Alma Mater Studiorum - Università di Bologna

FACOLTÁ DI SCIENZE MATEMATICHE, FISICHE E NATURALI
 Dottorato di Ricerca in Scienze Chimiche Chim/06 - XX Ciclo Dipartimento di Chimica «G. Ciamician»
 Coordinatore: Prof. V. Balzani

Sintesi asimmetrica di ammine benziliche ed eterobenziliche

Asymmetric synthesis of benzylic and heterobenzylic amines

Autore
Relatore
Dr. Andrea Gualandi
Prof. Diego Savoia
Parole chiave: Ammine, catalisi enantioselettiva, composti eterociclici, composti organometallici, sintesi asimmetrica,

Chapter Index

Chap. 1 - New chiral ligands featuring two aziridine rings separated by pyridine spacer: Synthesis and applications.

Page 1

Chap. 2 - Asymmetric Synthesis of 2-(2-Pyridyl)aziridines from 2-Pyridineimines Bearing Stereogenic N-Alkyl Substituents.

Chap. 3 - Asymmetric Route to Pyridines Bearing a Highly
Functionalized 2-Alkyl
Substituent by Aziridine Ring Opening Reactions. Page 81

Chap. 4 - Asymmetric Synthesis of
1-(2-Pyrrolyl)alkylamines by Addition of Organometallic Reagents to Chiral 2-Pyrroleimines

Page 117

Chap. 5-Asymmetric Synthesis of
8-Aminoindolizidine from Chiral 2-Pyrroleimines
Page 153

Chap. 1 - New chiral ligands featuring two aziridine rings separated by pyridine spacer: Synthesis and applications.

1.1 - Introduction

1.1.1 - N-Ligands in asymmetric synthesis

The enantioselective syntheses of complex chiral molecules, such as those routinely demanded by the pharmaceutical industry, rank among the most important and problematic objectives in all of chemistry. Progress in this area has been greatly accelerated by the development of reliable metal-catalyzed asymmetric reactions that create stereocentres with programmable absolute configurations. ${ }^{1}$

In principle, asymmetric catalytic processes are desirable because they give precise control over chirality and generate maximum complexity in the minimum number of reactions. These efficiencies may dramatically reduce the number of steps required in synthesis and therefore minimize the use of toxic solvents and reagents, labour and cost. Catalyzed reactions may also be conducted under milder conditions that are less energy intensive and that yield fewer undesirable side products than other routes. They may relieve some of the tedium and wastefulness associated with installation and removal of stereodirecting groups, and may provide other synthetic approaches that are much shorter and simpler than convoluted pathways involving lengthy modifications of naturally occurring chiral starting materials.

The discovery of new asymmetric catalysts involves to a great degree the development of new ligands, which support the central metal ions and govern their
enantioselectivity in asymmetric reactions. The development process is the combined result of rational design, intuition, trial and error and serendipity. Often, a chance observation uncovers a lead candidate, which is optimized iteratively in successive improvement cycles. Successful ligand design/synthesis/test cycles are greatly aided by the following guiding principles:

Proposed syntheses should be modular, i.e., it should be possible to generate many different members of a ligand family using the same reaction(s) simply by varying the combination of starting materials.

Ligands should be accessible in only a very few steps, and the diversification step(s) should be placed as close as possible to the end of the synthetic route.

Simple, high-yielding reactions should be used whenever possible.
In order to generate meaningful quantities of material and to avoid enantiomeric and/or diastereomeric separations, the reagents should be readily available and optically pure as both enantiomers. Moreover, the synthetic chemistry should be stereospecific and not affect any of these built-in stereocentres in an unpredictable way.

It should be possible to install multiple stereocentres that are independently variable. This in turn should allow for trivial expansion of ligand families.

Basic ligand frameworks should be easily modifiable to allow production of "next generation" ligands of higher complexity.

The ready availability of optically pure amino acids/alcohols from the chiral pool, by resolution processes and in part by stereoselective syntheses, the ease transformation of the amine group to other nitrogen-containing functional groups with different electronic and chemical (acid, base) properties, e.g., amides and imines, and the rapid development of peptide-based synthesis has positioned chiral nitrogen-donor ligands to fullfill the preceding criteria. Although nitrogen-containing ligands were only rarely used in the 1970s and the 1980s, some of the first historic asymmetric catalysts were heterogeneous nitrogencontaining chiral systems. Very early, asymmetric reduction was reported on silk fibroin with palladium ${ }^{2}$ and with Raney nickel modified by amino acids. The field has been developed by the pioneering work of Brunner, Pfaltz, Evans and Sharpless, among others.

Nitrogen-containing ligands are increasingly applied in asymmetric catalysis, ${ }^{3}$ since they present several advantages with respect to the more conventional phosphorus-containing ligands, even in transition metal-catalyzed reactions. Indeed, the amine functionality can
coordinate any metal species, ranging from lithium and magnesium to zinc, copper, early transition metal complexes and also precious metals.

1
$\mathrm{R}=\mathrm{Ph}, 1-\mathrm{Naph}$, 2-Napth, Mes

4

$$
R=C I, R^{\prime}=H
$$

2

3

5
$M=M n, R u, C_{0}$, V. Cr, Ti

Scheme 1
Diimine-based chiral ligands is easily synthesized via simple base condensation between aldehyde and a chiral amine. The C_{2}-symmetry, which is commonly displayed by a variety of chiral ligands, limits the number of diastereomeric pathways in the asymmetric reaction can transverse, and also renders the ligands easier to assemble in some cases. A number of chiral diimines have since been developed, some example of which are shown in (Scheme 1). Their simple syntheses by condensation of a chiral diamine, the most common trans-1,2-diaminocyclohexane, with two equivalents of an achiral aldehyde (1), or by condensation of an achiral dialdehyde (e.g.glyoxal) with two equivalents of a chiral amine (2, 3), allow quick variation of steric bulk and the incorporation of different chiral elements. The simple C_{2}-symmetric chiral diimines, show in Scheme 1, present poor or moderate enantioselectivities in the relative asymmetric reactions. A few examples are excluded, e.g. the reduction of ketones by polymethylhydrosiloxane $/ \mathrm{Et}_{2} \mathrm{Zn}$ in the presence of ligands of type 1. ${ }^{4}$ Enantioselectivities of up to 99% have been achieved using ligands of type 4 in the Cu -catalyzed aziridination of electron deficient olefins. ${ }^{5}$

More popular derivatives of diimine ligands and the most widely and successfully used are the salens. ${ }^{6}$ These ligand systems, which employ an O, N, N, O metal coordination mode, were first made by Combes via the condensation of a diamine with two equivalents of salicylaldehyde. ${ }^{7}$ Salen complexes of $\mathrm{Mn}, \mathrm{Ru}, \mathrm{Co}, \mathrm{V}, \mathrm{Cr}$ and Ti (5) have been employed in enantioselective aziridinations, oxidations, hydroxylations, cyclopropanations, epoxide ring openings and hetero-Diels-Alder reactions.

In the last years a lot of N,N'bidentate ligands have been development, in particular the 2,2'-bipyridine scaffold with one or more chiral substituent chelates a wide variety of different metals in asymmetric catalysis. ${ }^{8}$ The chiral C_{2}-symmetric bipyridines are primarily made by the Ni-catalyzed coupling of two halopyridines with appended chiral groups. Bolm and coworkers reported one of the first examples of non-racemic chiral 2,2'-bipyridyl ligands, 6 (Scheme 2). ${ }^{9}$ Other examples, such as 7 and 8 , that use substituents from the naturally available chiral pool, have been developed by Kwong and coworkers. ${ }^{10}$

6

$$
\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Ph}
$$

7

8
$\mathrm{R}=i \mathrm{Pr}, \mathrm{Ph}, \mathrm{CMe}_{2}(\mathrm{OH})$

9

10

11

Scheme 2

C_{1}-symmetric variations on the bipyridine ligand scaffold have also been developed (911, Scheme 2). Standard synthetic protocols are based on cross-coupling reactions between

2-pyridyl derivatives and chirally substituted 6-halopyridines. ${ }^{9}$ Another approach employs Cocatalyzed co-cyclotrimerization reactions between 2-cyanopyridines and acetylene. ${ }^{11}$ A wide variety of such ligand scaffolds have been used for many asymmetric transformations. These primarily include: Cu-catalyzed cyclopropanations and allylic oxidations, Rh-catalyzed hydrosilylations, and alkylations using $R_{2} Z n$.

Other types of nitrogen ligands widely used in asymmetric catalytic transformations are based on the oxazoline (4,5-dihydrooxazole) ring (Scheme 3) discovered by Evans in the 1980s. ${ }^{12}$ Oxazoline ligands could easy prepared from readily available enantiopure amino alcohols derived from reduction of naturally occurring amino acids. In this class of bidentate ligands we could found symmetric bis(oxazoline) ligands (box's) (12) or C_{1}-symmetric ligands, where togheter with the oxazoline ring is present another nitrogen heterocycle.

12

13

14

15

16

Scheme 3
C_{2}-symmetric bis(oxazolines) are one of the most popular classes of compounds, which have received a great deal of attention as ligands in coordination chemistry ${ }^{13}$ and in asymmetric catalysis. ${ }^{14}$ These ligands have two oxazoline rings separated by a spacer, and $C_{2}{ }^{-}$ symmetric bis(oxazolines) having a single carbon atom with two identical substituents different from hydrogen as the spacer. This ligands have seen widespread and very successful application that is not possible to discuss in this thesis.

Brunner and coworkers developed the first series of pyrrolyl- $(15,16)$ and pyridyloxazoline $(13,14)$ ligands for asymmetric catalysis. ${ }^{15}$ These ligands are easily and modularly made by ZnCl_{2}-catalyzed condensation of 2-cyanopyrrole (or 2-cyanopyridine) with different amino alcohols, ${ }^{16}$ to give a library of ligands with different absolute configurations of the stereocentres and of the ligand's steric bulk. Pyridyl-2-oxazolines (13) were first used
as ligands in the asymmetric Cu-catalyzed monophenylation of meso-diols ${ }^{17}$ and then more successfully applied in asymmetric Rh-catalyzed hydrosilylations, which gave enantioselectivities as high as $83 \%{ }^{18}$ Pyrrolyl oxazoline 15 and 16 are used in the Rhcatalyzed hydrogenation of ketopantolactone ${ }^{19}$ with lower e.e..

A significant niche in the domain of nitrogen ligands is hold by $\mathrm{N}^{\prime} \mathrm{N}^{\prime}, \mathrm{N}^{\prime \prime}$-terdentate ligands, especially those having C_{2}-symmetry (Scheme 4). The pyridine ring is present in most compounds of this type, where it has the role of a spacer between two identical N -containing moieties as in the widely used and highly performing pyridine-bis(oxazolines) 17 (Pybox's) ${ }^{20}$ and the more recently developed pyridine-bis(oxazines) (Pyboxazines) 18^{21} and pyridinebis(imidazolidines) 19. ${ }^{22}$ Both ligands 17 and 18 are readily prepared from 2,6pyridinedicarboxylic acids and enantiopure β - and γ-aminoalcohols, respectively, without need to construct new stereocenters.

17

20

18

21

19

22

23

Scheme 4

Pyridinediimines 20, which are similarly prepared from 2,6-pyridinedicarbaldehyde, have been also used as ligands in metal-catalyzed asymmetric reactions. ${ }^{23}$ Moreover, $\mathrm{N}^{\prime} \mathrm{N}^{\prime}, \mathrm{N}^{\prime \prime}$ terdentate ligands 21^{24} bearing two chiral amine functions in the lateral chains of the pyridine ring were prepared from 2,6-di(chloromethyl)pyridine, then used in transamination
reactions with moderate enantioselectivities. However, only a few compounds with stereocenters at the benzylic positions have been described. The (R, R) - and (S, S) enantiomers of the ligands 22^{25} and 23^{25} were obtained after separation from the mesocompounds and resolution of the racemic mixture or copper complex, but no application of these ligands in asymmetric syntheses has been until now described.

1.1.2 - N-Ligands in the Pd catalyzed asymmetric allylic substitution (AAA)

Metal-catalyzed asymmetric allylic substitution, which involves the attack of diverse nucleophiles at an η^{3}-allylic metal intermediate or $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-type allylic substitution, has been investigated with great intensity. ${ }^{26}$ Besides a high level of asymmetric induction, the advantages of this method are its tolerance of a wide range of functional groups and a great flexibility in the type of bonds that can be formed. For example, $\mathrm{H}-, \mathrm{C}-, \mathrm{N}-, \mathrm{O}$-, and S centered nucleophiles can be employed. Many ligands have been designed for the benchmark allylic alkylation with 1,3-diphenylallyl acetate. It should be noted that the asymmetric alkylation of unsymmetrical allylic substrates was seldom simultaneously regio- and enantioselective. However, useful results have recently been reported because of the availability of many new chiral ligands.

Palladium is the most studied and used metal in the asymmetric allylic substitution. In the last twenty years a wide number of chiral ligands have been designed to chelate the metal for improving the enantioselectiviy of the reaction. Here I give some examples of nitrogen chiral ligands which are used in the Pd-catalyzed allylic substitution reaction and present aziridine or pyridine ring inside.

The prototype reaction to test new chiral ligands is the reaction of 1,3 diphenylpropenyl acetate $24 \mathrm{a}, \mathrm{b}$ with the anion of dimethyl malonate, in the presence of a palladium source (complex or salt) to give the substitution product 25 (Scheme 5).

Scheme 5

The accepted mechanism for this reaction involves first the oxidative addition of a $\operatorname{Pd}(0)$ specie on the allylic substrate to yield an η^{3} allyl- $\operatorname{Pd}(I I)$ complex (Scheme 6). The equilibrium between the neutral complex I and the cationic species II depends on many factors, e.g. the solvent and the nature of the ligand, but with bidentate ligands it is usually shifted to the side of the cationic complex. This is highly reactive towards soft nucleophiles, which attack at the less substituted allylic terminus leading to a n^{2}-olefin- $\operatorname{Pd}(0)$ complex III, then to the final product and a $\mathrm{Pd}(0)$ complex that restarts another catalytic cycle.

Scheme 6

In the literature are described many examples of ligands which contain the pyridine ring and efficiently catalyse this reaction in an asymmetric fashion. Chiral aziridines have been seldom used in the AAA. It is noteworthy that the C_{2}-symmetric bis(aziridine) 26^{27} (Scheme 7) afforded a complete enantioselectivity, while the pyridine derivative 27^{28} gave a 64% e.e. and the phenantroline derivate 29^{29} gave a 96% e.e.. In C_{1}-symmetric 2-(2'pyridyl)oxazolines $29 a, b^{30}$ and $30^{30 c}$, 31 a remarkable effect of the substituent in both rings was observed; particularly, the substitution of Ph for the $i-\operatorname{Pr}$ group in the oxazoline was beneficial, as a better e.e. was provided by 30 with the same pyridine substituent $(R=H)$. Most importantly, the presence of a (chiral) bulky substituent at the pyridine- C_{6}, or the presence of a benzo[b]-fused ring as in 31 , caused an increase of the enantioselectivity. ${ }^{30,31}$

It should be observed that the ligands 30-31 form a rigid five-membered chelation ring in the cationic (η^{3}-allylic)Pd complexes however, six-membered chelation rings like those derived from the ligands 32-34 have been also studied. In the case of 8 -quinoline-oxazolines 32, an unexpected effect of the substitution was observed, as with $R=M e^{32}$ and the benzo[b]-derivative[4] the opposite enantiomer of 25 was produced. Similarly, the 2(quinolylmethyl)oxazoline 34 displayed the opposite enantioselectivity with respect to $33 .{ }^{32}$

26: e.e. $>99 \%$

27: e.e. 64\%

30

31: e.e. $73 \%(R)$
$a: R=H$, e.e. $24 \%(R)$;
$\mathrm{b}: \mathrm{R}=\mathrm{Me}$, e.e. $70 \%(R)$

32
b: $R=M e$, e.e. $74 \%(R)(74 \%)$;
c: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}$, e.e. $88 \%(R)$;
d: $\mathrm{R}=(S)-\mathrm{CH}(+\mathrm{Bu}) O M e$, e.e. $>99 \%(R)$

33: e.e. $16 \%(R)$

34: e.e. 78\% (S)
$a: R=H$, e.e. 77% (S);
$\mathrm{b}: \mathrm{R}=\mathrm{Me}$, e.e. $78 \%(R)$

Scheme 7

The Savoia's group has studied $(N, N)^{\star}$ ligands containing both the pyridine and aziridine rings. We have described the preparation of 35 and its cationic η^{3}-allylpalladium complex 36 (Scheme 8), which is more effective than the free base in the above mentioned Pd-catalysed allylic substitution reaction, providing (R)-25 with moderate yield and 41% e.e.. ${ }^{33}$ The ligand 35 differs from 26-32 for the presence of a stereocentre in the carbon chain linking the two rings, besides the one present on the aziridine carbon. The two
stereocentres in 35 have a combined role compelling the aziridine nitrogen to assume the R configuration when forming the Pd complex, as shown by the X-ray structure analysis of 36 . This happens to avoid the severe interaction of the two Pr substituents, which instead would occur in the alternative complex with the S configuration.

35

38 , e.e. $4 \%(R)^{\star}$

36, e.e. $41 \%(R)^{\star}$

39 , e.e. $23 \%(S)^{\star}$

37 , e.e. $90 \%(S)^{\star}$

40, e.e. $42 \%(S)^{\star}$

* Product's configuration

Scheme 8

After this first work, we prepared new ligands containing the aziridine and pyridine rings and then converted them to the $\left[(N, N)^{\star}\left(\eta^{3}\right.\right.$-allyl)Pd][SbF $]$ complexes, which were used as catalysts in the allylic substitution reaction. ${ }^{34}$ The ligand prepared from (R)-phenylglycinol (37) was considerably more enantioselective in the catalytic application (e.e. 90%), as a consequence of the more demanding steric effect of the phenyl substituent in the aziridine ring, which is oriented towards the Pd-allylic ligand. On the other hand, structural variations in the starting heterocyclic aldehyde (38-40), also allowing the ligand to form either a fiveor six-membered chelation ring with palladium, and the substitution pattern in the azaheteroaromatic ring had relevant effects on both reactivity and stereocontrol. Especially, inversion of enantioselectivity was observed using the ligand bearing a 6-benzyl-substituted pyridine (40). The moderate efficiency of the alkylation reactions catalysed by our ligands/complexes can be attributed to the weakness of the Pd-N(pyridine) bond(s), which affects the stability of $\left[(N, N) *\left(\eta^{3} \text {-allyl)Pd }\right]^{+}\right.$cations. Moreover, the absence of a π-acceptor Nligand in $(N, N)^{*}$ does not allow the effective stabilization/dissolution of the $\operatorname{Pd}(0)$ species which are formed by nucleophilic attack to the intermediate cationic complex as a matter of
fact, formation of a black palladium precipitated was observed, after that the reaction stopped.

As an evolution of these chiral pyridine-aziridine chiral ligands we envisioned a similar three step route to enantiopure C_{2}-symmetrical $N_{,} N^{\prime}, N^{\prime \prime}$-terdentate ligands ${ }^{35}$ involving the addition of organometallic reagents to chiral diimine derived from 2,6-pyridinedicarbaldehyde and (S)-valinol and (S)-phenylglycinol followed by conversion of the β-aminoalcohols to 2,6-di[1-(1-aziridinyl)alkyl]pyridines (DIAZAP's) was achieved by a Mitsunobu reaction (Scheme 9). By this strategy, the carbon skeleton of the starting chiral aminoalcohol and the absolute configuration of the inherent stereocenters are retained in the final molecule. The new ligands were then used in palladium catalyzed asymmetric allylic alkylation (AAA) of stabilized carbanions, where they provided higher enantioselectivity with respect to the analogous, previously described, bidentate pyridine-aziridine ligands. ${ }^{33,34}$ Our idea was also based on the report that a higher reaction rate was obtained using a P, N, N-terdentate ligand instead of a bidentate P, N-ligand in Pd-catalyzed AAA reactions; ${ }^{36}$ a result that may have been the consequence of the capability of the terdentate ligand to effectively stabilize either $\operatorname{Pd}(0)$ or the (allylic) $\operatorname{Pd}(\text { II })^{+}$complexes involved in the catalytic cycle. However, in the case of our terdentate ligands, taking into account the effects of substituents in the bidentate ligands on enantioselectivity, it was difficult to foresee the importance of the C6 pyridine substituent (aziridine-alkyl group), which could potentially oppose the asymmetric induction of the aziridine substituent.

Scheme 9

1.2-Results and discussion

1.2.1 - Preparation of the DIAZAP Ligands

The starting O-silylated diimines 41 a and 41b (Scheme 10) were prepared in almost quantitative yields by the protocol previously described for the analogous monoimines, ${ }^{33,34,37}$
and were used directly in the following step without purification. As stated before, Grignard reagents and allylic zinc reagents were not effective and lead generally to mixture of products coming from the further attack to the pyridine moiety. Organolithium compounds were found to be the reagents of choice to achieve a highly efficient, regio- and diastereoselective double addition to the azomethine groups in anhydrous tetrahydrofuran (THF) at $-78{ }^{\circ} \mathrm{C}$ (Table 1Table 1). 3,3-Dimethylbutyllithium was prepared by the reaction of $t-$ butyllithium (2 equivalents) with THF (solvent) at room temperature, involving the addition of t-butyllithium to ethylene, which is formed together with the lithium enolate of acetaldehyde following the initial cleavage of THF by t-butyllithium. ${ }^{38}$ It is noteworthy that almost all the reactions gave the expected products $42 a$ and $42 b$ in high yields and with very high diastereoselectivities (Table 1). As a matter of fact, apart from the addition of t butyllithium to both imines (entries 3 and 8), which provided the corresponding aminoalcohols with low diastereomeric ratios, the reactions of organolithium reagents with the valinolderived imine 41a occurred in most cases with higher diastereoselectivities (d.r. of 42a 94:6) with respect to the phenylglycinol-derived imine 41 (d.r. of $42 b$ 91:9). For the imine $41 a$, the best result was obtained with phenyllithium, which afforded the aminoalcohol 42ae' in 95\% yield and d.r. 98:2. However, the addition of methyllithium to 41b (entry 6) was even more diastereoselective, as the pure compound ($5, S$)-41ba' was obtained in 94% yield after column chromatography of the crude reaction product, no trace of the other diastereomers were detected by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

It should be observed that all the organometallic additions produced only two of three possible diastereomers of the compounds 42: the prevalent one had C_{2}-symmetry, as observed by ${ }^{1} H N M R$ spectroscopy. The S, S configuration of the two newly formed stereocenters at the benzylic positions was at first assumed considering the sense of asymmetric induction previously observed in the addition of organolithium reagents to the analogous 2 -pyridine monoimine, ${ }^{37}$ and was then confirmed by the X-ray structure obtained for one palladium complex (see later). Column chromatography of the crude reaction products often allowed isolation of the main diastereomer only, however, enriched chromatographic fractions of the minor diastereomer were obtained, allowing its C_{1} symmetry to be determined. In particular, the separation of the diastereomers was difficult for 42aa' and 42ac', and low yields of the pure main (S, S)-diastereomer were obtained. In these cases, it was preferable to merely filter the crude reaction mixtures through a small pad of silica and use the diastereomeric mixtures in the subsequent step, that is the cyclization to DIAZAP's

43aa and 43ac', since the diastereomers of the latter compounds were more readily separated by chromatography.

Scheme 10

b: $R^{1}=P h$
42
43

Table 1

Entry	Imine (R1)	R2Li	Product	D.r.[a]	$\begin{gathered} 42, \\ \text { Yield \%[b] } \end{gathered}$	43. Yield \%[c]
1	41a (i-Pr)	MeLi	42aa'	95:5	95	43aa' (85)
2	"	n-BuLi	42ab'	95:5	$95(79)^{[c]}$	43ab' (87)
3	"	t-BuLi ${ }^{[d]}$	42ac'	84:16	$95(54)^{[c]}$	$43 a c^{\prime}(84)^{[e]}$
4	"	$t-\mathrm{BuCH}_{2} \mathrm{CH}_{2} \mathrm{Li}^{[f]}$	42ad'	94:6	$84(70)^{[c]}$	43ad' (86)
5	"	PhLi	42ae'	98:2	95	43ae' (90)
6	41b (Ph)	MeLi	42ba'	>99:1	$94^{[9]}$	43ba' (85)
7	"	$n-\mathrm{BuLi}$	42bb'	91:9	93 (76)	43bb' (90) ${ }^{[h]}$
8	"	$t-\mathrm{Bu}^{[d]}$	42bc'	86:14	94(59)	43bc' (86) ${ }^{[i]}$
9	"	PhLi	42be'	92:8	98 (84)	43be' (89) ${ }^{[j]}$

[a] Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy of the crude reaction products. [b] Yield of the crude reaction product. Unless otherwise indicated, the diastereomers were not separated. [c] Yield of pure (S, S)-42 isolated after column chromatography. [d] The reaction was performed in diethyl ether. [e] The product was obtained after column chromatography as a 89:11 mixture of diastereomers. [f] The reagent was prepared in situ by adding t-BuLi to THF (solvent) at $0{ }^{\circ} \mathrm{C}$. [g] The crude product was apparently pure by ${ }^{1} \mathrm{H}$ NMR spectroscopy. [h] The product was obtained after column chromatography as a 91:9 mixture of diastereomers. [i] The product was obtained after column chromatography as a 86:14 mixture od diastereomer. [j] The product was obtained after column chromatography as a a 92:8 mixture of diastereomers.

The reaction protocols that were successful for the construction of the monoaziridine ligands did not give good results. Instead we found that the Mitsunobu reaction using diethylazadicarboxylate (DEAD) and triphenylphosphine in THF at room temperature gave much better results. DIAZAP's 43a and 43b were so obtained with high yields. In the case of phenylglycinol derivatives, the diastereomers of the aminoalcohols 42bb', 42bc' and 42be' and the corresponding aziridines 43bb', 43bc' and 43be' could not be separated.

1.2.2 - Pd-Catalyzed AAA in presence of DIAZAP ligand: substituent effects

A number of reactions were carried out on the allylic carbonate 24 b with the anion of dimethyl malonate, generated by treatment of dimethylmalonate with either sodium hydride or bis(trimethylsilyl)amide (BSA) and a catalytic amount of potassium acetate in different solvents (Scheme 11, Table 2). Allylpalladium chloride dimer and the terdentate ligands 43a and 43b were used as precursors of the effective enantioselective catalyst. The ligands derived from (S)-valinol were examined first. The carbonate 24b was treated with the preformed sodium salt of dimethyl malonate (1.5 molar equivalents) and catalytic amounts of allylpalladium chloride dimer ($5 \mathrm{~mol} \%$) and ligand 43aa' (10 mol \%) in tetrahydrofuran at room temperature. The course of the reaction was monitored by GC and TLC analysis and an almost complete conversion of the starting compound was observed after 24 h . The product 25 was isolated in high yield and 76% e.e. in favour of the R enantiomer (Table 2, entry 1). It should be observed that use of performer palladium salt $\left[\left(\eta^{3}\right.\right.$-allyl)(43aa')Pd][SbF ${ }_{6}$] was unnecessary. In fact a smooth reaction occurred and the formation of black palladium was observed only when the reaction was almost complete. In a second run (entry 2) at $-20^{\circ} \mathrm{C}$, with all the other experimental conditions being unchanged, we observed that the same e.e. was obtained, but a longer reaction time was required to obtain a satisfactory yield of product. Hence, all the successive reactions were carried out at $25^{\circ} \mathrm{C}$.

The role of the solvent was then examined and it was found that the reaction took place also in dichloromethane, despite the poor solubility of sodium dimethyl malonate and the consequent lower reaction rate, but a slightly lower e.e. was obtained (entry 3). The same trend was observed when the n-butyl substituted ligand 43ab' was used in both solvents, but the e.e.'s (60-63\%) were lower (entries 4, 5). Similar results were obtained with the t-butyl substituted ligand 43ac' (used as a 84:16 mixture of unseparable diastereomers) and the ligand 43ad' ($\mathrm{R} 2=t-\mathrm{BuCH}_{2} \mathrm{CH}_{2}$) in different experimental conditions. Finally, the phenyl
substituted ligand 43ae' provided high levels of enantioselectivity with e.e. up to 88% in entry 12.

Scheme 11

Table 2

Entry	Ligand (mol\%)	Base	Solvent	Time (h)	Yield (\%)	E.e. (\%)
1	43aa' (10)	NaH	THF	24	79	76
2	43aa' (10) [b]	$"$	THF	96	69	76
3	43aa' (10)	$"$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	48	85	73
4	43ab' (10)	$"$	THF	24	81	63
5	43ab' (10)	$"$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	48	86	60
6	43ac' (10, d.r. 89:11)	$\mathrm{BSA} / \mathrm{AcOK}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	48	84	69
7	43ad' (10)	NaH	THF	48	86	70
8	43ad' (10)	$\mathrm{BSA} / \mathrm{AcOK}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	16	90	62
9	43ae' (10)	NaH	THF^{2}	24	85	76
10	43ae' (10)	NaH	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	18	89	86
11	43ae' (10)	$\mathrm{BSA} / \mathrm{AcOK}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	15	90	82
12	43ae' (10)	$\mathrm{BSA} / \mathrm{AcOLi}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	24	89	88
13	43af' (10)	$\mathrm{BSA} / \mathrm{AcOK}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	24	87	13

Again, we wanted to demonstrate the need of a substituent at the benzylic positions since this would induce the stereoselective formation of the N-aziridine stereocenter in the cationic palladium complex. It should be observed that N-alkyl aziridines are not pyramidally stable at room temperature, and the bulkiness of the substituent decrease the barrier of inversion. ${ }^{39}$ As demonstrated in the previous chapter, all the previously prepared η^{3}-allylic palladium complexes carrying bidentate (N, N)*-ligands displayed a unique configuration of the aziridine nitrogen atoms, that is dictated by the configuration of the benzylic carbon
stereocenters and minimises the steric interactions between the benzylic $\left(R^{2}\right)$ and aziridine $\left(R^{1}\right)$ substituents. To that purpose, we synthesized the ligand 43af' by reduction of the diimine 41a to give the intermediate diaminediol 42a,f', followed by the usual cyclization step (Scheme 10). The correctness of our hypothesis was demonstrated by the observation that the typical allylic alkylation of sodium dimethyl malonate with the allylic carbonate 24b in THF at $25{ }^{\circ} \mathrm{C}$ in the presence of $10 \mathrm{~mol} \%$ of ligand 43 af ' occurred with very low enantioselectivity (13\% e.e., entry 13).

Scheme 12

Table 3

Entry	Ligand (mol\%)	Base	Solvent	Time (h)	Yield (\%)	E.e. (\%)
1	43ba' (10)	NaH	THF	72	82	82
2	$43 b a^{\prime}(10)$	NaH	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	3	90	98
3	$43 b a^{\prime}(10)$	$\mathrm{BSA} / \mathrm{AcOK}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2	92	98
4	$43 b a^{\prime}(3)$	$\mathrm{BSA} / \mathrm{AcOK}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	87	98
5	$43 b a^{\prime}(3)$	$\mathrm{BSA} / \mathrm{AcOLi}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	5	90	98
6	$43 b a^{\prime}(1)$	$\mathrm{BSA} / \mathrm{AcOK}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	38	68	98
7	$43 b b^{\prime}(10$, d.r. 91:9)	NaH	THF_{2}	48	77	80
8	$43 b b^{\prime}(10$, d.r. 91:9)	$\mathrm{BSA} / \mathrm{AcOK}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	16	89	81
9	$43 b c^{\prime}(10$, d.r. 86:14)	$\mathrm{BSA} / \mathrm{AcOK}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	48	64	70
9	$43 b e^{\prime}(10$, d.r. 92:8)	$\mathrm{BSA} / \mathrm{AcOK}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	16	88	83
10	$43 b f^{\prime}(10)$	$\mathrm{BSA} / \mathrm{AcOK}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	24	92	76

The terdentate ligands 43b, derived from (S)-phenylglycinol and hence carrying phenyl substituents on the aziridine rings, were then examined in the same typical AAA reaction (Table 3). (R)-25 was formed in all cases with e.e.'s definitely superior to those
obtained with the corresponding (S)-valinol-derived ligands 43a. For example, using sodium hydride as the base in THF in the presence of allylpalladium chloride dimer ($5 \mathrm{~mol} \%$) and the ligand 43ba' (10 mol\%) the product (R)-25 was obtained with 82% yield and 82% e.e. after 72 h (entry 1,

Table 3). Then, we observed that in dichloromethane, despite the very low solubility of sodium dimethyl malonate, the reaction with the ligand 43ba' was almost complete after only 3 h and the product was obtained with excellent yield and 98% e.e. (entry 2). The same level of enantioselectivity was obtained by performing the reaction with the same ligand and generating the nucleophile by the alternative protocol (BSA-ACOK in DCM, entry 3), even with reduced amounts of ligand ($1 \mathrm{~mol} \%$, entries 4 to 6).

It was apparent that an increase in the bulkiness of the R^{2} substituents in the ligands 43b caused a decrease of the reaction rate. The n-butyl- and phenyl-substituted ligands 43bb', 43bc' and 43be' were used as an unseparable mixture of diastereomers, with the (S, S) and (S, R) configurations of the two benzylic stereocenters (d.r. 91:9, 86:14 and 92:8, respectively); nevertheless high e.e.'s were obtained (e.e.'s $80,81,70$ and 83% in entries 7 to 9). Finally, we were surprised to find that the ligand $43 b f^{\prime}(R 2=H$, Scheme 1$)$, in contrast to the analogous (S)-valinol-derived 43af' (13\% e.e., entry 13 Table 2), provided a moderate enantioselectivity (76\% e.e., entry 10 Table 2).

1.2.3-Pd-Catalyzed AAA in the presence of DIAZAP ligand: Pd source.

The role of different palladium sources was briefly investigated carrying out the allylation of the malonate anion (BSA, AcOK) with the carbonate 24 b in the presence of the ligand 43 ba in dichloromethane at $25{ }^{\circ} \mathrm{C}$ (Scheme 13). In comparison with the reaction catalyzed by allylpalladium chloride dimer (entry 1, Table 4), which was almost complete after only $3 h$, the reactions catalyzed by palladium acetate, palladium chloride and the dibenzylideneacetonate complex required 24 h to give comparable yields and slightly lower e.e.s; up to 85% yield and 96% e.e. were obtained with the latter catalyst (entry 4).

Scheme 13

Table 4

Entry	Pd catalyst (5 mol\%)	Time (h)	Yield (\%) of (S)-25	E.e. (\%)
1	$(\mathrm{ally\mid PdCl})_{2}$	3	87	98
2	$\mathrm{Pd}(\mathrm{OAC})_{2}$	24	76	87
3	PdCl_{2}	24	81	94
4	$\mathrm{Pd}(\mathrm{dba})_{2} \mathrm{CHCl}_{3}$	24	85	96

1.2.4 - Pd-Catalyzed AAA in presence of DIAZAP ligand: different nucleophiles and substrates

Then, to extend the scope of our catalytic system, we investigated the AAA reactions of other stabilized enolates as well as diversely substituted allylic carbonates. The enolates derived from substituted malonates have been relatively less employed as nucleophiles, and chiral $(P, P),(P, M)$ and (N, P, N) ligands have been used. ${ }^{40}$ We were pleased to find that the alkylations of the benzyl- and phenyl-substituted malonate esters 44a and 44b, respectively, proceeded smoothly in the presence of the ligand 43ba' to give the products 45a and 45b in high yields and with $97-99 \%$ e.e.'s. The S configuration of the stereocenter in 45a was assigned on the basis of the optical rotation $(-)^{40}$. Since the new compound 45b is also levorotatory 45a, the same configuration is assumed.

Scheme 14

The cyclohexenyl carbonate 46 was poorly reactive in the usual experimental conditions and the e.e. of the derived product 47^{41} was low. For example, using ligand 43ba', a 40% yield and 6% e.e. were achieved, whereas a 68% yield and 37% e.e. were obtained with the ligand 43ae', in both cases after 3 days. The reaction rate could be slightly increased in the presence of silver tetrafluoroborate, and good yields of the cyclohexenyl-substituted malonate 19 were obtained after 2 days using either ligand 43ad' or 43ae', but the e.e. did not exceed 38%. Surprisingly, the use of ligand 43ba' resulted in a low yield of 47 (40%) and very low e.e. (6\%).

Scheme 15

Similarly, the reaction of dimethyl malonate anion with ethyl 3-penten-2-yl carbonate 48 (Scheme 16) in the presence of the ligands 43ae' and 43ba' afforded the substitution product 49 in good yields in the presence of AgBF_{4}, but with low e.e.s (up to 28%).

Scheme 16

Performing the reaction an the unsymmetrically disubstituted allylic carbonate 50 (Scheme 17), a mixture of products (ratio $95: 5$) was obtained, as usually found with other ligands: ${ }^{42}$ the prevalent product 51 was formed by attack at the methyl-substituted allylic terminus with low enantioselectivity (e.e. 14\%), whereas the minor regioisomer 52 was obtained with 95\% e.e..

43ba': 88\%, 51/52 = 95:5, e.e. 51 14\%, e.e. 52 95\%
43ae': $89 \%, 51 / 52=85: 15$, e.e. 5110%, e.e. 5295%
Scheme 17

Finally, we turned our attention to the capability of our catalytic system to induce enantioselectivity in the formation of a quaternary stereogenic center at the nucleophilic carbon. This goal should be achieved by the discrimination of the two diastereotopic faces of a fully substituted planar enolate attacking the η^{3}-allylic ligand. This is difficult to realise because the chiral N, N, N-ligand does not interfere in any way with the incoming nucleophile,
and the newly formed stereocenter is more remote from the inducing stereocenter(s) than in previous experiments. Hence, we investigated the reaction of (E)-cinnamyl ethyl carbonate 53 (Scheme 18) with the anion derived from 2-ethoxycarbonylcyclohexanone 54 under different reaction conditions. The reaction proceeded smoothly to give the linear alkylation product 55 with high yield but only 27% e.e.. An increase in the enantioselectivity was observed when we used a lithium enolate as nucleophile but a decrease of the yield was observed. This result can be compared with the reported Pd-catalyzed enantioselective synthesis of 55 using a P-chirogenic diaminophosphine oxide as the ligand, where 92% e.e. was obtained. ${ }^{43}$ We assigned the S configuration to the major enantiomer of 55 by comparison with the authentic enantiomer. ${ }^{43}$

Scheme 18

Table 5

Entry	Ligand	Base	Time (h)	Yield (\%) of 55	E.e. (\%)
1	$43 a b^{\prime}$	NaH	2	95	13
2	$43 a e^{\prime}$	BSA/AcOK	24	84	5
3	$43 \mathrm{ba}^{\prime}$	BSA/AcOK	38	83	27
4	$43 \mathrm{ba}^{\prime}$	BSA/AcOLi	72	68	35

1.3 - Tentative explanation of mechanism and enantioselectivity

Aiming to get information on the possible structural factor effecting the enantioselctivity, we prepared different (allyl)- and (1,3-diphenylallyl)Pd+ salts bearing the (S)-valinol- and (S)-phenylglycinol-derived ligands, 43ae' and 43ba', with $\mathrm{PF}_{6}, \mathrm{SbF}_{6}$ or BF_{4} counterions, were prepared by standard methodology. These salts were generally obtained as white or yellowish powders, and some of them appeared impure by ${ }^{1} \mathrm{H}$ NMR analysis. Up till now, we have succeeded to obtain crystals suitable for X-ray crystallographic structure determinations only in the case of the salt $\left[\left(43 a e^{\prime}\right)(\right.$ allyl) Pd $]\left[P F_{6}\right]$.

The crystal structure is quite similar to those of the previously reported allylic palladium salts with pyridine-aziridine ligands, ${ }^{37}$ featuring the bidentate coordination of the ligand to palladium cation and the η^{3} hapticity of the endol exo allyl ligand. The palladiumaziridine bond is shorter than the palladium-pyridine bond (2.109(3) vs $2.158(3) \AA$), and the terminal allylic carbon anti to the aziridine form a bond with palladium (2.178(4) \AA) longer than the allylic terminus anti to the pyridine ring (2.126(4) \AA). This observation supports the hypothesis that the allylic terminus anti to the aziridine has a more electrophilic character. The ${ }^{1} \mathrm{H}$ NMR spectra of the $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solutions of this salt and all the other [(allyl)- or (1,3diphenylallyl)(43a or 43 b$) \mathrm{PPd}^{+}$salts with $\mathrm{PF}_{6}{ }^{-}, \mathrm{SbF}_{6}{ }^{-}$and $\mathrm{BF}_{4}{ }^{-}$counterions were complex and showed broad absorptions, indicating the presence of several species, although the endo- and exo- $\left(\eta^{3}\right.$-allyl) (N,N)Pd ${ }^{+}$species were predominant. Most importantly, in the case of the 1,3diphenylallyl complexes, a higher ratio of rotamers ($>3: 1$) was observed for the complex derived from the ligand 43ba', which afforded the highest enantioselectivity. Moreover, the spectra were complicated by the lack of C_{2}-symmetry of the ligand complex, demonstrating that only one aziridine nitrogen was involved in Pd coordination. For example, for each rotamer, distinct absorptions were observed for the two benzylic protons.

Figure 1

In the absence of information on the reactive intermediate involved in the enantioselective step, we can only speculate on the the origin of the enantioselectivity. We take into account the available structural information of the bidentate complex 40 and the
mechanistic hypothesis that has been suggested to explain the sense of asymmetric induction provided by such ligands. ${ }^{37}$ Moreover, several studies on the binding properties of potentially terdentate ligands towards (allyl)Pd(II) cations have been reported. ${ }^{44,45,46}$ For example, the X-ray crystal structure of a (terpyridine)(allyl)palladium complex has been determined and its dynamic behaviour in solution has been studied by ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectroscopy. ${ }^{47}$ It was therein shown that terpyridine binds the (η^{1}-allyl) Pd ${ }^{+}$fragment in the terdentate fashion and η^{3}-allyl)Pd ${ }^{+}$as a bidentate ligand. In fact, the two species are present both in the crystal and in a $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution in a dynamic equilibrium, which is strongly displaced towards the η^{3}-allyl form at low temperature. On the other hand, the 2,6-bis(diphenylphosphanylmethyl)pyridine (PNP) ligand in the complex [(PNP)(allyl)Pd][BF $\left.{ }_{4}\right]$ adopts the terdentate coordination mode both in the crystal and in solution, where the complex is fluxional through $\eta^{1}-\eta^{3}$ equilibrium processes. ${ }^{45,46}$ This is in contrast to the behaviour of (N, P, M) ligands which act as (P, N)bidentate ligands in (η^{3}-dimethylallyl)Pd ${ }^{+}$complexes. ${ }^{48}$ Similarly, the presence of the pyridine ring in a chiral (P, N, M) ligand was unnecessary for high selectivity in the AAA reaction, suggesting that the ligand acts in a (P, M)-bidentate fashion. ${ }^{49}$

Scheme 19
On the basis of the precedent studies, we believe that the prevalent rotamer of the reactive ($\eta^{3}-1,3$-diphenylallyl)(N,N,N)Pd+ complex is 57 (Scheme 19), featuring the syn,synconfiguration of the allylic ligand and reduced interactions of the allylic phenyl groups and the aziridine substituent. Moreover, in solution the chiral aziridinylalkyl substituent no \dagger involved in palladium chelation should take the same spatial arrangement as observed in the
crystal structure, with the methine hydrogen oriented towards the allylic ligand in order to reduce the steric interactions. Obviously, owing to the C_{2}-symmetry of the nitrogen ligand, identical $\eta^{3}-(N, N)$-complexes are formed when one or the other aziridine nitrogen is involved in Pd coordination. The complex 57 is equilibrium with the less stable complex 59 trought the ($\eta^{1}-1,3$-diphenylallyl)(N,N,N)Pd+ where all the nitrogen chelating the metal.

If this assumption is correct, the sense of enantioselectivity is easily explained by the attack of the nucleophile on the more electrophilic allylic terminus anti to the aziridine nitrogen of the more stable intermediate 57 to give the (η^{2}-alkene $) \operatorname{Pd}(0)$ complex $\eta^{2}-(N, N)$ 58. The regioselectivity of the nucleophilic attack is also favoured by the preferential clockwise rotation of the hydrocarbon ligand occurring during the formation of the most stable (η^{2}-alkene)Pd complex 58, as the steric interactions between the alkene and the nitrogen ligand are reduced concurrently.

1.4 - Conclusion

C_{2}-symmetrical $N, N^{\prime}, N^{\prime \prime}$-terdentate ligands featuring two aziridine rings in the lateral arms of a pyridine ring are constructed by a short and efficient route starting from commercially available building blocks: 2,6-pyridinedicarbaldehyde, optically pure β aminoalcohols and organolithium reagents. These ligands (DIAZAP's) induce high levels of enantioselectivity (e.e. up to 98%) in the allylic alkylation of dimethyl malonate anion and analogous C_{2}-substituted anions. Contrary to the corresponding bisdentate ligands derived from 2-pyridinecarbaldehyde, the DIAZAP ligands are capable of stabilizing both cationic and zerovalent palladium, thus avoiding the ready interruption of the catalytic cycle by deposition of Pd black. Unfortunately, application of these ligands in the allylic alkylation of different nucleophiles has met with low enantioselectivity or no success. However, it is expected that they can be used in other transition metal catalyzed reactions.

1.5-Experimental section

1.5.1 - General protocol for the preparation of Imines 41

To a solution of (5)-valinol ($6 \mathrm{mmol}, 0.618 \mathrm{~g}$) or ((5)-phenylglycinol ($6 \mathrm{mmol}, 0.823 \mathrm{~g}$) in THF (50 mL) was added anhydrous $\mathrm{MgSO}_{4}(5 \mathrm{~g})$, the aldehyde ($3 \mathrm{mmol}, 0.405 \mathrm{~g}$) and the
mixture was stirred overnight. The solid phase was filtered off on a pad of Celite and the organic solvent was evaporated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$ and triethylamine ($7 \mathrm{mmol}, 0.708 \mathrm{~g}$) and chlorotrimethylsilane ($7 \mathrm{mmol}, 0.97 \mathrm{~mL}$. 0.760 g) were added at $0{ }^{\circ} \mathrm{C}$. After 3 h the solvent was removed under vacuum. A solution of cyclohexane/diethyl ether 1:1 was added and the solid phase was filtered off on a pad of Celite. The organic solvent was evaporated under reduced pressure to leave the imine in almost quantitative yield; this was used in the following step without further purification.

N,N-Bis((S)-1-trimethylsilyloxy-3-methyl-butan-2-yl)-2,6-bis(imino)pyridine (41a): Yellowish oil; $[\alpha]_{D}{ }^{25} \tilde{=}-19.7\left(c 0.7, \mathrm{CHCl}_{3}\right) ; 1 \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=0.05(\mathrm{~s}, 18 \mathrm{H})$, $0.92(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.94(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 2.0($ sept, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.1(\mathrm{~m}, 2 \mathrm{H})$, 3.69 (dd, $J=7.8 \mathrm{~Hz}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{dd}, J=4.3 \mathrm{~Hz}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\dagger, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 2 \mathrm{H}) ; 13 \mathrm{C} N \mathrm{NR}(\mathrm{CDCl} 3,50 \mathrm{MHz}): \delta \underset{=}{ }=-0.4,18.5$, 20.0, 29.9, 64.3, 78.4, 121.9, 136.7, 154.5, 161.6; IR (neat): $v=2958,2872,1648,1585,1569$, $1457,1251,1107,1077,877,841,746 \mathrm{~cm}^{-1} ; G C-M S \mathrm{~m} / \mathrm{z}: 73$ (100), 171 (70), 346 (36), 103 (27), 316 (11), 449 (10, M).

\mathbf{N}, \mathbf{N}-Bis((S)-2-trimethylsilyloxy-1-phenylethyl)-2,6-bis(imino)pyridine

white solid; m.p. $=117^{\circ} \mathrm{C} ;[\alpha]_{D}^{25}=+25.1(c 0.8, \mathrm{CHCl} 3) ; 1 \mathrm{H}$ NMR (CDCl3, 200 MHz): $\delta=0.02$ (s, $18 \mathrm{H}), 3.89(\mathrm{~d}, ~ J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}), 4.52(\mathrm{dd}, J=5.6 \mathrm{~Hz}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.2-7.4$ (m, 7 H), 7.5-7.6 (m, 3 H), $7.81(\dagger, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.49(\mathrm{~s}, 2 \mathrm{H}) ; 13 \mathrm{C}$ NMR (CDCl3, 50 MHz$): \delta \tilde{\sim}-0.4,67.6,76.7,122.2,127.4,128.4,136.7,140.7,155.4 ;$ IR (Nujol): $v=3067,3029,1647,1364,1251,1118,1081,1054,884,841,757,699 \mathrm{~cm}^{-1}$.

1.5.2 - Preparation of β-Aminoalcols 42 by additin of organolithium reagents ti imines 41:

Organolithium reagent (9 mmol) was added to a magnetically stirred solution of the imine 41 (3 mmol) in THF (10 mL) cooled to $-78^{\circ} \mathrm{C}$. After 30 minutes, the reaction mixture was slowly warmed at $0^{\circ} \mathrm{C}$, and quenched after 3 h by adding $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$. After 2 h NaOH pellets were added until the solution reached pH 11 , and the organic phase was extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$). The collected ethereal phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to leave the crude products. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis. Flash column chromatography $\left(\mathrm{SiO}_{2}\right)$, eluting with cyclohexane/ethyl acetate mixtures, gave the product which was directly used in the subsequent step.

N,N-Bis((S)-1-hydroxy-3-methyl-butan-2-yl)-2,6-bis((S)-1-
aminoethyl)pyridine (42aa'): White solid; m.p. $=86^{\circ} \mathrm{C} ;[\alpha]_{0}{ }^{25}=-74.6\left(c 0.18, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(C D C l_{3}, 200 \mathrm{MHz}\right): \delta=0.81(\mathrm{~d}, \mathcal{J}=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.86(\mathrm{~d}, \mathcal{J}=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.37(\mathrm{~d}, \mathcal{J}=6.7 \mathrm{~Hz}, 6$ H), 1.65 (sept, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.19 (dd, $J=4.2 \mathrm{~Hz}, \mathcal{J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.70 (bs, 4 H), 3.38 (dd, $J=4.8 \mathrm{~Hz}, \mathcal{J}=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{dd}, \mathcal{J}=4.2 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(q, J=6.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{f}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta=18.8$, 19.6, 23.5, 29.4, 56.2, 60.0, 62.0, 119.8, 136.7, 163.7; IR (KBr): v = 3404, 3968, 1572, 1449 , 1361, 1172, 1074, $834 \mathrm{~cm}^{-1}$; anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{2}$: C $67.62, \mathrm{H} 10.45, \mathrm{~N} 12.45$; found: C 67.37, H 10.48, N 12.41.

N,N-Bis((S)-1-hydroxy-3-methyl-butan-2-yl)-2,6-bis((S)-1-

aminopentyl)pyridine (42ab'): Yellowish oil; $[\alpha]_{0}{ }^{25}=\widetilde{-} 48.5$ (c 1.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}): \delta \underset{=}{ }=0.77(\mathrm{~d}, \mathcal{J}=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.79(\mathrm{~d}, \mathcal{J}=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.82(\dagger, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.25$ $(m, 8 H), 1.63$ (sept, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 4 \mathrm{H}), 2.08(\mathrm{dd}, J=3.8 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 3.73 (bs, 4 H), 3.39 (dd, $J=3.8 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.61(\mathrm{dd}, J=6.4 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.62(\dagger, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\dagger, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}):{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right.$,
$50 \mathrm{MHz}): \delta=13.9,18.8,19.6,22.6,28.7,29.4,37.5,59.5,61.3,62.0,120.9,136.0,163.2 ;$ IR (neat): $v=3160,2957,2926,2858,1590,1464,1260,1089,801 \mathrm{~cm}^{-1}$; ESI-MS m/z: 422.4 $[M+1]$, $423.3[M+2]$; anal. calcd. for $C_{25} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{2}$: C 71.21, H 11.23, N 9.97; found: C 71.08, H 11.25, N 9.93.

N,N-Bis((S)-1-hydroxy-3-methyl-butan-2-yl)-2,6-bis((S)-1-amino-2,2-

dimethylpropyl)pyridine (42ac'): Colourless oil; [$\alpha]_{0}^{25}=\sim-82.9$ (c 1.4, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $200 \mathrm{MHz}): \delta=0.75(\mathrm{~d}, \mathcal{J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.8(\mathrm{~d}, \mathcal{J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{~s}, 18 \mathrm{H}), 1.62$ (sept, J $=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{dd}, \mathcal{J}=3.4 \mathrm{~Hz}, \mathcal{J}=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{bs}, 4 \mathrm{H}), 3.39(\mathrm{dd}, \mathcal{J}=3.4 \mathrm{~Hz}, J=$ $10.9 \mathrm{~Hz}, 2 \mathrm{H}) 3.42(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{dd}, \mathcal{J}=3.9 \mathrm{~Hz}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.50(\dagger, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}):{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta \Phi=18.7,19.9,27.3,29.6,35.4,59.0,62.4$, 69.9, 121.8, 131.0, 161.3; IR (Nujol): $y=3444,1644,1496,1205,1090,933 \mathrm{~cm}^{-1}$; ESI-MS m/z : $422.6[M+1], 423.2[M+2]$; anal. calcd. for $C_{25} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{2}:$ C 71.21, H 11.23, N 9.97; found: C 71.00, H 11.28, N 9.94.

N,N-Bis((S)-1-hydroxy-3-methyl-butan-2-yl)-2,6-bis((S)-1-amino-4,4-

dimethylpentyl)pyridine (42ad'): Colourless oil; $[\alpha]_{0}{ }^{25}=-47.7$ (c 1.4, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $300 \mathrm{MHz}): \underset{=}{=}=0.80(\mathrm{~d}, \mathcal{J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.82(\mathrm{~s}, 18 \mathrm{H}), 0.83(\mathrm{~d}, \mathcal{J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.00(\mathrm{dt}, J=$ $4.4 \mathrm{~Hz}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{dt}, J=4.4 \mathrm{~Hz}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 6 \mathrm{H}), 2.12(\mathrm{dd}, J=3.9$ $\mathrm{Hz}, \mathcal{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{dd}, \mathcal{J}=3.9 \mathrm{~Hz}, \mathcal{J}=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{dd}, J=6.8 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.63(\mathrm{t}, \mathcal{J}=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, \mathcal{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, \mathcal{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta=18.9,19.8,29.3,29.5,30.1,32.9,40.7,59.5,62.0,62.1,120.7,136.2$, 163.2; IR (neat): $y=3420,2925,1646,1591,1376,1278,997 \mathrm{~cm}^{-1}$; anal. calcd. for $\mathrm{C}_{28} \mathrm{H}_{52} \mathrm{~N}_{3} \mathrm{O}_{2}$: C 72.68, H 11.33, N 9.08; found: C 72.38, H 11.40, N 9.07.

N,N-Bis((S)-1 -hydroxy-3-methyl-butan-2-yl)-2,6-bis((S)-
amino(phenyl)methyl)pyridine (42ae'): Yellowish oil; $[\alpha]_{D}{ }^{25}=+95.7$ (c 1.6, CHCl_{3}): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=0.91(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.92$ (sept, $J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.46 (ddd, $J=3.9 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.92(\mathrm{bs}, 2 \mathrm{H}), 3.42(\mathrm{dd}, J=6.6$ $\mathrm{Hz}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{dd}, J=4.2 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.0(\mathrm{~s}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H})$, 7.27-7.42 (m, 11 H$)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=18.2,19.5,30.2,60.5,62.1,35.0$, $120.8,127.4,127.9,128.5,136.9,142.9,161.2 ;$ IR (neat): $y=3417,3333,3061,3027,2957$, $2872,1589,1572,1448,1045,839,736,700 \mathrm{~cm}^{1}$; ESI-MS $\mathrm{m} / \mathrm{z}: 462.0[M+1]$; anal. calcd. for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{2}$: C 75.45, H 8.52, N 9.10; found: C 75.24, H 8.65, N 9.04.

N,N-Bis((S)-2-hydroxy-1-phenylethyl)-2,6-bis((S)-1-aminoethyl)pyridine

(42ba'): White solid; m.p. $=95{ }^{\circ} \mathrm{C} ;[\alpha]_{D}{ }^{25}=+30.7\left(c 1.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=$ $1.40(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 3.59(\mathrm{dd}, J=7.8 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.65-3.88(\mathrm{~m}, 6 \mathrm{H}), 7.03(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.2-7.4(\mathrm{~m}, 10 \mathrm{H}), 7.81(\dagger, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=$ $21.4,55.7,61.8,66.1,119.3,127.5,127.3,128.3,136.8,141.1,162.7 ;$ IR (KBr) $: y=3383,3065$, $3032,2973,2930,2846,1577,1458,1327,1233,1096,751,733,699 \mathrm{~cm}^{-1}$; ESI-MS m / z : $406.2[M+1], 428.3[M+\mathrm{Na}]$; anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{2}: C 74.04, \mathrm{H} 7.70, \mathrm{~N} 10.36$; found: C 73.98, H 7.75, N 10. 33.

N,N-Bis((S)-2-hydroxy-1-phenylethyl)-2,6-bis((S)-1-aminopentyl)pyridine

(42bb'): Colourless oil; $[\alpha]_{D}{ }^{25}=+110.3\left(c 0.6, \mathrm{CHCl}_{3}\right)$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=0.88(\dagger, J=$ 6.7 Hz, 6 H$), 1.0-1.4(\mathrm{~m}, 8 \mathrm{H}), 1.6-1.8(\mathrm{~m}, 4 \mathrm{H}), 3.1(\mathrm{bs}, 4 \mathrm{H}), 3.4-3.6(\mathrm{~m}, 4 \mathrm{H}), 3.6-3.8(\mathrm{~m}, 4 \mathrm{H})$, $6.88(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.1-7.4(\mathrm{~m}, 11 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta \underset{=}{ }=14.0,22.7,28.3$,
$36.4,61.4,62.2,65.3,120.2,127.0,127.2,128.2,136.0,141.6,162.5$; IR (neat): $v=3324$, 2923, 2853, 1576, 1457, 1366, 1129, 1052, $701 \mathrm{~cm}^{-1}$; anal. calcd. for $\mathrm{C}_{31} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{2}: \mathrm{C} 76.03, \mathrm{H}$ 8.85, N 8.58; found: C 75.75, H 8.87, N 8.55.

N,N - $\operatorname{Bis}((S)-2-h y d r o x y-1-p h e n y l e t h y l)-2,6-b i s((S)-1-a m i n o-2,2-~$
dimethylpropyl)pyridine (42bc'): Colourless oil; $[\alpha]_{D}{ }^{25}=+105.0\left(c 1.5, \mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}): \delta=0.84(\mathrm{~s}, 18 \mathrm{H}), 3.31(\mathrm{~s}, 2 \mathrm{H}), 3.43(\mathrm{dd}, J=4.8 \mathrm{~Hz}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{dd}, J=$ $5.1 \mathrm{~Hz}, J=10.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{dd}, J=4.8 \mathrm{~Hz}, J=10.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.00-7.10 (m, 5 H), 7.15-7.55 (m, 5 H), $7.46(\dagger, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta \underset{=}{ }=$ $27.1,35.5,63.3,64.9,70.0,122.4,128.2,134,3,142.0,160.9 ;$ IR (neat): $v=3408,3055,2952$, $2863,1588,1576,1469,1453,1395,1361,1031,824,757,701 \mathrm{~cm}^{-1}$; ESI-MS $\mathrm{m} / \mathrm{z}: 490.4$ [M+ 1], $512.3[M+\mathrm{Na}]$; anal. calcd. for $\mathrm{C}_{31} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{2}: C 76.03, \mathrm{H} 8.85, \mathrm{~N} 8.58$; found: $\mathrm{C} 75.80, \mathrm{H} 8.91$, N 8.52.

N,N-Bis((S)-2-hydroxy-1-phenylethyl)-2,6-bis((S)-1-

amino(phenyl)methyl)pyridine (42be'): Colourless oil; $[\alpha]_{D}{ }^{25}=+123.2$ (c 1.1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=3.00(\mathrm{bs}, 4 \mathrm{H}), 3.72(\mathrm{~m}, 6 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.30-7.40 (m, 23 H); ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=61.2,64.0,67.0,120.4,127.1,127.5,127.7$, $128.3,128.6,128.7,130.0,131.5,133.2,136.9,145.0,141.7,167.0 ; \operatorname{IR}$ (neat): $\underline{y}=3411,3060$, $3026,2925,2850,1590,1573,1493,1451,1054,1027,700 \mathrm{~cm}^{-1}$; ESI-MS m/z. $530.4[M+1]$, $531.5[\mathrm{M}+2], 552.5\left[\mathrm{M}+\mathrm{Na}\right.$]; anal. calcd. for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{2}: C 79.37, \mathrm{H} 6.66, \mathrm{~N} 7.93$; found: C 79.00, H 6.71, N 7.90.

1.5.3 - Preparation of β-Aminoalcohols 42af' and 42bf' by Reduction of Imines 41a and 41b

To a solution of imine 41a or 41b (1 mmol) in methanol (5 mL), $\mathrm{NaBH}_{4}(2 \mathrm{mmol}, 0.076$ g) was added in one portion. After 1 h the reaction was quenched with $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ and further stirred for 2 h . Then NaOH pellets were added until the solution reached pH 11 , and the organic phase was extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$). The collected ethereal phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to leave the crude product in quantitative yield. Pure compounds were obtained by column chromatography $\left(\mathrm{SiO}_{2}\right)$ eluting with cyclohexane/ethyl acetate mixtures.

N,N-Bis((S)-1-hydroxy-3-methyl-butan-2-yl)-2,6-bis(aminomethyl)pyridine

(42af'): Colourless oil; $[\alpha]_{0}^{25}=+41.6\left(c 0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $\delta=0.89$ ($\mathrm{d}, \mathrm{J}=$ $6.9 \mathrm{~Hz}, 6 \mathrm{H}$), $0.95(\mathrm{~d}, \mathcal{J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.89$ (sept, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.43 (dd, $J=3.3 \mathrm{~Hz}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{dd}, \mathcal{J}=7.5, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{dd}, \mathcal{J}=3.3, \mathcal{J}=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.87$ (d, $J=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~d}, \mathcal{J}=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, \mathcal{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\dagger, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): ~ \delta ̣=18.6,19.5,29.5,52.3,61.4,65.0,120.6,137.3,159.5$; IR (neat): $y=3322,2957,2866,1594,1576,1455,1386,1367,1155,1047,787 \mathrm{~cm}^{-1}$; anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{2}: \mathrm{C} 65.98, \mathrm{H} 10.10, \mathrm{~N} 13.58$; found: C 66.01, H 10.11, N 13.54.

N,N-Bis((S)-2-hydroxy-1-phenylethyl)-2,6-bis(aminomethyl)pyridine
(42bf'):
Viscous oil; $[\alpha]_{0}^{25}=+106.2$ (c 2.0, CHCl_{3}): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $\delta=3.67(\mathrm{~m}, 4 \mathrm{H})$, 3.72 (d, $J=14.1 \mathrm{~Hz}, 2 \mathrm{H}$), $3.80(\mathrm{~d}, \mathcal{J}=14.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.86 (dd, $J=5.3 \mathrm{~Hz}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}$), 4.1 (bs, $1 \mathrm{H}), 7.0(\mathrm{~d}, \mathcal{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.2-7.4(\mathrm{~m}, 10 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$: ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 50\right.$ MHz): $\delta=51.9,64.6,67.0,120.6,127.4,127.5,128.4,136.8,140.4,158.7$ IR (Nujol): $y=3310$, 3061, 3028, 2924, 2862, 1594, 1577, 1492, 1452, 1357, 1057, 1027, 759, $702 \mathrm{~cm}^{-1}$; ESI-MS $m / z: 378.3[M+1], 379.4[M+2], 400.4[M+N a] ;$ anal. calcd. for $C_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}: C 73.18 ; \mathrm{H}$ 7.21, N 11.13; found: C 72.83, H 7.24, N 11.10 .

1.5.4 - Preparation of Aziridines 43

To a solution of β-aminoalcohol 42 (2.8 mmol) in THF (20 mL) was added $\mathrm{PPh}_{3}(6.2$ $\mathrm{mmol}, 1.6 \mathrm{~g}$). To this solution DEAD ($6.2 \mathrm{mmol}, 1.082 \mathrm{~g}$) was added dropwise. After $4 \mathrm{~h}, \mathrm{a}$ solution of $2 \mathrm{~N} \mathrm{KOH}(10 \mathrm{~mL})$ was added to the mixture, which was stirred for 3 h . Diethyl ether was added (30 mL) and the organic phase was separated. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, and the collected organic phase was washed with 2 N KOH $(3 \times 10 \mathrm{~mL})$, then with brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was flash-chromatographed on a SiO_{2} column eluting with cyclohexane/ethyl acetate mixtures. In order to obtain analytically pure samples, further purification by chromatography or crystallization was carried out.

2,6-Bis((S)-1-((S)-2-isopropylaziridin-1-yl)ethyl)pyridine (43aa'): Colourless oil; $[\alpha]_{0}{ }^{25}=-119.6\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=0.53(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.75$ (d, J$=6.6 \mathrm{~Hz}, 6 \mathrm{H}$), $1.10($ sept, $\mathcal{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~d}, \mathcal{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.38$ (d, $J=6.6 \mathrm{~Hz}, 6 \mathrm{H}$), $1.63(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(q, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2$ H), $7.63(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50 \mathrm{MHz}$): $\delta=19.5,20.4,21.2,31.4,32.6,45.8$, $71.6,119.6,136.7,162.7$; IR (neat): $v=3041,2962,1591,1576,1460,1327,1176,822 \mathrm{~cm}^{-1} ; G C-$ MS $m / z: 56$ (100), 55 (87), 84 (63), 132 (35), 218 (18), 162 (9); anal. calcd. for $C_{19} \mathrm{H}_{31} \mathrm{~N}_{3}: C$ 75.70, H 10.36, N 13.94; found: C 75.78, H 10.41, N 13.88 .

2,6-Bis((S)-1-((S)-2-isopropylaziridin-1-yl)pentyl)pyridine (43ab'): Colourless oil; $[\alpha]_{0}^{25}=-140.7\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=0.47(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.74(\mathrm{~d}$, $J=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.78(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.86(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~m}, 8 \mathrm{H}), 1.40(\mathrm{~d}$, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.67(\mathrm{~d}, \mathcal{J}=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{q}, \mathcal{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{t}, \mathcal{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.31(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}):{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta=14.1,19.9$,
$20.6,22.0,28.6,31.9,34.2,35.9,45.0,77.3,120.8,136.7,162.1 ;$ IR (neat): $y=3040,2957$, 2871, 1591, 1576, 1457, 1364, $1029 \mathrm{~cm}^{11} ; G C-M S ~ m / z: 84(100), 302$ (75), 259 (53), 174 (35), 55 (30), 385 (1, M); anal. calcd. for $C_{25} H_{43} \mathrm{~N}_{3}$: C 77.86, H 11.24, N 10.90; found: C 77.58, H 11.26, N 10.85 .

2,6-Bis((S)-1-((S)-2-isopropylaziridin-1-yl)-2,2-dimethylpropyl)pyridine (43ac'): White solid; m.p. $=84^{\circ} \mathrm{C}$; $[\alpha]_{0}{ }^{25} \tilde{E}^{-}-18.8\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=0.53(\mathrm{~d}, \mathrm{~J}$ $=6.6 \mathrm{~Hz}, 6 \mathrm{H}$), $0.72(\mathrm{~d}, \mathcal{J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.98(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{~s}, 18 \mathrm{H}), 1.18$ (sept, $J=6.6 \mathrm{~Hz}$, $2 H$) 1.49 ($d, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), $1.76(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{~s}, 2 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2$ $\mathrm{H}), 7.57(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}):{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=19.6,20.8,27.8,30.8,36.3,36.7$, $42.8,85.5,122.4,134.4,160.2 ;$ IR (KBr): $y=3064,2873,1588,1571,1497,1449,1286,1031$, $872 \mathrm{~cm}^{-1}$; anal. calcd. for $C_{25} H_{43} N_{3}$: C 77.86, H 11.24, N 10.90; found: C 77.91, H 11.28, N 10.86.

2,6-Bis((S)-1-((S)-2-isopropylaziridin-1-yl)-4,4-dimethylpentyl)pyridine (43ad'): Colourless oil; [$\alpha]_{0}^{25}=-149.5\left(c 1.1, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=0.50(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$, $6 \mathrm{H}), 0.79(\mathrm{~d}, ~ J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.83(\mathrm{~s}, 18 \mathrm{H}), 1.10($ sept, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.17-1.37(\mathrm{~m}, 6 \mathrm{H})$, $1.43(\mathrm{~d}, \mathcal{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{~d}, \mathcal{J}=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{dt}, \mathcal{J}=7.1 \mathrm{~Hz}, J=9.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.40$ $(\dagger, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50\right.$ MHz) $\delta=19.7,20.4,29.2,30.1,31.1,31.7,34.0,40.0,44.7,77.5,120.6,136.6,161.9$; IR (neat): $y=3060,2879,1591,1568,1490,1450,1281,1038,878 \mathrm{~cm}^{-1} ; G C-M S \mathrm{~m} / \mathrm{z}: 57$ (100), 84 (92), 56 (71), 287 (28), 258 (22), 132 (16), 202 (12); anal. calcd. for $C_{29} H_{51} N_{3}: C 78.85, ~ H$ 11.64, N 9.51; found: C 78.75, H 11.68, N 9.47.

2,6-Bis((S)-((S)-2-isopropylaziridin-1-yl)(phenyl)methyl)pyridine (43ae'): Yellowish oil; $[\alpha]_{D}{ }^{25}=\tilde{-}-158.3\left(c 0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=0.47(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.82$ (d, J=6.6 Hz, 6 H), 1.23 (m, 2 H), 1.44 (d, J=7.2 Hz, 2 H), 1.54 (dd, J=3.6 Hz, J=7.2 Hz, $2 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 7.25-7.39(\mathrm{~m}, 8 \mathrm{H}), 7.54-7.62(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta=19.5$, $20.2,31.4,46.4,79.8,120.9,126.9,127.4,128.1,137.9,142.4,151.0 ;$ IR (neat): $y=3071,2933$, $2862,1589,1573,1455,1306,1258,1029,699 \mathrm{~cm}^{-1} ;$ ESI-MS $\mathrm{m} / z \cdot 426.1[\mathrm{M}+1], 427.2[\mathrm{M}+$ 2]; anal. calcd. for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{3}$: C 81.84, H 8.29, N 9.87; found: C 81.78, H 8.32, N 9.84.

2,6-Bis(((S)-2-isopropylaziridin-1-yl)methyl)pyridine (43af'): Colourless oil; $[\alpha]_{D}{ }^{25}=$ - $97.5\left(c\right.$ 1.1, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=0.89(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=6.6$ $\mathrm{Hz}, 6 \mathrm{H}), 1.30(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{dd}, J=3.3 \mathrm{~Hz}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.69$ (d, J=3.3 Hz, 2 H), 3.48 (d, J=14.0 Hz, 2H), 3.59 (d, J=14.0 Hz, 2 H), 7.44 (d, J=7.7 Hz, $2 \mathrm{H}), 7.69(\dagger, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta=19.6,20.6,31.6,33.2,46.7,66.6$, 120.6, 136.9, 158.6; IR (neat): $v=3044,2958,2872,1592,1578,1458,1363,1340,1287$, 1035, 896, 829, $783 \mathrm{~cm}^{-1}$; anal. calcd. for $C_{17} \mathrm{H}_{27} \mathrm{~N}_{3}: C 74.68, \mathrm{H} 9.95, \mathrm{~N}$ 15.37; found: C 74.22, H 9.99, N 15.33.

2,6-Bis((S)-1-((S)-2-phenylaziridin-1-yl)ethyl)pyridine (43ba'): White solid; m.p. = $79{ }^{\circ} \mathrm{C} ;[\alpha]_{D}{ }^{25}=+176.6\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=1.52(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H})$, $1.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{dd}, J=3.3 \mathrm{~Hz}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.84(q, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.29(\mathrm{~m}, 10 \mathrm{H}), 7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\dagger, J=8.1 \mathrm{~Hz}, 1$ $\mathrm{H}):{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta \underline{=}=21.6,37.3,40.8,71.7,118.8,126.1,126.6,128.1,137.3,140.0$, 162.5; IR (KBr): $v=3032,2972,1576,1580,1459,1326,1207,1095,815,698 \mathrm{~cm}^{-1} ;$ ESI-MS
$m / z: 370.4[M+1], 371.4[M+2], 392.4[M+N a] ;$ anal. calcd. for $C_{25} H_{27} \mathrm{~N}_{25}: C 81.26, H 7.37, N$ 11.37: found: C 81.01, H 7.39, N 11.34.

2,6-Bis((S)-1-((S)-2-phenylaziridin-1-yl)pentyl)pyridine (43bb'): Yellowish oil; d.r. 91:9: $[\alpha]_{0}{ }^{25}=+124.5\left(c 0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta$ (major diastereomer) $=0.86$ $(\dagger, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.2-1.4(\mathrm{~m}, 8 \mathrm{H}), 1.92(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~d}, J=3.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.45(\mathrm{dd}, \mathcal{J}=3.2 \mathrm{~Hz}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{dd}, \mathcal{J}=6.2 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-$ $7.27(m, 10 \mathrm{H}), 7.29(\mathrm{~d}, \mathcal{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{f}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H})$: ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta$ $=14.0,23.0,26.9,28.1,36.1,38.4,39.4,119.9,126.3,126.6,128.1,137.0,146.2,161.7$; IR (neat): $y=3031,2978,1574,1588,1454,1329,1198,1092,818,701 \mathrm{~cm}^{-1}$; anal. calcd. for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{~N}_{3}$: C 82.07, H 8.66, N 9.26; found: C 82.23, H 8.80, N 9.22 .

2,6-Bis((S)-2,2-dimethyl-1-((S)-2-phenylaziridin-1-yl)propyl)pyridine (43bc'): Colourless oil; $[\alpha]_{0}^{25}=+132.6\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta=1.06(\mathrm{~s}, 18 \mathrm{H}), 1.97$ (d, J$=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{dd}, \mathcal{J}=3.2 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{~s}, 2$ $\mathrm{H}), 7.07-7.40(\mathrm{~m}, 13 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta=27.5,36.5,37.6,42.9,85.4,121.6$, 126.1, 126.3, 128.0, 141.0, 151.0, 159.4; IR (neat): $y=3033,2974,1572,1584,1456,1323$, 1187, 1097, 813, $705 \mathrm{~cm}^{-1}$; anal. calcd. for $C_{31} \mathrm{H}_{39} \mathrm{~N}_{3}: \mathrm{C} 82.07, \mathrm{H} 8.66, \mathrm{~N} 9.26$; found: $\mathrm{C} 82.12, \mathrm{H}$ 8.70, N 9.25.

2,6-Bis((S)-phenyl((S)-2-phenylaziridin-1-yl)methyl)pyridine (43be'): Colourless oil; d.r. 92:8; $[\alpha]_{0}^{25}=+104.5\left(c 1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta$ (major diastereomer.) $=$ $2.00(d, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~d}, \mathcal{J}=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{dd}, \mathcal{J}=3.5 \mathrm{~Hz}, \mathcal{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.06$ (s, 2 H), 7.17-7.74 (m, 23 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta=38.0,41.2,79.5,120.0,126.3$, 126.6, 126.8, 127.1, 127.7, 128.1, 128.2, 137.3, 140.0, 142.2, 161.3; IR (neat): $y=3036,2974$,

1575, 1586, 1453, 1324, 1203, 1096, 829, $679 \mathrm{~cm}^{-1}$; ESI-MS m/z. $494.5[M+1], 495.5[M+2] ;$ anal. calcd. for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{~N}_{3}: \mathrm{C} 85.16, \mathrm{H} 6.33, \mathrm{~N} 8.51$; found: C 84.92, H 6.35, N 8.48.

2,6-Bis(((S)-2-phenylaziridin-1-yl)methyl)pyridine (43bf'): Colourless oil; $[\alpha]_{0}{ }^{25}=$ +124.3 (c $1.5 \mathrm{CHCl}_{3}$): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$): $\delta=1.92(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{~d}, \mathcal{J}=3.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.03(\mathrm{dd}, \mathcal{J}=3.2 \mathrm{~Hz}, J=6.6 \mathrm{~Hz} 2 \mathrm{H}), 3.65(\mathrm{~d}, \mathcal{J}=15.0 \mathrm{~Hz} 2 \mathrm{H}), 3.91(\mathrm{~d}, \mathcal{J}=15.0 \mathrm{~Hz}$, $2 \mathrm{H})$ 7.20-7.74 (m, 13 H): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta=38.1,41.6,66.3,120.1,126.1,126.9$, 128.3, 128.4, 128.6, 131.9, 132.0, 132.2, 137.3, 140.1, 158.3; IR (neat): $v=3031,2978,1570$, 1586, 1461, 1321, 1204, 1095, 819, $694 \mathrm{~cm}^{-1}$; anal. calcd. for $C_{23} H_{23} \mathrm{~N}_{3}:$ C $80.90, \mathrm{H} 6.79, \mathrm{~N}$ 12.31; found: C 81.15, H 6.83, N 12.30.

1.5.5 - Preparation of allylic palladium complexes. Typical procedure: [43ae' $\left(\eta^{3}\right.$-allyl)Pd][PF ${ }_{6}$].

Allyl palladium chloride dimer ($73 \mathrm{mg}, 0.1 \mathrm{mmol}$) was added to a solution of ligand 43ae' ($80 \mathrm{mg}, 0.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ in one portion. After one hour a solution of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ ($39 \mathrm{mg}, 0.24 \mathrm{mmol}$) in THF (1 mL) was added. The solution was stirred overnight, then filtered through a HPLC filter $(0.45 \mu \mathrm{~m})$ and the solvent was removed under reduced pressure to give a white solid: $0.130 \mathrm{~g}, 91 \%$. White crystals, suitable for X-ray diffraction analysis were obtained from a double-layer of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and pentane: white crystals; m.p. $124-126{ }^{\circ} \mathrm{C}$ (dec.); $[\alpha]_{0}^{20}=+21.1\left(c 1.2, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v=3052,3030,2882,1605,1567,1496,1452,1265$, $1014,840,732,701,553 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ NMR spectra of all the allyl and 1,3-diphenylallyl cationic Pd complexes synthesized showed the presence of different species, but the exo and endo rotamers were prevalent with variable ratios. Specifically, the spectrum of the complex 43ae'(1,3diphenylallyl)PdPF $6\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ showed a $55: 45$ ratio of two rotamers, with the following absorptions of the allylic protons: major rotamer, $\delta=5.98(\dagger, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.75$ $(\mathrm{d}, \mathcal{J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, \mathcal{J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$; minor rotamer, $\delta=6.13(\dagger, J=11.4 \mathrm{~Hz}, 1$ $\mathrm{H}), 5.0(\mathrm{~d}, \mathcal{J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. On the other hand, the 1 H NMR spectrum ($300 \mathrm{MHz}, \mathrm{CDCl} 3$) of 43ba'(1,3-diphenylallyl)PdPF 6 showed the presence of a prevalent species (ca 75\%) with the syn,syn geometry of the allylic ligand, whose protons gave absorptions at $\delta=6.16(\dagger, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, \mathcal{J}=11.4 \mathrm{~Hz}, 1 \mathrm{H})$ and $3.80(\mathrm{~d}, \mathcal{J}=11.4 \mathrm{~Hz}$, 1 H).
[(43ae')(allyl)Pd][PF ${ }_{6}$]. X-Ray details: Bruker APEX II CCD diffractometer (Mo-Ka radiation $\lambda=0.71073 \AA$). Results: $C_{32} H_{40} F_{6} N_{3} P P d, M_{r}=718.04$, monoclinic $P_{1}, a=11.0990(13)$, $b=13.3802(16), c=11.9282(14) \AA, \beta=112.045(2), V=1641.9(3) \AA^{3}, Z=2, \rho_{x} 1.452 \mathrm{Mgm}^{3}, \mu$ $0.674 \mathrm{~mm}^{-1}, f(000)=736, T=296(2) K, \theta_{\max }=28.51,13905$ reflections collected, 6099 $I>2 \sigma(I)$. Final $R 1=0.0347, w R 2=0.0860, G O F=0.997$, absolute structure parameter $=$ 0.04(2).CCD 297723. Crystallographic data (excluding structure factors) for the structure reported in this thesis have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 297723. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: int. code + 44(1223)336-033: E-mail: deposit@ccdc.cam.ac.uk].

1.5.6 - Palladium-Catalyzed Allylic Alkylation

To a solution of DIAZAP 43ba' ($0.03 \mathrm{mmol}, 10 \mathrm{mg}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added (ally|PdCl) $)_{2}(0.014 \mathrm{mmol}, 5 \mathrm{mg})$ and the solution was degassed and stirred for $1 \mathrm{~h} .1,3$-diphenyl-2-propenyl ethyl carbonate (24b) ($0.27 \mathrm{mmol}, 76 \mathrm{mg}$) was then added followed by dimethyl malonate ($0.67 \mathrm{mmol}, 90 \mathrm{mg}$), BSA ($0.81 \mathrm{mmol}, 0.165 \mathrm{~g}$) and KOAc ($0.02 \mathrm{mmol}, 2 \mathrm{mg}$) after 10 min . The reaction was monitored by TLC analysis and, when complete, quenched with 1 N HCl solution (1 mL) and the organic phase was extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were evaporated to dryness. The crude product was purified by chromatography on a silica gel column (hexane/AcOEt, 75:5) affording methyl (R)-(E)-3,5-diphenyl-2-methoxycarbonyl-4-pentenoate (25): $73 \mathrm{mg}, 84 \%$. An e.e. of 99% was determined by chiral HPLC (Chiralpak AD; 2-propanol/hexane 1:9, $1.0 \mathrm{~mL} / \mathrm{min}$; 250 nm). retention times: 10.7 min (major enantiomer), 14.9 min (minor enantiomer).

45a: 88%, e.e. 97%; $[\alpha]_{0}^{25}-38.7$ (c 2.0, CHCl_{3}). The e.e. was determined by chiral HPLC (Chiralpak AD; 2-propanol/hexane 3:97; $1.0 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$); retention times: 16.6 min (major enantiomer), 17.1 min (minor enantiomer). The absolute configuration of the product was determined by comparison of its optical rotation with that of the known compound. ${ }^{40 e}$

45b: 89%, e.e. $99 \% ;[\alpha]_{0}^{25}=-48.4$ (c 1.5, CHCl_{3}). The e.e. was determined by chiral HPLC (Chiralpak AD; 2-propanol/hexane 1:99, $0.8 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$); retention times: 8.3 min (minor enantiomer), 10.9 min (major enantiomer). The absolute configuration was assumed by analogy with compound 45a.

47: 40%, e.e. $6 \% ;[\alpha]_{D}{ }^{25}=+5.0\left(c 1.1, \mathrm{CHCl}_{3}\right)$. The e.e. was determined by chiral $G C$: Megadex Chiral column (25 m , flow rate: $15 \mathrm{~mL} / \mathrm{min}, 50^{\circ} \mathrm{C}(2 \mathrm{~min})$, then $3{ }^{\circ} \mathrm{C} / \mathrm{min}$ up to $190^{\circ} \mathrm{C}$,

FID detection): retention times: 27.2 min (minor enantiomer), 27.3 min (major enantiomer). The absolute configuration of the product was determined by comparison of its optical rotation with that of the known compound.

49: 85%, e.e. $28 \%,[\alpha]_{0}{ }^{25}=+6.5(c 1.2, \mathrm{CHCl} 3)$. The e.e. was determined by chiral GC (Megadex Chiral column (25 m , flow rate: $15 \mathrm{~mL} / \mathrm{min}$, isotherm $65^{\circ} \mathrm{C}$, FID detection): retention times: 49.5 min (minor enantiomer), 51.6 min (major enantiomer). The absolute configuration of the product was determined by comparison of its optical rotation with that of the known compound. ${ }^{42}$

51-52: The ratio was determined by GC-MS analysis. The e.e.s of 51 and 52 were determined by chiral HPLC (Chiralpak OD, 2-propanol/hexane 1:99, $0.5 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$); retention times of 52: 14.2 min (major enantiomer), 15.1 min (minor enantiomer); retention times of 51: 17.9 (minor enantiomer), 18.8 (major enantiomer).

55: 83%, e.e. $27 \% ;[\alpha]_{0}^{25}=-23.5\left(c 1.6, C H C l_{3}\right.$). The e.e. was determined by chiral HPLC (Chiralpak OD, 2-propanol/hexane 5:95, $0.4 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$); retention times: 13.7 min (minor enantiomer), 15.6 min (major enantiomer). The absolute configuration of the product was determined by comparison of its optical rotation with that of the known compound. ${ }^{43}$

1.6 - References

${ }^{1}$ (a) I. Ojima, Catalytic Asymmetric Synthesis, VCH: Weinheim, 1993. (b) Noyori, R. Asymmetric Catalysis in Organic Synthesis, Wiley: New York, 1994.
${ }^{2}$ S. Akabori, S. Sakurai, Y. Izumi, Y. Fujii, Nature 1956, 323.
${ }^{3}$ (a) C. A. Caputo, N. D. Jones, Dalton Trans., 2007, 4627. (b) F. Fache, E. Schulz, M. L. Tommasino, M. Lemaire Chem. Rev. 2000, 100, 2159. (c) D. Tanner, P. G Andersson, A. Harden, P. Somfai, Tetrahedron Lett. 1994, 35, 4631. (c) P. G. Andersson, A. Harden, D. Tanner, P.-O. Norrby, Chem. Eur. J. 1995, 12. (d) D. Tanner, A. Harden, F. Johansson, P. Wyatt, P. G. Andersson, Acta Chem. Scand. 1996, 50, 361. (e) P. G. Andersson, F. Johansson, D. Tanner, Tetrahedron 1998, 54, 11549. (f) D. Tanner, F. Johansson, A. Harden, P. G. Andersson, Tetrahedron 1998, 54, 15731. (g) P, Maziridine) ligand: D. Tanner, P. Wyatt, F. Johansson, S. K. Bertilsson, P. G. Andersson, Acta Chem. Scand. 1999, 53, 263. (h)

S,N(aziridine) ligand: A. L. Braga, M. W. Paixao, P. Milani, C. C. Silveira, O. E. D. Rodriguez, E. F. Alves, Synlett 2004, 1297.
${ }^{4}$ H. Mimoun, J. Y. d. S. Laumer, L. Giannini, R. Scopelliti and C. Floriani, J. Am. Chem. Soc., 1999, 121, 6158.
${ }^{5}$ X. Wang and K. Ding, Chem. Eur. J., 2006, 12, 4568.
${ }^{6}$ (a) L. Canali, D. C. Sherrington, Chem. Soc. Rev., 1999, 28, 85; (b) J. Larrow and E. N. Jacobsen, Top. Organomet. Chem., 2004, 6, 123.
${ }^{7}$ (a) E. N. Jacobsen, W. Zhang, A. R. Muci, J. R. Ecker and L. Deng, J. Am. Chem. Soc., 1991, 113, 7063; (b) W. Zhang, J. L. Loebach, S. R. Wilson and E. N. Jacobsen, J. Am. Chem. Soc., 1990, 112, 2801.
${ }^{8}$ N. C. Fletcher, J. Chem. Soc., Perkin Trans. 1, 2002, 1831.
${ }^{9}$ (a) C. Bolm, M. Zehnder, D. Bur, Angew. Chem. Int. Ed. Engl., 1990, 29, 205; (b) C. Bolm, M. Ewald, M. Felder and G. Schlingloff, Chem. Ber., 1992, 125, 1169; (c) C. Bolm, G. Schlingloff, K. Harms, Chem. Ber., 1992, 125, 1191.
${ }^{10}$ (a) W. S. Lee, H. L. Kwong, H. L. Chan, W. W. Choi, L. Y. Ng, Tetrahedron: Asymmetry, 2001, 12, 1007; (b) H. L. Kwong and W. S. Lee, Tetrahedron: Asymmetry, 1999, 10, 3791.
${ }^{11}$ C. Botteghi, G. Caccia, G. Chelucci, F. Soccolini, J. Org. Chem., 1984, 49, 4290.
12 J. S. Johnson, D. A. Evans, Acc. Chem. Res., 2000, 33, 325.
${ }^{13}$ M. Gòmez, G. Muller, M. Rocamora, Coord. Chem. Rev. 1999, 193-195, 769.
${ }^{14}$ For reviews, see: (a) A. K. Ghosh, P. Mathivanan, J. Cappiello, Tetrahedron: Asymmetry 1998, 9, 1. (b) K. A. Jørgensen, M. Johannsen, S. Yao, H. Audrain, J. Thorhauge, Acc. Chem. Res. 1999, 32, 605. (c) J. S. Johnson, D. A. Evans, Acc. Chem. Res. 2000, 33, 325. (d) H. A. McManus, P. J. Guiry, Chem. Rev. 2004, 104, 4151. (e) G. Desimoni, G. Faita, K. A. Jørgensen, Chem. Rev. 2006, 106, 3561.
${ }^{15}$ H. Brunner, B. Nuber and T. Tracht, Tetrahedron: Asymmetry, 1998, 9, 3763.
${ }^{16}$ (a) C. Bolm, K. Wickhardt, M. Zehnder and T. Ranff, Chem. Ber., 1991, 124, 1173; (b) H.Witte and W. Seeliger, Liebigs Ann. Chem., 1974, 966.
${ }^{17}$ H. Brunner, U. Obermann and P. Wimmer, J. Organomet. Chem., 1986, 316, C1.
${ }^{18}$ H. Brunner and U. Obermann, Chem. Ber., 1989, 122, 499.
19 Brunner H., Tacht T. Tetrahedron Asymmetry 1998, 9, 3773.
${ }^{20}$ G. Desimoni, G. Faita, P. Quadrelli, Chem. Rev. 2003, 103, 3119.
${ }^{21}$ M. K. Tse, C. Döbler, S. Bhor, M. Klawonn, W. Mägerlein, H. Hugl, M. Beller, Angew. Chem. Int. Ed. 2004, 43, 5255.

22 S. Bhor, G. Anilkumar, M. K. Tse, M. Klawonn, C. Döbler, B. Bitterlich, A. Grotevendte, M. Beller, Org. Lett. 2005, 7, 3393.

23 (a) S. De Martin, G. Zassinovich, G. Mestroni, Inorg. Chim. Acta 1990, 174, 9. (b) G. Zassinovich, G. Mestroni, Chem. Rev. 1992, 92, 1051; (c) D. A. Laidler, D. J. Milner, J. Organometal. Chem. 1984, 270, 121.

24 (a) K. Bernauer, R. Deschenaux, T. Taura, Helv. Chim. Acta 1983, 66, 2049; (b) K. Bernauer, T. Chuard, H. Stoeckli-Rvans, Helv. Chim. Acta 1993, 76, 2263-2273; (c) K. Bernauer, P. Pousaz, Helv. Chim. Acta 1984, 67, 797-803; (d) T. J. Lotz, T. A. Kaden, Helv. Chim. Acta 1978, 61, 1376.

25 (a) K. Bernauer, F. Gretillat, Helv. Chim. Acta 1989, 72, 477; (b) K. Bernauer, F. Gretillat, H. Stoeckli-Evans, R. Wermuth, Helv. Chim. Acta 1993, 76, 545; (c) K. Bernauer, A. Cabort, N. Guicher, H. S. Evans, G. Suss-Fink, J. Chem. Soc., Dalton Trans. 2002, 2069.
${ }^{26}$ For a review: (a) G. Helmchen Journal of Organometallic Chemistry 1999, 576, 203; (b) Zhan Lu, Shengming Ma Angew. Chem. Int. Ed. 2008, 47, 258; (c) B. M. Trost, D. L. Van Vranken Chem. Rev. 1996, 96, 395.

27 (a) D. Tanner, P. G Andersson, A. Harden, P. Somfai, Tetrahedron Lett. 1994, 35, 4631. (b) P. G. Andersson, A. Harden, A.; D. Tanner, P. O. Norrby, Chem. Eur. J. 1995, 12. (c) D. Tanner, A. Harden, F. Johansson, P. Wyatt, P. G. Andersson, Acta Chem. Scand. 1996, 50, 361. (d) P. G. Andersson, F. Johansson, D. Tanner, Tetrahedron 1998, 54, 11549. (e) D. Tanner, F. Johansson, A. Harden, P. G. Andersson, Tetrahedron 1998, 54, 15731. (f) P,M(aziridine) ligand: D. Tanner, P. Wyatt, F. Johansson, S. K. Bertilsson, P. G. Andersson, Acta Chem. Scand. 1999, 53, 263. (g) S,N (aziridine) ligand: A. L. Braga, M. W. Paixao, P. Milani, C. C. Silveira, O. E. D. Rodriguez, E. F. Alves, Synlett 2004, 1297.

28 (a) J. A. Sweet, J. M. Cavallari, W. A. Price, J. W. Ziller, D. W. McGrath, Tetrahedron: Asymmetry 1997, 8, 207. (b) K. Wärnmark, R. Stranne, M. Cernerud, I. Terrien,
F. Rahm, K. Nordström, C. Möberg, Acta Chem. Scand. 1998, 52, 961. (c) R. Stranne, C. Möberg, Eur. J. Org. Chem. 2001, 2191.
${ }^{29}$ G. Chelucci, G. A. Pinna, A. Saba, G. Sanna, J. Mol. Catal. A 2000, 159, 423.
${ }^{30}$ J. M. Canal, M. Gómez, F. Jiménez, M. Rocamora, G. Muller, E. Duñach, D. Franco, A. Jiménez, F. H. Cano, Organometallics 2000, 19, 966.

31 (a) G. Chelucci, Tetrahedron: Asymmetry 1997, 8, 2667. (b) G. Chelucci, S. Medici, A. Saba, Tetrahedron: Asymmetry 1997, 8, 3183. (c) G. Chelucci, G. A. Pinna, A. Saba, R. Valenti, Tetrahedron: Asymmetry 2000, 11, 4027.

32 U. Bremberg, F. Rahm, F.; C. Moberg, Tetrahedron: Asymmetry 1998, 9, 3437.
${ }^{33}$ K. Fiore, G. Martelli, M. Monari, D. Savoia, Tetrahedron: Asymmetry 1999, 10, 4803.
${ }^{34}$ F. Ferioli, C. Fiorelli, G. Martelli, M. Monari, D. Savoia, P. Tobaldin, Eur. J. Org. Chem 2005, 1016.
${ }^{35}$ D. Savoia, G. Alvaro, R. Di Fabio, C. Fiorelli, A. Gualandi, M. Monari, F.Piccinelli, Adv. Synth. Catal., 2006, 348, 1883.
${ }^{36}$ R. R. Rülke, V. E. Kaasjager, P. Wehman, C. J. Elsevier, P. V. N. M. Van Leeuwen, K. Vrieze, J. Fraanje, K. Goubitz, A. L. Spek, Organometallics 1996, 15, 3022.
${ }^{37}$ (a) G. Alvaro, G. Martelli, D. Savoia, J. Chem. Soc., Perkin Trans 1 1998, 775-; (b) G. Alvaro, D. Savoia, Synlett2002, 651.

38 (a) P. D. Bartlett, M. Stiles, J. Am. Chem. Soc. 1955, 77, 2806; (b) S. Panev, V. Dimitrov, Tetrahedron: Asymmetry 2000, 11, 1517.
${ }^{39}$ A. Rauk, L. C. Allen, K. Mislow, Angew. Chem. Int. Ed. 1970, 400.
40 (a) S. Vyskočil, M. Smrčina, V. Hanuš, M. Polášek, P. Kočovský, J. Org. Chem. 1998, 63, 7738. (b) T. Mino, Y. Tanaka, M. Sakamoto, T. Fujita, Tetrahedron: Asymmetry 2001, 12, 2435. (c) Y. Matsushima, K. Onitsuka, T. Kondo, T. Mitsudo, S. Takahashi, J. Am. Chem. Soc. 2001, 123, 10405. (d) T. Yamagishi, M. Ohnuki, T. Kiyooka, D. Masui, K. Sato, M. Yamaguchi, Tetrahedron: Asymmetry 2003, 14, 3275. (e) X. Chen, R. Guo, Y. Li, G. Chen, C.-H. Yeung, A. S. C. Chan, Tetrahedron: Asymmetry 2004, 15, 213. (f) Y. Tanaka, T. Mino, K. Akita, M. Sakamoto, T. Fujita, J. Org. Chem. 2004, 69, 6679. (g) G. A. Molander, J. P. Burke, P. J. Carroll, J. Org. Chem. 2004, 69, 8062.
${ }^{41}$ P. Sennhenn, B. Gabler, G. Helmchen, Tetrahedron Letters 1994, 35, 8595.
42 (a) A. Togni, Tetrahedron: Asymmetry 1991, 2, 683; (b) E. Peña-Cabrera, P.-O. Norrby, M. Sjögren, A. Vitagliano, V. De Felice, J. Oslob, S. Ishii, D. O'Neill, B. Åkermark, P. Helquist, J. Am. Chem. Soc. 1996, 118, 4299. (c) D. Liu, Q. Dai, X. Zhang, Tetrahedron 2005, 61, 6460.

43 (a) P. Gamez, B. Dunjic, F. Fache, M. Lemaire, Tetrahedron: Asymmetry 1995, 6, 1109; (b) T. Namoto, T. Matsumoto, T. Masuda, T. Hitomi, K. Datano, Y. Hamada, J. Am. Chem. Soc. 2004, 126, 3690.
${ }^{44}$ S. Ramdeehul. L. Barloy, J. A. Osborn, A. De Cian, J. Fischer, Organometallics 1996, 15, 5442.
${ }^{45}$ L. Barloy, S. Ramdeehul, J. A. Osborn, C. Carlotti, F. Taulelle, A. De Cian, J. Fischer, Eur. J. Inorg. Chem. 2000, 2523.

46 Interestingly, a P-chiral 2,6-bis(diarylphosphanylethyl)pyridine apparently acted as (P, P)-bidentate ligand in Pd-catalyzed AAA: G. Zhu, M. Terry, X. Zhang, Tetrahedron Letters 1996, 37, 4475.

47
(a) T. Yamagishi, M. Ohnuki, T. Kiyooka, D. Masui, K. Sato, M. Yamaguchi, Tetrahedron: Asymmetry 2003, 14, 3275; (b) P. Braunstein, F. Naud, A. Dedieu, M.-M. Rohmer, A. De Cian, S. J. Rettig, Organometallics 2001, 20, 2966.

48 (a) T. Yamagishi, M. Ohnuki, T. Kiyooka, D. Masui, K. Sato, M. Yamaguchi, Tetrahedron: Asymmetry 2003, 14, 3275. (b) P. Braunstein, F. Naud, A. Dedieu, M.-M. Rohmer, A. De Cian, S. J. Rettig, Organometallics 2001, 20, 2966.

49 J. Uenishi, M. Hamada, Tetrahedron: Asymmetry 2001, 12, 2999.

Chapter Index

Chap. 1 - New chiral ligands featuring two aziridine rings separated by pyridine spacer: Synthesis and applications. .. 1
1.1-Introduction 1
1.1.1 - N-Ligands in asymmetric synthesis 1
1.1.2 - N-Ligands in the Pd catalyzed asymmetric allylic substitution (AAA) 7
1.2 - Results and discussion 11
1.2.1 - Preparation of the DIAZAP Ligands 11
1.2.2 - Pd-Catalyzed AAA in presence of DIAZAP ligand: substituent effects 14
1.2.3 - Pd-Catalyzed AAA in the presence of DIAZAP ligand: Pd source 17
1.2.4 - Pd-Catalyzed AAA in presence of DIAZAP ligand: different nucleophilesand substrates18
1.3 - Tentative explanation of mechanism and enantioselectivity 20
1.4 - Conclusion 23
1.5-Experimental section 23
1.5.1 - General protocol for the preparation of Imines 41 23
1.5.2 - Preparation of β-Aminoalcols 42 by additin of organolithium reagents ti
imines 41:25
1.5.3 - Preparation of β-Aminoalcohols 42af' and 42bf' by Reduction of Imines
$41 a$ and $41 b$ 29
1.5.4 - Preparation of Aziridines 43 30
1.5.5 - Preparation of allylic palladium complexes. Typical procedure: [43ae' $\left(\eta^{3}\right.$ -allyl)Pd][PF $\left.{ }_{6}\right]$.34
1.5.6 - Palladium-Catalyzed Allylic Alkylation 35
1.6 - References 36
Chapter Index 41

Chap. 2 - Asymmetric Synthesis of 2-(2-

Pyridyl)aziridines from 2-Pyridineimines Bearing

Stereogenic \mathbf{N}-Alkyl Substituents.

2.1 - Introduction

Aziridine chemistry has indeed been extensively exploited by organic synthetic chemists. ${ }^{1}$ In the last several decades, more than 200 research papers have been registered in the Chemical Abstracts database every year, and since 2001 the tally has been more than 350 papers a year, which clearly shows a broad interest in the preparation and utilization of aziridines. Their incorporation into a wide variety of motifs, from drugs and biologically active molecules to ligands for asymmetric catalysis, ${ }^{2}$ underlines their importance to modern chemistry.

Aziridines are the nitrogen analogues of epoxides and exhibit similar reactivity patterns as electrophilic reagents. The highly strained three membered ring readily opens with excellent stereo- and regio-control to afford a wide variety of more stable ring opened or ring expanded chiral amines.

2.1.1 - Preparation of aziridine

A literature survey reveals an extensive investigation of the synthesis and chemistry of aziridines since the first synthesis by Gabriel in $1888 .{ }^{3}$ Numerous methods have been reported for the synthesis of differently substituted aziridines. The range of synthetic methodology available for preparation of aziridines (summarized diagrammatically in Scheme 1) is very wide and include nitrene addition to olefins, carbene and ylide addition to imines, and cyclization of 1,2-amino alcohols, 1,2-aminohalides, and 1,2-azido alcohols.

Scheme 1
Nitrene methods ${ }^{4}$: 'Classical' methods for direct aziridination of alkenes have traditionally featured addition of nitrenes (reactive intermediates in which nitrogen bears only one substituent, one lone pair and two other electrons) to the unsaturated partner. The limitations to the method (often involving alkoxycarbonylnitrenes) are well-documented, with the necessity for harsh reaction conditions and the lack of stereoselectivity constituting two major factors which have limited the attractiveness of this methodology.

Such nitrenes typically were generated by thermal or photochemical decomposition of the corresponding azides and these methods intrinsically lead to mixtures of (more reactive) singlet and (more stable) triplet nitrenes; only singlet nitrenes may be relied upon to react stereospecifically with 1,2-disubstituted alkenes. Triplet nitrenes react in a two-step process with alkenes (Scheme 2), in which an N-C bond is formed in each step, whereas singlet nitrenes are able to form both new bonds in a concerted process.

Scheme 2
A useful method involves in situ generation of nitrenes, by means of oxidation of hydrazine derivatives. Of particular relevance is the methodology of Rees and his collaborators by which a range of N -amino aziridine derivatives were prepared by reaction of the corresponding hydrazine derivatives with alkenes in the presence of lead tetraacetate (Scheme 3) or with electrochemical processes for oxidation of hydrazine. ${ }^{5}$

Scheme 3

The possibility of transferring nitrenes to olefins by means of transition metal catalysts ($\mathrm{Cu}, \mathrm{Mn}, \mathrm{Rh}, \mathrm{Ag}$) was recognized well before asymmetric catalysis was established. Thus, porphyrin ${ }^{6}$ and salen catalysts, known for their ability to aziridinate alkenes in the presence of the nitrene precursor N-tosyliminophenyliodinane, provided the inspiration for a new generation of copper-based catalytic processes. In particular, Evans, ${ }^{7} \mathrm{Jacobsen}^{8}$ and Katsuki ${ }^{9}$ have described the utility of chiral bis-oxazolines and 1,2-diamines in enantioselective aziridination of a range of alkenes (Scheme 4).

These reactions, though representing a major achievement in the synthesis of enantiopure aziridines, still retain some drawbacks, not least of which is the frequent requirement for the reactions to be conducted using a large excess (often 5 equivalents) of alkene.

Scheme 4
Carbene methods: The synthesis of aziridines by reaction of nitrenes and nitrene equivalents with alkenes involves the roughly simultaneous formation of two new $C-N$ bonds. If one performed an alternative synthetic analysis, one can immediately identify a method which is centred around the simultaneous formation of one $C-N$ bond and one $C-C$ bond. Thus, if a carbene or equivalent thereof (such as an ylid) were to react efficiently with an imine, a useful aziridination protocol would result. This area of research has only recently attracted the attention of synthetic organic chemists.

Thus, Jacobsen and Finney reported that the metallocarbene derived from ethyl diazoacetate and copper(I)hexafluorophosphate adds with mediocre stereoselectivity to N arylaldimines. At best, diasteroeselectivities were acceptable (often > 10:1, in favour of the cis-isomers) but enantioselectivity was low (Scheme 5). ${ }^{10}$

Scheme 5

The similar copper(I)-catalyzed reaction of trimethylsilyldiazomethane with N tosylimines in the presence of (R)-Tol-BINAP proceeded with better levels of enantiocontrol, but still falls short of the standards expected of modern asymmetric transformations (Scheme 6). ${ }^{11}$

Scheme 6
The aza-Darzens reaction also falls into this category of aziridine-forming reaction. Several groups have investigated this route to aziridines, especially in the asymmetric manifold, in recent years. Thus, reactions of N-Dpp imines with (R) - and (S)-camphorsultamderived α-bromoenolates ${ }^{12}$ (Scheme 7) and of s-chiral sulfinylimines with achiral bromoenolates ${ }^{13}$ (Scheme 8) have been studied; in both cases, high levels of enantio- and diastereocontrol were observed.

Scheme 7

95:5

Scheme 8
Rong closure of 1,2-aminoalcohols, 1,2-aminohalides or 1,2-aminoazides: A conceptually obvious synthesis of aziridines utilizes 1,2-amino alcohols as precursors: the reaction can be readily achieved when the hydroxyl functional group is converted to a good leaving group. Intramolecular nucleophilic displacement reaction by the amine lone pair then yields the aziridine ring.

More recent methods exploit the conversion of the alcohol moiety of amino alcohols to oxyphosphonium species. As examples, treatment of an aminoalcohol with $\mathrm{Ph}_{3} \mathrm{P}$ plus either $\mathrm{Br}_{2},{ }^{14} \mathrm{CCl}_{4}{ }^{15}$ or DEAD, ${ }^{16}$ have been widely employed to effect aziridine ring-closure. Other phosphorus reagents employed in such reactions are diphenylphosphinic chloride ${ }^{17}$ and diethoxytriphenylphosphine, $\left[\mathrm{Ph}_{3} \mathrm{P}(\mathrm{OEt})_{2}\right] .{ }^{18}$

By using enantiopure amino alcohols, enantiopure aziridines are obtained enantiomerically-pure 1,2-amino alcohols required are frequently form via the reduction of enantiopure 2-amino acids, which are commercially available; ${ }^{19}$ indeed, in many cases, the aminoalcohols themselves are commercially available. Where only the aminoacid is available, the efficiency of aziridine formation is, in some cases, hampered by the difficulty in isolating the intermediate amino alcohols, due to formation of water soluble metal complexes. To circumvent this problem, the reduction of N-Ts amino acids (rather than the aminoacid itself) has been described; this modification allows the synthesis of enantiopure N-Ts aziridines in a one-pot reaction. ${ }^{20}$ (Scheme 9).

Scheme 9

Given the ready availability of enantiomerically-pure epoxides by a range of asymmetric processes, much use has been made of the multi-step preparation of aziridines from these precursors. In particular, the phosphine-mediated ring-closure of azidoalcohols (a Staudinger reaction), themselves obtained from chiral epoxides by ring-opening reaction using a range of azide sources, has attracted much interest. The pivotal reaction of this particular sequence revolves around the reaction of the hydroxyazide with trialkyl- or triarylphosphine, leading to oxazaphospholidines, which is rapidly formed and may be slowly converted to N-unsubstituted aziridine product upon heating in acetonitrile (Scheme 10). The reaction is reliable for a wide range of chiral and achiral epoxides and there is no issue of
regiochemistry: both asymmetric centres are cleanly and predictably inverted during the process.

Scheme 10

2.1.2 - Aziridine ring in biologically active compounds

As powerful alkylating agents, aziridines have an inherent in vivo potency, often based primarily on toxicity rather than specific activity. There are, however, several classes of aziridine-containing natural products which marry potency with selectivity, of which perhaps the best-known are the Mitosanes (Scheme 11). ${ }^{21}$ The Mitosanes were first isolated from soil extracts of Streptomyces verticillatus and they exhibit both anti-tumour and antibiotic activity: structure-activity relationships have identified the aziridine ring as being essential for such anti-tumour activity, and a large amount of work has concentrated on synthesizing derivatives of these natural products with increased potency.

Mitomycin $A, X=O M e, Y=M e, Z=H$
Mitomycin $B, X=O M e, Y=H, Z=M e$
Mitomycin $C, X=\mathrm{NH}_{2}, Y=\mathrm{Me}, \mathrm{Z}=\mathrm{H}$
Porfiromycin, $X=\mathrm{NH}_{2}, Y=M e, Z=M e$

Mitomycin $G, X=\mathrm{NH}_{2}, Y=M e$
Mitomycin $\mathrm{H}, \mathrm{X}=\mathrm{OMe}, \mathrm{Y}=\mathrm{H}$
Mitomycin K, $\mathrm{X}=\mathrm{OMe}, \mathrm{Y}=\mathrm{Me}$

Scheme 11

These natural bioactive compounds are powerful DNA alkylating agents. Thus, in the first step of the postulated mechanism of action, the natural products are converted from
the native quinone form to the hydroquinone (Scheme 12); secondly, formation of indoloaziridine occurs. The aziridine ring is next cleaved and DNA is first alkylated and then cross-linking occurs. The Mitosanes are one of the few classes of naturally-occurring antibiotics to exhibit the same mode of action in vivo and in vitro.

Scheme 12

Related compounds which have also shown similar anti-cancer activity are the FR and FK compounds shown below. ${ }^{22}$ Consideration of the acetal-like core of these molecules reveals an intimate relationship with the Mitosanes (Scheme 13).

FR-900482: $\quad R=C H O, \quad R^{1}=R^{2}=R^{3}=H$
FR-66979: $\quad R=C_{H} O H, R^{1}=R^{2}=R^{3}=H$
FR-70469: $\quad R=C H O, \quad R^{1}=M e, R^{2}=H, R^{3}=A C$
FK-9973: $\quad R=C H O, \quad R^{1}=R^{2}=R^{3}=A c$
FK-317: $\quad R=C H O, \quad R^{1}=M e, R^{2}=A c$

FK-317

Scheme 13

A structurally-distinct class of naturally-occurring aziridine derivatives possessing potent biological activity, isolated from Streptomyces grieseofuscus S42227 by Nagaoka and co-workers, is the Azinomycin family (Scheme 14). ${ }^{23}$ This class of compounds possesses a wide range of activity against a range of cancers, including solid tumours, and Azinomycin-like structures have been shown to exert cytotoxicity against a variety of human tumour cell lines. The activity of all of these compounds again lies in their ability to act as DNA crosslinking agents, via nucleophilic ring-opening of the aziridine and epoxide moieties by N-7 positions of purines. It is not clear at present which ring-opening reaction takes precedence in the cross-linking event.

Scheme 14

The PBI class of natural products (Scheme 15) represents another type of DNAalkylating aziridinyl quinone species. ${ }^{24}$ In these compounds, however, the aziridinenis directly attached to the quinone subunit and undergoes ring-opening by nucleophilic attack of the DNA phosphate backbone, rather than alkylation by a purine nitrogen atom, as in the case of the Mitosane.

Scheme 15

Finally, in this section a range of synthetic aziridines has been examined for their suitability as pharmaceutical agents, based on the observations in the 1960s that nitrogen mustards (such as di(2-chloroethyl)methylamine) were able to reduce the rate of tumour growth in mice models. Nitrogen mustards (so-named due to their close structural resemblance to sulfur mustard, di(2-chloroethyl)sulfide, the 'mustard gas' of the First World

War) are very active alkylating agents due to their ability to form aziridinium ions which are rapidly alkylated by DNA (Scheme 16).

In particular, N-mustard-based ADEPT (antibody-directed enzyme pro-drug therapy) strategies (in which a protected form of the mustard is directed with high selectivity to a tumour site) have attracted great interest in recent years as potential cancer chemotherapies. ${ }^{25}$

Scheme 16

2.1.3 - Aziridines as chiral ligands

Enantiopure aziridines have gained considerable importance over a number of years as chiral ligands in transition metal-catalyzed asymmetric syntheses. ${ }^{1,2}$ The concentrated density of stereochemical information located close to a good σ-donor nitrogen makes chiral aziridines attractive ligands for asymmetric catalysis. In an extension of Corey's chiral oxazaborolidines for the enantioselective reduction of prochiral ketones, aziridine 2carbinols (2S,3R)-1 have been used as precatalysts to prepare oxazaborolidines $(2 S, 3 R)-2$ (Scheme 17). ${ }^{26}$ When used with borane-dimethylsulfide complex for the reduction of acetophenone to (R)-phenylethyl alcohol, enantioselectivities were greater than 90%.

A range of aziridine 2 -carbinols have been screened as catalysts for the enantioselective addition of diethylzinc to aldehydes and aziridine (5,5)-3 gave up to 97% ee and good yields. ${ }^{27}$ An equally effective N-trityl aziridine has been studied and the corresponding polymer supported catalyst (S)-4 prepared. ${ }^{28,29}$ High enantioselectivity was retained and the catalyst was recycled without significant loss in enantioselectivity.
C_{2}-Symmetric bis-aziridines have been studied as ligands in a number of metal mediated asymmetric reactions. ${ }^{30}$ A two carbon tether between the aziridine nitrogens was optimal, regardless of the metal used, to allow five membered chelate formation, and the other aziridine side chains were varied for steric and electronic requirements. Bis-aziridine
($25,3 S, 2^{\prime} S, 3^{\prime} S$)-5 generally showed the best performance. This bisaziridine gave good results osmium catalysed asymmetric dihydroxylation of trans-stilbene and in the palladium catalysed allylic alkylation. A range of chiral bis-aziridine disulfide as ($2 R, 2^{\prime} R$) - 6 was prepared by Braga and co-workes ${ }^{31}$ and they have been screened as catalysts for the enantioselective addition of diethylzinc to aldehydes with good results (e.e. > 99\%).

1

4

2

5

3

6

Scheme 17

Dogan and co-workes recently developed a new set of chiral ligands, ferrocenylsubstituted aziridinylmethanols (Fam), and used them in diethylzinc addition reactions to aldehydes ${ }^{32}$ to obtain secondary alcohols with up to 99% e.e., to enones ${ }^{33}$ to obtain β ethylated ketones in up to 80% e.e. and in alkynylation of aldehyde catalysed by titanium isopropoxyde (Scheme 18). ${ }^{34}$

Scheme 18

2.2-Asymmetric synthesis of 2-(2'-pyridyl)aziridines

Following our previous studies on enantioselective Pd-catalyzed allylic substitution reactions using 1-(2-pyridyl)alkyl aziridines as ligands (see chapter 1), ${ }^{35}$ we directed our interest to the asymmetric synthesis of 2-(2-pyridyl)aziridines 8 from chiral 2pyridineimines 7 bearing a stereogenic center at the nitrogen atom (Scheme 19), aiming to assess their potential as bidentate ligands in a variety of enantioselective catalytic transformations. The envisioned route involved the addition of halomethylmetal reagents to the imine function.

Scheme 19
The same approach as been recently followed by different authors. The N-(tertbutylsulfinyl)aziridine $10(R=(R)-t-$ BuSO) has been prepared by the the Corey-Chaykovsky sulfonium ylide aziridination protocol (Scheme 20). ${ }^{36}$ Moreover, an N -substituted-2-phenyl-3-(2-pyridyl)aziridine was obtained by Darzens-type reaction of lithiated 2(chloromethyl)pyridine with (R)- and (S)- N-benzylidene- O-methyl-phenylglycinol (Scheme 20). ${ }^{37}$ However, in both reports removal of the aziridine nitrogen substituent (chiral auxiliary) has not been described. Apparently, this is a difficult task, that should be accomplished by selective procedures to preserve the integrity of the aziridine ring and the configuration of the benzylic stereocenter. In this regard, it should be underlined that the aziridine 8 can easily undergo ring-opening by hydrogenolysis and nucleophilic attack, especially through N-activation by protic or Lewis acids. Hence, in order to prepare the $N-$ unsubstituted 2-(2-pyridyl)aziridine $8(\mathrm{R}=\mathrm{H})$, it should be possible to remove the N -(tertbutyl)sulfinyl substituent R in the aziridine 8 by treatment with methyllithium at low temperature, ${ }^{38}$ rather than by the usual treatment with HCl /dioxane or HCl /methanol.

Scheme 20

2.2.1 - Addition of "carbenoid" reagents to chiral aromatic imines

Initial reactions were performed on the known imine 13, which is available by condensation of 2-pyridinecarboxaldehyde with (S)-valinol and subsequent protection of the hydroxyl function as its trimethylsilyl ether. ${ }^{39}$ As a matter of fact, our previous studies on the asymmetric synthesis of enantiopure 1-(2-pyridyl)alkylamines showed that O trimethylsilyl valinol is the preferred chiral auxiliary for the diastereoselective addition of organometallic reagents to 2-pyridineimines, providing the desired amines with higher diastereoselectivities compared to valine esters and phenylglycinol. ${ }^{39}$ Hence, a number of halogenomethylmetal reagents were added to the imine 13 under different experimental conditions, in order to optimize the synthesis of the 1,2-disubstituted aziridine 14, which was isolated following routine desilylation procedures (Scheme 21).

It should be observed that electron-withdrawing N-substituents are generally required to achieve the addition of carbenoid reagents to the azomethine function. We hoped, however, that the electron-withdrawing pyridine ring would provide sufficient activation of the imine 13 . So, in the first experiment, we used the zinc reagent that is formed in situ from diethylzinc and chloroiodomethane, and was previously used for the cyclopropanation of alkenes. ${ }^{40}$ This reagent was added to the TMSO-protected imine 13 at $-30^{\circ} \mathrm{C}$, but no desired product was formed, even allowing the reaction mixture to reach room temperature (Table 1, entry 1). Even replacing chloroiodomethane with diiodomethane no reaction was observed (entry 2). We then moved to reagents that have previously been used for the preparation of halohydrins from aldehydes. We observed that a smooth reaction occurred at room temperature using the samarium reagent formed in situ by reaction of
samarium with diiodomethane; ${ }^{41}$ the desired aziridine 14 was isolated in good yield but very low diastereoselectivity (entry 3) after desilylation of the crude reaction product with ammonium fluoride and column chromatography. No improvement was achieved by carrying out the reaction at $0{ }^{\circ} \mathrm{C}$, as the yield and diastereomeric ratio (d.r.) were slightly lower (entry 4). The use of chloroiodomethane in place of diiodomethane in the samarium-mediated procedure gave a complex mixture of products (entry 5).

Scheme 21

Table 1

Entry	Reagents (equivalents)	T (${ }^{\circ} \mathrm{C}$)	Time (h)	$\begin{gathered} 14 \\ (\text { Yield \%) } \end{gathered}$	$\begin{gathered} 14 \\ (S, S):(R, S)^{[b]} \end{gathered}$
1	$\mathrm{Et}_{2} \mathrm{Zn}$ (2), $\mathrm{CH}_{2} \mathrm{ICl}$ (4) ${ }^{[c]}$	-30 to 20	3	$0^{\text {[d] }}$	-
2	Sm (3), $\mathrm{CH}_{2} \mathrm{I}_{2}$ (2)	20	3	72	56:44
3	Sm (3), $\mathrm{CH}_{2} \mathrm{I}_{2}$ (2)	0	3	70	52:48
4	$\mathrm{Sm}(3), \mathrm{CH}_{2} \mathrm{ICl}$ (2)	20	3	e	-
5	$\mathrm{MeLi}(2), \mathrm{CH}_{2} \mathrm{I}_{2}$ (2)	-78 to 0	4	e	-
6	MeLi (1.8), $\mathrm{CH}_{2} \mathrm{ICl}$ I (1.8), LiBr (1)	-78 to 20	8	$93^{[f]}$	87:13
7	MeLi (3.6), $\mathrm{CH}_{2} \mathrm{ICl}$ (3.6), LiBr (2)	-78 to 20	8	$95^{[f]}(65)^{[g]}$	92:8(>99:1) ${ }^{[9]}$

[a] Yield of the crude reaction product. [b] Determined by GC-MS and 1H NMR analyses. [c] The reaction was performed in toluene. [d] The starting imine was recovered. [e] A complex mixture of products was obtained. [f] The O-methyl derivative of 14 (ca 8% yield) was observed by GC-MS analysis in the reaction mixture. [g] Yield and d.r. of 14 after column chromatography $\left(\mathrm{SiO}_{2}\right)$.

The reagent formed in situ, in the presence of the imine, from diiodomethane and methyllithium ${ }^{42}$ also gave a mixture of products, that was abandoned (entry 6). Good results were instead obtained with chloromethyllithium, which was formed in situ by the addition of methyllithium to a mixture of chloroiodomethane and lithium bromide in THF at $-78^{\circ} \mathrm{C}$ in the presence of the imine $13,{ }^{43}$ then slowly raising the temperature to $20^{\circ} \mathrm{C}$. In this case, the aziridine 14 was obtained with excellent yield and high stereocontrol (d.r. 87:13, entry 7),
following desilylation with ammonium fluoride in a $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ mixture. The positive influence of lithium bromide on the stability of the carbenoid reagent should be similar to that of lithium dialkylamides, which, on the basis of DFT calculations, ${ }^{44}$ form mixed dimer aggregates with chloromethyllithium in THF solution. Better diastereoselectivity (d.r. 92:8) was finally obtained by using a greater excess of reagents (3.6 equivalents) with respect to the imine, and the pure diastereomer (S, S)-14 was isolated in 65% yield following chromatography on a silica gel column (entry 8). In the latter reactions (entries 7 and 8), small amounts (up to 8%) of the O-methyl ether of 14 were detected by GC-MS analysis and this compound was isolated by repeated chromatography of the impure compound obtained by pooling enriched chromatographic fractions coming from different reaction runs.

Unfortunately, removal of the nitrogen substituent from the aziridine 14 to give the 1 -unsubstituted aziridine 16 proved to be impossible by the routine procedures generally used to cleave β-aminoalcohols. In fact, the aziridine 14 was unreactive towards oxidizing agents, such as periodic acid/methylamine and lead tetraacetate, in different solvents and experimental conditions (Scheme 22). In our opinion, this failure can be ascribed to the strain associated with the formation of the intermediate iminium ion 15, which features an exocyclic $N=C$ double bond. This hypothesis is supported by the recent observation of the peculiar reactivity of 1-alkenylaziridines, which do not display nucleophilic character at the exocyclic $\mathbf{C 2}$-alkenyl carbon as is usually observed in enamines. ${ }^{45}$

Scheme 22

2.2.2 - Variation of aromatic ring

The scope of the described aziridination procedure exploiting chloromethyllithium was then investigated on a range of different aromatic imines derived from the same chiral auxiliary, (S)-valinol (Scheme 23). We readily recognized that the presence of the 2pyridineimine moiety is a requisite for the successful aziridination. As a matter of fact, the 2-quinolineimine 17 proved to be less reactive than the 2 -pyridineimine 13 , as the corresponding aziridine 18 was obtained with low yield (51\%) and the benzaldimine 19 did not react at all.

19

Scheme 23

Surprisingly, the reactions of the 3- and 4-pyridineimines 20a and 20b, respectively, lead to the secondary amines $21 a, b$, which were isolated in small amounts and identified by comparison with authentic specimen, and mainly the tertiary amines $22 a, b$. All the products $21 a, b$ and $22 a, b$ were obtained with complete diastereoselectivity.

Scheme 24

It is noteworthy that the competitive attack of methyllithium on the imine 13 was not observed. Moreover, when quenching the reaction mixture at low temperature, we did not detect the presumed intermediate β-chloro amine. The outcome of a modified experimental procedure was also instructive. When methyllithium was added to the mixture of chloroiodomethane and lithium bromide in THF at $-78{ }^{\circ} \mathrm{C}$, then the imine 13 was added to the cold mixture after 15 min , no product was formed after allowing the temperature to slowly reach room temperature. This result demonstrated that the actual reagent must be formed in situ in the presence of the imine.

24

Scheme 25

The proposed rationale for the different behaviour of the 2 - and 3 -pyridineimines in this reaction is described in Scheme 25. The reactivity of the bidentate imines 13 and 17 can be associated to their chelating ability, allowing formation of the stable chelate complex 23 with the organometallic reagent $\mathrm{ClCH}_{2} \mathrm{Li}$ generated in situ. At the same time, the bidentate ligand (imine) enhances the nucleophilic character of the organolithium reagent and promotes the intramolecular $C-C$ bond forming reaction leading to the β-chloro lithium amide 24. Then, this intermediate undergoes intramolecular substitution to give the aziridine 14, after deprotection of the hydroxyl group.

On the other hand, when methyllithium is added to the mixture of chloroiodomethane and 3-pyridineimine 20, it reacts with both of them at comparable rates. Apparently, the chloromethyllithium generated in situ is less reactive or unreactive towards the imine 20. The amide 25, formed by attack of methyllithium on the imine 20 , is converted to the secondary amine 21 by proton quenching and desilylation, and to the tertiary amine 22 by reaction with methyl iodide, which is formed in the first halogen-metal exchange step, and desilylation.

Scheme 26

2.2.3 - Different chiral auxiliaries

We also examined the effect of different chiral auxiliaries, either β-aminoalcohols or α-aminoesters available from the "chiral pool", on the reactivity/diastereoselectivity of the corresponding 2-pyridineimines (Scheme 27). The imine 27 derived from 1,1-diphenylvalinol was found to be unreactive, presumably owing to the bulkiness of the N-substituent, and the (+)-norephedrine-derived imine 28 reacted sluggishly to give a mixture of products containing the diastereomeric aziridines 29 in 44% yield and 77:23 ratio (GC-MS). Moreover, the imine 30 prepared from (R)-phenylglycinol, gave the expected aziridine 31 with low diastereoselectivity and the major (R, R)-diastereomer was isolated in 25% yield after column chromatography. As found for aziridine 16 , the N-substituent in 30 could not be removed by oxidative procedures, and hydrogenolysis over different Pd-catalysts was unsatisfactory due to concomitant cleavage of the pyridyl-substituted aziridine $C-N$ bond.

27

28

29, 44\%, d.r. 77:23

Scheme 27

Then we checked (S)-valine methyl ester as the chiral auxiliary and carried out the aziridination procedure on the derived imine 32 (Scheme 28). In this way, we obtained the product 33, coming from organometallic additions to both the imine and ester functions, in good yield and d.r. 87:13. Selective attack to the azomethine functionality could not be accomplished by working with equimolar amounts of reagents (imine, chloroiodomethane and methyllithium), as the same product 33 was formed, albeit in low yield. This result apparently demonstrates that chloromethyllithium, rather than a carbene, is the active intermediate in the reaction. Moreover, products coming from the attack of methyllithium to the ester function were not observed either in the crude reaction mixture or in chromatographic fractions. Similarly, the 2-quinolineimine 34 gave the corresponding aziridine- α-chloroketone 35, in comparable yield and d.r. 88:12.

SiO_{2} ($35,98 \%$, d.r. 88:12;
78\%, d.r. 99:1

Scheme 28

2.2.4-Removal of N-substituent

Further efforts were devoted to find alternative procedures for the removal of the N-substituent in the aziridine 14, through modification of the hydroxyl functionality. Initial attempts were directed to the transformation of the primary alcohol to halides (36) or phenylsulfide (37) by Mitsunobu procedures, because these compounds were expected to undergo β-amide elimination by treatment with a metal or a reducing agent (e.g. LiDBB and $\left.S_{m} I_{2}\right) .{ }^{46}$ Unfortunately, we met with no success, because the reaction mixtures were generally complex and the desired product was never isolated by column chromatography. Even the preparation of the bromide via the tosylate in different experimental conditions failed, probably because of the instability of any eventual bromide formed.

Scheme 29

Treatment of the chloroketone 33 with tributylstannyl hydride in refluxing benzene in the presence of AIBN gave the ketone 38 (Scheme 30), on which Wolff-Kishner reactions with hydrazine or phenylhydrazine and KOH in ethylene glycol or dimethylsulfoxide at high temperature were carried out; however, the expected fragmentation of the hydrazones to give the free aziridine we did not occur contrary to previous reports of α-heterosubstituted hydrazones. ${ }^{47}$ Instead, new isomeric products (39a and 40a) were formed by rearrangement of 38 in the basic medium (vide supra).

Scheme 30

Swern oxidation of the aziridine-alcohol 14 smoothly led to the aziridine-aldehyde 41 (Scheme 31), which was reduced with SmI_{2} at low temperature. β-Fragmentation of the intermediate ketyl radical anion was expected to occur, thus giving the desired NH -aziridine. Instead, several unidentified products were observed by TLC analysis, presumably due to competitive side reactions, probably including pinacol coupling and most likely cleavage of the aziridine $C-N$ bond. Indeed, it has been reported that acetoxymethylpyridine can be coupled with carbonyl compounds through cleavage of the benzylic $\mathrm{C}-\mathrm{O}$ bond, driven by chelation of samarium to the pyridine nitrogen and the acetate. ${ }^{48}$

Scheme 31

The aziridine-ketone 38 reacted in basic medium (methanolic KOH at the reflux temperature of methanol) to give a highly prevalent compound, to which the structure 39a (Scheme 32) was tentatively assigned on the basis of mass-spectrometric and spectroscopic analyses, as a matter of fact, only the depicted structure fits with all the analytical data. In
particular, the stereochemistry of the two ring stereocenters was determined by a NOE experiment: irradiation of the pyridyl-substituted ring proton only caused a response of the adjacent methylene hydrogen, not the ring methyl substituent. Although another compound, probably the diastereomer 40a, was present (ca 15% by ${ }^{1} \mathrm{H}$ NMR) in the crude reaction mixture, it was not isolated by column chromatography, perhaps because it underwent dehydration more readily.

We suggest that compound $39 a$ is formed by the concerted mechanism depicted in structure 42, featuring the cleavage of the aziridine C-N bond, wherein the two electrons unusually move from nitrogen to carbon. We assume that the configuration of the pyridylsubstituted stereocenter is maintained throughout this rearrangement. This supposition is in agreement with the reported stereoselective rearrangement of a 1,2,3-trisubstituted aziridine to 1 -pyrroline by generation of a carbanion at the propargyl N -substituent. ${ }^{49}$ Analogously, when aldehyde 41 was subjected to the same conditions a 55:45 mixture of two compounds was observed, presumably the diastereomers 39b and 40b, as evidenced by the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude reaction mixture. However, only the major product was isolated by column chromatography, as the minor one probably decomposed by dehydration. Conversely, no product was formed by heating the sodium alkoxide derived from the aziridine-alcohol 14 in THF.

Scheme 32

2.2.5 - Use of the 2-(2-pyridyl)aziridines as chiral ligand

We thought that the new 2-(2-pyridyl)aziridines synthesed in this work could be used a chiral ligands in asymmetric catalysis. We tested them in standard palladium catalyzed

Asymmetric Allylic Alkylation (AAA) reaction of the carbonate 43 (Scheme 33), and found that the reactions with dimethyl malonate proceed with in the standard reaction conditions (BSA, allylpalladium chloride dimer, tetrahydrofuran). However with our great disappointment, low to moderate levels of enantioselectivity where obtained (Table 2). The ligand 14 with the S,S configurations of the two stereocenter showed the higher enantioselectivity (e.e. 62\%) and its diasteroisomer gave the product with the same configuration but with only the 20% of e.e.. This results indicated that the configuration of stereocenter in the benzylic position is more important for the stereocontrol, we also tested the aziridine 18 and 31 but with low e.e..

Scheme 33

Table 2

L^{*}	Yield 44(\%)	e.e. 44 (\%)
$14(S, S)$	85	$62(R)$
$14(R, S)$	89	$20(R)$
$18(S, S)$	82	$33(R)$
$31(R, R)$	85	$20(S)$

Finally we tested the 2-(2-pyridyl)aziridine 14 in the enantioselective addition of dietylzinc to aromatic aldehydes (Scheme 34). The reaction proceeded very smoothly, and was complete in only 2.5 hours at room temperature (Table 3), affording the addition product with 50\% e.e.. Increasing the realative amount of the chiral ligand did not increase the enantioselectivity.

Scheme 34

Table 3

R	$L(m o l \%)$	Conversion 46 (\%)	e.e. 46 (\%)
Ph	5	100	50
Ph	10	100	51
2-Naphtyl	5	100	47
4-Br-Ph	5	100	50

2.3-Experimental section

2.3.1 - General protocol for the preparation of Imines

The imines 20a, 20b, 28 and 34 were prepared from the corresponding aldehydes and enantiopure amines in almost quantitative yield by the procedures previously described for the preparation of the 2-pyridineimines $14,17,30$ and $32.35,39$ All the crude imines $>95 \%$ pure by 1 H NMR analysis) and were used immediately as obtained avoiding purification. However, the imine 34, being obtained as a solid, could be easily purified for analytical purpose by crystallization from $\mathrm{Et}_{2} \mathrm{O}$-pentane mixture.

N-(3-Pyridylmethylidene)-O-trimethylsilyl-(S)-valinol (20a): Yellow oil; $[\alpha]_{D}{ }^{20}=$-20.8 (c 1.0, CHCl_{3}); IR (neat): $v=2958,2929,2868,1646,1591,1575,1470,1422,1388,1250,1026$, $839,805,708 ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl $)_{3}$) $\delta=8.87(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~s}$, $1 \mathrm{H}), 8.12(\mathrm{dt}, J=1.8 \mathrm{~Hz}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=4.8 \mathrm{~Hz}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=$ $3.9 \mathrm{~Hz}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.66(\mathrm{dd}, J=8.2 \mathrm{~Hz}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.02(\mathrm{~m}, 1 \mathrm{H}), 1.95$ (sept, $J=$
$6.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~d}, \mathcal{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=157.8(C=\mathrm{N}), 151.2,150.2,134.5,134.5,131.9,123.5,78.8,64.2,29.9,20.0$, 18.6, 0.4; MS (EI): $m / z=264\left(M^{+}, 6\right), 249(5), 221$ (4), 161 (100), 73 (27), 55 (16).

N-(4-Pyridylmethylidene)- \mathbf{O}-trimethylsilyl-(S)-valinol (20b): Yellow oil; $[\alpha]_{0}^{20}=-43.0$ (c $0.4, \mathrm{CHCl}_{3}$); IR (neat): $v=3081,3032,2958,2872,1650,1593,1462,1405,1251,1115,882$, $841 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.67(\mathrm{dd}, \mathcal{J}=1.6 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), \delta=$ $7.60(\mathrm{dd}, \mathcal{J}=1.6 \mathrm{~Hz}, \mathcal{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, \mathcal{J}=3.6 \mathrm{~Hz}, \mathcal{J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, \mathcal{J}=$ $7.8 \mathrm{~Hz}, \mathcal{J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, \mathcal{J}=3.6 \mathrm{~Hz}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.95$ (sept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $0.93(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}):{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=158.8,150.3,143.1,121.9$ (PyH), 78.7, 64.0, 29.9, 19.9, 18.6, -0.4; MS (EI): $m / z=264\left(M^{+}\right.$, 11), 249 (10), 221 (3), 161 (100), 131 (4), 103 (9), 73 (35).

N-(2-Pyridylmethylidene)- O-trimethylsilyl-1(R),2(S)-norephedrine (28): Colourless oil; $[\alpha]_{0}^{20}+98.0$ (c 1.9, CHCl_{3}); IR (neat): $v=3054,2958,2872,1650,1588,1568,1468,1436$, $1367,1251,1107,973,878,774 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=8.64$ (ddd, $J=0.9 \mathrm{~Hz}, J=1.7$ $\mathrm{Hz}, \mathcal{J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{dt}, J=1.0 \mathrm{~Hz}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{ddt}, \mathcal{J}=1.0 \mathrm{~Hz}$, $J=1.7 \mathrm{~Hz}, \mathcal{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.15-7.33(\mathrm{~m}, 6 \mathrm{H}), 4.78(\mathrm{~d}, \mathcal{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90$ (quint, $J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H})$: ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.4,153.6$, 150.1, 138.0, 136.8, 128.4, 128.0, 127.2, 126.5, 123.8, 78.5, 65.8, 16.2, 2.1; MS (EI) $m / z=297$ (6), 179 (100), 133 (44), 92 (19), 73 (48).

N-(2-Quinolylmethylidene)-(S)-valine Methyl Ester (34): White powder; m.p. $=57-58{ }^{\circ} \mathrm{C}$ $\left(E \dagger_{2} O\right.$-pentane); $[\alpha]_{D}{ }^{20}-113.7$ (c 1.1, CHCl_{3}); IR (Nujol): $v=1735,1639,1595,1463,1376$, 1193, 1142, 975, 842, 760, 734; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.52(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, \mathrm{~J}=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{dt}$, $J=1.4 \mathrm{~Hz}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{dt}, J=1.4 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.78 (s, 3 H), 2.45 (dsept, $J=6.8 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.01 (d, J=6.8 Hz, 3 H), 0.98 (d, J= $6.8 \mathrm{~Hz}, 3 \mathrm{H}$): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.0,164.7,154.2,147.7,136.4,129.7,129.5$, $128.8,127.6,127.5,118.6,79.8,51.9,31.8,19.4,18.5 ; M S(E I): m / z=270\left(M^{+}, 2\right), 255(2)$, 238 (3), 227 (14), 212 (15), 211 (100), 195 (30), 169 (28), 168 (25), 142 (42), 128 (13), 115 (15). Anal. Calcd for $C_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}: C, 71.09 ; \mathrm{H}, 6.71 ; \mathrm{N}, 10.36$. Found $C, 71.15 ; \mathrm{H}, 6.73 ; \mathrm{N}, 10.34$.

2.3.2 - Reaction of imines with methyllithium/chloroiodomethane.

General procedure: Lithium bromide ($0.66 \mathrm{~g}, 7.6 \mathrm{mmol}$) and chloroiodomethane (0.99 $\mathrm{mL}, 13.6 \mathrm{mmol})$ were added to the solution of the imine $13(1.00 \mathrm{~g}, 7.6 \mathrm{mmol})$ in anhydrous THF (20 mL) under an inert atmosphere. The magnetically stirred mixture was cooled at 78 ${ }^{\circ} \mathrm{C}$ and $\mathrm{MeLi}\left(1.6 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 8.5 \mathrm{~mL}, 13.6 \mathrm{mmol}$) was slowly added, meanwhile the mixture assumed a dark red colour. The temperature was allowed to rise to $20^{\circ} \mathrm{C}$ over 6 h , then the mixture was quenched with saturated aqueous sodium hydrogen carbonate (20 mL). The organic phase was extracted with $E t_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, and the combined organic layers were concentrated at reduced pressure. For reactions of imines derived from O-TMS- β aminoalcohols, the residue was taken up in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(1: 1,20 \mathrm{~mL})$ and $\mathrm{NH}_{4} \mathrm{~F}(2.5 \mathrm{~g})$ was added, the mixture was stirred overnight, then NaOH pellets were added until pH 11 was achieved, MeOH was removed at reduced pressure, and the organic phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers was washed with brine (20 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated at reduced pressure. The dark oily residue was purified via SiO_{2} column chromatography eluting with 20:80 cyclohexane/EtOAc, then with 90:10 EtOAc /MeOH mixtures.

3-Methyl-2(S)-[2(S)-(2-pyridyl)-1-aziridinyl]-1-butanol (14): $0.509 \mathrm{~g}, 65 \%$, red oil; $[\alpha]_{D}^{20}-105.6\left(c 0.5, \mathrm{CHCl}_{3}\right.$); IR (neat): $v=3373,2960,1595,1570,1479,1436,1387$, 1077, 762; ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl $)_{3}$) $\delta=8.54$ (ddd, $J=1.0 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.63(\mathrm{dt}, J=1.2 \mathrm{~Hz}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dt}, J=0.9 \mathrm{~Hz}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{ddd}, J=1.2$ $\mathrm{Hz}, J=4.9 \mathrm{~Hz}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{dd}, J=3.2 \mathrm{~Hz}, J=6.6 \mathrm{~Hz}, 1$ H), 2.07 (d, J=3.2 Hz, 1 H), 2.04 (sept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.95 (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.66 (bs, 1 H), $1.50(q, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.5,149.9,136.5,121.9,120.3,75.6,63.3,42.9,35.6,29.9,19.5,19.4 ; \mathrm{MS}$ (ES): $m / z=207.3(M+H)^{+}, 229.2(M+N a)^{+}, 413.3\left[(2 M+H)^{+}\right], 435.3(2 M+N a)^{+}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: C, 69.87 ; \mathrm{H}, 8.80 ; \mathrm{N}, 13.58$. Found $C, 69.60 ; H, 8.85 ; \mathrm{N}, 13.28$.

Whereas the minor diastereomer of 14 was not isolated by column chromatography, a sample of the O-methyl ether of 14 was obtained by column chromatography of several pooled fractions containing it, coming from different reaction runs: red oil; $[\alpha]_{D}{ }^{20}$-82.6 (c 4.6, CHCl_{3}); IR (neat): $v=2968,1590,1578,1482,1431,1391,1075,767 ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.C D C l_{3}\right): \delta=8.49(d d d, J=0.7 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, \mathcal{J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dt}, \mathcal{J}=1.4 \mathrm{~Hz}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.24(\mathrm{~d}, ~ J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{ddt}, J=0.9 \mathrm{~Hz}, J=4.7 \mathrm{~Hz}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{dd}, J=3.3 \mathrm{~Hz}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.02(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94$ (sept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{dd}, J=$ $4.5 \mathrm{~Hz}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=160.1,148.9,136.4,120.7,120.0,74.4,73.8,59.0,41.9,30.1,19.2,18.9 ; \mathrm{MS}$ (EI): $m / z=220(M, 1), 219(2), 175(31), 145(22), 133(10), 119$ (100), 106 (69), 92 (55), 79 (21), 65(16). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: C, 70.87 ; \mathrm{H}, 9.15 ; \mathrm{N}, 12.72$. Found C, 70.58; H, 9.18; N, 12.42.

3(S)-Methyl-2-[2(S)-(2-quinolyl)-1-aziridinyl]-1-butanol (18): it was obtained from the imine 17 (1.1 g, 3.5 mmol), $0.457 \mathrm{~g}(51 \%)$; red oil; $[\alpha]_{\mathrm{D}}{ }^{20}-115.7\left(c 1.6, \mathrm{CHCl}_{3}\right)$; IR (neat): $v=$ $3370,2964,1589,1574,1428,1388,1070,770 ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl $)_{3}$) $\delta=8.10(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, \mathcal{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, \mathcal{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{ddd}, J=1.5 \mathrm{~Hz}, J=6.9$ $\mathrm{Hz}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ (ddd, $J=1.2 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1$ H), 3.86 (d, $J=3.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.92 (dd, $J=3.3 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.13 (sept, $J=6.9 \mathrm{~Hz}, 1$ H), $2.10(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(q, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.4,147.6,136.8$, $129.5,128.8,127.6,127.5,126.0,117.9,75.4,63.5,42.7,35.7,30.1,19.7,19.4 ; \mathrm{MS}(E S): \mathrm{m} / \mathrm{z}$ $=256.4(M+H)^{+}, 279.3(M+N a)^{+}, 535.6(2 \mathrm{M}+\mathrm{Na})^{+}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: C, 74.97 ; \mathrm{H}$, 7.86; $N, 10.93$. Found $C, 74.71 ; H, 7.88 ; N, 10.90$.

1(R)-Phenyl-2(S)-[2(R)- and 2(S)-(2-pyridyl)-1-aziridinyl]-1-propanol 29: The reaction of the imine 28 ($0.936 \mathrm{~g}, 3 \mathrm{mmol}$) gave a mixture of the diastereomeric aziridines 29 (0.335 9, 44%) with a $77: 23$ ratio (${ }^{1} \mathrm{H}$ NMR), which could not be separated by column chromatography. The different absorptions for the two diastereomers were evidenced from enriched chromatographic fractions. Major diastereomer: yellow oil; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.49(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.12(\mathrm{~m}, 6 \mathrm{H}), 4.95(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}$, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H},), 2.82(\mathrm{dd}, J=3.9 \mathrm{~Hz}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=3.3 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.06(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$. Minor diastereomer: yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PyH}), 7.66(\mathrm{~m}, 2 \mathrm{H})$, 7.38-7.12 (m, 6 H), 4.88 (d, J=3.9 Hz, 1 H), 4.39 (d, J=6.5 Hz, 1 H), 2.84 (dd, J=3.9 Hz, J $=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=3.2 \mathrm{~Hz}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 0.88\left(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: C, 75.56 ; \mathrm{H}, 7.13 ; \mathrm{N}, 11.01$. Found $C, 75.98 ; H, 7.17 ; N, 10.98$.

2(R)-Phenyl-2-[2(R)-(2-pyridyl)-1-aziridinyl]ethanol (31): it was obtained from the imine 30 (1.04 g, 3.5 mmol), $0.210 \mathrm{~g}(25 \%)$; red oil; $[\alpha]_{\mathrm{D}}{ }^{20}-87.3\left(c 0.7, \mathrm{CHCl}_{3}\right)$; IR (neat): $v=$ $3365,3052,3019,2933,2853,1595,1570,1480,1389,1354,1216,1150,1067,756,701 ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl $)_{3}$) $\delta=8.51$ (ddd, $J=0.9 \mathrm{~Hz}, J=1.7 \mathrm{~Hz}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.61(\mathrm{dt}, J=$ $1.9 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=1.6 \mathrm{~Hz}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.10(\mathrm{~m}, 6 \mathrm{H}), 4.01(\mathrm{dd}, J$ $=5.5 \mathrm{~Hz}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=5.5 \mathrm{~Hz}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\dagger, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$; 2.72 (bs, 1 H), 2.61 (dd, J=3.2 Hz, J=6.6 Hz, 1 H), 2.39 (d, J=3.3 Hz, 1 H), 2.19 (d, J= 6.6 $\mathrm{Hz}, 1 \mathrm{H}$): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.1,149.1,139.9,136.4,128.3,127.5,127.4,121.9$, $120.7,75.6,67.6,39.7,38.6 ; M S(E I): m / z=312\left(M^{+}, 1\right), 297(5), 177$ (10), 144 (31), 119 (63), 106 (100), 92 (30), 73 (43). Anal. Calcd for $C_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}: C, 74.97 ; \mathrm{H}, 6.71 ; \mathrm{N}, 11.66$. Found C, 75.12; H, 6.88; N, 11.48.

(S)-1-Chloro-4-methyl-3-[2(S)-(2-pyridyl)-1-aziridinyl]-2-pentanone (33): it was obtained from the imine 32 ($0.792 \mathrm{~g}, 3.6 \mathrm{mmol}$): 0.60 g (75%); red oil; $[\alpha]_{D}{ }^{20}-59.3$ (c 1.2, CHCl_{3}); IR (neat): $v=2967,2865,1734,1593,1465,1436,1389 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=8.44(\mathrm{dd}, \mathcal{J}=0.9 \mathrm{~Hz}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\dagger \dagger, J=1.7 \mathrm{~Hz}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=$ $0.9 \mathrm{~Hz}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{ddt}, J=1.2 \mathrm{~Hz}, J=4.8 \mathrm{~Hz}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=17.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=3.4 \mathrm{~Hz}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, 1 H), 2.06 (dsept, $J=6.5 \mathrm{~Hz}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1$ $\mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=202.0$, $158.1,148.9,136.5,122.2,119.9,83.9,47.6,43.6,34.9,32.1,19.1,19.0 ; \mathrm{MS}$ (ES) $\mathrm{m} / \mathrm{z}=253.2$ $(\mathrm{M}+\mathrm{H})^{+}, 275.1(\mathrm{M}+\mathrm{Na})^{+}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{CIN}_{2} \mathrm{O}: \mathrm{C}, 61.78 ; \mathrm{H}, 6.78 ; \mathrm{Cl}, 14.03 ; \mathrm{N}, 11.08$; Found $C, 61.48 ; H, 6.88 ; C l, 13.99 ; N, 11.03$.

(S)-1-Chloro-4-methyl-3-[2(S)-(2-quinolyl)-1-aziridinyl]-2-pentanone (35): It was obtained starting from of the imine 34 ($0.621 \mathrm{~g}, 2.3 \mathrm{mmol}$): $0.514 \mathrm{~g}(78 \%)$; red oil; $[\alpha]_{0}^{20}$ -71.2 (c 1.2, CHCl $_{3}$); IR (neat): $v=3052,2964,2926,2875,1733,1618,1600,1505,1430$, $1428,1389,1313,1030,829,756,628 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.13(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1$ H), 8.04 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dt}, J=1.4 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57(\mathrm{dt}, \mathcal{J}=1.4 \mathrm{~Hz}, \mathcal{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, \mathcal{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.60(\mathrm{~d}, \mathcal{J}=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=3.3 \mathrm{~Hz}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~d}, \mathcal{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.19 (dsept, $J=6.3 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~d}, \mathcal{J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.00(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=201.1,158.9$, $147.4,136.9,129.6,128.6,127.5,127.4,126.1,117.0,83.7,47.7,44.2,35.2,32.4,19.2,19.1$; MS (ES): $m / z=303.1(M+H)^{+}, 325.0(M+N a)^{+}$. Anal. Calcd for $C_{17} H_{19} C I N_{2} O: C, 67.43 ; H$, 6.32; $\mathrm{Cl}, 11.71 ; \mathrm{N}, 9.25$. Found $\mathrm{C}, 67.40 ; \mathrm{H}, 6.36 ; \mathrm{Cl}, 11.67$; $\mathrm{N}, 9.20$.

2.3.3 - Dehalogenation of ketone 33

(S)-4-Methyl-3-[2(S)-(2-pyridyl)-1-aziridinyl]-2-pentanone (38): A solution of compound 33 ($0.102 \mathrm{~g}, 0.4 \mathrm{mmol}$), tri(n-butyl)tin hydride ($0.12 \mathrm{~mL}, 0.6 \mathrm{mmol}$) and AIBN (10 mg) in benzene (5 mL) was heated at the reflux temperature under an inert atmosphere for 3 h . Evaporation of the solvent at reduced pressure gave an oily residue that was subjected to chromatography on a SiO_{2} column eluting with cyclohexane-ethyl acetate $(70: 30)$ to obtain 28 as a red-brown oil: 0.076 g (88\%); red-brown oil: $[\alpha]_{0}^{20}-20.2$ ($c 1.0, \mathrm{CHCl}_{3}$); IR (neat): $v=$ 2936, 2932, 2874, 1710, 1594, 1565, 1436, 1353, 1212, 996, 776, 748; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.C D C l_{3}\right): \delta=8.50(d d d, J=1.0 \mathrm{~Hz}, J=1.7 \mathrm{~Hz}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dt}, J=1.7 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21(\mathrm{td}, \mathcal{J}=1.0 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{ddd}, J=1.2 \mathrm{~Hz}, J=4.9 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.68 (dd, $J=3.3 \mathrm{~Hz}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.12$ (dsept, $J=6.2 \mathrm{~Hz}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.07(\mathrm{~d}, \mathcal{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~d}, \mathcal{J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~d}, \mathcal{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~d}, \mathcal{J}=6.6$
$\mathrm{Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=210.1,159.0,149.0,136.6$, 122.1, 120.0, 85.9, 44.0, 34.7, 31.7, 27.1, 19.4, 19.2; MS (ES): $m / z=219.4(M+H)+241.4(M$ $+\mathrm{Na})^{+}$Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 71.53 ; \mathrm{H}, 8.31 ; \mathrm{N}, 12.83$. Found $\mathrm{C}, 71.21 ; \mathrm{H}, 8.38 ; \mathrm{N}, 12.64$.

2.3.4 - Oxidation of aziridine 14

(S)-3-Methyl-2-[2(S)-(2-pyridyl)-1-aziridinyl]butanal (41): To a solution of oxalyl chloride ($68 \mathrm{mg}, 45 \mu \mathrm{~L}, 0.53 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $-60^{\circ} \mathrm{C}$ was added dropwise a solution of DMSO ($83 \mathrm{mg}, 76 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL). After 10 min , a solution of aziridine 14 ($100 \mathrm{mg}, 0.49 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) was added dropwise, followed, after 15 minutes, by triethylamine ($246 \mathrm{mg}, 0.34 \mathrm{~mL}, 2.4 \mathrm{mmol}$). The temperature was slowly raised to $20^{\circ} \mathrm{C}$ and the mixture was further stirred for 2 h , then quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The organic phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the combined organic phases was concentrated. The residue was subjected to chromatography on a SiO_{2} column eluting with EtOAc to give 29 as a red oil: 74 mg (74%); $[\alpha]_{D}^{20}-24.6$ ($c 0.33, \mathrm{CHCl}_{3}$); IR (neat): $v=3059,2964,2919$, 2868, 1733, 1669, 1592, 1572, 1472, 1436, 1260, 1079, 804, 753; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.78(\mathrm{~d}, \mathcal{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{ddd}, \mathcal{J}=0.9 \mathrm{~Hz}, \mathcal{J}=1.8 \mathrm{~Hz}, \mathcal{J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dt}, \mathcal{J}=$ $1.8 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, \mathcal{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{ddd}, J=0.9 \mathrm{~Hz}, J=3.9 \mathrm{~Hz}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.64(\mathrm{dd}, J=3.5 \mathrm{~Hz}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.25$ (dsept, $J=5.7 \mathrm{~Hz}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.23(\mathrm{~d}, \mathcal{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{dd}, \mathcal{J}=2.8 \mathrm{~Hz}, \mathcal{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~d}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}), 0.98$ (d, J$=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, C D C I_{3}\right): \delta=202.9,158.8$, 149.2, 136.6, 122.2, 120.2, 83.1, 42.3, 35.1, 30.6, 19.2, 18.9; MS (ES): $m / z=205.4(M+H)^{+}$, $227.3(\mathrm{M}+\mathrm{Na})^{+}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 70.56 ; \mathrm{H}, 7.90 ; \mathrm{N}, 13.71$; Found $C, 70.32 ; \mathrm{H}$, 7.93; N, 13.66.

2.3.5 - Tratament in basic mediun of ketone 38 and aldehyde 41

3(S), 4(S)-3-Hydroxy-2-isopropyl-3-methyl-4-(2-pyridyl)-1-pyrroline (39a): To a solution of 38 ($300 \mathrm{mg}, 1.4 \mathrm{mmol}$) in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added $\mathrm{KOH}(0.118 \mathrm{~g}, 2.1 \mathrm{mmol})$. The mixture was heated at the reflux temperature for 2 h , then the solvent was evaporated at reduced pressure, $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added, and the organic phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 20 \mathrm{~mL})$. The combined organic layers was washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated at reduced pressure. The dark oily residue was subjected to chromatography on a SiO_{2} column eluting with EtOAc , then with a 90:10 EtOAc/MeOH mixture, to give 39a as a yellowish oil: 0.186 g (61%); $[\alpha]_{0}^{20}-120.2$ ($c 0.9, \mathrm{CHCl}_{3}$); IR (neat): $v=3245,2967,2931$, 2871, 1641, 1594, 1569, 1473, 1436, 1370, 1151, 1112, 987, 788, 751; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.C D C I_{3}\right): \delta=8.49(d, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, \mathcal{J}=7.7 \mathrm{~Hz}), 7.19(\mathrm{dd}, \mathcal{J}=4.3 \mathrm{~Hz}, \mathcal{J}=7.7 \mathrm{~Hz}, 2$ H), $6.22(b s, 1 H), 4.17(d d, J=7.9 \mathrm{~Hz}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, \mathcal{J}=6.9 \mathrm{~Hz}, J=15.5 \mathrm{~Hz}, 1$ H), 3.22 (dd, $J=6.9 \mathrm{~Hz}, \mathcal{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.82 (sept, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.43(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~d}, \mathcal{J}$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$: ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=185.3,160.1,148.4$, 137.1, 124.7, 121.8, 84.6, 64.0, 53.4, 28.0, 24.6, 21.8, 21.3; MS (EI): $m / z=218(M, 4), 175(5)$, 149 (6), 120 (3), 121 (10), 106 (100), 92 (8), 78 (15); MS (ES): $m / z=219.3(M+H)^{+}, 241.4$ (M $+\mathrm{Na})^{+}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: C, 71.53 ; \mathrm{H}, 8.31 ; \mathrm{N}, 12.83$. Found $\mathrm{C}, 71.56 ; \mathrm{H}, 8.34 ; \mathrm{N}$, 12.80.

3(S), 4(S)-3-Hydroxy-2-isopropyl-4-(2-pyridyl)-1-pyrroline (39b): this was obtained from $41(0.300 \mathrm{~g}, 1.45 \mathrm{mmol})$ by the same procedure used for 39a: $148 \mathrm{mg}(52 \%)$; yellowish oil; $[\alpha]_{0}^{20}{ }^{20} 98.7\left(c 1.4, \mathrm{CHCl}_{3}\right)$; IR (neat): $v=3241,2977,2927,2864,1647,1597,1578,1471$, $1430,1378,1141,988,784,757$: $^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.54(\mathrm{dt}, \mathcal{J}=1.7 \mathrm{~Hz}, \mathcal{J}=4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.64(\mathrm{td}, \mathcal{J}=1.9 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30$ ($\mathrm{dt}, \mathcal{J}=8.3 \mathrm{~Hz}, \mathcal{J}=14.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.76(\mathrm{dt}, J=8.6 \mathrm{~Hz}, \mathcal{J}=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dt}, J=8.3 \mathrm{~Hz}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87($ sept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~d}, \mathcal{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, \mathcal{J}=6.8 \mathrm{~Hz}, 3$ H): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=183.4,160.4$ (Py), 149., 136.7, 123.9, 122.5, 83.0, 61.7, 55.6, 29.4, 20.0, 19.0; the product decomposed during GC-MS analysis. Anal. Calcd for $C_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$: C, 70.56; H, 7.90; N, 13.71; Found C, 70.54; H, 7.93; N, 13.77.

2.3.6 - Catalysis reactions

The reactions of AAA are conducted as see in the Chapter 1.

General procedure for the addition of diethylzinc to aldehydes: To a solution of the ligand 14 ($0.1 \mathrm{mmol}, 0.021 \mathrm{~g}$) in anhydrous toluene (5 ml) at $0^{\circ} \mathrm{C}$ a solution of diethylzinc (1 M in hexane, 2 mL) was added. After 30 minutes the benzaldehyde ($1 \mathrm{mmol}, 101 \mu \mathrm{~L}$) was added and the temperature was rising at $25^{\circ} \mathrm{C}$. After 2.5 hour the reaction mixture was cooled at $0^{\circ} \mathrm{C}$ and $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{ml})$ was added. The organic phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times$ 10 mL), and the combined organic phases was concentrated. The residue was subjected to chromatography on a SiO_{2} column eluting column eluting with cyclohexane-ethyl acetate (90:10) to obtain 46 as oil.

The enantiomeric eccess of the benzylic alcohols and their absolute configuration were determined as reported in literature. ${ }^{50}$

2.4 - References

${ }^{1}$ For a review: (a) J. B. Sweeney, Chem. Soc. Rev. 2002, 31, 247; (b) W. Mc Coull, F. A. Davis Synthesis 2000, 1347; (c) J. B. Sweeney, H. I. M. Osborn Tetrahedron: Asymmetry, 1997, 8, 1693:
${ }^{2}$ (a) D. Tanner, Pure \& Appl. Chem. 1993, 65, 1319; (b) S. Furmeier, J. O. Metzger, Eur. J. Org. Chem., 2003, 649. (b) D. Tanner, Angew. Chem. Int. Ed. Engl., 1994, 33, 599.
${ }^{3}$ S. Gabriel, Ber. Dtsch. Chem. Ges. 1888, 21, 1049.
${ }^{4}$ (a) R. S. Atkinson, Tetrahedron 1999, 55, 1519; (b) P. Müller, C. Fruit, Chem. Rev. 2003, 103, 2905. (b) L. An-Hu, Li-Xin Dai, K. A. Varinder Chem. Rev. 1997, 97, 2341.
${ }^{5}$ I. D. G. Watson, L. Yu, A. K. Yudin, Acc. Chem. Res. 2006, 39, 194.
${ }^{6}$ (a) R. Breslow, S. H. Gellman, J. Chem. Soc., Chem. Commun. 1982, 1400 (b) R. Breslow, S. Gellman, J. Am. Chem. Soc. 1983, 105, 6729. (c) D. Mansuy, J. P. Mahy, A. Dureault, G. Bedi, G. Battioni, J. Chem. Soc., Chem. Commun. 1984, 1161. (d) J. P. Mahy, P. Battioni, D. Mansuy, J. Am. Chem. Soc. 1986, 108, 1079. (e) J. P. Mahy, G. Bedi, P. Battioni, D. Mansuy, J. Chem. Soc., Perkin Trans. 2 1988, 1517.
${ }^{7}$ (a) D. A. Evans, M. M. Faul, M. T. Bilodeau, J. Org. Chem. 1991, 56, 6744. (b) D. A. Evans, M. M. Faul, M. T. Bilodeau, J. Am. Chem. Soc. 1994, 116, 2742.
${ }^{8}$ (a) Z. Li, K. R. Conser, E. N. Jacobsen, J. Am. Chem. Soc. 1993, 115, 5326. (b) Z. Li, R. W. Quan, E. N. Jacobsen, J. Am. Chem. Soc. 1995, 117, 5889. (c) R. W. Quan, Z. Li, E. N. Jacobsen, J. Am. Chem. Soc. 1996, 118, 8156.
${ }^{9}$ H. Nishikori and T. Katsuki, Tetrahedron Lett., 1996, 37, 9245.
${ }^{10}$ K. B. Hansen, N. S. Finney and E. N. Jacobsen, Angew. Chem., Int. Ed. Engl., 1995, 34, 676.
${ }^{11}$ K. Juhl, R. G. Hazell and K. A. Jorgensen, J. Chem. Soc., Perkin Trans. 1, 1999, 2293.
${ }^{12}$ A. A. Cantrill, Lee D. Hall, A. N. Jarvis, H. M. I. Osborn, J. Raphy and J. B. Sweeney, Chem. Commun., 1996, 2631.
${ }^{13}$ F. A. Davis, H. Liu, P. Zhou, T. N. Fang, G. V. Reddy and Y. L. Zhang, J. Org. Chem., 1999, 64,7559.
${ }^{14}$ I. Okada, K. Ichimura, R. Sudo, Bull. Chem. Soc. Jpn, 1970, 43, 1185.
${ }^{15}$ (a) R. Appel, R. KleinstiJck, Chem Ber, 1974, 107, 5; (b) H. Fukase, N. Mizokami, S. Horii, Carbohydr. Res., 1978, 60, 289; (c) T. Kametani, Y. Kigawa, M. Ihara, Tetrahedron, 1979, 35, 313.
${ }^{16}$ J. R. Pfister, Synthesis, 1984, 969.
${ }^{17}$ H.M.I. Osborn, A.A. Cantrill, J.B. Sweeney, W. Howson, Tetrahedron Lett., 1994, 35, 3159.
${ }^{18}$ J.E. Baldwin, C.N. Farthing, A.T. Russell, C.J. Schofield, A.C. Spivey, Tetrahedron Lett., 1996, 37, 3761.
${ }^{19}$ For example, see (a) W. Oppolzer, E. Flaskamp, Helv Chim Acta, 1977, 60, 204; (b) D. D. Keith, S. De Bernardo, M. Weigele, Tetrahedron, 1975, 31, 2629; (c) D. Enders, P. Fey, H. Kipphardt, Org. Synth. 1987, 65, 173; (d) G. A. Smith, R. E. Gawley, Org. Synth. 1984, 63, 136; (e) C. C. Tsang, S. Terashima, S. Yamada, Chem. Pharm Bull., 1977, 25, 166.
${ }^{20}$ M. B. Berry, D. Craig, Syn. Lett., 1992, 41.
${ }^{21}$ (a) M. Kasai and M. Kono, SynLett, 1992, 778; (b) W. A. Remers, The Chemistry of Antitumour Antibiotics, Wiley-Interscience, 1979, Vol. 1, p. 242; (c) W. A. Remers and R. T. Dorr, Alkaloids: Chemical and Biological Perspectives, ed. S. W. Pelletier, Wiley, New York, 1988, Vol. 6, p. 1.
T. Katoh, E. Itoh, T. Yoshino and S. Terashima, Tetrahedron, 1997, 53, 10229.
${ }^{23}$ (a) T. J. Hodgkinson and M. Shipman, Tetrahedron, 2001, 57, 4467; (b) R. S. Coleman, J. S. Kong and T. E. Richardson, J. Am. Chem. Soc., 1999, 121, 9088; (c) R. S. Coleman, J. Li and A. Navarro, Angew. Chem., Int. Ed., 2001, 40, 1736.

24 (a) I. Han and H. Kohn, J. Org. Chem., 1991, 56, 4073; (b) E. B. Skibo, I. Islam, M. J. Heileman and W. G. Schulz, J. Med. Chem., 1994, 37, 78.
${ }^{25}$ (a) P. D. Sente and C. J. Springer, Adv. Drug Del. Rev., 2001, 53, 247; (b) N. R. Monk, D. C. Blake, N. J. Curtin, S. J. East, A. Heuze and D. R. Newell, Br. J. Cancer, 2001, 85, 764.
26 J. G. H. Willems, F. J. Dommerholt, J. B. Hammink, A. M. Vaarhorst, L. Thijs, B. Zwanenburg, Tetrahedron Lett. 1995, 36, 603.
${ }^{27}$ D. Tanner, H. T. Korno, D. Guijarro, P. G. Andersson, Tetrahedron 1998, 54, 14213.
${ }^{28}$ C. F. Lawrence, S. K. Nayak, L. Thijs, B. Zwanenburg, SynLett 1999, 1571.
${ }^{29}$ P. ten Holte, J.P. Wijgergangs, L. Thijs, B. Zwanenburg, Org. Lett. 1999, 1, 1095.
${ }^{30}$ (a) D. Tanner, F. Johansson, A. Harden, P. G. Andersson, Tetrahedron 1998, 54, 15731. (b) D. Tanner, A. Harden, F. Johansson, P. Wyatt, P. G. Andersson, Acta Chem. Scand. 1996, 50, 361. (c) D. Tanner, P. G. Andersson, A. Harden, P. Somfai, Tetrahedron Lett. 1994, 35, 4631. (d) Andersson, P. G. Harden, A. Tanner, D. Norrby, P.-O. Chem. Eur. J. 1995, 1, 12.
${ }^{31}$ A. L. Braga, P. Milani, M. W. Paixão, G. Zeni, O. E. D. Rodrigues and E. F. Alves Chem. Commun., 2004, 2488.
${ }^{32}$ A. Bulut, A. Aslan, E. C. Izgü, Ö Dogan, Tetrahedron: Asymmetry 2007, 18, 1013.
${ }^{33}$ A. Isleyen, Ö Dogan, Tetrahedron: Asymmetry 2007, 18, 679.
${ }^{34}$ H. Koyuncu, Ö Dogan, Org. Lett 2007, 9, 3477.
${ }^{35}$ (a) K. Fiore, G. Martelli, M. Monari, D. Savoia, Tetrahedron: Asymmetry 1999, 10, 4803;
(b) D. Savoia, G. Alvaro, R. Di Fabio, C. Fiorelli, A. Gualandi, M. Monari, F.Piccinelli, Adv. Synth. Catal., 2006, 348, 1883.
${ }^{36}$ D. Morton, D. Pearson, R. A. Field, R. A. Stockman, Synlett 2003, 1985.
${ }^{37}$ L. De Vitis, S. Florio, C. Granito, L. Ronzini, L. Troisi, V. Capriati, R. Luisi, T. Pilati, Tetrahedron 2004, 60, 1175.
${ }^{38}$ K. Kells, J. M. Chong, Org. Lett. 2003, 5, 4215.
${ }^{39}$ (a) T. Basile, A. Bocoum, D. Savoia, A. Umani-Ronchi, J. Org. Chem. 1994, 59, 7766. (b) G. Alvaro, C. Boga, D. Savoia, A. Umani-Ronchi, J. Chem. Soc., Perkin Trans. 1 1996, 875. (c) G. Alvaro, D. Savoia, Tetrahedron: Asymmetry 1996, 7, 2083. (d) G. Alvaro, D. Savoia, M. R. Valentinetti, Tetrahedron 1996, 38, 12571. (e) G. Alvaro, P. Pacioni, D. Savoia, Chem. Eur. J. 1997, 3, 726. (f) G. Alvaro, G. Martelli, D. Savoia, J. Chem. Soc., Perkin Trans. 1 1998, 775. (g) G. Alvaro, D. Savoia, Synlett 2002, 651.

40 J. Furukawa, N. Kawabata, J. Nishimura, Tetrahedron Lett. 1966, 3353.
${ }^{41}$ J. M. Concellón, P. L. Bernad, J. A. Pérez-Andrés J. Org. Chem. 1997, 62, 8902.
42 (a) J. Barluenga, B. Baragaňa, J. M. Concellón, J. Org. Chem. 1999, 64, 2843. (b) B. Bessieres, C. Morin, Synlett 2000, 1691. (c) J. M. Concellón, H. Cuervo, R. Fernández-Fano, Tetrahedron 2001, 57, 8983. (d) B. Bessieres, C. Morin, J. Org. Chem. 2003, 68, 4100.
${ }^{43}$ (a) J. Barluenga, B. Baragaňa, A. Alonso, J. M. Concellón, J. Chem. Soc., Chem. Commun. 1994, 969. (b) J. Barluenga, B. Baragaña, J. M. Concellón, J. Org. Chem. 1995, 60, 6696.
${ }^{44}$ L. M. Pratt, L. T. Lê, T. N. Truong, J. Org. Chem. 2005, 70, 8298.
${ }^{45}$ (a) S. Dalili, A. K. Yudin, Org. Lett. 2005, 7, 1161. (b) Similarly, N-formylaziridine displays basic properties at nitrogen rather than at oxygen, this has been associated with nitrogen pyramidalization: I. Alkorta, C. Cativiela, J. Elguero, A. M. Gil, A. I. Jiménez, New J. Chem. 2005, 29, 1450.
${ }^{46}$ This procedure has been used to remove the N-substituent (chiral auxiliary) from 1-(2-hydroxy-1-phenylethyl)-2-arylpyrrolidines: (a) A. I. Meyers, L. E. Burgess, J. Org. Chem. 1991, 56, 2294. (b) K. Higashiyama, H. Inoue, H. Takahashi, Tetrahedron 1994, 50, 1083.
${ }^{47}$ (a) N. J. Leonard, S. Gelfand, J. Am. Chem. Soc. 1955, 77, 3269. (b) L. Caglioti, G. Rosini, F. Rossi, J. Am. Chem. Soc. 1966, 88, 3865.
${ }^{48}$ J. A. Weitgenant, J. D. Mortison, P. Helquist, Org. Lett. 2005, 7, 3609.
49 J. Åhman, T. Jarevång, P. Somfai, J. Org. Chem. 1996, 61, 8148.
${ }^{50}$ A. Bisai, P. K. Singh, V. K. Singh, Tetrahedron 2007, 63, 598.

Chapter Index

Chap. 2 - Asymmetric Synthesis of 2-(2-Pyridyl)aziridines from 2-PyridineiminesBearing Stereogenic N-Alkyl Substituents. ... 432.1 - Introduction.. 432.1.1 - Preparation of aziridine 43
2.1.2 - Aziridine ring in biologically active compounds 49
2.1.3 - Aziridines as chiral ligands. 52
2.2 - Asymmetric synthesis of 2-(2'-pyridyl)aziridines 54
2.2.1 - Addition of "carbenoid" reagents to chiral aromatic imines 55
2.2.2 - Variation of aromatic ring 57
2.2.3 - Different chiral auxiliaries 60
2.2.4 - Removal of N -substituent 62
2.2.5 - Use of the 2-(2-pyridyl)aziridines as chiral ligand 64
2.3 - Experimental section 66
2.3.1 - General protocol for the preparation of Imines 66
2.3.2 - Reaction of imines with methyllithium/chloroiodomethane. 68
2.3.3 - Dehalogenation of ketone 33 72
2.3.4 - Oxidation of aziridine 14 73
2.3.5 - Tratament in basic mediun of ketone 38 and aldehyde 41 73
2.3.6-Catalysis reactions 75
2.4 - References 75
Chapter Index 79

Chap. 3 - Asymmetric Route to Pyridines Bearing
 a Highly Functionalized 2-Alkyl Substituent by Aziridine Ring Opening Reactions

3.1 - Introduction

The aziridine ring is one of the most valuable building blocks in modern synthetic chemistry, ${ }^{1}$ because of its widely recognized versatility for chemical bond elaborations and functional group transformations. Its reactivity is dominated by the electrophilic nature at carbon atoms and generally involves cleavage of the strained three-membered ring, by a wide range of nucleophiles to give β-substituted amines. Its potency is the combination of Bceyer strain (estimated around $111 \mathrm{~kJ} / \mathrm{mol}$, comparable with that of oxirane) and the electronegativity of the heteroatom: this means that aziridines are willing to undergo ringcleavage reactions under relatively mild conditions. As might be expected, due to the diminished electronegativity of nitrogen compared to oxygen, ring-opening reactions of these hetero-cycles are less facile than the corresponding reactions of epoxides, but there is still a wealth of examples of such chemistry. There are several features of these reactions which are worthy of consideration.

Where an aziridine is unsymmetrically-substituted (as would typically be the situation), reaction with a nucleophile can lead to two products of ring-opening (Scheme 1): one derived from nucleophilic attack at C2-carbon and one from the attack to C3-carbon. As would be expected most nucleophiles preferentially direct their attack to the site of lesser substitution, though electronic considerations (for instance in the ring-opening of 2 arylaziridines) may perturb this preference.

Scheme 1

Chiral aziridines undergo regio- and stereoselective ring opening to access to chiral amines with predictable α and β stereochemistry. The increasing synthetic accessibility of chiral aziridines ${ }^{2}$ has propelled their use in ring opening reactions in asymmetric organic synthesis. In general, two types of aziridine can be considered: activated and unactivated (Scheme 2). The former contain substituents capable of stabilising by coniugation the developing negative charge on nitrogen during nucleophilic ring opening. The latter, also known as simple aziridines are generally unsubstituted or with alkyl substitution on nitrogen and usually require acid catalysis (protonation or Lewis acid) to facilitate ring opening.

"nonactivated"

$$
R=H, \text { alkyl, aryl } \quad R=C O R^{\prime}, C O_{2} R^{\prime}, S O_{2} R^{\prime}
$$

Scheme 2

A large variety of nucleophiles have been employed successfully in asymmetric ringopening (ARO) reactions, with the majority of these being heteroatom-based such as azide, alcohols, thiols, amines, halides or carbon-based nucleophiles (Scheme 3). Nucleophilic ring opening of aziridine cover examples of broad applications for the synthesis of amino acids, aza-sugars, chiral ligands, biologically active compounds, natural products and other synthesis. In this introduction I desire to report some applications of chiral aziridine's ring opening in the synthesis of chiral organic compounds.

Scheme 3

Chloramphenicol (3) is one of the oldest antibacterial agents and only its ($2 R, 3 R$) enantiomer is active. Wulff and co-workers reported the synthesis of this important antibiotic in enantiomerically pure form in only four steps, ${ }^{3}$ where one step consist in the regio- and stereoselective opening of the aziridine ring by heating with dichloroacetic acid (Scheme 4). The enantiopure aziridine (1) was synthetized by the reaction of ethyldiazoacetate and the N-benzyl-p-nitrobenzaldimine in the presence of the chiral catalyst prepared from tiphenylborate and (R)-VAPOL. The treatment of 1 with an excess of dichloroacetic acid under forcing condition resulted in the ring opening of the the protonated aziridine by the dichloroacetate anion with complete inversion of configuration. Under the reaction conditions the benzyl protecting group was removed and the amine was chloroacetilated to give the amide (2). Finally the ester function was reduced with sodium borohydride to give the (-)-chloramphenicol (3) with good yield.

Scheme 4

The same author ${ }^{4}$ described the reductive ring opening of the aziridine 4 (Scheme 5) with borane-trimethylamine complex in the presence of TFA to give the amino ester 5 . The amine 5 was converted into the compound 6 (BIRT-377), an antagonist of the leukointegrin LFA-1.

Scheme 5

An interesting example of application of aziridine's ring opening is found in the Harada's preparation of chital diazepines 10 possessing highly potent 5-HT3 receptor antagonist activity (Scheme 6) ${ }^{5}$. The activated aziridine 7, derived from serine, was opened by the diamine 8 to give the aminoester 9, which was converted trought deprotection, cyclization and reduction to the diazepine 10.

1. $\mathrm{HCl} 30 \%$
2. 2 Maq . NaOH
3. EDC

4. $47 \% \mathrm{HBr}$ 2. DIBAL-H

Scheme 6

The opening of chiral aziridino alcohols was applied to the enantioselective synthesis of some members of the important class of carbapenem antibiotics. For example the regioand steroselective opening of the aziridino alcohol 11 (Scheme 7) ${ }^{6}$ by lithium diethylcuprate give the amino alcohol 12, precursor of the β-lactams 13, a intermediate of the PS5 carbapenem 14.

14, PS-5

Scheme 7

Shibasaki and co-workers ${ }^{7}$ developed a new synthesis of Tamiflu (oseltamivir phosphate 18) an orally active anti-influenza drug that potently inhibits neuramidase, an enzyme crucial for the release and spread of the avian influenza virus from infected cells. ${ }^{8}$ One of the first step of the synthesis consists of catalytic desymmetrization of meso-
aziridine (15) with TMSN_{3} using a Yittrium complex of chiral ligand 17 to give the azido amine 16 with 96% of yield and 91% of e.e. (e.e. 99% after recrystalization).

Scheme 8

Finally Hudlicky ${ }^{9}$ studied a new synthesis of 7-deoxypancratistatin (21), a compound highly active against many cancer cell lines, via region- and stereoselective intramolecular ring opening of the chiral aziridine 19 in presence of silica gel as Lewis acid.

Scheme 9

I have reported in the Chapter 2 the synthesis of the 2-(2-pyridyl)-substituted aziridine 22 by the addition of chloromethyllithium to the pyridineimine derived from (S)valinol. ${ }^{10}$ Stimulated by the plethora of reports describing the ring-opening of unactivated aziridines by hetero-nucleophiles, we applied a few such procedures to the aziridine 22, aiming to assess the factors controlling the regioselectivity of the nucleophilic attack, providing the polyfunctional compounds 23 and/or 24 (Scheme 10). In particular, we planned to prepare the compounds 23, whose stuctural features are the homobenzylic amine moiety and the benzylic stereocenter. We envisaged that these compounds and those obtained by removal or transformation of the N-substituent can find use as chiral non-racemic polydentate ligands in enantioselective catalytic reactions. Moreover, this skeleton is present
in a number of compounds, e.g. 25^{11} and 26^{12}, which have been described in recent patents reporting their herbicide and fungicide properties.

25
X: OH, NHR, SR

26
X: OH, NHR; Ar = hetaryl

Scheme 10

3.2 - Results and discussion

The protocols for the Lewis acid-promoted nucleophilic ring opening of analogous substituted aziridines, as described by other groups, were taken into account. A series of reactions with several hetero-nucleophiles in different experimental conditions demonstrated that it is possible to activate the aziridine ring and control the regioselectivity of the ringopening process by the proper choice of the reagent, Lewis acid and solvent.

The reactions gave the products 23 (Scheme 11), coming from nucleophilic attack at the more substituted aziridine carbon, either exclusively or together with the alternative product 24 (Table 1). Initial attempts involved water as the nucleophile in the presence of a protic ${ }^{13}$ or Lewis acid catalyst. ${ }^{14}$ Heating a mixture of aziridine 22 and p-toluenesulfonic acid ($20 \mathrm{~mol} \%$) in 9:1 acetonitrile-water at the reflux temperature for 6 h gave a mixture of the regioisomeric ring-opening products $23 a$ and $24 a(82: 18)$, which were separated by column chromatography. Slightly better results were obtained using cerium trichloride heptahydrate (30 mol \%) with other experimental conditions remaining constant; by this manner an improved regioselectivity $(86: 14)$ was obtained.

23

a: $X=O H$
f: $X=$ S-2-Naphthyl
b: $X=N_{3}$
g: $\mathrm{X}=\mathrm{SPh}$
c: $\mathrm{X}=\mathrm{NHCH}_{2} \mathrm{Ph}$
h: $\mathrm{X}=\mathrm{SCH} \mathrm{H}_{2} \mathrm{Ph}$
d: $X=\mathrm{NHC}_{6} \mathrm{H}_{4}-4-\mathrm{OMe}$
i: $\mathrm{X}=\mathrm{S}-n-\mathrm{Bu}$
e: $\mathrm{X}=\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}$

Scheme 11

Then, efforts were devoted to optimize the reaction with sodium azide, with the aim of preparing the benzylic azide 23b. By using sodium azide as the nucleophile source, an acetonitrile-water mixture (9:1) was used as the solvent. Having observed no reactivity at the reflux temperature in the absence of a Lewis acid, we evaluated ceric ammonium nitrate (CAN) and cerium trichloride heptahydrate, ${ }^{15}$ which were both found to be effective catalysts in the same solvent mixture either at room temperature or at the reflux temperature.

In both cases we obtained good results. As a matter of fact, the benzylic azide 23b was formed exclusively and isolated in high yield. A slightly lower yield of 24b was obtained using sodium azide (2 equivalents) and aluminum trichloride ${ }^{16}$ (10 mol\%) in 1:1 EtOH-H2O after 24 h at $25^{\circ} \mathrm{C}$. On the other hand, trimethylsilyl azide, ${ }^{17}$ when used in aprotic solvents (THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), gave a mixture of the azides 23 b (prevalent) and 24 b . The reaction rate increased in the presence of tetrabutylammonium fluoride; ${ }^{17 c, d}$ in this case, the amount of the benzylic amine 24b was also increased, such that this compound could be isolated by column chromatography.

Table 1

Reagent (eq.)	Additive (mol \%)	Solvent, T, t	$\begin{aligned} & \text { Ratio } \\ & 23 / 24^{[a]} \end{aligned}$	23,yield (\%) ${ }^{[b]}$	24 ,yield (\%) ${ }^{[b]}$
$\mathrm{H}_{2} \mathrm{O}$	p-TsOH (20)	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(9: 1), \\ \text { reflux, } 6 \mathrm{~h} \end{gathered}$	82:18	23a, 77	24a, 14
$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(30)$	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN}^{2} \mathrm{H}_{2} \mathrm{O}(9: 1), \\ \text { reflux, } 8 \mathrm{~h} \end{gathered}$	86:14	23a, 71	24a, 8
$\mathrm{NaN}_{3}(1.5)$	-	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN}^{\mathrm{N}} \mathrm{H}_{2} \mathrm{O}(9: 1), \\ \text { reflux, } 6 \mathrm{~h} \end{gathered}$	-	-	-
$\mathrm{NaN}_{3}(1.1)$	CAN (10)	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN}^{2}-\mathrm{H}_{2} \mathrm{O}(9: 1), \\ 25^{\circ} \mathrm{C}, 24 \mathrm{~h} \end{gathered}$	100:0	23b, 91	-
$\mathrm{NaN}_{3}(1.1)$	CAN (10)	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN}^{2}-\mathrm{H}_{2} \mathrm{O}(9: 1), \\ \text { reflux, } 5 \mathrm{~h} \end{gathered}$	100:0	23b, 94	-
$\mathrm{NaN}_{3}(1.1)$	$\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(10)$	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(9: 1), \\ 25^{\circ} \mathrm{C}, 18 \mathrm{~h} \end{gathered}$	100:0	23b, 92	-
$\mathrm{NaN}_{3}(1.1)$	$\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(10)$	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(9: 1), \\ \text { reflux, } 4 \mathrm{~h} \end{gathered}$	100:0	23b, 91	-
$\mathrm{NaN}_{3}(2)$	$\mathrm{AlCl}_{3}(10)$	$\begin{gathered} \mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}(1: 1), 25 \\ { }^{\circ} \mathrm{C}, 24 \mathrm{~h} \end{gathered}$	100:0	23b, 62	-
TMSN ${ }^{\text {(2) }}$	-	$\mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}, 20 \mathrm{~h}$	91:9	23b, 87	$24 \mathrm{~b}^{[c]}$
TMSN ${ }_{3}$ (2)	-	$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 48 \mathrm{~h}$	80:20	23b, 73	24b, 16
TMSN ${ }_{3}$ (2)	n-Bu4NF (20)	THF, $25^{\circ} \mathrm{C}, 20 \mathrm{~h}$	65:35	23b, 58	24b, 31

[a] Determined by ${ }^{1}$ HNMR analysis of the crude product. [b] Yield of product isolated by column chromatography $\left(\mathrm{SiO}_{2}\right)$. [c] The product was not isolated.

The reactions with the primary amines benzylamine and p-anisidine in different conditions always gave mixtures of the isomeric products $23 c$, d and 24 c , d . The best ratio in favour of $23 c(75: 25)$ and $24 d$ ($71: 29$) was obtained in the presence of the hydrated ceric salt in acetonitrile-water. In comparison the use of anhydrous zinc triflate ${ }^{18}$ or lithium perchlorate $e^{18,19}$ in acetonitrile led to lower selectivities. Moreover, no reaction was observed with benzylamine and zinc triflate in dichloromethane. All the four compounds 23c,d and 24c, d could be isolated, preferably from the properly enriched reaction mixtures. Similarly, the reaction with dibenzylamine in the optimal reaction coditions gave the two products $23 e$ and 24 e in almost 1:1 ratio, and they were separated chromatographically with some difficulty.

Table 2

Reagent (eq.)	Additive ($\mathrm{mol} \%$)	Solvent, T, t	$\begin{gathered} \text { Ratio } \\ 23 / 24^{[a]} \end{gathered}$	23, yield (\%) ${ }^{[b]}$	24, yield (\%) ${ }^{[b]}$
$\mathrm{PhCH}_{2} \mathrm{NH}_{2}$ (2)	$\begin{gathered} \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O} \\ (50) \end{gathered}$	$\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(9: 1),$ reflux, 6 h	75:25	2c, 67	$24 c^{c}$
$\mathrm{PhCH}_{2} \mathrm{NH}_{2}$ (2)	$\begin{gathered} \mathrm{Zn}(O T f)_{2} \\ (10) \end{gathered}$	$\mathrm{CH}_{3} \mathrm{CN}$, reflux, 8 h	51:49	23c, 38	24c, 40
$\mathrm{PhCH}_{2} \mathrm{NH}_{2}$ (2)	$\begin{gathered} \mathrm{Zn}(O T f)_{2} \\ (10) \end{gathered}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 6 h	-	-	-
$\mathrm{PhCH}_{2} \mathrm{NH}_{2}$ (2)	$\mathrm{LiClO}_{4}(10)$	$\mathrm{CH}_{3} \mathrm{CN}$, reflux, 8 h	40:60	$23 c^{[c]}$	$24 c^{[c]}$
$\begin{gathered} 4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2} \\ (1.2) \end{gathered}$	$\mathrm{LiClO}_{4}(10)$	$\mathrm{CH}_{3} \mathrm{CN}$, reflux, 24 h	69:31 ${ }^{\text {[d] }}$	23d, 62	24d, 27
$4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$ (1.2)	$\begin{gathered} \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O} \\ (50) \end{gathered}$	$\mathrm{CH}_{3} \mathrm{CN}$, reflux, 24 h	71:29	23d, 51	24d, 24
$\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{NH}$ (2)	$\begin{gathered} \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O} \\ (50) \end{gathered}$	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(9: 1), \\ & \text { reflux, } 5 \mathrm{~h} \end{aligned}$	53:47	23e, 48	$24 e, 41$
2-NaphthyISH (1.1)	$\begin{gathered} \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O} \\ (30) \end{gathered}$	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(9: 1), \\ \text { reflux, } 2 \mathrm{~h} \end{gathered}$	100:0	23f, 92	-
2-NaphthylSH (3)	-	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(9: 1), \\ \text { reflux, } 5 \mathrm{~h} \end{gathered}$	75:25	23f, 57	24f, 18
2-NaphthyISH (3)	-	$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$	70:30	23f, 54	24f, 19
PhSH (1.1)	$\begin{gathered} \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O} \\ (30) \end{gathered}$	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(9: 1), \\ \text { reflux, } 4 \mathrm{~h} \end{gathered}$	96:4	23g, 84	24g, 3
PhSH (3)	-	$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}$	50:50	239, 42	24g, 45
$\mathrm{PhCH}_{2} \mathrm{SH}$ (1.1)	$\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (30)	$\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(9: 1),$ reflux, 2 h	70:30	23h, 65	24h, 23
n-BuSH (1.1)	$\begin{gathered} \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O} \\ \text { (30) } \end{gathered}$	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(9: 1), \\ \text { reflux, } 4 \mathrm{~h} \end{gathered}$	_ [e]	$\begin{aligned} & 23 i, 57 \\ & 23 a, 12 \end{aligned}$	-
t-BuSH (1.1)	$\begin{gathered} \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O} \\ (30) \end{gathered}$	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(9: 1), \\ \text { reflux, } 4 \mathrm{~h} \end{gathered}$	81:19	23a, 62	24a, 9
t-BuSH (1.1)	p-TsOH (50)	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(9: 1), \\ \text { reflux, } 4 \mathrm{~h} \end{gathered}$	85:15	23a, 79	24a, 11

[^0]The positive effect of both the protic solvent and the cerium salt was particularly evident in the reactions of the aziridine 22 with aromatic thiols. In the case of 2 naphthalenethiol (1.1 equiv.), the benzylic sulfide 23 f was obtained exclusively with high yield
after heating in the presence of the hydrated ceric salt in 9:1 acetonitrile- $\mathrm{H}_{2} \mathrm{O}$ at the reflux temperature for $2 \mathrm{~h} .{ }^{20}$ On the other hand, lower reaction rates and mixtures of 23 f and 24 f were observed in the absence of the catalyst in the same solvent mixture and in dichloromethane. ${ }^{21}$ Similar results were obtained in the case of thiophenol, whereas the reaction with benzylthiol gave a mixture of the products 23 h and 24 h (70:30) in the optimized conditions. The reaction with n-butylthiol was even less satisfactory, as it afforded a mixture, from which only the prevalent sulfide $23 i$ and the alcohol 24 a were isolated by column chromatography. Finally, t-butylthiol was ineffective, as we only obtained the alcohols $23 a$ and $24 a$, coming from the competitive ring opening by water.

23

24

1) $\mathrm{H}_{5} \mathrm{IO}_{6}, \mathrm{MeNH}_{2}$ $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$
2) $\mathrm{PhCOCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ acetone- $\mathrm{H}_{2} \mathrm{O}$

25

26

26b: $R=N_{3}, 78 \%$
26f: R = S-2-Naphthyl, 83\%
26g: $R=S P h, 82 \%$
26g: $\mathrm{R}=\mathrm{SCH}_{2} \mathrm{Ph}, 84 \%$

Scheme 12

A few of the compounds 23 and 24 were subjected to routine oxidative cleavage of the N-substituent to obtain the corresponding homobenzylic and benzylic amines, which were immediately converted to the benzamides 25 and 26 with good overall yields (Scheme 12). Moreover, the azide 23b was converted to the 1-(2-pyridyl)-1,2-diamine 27 by the three-step sequence described in Scheme 13, avoiding purification of the intermediates. In particular, after the usual oxidative cleavage of the N-substituent, we tried the reduction of the azide group with lithium aluminum hydride at $0^{\circ} \mathrm{C}$, but a complex mixture of products was obtained. Alternatively, the β-azido amine was treated with triphenylphosphine, then hydrolysis of the
intermediate ylide gave the primary diamine 27. It should be observed that the analogous process carried out on the isomeric azide-amine 24 b would give the enantiomer of the amine
27.

Scheme 13

Other methodologies to achieve ring opening reactions of the aziridine ring in the aziridine-alcohol 22 were then studied (Scheme 14). The secondary amine 28 was obtained by hydrogenolysis of the more substituted $C-N$ bond of the aziridine-alcohol 22 in the presence of $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$. Surprisingly, treatment of 22 with an excess of hydroiodic acid gave the same amine 28. A literature survey showed that hydroiodic acid displays reducing properties towards many organic compounds. ${ }^{22}$ In particular, reductions of α-halo ketones by iodide ion and hydroiodic acid have been reported. ${ }^{23}$ Based on these reports, we propose that ringopening occurs first to give the iodide 29, which is then reduced by iodide attack (Scheme 15).

Scheme 14

The reactions of aziridine-alcohol 22 with an excess of both carbonyldiimidazole (CDI) and reactive alkyl halides were then carried out, as these reactions were expected to give halogenated products coming from the ring opening of the aziridine by halide ion. ${ }^{24}$ Presumably, the halide ion is generated by N-alkylation of one imidazole ring of CDI or a reaction intermediate. ${ }^{25}$ However, when methyl iodide was used the only product observed was the imidazolidinone 30, which was also prepared by reaction of the amino alcohol 28 with CDI. In order to account for this result, the iodide 31 is proposed as an intermediate in the formation of 30 from 22.

Scheme 15

The bromide 32 was obtained by reaction of 22 with CDI and an excess of allyl bromide in acetonitrile at room temperature (Scheme 16). The diastereomeric bromide was detected in 10% in the crude reaction mixture. It showed the ${ }^{1} \mathrm{H} N \mathrm{NR}$ absorption of the CHBr proton at lower field with respect to the major diastereomer, and its amount increased to 33% when the reaction was carried out at reflux temperature. Interestingly, analogous reactions of 2-(2-hydroxyalkyl)aziridines described in the literature gave compounds coming from attack of halide ions to the unsubstituted aziridine carbon. ${ }^{24}$ The bromine in 32 could be easily substituted by reaction with sodium azide in refluxing DMF to give the azidooxazolidinone 33 as a single stereoiosomer. The complete or very high stereoselectivity observed in the described transformations of both the aziridine 22 and the bromide 32 involving cleavage of the benzylic $C-N$ and $C-B r$ bonds, respectively, points to an $S_{N} 2$ mechanism operating with inversion of configuration.

Scheme 16

Finally, reaction of 22 with two equivalents of acetyl chloride gave the polyfunctional compound 34 by N, O-diacetylation and concomitant aziridine ring-opening by chloride ion (Scheme 17).

Scheme 17

In conclusion, the ring-opening reaction of the 2-(2-pyridyl)aziridine 22 with heteronucleophiles in optimized experimental conditions, i.e. in acetonitrile-water mixture as the solvent, and in the presence of a catalytic amount of ceric trichloride heptahydrate, proved to be a useful route to a variety of laterally di-functionalized pyridines.

3.3-Experimental section

3.3.1 - General protocol for ring opening reaction of 22

$\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$-catalyzed hydrolytic ring-opening of aziridine 22. Preparation of pyridine-amine-diols 23a and 24 a . $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(0.054 \mathrm{~g}, 0.15 \mathrm{mmol})$ was added to the solution of the aziridine $22(0.100 \mathrm{~g}, 0.48 \mathrm{mmol})$ in 1:1 $\mathrm{CH}_{3} \mathrm{CN}^{2} \mathrm{H}_{2} \mathrm{O}$ mixture (20 mL). The mixture was stirred at the reflux temperature for 8 h : T.L.C. analysis showed that the starting material was totally consumed and two products were formed. Saturated aqueous solution of NaHCO_{3} (10 mL) was added and the organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The collected ethereal layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to leave a brown oily residue which was subjected to chromatography eluting with $\mathrm{EtOAc} / \mathrm{MeOH} / 30 \% \mathrm{NH}_{4} \mathrm{OH}$ (98:2:1) mixture.
$\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$-Catalyzed ring-opening of the aziridine 1 by hetero-nucleophiles. Preparation of laterally poly-functionalized pyridines 23b-i and 24b-d,f-h. Typical procedure: Sodium azide ($0.034 \mathrm{~g}, 0.52 \mathrm{mmol}$) and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(0.090 \mathrm{~g}, 0.24 \mathrm{mmol})$ were added to the solution of the aziridine $22(0.100 \mathrm{~g}, 0.48 \mathrm{mmol})$ in a 9:1 $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ mixture $(20 \mathrm{~mL}$). The mixture was stirred at the reflux temperature for $2 \mathrm{~h}:$ T.L.C. analysis showed that the starting material was totally consumed. The organic materials were extracted with
$\mathrm{EtOAc}(3 \times 20 \mathrm{~mL})$. The collected ethereal layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to leave 23 a as a yellowish oil: Pure 23 b ($0.109 \mathrm{~g}, 71 \%$) was obtained by column chromatography on a short SiO_{2} column eluting with cyclohexane/EtOAc mixture.

(S)-2-[(R)-2-Hydroxy-2-(2-pyridyl)ethylamino]-3-methyl-1-butanol (23a): Yellow oil; $[\alpha]_{0}{ }^{20}+24.2\left(c 1.3, C H C l_{3}\right)$. IR (neat): $v=3406,2962,2925,1658,1597,1413,1260,1049$, $794,751 .{ }^{13} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.55(\mathrm{ddd}, \mathcal{J}=0.7, J=1.3, J=4.7,1 \mathrm{H}), 7.72(\mathrm{dt}, \mathcal{J}$ $=1.7, \mathcal{J}=7.6,1 \mathrm{H}), 7.38(\mathrm{dt}, \mathcal{J}=0.9, \mathcal{J}=7.9,1 \mathrm{H}), 7.23(\mathrm{ddd}, \mathcal{J}=0.7, \mathcal{J}=4.7, \mathcal{J}=7.6,1 \mathrm{H})$, 4.86 (dd, $\mathcal{J}=3.6, \mathcal{J}=7.5,1 \mathrm{H}$), 3.65 (dd, $\mathcal{J}=4.1, \mathcal{J}=10.8,1 \mathrm{H}$), 3.38 (dd, $\mathcal{J}=7.7, \mathcal{J}=10.8,1$ H), 3.06 (dd, $J=3.6, J=12.0,1 \mathrm{H}$), 2.97 (bs, 3 H), 2.90 ($\mathrm{dd}, \mathcal{J}=7.5, \mathcal{J}=12.0,1 \mathrm{H}$), 2.43 (ddd, $J=4.1, J=6.7, \mathcal{J}=7.7,1 \mathrm{H}$) , 1.81 (sept, $\mathcal{J}=6.9,1 \mathrm{H}$), $0.97(\mathrm{~d}, \mathcal{J}=6.8,3 \mathrm{H}$), $0.90(\mathrm{~d}, \mathcal{J}=6.8,6$ H). ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=160.3,148.3,136.9,122.6,120.6,72.3,64.8,61.0,54.0,29.1$, 19.5, 18.5. GC-MS m/z 207 (2), 193 (26), 181(8), 175 (10), 121(44), 116 (60), 109 (100), 108 (24), 94 (25), 79 (19), 69 (11); $M S(E S) ~ m / z ~ 225.4(M+H)^{+}$. Anal. Calcd for $C_{12} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}_{1}$ 64.26; H, 8.99; N, 12.49. Found C, 64.06; H, 9.01; N, 12.44.

(S)-2-[(R)-2-Azido-2-(2-pyridyl)ethylamino)-3-methyl-1-butanol (23b): Red oil; $[\alpha]_{0}^{20}$ +76.8 (c 1.7, CHCl_{3}). IR (neat): $v=3380,2956,2922,2102,1592,1472,1436,1155,1117 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.61$ (ddd, $\mathcal{J}=0.9, \mathcal{J}=1.8, \mathcal{J}=4.7,1 \mathrm{H}$), $7.74(\mathrm{dt}, \mathcal{J}=1.8, \mathcal{J}=7.7,1$ $H), 7.38(d t, \mathcal{J}=0.9, \mathcal{J}=7.7,1 \mathrm{H}), 7.26(\mathrm{ddd}, \mathcal{J}=1.1, \mathcal{J}=4.7, \mathcal{J}=7.5,1 \mathrm{H}), 4.64(\mathrm{dd}, \mathcal{J}=5.0, \mathcal{J}$ $=7.6,1 \mathrm{H}$), $3.59(\mathrm{dd}, \mathcal{J}=4.1, \mathcal{J}=10.8,1 \mathrm{H}), 3.31(\mathrm{dd}, \mathcal{J}=7.7, \mathcal{J}=10.8,1 \mathrm{H}), 3.30(\mathrm{dd}, \mathcal{J}=5.0$, $J=12.5,1 H$), $3.19(d d, J=7.6, J=12.5,1 H$), 2.39 (dd, $J=4.1, J=7.7,1 H$), $2.14(b s, 2 H)$ 1.77 (sept, $\mathcal{J}=6.9,1 \mathrm{H}$), $0.94(\mathrm{~d}, \mathcal{J}=6.9,3 \mathrm{H}), 0.88(\mathrm{~d}, \mathcal{J}=6.9,3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}): $\delta=157.5,149.6,137.0,123.2,121.9,66.7,64.8,61.0,51.1,29.2,19.4,18.4 . \mathrm{MS}$ (ES) $\mathrm{m} / \mathrm{z} 250.2(\mathrm{M}+\mathrm{H})^{+}, 272.1(\mathrm{M}+\mathrm{Na})^{+}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 57.81 ; \mathrm{H}, 7.68 ; \mathrm{N}, 28.09 ; \mathrm{O}$, 6.42. Found C, 57.55; H, 7.70; 27.99.

(S)-2-[(R)-2-(Benzylamino)-2-(2-pyridyl)ethylamino]-3-methy-1-Ibutanol (23c): Yellow oil; $[\alpha]_{D}^{20}+30.8\left(c 1.7, \mathrm{CHCl}_{3}\right)$; IR (neat): $v=3308,3061,3028,2956,2921,2864,1591,1570$, $1454,1434,1366,1121,1048,749,699 .{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl ${ }_{3}$): $\delta=8.63(d d d, J=0.8, J=$ 1.8, $J=4.8,1 H$) , $7.63(\mathrm{td}, J=1.8, J=7.7,1 H), 7.35(\mathrm{~m}, 5 \mathrm{H}), 7.28(\mathrm{~m}, 1 \mathrm{H}), 7.23$ (ddd, $J=$ 1.2, $J=4.8, J=7.5,1 H$), $3.87(d d, J=5.9, J=7.2,1 H), 3.72(d, J=12.9,1 H), 3.61(d, J=$ 12.9, 1 H), 3.59 (dd, $J=4.0, J=10.7,1 H$), $3.35(\mathrm{dd}, J=7.8, J=10.7,1 \mathrm{H}), 2.91(\mathrm{~m}, 2 \mathrm{H}), 2.53$ (bs, $3 H$), 2.39 (dd, $J=4.0, J=7.8,1 H$), 1.78 (sept, $J=6.8,1 H$), $0.86(d, J=6.8,3 H$), 0.88 (d, J=6.8, 3 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=161.7,149.5,140.1,136.4,128.3,128.2,126.9$, 122.7, 122.3, 64.6, 63.2, 52.8, 51.6, 29.4, 19.5, 18.7. MS (ES) $m / z 314.3(M+H)^{+}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}: C, 72.81 ; \mathrm{H}, 8.68 ; \mathrm{N}, 13.41$. Found $\mathrm{C}, 72.88 ; H, 8.71 ; \mathrm{N}, 13.37$.

(S)-2-[(R)-2-(4-Methoxyphenylamino)-2-(2-pyridyl)ethylamino]-3-methyl-1-butanol (23d): Red oil; $[\alpha]_{D}{ }^{20}+21.1\left(c 1.3, \mathrm{CHCl}_{3}\right)$. IR (neat): $v=3333,2957,2928,2872,2828,1592$, $1512,1465,1435,1239,1039 .{ }^{13} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.58(\mathrm{ddd}, \mathrm{J}=0.8, J=1.7, J=$ $4.8,1 H), 7.63(d t, J=1.7, J=7.6,1 H), 7.36(d t, J=0.8, J=7.8,1 H), 7.18(d d d, J=1.2, J=$ $4.8, J=7.6,1 H), 6.72(d, J=9.1,2 H), 6.60(d, J=9.1,2 H), 4.54(d d, J=4.8, J=7.1,1 H)$, 3.78 (s, 3 H), 3.62 (dd, $J=4.1, J=10.8,1 \mathrm{H}$), 3.38 (dd, $J=7.5, J=10.8,1 \mathrm{H}$), 3.13 (dd, $J=$ 4.8, $J=11.9,1 H$), $3.05(\mathrm{dd}, J=7.1, J=11.9,1 \mathrm{H}$), $2.73(\mathrm{bs}, 2 \mathrm{H}), 2.43$ (ddd, $J=4.1, J=6.5, J$ $=7.5,1 \mathrm{H}$), 1.81 (sept, $J=6.8,1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8,3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.8,6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=161.2,152.4,149.3,141.4,136.8,122.4,121.8,115.5,114.7,64.8,60.9,60.3$, 55.6, 52.4, 28.9, 19.4, 18.4; MS (ES) $\mathrm{m} / \mathrm{z} 330.2(\mathrm{M}+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}: \mathrm{C}, 69.27$; $H, 8.26 ; N, 12.76$. Found $C, 69.52 ; H, 8.30 ; N, 12.71$.

(S)-2-((R)-2-(dibenzylamino)-2-(pyridin-2-yl)ethylamino)-3-methylbutan-1-ol (23e): Red oil; $[\alpha]_{D}^{20}+24.3\left(c 1.4, \mathrm{CHCl}_{3}\right)$. IR (neat): $v=3357,3061,3028,2959,2925,1589,1453,1434$, $1261,1072,1027,698 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.60(\mathrm{ddd}, J=0.8, J=1.7, J=4.9,1 \mathrm{H})$, $7.71(\mathrm{td}, J=1.9, J=7.6,1 \mathrm{H}), 7.36(\mathrm{~m}, 9 \mathrm{H}), 7.23(\mathrm{~m}, 3 \mathrm{H}), 3.96(\mathrm{dd}, J=6.7, J=6.9,1 \mathrm{H}), 3.84$ (d, $J=13.82 \mathrm{H}$), $3.64(\mathrm{dd}, J=4.1, J=10.8,1 \mathrm{H}), 3.42(\mathrm{~d}, J=13.82 \mathrm{H}), 3.37(\mathrm{~m}, 2 \mathrm{H}), 3.20$ (dd, $J=7.4, J=11.6,1 H$), $2.38(d d, J=4.1, J=6.9,1 H), 1.76($ sept, $J=6.8,1 H$), $0.95(d, J=$ 6.8, 3 H), $0.89(\mathrm{~d}, \mathrm{~J}=6.8,6 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=159.4,148.8,139.8,136.1,128.7$, $128.3,127.0,124.5,122.2,64.5,62.2,60.9,54.3,45.5,29.5,19.6,18.9$. MS (ES) $\mathrm{m} / \mathrm{z} 404.5$ $(\mathrm{M}+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 77.38 ; \mathrm{H}, 8.24 ; \mathrm{N}, 10.41$. Found $\mathrm{C}, 77.10 ; \mathrm{H}, 8.27 ; \mathrm{N}$, 10.37.

(S)-2-[(R)-2-(2-Naphthylthio)-2-(2-pyridyl)ethylamino]-3-methyl-1-butanol

Yellowish oil; $[\alpha]_{D}^{20}+51.8$ (c 1.7, CHCl_{3}). IR (neat): $v=3412,3330,3055,3009,2954,1584$, $1565,1474,1432,1105,1044,748,692 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.56$ (ddd, $J=0.9, J=$ 1.9, $J=4.8,1 \mathrm{H}), 7.71(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{dt}, J=1.8, J=7.7,1 \mathrm{H}), 7.46(\mathrm{~m}, 2 \mathrm{H})$, 7.39 (dd, $J=1.8, J=8.5,1 H$), $7.28(d t, J=0.9, J=7.8,1 H), 7.16(d d d, J=1.1, J=4.9, J=$ $7.8,1 \mathrm{H}), 4.61(\mathrm{dd}, \mathcal{J}=6.4, J=6.6,1 \mathrm{H}), 3.60(\mathrm{dd}, J=4.1, J=10.8,1 \mathrm{H}), 3.40(\mathrm{dd}, J=6.4, J=$ 12.3, 1 H), 3.33 (dd, $J=7.4, J=10.8,1 H$), 3.29 (dd, $J=6.4, J=12.2,1 H$), $2.65(b s, 2 H)$, 2.42 (ddd, $J=4.1, J=6.4, J=7.4,1 H$), 1.78 (sept, $J=6.8,1 H$), $0.93(d, J=6.8,3 H$), 0.88 $(\mathrm{d}, \mathrm{J}=6.8,3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.8,149.4,136.6,133.5,132.3,131.4,130.9$, $129.4,128.4,127.6,127.4,126.5,126.2,123.1,122.4,64.7,60.8,54.8,50.5,29.2,19.6,18.6$. MS (ES) $m / z 367.3(M+H)^{+}, 389.1(M+N a)^{+}$. Anal. Calcd for $C_{22} H_{26} \mathrm{~N}_{2} \mathrm{OS}: C, 72.09 ; \mathrm{H}, 7.15$; N, 7.64. Found $C, 71.83 ; H, 7.16 ; N, 7.62$.

(S)-2-[(R)-2-(Phenylthio)-2-(2-pyridyl)ethylamino]-3-methyl-1-butanol (23g): Yellow oil; $[\alpha]_{D}{ }^{20}+87.7\left(c 1.2, \mathrm{CHCl}_{3}\right)$. IR (neat): $v=3419,3332,3056,3006,2957,2925,2871,1589$, $1569,1471,1434,1385,1109,1049,1025,747,691 .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.57$ (ddd, $J=0.9, J=1.8, J=4.8,1 H), 7.74(\mathrm{dt}, J=1.8, J=7.7,1 H), 7.33(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~m}, 3 \mathrm{H}), 7.17$ (ddd, $J=0.9, J=4.8, J=7.4,1 H$), $4.47(d d, J=6.7, J=6.9,1 H), 3.60(d d, J=4.1, J=10.7$, $1 H$), $3.35(\mathrm{dd}, J=6.7, J=12.3,1 \mathrm{H}), 3.31(\mathrm{dd}, J=7.6, J=10.7,1 \mathrm{H}), 3.26(\mathrm{dd}, J=6.9, J=$ 12.3, 1 H), 2.48 (bs, $2 H$), 2.31 (ddd, $J=4.1, J=7.1, J=7.6,1 \mathrm{H}$), 1.77 ($\operatorname{sept}, J=6.9,1 \mathrm{H}$), $0.93(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=6.8,6 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.9,149.3,136.5$, $134.1,132.2,128.8,127.3,123.0,122.2,64.5,60.8,55.2,50.6,29.2,19.5,18.6 . M S$ (ES) m / z $317.1(\mathrm{M}+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 67.29 ; \mathrm{H}, 7.64 ; \mathrm{N}, 9.23$. Found $\mathrm{C}, 67.01 ; \mathrm{H}, 7.65$; N, 9.21.

(S)-2-[(R)-2-(Benzylthio)-2-(2-pyridyl)ethylamino]-3-methyl-1-butanol (23h): Yellow oil; $[\alpha]_{D}{ }^{20}+143.0\left(c 1.2, \mathrm{CHCl}_{3}\right)$. IR (neat): $v=3383,3061,3028,2956,2925,1590,1494,1471$, $1453,1434,1049,749,702 .{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl $\left.)_{3}\right): \delta=8.56(\mathrm{ddd}, J=0.8, J=1.6, J=4.8$, $1 H$), $7.74(\mathrm{dt}, J=1.8, J=7.8,1 \mathrm{H}), 7.29(\mathrm{~m}, 5 \mathrm{H}), 7.18(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{dd}, J=6.8, J=6.8,1$ $H), 3.79(d, J=13.3,1 H), 3.60(d, J=13.3,1 H), 3.54(d d, J=4.1, J=10.7,1 H), 3.24(d d, J$ $=7.6, J=10.7,1 H$), $3.21(\mathrm{dd}, J=6.7, J=12.1,1 \mathrm{H}), 3.11(\mathrm{dd}, J=7.0, J=12.1,1 \mathrm{H}), 2.40(\mathrm{bs}, 2$ H), 2.31 (dd, $J=4.1, J=7.6,1 \mathrm{H}$), 1.71 (sept, $J=6.9,1 \mathrm{H}$), $0.89(\mathrm{~d}, J=6.8,3 \mathrm{H}), 0.84(\mathrm{~d}, \mathrm{~J}=$ $6.8,6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=160.6,149.3,137.9,136.7,128.9,128.5,127.0,122.9$, 122.2, 64.5, 60.8, 51.2, 50.6, 35.4, 29.2, 19.5, 18.6. GC-MS m/z 105 (100), 91 (93), 93 (70), 104 (40), 78 (31), 65 (30), 226 (26), 124 (26), 194 (25), 226 (18), 207 (16), 51 (16), 136 (12). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OS}: C, 69.05 ; \mathrm{H}, 7.93 ; \mathrm{N}, 8.48$. Found $\mathrm{C}, 69.16 ; \mathrm{H}, 7.95 ; \mathrm{N}, 8.46$.

(S)-2-[(R)-2-(Butylthio)-2-(2-pyridyl)ethylamino]-3-methyl-1-butanol (23i): Yellow oil; $[\alpha]_{D}{ }^{20}+36.8\left(c 1.0, \mathrm{CHCl}_{3}\right)$. IR (neat): $v=3346,2957,2926,2872,1590,1569,1468,1434$, 1049, 788, 748. ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta=8.54$ (ddd, $J=0.8, J=1.8, J=4.7,1 \mathrm{H}$), 7.67 $(\mathrm{dt}, \mathrm{J}=1.8, J=7.7,1 \mathrm{H}), 7.39(\mathrm{dt}, J=0.8, J=7.7,1 \mathrm{H}), 7.17(\mathrm{ddd}, J=1.0, J=4.7, J=7.7,1$ $H), 4.06(d d, J=7.1, J=7.1,1 H), 3.59(d d, J=4.2, J=10.7,1 H), 3.30(d d, J=7.5, J=10.7$, $1 H$), 3.24 (dd, $J=7.1, J=12.1,1 H$), 3.16 (dd, $J=7.1, J=12.1,1 H$), $2.60(b s, 2 H), 2.43$ (dd, $J=6.8, J=7.2,2 H$), $2.39(\mathrm{dd}, \mathcal{J}=4.2, J=7.5,1 \mathrm{H}), 1.78($ sept, $J=6.9,1 \mathrm{H}), 1.47(\mathrm{~m}, 2 \mathrm{H})$, $1.31(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~d}, J=6.9,3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.9,3 \mathrm{H}), 0.84(\dagger, J=7.3,3 H) .{ }^{13} \mathrm{C} \operatorname{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=160.9,149.1,136.7,122.8,122.1,64.6,60.8,51.6,50.6,31.6,30.4,29.2,21.9$, 19.5, 18.6, 13.6. MS (ES) $m / z 297.2(M+H)^{+}$. Anal. Calcd for $C_{16} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{OS}: C, 64.82 ; \mathrm{H}, 9.52$; N, 9.45. Found $C, 64.73 ; H, 9.52 ; N, 9.43$.

(S)-2-[(R)-2-Hydroxy-1-(2-pyridyl)ethylamino]-3-methyl-1-butanol (24a): Yellow oil; $[\alpha]_{D}^{20}+38.6\left(c 1.2, \mathrm{CHCl}_{3}\right)$. IR (neat) $v=3330,2957,2921,2873,1670,1595,1571,1468$, $1436,1049,774,751 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.60(\mathrm{ddd}, J=0.8, J=1.6, J=4.9,1 \mathrm{H})$, $7.75(\mathrm{dt}, \mathcal{J}=1.8, J=7.7,1 \mathrm{H}), 7.34(\mathrm{dt}, \mathcal{J}=0.9, J=7.7,1 \mathrm{H}), 7.28(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=4.2$, $J=6.6,1 \mathrm{H}), 3.96(\mathrm{dd}, \mathcal{J}=4.2, J=11.3,1 \mathrm{H}), 3.84(\mathrm{dd}, J=6.6, J=11.3,1 \mathrm{H}), 3.81(\mathrm{dd}, \mathcal{J}=3.7$, $J=11.6,1 \mathrm{H}), 3.65(\mathrm{dd}, \mathcal{J}=6.1, J=11.6,1 \mathrm{H}), 2.47(\mathrm{dd}, J=3.7, J=6.1,1 \mathrm{H}), 1.81($ sept, $J=$ $6.8,1 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=6.8,6 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=159.7$, 149.1, 137.1, 123.1, 122.7, 65.6, 64.1, 62.8, 61.1, 29.3, 19.3, 18.9. MS (ES) $m / z 225.4(M+H)^{+}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}: C, 64.26 ; \mathrm{H}, 8.99 ; \mathrm{N}, 12.49$. Found $\mathrm{C}, 64.10 ; \mathrm{H}, 9.02 ; \mathrm{N}, 12.45$.

(S)-2-[(S)-2-Azido-1-(2-pyridyl)ethylamino]-3-methyl-1-butanol (24b): Yellow oil; $[\alpha]_{D}{ }^{20}$ +52.8 ($c 1.1, \mathrm{CHCl}_{3}$). IR (neat): $v=3378,2950,2923,2106,1594,1470,1438,1153,1112 .{ }^{1} \mathrm{H}$

NMR (300 MHz, CDCl 3): $\delta=8.64(d d d, J=0.9, J=1.7, J=4.8,1 H), 7.72(\mathrm{dt}, J=1.8, J=7.7$, $1 \mathrm{H}), 7.30(\mathrm{dt}, \mathcal{J}=0.9, J=7.7,1 \mathrm{H}), 7.26(\mathrm{ddd}, \mathcal{J}=0.9, J=4.8, J=7.7,1 \mathrm{H}), 3.98(\mathrm{dd}, \mathcal{J}=$ $6.5, J=6.5,1 \mathrm{H}), 3.69(\mathrm{dd}, J=3.9, J=11.1,1 \mathrm{H}), 3.63(\mathrm{dd}, J=6.5, J=12.1,1 \mathrm{H}), 3.55(\mathrm{dd}, J=$ 6.57.1, $J=12.1,1 H$), $3.50(\mathrm{dd}, J=5.4, J=11.1,1 H$), $2.54(\mathrm{bs}, 2 H), 2.31(\mathrm{dd}, J=3.9, J=5.4 .1$ H), 1.69 (sept, $J=6.8,1 H$), $0.86\left(d, J=6.8,3 H\right.$), $0.82(d, J=6.8,3 H) .{ }^{13} \mathrm{CNMR}(75 \mathrm{MHz}$, CDCl_{3}): $\delta=161.7,149.7,136.6,122.9,122.7,63.2,31.6,30.9,29.5,19.4,18.7 . \mathrm{MS}(\mathrm{ES}) \mathrm{m} / \mathrm{z}$ $250.2(\mathrm{M}+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}: C, 57.81 ; \mathrm{H}, 7.68 ; \mathrm{N}, 28.09 ; \mathrm{O}, 6.42$. Found C , 57.58; H, 7.71; 28.00.

(S)-2-[(S)-2-Benzylamino-1-(2-pyridyl)ethylamino]-3-methyl-1-butanol (24c): Yellow oil. $[\alpha]_{D}^{20}+22.3\left(c 1.7, \mathrm{CHCl}_{3}\right)$. IR (neat): $v=3308,3062,2955,2915,2866,2850,1590,1454$, $1434,1366,1120,749,698 .{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl $\left.)_{3}\right): \delta=8.60(d d d, J=0.8, J=1.6, J=4.8$, $1 \mathrm{H}), 7.68(\mathrm{dt}, \mathrm{J}=1.8, J=7.6,1 \mathrm{H}), 7.32(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{ddd}, J=0.8, J=4.8, J=$ $7.6,1 \mathrm{H}), 3.91(\mathrm{dd}, J=4.6, J=8.5,1 \mathrm{H}), 3.69(\mathrm{~d}, J=12.7,1 \mathrm{H}), 3.64(\mathrm{dd}, J=4.6, J=11.1,1$ $H), 3.63(d, J=12.7,1 H), 3.42(d d, J=7.7, J=11.1,1 H), 3.03(d d, J=4.4, J=12.0,1 H)$, 2.90 (dd, $J=8.6, J=12.0,1 \mathrm{H}), 2.67(\mathrm{bs}, 3 \mathrm{H}), 2.43(\mathrm{dd}, J=4.6, J=7.7,1 \mathrm{H}), 1.82$ (sept, $J=$ 6.9, 1 H), $0.97(\mathrm{~d}, \mathrm{~J}=6.9,3 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=6.9,3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=161.9$, $149.2,140.1,136.4,128.3,128.2,127.1,127.1,126.7,122.7,122.3,64.7,62.5,61.7,60.3,54.5$, 53.6, 30.2, 19.3, 18.7. MS (ES) $\mathrm{m} / \mathrm{z} 314.3(M+H)^{+}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}: C, 72.81 ; \mathrm{H}$, 8.68; N, 13.41. Found $C, 73,15 ; H, 8.71 ; N, 13.38$.

(S)-2-[(S)-2-(4-Methoxyphenylamino)-1-(2-pyridiyl)ethylamino]-3-methyl-1-butanol (24d): Yellow oil; $[\alpha]_{D}{ }^{20}-38.8\left(c 1.0, \mathrm{CHCl}_{3}\right.$). IR (neat): $v=3372,2956,2922,2104,1598$, 1464, 1116. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.61$ (ddd, $\left.J=0.9, J=1.8, J=4.8,1 \mathrm{H}\right), 7.66(\mathrm{dt}, J=$ 1.8, $J=7.7,1 H$), $7.22(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=9.0,2 \mathrm{H}), 6.62(\mathrm{~d}, J=9.0,2 \mathrm{H}), 4.02(\mathrm{dd}, J=5.6$, $J=7.3,1 \mathrm{H}), 3.75(s, 3 \mathrm{H}), 3.61(\mathrm{dd}, J=3.9, J=11.0,1 \mathrm{H}), 3.43(\mathrm{dd}, J=5.4, J=11.0,1 \mathrm{H})$,
3.40 (dd, $\mathcal{J}=5.6, \mathcal{J}=12.5,1 \mathrm{H}$), 3.29 (dd, $\mathcal{J}=7.3, \mathcal{J}=12.5,1 \mathrm{H}$), 2.69 (bs, 3 H), 2.26 (dd, $\mathcal{J}=$ 3.9, $J=5.4,1 \mathrm{H}$), 1.66 (sept, $J=6.8,1 \mathrm{H}), 0.84(\mathrm{~d}, \mathcal{J}=6.9,3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.9,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=161.4,152.3,149.6,142.1,136.5,122.8,122.5,114.9,114.7,63.1,61.1$, 60.4, 55.7, 50.9, 29.5, 19.4, 18.9. MS (ES) $m / z=330.2(M+H)^{+}$. Anal. Calcd for $C_{19} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 69.27; H, 8.26; N, 12.76. Found C, 69.49; H, 8.29; N, 12.73.

(S)-2-((S)-2-(dibenzylamino)-1-(pyridin-2-yl)ethylamino)-3-methylbutan-1-ol

Yellow oil. [$\alpha]_{0}^{20}-24.7$ ($c 1.7, C H C l_{3}$). IR (neat): $v=3320,3085,3062,3027,2959,1593$, $1453,1364,1261,1118,1027,780,746,698 .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.52$ (ddd, $J=1.0$, $\mathcal{J}=1.8, \mathcal{J}=5.0,1 \mathrm{H}), 7.63(\mathrm{dt}, \mathcal{J}=1.9, \mathcal{J}=7.7,1 \mathrm{H}), 7.23(\mathrm{td}, \mathcal{J}=1.0, \mathcal{J}=7.7,1 \mathrm{H}), 7.18$ (ddd, $\mathcal{J}=1.0, \mathcal{J}=4.9, \mathcal{J}=7.5,1 \mathrm{H}), 3.93(\mathrm{dd}, \mathcal{J}=7.2, \mathcal{J}=7.2,1 \mathrm{H}), 3.73(\mathrm{~d}, \mathcal{J}=13.5,2 \mathrm{H}), 3.66(\mathrm{dd}$, $\mathcal{J}=4.0, \mathcal{J}=10.9,1 \mathrm{H}), 3.58(\mathrm{~d}, \mathcal{J}=13.5,2 \mathrm{H}), 3.45(\mathrm{dd}, \mathcal{J}=4.9, \mathcal{J}=11.0,1 \mathrm{H}), 2.73(\mathrm{~d}, \mathcal{J}=7.0$, 2 H), 2.18 (dd, $\mathcal{J}=4.0, \mathcal{J}=4.9,1 \mathrm{H}$), 2.09 (bs, 2H), 1.61 (sept, $\mathcal{J}=6.8,1 \mathrm{H}$), $0.80(\mathrm{~d}, \mathcal{J}=6.8,3$ $H), 0.77(d, J=6.8,3 H) .{ }^{13} C$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=162.9,149.1,138.9,136.0,128.0$, 128.9, 128.2, 127.0, 126.9, 122.0, 62.6, 60.8, 60.7, 60.1, 59.2, 29.7, 19.2, 19.0. MS (ES) $\mathrm{m} / \mathrm{z}=$ $404.3(\mathrm{M}+\mathrm{H})^{+}$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}: ~ C, 77.38 ; \mathrm{H}, 8.24 ; \mathrm{N}, 10.41$. Found C, 77.10; H, 8.27; N, 10.37.

(S)-2-[(R)-2-(2-Naphthylthio)-1-(2-pyridyl)ethylamino]-3-methyl-1-butanol

Yellowish oil; $[\alpha]_{0}^{20}+30.7(c 1.2, C H C l 3)$. IR (neat): $v=3421,3342,3052,2951,1581,1463$, $1434,1043,1014,742,692 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.56$ (ddd, $J=1.2, J=1.7, J=4.7$, 1 H), $7.78(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{dt}, \mathrm{J}=1.8, J=7.7,1 \mathrm{H}), 7.47(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{dd}, \mathrm{J}=$ $1.8, \mathcal{J}=8.7,1 \mathrm{H}), 7.17(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{dd}, \mathcal{J}=6.2, J=6.4,1 \mathrm{H}), 3.61(\mathrm{dd}, \mathcal{J}=3.8, J=11.1,1 \mathrm{H})$, $3.45(d d, J=5.0, \mathcal{J}=11.1,1 \mathrm{H}), 3.43(\mathrm{dd}, \mathcal{J}=6.4, \mathcal{J}=13.2,1 \mathrm{H}), 3.37(\mathrm{dd}, \mathcal{J}=6.2, \mathcal{J}=13.2,1$ H), 2.81 (bs, 2 H), 2.42 (ddd, $\mathcal{J}=3.8, \mathcal{J}=4.8, \mathcal{J}=5.0,1 \mathrm{H}$), 1.62 (sept, $J=6.9,1 \mathrm{H}$), 0.76 (d, \mathcal{J}
$=6.9,3 \mathrm{H}), 0.79(\mathrm{~d}, \mathrm{~J}=6.9,3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=160.1,149.7,136.4,133.7$, 133.4, 131.7, 128.5, 127.7, 127.4, 127.1, 127.0, 126.5, 125.7, 122.9, 122.8, 63.3, 61.1, 60.4, 40.4, 29.3, 19.4, 18.7. GC-MS (EI) $m / z 262$ (100), 230 (55), 263 (51), 115 (46), 78 (27), 104 (15), 264 (12). MS (ES) $m / z 367.3(M+H)^{+}, 389.0(M+N a)^{+}$. Anal. Calcd for $C_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OS}: C, 72.09$; $H, 7.15 ; N, 7.64$. Found $C, 72.15 ; H, 7.17 ; N, 7.61$.

(S)-2-[(R)-2-Phenylthio-1-(2-pyridyl)ethylamino]-3-methyl-1-butanol (24g): Yellow oil; $[\alpha]_{0}{ }^{20}+11.4\left(c 0.9, \mathrm{CHCl}_{3}\right)$. IR (neat): $v=3424,3345,3057,2959,2925,2972,1643,1589$, 1467, 1436, 1258, 1042, 1013, 743, 690. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.61(\mathrm{dt}, J=1.6, J=$ $4.4,1 \mathrm{H}), 7.66(\mathrm{dt}, \mathcal{J}=1.8, \mathcal{J}=7.8,1 \mathrm{H}), 7.38(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{dd}, \mathcal{J}$ $=6.3, \mathcal{J}=7.2,1 \mathrm{H}$), $3.62(\mathrm{dd}, \mathcal{J}=3.8, \mathcal{J}=11.1,1 \mathrm{H}), 3.46(\mathrm{dd}, \mathcal{J}=5.0, \mathcal{J}=11.1,1 \mathrm{H}), 3.35(\mathrm{dd}, \mathcal{J}$ $=7.2, J=13.2,1 H$), $3.29(d d, J=6.3, J=13.2,1 H$), $2.55(b s, 2 H), 2.21(d d d, J=3.8, J=5.0$, $J=6.4,1 \mathrm{H}$) , 1.63 (sept, $J=6.9,1 \mathrm{H}$), $0.82(\mathrm{~d}, \mathcal{J}=6.9,3 \mathrm{H}), 0.78(\mathrm{~d}, J=6.9,6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=161.3,149.7,136.3,129.4,128.9,126.1,122.7,122.6,63.0,61.1,60.6$, 41.1, 29.4, 19.4, 18.8. GC-MS m/z 193 (100), 107 (39), 214 (35), 106 (17), 175 (12), 92 (12), 119 (11), 78 (10), 136 (9), 285 (3). Anal. Calcd for $C_{17} H_{23} \mathrm{~N}_{2} \mathrm{OS}: C, 67.29 ; \mathrm{H}, 7.64 ; \mathrm{N}, 9.23$. Found C , 67.58; H, 7.67; N, 9.22.

(S)-2-[(R)-2-Benzylthio-1-(2-pyridyl)ethylamino]-3-methyl-1-butanol (24h): Yellow oil; $[\alpha]_{0}^{20}-23.4$ (c 1.2, CHCl_{3}). IR (neat): $v=3382,3060,3030,2951,2922,1590,1491,1472$, 1044, 741, 702. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.57$ (ddd, $J=0.9, J=1.7, J=4.9,1 \mathrm{H}$), 7.63 $(\mathrm{dt}, \mathcal{J}=1.7, \mathcal{J}=7.6,1 \mathrm{H}), 7.32(\mathrm{~m}, 5 \mathrm{H}), 7.26(\mathrm{ddd}, \mathcal{J}=0.9, \mathcal{J}=4.9, \mathcal{J}=7.6,1 \mathrm{H}), 7.13 \mathrm{~d}, \mathcal{J}=$ $7.6,1 \mathrm{H}), 3.77(\mathrm{dd}, \mathcal{J}=6.3, \mathcal{J}=6.3,1 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{dd}, \mathcal{J}=3.7, \mathcal{J}=11.1,1 \mathrm{H}), 3.46$ (dd, $\mathcal{J}=5.1, J=11.1,1 \mathrm{H}), 2.86(\mathrm{dd}, \mathcal{J}=6.3, \mathcal{J}=13.3,1 \mathrm{H}), 2.77(\mathrm{dd}, \mathcal{J}=6.3, \mathcal{J}=13.3,1 \mathrm{H})$, 2.36 (bs, 2 H), 2.39 (dd, $J=3.7, J=5.1,1 \mathrm{H}$), 1.62 (sept, $J=7.0,1 \mathrm{H}$), 0.80 (d, $J=7.0,3 \mathrm{H}$), 0.77 ($\mathrm{d}, \mathrm{J}=7.0,6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.7,149.6,138.3,136.3,128.9,128.5$,
127.0, 122.4, 122.5, 63.0, 61.4, 60.6, 38.8, 37.1, 29.4, 19.4, 18.8. GC-MS m/z 91 (100), 193 (92), 107 (31), 106 (31), 228 (16), 124 (14), 65 (14), 281 (12), 136 (12), 78 (12), 175 (11), 51 (10), 299 (4), 207 (3). Anal. Calcd for $C_{19} H_{26} \mathrm{~N}_{2} \mathrm{OS}: ~ C, 69.05 ; \mathrm{H}, 7.93 ; \mathrm{N}, 8.48$. Found $\mathrm{C}, 69.26$; H, 7.96; N, 8.45.
3.3.2 - Oxidative cleavage of the N-auxiliary. Preparation of the β-substituted primary amines and benzamides 25b, e, f,h,i and 26b,e, f, h.

Typical procedure: To the valinol derivative 23b ($0,240 \mathrm{~g}, 0.96 \mathrm{mmol}$) dissolved in MeOH (5 mL) were added $40 \% \mathrm{MeNH}_{2}$ in water (1.2 mL), then a solution of $\mathrm{H}_{5} \mathrm{IO}_{6}(0.768 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(5$ mL) was added dropwise. After stirring for 2 h at room temperature, the reaction was complete, as determined by T.L.C. analysis. Most of the solvent was evaporated at reduced pressure, then the organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The collected ethereal layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to leave the primary amine as a yellow oil. This was dissolved in acetone (5 mL), then $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.200 \mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and benzoyl chloride ($167 \mu \mathrm{l}, 1.44 \mathrm{mmol}$) were added while magnetically stirring. After stirring for 12 h , the organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The collected ethereal layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to leave the benzamide 25 b as a yellow oil. The product was subjected to column chromatography $\left(\mathrm{SiO}_{2}\right)$ eluting with a $1: 1$ mixture cyclohexane-EtOAc to give pure 25b as a yellow oil: 0.205 g (81%).

(R)-2-azido-2-(2-pyridyl)ethanamine: Red oil; IR (neat): $v=3365,2962,2923,2102,1590$, $1571,1472,1436,1260,1094,1020,798 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.60(\mathrm{~d}, \mathrm{~J}=4.7,1 \mathrm{H})$, $7.72(\mathrm{dt}, \mathcal{J}=1.6, \mathcal{J}=7.9,1 \mathrm{H}), 7.35(\mathrm{~d}, \mathcal{J}=7.9,1 \mathrm{H}), 7.24(\mathrm{ddd}, \mathcal{J}=1.6, \mathcal{J}=4.7, \mathcal{J}=7.9,1 \mathrm{H})$, 4.55 (dd, $\mathcal{J}=5.5, \mathcal{J}=13.3,1 \mathrm{H}$), 3.18 (dd, $\mathcal{J}=5.5, \mathcal{J}=13.3,1 \mathrm{H}$), 3.06 ($\mathrm{dd}, \mathcal{J}=7.1, \mathcal{J}=13.3,1$ H), 1.76 (bs, 2 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.4,149.6,136.9,123.0,121.7,69.0,46.3$. MS (ES) $m / z 164.3(M+H)^{+}$.

(R)-2-(2-Naphthylthio)-2-(2-pyridyl)ethanamine: Yellowish oil; ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta=8.56$ (ddd, $\left.J=0.9, J=1.8, J=4.9,1 \mathrm{H}\right), 7.79(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{td}, \mathrm{J}=$ 1.9, $J=7.8,1 \mathrm{H}), 7.44(\mathrm{~m}, 4 \mathrm{H}), 7.32(\mathrm{dt}, J=0.9, J=7.7,1 \mathrm{H}), 7.14(\mathrm{ddd}, J=1.1, J=4.8, J=$ $7.8,1 \mathrm{H}), 4.49(\mathrm{dd}, \mathcal{J}=6.1, J=7.2,1 \mathrm{H}), 3.39(\mathrm{dd}, \mathcal{J}=7.2, J=13.5,1 \mathrm{H}), 3.27(\mathrm{dd}, \mathcal{J}=6.1, J=$ $13.5,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.5,149.4,136.5,134.1,130.5,128.8,127.5,127.3$, 126.9, 126.6, 126.3, 126.0, 125.5, 122.9, 122.2, 57.7, 46.0. GC-MS (EI) $\mathrm{m} / \mathrm{z} 262$ (100), 230 (49), 263 (44), 115 (42), 78 (31), 51 (14), 217 (11), 160 (8).

(R)-2-(2-Phenylthio)-2-(2-pyridyl)ethanamine: Yellow oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 8.56 (ddd, $J=1.0, J=1.8, J=4.8,1 H), 7.61(\mathrm{dt}, J=1.8, J=7.7,1 H), 7.33(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~m}$, $2 H$), $7.19(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{dd}, \mathrm{J}=6.1, J=7.2,1 \mathrm{H}), 3.31$ (dd, $J=7.2, J=13.4,1$ $H), 3.19(d d, J=6.1, J=13.4,1 H) .{ }^{13} C \operatorname{NMR}\left(75 \mathrm{MHz}, C D C l_{3}\right): \delta=170.8,159.6,149.4,136.5$, 134.1, 131.9, 128.8, 128.6, 124.6, 122.9, 122.2, 57.8, 46.0. GC-MS (EI) $\mathrm{m} / \mathrm{z} 168$ (100), 201 (99), 124 (20), 65 (17), 78 (16), 94 (15), 212 (9), 109 (9), 186 (4).

(R)-2-(Benzylthio)-2-(2-pyridyl)ethanamine: Yellow oil; ${ }^{13} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.60$ (d, $J=4.4,1 \mathrm{H}), 7.68(\mathrm{dt}, J=1.8, J=7.6,1 \mathrm{H}), 7.30(\mathrm{~m}, 7 \mathrm{H}), 3.90(\mathrm{dd}, J=6.3, J=7.0,1 \mathrm{H})$, 3.72 (d, $J=13.2,1 H$), $3.64(d, J=13.2,1 H), 3.25(d d, J=7.0, J=13.4,1 H), 3.16(d d, J=$ 6.3, $J=13.4,1 \mathrm{H}$), 1.94 (bs, 2 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.4,149.3,136.7,130.3$, 128.9, 128.5, 127.0, 122.9, 122.1, 54.0, 45.8, 35.3. GC-MS m/z 124 (100), 91 (28), 215 (16), 122 (14), 105 (11), 106 (10), 65 (10), 79 (9), 227 (2).

(R)-2-(2-Naphthylthio)-1-(2-pyridyl)ethanamine: Yellowish oil; ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=8.59(\mathrm{~m}, 1 \mathrm{H}), 7.80(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~d} t, J=1.8, J=7.7,1 \mathrm{H}), 7.49(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~m}$, $2 H$), 7.18 (ddd, $J=0.7, J=4.8, J=7.7,1 H$), $4.23(d d, J=5.4, J=8.2,1 H$), 3.57 (dd, $J=$ $5.4, J=13.4,1 H$), $3.32(\mathrm{dd}, J=8.2, J=13.3,1 \mathrm{H}), 2.44(\mathrm{bs}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=162.5,149.7,136.9,133.9,129.2,128.8,127.9,127.8,127.7,127.4,126.8,126.7,126.1$, $122.8,121.9,56.2,42.7$.

(R)-2-Benzylthio-1-(2-pyridyl)ethanamine: Yellow oil; ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta=8.57$ $(m, 1 H), 7.67(m, 1 H), 7.31(m, 6 H), 7.21(m, 1 H), 4.56(d d, J=6.8, J=7.8,1 H), 3.67(s, 2$ H), 3.12 (dd, $J=6.8, J=12.9,1 H$), $2.75(d d, J=6.8, J=12.9,1 H), 2.14(b s, 2 H) .{ }^{13} C$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=162.4,149.4,136.5,135.7,129.7,129.4,129.0,126.2,122.4,121.6,55.9$, 42.7. GC-MS (EI) $m / z 107$ (100), 80 (20), 213 (4), 136 (4), 230 (2), 183 (2).

(R)-N-[2-Azido-2-(2-pyridyl)ethyl]benzamide (25b): Red oil; $[\alpha]_{D}^{20}+55.5$ (c 1.1, CHCl_{3}). IR (neat): $v=3288,3068,2937,2104,1638,1540,1321,772,707 .{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=8.64(\mathrm{dt}, J=0.7, J=4.8,1 \mathrm{H}), 8.11(\mathrm{~d}, J=6.9,1 \mathrm{H}), 7.77(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~m}, 1 \mathrm{H})$, $7.42(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{ddt}, J=0.8, J=4.9, J=7.6,1 \mathrm{H}), 7.16(\mathrm{~m}, 1 \mathrm{H}), 4.90(\dagger, J=6.1,1 \mathrm{H}), 4.07$ (ddd, $J=6.1, J=6.9, J=12.4,1 H$), 3.87 (ddd, $J=6.1, J=6.9, J=12.4,1 H$). ${ }^{13} \mathrm{C} \operatorname{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.7,149.4,137.5,134.1,133.2,131.6,129.9,128.5,128.3,126.9,123.6$, 122.6, 64.1, 43.3. GC-MS ($280^{\circ} \mathrm{C}$) m/z 105 (100), 218 (67), 77 (61), 262 (56), 263 (29), 115 (26), 219 (24), 230 (23), 384 (13), 160 (12). MS (ES) $m / z 268.2(M+H)^{+}, 290.1(M+N a)^{+}$, $557.2(2 \mathrm{M}+\mathrm{Na})^{+}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 62.91 ; \mathrm{H}, 4.90 ; \mathrm{N}, 26.20$. Found $\mathrm{C}, 63.10 ; \mathrm{H}$, 4.92; N, 26.12.

(R)- N-[2-(2-Naphthylthio)-2-(2-pyridyl)ethyl]benzamide (25f): White crystals. (from $\left.E t_{2} \mathrm{O}\right) ;$ m.p. $=122.0-122.5^{\circ} \mathrm{C} ;[\alpha]_{D}{ }^{20}+58.7\left(c 1.9, \mathrm{CHCl}_{3}\right)$. IR $(\mathrm{KBr}): v=3326,3046,3003,2926$, $1843,1710,1638,1578,1523,1436,1271,822,745,701 .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.56$ (ddd, $J=0.7, J=1.6, J=4.9,1 H$), $7.93(s, 1 H), 7.73(\mathrm{~m}, 5 \mathrm{H}), 7.58(\mathrm{dt}, \mathcal{J}=1.9, J=7.8,1 \mathrm{H})$, $7.45(\mathrm{~m}, 5 \mathrm{H}), 7.32(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{ddd}, J=0.7, J=4.9, J=7.8,1 \mathrm{H}), 4.85(\mathrm{t}, J=6.6,1 \mathrm{H})$, 4.21 (ddd, $J=6.1, J=6.6, J=13.5,1 H$), 4.15 (ddd, $J=6.1, J=6.6, J=13.5,1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.4,158.9,149.0,136.9,133.5,132.2,131.2,131.0,129.2,128.5,128.3$, $127.5,127.4,126.8,126.4,126.2,123.6,122.5,52.3,43.2 . G C-M S$ (EI) ($280{ }^{\circ} \mathrm{C}$) $\mathrm{m} / \mathrm{z} 384$ (4), 263 (30), 230 (29), 211 (18), 160 (8), 136 (16), 115 (13), 105 (100), 77 (38). MS (ES) $\mathrm{m} / \mathrm{z}=$ $385.1(M+H)^{+}, 791.0(2 \mathrm{M}+\mathrm{Na})^{+}$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}: C, 74.97 ; \mathrm{H}, 5.24 ; \mathrm{N}, 7.29$. Found $C, 75.05 ; H, 5.26 ; N, 7.28$.

(R)-N-[2-Phenylthio-2-(2-pyridyl)ethyl]benzamide (25g): Red oil; $[\alpha]_{D}{ }^{20}+51.8$ (c 2.0, CHCl_{3}). IR (neat): $v=3323,3058,2925,2853,1644,1579,1537,1484,1436,1292,1075$, 749, 692. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.61(\mathrm{~d}, \mathrm{~J}=4.6,1 \mathrm{H}), 7.74(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{td}, \mathrm{J}=1.7$, $J=7.7,1 H$), $7.49(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{dd}, \mathrm{J}=6.1, J=$ 6.9, 1 H$), 4.16(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.4,159.0,149.1,137.0,134.4,133.5$, 132.5, 131.4, 129.0, 128.5, 127.7, 126.9, 123.8, 122.4, 52.5, 43.0. GC-MS (EI) $\mathrm{m} / \mathrm{z} 105$ (100), 77 (73), 168 (61), 213 (38), 201 (49), 334 (20), 180 (16), 225 (14), 119 (8). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 71.83 ; \mathrm{H}, 5.42 ; \mathrm{N}, 8.38$. Found $\mathrm{C}, 71.58 ; \mathrm{H}, 5.43 ; \mathrm{N}, 8.35$.

(R)-N-[2-Benzylthio-2-(2-pyridyl)ethyl]benzamide (25h): Colourless oil; $[\alpha]_{0}^{20}+26.1$ (c 1.0, CHCl_{3}). IR (neat): $v=3320,3060,2923,1644,1537,1471,1434,1290,697 .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.59(\mathrm{ddd}, \mathcal{J}=1.0, \mathcal{J}=1.9, \mathcal{J}=4.9,1 \mathrm{H}), 7.76(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{dt}, \mathcal{J}=1.9, \mathcal{J}=$ $7.8,1 \mathrm{H}), 7.47(\mathrm{~m}, 5 \mathrm{H}), 7.32(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{dd}, \mathcal{J}=6.7, J=9.7,1 \mathrm{H}), 4.17$ (ddd, $\mathcal{J}=4.6, \mathcal{J}=6.7, \mathcal{J}=13.1,1 \mathrm{H}), 3.97(\mathrm{ddd}, \mathcal{J}=4.6, \mathcal{J}=9.7, \mathcal{J}=13.1,1 \mathrm{H}), 3.89(\mathrm{~d}, \mathcal{J}=13.5,1 \mathrm{H})$, $3.75(\mathrm{~d}, \mathcal{J}=13.5,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.4,159.7,148.6,137.9,137.3,134.5$, 131.4, 129.0, 128.6, 128.5, 127.1, 127.0, 123.8, 122.5, 48.7, 42.4, 35.7. GC-MS (EI) m/z 105 (100), 124 (76), 226 (74), 77 (49), 91 (45), 257 (41). Anal. Calcd for $C_{21} H_{2} \mathrm{~N}_{2} \mathrm{OS}: C, 72.38 ; \mathrm{H}$, 5.79; N, 8.04. Found C, 72.40; H, 5.80; N, 8.02.

(R)- N-[(2-Butylthio-2-(2-pyridyl)ethyl]benzamide (25i): Yellow oil; $[\alpha]_{0}^{20}+27.4$ (c 1.0, CHCl_{3}); 3314, 3057, 2913, 1647, 1534, 1477, 1297, 694. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.58$ (ddd, $J=0.9, J=1.7, J=4.9,1 H$), $7.74(m, 2 H), 7.71(d t, J=1.7, J=7.4,1 H), 7.47(m, 1 H)$, $7.42(m, 2 H), 7.23$ (ddd, $J=0.9, J=4.7, J=7.5,1 H$), 4.29 (dd, $J=5.8, J=7.4,1 H$), 4.11 (ddd, $\mathcal{J}=6.2, \mathcal{J}=7.4, \mathcal{J}=13.6,1 \mathrm{H}), 4.01(\mathrm{ddd}, \mathcal{J}=5.8, \mathcal{J}=11.2, \mathcal{J}=13.6,1 \mathrm{H}), 2.57(\mathrm{~m}, 2 \mathrm{H})$, $1,54(\mathrm{~m}, 2 \mathrm{H}), 1,38(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.3,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.4,160.0$, 148.7, 137.4, 134.4, 133.3, 131.4, 130.1, 128.5, 128.4, 126.9, 123.7, 122.5, 49.2, 42.8, 31.6, 30.9, 21.9, 13.6. MS (EI) $m / z 314$ (4), 257 (16), 181 (11), 160 (18), 124 (57), 105 (100), 93 (14), 77 (55). MS (ES) $m / z=315.2(M+H)^{+}, 651.3(2 \mathrm{M}+\mathrm{Na})^{+}$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OS}: C$, 68.75; H, 7.05; N, 8.91. Found $C, 68.38 ; H, 7.08 ; N, 8.89$.

N -((S)-2-azido-1-(pyridin-2-yl)ethyl)benzamide (26b): Yellow oil; $[\alpha]_{0}^{20}+13.4$ (c 1.2, CHCl_{3}); IR (neat): $v=3282,3071,2932,2108,1631,1547,1315,778 .{ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}$, CDCl_{3}): $\delta=8.63$ (ddd, $\left.\mathcal{J}=0.8, \mathcal{J}=1.6, \mathcal{J}=4.8,1 \mathrm{H}\right), 7.88(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{dd}, \mathcal{J}=1.9, \mathcal{J}=7.7,1$ $\mathrm{H}), 7.45(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{dt}, \mathcal{J}=0.8, J=1.6,1 \mathrm{H}), 7.30(\mathrm{ddd}, \mathcal{J}=1.9, \mathcal{J}=4.8, J=7.4,1 \mathrm{H}), 5.46$ (ddd, $\mathcal{J}=4.9, \mathcal{J}=5.7, \mathcal{J}=7.3,1 \mathrm{H}$), $3.85(\mathrm{dd}, \mathcal{J}=4.9, \mathcal{J}=12.2,1 \mathrm{H}$), $3.80(\mathrm{dd}, \mathcal{J}=5.7, \mathcal{J}=$ 12.2, 1 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.0,156.4,149.3,13.1,134.0,131.8,128.6,127.1$,
127.0, 123.2, 122.6, 55.0, 53.5. $M S(E S) m / z=268.2(M+H)^{+}$. Anal. Calcd for $C_{14} H_{13} N_{5} O: C$, 62.91; H, 4.90; N, 26.20. Found C, 63.21; H, 4.92; N, 26.18.

(R)-N-[2-Naphthylthio)-1-(2-pyridyl)ethyl]benzamide (26f): White crystals (from $\mathrm{Et}_{2} \mathrm{O}$); m.p. $=119.5-120^{\circ} \mathrm{C} .[\alpha]_{0}^{20}-22.7\left(c 1.3, C H C l_{3}\right)$. IR (Nujol): $v=3310,1638,1518,1468,1370$, $810,729 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.58$ ($\mathrm{ddd}, \mathcal{J}=0.8, J=1.6, J=4.8,1 \mathrm{H}$), $8.12(\mathrm{~d}, \mathrm{~J}=$ $7.0,1 \mathrm{H}$); $7.81(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{~m}, 3 \mathrm{H}), 7.63(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~m}, 2$ $H), 5.56(d d, J=5.2, J=6.8,1 H$), $3.82(d d, J=5.2, J=13.6,1 \mathrm{H}), 3.51(d d, J=7.8, J=13.6$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.8,157.6,149.0,136.9,133.7,133.5,131.5,130.1,128.5$, 128.4, 127.6, 127.2, 127.1, 126.5, 125.7, 123.4, 123.6, 123.1, 53.9, 38.5. MS (ES) $m / z 385.1$ (M $+\mathrm{H})^{+}, 791.0(2 \mathrm{M}+\mathrm{Na})^{+}$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 74.97 ; \mathrm{H}, 5.24 ; \mathrm{N}, 7.29$. Found C , 75.10; H, 5.26; N, 7.27.

(R)- N-[2-Phenylthio-1-(pyridyl)ethyl]benzamide (26g): Red oil; [$\alpha]_{0}^{20}$-19.2 (c 0.4, CHCl_{3}). IR (neat): $v=3321,3054,2927,2852,1642,1572,1533,1482,1431,1290,1078,747,691 .{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl $)_{3}$) $\delta=8.58$ (ddd, $\left.J=0.9, J=1.7, J=4.9,1 \mathrm{H}\right), 7.82(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{dt}, J$ $=1.8, J=7.8,1 \mathrm{H}), 7.49(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{dt}, J=0.9, J=7.8,1 \mathrm{H}), 7.27(\mathrm{~m}, 2 \mathrm{H})$, $7.15(\mathrm{dt}, \mathcal{J}=1.2, \mathcal{J}=6.5,1 \mathrm{H}), 5.48(\mathrm{dd}, \mathcal{J}=5.1, \mathcal{J}=7.2, \mathcal{J}=8.0,1 \mathrm{H}), 3.72(\mathrm{dd}, \mathcal{J}=5.1, \mathcal{J}=$ 13.6, 1 H), 3.44 (dd, $J=8.0, J=13.6,1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.7,157.5,137.1$, 134.1, 131.6, 129.2, 129.0, 128.5, 127.1, 126.1, 123.6, 123.1, 53.6, 38.7. GC-MS (EI) $m / z 105$ (100), 77 (69), 213 (68), 136 (47), 211 (31), 212 (26), 180 (11), 281 (5), 334 (4). Anal. Calcd for $C_{20} 18_{3} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 71.83 ; \mathrm{H}, 5.42 ; \mathrm{N}, 8.38$. Found C, 71.98; H, 5.41; N, 8.36.

(R)-N-[2-(Benzylthio)-1-(2-pyridyl)ethyl]benzamide (26h): Colourless oil; $[\alpha]_{D}{ }^{20}$-17.1 (c $0.5, \mathrm{CHCl}_{3}$). IR (neat): $v=3320,3060,2923,1645,1589,1536,1434,1290,696 .{ }^{1} \mathrm{H} \operatorname{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.60(\mathrm{ddd}, \mathrm{J}=0.8, J=1.7, J=4.9,1 \mathrm{H}), 7.89(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~m}$, $2 H$), $7.29(m, 7 H), 5.46(d d, J=5.9, J=7.5,1 H), 3.65(s, 2 H), 3.14(d d, J=5.7, J=13.5,1$ H) 3.04 (ddd, $J=7.5, J=13.6,1 \mathrm{H}$). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.5,158.9,147.8,137.7$, $137.2,134.7,131.7,129.0,128.6,127.3,127.2,123.6,122.4,53.1,36.7,29.7$. GC-MS (EI) m / z 105 (100), 257 (52), 77 (36), 91 (20), 136 (18), 211 (10), 258 (8). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}$: C, 72.38; H, 5.79; N, 8.04. Found C, 72.11; H, 5.80; N, 8.03.

3.3.3 - Preparation of the diamine 27

To the valinol derivative 25b (0,202 g, 0.81 mmol) dissolved in MeOH (5 mL) were added 40\% MeNH_{2} in water (1.0 mL), then a solution of $\mathrm{H}_{5} \mathrm{IO}$ (0.648 g) in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added dropwise. After stirring for 2 h at room temperature, the reaction was complete, as determined by T.L.C. analysis. Most of the solvent was evaporated at reduced pressure, then the organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The collected ethereal layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to leave the primary amine as a yellow oil. This was dissolved in THF (5 mL) and was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{PPh}_{3}(0.177 \mathrm{mg}, 0.67 \mathrm{mmol})$ was added. Then 2 h the solution was warm at room temperature ad water (2 mL) was added. After 16 h NaHCO_{2} (sat. solution, 5 mL) was added and the organic materials were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{~mL})$ the collected organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to leave a red solid. Pure 27 (0.074 g, 67\%) was obtained by column chromatography on a short neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ column eluting with $\mathrm{EtOAc} / \mathrm{MeOH}(9 / 1)$ mixture.

(R)-1-(2-Pyridyl)ethane-1,2-diamine (27): Yellow oil; $[\alpha]_{D}^{20}-45.6\left(c 0.7, \mathrm{CHCl}_{3}\right)$. IR (neat): $v=3361,2968,2922,2101,1476,1435,1092,1016,794 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.54$
(ddd, $J=0.7, J=1.7, J=7.9,1 H), 7.69(d t, J=1.7, J=7.8,1 H), 7.32(d, J=7.9,1 H), 7.21$ (ddd, $J=0.9, J=4.7, J=7.9,1 H), 3.99(d d, J=5.2, J=7.0,1 H), 3.08(d d, J=5.2, J=12.7$, 1 H), 2.93 (dd, $J=7.0, J=12.7,1 \mathrm{H}$), $1.83(\mathrm{bs}, 4 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=158.7$, 149.2, 137.0, 122.8, 121.7, 59.6, 54.8. MS (ES) $m / z 138.2(M+H)^{+}$. Anal. Calcd for $C_{7} H_{11} N_{3}: C$, 61.29; $H, 8.08 ; N, 30.63$. Found $C, 60.99 ; H, 8.11 ; N, 30.50$.

3.3.4-Reaction with $\mathrm{H}_{2}-\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$

The mixture of the aziridine 22 ($50 \mathrm{mg}, 0.24 \mathrm{mmol}$) and $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(5 \mathrm{mg})$ in $\mathrm{MeOH}-\mathrm{AcOH}(85: 15,3 \mathrm{~mL})$ was magnetically stirred under a H_{2} atmosphere for 3 h . The mixture was filtered through a pad of celite. 1 N NaOH was added until pH 11 was reached, then most of the MeOH was evaporated at reduced pressure and the organic phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to leave pure 33 as an oil: 0.45 g (91%).

3.3.5 - Reaction with HI

The aziridine $6(0.100 \mathrm{~g}, 0.48 \mathrm{mmol})$ was dissolved in $47 \% \mathrm{HI}(5 \mathrm{~mL})$ and the solution was stirred for 12 h , then NaOH pellets were cautiously added until pH 11 was reached. The organic phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$ and the combined ethereal layers were washed with aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to leave a residue consisting of a white solid and a yellow oil. Chromatography on a small SiO_{2} column eluting with cyclohexane-EtOAc (1:9), then with EtOAc-MeOH-Et ${ }_{3} \mathrm{~N}$ (8:1:1) gave the compound 33: 62 mg (62\%).

N-[2-(2-Pyridyl)]ethyl-(S)-valinol (28). This was obtained from the aziridine 22 by hydrogenation over $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}\left(91 \%\right.$ yield) and by reduction with HI $\left(62 \%\right.$ yield): $[\alpha]_{D}{ }^{20}+16.8$ (c 2.0, CHCl_{3}); IR (neat): $v=3334,2962,2925,2872,1651,1589,1467,1427,1384,1274$, 1070, 813,$716 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.49$ (ddd, $J=1.0 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, J=4.9 \mathrm{~Hz}, 1$ H), 7.59 (ddt, $J=1.3 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=0.9 \mathrm{~Hz}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.11 (ddd, $J=1.3 \mathrm{~Hz}, J=4.9 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=4.1 \mathrm{~Hz}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.34$ (dd, $J=7.5 \mathrm{~Hz}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{bs}, 2 \mathrm{H}, \mathrm{OH}+\mathrm{NH}$), 3.15-2.92 (m, 4 H), 2.40 (dd, $J=$
$4.1 \mathrm{~Hz}, \mathcal{J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.76 (sept, $\mathcal{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $0.90(\mathrm{~d}, \mathcal{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, \mathcal{J}=$ 6.7 Hz, 3 H): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.1$ (Py), 149.0, 136.5, 123.4, 121.3, 64.6, 60.8, 46.5, 38.0, 29.1, 19.4, 18.5; MS (EI): $m / z=204$ (6), 191 (8), 177 (46), 165 (21), 135 (11), 121 (10), 106 (55), 94 (100), 84 (20), 78 (15). Anal. Calcd for $C_{12} H_{20} \mathrm{~N}_{2} \mathrm{O}: C, 69.19 ; \mathrm{H}, 9.68 ; \mathrm{N}$, 13.45. Found C, 69.41; H, 9.83; N, 13.42.

3.3.6 - Preparation of compound 30

To a solution of $28(50 \mathrm{mg}, 0.24 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added CDI (40 mg , 0.24 mmol) in one portion. After stirring overnight, $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added. The organic phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the combined organic phases was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated at reduced pressure. The red oily residue was subjected to chromatography on a SiO_{2} column, eluting with EtOAc then with a $90: 10 \mathrm{EtOAc} / \mathrm{MeOH}$ mixture to give 30 as a red oil: 0.047 g (84%).

(S)-3-[2-(2-Pyridyl)ethyl]-1,3-oxazolidin-2-one (30): [$\alpha]_{0}^{20}+29.0$ (c 1.9, CHCl_{3}); IR (neat): $v=2961,2929,2869,1733,1593,1566,1427,1259,1009,759 ;{ }^{1} \mathrm{H}$ NR (300 MHz , CDCl_{3}): $\delta=8.52(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PyH}), 7.62(\mathrm{td}, \mathcal{J}=1.8 \mathrm{~Hz}, \mathcal{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, \mathcal{J}=4.9 \mathrm{~Hz}, \mathcal{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, \mathcal{J}=8.8 \mathrm{~Hz}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.01$ $(d d, J=5.4 \mathrm{~Hz}, \mathcal{J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(d d d, J=6.9 \mathrm{~Hz}, \mathcal{J}=7.1 \mathrm{~Hz}, \mathcal{J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ (ddd, $J=3.6 \mathrm{~Hz}, \mathcal{J}=5.4 \mathrm{~Hz}, \mathcal{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{ddd}, \mathcal{J}=6.2 \mathrm{~Hz}, \mathcal{J}=7.9 \mathrm{~Hz}, \mathcal{J}=14.4 \mathrm{~Hz}, 1$ H), $3.07(\mathrm{~m}, 2 \mathrm{H}$), 2.87 (dsept, $J=3.5 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $0.83(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.84$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=158.5,157.5,149.3,136.6,136.6,123.5,121.7$, 62.7, 59.3, 41.5, 35.9, 27.4, 17.6, 14.1; MS (ES): $m / z=235.2(M+H)^{+}$, $491.1(2 M+N a)^{+}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 66.64 ; \mathrm{H}, 7.74 ; \mathrm{N}, 11.96$. Found $\mathrm{C}, 66.72 ; \mathrm{H}, 7.77 ; \mathrm{N}, 11.92$.

3.3.7 - Preparation of compound 32

To the aziridine $22(0.100 \mathrm{~g}, 0.48 \mathrm{mmol})$ dissolved in anhydrous $\mathrm{MeCN}(10 \mathrm{~mL})$ were added, in order, CDI ($0.080 \mathrm{~g}, 0.48 \mathrm{mmol}$) and allyl bromide ($0.21 \mathrm{~mL}, 2.4 \mathrm{mmol}$). The mixture was stirred at room temperature for 2 h , then quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic phase
was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic phases was washed with saturated aq NaHCO_{3}, then combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated at reduced pressure. The oily residue was subjected to chromatography on a SiO_{2} column eluting with cyclohexane-EtOAc (1:1) to give 32 as a whitish solid: $0.108 \mathrm{~g}(72 \%)$.

3-[2(R)-Bromo-2-(2-pyridyl)ethyl]-4(S)-isopropyl-1,3-oxazolidin-2-one (32): m.p. = 107$108{ }^{\circ} \mathrm{C} ;[\alpha]_{0}{ }^{20}+41.5\left(c 1.2, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}(\mathrm{KBr}): v=3050,3013,2953,2874,1728,1588,1487$, 1436, 1258, 1159, 1050, 932, 788, 751, 706, 597: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.57$ (ddd, J $=0.9 \mathrm{~Hz}, \mathcal{J}=1.7 \mathrm{~Hz}, \mathcal{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dt}, \mathcal{J}=1.8 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{td}, \mathcal{J}=0.9$ $\mathrm{Hz}, \mathcal{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{ddd}, \mathcal{J}=1.0 \mathrm{~Hz}, \mathcal{J}=4.8 \mathrm{~Hz}, \mathcal{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dd}, \mathcal{J}=6.3 \mathrm{~Hz}, \mathcal{J}$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), $4.12(\mathrm{dd}, J=6.3 \mathrm{~Hz}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~m}, 3 \mathrm{H}), 3.08(\mathrm{ddd}, J=1.0 \mathrm{~Hz}, J=$ 6.1 Hz, J $=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.09 (dsept, $J=3.6 \mathrm{~Hz}, \mathcal{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 0.76 (d, J= $6.9 \mathrm{~Hz}, 3 \mathrm{H}$), 0.72 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.1,157.2,149.5,137.1,123.6$, 123.5, 62.8, 59.1, 48.0, 46.4, 27.1, 17.3, 14.0; MS (ES); $m / z=313.2(M+H)^{+}, 336.9(M+H+$ $\mathrm{Na})^{+}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}_{2}: \mathrm{C}, 49.85 ; \mathrm{H}, 5.47 ; \mathrm{Br}, 25.51 ; \mathrm{N}, 8.94$. Found $\mathrm{C}, 49.98 ; \mathrm{H}$, 5.41; Br, 25.43; N, 8.90.

3.3.8 - Preparation of compound 33

The bromide 32 ($40 \mathrm{mg}, 0.13 \mathrm{mmol}$) was dissolved in dry DMF (5 mL) and sodium azide ($48 \mathrm{mg}, 0.73 \mathrm{mmol}$) was added. The mixture was heated at the reflux temperature for 8 h , then brine (5 mL) and EtOAc (10 mL) were added. The organic phase was extracted with $\operatorname{EtOAc}(3 \times 10 \mathrm{~mL})$, and the combined organic phases was concentrated at reduce pressure. The yellowish residue was subjected to chromatography on a SiO_{2} column eluting with cyclohexane, then with a 80:20 cyclohexane/EtOAc mixture to give the azide 38 as a yellowish oil: 28 mg (78%).
3-[2(S)-Azido-2-(2-pyridyl)ethyl]-4(S)-isopropyl-1,3-oxazolidin-2-one (33): $[\alpha]_{0}{ }^{20}+12.8$ (c1.1, CHCl_{3}); IR (neat) $v=2964,2935,2874,2102,1738,1597,1560,1425,1268,1001,757$;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.62$ (ddd, $\left.J=0.8 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.74(\mathrm{dt}, J$ $=1.8 \mathrm{~Hz}, \mathcal{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, \mathcal{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{ddd}, \mathcal{J}=0.8 \mathrm{~Hz}, \mathcal{J}=4.9 \mathrm{~Hz}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, \mathcal{J}=4.6 \mathrm{~Hz}, \mathcal{J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, \mathcal{J}=8.8 \mathrm{~Hz}, \mathcal{J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ (dd, $J=4.8 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{ddd}, \mathcal{J}=3.5 \mathrm{~Hz}, J=4.8 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$ (dd, $J=4.6 \mathrm{~Hz}, \mathcal{J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.45(\mathrm{dd}, \mathcal{J}=9.1 \mathrm{~Hz}, \mathcal{J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.16 (dsept, $J=3.5 \mathrm{~Hz}, \mathcal{J}$ $=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~d}, \mathcal{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, \mathcal{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}):{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=158.3,155.7,149.8(\mathrm{PyH}), 137.2,123.6,122.3,64.4,63.1,60.4,45.4,27.4,17.6,14.1 ;$ MS (ES): $m / z=276.1(M+H)^{+}, 298.2(M+N a)^{+}$. Anal. Calcd for $C_{14} H_{21} \mathrm{~N}_{5} \mathrm{O}_{2}: C, 57.71 ; \mathrm{H}, 7.27 ; \mathrm{N}$, 24.04. Found $C, 57.56$; $H, 7.29 ; N, 23.94$.

3.5 - References

${ }^{1}$ For a review: (a) W. Mc Coull, F. A. Davis Synthesis 2000, 1347; (b) J. B. Sweeney, Chem. Soc. Rev. 2002, 31, 247. (c) M. Pineschi Eur. J. Org. Chem. 2006, 4979. (d) X. E. Hu Tetrahedron 2004, 60, 2701. (d) H. Stamm J. Prakt. Chem 1999, 341, 319. (e) D. Tanner Angew. Chem. Int. Ed. Engl. 1994, 33, 599.
2 (a) H. M. I. Osborn, J. Sweeney, Tetrahedron: Asymmetry 1997, 8, 1693. (b) R. S. Atkinson, Tetrahedron 1999, 55, 1519. (c) F. A. Davis, H. Liu, P. Zhou, T. Fang, G. V. Reddy, Y. J. Zhang, Org. Chem. 1999, 64, 7559.
${ }^{3}$ C. Loncaric, W.D. Wulff Org. Lett. 2001, 23, 3675.
${ }^{4}$ A. P. Patwardhan, V. R. Pulgam, Z. Yu, W. D. Wulff Angew. Chem. 2005, 117, 6325.
${ }^{5}$ S. Kato, H. Harada, T. Morie, J. Chem. Soc., Perk. Trans 11997, 3219.
${ }^{6}$ D. Tanner, P. Sommai Tetrahedron 1988, 44, 619.
${ }^{7}$ Y. Fukuta, T. Mita, N. Fukuda, M. Kanai, Shibasaki M. J. Am. Chem. Soc. 2006, 128, 6312.
${ }^{8}$ C. U. Kim, W. Lew, M. A. Williams, H. Liu, L. Zhang, S. Swaminathan, N. Bischofberger, M. S. Chen, D. B. endel, C. Y. Tai, W.G. Laver, R. C. Stevens, J. Am. Chem. Soc. 1997, 119, 681.
${ }^{9}$ J. Collins, M. Drouin, X. Sun, U. Rinner, T. Hudlicky Org. Lett. 2008, 10, 361.
${ }^{10}$ D. Savoia, G. Alvaro, R. Di Fabio, A. Gualandi, C. Fiorelli, J. Org. Chem. 2006, 71, 9373.
${ }^{11}$ H. Rempfler, F. Cederbaum, F. Spindler, W. Lottenbach, Patent WO 96/16941, 1996 CAN 125:114501.
${ }^{12}$ P. Coqueron, P. Desbordes, D. J. Mansfield, H. Rieck, M. C. Grosjean, A. Villier, P. Genix, Eur. Patent 1548007 A1, 2005 CAN 143 :97399.
${ }^{13}$ B. Crousse, S. Narizuka, D. Bonnet-Delpon, J. P. Bégué, Synlett 2001, 679.
14 Ring-opening of N-tosyl aziridines by water in the presence of cerium ammonium nitrate has been reported: S. Chandrasekhar, Ch. Narsihmulu, S. Shameem Sultana, Tetrahedron Lett. 2002, 43, 7361.
${ }^{15} \mathrm{~N}$-Tosyl aziridines were cleaved by sodium azide in the same conditions: G . Sabitha, R. S. Babu, M. Rajkumar, J. S. Yadav, Org. Lett. 2002, 4, 343.
${ }^{16}$ K. Yongeun, H. Hyun-Joon, H. Kyusung, W. K. Seung, Y. Hoseop, J. Y. Hyo, S. K. Min, K. L. Won, Tetrahedron Lett. 2005, 46, 4407.

17 TMSN 3 cleaved N-tosyl and N-alkyl aziridines in polar aprotic solvents: (a) J. Sun X.Wu., H.-G. Xia, Eur. J. Org. Chem. 2005, 4769. (b) S. Minakata, Y. Okada, Y. Oderaotoshi, M. Komatsu, Org. Lett. 2005, 7, 3509. (c) J. Wu, X.-L. Hou, L.-X. Dai, J. Org. Chem. 2000, 65, 1344. (d) Q. Xu, D. H. Appella, J. Org. Chem. 2006, 71, 8655.

18 A. Bisai, B. Prasad, V. K. Singh, Tetrahedron Lett. 2005, 46, 7935.
$19 N$-Activated aziridines were cleaved by primary amines in the presence of lithium perchloarte: (a) J. S. Yadav, B. V. S. Reddy, B. Jyothirmai, M. S. R. Murty, Synlett 2002, 53. (b) J. Thierry, V. Servajean, Tetrahedron Lett. 2004, 45, 821.

20 Similarly, 1,2-disubstituted aziridines in the presence of boron trifluoride underwent selective opening by attack of thiols at the substituted aziridine carbon: J. M. Concellon, P. L. Bernad, J. R. Suárez, J. Org. Chem. 2005, 70, 9411.
21 1,2-Dialkylaziridines were cleaved by thiols in dichloromethane by attack at the unsubstituted aziridine carbon: J. H. Bae, S.H. Shin, C. S. Park, W. K. Lee, Tetrahedron 1999, 55, 10041.

22 (a) N. C. Deno, N. Friedman, J. D.Hodge, F. P. MacKay, G. J. Saines, Am. Chem. Soc. 1962, 84, 4713. (b) M. Konieczny, R. G. Harvey, J. Org. Chem. 1979, 26, 4813. (c) J. R. Zoeller, C. J. Ackerman, J. Org. Chem. 1989, 55, 1354. (d) H. Duddek, Rosenbaum, J. Org. Chem. 1991, 56, 1707. (e) I. W. Davies, M. Taylor, D. Hughes, P. J. Reider, Org. Lett. 2000, 2, 3385. (f) D. Kumar, J. S. D. Ho, M. M. Toyokuni, T. Tetrahedron Lett. 2001, 42, 5601. (g) A. Kamal, P. S. M. M. Reddy, D. R. Reddy, Tetrahedron Lett. 2002, 43, 6629.
${ }^{23}$ A. L. Gemal, J. L. Luche, Tetrahedron Lett. 1980, 3195.
24 (a) D. K. Pyun, C. H. Lee, H-J. Ha, C. S. Park, J. W. Chang, W. K. Lee, Org. Lett. 2001, 3, 4197. (b) C. S. Park, M. S. Kim, T. B. Sim, D. K. Pyun, C. H. Lee, D. Choi, W. K. Lee, J. W. Chang, H.J. Ha, J. Org. Chem. 2003, 68, 43.
${ }^{25}$ T. Kamijo, H. Harada, K. Iizuka. Chem. Pharm. Bull. 1983, 31, 4189.

Chapter Index

Chap. 3 - Asymmetric Route to Pyridines Bearing a Highly Functionalized 2-Alkyl Substituentby Aziridine Ring Opening Reactions813.1 - Introduction 81
3.2 - Results and discussion 87
3.3 - Experimental section 94
3.3.1 - General protocol for ring opening reaction of 22 94
3.3.2 - Oxidative cleavage of the N-auxiliary. Preparation of the β-substituted primary amines and benzamides 25b,e,f,h,i and 26b,e,f,h 103
3.3.3 - Preparation of the diamine 27. 109
3.3.4 - Reaction with $\mathrm{H}_{2}-\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$. 110
3.3.5-Reaction with HI 110
3.3.6 - Preparation of compound 30 111
3.3.7 - Preparation of compound 32 111
3.3.8 - Preparation of compound 33 112
3.5 - References 113
Chapter Index 116

Chap. 4 - Asymmetric Synthesis of

1-(2-Pyrrolyl)alkylamines by Addition of
 Organometallic Reagents to Chiral

2-Pyrroleimines

4.1-Introduction

4.1.1-1-(2-Pyrroly)alkylamino moiety

The chiral 1-(2-pyrrolyl)alkylamino moiety highlighted in structure 1 (Scheme 1), bearing a stereocenter at the benzylic carbon (one configuration is shown), is a common structural motif in non-cinchona indole alkaloids, ${ }^{1}$ and terpene-indole alkaloids, ${ }^{2}$ which display potent biological and physiological properties. Mytosene aziridines are also important compounds containing this skeleton fragment. ${ }^{3}$ In Scheme 1 we report some examples of these molecules. The hydrochloride of Yohimbine (1) is a selective and competitive α_{2} adrenergic receptor antagonist and it has been used to treat erectile dysfunction, Ajmaline (2) and Raumacline (3) are antiarhythmic agents. Eudistomine L (4) have strong antiviral and antitumour activity, Fumitremorgin $C(5)$ is a potent and specific inhibitor of the breast cancer resistance protein (BCRP/ABCG2), Geissoschizine (6) is a vasorelaxant. The pyrrolo[1,2-b][1,2,5]benzothiadiazepine 5,5-dioxides (PBTDs) (7) as potent non-nucleoside inhibitors of the HIV-1 reverse transcriptase. ${ }^{4}$ 7-aminoleucoaziridinomitosene 8) and 1,4aziridomitosene (9) have shown activity against various tumor model systems. ${ }^{5}$

1,
Yohimbine

4.

Eudistomine L

7.

PBDTS

2,
Ajmaline

5,
Fumitremorgine C

8,
7-aminoleucoaziridinomitosene

3,
Raumacline

6,
Geissoschizine

9,
1,4-aziridinomitosene

Scheme 1

Given their enormous importance, synthetic methods have been developed for these compounds, but efficient asymmetric procedures for the construction of the heterobenzylic stereocenter are still lacking. In principle, this goal can be accomplished during the formation of any of the four bonds involved. Three of these possibilities, concerning the formation of bonds a, b and c are described in Scheme 2 .

Scheme 2

For example, the a bond in compounds 1 can be formed by the inter- or intramolecular attack of the nucleophilic pyrrole C2 carbon at the electrophilic carbon of an azomethine compound, generally activated by a Lewis acid and an electron-withdrawing N-substituent, or an iminium ion, possibily formed in situ (three-component Mannich reaction). ${ }^{6}$ For example, the BF_{3}-mediated addition of pyrrole to (S)- N-trifluoromethylidene-1-phenylethylamine 12 (Scheme 3) occurred with good yield but only moderate diastereoselectivity (d.r. 78:22) to give amine 13, whereas indole reacted (at C3) with complete stereocontrol. ${ }^{6 d}$ On the other hand, an allylic 3-methylene-2,3-dihydro-2-indolylindium 16 species generated by a Pd-In bimetallic cascade process from 2 -iodo- N-allenylaniline 14 added to enantiopure $N-[(R)-t-$ butylsulfinyl] glyoxylate imine 15 with complete stereocontrol. ${ }^{6 f}$

Scheme 3

The 1-2-(indolyl)alkylamino moiety has been commonly prepared by the intramolecular version of this approach, i.e. the Pictet-Spengler reaction, which has been a key step in the synthesis of a large number of alkaloids. ${ }^{1 s, t, 7,8}$ In this reaction, an imine or iminium ion function, that is formed in situ by N-functionalization of tryptamine and its substituted derivatives by reaction with an aldehyde (e.g. 17), undergoes intramolecular attack by the indole-C2 carbon (Scheme 4) to give tricyclic compound (18). Although the reaction often gives mixtures of diastereomers, a number of highly stereoselective reactions have been reported, relying on the asymmetric induction of the stereocenter(s) present in the tryptamine aliphatic chain, or in the aldehyde, or in the amine substituent (chiral auxiliary). To our knowledge, the Pictet-Spengler reaction has rarely been applied to a pyrrole derivative. One example is the reaction developed by Dodd ${ }^{7 s}$ between the chiral amine 19 and acetaldehyde to give the product 20.

Scheme 4

Alternatively, the stereocenter in structure 1 can be constructed via formation of bond b (Scheme 2) from the azomethine compounds $11 .^{7 t, 9}$ For example, quinolizidine alkaloids have often been prepared by a sequence of steps where a tetracyclic quaternary 2indolyliminium ion (R -substituted N -charged cyclic structure 11) was formed by the BischlerNapieralski reaction between indole and lactam rings, then submitted to catalytic hydrogenation or hydride reduction (Scheme 5).

Scheme 5

More recently, novel polycyclic indolyldiamines have been prepared by completely diastereoselective reductions of chiral, optically pure 2-indolylenamines (Scheme 6). ${ }^{9 f}$

Scheme 6

The construction of bond c (Scheme 2) involves the addition of a carbon nucleophile or an organometallic reagent to a 2 -pyrrolealdimine 11. However, 2-pyrrole-and 2-indoleimines are less electrophilic than other aromatic imines, owing to the electron-donating effect of the pyrrole/indole ring. For example, 9-benzyl-3,4-dihydro- β-carboline was unreactive towards a laterally metalated pyridine, although a successful reaction was observed when the imine was preliminarily activated by addition of trimethylsilyl trifluoromethanesulfonate. ${ }^{1 d}$ Similarly, the Lewis acid promoted addition of a ketene silyl acetal to a β-carboline hydrochloride derived from L-tryptophan ${ }^{1 r}$ (21) and the addition of allyltrimethylsilane to iminium ions derived from D-tryptophan have been described (Scheme 7). ${ }^{10}$ Benzylic and allylic organometallic reagents reacted smoothly with analogous imines bearing N-aryl or N benzenesulfonyl substituents. ${ }^{11}$

Scheme 7

Recently, the chiral auxiliary approach has been exploited for the asymmetric synthesis of 2-(1-aminoalkyl)indoles. The addition of laterally metallated 3-cyano-4methylpyridine (25) to a 1,3-disubstituted-2-indoleimine derived from optically pure sulfinamides (26), gave the product 27 with a d.e. of 82% (Scheme 8). ${ }^{12}$ Recently, a ringsubstituted 2-pyrroleimine prepared from (R)-phenylglycinol (28) underwent highly diastereoselective addition of isopropylmagnesium chloride (4-5 equivalents) to give product 29, whereas the addition of allylzinc bromide to an analogous imine prepared from (R)-phenyl glycineamide was unsatisfactory. ${ }^{13}$

25

26

27

Scheme 8

In the addition of an optically pure allylsilane to an acylhydrazone derived from 2pyrrolealdehyde the yield and e.e. were found to be dependent on the pyrrole N-substitution: a lower yield (49\%) but higher e.e. (92\%) was obtained with the N-Boc-pyrrole imine, with respect to the unprotected imine (e.e. 48%). ${ }^{14}$ Interestingly, tricyclic pyrrole-pyrazineoxazole structures (31) were prepared from 2-formylpyrroles derived from (S)- α-amino esters and (+)- or (-)-norephedrine ${ }^{15}(30)$. However, the potential of such compounds as precursors of chiral iminium ions, suitable substrates for the addition of Grignard reagents, eventually leading to 2-(1-aminoalkyl)pyrroles, has not been considered yet.

Scheme 9

Another widely exploited method for the asymmetric synthesis of polycyclic indole alkaloids by construction of the bond c (Scheme 2) is the Diels-Alder cycloaddition of β carbolines and 2-indoleimine with 1,4-dienes. ${ }^{16,17}$ Notably, a chiral 2-pyrroleimine failed to react with 1,3-butadiene. ${ }^{18}$ For the sake of completeness, the $C-N$ bond can also be formed by nucleophilic substitution of oxygen-substituted compounds. For example, dihydropyrrolizine esters gave the corresponding amines by reaction with ammonia and alkyl
amines, but loss of the stereochemical integrity of the stereocenter was observed, pointing to an $S_{N} 1$ mechanism for these reactions. ${ }^{19}$

Following this extensive literature search, we observed that the asymmetric synthesis of 1-(2-pyrrolyl)alkylamines was scarcely explored, as compared to the analogous indole derivatives. So, we were prompted to study the auxiliary-induced diastereoselective addition of organometallic reagents to 2-pyrroleimines, so filling a gap in our long term investigation on the asymmetric synthesis of benzylic and heterobenzylic amines from chiral imines. ${ }^{20}$ It should also be observed that optimization of this route would open an avenue to optically pure compounds with the pyrrolidine, pyrrolizidine and indolizidine skeletons, ${ }^{21}$ including alkaloids and pharmacologically interesting molecules, taking advantage of the possible hydrogenation of the pyrrole nucleus ${ }^{22}$ and the nucleophilicity of the pyrrole/pyrrolidine nitrogen atom.

4.2 - Results and discussion

4.2.1 - Addition of organometallic reagents to chiral pyrrole imines derived from (S)-valinol and (S)-phenylglycinol

Optically pure phenylglycinol and valinol are among the most used chiral auxiliaries for the diastereoselective addition of organometallic reagents to imines. ${ }^{23}$ In particular, we described that the addition of organolithium reagents to 2-pyridineimines derived from (S)valinol and (S)-phenylglycinol occured effectively and with very highly diastereoselectivity following protection of the OH function as its trimethylsilyl ether. ${ }^{20}$ Hence, we began our investigation on the N, O-disilylated imine 34 , which was prepared in two steps and almost quantitative yield from 2-pyrrolealdehyde and (S)-phenylglycinol through the intermediate unprotected imine 32. (Scheme 10).

Scheme 10

The addition of organolithium reagents to the imine 32 was carried out in diethyl ether at -15 or $0{ }^{\circ} \mathrm{C}$, as no reaction was observed at lower temperatures. By using 2-3 equivalents of organometallic reagents, good yields of the β-hydroxyamines 35 (Scheme 11) were obtained after protonolysis and desilylation of organometallic adducts with ammonium fluoride in the biphasic system THF/H2O (Table 1). The (S,S)-configuration of the prevalent diastereomer in products 35 was assumed on the basis of the sense of asymmetric induction previously determined in organometallic reactions of analogous aromatic and heteroaromatic imines. ${ }^{20}$

Scheme 11
Very high diastereoselectivity (d.r. $>95 \%$) was observed in the formation of amines 35a and 35b with MeLi and nBuLi, respectively, and the main diastereomer (S, S)-35a,b were isolated with good yields after column chromatography. The homoallylic amine 35 e was then prepared using either allylzinc bromide or allylmagnesium chloride in tetrahydrofuran, but a better diastereoselectivity was obtained with the magnesium reagent (d.r. 90:10 versus >96:4). Instead, no reaction was observed with vinylmagnesium bromide.

Table 1

RM (equivalents)	Solvent	D.r. ${ }^{[a]}$	$(S, S)-35$ Yield \% ${ }^{[b]}$
MeLi (3)	$\mathrm{Et}_{2} \mathrm{O}$	$>95: 5$	$35 \mathrm{a}, 87$
$n \mathrm{BuLi}(3)$	$\mathrm{Et}_{2} \mathrm{O}$	$>95: 5$	$35 \mathrm{~b}, 82$
Allyl $\mathrm{ZnBr}(2)$	THF	$>90: 10$	$35 e, 81$
AllylMgCl (2)	THF	$>96: 4$	$35 e, 83$
Vinyl $\mathrm{MgCl}(3)$	$\mathrm{Et}_{2} \mathrm{O}$	-	no reaction

[a] Determined by ${ }^{1} \mathrm{H}$ NMR analysis. [b] The crude product was treated with $\mathrm{NH}_{4} \mathrm{~F}$ (3 equiv.) and a catalytic amount of TBAF in THF- $\mathrm{H}_{2} \mathrm{O}$ (1:1), then submitted to column chromatography $\left(\mathrm{SiO}_{2}\right)$.

Subsequently, taking into account a recent report, ${ }^{13}$ we wished to check the reactivity of the unprotected imines 32 and 33 derived from (S)-phenylglycinol and (S)-valinol, respectively (Scheme 12). This choice required the use of an excess of the orgamometallic reagent, the first two equivalents being quenched by the acidic OH and NH functions. Moreover, it was expected that the negatively charged pyrrole substituent would decrease the reactivity of the imine function. As a matter of fact, the addition of MeLi (4 equivalents) to the imine 32 in THF occurred smoothly at -15 to $0{ }^{\circ} \mathrm{C}$ to give the amine 35 a with 96% yield and d.r. >95 (Table 2). Similarly, the reaction with nBuLi in the same conditions gave the amine 35b in high yield and with (almost) complete diastereoselectivity, only one diastereomer being observed by ${ }^{1}$ H NMR analysis of the crude reaction product. Similarly, the addition of PrMgCl proceeded smoothly to give 35 c in 92% yield and with complete diastereoselectivity.

Scheme 12
On the other hand, the addition of $t-B u L i$ occurred with quite poor diastereoselectivity, although the two diastereomers of 35d could be seperated by column chromatography. A low conversion of the imine 32 was observed by TLC and GC analyses after addition of allylzinc bromide, however, the use of allylmagnesium chloride allowed the homoallylic amine 35e to be obtained with good yield and high diastereoselectivity (dr >95:5); higher yield and complete stereocontrol were then obtained using 4 equivalents of the allyldiethylzincate prepared by the addition of allylmagnesium chloride to diethylzinc. ${ }^{23}$ Aiming to reduce the overall excess of organometallic reagents, we subsequently developed a more economic protocol that involved the preliminary addition of diethylzinc (2 equivalents) to the imine 32, followed by the addition of allylmagnesium chloride (2 equivalents); in this way, the homoallylic amine 35 e was obtained with almost identical yield and complete stereocontrol. Good results were also obtained using benzylmagnesium chloride, providing access to the amines $35 f$ in high yield and with d.r. $>95: 5$. No reaction was observed with
vinylmagnesium bromide and phenylmagnesium bromide, however, phenyllithium proved to be more reactive and gave the desired amine 35h. Unfortunately, the crude amine 35h, decomposed upon attempted purification by column chromatography, perhaps owing to the acidity of the methine proton linked to the carbon stereocenter.

Table 2

Imine	y	RM (equivalents)	D.r. ${ }^{\text {[a] }}$	$\begin{gathered} (S, S)-35,(S, S)-36 \\ \text { Yield \% }{ }^{[b]} \end{gathered}$
32	Ph	MeLi (4)	>95:5	35a, 96
32	Ph	$n \mathrm{BuLi}$ (4)	>99:1	35b, 91
32	Ph	1 PrMgCl (4)	>95:5	35c, 92
32	Ph	tBuLi (4) ${ }^{[c]}$	55:45	$\begin{aligned} & (S, S)-35 d, 31 \\ & (R, S)-35 d, 28 \end{aligned}$
32	Ph	Allyl ZnBr (4)	-	35e, 10 ${ }^{[a],[d]}$
32	Ph	Allyl MgCl (4)	>95:5	35e, 87
32	Ph	Allyl $\mathrm{Et}_{2} \mathrm{ZnMgCl}$ (4)	>99:1	35e, 89
32	Ph	1) $\left.\mathrm{Et}_{2} \mathrm{Zn}(2), 2\right)$ Allyl MgCl (2)	>99:1	5e, 86
32	Ph	BnMgCl (4)	>95:5	35f, 91
32	Ph	VinylMgBr (4)	-	35g, 0
32	Ph	PhMgBr (4)	-	35h, 0
32	Ph	PhLi (4)	>95:5	35h, $95^{[e]}$
33	Pr	MeLi (4)	>99:1	36a, 91
33	Pr	$n \mathrm{BuLi}$ (4)	>99:1	36b, 87
33	Pr	1) $\left.\mathrm{Et}_{2} \mathrm{Zn}(2), 2\right) \mathrm{Allyl} \mathrm{MgCl}^{\text {(2) }}$	>99:1	36e, 89
33	Pr	Ally MgCl (4)	>99:1	36e, 78
33	Pr	BnMgCl (4)	>99:1	36f, 90
33	Pr	1) $\mathrm{MeLi}(2), 2) \mathrm{VinylLi}(2)$	>99:1	$36 \mathrm{~g}, 92^{[e]}$
33	Pr	PhLi (4)	>95:5	$36 \mathrm{~h}, 91^{[e]}$

[a] Determined by ${ }^{1} \mathrm{H}$ NMR analysis. [b] Yield of the pure (S, S)-diastereomer which was isolated by column chromatography $\left(\mathrm{SiO}_{2}\right)$. [c] The reaction was performed in $\mathrm{Et}_{2} \mathrm{O}$. [d] The product was not isolated. [e] The product decomposed during chromatography on a SiO_{2} column.

Then we moved to evaluate the degree of asymmetric induction offered by the (S)-valinol-derived 2 -pyrroleimine 33 in the same organometallic reactions carried out on the imine 32. We were delighted to observe that even better results were obtained, as complete stereocontrol was achieved in the preparation of the amines 36a,b,e-h (Table 2). These results are in line with the previously observed evidence that a better stereocontrol was provided by valinol as the chiral auxiliary for imines with respect to phenylglycinol. ${ }^{20}$ The reaction with t-butyllithium was not carried out, as we had no chance to improve significantly the diastereoselectivity previously obtained with the imine 32. The β-aminoalcohols $36 \mathrm{~g}, \mathrm{~h}$ were obtained using vinyllithium and phenyllithium, respectively. Vinyllithium was prepared by reaction of tri(n-butyl)vinyltin and n-BuLi, however, we found more convenient to initially add two equivalents of MeLi to the imine 33, since the first two equivalents of organometallic reagent are consumed by the acidic NH and OH groups, and then add two equivalents of vinyllithium. As previously observed with the amine 35 h , the novel amines $36 \mathrm{~g}, \mathrm{~h}$ underwent decomposition during attempted chromatographic purification. Nevertheless, it is likely that the crude amines 35 h and $36 \mathrm{~g}, \mathrm{~h}$, being obtained with satisfactory purity, could be used as such in subsequent steps involving transformation of the alkene function.

4.2.2 - Addition of organometallic reagents to chiral pyrrole imines derived from valine methyl ester

We also prepared the imine 38 (Scheme 13) derived from 2-pyrrolecarboxaldehyde and (S)-valine methyl ester following protection of the NH function as its trimethylsilyl derivatives.

The addition of allylzinc bromide to the imine 38 gave a mixture of two products: the desire product 39 with only the 51% of yield and the product 40 derivate from a double addition of the organometallic reagent to the ester function (Table 3). Increasing the temperature and using allylmagnesium chloride gave only the product 40 with good yields.

Scheme 13

Table 3

RM (equivalents)	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	D. r. of $38^{[a]}$	39 Yield(\%)	40 Yield(\%)
Ally\| $\mathrm{ZnBr}(3)$	$-78 \rightarrow-10$	$92: 8$	$51^{[b]}$	$15^{[a]}$
Ally\|ZnBr (3)	$0 \rightarrow 25$	-	-	$84^{[b]}$
Ally\|MgCl (3)	$0 \rightarrow 25$	-	-	$90^{[b]}$

[a] Determined by ${ }^{1} \mathrm{H}$ NMR analysis. [b] After cromatographic purification $\left(\mathrm{SiO}_{2}\right)$.

4.2.3 - Elaboration of amines 35 and 36

At this point we assessed the possibility of using the β-aminoalcohol 35 and 36 for the construction of new optically active, pyrrole-containing molecules, such as aziridines by intramolecular cyclization and secondary amines through oxidative cleavage of the chiral auxiliary (Scheme 14). For the first goal we followed the same protocol previously applied for the synthesis of analogous 1-(2-pyridyl)alkylaziridines. ${ }^{20 b, c}$ As a matter of fact, the pyrroleaziridines $41 a, b, f$ were successfully obtained in high yields by treatment of the β hydroxyamines 35a,b,f with triphenylphosphine and diethylazodicarboxylate (DEAD) in THF at room temperature.

Scheme 14

On the other hand, hydrogenolysis of $35 a$ with ammonium formate and Pd / C in ethanol at the reflux temperature gave disappointing results, as a complex mixture of products was
obtained. Instead, the oxidative procedure making use of periodic acid and methylamine in THF- $\mathrm{H}_{2} \mathrm{O}$ was successful; however, starting from the β-aminoalcohols $35 \mathrm{~b}, \mathrm{c}, \mathrm{e}$ the benzaldimines $42 b, c, e$ were isolated, apparently being stable towards hydrolysis in the reaction conditions. In particular the imine 42c was isolated as a solid and could be purified simply by washing with pentane. Both the crude imines $42 b, c, e$ were readily reduced to the corresponding benzylamines 43b, c,e by sodium borohydride in methanol (Scheme 15). It is worthy of note that this procedure is more convenient than the usual stepwise removal of the chiral auxiliary followed by N-benzylation.

Scheme 15

On the other hand, the primary amines were formed by carrying out the oxidative procedure on the valinol derivatives 36 (Scheme 16); in this case the crude compounds were preferably treated with benzoyl chloride and potassium carbonate in acetone- $\mathrm{H}_{2} \mathrm{O}$ mixture, so easily obtaining the corresponding pure N-benzoyl derivatives $44 a, b, e, f$ in good yields.

Scheme 16

In conclusion, we have developed a convenient asymmetric route to 1-[2(pyrrolyl)]alkylamines exploiting the highly diastereoselective addition of organometallic reagents to chiral 2-pyrroleimines derived from (S)-phenylglycinol and (S)-valinol. Although a larger excess of organometallic reagents was needed, better diastereoselectivities were
obtained working on the imines with unprotected N-H and O-H functions. Complete or excellent stereocontrol was achieved, especially with the (S)-valinol-derived imine. Removal of the chiral auxiliaries was achieved by an oxidative procedure to give the corresponding imines or primary amines, from which the N-benzyl and N-benzoylamines could be easily prepared. Pyrrole-aziridines were also prepared by cyclization of the (S)-phenylglycinol derived secondary amines. Future efforts in our laboratory will be devoted to converting the unsaturated amines 35 h and $36 \mathrm{~g}, \mathrm{~h}$ into bicyclic compounds by linking the pyrrole-NH and alkene functions.

4.2.4 - Use of the synthesized compounds as chiral ligands

Finally we tested the imine 32 and the aziridines 41a,f in the enanatioselctive addition of diethylzinc to benzaldehyde 45 (Scheme 17). The reaction proceeded slowly, moderate to good yield was obtained only after 24 hours at room temperature (Scheme 17), to gave the addition product 46 with low e.e..

Scheme 17

Table 4

L	Conversion 46 (\%)	e.e. 46 (\%)
32	75	9
41 a	96	21
41 f	88	15

4.3-Experimental section

Melting points are uncorrected. Optical rotations were measured on a digital polarimeter in a $1-\mathrm{dm}$ cell and $[\alpha]_{0}$-values are given in $10^{-1} \mathrm{deg} \mathrm{cm}{ }^{3} \mathrm{~g}^{-1} .{ }^{1} \mathrm{H}$ NMR spectra were recorded on Varian Inova and Gemini instruments for samples in CDCl_{3} which was stored over
$\mathrm{Mg}:{ }^{1} \mathrm{H}$ chemical shifts are reported in ppm relative to $\mathrm{CHCl}_{3}\left(\delta_{\mathrm{H}} 7.27\right)$, J -values are given in Hz . and in the assignments $s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet, sept $=$ septet, $m=$ multiplet, bs = broad singlet, $d d=$ doublet of doublets and $d t=$ doublet of triplets. Infrared spectra were recorded on a Nicolet FT-380 spectrometer and IR assignments are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. MS spectra were taken at an ionising voltage of 70 eV on a HewlettPackard 5975 spectrometer with GLC injection. Molecular weight was determined on an Agilent Technologies MS 1100 instrument. Chromatographic separations were performed on columns of SiO_{2} (Merck, 230-400 mesh) at medium pressure. All the organic, inorganic and organometallic reagents and reactants and anhydrous solvents were purchased from Aldrich.

4.3.1 - General protocol for the preparation of Imines 32, 33

To a solution of (5)-phenylglycinol ($0.823 \mathrm{~g}, 6 \mathrm{mmol}$) or (5)-valinol ($0.618 \mathrm{~g}, 6 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added anhydrous $\mathrm{MgSO}_{4}(5 \mathrm{~g})$ and 2-pyrrolecarboxaldehyde ($0.571 \mathrm{~g}, 6 \mathrm{mmol}$) and the mixture was stirred overnight. The solid was filtered off through a pad of Celite and the organic phase was concentrated at reduced pressure. The residue was crystallized from pentane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ mixture (5:1) to give the imine, which was used in the following step avoiding purification.

(S)-N-(2-Pyrrolmethylidene)phenylglycinol (32): 1.262 g (98\%); white solid, mp 109-109.6 ${ }^{\circ}{ }^{\circ}$. $[\alpha]_{0}^{20}+24.3\left(c 1.1, \mathrm{CHCl}_{3}\right)$. IR (KBr): $v_{\max }=3331,3113,3061,2921,2854,1640,1425$, $1366,1313,1073,1061,1043,813,737,701 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.03(\mathrm{dd}, \mathrm{J}=3.6$, $\left.J^{2}=12.2,1 \mathrm{H}\right), 4.20(\mathrm{dd}, \mathcal{J}=9.9, \mathcal{J}=12.2,1 \mathrm{H}), 4.46(\mathrm{dd}, \mathcal{J}=3.6, J=9.9,1 \mathrm{H}), 6.20(\mathrm{~m}, 2 \mathrm{H})$, $6.99(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 5 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=67.9,76.6,109.6$, 117.7, 122.9, 126.9, 127.4, 128.6, 128.9, 140.7, 154.6. GC-MS m/z: 183 (100), 156 (12), 214 (7), 80 (7). Anal. Calcd for $C_{13} H_{14} \mathrm{~N}_{2} \mathrm{O}$ (214.11): C, 72.87; H, 6.59; N, 13.07. Found: C, 72.57; H, 6.62; N, 13.10.

(S)-N-(2-Pyrrolmethylidene)valinol (33): 1.051 g (97\%); white solid, $\mathrm{mp} 122.4-123{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}$ $+121.5\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right)$. IR (KBr): $v_{\max }=3239,3114,3085,2966,2924,2868,2843,1633$, $1473,1419,1373,1359,1317,1217,1131,1075,1053,1035,934,824,761,735 .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.86(\mathrm{~d}, \mathrm{~J}=6.9,3 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=6.9,3 \mathrm{H}), 1.81($ sept, $J=6.9,1 \mathrm{H}), 2.92$ (dd, $J=3.5, J=8.8,1 H$), $3.83(d d, J=3.5, J=11.8,1 H), 3.96(d d, J=8.8, J=11.8,1 H)$, $6.16(\mathrm{dd}, J=2.6, J=3.6,1 \mathrm{H}), 6.26(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=19.0,19.6,30.7,64.5,78.3,109.3,116.7,122.3,129.0,153.7 . \operatorname{GC}-\mathrm{MS} \mathrm{m} / \mathrm{z}: 149$ (100), 80 (47), 137 (38), 68 (26), 106 (24), 180 (23). Anal. Calcd for $C_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$ (180.13): C, 66.63; H, 8.95; N, 15.54. Found: C, 66.31; H, 8.98; N, 15.51.

4.3.2 - Preparation of Imine 34

(S)-N-[(1-Trimethylsilylpyrrol-2-yl)methylidene]phenylglycinol trimethylsilyl ether 34: The crude imine 32 (1.26 gr, 5.9 mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and triethylamine $(1.23 \mathrm{~g}, 12 \mathrm{mmol})$ and chlorotrimethylsilane $(1.30 \mathrm{~g}, 12 \mathrm{mmol})$ were added to the solution cooled at $0{ }^{\circ} \mathrm{C}$. After 3 h the solvent was removed at reduced pressure. A solution of cyclohexane/diethyl ether (1:1,50 mL) was added and the solid precipitate was filtered off through a pad of Celite. The organic solvent was evaporated under reduced pressure to leave the imine 34 which was used in the following step avoiding purification: $2.074 \mathrm{gr}(98 \%)$; white solid, m.p. 94.2-94.9 ${ }^{\circ} \mathrm{C}$ (from pentane: $\mathrm{Et}_{2} \mathrm{O} 5: 1$). $[\alpha]_{\mathrm{D}}{ }^{20}-48.1$ (c 0.5, CHCl_{3}). IR (KBr): $v_{\max }=$ $3105,3062,2962,2908,2857,1640,1451,1425,1247,1122,1084,1051,916,902,842,739$, 700. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.11(\mathrm{~s}, 9 \mathrm{H}), 0.58(\mathrm{~s}, 9 \mathrm{H}), 3.93(\mathrm{~d}, J=6.7,2 \mathrm{H}), 4.37(\dagger$, $J=6.7,1 H$), $6.36(d d, J=2.6, J=3.3,1 H), 6.78(d d, J=1.5, J=3.3,1 H), 7.05(m, 1 H)$, $7.37(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~m}, 3 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.5,1.6,67.6,77.3$, 100.4, 120.5, 127.1, 127.8, 128.2, 129.5, 141.4, 153.0. GC-MS m/z: 255 (100), 73 (34), 183
(22), 150 (19), 343 (15), 358 (12). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OSi}_{2}$ (358.19): C, 63.63; H, 8.43; N, 7.81. Found: $C, 63.48 ; H, 8.45 ; N, 7.79$.

4.3.3 - Preparation of Imine 38

To a solution of (S)-valine methyl ester hydrochloride ($1.68 \mathrm{~g}, 10 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added anhydrous $\mathrm{MgSO}_{4}(5 \mathrm{~g})$ and 2-pyrrolecarboxaldehyde ($0.951 \mathrm{~g}, 10$ $\mathrm{mmol})$. Triethylamine ($1.23 \mathrm{~g}, 12 \mathrm{mmol}$) was added and the mixture was stirred overnight. The solid was filtered off through a pad of Celite and the organic phase was concentrated at reduced pressure.

The crude imine was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and triethylamine ($1.23 \mathrm{~g}, 12 \mathrm{mmol}$) and chlorotrimethylsilane $(1.30 \mathrm{~g}, 12 \mathrm{mmol})$ were added to the solution cooled at $0^{\circ} \mathrm{C}$. After 3 h the solvent was removed at reduced pressure. A solution of cyclohexane/diethyl ether (1:1, 50 mL) was added and the solid precipitate was filtered off through a pad of Celite. The organic solvent was evaporated under reduced pressure to leave the imine 38 which was used in the following step avoiding purification.
(S)-N-(2-Pyrrolmethylidene)valine methylester (38): 2.74 g (98\%); yellow oil. $[\alpha]_{D}{ }^{20}+101.4$ (c 0.5, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0,53(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=6.9,3 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=$ 6.9, 3 H), 2.38 (dsept, $J=8.0, J=6.9,1 \mathrm{H}$), $3.53(\mathrm{~d}, J=8.0,1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 6.33(\mathrm{~m}, 1 \mathrm{H})$, 6.76 (dd, $J=1.5, J=3.4,1 \mathrm{H}$), $7.05(\mathrm{~m}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.3$, $18.9,19.5,28.8,31.2,52.4,81.1,110.5,121.5,130.3,135.4,154.2,172.6,179.1 . G C-M S \mathrm{~m} / \mathrm{z}:$ 150 (100), 73 (89), 165 (85), 178 (69), 237 (65), 221 (61), 205 (52), 265 (34), 280 (26).

4.3.4 - General protocol for the preparation of β-Aminoalcohols 35,36

Methyllithium (1.6 M in diethyl ther, $2.4 \mathrm{~mL}, 3.8 \mathrm{mmol}$) was added to a magnetically stirred solution of the imine $32(0.203 \mathrm{~g}, 0.95 \mathrm{mmol})$ in THF (15 mL) cooled at $-15{ }^{\circ} \mathrm{C}$. After 30 min the reaction mixture was slowly warmed up until room temperature was reached, and stirring was continued for 24 h . The mixture was quenched by adding a saturated aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, then the organic material was extracted with diethyl
ether ($3 \times 10 \mathrm{~mL}$). The collected ethereal layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to leave the crude product. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis. Flash column chromatography $\left(\mathrm{SiO}_{2}\right)$ eluting with cyclohexane/ethyl acetate 1:1 mixtures gave the product 35a. This compound, as well as all the β-aminoalcohols 35 and 36 prepared, decomposed on attempted GC-MS and HPLC-MS analyses.

(S)-N-[(S)-1-(2-Pyrrolyl)ethyl]phenylglycinol (35a): 0.210 g , (96\%); white solid, mp 86.9$87.4^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) .[\alpha]_{0}^{20}+34.5\left(c 0.8, \mathrm{CHCl}_{3}\right)$. IR (NuJol): $v_{\max }=3295,2090,2955,2928,2854$, 1540, 1459, 1261, 1090, 735. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.39(\mathrm{~d}, \mathrm{~J}=6.7,3 \mathrm{H}), 2.66(\mathrm{bs}, 2$ $H), 3.57(d d, J=8.1, J=10.8,1 \mathrm{H}), 3.74(\mathrm{dd}, \mathcal{J}=4.3, J=10.8,1 \mathrm{H}), 3.80(q, J=6.7,1 \mathrm{H})$, $3.96(\mathrm{dd}, \mathcal{J}=4.3, \mathcal{J}=8.1,1 \mathrm{H}), 5.97(\mathrm{~m}, 1 \mathrm{H}), 6.13(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 5 \mathrm{H}), 8.68$ (bs, 1 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.0,47.7,61.1,66.8,104.4,107.9,116.7,127.3$, 127.7, 128.7, 135.6, 140.4. Anal. Calcd for $C_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ (230.14): C, 73.01; $\mathrm{H}, 7.88 ; \mathrm{N}, 12.16$. Found: C, 72.82; H, 7.91; N, 12.15.

(S) $-N$-[(S)-1-(2-Pyrrolyl)pentyl]phenylglycinol (35b): 0.235 g , (91\%); yellow oil. $[\alpha]_{0}^{20}$ +48.6 (c 0.7, CHCl_{3}). IR (neat): $v_{\max }=3424,3023,2856,2863,1495,1391,1264,1093,1021$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.88(\mathrm{t}, \mathrm{J}=7.3,3 \mathrm{H}), 1.24(\mathrm{~m}, 4 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{bs}, 2$ $H)$, 3.59 (dd, $J=7.5, J=10.8,1 H$), 3.72 (dd, $J=4.3, \mathcal{J}=8.0,1 H$), 3.77 ($d d, J=4.5, J=10.8$, $1 \mathrm{H}), 3.91(\mathrm{dd}, \mathcal{J}=4.4, J=7.5,1 \mathrm{H}), 5.97(\mathrm{~m}, 1 \mathrm{H}), 6.13(\mathrm{q}, \mathcal{J}=2.8,1 \mathrm{H}), 6.69(\mathrm{~m}, 1 \mathrm{H}), 7.23-$ $7.43(\mathrm{~m}, 5 \mathrm{H}), 8.54(\mathrm{bs}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=14.0,22.7,25.6,27.9,53.3,61.2$, 66.1, 105.4, 107.8, 116.7, 127.1, 127.5, 128.6, 134.0, 140.9. Anal. Calcd for $C_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$ (272.19): C, 74.96; H, 8.88; N, 10.28. Found: C, 74.85; H. 8.89; N, 10.26.

(S)-N-[(S)-2-Methyl-1-(2-pyrrolyl)propyl]phenylglycinol (7c): 0.243 g, (92\%); yellowish oil. $[\alpha]_{D}^{20}+32.4$ (c 1.0, CHCl_{3}). IR (neat): $v_{\max }=3422,3024,2853,2865,1492,1261,1099$, 1021, 742. ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta=0.93(\mathrm{~d}, \mathrm{~J}=6.7,3 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=6.7,3 \mathrm{H}), 2.02$ (dsept, $J=5.7, J=6.7,1 H$), $2.50(b s, 2 H), 3.61(d d, J=5.8, J=10.2,1 H$), $3.67(d, J=5.7$, $1 H$), $3.78(\mathrm{dd}, J=4.5, J=5.7,1 \mathrm{H}), 3.84(\mathrm{dd}, J=4.5, J=10.2,1 \mathrm{H}), 5.98(\mathrm{~m}, 1 \mathrm{H}), 6.15(q, J$ $=2.8,1 \mathrm{H}), 6.65(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.39(\mathrm{~m}, 5 \mathrm{H}), 8.39(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $18.0,19.7,32.2,59.5,61.2,63.4,106.3,107.6,114.2,127.1,127.2,127.3,128.5,132.2,141.2$. Anal. Calcd for $C_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ (258.17): $\mathrm{C}, 74.38 ; \mathrm{H}, 8.58 ; \mathrm{N}, 10.84$. Found: $\mathrm{C}, 74.15 ; \mathrm{H} .8 .60 ; \mathrm{N}$, 10.83.

(S)-N-[(S)-2,2-Dimethyl-1-(2-pyrrolyl)propyl]phenylglycinol ((S, S)-35d): $0.081 \mathrm{~g},(31 \%)$; yellowish oil. $[\alpha]_{D}^{20}+40.7$ (c 1.0, CHCl_{3}). $I R$ (neat): $v_{\max }=3425,2953,2868,2867,1478$, 1391, 1362, 1260, 1095. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.98(\mathrm{~s}, 9 \mathrm{H}), 2.15(\mathrm{bs}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 1$ $H), 3.59(d d, J=5.9, J=8.1,1 H$), $3.63(d d, J=8.1, J=12.2,1 H$), $3.83(d d, J=5.9, J=12.2$, $1 \mathrm{H}), 5.92(\mathrm{~m}, 1 \mathrm{H}), 6.08(\mathrm{q}, \mathrm{J}=2.7,1 \mathrm{H}), 6.55(\mathrm{~m}, 1 \mathrm{H}), 7-21-7.32(\mathrm{~m}, 5 \mathrm{H}), 8.07(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta=27.1,35.4,61.5,64.2,64.3,107.0,107.6,115.8,127.1,127.3,128.4$, 132.0, 142.1. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$ (272.19): $C, 74.96 ; \mathrm{H}, 8.88 ; \mathrm{N}, 10.28$. Found: $\mathrm{C}, 74.98$; H, 8.91; N, 10.26.

(S)-N-[(R)-2,2-Dimethyl-1-(2-pyrrolyl)propyl]phenylglycinol ((S,R)-35d): 0.072 g , (28\%); yellowish oil. $[\alpha]_{D}{ }^{20}+109.6$ (c 1.9, CHCl_{3}). IR (neat): $v_{\max }=3425,3029,2853,2868,1492$,

1392, 1363, 1260, 1096, 1028. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.39$ (s, 9 H$), 2.33$ (bs, 2 H), $3.26(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{dd}, \mathcal{J}=4.6, J=8.1,1 \mathrm{H}), 3.61(\mathrm{dd}, \mathcal{J}=8.1, J=10.0,1 \mathrm{H}), 3.68(\mathrm{dd}, \mathcal{J}=4.6$, $J=10.0,1 \mathrm{H}), 5.97(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~m}, 1 \mathrm{H}), 7.22(2 \mathrm{H}), 7.31-7.40(\mathrm{~m}, 3 \mathrm{H}), 8.44$ (bs, 1 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=27.0,34.8,61.7,63.1,66.7,107.6,108.3,116.5,127.4$, 127.7, 128.6, 130.4, 140.1. Anal. Calcd for $C_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$ (272.19): C, 74.96; H, 8.88; $\mathrm{N}, 10.28$. Found: C, 74.82; H. 8.89; N, 10.26.

(S)-N-[(S)-1-(2-Pyrrolyl)-3-buten-1-yl]phenylglycinol (35e): 0.217 g , (89\%); yellow oil. $[\alpha]_{D}^{20}+16.5$ ($c 0.4, \mathrm{CHCl}_{3}$). IR (neat): $v_{\max }=3364,3102,3076,2958,2930,2873,1466$, 1437, 1093, 1044, 2026, 914, 796, 717. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.40(\mathrm{bs}, 2 \mathrm{H}), 2.79$ ($\mathrm{m}, 2 \mathrm{H}$), $3.84(\mathrm{dd}, \mathcal{J}=7.6, \mathcal{J}=10.8,1 \mathrm{H}), 4.01(\mathrm{dd}, \mathcal{J}=4.5, \mathcal{J}=10.8,1 \mathrm{H}), 4.09(\mathrm{t}, \mathcal{J}=5.9,1$ H), 4.19 (dd, $J=4.5, J=7.6,1 \mathrm{H}), 5.36(\mathrm{dd}, \mathcal{J}=10.8, J=17.2,2 \mathrm{H}), 6.01(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{~m}, 1$ $H), 6.38(d, J=2.7,1 H), 6.91(d d, J=1.5, J=2.7,1 H), 7.52-7.61(m, 5 H), 8.73(b s, 1 H) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 38.9,52.5,61.3,66.4,105.3,108.0,116.7,117.9,127.3,127.7,128.7$, 133.6, 134.7, 140.3. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ (256.16): $\mathrm{C}, 74.97 ; \mathrm{H}, 7.86 ; \mathrm{N}, 10.93$. Found: C , 75.02; H, 7.87; N. 10.89.

(S)-N-[(S)-2-Phenyl-1-(2-pyrrolyl)ethyl]phenylglycinol (35f): 0.265 g , (91\%); white solid, mp 115.2-116. $2^{\circ} \mathrm{C}$ (pentane: $\mathrm{Et}_{2} \mathrm{O}$ 1:1). $[\alpha]_{0}{ }^{20}+82.5$ (c 1.1, CHCl_{3}). IR (NuJol): $v_{\text {max }}=3353$, $3028,2926,2856,1539,1453,1261,1094,1027,749 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=1.94$ (bs, 2 H), 3.08 (d, $J=6.6,2 H$), 3.55 (dd, $J=7.4, \mathcal{J}=10.8,1$ H), 3.71 (dd, $J=4.3, J=10.8,1$ $H), 3.86(d d, J=4.3, J=7.4,1 H), 3.08(t, J=6.6,1 H), 5.98(m, 1 H), 6.12(q, J=6.7,1 H)$, $\left.6.63(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.38(\mathrm{~m}, 8 \mathrm{H}), 8.19(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75MHz,CDCl}_{3}\right): \delta=$ $42.3,54.9,61.6,66.1,105.3,108.0,116.6,126.4,127.2,127.6,128.2,128.6,129.3,133.7$,
138.5, 140.8. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ (306.17): $\mathrm{C}, 78.40 ; \mathrm{H}, 7.24 ; \mathrm{N}, 9.14$. Found: $\mathrm{C}, 78.50$; H, 7.27; N. 9.11.

(S) -N-[(S)-1-Phenyl-1-(2-pyrrolyl)methyl]phenylglycinol (35h): this compound was not purified; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.22(\mathrm{bs}, 2 \mathrm{H}), 3.62-6.70(\mathrm{~m}, 3 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 5.84$ $(m, 1 H), 6.13(q, J=3.1,1 H), 6.71(m, 1 H), 7.26-7.49(m, 10 H), 8.54(b s, 1 H)$.

(S)-N-[(S)-1-(2-Pyrrolyl)ethyl]valinol (36a): Starting from 1 mmol of 330.179 g , (91\%); yellow oil. $[\alpha]_{0}^{20}-7.7$ (c 0.9, CHCl_{3}). IR (neat): $v_{\max }=3394,2961,2927,2874,1465,1373$, 1262, 1104, 1029, 793, 747, 720. ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl ${ }_{3}$): $\delta=0.89(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H}), 0.95$ (d, J=6.8, 3H), $1.39(d, J=6.5,3 H$), 1.77 (sept, $J=6.8,1 H$), 2.2 (bs, $2 H$), 2.45 (dd, $J=$ $4.1, J=6.2,1 H$), $3.64(d d, J=6.2, J=10.8,1 H$), $3.39(d d, J=4.1, J=10.8,1 H), 4.01(q, J=$ $6.5,1 \mathrm{H}), 6.02(\mathrm{~m}, 1 \mathrm{H}), 6.15(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~m}, 1 \mathrm{H}), 8.55(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=18.4,19.3,22.3,29.2,48.9,60.0,61.1,104.4,107.8,116.7,135.7 . M S(E I) \mathrm{m} / \mathrm{z}: 197[M+$ $\mathrm{H}^{+}, 94\left[\mathrm{M}\right.$ - valinol] ${ }^{+}$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ (196.16): C, 67.31; $\mathrm{H}, 10.27 ; \mathrm{N}, 14.27$. Found: C, 67.02; H, 10.30; N, 14.23.

((S)-N-[(S)-1-(2-Pyrrolyl)pentyl]valinol (36b): $0.207 \mathrm{~g}, 0.173 \mathrm{~g}$, (87\%); yellow oil. $[\alpha]_{D}{ }^{20}$ -4.6 (c 0.5, CHCl_{3}). IR (neat): $v_{\max }=3362,3301,3101,2957,2929,2860,1567,1464,1026$, 925, 792, 717. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.85(\dagger, J=5.2,3 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=6.7,3 \mathrm{H})$, $0.92(\mathrm{~d}, \mathrm{~J}=6.7,3 \mathrm{H}), 1.25(\mathrm{~m}, 4 \mathrm{H}), 1.62(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{bs}, 2 \mathrm{H}), 2.36$ (ddd, $J=$
4.3, $J=5.3, \mathcal{J}=8.0,1 \mathrm{H}$), $3.41(\mathrm{dd}, \mathcal{J}=5.6, J=10.8,1 \mathrm{H}), 3.64(\mathrm{dd}, \mathcal{J}=4.1, J=10.8,1 \mathrm{H})$, $3.77(\mathrm{dd}, \mathcal{J}=5.9, \mathcal{J}=8.0,1 \mathrm{H}), 5.99(\mathrm{~m}, 1 \mathrm{H}), 6.13(\mathrm{q}, \mathcal{J}=2.9,1 \mathrm{H}), 6.72(\mathrm{~m}, 1 \mathrm{H}), 8.42(\mathrm{bs}, 1$ $\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.8,18.5,19.2,22.5,26.4,29.2,36.3,54.2,60.3,61.1$, 105.5, 107.4, 116.6, 134.0. MS(EI) m/z: $136.1[M-n-B u]^{+}$. Anal. Calcd for $C_{14} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$ (238.20): C, 70.54; H, 10.99; N, 11.75. Found: 78.59; H, 10.97; N, 11.71.

(S) $-N-[(S)-1-(2-P y r r o l y l)-3-b u t e n-1-y l] v a l i n o l(36 e): ~ 0.173 \mathrm{~g},(78 \%)$, yellow oil. $[\alpha]{ }_{0}{ }^{20}$ -12.4 (c 1.1, CHCl_{3}). IR (Neat): $v_{\max }=3296,3090,3062,2956,2928,2858,1582,1454$, 1379, 1264, 1093, 1027, 934. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.87(\mathrm{~d}, \mathrm{~J}=6.8,3 \mathrm{H}), 0.93(\mathrm{~d}, \mathrm{~J}$ $=6.8,3 \mathrm{H}), 1.74$ (sept, $J=6.8,1 \mathrm{H}$), 1.96 (bs, 2 H), 2.37 (dd, $\mathcal{J}=4.1, \mathcal{J}=5.3,1 \mathrm{H}$), 2.46 (dd, \mathcal{J} $=6.7, J=6.9,2 H$), $3.43(\mathrm{dd}, \mathcal{J}=5.3, J=10.8,1 \mathrm{H}), 3.68(\mathrm{dd}, J=4.1, J=10.8,1 \mathrm{H}), 3.90(\mathrm{t}$, $J=6.7,1 \mathrm{H}), 5.08-5.17(\mathrm{~m}, 2 \mathrm{H}), 5.76(\mathrm{~m}, 1 \mathrm{H}), 6.01(\mathrm{~m}, 1 \mathrm{H}), 6.14(\mathrm{q}, J=2.7,1 \mathrm{H}), 6.72(\mathrm{~m}, 1$ $\mathrm{H}), 8.52(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=18.7,19.3,29.2,41.3,53.3,60.4,61.2,105.3$, 107.8, 116.6, 117.4, 133.9, 135.1. MS(EI) m/z: $120\left[M-\right.$ valinol] . Anal. Calcd for $C_{13} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ (222.17): C, 70.23; H, 9.97; N, 12.60. Found: C, 69.96; H, 9.99; N, 12.58.

(S)-N-[(S)-2-Phenyl-1-(2-pyrrolyl)ethyl]valinol (36f): 0.245 g , (90\%); white solid, mp 109.5-110.8 ${ }^{\circ} \mathrm{C}$ (pentane: $\mathrm{Et}_{2} \mathrm{O}$ 1:1). $[\alpha]_{0}^{20}-9.8$ ($\mathrm{c} 0.8, \mathrm{CHCl}_{3}$). IR (KBr): $v_{\max }=3295,3021$, 2948, 2818, 1711, 1492, 1457, 1361, 1334, 1095, 1040, 989, 798, 753, 729, 728, 714, 700. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.84(\mathrm{~d}, \mathcal{J}=6.8,3 \mathrm{H}), 0.90(\mathrm{~d}, \mathcal{J}=6.8,3 \mathrm{H}), 1.58(\mathrm{bs}, 2 \mathrm{H}), 1.69$ (sept, $J=6.8,1 H$), $2.29(d d, J=4.1, J=4.9,1 H$), 2.91 (dd, $J=7.6, J=13.6,1 \mathrm{H}$), 3.00 (dd, $J=6.0, J=13.6,1 H$), $3.34(\mathrm{dd}, \mathcal{J}=4.9, \mathcal{J}=11.2,1 \mathrm{H}), 3.53(\mathrm{dd}, \mathcal{J}=4.1, J=11.2,1 \mathrm{H}), 2.29$ (dd, $J=6.0, J=7.6,1 H$), $5.59(m, 1 H), 6.14(q, J=2.7,1 H), 6.69(m, 1 H), 7.10-7.16(m, 2$ H), 7.20-7.32 (m, 3 H), 8.33 (bs, 1 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.0,19.5,29.4,44.4$,
$55.4,60.4,61.5,105.3,108.1,116.4,126.5,128.4,129.2,134.1,138.8$. MS(EI) m/z: 170 [M valinol]. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$ (272.19): $\mathrm{C}, 74.96 ; \mathrm{H}, 8.88 ; \mathrm{N}, 10.28$. Found: $\mathrm{C}, 74.62 ; \mathrm{H}$, 8.91; N, 10.25.

(S) - N-[(S)-1-(2-Pyrrolyl)-2-propen-1-yl]valinol (36g): the crude compound could not be purified, owing to decomposition by column chromatography; its structure was confirmed by ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.91(\mathrm{~d}, \mathrm{~J}=6.9,3 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=6.9,3 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 2.58$ (dd, $\mathcal{J}=4.1, \mathcal{J}=7.2,1 \mathrm{H}), 3.39(\mathrm{dd}, \mathcal{J}=7.2, \mathcal{J}=10.7,1 \mathrm{H}), 3.66(\mathrm{dd}, \mathcal{J}=4.1, \mathcal{J}=10.7,1 \mathrm{H})$, $4.43(\mathrm{~d}, \mathcal{J}=7.6,1 \mathrm{H}), 5.18(\mathrm{dd}, \mathcal{J}=1.4, \mathcal{J}=10.0,1 \mathrm{H}), 5.25(\mathrm{dd}, \mathcal{J}=1.4, \mathcal{J}=17.4,1 \mathrm{H}), 5.90$ (ddd, $\left.\mathcal{J}=7.6, \mathcal{J}=10.0, \mathcal{J}^{3}=17.4,1 \mathrm{H}\right), 6.07(\mathrm{~m}, 1 \mathrm{H}), 6.17(\dagger, \mathcal{J}=3.1,1 \mathrm{H}), 6.75(\mathrm{dd}, \mathcal{J}=1.4, \mathcal{J}$ $=2.7,1 \mathrm{H}), 8.78$ (bs, 1 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 17.9,19.3,28.8,57.3,60.6,61.1,105.3$, 108.1, 116.0, 117.1, 132.8, 139.5. The compound was not eluted by GC-MS analysis.

(S) - N-[(S)-1-Phenyl-1-(2-pyrrolyl)methyl]valinol (36h): the crude compound could not be purified, owing to decomposition by column chromatography; its structure was confirmed by ${ }^{1} \mathrm{H}$ NMR analysis ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.95(\mathrm{~d}, \mathrm{~J}=6.9,3 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=6.9,3 \mathrm{H})$, 1.95 (m, 1 H), 2.07 (bs, $2 H$), 2.45 (dd, $J=4.1, J=6.8,1$ H), $3.40(\mathrm{dd}, J=6.8, J=10.8,1 \mathrm{H}$), $3.58(\mathrm{dd}, J=4.1, J=10.8,1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~m}, 1 \mathrm{H}), 6.14(\mathrm{q}, ~ J=3.1,1 \mathrm{H}), 6.71(\mathrm{~m}, 1 \mathrm{H})$, 7.29-7.45 (m, 5 H), 8.32 (bs, 1 H). The compound was not eluted by GC-MS analysis.

4.3.5 - General protocol for the preparation of aziridines 35, 36

To a solution of the β-aminoalcohol $35 \mathrm{a}(0.299 \mathrm{~g}, 1.3 \mathrm{mmol})$ in THF (20 mL) was added PPh_{3} ($0.511 \mathrm{~g}, 1.95 \mathrm{mmol}$), then DEAD ($0.340 \mathrm{~g}, 1.95 \mathrm{mmol}$) was added dropwise. After stirring for 4 h the mixture was concentrated at reduce pressure and the residue was subJected to
flash-chromatography on a SiO_{2} column eluting with cyclohexane/ethyl acetate 9:1 mixtures to give the compound 41a as yellow oil.

(S)-2-Phenyl-1-[(S)-1-(2-Pyrrolyl)ethyl]aziridine (41a): 0.240 g , (87%); yellow oil. [$\alpha]_{0}^{20}$ +85.4 (c 0.8, CHCl_{3}). IR (neat): $v_{\text {max }}=3214,3103,2922,2856,1460,1383,805,748,712 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.54(\mathrm{~d}, J=6.6,3 \mathrm{H}), 1.89(\mathrm{~d}, J=3.5,1 \mathrm{H}), 2.10(\mathrm{~d}, J=6.7,1 \mathrm{H})$, $2.55(\mathrm{dd}, \mathcal{J}=3.5, \mathcal{J}=6.6,1 \mathrm{H}), 2.93(\mathrm{q}, \mathcal{J}=6.6,1 \mathrm{H}), 6.02(\mathrm{~m}, 1 \mathrm{H}), 6.16(\mathrm{q}, \mathcal{J}=2.8,1 \mathrm{H}), 6.66$ ($\mathrm{m}, 1 \mathrm{H}$), 7.21-7.35 (m, 5 H), 8.44 (bs, 1 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=22.0,36.8,41.1$, 63.2, 104.4, 107.9, 116.6, 126.3, 127.0, 128.4, 134.4, 139.8. GC-MS m/z : 118 (100), 93 (91), 94 (54) 92 (50), 156 (12), 197 (9), 212 (5). Anal. Calcd for $C_{14} H_{16} \mathrm{~N}_{2}$ (212.13): $\mathrm{C}, 79.21 ; \mathrm{H}$, 7.60; $\mathrm{N}, 13.20$. Found: $C, 79.02 ; 7.63 ; \mathrm{N}, 13.18$.

(S)-2-Phenyl-1-[(S)-1-(2-pyrrolyl)pentyl]aziridine (41b): 0.304 g , (92\%); white solid, mp $78.3-79.6^{\circ} \mathrm{C} ;[\alpha]_{0}^{20}+74.8\left(\mathrm{c} 0.7, \mathrm{CHCl}_{3}\right)$. IR (KBr): $v_{\max }=3218,3100,3055,2924,2852$, $1461,1388,1135,1096,1029,807,744,718,699 .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.94(\dagger, J=$ 6.7, 3 H), 1.36-1.38 ($\mathrm{m}, 6 \mathrm{H}$), 1.92 ($\mathrm{d}, \mathcal{J}=3.4,1 \mathrm{H}$), $2.14(\mathrm{~d}, J=6.6,1 \mathrm{H}), 2.55(\mathrm{dd}, \mathcal{J}=3.4, J=$ $6.6,1 \mathrm{H}), 2.76(\mathrm{dd}, \mathcal{J}=5.2, \mathcal{J}=7.8,1 \mathrm{H}), 6.01(\mathrm{~m}, 1 \mathrm{H}), 6.15(\mathrm{q}, \mathcal{J}=2.7,1 \mathrm{H}), 6.67(\mathrm{dd}, \mathcal{J}=1.7$, $J=2.7,1 \mathrm{H}), 7.16-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.34(\mathrm{~m}, 3 \mathrm{H}), 8.44(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=14.0,22.8,28.2,36.4,37.9,40.1,68.3,105.4,107.5,116.6,126.3,126.8,128.3,133.1$, 140.0. GC-MS m/z: 106 (100), 118 (74), 1636 (62), 80 (51), 91 (34), 197 (16), 254 (10). Anal. Calcd for $C_{17} \mathrm{H}_{22} \mathrm{~N}_{2}$ (254.18): C, 80.27; H, 8.72; N, 11.01. Found: C, 80.35; H. 8.75; N, 11.00.

(S)-2-Phenyl-1-[(S)-2-phenyl-1-(2-pyrrolyl)ethyl]aziridine (41f): 0.341 g , (91\%); white solid, $\mathrm{mp} 80.9-81.3^{\circ} \mathrm{C}$ (pentane). $[\alpha]_{D}{ }^{20}+94.4\left(\mathrm{c} \mathrm{0.3}, \mathrm{CHCl}_{3}\right) . I R(\mathrm{KBr}): v_{\max }=3426,3175$, $3107,3059,3026,2976,2917,2832,1494,1454,1396,1125,1100,1030,1014,744,725$ 699. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.72(\mathrm{~d}, \mathrm{~J}=6.6,1 \mathrm{H}), 2.05(\mathrm{~d}, \mathrm{~J}=3.5,1 \mathrm{H}), 2.48(\mathrm{dd}, \mathrm{J}=$ $3.5, J=6.6,1 \mathrm{H}), 3.80(\dagger, J=6.5,1 \mathrm{H}), 3.14(\mathrm{dd}, J=6.5, J=13.1,1 \mathrm{H}), 3.22(\mathrm{dd}, J=6.5, J=$ $13.1,1 H), 5.89(m, 1 H), 6.11(q, J=2.7,1 H), 6.62(d d, J=1.6, J=2.7,1 H), 7.15-7.22(m, 5$ H), 7.26-7.35 (m, 5 H), 8.28 (bs, 1 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.9,38.5,40.1,43.9$, $69.9,105.5,107.6,126.2,126.9,128.1,128.3,129.7,132.4,138.6,139.9$. GC-MS m/z: 168 (100), 169 (94), 197 (66), 118 (60). Anal. Calcd for $C_{20} H_{20} \mathrm{~N}_{2}$ (288.16): C, 83.30; H, 6.99; N, 9.71. Found: $C, 83.42 ; H .7 .01 ; N, 9.68$.

4.3.6 - Preparation of the amines 43b, c, e through the imines 42b, c,e.

The phenylglycinol derivative 35b ($0.136 \mathrm{~g}, 0.5 \mathrm{mmol}$) and a 40% solution of MeNH_{2} in $\mathrm{H}_{2} \mathrm{O}$ (0.6 mL) were dissolved in THF (5 mL). Then a solution of $\mathrm{H}_{5} \mathrm{IO}_{6}(0.400 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added dropwise. After stirring for 1 h at room temperature, most of the solvent was evaporated at reduced pressure and the organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20$ mL). The collected ethereal layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to leave the intermediate imine 42b. This was dissolved in MeOH and $\mathrm{NaBH}_{4}(0.75 \mathrm{mmol}, 0.028 \mathrm{~g})$ was added at $0{ }^{\circ} \mathrm{C}$ After 1 h the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and the mixture was concentrated to remove most of the MeOH , then the organic materials were extracted with $\mathrm{E}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The collected ethereal layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to leave a yellow oil which was subjected to flash-chromatography on a SiO_{2} column eluting with a 8:2 cyclohexane/ethyl acetate mixture to give the compound 43 b (0.39 mmol , as yellow oil.

(S)-N-[1-(2-Pyrrolyl)butyl]benzaldimine (42b): 0.117 g , (93\%), $>90 \%$ pure; brown oil. ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl ${ }_{3}$): $\delta=0.98(\dagger, J=6.4,3 H), 1.32(\mathrm{~m}, 4 \mathrm{H}), 1.94(\mathrm{~m}, 2 \mathrm{H}), 4.44(\dagger, J=$ 6.6, 1 H$), 6.09(\mathrm{~m}, 1 \mathrm{H}), 6.18(\mathrm{q}, \mathrm{J}=2.9,1 \mathrm{H}), 6.74(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{~m}, 3 \mathrm{H}), 7.79(\mathrm{~m}, 2 \mathrm{H}), 8.32$ (s, 1 H), 8.57 (bs, 1 H). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=160.6,136.0,134.0,130.7,128.5,128.2$, $116.6,108.0,104.3,68.7,32.3,28.5,22.5,14.0 . G C-M S \mathrm{~m} / \mathrm{z}: 106$ (100), 80 (60), 136 (56), 183 (56), 93 (16), 240 (7).

(S)-N-[2-Methyl-1-(2-pyrrolyl)propyl]benzaldimine (42c): 0.096 g , (85%); white solid; mp $=135.2-135.8^{\circ} \mathrm{C}$ (pentane). $[\alpha]_{D}^{20}-31.2\left(c 0.7, \mathrm{CHCl}_{3}\right.$). IR (neat): $v_{\max }=3457,3249,2964$, $2868,2825,1634,1447,1383,1096,1012,725,696 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.92(\mathrm{~d}$, $J=6.7,3 H$), $0.96(d, J=6.7,3 H), 2.12(d s e p t, J=6.6, J=6.7,1 H), 4.14(d, J=6.6,1 H)$, $6.06(m, 1 H), 6.19(q, J=2.9,1 H), 6.74(q, J=2.6,1 H), 7.44(m, 3 H), 7.79(m, 2 H), 8.31$ (s, 1 H), 8.60 (bs, 1 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.6,136.2,133.1,130.6,128.5,128.2$, 116.3, 107.8, 104.8, 75.2, 35.2, 19.4, 19.2. GC-MS m/z: 183 (100), 104 (51), 121 (36), 80 (32), 156 (6), 226 (3). Anal. Calcd for $C_{15} H_{18} N_{2}$ (226.15): $C, 79.61 ; H, 8.02 ; N, 12.38$. Found: C, 79.31; H, 8.05; N, 12.35.

(S)-N-[1-(2-Pyrrolyl)-3-buten-1-yl]benzaldimine (42e): isolated impure as a brown oil in 86% yield (0.096). Relevant absorptions for structural identification of the main compound were drawn from the ${ }^{1} \mathrm{H}$ NMR spectrum $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.68(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{dd}, \mathrm{J}=$
6.3, $J=7.6,1 H$), $5.11(m, 2 H), 5.80(m, 1 H), 6.06(m, 1 H), 6.17(q, J=3.2,1 H), 6.75(m, 1$ $\mathrm{H}), 7.42(\mathrm{~m}, 3 \mathrm{H}), 7.77(\mathrm{~m}, 2 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{bs}, 1 \mathrm{H})$.

(S)-Benzyl-1-(2-pyrrolyl)pentylamine (43b): 0.094 g (78\%); yellow oil. $[\alpha]_{0}{ }^{20}-26.5$ (c 0.6, CHCl_{3}). IR (neat): $v_{\max }=3432,3376,3297,3062,3027,2955,2928,2857,1494,1453$, 1092, 1026, 792, 717. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.91(\dagger, J=6.8,3 \mathrm{H}), 1.32(\mathrm{~m}, 4 \mathrm{H}), 1.73$ ($\mathrm{m}, 2 \mathrm{H}$), 2.11 (bs, 1 H), $3.65(\mathrm{~d}, ~ J=13.4,1 \mathrm{H}$), $3.74(\mathrm{~d}, J=13.4,1 \mathrm{H}$), $3.80(\dagger, J=7.0,1 \mathrm{H}$), $6.09(\mathrm{~m}, 1 \mathrm{H}), 6.20(\mathrm{q}, \mathrm{J}=2.7,1 \mathrm{H}), 6.79(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.39(\mathrm{~m}, 5 \mathrm{H}), 8.69(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.0,22.6,28.3,36.4,51.4,55.9,106.1,107.7,116.6,126.9,128.1,128.4$, 133.7, 140.4. Anal. Calcd for $C_{16} \mathrm{H}_{22} \mathrm{~N}_{2}$ (242.18): C, 79.29; $\mathrm{H}, 9.15 ; \mathrm{N}, 11.56$. Found: $\mathrm{C}, 79.06$; H, 9.16; N, 11.53.

(S)-Benzyl-[2-methyl-1-(2-pyrrolyl)propyl]amine (43c): 0.087 g , (76\%), yellow oil; [$\alpha]_{0}^{20}$ -37.6 (c 0.8, CHCl_{3}). IR (NuJol): $v_{\max }=3430,3371,3062,3024,2953,2922,2853,1491$, 1022, 794. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.83(\mathrm{~d}, \mathcal{J}=6.7,3 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=6.7,3 \mathrm{H}), 1.87$ (sept, $J=6.7,1 \mathrm{H}$), $3.52(\mathrm{~d}, \mathcal{J}=5.8,1 \mathrm{H}), 3.58(\mathrm{~d}, \mathcal{J}=13.1,1 \mathrm{H}), 3.71(\mathrm{~d}, \mathcal{J}=13.1,1 \mathrm{H}), 6.04$ $(m, 1 H), 6.15(m, 1 H), 6.76(m, 1 H), 7.25-7.38(m, 5 H), 8.58(b s, 1 H) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=18.8,19.7,33.9,52.0,62.1,106.9,107.7,116.2,126.9,128.1,128.4,131.1,140.6$, 150.9. Anal. Calcd for $C_{15} \mathrm{H}_{20} \mathrm{~N}_{2}$ (228.16): C, 78.90; H, 8.83; N, 12.27. Found: C, 79.10; H, 8.85: N, 12.26.

(S)-Benzyl-[1-(2-pyrrolyl)-3-buten-1-yl]amine (43e): yellowish oil, 0.081 g , (72\%). [$\mathrm{K}_{\mathrm{o}}{ }^{20}$ 13.9 (c 1.2, CHCl_{3}). IR (NuJol): $v_{\max } 3430,3373,3292,3065,2957,2922,2853,1499$, 1454, 797. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.04(\mathrm{bs}, 1 \mathrm{H}), 2.53(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~d}, \mathrm{~J}=13.2,1 \mathrm{H})$, $3.77(\mathrm{~d}, \mathcal{J}=13.2,1 \mathrm{H}), 3.90(\dagger, J=5.5,1 \mathrm{H}), 5.16(\mathrm{~m}, 2 \mathrm{H}), 5.82(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{~m}, 1 \mathrm{H}), 6.22$ (dq, $J=2.7, J=5.5,1 \mathrm{H}), 6.79(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.41(\mathrm{~m}, 5 \mathrm{H}), 8.72(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}): $\delta=41.2,51.1,54.7,105.6,107.9,116.6,117.8,126.9,128.0,128.4,133.5,135.1,140.3$. Anal. Calcd for $C_{15} \mathrm{H}_{18} \mathrm{~N}_{2}$ (226.15): $\mathrm{C}, 79.61$; $\mathrm{H}, 8.02 ; \mathrm{N}, 12.38$. Found: $\mathrm{C}, 79.91 ; \mathrm{H}, 8.05: \mathrm{N}$, 12.36.
4.3.7 - Preparation of the α-substituted benzamides 44a, b,e,f.

The valinol derivative 36b $(0.238 \mathrm{~g}, 1.1 \mathrm{mmol})$ and a 40% solution of MeNH_{2} in $\mathrm{H}_{2} \mathrm{O}(1.3 \mathrm{~mL}, 17$ mmol) were dissolved in THF (5 mL), then a solution of $\mathrm{H}_{5} \mathrm{IO}_{6}(0.907 \mathrm{~g}, 4.0 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(5$ mL) was added dropwise and the mixture was stirred for 2 h at room temperature. The organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, then the collected ethereal layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to leave the primary amine as a yellow oil. This was dissolved in acetone (5 mL), then $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.304 \mathrm{~g}, 2.2 \mathrm{mmol})$ and benzoyl chloride ($191 \mu \mathrm{l}, 1.7 \mathrm{mmol}$) were added while magnetically stirring. After 12 h most of the solvent was evaporated at reduced pressure, and the organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The collected ethereal layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to leave a white solid, which was crystallized from acetone to give pure 44b.

(S)-N-[1-(2-Pyrrolyl)ethyl)]benzamide (44a): 0.203 g, (86\%); white solid, mp 167.9-168.5 ${ }^{\circ} \mathrm{C}$. $[\alpha]_{D}{ }^{20}-74.1\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}\right)$. IR (KBr): $v_{\max }=3396,3312,2925,1853,1625,1578,1524$, 1331, 1083, 1031, 736, 717, 655. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.69(\mathrm{~d}, \mathrm{~J}=7.0,3 \mathrm{H}), 5.34$ ($q \mathrm{~d}, \mathcal{J}=7.0,1 \mathrm{H}$), $6.12(\mathrm{~m}, 2 \mathrm{H}), 6.33(\mathrm{~d}, ~ J=7.0,1 \mathrm{H}), 6.75(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.78(\mathrm{~m}, 5 \mathrm{H}), 9.36$ (bs, 1 H$).{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{Cl}_{3}\right): \delta 18.3,43.0,104.1,107.3,117.9,126.9,128.6,131.7,134.0$, 134.3, 168.0. GC-MS m/z: 105 (100), 77 (74), 93 (55), 214 (46), 121 (24), 199 (18). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ (214.11): C, 72.87; H, 6.59; $\mathrm{N}, 13.07$. Found: $\mathrm{C}, 73.03 ; \mathrm{H}, 6.58 ; \mathrm{N}, 13.05$.

(S)-N-[1-(2-Pyrrolyl)pentyl)]benzamide (42b): 0.247 g (88\%); white solid, mp 137.5-138.2 ${ }^{\circ} C^{2}[\alpha]_{D}{ }^{20}-90.7\left(c 0.8, \mathrm{CHCl}_{3}\right)$. IR (KBr): $v_{\max }=3336,2957,2927,2856,1625,1533,1337$, $12643,1091,1029,801,722 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.95(t, J=5.2,3 \mathrm{H}), 1.47(\mathrm{~m}, 4$ $H), 1.96(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{dt}, J=6.1, J=8.3,1 \mathrm{H}), 6.08(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{q}, J=2.9,1$ $H), 6.26(d, J=8.3,1 H), 6.73(m, 1 H), 7.39-7.55(m, 5 H), 9.18(b s, 1 H) .{ }^{13} C$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=13.9,22.4,28.7,32.4,47.5,104.1,107.4,117.6,126.9,128.5,131.6,133.6,134.1$, 168.1. GC-MS m/z : 105 (100), 106 (97), 77 (61), 199 (42), 135 (36), 121 (27), 256 (11). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ (256.16): $\mathrm{C}, 74.97 ; \mathrm{H}, 7.86 ; \mathrm{N}, 10.93$. Found: 74.76; $\mathrm{H}, 7.89 ; \mathrm{N}, 10.89$.

(S)-N-[1-(2-Pyrrolyl)-3-buten-1-yl)]benzamide (44e): 0.217 g , (82%); white solid, m.p. $122.3-122.8{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) .[\alpha]_{\mathrm{D}}{ }^{20}-53.7$ (c 2.1, CHCl_{3}). IR (NuJol): $v_{\text {max }}=3320,3081,3001$, 2922, 2853, 1626, 1577, 1529, 1489, 1292, 720, 691. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.83(\mathrm{~m}$ $2 H), 5.22(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~m}, 1 \mathrm{H}), 5.95(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{~m}, 1 \mathrm{H}), 6.14(\mathrm{q}, J=2.9,1 \mathrm{H}), 6.52(\mathrm{~d}, \mathrm{~J}$ $=6.9,1 \mathrm{H}), 6.74(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.54(\mathrm{~m}, 2 \mathrm{H}), 9.39(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=36.9,46.6,104.5,107.4,117.8,118.4,126.9,128.5,131.6,132.7,134.0,134.4$, 168.1. GC-MS m/z : 105 (100), 77 (51), 199 (46), 118 (42), 240 (6). Anal. Calcd for $C_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$ (240.13): $C, 74.97 ; H, 6.71 ; N, 11.66$. Found: $C, 75.16 ; H, 6.70 ; N, 11.68$.

(S)-N-[2-Phenyl-1-(2-pyrrolyl)ethyl)]benzamide (44f): 0.278 g (87\%); white solid, mp $115.5-116.4^{\circ} \mathrm{C}$ (cyclohexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 9: 1$). $[\alpha]_{D}{ }^{20}-61.8\left(c 0.8, \mathrm{CHCl}_{3}\right)$. IR (KBr): $v_{\max }=3056$, $2925,2676,1690,1622,1532,1423,1291,1174,1042,1017,935,804,778,707 .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.26$ (dd, $\left.J=9.8, J=14.2,1 \mathrm{H}\right), 3.48(\mathrm{dd}, J=5.7, J=14.2,1 \mathrm{H}), 3.96$
(ddd, $J=4.3, J=8.3, J=9.8,1 H$), $6.10(q, J=2.7,1 H), 6.14(m, 1 H), 6.27(d, J=8.3,1 H)$, $6.72(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.69-7.50(\mathrm{~m} 3 \mathrm{H}), 7.51-7.64(\mathrm{~m}, 4 \mathrm{H}), 9.35(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{Cl}_{3}$): $\delta=38.8,48.8,104.6,107.5,118.0,126.8,128.5,128.6,128.7,129.0$, 130.2, 131.7, 133.7, 168.5. GC-MS m/z: 105 (100), 168 (56), 199 (55), 169 (52), 77 (48), 121 (15). Anal. Calcd for $C_{19} H_{18} \mathrm{~N}_{2} \mathrm{O}$ (290.14): $C, 78.59 ; \mathrm{H}, 6.25 ; \mathrm{N}, 9.65$. Found: $\mathrm{C}, 78.14 ; \mathrm{H}, 6.27$; N, 9.62.

4.5 - References

${ }^{1}$ (a) Angenot, L.; Dideberg, O.; Dupont, L. Tetrahedron Lett. 1975, 1357. (b) Esmond, R. W.; LeQuesne, P. W. J. Am. Chem. Soc. 1980, 102, 7116. (c) Khuong-Huu, F.; Chiaroni, A.; Riche, C. Tetrahedron Lett. 1981, 22, 733. (d) Liu, C.; Wang, Q.; Wang, C. J. Am. Chem. Soc. 1981, 103, 4634. (e) Rinehart, K. L.; Kobajashi, J.; Harbour, G. C.; Hughes, R. G., Jr.; Mizsak, S. A.; Scahill, T. A. J. Am. Chem. Soc. 1984, 106, 1524-1526. (1f) McGee, L. R.; Reddy, G. S.; Confalone, P. N. Tetrahedron Lett. 1984, 25, 2115-2118. (g) Jahangir; Brook, M. A.; Maclean, D. B.; Holland, H. L. Tetrahedron, 1987, 43, 5761-5768. (h) Lake, R. J.; Brennan, M. M.; Blunt, J. W.; Munro, M. H. G.; Pannell, L. K. Tetrahedron Lett. 1988, 29, 2255. (i) Lake, R. J.; Blunt, J. W.; Munro, M. H. G. Aust. J. Chem. 1989, 42, 1201-1206. (j) Debitus, C.; Laurent, D ; Païs, M. J. Nat. Prod. 1988, 51, 799. (k) Lounasmaa, M.; Tamminen, T. Heterocycles 1991, 32, 1527. (I) Arbain, D.; Byrne, L. T.; Putra, D. P.; Sargent, M. V.; Skelton, B. V.; White, A. H. J. Chem. Soc., Perkin Trans. 1 1992, 663. (1m) Arbain, D.; Lajis, N. H.; Putra, D. P.; Sargent, M. V.; Skelton, B. W.; White, A. H. Aust. J. Chem. 1993, 46, 969. (n) Batista, C. V. F.; Schripsaema, J.; Verpoorte, R.; Rech, S. B.; Henriques, A. T. Phytochemistry 1996, 41, 969. (o) Arbain, D.; Byrne, L. T.; Dachrijanus; Sargent, M. V. Aust. J. Chem. 1997, 50, 1109. (p) Arbain, D.; Byrne, L. T.; Dachrijanus; Evrayoza, N.; Sargent, M. V. Aust. J. Chem. 1997, 50, 1111. (q) Scholz, U.; Winterfeldt, E.; Nat. Prod. Rep. 2000, 17, 349. (r) Deiters, M.; Chen, K.; Eary, C. T.; Martin, S. F. J. Am. Chem. Soc. 2003, 125, 4541-4550 (vinylogous Mannich). (1s) Ohba, M.; Natsutani, I. Heterocycles 2004, 63, 2845-2850. (t) Diness, F.; Beyer, J.; Meldal, M. Chem. Eur. J. 2006, 12, 8056. (u) Hu, X.-J.; He, H.-P.; Zhou, H.; Di, Y.-T.; Yang, X.-W.; Hao, X.-J.; Kong, L.-Y. Helv. Chim. Acta 2006, 89, 1344. (v) Silvestri, R.; Marfè, G.; Artico, M.: La Regina, G.; Lavecchia, A.; Novellino, E.; Morgante, E.; Di Stefano, C.; Catalano, G.; Filomeni, G.;

Abruzzese, E.; Ciriolo, M. R.; Russo, M. A.; Amadori, S.; Cirilli, R.; La Torre, F.; Salimei, P. S. J. Med. Chem. 2006, 49, 5840. (w) Review: Lewis, S. E. Tetrahedron 2006, 62, 8655

2 (a) Van der Heyde, R.; Jacobs, D. I.; Snoeijer, W.; Hallard, D. V. R. Curr. Med. Chem. 2004, 11, 607. (b) McCoy, E.; O'Connor, S. E. J. Am. Chem. Soc. 2006, 128, 14276.
${ }^{3}$ Reviews: (a) Kasai, M.; Kono, M. Synlett 1992, 778. (b) Danishefsky, S. J.; Schkeryantz, J. M. Synlett 1995, 475. Recent syntheses: (c) Utsunomiya, I.; Muratake, H.; Natsume, M. Chem. Pharm. Bull. 1995, 43, 37. (d) Wang, Z.; Jimenez, L. S. J. Org. Chem. 1996, 61, 816. (e) Dong, W.; Jimenez, L. S. J. Org. Chem. 1999, 64, 2520. (3f) Lee, S.; Lee, W.-M.; Sulikowski, G. A. J. Org. Chem. 1999, 64, 4224. (g) Vedejs, E.; Klapars, A.; Naidu, B. N.; Piotrowski, D. W.; Tucci, F. C. J. Am. Chem. Soc. 2000, 122, 5401. (h) Michael, J. P.; de Koning, C. B.; Mudzunga, T. T.; Petersen, R. L. Synlett 2006, 3284.

4
Artico, M.; Silvestri, R.; Pagnozzi, E.; Stefancich, G.; Massa, S.; Loi, A. G.; Putzolu, M.;
Corrias, S.; Spiga, M. G.; La Colla, P. Bioorg. Med. Chem. 1996, 4, 837850.

5
(a) Orlemans, E.; Verboom, W.; Scheltinga, M.; Reinhoudt, D.iLelieveld, P.; Fiebig, H.; Winterhalter, B.; Double, J.; Bibby, M. J. Med. Chem. 1989, 32, 1612. (b) Iyengar, B.; Remers, W.; Bradner, W. J. Med. Chem. 1986, 29, 1864. (c) Iyengar, B.; Dorr, R.; Remers, W. J. Med. Chem. 1991, 34, 1947.

6 (a) Herz, W.; Toggweiler, U. J. Org. Chem. 1964, 29, 213. (b)Tabushi, I.; Sakai, K.; Yamamura, K. Tetrahedron Lett. 1978, 19, 1821. (c) Zhang, C.; Dong, J.; Cheng, T.; Li, R. Tetrahedron Lett. 2001, 42, 461. (d) Gong, Y.; Kato, K. Tetrahedron: Asymmetry 2001, 12, 2121. (e) Temelli, B.; Unareloglu, C. Tetrahedron Lett. 2005, 46, 7941. (f) Temelli, B.; Unaleroglu, C. Tetrahedron 2006, 62, 10130. (g) Grigg, R.; McCaffrey, S.; Sridharan, V.; Fishwick, C. W. G.; Kilner, C.; Korn, S.; Bailey, K.; Blacker, J. Tetrahedron 2006, 62, 12159.

7 (a) Review: Cox, E. D.; Cook, J. M. Chem. Rev. 1995, 95, 1797. (b) Review: Sardina, F. J.; Rapoport, H. Chem. Rev. 1996, 96, 1825. See also: (c) Bohlmann, C.; Bohlmann, R.; Rivera, E. G.; Vogel, C.; Manhandar, M. D.; Winterfeldt, E. Liebigs Ann. Chem. 1985, 1752. (d) Johansen, J. E.; Christie, B. D.; Rapoport, H. J. Org. Chem. 1981, 46, 4914. (e) Overman, L. E.; Robichaud, A. J. J. Am. Chem. Soc. 1989, 111, 300. (f) Nakagawa, M.; Liu, J.-J.; Hino, T. J. Am. Chem. Soc. 1989, 111, 2721. (g) Hermkens, P. H. H.; van Maarseveen, J. H; Kruse, C. G.; Scheren, H. W.; Tetrahedron Lett. 1989, 30, 5009. (h) Kirkup, M. P.; Shankar, B. B.;

McCombie, S.; Ganguly, A. K.; McPhail, A. T. Tetrahedron Lett. 1989, 30, 6809. (i) Liu, J.-J.; Nakagawa, M.; Harada, N.; Tsuruoka, A.; Hasegawa, A.; Ma, J.; Hino, T. Heterocycles 1990, 31, 229. (j) Hermkens, P. H. H.; van Maarseveen, J. H.; Berens, H. V.; Smits, J. M. M.; Kruse, C. G.; Scheeren, H. W. J. Org. Chem. 1990, 55, 2200. (k) Hermkens, P. H. H.; van Maarseveen, J. H.; Ottenheijm, H. C. J.; Kruse, C. G.; Scheren, H. W. J. Org. Chem. 1990, 55, 3998-4006. (I) McNulty, J.; Still, I.W. J. Tetrahedron Lett. 1991, 32, 4875. (m) Behforouz, M.; West, S. J.; Chakrabarty, C.; Rusk. D. A.; Zarrinmayeh, H. Heterocycles, 1992, 34, 483. (n) Bailey, P. D.; McLay, N. R. J. Chem. Soc., Perkin Trans. 1 1993, 441. (o) van Maarseveen, J. H.; Scheeren, H. W. Kruse, C. G. Tetrahedron 1993, 49, 2325. (p) Waldmann, H.; Schmidt, G.; Jansen, M.; Geb, J. Tetrahedron Lett. 1993, 34, 5867. (q) McNulty, J.; Still, I. W. J. J. Chem. Soc., Perkin Trans. 1 1994, 1329. (r) Waldmann, H.; Schmidt. G.; Jansen, M.; Geb, J. Tetrahedron 1994, 50, 11865. (s) Rousseau, J.-F.; Dodd, R. H. J. Org. Chem. 1998, 63, 2731. (†) Nakagawa, M.; Liu, J.-J.; Hino, T.; Tsuruoka, A.; Harada, N.; Ariga, M.; Asada, Y. J. Chem. Soc., Perkin Trans. 1, 2000, 3477. (u) Liu, J.-J.; Tsuruoka, A.; Harada, N.; Nakagawa, M. J. Chem. Soc., Perkin Trans. 1 2000, 3487. (v) Bailey, P. D.; Morgan, K. M. J. Chem. Soc., Perkin Trans. 1 2000, 3578. (x) Bailey, P. D.; Clingan, P. D.; Mills, T. J.; Price, R. A.; Pritchard, R. G. Chem. Commun. 2003, 2800. (y) Alberch, L.; Bailey, P. D.; Clingan, P. D.; Mills, T. J.; Price, R. A.; Pritchard, R. G. Eur. J. Org. Chem. 2004, 1887. (z) Cox, P.; Craig, D.; Ioannidis, S.; Rahn, V. S. Tetrahedron Lett. 2005, 46, 4687.

For related synthesis of yohimbine-type alkaloids by intramolecular Michael addition of indole to enaminones, see: (a) Waldmann, H.; Braun, M.; Weymann, M.; Gewehr, M. Synlett 1991, 881-884. (b) Waldmann, H.; Braun, M.; Weymann, M.; Gewehr, M. Tetrahedron 1993, 49, 397. For the synthesis of analogous skeletons by Heck cyclization, see: (c) Yu, S.; Berner, O. M.; Cook, J. M. J. Am. Chem. Soc. 2000, 122, 7827. (d) Kuethe, J. T.; Wong, A.; Davies, I. W.; Reider, P. J. Tetrahedron Lett. 2002, 43, 3871. For a recent synthesis of racemic indole alkaloids of macroline/sarpagine series by Fischer cyclization procedure, see: (e) Gennet, D.; Michel, P.; Rassat, A. Synthesis 2000, 447. For bond a forming cyclization by a radical mechanism, see: (f) Kaoudi, T.; Miranda, L. D.; Zard, S. Z. Org. Lett. 2001, 3, 3125.

9 (a) Fuji, T.; Ohba, M. Heterocycles 1988, 27, 1009. (b) Fuji, T.; Yoshifuji, S.; Ito, H. Chem. Pharm. Bull. 1988, 36, 3348. (c) Fuji, T.; Ohba, M.; Tachinami, T.; Miyajima, H. Chem. Pharm. Bull. 1990, 38, 1200. (d) Ohba, M.; Ohashi, T.; Fujii, T. Heterocycles 1991, 32, 319. (e) Fuji,
T.; Ohba, M.; Seto, S. Chem. Pharm. Bull. 1995, 43, 49. (f) Ohba, M.; Natsutani, I.; Sakuma, T. Tetrahedron Lett. 2004, 45, 6471. (g) Cutri, S.; Diez, A.; Bonin, M.; Micouin, L.; Husson, H.-P. Org. Lett. 2005, 7, 1911.
10 (a) Martin, S. F.; Clark, C. W.; Corbett, J. W. J. Org. Chem. 1995, 60, 3236. (b) Neipp, C. E.; Martin, S. F. J. Org. Chem. 2003, 68, 8867.
${ }^{11}$ (a) Lu. W.; Chan, T. H. J. Org. Chem. 2001, 66, 3467. (b) Tsurugi, H.; Matsuo, Y.; Yamagata, T.; Mashima, K. Organometallics 2004, 23, 2797.

12 Davis, F. A.; Melamed, J. Y.; Sharik, S. S. J. Org. Chem. 2006, 71, 8761.
13 Bonauer, C.; König, B. Synthesis 2005, 2367-.
14 Berger, R.; Rabbat, P. M. A.; Leighton, J. L. J. Am. Chem. Soc. 2003, 125, 9596.
15
Demir, A. S.; Subasi, N. T.; Sahin, E. Tetrahedron: Asymmetry 2006, 17, 2625.
16
(a) Kutney, J. P.; Eigendorf, G. K.; Matsue, H.; Murai, A.; Tanaka, K.; Sung, W. L.; Wada, K.; Worth, B. R. J. Am. Chem. Soc. 1978, 100, 938 . (b) Danishefsky, S.; Langer, M. E.; Vogel, C. Tetrahedron Lett. 1985, 26, 5983. (c) Kuethe, J. T.; Davies, I. W.; Dormer, P. G.; Reamer, R. A.; Mathre, D. J.; Reider, P. J. Tetrahedron Lett. 2002, 43, 29. (d) Golantsov, N. E.; Karchava, A. V.; Starikova, Z. A.; Dolgushin, F. M.; Yurovskaya, M. A. Chem. Heterocycl. Comp. 2005, 41, 1290.

17 Hedberg, C.; Pinho, P.; Roth, P.; Andersson, P. G. J. Org. Chem. 2000, 65, 2810.
18
The intramolecular $[3+2]$ cycloaddition of optically pure 2-pyrrolenitrone to alkenes occurred with low stereoselectivity: (a) Arnone, A.; Broggini, G.; Passarella, D.; Terraneo, A.; Zecchi, G. J. Org. Chem. 1998, 63, 9279. (b) Beccalli, E.; Broggini, G.; Farina, A.; Malpezzi, L.; Terraneo, A.; Zecchi, G. Eur. J. Org. Chem. 2002, 2080.

19 (a) Culvenor, C. C. J.; Edgar, J. A.; Smith, L. W.; Tweeddale, H. J. Aust. J. Chem. 1970, 23, 1853. (b) Tsarouhtsis, D.; Kuchimanchi, S.; DeCorte, B. L.; Harris, C. M.; Harris, T. M. J.Am. Chem. Soc. 1995, 117, 11013.

20 (a) Alvaro, G.; Savoia, D. Synlett 2002, 651. (b) Ferioli, F.; Fiorelli, C.; Martelli, G.i. Monari, M.; Savoia, D.; Tobaldin, P. Eur. J. Org, Chem 2005, 1416. (c) Savoia, D.; Alvaro, G.; Di Fabio, R.; Fiorelli, C.; Gualandi, A.; Monari, M.; Piccinelli, F. Adv. Synth. Catal. 2006, 348, 1883. (d) Savoia, D.; Alvaro, G.; Di Fabio, R.; Gualandi, A.; Fiorelli, C. J. Org. Chem. 2006, 71, 9373.
${ }^{21}$ (a) Suri, K. A; Suri, O. P.; Sawhney, R. S.; Gupta, O. P.; Atal, C. K. Indian J. Chem. 1977, 15B, 972. (b) Suri, K. A; Suri, O. P.; Atal, C. K. Indian J. Chem. 1983, 22B, 822. (c) Ikhiri, K.; Ahnond, A.; Poupat, C.; Potier, P.; Pusset, J.; Sévenet, T. J. Nat. Products 1987, 50, 626. (d) Flynn, D. L.; Zabrowski, D. L.; Becker, D. P.; Nosal, R.; Villamil, C. I.; Gullikson, G. W.; Moummi, C.: Yang, D. C. J. Med. Chem. 1992, 35, 1486. (e) Laschat, S. Liebigs Ann./Recueil 1997, 1. (f) Christine, C.; Ikhiri, K.; Ahond, A.; Mourabit, A. A.; Poupat, C.; Potier, P. Tetrahedron 2000, 56, 1837.

22 (a) Kaiser, H.-P.; Muchovski, J. M. J. Org. Chem. 1984, 49, 4203. (b) Jefford, C. W.; Tang, Q.: Zaslona, A. J. Am. Chem. Soc. 1991, 113, 3513. (c) Deal, M. J.; Hagan, R. M.; Ireland, S. J.; Jordan, C. C.; McElroy, A. B.; Porter, B.; Ross, B. C.; Stephens-Smith, M.; Ward, P. J. Med. Chem. 1992, 35, 4195. (d) Gilchrist, T. L.; Lemos, A.; Ottaway, C. J. J. Chem. Soc., Perkin Trans. 1 1997, 3005. (e) Review: Jefford, C. W. Curr. Org. Chem. 2000, 4, 205. (f) Broggini, G.; La Rosa, C.; Pilati, T.; Terraneo, A.; Zecchi, G. Tetrahedron 2001, 57, 8323. (g) Jeannotte, G.; Lubell, W. D. J. Org. Chem. 2004, 69, 4656.
${ }^{23}$ We previously reported the highly diastereoselective addition of zincates to chiral 2pyridineimines derived from (S)-valine ethyl ester: Alvaro, G.; Pacioni, P.; Savoia, D. Chem. Eur. J. 1997, 3, 726.

Chapter Index

Chap. 4 - Asymmetric Synthesis of 1-(2-Pyrrolyl)alkylamines by Addition of Organometallic Reagents to Chiral 2-Pyrroleimines .. 117
4.1 - Introduction... 117
4.1.1 - 1-(2-Pyrrolyl)alkylamino moiety.. 117
4.2 - Results and discussion.. 123
4.2.1 - Addition of organometallic reagents to chiral pyrrole imines derived from (S)-
valinol and (S)-phenylglycinol.. 123

4.2.2 - Addition of organometallic reagents to chiral pyrrole imines derived from valine methyl ester
 127

4.2.3 - Elaboration of amines 35 and 36 128
4.2.4 - Use of the synthesized compounds as chiral ligands 130
4.3 - Experimental section 130
4.3.1 - General protocol for the preparation of Imines 32, 33 131
4.3.2 - Preparation of Imine 34 132
4.3.3 - Preparation of Imine 38 133
4.3.4-General protocol for the preparation of β-Aminoalcohols 35, 36 133
4.3.5 - General protocol for the preparation of aziridines 35,36 139
4.3.6 - Preparation of the amines 43b,c,e through the imines 42b,c,e 141
4.3.7 - Preparation of the α-substituted benzamides 44a,b,e,f 144
4.5 - References 146
Chapter Index 151

Chap. 5 - Asymmetric Synthesis of

8-Aminoindolizidine from Chiral 2-Pyrroleimines

5.1- Introduction

7-Aminopirrolizidine $1 a^{1,2}$ and 8-aminoindolizidine 1 b (Scheme 1) ${ }^{1}$ and their ringsubstituted derivatives are relatively unexplored classes of compounds, despite their presence in nature and their potential activity as glycosidase inhibitors and Anti-HIV drugs.

Some examples are the alkaloid (+)-absouline (2), ${ }^{2,3}$ laburnamine (3), ${ }^{2,4}$ and the compound 4, ${ }^{5}$ a selective serotonin agonists versus the subunit receptor $5-H T_{4}$. Another example are the mitomycine antibiotics, among which mitomycine C (5) is clinically used as an antitumor agent. ${ }^{6}$ A derivative of racemic 8-amino-8a-phenylindolizidine (6) was prepared as an analogue of the substance P antagonist $C P 99,994$, but it displayed low biological activity. ${ }^{7}$ Finally, some oligonucleotides containing interchain cross-links of bifunctional pyrrole (7) were synthesized by Harris and co-workes. ${ }^{8}$

Scheme 1

2, absouline

5, Mitomycine C

3, laburnamine

7

Scheme 2

Also 3-0xo-8-aminoindolizidine (8) has been considered a constrained analogue of bioactive peptides and substitutes of β-turns (Scheme 3). ${ }^{9}$

Scheme 3

Pyrroles have been used as building blocks for the stereoselective synthesis of indolizidines, as the heteroaromatic ring can be hydrogenated to pyrrolidine, and the six membered ring was constructed by diverse cyclization strategies. ${ }^{10}$ For example, Smith and co-workers prepared racemic pheromone mormorine 11 by hydrogenantion of compound $10 .{ }^{11}$ The first step involved the ring opening of γ-valerolactone by the potassium salt of pyrrole, then O-alkylation with methyl iodide, gave the product 9 . The compound was converted by a three step sequence to the bicyclic pyrrole ketone 10, was hydrogenation finally gave racemic mormorine 11.

Scheme 4

Pereira ${ }^{12}$ reported the synthesis of (-)-indolizidine $167 B$ (14) by cyclization of the optically pure amide 12 with boron tribromide. The ketone 13 was then reducted to give the alkaloid with good yield (Scheme 5).

Scheme 5
Another enantioselective synthesis of (-)-indolizidine 167B (14) ${ }^{13}$ involved a Rhcatalyzed intramolecular cyclization of the diazocompound 15 to give the ketone 16 , which was hydrogenated to give 14.

Scheme 6
7-Alkyl-8-aminoindolizidines have been synthesized by intramolecular imino-ene reactions of (L)-1-(3-alkene-1-yl)prolinal imines, so forming the fused six-membered ring (Scheme 7). ${ }^{14}$ Certainly, this procedure is advantageous because two $C-C$ bonds are formed in a single step and the reduction of the pyrrole ring is avoided. However, it should be noticed that it allows formation only of the diastereomers with the retained configuration of the stereocenter present in the "ex chiral pool" starting material, which is also not readily available.

Scheme 7

On the other hand, an approach which exploit the double reactivity of the chiral 2pyrroleimine derived by an optically active amine, acting as a chiral auxiliary available in both the enatiomeric form as depicted in Scheme 8, would allow in principle to synthesize all the four possible diastereomers of 8-aminopirrolizidine 1 a and 7 -aminopirrolizidine 1 b .

Scheme 8

The route we have envisioned takes advantage of the electrophilic reactivity of the imine function and nucleophilicity of the pyrrole nitrogen atom, allowing the easy preparation of the crucial intermediate 18. Ring closing methatesis (RCM) to construct the bicyclic skeleton of fused pyrrole derivatives 17 , which can be subsequently hydrogenated to give the fully saturated compounds $1 .{ }^{15}$ The crucial intermediates 18 are in turn obtained by addition of an unsaturated organometallic reagent to the 2-pyrroleimine bearing a chiral auxiliary at the imine nitrogen and an alkenyl group at pyrrole nitrogen 19. In principle, diversely sized rings can be constructed in the RCM step, depending on the nature of the either pyrrole N-substituent and the organometallic reagent, i.e. by varying " n " and " m " in the intermediate 18. Particularly, a five membered ring is formed when $n=m=0$, and a sixmembered ring by choosing $n=1, m=0$, or vice versa. All the routes appeared viable at first glance, as we previously described the highly diastereoselective addition of various organometallic reagents to chiral 2-pyrrole imines derived from (S)-valinol and (S)phenylglycinol, having unprotected or trimethylsilyl-protected OH and NH functions. ${ }^{16}$

5.2 - Results and discussion

5.2.1 - Addition of organometallic reagents to chiral pyrrole imines derived from 1(S)-valinol and (S)-phenylglycinol

We started our research by routinely preparing with high yields the 1-allyl-2pyrroleimines 21 a and 21b from 1-allyl-2-pyrrolealdehyde (20), ${ }^{16}$ as desribed in Scheme 9.

Scheme 9

The OH-free imines 21a,b were treated with variable amount of allylmagnesium chloride in THF at $0^{\circ} \mathrm{C}$ (Scheme 10) and the results reported in Table 1

Scheme 10

Table 1

Entry	Imine	AllylMgCl (equiv.)	Time (h)	$\begin{gathered} \text { Ratio } \\ 22 / 23^{[c]} \end{gathered}$	$\begin{gathered} 22+23 \\ (\text { Yield \%) } \end{gathered}$	$\begin{gathered} 23 \\ (\text { Yield \%) } \end{gathered}$
1	21a	2.5	48	53:47	98	23a (${ }^{[d]}$)
2	21a	3	24	24:76	97	23a (66)
3	21a	4	24	0:100	98	23a (92)
4	22b	4	24	0:100	98	23b (96)

[a] Determined by ${ }^{1} \mathrm{H}$ NMR analysis. [b] Yield of crude product. [c] Yield of isolated, pure product. [c] The product was not isolated.

Unexpectedly, in the first reaction run on the imine 21a, using only a slight exess of Grignard reagent (2.2 equivalents), a 53:47 mixture of two isomeric amines were obtained, as evidenced by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product. The major isomer was identified as the expected product (22a) on the basis of the ${ }^{1} H$ NMR spectrum, whereas the minor one (23a) was supposed to have an isomerized propenyl substituent on the pyrrole nitrogen. The basepromoted isomerisation was attributed to the action of the Grignard reagent in excess amount (Scheme 11), hence the reaction was carried out with increased amounts of
allylmagnesium chloride in order to optimize the yield of compound 23a, because this compound has the required 1,7-octadiene moiety for the construction of a six-membered ring by the RCM methodology. The results of this investigation are reported in Table 1.

Scheme 11

Thus, it was observed that by increasing the amount of the Grignard reagent a corresponding increased conversion of 22a to 23a occurred (entries 2 and 3) and the complete conversion was achieved using 4 equivalents of allylmagnesium chloride (entry 4). The ${ }^{1}$ H NMR spectrum of the crude product, obtained in 98% yield, showed the presence of only one diastereomer, concerning both the newly formed stereocenter and the alkene geometry, which was determined as Z on the basis of the coupling constant of the vinylic protons. On the other hand, GC-MS analysis could not be used to determine the purity and diastereomeric ratio of $23 a, b,{ }^{17}$ as the products were not eluted or underwent massive decomposition. The pure product 23a was then obtained with 92% yield by chromatography an a SiO_{2} column. However, we found that the crude compound could be used without purification in the successive step. Similarity in the same conditions, the imine 21b was converted to the homoallylic amine 23b with complete selectivity and excellent yield.

5.2.2 - Protection of amino function and RCM reaction

Before performing the RCM step, it was necessary to protect the amino function. As acidic conditions are not suitable in the presence of the pyrrole ring, we chose to convert the β-aminoalcohol moiety of $23 a, b$ into an oxazolidinone and prepared the compound $24 a, b$ by routine reactions with triphosgene (Scheme 12).

Scheme 12

The reaction performed on the amine 23a using carbonyldiimidazole (CDI) as reagent (Scheme 13) gave a mixture of the desired product $24 a$ and the aziridine 25 , which were isolated with 88% and 5% yields, respectively, by column chromatography.

Scheme 13

Moreover, other derivatives of compounds $23 a, b$, with protected amino function were prepared (Scheme 14). Particularly, we removed the auxiliary group by common oxidative procedures and transformed the primary amines 26 into the corresponding benzamide 27 or N-Boc derivate 28.

Scheme 14

On this compounds the RCM step was investigated, exploring the effectiveness of first generation and second generation Grubbs catalysts (ruthenium benzylidene complexes I and II, respectively Scheme 15).

I
Grubbs $1^{\text {st }}$ generation

Scheme 15
The results obtained, reported in Table 2, showed that both catalysts can be used to that purpose, although II was more effective and allowed the reaction to reach completion in less time than I: 0.5 h vs 4 h in dichloromethane at the reflux temperature, using $5 \mathrm{~mol} \%$ both catalyst (entries 1 and 2). Moreover, the same high yields of bicycling product 30a could be obtained using catalyst II in toluene at $115{ }^{\circ} \mathrm{C}$ for 0.5 h with $5 \mathrm{~mol} \%$ loading (entry 3) and in dichloromethane at $40^{\circ} \mathrm{C}$ for 1.5 h with $2.5 \mathrm{~mol} \%$ loading (entry 4). By further decreasing the catalyst loading to $1 \mathrm{~mol} \%$, the reaction time was increased to 4 h achive the same high yield (entry 5). The latter conditions were then applied to the diene 30b to obtain the same efficient ring closing to give 30b (entry 6).

Scheme 16

Table 2

Entry	Compound	Grubbs cat. (mol\%)	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Product (Yield \%) ${ }^{\mathrm{a}}$
1	29 a	I (5.0)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	4	30a (93)
3	$29 a$	II (5.0)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	0.5	$30 a(94)$
2	$29 a$	II (5.0)	Toluene	115	0.5	$30 a(95)$
4	$29 a$	II (2.5)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	1.5	$30 a(94)$
5	$29 a$	II (1.0)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	4	$30 a(95)$
6	$29 b$	II (1.0)	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	4	$30 b(96)$

[a] Yield of isolated, pure product.

The compounds 27 and 28 were also submitted to RCM using 1 mol\% of Grubbs catalyst II in reflux dichloromethane and the corrisponding bicyclic products (32 and 32) were obtained with good yields (Scheme 17).

Scheme 17

5.2.3 - Hydrogenation of the pyrrole ring

Finally, we directed our efforts to the hydrogenation of the unsaturated bicyclic compounds $30 a, b, 31$ and 32. Hydrogenation of only the alkene function of $30 a, b$ to give 33a,b was easily achieved by stirring a solution of $30 a, b$ in methanol under 1 atm H_{2} in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ for 2 hours. However we were interested to achieve the fully saturated, indolizidine derivatives.

Scheme 18

Literature survey showed that substituted pyrroles can be hydrogenated to give pyrrolidine derivatives in the presence of palladium, platinum and rhodium heterogeneous catalysts. ${ }^{10,18}$ We have carried out reaction on 30 a using $10 \% \mathrm{Pd} / \mathrm{C}, 10 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{P}+\mathrm{O}_{2}$, most frequently using methanol as the solvent, and the resulta are reported in Table 3. In all cases, mixtures of three diastereomers were formed with poor diastereoselectivity, as evinced by GC-MS analyses of the crude products (Scheme 19).

Scheme 19

By assuming that hydrogen addition took plan to both the pyrrole faces and the stereocenter present in the six-membered ring is uninfluenced in the reaction condition only two stereoisomers should be observed. A third stereoisomer should be formed by a mechanism involving stepwise reduction of the pyrrole ring to give pirrolines (35) which undergo isomerization by migration of the $C=C$ bond to the six-membered ring. The intermediate 36 is the obtained, causing loss of the pre-existing stereocenter, than uptake of hydrogen can occur on both faces leading two either (R, R)-34 and ($(S, S$)-34 (Scheme 20).

Scheme 20
Fortunately the three diasteroisomers could be separated, cromatographically at les \dagger in part and suitable crystals were obtained for two isomers allowing structurely identification by X-Ray analysis. So, we could assigned the $(S, S),(S, R)$ configurations of the stereocenters in bicylclic skeleton of two diateroisomers, the first and third eluted in GC analysis (Figure 1).

Figure $1(R, S)-34$ and $(S, S)-34$

The results are several reports of analogous hydrogenation of, chiral pyrroles having stereocenters at the benzylic position. It is noteworthy that $(S, R)-34$ was the minor one when the reaction was performed at 1 atm of H_{2} in the presence of $10 \% \mathrm{Pd} / C$, even in the presence of acetic acid (entries 1 and 2). Instead, it was the major diastereomer when 10% $\mathrm{Pd}(\mathrm{OH})_{2} / C$ was used, although at low conversion of 30 a (entry 3). Aiming to improve the yield of saturated products, hydrogenation was carried out at higher pressure (8 atm of H_{2}) and in the presence of acetic acid, and in these conditions a mixture of the three diastereomers was again obtained in quantitative yield (entry 4). The addition of $1 M$ solution of hydrochloridric acid in diethyl ether to the MeOH improved the rate of the reaction and a complete conversion was observed at $1 \mathrm{~atm} \mathrm{H}_{2}$ after 24 hours (entry 5). The Adam catalyst ($\mathrm{PtO}_{2}, 10 \mathrm{~mol} \%$) proved to be ineffective, as only 10% conversion was observed after 48 h in MeOH (entry 6).

Table 3

Entry	Catalyst (\%)	Solvent	(h)	$\begin{aligned} & \mathrm{PH}_{2} \\ & (\mathrm{~atm}) \end{aligned}$	Conversion $(\%)^{[a]}$	$\begin{gathered} (S, 5)-34 \\ (\%)^{[a]} \end{gathered}$	$\begin{gathered} (R, R)-34 \\ (\%)^{[a]} \end{gathered}$	$\begin{gathered} (S, R)-34 \\ (\%)^{[a]} \end{gathered}$
1	$\begin{gathered} 10 \% \mathrm{Pd} / \mathrm{C} \\ (20 \%) \end{gathered}$	MeOH	48	1	100	43	42	15
2	$\begin{gathered} 10 \% \mathrm{Pd} / \mathrm{C} \\ (20 \%) \end{gathered}$	$\begin{gathered} \mathrm{MeOH}- \\ \mathrm{AcOH}(20 \%) \end{gathered}$	24	1	100	38	47	15
3	$\begin{gathered} 20 \% \\ \operatorname{Pd}(\mathrm{OH})_{2} / \mathrm{C} \\ (20 \%) \end{gathered}$	MeOH	48	1	30	16	11	73
4	$\begin{gathered} 20 \% \\ \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C} \\ (20 \%) \end{gathered}$	$\begin{gathered} \mathrm{MeOH}- \\ \mathrm{AcOH}(20 \%) \end{gathered}$	24	8	100	24	28	48
5	$\begin{gathered} 20 \% \\ \operatorname{Pd}(\mathrm{OH})_{2} / \mathrm{C} \\ (20 \%) \end{gathered}$	$\begin{gathered} \mathrm{MeOH}-1 \mathrm{M} \\ \mathrm{HCl} \text { in } \mathrm{Et}_{2} \mathrm{O} \\ (20 \%) \end{gathered}$	24	1	100	54	32	14
6	PtO_{2} (10\%)	MeOH	48	1	10	14	14	72

[a] Determined by GC-MS analysis.

Then we tested rhodium-based catalysts for the hydrogenation of pyrrole ring. 5\%$\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}$ gave more satisfactory results (Table 4), as mixture of only (S, S)-34 and (S, R)-34 was quantitatively formed with a moderate prevalence of the latter compound (entry 1, Table 4). An increase of their ratio ($74: 26$) was obtained in MeOH at 8 atm hydrogen pressure (entry 2), whereas substitution of methanol by ethyl acetate gave a slightly less satisfactory conversion and diastereoselectivity (entry 3). The use of DMF as solvent increased markedly the diasteroselectivity (d.r. 93:7), but had a negative effect on the rate of the reaction (entry 4). When the reaction was carried out using a $1: 1 \mathrm{MeOH}: \mathrm{DMF}$ mixture we observed an increase of rate of the reaction with almost the same disteroselectivity rate (entry 5). No reaction occurred when 0.5 M of $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added to MeOH (entry 6); instead the addition of triethyl amine ($20 \mathrm{~mol} \%$) slightly increase the disteroselectivity but slowly the rate of reaction (entry 7).

We also prepared Rh -graphite from potassium graphite $\left(\mathrm{C}_{8} \mathrm{~K}\right)$ and RhCl_{3}. We were delighted to observe that this new catalyst was fairly more reactive that $\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}$ and gave the indolizidine 34 after only 11 hours with comparable diasteroselectivity.

Table 4

Entry	Catalyst (\%)	Solvent	(h)	$\begin{aligned} & \mathrm{PH}_{2} \\ & (\mathrm{a}+\mathrm{m}) \end{aligned}$	Conversion (\%)	$\begin{aligned} & (S, 5)- \\ & 34(\%) \end{aligned}$	$\begin{aligned} & (R, R)- \\ & 34(\%) \end{aligned}$	$\begin{aligned} & (S, R)- \\ & 34(\%) \end{aligned}$
1	$\begin{gathered} 5 \% \mathrm{Rh}_{(10 \%)} \mathrm{Al}_{2} \mathrm{O}_{3} \\ \hline \end{gathered}$	MeOH	24	1	100	31	0	69
2	$\begin{gathered} 5 \% \mathrm{Rh}_{(10 \%)} / \mathrm{Al}_{2} \mathrm{O}_{3} \end{gathered}$	MeOH	24	8	100	26	0	74
3	$\begin{gathered} 5 \%{\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}}_{(10 \%)} \end{gathered}$	AcOE \dagger	24	8	96	40	0	60
4	$\begin{gathered} 5 \% \mathrm{Rh}_{(10 \%)} / \mathrm{Al}_{2} \mathrm{O}_{3} \end{gathered}$	DMF	72	1	30	7	0	93
5	$\begin{gathered} 5 \%{\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}}_{(20 \%)} \end{gathered}$	$\begin{gathered} \text { DMF:MeOH } \\ 1: 1 \end{gathered}$	72	1	70	10	0	90
6	$\begin{gathered} 5 \% \mathrm{Rh}^{5} / \mathrm{Al}_{2} \mathrm{O}_{3} \\ (10 \%) \end{gathered}$	$\begin{aligned} & \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O} \\ & (10 \%)-\mathrm{K}_{2} \mathrm{CO}_{3} \end{aligned}$	72	1	0	-	-	-
7	$\begin{gathered} 5 \% \mathrm{Rh}_{(10 \%)} \mathrm{Al}_{2} \mathrm{O}_{3} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{MeOH}- \\ \mathrm{TEA}(20 \%) \end{gathered}$	72	1	100	22	0	78
9	26\% Rh-Graphite (1,5\%)	MeOH	11	1	100	39	0	61
10	26\% Rh-Graphite (1,5\%)	$\begin{aligned} & \mathrm{MeOH}- \\ & \mathrm{TEA(20} \mathrm{\%)} \end{aligned}$	72	1	100	24	0	76

[a] Determined by GC-MS analysis.

The same protocol was applied to the phenylglicinol derivate 30b. Using Pd/C and $\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}$ in MeOH we observed a complex a mixture of compounds. Accurate GC-MS analyse, demonstrated that hydrogenation of the phenyl ring had partially occurred. Only when the reaction was carried out in the presence of acetic acid the fully hydrogenated products (37) where only observed being formed with moderate diasteroselectivity. Substitution of methanol by acetonitrile gave hydrogenation of the only alkene function. The configuration of products was confirmed by X-Ray analysis of (S, R)-37 (Figure 2).

Scheme 21

Table 5

Entry	Catalyst (\%)	Solvent	(h)	$\begin{aligned} & \mathrm{PH}_{2} \\ & (\mathrm{~atm}) \end{aligned}$	Conversion $(\%)^{[a]}$	$\begin{aligned} & (5,5)- \\ & 37(\%)^{[a]} \end{aligned}$	$\begin{aligned} & (R, R)- \\ & 37(\%)^{[a]} \end{aligned}$	$\begin{aligned} & (S, R)- \\ & 37(\%)^{[a]} \end{aligned}$
1	10\% Pd/C (20\%)	MeOH	48	1	- ${ }^{[6]}$	-	-	-
2	$\underset{(10 \%)}{5 \%}{\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}}^{(2)}$	MeOH	48	1	- ${ }^{[6]}$	-	-	-
3	$\begin{gathered} 5 \% \mathrm{Rh}_{(10 \%)} / \mathrm{Al}_{2} \mathrm{O}_{3} \end{gathered}$	$\begin{gathered} \mathrm{MeOH}- \\ \mathrm{AcOH}(20 \%) \end{gathered}$	48	1	100	5	31	64
4	$\underset{(10 \%)}{5 \%}{\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}}^{2}$	$\begin{gathered} \mathrm{MeOH}- \\ \mathrm{AcOH}(20 \%) \end{gathered}$	24	8	100	3	28	69
5	$\underset{(10 \%)}{5 \%}{\mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}}^{(2)}$	MeCN	72	1	$0^{[c]}$	-	-	-
6	26\% Rh-Graphite (1,5\%)	$\begin{gathered} \mathrm{MeOH}- \\ \mathrm{AcOH}(20 \%) \end{gathered}$	24	1	100	5	29	66

[a] Determined by GC-MS analysis. [b] Complex mixure of coumponds. [c] Only the product 33b was recoved with 97% of yield.

Figure $2(S, R)-37$
Hydrogenation of the amide 31 using $5 \%-\mathrm{Rh}^{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$ afforted the products with saturation of all the aromatic rings (Scheme 22). We obtained two different separable diasteroisomers from the GC-MS analysis, but after chiral GC analysis, the compound (S, S) 38 was present as mixture of enantiomers. The better results was obtained using MeOH as solvent under a 1 atm pressure of hydrogen (Table 6).

Scheme 22

Table 6

$+(h)$	$\mathrm{P} \mathrm{H}_{2}$ $(\mathrm{~atm})$	Conversion $(\%)^{[a]}$	$(S, R)-38$ $(\%)^{[a]}$	$(S, S)-38$ $(\%)^{[a]}$	e.e.(S,S)-38 $(\%)^{[b]}$
96	1	100	32	68	84
24	8	100	38	62	88

[a] Determined by GC-Ms analysis. [b] Determined by chiral GC analysis.

With the same procedure N-Boc derivate 32 was hydrogenated to give two separable diasteroisomer, one of which was present as a mixture of enantiomers (S, S)-39 and (R, R)-39.

Scheme 23

5.3-Experimental section

Melting points are uncorrected. Optical rotations were measured on a digital polarimeter in a 1 -dm cell and [$\alpha]_{\mathrm{D}}$-values are given in 10^{-1} deg $\mathrm{cm}^{3} \mathrm{~g}^{-1}$. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Varian Inova and Gemini instruments for samples in CDCl_{3} which was stored over $\mathrm{Mg}:{ }^{1} \mathrm{H}$ chemical shifts are reported in ppm relative to $\mathrm{CHCl}_{3}\left(\delta_{H} 7.27\right)$, J -values are given in Hz . and in the assignments $s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet, sept $=$ septet, $m=$ multiplet, bs = broad singlet, $\mathrm{dd}=$ doublet of doublets and $\mathrm{dt}=$ doublet of triplets. Infrared spectra were recorded on a Nicolet FT-380 spectrometer and IR assignments are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. MS spectra were taken at an ionising voltage of 70 eV on a HewlettPackard 5975 spectrometer with GLC injection. Analytical gas chromatography (GC) was performed on a Hewlett-Packard HP 6890 gas chromatograph with a flame ionization
detector and split mode capillary injection system, using a Megadex 5 chiral column (25 m , flow rate $15 \mathrm{~mL} / \mathrm{min}$). Molecular weight was determined on an Agilent Technologies MS 1100 instrument. Chromatographic separations were performed on columns of SiO_{2} (Merck, 230400 mesh) at medium pressure. All the organic, inorganic and organometallic reagents and reactants and anhydrous solvents were purchased from Aldrich.
5.3.1 - Preparation of Aldehyde 20

To a solution of 2-pyrrolecarbaldehyde (2.420 g, 25.4 mmol) in dioxane (40 mL) allylbromide was added ($6.6 \mathrm{~mL}, 9.22 \mathrm{~g}, 76.2 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(12.30 \mathrm{~g}, 89.0 \mathrm{mmol})$ and the mixture was refluxed for 8 hours. Then the mixture was cooled at room temperature and cyclohexane $(40 \mathrm{~mL})$. The solid was filtered off through a pad of Celite and the organic phase was concentrated at reduced pressure. Flash column chromatography $\left(\mathrm{SiO}_{2}\right)$ eluting with cyclohexane/ethyl acetate 9:1 mixtures gave the product 20 ($89 \%, 3.05 \mathrm{~g}, 22.6 \mathrm{mmol}$). 1-allyl-2-pyrrolealdehyde (20): Red oil; IR (neat): $v=3109,3085,2929,2807,2768,2724$, $1662,1479,1405,1369,1317,1218,1075,1030,993,924,749,609 ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.C D C l_{3}\right): \delta=9.55(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~m}, 2 \mathrm{H}), 6.26(\mathrm{dd}, J=2.6 \mathrm{~Hz}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.99$ (m, 1 H), 5.18 (dd, J=1.3 Hz, J=2.7 Hz, 1 H), $5.15(\mathrm{dd}, J=1.3 \mathrm{~Hz}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08$ (dd, $J=1.5 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\dagger, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.96(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=50.7,109.7,116.9,124.4,130.9,131.2,133.9,179.1 ; \mathrm{MS}(E I): m / z=118$ (100), 134 (67), 106 (62), 135 (61), 79 (46).

5.3.2 - General protocol for the preparation of imines 21a and 21b

To a solution of (S)-phenylglycinol ($1.50 \mathrm{~g}, 11.1 \mathrm{mmol}$) or (S)-valinol ($1.14 \mathrm{~g}, 11.1 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added anhydrous $\mathrm{MgSO}_{4}(5 \mathrm{~g})$ and $5(1.5 \mathrm{~g}, 11.1 \mathrm{mmol})$ and the mixture was stirred overnight. The solid was filtered off through a pad of Celite and the organic phase was concentrated at reduced pressure to gave the desire imine.

(S)-N-(1-Allyl-2-pyrrolmethylidene)valinol (21a): Red oil; 2.39 g (98\%); [$\alpha]_{D}{ }^{20}-101.5$ (c 1.3, CHCl_{3}); IR (neat): $v=3060,3023,2831,1642,1530,1367,1025,920,733 ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.11(\mathrm{~s}, 1 \mathrm{H}), 6.77(\dagger, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{ddd}, J=0.6 \mathrm{~Hz}, J=1.7 \mathrm{~Hz}, J=$ $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=2.7 \mathrm{~Hz}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.99$ (ddd, $J=5.0 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}, J=10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.14(\dagger, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2$ H), $2.80(q, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{bs}, 1 \mathrm{H}), 1.87($ sept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3$ H), 0.86 ($d, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.5,20.2,30.7,51.3,65.2,79.6$, $109.0,116.2,117.4,128.5,129.6,135.9,153.4 ; G C-M S(E I): m / z=118$ (100), 189 (34), 134 (26), 117 (18), 205 (7), 220 (4).

(S)-N-(1-Allyl-2-pyrrolmethylidene)phenylglycinol (21b): Red oil; 2.73 g (97\%); $[\alpha]_{D}^{20}$ 126.3 ($c 1.8, \mathrm{CHCl}_{3}$); IR (neat): $v=3387,3083,3062,3027,2825,2863,1638,1534,1425$, $1371,1310,1031,921,733 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.26(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.44(\mathrm{~m}, 5 \mathrm{H})$, $6.82(t, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=1.8 \mathrm{~Hz}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, J=2.7 \mathrm{~Hz}, J=3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.07(\mathrm{ddd}, J=5.1 \mathrm{~Hz}, J=10.3 \mathrm{~Hz}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{ddt}, J=1.7 \mathrm{~Hz}, J=5.2$ $\mathrm{Hz}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dq}, J=1.7 \mathrm{~Hz}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{ddt}, J=1.7 \mathrm{~Hz}, J=4.7 \mathrm{~Hz}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dq}, J=1.7 \mathrm{~Hz}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\dagger, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.86(\mathrm{~d}, J=$ 6.4 Hz, 2 H): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=50.9,68.0,76.6,108.5,115.8,117.7,126.4,127.1$, 127.3, 128.3, 128.8, 135.3, 141.1, 153.6; GC-MS (EI): $m / z=118$ (100), 223 (92), 106 (41), 91 (34), 79 (30), 239 (21), 254 (11).
5.3.3 - General protocol for the preparation of β-Aminoalcohols $23 a, b$

Allylmagnesium chloride (1.0 M in THF, $23.6 \mathrm{~mL}, 23.6 \mathrm{mmol}$) was added to a magnetically stirred solution of the imine $23 \mathrm{~b}(1.50 \mathrm{~g}, 5.9 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$ cooled at $0^{\circ} \mathrm{C}$. After 30 $m i n$ the reaction mixture was slowly warmed up until room temperature was reached, and stirring was continued for 24 h . The mixture was quenched by adding a saturated aqueous
solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, then the organic material was extracted with diethyl ether ($3 \times 20 \mathrm{~mL}$). The collected ethereal layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to leave the crude product. Flash column chromatography $\left(\mathrm{SiO}_{2}\right)$ eluting with cyclohexane/ethyl acetate 9:1 mixtures gave the product 24b. This compound decomposed on attempted GC-MS and HPLC-MS analyses.

(23a): Yellow oil; $[\alpha]_{0}^{20}-27.3$ (c 1.6, CHCl_{3}); IR (neat): $v=3326,3062,2918,2864,1662$, $1474,1363,1067,915 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.66(\mathrm{dq}, \mathcal{J}=1.8 \mathrm{~Hz}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.62 (dd, $J=1.7 \mathrm{~Hz}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, \mathcal{J}=2.8 \mathrm{~Hz}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=1.7$ $\mathrm{Hz}, \mathcal{J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~m}, 1 \mathrm{H}), 6.16(\mathrm{ddd}, \mathcal{J}=7.0 \mathrm{~Hz}, \mathcal{J}=8.3 \mathrm{~Hz}, \mathcal{J}=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06$ (m, 2 H), 3.85 (dd, J=4.1 Hz, J=4.7 Hz, 1 H), 3.56 (dd, J=4.1 Hz, J=10.7 Hz, 1 H), 3.37 (dd, $J=4.7 \mathrm{~Hz}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\dagger \dagger, J=1.2 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(m, 1 \mathrm{H}), 2.16$ (bs, 2 H), 1.74 (dd, $\mathcal{J}=1.8 \mathrm{~Hz}, \mathcal{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, \mathcal{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, \mathcal{J}=6.9 \mathrm{~Hz}$, $3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.5,18.7,19.6,29.5,41.2,52.2,59.9,61.2,106.2,107.5$, 117.2, 121.2, 121.4, 126.1, 135.0, 135.3; MS (ES): $m / z=285.4[M+N a]^{+}, 160.2\left[M\right.$ - valinol] ${ }^{+}$.

(23b): Yellow oil; $[\alpha]_{0}^{20}-31.9$ ($c 1.5, \mathrm{CHCl}_{3}$); IR (neat): $v=3407,3077,2957,2872,1662$, 1640, 1470, 1311, 1068, 917, 713: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.22-7.44(\mathrm{~m}, 5 \mathrm{H}), 6.63$ (dd, $J=1.7 \mathrm{~Hz}, \mathcal{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{dq}, \mathcal{J}=1.6 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\dagger, J=3.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.63-5.83 (m, 1 H), 5.37 (ddd, $J=7.0 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-5.06(m, 2 \mathrm{H})$, $3.85(\mathrm{dd}, \mathcal{J}=4.5 \mathrm{~Hz}, \mathcal{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{t}, \mathcal{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=4.5 \mathrm{~Hz}, J=10.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, \mathcal{J}=7.6 \mathrm{~Hz}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=6.4 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.26$ (bs, 2 H), 1.68 (dd, $J=1.8 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$): ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.4,39.1,51.7$, 60.9, 65.7, 106.6, 107.4, 117.2, 120.7, 121.3, 125.8, 127.2, 127.5, 128.5, 134.1, 135.0, 141.0; MS (ES): $m / z=319.4[M+N a]^{+}, 160.1\left[M-\right.$ valinol] ${ }^{+}$.

5.3.4 - General protocol for the preparation of Oxazolidinones 24a,b

To a solution of β-aminoalcohol 23b ($1.3 \mathrm{~g}, 4.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added a saturated aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, triphosgene $(0.652 \mathrm{~g}, 2.2 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred overnight. The mixture was extracted with dichlorometane (3×20 mL). The collected organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to leave the crude product. Flash column chromatography $\left(\mathrm{SiO}_{2}\right)$ eluting with cyclohexane/ethyl acetate 8:2 mixtures gave the product 24b ($91 \%, 1.290 \mathrm{~g}, 4 \mathrm{mmol}$).

(24a): White solid; 93 \% ($0.785 \mathrm{~g}, 2.73 \mathrm{mmol}$) from $3.0 \mathrm{mmol}(0.787 \mathrm{~g})$ of 8 a ; $\mathrm{mp}=(77.3-$ $77.5)^{\circ} \mathrm{C} ;[\alpha]_{0}^{20}-76.8\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR $(\mathrm{KBr}): v=3129,3104,2932,2873,1732,1665,1482$, 1412, 1230, 1070, 1049, 925, 745, 725, 626; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=6.77$ (dd, $J=1.6$ $\mathrm{Hz}, \mathcal{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{ddd}, \mathcal{J}=1.7 \mathrm{~Hz}, \mathcal{J}=3.5 \mathrm{~Hz}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.2(\mathrm{~m}, 2 \mathrm{H}), 5.90(\mathrm{~m}$, 1 H), 5.55 (ddd, $\mathcal{J}=6.1 \mathrm{~Hz}, \mathcal{J}=8.4 \mathrm{~Hz}, \mathcal{J}=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-5.21(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{dd}, \mathcal{J}=4.8$ $\mathrm{Hz}, \mathcal{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, \mathcal{J}=8.2 \mathrm{~Hz}, \mathcal{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{ddd}, \mathcal{J}=3.2 \mathrm{~Hz}, J=4.9 \mathrm{~Hz}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.74-2.89 (m, 2 H), 1.98 (dsept, $J=3.3 \mathrm{~Hz} J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.76 (dd, $J=1.9$ $\mathrm{Hz}, \mathcal{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~d}, \mathcal{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.70(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}) $\delta=12.2,13.6,29.7,37.6,50.6,58.3,62.2,107.3,108.9,117.5,120.7,122.5,124.9$, 128.1, 134.5, 158.2; GC-MS (EI): $m / z=247$ (100), 118 (67), 159 (38), 86 (25), 207 (16), 281 (5).

(24b): Yellow oil; $[\alpha]_{0}^{20}-83.9$ (c 1.6, CHCl $_{3}$); IR (neat): $v=3076,3034,2977,2918,2858$, $1746,1663,1476,1403,1218,1070,1045,918,702 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38(\mathrm{~m}, 3$ $\mathrm{H}), 7.23(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{dd}, \mathcal{J}=1.6 \mathrm{~Hz}, \mathcal{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dq}, \mathcal{J}=1.7 \mathrm{~Hz}, \mathcal{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.20(\dagger, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{ddd}, \mathcal{J}=0.8 \mathrm{~Hz}, \mathcal{J}=1.5 \mathrm{~Hz}, \mathcal{J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.74$ (dddd, $\mathcal{J}=$ $6.1 \mathrm{~Hz}, \mathcal{J}=7.3 \mathrm{~Hz}, \mathcal{J}=10.2 \mathrm{~Hz}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(d d d, J=7.1 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}, J=14.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.14(\mathrm{dd}, \mathcal{J}=6.9 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dq}, \mathcal{J}=1.3 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89$ (dq, $\mathcal{J}=1.5 \mathrm{~Hz}, \mathcal{J}=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}, \mathcal{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, \mathcal{J}=7.9 \mathrm{~Hz}, \mathcal{J}=13.9 \mathrm{~Hz}, 1$ H), 4.09 (dd, $J=7.9 \mathrm{~Hz}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.03-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.84$ (dd, $J=$ $1.8 \mathrm{~Hz}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}$): ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.3,36.5,50.9,57.7,70.2,107.2$, 109.6, 117.4, 120.7, 122.6, 125.2, 127.6, 128.5, 128.8, 134.3, 139.8, 158.0; GC-MS (EI): $\mathrm{m} / \mathrm{z}=$ 281 (100), 118 (66), 159 (25), 91 (24), 322 (2).

5.3.5 - Preparation of benzamide 27

The valinol derivative $23 \mathrm{a}(0.445 \mathrm{~g}, 1.7 \mathrm{mmol})$ and a 40% solution of MeNH_{2} in $\mathrm{H}_{2} \mathrm{O}$ ($4.0 \mathrm{~mL}, 5.2 \mathrm{mmol}$) were dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$, then a solution of $\mathrm{H}_{5} \mathrm{IO}_{6}(1.40 \mathrm{~g}, 6.0$ mmol) in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added dropwise and the mixture was stirred for 2 h at room temperature. The organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, then the collected ethereal layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to leave the primary amine 26 as a yellow oil. This was dissolved in acetone (5 mL), then $\mathrm{H}_{2} \mathrm{O}$ (5 $\mathrm{mL}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.470 \mathrm{~g}, 3.4 \mathrm{mmol})$ and benzoyl chloride ($296 \mu \mathrm{l}, 2.6 \mathrm{mmol}$) were added while magnetically stirring. After 12 h most of the solvent was evaporated at reduced pressure, and the organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The collected ethereal layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to leave a white solid, which was crystallized from acetone to give pure 27 ($88 \%, 420 \mathrm{mg}, 1.7 \mathrm{mmol}$).

(27): White crystals (from pentane: $\mathrm{Et}_{2} \mathrm{O}, 9: 1$); m.p. $=(88.3-88.9){ }^{\circ} \mathrm{C}$; $[\alpha]_{0}^{20}-23.2$ (c 0.9, CHCl_{3}): IR (KBr): $v=3287,3076,3040,2939,1662,1631,1578,1528,1477,1306,1076,719$, 697: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.72-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.54(\mathrm{~m}, 3 \mathrm{H}), 6.67(\mathrm{dd}, \mathrm{J}=1.7$ $\mathrm{Hz}, \mathcal{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dq}, \mathcal{J}=1.8 \mathrm{~Hz}, \mathcal{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{ddd}, \mathcal{J}=0.6 \mathrm{~Hz}, \mathcal{J}=1.7 \mathrm{~Hz}$, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=2.7 \mathrm{~Hz}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, \mathcal{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.94(\mathrm{~m}$,
$1 \mathrm{H}), 5.52(\mathrm{dd}, \mathcal{J}=7.1 \mathrm{~Hz}, \mathcal{J}=8.5 \mathrm{~Hz}, \mathcal{J}=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{q}, \mathcal{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dq}, \mathcal{J}=$ $1.5 \mathrm{~Hz}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{ddd}, J=1.0 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(m, 2 \mathrm{H})$, 1.74 (dd, $J=1.8 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.3,39.0,45.3,106.6$, 107.5, 118.0, 121.1, 122.2, 125.5, 126.8, 128.5, 131.4, 132.3, 134.2, 134.4, 166.2; GC-MS (EI): $m / z=105$ (100), 239 (77), 77 (44), 118 (14), 159 (12), 136 (9), 280 (2).

5.3.6 - Preparation of NBoc derivate 28

The phenylglycinol derivative 23b ($0.500 \mathrm{~g}, 1.7 \mathrm{mmol}$) and a 40% solution of MeNH_{2} in $\mathrm{H}_{2} \mathrm{O}(2.2 \mathrm{~mL}, 5.8 \mathrm{mmol})$ were dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$, then a solution of $\mathrm{H}_{5} \mathrm{IO}_{6}(1.35 \mathrm{~g}$, 5.7 mmol) in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added dropwise and the mixture was stirred for 2 h at room temperature. The organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, then the collected ethereal layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to leave the primary amine 26 as a yellow oil. This was dissolved in THF (5 mL), then a saturated solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and $\mathrm{Boc}_{2} \mathrm{O}(744 \mathrm{mg}, 3.4 \mathrm{mmol})$ were added while magnetically stirring. After $2 \mathrm{~h} \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added, and the organic materials were extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The collected ethereal layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to leave a white solid, which was crystallized from acetone to give pure 414 mg of 28 (1.5 $\mathrm{mmol}, 91 \%$).

(28):White crystals (from pentane); m.p. $=(46.8-47.5){ }^{\circ} \mathrm{C} ;[\alpha]_{0}^{20}-11.5\left(c 0.7, \mathrm{CHCl}_{3}\right)$; IR $(\mathrm{KBr}): v=3361,2979,2922,2848,1681,1528,1474,1385,1261,1175,1045,1023,712 ;$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.67(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~d}, \mathcal{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{t}, \mathrm{J}=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.09(\mathrm{~s}, 1 \mathrm{H}), 5.77(\mathrm{~m}, 1 \mathrm{H}), 5.53(\mathrm{q}, \mathcal{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, \mathcal{J}=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, \mathrm{~J}=$ $10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{bs}, 1 \mathrm{H}), 4.63(\mathrm{bs}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9$ H): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.4,28.3,39.4,46.4,79.1,106.0,107.3,117.5,120.9,121.7$, 125.6, 132.9, 134.3, 154.8; GC-MS (EI): m/z = 179 (100), 235 (28), 135 (26), 118 (25), 57 (24), 158 (21), 276 (2).

5.3.7 - General protocol for the ring-closing metathesis reactions

The oxazolidinone 29b ($1.29 \mathrm{~g}, 4.4 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The solution was de-aerated by bubbling a stream of Ar through it, the Grubbs catalyst II ($0.044 \mathrm{~g}, 0.01 \mathrm{mmol}$) was added, the solution was again de-aerated and heated to reflux. The progress of the reaction was monitored by TLC analysis and the disappearance of the starting material was observed within 4 h . The solvent was removed at reduced pressure to leave the crude product. Flash column chromatography $\left(\mathrm{SiO}_{2}\right)$ eluting with cyclohexane/ethyl acetate 9:1 mixtures gave the product 30 b ($96 \%, 1.182 \mathrm{~g}, 4.2 \mathrm{mmol}$).

(30a): White solid (from pentane: $\mathrm{Et}_{2} \mathrm{O}, 7: 3$); $95 \%(0.795 \mathrm{~g}, 3.23 \mathrm{mmol}$) from 3.4 mmol $(0.979 \mathrm{~g})$ of $8 \mathrm{a} ;$ m.p. $=(65.4-66.9)^{\circ} \mathrm{C} ;[\alpha]_{D^{20}}+68.3\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}): v=3448,2966$, $2874,1732,1658,1482,1298,1229,1079,1047,732 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.78(\mathrm{~m}$, $1 \mathrm{H}), 6.66(\mathrm{dd}, \mathcal{J}=1.5 \mathrm{~Hz}, \mathcal{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{t}, \mathcal{J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{dd}, \mathcal{J}$ $=4.7 \mathrm{~Hz}, \mathcal{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{ddd}, \mathcal{J}=3.6 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, \mathcal{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, \mathcal{J}=6.9$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.44(\mathrm{dt}, \mathcal{J}=3.3 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.73$ (dddd, $J=2.5 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, J=7.7$ $\mathrm{Hz}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.58 (ddt, $J=1.4 \mathrm{~Hz}, J=4.7 \mathrm{~Hz}, \mathcal{J}=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.87$ (dsept, $J=3.3$ $\mathrm{Hz} J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~d}, \mathcal{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=14.0,18.1,27.3,29.3,46.7,58.1,62.9,108.0,108.5,108.9,118.7,123.8,125.1$, 158.7; GC-MS (EI): $m / z=117$ (100), 86 (16), 132 (12), 158 (6), 245 (2).

(30b):White crystals (from pentane: $E t_{2} O, 9: 1$); m.p. $=(97.9-98.5){ }^{\circ} C_{;}[\alpha]_{0}^{20}+165.1(c 1.3$, CHCl_{3}); $\mathrm{IR}(\mathrm{KBr}): v=3097,2949,2909,1736,1655,1492,1416,1358,1216,1076,1039,888$, 772, 722, 701; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.29-7.36(\mathrm{~m}, 3 \mathrm{H}), 8.07-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.52(\dagger$, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~m}, 3 \mathrm{H}), 5.41(\mathrm{dd}, \mathcal{J}=4.4 \mathrm{~Hz}, \mathcal{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{ddd}, \mathcal{J}=3.3 \mathrm{~Hz}, \mathcal{J}$ $=5.2 \mathrm{~Hz}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, \mathcal{J}=6.8 \mathrm{~Hz}, \mathcal{J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, \mathcal{J}=4.6 \mathrm{~Hz}, J=9.1$
$\mathrm{Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=4.6 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dddd}, J=2.7 \mathrm{~Hz}, J=6.1 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}$, $J=17.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.30 (dddd, $J=1.2 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=27.0,46.8,58.2,70.6,107.6,108.4,108.5,118.5,123.3,124.1,127.1$, $128.3,128.4,139.8,158.5 ; G C-M S(E I): m / z=117$ (100), 118 (26), 104 (21), 132 (16), 176 (7), 280 (2).

(31): White crystals (from pentane: $\mathrm{Et}_{2} \mathrm{O}, 9: 1$); m.p. $=(145.8-146.9){ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+53.4$ (c 0.8, CHCl_{3}); IR (KBr): $v=3283,3066,2923,1632,1538,1478,1306,1285,1079,728,869 ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl $)_{3}$) $\delta=7.73-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.53(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{dt}, \mathrm{J}=1.7 \mathrm{~Hz}, \mathrm{~J}=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=1.8 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~m}, 2 \mathrm{H})$, $5.51(q, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{dddd}, J=2.6 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, J=6.2 \mathrm{~Hz}, J=17.1$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.50 (dddd, $J=1.4 \mathrm{~Hz}, J=4.9 \mathrm{~Hz}, J=6.2 \mathrm{~Hz}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.C D C l_{3}\right): \delta=28.3,42.9,106.8,107.9,108.6,118.8,125.6,126.9,127.1,128.5,131.5,134.3$, 166.4; GC-MS (EI): $m / z=117$ (100), 77 (32), 105 (29), 90 (13), 237 (4), 238 (2).

(32): White crystals (from pentane); m.p. $=(91.7-92.3){ }^{\circ} \mathrm{C} ;[\alpha]_{D}{ }^{20}-15.8\left(c 0.6, \mathrm{CHCl}_{3}\right) ;$ IR $(\mathrm{KBr}): v=332,2977,2621,1680,1531,1481,1365,1253,1156,1049,716 ;{ }^{1} \mathrm{H} \operatorname{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.75(\mathrm{~d} \dagger, J=1.6 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\dagger, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~m}, 2 \mathrm{H})$, $5.29(\mathrm{dd}, J=4.3 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{bs}, 1 \mathrm{H}), 2.60(\mathrm{dt}, \mathrm{J}=4.2 \mathrm{~Hz}, J=$ $16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dt}, J=4.9 \mathrm{~Hz}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}) 1.46(\mathrm{~s}, 9 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=28.3,28.6,43.7,79.4,106.3,107.7,108.4,118.5,125.5,127.9,154.9 ; G C-M S(E I): m / z=$ 117 (100), 177 (16), 133 (15), 57 (12), 90 (10), 159 (69), 234 (4); MS (ES): $m / z=257.1[M+$ $\mathrm{Na}]^{+}$.

5.3.8 - General protocol for hydrogenation reactions

To a solution of $30 \mathrm{a}(0.500 \mathrm{~g}, 2.0 \mathrm{mmol})$ in anhydrous (20 mL) was added 5% rhodium on alumina $(10 \%, 0.050 \mathrm{~g})$ and the mixture was strirres under hydrogen atmosphere. The progress of the reaction was monitored by GC-MS analysis and the disappearance of the starting material was observed within 24 h . The solid was filtered off through a pad of Celite and the organic phase was concentrated at reduced pressure. Flash column chromatography $\left(\mathrm{SiO}_{2}\right)$ eluting with ethyl acetate/methanol/30\% $\mathrm{NH}_{4} \mathrm{OH}$ 9:1:0.1 mixtures gave the product 33 .

(33a):White Oil; $96 \%(0.094 \mathrm{~g}, 0.38 \mathrm{mmol})$ from $0.40 \mathrm{mmol}(0.100 \mathrm{~g})$ of 30°; IR (Neat): $v=$ 2960, 2875, 1741, 1414, 1225, 1052, 716; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.57$ (ddd, $J=0.6$ $\mathrm{Hz}, \mathcal{J}=1.7 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{dd}, \mathcal{J}=2.7 \mathrm{~Hz}, \mathcal{J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{dt}, \mathcal{J}=1.4 \mathrm{~Hz}, \mathcal{J}$ $=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, \mathcal{J}=5.9 \mathrm{~Hz}, \mathcal{J}=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, \mathcal{J}=8.9 \mathrm{~Hz}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.12(\mathrm{dd}, \mathcal{J}=4.3 \mathrm{~Hz}, \mathcal{J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.99(\mathrm{~m}, 3 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H}), 1.76-$ $1.98(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$: ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=13.8,18.1,22.6,27.7,29.4,44.9,50.1,57.5,62.7,105.3,107.8,119.9,126.1,158.7$; GC-MS (EI): $m / z=120$ (100), 177 (98), 178 (79), 118 (68), 248 (54), 133 (22); MS (ES): $m / z=249.2$ $[\mathrm{M}+\mathrm{H}]^{+}, 519.2[\mathrm{M}+\mathrm{Na}]^{+}$.

(33b): White solid (from $\mathrm{Et}_{2} \mathrm{O}:$ Pentane, 1:1); 97% ($0.098 \mathrm{~g}, 0.35 \mathrm{mmol}$) from 0.36 mmol $(0.100 \mathrm{~g})$ of 30b; $[\alpha]_{0}^{20}+34.1\left(c 2.0, \mathrm{CHCl}_{3}\right)$; IR $(\mathrm{KBr}): v=3093,2965,2921,1746,1407$, 1364, 1229, 1069, 1048, 768, 715; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.33-7.39$ (m, 3 H), 7.07$7.11(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{dd}, \mathcal{J}=1.7 \mathrm{~Hz}, \mathcal{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, \mathcal{J}=2.8 \mathrm{~Hz}, \mathcal{J}=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.07(\mathrm{dt}, \mathcal{J}=1.5 \mathrm{~Hz}, \mathcal{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dd}, \mathcal{J}=6.1 \mathrm{~Hz}, \mathcal{J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dd}, \mathcal{J}=5.6$ $\mathrm{Hz}, \mathcal{J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, \mathcal{J}=5.6 \mathrm{~Hz}, \mathcal{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dt}$,
$J=4.5 \mathrm{~Hz}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{ddd}, J=4.7 \mathrm{~Hz}, J=9.9 \mathrm{~Hz}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.93$ $(\mathrm{m}, 1 \mathrm{H}), 1.53-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.29(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.7,27.1,44.6$, $49.7,57.1,70.1,106.1,108.0,119.8,125.6,127.3,128.7,128.8,140.2,158.5 ; G C-M S$ (EI): m / z $=178$ (100), 118 (35), 282 (34), 104 (33), 120 (33), 91 (18), 163 (11), 207 (10).

(S,S-34): White crystals (from $\mathrm{E}_{2} \mathrm{O}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, 10: 1$); m.p. $=(114.5-115.3){ }^{\circ} \mathrm{C}$; IR (Neat): $v=$ 2928, 2782, 1741, 1415, 1220, 1100, 1040; ; ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl $)_{3}$: $\delta=4.32(\mathrm{dt}, \mathrm{J}=2.7$ $\mathrm{Hz}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.07$ $(\mathrm{dt}, J=3.7 \mathrm{~Hz}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{ddd}, J=4.7 \mathrm{~Hz}, J=5.7 \mathrm{~Hz}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-2.14$ $8 \mathrm{~m}, 5 \mathrm{H}), 1.63-1.82(\mathrm{~m}, 6 \mathrm{H}), 1.39(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.8,18.4,20.6,22.5,25.7,26.9,30.5,49.9,52.8,5438,59.8$, 63.1, 67.6, 159.8; GC-MS (EI): $m / z=123$ (100), 96 (20), 83 (16), 69 (10), 55 (8), 251 (1); MS (ES): $m / z=253.1[M+H]^{+}$.

(R, R - 34): White crystals (from $\mathrm{Et}_{2} \mathrm{O}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, 10: 1$); $[\alpha]_{D}{ }^{20}+35.4\left(c 1.1, \mathrm{CHCl}_{3}\right.$); IR ($\mathrm{KBr):} v=$ 2947, 2784, 1732, 1416, 1218, 1038, 973, 778; ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.8,18.7,20.7$, $23.1,24.8,29.7,28.4,51.8,51.9,54.7,59.1,59.8,63.1,65.9,159.5 ; G C-M S$ (EI): $m / z=123$ (100), 96 (25), 122 (20), 97 (20), 83 (15), 69 (11), 55 (9); MS (ES): $m / z=253.1[M+H]^{+}$.

(S,R-34): White crystals (from $E t_{2} \mathrm{O}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, 10: 1$); m.p. $=(89.6-90.9){ }^{\circ} \mathrm{C} ;[\alpha]_{D}{ }^{20}+9.4(c 1.9$, $\left.\mathrm{CHCl}_{3}\right) ;$ IR $(\mathrm{KBr}): v=3440,2936,2785,1728,1428,1253,1117,1064,771,714 ;{ }^{1} \mathrm{H}$ NMR $(300$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.15(\dagger, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=5.2 \mathrm{~Hz}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (ddd, $J=$ $3.2 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-3.19(\mathrm{~m}, 3 \mathrm{H}), 2.56(q, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(q, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-2.12(\mathrm{~m}, 5 \mathrm{H}), 1.48-1.83(\mathrm{~m}, 5 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}$): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.8,18.2,20.4,24.7,27.9,28.6,28.7,29.7,51.8$, 54.1, 59.9, 62.6, 64.8, 157.9; GC-MS (EI): $m / z=123$ (100), 122 (70), 96 (44), 97 (35), 83 (26), 69 (24), 55 (18); MS (ES): $m / z=253.1[M+H]^{+}$.

($R, R-39$): White solid (from $\mathrm{Et}_{2} \mathrm{O}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, 8: 2$); IR (KBr): $v=3452,2923,2854,2783,1735$, $1415,1209,1102,1033,803 ; G C-M S(E I): m / z=123$ (100), 96 (16), 124 (15), 55 (12), 83 (11), 209 (3), 291 (2).

(S,S-37): White solid; IR (KBr): $v=3449,2932,2853,2785,1732,1420,1248,1035,766$, 710; GC-MS (EI): $m / z=123$ (100), 96 (17), 97 (14), 55 (13), 83 (12), 209 (4),291 (2).

(S,R-37): White crystals (from $\mathrm{E}_{2} \mathrm{O}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, 8: 2$); m.p. $=(117.8-118.5)^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+77.6(c 0.6$, $\left.\mathrm{CHCl}_{3}\right) ;$ IR (KBr): $v=2929,2852,2789,1730,1425,1250,1058,768,710 ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.C D C l_{3}\right): \delta=4.14(d, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{ddd}, J=2.9 \mathrm{~Hz}, J=5.7$ $\mathrm{Hz}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-3.18(\mathrm{~m}, 3 \mathrm{H}), 2.56(\mathrm{dt}, J=6.1 \mathrm{~Hz}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(q, J=$ 9.1 Hz, 1 H), 1.90-2.07 (m, 6 H), 1.57-1.86 (m, 7 H), 1.42-1.52 (m, 3 H), 1.09-1.32 (m, 2 H), 0.85-1.04 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta=20.5,24.3,25.1,25.5,26.3,28.2,28.8$,
28.9, 39.3, 51.9, 54.3, 57.5, 59.7, 63.4, 64.6, 157.9; GC-MS (EI): $m / z=123$ (100), 96 (13), 55 (10), 83 (9)209 (2), 291 (2).

The e.e. of 38 was determined by chiral GC (Megadex Chiral column (25 m , flow rate: $15 \mathrm{~mL} / \mathrm{min}$, isotherm $150^{\circ} \mathrm{C}$ for 2 min . then $2^{\circ} \mathrm{C} / \mathrm{min}$. to $220^{\circ} \mathrm{C}$, FID detection); retention times: S,R-38 $21.2 \mathrm{~min}, S, S-3828.2 \mathrm{~min}$ (major enantiomer), 28.6 min (minor enantiomer).

(S,R-38): White crystals (from $\mathrm{Et}_{2} \mathrm{O}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, 9: 1$); m.p. $=(126.7-127.8){ }^{\circ} \mathrm{C} ;[\alpha]_{0}{ }^{20}+20.9(c 1.9$, $C H C l_{3}$); IR (KBr): $v=3464,3297,2927,2852,2785,2745,1638,1528,1449,1340,1262$, 1123, 1099: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.09(\mathrm{~d}, ~ J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ (ddd, $J=2.7 \mathrm{~Hz}, J=$ $5.7 \mathrm{~Hz}, \mathcal{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~m}, 1 \mathrm{H}), 1.92-2.12(\mathrm{~m}, 4 \mathrm{H}), 1.76-1.86(\mathrm{~m}, 5 \mathrm{H})$, 1.61-1.70 (m, 5 H), 1.38-1.53 (m, 3 H), 1.17-1.31 (m, 5 H), 1.18-1.32 (m, 2 H): ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.C D C I_{3}\right): \delta=20.6,20.9,25.6,25.7,29.5,29.8,29.9,44.7,45.7,53.1,24.5,65.8,175.8 ; G C-M S$ (EI): $m / z=123$ (100), 55 (16), 70 (14), 83 (9), 108 (8), 249 (4).

(S,S-38): White crystals (from $\mathrm{Et}_{2} \mathrm{O}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, 9: 1$); m.p. $=(197.9-198.7){ }^{\circ} \mathrm{C} ;[\alpha]_{0}^{20}+22.1$ (c2.0, CHCl_{3}); IR (KBr): $v=3460,3077,2828,2853,2790,2722,1638,1550,1445,1331,1260$, 1113, 1095, 1022, 802, 702; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.30(\mathrm{~d}, \mathcal{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (ddd, $J=4.2 \mathrm{~Hz}, \mathcal{J}=8.9 \mathrm{~Hz}, \mathcal{J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{td}, \mathcal{J}=1.6 \mathrm{~Hz}, \mathcal{J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dt}$, $J=2.7 \mathrm{~Hz}, \mathcal{J}=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(q, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-2.02(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.83(\mathrm{~m}, 5 \mathrm{H})$, 1.59-1.71 (m, 4 H), 1.37-1.48 (m, 2 H), 1.17-1.31 (m, 5 H), 0.97-1.10 (m, 1 H$)$) ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.C D C I_{3}\right): \delta=20.3,24.5,25.6,25.7,25.8,28.3,29.5,29.9,31.8,45.7,50.9,51.8,54.3,69.2$, 175.4; GC-MS (EI): $m / z=123$ (100), 55 (11), 70 (10), 96 (9), 249 (2).

The e.e. of 39 was determined by chiral GC (Megadex Chiral column (25 m , flow rate: $15 \mathrm{~mL} / \mathrm{min}$, isotherm $100{ }^{\circ} \mathrm{C}$ for 2 min . then $5^{\circ} \mathrm{C} / \mathrm{min}$. to $220^{\circ} \mathrm{C}$, FID detection); retention times: S, R-39 $15.8 \mathrm{~min}, ~ S, S-3917.6 \mathrm{~min}$ (major enantiomer), 18.3 min (minor enantiomer).

(S,R-39): White crystals (from $\mathrm{Et}_{2} \mathrm{O}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, 9: 1$); $[\alpha]_{0}{ }^{20}-14.3\left(c 0.4, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.19(\mathrm{~d}, \mathcal{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dq}, \mathcal{J}=3.1 \mathrm{~Hz}, \mathcal{J}=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.95-3.01 (m , $2 H$), 1.97-2.03 ($\mathrm{m}, 1 \mathrm{H}$), 1.86-1.95 (m, 2 H), 1.62-1.69 ($\mathrm{m}, 4 \mathrm{H}$), 1.50-1.57 (m, 2 H), 1.44 ($\mathrm{s}, 9$ H), 1.33-1.39 ($\mathrm{m}, 1 \mathrm{H}$): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.6,20.8,25.6,28.4,29.9,46.5,53.2$, $54.5,66.1,78.7,155.9 ; G C-M S(E I): m / z=123$ (100), 83 (31), 96 (21), 111 (17), 70 (14), 59 (12), 167 (11), 183 (6).

(S,S-39): White crystals (from $\mathrm{Et}_{2} \mathrm{O}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 9:1); m.p. $=(105.4-106.1){ }^{\circ} \mathrm{C} ;[\alpha]_{0}{ }^{20}-5.4(c 0.4$, CHCl_{3}); IR (KBr): $v=3359,2972,2905,2785,2723,1684,1529,1447,1309,1245,1172$, 1053, 994, 636; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.35$ (bs, 1 H), 3.38 (bs, 1 H), $3.08(\mathrm{t}, \mathrm{J}=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.02(\mathrm{dt}, J=3.0 \mathrm{~Hz}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(q, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-2.07(\mathrm{~m}, 1 \mathrm{H})$, 1.87-1.96 (m, $2 H$ H), 1.76-1.82 ($\mathrm{m}, 1 \mathrm{H}$), 1.58-1.73 ($\mathrm{m}, 5 \mathrm{H}$), 1.44 ($\mathrm{s}, 9 \mathrm{H}), 0.95-1.08(\mathrm{~m}, 1 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.4,24.7,28.4,28.5,32.2,51.9,52.7,54.3,69.5,79.0,155.3 ; G C-$ MS (EI): $m / z=123$ (100), 83 (34), 97 (21), 96 (18), 70 (16), 69 (13), 57 (11), 167 (8), 183 (6).

5.4 - References

${ }^{1}$ (a) Howard, A.S., Michael, J. P. The Alkaloids 1986, 28, 183. (b) Michael, J. P. Nat. Prod. Rep. 1990, 7, 485. (c) Pinder, A. R. Nat. Prod. Rep. 1992, 9, 17. (d) Michael, J. P. Nat. Prod.

Rep. 1994, 11, 17 (e)Robins, D. J. The Alkaloids, Cordell, G. A., Ed.; Academic Press: New York, 1995; Vol. 46, Chapter 1, pp 1. (d) Robins, D. J. Nat. Prod. Rep. 1995, 12, 413.
(a) Christine, C.; Ikhiri, K.; Ahond, A.; Mourabit, A. A.; Poupat, C.; Potier, P. Tetrahedron 2000, 56, 1837-1850. (b) Gensini, M.; de Meijere, A. Chem. Eur. J. 2004, 10, 785.
${ }^{3}$ Ikhiri, K.; Ahond, A.; Poupat, C.; Potier, P.; Pusset, J.; Sèvenet, T. J. Nat. Prod. 1987, 50, 626.
${ }^{4}$ Neuner-Jehle, N.; Nesvadba, H.; Spiteller, G. Monats. Chem. 1965, 96, 321.
${ }^{5}$ J. Med. Chem. 1992, 35, 1486.
6 (a) Danishefsky S. J., Schkeryantz J. M., Synlett 1995, 475; (b) Nakatsubo F., Fukuyama T., Cocuzza A. J., Kishi Y., J. Am. Chem. Soc. 1977, 99, 8115; (c) Fukuyama T., Nakatsubo F., Cocuzza A. J., Kishi Y., Tetrahedron Lett. 1977, 4295.
${ }^{7}$ Chan, C.; Cocker, J. D.; Davies, H. G.; Gore, A.; Green, R. H. Bioorg. Med. Chem. Lett. 1996, 6,161 .

8 Tsarouhtsis, D; Kuchimanchi, S.; DeCorte, B.L.; Harris, C. M.; Harris T. M. J. Am. Chem. Soc. 1995, 117, 11013.

9 (a) Gómez-Monterrey, I.; Domínguez, M. J.; González-Muñiz, R., Harto, J. R.; García-López, M. T. Tetrahedron Lett. 1991, 32, 1089. (b) González-Muñiz, Domínguez, M. J.; García-López, M. T. Tetrahedron 1992, 48, 5191. (c) Domínguez, M. J.; García-López , M. T.; Herranz, R.; Martín-Martínez, M.; González-Muñiz, R. J. Chem. Soc., Perkin Trans. 1 1995, 2839.

10 Jefford, C. W. Current Organic Chemistry 2000, 4, 205.
11 Amos R. I. J., Gourlay B. S., Molesworth P. P., Smith J. A., Sprod O. R. Tetrahedron 2005, 61, 8226.
${ }^{12}$ Corvo M. C., Pereira M. M. Tetrahedron Lett. 2002, 43, 455.
13 Jefford C. W., Wang J. B. Tetrahedron Lett. 1993, 34, 3119.
14 (a) Laschat, S.; Grehl, M. Angew. Chem. Int. Ed. Engl. 1994, 33, 458. (b) Laschat, M.;

Grehl, M. Chem. Ber. 1994, 127, 2023. (c) Laschat, S. Liebigs. Ann./Recueil 1997, 1.

Pirrolizidine, indolizidine and quinolizidine derivatives have been prepared exploiting the RCM of dienes and enynes: (a) Voigtmann, U.; Blechert, S. Synthesis 2000, 893. (b) Buschmann, N,; Rückert, A.; Blechert, S. J. Org. Chem. 2002, 67, 4325. (c) Blechert, S.; Stapper, C. J. Org. Chem. 2002, 67, 6456. (d) Blechert, S.: Stapper, C. Eur. J. Org. Chem. 2002, 2855. (e) Arjona, O.; Csák̈y, A. G.; León, V.; Medel, R.; Plumet, J. Tetrahedron Lett. 2003, 45, 565. (e) Wakamatsu, H.; Sato, Y.; Fujita, R.; Mori, M. Adv. Synth. Catal. 2007, 349, 1231. (b) Cardona, F.; Goti, A.; Brandi, A. Eur. J. Org. Chem. 2007, 1551; and references cited therein.

Alvaro, G.; Di Fabio, R.; Gualandi, A.; Savoia, D. Eur. J. Org. Chem. 2007, 5573.
17 No traces of optical diastereomers were detected for compounds $23 a, b$ and the compounds derived from them to be used in subsequent steps. Only for oxazolidinone 30b we observed the presence of an isomer ($2 \mathrm{~mol} \%$), presumably the diatereomer, by GC-MS analysis.
${ }^{18}$ (a) Broggini, G.; La Rosa, C.; Pilati, T.; Terraneo, A.; Zecchi, G. Tetrahedron 2001, 57, 8323. (b) Jeannotte, G.; Lubell, W. D. J. Org. Chem. 2004, 69, 4656.

Chapter Index

Chap. 5 - Asymmetric Synthesis of 8-Aminoindolizidine from Chiral 2-Pyrroleimines 153
5.1 - Introduction 153
5.2 - Results and discussion 157
5.2.1 - Addition of organometallic reagents to chiral pyrrole imines derived from 1(S)- valinol and (S)-phenylglycinol 157
5.2.2 - Protection of amino function and RCM reaction. 159
5.2.3 - Hydrogenation of the pyrrole ring 162
5.3 - Experimental section 168
5.3.1 - Preparation of Aldehyde 20 169
5.3.2 - General protocol for the preparation of imines 21a and 21b 169
5.3.3 - General protocol for the preparation of β-Aminoalcohols $23 a, b$ 170
5.3.4 - General protocol for the preparation of Oxazolidinones 24a,b 172
5.3.5 - Preparation of benzamide 27 173
5.3.6 - Preparation of NBoc derivate 28 174
5.3.7 - General protocol for the ring-closing metathesis reactions 175
5.3.8 - General protocol for hydrogenation reactions 177
5.4 - References 181
Chapter Index. 184

Acknowledgements

First, I would like to dedicate this thesis to my wife Silvia for her love, her patience, and understanding during these many long days. Moreover I thank her for allowed me to spend most of the time on this thesis.

I am most grateful to my supervisor Prof. Savoia. I could not have imagined having a better advisor and mentor for my PhD, with his enthusiasm, his inspiration, and his great efforts to explain things clearly and simply, he helped me to make a 'good chemistry'. In particularly in these last months he subjected my text to rigorous scrutiny and much improved its quality.

I also thank GlaxoSmithKline Verona for the financial support in these years of PhD.

I would like to thank all my Wednesday's beer friends: Alessandra, Claudio, Elisa, Filippo Massimo, Montse.

Thanks are due also to all to my colleagues at Chemistry Department "G. Ciamician" for a huge variety of reasons, and in particularly Claudio, that in the first two years of the PhD helped me with stimulating discussion of chemistry and none.

Finally, I have to say 'thank-you' to my family, particularly my Mum and Dad.

[^0]: [a] Determined by ${ }^{1}$ HNMR analysis of the crude product. [b] Yield of product isolated by column chromatography (SiO_{2}). [c] The product was not isolated. [d] The reaction was incomplete (about 60% conversion of 1 c). [e] A complex mixture of products was observed, only $23 i$ and 23 a were isolated by column chromatography $\left(\mathrm{SiO}_{2}\right)$.

