, and the direc-
tions of local public goods and institutions (Areal, Balcombe, and Tiffin, 2012; Bockstael,
1996). Moreover, an individual’s working motivation may be affected by the one of the
surrounding farmers and this can result in shared knowledge and similar investment de-
cisions. Thus, farmers working in the same area can emulate each other and a farmer
may experience efficiency gains by learning how to use his resources more efficiently
from neighbouring farmers (Skevas and Lansink, 2020). Hence, for the agricultural sector,
farms’ location and spillover effects are particularly relevant features, due to the strong
influence of external factors like the natural environment, specific characteristics of the
region, and the presence of nearby specialized farms.

In the agricultural economics literature, Foster and Rosenzweig (1995) is one of the
first contributions investigating the presence of learning spillovers. In particular, they
found evidence of a significant impact of neighbours’ experience on rural Indian house-
holds’ profitability levels. Later on, Wollni and Andersson (2014) demonstrated that
farmers having a larger availability of information in their neighbourhood network and
acting in cooperation with their neighbours are more likely to adopt new technologies
such as organic agriculture. Similarly, Lapple et al. (2017) revealed that farmers take
their peers’ decisions into account in adopting new technologies. Moreover, they un-
derlined that farmers are influenced by their peers, which in turn affects neighbouring
farms, generating a global spatial spillover effect that influences the adoption rates of
all neighbours. Likewise, Skevas and Lansink (2020) confirmed the existence of both
positive and negative spillover effects across Dutch dairy farms observed over the pe-
riod 2009–2016. Specifically, the authors found that being surrounded by older farmers
negatively influences neighbours while being located close to more intensive producers
decreases peers’ inefficiency level. This latter result indicates that farmers can improve
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their efficiency level by learning from neighbours how to use their resources more ef-
fectively thanks to emulation and knowledge spillovers. Vidoli et al. (2016), concentrat-
ing on the Italian wine industry, highlighted that spatial proximity among wine produc-
ers can stimulate productivity, and that Italian wine clusters can be considered commu-
nitarian networks that continuously share technical advice in a collaborative environ-
ment. Analysing spatial spillovers at the aggregate level and concentrating on the TFP
of the Italian agricultural sector over the period 2008-2015, Baldoni and Esposti (2020)
found evidence of spatial productive clusters among Italian provinces. In a similar way,
Martínez-Victoria, Sánchez-Val, and Arcas-Lario (2018) evidenced strong spatial interac-
tions between nearby Spanish agricultural cooperatives. Martínez-Victoria, Sánchez-Val,
and Lansink (2019), also demonstrated that, over the period 2005-2014, the productivity
growth of agri-food companies located in Murcia (Spain) was associated with the produc-
tivity growth of nearby firms. Similarly, Cardamone (2020), using data on Italian food
manufacturers, showed that higher productivity of peers can be beneficial to improve
firms’ productivity level and compete at the international level. Indeed, interacting with
each other and sharing knowledge can foster TFP and can help in creating a successful
market.

On the other hand, negative spillover effects were detected by Setiawan, Emvalo-
matis, and Lansink (2012) examining the relationship between technical efficiency and
industrial concentration in the Indonesian food and beverages industry. Estimating tech-
nical efficiency using a DEA approach, the authors found that higher industrial concen-
tration negatively influences technical efficiency scores indicating that firms located in
highly concentrated areas tend to gain more through cartel and anti-competitive prac-
tices rather than from efficiency spillovers. In this framework, also Storm, Mittenzwei,
and Heckelei (2014) found that Norwegian farms’ survival probabilities from 1999 to 2009
were negatively affected by the presence of economically larger neighbouring farms, gen-
erating competition and adverse spatial spillovers.

Despite the acknowledged importance of spatial dependence in affecting the pro-
ductivity and efficiency level of agricultural producers, to our knowledge, there are no
studies evaluating the impact of different typologies of spatial spillover effects on the
performance of firms belonging to the agricultural sector, especially for Italy. Therefore,
in this chapter, we take advantage of the SDF-CSD model developed in this thesis to in-
vestigate the spatial spillover effects influencing Italian farms’ productive performance.

6.2 Literature Review of SF Models in the Agricultural Sector

Stochastic frontier models have generally been applied to the agricultural sector since
their earliest developments. A comprehensive list of empirical applications using
stochastic frontier models to investigate the level of productivity of the agricultural sector
can be found in Table 1 of Coelli (1995). In particular, the author lists 38 papers published
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between 1985 and 1994 based on the agricultural sector distinguishing among contribu-
tions using a DEA approach (10) and works applying stochastic frontier methods (28).
The most common applications of stochastic frontier models concerning agriculture re-
late to rice production (11 papers) and to the dairy industry (7 papers).

Considering more recent works, Coelli, Rahman, and Thirtle (2003), using data for
16 regions of Bangladesh, applied a stochastic frontier production function to measure
TFP growth, technical efficiency change and technological change in Bangladesh crop
agriculture from 1960 to 1992 founding that TFP change depends on the green revolution
technology and on agricultural research expenditures. Among other works using aggre-
gate data, Lio and Hu (2009), investigating the relationship between six governance indi-
cators and agricultural efficiency using a sample of 118 countries for the years 1996, 1998,
2000 and 2002 through a SF approach, found that agricultural efficiency of the poorer
countries can be enhanced by improvements in the rule of law and by stimulating the
respect of citizens for institutions. On the contrary, greater democracy is associated with
lower agricultural efficiency levels. Moreover, Auci and Vignani (2020) investigating the
impact of climate variability on the Italian regions’ efficiency in terms of crop yields in
the period 2000–2009 using a SF approach, found a negative effect of summer precipi-
tations and a beneficial effect of spring and autumn rainfalls on crop yields. Consider-
ing temperature, regional efficiency is positively affected by an increase in winter and
summer minimum temperatures while for autumn the authors found the opposite effect.
Similarly, Chambers and Pieralli (2020) analyzed the relationship between US state-level
TFP agricultural growth and weather finding that weather-related effects differ across
Climate-Hub Regions but are particularly important in the Midwest. Finally, Song and
Chen (2019) estimated a translog stochastic frontier production function to analyse the
eco-efficiency of grain production and its determinants in China finding that per capita
GDP, per capita water supply and the proportion of government expenditures on envi-
ronmental protection positively affected the Chinese grain production eco-efficiency in
the period 1997-2015.

From a macroeconomic point of view, Benedetti, Branca, and Zucaro (2019) mea-
sured irrigated crop technical efficiency scores in southern Italy for the year 2016 using
a stochastic frontier production function assuming a heteroskedastic inefficiency com-
ponent. The results of the analysis show that (i) technical efficiency is seriously influ-
enced by individual farms’ characteristics (ii) conventional farms tend to be more effi-
cient compared to organic farms (iii) the use of a fertigation system tends to boost the
level of technical efficiency of farms. In this framework, also Abunyuwah, Yenibehit, and
Ahiale (2019), discussing technical efficiency variations among carrot farmers located in
the Ashanti-Mampong municipality of Ghana, found that the socioeconomic characteris-
tics of the farmers such as farm size, access to credit, household labour, age, and years of
education are all significant determinants of farms’ technical inefficiency. In particular,
investigating the relationship between farm size and productivity over a sample of 1300
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farms located in Kenya, Muyanga and Jayne (2019) found a U-shaped relationship, in-
dicating that a strong positive relationship between farm size and productivity emerges
mainly considering farms sized between 5 to 70 hectares.

Druska and Horrace (2004) is one of the first contributions estimating a SF model
that considers spatial dependence occurring between firms belonging to the agricultural
sector. Specifically, the authors estimated a panel data model taking cross-sectional cor-
relation in the disturbances into account. Their findings suggest that positive spillovers
affect both the level of efficiency of Indonesian rice farms and their ranking. Similarly,
Schmidt et al. (2009), analysing spillover effects across farms located in the Center-West
region of Brazil, found that ignoring spatial effects leads to different rankings of ineffi-
ciencies across agents. In this framework, also Areal, Balcombe, and Tiffin (2012) esti-
mating a spatial stochastic frontier model over a sample of 215 dairy farms located in
England and Wales from 2000 to 2005, highlighted that not accounting for spatial depen-
dence may produce biased estimates of the inefficiency distribution. Moreover, Fusco
and Vidoli (2013) estimated a SF model using an autoregressive specification of the in-
efficiency error term to account for cross-sectionally correlated random factors affecting
the productivity level of neighbouring firms such as climatic and local features. Focusing
on 975 wine companies located in the spatial clusters of Trentino-Alto Adige, Tuscany
and Apulia in the year 2009, the authors demonstrated the existence of evident spin-offs
between neighbouring farms located inside the same cluster.

Despite the large number of contributions analyzing the productivity and efficiency
level of the agricultural sector using spatial and non-spatial SF models, none of the cur-
rent works has yet considered four different sources of spatial dependence simultane-
ously. Indeed, using the SDF-CSD model, we are able to capture (i) global productivity
spillovers, (ii) local input spillovers, (iii) behavioural correlation in farms’ efficiency lev-
els determined by cross-sectionally correlated inefficiency determinants and (iv) environ-
mental correlation depending on unobserved but spatially correlated variables. Identi-
fying the different kinds of spillover effects is essential to public governments and insti-
tutions in order to exploit existing spatial interactions in policy interventions aiming at
reinforcing the agricultural industry.

6.3 The Empirical Model

In this empirical application, we take advantage of the SDF-CSD model to analyse the
performance of the Italian agricultural sector considering four different kinds of spatial
effects using RICA data at the NUTS-3 level. This novel spatial estimator results to be
particularly suitable for this sector due to the strong importance of unobserved location-
specific attributes in the agricultural industry. Indeed, there are many spatially-correlated
factors that may not be considered in the model specification which could influence
agricultural production (soil quality, climatic and topographic conditions, environmental
characteristics, socio-economic aspects, level of infrastructure in the area, availability of
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input suppliers, quality of transport facilities, etc.). Estimating the SDF-CSD model, it is
possible to take into account spatial cross-sectional dependence arising from unobserved
factors common to neighbouring areas, which in this sector is highly relevant, thanks to
the spatial structure in the random error term. Moreover, the spatial structure related
to the determinants of firms’ efficiency allows capturing behavioural spatial dependence
arising from emulation behaviours of agricultural producers located in nearby areas and
from policies and institutions operating at the local level (Areal, Balcombe, and Tiffin,
2012). On the other hand, the spatial structures entering the frontier function relate to
productivity and input spillovers. Input spillovers may generate from greater availabil-
ity of specific products, input suppliers, assets and workers with industry-specific skills
in a certain area (Marshall, 1890). Furthermore, farmers’ productive performance may
be related to the one of neighbours due to the transmission of knowledge and best prac-
tices between peers (Cardamone, 2020), collective behaviours such as similar financial
decisions resulting from face-to-face relationships, exchange of ideas and learning from
others (Skevas and Lansink, 2020), farmers adoption of new similar technologies to face
specific techno-economic problems that are common to firms operating in nearby areas
(Billé, Salvioni, and Benedetti, 2018), and marketing-related externalities such as positive
feedbacks deriving from "protected designation of origin” (PDO) certifications (Vidoli et
al., 2016). Indeed, the successful performance of neighbouring producers may generate
economic returns also to peers because of the increased reputation of the whole area (i.e.
”halo effect” (Beebe et al., 2013)).

We use a Cobb-Douglas specification to model the production function equation, as
shown in Eq.(6.1) for i, j = 1, ..., N (i ̸= j) and t = 1, ..., T. Since we include four input
variables in the analysis, we prefer a Cobb-Douglas functional form with respect to a
Translog specification because it involves the estimation of fewer parameters and thus, it
facilitates the interpretation of the results. Moreover, the Cobb-Douglas function is often
used to estimate the production function parameters due to its ability to provide more
efficient estimates, especially when dealing with small samples (Yao and Liu, 1998).

Yit = β0 + βLLit + βAA AAit + βM Mit + βWEFWEFit + βtt + ρ
N

∑
j=1

wijYjt

+ θL

N

∑
j=1

wijLjt + θAA

N

∑
j=1

wij AAjt + θM

N

∑
j=1

wij Mjt + θWEF

N

∑
j=1

wijWEFjt − uit + ṽit

(6.1)

Specifically, the dependent variable Yit is defined as the logarithm of the total value
added generated by the agricultural sector in province i at time t. Following Vidoli et
al. (2016), we consider four input variables, all in log-form: total working hours (Lit),
utilized agricultural area (AAit), machinery (Mit), and water, energy, and fuel (WEFit).
Moreover, we add the time trend t to the model specification to capture the temporal
dynamics, where t has a minimum value of 1 for 2008 and then it increases by 1 for each
year reaching a maximum of 11 for 2018. To consider cross-sectional spatial dependence
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affecting the frontier function we include in Eq.(6.1) the spatial lag of the dependent vari-
able and of the four production inputs. In order to define neighbouring observations,
we follow the queen contiguity criteria, identifying neighbours as provinces sharing a
common border or vertex. Thus, we build the spatial weight matrix W as a row stan-
dardized binary contiguity matrix considering second-order neighbours (i.e. we assign
value 1 to neighbouring provinces and to neighbours of neighbours and 0 otherwise).1

Some robustness checks using different spatial weight matrices are provided afterwards.
In particular, wij refers to a generic spatial weight belonging to the (N × N) sparse spa-
tial weight matrix having all zeros on the main diagonal. Hence, we are able to detect
global spatial dependence through ρ, while the parameters θL, θAA, θM, and θWEF allows
capturing local spatial dependence related to the four input variables.

Finally, uit and ṽit represent the two error terms. Specifically, the random distur-
bance is distributed as a multivariate normal random variable with mean 0 and variance-
covariance matrix Π equal to σ2

v Mγ MT
γ with Mγ = (IN − γW)−1. The random distur-

bance accounts for unobserved but spatially correlated variables through the inclusion
of Mγ. Hence, we are able to capture the remaining spatial dependence resulting from
unobserved cross-sectionally correlated spatial features such as climatic conditions, soil
characteristics, and local institutional and socio-economic factors affecting the agricul-
tural sector through the parameter γ. On the other hand, the inefficiency error term,
defined using the scaling property, can be written as uit = h̃itũt, where h̃it is the scaling
function defined as in Eq.(6.2) and ũt is the industry-specific inefficiency error term com-
mon to all firms but varying in time following a truncated normal distribution with mean
0 and variance σ2

u .

h̃it = (IN − τW)−1 exp(ϕSSmallit + ϕBBigit + ϕFFamilyit + ϕDDiversi f iedit

+ ϕH Hiredit + ϕYYouthit + ϕWWomanit + ϕSubSubsidiesit)
(6.2)

The scaling function shown in Eq.(6.2) is composed by the spatial lag (IN − τW)−1

and by a positive function of the determinants of farms’ efficiency level. As usual in
SF model specifying the inefficiency error term using the scaling function approach, we
choose the exponential function to obtain easily interpretable estimates for the ϕ param-
eters. Indeed, if we define f (Z, ϕ) = exp(Zϕ), the interpretation of the ϕ parameters
corresponds to regressing the determinants of firms inefficiency Z on log(u) as shown in
Eq.(3.62a)-(3.62c) in Chapter 3. Moreover, as proposed by Orea and Alvarez (2019), we
are able to capture the overall level of spatial dependence associated with the variables
that determine cross-sectional inefficiency through the introduction of the spatial lag in
the scaling function. Indeed, farms’ inefficiency can depend on the inefficiency determi-
nants of neighbours and ignoring this feature can lead to heteroskedasticity issues in the

1A second-order matrix compared to a first-order one allows to consider more complex spatial structures
and to better identify spatial clusters. Moreover, this matrix is the one that minimizes the loglikelihood
function.
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inefficiency error term. Hence, through τ we are able to capture the fourth source of spa-
tial dependence, namely behavioural correlation related to the inefficiency determinants.

Focusing on the determinants of inefficiency, we model the scaling function by intro-
ducing some variables related to the main characteristics of Italian farms at the provincial
level. First of all, we consider the average farm dimension in the province introducing
two variables (Small and Big) that respectively measure the proportion of small and big
farms in the province. Following the RICA classification, small farms are identified as
farms with an economic dimension smaller than €25.000, medium farms are those with
an economic dimension ranging between €25.000 and €100.000, while big farms are those
reporting an economic dimension bigger than €100.000, where the economic dimension
is given by the sum of the standard production of vegetable agricultural activities and
breeding carried out in a given year. Besides considering farm size, we also take the
organizational type of the farm into consideration including in the model the variable
Family that equals the proportion of farms run by family members in the province. An-
other important aspect that can affect farms’ inefficiency level is diversification. Indeed,
diversification may raise efficiency thanks to reduced risks related to crop loss or dis-
eases. On the other hand, specialisation might boost technical efficiency since it enables
farmers to specialize in a few tasks, and therefore it improves management practices.
Thus, we include in the scaling function equation the variable Diversi f ied measuring the
proportion of diversified farms in the province. Moreover, a further interesting issue
concerns the link between technical inefficiency and relying on external factors such as
hired labour or rented land. Indeed, hired labour may result in more skilled and edu-
cated workers but may imply supervision problems while renting land may incentivize
farmers to be more productive in order to pay rentals, but may reduce the aspiration of
performing long-term improvements. Hence, we include in the model the variable Hired
measuring the average percentage of hired land in the province. Furthermore, farm-
ers’ characteristics such as age, gender, and education are often considered as a proxy
for management practices and social capital. Therefore, we include in the scaling func-
tion Youth and Woman representing the percentage of farms run by young entrepreneurs
(with less than 40 years) and by women, respectively. Finally, we investigate if subsidies
positively or negatively affect farmers’ inefficiency levels. Indeed, they can both lower
farmers’ motivation to work efficiently or act as a source of credit allowing farmers to in-
novate and operate more efficiently (Skevas and Lansink, 2020). Thus, we introduce the
variable Subsidies considering total subsidies received by farms located in each province
over total farm income as proposed by Stetter and Sauer (2021).

The estimates of the unknown parameters (β, ρ, θ, ϕ, τ, γ, σ2
u , σ2

v ) can be obtained
maximising the loglikelihood function composed by the partial loglikelihood functions
referring to each time period shown in Eq.(3.58) in Chapter 3. It is worth highlighting
that we didn’t have any problem in simultaneously estimating the four different spatial
parameters (two frontier based and two error based) using a constrained numerical max-
imisation algorithm implemented in Matlab even if our sample numerosity is not very
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large (107 units and 11 time periods). Besides estimating the SDF-CSD model we also es-
timated the nested specifications including fewer spatial terms in order to test whether it
is better to choose a more comprehensive model considering four different spatial terms
or a simpler specification.

Finally, it is well known that the parameters related to the frontier function cannot be
considered marginal effects when the spatial lag of the dependent variable is included in
the model because they do not represent anymore the first partial derivatives. Therefore,
the marginal effects related to the four input variables can be computed starting from
Eq.(6.3).

∂Y
∂X

= (INT − ρW)−1(INT βX + WθX) X = L, AA, M, WEF (6.3)

Specifically, the direct effect of the generic input variable X on Y can be computed
as the average of the diagonal elements of the matrix resulting from the product on the
right-hand side of Eq.(6.3), the indirect effect can be found as the average of the sum of
the non-diagonal elements, and the total effect is equal to the sum of the previous two.
The related standard error and t-values can be found using the delta method.

6.4 Data and Variables

6.4.1 The RICA Survey

The data used in this empirical application are aggregated data at the NUTS-3 level on
the Italian agricultural sector collected through the RICA survey, which is the Italian
counterpart of the FADN survey. The Farm Accountancy Data Network (FADN) is an
annual sample survey established by the European Economic Commission in 1965 for all
the member states of the European Union with the EEC Regulation 79/56 and updated
with the EC Reg. 1217/2009 and subsequent amendments. The FADN survey represents
the only harmonized source of microeconomic data on the evolution of incomes and on
the economic-structural dynamics of farms at the European level. The Italian counterpart
of the FADN survey is known as RICA, which stands for “Rete di Informazione Contabile
Agraria” and it has been carried out in Italy since 1968. The primary task of the FADN is
to satisfy the information needs of the European Union for the definition and evaluation
of the Community Agricultural Policy (CAP). The FADN data represent the main source
of information both for the European Commission and for the member states in order
to evaluate the impact of the proposed changes to the CAP through the simulation of
different scenarios concerning economic, environmental, social and innovation issues.
The information collected with the FADN also makes it possible to respond to the needs
of research and business consultancy services, through a series of variables and indices
on the technical, economic, patrimonial, and income characteristics of farms.

The FADN survey does not represent the entire universe of farms surveyed in a
given territory, but only those that, due to their economic dimension, can be considered



Chapter 6 - Data and Variables

professional and market-oriented. In Italy, starting from 2014, the minimum threshold
for inclusion in the RICA observation sample corresponds to a minimum standard gross
income of 8,000 euros. The RICA survey is based on the Agricultural Census carried out
by the Italian National Institute of Statistics (ISTAT). The Italian FADN sample is selected
following a stratified random sampling technique in which the strategic variables used
for the allocation of the sample units in the strata are the standard output, the utilized
agricultural area, and the adult bovine units. The selection of the units to be surveyed in
each stratum is equi-probabilistic, meaning that the extraction of the units under inves-
tigation from the reference universe is carried out randomly, strata by strata, thus allow-
ing the possibility of extending the sample results to the corresponding population. The
methodology adopted aims to provide representative data on three dimensions: region,
economic dimension, and technical-economic order.

For each company in the sample, the FADN survey collects information regarding
about 1000 variables while for the RICA the total amount of variables included in the
survey is bigger than 2500. The variables detected provide information on physical and
structural issues (location, surfaces, consistency of farms, company labour, services of-
fered, etc.); economic issues (revenues from sales, company re-uses, final stocks, pur-
chases of technical means, etc.); and financial and patrimonial matters (debts, credits,
public aid, production rights, acquisition and disposal of patrimonial assets, etc.). The
information framework of the RICA, which is much broader than the institutional needs
of the European Commission, makes it possible to carry out analyses on various themes
ranging from the productivity of farms to production costs, from environmental sustain-
ability to the role of the agricultural family. In the time period 2014-2019, the Italian RICA
sample is based on average on a sample of about 11,000 companies, structured in order
to represent the different types of production and dimensions in the national territory.
Moreover, it allows an average national coverage of 95% of the utilized agricultural area,
97% of the standard production value, 92% of the work units, and 91% of the livestock
units.

In this empirical application, we consider aggregated data at the NUTS-3 level from
the RICA survey in the time period 2008-2018 because for confidentiality reasons it is
not possible to know the exact location of each farm in the sample. Moreover, aggregated
data at the municipal level do not ensure representative results because in most cases they
do not have a minimum required sample numerosity of 5 units per municipality. Thus,
the NUTS-3 aggregation results to be the finer aggregation level which also guarantees
representative results.

6.4.2 Descriptive Statistics

Table 6.1 describes all the variables considered in the analysis, i.e. output, inputs, and
determinants of farms’ efficiency. It can be observed that small farms prevail over bigger
ones. Indeed, on average, the 24% of farms in our sample are small farms, while big farms
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represent only the 12% of the sample. All the remaining ones are considered medium-
sized farms. Moreover, the majority of farms are managed by family members (53%).
Focusing on the characteristics of the farmers, only the 13% of farmers have less than 40
years old, on average, while the average number of farms run by women is equal to 21%.
As for the degree of diversification, specialized farms tend to prevail in Italy. Indeed,
only 13% of farms use diversification techniques. On the other hand, hiring land is quite
common, in fact, on average the 44% of agricultural land is hired. Finally, considering
the percentage of total subsidies on farms’ income, it can be noticed that, in most cases,
subsidies constitute a substantial part of farmers’ earnings. Indeed, on average the 28%
on total farms’ income comes from received subsidies.

Concentrating on the output variable, Figure 6.1 depicts the quantile map for farms’
value added in 2018. The most profitable farms are located in the North (and in par-
ticular in the North-East) and in the internal provinces of Italy. On the other hand, the
less productive areas are located along the Adriatic and the Tyrrhenian coast, in northern
Lombardy, in Apulia, in Calabria, and in the two islands. In particular, less produc-
tive as well as more productive areas tend to cluster and locate in nearby provinces. To
verify if local spatial dependence detected in Figure 6.1 is statistically significant, we pro-
vide the LISA significance cluster map for the value-added in 2018. Specifically, Figure
6.2 shows that the North of Italy is characterized by different types of clusters. Indeed,
we have high-high and low-high clusters in the eastern provinces, and in two western
provinces of Piedmont and Liguria, while all low-low and high-low clusters are located
in the northern provinces of Lombardy and Trentino-Alto-Adige, along the border with
Switzerland. As for the Centre of Italy, we only detect two high-high clusters, one in
Terni and one in the Naples areas. On the other hand, in the South of Italy, we only have
low-low and high-low clusters, specifically located in southern Sicily and Sardinia, and
in the heel of Calabria. Conditioning the value-added cluster map on the quantiles of
Subsidies, it can be seen that the North-East, which is one of the most profitable areas
of Italy, is among those areas with a lower share of subsidies while the less productive
North-West belongs to those areas with a higher share of subsidies over farms income.
As for southern Italy, most of the less productive provinces belong to the third quantile of
Subsidies and in particular, Sardinia is the region with higher values of Subsidies. Thus,
this preliminary analysis reveals a negative relationship between the share of subsidies
received by provinces and the profitability level of the area.

Finally, in Figure 6.3 we investigate the territorial distribution of the determinants
of farms’ efficiency. While the Centre-North of Italy is characterized by a higher share of
big farms and of farms with a higher percentage of hired land, in the North-West and in
Southern Italy are principally located smaller farms and farms run by family members
as well as farms run by women and by young entrepreneurs. Considering the degree of
diversification, the majority of diversified farms are located in the Centre, in the North of
Italy and in the Apulia region. Finally, considering subsidies previous insights about the
strong difference between the North-East and the rest of Italy are confirmed.
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TABLE 6.1: Variables Description

Variable Definition Units Min 10th Perc. Mean 90th Perc. Max SD

Y log(Value Added) € 10.62 13.91 15.49 18.83 17.78 1.18

L log(WorkingHours) num. 8.40 11.26 12.58 13.69 14.41 1.04

AA log(UtilizedAgriculturalArea) km 2.46 6.04 7.63 8.93 10.07 1.16

M log(Machinery) € 3.69 7.82 9.29 10.55 11.49 1.1

WEF log(Water, Energy, Fuel) € 6.91 10.35 12.15 13.72 14.69 1.37

t Time num. 1 2 6 10 11 3.16

Small Perc. Small Farms % 0.00 0.05 0.24 0.47 0.89 0.16

Big Perc. Big Farms % 0.00 0.00 0.12 0.27 0.71 0.12

Family Perc. Family Farm % 0 .00 0.19 0.53 0.87 1.00 0.25

Diversified Perc. Diversified Farms % 0.00 0.00 0.13 0.34 0.72 0.16

Hired Perc. Hired Land % 0.00 0.14 0.44 0.73 0.99 0.23

Youth Perc. Young Farmers % 0.00 0.03 0.13 0.27 0.54 0.11

Woman Perc. Farms Run by Woman % 0.00 0.05 0.21 0.37 0.56 0.13

Subsidies Tot. Subsidies/Tot. Income % 0.01 0.07 0.28 0.59 0.92 1.06
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FIGURE 6.1: Quantile Map: Value Added, 2018
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0.233         Quantiles: Subsidies 0.386

FIGURE 6.2: LISA Significance Cluster Map Conditional on Subsidies:
Value Added, 2018
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FIGURE 6.3: Quantile Map: Determinants of Farms’ Inefficiency, 2018
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6.5 Results

6.5.1 Estimation Results and Model Selection

Table 6.2 shows the estimation results of the SDF-CSD model (yxuv model) and of all
the nested specifications combining different spatial lags related to the frontier function
or to the two error terms. In particular, the u=v model in Table 6.2 indicates a restricted
model, also known as spatial error model (SEM) in spatial econometric literature, where
the overall error term ε follows a unique spatial process without distinguishing between
the inefficiency and the noise term. Accordingly, the yxu=v model represents the general
Manski model introducing the spatial lag of Y, X and ε, while the yu=v and the xu=v
model are the two nested specifications also known as SARAR and SDEM model, respec-
tively. Indeed, starting from the SDF-CSD it is possible to restrict the model specification
in order to capture only specific sources of spatial dependence depending on the eco-
nomic phenomenon under investigation. As a consequence, the SDF-CSD model leads
the way to a number of spatial specifications (such as the yuv model, the yxv model,
the yxu model, etc..) never introduced before but that can be very useful in empirical
applications.

Comparing the estimation results of the nested models shown in Table 6.2, it can be
noticed that the β estimates and the ϕ estimates are quite robust to the different specifi-
cations. Nevertheless, as previously described, the β coefficients cannot be interpreted
in a meaningful way when the spatial lag of Y is included in the model. As for the ϕ

estimates, our results indicate that provinces with a higher percentage of small farms as
well as provinces with a lot of farms run by family members tend to be more inefficient
while big farms contribute to decreasing the inefficiency level of the agricultural sector at
NUTS-3 level. Indeed, as pointed out by Hall and LeVeen (1978), large farms can benefit
from the existence of economies of scale and of preferential access to the inputs market.
Concerning diversification, we find that the degree of diversification positively affects
inefficiency. Indeed, specialisation might boost technical efficiency more than diversifi-
cation since it enables farmers to specialize in a few tasks, and therefore it improves farm-
ers’ management practices (Latruffe, 2010). Moreover, specialisation also avoids conflicts
related to crop rotations and prevents difficulties associated with competition for the use
of the same resources such as land. Investigating the link between technical inefficiency
and the use of external factors, we find a negative effect of the percentage of rented land
in the province on technical inefficiency even if Hired results to be significant only in
some nested specifications. Indeed, a higher percentage of hired land on the farm may
incentivize farmers to work efficiently in order to pay rentals (Latruffe, 2010). Consider-
ing subsidies, our results confirm the idea that they contribute to decreasing the efficiency
level of farms likely due to lowered farmers’ motivation and distorted farms’ production
structure and factor use (Rizov, Pokrivcak, and Ciaian, 2013). Indeed, public policies and
regulations can influence farmers’ decisions on resource allocation producing several dis-
tortions due to increased input waste or inefficient input-output combinations. Finally,
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TABLE 6.2: Results

Lag yxuv uv u v yx y x
Coeff. SD Coeff. SD Coeff. SD Coeff. SD Coeff. SD Coeff. SD Coeff. SD

β0 3.87*** 0.53 4.25*** 0.62 4.57*** 0.28 3.69*** 0.18 3.10*** 0.49 3.07*** 0.38 4.49*** 0.41
βL 0.61*** 0.02 0.63*** 0.02 0.64*** 0.02 0.61*** 0.02 0.62*** 0.02 0.61*** 0.02 0.61*** 0.02
βAA 0.13*** 0.02 0.13*** 0.02 0.10*** 0.02 0.14*** 0.02 0.14*** 0.02 0.09*** 0.02 0.13*** 0.02
βM 0.07*** 0.01 0.07*** 0.01 0.08*** 0.01 0.07*** 0.01 0.07*** 0.01 0.10*** 0.01 0.07*** 0.02
βWEF 0.20*** 0.01 0.19*** 0.01 0.19*** 0.01 0.20*** 0.01 0.20*** 0.01 0.20*** 0.01 0.20*** 0.01
βt -0.01 0.01 -0.01 0.02 -0.03 0.02 -0.01 0.01 -0.01 0.01 -0.01 0.01 -0.02* 0.01
ρ 0.14* 0.08 - - - 0.38*** 0.07 0.06*** 0.02 -
θL -0.06 0.08 - - - -0.25*** 0.07 - -0.03 0.06
θAA -0.25*** 0.05 - - - -0.27*** 0.05 - -0.33*** 0.04
θM 0.02 0.04 - - - 0.01 0.05 - 0.05 0.04
θWEF 0.02 0.05 - - - -0.02 0.07 - 0.13*** 0.04
ϕS 0.70*** 0.18 0.67*** 0.17 0.37*** 0.11 0.86*** 0.22 0.73*** 0.19 0.40*** 0.11 0.49*** 0.14
ϕB -1.72*** 0.46 -1.65*** 0.41 -1.47*** 0.31 -1.70*** 0.47 -1.71*** 0.59 -1.56*** 0.33 -1.54*** 0.43
ϕF 0.22** 0.11 0.20** 0.1 0.14** 0.07 0.28** 0.13 0.22 0.14 0.13* 0.07 0.23** 0.09
ϕD 0.37** 0.15 0.24* 0.14 0.19* 0.11 0.35** 0.17 0.40** 0.16 0.08 0.11 0.31** 0.12
ϕH -0.06 0.11 -0.07 0.1 -0.14* 0.07 -0.01 0.13 -0.03 0.12 -0.17** 0.08 -0.06 0.09
ϕSub 0.71*** 0.1 0.69*** 0.09 0.55*** 0.07 0.82*** 0.12 0.72*** 0.13 0.59*** 0.07 0.64*** 0.09
ϕY 0.66*** 0.2 0.67*** 0.19 0.71*** 0.15 0.55*** 0.22 0.69*** 0.23 0.70*** 0.15 0.68*** 0.17
ϕW 0.55*** 0.18 0.58*** 0.17 0.66*** 0.14 0.37* 0.21 0.52** 0.19 0.65*** 0.14 0.57*** 0.16
τ 0.37*** 0.12 0.58*** 0.08 0.57*** 0.05 - - - -
γ 0.37*** 0.07 0.52*** 0.05 - 0.63*** 0.04 - - -

σ2
u 0.05 0.06 0.12 0.03 0.04 0.16 0.08

σ2
v 0.09 0.09 0.10 0.09 0.09 0.10 0.10

Lag yuv xuv yxu yxv yu yv xu
Coeff. SD Coeff. SD Coeff. SD Coeff. SD Coeff. SD Coeff. SD Coeff. SD

β0 5.09*** 0.64 4.37*** 0.59 3.33*** 0.46 3.27*** 0.49 4.97*** 0.52 3.77*** 0.55 4.98*** 0.61
βL 0.63*** 0.02 0.61*** 0.02 0.62*** 0.02 0.61*** 0.02 0.65*** 0.02 0.61*** 0.02 0.62*** 0.02
βAA 0.13*** 0.02 0.13*** 0.02 0.14*** 0.02 0.14*** 0.02 0.10*** 0.02 0.14*** 0.02 0.13*** 0.02
βM 0.07*** 0.01 0.07*** 0.01 0.07*** 0.01 0.07*** 0.01 0.08*** 0.01 0.07*** 0.01 0.07*** 0.01
βWEF 0.19*** 0.01 0.20*** 0.01 0.20*** 0.01 0.20*** 0.01 0.18*** 0.01 0.20*** 0.01 0.20*** 0.01
βt -0.01 0.02 -0.01 0.02 -0.01 0.01 -0.01 0.01 -0.04** 0.02 -0.01 0.01 -0.02 0.02
ρ -0.05 0.03 - 0.35*** 0.06 0.21*** 0.07 -0.02 0.03 0.00 0.03 -
θL - 0.04 0.09 -0.23*** 0.06 -0.12 0.08 - - -0.01 0.09
θAA - -0.24*** 0.05 -0.26*** 0.04 -0.27*** 0.05 - - -0.28*** 0.04
θM - 0.03 0.04 0.01 0.04 0.02 0.04 - - 0.05 0.04
θWEF - 0.05 0.05 -0.03 0.05 0.04 0.05 - - 0.05 0.05
ϕS 0.65*** 0.17 0.66*** 0.17 0.71*** 0.18 0.74*** 0.19 0.36*** 0.11 0.86*** 0.22 0.49*** 0.14
ϕB -1.70*** 0.42 -1.72*** 0.44 -1.72*** 0.49 -1.72*** 0.46 -1.49*** 0.31 -1.70*** 0.47 -1.60*** 0.45
ϕF 0.21** 0.10 0.21* 0.11 0.18 0.12 0.28** 0.13 0.14** 0.07 0.28** 0.13 0.13 0.09
ϕD 0.27** 0.14 0.35 0.14 0.40*** 0.15 0.39*** 0.16 0.20* 0.11 0.35* 0.17 0.36*** 0.12
ϕH -0.06 0.10 -0.07*** 0.10 -0.04 0.11 -0.06 0.12 -0.14** 0.07 -0.01 0.13 -0.06 0.08
ϕSub 0.69*** 0.09 0.70*** 0.09 0.71*** 0.10 0.74*** 0.10 0.55*** 0.07 0.82*** 0.12 0.64*** 0.1
ϕY 0.68*** 0.19 0.65*** 0.19 0.71*** 0.22 0.63*** 0.21 0.72*** 0.15 0.55*** 0.22 0.72*** 0.18
ϕW 0.56*** 0.17 0.56*** 0.18 0.55*** 0.19 0.48*** 0.20 0.64*** 0.14 0.37* 0.21 0.64*** 0.17
τ 0.62*** 0.07 0.47*** 0.12 0.18 0.15 - 0.59*** 0.05 - 0.44*** 0.11
γ 0.52*** 0.05 0.43*** 0.07 - 0.35*** 0.08 - 0.63*** 0.04 -

σ2
u 0.05 0.05 0.05 0.04 0.12 0.03 0.08

σ2
v 0.09 0.09 0.09 0.09 0.10 0.09 0.09

Lag xv u=v yxu=v yu=v xu=v non-spat.
Coeff. SD Coeff. SD Coeff. SD Coeff. SD Coeff. SD Coeff. SD

β0 3.74*** 0.49 4.17*** 0.29 3.86*** 0.53 4.82*** 0.69 4.30*** 0.59 3.90*** 0.19
βL 0.61*** 0.02 0.63*** 0.02 0.61*** 0.02 0.62*** 0.02 0.61*** 0.02 0.62*** 0.02
βAA 0.13*** 0.02 0.13*** 0.02 0.13*** 0.02 0.13*** 0.02 0.13*** 0.02 0.09*** 0.02
βM 0.07*** 0.01 0.07** 0.01 0.07*** 0.01 0.07*** 0.01 0.07*** 0.01 0.10*** 0.01
βWEF 0.21** 0.01 0.19*** 0.01 0.20*** 0.01 0.19*** 0.01 0.20*** 0.01 0.20*** 0.01
βt -0.01 0.01 -0.01 0.02 -0.01 0.01 -0.01 0.02 -0.01 0.01 -0.02** 0.01
ρ - - 0.14* 0.08 -0.04 0.03 - -
θL 0.04 0.09 - -0.06 0.08 - 0.04 0.09 -
θAA -0.29*** 0.05 - -0.25*** 0.05 - -0.24*** 0.05 -
θM 0.03 0.04 - 0.02 0.04 - 0.03 0.04 -
θWEF 0.11** 0.05 - 0.02 0.05 - 0.05 0.05 -
ϕS 0.70*** 0.19 0.68*** 0.17 0.70*** 0.18 0.67*** 0.17 0.66*** 0.17 0.37*** 0.11
ϕB -1.74*** 0.48 -1.66*** 0.42 -1.72*** 0.46 -1.70*** 0.42 -1.72*** 0.44 -1.57*** 0.32
ϕF 0.31** 0.13 0.20** 0.10 0.22** 0.11 0.21** 0.10 0.22** 0.11 0.13* 0.07
ϕD 0.38** 0.16 0.24* 0.14 0.37*** 0.15 0.26* 0.14 0.35*** 0.14 0.08 0.11
ϕH -0.08 0.12 -0.06 0.10 -0.06 0.11 -0.06 0.10 -0.07 0.1 -0.17** 0.08
ϕSub 0.74*** 0.11 0.70*** 0.09 0.71*** 0.10 0.71*** 0.09 0.70*** 0.1 0.59*** 0.07
ϕY 0.61*** 0.20 0.66*** 0.19 0.66*** 0.20 0.66*** 0.19 0.65*** 0.19 0.71*** 0.15
ϕW 0.47** 0.19 0.56*** 0.17 0.55*** 0.18 0.54*** 0.17 0.56*** 0.18 0.63*** 0.14
τ -

0.54*** 0.09 0.37*** 0.12 0.55*** 0.10 0.44*** 0.13
-

γ 0.48*** 0.08 -

σ2
u 0.04 0.05 0.05 0.05 0.05 0.17

σ2
v 0.09 0.09 0.09 0.09 0.09 0.11

∗ ∗ ∗ : pvalue ≤ 0.01; ∗∗ : pvalue ≤ 0.05; ∗ : pvalue ≤ 0.10
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provinces with a higher percentage of farms run by women or by young entrepreneurs
tend to be more inefficient than others. In particular, Timothy and Adeoti (2006) attribute
the negative effects associated with females to unequal access to agricultural resources
while concerning age, as Mathijs and Vranken (2001) explained, older farmers result to
be more efficient thanks to increased experience and learning ability.

TABLE 6.3: Model Comparison

Model LL Test Statistic Constraints P-value Parameters AIC BIC

SDF-CSD -284.61 Base Model - - 23 615.22 731.85

uv -297.70 26.18 5 0.00 18 631.40 722.67

u -340.48 111.74 6 0.00 24 728.96 850.66

v -305.14 41.06 6 0.00 17 644.28 730.48

yx -296.20 23.18 2 0.00 25 642.40 769.17

y -366.48 163.74 6 0.00 17 766.96 853.16

x -319.66 70.10 3 0.00 26 691.32 823.16

yuv -296.53 23.84 4 0.00 19 631.06 727.40

xuv -285.73 2.24 1 0.09 27 625.46 762.37

yxu -295.56 21.90 1 0.00 22 635.12 746.68

yxv -286.70 4.18 1 0.02 28 629.40 771.38

yu -340.02 110.82 5 0.00 18 716.04 807.31

yv -305.13 41.04 5 0.00 29 668.26 815.31

xu -311.35 53.48 2 0.00 21 664.70 771.19

xv -290.09 10.96 2 0.00 30 640.18 792.30

u=v -297.89 26.56 6 0.00 17 629.78 715.98

yxu=v -284.61 0.00 1 6.30 31 631.22 788.42

yu=v -297.05 24.88 5 0.00 18 630.10 721.37

xu=v -285.77 2.32 2 0.16 32 635.54 797.80

non-spatial -369.50 169.78 7 0.00 16 771.00 852.13

Concentrating on the spatial parameters, we detect positive and significant spatial
dependence either at the frontier level or related to the two error terms. Thus, the esti-
mate of ρ indicates that positive global productivity spillovers affect the Italian agricul-
tural sector as well as positive spillover effects related to the determinants of farms’ effi-
ciency (τ), and to unobserved environmental factors (γ). Specifically, the degree of global
spatial dependence (0.14) estimated using the SDF-CSD model is considerably smaller
than the level of behavioural and environmental spatial correlation associated with the
two error components (both equal to 0.37) indicating that the Italian agricultural sec-
tor is more strongly affected by error-based than by frontier-based spatial dependence.
These findings reveal that, in the agricultural industry, the productive performance of
the Italian provinces is affected by those of the neighbouring spatial units. In particular,
we detect positive spatial dependence in the determinants of farms’ efficiency, indicating
that farmers located in neighbouring areas may emulate each other and that neighbour-
ing provinces are characterized by similar institutional, cultural, and socio-economic fea-
tures. Moreover, the positive and significant coefficient associated with γ suggests that
there are a number of non-observed potential sources of spatial dependence such as soil
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quality, climatic conditions, and other location-specific attributes.

To choose the model specification that better fits the data, in Table 6.3 we compare
the different nested models using some likelihood ratio tests and information criteria.
According to both the LR test and the AIC criteria, the yxu=v model is the preferred one.
Indeed, the degree of spatial dependence associated with the inefficiency and the ran-
dom error term in this case study is the same for both the two error components using
the SDF-CSD model. Thus, in this empirical application, it is better to simplify the model
specification using a model that considers one unique spatial term referring to the whole
error structure. Moreover, in Appendix B we also estimate the SDF-STE model using data
on the Italian agricultural sector. Comparing the two spatial stochastic frontier models
proposed in this thesis using the Vuong test for non-nested models and the Takeuchi in-
formation criteria, we find that the SDF-CSD model outperforms the SDF-STE using these
data. The preference for the SDF-CSD model in this empirical application may depend
on the importance of unobserved but spatially-correlated variables in this sector that are
considered in the SDF-CSD specification but not in the SDF-STE. In addition, the insights
on the indirect effects related to the inefficiency determinants resulting from the spatial
lags of the Z variables introduced in the SDF-STE model in this case are not particularly
appealing since spillovers resulting from the characteristics of the agricultural sector at
the provincial level such as the degree of differentiation, farms’ size, and the share of
farms run by women or young person are not of interest in this application. In sum, the
introduction of the spatial lags of the Z variables is not motivated by the objectives of
this empirical analysis which is aimed at identifying the different typologies of spillovers
(productivity and input spillovers, behavioural and environmental correlation) occurring
in the Italian agricultural sector.

6.5.2 Sensitivity to the Spatial Weight Matrix and Marginal Effects

In this subsection, we estimate the SDF-CSD model using different spatial weight ma-
trices. Besides the second-order binary contiguity matrix (W2), we consider a first-order
binary contiguity matrix (W) and a dense inverse distance matrix (Wid). According to the
results of the Monte Carlo simulations in Chapter 4, when we introduce a dense inverse
distance matrix, we associate it only to the spatial lags related to the frontier function
while for the two error terms, we use a sparse matrix like W or W2. The estimation re-
sults are shown in Table 6.4. In particular, we find that the estimates of the β and of the ϕ

parameters are quite robust to different specifications of the spatial weight matrix. On the
other hand, we detect some differences in the estimated spatial coefficients. Indeed, the
level of global spatial dependence related to the frontier (ρ) is significantly different from
zero only when a second-order binary contiguity matrix is associated with the spatial lags
of the frontier function. Indeed, in the models considering a first-order contiguity matrix
or a dense inverse distance matrix in the frontier function, we do not find evidence of
significant global productivity spillovers. On the other hand, the estimates of τ and γ

tend to raise in magnitude in the models considering W or Wid in the frontier function
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TABLE 6.4: Sensitivity to the Choice of W

SDF-CSD W2 W W2,W W,W2 Wid,W2 Wid,W
Coeff. SD Coeff. SD Coeff. SD Coeff. SD Coeff. SD Coeff. SD

β0 3.87*** 0.53 4.29*** 0.65 3.47*** 0.46 3.83*** 0.42 6.20*** 1.27 6.74*** 1.26

βL 0.61*** 0.02 0.59*** 0.02 0.61*** 0.02 0.60*** 0.02 0.63*** 0.02 0.63*** 0.02

βAA 0.13*** 0.02 0.14*** 0.02 0.14*** 0.02 0.15*** 0.02 0.14*** 0.02 0.14*** 0.02

βM 0.07*** 0.01 0.09*** 0.01 0.07*** 0.01 0.08*** 0.01 0.07*** 0.01 0.07*** 0.01

βWEF 0.20*** 0.01 0.19*** 0.01 0.20*** 0.01 0.20*** 0.01 0.19*** 0.01 0.18*** 0.01

βt -0.01 0.01 -0.02 0.02 -0.01 0.01 -0.01 0.02 -0.02 0.02 -0.03 0.02

ρ 0.14* 0.08 -0.06 0.12 0.29*** 0.06 0.01 0.05 0.08 0.18 0.12 0.18

θL -0.06 0.08 0.12 0.09 -0.19*** 0.06 0.10** 0.05 -0.23 0.20 -0.26 0.19

θAA -0.25*** 0.05 -0.15*** 0.04 -0.27*** 0.04 -0.11*** 0.03 -0.67*** 0.18 -0.81*** 0.16

θM 0.02 0.04 0.02 0.03 0.01 0.04 -0.01 0.03 0.37** 0.16 0.44*** 0.17

θWEF 0.02 0.05 0.03 0.03 0.01 0.04 0.01 0.03 -0.04 0.21 -0.11 0.22

ϕS 0.70*** 0.18 0.51*** 0.15 0.73*** 0.18 0.65*** 0.16 0.75*** 0.19 0.73*** 0.19

ϕB -1.72*** 0.46 -1.57*** 0.37 -1.64*** 0.46 -1.70*** 0.41 -1.64*** 0.51 -1.57*** 0.54

ϕF 0.22** 0.11 0.12 0.08 0.22** 0.11 0.15 0.10 0.29** 0.12 0.30** 0.12

ϕD 0.37** 0.15 0.24* 0.13 0.39** 0.15 0.26* 0.14 0.50*** 0.14 0.57*** 0.14

ϕH -0.06 0.11 -0.11 0.08 -0.03 0.11 -0.11 0.10 0.06 0.10 0.06 0.09

ϕSub 0.71*** 0.10 0.63*** 0.09 0.71*** 0.10 0.68*** 0.09 0.72*** 0.11 0.70*** 0.11

ϕY 0.66*** 0.20 0.65*** 0.17 0.68*** 0.20 0.60*** 0.19 0.61*** 0.20 0.68*** 0.20

ϕW 0.55*** 0.18 0.70*** 0.16 0.54*** 0.18 0.64*** 0.17 0.46*** 0.18 0.45*** 0.18

τ 0.37*** 0.12 0.47*** 0.13 0.15 0.12 0.55*** 0.08 0.48*** 0.10 0.43*** 0.09

γ 0.37*** 0.07 0.27*** 0.09 0.12** 0.05 0.48*** 0.06 0.38*** 0.06 0.15*** 0.05

σ2
u 0.05 - 0.08 - 0.04 - 0.06 - 0.04 - 0.04 -

σ2
v 0.09 - 0.09 - 0.09 - 0.09 - 0.09 - 0.09 -

LL -284.61 - -314.25 - -292.08 - -289.72 - -285.89 - -285.31 -
∗ ∗ ∗ : pvalue ≤ 0.01; ∗∗ : pvalue ≤ 0.05; ∗ : pvalue ≤ 0.10
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TABLE 6.5: Marginal Effects

Effects W2 W W2,W W,W2 Wid, W2 Wid,W
Coeff. SD Coeff. SD Coeff. SD Coeff. SD Coeff. SD Coeff. SD

L
Direct 0.61*** 0.02 0.59*** 0.02 0.61*** 0.02 0.60*** 0.02 0.63*** 0.02 0.63*** 0.02

Indirect 0.03 0.06 0.08** 0.04 -0.01 0.07 0.11** 0.04 -0.19 0.18 -0.21 0.18

Total 0.64*** 0.06 0.67*** 0.04 0.59*** 0.07 0.71*** 0.04 0.44** 0.18 0.42*** 0.17

AA
Direct 0.13*** 0.02 0.14*** 0.02 0.13*** 0.02 0.15*** 0.02 0.14*** 0.02 0.13*** 0.02

Indirect -0.26*** 0.05 -0.15*** 0.03 -0.32*** 0.05 -0.11** 0.04 -0.72*** 0.21 -0.91*** 0.22

Total -0.13** 0.06 -0.01 0.03 -0.19*** 0.05 0.04 0.03 -0.59** 0.21 -0.77*** 0.22

M
Direct 0.07*** 0.01 0.09*** 0.01 0.07*** 0.01 0.08*** 0.01 0.07*** 0.01 0.07*** 0.01

Indirect 0.04 0.05 0.01 0.03 0.05 0.05 -0.01 0.03 0.41** 0.2 0.51** 0.24

Total 0.11** 0.05 0.11*** 0.03 0.12** 0.05 0.07** 0.03 0.47** 0.2 0.59*** 0.24

WEF
Direct 0.20*** 0.01 0.19*** 0.01 0.20*** 0.01 0.20*** 0.01 0.19*** 0.01 0.18*** 0.01

Indirect 0.06 0.05 0.01 0.03 0.09 0.06 0.01 0.03 -0.03 0.19 -0.09 0.21

Total 0.26*** 0.06 0.21*** 0.03 0.29*** 0.06 0.20*** 0.03 0.16 0.2 0.08 0.22
∗ ∗ ∗ : pvalue ≤ 0.01; ∗∗ : pvalue ≤ 0.05; ∗ : pvalue ≤ 0.10

instead of W2. These results confirm previous insights on the greater relevance of error-
based spatial spillover effects in the Italian agricultural sector compared to frontier-based
spatial spillovers. Thus, the agricultural output of the Italian provinces is mainly affected
by positive spatial correlation related to the inefficiency determinants and to unobserved
location-specific attributes.

Starting from the estimates of Table 6.4, Table 6.5 shows the corresponding marginal
effects. Considering the direct effects of the X variables on Y, we find that they do not
vary depending on the choice of the spatial weight matrix. Specifically, the direct effects
of the four inputs considered in the analysis are all positive and significant, as expected.
In particular, labour results to be the more effective input variable (0.61), followed by
water, energy, and fuel (0.20). In line with the results of Fusco and Vidoli (2013), capital
inputs such as machinery (0.07) and land (0.13) contribute less to the productive perfor-
mance of the Italian agricultural sector compared to human resources. Overall, the sum
of the elasticities related to the four input variables results to be greater than 1 regardless
of the spatial structure considered. Thus, in line with most European countries (Rizov,
Pokrivcak, and Ciaian, 2013), the Italian agricultural sector is characterized by increasing
returns to scale, indicating that increasing the inputs by 1% would produce more than
1% increase in output.

Considering the indirect effects, they tend to vary depending on the choice of the
spatial weight matrix. Indeed, the indirect effect associated with labour is positive and
significant only when we consider a first-order contiguity matrix related to the frontier
function, while the indirect effect of machinery is positive and significant only using a
dense inverse distance spatial weight matrix associated with the frontier function. On
the other hand, the indirect effects of the agricultural area and of water, energy and fuel
do not change across the different estimated models. Specifically, while the former is
always negative and significant, the latter never reports values statistically different from
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zero in all the different specifications. In sum, we detect positive input spillover effects at
the local level in terms of labour while the positive input spillovers related to machinery
result to be significant only at the global level. On the contrary, provinces that dispose
of larger agricultural areas tend to be located near provinces with fewer lands likely due
to the specific territorial conformation and the alternation of more rural provinces with
more urbanized ones.

6.5.3 TE Scores

The lower panel of Figure 6.4 shows the time trend of the average TE scores computed
using the SDF-CSD model. Specifically, we find that the efficiency level of the Italian
agricultural sector sharply decreased from 2009 to 2010, and then it started to rise slowly
from 2013 onward, reaching a value of 0.47 in the last year of the analysis. Moreover,
the upper panel of Figure 6.4 shows the kernel density plots of the technical efficiency
scores computed estimating the SDF-CSD model, the non-spatial SF model, and the uv
and xy models, introducing spatial dependence only in the error terms and in the fron-
tier function, respectively. Considering the scale of the distribution, it can be noticed that
the TE scores’ distribution from the non-spatial model is the closest one to the distribu-
tion obtained through the SDF-CSD model. On the other hand, the xy model tends to
overestimate the TE scores while the uv model tends to underestimate them. As for the
shape of the distribution, the distribution obtained using the SDF-CSD model resembles
the one coming from the spatial error model but is mitigated by the quasi-normal shape
of the xy model. Thus, the SDF-CSD model allows to accurately combine the main fea-
tures of the distributions of the TE scores resulting from the uv and xy model. Thus,
these findings show that the distribution of the TE scores obtained through non-spatial
models is the one that better approaches the one from the SDF-CSD model one while
considering spatial dependence only in the frontier function or in the error terms leads
to severe distortions both in the scale and in the shape of the distribution. Therefore,
it is fundamental to combine frontier-based and error-based spatial effects both to con-
sider different sources of spatial dependence through a comprehensive model and also
to obtain consistent estimates of the TE scores.

Moreover, in Table 6.6 we present the efficiency ranking of the 107 Italian provinces
for the four different SF models considered in this section (SDF-CSD, uv-model, yx-
model, non-spatial SF model) to observe more in detail how both the ranking and the
level of the TE scores modify depending on the kind of spatial structure considered.
Specifically, the province of Cremona is ranked first in three out of four models, reaching
a score of 0.68 using the SDF-CSD model, 0.87 using the yx-model, 0.79 with the non-
spatial model, and 0.40 with the uv-model. On the other hand, the less efficient province
in terms of agricultural production is Catanzaro, reaching a score of 0.21, 0.13, 0.14, and
0.08 using the xy, the non-spatial, the SDF-CSD, and the uv-model, respectively. Thus,
as noticed in the upper panel of Figure 6.4, while the TE scores tend to be overestimated
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using a spatial SF model considering spatial dependence only in the frontier function, in-
troducing spatial dependence only in the error structure leads to lower efficiency scores.
Moreover, we find very dissimilar rankings associated with the different SF models con-
sidered. For example, while the province of Rovigo ranks second with the SDF-CSD, it
is the first one using the uv-model, the sixth with the yx-model, and the tithe with the
non-spatial SF model. Thus, both not considering spatial dependence and introducing
it only in the frontier function or in the error components lead to a biased inefficiency
ranking.

Figure 6.5 maps the TE scores resulting from the SDF-CSD model for the 107 Italian
provinces, comparing the years 2008 and 2018. Overall, provinces located in the North
of Italy result to be much more efficient than those located in the South and this gap has
remarkably increased in the past eleven years. Specifically, the large efficiency cluster in
the Po Valley is strengthening over time while Sardinia, Calabria, the Southern Apulia,
and the Northern provinces at the border with Switzerland are achieving lower and lower
efficiency scores. Besides highlighting a severe North-South divide that is increasing
with time, Figure 6.5 shows that Italian provinces are characterized by strong spatial
concentration considering the efficiency level of the agricultural sector.

Aiming at quantifying the level of spatial dependence related to the efficiency level
of the Italian agricultural sector, we follow the method proposed by Glass, Kenjegalieva,
and Sickles (2016) to compute direct, indirect, and total relative efficiencies. In particular,
by multiplying the TE scores for the spatial lag of the dependent variable, it is possible
to obtain total technical efficiency scores TETot

it = (IN − ρW)−1 TEit, including both direct
and indirect effects. Instead of computing relative direct, indirect, and total efficiency
scores with respect to the best-performing unit in the sample as proposed by Glass, Ken-
jegalieva, and Sickles (2016), we follow the method introduced by LeSage and Pace (2009)
to compute the marginal effects to disentangle the direct, indirect, and total technical effi-
ciency scores. Specifically starting from the matrix ϵ = (IN − ρW)−1 (IN · TEit), direct TE
scores (TEDir

it ) corresponds to the elements on the main diagonal of ϵ, indirect TE scores
(TEInd

it ) are the row sums of the non-diagonal elements, and the total TE scores previously
defined equals TETot

it = TEDir
it + TEInd

it . The distribution of the resulting direct, indirect,
and total TE scores is reported in Figure 6.6. Specifically, it can be observed that the dis-
tribution of TEDir

it highly reflects the one of TEit, while the distribution of TEInd
it takes

smaller values and it is much more concentrated around the mean value. Moreover, the
average direct TE score (ADTE) equals 0.50, the average indirect TE score (AITE) equals
0.08, and the average total TE score (ATTE) equals 0.58. Thus, efficiency mostly depends
on internal and controllable factors and on average, the 13.79% of provinces’ overall effi-
ciency level comes from positive spillover effects resulting from neighbours.

6.5.4 Robustness Check

Similarly to the previous application on the Italian accommodation sector, also in this
case, non-spatial unobserved individual-specific effects and endogeneity related to the
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FIGURE 6.4: TE Scores: Kernel Density Plot and Time Trend
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TABLE 6.6: Efficiency Scores Ranking, Year 2018

SDF-CSD uv-model yx-model non-spatial model
Ranking Provinces TE Provinces TE Provinces TE Provinces TE

1 Cremona 0.68 Rovigo 0.49 Cremona 0.87 Cremona 0.79
2 Rovigo 0.66 Cremona 0.48 Pavia 0.82 Lodi 0.73
3 Brescia 0.65 Pordenone 0.48 Brescia 0.81 Pavia 0.72
4 Parma 0.64 Brescia 0.47 Lodi 0.81 Brescia 0.71
5 Verona 0.63 Verona 0.46 Parma 0.8 Messina 0.69
6 Pordenone 0.63 Venezia 0.46 Rovigo 0.8 Pistoia 0.69
7 Lodi 0.63 Treviso 0.46 Pistoia 0.79 Parma 0.68
8 Pavia 0.62 Padova 0.46 Messina 0.79 Verbano-Cusio-Ossola 0.68
9 Pistoia 0.62 Parma 0.46 Reggio Emilia 0.78 Bergamo 0.68

10 Venezia 0.62 Lodi 0.45 Bergamo 0.78 Rovigo 0.68
11 Reggio Emilia 0.62 Gorizia 0.45 Verona 0.78 Reggio Emilia 0.67
12 Mantova 0.62 Trento 0.45 Prato 0.77 Pordenone 0.67
13 Treviso 0.62 Vicenza 0.45 Mantova 0.77 Ravenna 0.66
14 Padova 0.61 Mantova 0.44 Pordenone 0.77 Verona 0.66
15 Bergamo 0.61 Reggio Emilia 0.44 L’Aquila 0.77 Mantova 0.66
16 Trento 0.61 Pistoia 0.44 Ravenna 0.76 Gorizia 0.65
17 Ravenna 0.6 Bergamo 0.44 Venezia 0.76 Forlì-Cesena 0.64
18 Vicenza 0.6 Pavia 0.43 Trento 0.76 L’Aquila 0.64
19 Prato 0.6 Ravenna 0.43 Forlì-Cesena 0.76 Trento 0.64
20 Gorizia 0.6 Modena 0.43 Treviso 0.75 Padova 0.64
21 Modena 0.59 Udine 0.42 Piacenza 0.75 Venezia 0.63
22 Forlì-Cesena 0.59 Piacenza 0.41 Teramo 0.75 Piacenza 0.63
23 Piacenza 0.59 Forlì-Cesena 0.41 Padova 0.74 Vicenza 0.63
24 Messina 0.59 Prato 0.41 Gorizia 0.74 Treviso 0.62
25 L’Aquila 0.58 Bologna 0.39 Verbano-Cusio-Ossola 0.74 Cuneo 0.62
26 Teramo 0.56 Bolzano 0.39 Vicenza 0.74 Teramo 0.62
27 Verbano-Cusio-Ossola 0.55 Belluno 0.39 Modena 0.73 Modena 0.61
28 Latina 0.55 L’Aquila 0.39 Latina 0.73 Rimini 0.6
29 Udine 0.55 Verbano-Cusio-Ossola 0.38 Catania 0.72 Vercelli 0.58
30 Bologna 0.55 Messina 0.38 Cuneo 0.72 Caserta 0.58
31 Rimini 0.55 Rimini 0.38 Caserta 0.72 Viterbo 0.58
32 Caserta 0.55 Teramo 0.37 Rimini 0.72 Bologna 0.57
33 Bolzano 0.54 Lucca 0.37 Matera 0.71 Latina 0.57
34 Catania 0.53 Latina 0.37 Viterbo 0.71 Udine 0.57
35 Vercelli 0.53 Vercelli 0.36 Vercelli 0.7 Catania 0.57
36 Viterbo 0.53 Alessandria 0.36 Bologna 0.69 Alessandria 0.56
37 Cuneo 0.53 Caserta 0.36 Napoli 0.69 Fermo 0.55
38 Alessandria 0.53 Cuneo 0.36 Alessandria 0.69 Matera 0.55
39 Savona 0.52 Savona 0.36 Savona 0.68 Lucca 0.55
40 Lucca 0.52 Viterbo 0.35 Bolzano 0.68 Milano 0.55
41 Napoli 0.52 Trieste 0.35 Udine 0.67 Savona 0.55
42 Belluno 0.52 Catania 0.34 Fermo 0.67 Torino 0.55
43 Fermo 0.5 Milano 0.34 Barletta-Andria-Trani 0.67 Napoli 0.54
44 Torino 0.5 Ferrara 0.34 Lucca 0.66 Bolzano 0.54
45 Caltanissetta 0.49 Torino 0.34 Caltanissetta 0.66 Macerata 0.53
46 Roma 0.49 Napoli 0.34 Torino 0.66 Belluno 0.52
47 Matera 0.49 Fermo 0.33 Trapani 0.65 Prato 0.52
48 Barletta-Andria-Trani 0.49 Firenze 0.33 Oristano 0.65 Avellino 0.52
49 Campobasso 0.48 Asti 0.33 Roma 0.65 Arezzo 0.51
50 Benevento 0.48 Arezzo 0.33 Avellino 0.64 Caltanissetta 0.51
51 Asti 0.48 Roma 0.32 Campobasso 0.64 Barletta-Andria-Trani 0.51
52 Milano 0.48 Caltanissetta 0.32 Asti 0.64 Campobasso 0.51
53 Trapani 0.48 Macerata 0.32 Macerata 0.64 Benevento 0.51
54 Macerata 0.48 Massa-Carrara 0.32 Benevento 0.64 Asti 0.51
55 Avellino 0.48 Campobasso 0.32 Ragusa 0.64 Oristano 0.5
56 Arezzo 0.48 Perugia 0.31 Belluno 0.63 Roma 0.5
57 Isernia 0.47 Monza e della Brianza 0.31 Bari 0.63 Perugia 0.49
58 Ragusa 0.47 Lecco 0.31 Ascoli Piceno 0.63 Nuoro 0.49
59 Ascoli Piceno 0.47 Isernia 0.31 Arezzo 0.62 Firenze 0.49
60 Oristano 0.47 Pesaro Urbino 0.31 Isernia 0.62 Pesaro Urbino 0.49
61 Perugia 0.47 Ascoli Piceno 0.31 Pesaro Urbino 0.62 Ragusa 0.49
62 Ferrara 0.47 Benevento 0.31 Reggio Calabria 0.62 Trapani 0.49
63 Firenze 0.47 Siena 0.31 Perugia 0.62 Isernia 0.49
64 Pesaro Urbino 0.46 Trapani 0.31 Sud Sardegna 0.61 Ascoli Piceno 0.48
65 Trieste 0.46 La Spezia 0.31 Nuoro 0.61 Bari 0.48
66 Chieti 0.45 Barletta-Andria-Trani 0.31 Milano 0.61 Massa-Carrara 0.47
67 Salerno 0.45 Ragusa 0.3 Salerno 0.6 Salerno 0.47
68 Bari 0.45 Avellino 0.3 Firenze 0.6 Siena 0.47
69 Nuoro 0.45 Chieti 0.3 Chieti 0.6 Biella 0.47
70 Siena 0.44 Livorno 0.3 Agrigento 0.59 Monza e della Brianza 0.47
71 Massa-Carrara 0.44 Imperia 0.3 Imperia 0.59 Chieti 0.47
72 Agrigento 0.44 Terni 0.29 Terni 0.59 Trieste 0.47
73 Sud Sardegna 0.44 Oristano 0.29 Potenza 0.58 Livorno 0.46
74 Imperia 0.44 Biella 0.29 Siena 0.58 Imperia 0.46
75 Lecco 0.44 Agrigento 0.29 Siracusa 0.58 Reggio Calabria 0.46
76 Terni 0.44 Ancona 0.29 Livorno 0.58 Ancona 0.46
77 La Spezia 0.44 Matera 0.29 Monza e della Brianza 0.57 Terni 0.46
78 Monza e della Brianza 0.44 Pisa 0.29 Ferrara 0.57 Como 0.45
79 Siracusa 0.44 Salerno 0.29 Foggia 0.57 Ferrara 0.45
80 Livorno 0.43 Como 0.29 Massa-Carrara 0.57 Agrigento 0.45
81 Ancona 0.42 Siracusa 0.28 Trieste 0.56 Siracusa 0.44
82 Biella 0.42 Varese 0.28 Ancona 0.56 Sud Sardegna 0.44
83 Pescara 0.42 Nuoro 0.28 Lecco 0.56 Potenza 0.44
84 Foggia 0.42 Pescara 0.28 Pescara 0.56 Cagliari 0.43
85 Frosinone 0.41 Bari 0.28 La Spezia 0.56 Lecco 0.43
86 Potenza 0.41 Sud Sardegna 0.28 Biella 0.55 Pescara 0.43
87 Pisa 0.41 Frosinone 0.27 Sassari 0.55 Foggia 0.43
88 Sassari 0.4 Foggia 0.27 Cagliari 0.53 La Spezia 0.43
89 Cagliari 0.39 Novara 0.26 Frosinone 0.53 Pisa 0.43
90 Palermo 0.39 Grosseto 0.26 Pisa 0.52 Varese 0.4
91 Varese 0.38 Sassari 0.26 Taranto 0.52 Frosinone 0.4
92 Como 0.38 Palermo 0.26 Palermo 0.52 Sassari 0.4
93 Grosseto 0.38 Cagliari 0.26 Lecce 0.51 Palermo 0.39
94 Taranto 0.37 Potenza 0.25 Brindisi 0.51 Grosseto 0.39
95 Brindisi 0.37 Sondrio 0.25 Grosseto 0.51 Taranto 0.39
96 Novara 0.37 Rieti 0.24 Cosenza 0.51 Novara 0.39
97 Lecce 0.37 Aosta 0.24 Como 0.49 Sondrio 0.37
98 Rieti 0.36 Taranto 0.23 Rieti 0.48 Lecce 0.36
99 Reggio Calabria 0.36 Lecce 0.22 Varese 0.48 Cosenza 0.36
100 Cosenza 0.35 Brindisi 0.22 Novara 0.47 Aosta 0.35
101 Aosta 0.34 Enna 0.22 Enna 0.44 Rieti 0.35
102 Sondrio 0.34 Cosenza 0.2 Aosta 0.43 Brindisi 0.32
103 Enna 0.33 Genova 0.2 Sondrio 0.42 Enna 0.32
104 Genova 0.27 Reggio Calabria 0.18 Crotone 0.4 Genova 0.29
105 Crotone 0.26 Crotone 0.14 Vibo Valentia 0.39 Vibo Valentia 0.27
106 Vibo Valentia 0.24 Vibo Valentia 0.12 Genova 0.34 Crotone 0.25
107 Catanzaro 0.14 Catanzaro 0.08 Catanzaro 0.21 Catanzaro 0.13
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FIGURE 6.5: TE Scores Quantile Map, Years 2008 and 2018

FIGURE 6.6: Direct, Indirect, and Total TE Scores: Kernel Density Plot
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TABLE 6.7: Robustness Check

SF FE Lag-1

Coeff SD Coeff SD Coeff SD

β0 2.83*** 0.18 2.41*** 0.17 3.92*** 0.25

βL 0.61*** 0.02 0.66*** 0.02 0.60*** 0.03

βAA 0.08*** 0.01 0.09*** 0.01 0.07*** 0.02

βM 0.09*** 0.01 0.07*** 0.01 0.06*** 0.02

βWEF 0.28*** 0.01 0.23*** 0.01 0.26*** 0.02

βt -0.01*** 0.01 -0.01*** 0.01 -0.01*** 0.01

σ2
u 0.01 - 0.01 - 0.43 -

σ2
v 0.34 - 0.29 - 0.45 -

Lag-2 FE and Lag-1 FE and Lag-2

Coeff SD Coeff SD Coeff SD

β0 4.62*** 0.32 3.75*** 0.27 4.63*** 0.35

βL 0.60*** 0.04 0.63*** 0.03 0.63*** 0.04

βAA 0.08*** 0.03 0.10*** 0.02 0.11*** 0.03

βM 0.04** 0.02 0.04** 0.02 0.03** 0.02

βWEF 0.23*** 0.03 0.22*** 0.02 0.19*** 0.03

βt -0.01* 0.01 -0.01** 0.01 -0.01* 0.01

σ2
u 0.61 - 0.42 - 0.61 -

σ2
v 0.48 - 0.41 - 0.44 -

∗ ∗ ∗ : pvalue ≤ 0.01; ∗∗ : pvalue ≤ 0.05; ∗ : pvalue ≤ 0.10
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input variables can have a distorting effect on the estimation results. Indeed, unobserved
individual factors such as soil types, average managerial abilities, environmental condi-
tions, land quality, feeds, labour conditions, and different technologies across provinces
are likely relevant for the agricultural sector’s performance (Demirdogen, Olhan, and
Hasdemir, 2021). Moreover, when the variables used in the analysis are collected from
farm accounting data, the production data can reflect the optimizing behaviour of the
farmers, meaning that farmers typically chose the level of the inputs and outputs with an
objective in mind, which makes inputs and output choice variables economically endoge-
nous. As depicted by Lien, Kumbhakar, and Alem (2018, p.53) "The economic endogeneity
in almost all the cases leads to econometric endogeneity in which the choice variables are corre-
lated with the composite error term in the production function". However, to date, in stochastic
frontier literature, there are no current available methods dealing together with spatial
heterogeneity, individual heterogeneity and endogeneity. Therefore, more research has
to be done to fill this gap.

To test whether our findings are robust to unobserved individual heterogeneity and
to endogeneity issues, in this section we compare our non-spatial estimates with those of
the non-spatial true fixed effect stochastic frontier model introduced by Greene (2005a)
and we partially attempt to control for possible endogeneity using lagged variables as
proposed by Castiglione and Infante (2014) and de Vries and Koetter (2011). As shown in
Table 6.7, our non-spatial estimates are robust to the fixed-effect model specification and
to simultaneity issues related to the input variables. Moreover, in the last two columns
of Table 6.7 we control for both individual fixed effects and for endogeneity using lagged
variables. Overall, the estimation results are in line with our baseline estimates, con-
firming that distortions arising from individual unobserved effects and endogeneity are
typically small (Drucker and Feser, 2012; Ellison, Glaeser, and Kerr, 2010; Koo and Lall,
2007; Rice, Venables, and Patacchini, 2006).

6.6 Final Remarks

Evaluating the SDF-CSD model from a practical perspective, in this section we find that
the main advantage resulting from estimating the SDF-CSD model in practice concerns
the possibility of also evaluating a number of nested specifications never introduced be-
fore. Indeed, starting from the SDF-CSD and making some LR tests for nested models,
it is possible to test whether it is better to simplify the model specification considering
only specific spatial lags or if a comprehensive spatial SF model is required. Thus, it is
possible to precisely assess which kind of spatial effect is more appropriate for studying
the phenomenon under investigation without making a priori assumptions on the spatial
structure of the data.

Moreover, we showed that the SDF-CSD model allows obtaining more accurate tech-
nical efficiency scores, mixing together the main distributional features resulting from
spatial SF models that only include frontier-based or error-based spillovers. Indeed, we
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found that the efficiency scores resulting from both non-spatial SF models and simpler
spatial SF models result to be biased, generating inconsistent efficiency rankings across
units. Specifically, the efficiency scores from spatial SF models considering spatial cross-
sectional dependence only in the frontier function tend to be upwardly biased while those
coming from spatial SF models introducing only error-based spatial cross-section depen-
dence tend to be underestimated.

Considering the main findings of this empirical application on the productive per-
formance of the Italian agricultural sector, we showed that this sector is highly affected
by spatial spillover effects both related to the frontier function and to the two error terms.
Specifically, using the SDF-CSD model we find that both sources of spatial dependence
positively and significantly influence neighbouring provinces, even if behavioural cor-
relation in the inefficiency determinants and environmental correlation associated with
unobserved spatially correlated variables exceed the level of frontier-based global spatial
dependence. Thus, the Italian provinces mainly benefit from the existence of positive
agglomeration economies in terms of agricultural production resulting from common
practices and similar unobserved features characterising neighbouring areas.

From a practical perspective, the empirical evidence on the existence of significant
agglomeration externalities originating from various channels has important implica-
tions for policymakers dealing with the Italian agricultural sector. Indeed, strategic plans
and programs aimed at improving the Italian agricultural sector’s performance may take
advantage of positive spillovers by strengthening the cohesiveness of the networks, pro-
viding more opportunities for farmers to learn from each other, stimulating cooperation
and networking, and encouraging local farmers associations as well as knowledge dis-
semination on the use of new equipment and new management practices. Exploiting
existing spatial interactions by creating a collaborative environment can be an effective
strategy for policymakers to overcome the technological backwardness of most Italian
farmers and thus, boost the productivity of the Italian agricultural sector.

In future extensions of this work, it would be interesting to evaluate the effectiveness
of CAP subsidies from an environmental perspective aiming to evaluate whether they
really contribute to environmental sustainability, good maintenance of agricultural land
and natural resources, and to a balanced development of rural areas.
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Conclusion

Final Remarks

After presenting the concepts of industrial clustering, agglomeration externalities, and
spatial spillover effects in Chapter 1 and previous spatial stochastic frontier models in
Chapter 2, in this thesis, two extensions of existing spatial stochastic frontier models
have been developed in Chapter 3. The first spatial model, i.e. the SDF-STE, extends
the spatial SF model proposed by Glass, Kenjegalieva, and Sickles (2016) adding some
exogenous determinants of firms’ efficiency and their spatial lags. Thus, besides consid-
ering productivity and input spillovers, this model introduces the possibility to evaluate
whether the determinants of technical inefficiency of nearby firms contribute to shaping
the efficiency level of neighbours. This is the first model that allows considering detailed
and distinct insights on the indirect effects originating from each inefficiency determinant
of neighbouring producers. The second model developed in this thesis, i.e. the SDF-CSD,
extends the spatial SF model developed by Orea and Alvarez (2019) introducing a fur-
ther spatial structure related to the frontier function. Indeed, while Orea and Alvarez
(2019) consider spatial cross-sectional dependence related to the random error term and
to the inefficiency component, we also include the possibility to evaluate productivity
and input spillovers including the spatial lag of the dependent variable and of the input
variables in the same fashion as Glass, Kenjegalieva, and Sickles (2016). To our knowl-
edge, this is the first spatial stochastic frontier model considering four different kinds of
spatial effects, two related to the frontier function and two related to the error compo-
nents. Thus, this is the only specification that allows controlling for both error-based and
frontier-based spatial spillover effects. In Chapter 4 we tested the final sample properties
of the two proposed specifications. The results of the simulations indicate that the SDF-
STE model performs well also considering small samples while to estimate the SDF-CSD
model without bias it is better to consider sparse spatial structures related to the spatial
lag of the inefficiency component. In Chapters 5 we applied the SDF-STE model to firm-
level data on the Italian accommodation sector while in Chapter 6 we estimated the SDF-
CSD model using NUTS3 level data for the Italian agricultural sector. Empirical results
from these two applications demonstrate the empirical relevance of both models. Indeed,
applying the SDF-STE model to hotel data allows to precisely disentangle the specific in-
direct effects associated with R&D activity, human capital investments, and patents and
trademarks filing performed by neighbouring spatial units. In particular, we find that



Conclusion

while the indirect effects associated with intangible and human capital investments pos-
itively spread over the territory, spillover effects related to patents and trademarks are
negative. Thus, patents and trademarks play an effective role in protecting innovative
hotels’ productive advantage. On the other hand, estimating the SDF-CSD model using
RICA data sheds light on the different sources of spatial dependence occurring across
neighbouring provinces in terms of agricultural production. Specifically, we find that the
Italian agricultural sector is more strongly affected by error-based than by frontier-based
spillovers. Moreover, we show that the SDF-CSD model allows to more accurately esti-
mate the technical efficiency scores, mixing together the main distributional features re-
sulting from spatial SF models that only include frontier-based or error-based spillovers.
In conclusion, the SDF-STE and the SDF-CSD models can be useful for a variety of works
on economic topics in the fields of regional science, productivity and efficiency analy-
sis, firm-level microdata applications and in general for several kinds of analyses dealing
with spatial networking and agglomeration. On one hand, the SDF-STE model is suitable
for studies in which the specific spatial spillovers affecting neighbouring firms’ efficiency
levels are the main focus of the investigation. On the other hand, the SDF-CSD model can
be a useful starting point for different kinds of analyses in which no prior assumptions
on the kind of spatial structure to be included in the model can be made. Indeed, start-
ing from the SDF-CSD model it is possible to select the spatial specification that best fits
the data testing different restrictions through likelihood ratio tests. Thus, the SDF-CSD
model leads the way to a number of spatial specifications never introduced before but
that can be very useful in empirical applications.

Limits and Further Developments

Recent advancements in stochastic frontier models literature have primarily focused on
two different directions: (i) introducing some spatial components in order to consider
cross-sectional spatial dependence (Areal and Pede, 2021; Glass, Kenjegalieva, and Sick-
les, 2016; Orea and Alvarez, 2019; Tsukamoto, 2019); (ii) controlling for non-spatial indi-
vidual heterogeneity (Belotti and Ilardi, 2018; Greene, 2005a, 2005b; Kutlu, Tran, and
Tsionas, 2020b; Wang and Ho, 2010) or for possible sources of endogeneity (Amsler,
Prokhov, and Schmidt, 2016; Kutlu, Tran, and Tsionas, 2019). Up to now, to our knowl-
edge, there are no contributions controlling together for both spatial and non-spatial in-
dividual heterogeneity, while the only work developing a SF model considering both
a spatial autoregressive term and endogeneity due to the correlation of the inefficiency
term and the two-sided error term is Kutlu (2020). In this thesis, positioning in the first
strand of literature described above, we focus on the spatial dimension. However, given
the relevant role of both individual effects and endogeneity issues, in Chapter 5 and
6 we compared our results to other non-spatial SF approaches that allow considering
individuals-specific effects or that control for possible endogeneity issues to test the ro-
bustness of our estimates. The results obtained controlling for unobserved individual
heterogeneity or for possible endogeneity issues are in line with our baseline estimates,
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showing that distortions arising from individual unobserved effects and endogeneity are
small. Thus, according to Drucker and Feser (2012), Ellison, Glaeser, and Kerr (2010),
Koo and Lall (2007), and Rice, Venables, and Patacchini (2006) we do not expect that en-
dogeneity issues or individual heterogeneity could have a relevant and distorting impact
on our findings.

In a further extension of this work, a model that combines the main features of both
spatial specifications introduced in this thesis could be proposed. In particular, starting
from the SDF-CSD, it would be possible to drop the spatial lag related to the whole in-
efficiency error term and add the specific spatial lags of the inefficiency determinants
in the same fashion as the SDF-STE model in order to control for the specific spatial
effects related to each determinant of firms’ efficiency level besides capturing productiv-
ity spillovers, input spillovers and environmental correlation. Further extensions of the
models presented in this thesis could aim at controlling for endogeneity using an instru-
mental variables approach extending Kutlu (2020) estimator in order to account for en-
dogeneity issues while considering different sources of spatial dependence as proposed
in this thesis. In addition, it would be interesting to introduce a fixed or random effect es-
timator to take unobserved individual heterogeneity into account. In particular, starting
from Wang and Ho (2010) within transformed or first difference non-spatial estimator, it
would be possible to add different spatial terms in order to control for both spatial de-
pendence and fixed effects. Moreover, the inefficiency error term in the SDF-CSD model
could be extended in order to vary both across time ad individuals by using a Bayesian
approach for the estimation to deal with non-closed forms for the loglikelihood function.
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Appendix A

CES, Cobb-Douglas and Trans-Log
Production Functions

From the CES to the Cobb-Douglas Function

The CES (constant elasticity of substitution) function, introduced by Arrow et al. (1961)
in their study "Capital-Labor Substitution and Economic Efficiency", was developed to over-
come the limitation of the Cobb-Douglas function of imposing an elasticity of substitu-
tion between inputs of exactly 1. The elasticity of substitution is a measure of the extent
to which one input substitutes for another along an isoquant. In particular, if inputs do
not substitute, the elasticity of substitution equals zero and isoquants forms a right angle,
while if inputs are perfect substitutes for each other it approaches infinity and isoquants
consist of lines with no curvature. In the Cobb-Douglas case, a percentage change in the
ratio of the use of two inputs x1 and x2 along an isoquant makes the marginal rate of
substitution change of the exact same percentage (i.e. the elasticity of substitution equals
1). Therefore, the CES function was developed to avoid assuming a priori unitary elas-
ticity of substitution between inputs and to estimate it using data. The main features of
the CES function are: (i) the elasticity of substitution between two inputs can vary be-
tween zero and infinity; (ii) for a given set of parameters, the elasticity of substitution
is constant at any point along the same isoquant, regardless of the ratio of inputs used.
The name "constant elasticity of substitution (CES) production function" comes from this
second property.

Considering labour (L) and capital (K) as the only two factors influencing the level
of output Y, the CES function can be written as in Eq.(A.1),

Y = a(αK−ρ + (1 − α)L−ρ)−
ν
ρ (A.1)

where a ∈ [0, ∞[ represents TFP, α ∈ [0, 1] determines the optimal distribution of
the two inputs, ρ ∈ [−1, 0[ ∪ ]0, ∞[ is the substitution parameter and ν represents the
homogeneity degree. In particular, ν = 1 corresponds to the case of constant returns to
scale; ν > 1 corresponds to the case of increasing returns to scale and ν < 1 corresponds
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to the case of decreasing returns to scale. The elasticity of substitution can be obtained as
σ = 1

1+ρ .

It can be demonstrated that, imposing ν = 1, when ρ → 0 (and therefore σ → 1) the
CES function reduces to a Cobb-Douglas production function. In particular, we refer to
the logarithmic form of Eq.(A.1) and we compute the limit for ρ → 0. This limit leads to
an indeterminate form of type 0

0 , thus, we apply de l’Hôpital rule as shown in Eq.(A.2c)
to obtain the log-form of the Cobb-Douglas production function with constant returns to
scale in Eq.(A.2d).

lim
ρ→0

log Y = lim
ρ→0

(
log a − 1

ρ
log(αK−ρ + (1 − α)L−ρ)

)
(A.2a)

= log a + lim
ρ→0

− log(αK−ρ + (1 − α)L−ρ)

ρ
(A.2b)

= log a + lim
ρ→0

− (−αK−ρ log K − (1 − α)L−ρ log L)
αK−ρ + (1 − α)L−ρ

(A.2c)

= log a + α log K + (1 − α) log L (A.2d)

The CES function can therefore be used to represent different substitution possibili-
ties and related isoquant patterns, but also this function has two relevant limits. Indeed,
like the Cobb-Douglas, the CES function can represent only the second stage of produc-
tion for both inputs (i.e. concentric or oval isoquants are not allowed), meaning that
production is characterized by decreasing but positive marginal returns. Moreover, even
if the CES can include more than two inputs, the elasticity of substitution is a single pa-
rameter. Therefore, the same elasticity value must apply to all input pairs. All these limits
can be overcome using a Trans-Log production function. Indeed, the Trans-Log function
allows the marginal rate of substitution to vary from one point to another along the same
isoquant. Moreover, partial elasticities of substitution can be calculated for each pair of
inputs.

The Trans-Log Function

The Trans-Log function, developed by Christensen, Jorgenson, and Lau (1971, 1973), can
be derived as an approximation of the CES function using a second-order Taylor poly-
nomial at ρ = 0. In particular, starting from the log-form of the CES function previously
defined, the Taylor series expansion around ρ = 0 is shown in Eq.(A.3a)-(A.3b).

log Y = log a + να log K + ν(1 − α) log L − ρν

2
α(1 − α) log K2

− ρν

2
α(1 − α) log L2 + ρνα(1 − α) log L log K (A.3a)

= log a + να log K + ν(1 − α) log L − ρν

2
α(1 − α)(log L − log K)2 (A.3b)
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The Trans-Log function considering only labour and capital as inputs can be written
as in Eq.(A.4) with α0 = log a, αK = να, αL = ν(1 − α), αLL = αKK = − ρν

2 α(1 − α),
αLK = ρνα(1 − α) and satisfying the conditions in Eq.(A.5)-(A.6).

log Y = α0 + αK log K + αL log L + αKK log K2 + αLL log L2 + αKL log L log K (A.4)

αK + αL = ν (A.5)

ρνα(1 − α) = αKL = −2αLL = −2αKK (A.6)

As shown in Eq.(1.5) in Chapter 1, the Trans-Log function can be generalized in-
cluding any number of inputs. Moreover, when ρ = 0 (i.e. when σ = 1), the Trans-Log
function reduces to the Cobb-Douglas function.

To determine the elasticity of substitution for a Trans-Log function, we can follow
Allen’s approach (Allen, 1938). In particular, it is necessary to know the parameters of the
production function as well as to be aware of the precise point on the isoquant for which
the elasticity of substitution is to be estimated and of the input ratio x1

x2
for that point.

Indeed, unlike the Cobb Douglas and the CES function, the Translog production function
does not have constant elasticities of substitution and thus, the percentage change in the
input ratio divided by the percentage change in the marginal rate of substitution is not
constant all along the isoquant but varies from one point to another. The elasticity of
substitution between two generic inputs xi and xj can be expressed as

σij =

(
xi

∂Y
∂xi

+ xj
∂Y
∂xj

)
xixj

∂Y
∂xi

∂Y
∂xj(

2 ∂2Y
∂xi∂xj

∂Y
∂xi

∂Y
∂xj

− ∂2Y
∂2xi

(
∂Y
∂xi

)2
− ∂2Y

∂2xj

(
∂Y
∂xj

)2
)

=

(
xi

∂Y
∂xi

+ xj
∂Y
∂xj

)
xixj

∂Y
∂xi

∂Y
∂xj

|H|

(A.7)

where

H =


0 ∂Y

∂xi

∂Y
∂xj

∂Y
∂xi

∂2Y
∂2xi

∂2Y
∂xi∂xj

∂Y
∂xj

∂2Y
∂xi∂xj

∂2Y
∂2xj

.

 (A.8)

If a production function has more than two inputs, the partial elasticities of substi-
tution for each pair of them can be computed.
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Appendix B

Model Comparison

In stochastic frontier model literature, the likelihood ratio test is the more commonly used
tool in order to compare nested competing specifications. However, due to the recent de-
velopment of several extensions of standard SF models based on different underlying
distributions for the inefficiency error term or on different modelling approaches in or-
der to include some inefficiency determinants, simple LR tests for nested specifications
may no longer be sufficient. Thus, in order to compare non-nested model specifications
two different tools can be adopted: the Takeuchi information criteria and the Vuong test
on the closeness of two competing models to the true data generating process. In both
cases, the model selection is based on the Kullback-Leibler information criterion (KLIC),
providing information on the loss obtained by approximating the true probability dis-
tribution of the data with a given probability distribution. Specifically, given the true
probability density h(y|s) and the parametric family of SF model with conditional prob-
ability density f (y|s; θ f ), the KLIC is defined as

KLIC(h(y|s), f (y|s; θ f )) = Eh(ln(h(y|s)))− Eh(ln( f (y|s; θ∗f ))) (B.1)

where Eh is the expectation with respect to the true distribution h(y|s) and θ∗f is the
pseudo-true value of the unknown parameter θ f . Given that the first term on the right
hand side of Eq.(B.1) does not depend on the choice of the model, the KLIC corresponds
to choosing the model specification that maximises the second term of Eq.(B.1) and thus,
that minimizes the information loss. A straightforward estimator of this second term is
given by:

lnL f
n(θ̂ f ) =

1
n

n

∑
i=1

ln( f |s; θ̂ f ) (B.2)

where θ̂ f is the maximum likelihood estimator1 of the unknown parameter θ f given
the model Fθ f , the data (yi, si)

n
i=1, and conditional log-likelihood function lnL f

n(θ̂ f ).

1The maximum likelihood estimator is a consistent estimator for θ∗f (Vuong, 1989; White, 1982)
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Akaike and Takeuchi information criteria

As suggested by Akaike (1973), the expression in Eq.(B.2) is a biased estimator of
Eh(ln( f (y|s; θ∗f ))). Thus, the author suggested lnL f

n(θ̂ f )− d f as a bias corrected estimator
of the second term of Eq.(B.1), where d f is the number of parameters of the model Fθ f .
This expression is valid under the assumption that the model is correctly specified, i.e.
h(y|s) is nested in f (y|s; θ f ). Starting from this proposed estimator, the Akaike informa-
tion criteria is then defined as in Eq.(B.3).

AIC = −2lnL f
n(θ̂ f ) + 2d f (B.3)

Therefore, by easily substituting the value of the log-likelihood function in Eq.(B.3),
it is possible to obtain a measure of the relative distance between the estimated model and
the true data generating process. As a consequence, when different competing nested
models are compared, a model with a smaller AIC has to be preferred.

Generalizing the AIC information criteria for non-nested models, Takeuchi (1976)
proposed the following information criteria:

TIC = −2lnL f
n(θ̂ f ) + 2tr(H(θ̂ f )I(θ̂ f )

−1) (B.4)

where I(θ̂ f ) and H(θ̂ f ) are respectively the sample analogue of the Fisher informa-
tion matrix and of the expected outer product of the score function, defined as shown in
Eq.(B.5)-(B.6).

H(θ̂ f ) =
1
n

n

∑
i=1

(
∂ln f (y|s; θ̂ f )

∂θ f

∂ln f (y|s; θ̂ f )

∂θT
f

)
(B.5)

I(θ̂ f ) = − 1
n

N

∑
i=1

∂2ln f (y|s; θ̂ f )

∂θ f ∂θT
f

(B.6)

In the case of nested models, tr(H(θ̂ f )I(θ̂ f )
−1) = d f and the TIC information criteria

reduces to the AIC.

LR and Vuong test

We now consider a competing alternative model Gθg nested to Fθ f . The likelihood ratio
test is based on the idea that the preferred model is the one that is closer to the true
conditional distribution, i.e. it is the one that minimizes the KLIC. Thus, if the model Fθ f

is preferred to Gθg , we have that:

KLIC(h(y|s), f (y|s; θ∗f )) < KLIC(h(y|s), g(y|s; θ∗g)) (B.7)
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and therefore,

Eh(ln( f (y|s; θ∗f ))) > Eh(ln(g(y|s; θ∗g))) (B.8)

or

Eh

(
ln

f (y|s; θ∗f )

g(y|s; θ∗g))

)
> 0. (B.9)

Hence, if we want to compare two different nested models Fθ f and Gθg , the choice
can be based on the sign of Eq.(B.9). Specifically, the test is based on the null hypothesis
"the two models are equivalent (i.e. given that the nested model Gθg is simpler than Fθ f ,
Gθg is better than Fθ f )", against the alternative hypothesis "Fθ f is better than Gθg ". The test
statistic can therefore be based on the sample counterpart of Eq.(B.9) shown in Eq.(B.10).

1
n

n

∑
i=1

(
ln

f (y|s; θ̂ f )

g(y|s; θ̂g))

)
=

1
n
(lnL f

n(θ̂ f )− lnLg
n(θ̂g)) (B.10)

Specifically, the likelihood ratio test statistic for nested models is given in Eq.(B.11)
and under H0 it is distributed as a chi-squared distribution with d f − dg degrees of free-
dom.

LR(θ̂ f , θ̂g) = 2(lnL f
n(θ̂ f )− lnLg

n(θ̂g)) (B.11)

However, when the competing model Gθg is non-nested to Fθ f , the LR test is no more
applicable. Therefore, Vuong (1989) proposed an alternative test based on the test statis-
tics shown in Eq.(B.12) in order to compare non-nested specifications. The null hypothe-
sis of the test is that the two models are equally close to the true data generating process
without giving any more a clear information on the model that has to be preferred, since
there is no more a simpler and a more complex specification. The alternative hypothesis
remains unchanged and states "Fθ f is better than Gθg ". The test statistic of the Vuong test
is shown in Eq.(B.12) and under H0, it is asymptotically distributed as a standardized
normal random variable.

V(θ̂ f , θ̂g) =
n− 1

2 LR(θ̂ f , θ̂g)

σ̂LR
(B.12)

In particular, σ̂LR is the estimator of the variance of Eh

(
ln

f (y|s;θ∗f )
g(y|s;θ∗g))

)
and it can be

calculated as shown in the following equation.

σ̂LR =
1
n

n

∑
i=1

(
ln

f (y|s; θ̂ f )

g(y|s; θ̂g)

)2

−
(

1
n

n

∑
i=1

ln
f (y|s; θ̂ f )

g(y|s; θ̂g)

)2

(B.13)
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Examples

In this section, the two models developed in this thesis are compared based on the data
on the Italian accommodation sector and on the Italian agricultural sector respectively
used in Chapter 5 and Chapter 6.

Application to the Italian Accommodation Sector

In Chapter 5 the SDF-STE model was estimated using data on the Italian accommodation
sector in order to evaluate the different spatial effects arising from the inefficiency deter-
minants of Italian hotels. Starting from this first application, we estimate the empirical
specification shown in Eq.(5.1)-(5.2) using the SDF-CSD model. The resulting specifica-
tion is shown in Eq.(B.14)-(B.15). In particular, it can be noticed that while the Translog
specification for the frontier function remains unchanged with respect to the SDF-STE
model, the inefficiency model is completely different. Indeed, while using the SDF-STE
model the mean µit of the inefficiency error term uit is modelled as a linear function of
some inefficiency determinants, using the SDF-CSD model, the Z variables are related to
the scaling function h̃it and consequently, they refer to the variance-covariance structure
of the inefficiency component. Moreover, considering the spatial structure of uit, while
in the SDF-STE model the spatial lag of all the inefficiency determinants is added to the
inefficiency equation, using the SDF-CSD model, the overall level of spatial correlation
associated with the Z variables is detected thought the spatial parameter τ. Finally, also
the structure of the random component vit changes. Indeed, in the SDF-STE model vit

follows a truncated normal distribution with mean 0 and variance σ2
v while using the

SDF-CSD model vit ∼ MVN (0, Π), where Π = σ2
v (IN − γW)−1((IN − γW)−1)T. There-

fore, using the SDF-CSD model, it is possible to capture through γ also the level of spatial
dependence related to unobserved but spatially correlated variables.

Yit = β0 + βLLit + βKKit + βLLL2
it + βKKK2

it + βLK LitKit + βtt + β2tt2 + βtLtLit

+ βtKtKit + ρ
N

∑
j=1

wijYjt + θL

N

∑
j=1

wijLjt + θK

N

∑
j=1

wijKjt − uit + vit
(B.14)

h̃it = (IN − τW)−1 exp(ϕhumHumit + ϕInt Intit + ϕpatPatit + ϕtradTradit + ϕsizeSizeit

+ ϕdsizeDSizeit + ϕcityCityit + ϕcultCultit + ϕseaSeait + ϕlakeLakeit + ϕmou Mouit

+ ϕcseaCSeait + ϕcmouCMouit + ϕmore Moreit + ϕnocatNocatit + ϕnotur Noturit)
(B.15)

The estimation results using both models are shown in Table B.1. In particular, it
can be noticed that the β estimates are quite robust to the different model specifications.
Moreover, the degree of global spatial dependence (ρ) slightly increases using the SDF-
CSD model (0.40) with respect to the SDF-STE (0.35). Considering the inefficiency model,
we find different magnitudes of the ϕ estimates due to the different modelling approach
of the Z variables in the two proposed specifications. However, the sign associated with
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each parameter is preserved indicating that the direction of the effect of each Z variable
does not change dependent on the model specification. Finally, comparing the two com-
peting models using the Vuong test and the Takeuchi information criteria, it results that
the SDF-STE model in this empirical application has to be preferred with respect to the
SDF-CSD. Indeed, the null hypothesis that two models are equivalent is rejected against
the alternative hypothesis that the SDF-STE is better than the SDF-CSD using a 1% sig-
nificance level. Moreover, a smaller TIC is associated with the SDF-STE compared to
the SDF-CSD. Thus, the SDF-STE model results to be more appropriate to analysing the
spatial spillover effects affecting neighbouring hotels located in Italy.

Furthermore, in Table B.2 we report the indirect effects computed using the two dif-
ferent spatial SF models. The main insight from Table B.2 concerns the different sources
of spatial dependence that can be identified by the two proposed specifications. Indeed,
while both models allow to evaluate the spillover effects related to the input variables, the
spatial effects detected through the inefficiency model are completely different. In par-
ticular, through the SDF-STE it is possible to consider the indirect effects associated with
each inefficiency determinant, while using the SDF-CSD, the focus moves to the overall
level of spatial dependence associated with the Z variables (behavioural correlation) and
to the remaining spatial dependence related to the random error term (environmental
correlation). Thus, from a practical perspective, the choice of the preferred specification
primarily depends on the economic assumptions made by the researcher, on the aim of
the analysis, and on the policy directions that need to be achieved.

Considering the results in Table B.2, we find that positive and significant input
spillovers occur between neighbouring hotels using both models. However, the mag-
nitude of the indirect effects associated with labour and capital increases using the SDF-
CSD model due to the higher level of global spatial dependence detected by this model.
Considering the inefficiency equation, while the SDF-STE allows determining the specific
spatial effects arising from human capital exploitation, intangible investments, patents
and trademarks filing, and hotels’ size as extensively discussed in Chapter 5, the SDF-
CSD model only shows the existence of a strong, positive and significant level of spatial
correlation related to the inefficiency determinants (0.37). On the other hand, the SDF-
CSD also reveals that the random error term is characterized by some positive and signifi-
cant residual spatial correlation (0.30), indicating that the Italian accommodation sector is
affected by remaining positive spatial dependence related to unobserved location-specific
factors.
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TABLE B.1: Application to the Accommodation Sector: Estimation Results

SDF-STE Model SDF-CSD Model
Coeff. t-stat Coeff. t-stat

β0 5.467*** 13.71 β0 3.064*** 16.97

βL 0.662*** 84.87 βL 0.680*** 41.98

βK 0.077*** 17.20 βK 0.138*** 15.21

βLL 0.057*** 40.57 βLL 0.071*** 25.21

βKK 0.010*** 22.5 βKK 0.011*** 13.38

βLK -0.029*** -29.00 βLK -0.045*** -13.38

βt -0.005 -1.09 βt -0.022 -1.19

β2t -0.001* -1.25 β2t -0.014*** -2.69

βtL 0.004*** 5.00 βtL 0.003** 2.24

βtK 0.001*** 3.00 βtK 0.001** 2.25

ρ 0.351*** 18.3 ρ 0.400*** 8.90

θL -0.216*** -11.33 θL -0.119** -1.76

θK 0.006 0.78 θK 0.094*** 2.99

ϕ0 5.251*** 13.23 ϕhum -0.247*** -34.36

ϕhum -0.647*** -208.58 ϕInt -0.073*** -13.94

ϕInt -0.115*** -29.54 ϕpat -0.026*** - 4.30

ϕpat -0.054*** -9.53 ϕtrad -0.019*** -2.70

ϕtrad -0.038*** -5.78 ϕsize 0.005* 1.43

ϕsize -0.037*** -10.57 ϕdsize 0.039*** 2.18

ϕdsize 0.081*** 5.66 ϕcity -0.012 -1.22

δhum 0.160*** 7.31 ϕcult 0.014* 1.49

δInt -0.072*** -2.71 ϕsea -0.024*** -3.82

δpat 0.099*** 2.80 ϕlake -0.018* -1.57

δtrad 0.039 0.97 ϕmou 0.021** 1.71

δsize -0.013 -0.7 ϕcsea -0.032*** -5.06

δdsize -0.358*** -3.85 ϕcmou 0.008** 1.95

ϕcity -0.064*** -5.94 ϕmore -0.001 -0.19

ϕcult 0.016* 1.43 ϕnocat 0.029*** 3.06

ϕsea -0.095*** -8.89 ϕnotur 0.028 1.00

ϕlake -0.139*** -9.06 τ 0.368*** 23.74

ϕmou -0.007 -0.45 γ 0.298*** 9.13

ϕcsea -0.085*** -8.12 σ2
u 0.962 -

ϕcmou -0.065*** -5.04 σ2
v 0.871 -

ϕmore -0.047*** -3.77

ϕnocat 0.052*** 4.71

ϕnotur 0.015 0.48

σ2 0.199 -

λ 0.879 -

LL -29861.9 LL -48120.6

V Base Model V 8.65***

TIC 59719.5 TIC 95561.2
∗ ∗ ∗ : pvalue ≤ 0.01; ∗∗ : pvalue ≤ 0.05; ∗ : pvalue ≤ 0.10
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TABLE B.2: Application to the Accommodation Sector: Indirect Effects

Model SDF-STE SDF-CSD

Indirect Effects Coeff. SD Coeff. SD

Labour 0.07*** 0.01 0.23*** 0.04

Capital 0.08*** 0.01 0.22*** 0.02

Human Capital -0.10*** 0.02 - -

Int -0.17*** 0.02 - -

Patents 0.12*** 0.03 - -

Trademarks 0.04* 0.03 - -

Size -0.04*** 0.01 - -

Behavioural Corr. - - 0.37*** 0.02

Environmental Corr. - - 0.30*** 0.03

∗ ∗ ∗ : pvalue ≤ 0.01; ∗∗ : pvalue ≤ 0.05; ∗ : pvalue ≤ 0.10
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Application to the Italian Agricultural Sector

In Chapter 6, the SDF-CSD model was applied to the Italian agricultural sector using
RICA data. In this section, we estimate the empirical model specified in Eq.(6.1)-(6.2) also
using the SDF-STE model in order to compare the estimation results and the estimated
spatial effects. In particular, the frontier function shown in Eq.B.16 does not change with
respect to the one specified for the SDF-CSD, while the inefficiency model in Eq.B.17
completely changes. Indeed, estimating the SDF-STE model we refer to the mean µit

of the technical inefficiency error term instead of the variance-covariance structure to
account for the effect of some inefficiency determinants and we add to the inefficiency
equation the spatial lag of each variable. Thus, the δ estimates allow capturing the specific
spatial effects affecting the efficiency level of neighbouring provinces arising from each
Z variable.

Yit = β0 + βLLit + βAA AAit + βM Mit + βWEFWEFit + βtt + ρ
N

∑
j=1

wijYjt

+ θL

N

∑
j=1

wijLjt + θAA

N

∑
j=1

wij AAjt + θM

N

∑
j=1

wij Mjt + θWEF

N

∑
j=1

wijWEFjt − uit + ṽit

(B.16)

µit = ϕSSmallit + ϕBBigit + ϕFFamilyit + ϕDDiversi f iedit + ϕH Hiredit + ϕYYouthit

+ ϕWWomanit + ϕSubSubsidiesit + δS

N

∑
j=1

wijSmalljt + δB

N

∑
j=1

wijBigjt + δF

N

∑
j=1

wijFamilyjt

+ δD

N

∑
j=1

wijDiversi f iedjt + δH

N

∑
j=1

wijHiredjt + δY

N

∑
j=1

wijYouthjt + δW

N

∑
j=1

wijWomanjt

+ δSub

N

∑
j=1

wijSubsidiesjt

(B.17)

Table B.3 shows the estimation results of the two competing specifications using
RICA data on the Italian agricultural sector. First, it can be noticed that the β estimates
are robust to the different specifications while the ϕ estimates, as in the previous case,
maintain the same significance and sign across the two different models even if the mag-
nitudes tend to change. Moreover, considering the overall level of spatial dependence
detected through ρ, we find a higher degree of global spatial dependence using the SDF-
STE compared to the SDF-CSD model. However, as we will show in the next paragraph,
the estimated input spillovers are approximately the same. Comparing these two non-
nested specifications using the Vuong test and the Takeuchi information criteria, we find
that the SDF-CSD model has to be preferred to the SDF-STE in this empirical application.
Indeed, we reject at a 5% significance level the null hypothesis that the two models are
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equivalent against the alternative hypothesis that the SDF-CSD is better than the SDF-
STE. Moreover, the TIC information criteria confirms a better fit of the SDF-CSD com-
pared to the SDF-STE. Thus, due to the importance of error-based spatial dependence in
the Italian agricultural sector, the SDF-CSD model has to be preferred to the SDF-STE.

Finally, Table B.4 shows the indirect effects estimated using the two different spa-
tial SF models introduced in this thesis. Considering input spillover effects, the SDF-
STE model and the SDF-CSD highly agree on the existence of negative and significant
spillovers related to the use of agricultural land. Moreover, using both models, the spatial
spillover effects related to machinery and to water, energy, and fuel are positive but not
significantly different from zero. Labour spillovers represent the only exception. Indeed,
while they are not significant using the SDF-CSD model, the indirect effect associated
with labour is positive and statistically significant at a 10% significance level using the
SDF-STE. Considering the inefficiency determinants, we find a positive and significant
overall level of behavioural spatial correlation using the SDF-CSD (0.37), while estimat-
ing the SDF-STE we are able to distinguish the specific spatial effects related to each
Z variable. In particular, we find that the spatial spillovers related to small, big, and
family farms positively influence the efficiency level of neighbouring provinces, while
the spatial spillover effects related to the percentage of hired land, subsidies, young en-
trepreneurs and farms run by women are negative and significant. On the other hand,
the indirect effect related to the use of diversification techniques is not statistically sig-
nificant. Finally, only the SDF-CSD model is able to detect some positive and significant
remaining spatial correlation related to the random error component (0.37).
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TABLE B.3: Application to the Agricultural Sector: Estimation Results

SDF-CSD Model SDF-STE Model
Coeff. t-stat. Coeff. t-stat.

β0 3.867*** 7.29 β0 2.447*** 7.85

βL 0.614*** 26.82 βL 0.640*** 32.00

βAA 0.135*** 8.53 βAA 0.131*** 9.56

βM 0.072*** 5.03 βM 0.078*** 6.14

βWEF 0.200*** 14.29 βWEF 0.190*** 15.97

βt -0.011 -0.83 βt 0.010*** 3.70

ρ 0.137** 1.78 ρ 0.366*** 7.55

θL -0.060 -0.80 θL -0.180*** -3.25

θAA -0.246*** -5.21 θAA -0.233*** -7.19

θM 0.025 0.58 θM 0.010 0.31

θWEF 0.022 0.43 θWEF -0.067** -1.99

ϕS 0.703*** 4.01 ϕ0 0.184*** 18.40

ϕB -1.722*** -3.75 ϕS 0.321*** 7.20

ϕF 0.218** 1.95 ϕB -0.614*** -0.65

ϕD 0.367*** 2.51 ϕF 0.131*** 32.75

ϕH -0.062 -0.58 ϕD 0.334*** 7.46

ϕSub 0.711*** 7.39 ϕH 0.021 0.51

ϕY 0.655*** 3.33 ϕSub 0.152*** 3.01

ϕW 0.546*** 3.00 ϕY 0.353*** 7.88

τ 0.371*** 3.08 ϕW 0.142*** 14.20

γ 0.368*** 5.29 δS -0.471*** -5.11

σ2
u 0.047 δB -0.543*** -5.73

σ2
u 0.090 δF -0.275*** -39.29

δD -0.014 -0.11

δH 0.231*** 38.50

δSub 0.680*** 4.13

δY 0.407*** 2.47

δW 0.051*** 12.75

σ2 0.071

λ 0.154

LL -284.61 LL -539.27

V Base Model V 2.21**

TIC 569.24 TIC 1056.10

∗ ∗ ∗ : pvalue ≤ 0.01; ∗∗ : pvalue ≤ 0.05; ∗ : pvalue ≤ 0.10
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TABLE B.4: Application to the Agricultural Sector: Indirect Effects

Model SDF-CSD SDF-STE

Indirect Effects Coeff. SD Coeff. SD

Labour 0.03 0.06 0.08* 0.06

Land -0.26*** 0.05 -0.28*** 0.05

Machinery 0.04 0.05 0.06 0.05

Water, Energy, Fuel 0.06 0.05 0.01 0.05

Small - - -0.54*** 0.14

Big - - -1.17*** 0.40

Family - - -0.35*** 0.03

Diversified - - 0.17 0.15

Hired - - 0.36*** 0.04

Subsidies - - 1.12*** 0.27

Youth - - 0.82*** 0.26

Woman - - 0.16*** 0.03

Behavioural Corr. 0.37*** 0.07 - -

Environmental Corr. 0.37*** 0.05 - -

∗ ∗ ∗ : pvalue ≤ 0.01; ∗∗ : pvalue ≤ 0.05; ∗ : pvalue ≤ 0.10





175

Bibliography

Abunyuwah, I., N. Yenibehit, and E.D. Ahiale (2019). “Technical Efficiency of Carrot Pro-
duction in the Asante-Mampong Municipality Using Stochastic Frontier Analysis”.
Journal of Agriculture and Environmental Sciences 8(2), 14–21.

Acosta, M., D. Coronado, and C. Romero (2015). “Linking Public Support, R&D Innova-
tion and Productivity: New Evidence from the Spanish Food Industry”. Food Policy
57, 50–61.

Acs, Z. and D. Audretsch (1994). “R&D Spillovers and Recipient Firm Size”. Review of
Economics and Statistics 100(2), 336–340.

Adam, I. and E. A Mensah (2013). “Perceived spatial agglomeration effects and hotel
location choice”. Anatolia 25(1), 49–60.

Adams, J.D. and A.B. Jaffe (1996). “Bounding the Effects of R&D: An Investigation Using
Matched Establishment-Firm Data”. RAND Journal of Economics 27(4), 700–721.

Adetutu, M., A.J. Glass, K. Kenjegalieva, and R.C. Sickles (2015). “The effects of efficiency
and TFP growth on pollution in Europe: A multistage spatial analysis”. Journal of
Productivity Analysis 43(3), 307–326.

Aiello, F., V. Pupo, and F. Ricotta (2014). “Explaining Total Factor Productivity at Firm
Level in Italy: Does Location Matter?” Spatial Economic Analysis 9(1), 51–70.

Aigner, D., C.K. Lovell, and P. Schmidt (1977). “Formulation and estimation of stochastic
frontier production function models”. Journal of Econometrics 6(1), 21–37.

Aigner, D.J. and SF. Chu (1968). “On estimating the industry production function”. Amer-
ican Economic Review 58, 826–839.

Akaike, H. (1973). “Information theory and an extension of the maximum likelihood prin-
ciple”. 2nd International symposium on information theory. B.N. Petrov and F. Csaki.
Budapest: Akademia Kiad, 267–281.

Allen, R.G.D. (1938). Mathematical Analysis for Economists. London: Macmillan.
Amsler, C., A. Prokhov, and P. Schmidt (2016). “Endogeneity in stochastic frontier mod-

els”. Journal of Econometrics 190(2), 280–288.
Andersson, M. and H. Lööf (2011). “Agglomeration and productivity: evidence from

firm-level data”. The Annals of Regional Science 46(3), 601–620.
Arbelo, A., M. Arbelo-Pérez, and P. Pérez-Gómez (2018). “Estimation of Profit Efficiency

in the Hotel Industry Using a Bayesian Stochastic Frontier Model”. Cornell Hospital-
ity Quarterly 59(4), 364–375.

Arbia, G. (1989). Spatial data configuration in statistical analysis of regional economic and re-
lated problems. Dordrecht: Kluwer.



Bibliography

Arbia, G., G. Espa, and D. Giuliani (2021). Spatial Microeconometrics. London: Routledge.
Areal, F.J., K. Balcombe, and R. Tiffin (2012). “Integrating Spatial Dependence into

Stochastic Frontier Analysis”. Australian Journal of Agricultural and Resource Eco-
nomics 56(4), 521–541.

Areal, F.J. and V.O. Pede (2021). “Modelling Spatial Interaction in Stochastic Frontier
Analysis”. Frontiers in Sustainable Food Systems 5, 1–12.

Argote, L. and P. Ingram (2000). “Knowledge transfer: A basis for competitive advantage
in firms”. Organizational Behaviour and Human Decision Processes 82, 150–169.

Arrow, K.J., H.B. Chenery, B.S. Minhas, and R.M. Solow (1961). “Capital-Labour Substi-
tution and Economic Efficiency”. Review of Economics and Statistics 43(3), 225–250.

Assaf, A.G., H. Oh, and M. Tsionas (2017). “Bayesian approach for the measurement of
tourism performance: a case of stochastic frontier models”. Journal of Travel Research
56(2), 172–186.

Atalay, E., A. Hortaçsu, and C. Syverson (2014). “Why Do Firms Own Production
Chains?” American Economic Review 104(4), 1120–1148.

Auci, S. and D. Vignani (2020). “Climate variability and agriculture in Italy: a stochastic
frontier analysis at the regional level”. Economia Politica 37, 381–409.

Audretsch, D.B. (1995). Innovation and Industry Evolution. Cambridge, MA: MIT Press.
Audretsch, D.B. (1998). “Agglomeration and the Location of Innovative Activity”. Oxford

Review of Economic Policy 14(2), 18–29.
Backman, M., J. Klaesson, and Ö. Öner (2017). “Innovation in the hospitality industry -

Firm or location?” Tourism Economics 23(8), 1591–1614.
Balasubramanian, N. and J. Sivadasan (2011). “What Happens When Firms Patent? New

Evidence from U.S. Economic Census Data”. Review of Economics and Statistics 93(1),
126–146.

Baldoni, E. and R. Esposti (2020). “Agricultural Productivity in Space. An Econometric
Assessment of Italian Farm-level Data”. American Journal of Agricultural Economics.
DOI: https://doi.org/10.1111/ajae.12155.

Baptista, R. (2000). “Do innovations diffuse faster within geographical clusters?” Interna-
tional Journal of Industrial Organization 18(3), 515–535.

Barros, C.P. (2004). “A Stochastic Cost Frontier in the Portuguese Hotel Industry”. Tourism
Economics 10(2), 177–192.

Barros, C.P. (2005). “Measuring efficiency in the hotel sector”. Annals of Tourism Research
32(2), 456–477.

Bartelsman, E.J., J.E. Haskel, and R. Martin (2008). “Distance to Which Frontier? Evidence
on Productivity Convergence from International Firm-Level Data”. CEPR Discussion
Paper 7032.

Battese, G. (1997). “A note on the estimation of Cobb-Douglas production functions when
some explanatory variables have zero values”. Journal of Agricultural Economics 48(1-
3), 250–252.

https://doi.org/https://doi.org/10.1111/ajae.12155


177

Battese, G.E. and T.J Coelli (1988). “Prediction of firm-level technical efficiencies with a
generalized frontier production function and panel data”. Journal of Economics 38(3),
387–399.

Battese, G.E. and T.J Coelli (1992). “Frontier production functions, technical efficiency
and panel data: with application to paddy farmers in India”. Journal of Productivity
Analysis 3(1-2), 153–169.

Battese, G.E. and T.J. Coelli (1995). “A model for technical inefficiency effects in a stochas-
tic frontier production function for panel data”. Empirical Economics 20(2), 325–332.

Battese, G.E. and G.S. Corra (1977). “Estimation of a production frontier model: with ap-
plication to the pastoral zone of Eastern Australia”. Australian Journal of Agricultural
Economics 21(3), 169–179.

Baum, J.A.C. and H.A. Haveman (1997). “Love Thy Neighbor? Differentiation and Ag-
glomeration in the Manhattan Hotel Industry, 1898-1990”. Administrative Science
Quarterly 42(2), 304–338.

Baum, J.A.C. and S.J. Mezias (1992). “Localized Competition and Organizational Failure
in the Manhattan Hotel Industry, 1898-1990”. Administrative Science Quarterly 37(4),
580–604.

Beebe, C., F. Haque, C. Jarvis, M. Kenney, and D. Patton (2013). “Identity creation and
cluster construction: the case of the Paso Robles wine region”. Journal of Economic
Geography 13(5), 711–740.

Belotti, F. and G. Ilardi (2018). “Consistent inference in fixed-effects stochastic frontier
models”. Journal of Econometrics 202(2), 161–177.

Benedetti, I., G. Branca, and R. Zucaro (2019). “Evaluating input use efficiency in agri-
culture through a stochastic frontier production: An application on a case study in
Apulia (Italy)”. Journal of Cleaner Production 236, 117609.

Benkovskis, K. (2018). “Misallocation, productivity and fragmentation of production: the
case of Latvia”. Journal of Productivity Analysis 49, 187–206.

Bernard, A.B., S.J. Redding, and P.K. Schott (2010). “Multiple-Product Firms and Product
Switching”. American Economic Review 100(1), 70–97.

Bernini, C. and A. Guizzardi (2010). “Internal and locational factors affecting hotel indus-
try efficiency: evidence from Italian business corporations”. Tourism Economics 16(4),
883–913.

Bernini, C. and A. Guizzardi (2012). “Accommodation industry or accommodation indus-
tries? Evidence from the anaysis of production processes”. Anatolia: An International
Journal of Tourism and Hospitality Research 23(1), 4–16.

Billé, A.G., C. Salvioni, and R. Benedetti (2018). “Modelling Spatial Regimes in Farms
Technologies”. Journal of Productivity Analysis 49(2), 173–185.

Binder, P. (2019). “A network perspective on organizational learning research in tourism
and hospitality”. International Journal of Contemporary Hospitality Management 31(7),
2602–2625.

Blake, A., M.T. Sinclair, and J.A. Campos Soria (2006). “Tourism productivity Evidence
from the United Kingdom”. Annals of Tourism Research 33(4), 1099–1120.



Bibliography

Bloom, N., M. Draca, and J. van Reenen (2011). “Trade Induced Technical Change? The
Impact of Chinese Imports on Innovation, IT and Productivity”. The Review of Eco-
nomic Studies 83(1), 87–117.

Bloom, N. and J. van Reenen (2007). “Measuring and Explaining Management Practices
across Firms and Countries”. Quarterly Journal of Economics 122(4), 1351–1408.

Bockstael, N.E. (1996). “Modeling Economics and Ecology: The importance of a Spatial
Perspective”. American Journal of Agricultural Economics 78, 1168–1180.

Bojnec, S. and L. Latruffe (2009). “Determinants of technical efficiency of Slovenian
farms”. Post-Communist Economies 21(1), 117–124.

Brasili, C. and R. Fanfani (2015). “The Italian Food Industry: Structure and Characteris-
tics”. The Food Industry in Europe. Ed. by P. Soldatos and S. Rozakis. Atene: Agricul-
tural University of Athens. Chap. 8, 115–137.

Bridgman, B., S. Qi, and J.A. Schmitz (2009). “The Economic Performance of Cartels: Evi-
dence from the New Deal U.S. Sugar Manufacturing Cartel, 1934–74”. Federal Reserve
Bank of Minneapolis Staff Report 437.

Bronzini, R. and P. Piselli (2009). “Determinants of long-run regional productivity with
geographical spillovers: the role of R&D, human capital and public infrastructure”.
Regional Science and Urban Economics 39(2), 187–199.

Brümmer, B. (2001). “Estimating confidence intervals for technical efficiency: The case of
private farms in Slovenia”. European Review of Agricultural Economics 28(3), 285–306.

Brümmer, B. and J.P. Loy (2000). “The technical efficiency impact of farm credit pro-
grammes: A case study in Northern Germany”. Journal of Agricultural Economics
51(3), 405–418.

Buckwell, A. and S. Davidova (1993). “Potential implications for productivity of land
reform in Bulgaria”. Food Policy 18(6), 493–506.

Cainelli, G. and R. Ganau (2018). “Distance-Based Agglomeration Externalities and
Neighboring Firms’ Characteristics”. Regional Studies 52(7), 922–933.

Cainelli, G. and R. Ganau (2019). “Related Variety and Firms’ Heterogeneity. What Really
Matters for Short-Run Firm Growth?” Entrepreneurship & Regional Development 31(9-
10), 768–784.

Camisón-Zornosa, C., R. Lapiedra-Alcamí, M. Segarra-Ciprés, and M. Boronat-Navarro
(2004). “A meta-analysis of innovation and organizational size”. Organization Studies
25(3), 331–361.

Capitanio, F., A. Coppola, and S. Pascucci (2010). “Product and Process Innovation in the
Italian Food Industry”. Agribusiness 26, 503–518.

Cardamone, P. (2020). “Productivity and spatial proximity: evidence from the Italian food
industry”. International Review of Applied Economics 34(3), 327–341.

Carlino, G. and W.R. Kerr (2015). “Agglomeration and Innovation”. Handbook of Re-
gional and Urban Economics. J.V.H. Gilles Duranton and W.C. Strange. Vol. 5. Elsevier.
Chap. 6, 349–404.



179

Castiglione, C. and D. Infante (2014). “ICTs and time-span in technical efficiency gains. A
stochastic frontier approach over a panel of Italian manufacturing firms”. Economic
Modelling 41, 55–65.

Chambers, R.G. and S. Pieralli (2020). “The sources of measured US agricultural produc-
tivity growth: weather, technological change, and adaptation”. American Journal of
Agricultural Economics 102(4), 1198–1226.

Chen, C.F. (2007). “Applying the stochastic frontier approach to measure hotel manage-
rial efficiency in Taiwan”. Tourism Management 28, 696–702.

Cho, S., R.H. Woods, S. Jang, and M. Erdem (2006). “Measuring the impact of human re-
source management practices on hospitality firms’ performances”. Hospitality Man-
agement 25, 262–277.

Christensen, L.R., D. Jorgenson, and L.J. Lau (1971). “Conjugate Duality and the Tran-
scendental Log- arithmic Production Function”. Econometrica 39(4), 225–256.

Christensen, L.R., D. Jorgenson, and L.J. Lau (1973). “Transcendental Logarithmic Pro-
duction Frontiers”. The Review of Economics and Statistics 55(1), 28–45.

Chung, W. and A. Kalnins (2001). “Agglomeration effects and performance: A test of the
Texas lodging industry”. Strategic Management Journal 22, 969–988.

Chung, W. and A. Kalnins (2004). “Resource-seeking agglomeration: A study of market
entry in the lodging industry”. Strategic Management Journal 25, 689–699.

Ciaian, P. and J.F.M. Swinnen (2009). “Credit market imperfections and the distribution
of policy rents”. American Journal of Agricultural Economics 91, 1124–1139.

Ciliberti, S., S. Bröring, and G. Martino (2016). “Drivers of Innovation in the European
Food Industry: Evidences from the Community Innovation Survey”. International
Journal of Food System Dynamics 6(2), 175–190.

Coelli, T., S. Rahman, and C. Thirtle (2003). “A stochastic frontier approach to total fac-
tor productivity measurement in Bangladesh crop agriculture, 1961–92”. Journal of
International Development 15, 321–333.

Coelli, T.J. (1995). “Recent developments in frontier modelling and efficiency measure-
ment”. Australian Journal of Agricultural Economics 39(3), 219–245.

Cohen, W. and D. Levinthal (1989). “Innovation and Learning: The Two Faces of R&D”.
The Economic Journal 99(3), 569–596.

Cohen, W.M. and D.A. Levinthal (1990). “Absorptive capacity: A new perspective on
learning and innovation”. Administrative Science Quarterly 35, 128–152.

Cooper, C. (2006). “Knowledge management and tourism”. Annals of Tourism Research
33(1), 47–64.

Crespi, G., C. Criscuolo, J.E. Haskel, and M. Slaughter (2008). “Productivity Growth,
Knowledge Flows, and Spillovers”. NBER Working Paper 13959.

De Loecker, J. (2007a). “Do Exports Generate Higher Productivity? Evidence from Slove-
nia”. Journal of International Economics 73(1), 69–98.

De Martino, M. and F. Magnotti (2018). “Service Innovation and Customer Satisfaction:
The Role of Customer Value Creation”. European Journal of Innovation Management
21(3), 402–422.



Bibliography

De Vries, G.J. and M. Koetter (2011). “ICT Adoption and Heterogeneity in Produc-
tion Technologies: Evidence for Chilean Retailers”. Oxford Bullettin of Economics and
Statistics 73(4), 0305–9049.

Decelle, X. (2006). “A dynamic conceptual approach to innovation in tourism”. Innovation
and tourism policy. OECD. OECD Publishing, 85–105.

Delgado, M., M.E. Porter, and S. Stern (2010). “Clusters and entrepreneurship”. Journal of
Economic Geography 10, 495–518.

Demirdogen, A., E. Olhan, and M. Hasdemir (2021). “Heterogeneous impact of agricul-
tural support policies: evidence from Turkey”. Environment, Development and Sus-
tainability. DOI: https://doi.org/10.1007/s10668-021-01941-9.

Drucker, J. and E. Feser (2012). “Regional industrial structure and agglomeration
economies: An analysis of productivity in three manufacturing industries”. Regional
Science and Urban Economics 42, 1–14.

Druska, V. and W.C. Horrace (2004). “Generalized moments estimation for spatial panel
data: Indonesian rice farming”. American Journal of Agricultural Economics 86(1),
185–198.

Elhorst, J.P. (2010). Spatial panel data models. Fischer, M.M., Getis, A. (Eds.), Handbook of
Applied Spatial Analysis. New York: Springer.

Elhorst, J.P. (2014). “MATLAB software for spatial panels”. International Regional Science
Review 37, 389–405.

Ellison, G., E.L. Glaeser, and W.R. Kerr (2010). “What causes industry agglomeration? Ev-
idence from coagglomeration patterns”. The American Economic Review 100(3), 1195–
1213.

Engel, J.S. (2015). “Global Clusters of Innovation: lessons from Silicon Valley”. California
Management Review 57(2), 36–65.

Enz, C.A., L. Canina, and K. Walsh (2006). “Intellectual capital: A key driver of hotel
performance”. Report by Centre for Hospitality Research. Cornell University.

Erkkila, D. (2004). “SME’s in regional development”. The future of small and medium sized
enterprises in tourism. P. Keller and T. Bieger. AIEST Publication 54th Congress: Petra,
Jordan.

Fabrizio, K.R., N.L. Rose, and C.D. Wolfram (2007). “Do Markets Reduce Costs? Assess-
ing the Impact of Regulatory Restructuring on US Electric Generation Efficiency”.
American Economic Review 97(4), 1250–1277.

Fazio, G. and E. Maltese (2015). “Agglomeration Externalities and the Productivity of
Italian Firms”. Growth and Change 46(3), 354–378.

Feldman, M., J. Francis, and J. Bercovitz (2005). “Creating a Cluster While Building
a Firm: Entrepreneurs and the Formation of Industrial Clusters”. Regional Studies
39(1), 129–141.

fi-compass (2020). Financial needs in the agriculture and agri-food sectors in Italy. Tech. rep.,
86 pages. URL: https ://www.fi- compass.eu/sites/default/files/publications/
financial_needs_agriculture_agrifood_sectors_Italy.pdf.

https://doi.org/https://doi.org/10.1007/s10668-021-01941-9
https://www.fi-compass.eu/sites/default/files/publications/ financial_needs_agriculture_agrifood_sectors_Italy.pdf
https://www.fi-compass.eu/sites/default/files/publications/ financial_needs_agriculture_agrifood_sectors_Italy.pdf


181

Foster, A.D. and M.R. Rosenzweig (1995). “Learning by doing and learning from others:
Human capital and technical change in agriculture”. Journal of Political Economy 103,
1176–1209.

Fusco, E. and F. Vidoli (2013). “Spatial stochastic frontier models: controlling spatial
global and local heterogeneity”. International Review of Applied Economics 27(5),
679–694.

Garcia-Ayuso, M., I. Moreno-Campos, and G. Sierra-Molina (2000). “Fundamental analy-
sis and human capital: Empirical evidence on the relationship between the quality of
human resources and fundamental accounting variables”. Journal of Human Resource
Costing & Accounting 5(1), 45–57.

Glaeser, E., H. Kallal, J. Scheinkman, and A. Shleifer (1992). “Growth of Cities”. Journal of
Political Economy 100, 1126–1152.

Glaeser, E.L. and R. Kerr (2009). “Local Industrial Conditions and Entrepreneurship: How
Much of the Spatial Distribution Can We Explain?” Journal of Economics and Manage-
ment Strategy 18(3), 623–663.

Glaeser, E.L., D. Laibson, and B. Sacerdote (2002). “An economic approach to social capi-
tal”. Journal of Economics 112(483), F437–F458.

Glass, A.J., K. Kenjegalieva, and R. Sickles (2013). “A Spatial Autoregressive Production
Frontier Model for Panel Data: With an Application to European Countries”. URL:
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2227720.

Glass, A.J., K. Kenjegalieva, and R.C. Sickles (2016). “A spatial autoregressive stochas-
tic frontier model for panel data with asymmetric efficiency spillovers”. Journal of
Econometrics 190(2), 289–300.

Gotsch, M. and C. Hipp (2012). “Measurement of Innovation Activities in the Knowledge
Intensive Services Industry: A Trademark Approach”. The Service Industries Journal
32(13), 2167–2184.

Greene, W. (2005a). “Fixed and Random Effects in Stochastic Frontier Models”. Journal of
Productivity Analysis 23, 7–32.

Greene, W. (2005b). “Reconsidering heterogeneity in panel data estimators of the stochas-
tic frontier model”. Journal of Econometrics 126, 269–303.

Griffith, R., R. Harrison, and J. van Reenen (2006). “How Special is the Special Relation-
ship? Using the Impact of U.S. R&D Spillovers on U.K. Firms as a Test of Technology
Sourcing”. American Economic Review 96(5), 1859–1875.

Griliches, Z. (1992). “The Search for R&D Spill-Overs”. The Scandinavian Journal of Eco-
nomics 94, 29–47.

Gude, A., I. Alvarez, and L. Orea (2018). “Heterogeneous spillovers among Spanish
provinces: a generalized spatial stochastic frontier model”. Journal of Productivity
Analysis 50(3), 155–173.

Hall, B. and P. LeVeen (1978). “Farm size and economic efficiency: The case of California”.
American Journal of Agricultural Economics 60(4), 589–600.

Hall, C.M. and A.M. Williams (2008). Tourism innovation. London: Routledge.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2227720


Bibliography

Hameed, W.U., Q.A. Nisar, and H. Wu (2021). “Relationships between external knowl-
edge, internal innovation, firms’ open innovation performance, service innovation
and business performance in the Pakistani hotel industry”. International Journal of
Hospitality Management 92, 102745.

Han, J., D. Ryu, and R.C. Sickles (2016). “How to measure spillover effects of public cap-
ital stock: a spatial autoregressive stochastic frontier model”. Spatial Econometrics:
Qualitative and Limited Dependent Variables, Emerald Group Publishing Limited, 259–
294.

Haschka, R. and H. Herwartz (2020). “Innovation efficiency in European high-tech in-
dustries: Evidence from a Bayesian stochastic frontier approach”. Research Policy 49,
104054.

Henderson, J.V., A. Kuncoro, and M. Turner (1955). “Industrial development in cities:
National Bureau of Economic Research”. Journal of Political Economy 103, 1067–1090.

Henderson, J.V., Z. Shalizi, and A.J. Venables (2001). “Geography and development”.
Journal of Economic Geography 1, 81–105.

Henderson, V.J. (2003). “Marshall’s Scale Economies”. Journal of Urban Economics 53(1),
1–28.

Hennessy, D.A. (1998). “The production effects of agricultural income support polices
under uncertainty”. American Journal of Agricultural Economics 80, 46–57.

Herwartz, H. and C. Strumann (2014). “Hospital Efficiency Under Prospective Reim-
bursement Schemes: an Empirical Assessment for the case of Germany”. European
Journal of Health Economics 15, 175–186.

Hjalager, A.M. (2002). “Repairing innovation defectiveness in tourism”. Tourism Manage-
ment 23, 465–474.

Hjalager, A.M. (2010). “A review of innovation research in tourism”. Tourism Management
31, 1–12.

Hoover, E.M. (1948). The Location of Economic Activity. New York: McGraw-Hill.
Howells, J. and J. Bessant (2012). “Introduction: Innovation and economic geography: a

review and analysis”. Journal of Economic Geography 12, 929–942.
Hsieh, C.T. and P.J. Klenow (2009). “Misallocation and manufacturing TFP in China and

India”. The Quarterly Journal of Economics 124(4), 1403–1448.
Hu, J.L., C.N.Chiu, H.S. Shieh, and C.H. Huang (2010). “A stochastic cost efficiency anal-

ysis of international tourist hotels in Taiwan”. International Journal of Hospitality Man-
agement 29(1), 99–107.

Ilmakunnas, P., M. Maliranta, and J. Vaini-Omäki (2004). “The Roles of Employer and Em-
ployee Characteristics for Plant Productivity”. Journal of Productivity Analysis 21(3),
249–276.

Isard, W. (1956). Location and Space-economy: A General Theory Relating to Industrial Location,
Market Areas, Land Use, Trade, and Urban Structure. New York: Technology Press of
Massachusetts Institute of Technology and Wiley.

Jackson, J. and P. Murphy (2002). “Tourism destinations as clusters: Analytical experi-
ences from the New World”. Tourism and Hospitality Research 4(1), 36–52.



183

Jackson, J. and P. Murphy (2006). “Clusters in regional tourism An Australian Case”.
Annals of Tourism Research 33(4), 1018–1035.

Jacob, M., C. Florido, and E. Aguiló (2010). “Environmental innovation as a competitive-
ness factor in the Balearic Islands”. Tourism Economics 16(3), 755–764.

Jacob, M. and J.L. Groizard (2007). “Technology transfer and multinationals: the case of
Balearic hotel chains’ investments in two developing economies”. Tourism Manage-
ment 28, 976–992.

Jacobs, J. (1969). The Economy of Cities. London: Jonathan Cape.
Jaffe, A.B. (1986). “Technological Opportunity and Spillovers of R&D”. American Economic

Review 76, 984–1001.
Jaremen, D.E. (2016). “Advantages from ICT usage in hotel industry”. Czech Journal of

Social Sciences, Business and Economics 5(3), 6–17.
Jiménez-Zarco, A.I., M.P. Martínez-Ruiz, and A. Izquierdo-Yusta (2011). “Key service in-

novation drivers in the tourism sector: empirical evidence and managerial implica-
tions”. Service Business 5, 339–360.

Jondrow, J., C.A.K. Lovell, I.S. Materov, and P. Schmidt (1982). “On the estimation of
technical efficiency in the stochastic frontier production function model”. Journal of
Econometrics 19, 233–238.

Jorgenson, D.W., M.S. Ho, and K. Stiroh (2008). “A Retrospective Look at the U.S. Pro-
ductivity Growth Resurgence”. Journal of Economic Perspectives 22(1), 3–24.

Kacker, M. (1988). “International flow of retailing know-how: bridging the technology
gap in distribution”. Journal of Retailing 64(1), 41–67.

Kelejian, H.H. and I.R. Prucha (1998). “A generalized spatial two stage least squares
procedure for estimating a spatial autoregressive model with autoregressive dis-
turbance”. The Journal of Real Estate Finance and Economics 17, 99–121.

Kelejian, H.H. and I.R. Prucha (1999). “A generalized moments estimator for the autore-
gressive parameter in a spatial model”. International Economic Review 40(2), 509–533.

Keller, W. and S.R. Yeaple (2009). “Multinational Enterprises, International Trade, and
Productivity Growth: Firm Level Evidence from the United States”. Review of Eco-
nomics and Statistics 91(4), 821–831.

Kellogg, R. (2009). “Learning by Drilling: Inter-firm Learning and Relationship Persis-
tence in the Texas Oilpatch”. The Quarterly Journal of Economics 126(4), 1961–2004.

Kim, Y.R., A.M. Williams, S. Park, and J. Li Chen (2021). “Spatial spillovers of agglom-
eration economies and productivity in the tourism industry: The case of the UK”.
Tourism Management (82), 104201.

Kirchner, M., M. Schönhart, and E. Schmid (2016). “Spatial impacts of the CAP post-
2013 and climate change scenarios on agricultural intensification and environment
in Austria”. Ecological Economics 123, 35–56.

Knittel, C.R. (2002). “Alternative Regulatory Methods and Firm Efficiency: Stochastic
Frontier Evidence from the U.S. Electricity Industry”. Review of Economics and Statis-
tics 84(3), 530–540.



Bibliography

Koo, J. and S.V. Lall (2007). “New economic geography: real or hype?” International Re-
gional Science Review 30, 3–19.

Krugman, P. (1991). “Increasing returns and economic geography”. Journal of Political
Economy 99, 483–499.

Kutlu, L. (2020). “Spatial Stochastic Frontier Model with Endogenous Spillovers”. URL:
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3626688.

Kutlu, L., K.C. Tran, and M.G. Tsionas (2019). “A time-varying true individual effects
model with endogenous regressors”. Journal of Econometrics 211(2), 539–559.

Kutlu, L., K.C. Tran, and M.G. Tsionas (2020b). “Unknown latent structure and ineffi-
ciency in panel stochastic frontier models”. Journal of Productivity Analysis 54, 75–
86.

Lajili, K. and D. Zeghal (2006). “Market performance impacts of human capital disclo-
sures”. Journal of Accounting and Public Policy 25(2), 171–194.

Lapple, D., G. Holloway, D.J. Lacombe, and C. O’Donoghue (2017). “Sustainable tech-
nology adoption: A spatial analysis of the Irish Dairy Sector”. European Review of
Agricultural Economics 44, 810–835.

Latruffe, L. (2010). “Competitiveness, Productivity and Efficiency in the Agricultural and
Agri-Food Sectors”. OECD Food, Agriculture and Fisheries Papers, No. 30, OECD Pub-
lishing, Paris.

Latruffe, L., K. Balcombe, S. Davidova, and K. Zawalinska (2004). “Determinants of tech-
nical efficiency of crop and livestock farms in Poland”. Applied Economics 36(12),
1255–1263.

Latruffe, L., K. Balcombe, S. Davidova, and K. Zawalinska (2005). “Technical and scale
efficiency of crop and livestock farms in Poland: Does specialisation matter?” Agri-
cultural Economics 32(3), 281–296.

Le, Q.C. and R. Pomfret (2011). “Technology spillovers from foreign direct investment in
Vietnam: horizontal or vertical spillovers?” Journal of the Asia Pacific Economy 16(2),
183–201.

Leary, M. and R. Roberts (2014). “Do Peer Firms Affect Corporate Financial Policy?” The
Journal of Finance 69(1), 139–178.

LeSage, J.P. and R.K Pace (2009). Introduction to Spatial Econometrics. Boca-Raton: Taylor &
Francis.

Lev, B. and A. Schwartz (1971). “On the use of the economic concept of human capital in
financial statements”. The Accounting Review 46(1), 103–112.

Levin, R.C. and P. Reiss (1988). “Cost-reducing and demand-creating R&D with
spillovers”. Rand Journal of Economics 19, 538–556.

Lien, G., C. Kumbhakar, and H. Alem (2018). “Endogeneity, heterogeneity, and determi-
nants of inefficiency in Norwegian crop-producing farms”. International Journal of
Production Economies 201, 53–61.

Lio, M. and J. Hu (2009). “Governance and Agricultural Production Efficiency: A Cross-
Country Aggregate Frontier Analysis”. Journal of Agricultural Economics 60(1), 40–
61.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3626688


185

Maietta, O.W. (2015). “Determinants of University–firm R&D Collaboration and Its Im-
pact on Innovation: A Perspective from A Low-tech Industry”. Research Policy 44,
1341–1359.

Majewska, J. (2017). “GPS-based measurement of geographic spillovers in tourism – ex-
ample of Polish districts”. Tourism Geographies 19(4), 612–643,

Maksimovic, V. and G. Phillips (2002). “Do Conglomerate Firms Allocate Resources Inef-
ficiently across Industries? Theory and Evidence”. Journal of Finance 57(2), 721–767.

Manski, C.F. (1993). “Identification of endogenous social effects: the reflection problem”.
Review of Economic Studies 60, 531–542.

Marco-Lajara, B., E. Claver-Cortés, M. Úbeda García, F. García-Lillo, and P.C. Zaragoza-
Sáez (2019). “The role of internal knowledge generation and external knowledge
acquisition in tourist districts”. Journal of Business Research 101, 767–776.

Marco-Lajara, B., P.C. Zaragoza-Sáez, E. Claver-Cortés, and M. Úbeda García (2016).
“Knowledge sources, agglomeration, and hotel performance”. Journal of Business Re-
search 69, 4856–4861.

Marshall, A. (1890). Principles of Economics. London: Macmillan.
Martin, P., T. Mayer, and F. Mayneris (2011). “Spatial Concentration and Plant-Level Pro-

ductivity in France”. Journal of Urban Economics 69(2), 182–195.
Martínez-Victoria, C.M., M. Maté Sánchez-Val, and N. Arcas-Lario (2018). “Spatial De-

terminants of Productivity Growth on Agri-food Spanish Firms: A Comparison be-
tween Cooperatives and Investor-Owned Firms”. Agricultural Economics 49(2), 213–
223.

Martínez-Victoria, C.M., M. Maté Sánchez-Val, and A.O. Lansink (2019). “Spatial Dy-
namic Analysis of Productivity Growth of Agri-food Companies”. Agricultural Eco-
nomics 50(3), 315–322.

Mathijs, E. and L. Vranken (2001). “Human capital, gender and organisation in transition
agriculture: Measuring and explaining technical efficiency of Bulgarian and Hun-
garian farms”. Post-Communist Economies 13(2), 171–187.

Maté-Sanchez-Val, M., F. Lopez-Hernandez, and J. Mur-Lacambra (2017). “How Do
Neighboring Peer Companies Influence SME’s Financial Behaviour?” Economic Mod-
elling 63, 104–114.

Medina-Munoz, D., R.D. Medina-Munoz, and A. Zuniga-Collazos (2013). “Tourism and
innovation in China and Spain: a review of innovation research on tourism”. Tourism
Economics 19(2), 319–337.

Meeusen, W. and J. van Den Broeck (1977). “Efficiency estimation from Cobb-Douglas
production functions with composed error”. International Economic Review 18(2),
435–444.

Michael, E.J. (2003). “Tourism micro-cluster”. Tourism Economics 9(2), 133–145.
Mizruchi, M.S. and E.J. Neuman (2008). “The effect of density on the level of bias in the

network autocorrelation model”. Social Networks 30(3), 190–200.
Montresor, S. and A. Vezzani (2016). “Intangible investments and innovation propensity:

Evidence from the Innobarometer 2013”. Industry and Innovation 23(4), 331–352.



Bibliography

Munari, F., M. Sobrero, and A. Malipiero (2012). “Absorptive Capacity and Localized
Spillovers: Focal Firms as Technological Gatekeepers in Industrial Districts”. Indus-
trial and Corporate Change 21(2), 429–462.

Muyanga, M. and T.S. Jayne (2019). “Revisiting the farm size-productivity relationship
based on a relatively wide range of farm sizes: evidence from Kenya”. American
Journal of Agricultural Economics 101(4), 1140–1163.

Nonaka, I. (1991). “The knowledge creating company”. Harvard Business Review 69(6), 96–
104.

Nooteboom, B. (2000). “Learning and Innovation in Organizations and Economies”. Ox-
ford: Oxford University Press.

Novelli, M., B. Schmitz, and T. Spencer (2006). “Networks, clusters and innovation in
tourism: A UK experience”. Tourism Management 27, 1141–1152.

OECD (2020). OECD Tourism Trends and Policies 2020. Paris: OECD Publishing. DOI: https:
//doi.org/10.1787/6b47b985-en..

Oliner, S.D., D.E. Sichel, and K.J. Stiroh (2007). “Explaining a Productive Decade”. Brook-
ings Papers on Economic Activity 1, 81–137.

Orea, L. and I.C. Alvarez (2019). “A new stochastic frontier model with cross-sectional
effects in both noise and inefficiency terms”. Journal of Econometrics 213(2), 556–577.

Orfila-Sintes, F., R. Crespì-Cladera, and E. Martinez-Ros (2005). “Innovation activity in
the hotel industry: Evidence from Balearic Islands”. Tourism Management 26(6), 851–
865.

Ottenbacher, M.C. (2007). “Innovation management in the hospitality industry: different
strategies for achieving success”. Journal of Hospitality and Tourism Research 31, 431–
454.

Pace, R.K. and R. Barry (1997). “Quick Computation of Spatial Autoregressive Estima-
tors”. Geographical Analysis 29(3), 232–247.

Pavcnik, N. (2002). “Trade Liberalization, Exit, and Productivity Improvement: Evidence
from Chilean Plants”. Review of Economic Studies 69(1), 245–276.

Pavlyuk, D. (2012). “Application of the spatial stochastic frontier model for analysis of a
regional tourism sector”. Transport and Telecommunication 12(2), 28–38.

Peiró-Signes, A., M. Segarra-Oña, L. Miret-Pastor, and R. Verma (2015). “The Effect of
Tourism Clusters on U.S. Hotel Performance”. Cornell Hospitality Quarterly 56(2),
155–167.

Perez-Rodriguez, J.V. and E. Acosta-Gonzalez (2007). “Cost efficiency of the lodging in-
dustry in the tourist destination of Gran Canaria (Spain)”. Tourism Management 28,
993–1005.

Petrick, J.F. and S.J. Backman (2002). “An examination of the determinants of golf travel-
ers satisfaction”. Journal of Travel Research 40(3), 252–258.

Poon, A. (1993). “Tourism, technology and competitive strategies”. Wallingford: CAB In-
ternational.

Poon, A. (1994). “The ‘new tourism’ revolution”. Tourism Management 15(2), 91–92.

https://doi.org/https://doi.org/10.1787/6b47b985-en.
https://doi.org/https://doi.org/10.1787/6b47b985-en.


187

Porta, R. La and A. Shleifer (2008). “The Unofficial Economy and Economic Develop-
ment”. Brookings Papers on Economic Activity 39(2), 275–363.

Porter, M. (1990). The Competitive Advantage of Nations. New York: Free Press.
Porter, M. (1998). “Clusters and the New Economics of Competition”. Harvard Business

Review, November-December, 77–90.
Porter, M. and C. Ketels (2009). Clusters and Industrial Districts: Common Roots, Different

Perspectives. Chapters, in: Giacomo Becattini, Marco Bellandi and Lisa De Propis
(ed.), A Handbook of Industrial Districts, chapter 14. Edward Elgar Publishing.

Quisumbing, A. (1996). “Male-female differences in agricultural productivity: Method-
ological issues and empirical evidence”. World Development 24(10), 1579–1595.

Rama, R. (2008). “Introduction”. Handbook of Innovation in the Food and Drink Industry. Ed.
by R. Rama. New York: Haworth Press, 1–11.

Ramajo, J. and G.J. Hewings (2018). “Modelling regional productivity performance across
Western Europe”. Regional Studies 52(10), 1372–1387.

Rhee, K.H. and H.K. Pyo (2010). “Financial crisis and relative productivity dynamics in
Korea: evidence from firm-level data (1992-2003)”. Journal of Productivity Analysis 34,
111–131.

Rhoades, L. and R. Eisenberger (2002). “Perceived organizational support: a review of the
literature”. Journal of Applied Psychology 87(4), 698–714.

Rice, P., A.J. Venables, and E. Patacchini (2006). “Spatial determinants of productivity:
analysis for the regions of Great Britain”. Regional Science and Urban Economics 36(6),
727–752.

Rizov, M., J. Pokrivcak, and P. Ciaian (2013). “CAP Subsidies and Productivity of the EU
Farms”. Journal of Agricultural Economics 64(3), 537–557.

Roget, F.M. and X.A. Rodriguez Gonzales (2006). “Occupancy level and productivity in
rural tourism establishments: the case of Galicia, Spain”. Tourism Economics 12(2),
279–289.

Romer, P.M. (1990). “Endogenous technological change”. Journal of Political Economy 90,
71–102.

Roth, J. (2003). “Enabling knowledge creation: learning from an R&D organization”. Jour-
nal of Knowledge Management 7(1), 32–48.

Sage, J.P. Le (2014). “What regional scientists need to know about spatial econometrics.”
Available at SSRN 2420725.

Sari, D.W., N.A. Khalifa, and S. Suyanto (2016). “The spillover effects of foreign direct
investment on the firms’ productivity performances”. Journal of Productivity Analysis
46, 199–233.

Saxenian, A. (1990). “Regional Networks and the Resurgence of Silicon Valley”. California
Management Review 33, 89–111.

Saxenian, A. (1994). “Regional Advantage: Culture and Competition in Silicon Valley and
Route 128”. Cambridge, MA: Harvard University Press.



Bibliography

Schmidt, A.M., A.R.B. Moreira, S.M. Helfand, and T.C.O. Fonseca (2009). “Spatial stochas-
tic frontier models: accounting for unobserved local determinants of inefficiency”.
Journal of Productivity Analysis 31(2), 101–112.

Schmidt, P. and C.A.K Lovell (1977). “Estimation technical and allocative inefficiency rel-
ative to stochastic production and cost frontiers”. Journal of Econometrics 9, 343–366.

Schmidt, P. and R.C. Sickles (1984). “Production frontiers and panel data”. Journal of Busi-
ness and Economic Statistic 2, 367–374.

Schmitz, J.A. (2005). “What Determines Productivity? Lessons from the Dramatic Recov-
ery of the U.S. and Canadian Iron Ore Industries following Their Early 1980s Crisis”.
Journal of Political Economy 113(3), 582–625.

Schoar, A. (2002). “Effects of Corporate Diversification on Productivity”. Journal of Finance
57(6), 2379–2403.

Setiawan, M., G. Emvalomatis, and A.O. Lansink (2012). “The relationship between tech-
nical efficiency and industrial concentration: Evidence from the Indonesian food and
beverages industry”. Journal of Asian Economics 23, 466–475.

Shaw, G. and A. Williams (2009). “Knowledge transfer and management in tourism or-
ganisations: An emerging research agenda”. Tourism Management 30, 325–335.

Skevas, I. and A.O. Lansink (2020). “Dynamic Inefficiency and Spatial Spillovers in Dutch
Dairy Farming”. Journal of Agricultural Economics 71(3), 742–759.

Smeral, E. (1998). “The Impact of globalization on small and medium enterprises: New
challenges for tourism policies in European countries”. Tourism Management 19(4),
371–380.

Smeral, E. (2007). “The productivity puzzle in tourism”. Productivity in Tourism. Keller
Peter and Thomas Bieger, 27–39.

Song, J. and X. Chen (2019). “Eco-efficiency of grain production in China based on water
footprints: A stochastic frontier approach”. Journal of Cleaner Production 236, 117685.

Soteriades, M., C. Aivalis, and D. Varvaressos (2004). “E-Marketing and E-Commerce in
The Tourism Industry: A Framework to Develop and Implement Business Initia-
tives”. Tourism Today 4, 1–18.

Spence, M. (1984). “Cost Reduction, Competition, and Industry Performance”. Economet-
rica 52, 101–121.

Stetter, C. and J. Sauer (2021). “Exploring the heterogeneous effects of weather on produc-
tivity using generalized random forests”. Contributed Paper prepared for presentation
at the 95h Annual Conference of the Agricultural Economics Society (online). DOI: https:
//ageconsearch.umn.edu/record/312074/keywords.

Stevenson, R.E. (1980). “Likelihood functions for generalized stochastic frontier estima-
tion”. Journal of Econometric 13, 57–66.
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