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Summaries in French, English and
Italian

Résumé en français

L’allostérie est un phénomène d’importance fondamentale en biologie qui permet la régulation de la fonction et
l’adaptabilité dynamique des enzymes et protéines. Malgré sa découverte il y a plus d’un siècle, l’allostérie reste
une énigme biophysique, parfois appelée ≪ second secret de la vie ≫. La difficulté est principalement associée à
la nature complexe des mécanismes allostériques qui se manifestent comme l’altération de la fonction biologique
d’une protéine/enzyme (c.-à-d. la liaison d’un substrat/ligand au site active) par la liaison d’un ≪ autre objet
≫ (”allos stereos” en grec) a un site distant (plus d’un nanomètre) du site actif, le site effecteur. Ainsi, au
cœur de l’allostérie, il y a une propagation d’un signal du site effecteur au site actif à travers une dense matrice
protéique, où l’un des enjeux principaux est représenté par l’élucidation des interactions physico-chimiques entre
résidus d’acides aminés qui permettent la communication entre les deux sites : les chemins allostériques. Ici,
nous proposons une approche multidisciplinaire basée sur la combination de méthodes de chimie théorique, im-
pliquant des simulations de dynamique moléculaire de mouvements de protéines, des analyses (bio)physiques des
systèmes allostériques, incluant des alignements multiples de séquences de systèmes allostériques connus, et des
outils mathématiques basés sur la théorie des graphes et d’apprentissage automatique qui peuvent grandement
aider à la compréhension de la complexité des interactions dynamiques impliquées dans les différents systèmes
allostériques. Le projet vise à développer des outils rapides et robustes pour identifier des chemins allostériques
inconnus. La caractérisation et les prédictions de points allostériques peut élucider et exploiter pleinement la
modulation allostérique dans les enzymes et dans les complexes ADN-protéine, avec de potentielles grandes
applications dans l’ingénierie des enzymes et dans la découverte de médicaments.

Summary in english

Allostery is a phenomenon of fundamental importance in biology, allowing regulation of function and dynamic
adaptability of enzymes and proteins. Despite the allosteric effect was first observed more than a century
ago allostery remains a biophysical enigma, defined as the “second secret of life”. The challenge is mainly
associated to the rather complex nature of the allosteric mechanisms, which manifests itself as the alteration
of the biological function of a protein/enzyme (e.g. ligand/substrate binding at the active site) by binding
of “other object” (“allos stereos” in Greek) at a site distant (¿ 1 nanometer) from the active site, namely
the effector site. Thus, at the heart of allostery there is signal propagation from the effector to the active
site through a dense protein matrix, with a fundamental challenge being represented by the elucidation of the
physico-chemical interactions between amino acid residues allowing communicatio n between the two binding
sites, i.e. the “allosteric pathways”. Here, we propose a multidisciplinary approach based on a combination of
computational chemistry, involving molecular dynamics simulations of protein motions, (bio)physical analysis of
allosteric systems, including multiple sequence alignments of known allosteric systems, and mathematical tools
based on graph theory and machine learning that can greatly help understanding the complexity of dynamical
interactions involved in the different allosteric systems. The project aims at developing robust and fast tools
to identify unknown allosteric pathways. The characterization and predictions of such allosteric spots could
elucidate and fully exploit the power of allosteric modulation in enzymes and DNA-protein complexes, with
great potential applications in enzyme engineering and drug discovery.
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Riassunto in italiano

L’allosteria è un fenomeno di fondamentale importanza in biologia che permette la regolazione della funzione e
l’adattabilità dinamica di enzimi e proteine. Nonostante la sua scoperta più di un secolo fa, l’allosteria rimane
un enigma biofisico, a volte chiamato ”il secondo segreto della vita”. La difficoltà è principalmente associata
alla natura complessa dei meccanismi allosterici che si manifestano come l’alterazione della funzione biologica
di una proteina/enzima (cioè il legame di un substrato/ligando al sito attivo) attraverso il legame di un ”altro
oggetto” (” allos stereos” in greco) ad un sito distante (più di un nanometro) dal sito attivo, il sito effettore.
Pertanto, al centro dell’allosteria, c’è una propagazione di un segnale dal sito effettore al sito attivo attraverso
una matrice proteica densa, dove una delle sfide principali è rappresentata dalla delucidazione delle interazioni
fisico-chimiche tra i residui di amminoacidi che consentono la comunicazione tra i due siti: le vie allosteriche.
In questo elaborato, viene proposto un approccio multidisciplinare basato sulla combinazione di metodi chimici
teorici, che coinvolgono simulazioni di dinamica molecolare dei movimenti delle proteine, analisi (bio)fisiche di
sistemi allosterici, inclusi allineamenti di sequenze multiple di sistemi allosterici noti e strumenti matematici
basati sulla teoria dei grafi ed apprendimento automatico che può aiutare notevolmente a comprendere la
complessità delle interazioni dinamiche coinvolte nei diversi sistemi allosterici. Il progetto mira a sviluppare
strumenti veloci e robusti per identificare percorsi allosterici sconosciuti. Le caratterizzazioni e le previsioni
dei punti allosterici possono chiarire e sfruttare appieno la modulazione allosterica negli enzimi e nei complessi
DNA-proteina, con potenziali ampie applicazioni nell’ingegneria enzimatica e nella scoperta di farmaci.
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Chapter 1

Introduction

1.1 Motivation

Proteins are some of the most compelling objects of terrestrial life. They fulfill the most diverse functions, and
yet they are all constructed from the same elementary blocks: the 21 amino acids. This complexity and variety
of functions contrast with their apparent simplicity. Alphabetical languages can also express countless ideas
with a small set of letters, which is why it is tempting to consider proteins as the language of life. Understanding
proteins is a crucial step in understanding many aspects of life, and much effort has been devoted to it. Proteins
vary according to the sequence in which amino acids are ordered, and this sequence generally gives them a defined
3D structure that is related to their activity. In less than a millisecond and through a reproducible process, most
proteins fold into a characterized shape in a given environment[1]. However, proteins are dynamical objects and
adapt their shape to external conditions[2]. Even understanding how proteins fold has challenged more than
two generations of scientists and has been referred to as the secret of life[3]. Only in very recent times precise
theoretical predictions of protein folding are possible on the basis of a deep learning algorithm that does not
explain the underlying process[4].

Figure 1.1: Principle of allosteric regulation

For life, it is crucial that proteins do not perform their activity aimlessly. Therefore, evolution has designed,
with billions of years of evolution, regulatory processes that enable proteins to respond to their environment
and modulate their activity according to external conditions. Allosteric regulation, or allostery, is an example
of a regulatory process that is of fundamental importance in biology. It has even been hypothesized that al-
lostery is an inherent property of all dynamic proteins[5]. In allostery, the binding of an effector (generally a
small molecule, but it can be another protein) transmits a signal through the protein matrix, which disturbs
another separate functional site, and then modulates its activity. The word allostery is a neologism formed
from the ancient Greek allos stereos, meaning “other solid (object)” observing the distance between the sites in
opposition to orthosteric : orthós (straight, correct). In practice, this process gives proteins interesting sensor
behaviors, such as being active only in the presence of a molecule (positive allostery) or being able to reduce
their activity in the presence of a molecule (negative allostery). The name allostery and its derivatives are also
sometimes generalized to describe various environmental changes, such as changes in pH and temperature, or
light activation.

Although the first allostery model was proposed more than 55 years ago[6, 7], the phenomenon remains
poorly understood and has been nicknamed the “second secret of life”[8, 9]. A major obstacle in understanding
allostery is that numerous studies have focused on a structural and static vision of the studied systems. Recent
studies have shown that in some cases, allosteric mechanisms involve the less probable conformations of a pro-
tein, so restricting to the study of the most probable one is limited[10]. Dynamical motions of various scales
have been shown to be involved in allostery such as rigid-body (i.e., ternary or quaternary structures) motion[11,
12, 13], conformational dynamics of folded structures[14, 15, 16, 17, 18, 19, 19, 20], local (un)folding[21, 22]
and intrinsic disorder[23, 24, 25, 26]. Another aspect that makes the problem difficult to study is that in most
proteins, the allosteric signal is carried by multiple redundant allosteric pathways[27] and residues that are
critical for allosteric signaling are poorly conserved[28, 29]. Thus, many intuitive ideas to find allosteric path-
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2 CHAPTER 1. INTRODUCTION

ways by experiment are simply wrong because blocking one pathway does not necessarily block all the pathways.

Designing experiments to study the allosteric pathways is hard because of the timescale and the precision
required. Comparing X-ray crystal structures of the reference and perturbed proteins is tempting because it
provides a detailed molecular information of the difference between two states, but allostery is an intrinsically
dynamical process and this method only compares two snapshots of the systems, which is very limited. Mutage-
nesis experiments coupled with protein activity measurement (in the case of an enzyme, steady-state kinetics)
can point to specific residues essential to the allosteric mechanism. However, these experiments usually cannot
explain on their own why a specific residue is important to the mechanism, and predicting which amino acids are
good candidates for mutagenesis is not obvious. NMR methods are another popular tool[30] as their time scale
allows the capture of several states of each system, which makes for a more substantial comparison than single
crystal structures. However, most NMR methods are blind to some amino acids or their signal are extremely
congested and cannot provide molecular insights into the underlying phenomenon. Other experimental tools
exist and are beyond the scope of this thesis, but this shows that allostery is a field where computational tools
and particularly Molecular Dynamics (MD) simulations can provide a precious complementary vision of the
phenomenon with information at the molecular level at the microsecond timescale.

The exponential improvement of technologies currently gives the opportunity to perform classical molecular
dynamics (MD) simulations of systems with a relatively large size and timescale[31, 32, 33, 34, 35]. Analyzing
such long and sizable simulations thus becomes increasingly challenging, and there is a need to develop tools
to facilitate their analysis. Dynamical networks have emerged about 20 years ago to investigate allosteric sig-
naling[36, 37, 38, 39, 40, 41] and very recently machine learning analysis of MD simulations to infer allosteric
pathways has become an increasingly popular tool[42, 43, 44, 45]. In both dynamical networks and machine
learning methods, one of the most important tasks is to select relevant features (sometimes called descriptors)
for analysis.

Among the features studied, contacts have been described as a natural language for allostery[46]. Indeed,
at their heart, the rearrangements that occur in a protein after perturbation are driven by the formation and
disruption of contacts that involve effects similar to those of protein folding[47, 48]. Thus, contacts are some
natural dimension in which we expect a protein to evolve. Contact conditions are sometimes used to infer
allosteric pathways, but only as a filter to select relevant residue pairs. This happens principally in correlation
analysis and, if a contact is considered present for a sufficient portion of the Molecular Dynamics simulation,
the correlation is considered[36, 37, 38].

In static analysis of structures, contact networks, sometimes called Amino Acid Networks (AANs) have
various different definitions. Some focus only on the Cα distance to infer a binary map of contacts[48, 49, 50,
51, 52, 53, 54], on the Cβ [55] (with a cutoff between 7 Å and 8.5Å;) or residue centroid[56], while others infer
the binary map from any heavy-atom contact[57, 51] (with a cut-off below 5 Å ) or any sidechain contact[58].
Mapping with weights gives a richer description of the contact than unweighted networks and despite many
approaches to map with energetic quantities[59, 60], it is possible to merely give a weight of the contact by the
number of amino acid that satisfy the contact condition[61]. This type of weighted contact network analysis has
been successfully used to infer protein dynamics and determine structural robustness to mutations in proteins,
being powerful in understanding how a local change can produce global changes that are associated with reten-
tion or loss of protein functions[62, 63, 64]. A recent study has shown the potential of dynamical network of
inter-residues contacts and was used to reveal the allosteric effects of mutations in the catalytic activity of the
Cyclophilin A enzyme, proving to be potentially able to identify key residues in allosteric signal propagation[65].

Therefore, contact analysis to infer allosteric pathways is a promising emerging field. During this thesis,
another group has also focused their effort into this, developing their own contact methodology to retrieve
allosteric pathways[66, 67, 68]. Current methodologies however do not offer a complete description of the sys-
tem dynamics, as contacts are usually time-averaged or reduced to their frequency. Dealing with contacts as
a dynamical feature presents many challenges. First, on a technical level, computing a detailed view of the
contacts is resource intensive, and storing all possible contacts can take a large amount of memory. Moreover,
the total number of contacts is intrinsically fluctuating, and dealing with a variable number of features pos-
sesses its own challenges. This is why many contact-based approaches overly simplify the problem, and there
is clearly a gap in methodology to adequately study the dynamical evolution of contacts during MD simulations.

In first, we developed a methodology to investigate the dynamical evolution of contacts, primarily to study
allostery put in the scope of comparing sets of MD simulations. This approach can be generalized to compare
all sorts of MD simulation with a reference simulation and a perturbed simulation, notably to compare MD
simulations of mutants. Moreover, the latest developments of the methodology which manages takes into
account the dynamics within a single simulation opens the door to studying contact changes happening in
a single simulation. In particular, one application proved its strength to assess if an MD simulation has



1.2. IMIDAZOLE GLYCEROL PHOSPHATE SYNTHASE 3

converged (i.e., is near the equilibrium) and can show the degrees of relaxation from the non-equilibrated input
structure to the equilibrated structure. In general, many more applications of this methodology are possible,
despite being outside the scope of this thesis. Among potential applications of this methodology, are general
conformational change analysis in other types of MD simulation (biased, targeted), analysis of protein-protein
binding/unbinding events and protein folding analysis.

1.2 Imidazole Glycerol Phosphate Synthase

Our main proteic target is Imidazole Glycerol Phosphate synthase (IGPS) from the bacteria, T. maritima which
is an archetypical allosteric enzyme. The history of the discovery of the IGPS is a very interesting example
of how a scientific model has evolved over time. During the 1950s to 1960s, the majority of steps in histidine
biosynthesis were gradually elucidated, and most metabolic intermediates and enzymes catalyzing the corre-
sponding reactions were discovered in S. typhimurium[69, 70, 71, 72, 73, 74]. Originally, the steps encoded by
the hisF and hisH genes were thought to be carried out consecutively by two separate enzymes, but the precise
order of these reactions was still unknown[72]. Furthermore, this model did not provide an explanation for the
link between histidine synthesis and de novo purine synthesis[75, 76]. In 1992, it was actually discovered in E.
coli that the hisF and hisH genes encoded two proteins bound in a stable 1:1 dimeric complex: IGPS. This
last piece of the histidine biosynthesis puzzle[77] revealed that IGPS is present at the fifth step of histidine
biosynthesis. In fact, it was later found that in plants and fungi, the hisH and hisF genes actually fuse into a
single gene called his7, leading to the formation of IGPS with a single chain[78].

IGPS is a GlutamineAmidoTransferase (GATase), that is, an enzyme that catalyzes the hydrolysis of glu-

Figure 1.2: T. maritima IGPS 3D structure with glutamine bound in HisH and PRFAR bound in HisF (ternary
complex) with reactions occurring at each active site. In this case, the effector site for reaction occurring in
HisH is also the active site of HisF. The ammonia tunnel is represented by a dotted cylinder.

tamine to produce ammonia for another reaction. In T. maritima it is composed of two subunits: HisH which
catalyzes glutamine hydrolysis into glutamate and ammonia and a cyclase HisF where the effector PRFAR, (N’-
[(5’-phosphoribulosyl)formimino]-5-amino-imidazole-4-carboxamide-ribonucleotide) binds (see Figure 1.2. The
nascent ammonia passes through a tunnel shielding it from water protonation and then approaches PRFAR
near the effector site. Then, a cyclization occurs that releases ImidazoleGlycerol Phosphate (IGP, which gives
its name to the enzyme), a precursor to histidine and 5’-(5-aminoimidazole-4-carboxamide) (AlCAR), later
converted to Inosine MonoPhosphate (IMP), a precursor to adenine and guanine, the two purine nucleotides,
finally explaining the link between histidine biosynthesis and the de novo purine synthesis pathways.

In their original work, Klem and Davisson note that in E. coli, the glutaminase efficiency by 39-fold[79]
in presence of IGP. A similar effect is observed with a PRFAR precursor: N-[(5’-phosphoribosyl)formimino]-
5-aminoimidazole-4-carboxamide ribonucleotide (5’-ProFAR). This suggested that PRFAR and analogs are al-
losteric effectors of the glutaminase. The same effect is observed in IGPS from S. cerevisiae [80] and in this
organism, and a comparison between many potential effectors showed that PRFAR is, in fact, the best effector
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and increases the catalytic efficiency of glutaminase 4900 times[81]. This shows that IGPS is an allosteric enzyme
that responds to PRFAR binding to trigger the ammonia transfer event and prevent the waste of glutamine.
Furthermore, the increase in catalytic efficiency is primarily driven by an increase in catalytic activity and not
an increase in substrate affinity, making IGPS a so-called V-type allosteric enzyme.

Figure 1.3: Glutaminase mechanism in IGPS from T. maritima. The mechanistic details of the reactions leading
to the formation of the oxyanion intermediates are tentative, and the mechanism could be either concerted or
sequential.

IGPS is a Class I GATase, which means that the glutaminase active site is composed of a conserved catalytic
triad consisting of a cysteine (nucleophile), a histidine (base), and a glutamate (acid). In T. maritima these
residues are hC84, hH178 and hE180 (the h or f prefix means that the residue is found in hisF or hisH,
respectively). In Figure 1.3 the mechanism of the active site of glutaminase is represented. Although thoroughly
studied, some details of the mechanism remain unclear, particularly in the two reactions leading to the formation
of an oxyanion intermediate it is not clear if the protonation step of hH178 by the nucleophile is sequential or
consecutive to the nucleophile attack. The two tetrahedral oxyanion intermediates are particularly unstable and
are rate-limiting for the catalysis. Other Class-I GATase possess an oxyanion hole consisting of two backbone
amide protons, which stabilizes the oxyanion intermediates[82, 83, 84, 85, 86, 87]. Crystal structures of T.
maritima [88] and S. cerevisiae [89] show that the oxyanion hole is not completely formed in the apoenzyme
(apo), as one amide proton is in place (hL85), but the other (hV51) is flipped away from the active site and
shrouds the hL85 amide proton with its backbone carbonyl oxygen. It has been postulated that the allosteric
mechanism in IGPS involves the formation of the oxyanion hole upon effector binding, explaining the strong
different in catalytic efficiency between apo-IGPS and PRFAR-bound IGPS[88] and studies of PRFAR-bound
S. cerevisiae IGPS have evidenced conformational variability in the oxyanion strand (49-PGVG segment)[90].
Despite numerous of experimental and theoretical[37] evidence, only very recently an experimental structural
evidence definitely proved that in T. maritima the presence of PRFAR and glutamine results in the formation
of an oxyanion hole[91].

In a series of computational studies of IGPS allostery that this thesis extends, allosteric propagation path-
ways were predicted to involve motions of various dynamical nature and are summarized in Figure 1.4 [37, 92,
93]. In first, a rigid-body motion between the HisF/HisH interface, named the breathing motion, is both faster
and of lower amplitude upon effector binding. Higher in the dynamics spectrum, there are a series of sidechain
rearrangements, involving in one instance the formation of a hydrophobic cluster and in another the alteration
of a network of salt bridges. The mechanism also involves some backbone dynamics since a few key backbone
hydrogen-bonding disruptions near the active site have been discovered. Finally, a refolding event occurs near
the effector site with the folding of loop1 on the effector binding site and near the active site the 49-PGVG
oxyanion segment is also shown to increase in flexibility. This latter part is the penultimate step of the allosteric
mechanism which lead to the more probable formation of the oxyanion hole in holo-IGPS compared to apo-IGPS.

These theoretical predictions have been subsequently used to design a non-competitive allosteric drug[92]
and IGPS mutants[94] that alter the IGPS allosteric pathways, resulting in inactive enzymes and proving the
potential of elucidating allosteric pathways for drug design. Very recently, both short- and long-range predicted
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Figure 1.4: IGPS presents allosteric dynamics from most of the dynamic continuum of allostery.

effects have been demonstrated experimentally by X-ray structural characterization of active IGPS ternary
complexes[91] and light-switching activation[95], respectively. IGPS is present in fungi, plants, bacteria, and
archaea, but not in mammals effectively, making IGPS a target for the development of safe antipathogens[89, 96,
97]. Furthermore, it is a prototype allosteric system because its allosteric mechanism in T. maritima involves
dynamics from all the dynamic continuum of allostery.

To evaluate our new tools, we use them for analysis of MD simulations of IGPS from T. maritima that
have been previously studied and contain information on the allosteric mechanism. This set of MD simulations
contains 4 simulations of 100 ns (1,000 frames each) for apo-IGPS (apo, simulations apo1-4) and 4 simulations
of 100 ns for holo-IGPS (prfar, simulations prfar1-4).
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Chapter 2

Methodology development

2.1 Dynamical Perturbation Contact Network

2.1.1 Network theory and proteins

Protein folding and thus functionality is principally guided by the formation of non-covalent interactions be-
tween amino acid residues[1]. Therefore, proteins can be understood as a set of amino acids in a reciprocated
interaction. In mathematics, a convenient way to model a set of objects in relation is by using a network (also
called graph). Because contacts between residues are reciprocated (i.e. if residue A is in contact with B, then
residue B is also in contact with A), the graph necessary to model contacts in a protein is undirected (i.e. there
is no preferential direction A-to-B or vice versa). A graph G is a pair of sets G = (V,E); V is the set of nodes
(also called vertices), here are the protein amino acids, and E is the set of edges (also called links or lines),
which are unordered pairs of nodes, here contacts between two amino acids. Edges can also be given attributes,
such as weight or colors. The nodes u and v of an edge u, v are called the endpoints of the edge. A node can
be isolated in a graph (i.e. not connected to any other node) and the process of removing these nodes from a
graph to create a new graph is called pruning. Another convenient way to mathematically represent a graph is
by its adjacency matrix. The values aij of the adjacency matrix are equal to one if i and j are in relation (here
contact). Since the relations are reciprocal, aij = aji and the matrix is symmetric. Graphs can be allowed to
contain loops, that is a node is in relation with itself, here this would represent the self-interaction of atoms
in an amino acid. Such a study might be valuable but is outside the scope of this work, thus we forbid loops.
Then, the adjacency matrix diagonal is zero: ∀i ∈ V, aii = 0. To account for attributes (and especially weights),
attribute adjacency matrices are defined, with the values corresponding to each edge being its attribute. In the
case of weight, this is named the weighted adjacency matrix.
An example of graph is depicted in Figure 2.1. This graph G contains 4 nodes and 2 edges, such that:

G = (V,E)

V = {u, v, w, x}
E = {(u, v), (u, x)}

Figure 2.1: Example of weighted and colored graph.
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Edges are both weighted and colored in this graph. The corresponding adjacency matrix A, the weighted
adjacency matrix W and the color adjacency matrix C are thus:

A =

u v w x





0 1 0 1 u
1 0 0 0 v
0 0 0 0 w
1 0 0 0 x

W =

u v w x





0 3 0 1 u
3 0 0 0 v
0 0 0 0 w
1 0 0 0 x

C =

u v w x





0 blue 0 red u
blue 0 0 0 v

0 0 0 0 w
red 0 0 0 x

In most real graphs, and in the case of proteins where the number of interactions of a single node is limited,
adjacency matrices are usually highly sparse (i.e. with a lot of zero elements). For operations that need using
adjacency matrices, there is an incentive to represent these matrices with tools that are adapted to sparse
matrices.

2.1.2 Amino Acid Networks

Proteins have thus been studied as networks of interacting residues for about 25 years[2]. In literature, such
networks have been given many names: protein structure network[3], protein contact network[4], residue in-
teraction graphs (RIG)[5], residue networks[2] or amino acid networks (AAN) used here. The original authors
stated that using of the word ”protein” in the name of such graphs may be misleading because it can imply that
the proteins are the nodes of a graph which are connected by different types of interaction[2]. We recommend
following their nomenclature and to not use the word ”protein” in the network name if nodes are not proteins.
Conceptually, AAN are closely related to protein contact maps. In fact, the protein contact map is simply a
2D image of the adjacency matrix of an AAN.
The different names given to AANs are also accompanied by a variety of definitions. The different types of

Figure 2.2: The different types of AANs. Our methodology uses average contact network.

AAN are summarized in Figure 2.2. One of the most important aspects of the definition of an AAN is the
contact condition, i.e. the condition that two amino acids must satisfy in order to be considered in relation in
the AAN. Generally, this condition uses both a cutoff distance and a selection, that is, residues are considered
in contact if there exists a pair of atoms (one belonging to each residue) in selection that are at a distance below
cutoff. There are two important groups of AAN: static networks, which describe a single structure (usually
experimental), and dynamical networks, which aim at describing the dynamics of interactions (usually from
an MD simulation). In dynamical networks, the contact condition is sometimes refined to residues that are in
contact for a significant portion of the simulation (e.g. at least in 75% of the simulation). Static AAN predates
dynamical AAN networks[2, 6] which are generally derived from static AANs.

There are two other important groups of AANs: unweighted and weighted networks. Unweighted networks
are principally static networks and represent simply a binary relationship: the residues are either in interaction
or not. This usually results from a simplification of the underlying problem where the contact condition uses
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Figure 2.3: Our contact network condition and weighting.

only a single atom in the residue as a selection, such as Cα[7], Cβ [8] or residue centroid[9]. This definition is very
restrictive since residues have various shapes and sizes. Notably, sidechain contacts can easily be overlooked in
these AANs. Because of this, the contact cutoff is usually much larger than a typical non-covalent distance and
ranges from 7 to 8.5 Å. Other unweighted networks use heavy-atom[10] and sidechain heavy-atom as selection
for contact[11]. This provides with a more complete description at the expense of more computation cost. This
also allows us to lower the contact cutoff condition down to 5Å, which is the highest cutoff of the London-van
der Waals forces[12]. Most static networks do not consider hydrogen atoms, since those are not resolved in
experimental crystal structures, but in theory, networks built from MD simulations could consider hydrogen
atoms, but this is rarely done because it vastly increases the system size and computation time. Still, in some
contacts such as hydrogen bonds, taking into account hydrogen atoms may be important as the heavy-atom
distance is not enough to define a hydrogen bond.

In weighted AANs, a weight is assigned to each contact to account for a more quantitative description of
the contact. There are different types of weighted static AAN, and the first use of weights used the number of
atomic couples that satisfy the cutoff condition as weights[13]. This introduces variability in the magnitude of
contacts and discriminates residues with many close atoms from those with only a few. There is evidence that
this weighting affects different types of contact differently in a protein[11]. Contacts can also be weighted by
computing an interaction energy between the residues[14, 15] or by the shortest distance between two atoms
in selection. There are many ways to creating dynamical networks from static networks and this produces
generally weighted network. For instance, one can compute the frequency of presence of a contact probability
along a MD simulation and assign this as the contact weight[16, 17]. These works seem to have an optimized
cutoff at 4.5 Å[18] which is very close to the 5 Å suggested by London van der Waals forces. Another range of
methods applies a threshold to the frequency contact network (usually around 0.75) and computes a different
metric, such as the cross-correlation between the positions of Cα[6, 19, 20]. In this work, we introduced an
average contact network based, instead, on the average number of interatomic contacts in the simulation (see
Figure 2.3). This is a tradeoff that allows to capture more information than the frequency contact network and
require less computation time than the cross-correlation networks.

AANs are representative of the general structure of a protein, but even on a relatively small protein such
as IGPS, this network is really congested (see Figure 2.3) and is hard to interpret without additional analysis.
Community analysis is a popular technique to facilitate AAN analysis[6, 19]. Community analysis is a distance-
based method (here distance is employed as a general term, not meaning the distance between amino acids), but
in AANs, weights usually grow with the magnitude of the contact. Therefore, the first step in community analysis
is typically to convert the AAN to a distance network using functions such as a negative log. This weighted graph
contains information on the critical nodes and paths that are important for communication within the protein.
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Communities are then detected using the Girvan-Newman algorithm[21] and optimized using maximization of
modularity[22]. Edges connecting communities are thus important for the communication in the protein and
quantities can be averaged inside communities and between communities to facilitate analysis.

2.1.3 Perturbation Networks

Figure 2.4: Methodology behind building a dynamical perturbation contact network

The concept of comparing different structures of proteins using a more simplified contact view dates back to
contact maps[23]. Perturbation networks are generally defined as the difference between the AAN of a reference
system and a perturbed system. Formally the difference is performed between the adjacency matrices of the two
networks. This computation produces edges with negative and positive signs, indicating that a contact is more
present in one of the systems. To visualize more easily the differences in contact, we can thus assign different
colors to edges with negative and positive differences.
Differences of frequency contact networks between mutants have proven useful to study perturbations induced by
mutations in the dynamical case[16] and also in the static case with differences of weighted contact networks[24].
Difference of frequency contact networks of different conformations in an allosteric system[17] managed to pro-
vide an explanation for the allosteric communication. In this work, we introduced the Dynamical Perturbation
Contact Network (DPCN) (see Fig. 2.4) which is a difference of average contact networks between two proteins.
To build the DPCN, we produce an AAN for the apoenzyme and an AAN for the holoenzyme using previously
produced MD simulations from T. maritima IGPS[19]. These trajectories were previously successfully analyzed
with cross-correlation networks to explain the allosteric mechanism.

The network topology of a DPCN is vastly different from the topology of an AAN. Most contacts do not
change substantially and only some outlier contacts change weight: thus, most edges in the network have a value
close to zero and only a few edges stand out while many are relatively small (see Figure 2.4). Still, a DPCN
generally contains the union of edges from the two original AAN, since edges are rarely perfectly cancelling
each other and the DPCN picture is quite congested which makes the relevant information is hard to interpret.
There are two main ways to simplify the information. One is to create communities of a consensus network
(i.e. a network which contains all edges with similar weights in the reference and perturbed system) and to
sum the differences of probability between these communities[17]. The second, more simple, which we use, is to
use a threshold value and to display only edges with a weight greater than threshold to emphasize areas where
contact undergoes significant changes. In frequency contact networks, the threshold used for frequency change
is 0.1[16] (i.e., 10% of change in the frequency). A very sensible choice of threshold for DPCN can be 1, as it
means that on average less than 1 contact difference is established between the residues. However, this choice
is not sufficient, and empirically, in this work, we found that for our systems and using a contact condition
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of 5Å with heavy-atoms, a threshold of 5 or 6 produces a humanly readable graph (less than 150 edges) and
accurately describes the most important contact changes in the allosteric mechanism. This methodology also
pointed to contact changes that were overlooked in previous studies, and consistent with experimental findings.

The main issue with this method is that some contacts involved in certain types of contact, such as backbone
hydrogen bonding and hydrophobic contacts, are significantly underweighted. We thus assumed that a heavy-
atom based weighted contact network might be biased for long sidechains with polar heads. In particular, salt
bridges and polar contacts stand out. This led to the idea of changing the selection and introducing backbone
and all atoms contact networks. The use of backbone networks is very efficient in recovering backbone hydrogen
bonding and proved also efficient in noticing a local unfolding event in the hα4 helix. However, the usage of
an all-atom network showed that it was possible to highlight more hydrophobic contacts, particularly those
involving residues I, L, and V (isoleucine, leucine and valine). For each of those new selection the threshold
used had to be adapted: 3 for the backbone network and 25 for all atom networks.

2.1.4 Limitations of DPCNs

Despite being very successful at pointing key allosteric residues and contact changes, this methodology has a few
limitations. First, two parameters are used to build the network: the contact cutoff and the weight threshold.
While the first seems necessary and is easy to rationalize, the second is not. The use of a threshold was really
arbitrary and produced disconnected graphs with a lot of unrelated edges. Moreover, having to optimize three
different types of graph for a joint analysis seemed a bit tedious. Finally, all the contact information found in all
the frames of the different simulations is collapsed into a single quantity: the average. The variability between
and within simulations is completely overlooked. The DPCN strategy is intrinsically supervised (i.e. we have
to label a system as reference and the other as perturbed). It is thus not clearly established if the variability
detected between apo and effector bound IGPS is of strong magnitude, or if the variability within simulations
is actually bigger than a difference that can be associated to the allosteric effect of effector binding.
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ABSTRACT: Elucidation of the allosteric pathways in proteins is a
computational challenge that strongly benefits from combination of
atomistic molecular dynamics (MD) simulations and coarse-grained
analysis of the complex dynamical network of chemical interactions
based on graph theory. Here, we introduce and assess the performances
of the dynamical perturbation network analysis of allosteric pathways in
a prototypical V-type allosteric enzyme. Dynamical atomic contacts
obtained from MD simulations are used to weight the allosteric protein
graph, which involves an extended network of contacts perturbed by the
effector binding in the allosteric site. The outcome showed good
agreement with previously reported theoretical and experimental
extended studies and it provided recognition of new potential allosteric
spots that can be exploited in future mutagenesis experiments. Overall,
the dynamical perturbation network analysis proved to be a powerful computational tool, complementary to other network-
based approaches that can assist the full exploitation of allosteric phenomena for advances in protein engineering and rational
drug design.

■ INTRODUCTION

The characterization of allosteric mechanisms in proteic
systems is a challenging task due to the intrinsically complex
and elusive nature of protein allostery.1,2 The allosteric
phenomena, ubiquitous in biology and not exclusive of
proteins, have been shown to feature both structural and
energetic origins.3,4 Statistical ensemble models rooted in the
historical phenomenological models of allostery5,6 have
suggested a unifying view of the operational allosteric
mechanisms.7,8 Still, to fully exploit the potential of allosteric
phenomena for protein engineering and rational drug design,
where allosteric systems (and particularly enzymes) can be
manipulated to inhibit/enhance their (catalytic) activity or
new allosteric sites can be discovered,9−15 system-specific
information is required.
The fundamental process occurring in allosteric enzymes is

the binding of an effector ligand at the allosteric site distant
from the functional active site, enabling the regulation of the

corresponding enzymatic function; see Figure 1. Modulation of
functions in allosteric enzymes is linked to the communication
from the active to the allosteric site,4,13,16 with effector-induced
changes of residues dynamics and protein disorder altering
either the affinity of the substrate for the active site (K-type) or
the reaction rate (V-type) of the enzymes. The allosteric signal
has been found to propagate through conserved amino acid
residues17−19 and, in general, it is expected to involve
physicochemical interactions between “allostery-related” resi-
dues that comprise various secondary structure elements,
defining (multiple) “allosteric pathways” of the proteic
systems.20

Classical molecular dynamics (MD) simulations provide
invaluable information on protein dynamics at atomistic
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resolution, representing a fundamental tool for the elucidation
of such allosteric pathways,21−23 whose experimental detailed
characterization is certainly extremely challenging. While MD
simulations enclose the dynamical information underpinning
the allosteric effects,24 analyzing complex networks of
interactions between (a generally large number of) fluctuating
amino acid residues and finding the allosteric signal paths
within the wiring of such a network call for help from graph
theory techniques. Network analysis of MD trajectories that
incorporate allosteric motions has delivered, in fact, character-
ization of allosteric pathways and identification of allostery-
related amino acid residues in various biological systems,25−32

and helped rational discovery of allosteric modulators.33,34 In
particular, combining nuclear magnetic resonance (NMR)
relaxation dispersion experiments with community analysis of
dynamical networks,35 based on mutual information on
correlated protein motions obtained from MD simulations,
we have revealed the allosteric pathways of the imidazole
glycerol phosphate synthase (IGPS) enzyme from the
thermophile Thermotoga maritima; see Figure 1.25

IGPS is a prototype allosteric enzyme absent in mammals
but involved in essential biochemical pathways (histidine and
purine synthesis) of pathogens, and thus, it is a potential target
for antifungal, antibiotic, and herbicide development.36−38 As
shown in Figure 1, two tightly associated proteins constitute
the IGPS V-type allosteric enzyme: (i) the HisH glutamine
amidotransferase that catalyzes the hydrolysis of the substrate
(glutamine) and (ii) the HisF cyclase where the effector
PRFAR, i.e., N′-[(5′-phosphoribulosyl)formimino]-5-amino-
imidazole-4-carboxamide-ribonucleotide, binds without affect-
ing the glutamine binding affinity in HisH but accelerating its
hydrolysis by ca. 5000-fold.39 Our synergistic theoretical and
experimental investigations suggested secondary structure
elements and key residues involved in the allosteric signal
propagation induced by the PRFAR binding to the apo IGPS
protein. The IGPS allosteric mechanism involves a sequence of

interactions that alter the dynamics of specific regions in one
side of the IGPS complex (sideR; see Figure 1), including
hydrogen bonds in the flexible loop1 and hydrophobic
interactions in the fβ2 strand at the HisF allosteric site, ionic
interactions at the HisF/HisH interface involving the fα2, fα3,
and hα1 helices, as well as hydrogen bonding between the Ω-
loop and a conserved (49-PGVG) sequence adjacent to the
active site, namely, the oxyanion strand. These effector-
induced interactions were shown to alter the overall HisF/
HisH relative fluctuations (named breathing motion), promot-
ing rotation of the conserved oxyanion strand associated with
an inactive-to-active allosteric transition. The outcome of the
community network analysis stimulated experimental muta-
genesis studies focused on the suggested allostery-related
amino acid residues,40 as well as rational design of allosteric
inhibitors able to knockout the IGPS allosteric signal
propagation by interfering with the suggested allosteric
pathways.34 The proposed community network analysis
employed the correlations of motion between residue pairs
(in close contact) to weight the protein graph, resulting in a
communication network where the betweenness centrality
measure can decipher the most important nodes that transfer
the allosteric signal. While proving to be an extremely powerful
and transferable approach that has been employed to other
allosteric systems,26,27 this tool was revealed to be not very
user-friendly and was particularly tedious to use when applied
to large proteic systems. Very recently, we have proposed an
alternative tool to the community network analysis that
introduced the eigenvector centrality metric to analyze the
correlated motions obtained from the MD simulations,
providing a cost-effective approach that properly captures the
IGPS allosteric pathways and allows the user to disentangle
contributions to allostery due to short- or long-range
correlations.28 Nevertheless, both the betweenness and
eigenvector centrality measures have been used to analyze
protein graphs weighted by the correlated motions of α carbon
atoms. These correlations certainly comprise only part of the
network of interactions that are altered upon effector binding.
Here, we explore the use of inter-residue physical contacts to
build the weighted protein network, thus moving from a
physical to a geometrical measure that tracks down and
approximates the chemical interactions between residues. This
type of weighted contact network analysis has been successfully
used to infer protein dynamics and to determine structural
robustness to mutations in proteins, it being powerful to
understand how a local change can produce global changes
that are associated with retention or loss of protein
functions.41−43 Here, we propose to use this weighted network
approach to study allostery and to compute local perturbations
of contacts induced by the effector binding, which are expected
to propagate in the allosteric enzymes through protein
dynamics. The use of unweighted networks based on a binary
measure of dynamical contacts could be also envisioned to this
aim, possibly providing a more coarse-grained picture of the
effector-induced dynamical contacts with respect to networks
weighted with the number of atomic contacts. In particular,
taking advantage of the atomistic details contained in MD
simulations one can account for dynamical contacts and their
effector-induced modifications by averaging the number of
contacts for each residue pair along a MD trajectory, using this
information to weight the protein network. A similar approach,
based on dynamical network of inter-residues contacts, has
been used to reveal the allosteric effects of mutations in the

Figure 1. (A) IGPS allosteric (V-type) enzyme, with substrate (in
gray) binding in the active site of the HisH glutaminase domain (in
green) and the effector (PRAFR, in red) binding in the allosteric site
at the bottom of the HisF cyclase domain (in yellow). Previously
recognized secondary structure elements belonging to the IGPS
allosteric pathways are shown (in orange), linking the allosteric and
active sites at sideR of the enzyme. (B) Example of a 3D
representation of the IGPS protein network, with nodes of the
graph located at the α carbon atoms of the enzyme and edges
connecting nodes weighted by the number of contacts between
residues pairs.
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catalytic activity of the Cyclophilin A enzyme, proving to be
potentially able to identify key residues in the allosteric signal
propagation.44 Here, we propose the use of the dynamical
contact network approach to study allosteric perturbations
induced by effector binding, instead of mutations, performing a
dynamical perturbation network analysis of IGPS allostery.
IGPS is, indeed, a prototypical allosteric enzyme whose
allosteric pathways have been previously characterized in
detail by means of MD simulations and network models and
validated by NMR and biochemical and mutagenesis experi-
ments, providing an ideal system to assess the performances of
the perturbation network analysis for capturing allostery.

■ COMPUTATIONAL DETAILS

In this work, we used structural models of the apo and PRFAR-
bound IGPS complexes and MD simulations that have been
described elsewhere,25 in order to fairly compare the results of
the perturbation networks with those of the previously
reported community network analysis. In our previous analysis
we have showed that the time-averaged weighted networks,
based on MD trajectories 100 ns (ns) long, adequately
describe the dynamical networks, capturing the protein
conformational changes induced by effector binding during
the early dynamics of the IGPS complexes.25 Therefore,
previously obtained MD trajectories, including four independ-
ent simulations of 100 ns for the apo IGPS protein and four
independent simulations of 100 ns for the PRFAR-bound
IGPS complex, have been used.25 MD simulations of the IGPS
complexes were based on the AMBER-ff99SB45 force field for
the IGPS protein and on the generalized Amber force field46

for the PRFAR ligand, using the NAMD2 software package.47

Production run MD simulations succeeded a pre-equilibration
procedure involving slow heating to 303 K, gradual release of
atomic positions constraints, and subsequent unconstrained
MD simulations of 4 ns in the canonical NVT ensemble using
Langevin dynamics. Production runs were performed in the
NPT ensemble at 303 K and 1 atm (using the Langevin piston)
for 100 ns after reaching the equilibrium volume (i.e., after ca.
2−3 ns). Periodic boundary conditions and the particle mesh
Ewald method48 were employed, with van der Waals
interactions calculated using a switching distance of 10 Å
and a cutoff of 12 Å. A multiple time-stepping algorithm49,50

was adopted, with bonded, short-range nonbonded, and long-
range electrostatic interactions were evaluated at every one,
two and four time steps, respectively, using a time step of
integration set to 1 fs.
Protein Weighted Networks. In the protein network

each node represents an amino acid residue (see Figure 1),
with connections between nodes (namely, the graph edges)
being defined according to atomic proximity: for each pair of
residues, if there exists a couple of atoms, one in each residue,
whose distance is below a given distance cutoff, then the two
atoms satisfy the “contact condition” and the two correspond-
ing nodes/residues are linked by an edge. In line with
previously reported perturbation network analysis,41,42 we used
a 5 Å distance cutoff to define the contact condition, this
choice allowing a fair comparison with previously reported
community network analysis,25 where the same distance cutoff
has been adopted.25 The effect of the distance cutoff parameter
on the perturbation network analysis will deserve further
investigation for application of the proposed network approach
to other allosteric systems. The protein weighted network is
then built by assigning to each edge (linking the ith and jth

residues) a weight wij, which equals the number of contacts
between two residues, i.e., the number of atom pairs that satisfy
the contact condition between the ith and jth residues (see
Figure S1 in the Supporting Information). To compute the
number of contacts among the IGPS residues in the apo and
PRFAR-bound complexes, and thus the corresponding contact
weighted networks, we used the atomic coordinates extracted
every 100 ps from the MD trajectories. The choice of the time
interval to extract the atomic coordinates (and thus to
compute the number of contacts) is bound to that one
adopted in the community network analysis,25 in order to
provide a consistent comparison between the two different
approaches. In particular, after concatenating the four
independent simulations per each IGPS system (apo and
effector bound) the number of atomic contacts are computed
by averaging over the corresponding MD frames. If an edge is
not present in a given frame, i.e., if two residues do not satisfy
the contact condition in that very frame, its weight is set to
zero and it will be still averaged with its weights at the
remaining frames. As we will illustrate in the Results section,
the computation of atomic contacts could include all protein
atoms or it could exclude just the hydrogen atoms.

Dynamical Perturbation Network. The procedure
described above generates two weighted contact networks,
one for the apo protein and one for the PRFAR-bound
complex, each one containing (in their average weights)
information on the contacts dynamics of all residues pairs in
the corresponding IGPS protein. As shown in Figure 2, a

weighted network representing the perturbations of the
contacts dynamics induced by the effector binding, i.e., the
dynamical perturbation network, can be constructed by
considering as edge weight for each residues pair the
differences in weights (weight link) between the two IGPS
proteins, i.e., using the perturbation weight (wp = wPRFAR −

wAPO) to build the network. To simplify the visual inspection
of such perturbation network, the edges are colored in red if

Figure 2. Construction of the IGPS perturbation network. The
average contact weights of residue pairs of the apo IGPS are
subtracted from that of the effector-bound binary complex. 3D
representations of the average and perturbation networks and a
corresponding close-up view are depicted. Reduction and increase of
the number of contacts between residue pairs upon PRFAR binding
are indicated with blue and red links, respectively. The widths of the
links in each average and perturbation network are normalized to
facilitate their visualizations.
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PRFAR binding induces an increase in weight (wp > 0), i.e., an
increase in number of atomic contacts for a given residue pair,
and in blue if PRFAR binding instead reduces the contact
weight (wp < 0); see Figure 2. To allow visualization of the 2D
and/or 3D representations of the IGPS perturbation network,
which contains around 104 edges, a weight link threshold (wt)
can be applied so that only the edges whose weight is greater
than the chosen weight threshold, i.e., |wp| > wt, are kept for
visualization. If a node loses all its edges during the subtraction
process, it is also removed from the graph representation for
simplicity. The impact of the weight threshold values on the
graph visualization changes according to criterion used to
compute the number of contacts. For instance, excluding
hydrogen atoms from the count of atomic contacts reduces
significantly the average weights values in each protein network
and consequently also the weights in the dynamical
perturbation network, allowing wt values of 5 or 6 to be
large enough to make the number of edges to visualize being
less than one hundred. To obtain a similar number of edges
while including all atoms in the counts of atomic contacts
requires much larger weight thresholds (wt > 20).

■ RESULTS AND DISCUSSION

Figure 3 shows the perturbation network associated with
effector (PRFAR) binding to the IGPS protein, using a weight
threshold wt = 6 and considering only contacts between heavy
atoms. Notably, the PRFAR perturbations are spread over
different regions of the enzyme and reach also HisH residues
located quite far from the effector site in HisF.
At the effector binding site, perturbations can be found at

both sideL and sideR of the enzyme due to the hydrogen
bonds created by the PRFAR molecule at these sides. In fact, it
has been shown25 that the hydroxyl groups of the PRFAR
glycerol moiety create a hydrogen bonding network with the
fG202 residue at the end of fβ7 (see Figure 4 in ref 25). The
highly conserved fG202 residue is indeed detected by our
network analysis, which further shows propagation of this
perturbation across sideL. The fT142 and fR133 residues
appear as central nodes for PRFAR signal propagation at HisF
sideL. At sideR, the perturbation network analysis indicates

that upon PRFAR binding contacts in the fβ8−fα8′ turn of
HisF are significantly affected, with an increase of contact
between the fA224 and fF227 hydrophobic residues. Indeed,
the glycerol side phosphate group of PRFAR is known to be
involved in hydrogen bonds with the backbone of fA224 and
the fS225 side chain located in the fβ8−fα8′ turn.18,25 Notably,
near the fβ8−fα8′ turn is located the important loop1, for
which the perturbation network analysis shows drastic
modifications of contacts upon effector binding, in agreement
with previous results (see Figure S2 in the Supporting
Information for direct comparison).25 In particular, the loss
of contacts in the loop, associated with residues fK19, fF23,
fL26, and fR27 (blue lines in Figure 3) is compensated by an
increase of contacts between residues fD11, fK19, fG20, and
fH228. Thus, the invariant fK19 plays a central role in the
perturbation network being crucial for the signal transduction
at sideR of HisF, as demonstrated by experimental biochemical
data on the fK19A mutant.40 In fact, our network analysis
allows recognition of important interactions between the
highly conserved fD11 (in fβ1) and fK19, occurring only upon
PRFAR binding (see Figure S2 in the Supporting Information)
and suggesting the participation of fβ1 in the allosteric
pathways and fD11 as another possible allosteric spot in IGPS.
As shown in Figure 3, while in HisF the increase of contacts

(red lines) induced by the effector binding is almost
compensated by a few contact losses (total weight gain is ca.
19), in HisH most of the perturbations are characterized by
contact losses (blue lines, with total weight loss ca. 111).
Among the pairs that feature contact loss in HisH, it is worth
highlighting the hN12−hN15 pair connecting the Ω-loop and
the hα1 helix, two secondary structure elements that have been
indicated among the allosteric pathways and a crucial
connection already pointed up by the community network
analysis.25

The HisF/HisH interface also features perturbation of
relevant contacts upon effector binding, in agreement with the
change in breathing motion between apo and PRFAR-bound
IGPS previously reported.25 As pointed out by previous
analysis of MD simulations, the allosteric effect of PRFAR
expresses at the protein−protein interface as rearrangement of

Figure 3. Perturbation network associated with PRFAR binding to IGPS, using a weight threshold wt = 6 for the network visualizations. (A) 2D
projection and (B) 3D representation of the perturbation network, showing reduction (blue lines) and increase (red lines) of the number of
contacts between heavy atoms upon PRFAR binding. Perturbations associated with previously reported allosteric pathways25 are highlighted with
black circles.
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the ionic interactions among the fE67, fE71, and hR18
residues, with rupture of the hR18−fE67 salt bridge
(connecting the hα1 and fα2 helices) upon effector binding
(see Figure S3 in the Supporting Information).25 Notably, the
contact loss in the hR18−fE67 ion pair interaction appears as
one of the largest perturbations in the network (see Figure 3a)
and it is accompanied by other significant changes in sideR. In
particular, the fE91−fR95 salt bridge within the fα3 helix is
also detected by the perturbation network analysis, in
agreement with the fact that both hR18−fE67 and fE91−
fR95 salt bridges represent the most relevant changes in ionic
interactions at sideR associated with the allosteric pathways
(see Figure S3 in the Supporting Information).25 Other
interactions at the HisF/HisH interface are evidenced by the
perturbation network analysis: (i) contacts between the hY136
residue51 in hβ8 and residues fV248, fR249, and fL250 in the
C-terminal domain of HisF and (ii) two contact pairs
connecting the hα1 and hα4 helices with the fα2−fβ3 turn,
i.e., hR22−fQ72 and hR187−fD74, respectively. The inter-
actions involving the polar hY136 residue show a global
increase of the number of contacts of this residue with HisF,
upon effector binding. This is due to the change of H-bonding
between hY136 and fN247, which brings hY136 closer to the
flexible HisF C-terminus (see Figure S4 in the Supporting
Information). These changes of contacts comprise fR249, a
highly conserved residue involved in the π-cation hW123−
fR249 molecular hinge,18 but are not associated with
formation/disruption of very strong interactions that might
alter significantly the IGPS structure. Still, the observed
rearrangement of the HisF C-terminus involving the molecular
hinge is in line with modification of the relative HisF/HisH
(breathing) motion, an indirect effect associated with the
disruption of the hR18−fE67 interface salt bridge. However, a
contact loss is observed for the hR22−fQ72 pair upon effector
binding, which involves hα1 and the fα2−fβ3 turn,
respectively, and it appears to be directly related to the
breaking of the adjacent hR18−fE67 salt bridge also
connecting hα1 with HisF. The hR22−fQ72 contact loss is
somehow compensated by the formation of a nearby hR187−
fD74 salt bridge, involving the hα4 helix. The contacts
encompassing residues hR22, hR187, fE67, fQ72, and fD74 are
all located at sideR of the HisF/HisH interface, which has been
indicated as a crucial region for the IGPS allosteric
communication and thus deserves a more detailed analysis.
Figure 4 shows the perturbation network representation

using weight threshold wt = 5 that allows a detailed view of the
interactions involved in the important region around the
hR18−fE67 salt bridge. In addition to detecting the hR18−
fE67 salt-bridge breaking, a recognized effect of PRFAR
binding inducing separation of the hα1−fα2 elements,25 the
perturbation network analysis also indicates that propagation
of the allosteric signal through the HisF/HisH interface
involves ionic interactions that were not previously detected. In
particular, the formation of the hR187−fD74 salt bridge that
connects hα4 helix with the fα2−fβ3 turn in the PRFAR-
bound complex is concomitant with the breaking of the hR22−
fD74 salt bridge between the hα1 and the fα2−fβ3 turn, which
is thus involved in the modifications of ionic interactions
promoted by the hR18−fE67 salt-bridge disruption (see Figure
S3 in the Supporting Information).25 Notably, these results are
in agreement with NMR dispersion experiments indicating that
residues in the fα2−fβ3 turn (e.g., fI73 and fI75) are among
those that have the largest dynamical changes upon effector

binding.52 Therefore, we propose that the fα2−fβ3 turn and
the hα4 helix are secondary structure elements that are
involved in the allosteric communication in IGPS and that
residues hR22, hR187, and fD74 are potentially good
candidates for mutagenesis experiments.
In the proximity of the sideR interface region, the hN12 and

hN15 residues belonging to hα1 and Ω-loop, respectively, have
been suggested by the community network analysis to be
important for the IGPS allostery,25 allowing communication
between the hα1 helix and the HisH active site via the Ω-loop.
Figure 4 shows that the hN12−hN15 contact loss captured by
the perturbation network is associated with other PRFAR-
induced losses, i.e., the contacts in the hR18−hM14 and
hR18−fE67 pairs. Overall, these modifications induced by
PRFAR binding involve a partial unfolding of hα1 helix as a
response to the hR18−fE67 salt-bridge rupture (see Figure S5
in the Supporting Information) and propagate toward the
HisH active site via the Ω-loop.
The perturbation network analysis, thus, is quite useful for

capturing the propagation of the PRFAR allosteric signals,
providing direct visualization of allosteric effects as changes in
the residue contacts. The above analysis based on the contacts
between heavy atoms, indeed, detected most of the secondary
structure elements in the known allosteric pathways,25

including loop1, fα2, fα3, hα1, and Ω-loop, and indicated
new secondary structures encompassing fβ1, fα2−fβ3 turn, and
hα4 along with other key residues, like fK19, fD11, fD74,
hR22, and hR187. Nevertheless, two important elements of the
allosteric pathways, namely, the fβ2 strand in HisF and the 49-
PGVG sequence in HisH active site, are not observed even
among the nondescribed perturbations appearing in the
computed network (see Figure 3). The missing secondary
structure elements involve hydrophobic interactions (between
fβ2 and loop1) and backbone hydrogen bonds (between 49-
PGVG and Ω-loop), suggesting that the omission of hydrogen
atoms (H’s) in the count of residue contacts might be the
reason for such a lack of detection of these important
perturbations. However, H’s are usually discarded in
perturbation network analysis of mutated proteins because
they are not resolved in X-ray structures and their presence

Figure 4. 3D representation of the perturbation network in the region
close to the hR18−fE67 salt bridge. A weight threshold wt = 5 is used
for the network visualization. The perturbations associated with
PRFAR binding show the relative reduction (blue lines) and increase
(red lines) of the number of contacts between heavy atoms. The
hR18−fE67 salt-bridge rupture upon effector binding is associated
with modifications of polar and ionic interactions between the hα1
and hα4 helices and the fα2−fβ3 turn, along with contact losses and
partial unfolding at the beginning of hα1 helix, where the Ω-loop is
located.
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significantly increases the number of contacts for each pair,
adding sizable noise in the data analysis. To limit such a
drawback, here we considered inclusion of the hydrogens in
the perturbation networks while separating the analysis of
backbone atoms (that do not contain many H’s) from that of
amino acid side chains.
Figure 5 shows the perturbation network analysis restricted

to the backbone atoms while including hydrogens. This
analysis allows focusing on the effector perturbations induced
in the IGPS backbone. The backbone network shares some
features with the perturbation network analysis of heavy atom
contacts but it also highlights some perturbations previously
overlooked. The backbone analysis, in fact, confirms the
presence of strong perturbations in the PRFAR binding site,
with detection of residues fG202 and fA224 and the H-bonds
redistribution in loop1, as previously described. However, new
perturbations stand out when the side chain contacts are
removed from the network. In particular, the invariant fS201
and the highly conserved fG202, fG203, and fG205 residues of
the SGGXG sequence at the fβ7−fα7 turn all feature perturbed
backbone H-bonds. These perturbations can be viewed as a
consequence of the hydrogen bonding network rearrangements
induced by the PRFAR glycerol hydroxyls and phosphate
groups at sideL of the effector binding site.25 Moreover, the
backbone analysis also catches the increase of contacts among
the highly conserved residues fA224, fF227, and fH228, which
is associated with a partial folding of the fβ8−fα8′ turn at
sideR of the PRFAR binding site.
It is worth noting that the fD11−fK19 ion-pair contact,

strongly reinforced in the presence of PRFAR, unexpectedly
appears in the backbone perturbation network. This result
provides direct evidence of this interaction being not
associated with the formation of a fD11−fK19 salt bridge (as
could be expected for an ion pair) but to hydrogen bonding

between the fD11 side chain and the fK19 backbone; see
Figure 6.

The backbone interactions perturbed at the HisF/HisH
interface are rather limited and are restricted to the highly
flexible HisF N-terminus (fM1), getting in contact with the
hβ7 and the hβ9 strands, i.e., with the backbone of residues
hE125 and hE157, respectively. However, important backbone
perturbations are found in a localized region of HisH,
remarkably close to the active site. In fact, as shown in Figure
5a, the backbone network analysis clearly catches the allosteric
effect associated with the 49-PGVG (oxyanion) strand that, as
previously shown,25 loses contacts with the Ω-loop due to the
hydrogen bond breaking between hP10 and hV51 (see Figure
9 in ref 25). Notably, three residues of the conserved 49-

Figure 5. Perturbation network associated with PRFAR binding to IGPS, computed only for backbone atoms (including hydrogens) and using a
weight threshold wt = 5 for the network visualizations. 2D projection (A) and 3D representation (B) of the network, showing reduction (blue lines)
and increase (red lines) of the number of contact atoms upon PRFAR binding.

Figure 6. (A) Perturbation network around residue fK19 associated
with PRFAR binding to IGPS, computed for all atoms (including
hydrogens) and using a weight threshold of wt = 19 for visualization
(left panel) and (B) representative configuration of the H-bonding
network in the PRFAR-bound complex associated with the fD11,
fK19, and fS225 residues, also showing the partial folding of the fβ8−
fα8′ turn.
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PGVG sequence (i.e., hP49, hG50, and hV51) are found to
lose contacts with Ω-loop residues hG9, hP10, and hG11, in
line with the fact that the separation of these two secondary
structure elements is associated with rotation of the oxyanion
strand near the substrate binding site. Beyond the remarkable
ability of the perturbation network to retrieve the allosteric
effects in the active site, this analysis also suggests effector-
induced alterations that were overlooked in previous studies. In
fact, the loss in contacts between 49-PGVG and the Ω-loop
appears to be associated with a partial unfolding of the hα2
helix (which is next in sequence to the oxyanion strand),
featuring the decrease of contacts between hH53, hF54, hE56,
hG57, hR59, and hR60 residues, only slightly compensated by
the strengthening of the hG9−hG57 interaction. The partial
unfolding of helix hα2 is contiguous and it assists the
mechanistically relevant oxyanion strand flip and it should be
thus considered as part of the allosteric pathways.
The perturbation network analysis using heavy atom

contacts did not show a significant number of interactions
among hydrophobic residues being affected by the effector
binding. By including hydrogens in the count of contacts, the
percentage of hydrophobic interactions that participate in the
perturbation network increases (see Figure S5 in the
Supporting Information). However, as mentioned above, the
whole network including H’s represents a challenging graph to
analyze since it contains a large number of contacts and a
sizable amount of noise. As mentioned in the method section,
in order to produce 2D (or 3D) representations that can be
visually inspected (e.g., with number of perturbed pair <100) a
large weight threshold (wt around 20) has to be applied to
such a network (see Figure S6 in the Supporting Information).
More than looking at the whole network including H’s, a more
effective analysis can be performed by inspection of specific
clusters of perturbations. For instance, Figure 6 shows the
analysis of local perturbations around the key fK19 residue in
loop1, indicating that rearrangements of contacts in loop1 are
connected to residue fL50, previously reported as part of a
hydrophobic cluster in the fβ2 strand,25 via the fD11 residue.
Moreover, the modifications of the fD11−fK19 contact upon
effector binding are correlated with the partial folding of the
fβ8−fα8′ turn, as detected by the backbone analysis but here
involving residues fS225 and fH228. Notably, it has been
shown that fS225 is H-bonded to the glycerol phosphate group
of PRFAR,25 and thus we performed a detailed investigation of
the fS225-PRFAR H-bonds in relation to the fK19 residue
along the MD simulations. We found that the fD11−fK19
contact modified upon effector binding promotes the
formation of a H-bond network between fK19 (in loop1)
and fS225 (in the fβ8−fα8′ turn) and the glycerol phosphate
group of the PRFAR. All these observations explain the
inhibition of allosteric signals in the K19A mutant40 and
confirm the importance of both fD11 and fK19 residues for the
allosteric communication in HisF. At the same time, the
outcome claims for inclusion of the folded fβ8−fα8′ turn as a
secondary structure element of the IGPS allosteric pathways.
Finally, by limiting the perturbation network analysis to the

contacts among side chains (while including hydrogen atoms),
some interesting features stand out at the HisF/HisH interface.
In particular, the hM121 residue stands out in the side chain
network (see Figure S7 in the Supporting Information) as it
features several contact perturbations with the invariant fR5,
fK99, and fE167 residues that belong to the ammonia tunnel
gate of the HisF barrel51 and with the highly conserved fD98 of

the structurally important fD98−hK181 salt-bridge anchor.25,51

It has been previously shown that the PRFAR binding, indeed,
alters the dynamics of these conserved residues that are
associated with important structural features of the complex
IGPS enzyme.25,34 Thus, these results demonstrate that the
perturbation network analysis of side chains can catch most of
the structurally important conserved residues that are
perturbed by the effector binding.
In summary, as shown in Figure 7, the perturbation network

is a powerful tool for the characterization of the IGPS allosteric

pathways based on analysis of MD trajectories, allowing
recognition of previously overlooked allosteric spots. In
particular, the use of the perturbation network approach
showed that with just the analysis of the heavy atom contacts
most of the secondary structure elements involved in the
allosteric pathways are already detected. In addition to that, the
involvement of the fβ1, fα2−fβ3 turn, and hα4 secondary
structures (and related key residues) in the allosteric signal
propagation has been recognized by perturbation of heavy
atom contacts. The addition of hydrogen atoms in the contact
counting and the concomitant restriction of the analysis to the
backbone atoms readily provided the detection of folding/
unfolding events during the MD simulations that are strictly
connected to the signal propagation, including partial folding
of the fβ8−fα8′ turn in the effector binding site and the partial
unfolding of the hα2 helix in the proximity of the substrate
binding site.

■ CONCLUSIONS

The dynamical perturbation network analysis has been
proposed and assessed for the investigation of allosteric
pathways in the IGPS enzyme, a prototype allosteric system
that involves known allostery-relevant amino acid residues and
secondary structure elements. The network analysis of
dynamical inter-residue atomic contacts, obtained from
averaging several independent MD simulations of the apo
and effector-bound IGPS complexes, is an effective tool, as
shown by the good agreement with previously reported
community network analysis based on mutual information
on protein-correlated motions. In fact, limiting the count of

Figure 7. Representation of the secondary structure elements
involved in the allosteric pathways as predicted by previously reported
studies (in light orange) and by the perturbation network analysis in
this work (in light orange and red).
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atomic contacts to heavy atoms already provided detection of
strong effector-induced perturbations in the loop1, fα2, fα3,
hα1, and Ω-loop secondary structure elements at the IGPS
sideR, known to be involved in the allosteric signal
propagation. Furthermore, the dynamical perturbation network
analysis of heavy atom contacts also suggested previously
overlooked residues fD11, fD74, hR22, and hR187 (located in
the fβ1, fα2−fβ3 turn, and hα4 elements at sideR) as potential
targets for future mutagenesis studies. Addition of hydrogen
atoms in the computation of atomic contacts increases the
complexity of the perturbation network, whose analysis has
been separated in contributions from the backbone and the
side chains atoms. The backbone network analysis, while
sharing some features with the perturbation network analysis of
heavy atoms contacts, highlighted some unknown allosteric
perturbations, including the partial folding of the fβ8−fα8′
turn in the effector binding site and the partial unfolding of the
hα2 helix in the proximity of the active site. Remarkably,
restriction to the backbone atoms (including hydrogens)
demonstrated how such network analysis provides rapid
detection of folding/unfolding events induced by the effector
binding that only time-consuming and tedious comparative
analysis of MD trajectories can accomplish. However, the
perturbation network analysis restricted to side chains contacts
retrieved the structurally most important and highly conserved
residues whose interactions are perturbed by the effector
binding. Overall, by providing good agreement with previous
theoretical and experimental studies and by recognition of new
potential allosteric spots in the IGPS enzyme, the dynamical
perturbation network analysis proved to be a powerful
computational tool, complementary to other effective net-
work-based methodologies for the characterization of allosteric
pathways.
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2.2. CONNECTED COMPONENT ANALYSIS OF DYNAMICAL PERTURBATION CONTACT NETWORKS27

2.2 Connected Component Analysis of Dynamical Perturbation Con-
tact Networks

2.2.1 Clustering edge weights

A key challenge in the study of DPCNs is to systematically extract relevant information from the network.
In the DPCN, the network topology is vastly different from individual AANs; in particular, there are positive
and negative edges, and most of the edges have a weight close to zero, while only a few outlier edges contain
relevant information. In fact, here, the issue is a general feature selection problem. Our regular methodology
uses a threshold based on the absolute value of the edge weights to remove low-value edges, but an appropriate
threshold value is heavily dependent on the selection used in the contact condition (3 for the backbone, 5-6
for the heavy atom, 25 for the all atom), and we could not provide a systematic procedure to select this value.
Moreover, the contact value is difficult to grasp intuitively by comparison with the 10% threshold used in fre-
quency contact networks. The distribution of edges in the apo and holo AANs and DPCN using a 5 Å cutoff
and heavy-atom selection is shown in Figure 2.5. The distribution of weights in the AAN of apo and holo is
astonishingly similar, suggesting that this curve may be independent of the protein conformation. Interestingly,
it has some irregular slope changes. Some studies have been devoted to the precise study of these slope changes,
notably that they related with the nature of interactions captured in AANs, however they remain outside the
scope of our problem, which focuses specifically in DPCN. In DPCN, most of the edge weights are clustered
around zero, and we only want to extract the outlier edges with high values. An empirical way to select such a
threshold is then to select the ”the knee in the curve” on both sides of the DPCN curve. However, this approach
is not systematical and subjective, since there is no precise definition of ”knee in the curve”.

Figure 2.5: Ranked edge weights in increasing order for apo and holo AAN and the DPCN

One approach we then used is to cluster weights with machine learning techniques so that edges of similar
importance are grouped together. There are many clustering techniques, but for practical purpose, we focused
on clustering techniques implemented in sklearn[1]. To select the most appropriate clustering technique, we had
two main criteria: first, all clustering techniques require some general parameters: the so-called hyperparame-
ters; we wanted to find a technique which is the least dependent on hyperparameter choice so that clustering
does not require more tuning than selecting a threshold. Second, the solution must be largely scalable with
the number of samples, so that using it on large proteins would not substantially increase the computation
time. For this, three algorithms were very promising: Density-Based Spatial Clustering of Applications with
Noise (DBSCAN)[2], Ordering Points To Identify the Clustering Structure (OPTICS)[3] and Balanced Iterative
Reducing and Clustering using Hierarchies (BIRCH) Clustering[4]. Notably, these three techniques do not ask
for the number of cluster as hyperparameter and are good at detecting outliers[4, 5, 6].
In total, the DPCN built between simulations apo1-4 and prfar1-4 with a 5 Å cutoff and heavy-atom selection

contains 4,088 edges. In Figure 2.6 we report the clustering of those weights using ten techniques implemented in
sklearn with their standard hyperparameters. While most algorithms performs in a fraction of a second, Affinity
Propagation[7] takes more than 100 seconds and actually fails to converge. Therefore, we firmly excluded this
clustering technique. Spectral clustering and OPTICS also took more than a second. This suggests that issues
may arise using these techniques with larger systems.
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Figure 2.6: Clustering techniques with different colors indicating the clusters in which each data point belong.
The time taken for each clustering is written in each plot. For algorithms asking specifically for a number of
clusters, we chose 2 clusters in each case and for algorithms asking for a number of neighbors, we chose 10
neighbors in each case

In our previous works, we empirically found that a threshold of 5 produces a cleaned version of the graph.
Therefore, a clustering algorithm that separates clusters close to this range is the most suitable. Kmeans[8],
Spectral Clustering, Ward, Agglomerative Clustering, DBSCAN, OPTICS, and Gaussian Mixture all fail in
doing so. This might be because the standard hyperparameters are not a good fit for our problem. Still, an
important aspect of our approach is that we want as little influence of the hyperparameter as possible, thus not
having to optimize the hyperparameters too much. Because of this, we discarded all these algorithms. On the
contrary, the MeanShift algorithm[9] performs particularly well. One cluster separates weight between 0 and
2.5, the ”very low” contact changes. Another cluster separates weights between 2.5 and around 5: the ”low”
contact changes. Finally, many clusters are created for the data above. This clustering is rather interesting
because it fits nicely with our earlier analysis and is rather fast (0.16s). However, despite the fact that this
algorithm is generally recognized as one of the best unsupervised clustering techniques, it scales terribly with
the sample number[10] and we discarded it from the possibilities.

Of all the algorithms, BIRCH clustering really stands out. In theory, it was one of the best fit for an
algorithm, since its main purpose is outlier removal and data reduction. Here, a single cluster removes all
edges below a weight of 5, consistent with our previous analysis, and then two clusters separate the above data.
Furthermore, it takes only 0.07 second and is very scalable with the number of samples. BIRCH clustering also
does not ask for a specific number of clusters in hyperparameters. For all these reasons, we focus our analysis
on BIRCH clustering.

2.2.2 Limitations of BIRCH clustering

While BIRCH clustering was particularly successful in detecting groups of importance in terms of weight.
However, the precise meaning of these groups of importance is elusive. In fact, within a single group, there
are contacts of different types (salt bridge, polar, hydrophobic, etc.) that are localized throughout the whole
protein. Moreover, edges belonging to the same localized perturbation can be grouped in totally different
groups. Although BIRCH clustering provides a way to select a threshold arbitrarily less, this study proved that
the mere use of threshold to filter edges cannot provide a consistent network view (in terms of chemistry or
geometry). In fact, clustering using only edge weight values does not take into account the network topology,
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which is a central element in the study of DPCN.

2.2.3 Connected Component Analysis

In most cases, the AAN of a protein is connected, that is, we can construct a path between each pair of amino
acids in the graph. A trivial example of a nonconnected AAN is a protein with two separate unbound chains.
When successively higher threshold values are applied on the network, this connectivity can be lost because
some connections are lost. In this case, we call the connected components (CCs) of the graph, the maximum
size subgraphs that are connected. To account for all possible edge values, we can simply incrementally remove
the edge with the lowest value. This process is explained in Figure 3 in Manuscript 1. A CC Analysis (CCA)
investigates how quantities related to CCs evolve with successive removal of the edge with the lowest value. The
CCs of a graph have an intrinsically local aspect because the path between a node and its neighbors is usually
short and thus more resilient to edge remove. Some approaches focus on studying the number of nodes or edges
of the graph’s largest components, but here we focus on maximizing the number of CCs.

When removing an edge, two concurrent effects are at play: either an edge is the last remaining link between
two subcomponents, thus removing it creates a new component, or it was the last edge of a given component,
thus removing it destroys a component. Of course, the process of removing an edge can simply have no effect
on the number of CCs. At the beginning of the process, there is generally only one CC, while at the end of the
process there is always zero since the graph is empty. In practice, the component creation effect occurs before
the component destruction effects, and then the number of CCs evolves in a bell curve during the edge re-
moval process. Therefore, the weight which maximizes the CCs number is interesting because it shows precisely
where the component destruction effect dominates the component creation one. We then hypothesized that
this number can be selected as threshold (for a 5Å heavy-atom based DPCN, we found a maximum number
of components attained at threshold 4.45, which is close to our empirical 5). In our exampled notably, several
thresholds produced a maximum number of CCs as the bell curve had a plateau at its top, and we used the one
that best represents where the component destruction effect dominates, that is, the one with the highest weight.

In the end, by selecting a threshold of 4.45 suggested by the CCA, this process produced a graph with 36
components, which remains much to analyze. Actually, almost half of the components consisted of a single edge,
which is consistent with the fact that there is a significant decline in number of components after this point.
In order to study perturbations that spread within the protein, in the first instance, we simply removed the
components with a single edge. This still produced around 20 components, not entirely satisfactory. Using the
same argument to study local-to-global perturbations, we used another metric to discriminate the CCs, which
is their diameter. The diameter of a graph represents the maximum eccentricity, (i.e. the maximum length
of all the shortest paths in the component). When only CCs with diameters > 3 were selected, this reduced
the selection to nine CCs. Of the nine components, eight of them could be directly attributed to the allosteric
pathways previously recognized for our system[11, 12, 13]. This analysis can, thus, very efficiently automatize
the DPCN analysis and this, whether the contact conditions. In fact, our results also show that the procedure
can also be applied to various types of Perturbation Networks such as perturbation frequency contact networks
and perturbation cross-correlation networks.
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Abstract

Introduction

The exponential improvement of technologies currently grants the opportunity to perform

classical molecular dynamics (MD) simulations of systems with quite large size and time

scale.1–5 Analyzing such long and sizable simulations thus becomes increasingly challenging

with dynamical network approaches emerging about a dozen years ago as valuables tools.6–13

This approach was used to understand the way atoms in protein arrange themselves14 and

to investigate allosteric signaling.6,8,13,15,16 The usage of network theory on static protein

systems (i.e. crystal structures) is more than 30 years old17 and since then several types of

1



network have been defined.18 The shift from static to dynamical network was first success-

fully implemented to cross-correlation network8,19 Another widely used network approach

is that considering atomic contacts between amino acid residues, namely contact networks,

which is generally used in a ”static” way, i.e. by analyzing crystal structures of multiple

protein types/families20–25 or, in a more strict comparative fashion, by monitoring contact

perturbations induced by mutations,26,27 namely perturbation contact networks. This latter

methodology has proven to be an efficient tool to analyze dynamical protein networks, i.e.

time-averaged graphs associated to MD trajectories, where perturbations could be due to

mutations28 or to effector binding, thus associated with allosteric signaling.29 Dynamical

perturbation contact networks of allosteric signals have proven to be particularly power-

ful at pointing out local differences in conformation during the allosteric regulation of the

imidazoleglycerol phosphate synthase (IGPS) enzyme from Thermotoga maritima, using an

reference set of MD simulations (modeling the apoenzyme) and a perturbed one (modeling the

holoenzyme). Remarkably, this analysis captured allosteric pathways previously described in

literature8,30 and added even more information about local contact changes between two sets

of MD simulations. IGPS is an archetype allosteric enzyme participating in fundamental bio-

chemical pathways that is lacking in all mammals but present in fungi, plants and bacterias.

Hence, IGPS is a target for safe antipathogens development.31–33 Its place is during the fifth

step of histidine synthesis and is composed of two subunits: a glutamineamidotransferase

(GATase) HisH which catalyzes the hydrolysis of glutamine into glutamate and ammonia and

a cyclase HisF where the effector PRFAR, (N’-[(5’-phosphoribulosyl)formimino]-5-amino-

imidazole-4-carboxamide-ribonucleotide) binds. The ammonia released at the GATase active

site then tunnels through the protein, crossing an ion gate, approaches PRFAR at the effector

site and generate a cyclization releasing Imidazoleglycerol Phosphate (ImGP), a precursor to

histidine and 5’-(5-aminoimidazole-4-carboxamide) (AlCAR) later used in the synthesis of

purines. Upon effector binding, the affinity of glutamine slightly increase (5-fold) while the

catalytic activity increases by 3 orders of magnitude (1,000-fold) thus making IGPS a V-type
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allosteric enzyme.34 Here, the aim of the allosteric regulation is to moderate the hydrolysis of

glutamine to only make it happen when PRFAR is also there to react. One of the impressive

feature of IGPS is that active and effector sites are at a distance of about 25 Å. In our series

of computational studies of IGPS allostery,8,30,35 we predicted that the allosteric propagation

mechanism involves a collection of both short- and long-range displacements, i.e. a set of

local (hydrophobic, salt-bridges and H-bond) interactions that increase inter-residue motion

correlations on one side of the protein (sideR)8,30 and a slow collective motion that alters

the HisF/HisH interface, namely the breathing motion.30 The theoretical predictions have

been subsequently used to design allosteric drugs35 and IGPS mutants36 that alter the IGPS

allosteric pathways, resulting in inactive enzymes. Very recently, both short- and long-range

predicted effects have been demonstrated experimentally by X-ray structural characteriza-

tion of active IGPS ternary complexes37 and light-switching activation,38 respectively. The

whole allosteric mechanism is summarized in Figure S1.

In this context, our dynamical perturbation contact network analysis of IGPS allostery has

been crucial to discover the role of specific secondary structure elements (f β1, f α8-f β8 turn,

hα2 and hα4) and key allosteric contacts (fD11, fD74, fR22, and fR187). However, this

analysis required, first, a brute-force approach (i.e. the weight threshold) in order to re-

duce the number of perturbed contacts for an eye-friendly visualization and, then, a biased

selection of the most relevant perturbations based on the previous knowledge of the IGPS

allosteric pathways, e.g. focusing on contact changes at sideR.

Therefore, since dynamical perturbation contact network proved to be an adequate tool to

enlarge the comprehension of allostery, it is of fundamental importance to develop unbiased

approaches without parameters with completely arbitrary selection, in order to make this

method of more general use. For instance, the choice of a weight threshold as well as that

of the atomic contact types are not obvious tasks (usually requiring many attempts) and

should be avoided. Here, we propose two alternative methodologies to overcome these lim-

itations of the dynamical perturbation contact network analysis. The first uses clustering,
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an unsupervised learning technique that groups data points together into sets, namely Birch

clustering.39 This method established itself as a reliable way to partition large datasets,

with the advantage of avoiding arbitrary parameters (e.g. number of clusters) and of good

scalability (that can be of help for studying very large protein complexes). The second

one involves a connected component analysis40–43 that can partition the contact network by

grouping connected nodes, similar to what has been successfully done for energy-weighted

protein graphs,44 with the advantage of providing information on the local propagation of

the perturbations. Here, we present how the usage of clustering and the connected compo-

nent analysis of dynamical perturbation contact graphs could provide generalized network

analysis of MD simulations, by showing their applications to the allosteric pathways of IGPS

(from T. maritima), a excellent test-case with well-known allosteric features.

Materials and Methods

Aiming to achieve a comparison with ref. 29 which introduced dynamic perturbation con-

tact network on IGPS, we used the same structural models of apo and PRFAR-bound IGPS

complex that are described in ref8 in order to adequately assess the impact of the extension

presented here. In this previous analyzes it was shown that 100 ns of simulation were enough

to acquire allosteric effects in all the simulations. Accordingly here, we used these previous

MD trajectories, comprised of four replica simulations of 100 ns for IGPS apoenzyme and

four replica simulations of 100 ns for the holoenzyme (PRFAR-bound).8 MD simulations

of the IGPS complexes used the AMBER-ff99SB45 force field for the IGPS protein and the

generalized Amber force field46 for the PRFAR ligand. Computations were run using the

NAMD2 software package.47 A pre-equilibration procedure was performed on both systems

including addition of hydrogen atoms and explicit TIP348 water solvent molecules approx-

imately (22,500) optimization constraining the rest of the atoms at the crystal structure

positions, a slow heating to 303K, gradual release of atomic positions constraints, and un-
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constrained MD simulations of 4 ns in the canonical NVT ensemble using Langevin dynamics.

Thereafter production runs were simulated in the NPT ensemble at 303 K and 1 atm (using

the Langevin piston) for 100 ns after reaching the equilibrium volume (after ca. 2-3 ns).

Periodic boundary conditions and the particle mesh Ewald method49 were employed, with

van der Waals interactions calculated using a switching distance of 10 Å and a cutoff of 12 Å.

A multiple time-stepping algorithm50,51 was adopted, with bonded, short-range nonbonded,

and long-range electrostatic interactions were evaluated respectively at every one, two and

four time steps, using a time step of integration of 1 fs.

In general most computations were performed using the NumPy package,52 handling of MD

trajectories and topologies was done with MDTraj53 and network theory analyzes with Net-

workX.54

Dynamical Perturbation Contact Network

At each frame, we use the Cython55 implementation of the KD-tree algorithm56–58 found

in scipy59 (scipy.spatial.cKDTree) to get all the list of all atomic pairs at a distance below

a cutoff of 5 Å. The atomic contact matrix Aij such that aij = 1 if atom i and j are in

contact or 0 in the opposite case is built thanks to this list. Here the cutoff value of 5

Åwas used in consistence with the previous analyzes.8,29 The average atomic contact matrix

of a set of simulations is defined by averaging each element on all the individual matrices

i.e. aij,avg =

∑
t aij,t

nframes

. Note that in contrary to each frame atomic contact matrix which

is binary, the average will frequently produces decimal numbers thus requiring floating-

point arithmetic. Finally this matrix can be converted to the residue contact matrix using

transformation matrices T such that tij = 1 if atom i is in residue j or 0 elsewhere. Note

that if we want to avoid counting an atom i in the transformation matrix simply by setting

all the ti row to be equal to 0. The average residual contact matrix R can be expressed

as R = T tAT . This definition allow to use different transformation matrices to describe

asymmetric contacts (i.e. contacts between different selections). Here when not mentioned,
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the default selection used is the protein stripped from hydrogen atoms. Looking at intra-

residual contacts is beyond the scope of this study, thus we set all the diagonal elements of

the average residue contact matrix to be equal to 0. The average residual contact matrix is

then the adjacency matrix of the contact network. The average perturbation contact matrix

between an initial set of simulations and a perturbed on is here defined as the subtraction

of their two average residual contact matrices. For visualization purposes we add a coloring

scheme to the edges: blue if the weight is bigger in the initial state and red if the weight

is bigger in the final state. The dynamical perturbation contact network is the network

created from the latter adjacency matrix. All this procedure is strictly equivalent to the one

described in ref 29.

Birch Clustering

To cluster the weights, we represented the unsigned list of weights in the dynamical pertur-

bation contact network as a one-dimensional vector. It is on this vector that we used the

scikit-learn60 implementation of Birch clustering39 with a threshold of 0.5 and a branching

factor of 50. In order to bypass the arbitrary choice of a number of clusters we usually did

not performed the final clustering step except if specially mentionned.

Connected component analysis

Weighted networks can be cleared of their faintest connections by removing all edges present

in the network that have a weight lower than a threshold value and pruning isolated nodes. A

connected component of this new graph (constructed with a given threshold) is a component

C in which each pair of nodes is connected with each other via a path in the component. Thus

two connected components are distrinct if there is no link between these two connected com-

ponents. Connected components are found using the Breadth-First search algorithm.61–63

Here we assess properties of connected components, namely the number of components in the

graph using different threshold values. Dynamical perturbation network have the specificity
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to have edges weighted by decimal numbers. Therefore, scanning the number of connected

components by increasing the threshold using a weight step may neglect some relevant data

points (see Fig. S3). To avoid this problem, here we compute instead the number of con-

nected components after successive removals of the edges with lowest weight and pruning

isolated nodes. This gives the exact representation of the number of connected components

in function of the threshold.

Results and discussion

The entire perturbation contact network between PRFAR-bound and apo-IGPS represented

in Figure 1A is quite congested graph, from which one can still extract general clues about

the overall contact changes due to effector binding. In fact, a majority of contact loss upon

effector binding (blue edges) is detectable between the two subunits, consistently with the

alteration of the breathing motion observed in previous studies [REF]. Furthermore, another

striking pattern is present at sideR of HisF at sideR and involves the effector site, loop1,

f α1, f α2. All these secondary structure elements have been shown to be essential to the

propagation of allosteric motions. Other smaller patterns of interaction are also noticeable,

but the complete graph contains more than 4,000 edges and is difficult for a human to ex-

ploit.

To ensure a reliable way to have a visualisation that is comprehensible for a human eye, one

can remove all edges below a certain threshold weight, thus displaying only a specific number

of the top biggest edges. For instance, if one selects the top 50 edges this will correspond to a

threshold weight of 6.38, as represented in Figure 1B. With this crude selection criterion, one

can visualize the HisF perturbations near the effector site at sideR that propagate to loop1,

f α1 and f β1 along with other displacements at sideL. Moreover, at the HisF/HisH interface

the contact changes related to the salt bridge network between f α2, f α3 and hα1 is observed

along with their propagation to the Ω-loop and other shifts at sideL near the hM121 residue,
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which are linked to the opening of the ion gate. Finally, in HisH is evident the strongest

perturbation corresponding to the partial unfolding of the hα2 helix upon binding and a

cluster of interactions at the top of HisH, with hR78 as hub.

Figure 1: A. Complete Dynamical Perturbation between PRFAR-bound IGPS and apo IGPS.
Blue edges represent a stronger contact in apo while red edges a stronger contact in PRFAR-
bound B. With only the top-fifty biggest edges shown. C. Repartition of the edges in terms
of weight showing the weight of the 50th biggest edge.

Clustering

The perturbation network edge counting decays as a function of weight as represented on

Fig. 1C, featuring in the tail of the curve (i.e. at the largest weights) some sort of discreti-

sation, with some edges grouped together (appearing as small plateaux) and separated from

other groups of edges. An arbitrary choice of threshold weight is then arguable, because

it will not necessarily preserve these groups. Therefore, selecting a threshold at the edge

of these groups could be ideal because it would allow keeping edges with similar weights

together in a separated group of relevance. The Birch clustering of edges by weight allowed

us to distinguish these groups of relevance and to select those corresponding to the biggest

weights. In Figure 2, the perturbation network associated with edges in the top-four group

of relevance are depicted with a color for each group. The first group corresponds to the
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single outlier pair hE56-hR59 involved in the unfolding of the hα2 helix. In the second

group are found three edges: fA224-f f227, hR116-hD159, fR249-hY136. The first pair has

already been attributed to a displacement of a hydrogen-bonding near the effector site,29

marking the beginning of the allosteric pathways, while the two other interactions are re-

lated to the breathing motion (with fR249 being part of the hinge) and local contacts at

sideL. The third group of relevance contains four edges: fD11-fK19 f E67-hR18, hS115-

hD159, fK4-fV248. The first two are key elements of the allosteric mechanism, the third

one forms a triad with the hR116-hD159 pair in group 2, while the latest involves the ion

gate (i.e. fK4) and its connection to the breathing motion hinge (i.e. fV248 is adjacent

to fR249) . The fourth group contains six edges (including a triad): fK4-f F214, hH120-

hH141, fH228-fK19-fR27, hN12-hN15 and hY79-hS197. Among these six edges, the first

one is correlated to the opening of the ion gate (via fK4) as well as the second one (as part

of the cluster involving hM121), while the triad (comprising effector binding site and loop1)

and the hN12-hN15 pair have been established as part of the allosteric signaling mechanism.

The last perturbation of this group has not been previously highlighted since it belongs to

a cluster of interaction in the top of HisH not directly linked with other relevant perturba-

tions. Overall, the most interesting outcome of the clustering procedure providing groups of

relevance is the appearance of a direct propagation from the effector site to loop1 and then

to f β1, involving residues fA224, f F227 fH228, fK19, fD11 and fR27 at the bottom of

HisF (sideR). However, these connections are located in three different groups of relevance.

Indeed, as expected, this analysis does not provide insights of local propagation of contact

perturbations and, thus, direct information on the allosteric signaling mechanism. In fact,

increasing the number of groups of relevance (e.g. more than four considered so far) will

not necessarily provide better local information, while it complicates the analysis by quickly

increasing the total number of pairs to be considered.
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Figure 2: A. Representation of the top-four groups in term of edge weight B. Representation
of the Birch clustering of edges by weight.

Connected component analysis

Considering this limitation of the cluster analysis, we performed a connected component

analysis that provides a way to cluster edges by closeness, possibly granting information

on the local propagation of the allosteric signals. As shown in Figure 3, when sequentially

removing edges with the lowest weight, the number of connected components (after pruning

isolated nodes) can either increase (if this edge is the last one connecting two components),

decrease (if the edge is the last member of a component), or make a plateau (if the edge

is inside a connected component with more than one edge). The complete graph of IGPS

(see Fig. 1A) contains initially a single connected component, which is conserved until edges

with weights <0.80 are removed. By increasing the weight threshold, the first split into

two components occurs and then the number of connected components steadily increases

until around 35 (at weight equal to 3.03), meaning that in this range of weights removing

edges creates new components. In the range of weights between 3.03 and 4.45 , the number

of connected components oscillates, initially decreasing (up to 30 until a weight of 3.39)

and then increasing up to its maximum at 36 components. From weight 3.82 to 4.45 , the
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components are created and destroyed approximately at the same rate, thus featuring fast

and small oscillations for sequential edge cuts. The network with the maximum number of

components at the largest weight (i.e. at 4.45 ) is considered as the graph containing its

“final” components, since from this point the number of components is destined to quickly

decrease after each edge cut (only occasionally it can slightly increase upon new edge cut,

with total number of components obviously smaller than the maximum, i.e. <36, see Fig.

2B). At this point, in fact, edge removal will create just (pruned) isolated nodes, indicating

that a graph structure where the components are interconnected by edges with large weights

is reached. This structure resembles a community structure where the edges with smallest

weights are removed and the corresponding nodes pruned. Indeed, as shown in Fig, 2B, there

is a fast decrease in the number of connected components from 36 to 20 between weights 4.45

and 6. This corresponds to the removal of the smallest components, usually containing a

single edge. At weights >6, the number of components undergoes a much slower decay (even

plateauing in some ranges) until zeroing at the final weight around 16. This behavior refers

to the strongest components slowly disappearing, where the strength of a given component

is related to its edge with the largest weight, which then corresponds to the vanishing point

of this component.

Figure 3C represents the distribution of vanishing points for the 36 final components, i.e.

at threshold weight equal to 4.45 . Around 50% of these components have a vanishing point

between 4.45 and 6, which belongs to the initial fast decrease in the number of components

down to 20. The median value of the whole distribution of vanishing points of the final

components is 6.01 that, notably, is quite close to the threshold weight corresponding for

the top 50 edges (i.e. 6.38). Above 6, the distribution of vanishing points is really spread,

with maximum one or two components sharing the same vanishing point, in line with the

slow disappearance of components following edge removal with weights >6, as discussed

above. Two interesting metrics about the components are the size, the diameter. The size
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Figure 3: A. Diagram representing the count of components while successively removing
edges with lowest weight B. Number of connected components in function of the lowest
weight in the graph. C. Distribution of the vanishing points of each component for the
network at threshold 4.45 corresponding to the final components.
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is the number of edge, the diameter the is the greatest distance between any pair of nodes

in the component. In the case of the perturbation contact network analyzed here, the sizes

of the final components indicate how much a local perturbation has an influence on other

amino acids whatever their position. On the other hand, the diameter evaluates how much a

perturbation can spread to different parts of the protein. Notably, we observed an interesting

trend of the diameters of the final components and their vanishing points, as depicted in Fig.

4A. Most of the final components are comprise of two vertices and one edge so they have a

diameter of 1 but also a good portion of them have a diameter of 2 and represent the most

trivial example of propagation. We thus chose to only look at the nine major components

of diameter > 2 represented on Figure 4. They involve specific secondary structures that

are reported in Table 1 alon with the metrics associated to each component. Among those

components, two relates to the alteration of motion in loop1 associated with its closing on

PRFAR (components attributed 1 and 9), three relates to the alteration of breathing motion

observed at sideL (components attributed 2, 3 and 6) while two relates to the alteration of

breathing motion at sideR coupled with rearrangements at the surface of HisF (components

attributed 4 and 8). Component 5 with the biggest vanishing point reveals the formation of

the oxyanion hole. Only component 7 cannot be attributed to known allosteric effects but

it contains the N-terminus part of HisF which was not resolved in the crystal structure used

to perform MD simulations and is thus prone to thermal fluctuations.

Table 1: Secondary structure elements of the seven major components

Attr. d v.p. Size Secondary structure elements
1 7 13.38 23 loop1, fα1, fβ1, fβ5-fα5, fβ8-fα8
2 6 10.46 15 fα3-fβ4, fα4-fβ5, fα6-fβ7, fβ4, fβ6, hβ6-hβ7, hβ7, hβ8’, hβ9
3 4 13.51 6 hβ10, hβ6-hβ7, hβ8, hβ9-hβ10
4 4 10.97 9 fα2, fα2-fβ3, hα1, hα4
5 3 16.34 6 oxyanion strand, hα2, Ω-loop
6 3 12.68 9 fC-term, fN-term, fα7, fα8, hβ8’
7 3 9.72 6 hN-term, hα4, hβ10-hβ11, hβ11, hβ4
8 3 9.56 4 fα2, fα3, fα3-fβ4, hα1, Ω-loop
9 3 5.39 4 loop1, fβ6-fα6, fβ7-fα7
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Figure 4: A. Dynamical Perturbation Network containing the 9 major component with
diameter > 2. B. Scatter plot of the correlation between the vanishing point of a component
and its diameter.

Figure 5: A. Representation of the Dynamical Perturbation Contact Network of component
1 and 9. B. Representation of components 4, 5 and 8.
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The main asset of this approach to draw dynamical perturbation contact network is that

the links from local to global perturbation is easier to grasp. The rudimentary threshold

selection was producing many isolated edges and with this approach it was essential to mix

the use of several threshold in order to be able to look at the entirety of a perturbation. Here

knowing that the effector site is at the bottom of HisF makes it clear that the information

about the origin of the allosteric mechanism is contained in components 1 and 9 show in

Figure 5A. These components are neighbors and almost connected since component 1 con-

tains residues fT21 and f F23 while component 9 contains residue fN22. We retrieve the

contact network corresponding to the top-four groups of section between residues fA224,

f F227 fH228, fK19, fD11 and fR27. But this time we are able to capture even more lo-

cal perturbations. Almost all residues in loop1 from V18 to G30 undergoes rearrangements

with another loop1 residue. But some interactions previously overlooked during perturba-

tion network contact analysis stand out. Displacements from the effector site (fβ8-fα8 turn)

and loop1 propagates to f α1. This is in agreement with the latest results which shows that

this secondary structure is also involved at sideR in HisF rearrangement. At the same time,

two red edges connects sideR and sideL: f S144–f F23 and fD176–fN22. These increase in

contact upon effector binding can be rationalized as loop1 folding up on PRFAR congruent

to its binding at the effector site. Components ranked 4, 5 and 8 are represented on Figure

5B. Components 5 and 8 are also neighbors with hM14 belonging to component 5 and hN15

belonging to component 8. Remarkably component 4 is very similar to the zoomed contact

perturbation network obtained in ref.29 that we obtained using a lower threshold. Indeed,

the connected component analysis present a generalization of this idea of zooming on local

regions without having to choose a specific region. Component 5 is centered around the

biggest edge of the graph hE56-hR59 that was highlighted as the single member of the top

group of relevance. Thanks to the connected component analysis, we are now able to directly

associate this perturbation with other displacements in the protein. hE56 hR59 are both

linked with hR60 which itself linked with hV8 and hP10 (located in the Ω-loop). Finally
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the hP10–hG50 blue edge highlights that the hydrogen bond between these two residues

break, marking the penultimate step of the allosteric mechanism permitting the flipping of

the oxyanion strand.

Conclusion

Birch clustering and connected component analysis have been proposed to further process

dynamical perturbation contact network. Birch clustering tool established itself as a more

reliable way to select a threshold than an arbitrary selection. Unfortunately this procedure

remains tiresome to investigate propagation of signaling in proteins since the clustering is

performed on the weight space rather than in the 3-dimensional distance space. On the

other hand, the connected component analysis is a straightforward tool, removing the need

to arbitrarily select a value (we can rationalize the only parameter which is the diameter

of the component), directly displaying perturbations associated to the allosteric mechanism.

Indeed of the nine components with a diameter >2 are staged four key allosteric motions:

stiffening of loop1 and its folding on the effector binding pocket, rearrangements at sideR of

HisF, alteration of the breathing motion and the flipping of the oxyanion strand. Here thanks

to the local nature of the connected component analysis, we are able to recapture allosteric

motions that previously required a fine tuning of parameters (hP10-hG50 hydrogen bond

breaking, extension of the salt bridge alterations to hα4). Moreover some new information

emerge, namely the role of residue f F23 in folding on the effector binding pocket upon

effector binding and the involvement in f α1 in the rearrangements at HisF. Overall, we

evaluated the connected component analysis to be a remarkable tool to facilitate the analysis

of perturbation contact network. This procedure which is easy to implement and applicable

to all weighted networks, has the potential to become a standard procedure to guide the

investigation of other type of dense protein weighted networks whether static or dynamic.
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Network analysis of protein dynamics. Febs Letters 2007, 581, 2776–2782.

(19) Sethi, A.; Eargle, J.; Black, A. A.; Luthey-Schulten, Z. Dynamical networks in

tRNA:protein complexes. Proceedings of the National Academy of Sciences 2009, 106,

6620–6625, Publisher: National Academy of Sciences Section: Physical Sciences.

19



(20) Aftabuddin, M.; Kundu, S. Weighted and unweighted network of amino acids within

protein. Physica A: Statistical Mechanics and its Applications 2006, 369, 895–904.

(21) Barah, P.; Sinha, S. Analysis of protein folds using protein contact networks. Pramana

2009, 71, 369.

(22) Silveira, C. H. d.; Pires, D. E. V.; Minardi, R. C.; Ribeiro, C.; Veloso, C.

J. M.; Lopes, J. C. D.; Meira, W.; Neshich, G.; Ramos, C. H. I.; Habesch, R.;

Santoro, M. M. Protein cutoff scanning: A comparative analysis of cutoff de-

pendent and cutoff free methods for prospecting contacts in proteins. Pro-

teins: Structure, Function, and Bioinformatics 2009, 74, 727–743, eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/prot.22187.

(23) Di Paola, L.; De Ruvo, M.; Paci, P.; Santoni, D.; Giuliani, A. Protein Contact Net-

works: An Emerging Paradigm in Chemistry. Chemical Reviews 2013, 113, 1598–1613,

Publisher: American Chemical Society.

(24) K. Grewal, R.; Roy, S. Modeling proteins as residue interaction networks. Protein and

Peptide Letters 2015, 22, 923–933.

(25) Vuillon, L.; Lesieur, C. From local to global changes in proteins: a network view.

Current Opinion in Structural Biology 2015, 31, 1–8.

(26) Achoch, M.; Dorantes-Gilardi, R.; Wymant, C.; Feverati, G.; Salamatian, K.; Vuil-

lon, L.; Lesieur, C. Protein structural robustness to mutations: an in silico investigation.

Physical Chemistry Chemical Physics 2016, 18, 13770–13780.

(27) Dorantes-Gilardi, R.; Bourgeat, L.; Pacini, L.; Vuillon, L.; Lesieur, C. In proteins, the

structural responses of a position to mutation rely on the Goldilocks principle: not too

many links, not too few. Physical Chemistry Chemical Physics 2018, 20, 25399–25410.

20



(28) Doshi, U.; Holliday, M. J.; Eisenmesser, E. Z.; Hamelberg, D. Dynamical network of

residue–residue contacts reveals coupled allosteric effects in recognition, catalysis, and

mutation. Proceedings of the National Academy of Sciences 2016, 113, 4735–4740.

(29) Gheeraert, A.; Pacini, L.; Batista, V. S.; Vuillon, L.; Lesieur, C.; Rivalta, I. Exploring

allosteric pathways of a v-type enzyme with dynamical perturbation networks. The

Journal of Physical Chemistry B 2019, 123, 3452–3461.

(30) Negre, C. F.; Morzan, U. N.; Hendrickson, H. P.; Pal, R.; Lisi, G. P.; Loria, J. P.;

Rivalta, I.; Ho, J.; Batista, V. S. Eigenvector centrality for characterization of pro-

tein allosteric pathways. Proceedings of the National Academy of Sciences 2018, 115,

E12201–E12208, Publisher: National Acad Sciences.

(31) Chaudhuri, B. N.; Lange, S. C.; Myers, R. S.; Chittur, S. V.; Davisson, V. J.;

Smith, J. L. Crystal structure of imidazole glycerol phosphate synthase: a tunnel

through a (β/α) 8 barrel joins two active sites. Structure 2001, 9, 987–997.

(32) Gomez, M. J.; Neyfakh, A. A. Genes involved in intrinsic antibiotic resistance of Acine-

tobacter baylyi. Antimicrobial agents and chemotherapy 2006, 50, 3562–3567.
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2.3 Generalization of Perturbation Contact Analysis

2.3.1 From a supervised to an unsupervised procedure

The problems that DPCN can help to solve are usually quite narrow: they involve a set of MD simulations in
a reference and perturbed system. All the contact information contained in each frame of the MD simulations
is simply averaged in a supervised manner. When running MD simulations, it is good practice to run several
simulations of the same system (also called replicas) to explore the most probable conformations of a protein.
DPCN can also be used to investigate differences between replicas of the same system and between single repli-
cas of different systems. Besides, the conformation of a protein can change in a single replica. Thus, averaging
it can produce unexpected results. This work quickly becomes tedious because we do not know a priori which
are replicas and time windows with interesting behaviors. To understand this issue in more depth, we can
investigate DPCN between different time windows of a replica. Moreover, this approach does not provide with
a real way of quantifying the importance of difference between replicas. In fact, DPCN do not guarantee that
the difference displayed is significant (i.e. not noise) nor reproducible (i.e. found in every replica and within
all frames of a replica). In practice, problems can also be much more complex than studying only two systems
and having one reference system and multiple perturbed system. Running DPCN to solve such problems also
becomes tedious.

Instead of averaging the contacts of frames with a supervised labeling, we introduce here a procedure where
all contact data are stored in a contact matrix. In the contact matrix, the rows corresponds to the different
samples (i.e. frames) and the columns corresponds to the different features (i.e. contacts). From this contact
matrix, we extract the principal axes of variance using Principal Component Analysis (PCA). With standard
linear PCA, the eigenvectors corresponding to a principal component are linear combinations of all contacts
and can thus also be represented as contact networks. In our main system of interest, IGPS from T. maritima;
we actually discovered that the first principal component (PC1) of variance using the concatenated contact
matrices of all simulations of apo and PRFAR-bound IGPS completely separates frames of apo from frames of
prfar. Moreover, the corresponding PC1 Network (PC1N) is highly correlated to the DPCN. This proves that
the differences that we previously investigated are both significant and reproduced in all replicas and within
replicas.

2.3.2 Other methodological development and applications

Contact Principal Component Analysis

We report the contacts weights of different frames in a matrix C of size Nframes ×Ncontacts. If a contact is not
present in a frame, its weight is simply put as zero for this frame. We use Principal Component Analysis (PCA,
cPCA for contacts) to extract the k-first principal components (PCs). The PCs are each of size Nframes and
represent the projection of the frames in this component. During the decomposition, we compute the (ordered)
eigenvectors of the covariance matrix. Each of these eigenvectors corresponds to a principal component and is
of size Ncontacts, thus representing a linear combination of all contacts in the system. We define a new type
of contact network: the ith PC Network (PCiN) in which nodes are amino acids of the protein, edges are all
contacts, and weights are the value of the contact in the eigenvector. These eigenvectors also corresponds to an
eigenvalue, which is representative of the importance of the principal component. In PCA, the eigenvalues and
eigenvectors are ordered so that the PCs decrease importance with the component number.

As described in reference [1], we can restrict ourselves to one or two given eigenvectors i and j, we use them
to get a projected 2D free energy-landscape of the system along the eigenvector dimensions:

∆G(PCi, PCj) = −kBT (P (PCi, PCj)) −G0 (2.1)

where P (PCi, PCj) is a probability estimate obtained from the MD frames and G0 is the free energy of the
most probable state.

Other features and their challenges

Simple atomic contacts can be compared with other features of dynamical protein structures, such as: Carte-
sian coordinates of the Cα (xPCA), linearized ϕ and ψ dihedral angles (dPCA), binary contact (fPCA) and
transformed distance of contact (tdistPCA). Features, thus, can be external measures of the system (i.e., de-
pendent on a frame of reference outside the protein, such as Cartesian coordinates) or internal measures (all
other features studied). Internal features have an intrinsic advantage over external features because they are
independent of the translations or rotations of the system and thus do not need alignment of frames.
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Another discrimination between features is how they are indexed. In cartesian coordinates, three value (x,
y, z) corresponds to each atom of single amino-acid. By contrast, binary contact, distance contact or simply
contact have a single value that corresponds to two amino acids. When multiple features values corresponds to
a single contact, we have to slightly modify the PCA procedure. The PC vectors and 2D free-energy landscape
are not affected but the eigenvector interpretation must change. To avoid compensatory effects, we compute the
importance of an amino acid as the square root of the sum of squares of the influence of each of its individual
features in the eigenvector. In cartesian coordinates, because this importance corresponds to a single amino
acid, we cannot represent any PCiN. All features that are indexed in correspondence with two amino acids can
be represented as PCiN. Other features, not presented here, such as volume elements, relate to more than two
amino acids. In such cases, outside the scope of this thesis, hypergraphs can be defined.

Finally, the importance of some features does not necessarily grow linearly. This is notably the case for ϕ
and ψ backbone dihedral angles which have to be linearized from the circular space using the transformations:[1]

q4n = sinϕn; q4n+1 = cosϕn; q4n+2 = sinψn; q4n+3 = cosψn (2.2)

with n = 1, . . . , N corresponding to the N pairs of consecutive residues from which dihedral angles are considered
(in practice = Nresidues − Nchains). Similarly, the shortest distance between heavy atom contacts between two
residues does not evolve linearly with the energy, but 1

d2 does. Thus we transform the closest heavy-atom
distance matrix between residues in contact with the inverse squared function.

Single trajectory PCA

First, we restrain our analysis on a single trajectory: apo1 (100 ns, 1, 000 frames). In total, 3, 668 pairs of
residue establish a contact during this trajectory, resulting in a 1, 000×3, 668 contact matrix. In order to assess
the number of relevant components in PCA, we first report the PC1 using the first one hundredth PCs (in
PCA, the truncation of the smaller components does not affect the bigger). In Figure 2.7 the evolution of the
explained variance ratio of each component is reported with each component and its cumulative counterpart.
The explained variance ratio indicates how much variance of an overall signal is explained by a component. It
is directly related to the eigenvalue of a component and thus descent in order of magnitude, each component
explains less and less variance. Many selection criterions exist. For instance, one of them is the Kaiser criterion,
which says that we should keep only components explaining more variance than a single feature. For 3, 668
contacts, this means selecting components explaining more than 0.027% of the overall variance. In our case,
this criterion is impractical, since it require selecting more than the 100 original components for analysis. A
more traditional criterion selection is to select components in order to select the ”elbow” of the graph where
the explained variance ratio seem to level off. This criterion is criticizable because of its subjectivity, but here
gives a more reasonable choice, selection between 5 and 15 components. Another criterion we can use is to
select only components that explain more than 1% of the system variance. Here this means selecting the 9th
first PC, which matches nicely with the elbow selection and is our choice in the rest of the analysis. Despite the
fact that the two first PC combined explains about 16% of the variance, even selecting components up to the
100th explains only 60% of the system variance, and the growth of the cumulative explained variance slows very
quickly. This implies that most of the variance cannot be simply explained by global motions. This result is
actually in good agreement with the fact that a nicely equilibrated MD simulations has many random thermal
fluctuations, and that much of this variance in the simulation simply is not explicable.

In Figure 2.8A we represent the time-evolution of the values associated to the 9th first PC and PC20 (for
comparison) during simulation apo1. PC1 display a particularly interesting behavior since at the beginning of
the simulation, its value is high in the positives (around 100), but before 20 ns it quickly decreases and then
stabilizes around a value of -50. This suggests that PC1 represents a relaxation signal. At the beginning of
the simulation, the protein is folded in a position out of equilibrium but then during the simulation it quickly
relaxes. Interestingly, in Figure 2.8B we show that in the corresponding PC1N the contacts associated with
this relaxation are mainly found within the allosteric pathways and notably the f α1 and f α2 helices and at the
interface between HisF and HisH. The pre-equilibrated structures were built using the 1GPW chain C and D
PDB structure. This structure stands out particularly because it has loop1 in a folded position and phosphate
groups are bound at the effector site at the precise spot where PRFAR binds. Therefore, this structure may
possess some degree of activation which could explain why the relaxation signal is mainly found in the allosteric
pathways.
By contrast PC2 and PC3 shows oscillating behaviors in Figure 2.8A. The period of PC2 is about the length
of the simulation (100 ns), and its amplitude is around 100 (ranging from -50 to +50). The period of PC3
is twice as small (50ns) and has a similar amplitude. Periodic motions like these are more likely to represent
the system intrinsic dynamics than PC1 which represents an artifact from the system preparation. The con-
tacts involved in the signal described by PC2 are mainly found at the interface, and a 100-ns period perfectly
matches previous descriptions of the breathing motion in simulations of apo[2] so this suggests that PC2 rep-
resents contacts involved in the breathing motion. In contrast, influences in PC3 are mainly localized to a few
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Figure 2.7: A. Explained variance ratio in function of the component number, with the Kaiser criterion displayed
in red and the 1% criterion in green. B. Cumulative explained variance ratio in function of the component
number.

contacts. Some of these contacts are directly located near the effector site and in secondary structures involved
in allosteric pathways. The PC3 signal accurately represents the system dynamics, therefore its concentration
in the allosteric pathways may indicate that it is intrinsically labile showing that the allosteric pathways are
encoded in the protein structure.
PC4, similar to PC1, starts at a high positive value (75) and quickly decreases to negative values before 20 ns.
Then it stabilizes around zero and oscillates between positive and negative values. By the same argument we
can postulate that this signal represents a relaxation degree of the system. However the main difference is that
in this case, an oscillation around zero starts after relaxation. Here this suggests that the component actually
represents some of the system dynamics but that the initial position is a far from equilibrium.

Each smaller component shows an oscillating behaviors around zero. This suggests that there is no more
big relaxation component and that, in fact, the system is nicely equilibrated after 20 ns. Comparison between
molecular dynamics and random walks of protein systems has shown that the more PCA biplots resemble a
cosine function, the more this trajectory is similar to a random walk, non-convergent, and therefore contains
little dynamical information[3]. In Figure 2.9 we represent the biplots between each combination of the 9th first
PC. None of the biplots represents a cosine for the full duration of the simulation. However, in the projections
associated with PC1 and PC4, the early steps of the simulation (40 first ns for PC1 and 20 first ns for PC4)
approximate a cosine shape in most of the associated biplots. This further indicates that PC1 and PC4 are not
really representative of the system dynamics, and instead represent the shift from the initial structure towards
a more equilibrated system. By contrast all other plots, including those displaying PC2 are much different from
a cosine and this suggests they contain valuable information about the protein dynamics and the underlying
free energy landscape.
Interestingly, both the period and the amplitude of the value of the components are shortening with the compo-
nent number. This proves that the biggest components are representative of large scale slow collective motions
while smaller components are fast and localized motions and the smallest components are virtually only noise
such as shown in the PC20 graph whose value is oscillating so fast with such a small amplitude that it can
hardly be explained. We proved that cPCA is a valuable tool for extracting different contact signals from a MD
simulation. A first application is for convergence analysis and shows if we can extract some relaxation signals
from the dynamics. Another application is to capture contacts involved in the main motions of the intrinsic
dynamics of the protein. We suggest that, if they happen, events such as local (un)folding, intrinsic disorder,
or large-scale conformational shifts should be extracted by cPCA. In particular, cPCA facilitates the analysis
because it is an unsupervised technique which finds the time-window in which the corresponding events are
happening by contrast to the DPCN technique in which frames have to be labeled to perform averages and
differences. Similarly, by concatenating contact matrices of different systems and/or replicas (when they can
be concatenated), the cPCA technique could provide a vision of the most important differences between the
systems and whether they are reproducible.

Multi-trajectory analysis and allosteric signal decomposition

To compare contact signals in simulations of apo and prfar, we concatenate the contact matrices of those
simulations (apo1 to apo4, prfar1 to prfar4) and perform PCA on this contact matrix. This matrix is of
size 8, 000 × 4, 408 and in a first study, we select the first hundredth PC to select an appropriate number of
components to study. In Figure 2.10, we show that the scree plot variance ratio shows again an elbow between



2.3. GENERALIZATION OF PERTURBATION CONTACT ANALYSIS 59

Figure 2.8: A. Time-evolution of the 9th first principal components and the 20th. B. Network representation
of the eigenvector associated to the 9th first principal components and the 20th. Edge width is proportional
to the contribution of each edge in its PCN. Edge color is blue if a contact is typically stronger in frames with
negative PC value and red if this contact is stronger in frames with a positive PC value and vice-versa.

5 and 15 and that the 1% criterion rule shows that a good choice is to select the first nine PCs. This number
is the same as the number of components we selected during the single-trajectory analysis. This is somehow
surprising because we expect that adding more signal (produced in very different conditions) will produce more
relevant components. Still, this effect can be moderated by the fact that the addition of more input data helps
define more clearly if the signal carried by a component is reproducible along all simulations or if it is an artifact
found in a single simulation.

In Figure 2.11A we show the evolution of the ninth first principal components values during time in the
different simulations. Very interestingly, values of PC1 perfectly discriminate frames of apo (with a PC1 around
50) from frames belonging to prfar simulations (PC1 around -50). This suggests that the first principal compo-
nent contains essential information about contacts that differentiate the frames of apo and the frames of prfar.
Therefore, PC1 is a suitable candidate to represent the allosteric contact signal. Among the ninth first principal
components, the first is the only one which is able to strictly discriminate the frames this way. This is expected
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Figure 2.9: Biplot between the 9th first principal components

Figure 2.10: Scree plot for the 100 first principal components of the multiple trajectory contact signal. The 1%
criterion is displayed in green dotted line.

from PCA properties and shows that PC1 extracts all the allosteric information found in our simulations.

PC2, on the other hand, has mostly positive values for apo1, prfar1-2 and negative values for apo2-4 and
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Figure 2.11: (A) Time-evolution along the different MD simulations of the PC values of the 9th principal
components 1 to 9. Simulations of apo are colored in blue and simulations of prfar in red. (B) Free-energy
computed (separately) along the PC1 axis for simulation apo1-4 and prfar1-4. Start of simulations are flagged
with a right triangle and end of simulations flagged with an octagon. (C) 2D Free-energy landscape of simulations
apo1-4 and prfar1-4 shown as contour lines computed separately by system. For each system, there are 9 contour
lines separating the plot in 10 areas with iso-proportions of probability (hence a 10% probability). The path
taken by a simulation starts from a right triangular flag and ends in an octagonal flag.

prfar3-4. This indicates a signal of a different nature which is not exclusive to either apo or prfar. This signal
is probably representative of the exploration of different conformations by different replicas. In this case, the
conformations obtained are not exclusive to either apo or prfar, which notes that this conformational change
can be achieved in presence or absence of PRFAR. Still, whether PRFAR affects this conformational change
remains open.

PC3, PC4, and PC5 also point out signals that are representative of the difference between replicas. PC3
shows positive values for apo1 and prfar4 and negative values for apo2 and prfar2 while the other replicas are
fluctuating around zero. PC4 shows mostly positive values in simulation apo1-2 and prfar3 and negative values
in apo3-4, prfar1 and prfar4 while prfar3 is oscillating around zero. In PC5, the simulations apo2 and prfar1
are strongly positive and apo3-4 and prfar2 are strongly negative. Other simulations are fluctuating near zero.
These last three components are representative of most subtle behaviors, that are not consistently reproduced
among simulations and not exclusive to either apo or prfar. While PC1 and PC2 both separates roughly 50%
of the frames from each other, which maximizes variance, and it has to be noted that here, PC3, PC4 and PC5
separates much less neatly the frames, which accounts for component that are explaining less variance.

In PC6, the value in each simulation starts around -50, but then quickly increases to a positive value in the
simulations apo1, apo2, and prfar2, but around zero in the simulations apo3, apo4, prfar1, prfar3, and prfar4.
Similarly, in PC7, the value of the component in each simulation starts around 50 but then quickly drops around
zero in apo1, apo2, apo3, apo4. In prfar simulations, the behaviors are much more nuanced; in prfar1 and prfar2
it quickly drops to a negative value, but in prfar2 it slowly relaxes towards zero, while in prfar4 it oscillates
in the positive values. Both these signals are representative of a relaxation signal from the input structure to
equilibrium. The difference between PC6 and PC7 is that in PC6, the relaxation is along a dimension where
the system is already fluctuating (behaviors are rather different in all simulations after the initial relaxation),
but in PC7 this is a pure relaxation for all apo simulations (converging fast towards zero), but is a fluctuating
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dimension for frames of prfar (different behaviors in this case). Although these components contain an artificial
component due to the input geometry, this shows that PCA is able to decompose this relaxation signal from
the other components, which suggests that other components are not tarnished by relaxations occurring during
the early dynamics of the simulation. Moreover, because these two components are now number 6 and number
7, this shows that the use of more frames in PCA grants a lower weight to these initial artifacts.

In PC8, the oscillations in the simulations apo1 and prfar1-4 are close to noise. The signal in the other
simulations is very replica specific. Similarly, in PC9, the oscillations of simulations apo1, prfar3-4 are close
to noise, with the other simulations showing a small but very specific behavior. These specific behaviors are
achieved in particular simulations and are not consistently reproduced in different replicas of the same system or
across systems. The ninth first principal components can be organized in groups which follow a relative order.
First the difference between systems (here, PC1 the allosteric signal), second the differences between replicas
(here PC2-5), then relaxation signals reproduced in different replicas (here PC6-7) and then system-specific
behaviors with PC8-9. This goes with the PCA properties, which finds the axes of maximum variance. PC1
offers then a rather unique view of the allosteric signal, since it represents the differences between frames from
apo and prfar that are consistently reproduced in all replicas.

In Figure 2.11B we represent the free-energy potential well calculated from the probabilities of the PC1
value in the simulations apo1-4 and prfar1-4. The two wells do not overlap because values taken in PC1 in apo
and prfar also do not overlap. The apo simulations potential well is much more narrow than the one of prfar
simulations. At first glance, this seems in contradiction to the fact that PRFAR binding is hypothesized to
tense the protein in a more defined conformation. This phenomenon can be explained by two different factors.
In first, PC1 is only one dimension of evolution of the system, which means that this situation may be different
in PC2, PC3 and so on. In second, the starting point of all apo simulations is high in energy in the PC1 well,
and they all start with a relatively low PC1 which is high in energy. This echoes with our previous result in the
single-trajectory analysis, which found that the relaxation signal (which was also PC1) was found predominantly
in the allosteric pathways. This suggests that the initial structure of the apo simulations still contains some
elements of ”activation” that quickly disappears. This matches with the ensemble view of allostery. This may
cause exploration of the energy landscape to be biased by the initial position.
In Figure 2.11C, we show a 2D projection of free-energy landscape (or biplot) of simulations apo1-4 and prfar1-4
on the PC1 and PC2 axes. This view complements complementary the view which uses only the PC1 axis.
This picture shows that all starting points for the simulations of apo are found outside the contour lines (i.e.
in the 10% of frames that are found in the rest of the plane). This again shows that the initial positions for the
apo simulations are a bit out of equilibrium. The situation for prfar simulations is more nuanced with this 2D
projection. Indeed, the start of prfar simulations are found inside the contour lines but are in a high energetic
position considering the PC2 axis.

In apo simulations, two main energetic basins form, one centered around the point (50, 0) and one around
(60, 40). According to the PC1 values and the PC2 values in Figure 2.11B (or Figure 2.12), we attribute the
first basin to the simulations apo2-4 and the second to the simulation apo1. Interestingly, the end point of
simulation apo1 is in a position close to a transition towards the first basin. This suggests that the second
basin is not stable (maybe metastable) and that only the first basin is the most representative of the system
at equilibrium. In prfar simulations, we show three different energetic basins, the first around (-50, -50), the
second around (-30, 25) and the third around (-60, 50). Similarly, we can attribute the first basin to simulations
prfar3-4, the second to simulation prfar1 and the third to simulation prfar4. Despite all simulations starts in
basin 2 they mostly end up in different basins which shows that the system is more relaxed in the PC2 axis. By
contrast with apo simulations which finds stable basins only near zero PC2, prfar simulations have stable basins
with various PC2 values, even in strongly negative or positive PC2. This is in fact in good accordance with the
ensemble view of allostery, in which the binding of an effector affects not only the most stable conformation
of a protein but also the least stable conformations. The depiction of the PC2N in Figure 2.13 shows that
the contact changes associated to this component are very localized and associated to the (un)folding of the
hα4 helix and to the breathing motion. Still, to analyze in depth this more subtle behavior, the length of the
simulations may be an obstacle, because we probably did not explore enough of the energy landscape. This is
contrasts with PC1, which extracts the allosteric signal, which here is shown to be perfectly reproducible in all
simulations and at every time step.

Comparison between PC1N and DPCN

In Figure 2.14A is represented the PC1N and DPCN obtained from simulations apo1-4 and prfar1-4. At first
glance, the resemblance between the networks is really striking. Both graphs are very dense and hard to read.
In Figure 2.14 B, we represent a more digestible representation of those networks based on a Connected Com-
ponent Analysis (CCA, note that the word component here has a different mathematical meaning than in the
Principal Component). CCA shows that the networks are actually a bit different because applied to the PC1N
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Figure 2.12: 2D Free-energy landscape of simulations apo1-4 and prfar1-4 shown as replica-disjoint contour
lines. For each simulation, there are 9 contour lines separating the plot in 10 areas with iso-proportions of
probability (hence a 10% probability). The path taken by a simulation starts from a right triangular flag and
ends in an octagonal flag.

Figure 2.13: Ninth first principal components networks in the multi-trajectory analysis

we find 11 Connected Components (CC), with 95 edges and 98 nodes compared to the 9 CC, 82 edges and 82
nodes in the DPCN. Most of the components are identical between the two analyses. One slight difference is
that one CC representing the propagation of perturbation near the effector site at sideR is broken in two in the
PC1N. Then, two components appear with PC1N: one located near the effector site at sideL and one located
between the f α1 and f α2 helices. Finally, after cleaning with CCA, one component disappear in the PC1N
which is found at sideL near the interface in HisH and was attributed to side effects of the breathing motion.
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Figure 2.14: Representation on the protein structure of the complete (A) with connected component analysis
(B) DPCN and PC1N between the 4 simulations of apo and PRFAR-bound. Edge colors are assigned so that
a blue edge represents a contact stronger in apo while a red edge represents a contact stronger in the PRFAR-
bound complex. Edge width are normalized by the value of the maximum edge and are proportional to the
weight in each network. Black ellipses surrounds components that are present in the CCA for each network but
not in the other. (C) Correlation plot between the weights in the DPCN and the PC1N.

Components which are appearing and disappearing in the CCA of PC1N have indeed respectively stronger
and lower weights in the PC1N than in the DPCN. Interestingly, the two components which are appearing are
desirable because one represents effects associated to the effector binding and the other a salt bridge network
alteration between f α1 and f α2 previously reported in correlation analysis[2] and DPCN[4] but not in CCA of
DPCN. Finally, the component that disappears in the PC1N is not much studied and was not really related to
any relevant experimental data. This shows that despite the strong similarity between PC1N and DPCN, PC1N
has a superior ability to extract the allosteric signal. To quantify this similarity, we report in Figure 2.14C the
correlation plot between the weights in the DPCN and in the PC1N and the linear regression between the two
data sets. A very strong anti-correlation is found here (R2 < −0.98). The anticorrelation appears here because
PCA suffers from sign indeterminacy, and here it found weights in the opposite direction as the DPCN (we
reversed the color signs in the PC1N 2.14A-B for simplicity). This very strong correlation is in good accordance
with the graph that look very similar. Still, the average relative error between the fit and the PC1N data is of
16% which shows that the graphs are not perfect matches. Interestingly, the slope of the fit is equal to 0.01 up
to the fifth decimal. In fact, the norm of the DPCN is equal to 98 while the PC1N is by nature normalized,
showing that the 1/100 factor here is mostly coincidental. The intercept of the fit is equal to 0 up to the 6th
decimal, which shows that the fit is in fact linear.

Comparison between cPCA and other PCA techniques

In Figure 2.15A we report the 2D projection of the free-energy landscape in the PC1 and PC2 eigenvector
dimensions computed separately for simulations of apo and prfar using atomic displacements of alpha carbons.
A major difference between atomic displacements and backbone dihedral angles or contacts is that the atomic
displacements are computed using Cartesian coordinates which are external to the system. Such measures are
not invariant by rotation or translation of the complete protein or even wrapping within a box. This means that
before computing atomic displacements, trajectories must be correctly wrapped and aligned. Using only atomic
displacements, the free-energy landscape shows that simulations of apo and prfar overlap a lot. In fact, the
landscapes computed separately for each replica show that while individual replicas can be assigned a mostly
negative or positive PC1 and PC2, this does not translate to the systems and differences are not consistently
replicated. This contrasts with studies of correlations of this quantity, which are in good agreement with contact
networks.

In Figure 2.15B we report the free-energy landscape in the PC1 and PC2 axes using backbone dihedral
angles as features. Here, the frames of apo and prfar are conveniently separated. However, the separation is
not entirely perfect and some frames of prfar have a negative PC1, which is typical of frames of apo. The
landscapes computed separately for each replica shows that the simulation prfar1 actually differs much from the
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Figure 2.15: 2D projection of the free-energy landscape in the PC1 and PC2 axes computed separately for
simulations of apo (blue) and prfar (red) using atomic displacements (A) and backbone dihedral angles (B) as
features. (C) Backbone-dihedral angles PC1N. Edge width is proportional to the weight. No threshold is used,
if edges are not visible it is because they are too small to be displayed.

other simulations of prfar and in some aspects is even closer to frames of apo. Overall, the backbone dihedral
angles, despite providing an approximately satisfactory separation between frames of apo and frames of prfar,
extract a less perfect allosteric signal. In Figure 2.15 C, we report the most important pairs of covalently
bound residues that participate the most in the PC1 eigenvector. The technical details behind dPCA are a
bit different from cPCA because from two circular features we produce four linearized features for each residue
pair. The sign in the eigenvector thus makes less sense, and to avoid compensatory effects, the influence of the
pair of residues is considered to be the square root of the sum of squares of the influence of the four features.
Because of this, PC1N using dihedral angles has only positive values. The pairs of residue which shows the
most variation are predominantly found in the effector site (notably in loop1) and near the active site in the
Ω-loop, 49-PGVG and the hα4 helix. Very interestingly, this study shows elements of the allosteric pathways
that change in flexibility upon binding of the effector (loop1, 49-PGVG, the Ω-loop) and local (un)folding in
the hα4 helix. This picture is much cleaner than the PC1N or the DPCN because the number of features is
fixed (Nresidue−Nchain = 451) and much lower than the number of contacts. Moreover, the square of sums may
have the effect to strongly diminish small influences. In fact, here we show that the dPCA can complement
cPCA by focusing on allosteric events with highly disordered dynamics. However, the dPCA is blind to the
propagation of perturbation between loop1 and the Ω-loop because they involve more ordered motions, such as
the breathing motion (a rigid body motion) or sidechain dynamics (the salt-bridge network alteration).

In Figures 2.16 A-B, we show the free energy landscapes of PCA using the contact frequency and transformed
contact distances. The two landscape perfectly separates the apo and prfar simulations on the PC1 axis, and
thus corresponding PC1N are representative of the allosteric contact signal. The two landscape have very similar
shapes with apo simulations extending to extremal negative and positive values of PC2 while prfar simulations
are much narrower in PC2 evolution and are oscillating around zero. Interestingly, this shape is rather different
from the energy landscape cPCA in which both the apo and prfar simulations evolved along the PC2 axis with
large amplitude, and prfar has the largest. This suggests that fPCA and tdistPCA share more similarities
together than cPCA.
In Figure 2.16C-D, we show the corresponding fPC1N and tdistPC1N. The two networks share many similarities
together and with the cPC1N. A minor difference is that tdistPC1N seems a little more dense, with low-
value edges adding noise. The two networks show a high density of loss of contact at the interface, which
is characteristic of breathing motion. The correlation plots between the edge weights of cPC1N, fPC1N and
tdistPC1N are reported in Figure 2.17 and show that, in fact, tdistPC1N and fPC1N are the most correlated
together (R2 = 0.77) and cPC1N and fPC1N are the least correlated (R2 = 0.51). This suggests that the
average interatomic contact number possess some peculiar information compared to the frequency of contact or
the transformed distance.
In Figure 2.16C the CCA applied to the fPC1N shows 5 components for 97 edges and 95 nodes. Two key
elements of the allosteric pathways are not found inside fPC1N: the vast reorganization of loop1 and the
alteration of the salt bridge network between the f α1 and f α2 helices. However, two elements of the allosteric
pathways are emphasized: the large motions at the interface due to the breathing motion and the propagation of
perturbation from the hα1 helix to the Ω-loop and to the PGVG sheet. With the amplification, many contact
redundancies are found, which explains the low number of components (5) by comparison to the number of
edges (97). This suggests that fPC1N is particularly good at detecting large conformational changes that affect
the distance between elements of the secondary and tertiary structure. However, it is less able to detect more
subtle sidechain reorganization such as the salt bridge network between f α1 and f α2 or even large motions
within a secondary structure element as in loop1.



66 CHAPTER 2. METHODOLOGY DEVELOPMENT

Figure 2.16: 2D projection of the free-energy landscape in the PC1 and PC2 axes computed separately for
simulations of apo (blue) and prfar (red) using contact frequency (A) and transformed contact distances (B) as
features. frequency-(C) and transformed distance-(D) PC1N with and without CCA. Edge width is proportional
to the weight.

Figure 2.17: Correlation plot between weights in the cPC1N and fPC1N, (A) cPC1N and tdistPC1N (B), fPC1N
and

In Figure 2.16C the CCA applied to the fPC1N shows 6 components for 60 edges and 64 nodes. With fewer
edges, this network shows better the reorganization occurring in loop1 but is still unable to display the salt-
bridge network alteration, does not emphasize the contact losses at the interface, and loses the propagation of
perturbation from the hα1 helix to the Ω-loop and to the PGVG sheet. This network contains fewer edges,
which are less redundant and more components than the fPC1N. This shows that the tdistPC1N is more precise
in terms of contact importance, but this comes at the cost of producing components which are less able to show
local-to-global contact perturbations.
The fPC1N can be seen as a cPC1N in binary and thus contains less information. In fact, in Figure 2.17 we see
that some edges with almost no importance in the fPC1N have a strong importance in the tdistPC1N and the
cPC1N. This suggests that the fPC1N is blind to some events. In fact, the number of interatomic contacts can
fluctuate without the contact strictly breaking, and these events are captured by the cPC1N or the tdistPC1N
but not by the fPC1N. Moreover, any contact breaking (even if loose) is weighted the same in the fPC1N,
explaining why many edges are redundant. The tdistPC1N is able to capture more subtle information about
a contact and its strength, but in fact, we only compute one aspect of the contact shape (the closest-heavy
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distance) and a contact could still be fluctuating but keeping a similar closest-heavy distance. In the end,
fPC1N and tdistPC1N show relevant information but are indifferent to some subtleties of the complex nature
of contacts.
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2.4 From Amino Acid Networks to Chemical Group Networks

2.4.1 The chemical nature of contacts

The formation of the contacts is the driving force behind the shapes of protein, and contact changes explain why
protein change their shapes. Generally, we separate residues that are polar and electrically charged (arginine,
lysine, aspartic acid, glutamic acid, sometimes a protonated histidine) from uncharged polar residues (generally
serine, threonine, asparagine, glutamine, cysteine, and histidine) and hydrophobic residues (all the others). In
water, because “birds of a feather flock together”, hydrophobic residues tends to be buried within the protein
while polar residues faces water[1]. Hydrophobic residues then cluster within the protein while mostly hydrogen
bonds, salt bridges (i.e., contacts between oppositely charged residues) stabilizes the rest of the folding. Some
interactions involve the π resonance of aromatics, usually classified as hydrophobic, such as π-polar, π-stacking,
or π-cation interactions, which tempers the assertion that hydrophobic residues are buried within the protein.
More generally, residues can possess both hydrophobic and polar moieties, such as lysine which has a long
hydrophobic chain before its charged head, or tyrosine which possess an alcohol function bound to its aromatic
ring. This further tempers a strict categorization of residues in strict categories. Thus, it is then more appro-
priate to dissect residues in chemical groups which are themselves either hydrophobic or polar. In fact, changes
in contact between these chemical groups are the cornerstone of protein structuration and dynamics.

The regular AAN and DPCN methodologies compute only contacts between residues, and as such completely
neglect the chemistry of contacts and the chemical groups. Moreover, when a contact change of nature between
two residues between a perturbed and reference AANs, it is entirely possible that this is not displayed in
the corresponding DPCN which suggests that a huge part of the reality of the contact network is hidden
by the simplification behind AAN. This is a serious limitation of AANs which leads to our development of
Chemical Group Networks (CGNs), that is, networks representing contacts in proteins using a smaller coarse-
grain description of the proteins with its chemical groups.

2.4.2 Other methodological development and applications

Chemical Group Contact Networks

In AAN, a protein is represented as a collection of amino acids (nodes) linked by a certain quantity, such as the
number of interatomic contacts. In CGNs, the protein is instead represented as a collection of chemical groups
(nodes), and we analogously use a contact condition to link and weight those chemical groups. This kills two
birds one stone because, at the same time, we gather information about the chemistry of a contact, and such
networks can detect when a contact changes in nature between two residues.

Here, we present two ways of dividing the system that are incremental: the first simply separates each residue
in its backbone and its sidechain. Except when specifically mentioned, hydrogen atoms are discarded from the
analysis. In IGPS, backbone heavy atoms account for 1,816 atoms and sidechain heavy atoms for 1,762 atoms.
We call this decomposition the Two Group Network (2GN). The second decomposition further decompose the
sidechain in a hydrophobic and polar parts. We define the hydrophobic part as carbon atoms that are not
covalently bonded to an oxygen or a nitrogen (that is, only bonded to carbon, hydrogen, or sulfur atoms). The
polar part is defined as the carbon atoms bonded to oxygen or nitrogen, as well as oxygen, nitrogen, and sulfur
atoms. This hydrophobic selection account for 1,086 atoms, while the polar selection accounts for 676 atoms
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Figure 2.18: A) Comparison of the projections on the 3D structure of IGPS from T. maritima of the average
AAN built with a 5 Å cutoff on heavy-atoms and the average 2GN built using the same contact condition.
The AAN network endpoint for edges are centered on the Cα and for the 2GN, to split visually contacts, the
center for backbone endpoints is located on the Cα and for sidechain endpoints, located on the backbone C.
Edge width is proportional to the weight of the contact. A second coloring scheme is shown for the 2GN where
backbone endpoints are represented in pink, sidechain in green with edges colored in plain if the contact is
between two endpoints of the same chemical group and with a gradient between the two endpoints if they are
of a different nature (backbone-sidechain). B) 2GN broken down into three components: backbone-backbone
contacts, sidechain-sidechain contacts and backbone-sidechain contacts with the corresponding coloring scheme.
C) Number of edges in function of the used threshold for each group of contact. D) Boxplot of the distribution
of each type of contact in the 2GN. The median is shown with a read line and the blue box delimits the the
first and third quantiles. Whiskers extends to 1.5 times the interquartile range (i.e. distance between first and
third quantile). Outliers are marked with a black cross.

in IGPS. Theoretically, each contact in an AAN can be split into four and nine components, respectively, in
the 2GN and 3GN and there are, respectively, three and six types of contact possible between chemical groups.
Because intraresidual contacts are discarded in AANs, during network building, we also discard contacts inside
the chemical groups of the same residue. After building CGNs, we can perform the same set of analysis developed
for AANs, such as DPCN or PCiN.

Adaptation of connected component analysis

The process of regular connected component analysis to clean a congested network was developed for DPCN
built with AANs but because chemical groups are disjointed in 2GN and 3GN, a contact change involving two
different groups of the same amino acid are not connected and can belong to different Connected Component
(CC). Therefore, we also propose a variation of the CC Analysis (CCA) strategy, in which all groups belonging to
the same residue are artificially linked together. In theory, this can modify both the threshold that maximizes
the number of CCs and the structure of the final core CCs. Because we add artificial edges, this generally
reduces the number of artificial CC, which is different from the number of true CC.

Chemical Group Networks

In Figure 2.18A-B, we represent in the IGPS 3D structure a projection of the average AAN and 2GN during the
simulation apo1. The 2GN contains 2.4 times more edges than the AAN (respectively 8,558 and 3,668 edges).
Each contact can be decomposed into four new contacts in the 2GN; thus, the theoretical upper limit for an
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increase is a factor of four. In this regard, a 2.4-time increase is actually impressive and suggests that most
contacts in an AAN have more than one component in the 2GN description. Of these 8,558 edges, 2,284 are in
the backbone network (27%), 2,011 in the sidechain network (23%), and 4,263 in the backbone-sidechain net-
work (50%). Backbone-sidechain edges are twice as common, notably because between two residues there is two
possible way to establish a backbone-sidechain contact whereas there is only one way to establish a backbone
or a sidechain contact. Therefore, this suggests a good balance between the four possible decomposition of each
AAN contact in the 2GN.

The backbone network is principally centered around covalent bonds. In fact, the network contains a
continuous line of sizable edges in each chain, which is the protein backbone. Other contacts are principally
located within the α helices, between β sheets on a β strand or inside loops, which is consistent with the fact
that the backbone contacts are principally involved in the secondary structures of proteins. Interestingly, there
are a few sizable backbone-backbone edges at the interface between HisF and HisH, suggesting that backbone
contacts can be involved in interfaces. The sidechain network is completely different from the backbone one.
Whereas backbone edges follow the structuration of the protein, sizable edges in the sidechain network are
much more diverse, sometimes present inside α helices, between different secondary structures (mostly between
α helices and loops), or at the interface, but with no precise pattern. This suggests that sidechain contacts
have an influence in the arrangement of secondary structures and chains i.e. the ternary structure, as expected.
Some of them are present at the extremities of α helices, thus we can hypothesize that they are also sometimes
involved in the interruption of these helices. The backbone-sidechain network is also very diverse and does not
follow regular patterns. Edges of this network are found in almost every possible context with decent magnitudes
(covalent, within a secondary structure, between secondary structures, at the interface). The precise role of this
network remains elusive and is probably hard to grasp simply because of the large number of edges.
In Figure 2.18C we represent the number of edges in each decomposed network in function of a threshold applied
to the global 2GN. The evolution of the backbone network is quite interesting because the decrease in number
of edges is very slow at first, but around threshold 15, the number of edges abruptly decreases and reaches
zero. This suggests that a lot of contacts in the backbone network have a weight centered around this 15 value
which may be a practical limit of the atoms that backbone can share. This huge drop starts around 700 edges,
but since there are only 451 covalent bonds in IGPS, this significant decrease cannot be explained solely by
covalent bonds. This suggests that other types of backbone contacts can reach similar weights. The sidechain
curve has a much different trend. Starting with the lowest number of edges, it gradually decreases and surpasses
the backbone-sidechain around a threshold of 13 and the backbone network after its significant drop around
15. Then it remains the network with the largest number of edges until the end and thus possesses edges
with the largest weight. This is consistent with the fact that in the sidechain network, some edges truly stand
out, while the majority of edges have a low weight. This shows a fundamental differences between backbone
edges where large-value edges are centered around the same value and sidechain edges where they only a few
outliers. The backbone-sidechain network also possess a steady decrease which is faster than the decrease of
number of edges in the sidechain network. Interestingly, this shows that the backbone-sidechain network has a
behavior in between the backbone and sidechain one. The vanishing point of this network (i.e. the threshold at
which the network becomes empty) is lower than the vanishing point of the sidechain network despite containing
twice as many edges. This suggests that contacts established by backbone groups are more limited than contacts
established by the sidechain which can be much larger and are more flexible in contact creating. In Figure 2.18D
we represent the distributions of each type of contact as a box plot. This further proves that the backbone
network is the most uniform, as it contains no outlier edges. By contrast, the backbone-sidechain and sidechain
are increasingly less uniform and the sidechain network contains mostly outliers.

In Table 2.1 we report the top ten contacts in each 2GN decomposition. In the top ten for the backbone
network, nine are representative of covalent bonds, while one is a backbone hydrogen bond between two β
sheets. All these contacts have weight between 15.5 and 15.9. This indicates a practical upper limit to back-
bone contacts: in fact, since all backbone nodes have the same shape and size (with the notable exception of
proline), they cannot exceed this limit. Interestingly, the only link between two amino acids not in covalent
interaction is between a glycine and an alanine, the two amino acids with the smallest sidechain: this suggests
that it is the smallness of their respective sidechain that allows sharing so much contact between their backbone
and that covalent backbone-backbone contact usually slightly dominates other types of contact, notably those
within α-helices and between β-sheets. Their ranks in the global 2GN are between 37 and 50, which shows that
they are the smallest of the top contacts, but they are still largely represented overall in the top contacts of the
complete 2GN.

Interestingly, among the backbone-sidechain contacts, most are still between residues that are covalently
bound (7 out of 10), one is within a α helix and two between β sheets in a β strand. Contrary to backbone-
backbone contacts, these cannot simply be explained by a covalent bond between the residues. The sidechains
involved are disproportionately aromatic compounds (9 out of 10). This suggests that these interactions are
principally π-polar interactions between an aromatic and the backbone of a protein. The weights in this network
are between 16.7 and 21.7, showing more spread than in the backbone network, and the ranks are between 8
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backbone-backbone backbone-sidechain*
residue 1 residue 2 rank weight attribution residue 1 residue 2 rank weight attribution

hL105 hI106 37 15.851 covalent hH120* hM121 8 21.662 covalent
hT142 hY143 38 15.844 covalent hE77 hR78* 9 21.428 covalent
fD45 fE46 39 15.825 covalent fK206 fH209* 14 19.155 α-helix

hK169 hG170 40 15.813 covalent hG122 hY138* 15 18.697 β-strand
fD219 fA220 41 15.803 covalent hG174 hF175* 17 17.99 covalent
hG154 hA166 42 15.718 β-strand hY138* hF139 20 17.435 covalent
fD98 fK99 43 15.663 covalent hF128* hF132 22 17.185 β-strand
hL90 hF91 46 15.607 covalent hY158* hD159 23 17.112 covalent
fE231 fI232 47 15.594 covalent hY136 hY137* 26 16.98 covalent
fS180 fG181 50 15.522 covalent hN26 hF27* 28 16.788 covalent

sidechain-sidechain
residue 1 residue 2 rank weight attribution

fR249 hW123 1 42.015 hinge, π-cation
hY79 hR171 2 28.812 π-polar
hY137 hF177 3 24.825 π-π
fR133 fF138 4 24.112 π-cation
hE96 hY143 5 23.181
fF138 fF189 6 22.111 π-π
hR114 hE161 7 21.836 salt-bridge
fF86 fQ115 10 20.028 π-polar
hR2 hY43 11 19.493 π-cation
fD45 fR249 12 19.432 salt-bridge

Table 2.1: Top 10 contacts for each group of contacts with the corresponding rank, weight and attribution. For
backbone-sidechain contacts, an asterisk (*) indicates which endpoint is the sidechain.

and 28, which suggests that they are decently weighted in the 2GN.

Finally, in the sidechain-sidechain network are found the seven biggest edges of the whole 2GN and the
10th, 11th and 12th. This suggests that sidechain contacts are the ones which have the potential to be the
biggest, but overall this phenomenon remains quite rare. In fact, there is a huge disparity in contact size, from
19.4 to 28.8 excluding the first, while the most important is at 42. Very interestingly, the biggest contact is
f R249–hW123, a contact well identified in IGPS, named the hinge, which is located at the interface between
hisF and hisH. It is known to be the principal contact of the interface and the junction of the breathing motion,
but here we show that it is even shown to be the strongest contact in the whole protein by a large amount. The
fact that it is such larger than the others raises two questions: a) can interface contacts be much larger than
intradomain contacts because not being part of the same chain gives more lability to the sidechain? and b)
does the contact value grow linearly? This requires additional studies on large datasets of MD simulations of
proteins. Other contacts are all attributable to interactions between aromatic, polar, charged and salt bridges.
None of the contacts are between two ILV (isoleucine, leucine and valine) residues, which are some essential
hydrophobic contacts. This suggests that using 2GN, hydrophobic residues are significantly underweighted.

In Figures 2.19 A-B, we represent the 3GN projected on the 3D structure of the protein and the break-
down of each subcomponent. By design, compared to 3GN, the backbone network does not change at all, but
the backbone-sidechain and sidechain-sidechain are broken down into five new possibilities. In the 2GN the
sidechain network contained 2,011 edges which can theoretically be decomposed into four here, the hydrophobic
network contains 1,430 (71%), the polar network only 628 (31%) and the hydrophobic-polar one 1,611 (80%).
This shows that this decomposition is more specific than the previous one and not so many new components
are created by this process. The effect holds for the decomposition of the backbone-sidechain network, since
the 4,263 edges are divided into 3,588 edges (84%) in the backbone-hydrophobic network and 2,067 in the
backbone-polar network (48%).

Although the backbone network remains the same in 3GN and 2GN, other networks are very different. In
the hydrophobic network; most of the edges are located inside the protein structure and in very dense clusters,
which is in good agreement with the fact that hydrophobic residues are usually buried in the protein and form
clusters. Still, a few edges are present at the interface, and some sizable edges are even found on the exterior
of IGPS. This could be explained in part by the fact that aromatic rings are considered hydrophobic in our
model, despite having favorable interactions with water and other aromatic rings. Some of these contacts could
simply be π-π interactions. Then, the polar network is much smaller and is complementary to the hydrophobic
network, most edges are located external to the protein. The interface is the region where polar contacts are
the densest. In the backbone-hydrophobic network, most of the contacts are also found buried in the protein
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Figure 2.19: A) Projections on the 3D structure of IGPS from T. maritima of the average 3GN built with a
5 Å cutoff on heavy-atoms. To split visually contacts in the 3GN, the center for backbone, hydrophobic and
polar endpoints are located respectively on the backbone Cα, C and N atoms. Edge width is proportional to
the weight of the contact. The coloring scheme of edges represents backbone endpoints in pink, hydrophobic in
yellow and polar in blue with edges colored in plain if the contact is between two endpoints of the same chemical
group and with a gradient between the two endpoints if they are of a different nature (backbone-sidechain).
B) 3GN broken down into six components: backbone-backbone contacts, hydrophobic-hydrophobic contacts
and polar-polar contacts (pure contacts) and backbone-hydrophobic, backbone-polar and hydrophobic-polar
contacts (hybrid contacts) with their respective coloring scheme. C) Number of edges in function of the used
threshold for each group of contact.

and only a few are found at the interface or externally. By contrast, in the backbone-polar network, many
links are found at the interface and external to the protein. Interestingly, at the interface, the vast majority of
backbone endpoints are located in HisF, whereas most of the polar endpoints are located in HisH. It would be
interesting to study this effect on a bigger variety of interfaces. Finally, the hydrophobic-backbone network is
the smallest of all hybrid networks. Furthermore, the majority of edges are quite small, and only a handful are
sizable. Of these sizable edges, most are located externally to the protein, and the largest are located at the
interface. This principally suggest that these contacts are actually interactions between an aromatic ring and a
polar or charged residue, which are only quite few.

In Figure 2.19C we represent the evolution of the number of edges in each subnetwork with the threshold.
Again, the evolution of the backbone network is the same as in 2GN. In fact, interestingly, all the curves except
the backbone network have a similar evolution and keep with a slight decrease until threshold 15 where the
backbone network has a significant decrease. The polar network is a bit different from the other because it
reaches zero around threshold 13. In contrast, in the 2GN, the salt bridges (which are polar-polar contacts)
were decently weighted. This can be explained by the fact that here, only polar heads of the sidechain are
considered in interaction. This suggests that these types of contact are underweighted in the 3GN. All the other
types of contact possess elements which have a weight bigger than 16 (i.e., the biggest backbone edge) and thus
are probably more accurately weighted.

In Table 2.2 we report the top ten contacts for each possible type of contact. The backbone network does
not change except for contact ranks, now between the 12th position and the 26th. By breaking down sidechain
elements into different parts, the backbone contacts have a relatively larger weight (i.e., compared to other con-
tacts). Still, this type of contact never reaches the first position, indicating that the 3GN does not significantly
overweight backbone contacts compared to the other types of contact. In the hydrophobic network, the top six
contacts are among the overall strongest (six are between rank 2 and 20, weights from 15.6 to 23.1), but the
four next are much lower (between rank 328 and 553, weights from 10.7 to 13.5). Five of the contacts are π-π
interactions between aromatic rings, and five are hydrophobic contacts between an aromatic ring (four times a
phenylalanine and one time a tyrosine) and an ILV residue (that is, isoleucine, leucine, or valine). Despite the
fact that two types of contact we expect to detect with this weighting are detected, no hydrophobic contact
is detected only between ILV residues. There are two hypotheses to explain this: a) contacts with aromatic
rings are overweight, and b) ILV contacts are underestimated. The comparison with other types of contacts
suggests that it is the second case. Contacts in the polar network have a similar problem. The top 10 contacts
represents the many types of polar contact that can coexist: seven are salt-bridges, two are hydrogen bonds
and one is the polar contact inside the catalytic triad (hH178–hE180, the stabilization of protonated histidine
during the mechanism is critical for catalysis). However, their weights and ranks are the lowest of the top
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backbone-backbone hydrophobic-hydrophobic
residue 1 residue 2 rank weight attribution residue 1 residue 2 rank weight attribution

hL105 hI106 12 15.851 covalent hY137 hF177 2 23.084 π-π
hT142 hY143 13 15.844 covalent fF138 fF189 3 22.111 π-π
fD45 fE46 15 15.825 covalent hF175 hF177 6 17.42 π-π

hK169 hG170 16 15.813 covalent fI93 fF120 10 16.214 hydrophobic
fD219 fA220 17 15.803 covalent hF139 hF177 11 15.947 π-π
hG154 hA166 18 15.718 H-bond fF210 fL237 20 15.662 hydrophobic
fD98 fK99 19 15.663 covalent hF128 hF132 328 13.504 π-π
hL90 hF91 22 15.607 covalent hF47 hV81 535 11.15 hydrophobic
fE231 fI232 23 15.594 covalent fF214 fV246 546 10.91 hydrophobic
fS180 fG181 26 15.522 covalent hY17 hL34 553 10.758 hydrophobic

polar-polar backbone-hydrophobic*
residue 1 residue 2 rank weight attribution residue 1 residue 2 rank weight attribution
hR114 hE161 416 13.007 salt-bridge hG174 hF175* 5 17.99 covalent
hR144 hE161 490 12.706 salt-bridge hF128* hF132 7 17.185 π-polar (turn)
fR16 fD28 492 12.678 salt-bridge hN26 hF27* 8 16.788 covalent
hR78 hR201 516 11.911 H-bond hY136 hY137* 9 16.403 covalent
hE56 hR59 534 11.163 salt-bridge hY158* hD159 14 15.842 covalent
fR235 fE251 545 10.925 salt-bridge hY138* hF139 24 15.578 covalent
fN25 fR27 548 10.788 H-bond hT131 hF132* 25 15.529 covalent
fD74 hR22 549 10.765 salt-bridge hT142 hY143* 44 15.187 covalent
fD45 fR249 563 10.589 salt-bridge hL42 hY43* 53 14.938 covalent

hH178 hE180 574 10.322 catalytic triad hI127 hF128* 64 14.487 covalent
backbone-polar* hydrophobic-polar*

residue 1 residue 2 rank weight attribution residue 1 residue 2 rank weight attribution
hH120* hM121 4 19.071 covalent fR249* hW123 1 24.556 hinge, π-cation
fK206 fH209* 21 15.609 H-bond fR133* fF138 49 15.067 π-cation
hE77 hR78* 62 14.561 covalent hL46 hH73* 75 14.272
fA224 fH228* 80 14.133 H-bond hF54 hS94* 507 12.185 π-polar
fQ72 hR22* 81 14.13 H-bond hY79 hR171* 513 11.941 π-polar
fI42 fR235* 341 13.465 H-bond fF141 fN148* 521 11.696 π-polar

hH73* hR78 504 12.243 H-bond hR2* hY43 529 11.382 π-polar
fG181 fH209* 517 11.859 H-bond fF86 fQ115* 531 11.251 π-polar
fM1 hN124* 522 11.684 H-bond fR191* fI198 542 10.974

hH120* hG122 525 11.523 H-bond hF139 hH141* 543 10.968

Table 2.2: Top 10 contacts for each group of contacts with the contacts with the corresponding rank, weight,
and attribution. For hybrid contacts, an asterisk (*) indicates which endpoint corresponds to which group (also
labeled in the group of contact).

of any subnetwork (ranks between 416 and 574, weights between 10.3 and 13). In fact, backbone groups and
hydrophobic aromatic groups generally possess less hydrogen atoms per heavy atom (-CH, -NH at best and
even no hydrogen atom carried) than some polar heads or hydrophobic aliphatic compounds (-NH2, -NH3+,
-CH2, -CH3). Therefore, the slight underweighting could be explained by an absence of hydrogen counting.

In the hybrid networks, the backbone-hydrophobic shows the top ten edges that are well balanced with
weights between 14.4 and 18 and ranks between 5 and 64. The top ten contacts of this subnetwork are between
an aromatic ring and a backbone, which suggests π-polar interactions. Of the ten contacts, nine are between
residues that are covalently bound. Since the sidechain and the backbone are not directly bound, the presence
of strong contact cannot be simply explained by a covalent bond, but is probably favored by this fact. The
other contact (which is actually top two of the subnetwork and top seven of the full network) is found between
the extremities of a turn. The backbone-polar network is more disparate in the top ten contacts. The fifth
strongest in this subnetwork have ranks between 4 and 81 in the full network and weights between 14.1 and 19.1
but the fifth next have ranks between 341 and 525 and weights between 11.5 and 13.5. Two of the contacts can
be attributed to covalently bound residues, and all others are sidechain-backbone hydrogen bonds. Finally, in
the hydrophobic-polar network, we find the top interaction of the network, which is the aforementioned π-cation
hinge. In fact, of the top ten hydrophobic-polar contacts, the two biggest are π-cation interactions (ranks 1
and 49, weights 15.1 and 24.5) and the top four to eight are π-polar interactions (ranks between 507 and 531,
weights between 11.2 and 12.2), so most hydrophobic-polar contacts can be explained by the ambivalent role of
aromatic rings. The precise nature of the three other contacts remains elusive, and they cannot be explained
simply.
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Principal Component Analysis of Chemical Group Networks

In Figure 2.20 we report PC1N obtained with two groups (PC1-2GN) and three groups (PC1-3GN) on the whole
set of simulations (apo1-4, prfar1-4). They are very similar in appearance, which is not surprising, since they
are merely a decomposition of the complete AAN. The subdivision of each subnetwork clears the overall dense
picture. This is especially true for the backbone-backbone network in Figure 2.21 which shows that most of the
backbone-backbone perturbations are found near the effector site and especially in loop1, between the Ω-loop
and PGVG and within the hα4 helix. This is consistent with previous studies of the allosteric mechanism; loop1
undergoes hydrogen bond rearrangements upon PRFAR binding, a backbone hydrogen bond breaks between
the Ω loop and PGVG and gives more flexibility to the PGVG segment while the hα4 helix unfolds upon
PRFAR binding. In fact, the overall clear picture of the backbone-backbone network suggests that backbone
perturbations are fewer. Indeed, a good portion of the most important contacts are found inside secondary
structures (which are difficult to perturb) and between covalent residues (which are even harder to perturb).
By contrast, the sidechain and sidechain-backbone subnetworks remains quite congested, which indicates that
the decomposition of the sidechain in two in the 3GN decompose more efficiently the information than in the
2GN. In the pure sidechain network, rearrangements are found that occur between f α1, f α2 and hα1, which
is consistent with the fact that they are part of a salt bridge network alteration. Some other contact changes
are detected, but more difficult to attribute. In the sidechain-backbone network, two main areas show a high
density in terms of contact change: loop1 and the interface. However, the 2GN description remains quite limited
and the subnets quite congested for a more detailed analysis.

The backbone-backbone network in the PC1-3GN decomposition is very similar to that obtained in the PC1-
2GN. Only some edges have slightly larger weights in PC1-3GN. In fact, because sidechain groups are divided
in smaller groups in the 3GN, the weight of these new types of contacts are smaller or equal than in the 2GN.
This impacts the backbone-backbone contacts, which seem to be comparatively larger or equal. Interestingly,
this effect is only small, which shows that this methodology is resilient in the groups we used. The hydrophobic
subnetwork posses the majority of its edges being internal to the protein. This effect is more pronounced than
in the average 3GN of simulation apo1 in Figure 2.19, suggesting that the few external contacts are resilient
(and mediated by π-π interactions). Most of the edges in this decomposition are quite small and cannot be
attributed to known allosteric pathways. The polar subnetwork shows much larger edges, and the majority
of these edges are external to the protein. In fact, we know that the allosteric mechanism in IGPS from T.
maritima involves principally external residues. This is consistent with the chemical groups in a protein that
tend to be external to accommodate water solvation. The polar-polar network notably shows the salt bridge
alteration between f α1, f α2 and hα1.

Next, the backbone-hydrophobic subnetwork contains perturbations in loop1 and near the breathing motion,
while the backbone-polar contains perturbations at the interface and near the effector site. This picture is much
clearer than the backbone-sidechain network in the PC1-2GN. This restrains the analysis to some definite areas.
Finally, the hydrophobic-polar network is probably the one which shows the fewer alterations. Intriguingly, the
few large contact changes are between distant parts of the protein: at the interface or between sideR and sideL
near the effector site. From the average 3GN study, we know that the largest contacts in the hydrophobic-polar
network are, in fact, π-polar or π-cation contacts, and this is consistent with such a long-range contact change.

CCA adaptation to CGN

In Figure 2.21B we report the CCA applied to the PC1N obtained with AAN, 2GN and 3GN. The network
do not change substantially in shape, but the information gathered in the 2GN and in the 3GN is compelling,
and the type of each contact change is clearly suggested. In particular, only very few edges are redundant
between two residues. The threshold that maximizes the number of components in the AAN is of 0.043 (i.e.,
4.3% of contribution to the eigenvector). This makes sense because, with more edges, their relative importance
in the entire network is diminished. With 2GN and 3GN, this threshold decreases, respectively, to 3.8% and
2.8%. By increasing the detail of the decomposition, the number of components (respectively 11, 12 and 17),
edges (respectively 95, 104, and 169), and nodes (98, 106, and 171) also increase. This is reasonable, since
the corresponding full networks have also more edges and nodes. In both AANs and CGNs, the core CCs are
describing fairly accurately the allosteric mechanism. Two key difference between the three networks however
is shown in the connections between the Ω-loop and 49-PGVG and the hN12–hN15 contact loss. These are
the last steps of the allosteric mechanism in which a polar contact is broken between two aspartic acids and a
backbone hydrogen bond between residue hP10 and hV51 is broken, which allows the 49-PGVG segment to flip
in a position where residues hV51 and hL85 forms an oxyanion hole stabilizing the oxyanion intermediates in
glutamine hydrolysis. After CCA in the 2GN these two contact changes are absent from the network and in the
3GN only the contacts between 49-PGVG and the Ω-loop are detected and appear clearly as backbone contacts.
However, in the complete PC1N, the hN12–hN15 is still much visible, in the sidechain contacts in the 2GN and
in the polar contacts in the 3GN. In standard CCA, the chemical groups of the same residue defined in 2GN
and 3GN are considered disconnected. This might produce undesirable results in CCA because effects in one
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Figure 2.20: PC1N obtained decomposing the system in backbone/sidechain groups (2GN) and back-
bone/sidechain/polar groups (3GN). Edge width is proportional to the weight of the contact in the eigenvector,
and are normalized by the same factor in every figure. To separate edges 2GN and 3GN from different groups
located in the same residues, edges endpoint are artificially put at the Cα of the backbone, and the backbone
C for the sidechain (2GN) or the hydrophobic group (3GN) and at the backbone N for the polar group (3GN).
Each network is first represented with a blue/red color scheme, where blue represents a contact which is typically
bigger in apo and red in PRFAR. Next, they are represented with edges that are either gradient or flat colors
given the contact type. Backbone endpoints are represented in pink, sidechain in green, hydrophobic in yellow
and polar in blue. For clarity, the networks are also broken down into every possible component.
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Figure 2.21: (A) PC1N obtained decomposing the system in amino acids (AAN), backbone/sidechain groups
(2GN) backbone/sidechain/polar groups (3GN). Edge width is proportional to the weight of the contact in
the eigenvector. All edge widths use the same normalization factor. For AAN, the endpoints of the edges are
the Cα of each residue. For 2GN and 3GN for simplicity and to separate edges from different groups located
in the same residues, the endpoints are artificially put at the Cα for the backbone, and the backbone C for
the sidechain (2GN) or the hydrophobic group (3GN) and at the backbone N for the polar group (3GN). (B)
Connected component analysis for each PC1N.

chemical group might propagate to a different chemical group. In fact, allosteric effects on the backbone of a
residue can even translate into the neighbor residue[2] so this may affect even regular CCA with AAN. We can
easily fix the CCA procedure for the ”same residue, different group” issue by introducing artificial links between
the different chemical groups. However, there is no easy fix for the neighbor residue issue because connecting
neighbor residues connects the whole protein, and the number of CC remains one during the procedure.

In Figure 2.22 we show the adaptation of CCA to CGN. While the adapted procedure may in theory suggest
using a different threshold value, here thresholds maximizing the number of artificial connected components are
the same as the number of true connected components in both 2GN and 3GN. This suggests that the addition
of artificial links to the network does not substantially change the topology of the network. This shows that
the adapted procedure produces results that are consistent with regular CCA. For both 2GN and 3GN, the
adaptation of cleaning with CCA increases most metrics in the network. In 2GN, the number of true CCs grows
from 12 to 19 true CCs, the number of edges from 104 to 115 edges, and the number of nodes from 106 to 124
nodes. In the 3GN, the true number of CC grows from 17 to 42, the number of edges from 169 to 215 and
the number of nodes from 171 to 241. Instead, the number of artificial CC (that is, CC where intraresidual
connections are artificially added) decreases from 12 to 9 in the 2GN and from 17 to 12 in the 3GN. This can
vastly simplify the analysis of individual CCs.
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Figure 2.22: (A) PC1N after adapted CCA in the 2GN with a coloring scheme coloring differently each individual
artificial CC and one coloring the endpoints of edges in green for sidechain groups and pink for backbone groups.
(B) PC1N after adapted CCA in the 3GN with a coloring scheme coloring differently each individual artificial
CC and one coloring the endpoints of edges in yellow for hydrophobic groups, blue for polar groups and pink
for backbone groups.

The adaptation of the CCA to 2GN does not allow capture the Ω-loop–PGVG and hN12–hN15 contact
losses. However, in the 3GN, the Ω-loop–PGVG contact is already present without CCA adaptation and with
adaptation the hN12–hN15 contact loss reappear. This contact reappears notably because the polar network
around the hN12–hN15 contact does not extend between a diameter of three, but a contact change involving
the backbone of residue hN15 and the polar head of residue hE180. This suggests that overall, the 3GN de-
composition is the best fit for investigating allosteric pathways and contact changes in proteins in general.

Figure 2.23: (A) PC1-3GN obtained including hydrogens in the selection. In practice, hydrogens are added
to the selection of the heavy atom they are attached to. The endpoints of edges are colored in yellow for
hydrophobic groups, blue for polar groups and pink for backbone groups. (B) hydrophobic component of this
network. (C) CCA of this network

In 2GN, the adaptation of CCA produces a network with 11% backbone, 39% sidechain, and 49% backbone-
sidechain links. The 3GN has 16% backbone, 6% hydrophobic, 13% polar, 30% backbone-polar, 20% backbone-
hydrophobic, and 11% hydrophobic-polar. First, this suggests that the 2GN underweights the backbone contacts
compared to the 3GN. This is particularly noticeable in Figure 2.22 where there are much more changes in back-
bone contact in loop1 and hα4 in the 3GN than in the 2GN. This better description of backbone contacts is
due to a better balance between the sizes of the backbone, polar, and hydrophobic chemical groups compared
to those of backbone and sidechain groups. Second, this suggests in the 3GN that some hydrophobic contacts
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are underweighted. In fact, of the 6% hydrophobic contacts, 71% involve an aromatic ring, 51% an ILV residue,
but only 4% involve two ILV residues. Nevertheless, a simple solution such as adding hydrogen atoms in each
selection (i.e., the hydrogen atom is added to the selection of its heavy-atom) does not provide a satisfactory so-
lution and such networks are completely biased for hydrophobic contacts (see Figure 2.23). Notably, using such
a selection, the CCA erases some of the most important edges in the networks, which shows that the network
topology is vastly different and actually less well-balanced between chemical groups. In fact, this comparatively
proves that our definition of chemical groups that we suggest is a good-balanced, albeit not perfect, one.

The original motivation behind the CGNs is that interresidual contacts are principally guided by chemical
groups. While a contact between two residues can change in nature without affecting much the PC1-AAN, but
this should appear in the PC1-CGNs. We can detect this phenomenon when an edge between two residues
is replicated, but the edges have different signs. Incidentally, this happens with low-value edges because they
fluctuate around zero, but in the network cleaned with CCA, such changes have a profound meaning. In the
PC1-2GN cleaned with CCA, seven residual contacts are duplicated, but only one shows a difference in sign:
hY79–hR171. This shows that the majority of duplicated edges are synergistic (i.e. they influence positively
each other), but contact nature change still occurred. Here, the contact change shows more sidechain-backbone
(backbone of hR171, sidechain of hY79) component in prfar and more sidechain-sidechain contact in apo.

In PC1-3GN, 17 residual contacts are duplicated and 2 are tripled. Among duplicates, only 2 have an op-
posite sign: hY79–hR171 and hH120–hF139. The hY79–hR171 contact refine the PC1-2GN finding and shows
that the contact has a bigger backbone-hydrophobic component in prfar (backbone moiety of hR171, hydropho-
bic part of hY79) and more hydrophobic-polar component in apo (polar moiety of hR171, hydrophobic part
of hY79). This suggests that the hydrophobic moiety of hY79 exchanges contacts between the polar head of
residue hR171 and the backbone head of residue hR171 upon PRFAR binding. Since hY79 being aromatic,
this suggests that the contact exchanges from a π-cation interaction with the sidechain to a π-polar interaction
with the backbone after PRFAR binding. Similarly, the other contact involves an exchange of contact from the
polar part of residue hH120 between the hydrophobic and backbone moiety of residue hF139, suggesting that
the contact is π-stacking in apo and changes to a polar interaction with the backbone (either strictly polar,
π-polar or hydrogen bond) upon binding of PRFAR.

Interestingly, both triplicates have one sign different from the other two. This suggests that while synergistic
effects are the norm in duplicate edges, they are an exception in triplicates. The two triplicates are hN15-hE180
and hD11-hV18. It has to be noted that hE180 is the acid from the catalytic triad and hN15 belongs to the
allosteric pathways, thus by such we actually discovered a new interesting connection to the active site that
may serve as an additional allosteric mechanism. In apo, the f D11–f V18 is typically both backbone-polar and
hydrophobic-polar (between the backbone and hydrophobic parts of hV18 and the polar head of f D11), while in
prfar it is typically a backbone-backbone contact. This suggests that there is a change in the hydrogen bonding
between the two residues from a sidechain-backbone hydrogen bond in apo to a backbone-backbone hydrogen
bond in prfar. In apo, the hN15–hE180 contact is typically between the polar head of residue hN15 and both
the backbone and the hydrophobic part of residue hE180. In prfar, it is typically a backbone-polar contact
between the backbone of hN15 and the polar head of hE180. Interestingly, this seems to suggest that upon
effector binding, the backbone of residue hE180 is freed from its contact with residue hN15 but the polar head
of residue hE180 is in contact with residue hN15.

In the catalytic triad, the role of residue hE180 is to stabilize the protonated base during catalysis (here,
residue hH178) and in fact there is a stable hydrogen bond between the glutamine and histidine sidechains (see
Figure 2.24E). Using our model, histidine has an NH group on the δ nitrogen and the hydrogen bond is between
these hydrogen and glutamine sidechain oxygens (see Figure 2.24). Interestingly, the hH178-hE180 hydrogen
bond is slightly more stable in apo. The effect is small, and that is probably why it does not appear in PC1N.
To explain this, we must recall what has been documented in allosteric pathways[3, 4]. In apo there is a stable
polar contact between the polar sidechains of residues hN12 and hN15 which breaks upon PRFAR binding (see
Figure 2.24A-C). In apo, there is also a hydrophobic contact between the tiny hydrophobic moieties of hN15
and hE180. This contact is not really detected in the PC1-3GN because of the small size of the moieties, but
it still recorded thanks to the backbone of residue hN15 which remains close to hE180. In this context, in
a few snapshots, there is an unstable self-hydrogen bond between the sidechain and the backbone of residue
hE180 (see Figure 2.24A) which breaks the hH178-hE180 hydrogen-bond. This also happens in prfar, but is less
frequent (see Figure 2.24D). In prfar, the polar contact between hN12 and hN15 is broken and thus the polar
head of hN15 is in an indirect, probably water-mediated, contact with the backbone of residue hE180. Although
this effect discovered thanks to 3GN is only very tiny, there is reason to suspect that it may play a bigger role
during catalysis. This may require additional studies and modeling of the precise catalytic mechanism in IGPS.
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Figure 2.24: Snapshot of the hN15-hE180 contact with IGPS in cartoon representation and hN12, hN15, hH178
and hE180 shown in licorice in apo in a snapshot where the hH178–hE180 contact is broken in apo (A) or formed
in apo (B) and formed in prfar (C). The polar contact between hN12 and h and the self hydrogen bond between
residue hE180 is displayed in black dotted line in apo. The hydrogen bond between residue hH178 and hE180
in prfar is displayed in black dotted line. Kernel density estimate of the hN15-hE180 (C) and hH178-hE180
(D) distances in apo and prfar.
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Conclusion on the use of Chemical Group Networks

The CGNs are a very powerful tool in combination with cPCA and despite they produce a more complex view
of the network, it can easily be simplified thanks to an adapted version of the CCA. Of the two proposed
variations of CGN: one with two groups (sidechain, backbone) and the one with three groups (backbone,
hydrophobic and polar moieties), the version with three groups produces particularly better results, shows a
better balance between groups, and shows all the important allosteric contacts found in AANs. Still, groups in
the 3GN are not perfect, and some contacts seem to be slightly underweighted (notably hydrophobic contacts)
and sometimes the network captures more easily an incidental contact between other groups instead of the true
hydrophobic contact. Probably, different definitions of CGN may probably solve this problem. Interestingly,
after the networks were cleaned with the adapted CCA, only a handful of edges are duplicated between the same
pair of residues. This shows that CGN can provide approximate knowledge about the chemistry of a contact
change. The only triplicate edges (in the 3GN) we found were even representative of a contact change between
the residues. More generally, thanks to CGNs, we were able to capture phenomena in which a contact change
of nature occurred between two residues. This feat is not possible with AAN, which proves the interest of this
methodology, and we were notably able to capture a new impact of PRFAR binding on the active site. More
generally, this methodology also showed that deeper studies of IGPS, with water molecules and modeling of the
catalytic mechanism, are required to fully understand the allosteric mechanism in IGPS.
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Chapter 3

Applications of the methodology

In this chapter, the DPCN and PC1N methods were applied in new investigations which were stimulated by
other research groups that contacted us upon publication of our methodology.

3.1 Elucidating the Activation Mechanism of Adenosine MonoPhosphate-
activated protein Kinase by Direct Pan-Activator PF-739

3.1.1 Adenosine MonoPhosphate-activated protein Kinase

Figure 3.1: Crystal structure of two isoforms of human AMPK, α2β1γ1 (A, PDB entry 4CFF) and α2β2γ1 (B,
PDB entry 6B2E)

Adenosine triphosphate (ATP) is a ubiquitous organic compound that provides energy to many molecular
processes. When consumed it can convert either to a diphosphate (ADP) or a monophosphate AMP (AMP).
Regulatory processes exists so that ATP is regenerated. The AMP-activated protein kinase (AMPK), is a highly
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conserved protein that can sense low levels of ATP and responds by phosphorylating specific proteins to increase
ATP generation and decrease ATP consumption. AMPK has been described as the ”guardian of metabolism
and mitochondrial homeostasis”[1]. Due to its role, AMPK is involved in various metabolic disorders such as
type 2 diabetes, cardiovascular diseases, and obesity[2]. AMPK is a heterotrimeric complex composed of three
different subunits designated α, β and γ. The catalytic site of the enzyme is located in the α subunit. In
humans, each subunit is found in different isoforms, two for α, (α1, α2), two for β, (β1, β2) and three for γ (γ1,
γ2, γ3) which makes a total of 12 variations of AMPK that have various distributions in different tissues[3].
Notably, while the α1, β1 and γ1 have a low specificity, α2 is found mainly in the heart and skeletal muscle,
β2 in the skeletal muscle and γ2 in the heart muscle, and γ3 is found in the skeletal muscle[4, 5]. The different
functionalities of these isoforms is an active research topic.

Several external factors can lead to AMPK activation[1], usually related to energy deprivation. Among them
many small-molecule allosteric activators of AMPK have been discovered, and some of them shows a specificity
towards a particular isoform[6, 7, 8, 9]. Among them PF-379 was discovered as a non-selective activator that
binds in a pocket located at the interface between the α and β subunits, sometimes designated as the allosteric
drug and metabolite (ADaM) site. This pan-activator is notably able to activate AMPK in the skeletal muscle
which stimulates glucose uptake and glucose lowering which makes it a potential therapeutic approach to treat
diabetic patients[8]. Understanding its mechanism of action could be valuable for designing selective activators
to improve specificity in therapeutic treatments.

3.1.2 Molecular dynamics simulations and scalability of the code

The team of Carolina Esterellas and Elnaz Aledavood modeled AMPK neglecting the γ subunit following a
”design and conquer” strategy. Indeed, the γ subunit does not contain the effector nor the active site, the
experimental structures near α-γ and β-γ interface are not well resoluted which could add some uncertainty.
Finally, increasing the system size would require drastically the computation time due to the need of a larger
sampling. Thus they modelled the α2β1 and α2β2 proteins in three different configuration: the apoenzyme
(free enzyme), the holoenzyme (enzyme bound to PF-379) and the ternary complex (enzyme bound to PF-379
and ATP) for a total of six systems. For each system was run three replicas of 1 µs for a total of 18 µs. Prior
to this project, we ran the analysis focusing on two systems (apo and holo IGPS) and a maximum amount of
800 ns so this was a tremendous leap in time scalability. Still, the system is less large than IGPS containing
only 2,955 heavy-atoms (against 3,578 in IGPS). This was an opportunity to test and adapt the scalability of
the code. Notably, it is possible to highly parallelize the code because after MD the analysis of each individual
frame are independent of one another. This is particularly helpful on a cluster where many processors are
available and can drastically cut down the computation time. Thanks to the parallelization of the code, overall
the practical computation time could be reduced by a factor equal to the number of processors used. At that
point, computing the DPCN on a 2,955 heavy-atoms system for 10,000 frames (1 µs) was taking 1 hour on
sixteen processors. The complete analysis of the system thus took 18 hours.

Figure 3.2: Evolution of the DPCN algorithm thanks to AMPK analysis

Six different systems makes for fifteen possible DPCN, considering all individual replicas, could total up to
more than 153 DPCN to build. Looking also at both backbone contacts and all-atom contacts further increases
the number of possibilities. We needed a different way to look at the procedure in order to only have to produce a
single output file per system and one file per replica. Originally, one script was dedicated to building the DPCN
and another to the visualization of those DPCN. Here, instead of computing the average amino acid network,
we focused on computing the average atomic contact matrix. In the average atomic matrix, the frequency along
the simulation of all atomic contacts are reported. The values taken in this matrix are thus binary, and this
matrix is sparse. With an updated version of the visualization code, it could compute on the fly the DPCN
between any two atomic matrices files by transforming this data into the amino acid contact matrix and then
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doing the subtraction (which is almost instantaneous). Furthermore, we were able to tune the transformation
applied to the atomic matrix to match a specific selection.
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Adenosine monophosphate-activated protein kinase (AMPK) is a key energy sensor
regulating the cell metabolism in response to energy supply and demand. The
evolutionary adaptation of AMPK to different tissues is accomplished through the
expression of distinct isoforms that can form up to 12 heterotrimeric complexes, which
exhibit notable differences in the sensitivity to direct activators. To comprehend the
molecular factors of the activation mechanism of AMPK, we have assessed the
changes in the structural and dynamical properties of β1- and β2-containing AMPK
complexes formed upon binding to the pan-activator PF-739. The analysis revealed
the molecular basis of the PF-739-mediated activation of AMPK and enabled us to
identify distinctive features that may justify the slightly higher affinity towards the
β1−isoform, such as the β1−Asn111 to β2−Asp111 substitution, which seems to be
critical for modulating the dynamical sensitivity of β1- and β2 isoforms. The results are
valuable in the design of selective activators to improve the tissue specificity of therapeutic
treatment.
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INTRODUCTION

AMP-activated protein kinase (AMPK) is a Ser/Thr protein kinase with a key role as a sensor in
cellular energy homeostasis (Xiao et al., 2011). Upon activation, AMPK increases the levels of ATP,
favoring the reduction of anabolic pathways and up-regulation of catabolic pathways. Due to its
critical role in cell metabolism, AMPK is implicated in numerous metabolic disorders such as type 2
diabetes, cardiovascular diseases, and obesity (Carling, 2017). However, one of the most interesting
aspects of this enzyme comes from the different tissue distribution that is directly related to its
structural complexity. AMPK is a heterotrimeric complex consisting of a catalytic α-subunit and two
regulatory subunits, namely β and γ. Each subunit can be found in different isoforms, involving two
for α (α1, α2), two for β (β1, β2), and three for γ (γ1, γ2, γ3) (Calabrese et al., 2014). The N-terminus
of the α catalytic subunit contains a kinase domain, while its C-terminus is needed for the formation
of the complex with the other subunits. The β-subunit has a central carbohydrate-binding module
(CBM) that mediates AMPK interaction with glycogen, and the C-terminal region acts as a scaffold
for the heterotrimeric assembly. Finally, the γ-subunit has four tandem repeats of the cystathionine
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β-synthase (CBS) domain, forming up to four potential
nucleotide binding sites although only sites 1, 3 and 4 can
really bind them (Scott et al., 2004; Scott et al., 2008; Carling
et al., 2012).

AMPK is finely regulated by different mechanisms (Mahlapuu
et al., 2004). An allosteric activation involves the phosphorylation
of α2-Thr172 in the activation loop of the kinase domain by
upstream kinases such as LKB1 and CaMKKb, together with the
binding of AMP to the CBS domain in the γ−subunit. The active
AMPK complex can thus respond to subtle fluctuations in the
AMP/ATP ratio, it being several thousand-fold more active
(Carling et al., 2012; Chen et al., 2012; Willows et al., 2017).
On the other side, AMPK can also be indirectly activated by
compounds such as metformin, phenformin and oligomycin
(Vazquez-Martin et al., 2012), which are able to increase the
intracellular levels of AMP. However, much interest is focused on
the understanding of the direct activation mechanism of AMPK
by small organic molecules. The first reported direct activator was
the thienopyridone drug A-769662 (Cool et al., 2006), which is
bound to a cavity located at the interface between the CBM
domain of the β-subunit and the kinase domain of the α-subunit,
namely the allosteric drug and metabolite (ADaM) site
(Langendorf and Kemp, 2015). One of the main features of
the direct activation is that this kind of activation is

independent of the Thr172 phosphorylation, while it is
enhanced by phosphorylation of Ser108 in the CBM domain
of the β-subunit, increasing the AMPK activity by >90-fold
(Hardie, 2014). Since then, a lot of efforts have been invested
in obtaining direct AMPK activators, which in some cases exhibit
a marked isoform selectivity (Olivier et al., 2018), while in other
cases no significant selectivity is observed towards specific
subunit isoforms. The isoform selectivity is relevant for the
tissue distribution of the AMPK complexes. While α1, β1 and
γ1 have low tissue specificity, α2 is basically found in the heart
and skeletal muscle, β2 in the skeletal muscle and γ2 is mainly
found in the heart muscle, and γ3 is found in the skeletal muscle
(Uhlén et al., 2015; Human Protein Atlas (2021, 2021). The tissue
specificity is related to the specific function of AMPK in these
tissues, and therefore all the isoforms in the skeletal muscle have
an important role in the glucose uptake, making AMPK a
promising target for diabetes type 2 disease. In the last years
an increasing effort has been devoted to design tissue-specific
direct AMPK activators. As an example, the SC4 small-molecule,
which was designed to increase the selectivity towards the
α-subunit (being more selective for the α2-isoform) (Ngoei
et al., 2018), can activate both β1- and β2-containing AMPK
complexes, although a slightly higher activation is observed for
the β1-isoform. Other interesting examples are the pan-activators

FIGURE 1 | (A) Representation of the system selected for the study of the direct activation mechanism, which is composed of α2 (yellow cartoon) and β1-/β2-
subunits (grey cartoons). The most important regions of these subunits are highlighted: P-loop (purple), activation loop (A-loop, cyan), CBM domain (orange) and
C-interacting helix (green). (B) Chemical structure of PF-739, together with the experimental data obtained in Cokorinos et al. (2017) for the half maximal effective
concentration (EC50). (C) The activator bound to the ADaM site, with selected residues of the ADaM site shown as sticks.
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PF-739, which is able to activate both α2β1γ1 and α2β2γ1
(Figure 1), and MK-8722 which can activate the 12
heterotrimeric AMPK complexes (Myers et al., 2017).
Regarding the selectivity of β-isoform, although the half
maximal effective concentration (EC50) determined for PF-739
and the binding affinity measurements for MK-8722 shows that
they still exhibit a larger affinity for the β1-containing isoforms,
they are the most potent activators of β2 complexes reported up
to date (Cokorinos et al., 2017). However, it is still necessary to
achieve a higher specificity to avoid off-tissue target effects.
Accordingly, understanding of the molecular factors that favor
the binding to specific isoforms is an outstanding issue.

In our previous works (Aledavood et al., 2019; Aledavood et al.,
2021), we have studied the molecular factors that determine the
selective activation of β1- and β2-containing AMPK complexes
formed with A-769662 and SC4. We have hypothesized that the
change of β1-Asn111 by β2-Asp111 could be a key factor in
mediating the distinctive “mechanical” sensitivity of AMPK
complexes to these activators. Here, we extent this analysis to
the pan-activator PF-739 with the aim to examine how the binding
of this compound affects the dynamical response of AMPK
considering the trends disclosed for A-769662 and SC4. At this
point, it is worth noting that while A-769662 is selective for β1-
containing complexes, SC4 exhibits a mild preference for this
isoform, a trend which was attributed to the presence of the
carboxylate group present in the chemical structure of this
activator. In contrast, PF-739 is a neutral compound, which
suggests that other chemical features might also regulate the
mild preference for binding to β1-containing AMPK complexes.
Understanding the role of the factors that regulate the mechanical
response of AMPK could thus be valuable for the tailored design of
isoform-adapted pharmacophores useful in the search of selective
direct activators. With this aim in mind, we have carried out
extensive molecular dynamic simulations (MD) and network
analysis to examine the differential trends in structural,
dynamical and interaction patters emerging for AMPK
complexes with PF-739.

RESULTS AND DISCUSSION

MD simulations were run to assess the structural and dynamics
properties of the AMPK complexes formed by the α2-isoform
bound to either β1- or β2- subunits. The neglect of the γ subunit
in the simulated systems obeys two main motivations. First,
following a divide-and-conquer strategy, this permits to focus
the conformational sampling of the activator-induced changes on
the ADaM site, which is shaped by residues in α and β subunits.
Second, the adoption of these systems permits a direct
comparison with the results obtained previously for the
complexes formed with A-769662 and SC4 (Human Protein
Atlas (2021, 2021; Ngoei et al., 2018). Accordingly, this study
is focused on the conformational ensemble collected for the apo
species of α2β1 and α2β2 systems, the corresponding complexes
formed with PF-739 (holo species), and finally the complexes
formed with both PF-739 and ATP molecule (holo+ATP), the
latter being located in the ATP-binding site within the kinase

domain of the α−subunit. For each system (apo, holo, and
holo+ATP), the analysis involves the conformational ensemble
explored in three independent replicas (1 μs/replica), leading to a
total simulation time of 6 μs for the apo species and 12 μs for the
ligand-bound complexes.

Structural Analysis of AMPK Complexes
We have examined the effect of PF-739 binding to the ADaM site
(holo structures), and the simultaneous presence of PF-739 and
ATP in both ADaM and ATP-binding sites (holo+ATP
structures) on the global structural conformation of apo α2β1
and α2β2 by means of the root mean square deviation (RMSD) of
the protein backbone along the corresponding 1 μs simulations
(Figure 2). The RMSD was determined using the average
structure of the holo+ATP species sampled in the last 200 ns
of the three independent replicas run for either α2β1 or α2β2
species as reference. For the holo+ATP systems there is a high
structural resemblance for all the replicas, as noted in the small
fluctuations of the RMSD profiles (Figure 2C), which agrees with
the preservation of the overall protein fold upon binding of both
PF-739 and ATP. In particular, the RMSD values for the
holo+ATP species range from 2.0 to 2.5 Å for α2β1 and from
2.7 to 3.0 Å for α2β2 (Table 1). These values are lower than the
RMSD values obtained for the apo species (α2β1: 2.5–2.7 Å; α2β2:
2.9–3.4 Å).

Binding of PF-739 to the α2β1 species has no significant effect
on the RMSD of the holo species (from 2.5 to 2.9 Å), which is
close to the values obtained for the apo form. Only the presence of
both the ligand and ATP (holo+ATP) gives rise to a reduction in
the RMSD. This effect is even more remarkable in the α2β2
species, as the RMSD of the protein backbone is generally larger
than the RMSD value determined for the α2β1 complex in all the
states (apo, holo and holo+ATP; see Figure 2 and Table 2). These
findings suggest that PF-739 exerts a weak structural stabilization
upon binding to both α2β1 and α2β2 species.

Regarding the per-residue mean square fluctuation (RMSF)
profile, similar results are observed for both α2β1 and α2β2
species, as noted in the resemblance of the fluctuation patterns
obtained by averaging the RMSF of the three replicas run for
every system (Figure 3). The highest fluctuations in the α-subunit
correspond to residues in the activation loop (residues 165–185,
highlighted in blue in Figure 3) and the α-helix formed by
residues 210–230. It is worth noting the higher fluctuation of
the P-loop (residues 15–35; purple in Figure 3) in the holo state in
comparison to both apo and holo+ATP systems. Thus, binding of
PF-739 significantly affects the flexibility of the P-loop in both
α2β1 and α2β2 species, which may have functional relevance
since the P-loop contributes to shape both the ADaM and ATP-
binding sites. Regarding the β-subunit, the largest fluctuations are
in the CBM domain, which contains Ser108 (highlighted in
orange in Figure 3; phosphorylated in both holo and
holo+ATP states), and the regions near the C-interacting helix
(residues 162–172, highlighted in green in Figure 3). It is worth
noting that the binding of PF-739 (holo) and ATP (holo+ATP)
increases the fluctuations of the α-subunit elements mentioned
above, while reduces the fluctuations in the β-subunit,
independently of the β-isoform. These findings are in
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agreement with the higher RMSD fluctuations observed in some
replicas of the holo states for both α2β1 and α2β2 species.

Dynamic Properties of AMPK Complexes
In order to examine the effect of the activator on the
conformational behavior of AMPK complexes, we have

analyzed both the essential dynamics (ED) of the protein
backbone and the dynamic correlation between residues.

The ED provides information about the essential motions of
the protein and can be used to examine the effect of activator on
the major motions of the protein skeleton. The results for the first
essential motion for the apo (α2β1 and α2β2) states show a
concerted bending that brings α- and β-subunits closer and then
moves them apart (Figure 4). The most interesting feature is that
the P-loop seems to act as a hinge, assisting the concerted bending

FIGURE 2 | Root mean squared deviation (RMSD, Å) determined for the protein backbone along the three 1 µs MD simulations run for the (A) apo, (B) holo and (C)

holo+ATP species of AMPK isoforms α2β1 and α2β2 bound to PF-739 (each replica is shown in black, blue and red, respectively). For each analysis the reference
structure used corresponds to the energy-minimized average structure of the holo+ATP sampled in the last 200 ns of the three independent MD simulations.

TABLE 1 | RMSD and standard deviation (Å) determined for the protein backbone
of the snapshots sampled along the last 500 ns of MD simulations performed
for all systems (apo, holo and holo+ATP states) of AMPK isoforms α2β1 and α2β2.
Values were determined using the energy-minimized holo+ATP species averaged
for the last 200 ns of each simulation system as reference structure.

System Replica 1 Replica 2 Replica 3 Average

α2β1 Apo 2.6 ± 0.6 2.7 ± 0.4 2.5 ± 0.5 2.6
Holo 2.5 ± 0.3 2.6 ± 0.5 2.9 ± 0.8 2.6
holo+ATP 2.5 ± 0.3 2.0 ± 0.2 2.4 ± 0.4 2.3

α2β2 Apo 3.2 ± 0.3 2.9 ± 0.2 3.4 ± 0.5 3.2
Holo 4.1 ± 0.6 2.7 ± 0.4 3.1 ± 0.3 3.3
holo+ATP 2.7 ± 0.4 3.0 ± 0.5 3.0 ± 0.4 2.9

TABLE 2 | Contribution of the essential motion (%) to the structural variance of
different AMPK systems and the total contribution of the first four projections.

Systems Proj. 1 Proj. 2 Proj. 3 Proj.4 Total(P1-P4)

α2β1 apo 41.2 12.0 8.1 4.6 66.0
holo 38.6 12.1 7.6 4.0 62.3
holo+ATP 30.7 12.6 7.0 5.1 55.4

α2β2 apo 30.9 12.6 8.8 4.8 57.1
holo 33.1 12.7 8.6 5.3 59.7
holo+ATP 29.0 13.2 7.2 5.3 54.7
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between the subunits. Indeed, the first motion accounts on
average for 41/31% of the structural variance in α2β1/α2β2
species, and the contribution of the first four motions
accounts for 66/57% of the total structural variance (Table 2).
This emphasizes the importance of the first essential motion to
the conformational flexibility of the AMPK complexes.

Comparison of the ED results obtained for apo, holo and
holo+ATP states reveals that binding of the activator has a mild
effect on the conformational variance, which is reduced from 66%
(apo) to 62% (holo) and 55% (holo+ATP) for the α2β1 species
(Table 2). However, for the α2β2 species the activator triggers a
slight increase in the conformational variance relative to the apo
species, while subsequent binding of ATP results in a reduction of
the structural variance (apo: 57.1%; holo: 59.7%; holo+ATP:
54.7%). These results are also reflected in the contribution of
the first essential motion (Figure 4 and Table 2). In the holo
(α2β1 and α2β2) states, this motion reflects a synchronous

motion of the P-loop and the CBM domain, which is in
contrast with the increased stiffness observed in the holo+ATP
state, especially regarding the P-loop, the helical domain in the
α-subunit, as well as the region of the CBM domain nearest to the
ADaM site. However, although the movements of the CBM
domain are very similar between α2β1 and α2β2 species, the
P-loop and the helices at the C-terminal region of the α-subunit
exhibit higher fluctuations in α2β2 with respect to α2β1
(Supplementary Figure S1). Finally, it is worth noting that
the enhanced stiffness achieved upon ATP binding to holo is
again more remarkable in the case of the α2β1 complex (Figure 4
and Table 2).

Besides the qualitative inspection of the overall dynamics of
the systems shown in Figure 4, we have determined the similarity
indices for the first essential motions (Supplementary Table S1).
The similarity index for the apo species (i.e., themost flexible one)
is close to 0.70 and 0.60 for α2β1 and α2β2, respectively, reflecting

FIGURE 3 |RMSF (Å) average of the residues determined for the protein backbone along the last 500 ns of the three independent replicas runs for (A) apo, (B) holo
and (C) holo+ATP. The standard deviation for each residue is shown as an error bar. The highlighted regions denote the moieties corresponding to P-loop (purple),
activation loop (cyan), CBM domain (orange), and C-interacting helix (green).
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the preservation of the major deformation of the protein skeleton
in the three replicas. These results also agree with the higher
conformational flexibility observed for α2β2 systems. In the holo
species, the similarity indices are 0.75 for α2β1 and 0.47 for α2β2
systems. These results agree with the essential motion observed
for the holo state of α2β1 (Figure 4A, middle panel) and α2β2
(Figure 4B, middle panel). In the former, the variance of the
system is more balanced between certain regions, i.e., CBM
domain, P-loop, A-loop and helices P220-G229 and E100-
R110 (colored in green, Figure 4). However, higher
fluctuations account for the structural elements in the
α-subunit in α2β2. These findings are in agreement with the
previous RMSD and RMSF results. Finally, for the holo+ATP
systems the similarity index is close to 0.35 for α2β1 and α2β2,
respectively. However, this simply means that binding of both
activator and ATP rigidifies the protein skeleton, annihilating the
large-scale deformations observed in the apo species as observed
in Figure 4. The ED, shown in Figure 4, as well as the similarity
indexes calculated, in Supplementary Table S1, have been
obtained considering the last 500 ns of the simulation time of
the three replicas. However, in order to check the statistical value
of our simulations, we have also calculated the similarity indexes
for the first three essential motions of the apo α2β1 and α2β2
derived from the ED analysis in time windows 200–600 and

600–1,000 ns for the three replicas (Supplementary Table S2).
The similarity index amounts in general to 0.8. For the first
replica of α2β1 system a lower similarity is observed, suggesting a
slower structural relaxation, as noted in the similarity obtained
for more advanced time windows (Supplementary Table S3).
Overall, these results suggest that selection of the last 500 ns to
perform the statistical analysis of the simulations is well suited for
the comparison between replicas, although these results also
suggest that shorter time periods might be also usable. For this
reason this 500 ns time window has been used in further analysis.

To complement the results of ED analysis, we have performed
two additional analyses with the aim to assess the dynamic
correlation between residues and disclose specific relationships
between the α- and β-subunits: a dynamical perturbation network
(DPN, Figure 5) and a dynamic cross-correlation (DCC,
Figure 6; see Methods and Materials for technical details)
analysis.

The dynamical perturbation network (DPN) was calculated
for apo and holo species as an average of the three independent
replicas. Figure 5 shows the changes in the correlation of residues
between apo and holo states, where blue/red edges stand for
contacts weakened/strengthened in holo relative to apo state.
Thus, these networks provide information of how the interaction
of the activator with the enzyme affects the contact network
between residues. For the sake of comparison, this analysis was
performed not only for PF-739, but also for A-769662, which
exhibits a marked selectivity for β1-containing AMPK complexes.
Our previous studies (Human Protein Atlas (2021, 2021; Ngoei
et al., 2018) revealed that A-769662 acts as molecular glue
between the α2- and β1-subunits, while this effect is lost in
the α2β2 species due to the higher dynamical resilience of this
specie towards the activator. The dynamical contact network for
A-769662 (Figure 5A) perfectly agrees with these findings. In
fact, the changes between apo and holo in α2β1 mainly reveal a
higher number of contacts between the P-loop of the α2-subunit
and the CBM of the β1-subunit as well as between the αC-helix of
the α2-subunit and the C-interacting helix of the β1-subunit.
Conversely, the contact network that emerges for the α2β2
complex is more complex, involving regions located far from
the ADaM site. This result agrees with the higher flexibility of the
α2β2 species, and the lower impact of A-769662 on the dynamical
response of this complex.

For the pan-activator PF-739, the α2β1 complex exhibits fewer
and more specific contacts, which primarily affect the CBM/
P-loop and the αC-helix/C-interacting helix/A-loop, than the
α2β2 species, thus resembling the results discussed for A-769662.
However, the number of contacts weakened or even lost between
the A-loop and the αC-helix in the α2β1 holo state is remarkably
higher for PF-739-bound complexes compared to A-769662-
bound ones (Figures 5A,B, left side). For α2β2, the number
and weights of the edges are larger in this species, and the
distribution of contacts involves wider regions from the CBM
domain to the A-loop (see highlighted region in cyan, Figure 5B,
right panel). Noteworthy, DPN analysis reveals that binding of
A-769662 gives rise to a much larger difference in the dynamical
network of α2β1/A-769662 and α2β2/A-769662 complexes than
for α2β1/PF-739 and α2β2/PF-739 complexes, as the pattern

FIGURE 4 | Representation of the first essential motion derived from the
ED analysis of the protein backbone for the (A) α2β1 and (B) α2β2 species,
determined from the snapshots sampled along the last 500 ns of MD
simulations. The P-loop is shown in yellow, and the helices formed by
residues 100–110 and 220–229 in the α-subunit are shown in green. The
CBM domain is colored in magenta.
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observed for the last two AMPK complexes exhibit a similar
pattern (Figure 5). This is in agreement with the experimental
results that indicate that the PF-739 is active against both β1- and
β2-containing isoforms, in contrast with the selective activation
of β1-containing AMPK complexes reported for A-769662.

Finally, the dynamic cross-correlation (DCC) analysis was
performed to examine the correlated motions of residues in
α2β1 and α2β2 AMPK complexes. For the apo systems
(Figure 6A) one may notice a significant correlation between
residues in the P-loop and the αC-helix, both in the α-subunit,
and between the αC-helix from the α-subunit and the
C-interacting helix from the β-subunit (as noted by the
yellow marks). It is worth noting that there is a slight

correlation between the P-loop and the CBM domain
(β-subunit), more remarkable in α2β1 than in α2β2, as noted
by the similarity indexes of 0.82 for α2β1, which is reduced to
0.75 in α2β2 (Supplementary Table S4). The holo+ATP systems
show lower dynamical correlation between residues, as observed
by the progressive reduction in the number and intensity of the
areas that exhibit a pronounced correlation (shown in yellow
and blue for highly correlated and anticorrelated fluctuations
between residues, respectively). On the contrary, the correlation
between the motion of the P-loop and the CBM domain is
reinforced in the holo and holo+ATP states (black square in
Figure 6). These effects are more noticeable for the comparison
of holo in α2β1 (similarity indices of 0.63 in α2β1 vs 0.55 in

FIGURE 5 | Representation of the contact changes observed in the dynamical perturbation network between apo and holo states for (left) α2β1 and (right) α2β2
species. The holo states were calculated in presence of (A) A-769662 and (B) PF-739 activators. Red/blue edges show interresidue atomic contact increase/decrease in
the holo state relative to the apo form. The magnitude of these changes is indicated by the width of the edges.
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α2β2, Supplementary Table S4), while lower differences exist
for holo+ATP systems in α2β1 and α2β2, in agreement with
previous analyses.

Although the preceding results show a high similarity in the
dynamical behavior of both α2β1 and α2β2 species bound to PF-
739 activator, which agrees with the definition of PF-739 as a pan-
activator, these analyses still reveal subtle differences between β1-

and β2-containing AMPK complexes. In particular, the results
suggest that the α2β2 species have a larger resilience to the
structural modulation exerted by the activator, whereas the
α2β1 isoform is more sensitive to the conformational
adaptation induced upon activator binding to the ADaM site,
enhancing the stiffness of protein backbone for the β1-containing
complex (Figures 4, 5). These results agree with the fact that PF-

FIGURE 6 | Dynamic cross-correlation (DCC) matrices for (A) apo, (B) holo and (C) holo+ATP complexes of (left) α2β1 and (right) α2β2 with PF-739. The x- and
y-axis denote the numbering of residue in the α- and β-subunit, indicated at the bottom of the plot (yellow and gray lines for α- and β- subunits, respectively). Specific
regions of AMPK are highlighted with squares at the top of the plot: P-loop (pink), αC-helix (blue), activation loop (A-loop; cyan), CBM unit (orange) and C-interacting
helix (C-int; green). Regions colored in yellow/blue show high correlated/anticorrelated fluctuations. The black square in the plots highlights the motion between the
CBM domain and the P-loop.
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739, which can activate both α2β1γ1 and α2β2γ1 complexes, still
exhibits a larger affinity for the β1-isoform (Figure 1) (Cokorinos
et al., 2017).

Pre-Organization of ATP-Binding Site
To explore how PF-739 could influence the activation of AMPK,
we have evaluated the dynamical response of the ATP-binding
site due to the binding of the activator in the ADaM site.
Specifically, we have assessed the pre-organization of the ATP-
binding site in the apo, holo and holo+ATP states, using as a
reference the average structure of the holo+ATP complex.

For the holo+ATP states, the residues of the ATP-binding
site sample a conformational space with a high peak centered
at a positional RMSD of 1.2 A˚ and a shoulder at 1.9 A˚ for α2β1,
while a wider distribution is observed with a peak centered at
1.8 A˚ for α2β2 (Figure 7, Gaussian distributions colored in
yellow). Unexpectedly, the apo state shows a narrower
distribution with a unique peak centered at 2.0 A˚ for both
α2β1 and α2β2 species. In fact, the conformations sampled by
the apo state have a notable overlap with the distribution of
holo+ATP, this resemblance being more significant for the
α2β2 species. In contrast, the holo state exhibits a wider
distribution, showing a bimodal RMSD profile, with peak
values at 1.7 and 3.2 A˚ for α2β1, and at 1.8 and 2.5 A˚ for
α2β2. These results suggest that the binding of PF-739
enhances the fluctuations of P-loop residues that shape the
ATP-binding. Due to this higher conformational flexibility,
the ATP-binding site can adopt conformations close to
those populated in the holo+ATP state, but also visit more
dissimilar conformational regions even in comparison with the
apo state (Figure 7).

Structural Basis of the AMPK Activation by
Pan-Activator PF-739 and Its Comparison
With Other Direct Activators
To complement the previous analyses, we have examined the
interaction network formed by PF-739 and the residues in both α-
and β-subunits. To this end, we have clustered the snapshots
sampled along the last 500 ns simulation of each replica for both
holo α2β1 and α2β2 species, summing a total of 1.5 μs. The results
for holo-α2β1 system display up to 4 different clusters, which
account for 67.5, 11.8, 10.5 and 10.2% of the conformational
ensemble, where the main difference is the conformation adopted
by the sugar-like mannitol ring appendage of PF-739
(Figure 8A). In all cases two regions can be identified in the
interaction network. The first one corresponds to the salt bridge
formed between β1-Arg83 and α2-Asp88 (3.0 ± 0.3 Å), which at
the same time is hydrogen-bonded to PF-739 (3.5 ± 0.6 Å). For
the second cluster (11.8%), an additional interaction between β1-
Arg83 and the sugar-like mannitol ring is observed (3.7 ± 0.6 Å;
Figure 8A). The second region involves salt bridges between
pSer108 located at the β-subunit CBM domain and α2-Lys29
(3.7 ± 0.9 Å) and α2-Lys31 (4.4 ± 1.3 Å), both from the P-loop of
the α-subunit. Moreover, α2-Lys29 and α2-Lys31 establish
contacts with PF-739, such as a hydrogen bond between the
Lys31 and the hydroxymethyl-cyclopropyl group (3.2 ± 0.7 Å),

which is found in all clusters, and an additional interaction
between Lys29 and the N of the benzimidazole ring (3.9 ±

0.9 Å, Figure 8A) present in clusters 2 and 3. These
interactions networks are very similar to those found in our
previous study of SC4 (Aledavood et al., 2021), suggesting that the
structural differences between these two compounds, mainly
regarding the o-toluic substitution of SC4 by mannitol-like
ring appendange in PF-739, and the 4′-nitrogen of
imidazopyridine in SC4 by a carbon atom in PF-739, do not
have a dramatic effect over the interaction at the ADaM site (see
also Supplementary Table S5). Indeed, these findings remark the
key role of the β1-Arg83/β2-Arg82 in the organization of these
interactions networks as we explain below.

The cluster analysis performed for the holo-α2β2 system yields
four clusters that differ in the orientation of the sugar-like
mannitol ring of PF-739, accounting for 76.7, 13.3, 6.0 and
4.0% of the structural ensemble (Figure 8B). However, these
clusters show higher structural diversity than those determined
for the holo-α2β1 system. Thus, two distinct orientations of β2-
Arg82 are found in all clusters (Figure 9). In one case
(Figure 9A), β2-Arg82 interacts with α2-Asp88 (3.9 ± 1.3 Å),
which forms a hydrogen bond with PF-739 (2.9 ± 0.2 Å). This
arrangement represents 54.4% of all the conformations sampled
for the α2β2 holo species. In the second orientation β2-Arg82
interacts with β2-Asp111 (3.8 ± 0.9 Å), accounting for 45.6% of
the conformational ensemble (Figure 9B). Notably, in the α2β1
holo species this latter interaction is not observed, which can be
attributed to the substitution of β2-Asp111 by β1-Asn111. The
second orientation found for β2-Arg82 reinforces the interaction
network observed through β-pSer108, which maintains its
interactions with both αLys29 (3.3 ± 0.6) and αLys31 (3.8 ±

1.0) from the P-loop. Additionally, the interaction between
αLys31 and the hydroxymethyl-cyclopropyl group (3.2 ±

0.6 Å) of PF-739 is maintained in all clusters, while the
interaction between Lys29 and the N of the benzimidazole
ring is less stable and only slightly observed in cluster #3
(4.4 ± 0.7 Å, Figure 8B).

These results suggest that the arrangement of the sugar-like
mannitol unit structural, which exhibit notable differences
between clusters, does not have a significant impact on the
interaction network observed along the simulations, since
the main interactions are preserved in all cases. Indeed, the
arrangement of the sugar-like mannitol ring gives rise to new
interactions between β1-Arg83 (β2-Arg82) and PF-739 only in
cluster #2 (11.8%) for α2β1 and cluster #4 (4.0%) for α2β2.
Furthermore, the conformation of the β1-Arg83/β2-Arg82
residue emerges as a key structural feature. While in the α2β1
holo specie, β1-Arg83 forms a salt bridge with α2-Asp88 in all
sampled conformations, two orientations are found for β2-Arg82
in the α2β2 holo species (Figure 9). This distinctive trait can be
attributed to the substitution β1-Asn111→ β2-Asp111, since the
presence of β2-Asp111 in α2β2 promotes an electrostatic
competition with α2-Asp88 for the interaction with β2-Arg82.

To confirm these results, we have calculated the major
interaction pathways identified from WISP analysis for the
holo species formed with PF-739. Figure 10 show the WISP
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results obtained in our previous work (Ngoei et al., 2018) for A-
769662 (Figure 10A) and SC4 (Figure 10B), as well as the results
obtained for PF-739 (Figure 10C). For the α2β1/A-769662
complex three major paths are found between the CBM
domain and the P-loop, which involve i) pSer108, ii) the
hydrophobic core of the ADaM site, and iii) the interaction
β1-Arg83-α2-Asp88. All of them are directly connected with
the activator through the residues participating in the path,
supporting the role of A-769662 as a molecular glue between
α2- and β1-subunits. However, only the pSer108 path is observed
for the α2β2/A-769662 complex. This can be attributed to the
β1-Asn111 → β2-Asp111 substitution, weakens the interaction

between β2-Arg82 and α2-Asp88, and strengthens the path
through pSer108. In turn, this agrees with the selective
activation observed for AMPK complexes containing the
β1-isoform. In contrast, two representative paths are found in
the holo states formed with SC4 (Figure 10B), corresponding to
the networks through pSer108 and through the pair β1/2-
Arg83−α2-Asp88. Furthermore, SC4 exhibit a similar pattern
in both α2β1 and α2β2, which is in agreement with the ability to
activate both kinds of AMPK complexes (Hardie, 2014).
Interestingly, the β1-Asn111 → β2-Asp111 substitution seems
to be less sensitive to the presence of SC4, an effect that can be
attributed to the negative charge of the activator that can

FIGURE 7 | Distribution of the positional deviation (RMSD; Å) of the structures sampled along the trajectories run for apo (red), holo (blue), and holo+ATP (yellow)

for the residues that shape the ATP-binding site (residues α22–α32, α42–α46, α75–α79, α142–α147, and α153–α157). A total of 60,000 snapshots taken from the last
500 ns of MD simulations were considered for each system in the analysis.

FIGURE 8 | Representation of main interactions between the CBM, P-loop and PF-739 for holo states of (A) α2β1 and (B) α2β2 species for the four clusters
obtained along the last 500 ns of simulation of each replica. The α-subunit is shown in orange cartoon, while the β-subunit is shown in grey cartoons. PF-739 is shown in
grey ball and sticks in the ADaM site. Selected polar interactions maintained through all the MD simulations and clusters are highlighted in black dashed lines, while those
formed in specific clusters are shown in cyan.
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modulate the linking role of β2-Arg82 towards a preferential
interaction with either β2-Asp111 and α2-Asp88.

In light of these findings, we have performed the WISP
analysis separately for the four main clusters obtained for PF-
739 (Figure 10C). In the case of the holo-α2β1 state, the three
pathways described above for A-769662 can be identified in the
whole set of clusters. Although one may notice distinct traits for
each cluster, at least two main paths can be observed for clusters
#1, #3 and #4. In particular, for the most populated cluster (#1;
67.5%) they correspond to the paths mediated by pSer108 and the
pair β1-Arg83−α2-Asp88, respectively. However, the analysis of

the holo-α2β2 state reveals a weaker connectivity, since a single
path dominates the interaction network in all clusters, For the
most populated cluster #1 (76.7%), the path involves the β2-
Arg82−α2-Asp88 pair, with a minor contribution of the pSer108-
mediated path. In the other clusters, nevertheless, the pSer108
path is predominant, resembling the behavior found for A-
769662 (Figure 10A, right panel).

These results suggest that the β1-Asn111 → β2-Asp111
substitution plays a critical role in defining the mechanical
sensitivity of AMPK to the direct activator. Besides the
pSer108-mediated path, the presence of β1-Asn111 in α2β1

FIGURE 9 | Representation of the two orientations of the β2-Arg82 in α2β2 species, where the interaction with (A) the α2-Asp88 and (B) the β2-Asp111 are
highlighted in cyan dashed lines. The α-subunit is shown in orange cartoon, while the β-subunit is shown in grey cartoons. PF-739 is shown in grey ball and sticks in the
ADaM site.

FIGURE 10 |Comparison of major interaction networks obtained fromWISP analysis for α2β1 (left panel) and α2β2 (right panel) species of the holo states for (A)
A-769662, (B) SC4 and (C) PF-739 direct activators.
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favors the formation of an additional path that involves the
concerted interaction between β1-Arg83, α2-Asp88, activator
and α2-Lys29/α2-Lys31. Nevertheless, the substitution
β1-Asn111 → β2-Asp111 favors the breaking of the
β2-Arg82−α2-Asp88 interaction and the formation of the salt
bridge with β2-Asp111, which reinforces the contribution of the
pSer108 path, making the α2β2 complex less sensitive to the
modulation by the activator.

The chemical features of the activator also exerts role in
assisting the conformational activation of both α2β1 and α2β2
species. The main difference between A-769662 and PF-739 is the
replacement of the thienopyridone ring by a benzimidazole
derivative with a sugar-like mannitol appendage in PF-739
(Figure 11). The β1-Arg83−α2-Asp88−A-769662−α2-Lys29/
α2-Lys31 network of interactions acts as a transmission band
that connect the dynamical motion of the CBM domain with the
P-loop, assisting the effective transition toward conformations
that resemble the ATP-binding site in the holo+ATP state for the
α2β1 species (Supplementary Figure S2, left). However, breakage
of this interaction path in the α2β2 holo species prevents the
activator to mediate the transmission of the dynamical
fluctuations of the CBM domain and the P-loop, which is
reflected in a wider conformational distribution of the ATP-
binding site (peak centered at 3.0 Å; see Supplementary Figure

S2, top). This reflects the inability of A-769662 to pre-organize
the ATP-binding site in β2-containing AMPK complexes.

The conformational response caused by PF-739 is more
complex, reflecting the structural variability of the clusters
regarding the orientation of the sugar-like mannitol appendage
for both α2β1 and α2β2 species, and the two arrangements of β2-
Arg82 in α2β2 compared to the single conformation of β1-Arg83
in α2β1. The analysis of the pre-organization of ATP-binding site
(Figure 7) reveals that the activator is unable to reduce the

conformational sampling to structures well suited for the
binding of ATP, which would diminish the activation effect of
PF-739. At this point let us remark the bimodal behavior shown
in Figure 7A, with only 33.3/45.0% of the sampled structures of
ATP-binding site resembling the holo+ATP in α2β1/α2β2,
whereas A-769662 triggers a marked shift in the population
distribution in the holo complex of α2β1 (Supplementary

Figure S2). On the one side, this agrees with the ability of PF-
739 to exert a mild activation in both α2β1 and α2β2. The
distribution of holo+ATP−like conformations in α2β2 is wider
than in α2β1, which reflects the higher structural plasticity
observed in α2β2 species. On the other side, these findings are
also in agreement with theWISP results, which show how PF-739
activator has higher gluing effect than A-769662 in α2β2, allowing
the transmission of the information between α- and β-subunit
through the pSer108 and β2-Arg82−α2-Asp88 pathways,
explaining in this way why PF-739 acts as a pan-activator.

CONCLUSION

Discerning the molecular factors that regulates the structure-
function relationships of AMPK isoforms is of utmost
importance to rationalize the tissue-dependent expression of
AMPK complexes, and thus enabling the design of specific
compounds active against specific metabolic disorders.
However, the recognition of the differences between isoforms
that allow a different ligand behavior (i.e., selective activator, pan-
activator or even inhibitor) is very challenging due to the high
structural complexity of the enzyme and the highly correlated
dynamics observed for both α2β1 and α2β2 species.

Our results confirmed that the subtle difference of β1-Asn111 to
β2-Asp111 has great implications in the dynamical response of

FIGURE 11 | Schematic representation of the α2β1 holo state for (A) A-769662 and (B) PF-739. The 2D chemical structure of the direct activators is presented with
the orientation displayed in the ADaM site. The polar interactions between β1-Arg83, α2-Asp88 and the respective ligands are shown in dashed lines.
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AMPK to the binding of activators. This single substitution can
change the interaction networks formed surrounded the activator,
thus inducing a better mechanical response of the α2β1 specie
towards the interaction of PF-739, than in the case of the α2β2
species. So, even in case of a pan-activator like the PF-739, able to
activate both β-isoforms, still subtle residue substitutions in
the ADaM site are responsible of difference in affinity towards
the isoform. Additionally, we hypothesized that the bulkier
substitutions in the chemical structure of the ligands located
nearest to the α2-Asp88 residue could involve a higher
variability in the conformational space, thus preventing to
discern between β-isoforms.

In summary, we were able to characterize the key molecular
features that mediate the activation of pan-activator towards
α2β1and α2β2 species. All these findings shed light in the
comprehension of the role of specific residues in the ADaM
site that can modulate or completely change the direct activation
mechanism of β1- and β2-containing AMPK complexes. Future
studies will be appreciated to distinguish the structural basis of
the different sensitivity of AMPK complexes formed by distinct
α-subunits, and which is more important, the study of the full
complex to disentangle the full allosteric network connection.
This understanding will really enable us the design of tissue-
selective modulators of this cellular energy sensor.

MATERIALS AND METHODS

Molecular Dynamics Simulations
Extended molecular dynamics (MD) simulations were utilized to
analyze the structural and dynamical characteristics of the
simulated system. For this purpose, the α2β1γ1 systems were
built up using the complexes with A-769662 (PDB entry 4CFF)
(Xiao et al., 2013). On the other hand, the system related to the
complex of α2β2γ1 bound to SC4 (PDB entry 6B2E) (Ngoei et al.,
2018) was also used as a template to model the complexes with PF-
739. Following our previous studies, (Aledavood et al., 2019;
Aledavood et al., 2021), the γ-subunit was not considered in
MD simulations for several reasons. First, the ADaM site is
shaped only by α- and β- isoforms. Furthermore, the lack of
precise structural information about stretches of both α- and
β-subunits, particularly regarding the C-terminal regions, which
are located close to the γ-subunit, would introduce an additional
level of uncertainty, opening the way to potential artefacts in the
simulations. Finally, inclusion of the γ-subunit would have
required a larger computational cost to guarantee a proper
sampling of the dynamical motions of the three isoforms.
Accordingly, following the “divide-and-conquer” strategy
outlined above, the simulated systems comprise only α- and
β-subunits. Specifically, simulations were performed for residues
8–278 of the α2 isoform, and residues 78–173 and 77–171 of the
β1- and β2-isoforms, which were solved without disruptions in the
X-ray structures. Finally, these structures were used to model the
apo protein, the complexes of the activators bound to the
phosphorylated Ser108 (pSer108)-containing isoforms (holo),
and the corresponding holo+ATP complexes with both
activator in the ADaM site and ATP in the ATP-binding site.

The Molecular dynamic (MD) simulations were performed
using the AMBER18 package (Case et al., 2018) and the Amber
ff99SBILDN force field (Lindorff-Larsen et al., 2010) for the
protein, whereas the ligand (PF-739) were parameterized using
the GAFF force field (Wang et al., 2004) in conjunction with
restrained electrostatic potential-fitted (RESP) partial atomic
charges derived from B3LYP/6-31G(d) calculations (Bayly
et al., 1993). The parameters used for the ATP molecule were
obtained from the Amber parameters database from Bryce group
at the University of Manchester (AMBER parameter database,
2021; Meagher et al., 2003). The standard protonation state at
physiological pH was assigned to ionisable residues, and a
capping group (N-methyl) was added to the C-terminus of the
α-subunit. The simulated systems were immersed in an
octahedral box of TIP3P water molecules considering a solute-
edge distance of 12 Å (Jorgensen et al., 1983), and counterions
atoms were added to maintain the neutrality of the simulated
systems (Joung and Cheatham, 2008). The final systems included
the AMPK protein (368 residues for α2β1 and 367 residues for
α2β2), around 25,000–26,700 water molecules, and a variable
number of Na+ and Cl− ions, leading to simulated systems
containing between 81,000 and 86,000 atoms (specific values
are gathered in Supplementary Table S6).

Simulations were performed in the NPT ensemble for
equilibration and NVT for MD productions using periodic
boundary conditions and Ewald sums (grid spacing 1 Å) for
treating long-range electrostatic interactions. Apo, holo and
holo+ATP systems were simulated in triplicate. The
minimization of the systems was performed refining the
position of hydrogen atoms in the protein (2,000 cycles of
steepest descent algorithm followed by 8,000 cycles of conjugate
gradient), subsequentlyminimizing the position of watermolecules
(using again the previous scheme), and finally minimization of the
whole system (4,000 cycles for steepest descent and 1,000 cycles of
conjugate gradient). Later, the temperature of the system was
gradually raised from 100 to 300 K in five steps, 50 ps each
using the NVT ensemble and Langevin dynamics for the
temperature regulation. In this process, suitable restraints
(5 kcal mol−1Å−2) were imposed to keep the ligand (activator,
ATP) in the binding pocket and prevent artefactual
rearrangements along the equilibration stage. In order to
equilibrate the density of the system an additional 5 ns step
performed in the NPT ensemble using the Berendsen barostat.
In addition, the restraints were progressively eliminated in this later
step. Production MD simulations were run for 1 μs per replica,
leading to a total simulation time of 12 μs for the ligand-bound
AMPK complexes, and 6 μs for the two apo species of AMPK.

Essential Dynamics
This method was utilized to specify the most important motions
from the structural variance sampled in MD simulations. In
essential dynamics (ED) (Amadei et al., 1993), the dynamics
along the individual modes can be studied and visualized
separately, so we can filter the main collective motions during
our simulations. Therefore, the positional covariance matrix is
created and diagonalized in order to achieve the collective
deformation modes, i.e., the eigenvectors, while the eigenvalues
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account for the contribution of each motion to the structural
variance of the protein. ED analysis was done for 25,000 snapshots
from the last 500 ns of each simulation, taking into account only
the backbone atoms and the calculations were performed with
PCAsuite program (available at http://www.mmb.irbbarcelona.
org/software/pcasuite/pcasuite.html), which is integrated in the
pyPCcazip program, a suite of tools for compression and analysis
of molecular simulations (Shkurti et al., 2016).

Dynamical Perturbation Network
Contact networks represent a protein as a collection of nodes,
i.e., the residues that are connected by edges if those residues satisfy
a contact condition. Here, in line with previous works (Vuillon and
Lesieur, 2015; Dorantes-Gilardi et al., 2018; Gheeraert et al., 2019),
the contact condition is satisfied if at least one heavy atom from a
residue is at a distance below 5 Å from a heavy atom of another
residue. Edges are then weighted by the total number of atomic
couples that satisfy this contact condition. Individual contact
networks from the frames of one MD simulation are built and
averaged (considering the average total number of atomic contacts
from various replicas) in order to create a dynamical weighted
contact network, which represents a time-averaged contact
network associated to the corresponding MD simulations.

To compare MD simulations of a protein in various states
(i.e., apo, holo and holo+ATP complexes), we computed
perturbation contact networks (Gheeraert et al., 2019) by
subtracting two dynamical weighted contact networks
associated to each pair of states. To differentiate increases and
decreases in contact we assign colors to the edges of the
dynamical perturbation network according to the sign of its
edges. Finally, for visualization purposes a weight threshold
can be applied so that only edges wit a weight greater than the
threshold are kept for visualization, here set to 5 as in previous
work (Gheeraert et al., 2019). Nodes isolated after this process are
also pruned to simplify the visualization.

Dynamic Cross-Correlation Analysis
To complement the information gained from the ED analysis,
dynamic cross-correlation (DCC) was used to examine the
correlation motion of residues along a given trajectory. To this
end, all the snapshots were aligned by means of least-square
fitting of Cα atoms of the whole protein to the equilibrated
starting configuration. Then, the DCC matrix was determined
as noted in Eq. 1.

Cij �
cij

c1/2ii c1/2jj

�

〈rirj〉 − 〈rirj〉

[(〈r2i 〉〈r2i 〉)(〈r2j 〉 − 〈r2j 〉)]
1/2 (1)

where the position vectors of two Cα atoms i and j fitted in the
structure at time t are denoted as ri(t) and rj(t), respectively.

The cross-correlation coefficients range from −1 to +1, which
represent anticorrelated and correlated motions, respectively,
whereas values close to zero indicate the absence of correlated
motions (Hünenberger et al., 1995). This analysis was performed
using the module available in AMBER package. The similarity
between the DCC matrices computed for the three replicas run
for apo, holo and holo+ATP systems was estimated using the

Tanimoto similarity index. This parameter is a distance metrics
used to quantify the degree of similarity between two sets of data.
While this index is widely adopted to compare the descriptors
that characterize the chemical structure of molecules, in this study
it is used to compare the correlated motions determined for pairs
of residues in the AMPK complexes.

Cluster Analysis
Cluster analysis is a way of determining structure populations
from MD simulations. Clustering results in a partitioning data so
that data inside a cluster are more similar to each other than they
are outside a cluster. In MD, this is a mean of grouping similar
conformations together. Similarity is defined by a distance metric,
the smaller the distance, the more similar the structures. We used
coordinate RMSD as the distance metric parameter. Additionally,
we used K-means algorithm as implemented in cpptraj software
(Shao et al., 2007), to perform cluster analysis. The K-means
identifies k number of centroids, and then allocates every data
point to the nearest cluster, while maintaining the centroids as
small as possible (Shao et al., 2007). We set the sieve parameter to
10 to reduce the expense of generating the pair-wise distance
matrix by using “total/10” frames for initial clustering. The sieved
frames are then added to the initial clusters. This analysis was
done for 100,000 snapshots from the last 500 ns of each
simulation, considering only the backbone atoms.

Interaction Energy Network
Networks of local interactions are intrinsically linked to the
structural response of proteins to external factors (O’Rourke
et al., 2016). For our purposes, Weighted Implementation of
Suboptimal Path (WISP) (Van Wart et al., 2014) was utilized to
analyze the allosteric network. This method enabled us to
perform a dynamic network analysis to understand how the
binding of a ligand in an allosteric cavity could affect another
binding site. In particular, WISP relies on the dynamical
interdependence among the protein residues. To this end, each
amino acid is treated as a node, which was located at the residue
center-of-mass, and the interdependence among nodes is
represented as a connecting edge with an associated numeric
value that reflects its strength. The interdependence is determined
from an NxN matrix C (N is the number of nodes) with values
corresponding to the weights of each edge, reflecting the
correlated motion among node-node pairs. Finally, the
weight between the edge that connects nodes i and j is
expressed as wij � −log(|Cij|), so that highly correlated or
anticorrelated motions are characterized by small values of
wij. This analysis was performed for the last 500 ns of the MD
simulations.
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3.2 Distinct allosteric pathways in Imidazole Glycerol Phosphate
Synthase from T. maritima and S. cerevisiae

3.2.1 Structural and functional comparison between the enzymes

Our collaboration with the group of Prof. Victor S. Batista at Yale University initially focused on computational
studies of allosteric pathways of IGPS from T. maritima . Numerous experimental studies on the allostery of
IGPS from S. cerevisiae exists but to prior to this thesis, its allosteric pathways remained unknown. IGPS
from T. maritima and S. cerevisiae is then a good test case to assess how evolution shape allosteric pathways,
and especially to understand if they can be conserved in such distanced species (a bacteria and a fungi).

Figure 3.3: Amino acid alignment after using the Smith-Waterman structural alignment algorithm

Alignment RMSD (in Å) Gaps (%) Identity Similarity
HisH-His7 5.77 62 (20.39%) 40.46% 53.95%
HisF-His7 3.28 28 (13.08%) 28.97% 51.40%

Table 3.1: RMSD, identity and similarity of the alignments between the two chains of IGPS from T. maritima
and IGPS from S. cerevisiae

The most importance difference between IGPS from T. maritima and S. cerevisiae is the fact that the first
is a heterodimer composed by two chains, while the latter is a monomer. HisH and HisF from T. maritima
respectively have 201 and 253 amino acids, and His7 from S. cerevisiae has 534. Using the Smith-Waterman
algorithm[1] implemented in the RCSB PDB Comparison Tool Reference[2], we aligned structurally the amino
acid sequence of HisH (PDB entry 1GPW.C), HisF (PDB entry 1GPW.D) and His7 (PDB entry 1OX4.A)
(see Fig. 3.3). This shows that the structures of HisF and His7 are aligned between residues hI3–hE191 and
V4–E206 and the sequence of HisF and His7 are aligned between residues f L2–f E251 and L236–D550. Despite
only having a similarity of about 50% (see Table 3.1), these alignments shows a good structural identity with a
RMSD between 3.28 and 5.77. The alignments of the 3D structures is also reported on Fig. 3.4. Looking more
specifically at the allosteric pathways, we know that in T. maritima one key residue to begin the propagation
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Figure 3.4: 3D structural alignment between IGPS from T. maritima (orange) and S. cerevisiae (cyan)

of perturbation is f K19 and its pairing with f D11. In S. cerevisiae they are both conserved with respectively
residue K258 and D245. To get the crystal structure of 1GPW, the f D11N mutation was engineered. So con-
sidering the wild type IGPS from T. maritima, f D11 residue is conserved by D245. Upon PRFAR-binding,
a hydrophobic cluster formation is reported in IGPS from T. maritima involving residues f F23, f V48, f L50
and f I52. In S. cerevisiae f F23 is absent, f V48 is substituted into T295 while L297 and I299 are conserved.
This suggests that a different mechanism could be at play here. Notably, residue f F23 in loop1 establishes the
connection with residues in the f β1 sheet. In S. cerevisiae the segment between f T21 and f R28 is deleted.

Another important part of the propagation mechanism is the alteration of the salt-bridge network involving
residues f E91 f R95, f E67 and hR18. None of these residues are conserved in the structural alignment. This
suggests that there again a different mechanism may be at play. Notably in IGPS from T. maritima these
residues establishes the connection between HisF and HisH. It may be that the perturbation spread differently
when the two chains are fused together. Upon PRFAR bonding, after the propagation from HisF to HisH,
in T. maritima, the allosteric mechanisms channels through the disruption of the contact between hN12 and
hN15. Only the first of these two residues is conserved with N13, the latter being replaced by S15, which is
also versatile in hydrogen bonding. In T. maritima the last crucial bit of the mechanism is the disruption of
hydrogen bond between residue hP10 and hV51 upon effector binding. The 49-PGVG strand is conserved in
S. cerevisiae (and actually in every IGPS) but residue hP10 structurally overlaps with a dissimilar S11. After
the 49-PGVG strand, the allosteric mechanism ends up in the catalytic triad hC84–hH178–hE180 completely
conserved in S. cerevisiae which is of course conserved with residues C83, H193 and E195.

While key elements of the allosteric pathways are conserved, others are not. Intriguingly, the conserved

Figure 3.5: The endpoints’ specificity hypothesis in allostery.

elements are either close to the effector site (f K19, f D11) or to the active site (PGVG strand) as reported in
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Figure 3.5. One hypothesis is that at both ends (effector binding and substrate binding) the allosteric mech-
anism has to be very precise and residues involved in this particular mechanism should be conserved. Some
degree of precision is required near the effector site so that allosteric effects are only triggered in response to a
specific molecular input. In a V-type allosteric enzyme, the endpoint of the allosteric pathways is to reshape
the active site cavity. By contrast with this view, the allosteric pathways are generally considered redundant,
however it seems here that the redundancy affects mainly the intermediate pathways. This redundancy allows
for the evolution of intermediate pathways, thus, key allosteric residues can differ from protein homolog to
protein homolog.

3.2.2 Kinetics comparison between the enzymes

Michaelis–Menten steady state kinetics[3] of IGPS from T. maritima[4] and S. cerevisiae[5] have previously been
experimentally determined, and the results are reported in Table 3.2. In both enzymes, the kinetics constants
were determined in the absence of ligand (apo) and in saturation of PRFAR (holo). The catalytic rate constant
kcat is compared with the Michaelis constant KM which corresponds to the concentration of substrate at which
the reaction rate is at half-maximum. This Michaelis constant is inversely proportional to the affinity of the
substrate for the enzyme. The constant kcat/KM (catalytic efficiency) is a measure of the efficiency at which
an enzyme converts the substrate into a product.

apo holo
Organism kcat (s−1) KM (mM) kcat/KM kcat (s−1) KM (mM) kcat/KM holo/apo
T. maritima[4] 3.72×10−3 4.91 0.76 4.09 1.30 3150 4161
S. cerevisiae[5] 5.50×10−3 4.70 1.18 6.80 1.20 5800 4900

Table 3.2: Michaelis–Menten steady stade kinetics of IGPS from T. maritima and S. cerevisiae

Interestingly, T. maritima and S. cerevisiae feature very similar Michael–Mentis parameters which always
remains in the same order of magnitude in the apo and holo form. IGPS from S. cerevisiae has a slightly faster
catalytic rate in apo and holo combined with a slightly bigger affinity, which in turn makes for a higher catalytic
efficiency. Upon PRFAR-binding, it is the catalytic activity increase (3 orders of magnitude) that is principally
responsible for the dramatic increase in catalytic efficiency (also 3 orders of magnitude) which shows that IGPS
is a V-type allosteric enzyme in the two organisms.

Interestingly, both systems, despite featuring some structural differences in allosteric pathways, have almost
identical kinetics. This can be probably attributed to the conservation of the catalytic site, the PGVG oxyanion
strand and residue L85. It would appear here as if that the non-conservation of intermediate allosteric pathways
has little to no effect on allosteric kinetics. If effectively demonstrated this effect could have huge repercussion
in designing non-competitive allosteric inhibitors.

3.2.3 Molecular dynamics simulations

To provide computational structural biology elements, we ran MD simulations of the IGPS S. cerevisiae .
IGPS from S. cerevisiae possess different crystal structures, including one with PRFAR-bound (PDB entry
1OX5). However, these structures include some missing segments. We built six different models in total, one
using homology modeling for the missing loops and five using general purpose homology modeling. We then
constructed for each model, the apo and holo models and ran MD simulations for 1 µs. For analysis, we focused
extensively on the first 100 ns of simulation for a better comparison of allosteric pathways from T. maritima
with previous references[6, 7, 8].

3.2.4 Allosteric pathways comparison

In general, we found that the allosteric pathways in the two enzymes are very different at every scale. Most of
the key amino acids in S. cerevisiae IGPS allosteric pathways are different from those of T. maritima IGPS
and moreover they are not located in the same secondary structure elements. In terms of global motions,
S. cerevisiae is also vastly different from T. maritima featuring no breathing motion and overall different
alterations of motion upon effector binding. Finally, the endpoint of S. cerevisiae IGPS allosteric mechanism
is still the PGVG oxyanion strand. Still, in opposition with T. maritima IGPS, where the reason for PGVG
flipping is the breaking of a hydrogen bond with the Ω-loop, in S. cerevisiae IGPS, these two secondary
structures are not linked by a hydrogen bond, and it is the Ω-loop increase in flexibility that transmits to the
PGVG segment. In consistence with the structural analysis here, we found that the allosteric pathways in S.
cerevisiae are not evolutionary conserved, which validates our endpoint hypothesis.
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ABSTRACT Understanding the relationship between protein structures and their function is still an open question that be-

comes very challenging when allostery plays an important functional role. Allosteric proteins, in fact, exploit different ranges

of motions (from sidechain local fluctuations to long-range collective motions) to effectively couple distant binding sites, and

of particular interest is whether allosteric proteins of the same families with similar functions and structures also necessarily

share the same allosteric mechanisms. Here, we compared the early dynamics initiating the allosteric communication of a pro-

totypical allosteric enzyme from two different organisms, i.e., the imidazole glycerol phosphate synthase (IGPS) enzymes from

the thermophilic bacteria and the yeast, working at high and room temperatures, respectively. By combining molecular dynamics

simulations and network models derived from graph theory, we found rather distinct early allosteric dynamics in the IGPS from

the two organisms, involving significatively different allosteric pathways in terms of both local and collective motions. Given the

successful prediction of key allosteric residues in the bacterial IGPS, whose mutation disrupts its allosteric communication, the

outcome of this study paves the way for future experimental studies on the yeast IGPS that could foster therapeutic applications

by exploiting the control of IGPS enzyme allostery.

INTRODUCTION

Allostery is an essential regulatory process of biological

macromolecules of great interest for a wide range of appli-

cations, including drug discovery and gene-editing technol-

ogies (1–4). Allosteric mechanisms typically transmit the

effect of binding of a ligand effector to a distant site, often

responsible for catalytic activity (5). Targeting the signal

transduction mechanism between the allosteric and catalytic

sites can lead to suppression of substrate turnover at the

active site, opening an opportunity for protein engineering

or development of non-competitive small molecule inhibi-

tors. An advantage of allosteric drugs is that they selectively

tune responses in tissues where the endogenous agonists

exert their physiological effects and only when the endoge-

nous agonists are present (6). Such spatial and temporal

selectivity cannot be achieved with traditional orthosteric

agonists since those modify the receptor function continu-

ously as long as they are present. Another important advan-

tage is the intrinsic safety in overdosage since, once the

allosteric sites are occupied, no further allosteric effect

can be produced even with excessive doses (5,7). An

outstanding challenge, however, is the development of

fundamental understanding of allosteric pathways in
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proteins (1,8–11). In fact, an allosteric mechanism encom-

passes all steps that are involved in the signal transduction

extending from the effector to the active site. These steps

include effector binding, allosteric communication (via

local contacts and collective motions; i.e., the allosteric

pathways) triggering alterations (usually associated to

conformational changes) of the active site. It has been pro-

posed that allostery may be an intrinsic property of virtually

all proteins (12); however, the extent of conservation of allo-

steric mechanisms or absence of it across a protein family

remains an open question (13). In fact, the similarity of pro-

tein structures does not necessarily imply a common func-

tion (proteins with different functions can share a common

structural framework while the same function can be per-

formed by proteins with different folds), suggesting that

the structure/function relationship can be quite complex in

terms of allostery (12).

On one side, there are examples of proteins with similar

functions and structures retaining similar allosteric path-

ways that have been reported (14–17), pointing out the

role of conserved network of residues in allostery. On the

other hand, various studies have reported differences in

the allosteric communication between protein homologs.

For instance, the structural study of three bacterial chemo-

taxis protein Y orthologs showed divergent allosteric re-

sponses across the protein family, with allosteric signals

found to be globally propagated in different, system-depen-

dent, ways (18). Moreover, the characterization of three ho-

mologous of the HIV-1 envelope spike allostery has

suggested that, despite the common modular structure of

the allosteric network that remains highly conserved, the

shortest path for communication between distal regions is

sensitive to differences in the primary sequences of the indi-

vidual proteins (19).

Therefore, the assumption that proteins with similar

structures would have similar allosteric pathways is not al-

ways true, since allosteric communication in protein ortho-

logs is often system specific (18,20,21). So, the extent to

which allosteric pathways are conserved among protein or-

thologs remains an open question (22).

The intrinsic complexity of the question of conservation

of allosteric pathways is due to the fact that differences in

the allosteric communication between protein homologs

can occur at different levels of the allosteric signaling path-

ways, i.e., involving both changes in local contacts and/or

collective motions, suggesting that a detailed knowledge

of these communication pathways is required. Here, in

response to reviewers, we address this question for the allo-

steric pathways of imidazole glycerol phosphate synthase

(IGPS) enzymes from two different organisms, bacteria

(Thermotoga maritima [Tm]) and yeast (Saccharomyces

cerevisiae [Sc]). IGPS enzymes are ideal for our analysis

since they are prototypical systems for the study of allostery

and have already attracted significant interest as targets for

therapeutic applications (23–30). Our study is focused on

understanding how these two allosteric enzymes with

different evolutionary paths achieve the same allosteric

function despite the significant differences in their primary

sequences, and secondary structures. As a consequence of

their structural analogy, IGPS enzymes from yeast and bac-

teria feature the same effector-binding site (31,32) and

glutaminase active site (with analogous inactive/active con-

formations) (30). We focus on the characterization of their

allosteric pathways (those of Sc-IGPS being unknown),

exploring both local contacts and collective motion contri-

butions to analyze whether or not the two enzymes have

the same allosteric mechanism. We find that the early dy-

namics that initiate allosteric communication are rather

different for the two enzymes, resulting in distinct allosteric

pathways tailored for activity in the different natural envi-

ronments of the two enzymes. Thermophiles exhibit robust

functionality at high temperatures, while Saccharomyces

function at room temperature. Their early allosteric dy-

namics involve differences in both collective motions and

inter-residue interactions, which are likely due to the

different adaptations of the enzymes to their native

conditions.

Structural features of IGPS enzymes from

Thermophiles and Saccharomyces

We begin by summarizing the similarities and structural dif-

ferences between the two IGPS enzymes. In bacteria, IGPS

is a tightly associated heterodimer complex formed by the

glutaminase subunit HisH and the cyclase HisF (red and

salmon, respectively, in Fig. 1 A) (33). In yeast Sc-IGPS,

the two subunits are fused into a single polypeptide chain,

His7 (green, in Fig. 1 A) with the two functional domains

linked by a short polypeptide (i.e., the connector, circled

in Fig. 1 B) (31). The aligned complexes share the same

fold, as shown in Fig. 1 A, with a sequence similarity of

52% and 63% for HisH and HisF, and an RMSD of C-alpha

carbon atoms of 1.93 and 2.03 Å, respectively (see sequence

alignment in Table S2). Throughout this paper, we refer to

secondary structural elements by increasing numbering

and labeling the residues corresponding to HisH and HisF

with prefixes h and f, respectively, following the standard

Tm-IGPS nomenclature (11). The full topography of sec-

ondary structural elements of yeast IGPS is reported in the

supporting material (Table S1), and for Tm-IGPS is reported

in reference (33).

The same two reactions are catalyzed by the two domains

of both IGPS enzymes from thermophiles and yeast. In the

glutaminase domain, glutamine (Gln) is hydrolyzed to gluta-

mate, releasing ammonia that migrates (29,31–34) to the

cyclase domain, where it reacts with the effector 5-[(5-phos-

pho-1-deoxy-D-ribulos-1-ylimino)methylamino]-1-(5-phospho-

beta-D-ribosyl)imidazole-4-carboxamide (PRFAR) to form

imidazoleglycerol phosphate (ImGP), a precursor to histi-

dine and 5’-(5-aminoimidazole-4-carboxamide) (AlCAR),
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used in the synthesis of purines. While Gln hydrolysis

could occur in the absence of the effector, the reaction is

accelerated 5000-fold upon PRFAR binding, classifying

IGPS as a V-type allosteric enzyme. Recent studies of Tm-

IGPS (28) have shown that Gln has a different affinity for

the enzyme with or without effector, although the major in-

crease in turnover (Kcat) is predominant over the change in

substrate dissociation constant, KGln

m
.

Experimental and computational studies on PRFAR-bound

and PRFAR-free forms of IGPS enzymes have identified flex-

ible parts of the protein with potential allosteric roles in the

communication between the effector and catalytic sites

(23,26–28,31,34,35). These previous studies have provided

evidence of an unformed oxyanion hole as the basis for

low glutaminase activity in the effector-free form of the

enzyme (31,34,36,37). The term ‘‘oxyanion hole’’ derives

from the presence of a negatively charged oxygen on the

Gln, generated by the reaction of the cysteine sulfur in the

active site and the Gln substrate. The hole generated by the

amino acid residues surrounding the anion stabilizes the

negative charge before a neutral environment is restored.

The highly conserved sequence in the b3a2 loop of all

IGPS enzymes, known as the PGVG (oxyanion) strand

next to the glutaminase active site, hosts the charged inter-

mediate. However, the crystal structures of IGPS from

both yeast (31,34) and bacteria (33) suggest that the

PGVG b strand has an improper conformation in the apo en-

zymes, with the NH group of hV51/V50 pointing out from

the Gln-binding site. Therefore, a 180� turn of the whole

oxyanion strand is necessary to stabilize the tetrahedral in-

termediate and to make the glutaminase enzyme catalyti-

cally active. Earlier studies are consistent with the

formation of the oxyanion hole as the endpoint of the allo-

steric mechanism in IGPS enzymes (23,28,30,31,36).

Unlike allostery in bacterial IGPS, the allosteric pathway

in IGPS from yeast remains uncertain. The comparative

structural analysis of the two enzymes suggests that

different allosteric mechanisms might operate in the two

systems. For example, the PGVG strand in Tm-IGPS is

more distant from the cyclase domain compared with Sc-

IGPS. Further, the hV51-hP10 hydrogen bond (H-bond)

that connects the PGVG oxyanion strand with the neigh-

boring U-loop has been shown to be crucial in the allosteric

mechanism of Tm-IGPS (23,38), although it is absent in Sc-

IGPS (see Fig. 1 C) (31,34).

The cyclase:glutaminase interface in the single-chain Sc-

IGPS is tighter than in the Tm-IGPS heterodimer (see Fig. 1

D) and the only H-bond near the PGVG strand is the N52-

A393 interaction (weaker than hV51-hP10 in HisH) that con-

nects the PGVG(N) strand to the fa400 helix in the cyclase

domain (see Fig. 1C). Thus, the oxyanion strand is H-bonded

to the HisH glutaminase in bacteria, while it remains at the

interface between the two domains in Sc-IGPS. Therefore,

the communication pathways along the two IGPS domains

prior to the reaction at the glutaminase active site are presum-

ably different in the two organisms. The flux of conforma-

tional changes associated with the allosteric mechanism of

Tm-IGPS has been identified by computational studies and

verified experimentally (23,25,28,30,38), but a comparative

analysis of IGPS from different organisms was missing.

Here, we perform a comparative study of allosteric path-

ways in Tm- and Sc-IGPS adopting the same successful

methodology used for the studies of bacterial IGPS. In

particular, we used graph-theory-derived network models

to analyze the correlations of nuclear fluctuations observed

in molecular dynamics (MD) simulations of Sc-IGPS. This

approach involves a set of computational tools that have

previously been used to describe different aspects of the

FIGURE 1 Molecular representation of IGPS from

thermophile and yeast. (A) Front view of Tm-IGPS

(red and salmon) as compared with Sc-IGPS from

yeast S. cerevisiae (green). The structures are derived

from the PDB models 1GPW and 1OX6 where the

missing residues have been reconstructed (as

described in the supporting material). The active

site in the glutaminase domain and the effector site

in the cyclase domain are more than 25 Å apart in

both Tm-IGPS and Sc-IGPS. (B) Side view of aligned

Tm-IGPS and Sc-IGPS structures, highlighting the

position of the connector between the cyclase and

glutaminase domains of His7. (C) Close-up of the

glutaminase active site in Tm- and Sc-IGPS (3ZR4

and 1OX5, respectively), showing structural differ-

ences next to the active site (Gln substrate not

shown). Loop b3a2 with hV51 is tightly bound to

P10 in Tm-IGPS, but shifted toward the cyclase

domain in His7. The b3a2 loop (also known as

the PGVG strand) is highly conserved in all IGPS en-

zymes and is thought to stabilize the oxyanion intermediate formed during the catalytic reaction. (D) Close-up view of the interface between the cyclase and

glutaminase domains in yeast and bacterial IGPS. In His7, the interface is closed, with the angle 4¼ 15� between G51:Ca4W124:Cg4Y394:Cg, spanned

by the green dotted lines, in the crystal structure (PDB: 1OX6) (34). In apo-Tm IGPS, however, the HisF:HisH interface is wide open. In the crystal structure

(PDB: 1GPW) (33), the corresponding angle (hG52:Ca4hW123:Cg4fF120:Cg) 4 ¼ 29� (between red dotted lines).
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protein dynamics in a variety of systems (39–42),

including Tm-IGPS (23,38). Notably, in our earlier work

on bacterial IGPS, the role of a HisF hydrophobic cluster

in transmitting the effector binding signal has been

confirmed in NMR titration experiments (23). Besides, mu-

tation experiments coupled with kinetic essays have fol-

lowed after our predicted allosteric pathways, targeting a

few key residues where mutations induced the disruption

of the allosteric effects (25). Moreover, our previous

computational studies predicted that the allosteric path-

ways in Tm-IGPS involve an opening/closing (breathing)

motion of the HisH domain relative to the HisF unit, sup-

ported by hinge-like interactions at the HisF:HisH inter-

face (23,38). The crucial role of this interdomain

collective motion was recently validated experimentally

using an IGPS mutant involving a photo-responsive unnat-

ural amino acid, which could lock the motion at the inter-

face, resulting in modulation of the enzymatic activity

(28). Finally, our previous MD simulations, which

captured the early dynamics (100 ns) of bacterial IGPS, re-

vealed how, for this time scale, the collective hinge motion

is associated with local interresidue interactions that syner-

gistically, and only in presence of the effector, initiate a

conformational change in the HisH active site promoting

the stabilization of an oxyanion hole. The hypothesis that

the allosterically driven formation of such an oxyanion

hole is essential for the IGPS catalytic activity, consistent

with the active site conformational change seen in our

MD simulations, was recently confirmed through experi-

mental studies that finally characterized the pro-active

configuration of Tm-IGPS (30). Altogether, the various

experimental validations of our studies on Tm-IGPS allo-

stery strongly support the robustness of our methodology

in sampling the early allosteric dynamics of the IGPS

enzyme and in characterizing the allosteric pathways (in

terms of both local inter-residue interactions and collective

protein motions), substantiating its application to the IGPS

enzyme in another organism, such as the yeast Sc-IGPS.

In the present contribution, we thus compare the early

allosteric dynamics and the well-established allosteric path-

ways of bacterial IGPS (23–26,28,30,38,43) with those of its

yeast homolog, here obtained with the same methodology

employed for Tm-IGPS, in conjunction with new comple-

mentary analysis of both Tm- and Sc-IGPS enzymes.

RESULTS AND DISCUSSION

Changes in correlations induced by PRFAR

binding to IGPS from yeast and bacteria

Fig. 2 A shows the effect of PRFAR binding on the structure

of correlations in IGPS from bacteria (left panel) and yeast

(right panel), respectively. Specifically, Fig. 2 A shows

maps of differences of generalized correlation coefficients,

rMI[xi,xj] (39) in PRFAR-bound and apo IGPS of Tm-IGPS

(left panel) and Sc-IGPS (right panel), respectively. The

generalized correlation coefficients rMI[xi,xj] ¼ [1-exp(-2/3

I[xi,xj])]
�1/2 provide a quantitative measure of correlations

in the positions xi and xj of Ca atoms in residues i and j, based

on the mutual information H[xi,xj]¼ H[xj]þ H[xi] - H[xi,xj].

Here, H[xi] and H[xi,xj] are the marginal and joint (Shannon)

entropies, respectively, for atomic vector displacements (xi
and xj) computed as ensemble averages over MD simulations

of apo IGPS and PRFAR-bound states. The resulting correla-

tion patterns reflect the early dynamics of Sc-IGPS (and Tm-

IGPS), obtained by averaging the generalized correlation co-

efficients computed on six independent replicas of 100 ns

(four replicas for Tm-IGPS), thus allowing for direct compar-

isons with earlier studies of Tm-IGPS (23,38) (further details

provided in the supporting material). In addition, we per-

formed a similar comparative analysis of correlations ob-

tained instead using a gaussian network model (44) and

based on the crystallographic structures of the IGPS enzyme

from the two organisms (see Fig. S1). Notably, the resulting

correlation matrices show evident differences, indicating that

only part of the changes in correlations sampled with MD

simulations are encoded in the structural differences between

the two systems.

The distinct patterns of correlations, shown in Fig. 2

A for yeast and bacterial IGPS, suggest distinct allo-

steric motions triggered by PRFAR binding in the

two enzymes. In particular, Tm-IGPS (Fig. 2 A, left)

shows various domains within HisH and HisF where

the residues are more correlated among themselves

than with residues in other parts of the protein. This

indicates a sort of internal division within HisH and

HisF domains that clearly appears as blocks of reduced

correlations (magenta features in Fig. 2 A, left panel)

in one side of the Tm-IGPS (namely, sideL) and

increased correlation (green features in Fig. 2 A, left

panel) on the opposite side of the protein (namely,

sideR). In Tm-IGPS, weaker correlations in the

PRFAR-bound complex correspond to weaker interfa-

cial HisH-HisF interactions upon effector binding.

Reduced correlations affect the interdomain hinge-like

breathing motion, as observed in MD simulations of

apo and PRFAR-bound enzymes (23,38).

The hinge-like breathing motion plays a central role in the

allosteric regulation of Tm-IGPS, as recently confirmed by

experiments (28). The effector-induced internal division

within HisH and HisF domains of Tm-IGPS is essentially

absent in the Sc-IGPS cyclase and glutaminase domains of

His7 (see Fig. 2 A, right panel), with a sizable increase of

correlations observed only between cyclase residues 345–

400 (belonging to fa3, fb4, and fa4) and the rest of the

enzyme. Moreover, in contrast with Tm-IGPS, binding of

PRFAR in Sc-IGPS induces milder effects on the correla-

tions of motions in the whole enzyme. Therefore, it is clear

that PRFAR binding to Sc-IGPS does not affect a hinge-like

breathing motion as in Tm-IGPS, consistent with the
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hypothesis of different allosteric mechanisms in the two

organisms.

Long- and short-range allosteric communication

in IGPS from yeast and bacteria

Our analysis of correlations in Tm-IGPS and Sc-IGPS shows

distinct changes in correlated motions induced by PRFAR

binding that result from changes in both long- and short-

range interactions and enable allosteric activation of yeast

and bacterial IGPS. Fig. 2 shows the principal component

analysis (PCA) (40,45,46) and eigenvector centrality (EC)

network analysis (38) of correlated motions. PCA selects

the principal collective motions sampled from MD simula-

tions by diagonalization of the covariance matrix of atomic

displacements (see details in the supporting material),

although it is limited to linear correlations. Thus, we employ

the EC analysis to include non-linear correlations in an

effort to disentangle long- and short-range contributions.

FIGURE 2 Analysis of correlated motions in

IGPS from yeast and bacteria. (A) Comparison of

generalized correlation coefficients rMI[xi,xj] for

PRFAR-minus-apo Tm-IGPS (left) and Sc-IGPS

(right). In Tm-IGPS, PRFAR induces changes in

both HisF and HisH, leading to innerly correlated

domains (green features) as well as uncorrelated res-

idues (magenta features), with amino acid residues

100–220 in HisF (sideL) featuring a decrease in cor-

relations with the rest of the enzyme (black dotted

lines). The PRFAR-minus-apo correlation matrix in

Sc-IGPS does not exhibit similar features to those

found in Tm-IGPS but rather milder changes of cor-

relations due to effector binding, except for a sizable

increase in correlations observed between cyclase

residues 345 and 400 (belonging to fa3, fb4, and

fa4) and the rest of Sc-IGPS (black dotted lines).

The abbreviation glutam. refers to the glutaminase

domain. (B and C) EC differences (PRFAR-minus-

apo) projected onto the apo structure of Tm- (B)

and Sc-IGPS (C), computed for local correlation

values (damping-distance parameter l ¼ 5),

featuring gains (in red) and loss (in blue) of central-

ity upon effector binding. The allosteric pathways

from the effector site (red triangle) to the active

site (red circle) in both enzymes are marked with

red dotted lines. The main secondary structure ele-

ments along the pathways are labeled. (D and E)

Differential (PRFAR-minus-apo) essential dynamics

from the first PC of Tm- and Sc-IGPS MD trajec-

tories. A rotated view of yeast IGPS is reported to

visualize the motion of the connector. (F) RMSF

of loop1 (left) and time evolution of the hinge

breathing motion (right) in apo (blue lines) and

PRFAR-bound (red lines) Sc-IGPS. The breathing

motion is monitored by the G51(Ca)–W124(Cg)–

Y394(Cg) angle (4) over the concatenated

(600 ns) MD simulations.
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The EC methodology represents a cost-effective approach

that yields fundamental understanding of allosteric mecha-

nisms at the molecular level (38,47,48). Our implementation

is based on a weighted graph with nodes corresponding to

Ca atoms and weights between pairs of Ca atoms i and j

determined by the corresponding generalized correlation co-

efficient rMI[xi,xj], as discussed above (see Fig. 2 A and B).

The centrality ci of residue i is a real positive number

defined by the i-th entry of the leading eigenvector of the

weighted adjacency matrix Aij ¼ (1-dij) rMI[xi,xj] exp(-dij/

l)). The damping parameter allows for the analysis of local

correlations by simply dumping out the contributions from

pairs of residues beyond a given range (see Fig. S5).

We initially focus on local centrality changes Dci ¼

ci
PRFAR-ci

APO, induced by PRFAR, analyzed by defining

Aij with l ¼ 5 Å. Panels B and C in Fig. 2 show the

normalized centrality differences Dci induced by PRFAR

binding to Tm-IGPS and Sc-IGPS, respectively, with a co-

lor scale from minimal (blue) to maximal (red) values of

Dci (details in the supporting material). The computed

centrality differences reveal significant differences in the

two organisms. For Tm-IGPS (38), only sideR transfers

the allosteric signal through a pathway that involves mul-

tiple secondary structural elements: loop1, fb2, fa2, and

fa3 in HisF and ha1, U-loop in HisH. The signal reaches

the active site at the hC84 residue via alteration of H-

bonding interactions with the highly conserved PGVG

(oxyanion) strand, adjacent to the U-loop (23,38). In Sc-

IGPS, however, the increased centralities induced by

PRFAR binding are not localized on the sideR of the pro-

tein and involve a smaller number of secondary structure

elements than in Tm-IGPS.

In fact, the PRFAR allosteric signal inHis7 involvesmainly

fb3 and fa3 in the cyclase domain (wheremost of the increased

values are found) with a direct link to the U-loop in the gluta-

minase domain that allows the signal to reach the active site

(PGVG and C83) more directly than in Tm-IGPS.

Short-range correlations are affected by local contacts

while long-range correlations involve collective modes that

relate to slow protein motions. Here, we combine PCA and

EC analysis to characterize the main collective modes and

long-range correlations involved in the allosteric mecha-

nisms. For Tm-IGPS, we have shown that the comparison

of centrality differences obtained with l ¼N and l ¼ 5 al-

lows for the characterization of long-range correlations in

allosteric mechanisms that directly relate to the breathing

motion of bacterial IGPS (38). Notably, we observed that

the results agree with the essential motions induced by the

effector as obtained by PCA (see Fig. S7). The essential mo-

tions are obtained by projecting the MD trajectories onto the

main PRFAR-minus-apo difference principal components

(PCs; DPC1 and DPC2 for first and second components,

respectively). Fig. 2 D and E show the effector-induced

essential motions described by the DPC1 in both bacteria

and yeast IGPS, indicating that there are significant differ-

ences in the two organisms. Indeed, the alteration of the

breathing hinge motion in Tm-IGPS (see Fig. 2 D), upon

effector binding, is replaced by a large motion of the loop1

(residues 250–275) and the connector site (residues 206–

236) in Sc-IGPS. Analogously, the PRFAR-minus-apo differ-

ence for the second PC (DPC2) reveals additional differences

in the effector-induced essential dynamics of the two systems

(see Figs. S8 and S9), with a mild movement of loop1 accom-

panying the Tm-IGPS hinge motion. In contrast, for Sc-IGPS,

spring-like motion of the surface secondary structural ele-

ments of His7 was detected (see Videos S1–S3).

Overall, these results indicate that loop1 is involved in

short-range interactions in Tm-IGPS allostery. However, in

Sc-IGPS the loop1 is part of the long-range communication,

becoming freer to fluctuate upon effector binding (see the

root-mean-square fluctuations [RMSFs], reported in Fig. 2

F, left panel and in Fig. S8 comparedwith those inTm-IGPS).

We note that loop1 is much shorter in Tm-IGPS than in Sc-

IGPS so it might play different functional roles in the two sys-

tems. In fact, inspection of our MD trajectories suggests that

loop1 of Tm-IGPSmight play a 2-fold role in the Tm-IGPS by

being involved in short-range allosteric communication and at

the same time functioning as a gatekeeper to keep the effector

in the binding pocket under high-temperature conditions. In

Sc-IGPS, however, changes in the motion of loop1 induced

upon effector binding are accompanied by the motion of the

cyclase-glutaminase interdomain connector (see Fig. 2 E),

alternatively to the breathing motion observed in Tm-IGPS

(see Fig. 2 F, right panel), which is not present in Sc-IGPS

(28). Moreover, the long and highly mobile loop1 of Sc-

IGPS might facilitate PRFAR binding under room tempera-

ture conditions. In the absence of a prominent hinge-like

motion as observed in Tm-IGPS, the role of the connector

in Sc-IGPS is more related to the propagation of low-vibra-

tional motions across the two domains. In this sense, while

it was possible to successfully suggest point mutagenesis ex-

periments targeting specific local contacts for loop1 in Tm-

IGPS, the same is hard to do for loop1 and the connector

site in Sc-IGPS, as their role is not associated with allosteric

local contact changes but rather with the collective motions

initiating allosteric communication.

Clearly, the combination of EC and PCA is a powerful

methodology for identifying protein domains that are signif-

icantly affected upon binding of an allosteric effector and

for characterization of essential motions, providing evi-

dence of collective modes and inter-residue interactions

that control the underlying allosteric mechanisms.

Besides, the residues showing the largest centrality values

include those in fb3 and fa3 in the cyclase domain and those

in theU-loop and vicinity (Fig. 2C, highlighted in red), which

represent promising targets for site-directed mutagenesis

studies since they exhibit the highest increase in centrality

upon PRFAR binding. The impact of mutants on Tm-IGPS

has been evaluated experimentally through mutagenesis

studies coupled to kinetic experiments (25,32), confirming
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that mutants that directly target the allosteric pathway have a

strong impact on the allosteric communication. We anticipate

that similar site-directed mutagenesis studies on Sc-IGPS tar-

geting the residues along the highest centrality pathway could

shed light on the adaptation of the allosteric pathways in these

protein homologs. We emphasize that mutants that lie outside

of predicted allosteric pathways have been found to be less

disruptive of the allosteric function in other systems (49), sug-

gesting that future mutagenesis studies targeting random mu-

tations of bothTm- andSc-IGPSwould bevery informative for

further insights that foster therapeutic applications aimed at

altering the functionality of IGPS enzymes by targeting resi-

dues that control the enzyme’s dynamics.

While we performed 12 independent 100-ns runs, one for

each model of the apo and holo systems Sc-IGPS, the results

discussed above are obtained by averaging the calculated

properties over all model replicas (see materials and

methods section). Hence, the average picture discussed

above (involving differences between apo and holo dy-

namics) is representative of the allosteric process, although

the individual simulations would present different EC (and

PCA) profiles (as reported in Fig. S5).

Remarkably, the average correlation and EC profiles over

the different replicas resemble one of them (labeled as sim1

in Figs. S2, S4, and S5), which seems to capture more

clearly the allosteric effect (see additional comments in

the supporting material documentation), so it has been

selected as the most representative model replica in the

following analysis.

In the next section, we analyze the allosteric pathways by

inspecting those residues that are involved in short-range in-

teractions responsible for information transfer across the

catalytic units of IGPS. We do so by focusing on 100-ns

snapshots that encompass most of the allosteric traits as

identified by EC and PCA. The analysis provides under-

standing at the molecular level of the differences of the allo-

steric mechanism in the two organisms.

Allosteric pathways in IGPS from yeast and

bacteria

Fig. 3 shows the analysis of allosteric pathways in Tm-IGPS

and Sc-IGPS as determined by the influence of PRFAR on the

correlations of thermal nuclear fluctuations. We find that

FIGURE 3 Allosteric communication between the

effector and the glutaminase active site. (A) Local

contacts spanning from the PRFAR binding site to

the cyclase:glutaminase interface, involving at the

extremes two salt bridges (green circles) between

residue K334 in fb3 and the ribose-side phosphate

of PRFAR (rP) and between R355 in fa3 and D8

and E10 in the glutaminase U-loop, bridged by a

cluster of hydrophobic interactions between fb3

and fa3 residues (i.e., I333-A350-Y353-V329-

F354). (B and C) Representative MD snapshots of

the average R355-D8 and R355-E10 salt-bridge pic-

ture in the effector-bound (red sticks residues, B) and

apo (blue sticks residues, C) complexes. (D) The ef-

fect of PRFAR binding on the time evolution of the

R355-D8 and R355-E10 salt-bridge distances, along

a representative 100 ns MD trajectory. (E) Tight-

ening of the interactions in the fb3-fa3 hydrophobic

cluster upon PRFAR binding, along a representative

100-ns MD trajectory. (F and G) Shortest communi-

cation pathways connecting the fT104, fA223, and

fA224 residues and the K334, A523, and G524 resi-

dues in the PRFAR binding sites of Tm-IGPS (F) and

Sc-IGPS (G), respectively, and the Gln substrate

binding site, i.e., hC84 and C83, respectively.
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optimal communication pathways from the effector to the

active sites are distinct in the two systems since PRFAR af-

fects specific interactions in the two systems. In Sc-IGPS,

the phosphate group at the ribose side (rP) of the effector

forms a tight salt bridge with K334 in the fb3 sheet (see

Fig. 3 A) that is favored over the D335-K334 H-bond present

in the apo state (see Fig. S10). In Tm-IGPS, such ionic inter-

action with PRFAR is absent (23) as there is no residue

capable of establishing a salt bridge with the effector in the

bacterial enzyme. In Sc-IGPS, K334 is adjacent to I333,

which belongs to a network of hydrophobic contacts (I333-

A350-Y353-V329-F354) spanning over the whole fb3-fa3

region (see Fig. 3 A). Notably, these hydrophobic interactions

are significantly strengthened upon PRFAR binding (see

Fig. 3 E), and thus a hydrophobic cluster is most responsible

for transmitting the effector signal through the cyclase

domain (i.e., HisF in Tm-IGPS), similarly to the process in

bacterial IGPS (23). However, the activation of the hydropho-

bic cluster in Tm-IGPS (comprising the fV48-fL50-fI52-fF23

residues) involves the fb2 sheet (not the fb3-fa3 region as in

Sc-IGPS). More importantly, the activation mechanism in-

volves the loop1, which is engaged in short-range allosteric

interactions in Tm-IGPS. Furthermore, we note that changes

in hydrophobic contacts due to PRFAR binding are primarily

driven by interactions with the p-system of the imidazolecar-

boxamide group of PRFAR (Fig. S13). In Sc-IGPS, however,

the allosteric signal is initiated upon formation of the K334-

PRFAR(rP) salt bridge.

Changes in the hydrophobic contacts in Tm-IGPS induced

by PRFAR binding affect a network of salt bridges on the

surface of the IGPS sideR, involving ionic interactions be-

tween the charged residues fR59, fE67, fE71, fE91, and

fR95 in the fa2 and fa3 helices (at HisF) and the hR18 res-

idue in ha1 (at HisH) (23). In Sc-IGPS, however, there are

no corresponding charged surface residues that can create

a salt-bridge network and, thus, the signal travels from

PRFAR through the fb3-fa3 hydrophobic cluster until it rea-

ches the charged residue R355 (at the end of fa3), which in-

terfaces the glutaminase domain (Fig. 3 A). As shown in

Fig. 3 B and C, indeed, the R355 charged sidechain could

engage in interface ionic interactions with either D8 or

E10 sidechains, belonging to the U-loop of the glutaminase

subunit. Notably, as shown in Fig. 3 D, the R355-D8 salt

bridge is stably formed throughout the MD trajectories of

apo Sc-IGPS. However, PRFAR binding induces a change

in the R355 partner, favoring formation of the R355-E10

salt bridge, which is weaker than the apo R355-D8 bond.

These results indicate that the effector alters the fa3/U-

loop ionic interactions at the cyclase:glutaminase interface

in Sc-IGPS, while in Tm-IGPS the affected salt bridges at

the HisF/HisH interface involve the fa2/ha1 helices of

sideR. We suggest that future mutagenesis studies of Sc-

IGPS can target the important residues highlighted in our

analysis; i.e. those along the allosteric pathway (I333-

A350-Y353-V329-F354, R355, E10 and D8).

The comparison of Tm- and Sc-IGPS active sites in the

crystallographic structures highlights how the effector-

induced hV51-hP10 H-bond breaking (23) (a crucial allo-

steric step observed for the bacterial enzyme; see

Fig. S15) is not plausible Sc-IGPS where H-bonding interac-

tions near the PGVG oxyanion strand, stable throughout the

dynamics, are limited to the A393-N52 H-bond at the inter-

face (see Fig. 1 C). The interface H-bond in apo Sc-IGPS is

weaker than the (buried) hV51-hP10 bond in apo Tm-IGPS

and, despite weakening of the A393-N52 interaction upon

effector binding (see Fig. S16), dynamical fluctuations are

more related to the (quite narrow) breathing motion in

His7 (see Fig. 2 F) than to allosteric signal propagation

through local contacts. Therefore, the observation that

PRFAR binding in the yeast affects the fa3/U-loop ionic in-

teractions is not sufficient to explain how the effector signal

is transferred from the interdomain interface to the active

site of Sc-IGPS (i.e., there is no direct, allosterically modu-

lated connection between the PGVG oxyanion strand and

the U-loop in Tm-IGPS).

We analyze the communication pathways that link the

effector site in the cyclase domainwith the glutaminase active

site and the activation mechanism toward the catalytically

active state in both yeast and bacteria. The enzymatic commu-

nication pathways are computed as the optimal paths (i.e.,

paths with stronger correlation) connecting specific pairs of

physically distant residues. Amino acid residues correspond

to the nodes of a graph with edges defined by the strength of

correlations between pairs of residues (11) (i.e., higher corre-

lated pairs correspond to shorter bonds and are more likely to

belong to the optimal communication path).

The communication pathways start at the PRFAR binding

site with residues fT104, fA223, and fA224 of Tm-IGPS, and

K334, A523, and G524 of Sc-IGPS. The target final node is

the Gln substrate binding site (i.e., hC84 and C83 in Tm-

IGPS and Sc-IGPS, respectively). As shown in Fig. 3 F

and G, the resulting communication channels are affected

by the effector binding (apo pathways in blue and

PRFAR-bound in red), featuring significant differences be-

tween the two organisms. In accordance with our EC anal-

ysis (Fig. 2 B and C), the signal from the effector to the

active site is triggered by PRFAR binding and is preferen-

tially transferred through sideR in Tm-IGPS, involving

PGVG and the U-loop. In Sc-IGPS, however, the allosteric

pathway is more internal, allowing direct communication

between the PGVG oxyanion strand and the cyclase domain,

enhancing a spring-like PC motion of protein expansion and

contraction.

The final step of allosteric activation at the IGPS active

site is the rearrangement of the PGVG strand associated

with the flipping of the amide N-H group of residue

hV50/V51 toward the Gln-binding site (in Tm/Sc, respec-

tively), which allows formation of an oxyanion hole

(Fig. 4). In Tm-IGPS, we demonstrated that the initiation

of the PGVG flipping requires breaking of the hV51-hP10
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H-bond to separate the strand from the nearby U-loop (sup-

porting material, Fig. S15). Notably, the breaking of this H-

bond interaction has been resolved in the X-ray structure of

the Tm-IGPS pro-active conformation (28), along with rear-

rangement of the PGVG strand and formation of the oxyan-

ion hole. However, it remains to be established how the final

allosteric step is initiated in Sc-IGPS, where PGVG and the

U-loop are not linked by an H-bond.

Fig. 4 shows the early dynamics of PGVGandU-loop in Sc-

IGPS and the differences observed (within 100 ns of a repre-

sentative MD trajectory) between the apo and the PRFAR-

bound complexes. The secondary structure elements PGVG

and U-loop are not directly connected (e.g., by H-bonding)

and are found to be more separated in Sc-IGPS than in Tm-

IGPS (see Fig. 1 C). Nevertheless, both structural elements

exhibit enhanced motion upon effector binding (Fig. 4 A–D),

showing that changes in ionic interactions at the cyclase:gluta-

minase interface (e.g., R355-D8/E10 salt-bridge exchange;

Fig. 3B–D) correlates directlywithmotions in both secondary

structural elements as the effector binds and promotes the in-

terdomain signal transduction toward the active site.

In Tm-IGPS, changes in ionic contacts promote the HisF-

HisH breathing motion that breaks the PGVG/U-loop H-

bond and facilitates the PGVG flipping. In contrast, allostery

in Sc-IGPS involves directly theU-loop, a structural element

that affects the interface and enables the PGVG rearrange-

ment in the absence of a hinge-like breathing motion. The

limited interdomainmotion in Sc-IGPS suggests that effector

binding does not affect water accessibility to the glutaminase

active site. Nevertheless, it is important to note that the

reduced interdomain motion in Sc-IGPS is accompanied by

enhanced collective motions of both the loop1 and the inter-

domain covalent connector, not present in Tm-IGPS.

Conclusions

We have characterized the early dynamics that involve the

allosteric pathways of the IGPS enzyme in yeast and ther-

mophilic bacteria by combining MD simulations and graph

network analysis of correlated motions influenced by

effector binding. We have found rather distinct allosteric

pathways in the two enzymes, with specific inter-residues

interactions and collective protein motions associated with

conformational changes that initiate the communication be-

tween the allosteric and catalytic sites.

We speculate that the structural differences between yeast

and bacterial IGPS are tailored to allow the proteins to func-

tion in their respective natural environments, leading to

different allosteric mechanisms communicating distant sites

in the IGPS enzymes of the two organisms. The heterodimer

Tm-IGPS adapts the allosteric pathways to exploit a larger

flexibility at high temperatures by allowing ample hinge-

like motions of the two protein subunits. In contrast, the

single-chain enzyme Sc-IGPS, which functions at room tem-

perature, establishes more internal allosteric pathways in

terms of inter-residues interactions, allowing for more direct

communication between the PGVG oxyanion strand and the

cyclase domain, enhanced by an overall spring-like motion

of protein expansion and contraction, driven by flexible por-

tions of the protein (loop1 and connector site). These predic-

tions pave the way for future experimental validation (by

mutagenesis, NMR, and kinetic essays) of the proposed dif-

ferences between the allostery in the two organisms.

Our study contributes to understanding how proteins ab-

solving for the same function, but from different evolu-

tionary pathways, preserve their functionality in different

environments by adapting their signaling pathway.

MATERIALS AND METHODS

Correlation matrices for Tm-IGPS are obtained from the same trajectories

and following the same protocol as in reference (23), while yeast models

are built ex novo.

The computational structural models for apo and PRFAR-bound yeast

IGPS complexes are based on the crystal structure of the bienzyme complex

from Sc-IGPS at 2.4 Å resolution (PDB: 1OX6-B) (31). The HisH-HisF

apo-complex having several missing residues (261–275, 301–304, and

FIGURE 4 (A and B) Enhanced thermal fluctua-

tions of the PGVG oxyanion strand and U-loop trig-

gered by PRFAR binding in the glutaminase active

site of Sc-IGPS. Average secondary structure in

apo (blue), PRFAR-bound (red), and Gln-binding

site (C83, colored sticks) are also depicted. (C)

The RMSF profile of the PGVG oxyanion strand

and U-loop in a representative (100 ns) trajectory

in the apo (blue lines) and PRFAR-bound (red lines)

complexes.
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551–552) and three extra residues at the beginning of the chain required

modeling prior to simulation. To complete the structure, first, we stripped

the first three residues, then we aligned and added residues 256–260 and

299–310 from 1OX4-B (removing overlapping residues from 1OX6 due

to poor alignment). Finally, we added residues 550–552 from 1JVN-A

(removing residue 550 from 1OX6-B). We constructed the remaining resi-

dues (256–275) using different tools available online, using which we pro-

duced six different structural models. One model was generated using

Modeller (50), a second one using Swiss-Model (51), and four suitable ho-

mology models were found on modbase. PRFAR was bound to each model

by aligning each structure to the effector-bound crystal structure of yeast

IGPS (34) (PDB: 1OX5).

The 12 generated structures (six in the apo state, six bound to the

effector) align with RMSD <5 Å. To allow for a direct comparison be-

tween the dynamics of IGPS enzymes from Tm- and Sc-IGPS, we kept

the simulation conditions analogous to the one used for bacterial IGPS

in reference (23). Our choice of keeping the simulation conditions iden-

tical was motivated by recent studies demonstrating that PRFAR is a

weaker allosteric activation at growth temperature than it is at room tem-

perature (52). For the sake of clarity, we report some essential details

below. MD simulations of the apo and PRFAR-bound structures of yeast

IGPS are based on the AMBER-ff99SB (53) force field for the protein

and generalized amber force field (54) for the PRFAR ligand (see sup-

porting material), as implemented in the Amber20 software package

(55). We performed 12 independent MD simulations, one for each com-

plex (apo and PRFAR bound) for a total simulation time of 1.2 ms.

Further details of the pre-equilibration procedure and MD production

runs are described in the supporting material. Details on the computation

of generalized correlation coefficients and covariances between pairs of

residues and their analysis through the EC metrics and PCA as well as

the description of how to compute allosteric pathways across yeast

and bacterial IGPS are provided in the supporting material. Protein rep-

resentations are obtained using the Pymol (56) software, with the excep-

tion of time-evolution representations, which are produced using VMD

(56,57).

Determination of the allosteric pathways

The allosteric pathway for information transfer has been investigated by

employing mutual information-based correlation analysis and network

models from graph theory (39,40). Generalized correlations rMI[xi,xj]

capture noncollinear correlations between pairs of residues i and j, and

are helpful in pointing out the residues that are most affected by the

binding of an effector, and with it the information channels that govern

the allosteric control. rMI[xi,xj] alone can be hard to decipher and require

some post-processing to interpret protein behavior. Network analysis

tools (11,58), including different centrality metrics (59) , can be applied

for the interpretation of correlated protein motions and their allosteric

behavior. Here, the Ca-atoms of the proteins’ amino acid residues

constitute the nodes of a dynamical network graph, connected by edges

(residue pair connection in terms of rMI[xi,xj]). An adjacency matrix is

then constructed such that it can be used to identify the key amino

acid residues of IGPS with high susceptibility to effector binding. A sim-

ple, yet effective metric that extracts central nodes in the adjacency ma-

trix is the EC (38). The basic idea behind this measure is the assumption

that the centrality index of a node is not only determined by its position

in the network but also by the neighboring nodes, hence it measures how

well connected a node is to other well-connected nodes in the network.

The protein network can be used to determine the optimal pathways for

the information transfer between two nodes, defined as the shortest paths

connecting a specific pair of nodes. In this context, edge lengths (i.e., the

internode distances in the graph) are defined using the coefficients ac-

cording to �log(rMI[xi,xj]), implying that highly correlated pairs

(featuring good communication) are close in distance in the graph. In

particular, we applied the Dijkstra algorithm to calculate the shortest

pathways between residues fA233-fA234-A523/G524-R528 and hC84-

C83, where each set of residues belongs to a different domain of bacte-

rial and yeast IGPS, respectively. Hence, the computed pathways are

composed of residue-to-residue steps that optimize the overall correla-

tion (i.e., the momentum transport) between residues fA223-fA224 (at

the effector site) and hC84 (in the glutaminase active site) in Tm-

IGPS, and similarly residues K334, A523, G524, and C83 in His7. Addi-

tional details on the methods are included in the supporting material. As

mentioned above, all analyses are performed on six different models

(sim0, sim1, . sim5) for yeast and four for bacterial IGPS, retrieved

from reference (23), for which we examine both the apo and PRFAR-

bound dynamics. Generalized correlation coefficients and covariances

of atomic displacements are computed independently on each apo and

PRFAR-bound 100-ns simulations. We compute the average PRFAR-

bound-minus-apo correlation and covariance over each different model

(four for bacteria and six for yeast). Remarkably, the average pictures

depicted in Fig. 2, obtained as the average apo-minus-holo correlation

(or covariance) computed across the different models, are representative

of the allosteric process, although the individual simulations present

different correlations matrices, EC, and PCA profiles (as shown in

Figs. S2–S5). Among the six apo and PRFAR-bound replicas, the dy-

namics of sim1 clearly resembles that of the average pictures, as illus-

trated in Fig. S5. Therefore, the characterization of shortest pathways

and specific effector-induced contact changes has been reported in

Figs. 3 and 4 using data from the representative model (i.e., sim1).

PCs of protein dynamics

PCA (40) is a recognized approach to capture the essential motions of the

simulated systems. In PCA, the covariance matrix of the protein Ca atoms

is calculated and diagonalized to obtain a new set of coordinates (eigenvec-

tors) to describe the system motions. Each eigenvector—or PC —is associ-

ated with an eigenvalue, which denotes how much each eigenvector is

representative of the system dynamics.

To avoid translational artifacts, we set the center of mass of each frame at

the origin and rotate each frame to its optimally aligned orientation relative

to the average structure—computed over all apo trajectories—which also

has its center of mass at the origin. Next, we evaluate the covariances of

the positional fluctuations of each system over the apo and PRFAR-bound

trajectories obtained by concatenation of the independent apo and effector-

bound replicas. Because the motion of sidechains is mostly independent of

the essential dynamics of IGPS, we restrict the covariance to the backbone

atoms only. Projecting the original (centered) data onto the eigenvectors re-

sults in the PCs, whose associated eigenvalue (variance) is indicative of the

portion of motion that the eigenvector describes. Together, the first two PCs

relative to Tm-IGPS incorporate 44% and 33% of the total motion of the

bacterial apo and PRFAR-bound trajectories, respectively (Fig. S3 A), while

the percentages become 42% and 44% for His7 (Fig. S3 B). The contribu-

tion added by the third PC is much smaller, hence we limited our analysis to

the first two.

By projecting the trajectory coordinates onto the PCs, one can visualize

the essential motions induced by effector binding in yeast and bacterial

IGPS on the protein structure, along the trajectory. The corresponding mo-

tions are shown in Figs. 2 D, E, S8 A, and B.

SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.

2021.11.2888.
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116 CHAPTER 3. APPLICATIONS OF THE METHODOLOGY

3.3 Temperature increase mimics allosteric signaling in imidazole-
glycerol phosphate synthase

3.3.1 Previous experimental findings

Figure 3.6: Evolution of the KM dissociation constant (A), kcat catalytic activity (B), kcat/KM (C) between apo
and holo at different temperatures. (D) Evolution of the activation factor between apo and holo at the different
temperatures. Data taken from ref [1]. A log-scale on the y-axis is used for catalytic activities, efficiencies and
for the activation factor.

For many years, experimental data concerning IGPS form T. maritima was obtained at room temperature,
but this bacteria is a thermophile growing only at temperatures between 55 °C and 90 °C with an optimum
growth temperature of 80 °C (the highest in any bacteria)[2]. Still, the bacteria can survive for at least a year
at −20 °C. Previous studies performed on IGPS from T. maritima are thus representative of a hibernating
bacteria. To understand if the allosteric mechanism was temperature-dependent, the team of Patrick Loria and
George Lisi reported Michaelis-Menten kinetics parameters of the apo-IGPS and holo-IGPS at temperatures
ranging from 30 °C to 70 °C[1] (see Fig. 3.6A,B,C). The dissociation constant of glutamine is only slightly altered
by temperature increase or effector binding and always remains in the same order of magnitude (mM).

The catalytic activity in apo increase by 1 order of magnitude between 30 °C and 40 °C and another order
of magnitude between 40 °C and 50 °C and then only slightly increases between 50 °C and 70 °C. In holo,
the catalytic activity slightly increases with temperature, but similarly always remains in the same order of
magnitude. The evolution of the catalytic efficiency is mainly dominated to the evolution of the catalytic
activity with IGPS being a V-type allosteric enzyme. Subsequently, the activation factor between the apo and
holo enzymes vastly diminishes between 30 °C and 50 °C (from 4,161 to 82) and then remains mostly stable
between 50 °C and 70 °C (from 82 to 65) (see Fig 3.6D). These experimental results prove that PRFAR is a
weaker allosteric activator at high temperatures and suggests that temperature increase produces a similar
effect as effector binding. Still, whether the same allosteric pathways are used in the temperature-dependent
mechanism and the effector-dependent remains open.

3.3.2 Molecular Dynamics simulations analysis

To answer whether the temperature-dependent mechanism and the effector-dependent mechanism used the same
allosteric pathways, we produced and analyzed Molecular Dynamics simulations of the apo30, holo30 and apo50
systems.

First, the eigenvector centrality analysis shows that upon temperature increase, residue displacements at
sideR are becoming more correlated while at sideL they become less correlated. The same effect was identified
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in previous studies and is here recovered for effector-binding. Moreover, the secondary structures involved in
correlations increase at sideR due to temperature-increase and effector-binding are the same: loop1, hα1 and
hα4. Finally, both effects are found to turn the optimal signaling pathways between the effector and active site
from internal into external pathways.

Besides, similar effects are found again in terms of secondary structures changes in HisF in loop1 and f α2.
The only notable exception is the f β6-f α6 turn which folds into a helix upon PRFAR-binding but not upon
temperature activation. This turn is located at the effector site and point at a small difference in overall acti-
vation mechanism that can be attributed to local effects of PRFAR-binding.

The DPCN analysis also show remarkable similarities between temperature and effector-binding effects. This
analysis shows that not only the same secondary structures elements experience contact changes, but the exact
same amino acids are involved. Consistently with secondary structure analysis, the main difference between
temperature and effector-binding effect is found for the f β6-f α6 turn whereupon PRFAR binding contacts
increase substantially.

3.3.3 New experimental results and challenges

Our experimental collaborators at Yale University measured experimentally temperature coefficients of amide
proton chemical shifts. They enabled to identify key amino acids that are impacted by temperature increase
that changes amide proton environments. Among the residues mostly impacted by temperature changes, we
identified f L63, which is involved in a backbone hydrogen bond with f R59. Consistent with perturbation net-
works and secondary structure analysis, this residue is located at the beginning of f α2 which unfolds at higher
temperatures or when PRFAR binds.

To compare these results about amide proton environment with our MD simulations, we developed an
”asymmetric” definition for the AAN. Instead of computing contacts within a selection (usually within heavy
atoms), we compute contact between two selections. Here for instance we can compute the contacts between the
backbone amide NH and the rest of the protein. This new way of computing contacts changes fundamentally
how the contacts are computed and asked for an update of the algorithm. Remarkably, experimental temper-
ature coefficient difference match nicely with ”asymmetric” NH perturbation network and show a majority of
perturbation initiated at sideR.

Our combined usage of experimental and theoretical tools on this prototype allosteric enzyme converge to
the conclusion that temperature increase triggers communication pathways in IGPS from T. maritima which
are akin to this enzyme allosteric pathways. Indeed, upon temperature increase, a series of dynamical and
structural changes occur which mimics PRFAR binding at the notable exception of local perturbations near
PRFAR binding site.
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ABSTRACT

The enzyme imidazole glycerol phosphate synthase (IGPS) is a non-covalent complex of two subunit

proteins (HisF and HisH) that catalyzes the hydrolysis of glutamine at the HisH active site, upon binding of

the effector PRFAR to HisF at the allosteric site. IGPS is a potential target for antifungal, antibiotic, and

herbicide development since it is not present in mammals and is involved in essential biosynthetic

pathways of microorganisms. Here, we employ a combination of molecular dynamics simulations, network

analyses, and NMR to demonstrate that temperature increase can induce a dynamics in IGPS that
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resembles the allosteric activation by PRFAR binding at 25 °C. This justifies our previous enzyme kinetic

and NMR dynamics studies indicating that at the growth temperature of T. maritima 3a hyperthermophile

organism3 the enzymatic activity increases, while PRFAR is a weaker allosteric activator than it is at room

temperature, evidencing a temperature-dependent allosteric mechanism. Our results pave the way for a

more precise control of enzyme function and the expansion of drug discovery beyond the catalytic site.

Introduction

Allostery, the mechanism by which chemical signals are transmitted between spatially separated

binding sites has been extensively investigated1314, due to significant interest in drug discovery

applications.5,15320 Drug-like molecules that bind to allosteric sites offer advantages over

traditional orthosteric modulators, including enhanced selectively in tuning responses21 and

intrinsic safeguards against overdosage.21323 Although concepts of allosteric drugs show

tremendous promise in biomedicine, the lack of molecular level understanding of allosteric

mechanisms that represent viable targets for drug discovery remains a major

impediment.15,16,24326 Molecular level insight into the driving forces of allosteric mechanisms are

necessary to elucidate and control enzyme function, expand the scope of enzyme engineering,

and open new avenues for drug discovery.18,27330 Thus, it is critical to develop methods to

establish paradigms for regulatory processes in prototypical enzymes.2,31,3,4,6,8,12,13,32342

In particular, very little is known about the effect of temperature on allosteric mechanisms,43346

especially in thermophilic human pathogens that remain active at the elevated temperatures of

their native environment. An understanding of the physico-chemical features that underlie this

phenomenon could have profound implications for allosteric drug design against pathogenic

organisms that survive in extreme environments.47,48

Here, we explore fundamental aspects of temperature-dependent allostery in the imidazole

glycerol phosphate synthase (IGPS) enzyme from the thermophile Thermotoga maritima (T.

maritima).5,9,49,50 IGPS is a potential therapeutic target,51,52 since it is not present in mammals,
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but rather, in opportunistic human pathogens that contain homologs of the T. maritima IGPS.

Deletion of the IGPS gene in bacteria results in increased sensitivity to antibiotics,53 and a

decrease in infectivity.49

We analyze the effect of temperature on the allosteric mechanism,46 with emphasis on the

allosteric communication in the heterodimeric IGPS. The allosteric ligand PRFAR binds to the

HisF subunit and enhances glutamine hydrolysis 5000-fold over its basal catalytic level at room

temperature in the HisH subunit, over 30 Å away.52 We have recently discovered that increasing

the temperature of the native T. maritima environment drastically enhances millisecond

dynamics in both PRFAR-free (apo) and PRFAR-bound (holo) IGPS. The catalytic enhancement

in the holo IGPS is nearly independent of temperature in the 303-350 K range.43 In contrast,

basal levels of Gln hydrolysis increase sharply from 303 to 350 K resulting in PRFAR being a

weaker activator at the physiological temperature for T. maritima.43 In particular, it has been

suggested that at 50 °C the dynamics of the apo enzyme becomes comparable to the

PRFAR-bound form, whereas at 30 °C the difference between these two states is substantial.43

Here, we show that both higher temperatures and PRFAR binding increase flexibility in some

regions outside of the effector site in IGPS, enabling conformational sampling of an active

enzyme form, and that PRFAR-induced motions propagate through well-defined secondary

structure elements that are analogous of those involved by temperature increase.

Materials and Methods
We combined computational methods based on molecular dynamics (MD) simulations and

network theory correlation analysis techniques, and nuclear magnetic resonance (NMR)6,9,50 to

study temperature-dependent allosteric communication in T. maritima IGPS. Computational

methods have been previously used to investigate communication pathways and allostery in

proteins and protein-tRNA/DNA molecular systems.54365

Molecular dynamics simulations

The structural models for apo and holo structures for IGPS were based on the crystal structure

of T. Maritima IGPS (PDB ID 1GPW, 2.4-Å resolution).66,67 To build the apo structure, we

extracted chains C and D of the HisH-HisF complex. We kept all water molecules associated

with the two chains, and we further solvated the structures by using the explicit TIP3P

model66 to obtain a cubic box. Details on each system are found in the Supplementary Material.
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The PRFAR-bound structure was built as previously described in Ref.5 The protein-ligand

complex was parameterized with the CHARMM3668,69 and the generalized CHARMM force

fields70 by using the CHARMM-GUI.71 We used AmberTools2017,72 to convert the CHARMM file

format to Amber, and the AmberGPU73,74 package with the CHARMM36 force field for

subsequent minimizations, heating, and production runs (we will make all simulation scripts

available upon request). To compare the effect of PRFAR and of the increase in temperature,

we simulated the apo structure at 30 °C and at 50 °C, and the IGPS-PRFAR (holo) structure at 30
°C. For an easier reading, the simulations of the apo system performed at 30 °C, and at 50 °C, will

be referred to as apo30, and apo50, respectively. The simulation of the holo system performed

at 30 °C and 50 °C will be referred to as holo30 and holo50, respectively. We simulated each

system for 1 μs, and we extracted the last 0.5 μs of trajectories for analysis.

We postprocessed and analyzed the trajectories by using MDTraj,75 CPPTRAJ76 and pytraj.77

The secondary structure analysis was performed by using a dictionary for the secondary

structure of proteins (DSSP)78 as implemented in MDtraj. Throughout the trajectories, a residue

was assigned to the following secondary structure elements: helix (either -helix, 3-helix, orα
5-helix), sheet (extended strand, isolated ³-bridge), or coil (turn, bend or loop and irregular

elements). The secondary structure elements were assigned according to the information based

on the  crystal structure.

Eigenvector centrality analysis

In order to elucidate the allosteric pathways and pinpoint the changes in IGPS dynamics upon

PRFAR binding and temperature increase, we employed the eigenvector centrality (EC)

analysis recently developed within our group 1. The method relies on mapping the MD trajectory

into a graph composed by nodes separated by edges. Each node in the graph represents a α
-carbon of a given amino acid. Edges between nodes are defined through an adjacency matrix

where is the generalized correlation coefficient between nodes and given by� , �ÿĀ �ý� ÿ Ā
�ý� þÿ, þĀ[ ] = 1 − ÿ− 23 �[þÿ,þĀ]( )£¤¥ ¦§̈ 1/2,                                                 (1)

where represents the mutual information between these amino acids65,79�[�ÿ, �Ā]
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(2)�[þÿ, þĀ] = �[þÿ] + �[þĀ] − �[þÿ, þĀ]
(3)�[þÿ] =  − ∫ ā[þÿ] �ÿ (ā[þÿ]) þþÿ
(4)�[þÿ, þĀ] =  − ∫ ā([þÿ, þĀ]) �ÿ (ā([þÿ, þĀ])) þþÿþþĀ

Where and are the marginal and joint Shannon entropies respectively,80 while�[�ÿ] �[�ÿ, �Ā] ā[þÿ]
and are probabilities of atomic displacement computed over thermal ā([þÿ, þĀ]) (þÿ, þĀ)
fluctuations sampled by MD simulations at equilibrium. The generalized correlation coefficient

ranges from zero for uncorrelated variables to 1 for fully correlated variables.�ý�
Once the adjacency matrix is obtained, diagonalizing the matrix provides an eigenvector whose

values are related to each residue. The EC of an amino acid, can be defined as the weightedýÿ,
sum of the EC9s of all the residues connected to it by an edge, �ÿĀ

, (5)ýÿ =  1λ Ā=1
þ∑ �ÿĀýĀ

where is the leading eigenvalue of . Hence, the EC coefficients are the elements of theλ � ýÿ
eigenvector associated to . Eigenvector centrality provides a measure of how well-connectedλ
each node is to other well-connected nodes in the network. This notion of eigenvector centrality

allowed for recognition of patterns of dynamical changes associated to PRFAR binding and is

here used to define and compare those associated with temperature increase.

Optimal pathways for motion transmission

In addition, to understand how the cross-talk between the active site (C84, H178, E180) and the

effector binding site is altered by a temperature increase and by the PRFAR binding process, we

studied the optimal pathways for motion transfer between them. This analysis was based on the
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Dijkstra algorithm,81 designed to find the roads that minimize the total distance traveled. In this

study, the inter-node distance was defined as

, (6)ýÿĀ =  − �Ā� �ý�(þÿ, þĀ)[ ]
therefore, the minimization of the total travelled is equivalent to a maximal correlationý
between the initial and the final nodes of the path. The algorithm begins defining starting and

destination nodes, which in our case were the residues hydrogen bonded to the PRFAR

phosphates in the holo form, and hC84 in the active site (where the glutamine substrate binds).

The pathway from the former to the latter is optimized iteratively, in each iteration the closest

unvisited node is designated as the current node. From this current node, the distances to the

remaining unvisited nodes are updated by determining the sum of the distance between the

unvisited node and the value of the current node, if this value is less than the unvisited

intersection9s current value, the distance is updated. This process continues until the destination

node is visited.

It is important to note that the cross-talk between two amino acids does not necessarily occur

exclusively through the optimal path. Many sub-optimal paths with similar influence might

contribute to the communication between distant residues. In this study, we built pathways

merging the 50 suboptimal paths, representing the most likely pathways of motion transmission

between the active and the effector sites.

Perturbation contact networks analysis

In order to figure out how much effector binding differs from effects of temperature increases,

we applied the dynamical perturbation contact network (DPCN) analysis method recently

proposed by our group.82 Indeed, we have previously performed the DPCN to monitor the

PRFAR binding effects on amino acid residues contacts and here we compare it with the

temperature effect on the apo30 system by determining the contact changes with respect to the

apo50. Each protein weighted contact network is built by assigning to each edge (linking the i-th

and j-th residues) a weight wij that is the number of contacts between the residues. The contact

condition is here defined for each pair of residues when it exists a couple of atoms (at least one
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per residue) whose distance is below a given distance cutoff (here set to 5 Å) for each snapshot

extracted from the MD trajectories (i.e., 10000 snapshots for each system). Further

computational details can be found in our reference work on the effector binding DPCN in ref 82.

To allow easy visual inspection of DPCN results, the edges are colored in red if PRFAR binding

or a temperature increase induce an increase in weight (wij > 0), and in blue if instead the

contact number is reduced (wij < 0) and a weight threshold (wt) is applied so that only the edges

with |wij| > wt are visualized. Here in the first part, atomic contacts are computed including only

heavy atoms (i.e. excluding hydrogens) and in another part they are computed `asymmetrically=

between atoms from the backbone NH and the rest of the protein.

Hydrogen bond analysis

The hydrogen bond (HB) analysis was performed by using PyHVis3D, a python-based package

to calculate pairwise HBs between all donors and acceptors of all frames of the simulation

trajectory.83 The distance cutoff between acceptor and donor is 3.5 Å and the angle cutoff

hydrogen3donor3acceptor is 30o. The algorithm calculates an NxN matrix (N = the number of

donor/acceptor atoms in the protein), and each matrix element represents the average presence

of a HB between two atoms over the simulation time.

Predicted NMR chemical shift

The structures sampled in the MD simulations were employed to predict the backbone 1H and
15N NMR chemical shifts using the SHIFTX2 method84. This program combines ensemble

machine learning techniques with sequence alignment-based methods, its algorithm has been

tested with high-resolution X-ray structures with verified chemical shift assignments. The

SHIFTX2 analysis was performed on 20,000 configurations from each 1μs MD simulation to

extract the backbone 1H and 15N chemical shifts at 30 °C and at 50 °C; results were compared to

experimental results. By combining ensemble machine learning methods to sequence

alignment-based methods, SHIFTX2 data resulted in good correlation with experiment.

Experimental NMR chemical shift

Amide chemical shift data was collected for residues in the HisF subunit of IGPS. HisF was

perdeuterated and 15N labeled, whereas the HisH subunit was perdeuterated as described

previously.81 All data were acquired at a static magnetic field strength of 14.1 T on a Varian
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Inova instrument. 1H315N TROSY two-dimensional spectra were acquired with 32 scans and 64

increments in the t1 dimension with corresponding spectral widths of 12000 Hz and 2800 Hz and

a 1.3-second recycle delay. The temperature was calibrated using methanol as a calibration

standard, and chemical shifts were recorded at 8 temperatures ranging from 20 to 55℃ at 5

degree intervals. Chemical shifts were referenced using DSS as an internal standard with the 1H

resonance frequency of DSS set to 0 ppm.

Of the 253 residues in hisF (of which 239 amide resonances are assigned), we selected 164

residues in the HisF subunit, which were non-overlapping and for which the temperature shift

was unambiguous across the temperature range. We determined the temperature coefficient in

a neighborhood of 30 °C (between T1=292.92 K and T2=302.73 K) and in a neighborhood of 50

°C (between T1=307.62 K and 322.41 K) as δ(δHN)/δT = (δHN,T2 -δHN,T1)/(T2-T1) and compared

those temperature coefficients to investigate temperature dependent modification of the

environnement for those amide protons.
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Results

1. Effector binding vs. temperature increase: dynamical aspects

It has been previously shown that PRFAR induced allosteric activation is weaker at higher

temperatures, and that the allosteric mechanism of IGPS is temperature dependent43 i.e. the

temperature dependence of the catalytic activity is steeper in the basal state than in the

PRFAR-activated IGPS. Here, we explored the underlying molecular basis of this temperature

dependence by performing molecular dynamics (MD) simulations at 30 °C and 50 °C in both the

apo and holo states. We have recently shown that the EC provides a score indicating how

correlated each residue is to the major motion modes, pinpointing key amino acids for IGPS

dynamics. Furthermore, we have shown that the difference on the EC distribution of two

equilibrium states enables the recognition of the main features associated to the transition

between these two states, and hence providing a unique insight on the allosteric signalling

process.1

Figure 1 shows the eigenvector centrality (EC) difference associated to PRFAR binding at 30 °C

(left panel), 50 °C (right panel) and to the 30 °C → 50 °C temperature increase in the apo-IGPS

(middle panel). The change in the EC indicates how the increase in temperature or the binding

of PRFAR influences the relative contribution of each residue on the dynamics of IGPS.

Remarkably, the EC trends upon temperature increase in apo-IGPS show a strong similarity to

those observed on PRFAR binding process at 30 °C. For the sake of clarity, IGPS can be divided

in two sides, as illustrated in Figure 1, i.e. sideR and sideL, since a signature for the allosteric

activation is the large increase in EC on loop 1 (HisF), hα1 (HisH) and hα4 (HisH) at sideR

along with a depletion of EC at sideL, as previously observed.1,5

In contrast, the changes in EC associated with the PRFAR binding process at 50 °C are much

more homogeneous amongst the residues, and qualitatively different from the behavior at 30 °C

. This clearly shows that the presence of the effector has a substantially different effect on the

protein dynamics at 50 °C, which can be connected to the much weaker PRFAR-induced

activation at higher temperatures.
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Figure 1: Eigenvector centrality difference associated with the binding of PRFAR at 30 °C (left
panel), 50 °C (right panel) or temperature increase in the APO IGPS (middle panel). Residues
shown in red have increased connectivity4in particular, loop 1 and hα1 become more central
upon temperature increase and PRFAR binding.

In this context, it is interesting to analyze how the cross-talk between the effector binding site

and the active site of IGPS, as modulated by local interactions, is modified by temperature. In

order to shed light on this point, we studied the optimal residue-to-residue communication

channels connecting the PRFAR phosphate binding sites with the catalytic site in HisH. All the

amino acids belonging to these channels are depicted in solid color (see Figure 2), and they are

distinguished between external (solvent exposed, depicted in red) and internal (surrounded by

the protein matrix, depicted in blue). Noteworthy, while the communication pathways are almost

purely internal for the apo30, the proportion of external residues is considerably increased both

in holo30 and in apo50. This internal-to-external transition, not only establishes another parallel

between temperature increase and effector binding on the signaling pathway, but also suggests

that the participation of these external residues is a key factor for the allosteric activation in

IGPS from T. maritima.
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Figure 2. Optimal signaling pathways from the PRFAR phosphate binding sites (residues T104
fA224, lower yellow spheres) to the active site (hG50, upper yellow sphere). The amino acids
highlighted with a solid color belong to this optimal pathway. The results for the apo30, apo50
and holo30. As indicated in the left figure, the red fragments are composed of external amino
acids (i.e. exposed to the solvent) and the blue fragments are internal residues (mainly exposed
to other amino acids in the protein).

The effect of temperature increase can be regarded as an alternative route to activate the

fluctuation of external amino acids, increasing the influence on the helices hÿ1 (HisH), hÿ4

(HisH) and the omega loop involved in the allosteric activation. While this activation shows clear

differences between the effector binding effect and the temperature increase (Figure 2), in both

cases we observe a strong internal-to-external transition in the communication pathway, which

might be a key factor determining the catalytic activation and IGPS thermostability.

The interdomain hinge-like (breathing) motion has been recognized as one of the important

elements of IGPS allosteric signalling mechanism at room temperature, representing a collective

motion influenced by the effector binding.1,5 PRFAR binding, in fact, slightly reduces the

breathing motion angle (as defined by the Cÿ of residues fF120-hW123-hG52, see Fig S8. in

the SI), while significantly shrinking the distribution of angle amplitudes explored by the IGPS

complex. Moreover, as previously shown for 100 ns MD simulations,1,82,83 these larger angle

fluctuations in the apo30 simulation are slower in time with respect to those in holo30. The

breathing motion in apo50, instead, features a relatively small angle average (smaller than both

apo30 and holo30) and much more broad and asymmetric angle distribution, see Fig. S8 in the

SI.

These results overall suggest that the temperature increase has a similar impact to effector

binding on the dynamics associated to local interactions during the allosteric propagation, but
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somehow, less control can be achieved by temperature increase on the allosteric collective

motions.

Allosteric activation vs. temperature increase: a structural perspective

In addition to the fundamental similarities between the dynamical patterns of allosteric activation

and temperature increase, in this section we analyze and compare the structural changes

associated with these processes. Figure 3 shows the secondary structure changes that take

place during the apo50 apo30 and holo30 apo30 transitions. In agreement with the dynamical→ →
changes discussed in the previous section, there are important similarities between the

structural rearrangements associated to the 30 °C 50 °C temperature increase and to PRFAR→
binding. One of the main aspects of this resemblance is the conformation of loop1 (residues

V17-D31), which adopts a combined ³-sheet/helix structure in apo30, but is mostly devoid of

regular secondary structure both in apo50 and holo30. This difference in secondary structure

can be associated with the increase in flexibility of loop1, which has been suggested to play an

important role in the activation process 2. Furthermore, helix fÿ2 (R59-E71), which has

previously been identified for being involved in the allosteric pathway of IGPS,1,82,83 also shows

an almost identical structural response to temperature increase and to PRFAR binding.

Figure 3. Secondary structure changes in HisF associated with the effector binding (upper
panel), and with the temperature increase from 30 °C to 50 °C (lower panel). The right panel
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represents the protein regions whose secondary structure is similarly affected by the
temperature increase and effector binding.

Despite appearing as a small structural rearrangement, the reduction in secondary structure

displayed by residues fR95 and fK99, which is observed in both apo30 apo50 and apo30→ →
holo30 transitions, is located in a critical spot for the allosteric transmission. These two residues

situated on the interface of HisH and HisF are present in all the optimal signaling pathways

presented in Figure 2, they also belong to the group of amino acids with higher EC increase

upon PRFAR binding or temperature increase. Moreover, residue fR95 has been previously

identified as one of the key step-stones in the allosteric transmission from HisF to HisH domain6.

Conversely, there are some important structural differences observed in Figure 3 in which the

temperature increase and PRFAR binding lead to clearly different arrangements. An increased

helicity in fĀ6-fÿ6 and fÿ4 region is observed in holo30 , but absent in apo50. The formation of

these helices is triggered by the interaction with the PRFAR phosphate groups at the ribose and

the glycerol sides.

To further characterize the parallel between temperature increase and effector binding, we

performed the DPCN analysis and we monitored the Hydrogen Bonds (HBs) at the HisF/HisH

interface. Figure 4 compares the changes in contacts upon PRFAR binding (left panel) with

those found in the apo protein when the temperature increases from 30°C to 50°C. Notably, in

both cases, the majority of contact alterations are located at the sideR of the protein, in analogy

with the eigenvector centrality analysis (see Fig. 1). The DPCN results are also consistent with

the signalling pathways analysis (see Fig. 2), since most of the contact perturbations due to

both PRFAR binding and temperature increase involve solvent-exposed residues at the protein

surface. Moreover, the detected contacts involve essentially the same set of nodes and edges

(including perturbation signs), the differences being mostly about the absolute numbers of

contact changes (i.e., the <perturbation intensities''). Interestingly, the alterations of the salt

bridge network between fα2, fα3 and hα1 that have been recognized for the allosteric pathway

of holo IGPS,1,82,83 also appear upon temperature increase. In particular, the number of contacts

between fα2 and fα3 helices increases in an almost identical way in the two cases, while fα2

and fα3 residues that lose contacts are more affected by PRFAR binding than by the rising

temperature. In contrast, all changes in contacts between fα2 and hα1 are larger with

temperature increase than upon effector binding. Overall, the correlation plot between the
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contact perturbations induced by PRFAR binding and those due to temperature increase (from

30°C to 50°C) showed a Pearson correlation coefficient of 0.52 (see Fig. S3), clearly indicating

the presence of similarities between the two activations of apo IGPS.

Still, some differences between the two effects are sizable, particularly near the effector site

(see Fig. S2), where multiple alterations are present at sideL upon PRFAR binding but not when

increasing the temperature. We thus looked more closely at the perturbations induced around

specific nodes (namely the <induced perturbation network=, IPN) belonging to the fα7-f³7 and

the f³6-fα6 turns near the effector binding site. For instance, the IPN of residue fD176 in the

f³6-fα6 turn showed that the presence of PRFAR increases contacts between residues fG202

and fG203 (directly in contact with PRFAR) and residues fR175, fS172 and fK179. In the recent

PDB structure 7AC885, an IGPS mutant was crystallized in its active conformation. In this

conformation, residue fD176 was found to form a salt bridge with fK19, which in turn forms a salt

bridge with the PRFAR glycerol phosphate group. Notably, these changes indicate a

propagation of contact perturbations that is consistent with our analysis of the secondary

structure changes involving the f³6-fα6 turn (see Fig. 3) and the RMSF difference plots,

indicating that this element moves towards a helix structure upon PRFAR binding. When

increasing the temperature, a gain of contacts in the f³6-fα6 turn can also be noticed but not to

the same extent as for PRFAR binding, in agreement with the lack of helicity increase in this

region with rising temperature (see Fig. 3). Overall, these results highlight the main differences

in contacts at the  PRFAR binding site induced by effector binding vs temperature increase.
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Figure 4. Perturbation contact networks between apo30 and holo30 (left panel) and between
apo30 and apo50 (right panel), showing most relevant contact perturbations (i.e. a weight
threshold of 5 contacts). Blue and red edges represent decrease and increase, respectively, of
contacts upon effector binding (left panel) or temperature rising (right panel). Edge widths are
proportional to the differences in number of contacts.

NMR chemical shifts and temperature-dependent dynamics

1H and 15N NMR measurements were performed in order to determine the temperature-induced
chemical shifts in HisF. These measurements were compared with those computed from our
simulations employing the SHIFTX2 package, and the dynamics of specific residues involved in
chemical shift changes was analyzed. The SHIFTX2 results were averaged on 20000
configurations extracted from 1μs MD simulations at both 50 °C and 30 °C and compared with
the experimental data (see Fig. S5 in the SI), showing a good correlation (~0.81 for the 1H
chemical shifts at both temperatures). Considering the intrinsic limitations of SHIFTX2 simulated
chemical shifts, these results suggest that our MD simulations can be fairly compared with our
experimental NMR data.
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Among the residues isotopically labelled in the HisF subunit (253 amino acid residues), 164
peaks were considered after ruling out unassigned as well as ambiguous/overlapped peaks. By
careful analysis of all collected NMR data at various temperatures (from 20 to 40 °C with steps of
5 °C and at 50 °C), we observed that the chemical shift trends are quite distinct. A strong
non-linear behavior (i.e. correlation coefficient of the linear fit < 0.93) is displayed by 22 residues
while 32 display some curvature (i.e., p-value between a linear fit and a quadratic fit <0.05). The
rest of the residues display the characteristic linear shift with increase in temperature typically
observed in proteins.86 Among these different trends, the most interesting one is that associated
with residues featuring significant dynamical changes at temperatures around 30 °C and around
50 °C.
Figure 5 shows the temperature-dependent evolution of the five residues, with the most
prominent change in temperature coefficient around 50° C (between 307.62K and 322.41K) and
around 30 °C (between 292.92K and 302.73K). Among those top 5 residues, residue fL63 is the
only one displaying a positive temperature coefficient. Upon temperature increase, the positive
slope diminishes significantly around 307K and thereafter is near constant. Residues fG252 and
fK60, featuring negative temperature coefficients, also present a change in slope at increasing
temperature that tends to alleviate the temperature dependence (i.e. the slope becomes less
negative around 50 °C than around 30 °C). On the contrary, residues fD14 and fD28, while
featuring negative temperature coefficients, showed more negative slope around 50 °C than
around 30 °C. As shown in Figure 5c, almost all of these top five residues are located at sideR
near the allosteric pathways (with the notable exception of residue fG252, located at the C-term
loop of HisF). Moreover, the asymmetric dynamical perturbation contact network between all
backbone NH and the rest of the protein (i.e. representing changes in the environment around
the amide proton monitored in NMR experiments) showed an interesting correlation with the
temperature coefficient changes obtained experimentally. This outcome again suggests that our
MD trajectories involve protein dynamics that are consistent with the available NMR data (i.e.
those of the residues isotopically labelled in the HisF subunit). Thus, we looked more closely at
the dynamical behavior of the residues with the greatest changes in temperature coefficient:
fL63 (see Figure 5c). Residue fL63 is located in fα2, which undergoes rearrangement upon
effector binding and is part of an altered salt bridge interaction (allosteric) network with two other
helices, i.e. fα3 and hα1. Here, fL63, a hydrophobic residue, cannot be directly involved in the
salt bridge network alteration, but is impacted through its neighbors. Upon temperature
increase, the salt bridge between residues fK60 and fE90 breaks, while that between fK60 and
fE64 forms. Overall, this change produces a partial refolding in the lower end of the fα2 helix
and the backbone H-bond between residue fL63-NH and fR59-CO becomes less stable upon
temperature increase (see Fig. 5d and Fig. S10 in the SI). The presence of the intramolecular
backbone H-bond is consistent with the positive temperature coefficient of this residue and its
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weakening with temperature increase explains the reduction of its slope around 50 °C with
respect to that around 30 °C. In contrast, residue fD14 is located after the end of f³1 and its
amide proton is not involved in secondary structure formation and largely exposed to solvent, in
line with its negative temperature coefficient. However, we found that the fD14-NH can make an
H-bond with the solvent or with the sidechain of residue fT53, located at the end of the f³2
sheet, both in apo30 and apo50. The time evolution and the distribution of distances of this
fD14-fT53 H-bond (see Fig. S10 in the SI), such intramolecular interaction is occurring more
often in apo50 than in apo30, suggesting a larger exchange of H-bond acceptor type (water
molecule or fT53 sidechain) with temperature increase. Such dynamics is in line with the
experimental observation of temperature coefficient decrease at around 50 °C with respect to
that around 30 °C. In summary, the majority of notable changes in temperature coefficients
between 30 °C and 50 °C are located near the effector site or at sideR, along the allosteric
pathways in HisF. This reveals that temperature coefficients are suitable probes for investigating
allosteric key spots, and additionally corroborates the similarities between temperature increase
and effector binding effects on allosteric dynamics in IGPS.
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Figure 5. a) Experimental chemical shifts of the five residues with the biggest change in
temperature coefficient around 30 °C (between 292.92K and 302.73K, with slope displayed by
dashed line) and around 50 °C (between 307.62K and 322.41K, with slope displayed by dotted
line). Typical experimental error bars for the temperature coefficients are too small to be
visualized (<1ppb). b) Experimental spectral overlays for the most prominent change in NMR
chemical shifts (i.e, NH of fL63) at all temperatures under consideration. c) H-bonding of the NH
groups of fL63 in a representative snapshot of the apo30 and apo50 MD trajectories.
d) Superimposition of the experimental temperature coefficient changes between 30 °C and 50

°C and the asymmetric dynamical perturbation contact network between all backbone NH and
the rest of the protein. The absolute variation between temperature coefficient around 30 °C and
50 °C are displayed in green spheres centered on the nitrogen atoms of N-H groups, with
sphere sizes being proportional to the slope variation. Gray spheres refer to unlabeled residues
in HisF, thus missing temperature coefficient values. In the perturbation network, blue and red
edges represent decrease and increase, respectively, of contacts upon temperature rising. Edge
widths are proportional to the differences in number of contacts. e) Evolution of the fL63-fR59
backbone hydrogen over time in the apo30, apo50 and holo30.
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Conclusions

In the present work, we have demonstrated that a temperature increase from 30 °C to 50 °C in

the apo state of IGPS can activate a structural and dynamical pattern that remarkably

resembles the PRFAR-induced allosteric activation. We have identified the residues that belong

to the signalling pathway, showing that both by binding PRFAR or increasing temperature there

is an activation of an external communication channel composed by solvent-exposed residues.

In agreement with this, the perturbation of the residue contacts due to both temperature

increase and PRFAR binding involves mainly solvent-exposed residues at the protein surface,

furthermore in both cases the majority of contact alterations belong to the sideR of the protein,

as illustrated by our NMR temperature coefficient results and our eigenvector centrality analysis.

On the other hand, the main structural and dynamical differences between the thermal and

PRFAR activation, are located in the proximity of the effector binding pocket, where the thermal

fluctuations cannot mimic the specific directional interactions caused by the presence of

PRFAR.

The results presented here explain the origin of the weaker PRFAR-induced allosteric activation

at elevated temperatures, since (i) the allosteric activation pattern is completely disrupted at 50

°C, and (ii) the intrinsic enzymatic activity of IGPS increases with temperature. In this context,

the endothermic nature of PRFAR binding to IGPS87 can be understood as an evolutionary

adaptation strategy to high temperatures by compensating the loss of PRFAR-induced

activation with an increased PRFAR binding affinity.

Overall, this study opens the doors for the development of novel tools to control IGPS activity,

such as rationally designed allosteric drugs, pesticides or herbicides, as well as new engineered

variants.
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3.4 Singular interface dynamics of the SARS-CoV-2 Delta variant
uncovered with Perturbation Contact Analysis

3.4.1 The different models

When the Covid-19 pandemic hit the world, it quickly became one of the most intensively researched topic
worldwide, and we have been involved in a collaboration with the Lorraine Research Laboratory in Computer
Science and its Applications” in Nancy and the ”Institut de Recherche en Infectiologie” in Montpellier. Our
studies have focused on the first step of viral replication: the attachment of the virus to the cell. The SARS-
CoV-2 virus primary target is the human ACE2 receptor and uses the so-called Spike protein for recognition
and attachment. Both the spike protein and the ACE2 receptor are glycoproteins, i.e. oligosaccharide chains
(glycans) are covalently attached to some residues sidechain. Furthermore, the Spike protein associates into
a homotrimer and binds with three ACE2 receptors. The key part of the Spike protein that binds with the
ACE2 receptor is called the Receptor Binding Domain (RBD) and the part of the ACE2 receptor that is located
outside the cell is called the ectodomain. Knowing all this, our collaboration built three models of increasing

Figure 3.7: Three models

complexity (see Fig 3.7). First, a simple model with only the Spike RBD attached to the ACE2 ectodomain,
without glycans, to really focus on the RBD/ACE2 interface. Then a model of the full spike protein homotrimer
bound to three ACE2 receptors (without glycans). Finally, a model of the full spike heterotrimer with glycans
bound to three ACE2 receptors buried in a membrane modelling the cell membrane. While the most simple
model allows to multiply the simulations and to really focus on the RBD/ACE2 interface, more complex models
may grant the possibility to investigate more complex mechanisms. The increase in model complexity is also
rather interesting in the technical sense because it will grant us the possibility to assess how the DPCN analysis
scale with the number of atoms in the system. In theory, the bottleneck is the query of distances, which is in
should be in O(n log n)

3.4.2 Comparing SARS-CoV-2 variants

The emergence SARS-CoV-2 variants has refrained our ability to fight this pandemic through vaccines and nat-
ural immunity. Understanding key differences in the mechanism of action between the SARS-CoV-2 Wild-Type
(WT) and its variants is thus crucial. Using the first model, we produced Molecular Dynamics simulations of
RBD/ACE2 complexes of the WT and five variants that emerged in the year 2020 (RBD mutations in paran-
thesis): Alpha (N501Y), Beta (N501, K417N, E484K), Gamma (N501, K417T, E484K), Delta (L452R, T478K),
Epsilon (L452R). While the first four were clearly more transmissible than the WT, the Epsilon had a similar
transmissibility and could serve as a control.

With six different systems to compare, a total of thirty DPCNs would have been necessary to have a complete
overview of the differences between the system. Even restricting ourselves to a comparative study of the WT,
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looking at five different DPCNs is a tedious task. It actually is this study that motivated the development of
the cPCA technique which allows extracting key contact differences and to visualize them without using prior
knowledge on the system. The cPCA of the six concatenated trajectories shows that the trajectories clustered
in four main groups: one with the WT and the Epsilon variant, one with the Delta variant, one with the Alpha
variant and one with the Beta and Gamma variants. This confirmed that the cPCA can quantitatively assess
when two trajectories are close in the contact space, a feature that the DPCN is unable to do. Furthermore,
the PC1N and PC2N by contrast with individual DPCN contains information about all trajectories and thus
have a higher degree of reproducibility in their results.

3.4.3 Scalability

Despite not being presented here since results are still too preliminary, the increasing complexity of the model
provided the opportunity to test the scalability of the algorithm. In practice, DPCN and cPCA are built
quasi instantaneously from the contact matrix. Therefore, the major bottleneck in computation time is the
construction of the contact matrix. Contact analysis of individual frames can be conducted independently of
each other. In practice, the time to compute the analysis grows then completely linearly with the number of
frames. This time can also be reduced using parallelization on multiple processors. The interesting aspect of
the scalability is not in the time dimensions, but rather in the system size dimension. As the number of atoms
of a system increases, so does the contact analysis.

System natoms time (1 frame, s) time (1,000 frames, min)
RBD/ACE2 (heavy atoms) 6,408 0.06 0.94
RBD/ACE2 12,510 0.22 3.69
Trimer (heavy atoms) 44,589 0.44 7.28
Trimer 88,002 1.84 31.7
Trimer+glycans+membrane (heavy atoms) 189,166 4.91 81.8
Trimer+glycans+membrane 453,920 32.96 549

Table 3.3: Time elapsed while building contact matrices of different systems.

In Table 3.3 are reported computation times for the different models using a single core of a Intel(R)
Core(TM) i5-8350U CPU @ 1.70GHz unit. For each model we tried to compute all contacts and only heavy-
atom contacts giving two different counts for the number of atoms. We report the time elapsed on 1,000 frames
and averaged this time to produce a numerical value for a single frame. The systems span almost 3 orders of
magnitude with the biggest system possessing almost half a million of atoms. The system with and without
hydrogens are roughly separated by a factor of 2 in terms of number of atoms (respectively 1.95, 1.97 and
2.39) but the increase in computation time is much larger in each case (respectively 3.9, 4.2 and 6). This
contrasts with the increase in system size between the first and the second model (multiplied by 6.95 using
heavy atoms and 7.03 with all atoms) that is less translated in computation time (multiplied by 7.72 and
8.31 respectively). This suggests that adding hydrogen to the computation has another effect that drastically
increases the computation time. We suggest that this may have to do with a higher density of atoms and thus
a bigger number of contacts for the same amount of atoms. Another intriguing effect is the increase in system
size between the second and the third model (multiplied by 4.24 for heavy-atoms and 5.15 for all atoms). while
the computation time respectively increases by 11.24 and 17.91. There is a strong reason to suspect that the
different density properties of the membrane there also drastically increases computation time. There may be
an incentive to have a different approach in modelling contacts with a membrane. For instance, one can look
at the membrane as a single unit and to study only interactions between protein and the membrane without
considering internal interactions in the membrane. This approach can also be envisioned to take into account
interactions between a protein and the solvent.

3.4.4 Submitted Article 1

This work led to the submission of an article in the Journal of Chemical Information and Modeling in collabo-
ration with the team in Nancy and Montpellier in late March 2022. The reviews we received were encouraging
and we present here an updated version of the manuscript based on our preliminary revisions.
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Abstract

Emerging SARS-CoV-2 variants raise concerns about our ability to withstand the

Covid-19 pandemic and, therefore, understanding mechanistic differences of those vari-
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ants is crucial. In this study, we investigate disparities between the SARS-CoV-2 wild-

type and five variants that emerged in late 2020, focusing on the structure and dynamics

of the Spike protein interface with the human angiotensin-converting enzyme-2 (ACE2)

receptor, by using crystallographic structures and extended analysis of microseconds

molecular dynamics simulations. Dihedral angle principal component analysis (PCA)

showed the strong similarities in the Spike RBD dynamics of the Alpha, Beta, Gamma

and Delta variants, in contrast with those of WT and Epsilon. Dynamical perturbation

networks and contact PCA identified the peculiar interface dynamics of Delta variant,

which cannot be directly imputable to its specific L452R and T478K mutations since

those residues are not in direct contact with the human ACE2 receptor. Our outcome

shows that in the Delta variant the L452R and T478K mutations act synergistically

on neighboring residues to provoke drastic changes in the Spike/ACE2 interface, thus

a singular mechanism of action eventually explaining why it dominated over preceding

variants.

Introduction

The SARS-CoV-2 virus, associated to the Covid-19 pandemic, has spread all over the world

by first infecting human pulmonary cells. This critical step is achieved through specific inter-

actions between the homotrimeric transmembrane Spike glycoprotein (S protein, with 1,273

residues in each monomer) and human angiotensin-converting enzyme-2 receptors (ACE2).1,2

This attachment to cells is specifically mediated by the “receptor binding domain” (RBD,

residues 319-541) of the Spike that binds with high affinity the N-terminal helix of ACE2,3,4

allowing subsequent conformational changes and fusion between cell and viral membranes.

As in many other viral infectious diseases, the emergence of mutant strains (or variants)

ineluctably has arisen due to its zoonotic origin, interspecies transmission and human host

adaptation. As the main important step in cell infection is the recognition of the specific

ACE2 receptor, mutations occurring in Spike protein may confer increased or decreased in-
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fectivity potential, contributing to changes in transmission rates. With the rapid emergence

of variants of concern (VOC) that quickly spread worldwide, the characteristics of viral

transmission, disease severity and neutralization susceptibility have been compromised. The

first VOC was identified in the UK in late December 2020 (Alpha variant / B.1.1.7 lineage).

While another variant (Beta, B.1.351) emerged independently in South Africa, new variants

arose in Brazil (Gamma, P.1), in California (Epsilon, B.1.427/B.1.429) and finally in India

(Delta/Kappa, B.1.617.1/2/3). The Alpha and Epsilon variant have been de-escalated as

threat in summer 2021. In November 2021, the latest VOC (Omicron, B.1.1.529) was first

detected in South Africa and has already spread to multiple countries and is now the cur-

rent dominant form. Prior to this, the Delta variant was dominant for almost a year. The

mechanisms by which these mutations modulate the infectivity or the severity of the disease

are not fully understood, and only predictions can be drawn from phylogenetic studies5 or

binding free-energy calculations.6 Focusing on the first step of viral infection or cell entry,

several mutations encountered in the spike RBD are commonly shared by most variants, like

N501Y or L452R. On the other hand, some mutations are more distinct, like T478K, which

was exclusive to Delta prior to the discovery of the Omicron variant. The physicochemical

interactions between hydrophobic and charged residues might greatly alter the recognition

phase or the binding affinity between RBD and ACE2 receptors. For instance, the mutation

N501T has been already shown to reduce the affinity of host ACE2 protein and S protein

in vitro.7 Here, we report an extensive investigation of the interaction of the Spike RBD

domain with its human ACE2 receptor at the atomistic level, for the original SARS-CoV-2

virus as well as its five variants that emerged in late 2020, as detailed in Table 1. To this

aim, we focus on the analysis of the primary molecular interactions between Spike and ACE2

based on experimental structural data available from the Protein data bank (PDB). First, we

investigate contact changes between the available X-ray structures3,18 Wild-Type (WT) and

the Alpha, Beta, Gamma variants, at 2.85, 2.63 and 2.80 Å, respectively. Here, we did not

compare those results with available Cryo-EM structures of the Delta and Epsilon variants19
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Table 1: SARS-CoV-2 variants investigated in the present work. The epidemiological status
is as reported by the European Center for Disease Prevention and Control (ECDC) as of 15
December 2021 (https://www.ecdc.europa.eu/en/covid-19/variants-concern). Mutations of
interest found in Spike RBD compared to the WT SARS-CoV-2 strain are depicted in bold.
∗DE: De-escalated

WHO
label
(Lineage,
PDB)

Status First detected Spike mu-
tations

Impact on
transmissi-
bility

Impact
on im-
munity

Impact
on
severity

Transmission
in EU

Alpha
(B.1.1.7,
7EKF)

DE∗ UK (Septem-
ber 2020)

N501Y,
D614G,
P681H

Yes8 No Yes9,10 Low

Beta
(B.1.351,
7EKG)

VOC SA (Septem-
ber 2020)

K417N,
E484K,
N501Y,
D614G,
A701V

Yes11 Yes12,13 Yes9 Medium

Gamma
(P.1,
7EKC)

VOC Brazil (De-
cember 2020)

K417T,
E484K,
N501Y,
D614G,
H655Y

Yes14 Yes15 Yes9 Medium

Delta
(B.1.617.2,
None)

VOC India (De-
cember 2020)

L452R,
T478K,
D614G,
P681R

Yes16 Yes16 Yes16 High

Epsilon
(B.1.427/
B.1.429,
None)

DE∗ USA
(Septem-
ber 2020)

L452R,
D614G

Unclear17 Yes17 No Very
low
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because the involved structures are resolved at a lower atomic resolution that does not allow

appropriate computations of atomic contacts (i.e. > 3 Å). In the fight against the Covid-19

pandemic, Molecular Dynamics (MD) simulations were particularly successful at guiding vac-

cine development,20,21 design RNA polymerase inhibitors,22 investigate the binding of small

molecules of the RBD,23 designing main protease inhibitors24 and elucidating the role of

glycans in SARS-CoV-2 viral entry.25 Notably, previous studies on the increased infectivity

of variants have investigated the role of mutations on antibody-binding26 and uncovered an

allosteric signaling between mutations in the Beta variant.27 In this line of works, we model

all variants using a common modeling procedure starting from the WT structure with the

highest resolution available at the time (PDB: 6M0J), introducing in silico mutations and

equilibrating structures. Then we perform MD simulations of the monomeric form (1 unit

of each protein) of various Spike-ACE2 systems. Thus, we performed the analysis of the pri-

mary molecular interactions between Spike and ACE2 focusing on the effect of the different

mutations on the atomic contacts at the interface and the corresponding binding dynamics.

This information is indeed not directly accessible from the crystallographic structural models

available in the PDB (> 200 X-ray or CryoEM-derived structures) and requires atomistic

simulations. We adopted several tools to analyze the MD trajectories and to cross compare

them, including dihedral angle principal component analysis (dPCA),28 static and dynam-

ical perturbation contact networks (PCN and DPCN, respectively) and contact principal

component analysis (cPCA).29 The dPCA shows that the different mutations trigger similar

rearrangements inside the spike RBD in the Alpha, Beta, Gamma and Delta variant that

are not fully reproduced in the Epsilon variant. Dynamical perturbation contact networks

show that drastic differences in the interface dynamics arise between the Delta variant and

the Alpha-to-Gamma group, despite the fact that these changes relate to mutations (L452R

and T478K) that involve residues far from the interface. Finally, using cPCA, we show how

synergistic effects of L452R and T478K mutations in Delta trigger a pattern of specific con-

tact rearrangements that strongly affect the RBD/ACE2 interface. This knowledge on the
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initial molecular mechanisms triggered by the Spike-ACE2 association provides a fundamen-

tal understanding of this critical aspect of viral infection, and may be very valuable for the

rational design of antiviral therapies.

Materials and Methods

3D Models building and MD simulations

RBD/ACE2 wild type and mutants complexes

Several similar structures of the RBD/ACE2 wild type human monomer-monomer complex

are available in the PDB database1,3,7 (see Figure S1 in the SI) and we used the one with the

highest resolution (2.45 Å): 6M0J.3 The Visual Molecular Dynamics program (VMD)30 was

used to prepare the structural models starting from the WT PDB structure and to intro-

duce in silico mutations. Molecular dynamics (MD) simulations were performed using the

NAMD package31 in conjunction with the recent CHARMM36 force field.32 Six RBD/ACE2

complexes were considered in the present work: the WT and five variants among the most

infectious strains (Alpha B.1.1.7, Beta B.1.351, Gamma P.1, Delta B.1.617.2 and Epsilon

B.1.427 variant). Each protein-protein complex was placed in a TIP3P33 water explicit

solvent box of 150 Å3 with periodic boundary conditions to simulate the biological environ-

ment realistically. Next, Na+ ions were added to ensure neutrality of the periodic box. Each

system was firstly energy minimized performing 64,000 steps of conjugate gradient, next

equilibrated (10 ns MD simulation) and a trajectory of 1 µs was then produced. The simula-

tions were carried out in the isobaric-isothermal ensemble, maintaining constant pressure and

temperature at 1 atm and 300K, respectively, by means of Langevin dynamics and Langevin

piston approaches as implemented in NAMD. The equation of motion was integrated every

fs, using the r-RESPA algorithm34 to update short and long-range contributions at differ-

ent frequencies. Long-range electrostatic interactions were treated using the particle-mesh
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Ewald approach.35 Every ps, one frame was saved from the trajectory file, leading to a total

of 1,000,000 frames for further analysis.

MD Analysis tools

Root-mean-square deviation

The root-mean-square deviation of atomic positions is a first rough indicator of simulation

convergence. First, we align trajectories with respect to their initial conformation by mini-

mizing the RMSD of backbone atomic positions. Then we report minimal RMSD fluctuations

over time. Since, in our models, the spike RBD contains 229 residues and the ACE2 protein

603, it is possible that averaging the RMSD on the global ACE2/RBD complex hides desta-

bilization due specifically to mutations in the RBD. To assess more directly possible effects

of mutations, we also compute the RMSD of backbone atomic positions restricted either

to the RBD (excluding terminal segments, residues S325-N540) or to the Receptor Binding

Motif (RBM, residues S438-Q506) where most mutations are located.

Dihedral angle principal component analysis

Principal component analysis (PCA)36–44 of MD simulations is a general method to extract

essential motions of a system and to reduce the high-dimensional evolution of a proteic

system in a low-dimension landscape. In PCA, the feature choice is crucial and there has

been an incentive to use internal coordinates like dihedral angles28 over external coordinates

(e.g. Cartesian coordinates).45–47 In this formulation, for each frame we compute 2N dihedral

angles and linearize them from the circular space using the transformations:

q4n = sinφn; q4n+1 = cosφn; q4n+2 = sinψn; q4n+3 = cosψn (1)

with n = 1, . . . , N corresponding to the N pairs of consecutive residues from which dihedral

angles are considered (in practice = Nresidues − Nchains). In this study, we accounted for all
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φ and ψ backbone dihedral angles. Since RBD variants only show single point mutations,

the considered models have all the same number of backbone dihedral angles and can be

compared straightforwardly. An observation matrix Qi,j of size (Nframes×2N) is constructed,

where the columns are all linearization of φ and ψ dihedral angles and the rows all possible

observation states (10,000 frames for the WT and each variant so 60,000 frames in total).

The scikit-learn48 implementation of PCA decomposition to get the principal components

(PCs) was used. Restricting to the two first eigenvectors, they can be used to obtain the

free energy-landscape of the system:

G(PC1,PC2) = −kBT [lnP (v1, v2)− lnPmax] (2)

Here P (v1, v2) is the probability distribution obtained from a bivariate kernel density esti-

mate,49,50 which is subtracted to ensure that ∆G = 0 for the lowest free energy minimum.

Then the influence of the nth consecutive pair of residues in a component i is expressed as

the sum of the squares of the influence of its features:

Ii,n =
n+3�

j=n

v2i,j (3)

where vi is the eigenvector corresponding to component i and vi,j the coefficient corresponding

to feature qi,j.

Ward’s minimum variance method

Considering that the dPCA is built on maximization of variance property, in order to find

clusters of frames in the highest density regions of the projection, it is meaningful to group

together minimum variance regions. Thus, Ward’s minimum variance method51 has been

used to build a hierarchical clustering of the frames in the projected space. We then measure

the discrete acceleration of the height of each consecutive cluster, and we set the optimal

number of clusters as the one that maximizes this acceleration. The acceleration on the
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x-axis is shifted so that the initial acceleration value is for a number of clusters equal to two.

The ensuing clustering of frames allows to differentiate regions with the highest density in

the system energy-landscape. Ward’s minimum variance method also provides a good way

to detect key moments in a given simulation where the system undergoes large dynamical

changes.

Perturbation contact network analysis

Contact networks represent a protein as a collection of nodes, i.e. residues, that are con-

nected by edges if those residues satisfy a contact condition. Here, in line with our previous

works,52–54 the contact condition is achieved if at least one heavy atom from a residue is at a

distance below 5 Å from another heavy atom in another residue. Edges between residues are

then weighted by the total number of atomic contact pairs that satisfy this contact condi-

tion. Individual contact networks can be obtained from experimental PDB structures or from

frames of MD simulations. “Static” contact networks are derived from a single experimental

structure, while time-averaged networks of MD simulations correspond to dynamical contact

networks. Then, in order to compare two contact networks (whether static or dynamical)

and highlight contact differences between these structures, we subtract one from the other

(formally, we subtract their weighted adjacency matrices). The differences between the two

contact networks are visualized on the 3D model of the protein by assigning colors to the

edges of the dynamical perturbation network according to the sign of the edges. Here, when

we subtract the WT network from the mutant network, we assign the color red to a positive

sign (i.e. stronger contacts in the mutant) and blue to a negative sign (i.e. stronger contacts

in the WT). Finally, for visualization purposes, a weight threshold can be applied to select

edges kept for display. Here, in line with previous works,54 using a heavy-atom network, we

used an absolute threshold of 5 when explicitly mentioned. Isolated nodes after this process

are also pruned to simplify the visualization. The main advantage of such a method is to

get a direct and global view of all interactions resulting from chain motions and to allow the
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detection of subtle movements, including those occurring in loops.

Contact principal component analysis

We report the weights of the contact networks of every frame in a matrix C of size Nframes×

Ncontacts. If a contact is not present in one frame, its weight is simply put as zero. We use

Principal Component Analysis (cPCA for contacts) to extract the principal components. The

PCs are each of size Nframes and represent the projection of the frames in this component.

During the decomposition, we compute the (ordered) eigenvectors of the covariance matrix.

Each of these eigenvectors correspond to a principal component and is of size Ncontacts, thus

representing a linear combination of all contacts in the system. We define a new type of

contact network: the ith PC Network (PCiN) in which nodes are the amino acids of the

protein, edges are all contacts and weights are the value of the contact in the eigenvector.

These eigenvectors also corresponds to an eigenvalue, which is representative of the impor-

tance of the principal component. By design, the eigenvalues in PCA and eigenvectors are

ordered, thus the PCs decrease in importance with the component number. Similarly to

dPCA frames can be cluster using Ward’s minimum variance method in the first principal

components.

Results

Static perturbation contact analysis

Recently available structures of the Alpha, Beta and Gamma variant RBD in complex with

the ACE2 protein18 give precious molecular basis for the understanding of altered binding in

emerging variants. In Figure 1B-D, we report the static perturbation contact network (PCN)

between the RBD/ACE2 complex from the Alpha Beta, and Gamma variants (respectively

PDB: 7EKF, 7EKG, 7EKC) and the WT (PDB: 6M0J, 1A), showing the main difference
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in atomic contacts deducible from X-ray experiments. Focusing on the WT, the interface

between the spike RBD and the ACE2 involves various secondary structure elements in

the spike RBD. First, in the α3 helix, residue K417 is in contact with residue D30 located

in the α1 helix of the ACE2 receptor. Then, the α4-β5 loop (residues D442-Y451) has a

few contacts with the α1 helix of ACE2 (i.e. G446-Q42 and Y449-D38). In the β5 sheet

(residues L452-R454), residue Y453 is in contact with H34 of the ACE2 α1 helix. The β5-β6

loop (residues L455-F490) is also mainly in contact with the α1 helix (L455-H34, F456-T27,

N487-Q24, Y489-F28, Y489-T27, Y489-K31) but some residues are also interacting with the

α2 helix of the ACE2 receptor (N487-Y83, F486-L79, F486-Y83). In the β6 sheet (residues

P491-Q493), residue Q493 is in contact with H34 and E35 of ACE2 α1 helix. The nearby

β6-α5 loop of RBD (residue S494-Y505) is also interacting with ACE2 α1 and with the

β-turn (G352-D355), the most relevant contacts being: Q498-Y41, Q498-Q42, N501-Y41,

N501-K353, Y505-K353. The largest number of atomic contacts (i.e. 43 atomic pairs) in the

WT is found for the interaction Y505-K353 while the N501-K353 and Q498-Y41 contacts

are tied second (with 25 pairs). Among all mutated residues involved in the variants stud-

ied here, only K417 and N501 have a significant contact across the interface (< 5 atomic

contacts) in the WT. It has to be noted that RBD residue E484 also possesses a minimal

contact (1 atomic pair) with K31 in the ACE2 α1 helix.

In the Alpha variant, which contains only the N501Y mutation, the main contact changes

are directly associated with this residue, featuring an increase in contact between the Y501-

Y41 and Y501-K353 pairs (+14 and +11 atomic pairs, respectively). These increases in

contacts are partially compensated by some contact losses, including those of the Q498-Q42

(-7) and Y505-E37 (-5) interactions. Interestingly, far from the mutation spot, there is also

an increase in contact with H34 in the ACE2 α1 helix associated to the Q493-H34 and

the Y453-H34 interactions (+13 and +10 atomic pairs respectively, see Table 2) and some

decrease of contact with the ACE2 α2 helix, involving F486-L79 (-5) and F486-Y83 (-4).
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Table 2: Contact values at critical residues in the Spike/ACE2 interface in X-Ray PDB
structures of the WT (PDB: 6M0J) and Alpha (PDB: 7EKF), Beta (PDB: 7EKG) and
Gamma variants (PDB: 7EKC).

Spike K417 Y453 L455 F456 E484 F486 F486 Q493 Q493 Q493

ACE2 D30 H34 H34 K31 K31 L79 Y83 K31 H34 E35

WT 7 11 17 9 1 7 19 3 14 14
Alpha 6 21 16 10 1 2 15 11 27 0
Beta 0 14 11 12 0 9 18 10 7 2
Gamma 0 11 16 15 0 13 18 4 12 7

Spike Q498 N501 N501 N501 Y505

ACE2 Q42 Y41 K353 G354 E37
WT 20 15 25 2 11
Alpha 13 26 39 2 6
Beta 14 28 35 2 4
Gamma 17 33 35 2 5

Overall, the increase in number of atomic contacts of Alpha variant with respect to WT is

about 2%.

In the Beta variant, the same direct influence of the N501Y mutation is observed around

residue N501. As expected, the K417N mutation breaks the K417-D30 salt-bridge and con-

tact losses are observed for K417-D30 (-7) and for nearby contacts: Q493-H34 (-7), Q493-

E35(-12) and L455-H34(-6) pairs. A slight increase in contacts for the Q493-K31 pair (+8)

partially compensates this effect. The other mutation, i.e. E484K, breaks the weak E484-

K31 contact (-1). Overall, the Beta variant features a loss of about a 5% of contacts with

respect to WT.

Finally, the Gamma variant is very similar to Beta but there the intensification of the Y501-

Y41 contact is further magnified (15 atomic contacts in the WT, 26 in Alpha, 28 in Beta and

33 in Gamma) while contacts losses due to the loss of the K417-D30 salt bridge (T417-D30

also loses the 7 atomic contacts) are mitigated: only the Q493-E35 pair (-5) undergoes con-

tact loss. Two other inter-residues interactions show some indirect effects of those mutations

at the interface, i.e. F456-K31 (+6) and F486-L79 (+6). Similar to the Alpha, the Gamma
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variant features a ca. 1% of contact increase with respect to WT.

More general trends of intra-domain contact perturbations can be observed in the static

PCN analysis, indicating that ACE2 contacts are more affected by mutations than RBD

ones for the Alpha-to-Gamma variants and, overall, the Gamma variant features larger per-

turbations than the two others. The valuable information available from this static PCN

analysis is however lacking dynamical effects that are going to be characterized in the fol-

lowing sections, where we also consider the comparison with the Delta and Epsilon variants

that lack crystallographic structures with a resolution below 3 Å.

Dihedral angle principal component analysis

We performed microsecond MD simulations on the WT and its five variants Alpha-to-Epsilon

to characterize the effects of mutations on the RBD and ACE2 dynamics. RMSD analysis of

these MD trajectories (Figures S2-S4) indicated that all systems equilibrated within 200 ns

after the pre-equilibration steps, including the domains where most mutations are present,

i.e. RBD and RBM. The dPCA has been initially performed on the whole (1 microsecond)

MD simulation of each system (i.e. the concatenated values of backbone dihedral angles

in all the frames for each system, see Figure S5 in the SI). Because the ACE2 receptor

is much more flexible than the RBD and to focus on dynamical changes in the RBD we

restrain the dPCA analysis to dihedral angles of the RBD. For each simulation, the PC1

and PC2 values undergo drastic adjustments between 200 and 600 ns. This indicates that

some major rearrangements occur in the system, some of which can be attributed to the

incorporation of in silico mutations. The latest of these important shifts occurs at 600 ns

in the Gamma variant. Since this variant contains three different mutations (the most in

any studied variant, tied with Beta) this is not surprising that it is the last to converge.

Ward’s minimum variance method shows an optimal number of four, and each simulation

remains in the same cluster during the last 400 ns. This indicates that our simulations
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Figure 1: (A) Static amino acid network of the WT. (B-D) Static perturbation network at
threshold 5 between Alpha (PDB: 7EKF, B), Beta (PDB: 7EKG, C), Gamma (PDB: 7EKC,
D) and the WT (PDB: 6M0J)

have appropriately converged, and we can proceed with dPCA. Thus, here and in all the

remaining analysis of this work, we focus on the frames of the last 400 nanoseconds for all

MD simulations (employing then Nfeatures = 722 and Nframes = 24, 000).

When representing MD frames in a PC1 vs PC2 plane, as depicted in Figure 2, the WT
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Figure 2: Projection of the frames corresponding to the final 400ns of simulation for the six
studied complexes in the two dPCA eigenvector dimensions with (A) contour plots represent-
ing a kernel density estimate of the population of each complex, (B) scatter plot representing
the three main clusters obtained through Ward’s minimum variance method. Representation
of the influence (as cylinders with a width proportional to the influence) of each dihedral
angle in the PC1 (C) and PC2 (D) eigenvectors on the spike-RBD (green)/ACE2 (yellow)
complex. The α4-β5, β5-β6 and β6-α5 loops are highlighted in purple.

and Epsilon systems are both isolated (PC1>0 and PC2<0 for WT; PC1>0 and PC2>0 for

Epsilon) from Alpha-to-Delta variants that are grouped together (PC1<0, PC2≈0). This

grouping of Alpha-to-Delta variants as function of the first two dPCA components suggests

that different mutations might have similar effects on the RBD motion with respect to that

of WT (see time evolutions of PC1 and PC2 in Figure S6D-E in the SI). In fact, the Delta
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variant does not share mutations with Alpha, Beta and Gamma that, instead, all have in

common the N501Y mutation. Notably, the Epsilon variant, despite sharing the L452R

mutation with Delta, is separated from it (see also Fig. S6D-E). The dPCA results indicate

that the PC1 (i.e. the largest variance axis) discriminates the Alpha-to-Delta group from

both the WT and the Epsilon variant. Looking at the main conformational changes in the

MD simulations, one can realize that the motion relating to WT and Epsilon (along PC1)

refers to a large displacement of the α4-β5 loop (see Fig. S15 in the SI). On the other

hand, the second principal component separates Epsilon from all the other systems, mainly

because they feature different fluctuations of the β5-β6 loop (see Fig. S16 in the SI). Ward’s

minimum variance method quantitatively confirms this behavior, showing an optimal num-

ber of clusters (see Fig. S5 in the SI) equal to three, corresponding to the WT, Epsilon

and Alpha-to-Delta groups. Interestingly, a previous study comparing the dynamics of the

SARS-CoV-2 and SARS-CoV (responsible for the SARS 2003 outbreak) evaluated that the

increased rigidity in the β5-β6 loop of the SARS-CoV-2 was linked to its higher infectivity

because it enabled the formation of more stable bonds across the interface.55 This is in line

with our results and suggests that the higher rigidity in the Alpha, Beta, Gamma and Delta

variant α4-β5 loop increases their transmissibility.

In Figure 2, the residue pairs with the most influence on the RBD dynamics are reported.

The vast majority of these residues are located in three loops belonging to the RBM (438-

506): α4-β5 (residues L455-F490), β5-β6 (residues L455-F490), β6-α5 (residue S494-Y505).

It’s interesting to note that the α4-β5 and β6-α5 loops are in contact and contain respec-

tively mutations L452R (Delta and Epsilon variants) and N501Y (Alpha, Beta and Gamma

variants). The time-evolution of the V483-E484 dihedral angles (see Fig. S8 in the SI)

actually shows that their fluctuations are analogous in variants with (Beta and Gamma)

or without (Alpha, Delta, Epsilon) the E484K mutation. On the other hand, in the WT,

these dihedrals have a different behavior, i.e. featuring larger fluctuations and significant

shifts in the microsecond simulations. This suggests that, while the V483-E484 dihedral
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angle is involved in the main conformation motions of the RBD, the E484K mutation is not

alone responsible for alterations of the RBM structure and motion. In fact, a previous study

has uncovered an allosteric cross-talk between mutated residues K484 and Y501 mediated

notably by N41727 in the Beta variant. Other sources of this cross-talk are found near the

mutation spots in the β5-β6 and β6-α5 loops, precisely where are located our main dihedral

changes in PC1 and PC2. The present results suggest that in the different variants, there

are cross-talks between β5-β6 and β6-α5 which affects the loop flexibility. The above anal-

ysis of critical dihedral angles is therefore useful to understand the dynamics of the RBD

upon mutations and to characterize some similarities and differences among various variants.

However, dPCA does not provide an atomistic picture of the ACE2 and Spike RBD proteins

responses to mutations. In order to recover this important information, an analysis of atomic

contacts is reported in the next section, with a focus on the ACE2/RBD interface.

Dynamical perturbation contact network analysis

The dynamical contact network of the WT simulation and dynamical perturbation contact

network (DPCN) between variants and the WT are reported in Figure 3 (the individual

amino acid networks are reported in Figure S9 in the SI). At first glance, the resemblance

between DPCN from Alpha-to-Delta simulations is striking. Inside the Spike RBD, there

is one main patch of contact changes located between the α4-β5 and β6-α5 loops that is

present in the Alpha-to-Delta variant, while a similar (but not identical) patch exists in

the Epsilon variant. Interestingly, parts of the RBD located farther from the interface with

ACE2 appear significantly less affected by mutations. The interface between the two pro-

teins displays some contact changes but, with the notable exception of Delta, these are of a

lesser magnitude (i.e. smaller number of total atomic contacts for each residue pair) than

internal contacts perturbations in the RBD and in the ACE2 receptor.

Surprisingly, the ACE2 receptor is subject to much more contact changes than the RBD

upon mutations, and some resemblance between contact perturbations can be observed be-
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Figure 3: Complete Perturbation Network between each variant and the WT. The spike-
RBD(green) / ACE2(yellow) complex is represented in cartoon representation. Stronger
contacts in the WT are represented by a blue edge and in the variant in red. Edge width is
proportional to their weight.

tween the five variants. This is consistent with studies showing that the ACE2 receptor is

significantly flexible, in contrast with a high stability of the RBD/ACE2 interface.56,57 In

particular, simulations of a ACE2 homodimer bound to the RBD shows some conformations

which may accommodate for the binding of a single SARS-CoV-2 RBD to multiple ACE2

units. Looking at the propagation of perturbations within the ACE2 receptor, from the RBD

interface to the opposite side of the ectodomain, one could speculate that, upon mutations

in RBD, the binding of these five Spike variants might eventually trigger a response of the
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ACE2 receptor that significantly differs from that of the WT; shifting the conformational

ensemble of the RBD/ACE2 interaction towards RBD units binding to multiple ACE2 re-

ceptors.

Figure 4: (A) Perturbation networks using a threshold value of 5 between the WT RDB
(green)/ACE2 (yellow) complex and its mutants (Alpha, Beta, Gamma, Delta and Epsilon).
Stronger contacts in the WT are represented by a blue edge and in the variant in red. Edges
width is proportional to their weight and visualization factor the same for each variant. (B)
Average number of interresidual atomic contacts in all pairs at the interface (labeled in the
WT residue name) with more than 5 contacts in at least one simulation.

Notably, when considering the total number of average contacts at the interface in the

last 400 ns of MD simulations (see Figure S11 in the SI), all variants feature less atomic con-

tacts at the interface than the WT. In particular, the interface between the ACE2 receptor

and the Alpha and Beta variant shows a decrease of 12% in atomic contacts, the Gamma

interface a decrease of 11%, while the Delta and Epsilon interfaces decrease by 4%. This is

19



counterintuitive since we expect variants to show a higher RBD/ACE2 affinity, leading to an

increase in contact count. In fact, experimentally, there is not a strict correlation between

infective and transmissible variants and a higher affinity of the RBD/ACE2 complex.58 This

suggests that variants uses more complex mechanisms for cell entry and, in particular, a

mechanism in which the RBD binds to more than one ACE2 unit is not predictable using

our modeling. Therefore, the simplified mechanism described here at the RBD/ACE2 inter-

face may be only the first step of a more complex mechanism in which the different variants

facilitate the binding of the Spike trimer to more than one ACE2 receptor (e.g. PDB: 7V89

in the Delta variant). In fact, within this context, a slight destabilization of the monomeric

RBD/ACE2 interface can be favorable to trigger RBD binding to multiple ACE2 receptors.

In Figure 4, a close view of the DPCN near the ACE2/RBD interface is reported along

with the list of contact pairs involved (Figure 4B). The Spike RBD binds to three main areas

of the ACE2 receptor, two helices, i.e. α1 (residues T20 to Y41) and α2 (mainly residues

L79, M82 and Y83), and a β-turn (residues G352-D355). Among the WT residues mutated

in the five variants, which are all located close to the RBD/ACE2 interface, only residues

K417 and N501 are involved in the interface contacts during the MD simulation of WT, i.e.

possessing (in average) > 5 atomic contacts with ACE2. Despite only two mutated residues

are directly involved in the interface contacts, other atomic contacts at the interface are

indirectly affected by mutations.

Here, we describe the direct and indirect contact perturbations upon mutations in the five

variants. As shown in Figure 4A, the Delta is certainly the variant that features the largest

number of interface contact perturbations despite the fact that, as described below, its mu-

tations are not directly involved in interface contacts.

In the WT, K353 residue in a β-turn of the ACE2 belongs to a dense interface contact net-

work with the β6-α5 loop of RBD (see main peak in Figure 4B), involving the K353-N501

and K353-Y505 interactions. Notably, in the Delta variant, while N501 is conserved, these
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two contacts are disrupted and a new interface interaction is established between K353 and

Q498. In the other variants, the K353-Y505 contact remains stable, but the K353-N501

interaction (stable in Epsilon) becomes slightly stronger in all N501Y variants, as a conse-

quence of the π-cation formation mentioned above. Indeed, as discussed in the static PCN

analysis, the K353-Y501 π-cation formation in the Alpha, Beta and Gamma variants is ac-

companied by that of a T-shaped π-stacking interaction between Y501 and Y41, located at

the α1 of ACE2. In contrast, in the Delta variant, the Y41-N501 contact is substituted by

a stronger Y41-Q498 interaction.

In all models, the α2 helix of ACE2 is in contact with two residues of the RBD β5-β6 loop:

F486 and N487. With respect to the WT, the Alpha variant features a slight decrease of

all contacts in this region, while Beta and Gamma remains relatively untouched. The Delta

variant shows again the most disparities: an increase in the M82-F486 and Y83-F486 con-

tacts and a decrease in the Y83-N487 contact are detected. The proximity of these residues

with mutation T478K suggests an indirect effect of this mutation (specific of Delta variant)

on the ACE2/RBD interface. In the Epsilon, just a slight increase in the L79-F486 contact

is detected, and the rest of contacts remains similar to those of the WT.

The α1 helix of ACE2 is in contact with many secondary structures of the Spike. In

particular, contacts with the β5-β6 loop of RBD involves the Y489 residue that features

interesting contact perturbations upon mutations at the interface with ACE2 α1. In fact,

Y489 strengthens the contact with residue F28 in WT while it establishes a new contact

with residue Q24 in the Delta variant. In other variants, on the contrary, the Y489-K31

is strengthened as a consequence of the loss of the weak E484-K31 electrostatic interaction

found in the WT. Still, at the α1 (nearby K31), D30 establishes a salt bridge with residue

K417, another mutation spot. This K417-D30 salt-bridge has been found as a transient

contact in MD simulations of Epsilon and Alpha variants, but this interaction is never ob-

served in the Beta and Gamma trajectories, featuring the K417N and K417T mutations,
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respectively. Surprisingly, in Delta and WT, without K417 mutation, this salt-bridge is also

broken during the dynamics. While in the available X-ray structures (WT and Alpha) the

K417-D30 salt-bridge results to be present, our MD simulations suggests that this interaction

might be actually weak and prone to rupture.

The Alpha-to-Gamma dynamics reproduce the main interface perturbation found in all cor-

responding crystal structures, which is the enhanced interactions between Y501, K353 and

Y41. In Beta and Gamma, the contact loss associated to the K417(N/T)-D30 salt-bridge

breaking is also consistent with crystal structures. Interestingly, the WT dynamics shed light

about the statistical significance of the K417-D30 interaction, since this salt-bridge features

a breaking-formation dynamic even in absence of mutations.

Importantly, Delta mutation spots do not belong to the interface contacts, but they evidently

have a significant impact at the interface. More generally, studying systematically the indi-

rect effects of mutations is challenging, especially for comparative studies of mutants, and

a more general type of analysis pointing at the most significant contact changes in various

systems is required to understand why, for instance, the Delta variant features the largest

interface perturbations despite the absence of interface mutations.

Contact principal component analysis

The cPCA is used to characterize the overall information on dynamical contacts resulting

from MD simulations of WT and RBD variants into its PCs. In particular, we found 9,432

different contacts in the concatenated trajectories of the WT and five variants (considering

the last 400 ns for each system). In Figure S7 in the SI we show that during the last 400 ns

of each simulation, PC1 and PC2 values are stable, which shows that our simulations have

appropriately converged. As shown in Figure 5A, the scatter plot of the first two PCs shows

how cPCA can cluster frames featuring similar dynamical contacts and thus characterize

different systems according to that. In contrast to dPCA, here frames are separated in

four main clusters: one with the WT and the Epsilon variant (negative PC1 and PC2), one
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Figure 5: Projection of the frames corresponding to the final 400ns of simulation for the six
studied complexes in the two cPCA eigenvector dimensions, with (A) terrain lines represent-
ing a kernel density estimate of the population of each complex. Network representation of
the influence (as cylinders with a width proportional to the influence) of each contact in the
PC1 (B) and PC2 (C) and PC2-PC1 (D) eigenvectors projected on the spike-RBD(green) /
ACE2(yellow) WT complex. Blue edges show a negative contribution to the principal com-
ponent, while red edges show a positive contribution to the principal component. Contacts
with a contribution of less than 1% to the eigenvector were discarded.

with the Delta variant (positive PC2 and negative PC1), one with the Alpha variant (positive

PC1 and PC2) and one with the Beta and Gamma variant (positive PC1 and negative PC2).

In this representation, positive values of the PC1 separate Alpha, Beta and Gamma from
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WT, Delta and Epsilon. Positive values of the PC2, instead, discriminate Alpha and Delta

from Beta, Gamma, Epsilon and WT. The following PCs (see Fig. S11-14 in the SI), i.e.

those referring to smaller eigenvalues than the two largest ones, are associated with specific

separations between systems: the third component separates the WT (negative PC3), the

Epsilon (positive PC3) from the rest while the fourth one separates Alpha (positive PC4)

and Gamma (negative PC4) from the rest and, finally, the fifth component discriminates

between Alpha and Gamma (negative PC5) from Beta (positive PC5) and the rest. Smaller

components than PC5 are associated with dynamical contact changes within simulations

of each system, e.g. PC6 relates to dynamic contacts occurring in the Delta variant. In

the dPCA, instead, this kind of clustering associated with each specific system starts with

the third principal component. Thus, cPCA provides finer distinctions between the systems

under investigation, in terms of dynamical contact changes, with respect to dPCA, especially

showing some characteristics of the Delta variant.

The representation of PC1 (with positive values for Alpha, Beta and Gamma and negative

values for the rest) and PC2 (with positive values for Delta and Alpha and negative values

for the rest) in terms of contact networks near the interface is depicted in Figure 5B-C.

Therefore, in order to better differentiate the Delta network from the others, also the PC2-

PC1 difference is represented in terms of contact network (see Figure 5D), with PC2-PC1

positive values being associated to number of contacts that are large in Delta and small in

Beta and Gamma variants, while vice versa for negative values of PC2-PC1 difference (Alpha,

Epsilon and WT contribute only minimally to this network since PC2-PC1 differences are

small in these cases). Here, the analysis of the PC2-PC1 differences provides insights into

the link between the two Delta mutations (T478K and L452R) and their indirect effects at

the interface.

Starting from the T478K mutation (exclusive to Delta), located in the RBD β5-β6 loop,

we found that this residue is a central hub of negative edges in both the PC2 and the PC2-

PC1 networks (see Figure 5C-D), involving contacts with residues Q474, C480, F486, N487
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Figure 6: (a to f) Representative MD snapshots of some contacts in the different models
emphasized by contact analysis. (g) Summary of the cross-talk between mutated residue
T478 and the β6-α5 loop.

and C488. This indicates that few contacts between those residues are characteristic of the

Delta variant. In fact, as shown in Figure 6A, a hydrophobic cluster is observed nearby the

C480-C488 disulfide bridge in the β5-β6 loop of the WT (and also in all other variants but
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Delta), involving the hydrophobic moieties of Q474 and T478 and residues I472, V483 and

F490. Upon T478K mutation, in the Delta variant, the insertion of the lysine side chain

does not allow for such arrangement and consequently residue K478 is repelled out of the

cluster. This loss of interaction in Delta is associated with flipping of the C480-C488 bridge

that in turns push residue F490 far from the cluster. As a consequence of this rearrangement

of the hydrophobic cluster, a backbone G485(NH)-C488(O) hydrogen bond is stabilized in

Delta, determining a better folding of the β5-β6 loop, as depicted in Fig. 6b. This differently

folded structure also inevitably affects the dynamics of residues F486 and N487, which were

previously highlighted in the DPCN of Delta at the RBD/ACE2 interface. These residues,

indeed, show more contacts with M82 and Y83 (located in the ACE2 α2 helix) in the Delta

variant than in the WT. This proves that the T478K mutation is indirectly responsible for

the contact increase between the Spike-RBD and the α2 helix of ACE2.

The change in folding of the β5-β6 loop induced by the T478K mutation Delta has, more-

over, other indirect effects on the RBD/ACE2 interface that are synergetic with the effects

of the L452R mutation. In fact, as shown in the PC2-PC1 network in Fig. 6D, the negative

edges around the T478K mutation in the RBD β5-β6 loop are somehow compensated by the

positive edges around residue F490, i.e. the residue repelled out of the hydrophobic cluster in

the Delta variant. This set of predominantly positive edges involves residues E484 (neighbor

of G485), L492, L452 (mutated to R in Delta) and K31 across the interface. Indeed, the

perturbations from the T478K appear to be connected to those induced by the L452R muta-

tion through residue F490 (in the β5-β6-loop) and L492 (in the β6-sheet). Figure 6c shows

that the contemporary T478K and L452R mutations in Delta have a significant effect on the

hydrogen bonding network around the interface residue K31. In particular, the dynamics of

residue F490 is synergistically affected by the two mutations from two different sides: on one

side the change in folding of the β5-β6 loop upon T478K mutation stabilizes the E484-F490

hydrogen bond while, on the other side, since F490 is also in hydrophobic contact with L492

and L452, upon L452R mutation, the arginine sidechain promotes hydrogen bonding inter-
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actions of the L492 and F490 backbones with the K31 sidechain. This finally results into

three hydrogen bonds between the NH3+ head of K31 and the sidechain oxygen of Q493

and the backbone oxygens of L492 and F490, which is a characteristic interface arrangement

of the Delta variant (i.e. in the WT only Q493 is hydrogen-bonded with K31) and it re-

sults from the combination of the two T478K and L452R mutations (far from the interface).

Here, we should note that the Omicron variant also possess the T478K mutations (same

as Delta) but in conjunction with the E484A mutation. This latter mutation is somehow

surprising since the E484K mutation is very common in Spike’s mutants (e.g. it is found in

Beta, Gamma, Mu, Lambda, Eta, Theta) while E484A is exclusive to Omicron. This open

to the question of how much the E484A mutation in Omicron could influence the effects of

the Delta T478K mutations, which should be addressed in further studies. Notably, in the

Beta variant, a cross-talk between mutated residue K484 and Y501 has been discovered.27

The present results suggest that in the Delta variant, there is also an allosteric cross-talk

between mutated residues K478 and the β6-α5 region (in which N501 is found). There is a

possibility that the two cross-talks are incompatible with each other. It is worth mention-

ing that the E484K mutation, present in Beta and Gamma but not in Alpha, differentiates

these variants in terms of the interface contacts between the ACE2 receptor and the RBD

β5-β6 loop, involving the network of contacts highlighted in this region by the PC1 and PC2

components.

In the PC2-PC1 contact network (see Fig. 6D), residue L452(R) is a bridging node that con-

nects the contact perturbations in the β5-β6 loop (described above and involving the T478K

mutation) with those of the α4-β5 and β5-β6 loops. Residue L452(R) has a positive edge

with residue Y449 in this network, meaning that a close L452(R)-Y449 contact is typical of

the Delta variant. In turn, Y449 displays direct connections with interface residue, featuring

positive edges with D38 and Q42 in the ACE2 receptor. Figure 6d shows that, indeed, upon

L452R mutation, the arginine sidechain is able to make a hydrogen bond with Y449(O),

which promotes a flipping of Y449 sidechain, allowing for the formation of a Y449-D38 in-
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terface hydrogen bond that alters the surrounding H-bonding network, involving also Q42.

Notably, the perturbations around residue Y449 in the PC2-PC1 network are minimal, as

a consequence of the fact that perturbations inside the spike RBD (i.e. in the α4-β5 and

β6-α5 loops) are rather similar in the PC1 and PC2 networks (see Fig. 5B,C). In partic-

ular, the K444-N448, N448-F497 pairs features numerous contacts in PC1 and PC2, but

they virtually vanish in the PC2-PC1 network, indicating that rearrangements of contacts

in this region are significant in all variants but somehow differ from Epsilon that is more

similar to WT, in line with the DPCN results depicted in Figure 3. At the same time, the

largest PC2-PC1 differences are found at the interface between these spike RBD loops and

the ACE2 receptor. Here, in the DPCN interface analysis we highlighted the role of residues

Q498, N501, Y505 in the β6-α5 loop in contact with Y41 in the α1 helix and K353 in the

β-turn. Figure 6e shows how, in the Delta variant, upon the Y449 flipping mentioned above,

the backbone N448(NH)-F497(O) hydrogen bond adds up to the preexisting K444(NH)-

F497(O) one. Very interestingly, the very same two hydrogen bonds are also formed in the

Alpha variant, featuring the sole N501Y mutation. This indicated that such a single muta-

tion in the Alpha RBD creates a H-bonding network in the α4-β5 and β6-α5 loops of RBD

similar to that produced by the indirect effects of the L452R mutation in the Delta variant

(via residue Y449). Notably, these contact changes at the RBD common to both L452R

and N501Y mutations in Delta and Alpha, respectively, have not an effect on the interface

contacts. In fact, as shown in Figure 6f, the WT and Alpha interfaces involve interactions

between the same residues (i.e. D38, Y41, Q42, K353, Q498, N501(Y), Y505) despite the

presence of the N501Y mutation, which only changes the type of some interactions (most

notably the Y41-N501 π-polar interaction is promoted to a Y41-Y501 π-π interaction). On

the other hand, the interface in the Delta variant largely differs from those of the WT and

Alpha since the involved residues now include Y449 instead of N501 and Y505. Interestingly,

this shows how the indirect effect of Delta L452R mutation on the interface contacts, via

the Y449 residue and the Y449-D38 interaction (see Figure 6d), has a large impact on the
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RBD/ACE2 interface as previously mentioned in the DPCN analysis, see Fig. 4A. As a result

of the L452R mutation in Delta variant, thus, the formation of the R452-Y449 interaction

is associated to structural rearrangements of the α4-β5 and β6-α5 loops that modify the

interface contacts by including the Y449-D38 hydrogen bond and substituting the N501-Y41

interaction with the Q498-Y41 hydrogen bond, pushing away residues N501 and Y505 from

the interface (breaking their contacts with residue K353). As evident from Figure 5D, in

fact, these interface changes are the most prominent in the PC2-PC1 network and represent

the long distance effects of the L452R mutation on the RBD/ACE2 interface.

Conclusions

In this study, we first analyzed the (static) networks of atomic contacts between the Spike

RBD protein and the ACE2 human receptor based on the available crystallographic struc-

tures of the Alpha-to-Gamma variants of SARS-CoV-2, capturing the contact changes with

respect to the WT and thus perturbations due to RBD mutations. Then, in order to account

for dynamical effects of RBD mutations on Spike/ACE2 interface contacts, microsecond MD

simulations have been performed on the WT and the Alpha-to-Epsilon variants. Various

tools for MD trajectories analysis have been used to recover the main similarities and differ-

ences between various Spike RBD variants interacting with the human ACE2 receptor.

First, the analysis of protein essential motions based on backbone dihedral angles, namely

dPCA, allowed recognizing mobile RBD regions whose dynamics is altered by mutations.

The first principal components of backbone dihedral angles is associated with motions in the

α4-β5 loop, while the second principal components is associated with motions in the β5-β6

loop. Considering these essential motions, three distinct behavior have been observed for

the various MD simulations: on one side, a cluster involving the Alpha, Beta, Gamma and

Delta variants features a tight α4-β5 loop and a flexible β5-β6 loop; on the other hand, the

WT features a flexible α4-β5 loop and a tight β5-β6 loop; while for the Epsilon variant, the
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tightest β5-β6 loop was observed along with a partially flexible α4-β5 loop. Interestingly,

this clustering correlates with the impact in transmissibility and severity of the SARS-CoV-2

disease in the studied variants. These results suggest that the L452R and N501Y mutation

have closely related effects on RBD motions near the interface. However, as evidenced by

the dPCA of the Epsilon variant, these motions are not fully reproduced in the absence of

the T478K mutation, which indicates an interdependence between these mutations. In fact,

this change in flexibility of the RBD near the interface may be a first step facilitating the

Spike trimer binding to than one ACE2 receptor. Still, the dPCA analysis did not allow

differentiating the Delta variant, the dominating one in most of the 2021 year, from the

others.

Then, we were able to recover some specificity of the Delta variant by studying the dynam-

ical perturbation contact network, with a focus on the RBD/ACE2 interface. The compar-

isons between WT atomic contact network with those of Alpha-to-Epsilon variants showed

many similarities among the Alpha-to-Gamma variants that share the N501(Y) mutation,

which promotes specific perturbations for the interface contacts of Y501 with K353 and Y41

residues, while the rest of interface contacts remains essentially preserved. By contrast, in

the Delta variant, significant contact changes at the interface have been found despite the

absence of interface mutations. Indeed, all interface contact changes in Delta cannot be

directly attributed to the T478K and L452R mutations that must have indirect (but large)

effects on the interface.

The subsequent cPCA analysis shed, finally, light on the propagation of contact perturbations

induced by the T478K and L452R mutations in the Delta variant. This analysis showed that

the T478K mutation alters the contacts of a hydrophobic cluster (involving residues Q474,

T478, I472, V483 and F490) around the C480-C488 disulfide bridge inside the β5-β6 loop

of the RBD and promotes the formation of a G485-C488 backbone hydrogen bond. In turn,

this rearrangement affects the position of residue F486 and N487 that increase their inter-

face contacts with the α2 helix of ACE2. At the same time, in the WT residue F490, L492
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and L452 are involved in another hydrophobic cluster that upon L452R mutations adjusted

because of both the presence of residue R452 and the alteration of F490 contacts due to

the T478K mutation. In turn, residue F490 and L492 create a triple hydrogen bond at the

interface of Delta with residue K31, which was H-bonded just to residue Q493 in the WT.

Since it belongs to both the aforementioned T478- and L452-related hydrophobic clusters,

residue F490 resulted to be central for the propagation of contacts changes due to the si-

multaneous T478K and L452R mutations that result to cooperate in inducing the interface

perturbations found in Delta.

Our results highlight the singular mechanism of action of the mutations in the Delta variant

that could eventually explain why it dominated over preceding variants. Moreover, since

the recent Omicron variant possess the same T478K mutation but in conjunction with the

E484A one, it remains to elucidate if a synergistic long-range effect of multiple mutations like

that found here for the Delta variant is also operating for the currently dominating Omicron.
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Dias, J.; Adlhoch, C.; Groups, o. b. o. C. s. Characteristics of SARS-CoV-2 variants of

concern B. 1.1. 7, B. 1.351 or P. 1: data from seven EU/EEA countries, weeks 38/2020

to 10/2021. 2021, 26, 2100348.

(10) Davies, N. G.; Jarvis, C. I.; Edmunds, W. J.; Jewell, N. P.; Diaz-Ordaz, K.; Keogh, R. H.

33



Increased mortality in community-tested cases of SARS-CoV-2 lineage B. 1.1. 7. Nature

2021, 593, 270–274.

(11) Tegally, H.; Wilkinson, E.; Giovanetti, M.; Iranzadeh, A.; Fonseca, V.; Giandhari, J.;

Doolabh, D.; Pillay, S.; San, E. J.; Msomi, N.; Mlisana, K.; von Gottberg, A.;

Walaza, S.; Allam, M.; Ismail, A.; Mohale, T.; Glass, A. J.; Engelbrecht, S.; Van Zyl, G.;

Preiser, W.; Petruccione, F.; Sigal, A.; Hardie, D.; Marais, G.; Hsiao, N.-y.; Kors-

man, S.; Davies, M.-A.; Tyers, L.; Mudau, I.; York, D.; Maslo, C.; Goedhals, D.; Abra-

hams, S.; Laguda-Akingba, O.; Alisoltani-Dehkordi, A.; Godzik, A.; Wibmer, C. K.;

Sewell, B. T.; Lourenço, J.; Alcantara, L. C. J.; Kosakovsky Pond, S. L.; Weaver, S.;

Martin, D.; Lessells, R. J.; Bhiman, J. N.; Williamson, C.; de Oliveira, T. Detection of

a SARS-CoV-2 variant of concern in South Africa. Nature 2021, 592, 438–443.

(12) Cele, S.; Gazy, I.; Jackson, L.; Hwa, S.-H.; Tegally, H.; Lustig, G.; Giandhari, J.; Pil-

lay, S.; Wilkinson, E.; Naidoo, Y.; Karim, F.; Ganga, Y.; Khan, K.; Bernstein, M.; Bal-

azs, A. B.; Gosnell, B. I.; Hanekom, W.; Moosa, M.-Y. S.; Lessells, R. J.; de Oliveira, T.;

Sigal, A. Escape of SARS-CoV-2 501Y. V2 from neutralization by convalescent plasma.

Nature 2021, 593, 142–146.

(13) Madhi, S. A.; Baillie, V.; Cutland, C. L.; Voysey, M.; Koen, A. L.; Fairlie, L.; Pa-

dayachee, S. D.; Dheda, K.; Barnabas, S. L.; Bhorat, Q. E.; Briner, C.; Kwatra, G.;

Ahmed, K.; Aley, P.; Bhikha, S.; Bhiman, J. N.; Bhorat, A. E.; du Plessis, J.; Es-

mail, A.; Groenewald, M.; Horne, E.; Hwa, S.-H.; Jose, A.; Lambe, T.; Laubscher, M.;

Malahleha, M.; Masenya, M.; Masilela, M.; McKenzie, S.; Molapo, K.; Moultrie, A.;

Oelofse, S.; Patel, F.; Pillay, S.; Rhead, S.; Rodel, H.; Rossouw, L.; Taoushanis, C.;

Tegally, H.; Thombrayil, A.; van Eck, S.; Wibmer, C. K.; Durham, N. M.; Kelly, E. J.;

Villafana, T. L.; Gilbert, S.; Pollard, A. J.; de Oliveira, T.; Moore, P. L.; Sigal, A.;

Izu, A. Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B. 1.351 variant.

N. Engl. J. Med. 2021, 384, 1885–1898.

34



(14) Faria, N. R.; Mellan, T. A.; Whittaker, C.; Claro, I. M.; Candido, D. d. S.; Mishra, S.;

Crispim, M. A. E.; Sales, F. C. S.; Hawryluk, I.; McCrone, J. T.; Hulswit, R. J. G.;

Franco, L. A. M.; Ramundo, M. S.; de Jesus, J. G.; Andrade, P. S.; Coletti, T. M.;

Ferreira, G. M.; Silva, C. A. M.; Manuli, E. R.; Pereira, R. H. M.; Peixoto, P. S.;

Kraemer, M. U. G.; Gaburo, N.; Camilo, C. d. C.; Hoeltgebaum, H.; Souza, W. M.;

Rocha, E. C.; de Souza, L. M.; de Pinho, M. C.; Araujo, L. J. T.; Malta, F. S. V.;

de Lima, A. B.; Silva, J. d. P.; Zauli, D. A. G.; Ferreira, A. C. d. S.; Schneken-

berg, R. P.; Laydon, D. J.; Walker, P. G. T.; Schlüter, H. M.; dos Santos, A. L. P.;
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Kalé, L. V.; Schulten, K.; Chipot, C.; Tajkhorshid, E. Scalable molecular dynamics on

CPU and GPU architectures with NAMD. J. Chem. Phys. 2020, 153, 044130.

(32) Huang, J.; MacKerell Jr, A. D. CHARMM36 all-atom additive protein force field:

Validation based on comparison to NMR data. J. Comput. Chem. 2013, 34, 2135–

2145.

(33) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L.

Comparison of simple potential functions for simulating liquid water. J. Chem. Phys.

1983, 79, 926–935.

(34) Tuckerman, M.; Berne, B. J.; Martyna, G. J. Reversible multiple time scale molecular

dynamics. J. Chem. Phys. 1992, 97, 1990–2001.

38



(35) Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N log (N) method for

Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092.
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(57) Fiorillo, B.; Marchianò, S.; Moraca, F.; Sepe, V.; Carino, A.; Rapacciuolo, P.; Biagi-

oli, M.; Limongelli, V.; Zampella, A.; Catalanotti, B.; Fiorucci, S. Discovery of Bile Acid

Derivatives as Potent ACE2 Activators by Virtual Screening and Essential Dynamics.

J. Chem. Inf. Model. 2022, 62, 196–209.

(58) Han, P.; Li, L.; Liu, S.; Wang, Q.; Zhang, D.; Xu, Z.; Han, P.; Li, X.; Peng, Q.; Su, C.;

Huang, B.; Li, D.; Zhang, R.; Tian, M.; Fu, L.; Gao, Y.; Zhao, X.; Liu, K.; Qi, J.;

Gao, G. F.; Wang, P. Receptor Binding and Complex Structures of Human ACE2 to

Spike RBD from Omicron and Delta SARS-CoV-2. Cell 2022, 185, 630–640.e10.

41



TOC Graphic

42



190 CHAPTER 3. APPLICATIONS OF THE METHODOLOGY



Chapter 4

Conclusions

In this thesis, we developed various analytical tools aimed at the study of MD simulations. First, we developed
a novel kind of amino acid network: the average contact network. This network, built from a purely geometrical
perspective from the dynamics of a simulation can capture the fundamental contacts in a proteic system. When
subtracted, the average contact networks produces a dynamical perturbation contact Network that emphasizes
the biggest contact changes between two different systems. Then, to facilitate the analysis of DPCNs, we de-
veloped a connected component analysis to facilitate that discriminates among relevant edges. This approach
was particularly useful at emphasizing local patches of perturbations that spread within a protein. To overcome
intrinsic limitations of DPCNs, we developed a contact Principal Component Analysis, which can directly point
at the principal axes of variation in a set containing numerous systems with numerous replicas, stressing which
structures are the most different from others and why they differ. This analysis has a new ability to detect
contact changes within a simulation and also can detect if the DPCN built between two trajectories is relevant
or not. Finally, we developed a way to investigate proteic systems using smaller coarse-grains: the CGNs, which
allows capturing when contact change of type between residue and overall, the chemistry of a contact.

The development of the average contact network and DPCN proved very successful in studying the allosteric
pathways in IGPS. Later we successfully applied this tool to the study of another allosteric system (AMPK)
and the temperature dependence effect of the allostery in IGPS. We finally used this tool, originally designed
to study the effects of single point mutations in crystal structure and then generalized to MD simulations, to
study the effects of mutations in the SARS-CoV-2 variants. In general, thus, the DPCN is a tool that can
greatly facilitate the analysis of differences between a set of reference simulations and of perturbed simulations.
The cPCA established itself as a complementary tool to the DPCN facilitate the investigations in the case of
studying differences between the five SARS-CoV-2 variants and the WT. Furthermore, this tool also proved that
it could point at differences within a simulation which additionally generalize it. The development of connected
component analysis and machine learning contact analysis remains preliminary, but results based on the IGPS
protein are very promising.

This average contact network is built only using a geometrical analysis of MD simulations but is able to
discriminate contacts of different magnitudes in comparison with the frequency contact network[1, 2]. Inter-
estingly, the same difference is found in contact principal component analysis of MD simulations[3]. Our work
showed that taking into account the magnitude of contacts is an important aspect in AANs and can refine
analysis of AAN. Some groups have already shown interest in the use of this new kind of AAN[4] and we hope
that many groups will follow. While the initial goal was restricted to the study of allostery, in the end, this tool
is completely general and can even be used basically to control the convergence of a simulation and to extract
the relaxation signal from a simulation.

By introducing a variability in contact magnitude, different contacts are weighted differently. While this
aspect possess numerous advantages and notably emphasize the biggest contact losses or gain, there is a reason
to suspect that different interactions are weighted differently. Our methods to build contact networks, contact
matrices, or in general to featurize contacts are purely geometric. Of course, the geometry of a contact is
highly connected to the chemistry but the precise link between those two aspects remains elusive. Some scaling
techniques have been proposed and introduced but the fix they provide does not bridge the gap in knowledge
between geometry and chemistry. Another important limitation is the fact that our way of building AAN still
depends on many parameter. One argument to take a cutoff parameter of 5 Å is that it represents the limit of
Van der Waals interactions. While not all contacts are considered equal, all interatomic contacts are considered
equal even if they are at the limit of the sphere of Van der Waals interactions. Some of our tests have shown
that in some contexts, using a cut-off of 3.5 Å sometimes provides a better way to show contact losses and
breaking because this way, the strongest contacts break and loss are particularly emphasized. In fact, contacts
at the edge of being described are the most feeble and their description may provide unnecessary data.
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There are countless projects which can be started from this work. One aspect we explored was building
different kinds of AAN using different parameterless techniques, such a using Delaunay or Voronoi tessella-
tions or a k-nearest neighbor approach. This early stage projects are promising, but a complete and concise
implementation is still missing. Another very interesting aspect is to generalize the contact study to different
interacting bodies. During these works, the idea to investigate molecule-protein, water-protein, sugar-protein
and membrane-protein interactions have been proposed. In practice, our tools do not even need to be exten-
sively modified for such analysis. The study of solvent-protein interaction notably is probably essential to fully
understand the link between geometry and chemistry as some contacts are known to be water-mediated.
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Figure S1. Each amino acid residue represents a node in the protein network. The presence of 

atomic contacts within the cutoff distance (5 Å) ensures the link between two nodes (i.e. the 

edge) in the protein network. The edges are weighted according to the number of atomic contacts 

for each residue pair. The picture shows a general example (not directly related to IGPS) for the 

construction of connections between three residues and assignment of weights to existing edges. 
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Figure S2. Comparison between hydrogen bonds modifications observed for loop1 in the MD 

simulations of apo and PRFAR-bound complexes (left panels) and perturbations of heavy atoms 

contacts detected by means of the perturbation network analysis (right panel). A weight threshold 

wt = 6 is used for the 3D representation of the network. 
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Figure S3. Comparison between ionic interactions modifications observed for hα1, fα2 and fα3 

in the MD simulations of apo and PRFAR-bound complexes (left panels) and perturbations of 

heavy atoms contacts detected by means of the perturbation network analysis (right panel). A 

weight threshold wt = 6 is used for the 3D representation of the network. 
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Figure S4. Schematic representation of contacts between the invariant hY136 residue in hβ8 and 

residues fV248, fR249 and fL250 in the C-terminal domain of HisF, showing the change of H-

bonding between hY136 and fN247 that brings hY136 closer to the flexible C-terminus. 
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Figure S5. Representative configurations extracted from the MD simulations of the apo (top 

panels) and PRFAR bound (bottom panels) IGPS complexes, showing the hR18-fE67 salt–bridge 

disruption and the resulting partial unfolding of hα1 helix (propagating towards the active site via 

the Ω-loop) and rearrangement of interactions between polar/charged residues in hα1 and hα4 

helices and the fα2–fβ3 turn. 
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Figure S6. Analysis of the types of pair contacts detected by the perturbation networks using 

contacts between heavy atoms (top panels) and between all atoms including hydrogens (bottom 

panels). Left panels plots show the total number of pair contacts (dotted lines) and the percentage 

of pair contacts in the perturbation networks according to the type of interactions, which are 

defined as following: different charge (yellow lines) = R or K with D or E; same charge (green 

lines) = R with K or D with E; hydrophobic (blue lines) = I, L, V, M, F, W, C, P, G, A with 

themselves; polar (magenta lines) = S, T, N, O, Y, H with themselves. Note that since all 

histidine residues are not protonated (according to standard protonation at pH=7 for this enzyme), 

H is considered as a polar residue. Right panels maps show the contributions of specific amino 

acids to the pair contacts for a given perturbation weight threshold (wt = 5 for heavy atoms and wt 

= 20 for all atoms), with boxes highlighting the type of interactions involved. 
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Figure S7. Representative configurations extracted from the MD simulations of the apo (left 

panels) and PRFAR bound (right panels) IGPS complexes, showing the effects of PRFAR 

binding to the interactions between the hM121 residue (features several contacts perturbations in 

the network analysis) and the invariant fR5, fK99 and fE167 residues that belong to the ammonia 

tunnel gate of the HisF barrel (top panels) and with the highly conserved fD98 (bottom panels) of 

the structurally important fD98–hK181 salt–bridge anchor.  
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Figure 1: Allosteric mechanism of IGPS from Thermotoga maritima. The substrate (glu-
tamine) is positioned in the active site and represented in red. The effector (PRFAR) is
positioned in the effector site and represented in cyan. HisF is in yellow and HisH in green.
Key secondary structure elements are represented and labeled in pink.
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Figure 2: (top) Birch clustering with 2 clusters displaying the top cluster on the protein.
(bottom). Birch clustering with 3 clusters displaying the top-one and top-two cluster on the
protein.
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Figure 3: Connected component analysis procedure using steps instead of removing succes-
sively edges in the graph. This rough version gives a max component threshold of 5 with a
step of 1, 4.2 with a step of 0.1, 4.46 with a step of 0.01 and 4.45 with a step of 0.001
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Figure 4: Combination of the step procedure and the exact procedure in the max interval
found with different time steps. Only step of 1 and 0.5 are able to catch the true maximum
but not 0.2 or 0.1.
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Figure 5: Scatter plot of the size (number of edges) and order (number of nodes) of each
component against their vanishing point. There is a tendency of big vanishing points to
create big components albeit not a complete correlation.
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Figure 6: Distribution of the diameters in the final components. 22 components have a
diameter of 1 (thus consisting of a single edge) while 5 have a diameter of 2 (trivial examples
of propagations). The ninth major component have a diameter bigger or equal than 3.
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Figure 7: Components 2, 3 and 6 showing a tighter interactions near the hinge (red edges),
while the overall alteration in breathing motion (angle between f F120, hW123 and hG52) .

8



Figure 8: Component 7 including its two main hubs: hY79 and hR200. hR200 is one of
the few unresolved residue from 1GPW crystal structure meaning that these displacements
could be attributed to thermal fluctuations.

9



Figure 9: Connected component analysis applied to other perturbation networks (a frequency
contact network, and two cross-correlation computed with linear and non-linear mutual
information).
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Section S1.  Materials and Methods 

Correlation matrices for IGPS from Thermotoga maritima (Tm-IGPS) are obtained from the same 
trajectories and following the same protocol as in reference 1, while yeast models (Sc-IGPS from 
Saccharomyces cerevisiae) are built ex-novo. 
The computational structural models for apo and PRFAR bound yeast IGPS complexes are based on 
the crystal structure of the bienzyme complex from S.cerevisiae at 2.4 Å resolution (Protein Data Bank 
code 1OX6-B).2 The HisH-HisF apo-complex having several missing residues (261-275, 301-304, and 
551-552) and three extra residues at the beginning of the chain required modeling prior to simulation. 
To complete the structure, first, we stripped the first three residues, then we aligned and added residues 
256-260 and 299-310 from 1OX4-B (removing overlapping residues from 1OX6 due to poor 
alignment). Finally, we added residues 550-552 from 1JVN-A, (removing residue 550 from 1OX6-B). 
We constructed the remaining residues (256-275) using different tools, using which we produced six 
different structures. One structure was generated using Modeller,3 a second one using Swiss-Model,4 
and four suitable homology models were found on modbase. PRFAR was bound to each model by 
aligning each structure to the effector-bound crystal structure of yeast IGPS (PDB code 1OX5).  
The twelve generated structures (six in the apo state, six bound to the effector) align with RMSD < 5 
Å. To allow for a direct comparison between the dynamics of IGPS enzymes from Tm- and Sc-IGPS 
we kept the simulation conditions analogous to the one used for bacterial IGPS in reference.1 For the 
sake of clarity, we report some essential details below. MD simulations of the apo and PRFAR-bound 
structures of yeast IGPS are based on the AMBER-ff99SB5 force field for the protein and Generalized 
Amber Force Field6 for the PRFAR ligand (see SI Text), as implemented in the Amber20 software 
package.7 We performed twelve independent MD simulations, one for each complex (apo and PRFAR-
bound) for a total simulation time of 1.2  μs.  
Structure refinements such as addition of hydrogen and explicit TIP3 water solvent molecules (reaching 
density values >= 0.9 mol•Å-3) are performed using AmberTools (2020). A constrained optimization 
with all atoms but solvent fixed at the crystal structure positions yields optimized solvated structures 
which are then slowly heated to 303 K, performing MD simulations (100 ps) in the canonical NVT 
ensemble using Langevin dynamics. We apply harmonic constraints to protein and PRFAR heavy 
atoms, with force constants set to 1 kcal•mol-1. During the heating procedure all positional constraints 
are gradually lifted until all atoms are set freed.  



 

1 

Unconstrained MD simulations are run for more than 9 ns, for total pre-equilibration simulation time 
of at least 10 ns. The pre-equilibrated systems are simulated in the NPT ensemble at 300 K and 1 atm 
using the Langevin dynamics for 100 ns. All simulations are performed using periodic boundary 
conditions. Van der Walls interactions are calculated using a switching distance of 10 Å and a cutoff of 
12 Å and electrostatic interactions are treated using the Particle Mesh Ewald method.8 We employ the 
multiple time-stepping algorithm,9 where bonded, shortrange nonbonded, and long-range electrostatic 
interactions are evaluated at every one, two, and four time steps, respectively, using a timestep of 
integration set to 1 fs. 
 

Section S2. Details on the computation of correlation values and their analysis through 

the eigenvector centrality metrics, principal component analysis and allosteric pathways 

across yeast and bacterial IGPS. 

Generalized correlation coefficients, eigenvector centrality and community network analysis 

We quantify the extent of the dynamical correlation of fluctuations in the positions of Cα-atoms by 
computing the generalized correlation coefficient between each pair of residues,10 

                                             (1) 
computed in terms of mutual information (MI), 11 

.                                            (2) 

Here, , ,  are the marginal and joint (Shannon) entropies for atomic vector 
displacements ( ), computed along twelve independent 100 ns MD simulations for both apo and 
PRFAR-bound yeast IGPS complexes. The resulting generalized correlation coefficient values  
values fall in between 0 and +1, representing respectively uncorrelated and fully correlated variables. 

 alone can be hard to decipher and require some post-processing to interpret protein behavior. 
Network analysis tools,12,13 including different centrality metrics14 can be applied for the interpretation 
of correlated protein motions and their allosteric behavior. Here, the Cα-atoms of the proteins’ amino-
acid residues constitute the nodes of a dynamical network graph, connected by edges (residue pair 

connection in terms of ). An adjacency matrix  is then constructed such that it can be used 
to identify the key amino acid residues of IGPS with high susceptibility to effector binding. A simple 
yet effective metric extract “central” nodes in  is the eigenvector centrality EC. The basic idea behind 
this measure is the assumption that the centrality index of a node is not only determined by its position 
in the network but also by the neighboring nodes, hence it measures how well connected a node is to 
other well-connected nodes in the network. The EC of a node is defined as the weighted sum of the 

centralities of all nodes that are connected to it by an edge, : 

,                                                        (3)  
where  is an eigenvector associated to the largest eigenvalue of . Being any eigenvector defined only 
minus a multiplicative constant we orient the eigenvector in the positive quadrant (whatever the sign 
obtained from the diagonalization). Additionally, an exponential damping factor with a length 
parameter  can be introduced to Eq. 3, by defining  as: 

.                                          (4)  
 controls the locality of the correlations under consideration based on the average distance between 

residues .  
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Hence, using short enough values of  will result in neglecting the correlation between residues that are 
far away from one another, revealing the effect of the locality in the allosteric pathway. On the other 
hand, by setting  to a very large value, all correlations, including those between residues separated by 

long distances, will be retained and . In the main text the results presented 
correspond to a value of .  
Because we are interested in analyzing how the information transmission is affected by the allosteric 
stimulator, we focus on the difference centrality values computed by as . The 
nodes with higher eigenvector difference centrality are those acting as the principal “channels” for 
momentum transmission across the protein.  
We visualize the  coefficient relative to each amino-acid in the protein structure, coloring each node 
from blue (zero centrality) to red (maximum centrality). In all of the cases, we apply a renormalization 
of the centrality values such that each falls in the -1, +1 range, as: 

 .                     (5) 
In the present study, we calculated generalized correlation coefficients based on mutual information 
and EC values independently on 100 ns apo and PRFAR-bound trajectories of yeast and bacterial IGPS 
and averaged over six and four replicas, respectively. As mentioned before, the trajectories used for 
bacterial IGPS are the same as in reference,1 hence the EC values reported both in the main text (Figure 
3A) and below (Figure S6) are the same as in reference 15 whereas those relative to yeast IGPS are 
computed ex novo, following the same procedure, as described Section S1. 
The protein-network can be used to determine the optimal pathways for the information transfer 
between two nodes, defined as the shortest paths connecting a specific pair of nodes. In this context, 

edge lengths, i.e. the internode distances in the graph, are defined using the  coefficients 

according to -log( ), implying that highly correlated pairs (featuring good communication) 
are close in distance in the graph. 
In particular we applied the Dijkstra algorithm to calculate the shortest pathways between residues 
fA233-fA234-A523/G524-R528 and hC84-C83, where each set of residues belongs to a different 
domain of bacterial and yeast IGPS, respectively. Hence, the computed pathways are composed of 
residue-to-residue steps that optimize the overall correlation (i.e., the momentum transport) between 
residues fA223-fA224 (at the effector site) and hC84 (in the glutaminase active site) in Tm-IGPS, and 
similarly residues K334, A523, G524 and C83 in His7.  

Principal Component Analysis 

Principal Component Analysis (PCA)16,17 has been employed to capture the essential motions of the 
simulated systems. In PCA, the covariance matrix of the protein Cα atoms is calculated and 
diagonalized to obtain a new set of coordinates (eigenvectors) to describe the system motions. Each 
eigenvector – also called Principal Component (PC) – is associated with an eigenvalue, which denotes 
how much each eigenvector is representative of the system dynamics.  
To avoid translational artifacts, we set the center of mass of each frame at the origin, and rotate each 
frame to its optimally aligned orientation relative to the average structure - computed over all apo 
trajectories - which also has its center of mass at the origin. Next, we evaluate the covariances of the 
positional fluctuations of each system over the apo and PRFAR-bound trajectories obtained by 
concatenation of the independent apo and effector-bound replicas. Because the motion of side-chains is 
mostly independent of the essential dynamics of IGPS, we restrict the covariance to the backbone atoms 
only. Projecting the original (centered) data onto the eigenvectors results in the PCs, whose associated 
eigenvalue (variance) is indicative of the portion of motion that the eigenvector describes.  
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Together, the first two principal components relative to Tm-IGPS incorporate 44% and 33% of the total 
motion of the bacterial apo and PRFAR-bound trajectories, respectively (Figure S3-A), while the 
percentages become 42% and 44% for His7 (Figure S3-B) . The contribution added by the third PC is 
much smaller hence we limited our analysis to the first two.  
The interest in projecting the trajectory coordinates onto the PCs is that we can visualize the essential 
motions induced by effector-binding in yeast and bacterial IGPS on the protein structure, along the 
trajectory. The procedure is described below. 
First, we project the original trajectory onto the first two PRFAR-minus-apo difference principal 
components ( ) and visualize their motion (details in SI). The weights over the  principal 
component relative to a given trajectory are given as 

,                                          (6) 

where  is a vector containing the stacked cartesian coordinates of the selected group of atoms at time 
(t) and  are the mean (stacked x,y,z) coordinates along a selected (apo) trajectory.  is the  
principal component, having dimension ( ), with . The resulting 

weight vectors  are ( ) dimensional and the dimension of  is equivalent to that of each 
row/column of the covariance matrix, and will coincide with the length of the PCs. Then, the projected 
coordinates on PRFAR-minus-apo difference principal components ( ) are  
 

,                                                   (7) 
 
Here, the product of the weights  - computed at each timestep of the apo trajectory - with the  
difference eigenvector  accounts for the fluctuations around the mean on that axis (i.e., the 
fluctuations induced by PRFAR binding), so the projected trajectory  simply describes the effector-
induced fluctuations added onto the mean positions . 
 

Additional comments on generalized correlation coefficients, EC and PCA 

With regard to the analysis reported in the main text reported for yeast IGPS, it is worth 

discussing more in depth the outcomes of the single replicas as compared to the average. This 

analysis supports the finding in the text and shows the relevance of the simulations. 

MD simulations are inherently chaotic, hence two simulations started from similar inputs may 

end up in significantly different configurations, making it hard to verify whether the process 

under interest is actually captured within the dynamic trajectory. This is why running a single 

trajectory may not mean much and replicates are almost always required. Indeed, allowing for 

high variance in the simulations - as we do, for instance, using different homology models to 

construct representative initial states from which to start the dynamics, is paramount to ensure 

that the simulations capture the process of interest (in our case the allosteric events in the 

enzyme’s dynamics). We calculated generalized correlation coefficients based on mutual 

information and covariances of atomic displacements independently on each 100 ns apo and 

PRFAR-bound trajectories of yeast and bacterial IGPS and averaged over six and four replicas, 

respectively. A standard way to verify that a set of simulations contains a statistically relevant 

ensemble is to check that different simulations show similar ensemble average properties. The 

more unconstrained is the motion of a system of interest the more likely it will be that different 

dynamics sample different states of the system. The trade-off between considering a “large 

enough” number of independent simulations that will reliably capture a process of interest, 
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without averaging out important fluctuations, is system dependent and requires careful case-

by-case examination. These observations apply to the simulations described in this work. 

Correlations, covariances (and therefore all the metrics derived from these) are subject to 

changes depending on the dynamics. For Tm-IGPS the four 100 ns apo/PRFAR-bound replicas, 

based on which we calculated the average properties discussed in the main text, showed similar 

features (as discussed in the original publication1. We find rather larger deviations in the yeast 

as compared to Tm-IGPS. However, the average picture -obtained as the average apo-minus-

holo correlation profile computed across the different models (shown in Figure 2) - is 

representative of the allosteric process although the individual simulations present different EC 

and PCA profiles (as shown in Figure S5). Among the six apo and PRFAR-bound replicas the 

dynamics that encompasses most of the allosteric traits is labelled as sim1 in the figures reported 

below. Figures 3 and 4 in the main text are associated to the representative dynamics of sim1. 
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Section S3.  Supplementary figures and tables  

Breakdown of the secondary structural elements of His7 

Secondary 

Structural 

Element 

Residue 

numbers 

Label length Secondary 

Structural 

Element 

Residue 

numbers 

Label length 

Beta strand 3 – 7 hβ1 5 Helix 277 – 288 fα1 12 

Helix 15 – 23 hα1 9 Beta strand 292 – 299 fβ2 8 

Beta strand 27 – 33 hβ2 7 Helix 307 – 309  3 

Helix 34 – 36  3 Helix 311 – 319 fα2 9 

Helix 39 – 41  3 Turn 320 – 322  3 

    Beta strand 327 – 332 fβ3 6 

Beta strand 45 – 49 hβ3 5     

Helix 53 – 62 hα2 10 Helix 346 – 356 fα3 11 

Helix 66 – 74 hα2' 9 Beta strand 359 – 363 fβ4 5 

Beta strand 79 – 83 hβ4 5 Helix 365 – 376 fα4 12 

Helix 84 – 87 hα3 4 Helix 386 – 394 fα4' 9 

    Helix 396 – 398 fα4'' 3 

Beta strand 90 – 93 hβ5 4     

    Beta strand 399 – 403 fβ5 5 

Beta strand 104 – 111 hβ6 8 Beta strand 405 – 412 fβ5' 8 

Turn 114 – 116  3 Helix 413 – 415 fα5 3 

Beta strand 119 – 125 hβ7 7 Beta strand 433 – 440 fβ6X 8 

Beta strand 143 – 150 hβ8 8 Turn 441 – 444  4 

Helix 155 – 163 hα4X 9 Beta strand 445 – 450 fβ6 6 

Beta strand 167 – 173 hβ9 7 Helix 451 – 460 fα6 10 

Beta strand 176 – 184 hβ10 9 Beta strand 465 – 468  4 

Beta strand 187 – 193 hβ11 7 Helix 471 – 473  3 

Helix 194 – 196  3 Turn 474 – 476  3 

Helix 198 – 209 hα4 12 Helix 482 – 491 fα6 10 

Helix 221 – 227 hα4' 7 Beta strand 496 – 498  3 

Helix 232 – 235 hα4'' 4 Helix 505 – 514 fα7 10 

Beta strand 240 – 248 fβ1 9 Beta strand 518 – 523 fβ8 6 

Beta strand 250 – 252  3 Helix 524 – 527 fα8' 4 

Beta strand 254 – 257  4     

 
Table S1. Full topography of secondary structural elements of yeast IGPS from 
https://www.uniprot.org/uniprot/P33734 
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Sequence alignment 

Using the jFATCAT rigid algorithm implemented in the RCSB PDB Comparison Tool Reference 
(https://www.rcsb.org/alignment), we aligned structurally the amino acid sequence of HisH (PDB entry: 
3ZR4.C), HisF (3ZR4.D) and His7 (1OX5.A). The sequence alignments are reported in Table S2. The 
structures of HisF and His7 are aligned for residues hM1–hS197 and P5–Q215 and the sequences of 
HisF and His7 are aligned for residues fM1–fE251 and G238–D553. Despite a similarity of ~ 50-60% 
(see Alignment Summary Table), the alignments show good structural similarity with a RMSD of the 
C-alpha backbone atoms ~ 2 Å. The alignments of the 3D structures are also reported in Fig. 1 in the 
main text.  
 

Alignment 
Summary 

RMSD Sequence 

 Identity% 
Sequence 

Similarity% 
Length 

HisF-His7 2.03 46 63 241 

HisH-His7 1.93 30 52 192 

 
Table S2. Sequence alignment of His7 from Saccharomyces cerevisiae and HisH, HisF from 
Thermotoga maritima. 
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Correlation matrices from Elastic Network Model  

 

Figure S1. Difference of theoretical cross-correlation matrix between the holoenzyme and the 
apoenzyme in T. maritima (right) and S. cerevisiae (left). Cross-correlation matrices were computed 
with a Gaussian Network Model18 using the pre-equilibrated structures of model 1 for apo and PRFAR-
bound of T. maritima and S. cerevisiae. Kirchoff matrices build with a cutoff of 10 Å and a spring 
constant of 1. Only the first 20 modes were taken into account in the computation. 
 

 

Correlation matrices  

 
Figure S2. Generalized correlation coefficient matrices computed over six 100 ns replicas of simulated 
dynamics of apo and PRFAR-bound His7.  
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Figure S3. Left to right: average generalized correlation coefficient matrices over over apo, PRFAR-
bound trajectories and difference (PRFAR-bound-minus-apo) computed over the six 100 ns replicas of 
simulated dynamics of Tm-IGPS. 
 
 
 
 

 
Figure S4. Left to right: average generalized correlation coefficient matrices over over apo, PRFAR-
bound trajectories and difference (PRFAR-bound-minus-apo) computed over the six 100 ns replicas of 
simulated dynamics of His7. 



 

9 

Eigenvector centrality 

 

Figure S5. Centrality differences (PRFAR-bound-minus-apo) projected onto the apo structure of Sc-

IGPS, computed different values of λ. Regions in red and blue correspond to gains and loss of centrality. 
To note, the EC values relative to sim1 recover most of the allosteric traits as it can be inferred by the 
similarity of the centrality pictures showing the averaged values over the six independent replicas (last 
row).  
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Analysis of first and second principal components in apo and PRFAR-bound yeast and 

bacterial IGPS 

 
 

Figure S6. (A) and (B) Cumulative variance of the first and second PCs computed for the apo (A) and 
PRFAR-bound (B) trajectories, showing the comparison between Tm-IGPS (red) and Sc-IGPS (green). 
(C) and (D) show the correlation between first and second principal components computed along the 
trajectories of yeast and bacterial IGPS. (C) In Sc-IGPS PC1 and PC2 are poorly correlated, confirming 
that they account for distinct motions, while the higher correlation shown in (D) suggests that PC1 and 
PC2 in Tm-IGPS have some degree of overlap. 
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Essential motions of the trajectory through principal component analysis 

 
Figure S7. Projection of the original apo trajectory of Tm-IGPS (A) and Sc-IGPS  onto the difference 

(PRFAR-minus-apo) second principal components computed along the yeast ( ) and bacterial (

) IGPS trajectories, as discussed in Section S2. This figure provides a zoom in of Figure 3E and 
3F in the main text for better visualization of the dynamic low-vibrational motions of the two enzymes. 
Panels C and D show positive variations in the EC coefficients due to the long-range component of 
correlations in Tm-IGPS and His7 respectively. The largest increase in the long-range centrality 
coefficients upon PRFAR binding interests different regions in Tm and Sc. The values in Tm are 
consistent with the presence of an interdomain “breathing” motion shown with black dashed black lines 
and forming an angle φ). In Sc, the largest structural (long-range) rearrangements are associated with 
the motion of the connector and of the secondary structure elements fα8, fα1, hα4, hβ9, marked in the 
figure. Long-range EC centralities match description of low vibrational motions provided by the 
analysis of first principal components.  
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Figure 8. Projection of the apo trajectory of Tm-IGPS (A) and Sc-IGPS  onto the difference (PRFAR-

minus-apo) second principal components computed along the yeast ( ) and bacterial ( ) 
IGPS trajectories, as discussed in Section S2. 
 

Role of loop1 in Tm-IGPS and Sc-IGPS 

 
Figure S9. The motion of loop1 has a behavior in His7 and Tm-IGPS, upon binding of the effector. 
While in His7 the binding induces an increased mobility of loop1, in Tm-IGPS, binding of PRFAR 
constrains the motion of loop1. This behavior is consistent with the different role of the loop in the two 
systems, as suggested in the main text.  
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Distance profiles K334-D335 profile across six 100 ns replicas of simulated dynamics of 

His7. 

Figure S10. The K334-D335 salt bridge is mostly present in the APO simulation and breaks upon 
PRFAR binding as the effector interacts with residue K334. The dissolution of the K334-D335 is 
particularly evident in Sim1, in accordance with our observation of Sim1 best capturing the allosteric 
process. 
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Distance profiles of the hydrophobic cluster across six 100 ns replicas of simulated 

dynamics of His7. 

Figure S11. Distance profiles of I333-A350, V329-Y353, V329-F354 computed across six apo (blue) 
and PRFAR-bound (red) 100 ns replicas of simulated dynamics of His7. 
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Hinge Motion 

Figure S12. Hinge motion 
profile six apo (blue) and 
PRFAR-bound (red) over the 
concatenated dynamics of Tm-
IGPS(left) and Hisy (right), 

measured through the angle  
defined using different 
residues. The standard 

definition of  G51-W124-
Y394) used in other 
publications is included. The 
oscillation mostly ranges 
between 10 and 20 degrees 
with no significant changes to 
the PRFAR bound profiles as 
compared to the apo. 

The distribution of  supports 
our hypothesis of a reduced 
importance of the hinge 
motion in the allosteric process 
of His7, as compared to that of 
Tm-IGPS. 
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Relevant salt-bridge interactions in Tm- and Sc-IGPS 

Figure S13. Profile of the E91-R59 (Tm-IGPS) and D8-R355 (His7) salt-bridge interactions along 100 
ns of apo and PRFAR bound states of dynamics. As suggested by the large modification of the profiles 
upon effector binding these interactions are crucial in the signaling mechanism of bacterial and yeast 
IGPS, respectively. 
 

Figure S14. (A) Residues that participate in the network of salt-bridges at sideR of Tm-IGPS, induced 
by PRFAR binding. In Sc-IGPS (B), there are no corresponding surface-charged residues that can allow 

communication between the two active sites through the coupling of fα3-fα2 similar to that of Tm-IGPS. 
Instead, in Sc-IGPS the signal travels across fα3 and fβ3. 
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Closeup view of the glutaminase active site and PGVG sequences in yeast and bacterial IGPS 

Figure S15. (A) The hydrogen bond between A393-N52 is mostly present in the apo structure and 
loosens upon PRFAR binding. Unlike in Sc apo, the h48-PGVG sequence Tm-IGPS is not within 
hydrogen-bonding distance to the glutaminase domain. (B) In Tm apo, residue hV50 is tightly bound in 
a hydrogen bond with hP10, while the corresponding distance varies significantly across the dynamics 
of Sc-apo, suggesting a different cross communication between the Ω-loop and PGVG in the two 
enzymes. The hydrogen bond between hV50 and hP10 in Tm-IGPS dissolves in the presence of PRFAR. 
This bond rupture marks the transition between the inactive state (apo) and the pro-active state. 
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Time-evolution  of hydrogen bond at the interface of His7 

Figure S16. Distance profile of the N52:H-A393:O bond computed along the six replicas of the apo 
(blue) and PRFAR-bound (red) simulated dynamics of His7. The last row shows the mean values 
averaged on the different replicas, as well as a histogram representation of the same distribution. At the 

interface, the hydrogen bond between the backbone atoms of A393 and N52 elongates in the presence of the 

effector. 
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Movie legends 

A way to investigate the essential motions of the trajectory is to project the original trajectory onto each 
of the principal components, to visualize the motion of the principal component. The resulting 
trajectories computed by projecting the original coordinates onto the first difference (∆PC1) and second 
(∆PC2) principal components are shown in the enclosed jupyter-notebook: 
 
A way to investigate the essential motions of the trajectory is to project the original trajectory onto 
each of the principal components, to visualize the motion of the principal component. Instead of 
including all atoms of the trajectories one can focus on selected atom groups, for instance the 
backbone atoms.  
 
The principal component analysis presented in this work is performed by selecting the backbone atoms 
of the apo and PRFAR-bound trajectories of either Tm-IGPS or Sc-IGPS. 
The product of the weights wi(t) for the ith principal component relative to the apo trajectory with the 

difference eigenvector describes the fluctuations 
around the mean on that axis, induced by PRFAR binding, 

 
The projected trajectory ri(t) is simply the fluctuations added onto the mean positions. (See description 
in section Principal Component Analysis at page 2). 
The resulting trajectories computed by projecting the original coordinates onto the difference first 
(∆PC1) and second (∆PC2) principal components are shown in the three videos enclosed to the 
Supplementary material. 
 

1- Video named DELTA_PC1.mov shows projected trajectories of Tm-IGPS and Sc-IGPS along 
the first difference principal component ∆PC1 (PRFAR-bound-minus-apo). 

 
2- Video named DELTA_PC1rot.mov shows projected trajectories of Tm-IGPS and Sc-IGPS 

along the first difference principal component ∆PC1 (PRFAR-bound-minus-apo), where the 
Sc-IGPS is shown in a rotated view with respect to the Video 1, to highlight the motion of the 
connector. 
 

3- Video named DELTA_PC2.mov shows projected trajectories of Tm-IGPS and Sc-IGPS along 
the second difference principal component ∆PC1 (PRFAR-bound-minus-apo). 

 
The videos altogether show the difference in the dynamics of the low-vibrational motions of the two 
enzymes. While Tm-IGPS adopts a hinge-like breathing motion that modifies the opening of the 
interface between the two subunits, Sc-IGPS displays a rather different spring-like motion located at 
the core of the enzyme, coupled with large variations at the connector site and loop1. 
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Figure S1. Histogram showing the relative frequencies of the distances between the γ-carbon of
residue fV48 and the δ-carbon of residue fL50 (left) and the distances between the γ-carbon of
residue fL50 and the δ-carbon of residue fI52 in apo30, holo30 and apo50 (middle). (right)
Hydrophobic cluster composed of residues fV48, fL50, fI52 in red licorice close to the effector
site and PRFAR.

Figure S2. Induced perturbations for fD176 for the apo30/holo30 (left panel) and apo30/apo50
(right panel) perturbation networks. Blue and red edges represent a bigger number of contacts
in the systems labeled with blue and red text, respectively. Edge widths are proportional to the
number of contacts changes.



Figure S3 Correlation plot between the weight of edges in the DCPN between apo30 and
holo30 and in the DPCN between apo30 and apo50. A blue line highlights the first bisector,
(x=y) and a green box displays the threshold 5 limit.



Figure S4. Hydrogen bonding at the hisF-hisH interface. The upper panel shows the HB
network on sideL, bottom panel represents the HB networks at sideR. Residues that form strong
HB in hisF and in hisH are represented as orange spheres, and green spheres, respectively. A
blue cylinder indicates that the HBs were more persistent in the apo30 simulation, whereas a
red cylinder indicates more HBs for the apo50 simulation, or the holo30 simulation.



Figure S5. The correlation between SHIFTX2 and experimental for 1H chemical shifts. SHIFTX2
chemical shifts computed at 30 oC (left) and 50 oC (right) on the corresponding trajectory versus
experimental values obtained at the same temperature. Theoretical error bars are computed as
the standard deviation of each chemical shift and experimental error bars are computed on four
different calibrations of the experiment. Typical experimental error bars are too small to be
visible (<1ppb).



Figure S6. 1H -15N HSQC spectral overlay for the isotopically labelled hisF subunit in IGPS.
Data was collected over a temperature range of 293-323 K (at 293, 298, 303, 308, 313 and 323
K), using a 600 MHz Varian spectrometer. A 500 μM sample of IGPS at pH 7.3 was used with
DSS as an internal standard.



Figure S8. (A) Instantaneous representation of the breathing motion angle (between Cα atoms
of fF120, hW123, hG52) during the first frame of the apo30 simulation. (B) Breathing motion
angle evolution during the 1μs MD simulation in apo30 (blue), apo50 (green) and holo30 (red)
with moving average with a time window of 100 frames=10ns. (C) Kernel density estimate of the
distribution of breathing motion angle in each trajectory. (D) Boxplot representing the distribution
of breathing motion angle in each trajectory. The mean is represented with a green cross and
the median in orange line.



Figure S9. RMSF of apo30 (black lines, top and bottom) compared to holo30 (top) and apo50
(bottom) with green upward bars if the RMSF is bigger and red downward bars if the RMSF is
lower. Terminal segments are excluded.



Figure S10.  Hydrogen bond distance (A) along the 1μs simulation of apo30 (blue) and apo50
(red) between residues fL63-fR59 (A) and fD14-fT53 (B). Kernel density estimate of the length
of the respective same hydrogen bonds (C and D).
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Thibaut Very,§ Serge Perez,∥ Vincent Leroux,§ Isaure Chauvot de Beauchêne,§
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Figure S1. Superposition of four RBD/ACE2 complexes found in the PDB (PDB: GVW1, 6M0J 6M17 and 6LZG)
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Figure S2. RMSD fluctuations during the microsecond MD simulations obtained for the wild type and five different
variants of RBD/ACE2 complexes. For each complex, the RMSD were calculated only for the backbone atoms
and excluding terminal loops (T27-D597 for ACE2 and S325-N540 for spike-RBD) and using the first frame of the
simulation as reference.
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Figure S3. RMSD fluctuations during the microsecond simulations obtained for the six complexes. In each
complex, the RMSD were calculated only for the backbone atoms of the RBD excluding terminal loops (residues
S325-N540) and the initial frame as reference.
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Figure S4. RMSD fluctuations during the microsecond simulations obtained for the six complexes. In each
complex, the RMSD were calculated only for the backbone atoms of the RBM (residues S438-Q506) and using
the initial frame as reference.
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Figure S5. Projection of the frames corresponding to the microsecond simulations for the six studied complexes
in the two dPCA eigenvector dimensions with (A) terrain lines representing a kernel density estimate of the
population of each complex, (B) scatter plot representing the three main clusters obtained through Ward’s
minimum variance method. (C) Hierarchy obtained through Ward’s minimum variance method and (D)
acceleration plot displaying an optimal number of clusters equal to four. Time-plot of the (E) PC1 and (F) PC2
during each simulation. (H) Time evolution of each simulation in the different clusters.

Figure S6. (A) Hierarchy obtained through Ward’s minimum variance method and (B) acceleration plot displaying
an optimal number of clusters equal to three. (C) Influence of each pair of consecutive residues in the PC1 and
PC2.  Time-plot of the (D) PC1 and (E) PC2 during each simulation.
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Figure S7. (A) Hierarchy obtained through Ward’s minimum variance method and (B) acceleration plot displaying
an optimal number of clusters equal to three. Time-plot of the PC1 (C) and PC2 (D) during the last 400 ns in each
simulation.
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Figure S8. Time-evolution (left) and density (bottom) of the φ (left) and ψ (right) dihedral angles between V483
and E484.
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Figure S9. Complete contact network between the wild-type and each studied variant. The
spike-RBD(green)/ACE2(yellow) complex is represented in cartoon representation. Contacts are represented
with an edge width proportional to the number of interresidual atomic contacts.
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Figure S10. Number of heavy-atom contacts at the interface in function of the time for each simulation (top right
panel). Individual comparison between each variant (in green if the number of contacts is bigger in the variant,
red otherwise) and  the wild-type (in black).
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Figure S11. Free energy landscape associated with the different RBD variants in combination of the eight first
cPCA eigenvector dimensions. Kernel density estimation shows regions with the highest population with terrain
lines.
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Figure S12. Eigenvector representation of the PC3 (a red edge means an increase in contact leads to positive
values in PC3 and a blue edge means a decrease in this contact leads to negative values on PC3)

Figure S13. Eigenvector representation of the PC4 (a red edge means an increase in contact leads to positive
values in PC4 and a blue edge means a decrease in this contact leads to negative values on PC4)
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Figure S14. Eigenvector representation of the PC5 (a red edge means an increase in contact leads to positive
values in PC5 and a blue edge means a decrease in this contact leads to negative values on PC5)
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Figure S15. Spike RBD structure (in transparent lime) with the time-evolution of the α4-β5 and β6-α5 turn in
contact (from the beginning of the simulation to the end from red to blue with structure printed each 100ns). The
position of the mutated N501 and L452 residues are also shown in licorice.
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Figure S16. Spike RBD structure (in transparent lime) with the time-evolution of the β5’-β6’ loop (from the
beginning of the simulation to the end from red to blue with structure printed each 100ns). The position of the
mutated T478 residue is also shown in licorice.
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