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Abstract: 

 

The work carried out in this thesis aims at: 

- studying – in both simulative and experimental methods – the effect of electrical transients 

(i.e., Voltage Polarity Reversals VPRs, Temporary OverVoltages TOVs, and Super imposed 

Switching Impulses SSIs) on the aging phenomena in HVDC extruded cable insulations. 

Dielectric spectroscopy, conductivity measurements, Fourier Transform Infra-Red FTIR 

spectroscopy, and space charge measurements show variation in the insulating properties of 

the aged Cross-Linked Polyethylene XLPE specimens compared to non-aged ones. Scission 

in XLPE bonds and formation of aging chemical bonds is also noticed in aged insulations due 

to possible oxidation reactions. The aged materials show more ability to accumulate space 

charges compared to non-aged ones. An increase in both DC electrical conductivity and 

imaginary permittivity has been also noticed. 

- The development of life-based geometric design of HVDC cables in a detailed parametric 

analysis of all parameters that affect the design. Furthermore, the effect of both electrical and 

thermal transients on the design is also investigated.  

- The intrinsic thermal instability in HVDC cables and the effect of insulation characteristics 

on the thermal stability using a temperature and field iterative loop (using numerical methods 

–    Finite Difference Method FDM). The dielectric loss coefficient is also calculated for DC 

cables and found to be less than that in AC cables. This emphasizes that the intrinsic thermal 

instability is critical in HVDC cables.  

- Fitting electrical conductivity models to the experimental measurements using both models 

found in the literature and modified models to find the best fit by considering the synergistic 

effect between field and temperature coefficients of electrical conductivity. 
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1.1 Thermal calculations of HVDC cables: 

1.1.1 Typical structure of HVDC cables: 

The structure of a typical HVDC High-Voltage Direct Current HVDC extruded cable is similar to 

that of High-Voltage Alternating Current HVAC extruded cable, as illustrated in Figure 1.1. In Figure 

1.1 (a), the cable consists of a conductor which is formed in a compact arrangement of thin round 

wires (either aluminum or copper) surrounded by the conductor screen then the extruded insulating 

material then the insulation screen, wire screen and finally the outer Polyethylene PE sheath [1]. A 

thin semiconductive layer (mainly made of the carbon black polymers) is extruded between the 

conductor and the insulation, as well as between the insulation and the metal screen. The 

semiconductive layers play a key role in the electric field reduction in conductor-insulation contact 

area. 

The HVDC cable insulation is extruded around the conductor together with the inner and outer 

semiconductive layers thanks to the triple extrusion technique. The cable is subjected to a cross-

linking process at high temperature (200÷350) °C to achieve the crosslinking of the Low Density 

Polyethylene LDPE and convert it to cross-linked polyethylene XLPE in the presence of a cross-

linking agent. The cable is then subjected to degassing process under relatively high temperatures 

(i.e., ≈80 °C [2]) to remove the volatile gases which have been formed during the cross-linking 

process such as methane, cumyl-alcohol, and acetophenone. Followed by adding other layers on the 

outer semiconductive layer including water blocking tapes, wire screen, metallic laminates and plastic 

sheath. Other protective layers are added to submarine cables i.e., armor wires, synthetic yarns 

bedding to enhance the mechanical strength of the cable against possible external actions [2]. 
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(a) 

 

(b) 

 

(c) 

Figure 1.1 (a) Structure of a typical unipolar HVDC extruded cable, (b) XLPE-insulated HVDC subsea cable 

(courtesy Sumitomo Electric), (c) HPTE-insulated HVDC land cable (courtesy Prysmian). [2],[3] 

 

1.1.2 Temperature profile inside the cable layers and its environment: 

Dissimilar to Medium Voltage MV and Low Voltage LV cables, High Voltage HV cables are heavy 

and cannot be aerial. Thus, they are typically buried either directly under the ground or in special 

tunnels. Temperature calculations are prescribed by the International Electrotechnical Commission 

standards IEC 60287 [4], whereby the temperature drop between the conductor temperature and the 

ambient temperature is given by the following equation: 

 

  𝛥𝜗𝑡𝑜𝑡 = 𝛥𝜗𝑑 + 𝛥𝜗𝑠ℎ + 𝛥𝜗𝑠𝑜 (1.1)  

 

where: 𝛥𝜗𝑑  [°𝐶] is the temperature drop inside the insulation, 𝛥𝜗𝑠ℎ is the temperature drop in the 

thermoplastic sheath, and 𝛥𝜗𝑠𝑜 is the temperature drop in the soil. 𝛥𝜗 can be given by the thermal 

Ohm’s law: 

 

  𝛥𝜗 = 𝑅𝑇𝑊 (1.2)  



12 
 

where 𝛥𝜗 [°𝐶] is the temperature drop in the considered layer, 𝑅𝑇 [°𝐶 𝑚 𝑊⁄ ] is the thermal resistance 

of the considered layer. W [W/m] is the thermal power per unit length that crosses the considered 

layer. Equation (1) can be also written in the form according to [4]: 

 

  𝛥𝜗𝑡𝑜𝑡 = 𝑊𝑐(𝑅𝑇,𝑑 + 𝑅𝑇,𝑠ℎ + 𝑅𝑇,𝑠𝑜) + 𝑊𝑑(𝛽𝑑𝑅𝑇,𝑑 + 𝑅𝑇,𝑠ℎ + 𝑅𝑇,𝑠𝑜) 

       = ∆𝜗𝑐𝑙 + ∆𝜗𝑑𝑙 
(1.3)  

 

where: ∆𝜗𝑐𝑙 is the temperature drop in the entire cable and soil due only to conductor losses 𝑊𝑐, ∆𝜗𝑑𝑙 

is the temperature drop in the entire cable and soil due only to insulation losses. 𝑅𝑇,𝑑 , 𝑅𝑇,𝑠ℎ, 𝑅𝑇,𝑠𝑜 are 

the thermal resistances of the insulation, sheath, and soil, respectively. It can be clearly noticed that 

the thermal Ohm’s law cannot be directly applied in the temperature drop calculations due to 

insulation losses whereby only a certain part of the heat generated inside the insulation contributes in 

the temperature drop, on the other hand, the other part heats up the entire insulation cross section. 

The latter phenomena introduces the so-called dielectric loss coefficient 𝛽𝑑 that represents only the 

part of the insulation losses which contributes in the temperature drop over the insulation thickness.  

The thermal resistance of the insulation or sheath can be derived by dividing the insulation (or the 

sheath) to infinitesimal layers whose thermal resistance per unit length of the cable can be written as 

follows: 

 

 
 𝑑𝑅𝑇 = 𝜌𝑡

𝑑𝑥

2𝜋𝑥
 (1.4) 

 

where 𝜌𝑡 is the thermal resistivity of the material. Then the thermal resistance 𝑅𝑇 can be found by 

integrating 𝑑𝑅𝑇 between the inner radius and the outer radius of the insulation (or sheath) i.e., 𝑟𝑖 and 

𝑟𝑜, respectively, as follows: 

 

 
𝑅𝑇 = ∫ 𝜌𝑇

𝑑𝑥

2𝜋𝑥
=

𝑟𝑜

𝑟𝑖

𝜌𝑇

2𝜋
𝑙𝑛 (

𝑟𝑜
𝑟𝑖

) (1.5) 

 

While the thermal resistance of the soil per unit length of the cable can be calculated according to 

IEC 60287 [4] using either the old version as in equation (1.6) or the new version as in equation (1.7): 

 

 
𝑅𝑇,𝑠𝑜 =

𝜌𝑇,𝑠𝑜

2𝜋
{𝑙𝑛 (

2𝑏 − 𝑟𝑜,𝑐

𝑟𝑜,𝑐
) + 𝑙𝑛 [1 + (

2𝑏

𝑎
)
2

]} (1.6)  
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 𝑅𝑇,𝑠𝑜 =
𝜌𝑇,𝑠𝑜

2𝜋
{𝑙𝑛 (𝑢𝑢 + √𝑢𝑢2 − 1)} (1.7)  

 

where 𝑟𝑜,𝑐 [m] is the outer radius of the cable, 𝑎 [m] is the distance between cables (in case of more 

than one), b [m] is the burial depth, 𝑢𝑢 = 𝑏 𝑟𝑜,𝑐⁄ , 𝜌𝑇,𝑠𝑜 is the soil thermal resistivity. 

The power generated by the conductor can be calculated using the following expression: 

 

 𝑊𝑐 = 𝑅𝑐𝑐𝐼𝑐
2 (1.8)  

 

where 𝐼𝑐 is the conductor’s current [A], 𝑅𝑐𝑐 is the DC electrical resistance of the conductor operating 

at the temperature 𝜗𝑐, which is calculated as follows: 

 

 𝑅𝑐𝑐 = 𝑅𝑐𝑐,20[1 + 𝛼20(𝜗𝑐 − 20)] (1.9)  

 

where 𝛼20 is the temperature coefficient of the electrical resistivity of the conductor at 20 °C, 𝑅𝑐𝑐,20 =

𝜌𝑒𝑙,20°𝐶 𝑆𝑒𝑓𝑓⁄  is the electrical resistance of the conductor per unit length of the cable at 20 °C, 𝑆𝑒𝑓𝑓 is 

the cross sectional area of the conductor, 𝜌𝑒𝑙,20°𝐶 is the electrical resistivity of the conductor material 

at 20 °C. 

By substituting equations (1.8), (1.9) in (1.3), the conductor temperature can be calculated using the 

following equation: 

 

 
𝜗𝑐 =

[𝑅𝑇,𝑑 + (𝑅𝑇,𝑠ℎ + 𝑅𝑇,𝑠𝑜)]𝜉𝐼
2 + 𝜗𝑎𝑚𝑏𝑖𝑒𝑛𝑡

1 − [𝑅𝑇,𝑑 + (𝑅𝑇,𝑠ℎ + 𝑅𝑇,𝑠𝑜)]𝜂𝐼2
 (1.10)  

 

where 𝜗𝑎𝑚𝑏𝑖𝑒𝑛𝑡 is the ambient temperature, 𝜉 = 𝑅𝑐𝑐,20(1 − 𝛼2020),    𝜂 = 𝑅𝑐𝑐,20𝛼20. 
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Figure 1.2 cross-sectional structure of the XLPE high voltage direct-current (HVDC) cables, with the temperature drops 

in the insulation, sheath and soil. 

 

1.1.3 Transient temperature calculations: 

According to IEC standards 60853-2 [5], the cable cross-sectional layers are represented by a circuit 

with lumped resistances and capacitances.  Van Wormer’s technique is used to represent the cable 

insulation by the equivalent thermal resistance T1 and the equivalent thermal capacitance Qi, as shown 

in Figures 1.3 and 1.4: 

 

Figure 1.3 the thermal circuit representing the cable insulation. 

 

 
𝑝 =

1

2 ln (
 𝐷𝑖

 𝑑𝑐
)

−
1

(
 𝐷𝑖

 𝑑𝑐
)
2

− 1

 
(1.11)  

Q c p Q i 

T1 

(1-p)Q 
i
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Where 𝑇1 is the total thermal resistance of insulation. 𝑄𝑖 total thermal capacitance of insulation (or 

equivalent conductor in multi-core cable). 𝑄𝑐 is the thermal capacitance of the conductor. 𝐷𝑖 is the 

outer diameter of insulation. 𝑑𝑐 is the outer diameter of the conductor. 

 

 

Figure 1.4 the thermal circuit representing the cable insulation with the thermoplastic sheath. 

 

 
𝑇𝐴 = 𝑇1 (1.12)  

 
𝑇𝐵 = 𝑞𝑠𝑇3 (1.13)  

 
𝑄𝐴 = 𝑄𝑐 + 𝑝𝑄𝑖 (1.14)  

 
𝑄𝐵 = (1 − 𝑝)𝑄𝑖 +

𝑄𝑠 + 𝑝′𝑄𝑗

𝑞𝑠
 (1.15)  

 

where 𝑇3 is the thermal resistance of the outer thermoplastic sheath, 𝑄𝑠 is the thermal capacity of the 

electric screen, 𝑄𝑗 is the thermal capacity of the outer sheath, 𝑞𝑠 = losses in conductor and 

sheath/losses in conductor. 𝑝′ =
1

2 log(
 𝐷𝑒
 𝐷𝑠

)
−

1

(
 𝐷𝑒
 𝐷𝑠

)
2
−1

,  𝐷𝑒  𝑎𝑛𝑑  𝐷𝑠 are the outer and the inner diameters 

of the sheath. 

The transient response  𝜗𝑐(𝑡) of the cable circuit to a current step can be calculated as follows: 

 

 𝑀0 =
1

2
(𝑄𝐴(𝑇𝐴 + 𝑇𝐵) + 𝑄𝐵𝑇𝐵) (1.16) 

Q c p Q i 

T1 

(1-p)Q 
i
 

Q 
A
 Q 

B
 

T
B
 T

A
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 𝑁0 = 𝑄𝐴𝑇𝐴𝑄𝐵𝑇𝐵 (1.17) 

 𝑎 =
𝑀0 + √𝑀0

2 + 𝑁0

𝑁0
 (1.18) 

 𝑏 =
𝑀0 − √𝑀0

2 − 𝑁0

𝑁0
 (1.19) 

 𝑇𝑎 =
1

𝑎 − 𝑏
[
1

𝑄𝐴
− 𝑏(𝑇𝐴 + 𝑇𝐵)] (1.20) 

 𝑇𝑏 = 𝑇𝐴 + 𝑇𝐵 − 𝑇𝑎 (1.21) 

  𝜗𝑐(𝑡) =  ∆𝑊𝑐[ 𝑇𝑎(1 − 𝑒−𝑎𝑡) +  𝑇𝑏(1 − 𝑒−𝑏𝑡)] (1.22) 

 

where  ∆𝑊𝑐 is the power loss per unit length of the conductor associated with the current step, referred 

to the maximum temperature. 

While the transient response of the cable environment to a current step is calculated according to [5] 

as an exponential integral expression, as follows: 

 

𝜗𝑒(𝑡) = 𝛼(𝑡)
 𝜌𝑇,𝑠𝑜∆𝑊1

4𝜋
{[−𝐸𝑖 (−

𝐷𝑒
2

16𝑡𝛿
) + 𝐸𝑖 (−

𝐿2

𝑡𝛿
)]

+ ∑ [−𝐸𝑖 (−
𝑑𝑝,𝑘

2

4𝑡𝛿
) + 𝐸𝑖 (−

𝑑′
𝑝,𝑘
2

4𝑡𝛿
)]

𝑘=𝑁−1

𝑘=1

} (1.23) 

 

where ∆𝑊1 is the total power loss per unit length of the cable associated with the current step, referred 

to the maximum temperature, 𝐸𝑖(−𝑥) is the exponential integral function, 𝛼(𝑡) is the conductor to 

cable surface attainment factor, 𝐷𝑒 is the external surface diameter of the cable, 𝛿 is the soil thermal 

diffusivity, 𝑡 is the time from the moment of application of heating, 𝐿 is the axial burial depth, 𝑑𝑝,𝑘 

is the distance from center of cable k to center of hottest cable p, 𝑑′𝑝,𝑘 is the distance from the image 

of the center of the cable k to center of hottest cable p’, N is the number of cables. 

The temperature transient of the entire system i.e., considering the cable and its environment, can be 

calculated using the following equation: 

 



17 
 

 𝜗(𝑡) = 𝜗𝑐(𝑡) + 𝜗𝑒(𝑡) (1.24) 

 

Then, the conductor’s temperature 𝜗𝛼(𝑡) can be calculated by considering the variation of the 

electrical resistance of the conductor material, as follows: 

 

  𝜗𝛼(𝑡) =
𝜗(𝑡)

1 +  𝛼𝑅(𝜗(∞) − 𝜗(𝑡))
 (1.25) 

 

where 𝜗(∞) is the conductor steady state temperature,  𝛼𝑅 is the temperature coefficient of electrical 

resistivity of the conductor material. 

 

1.2 Electric field calculations in HVDC cable insulation: 

In AC cable systems, the electric field distribution inside the insulation thickness is related only to 

the cable geometry, as shown in Equation (1.26). 

 

 
 𝐸𝐴𝐶(𝑟) =

𝑈0

𝑟 𝑙𝑛(𝑟𝑜/𝑟𝑖)
 (1.26)  

 

where  𝐸𝐴𝐶(𝑟) is the AC electric field distribution inside the insulation thickness, 𝑈0 is the applied 

voltage, 𝑟 is a generic radius inside the insulation thickness. 𝑟𝑖, 𝑟𝑜 are the inner and outer insulation 

radii, respectively. This is because in extruded cable insulation – where the dielectric is 

macroscopically homogeneous – the electrical permittivity can be considered constant with the 

temperature variations and over the entire insulation thickness. 

On the contrary, in DC cable systems the conductivity of charge carriers is ruled by both the 

temperature and the electric field distributions over the insulation thickness. The latter will lead to a 

non-linear behavior of the electrical conductivity dissimilar to the case of AC cable systems, as well 

as to an inherently transient distribution of DC electric field; indeed, DC electric field varies whenever 

the load current changes, thus involving a change in electrical conductivity, too. 

 

1.2.1 Transient electric field calculations using numerical methods: 

As a result of DC conductivity non-linearity, strictly-speaking DC electric field distribution inside 

the cable insulation can be only found using numerical methods that solve Maxwell’s Equations 

(1.27–1.29) in addition to an equation (or a set of equations) which describe the charge carrier 

behavior inside the insulation either microscopically or macroscopically. 
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The macroscopic method is represented by the conductivity 𝜎 as a function of both the temperature 

𝑇 and the electric field 𝐸, as in Equation (1.30) for instance. The latter relationship is ruled by two 

(or more) coefficients used to describe the characteristics of the insulating material and found by 

fitting the conductivity measurements to a certain function of the temperature and the electric field. 

On the other hand, the microscopic models are described by the charge density as a function of 

physical parameters representing the charge carriers trapping, de-trapping, and mobility inside the 

insulation. 

 

Gauss law ∇ ∙ (𝜀0𝜀𝑟𝑬) = 𝜌 (1.27) 

Current continuity ∇ ∙ 𝑱 = −𝜕𝜌/𝜕𝑡 (1.28) 

Ohm’s law 𝑱 = 𝜎𝑬 (1.29) 

Conductivity 𝜎 = 𝜎0 𝑒𝑥𝑝(𝑎𝑇 + 𝑏𝐸) (1.30) 

 

where E is the electric field vector (𝑉/𝑚),  𝜀0 = 8.854 × 10−12 (𝐹 𝑚⁄ ) is the vacuum permittivity, 

𝜀𝑟 is the relative permittivity of the insulation, J is the direct conduction current density vector 

(𝐴/𝑚2), 𝜌 is the free charges density (𝐶/𝑚3),  is the electrical conductivity of the insulation (𝑆/𝑚), 

𝜎0 is the value of   at 0 °C and for an electric field equal to 0 kV/mm. As far as electrical conductivity 

 is concerned, the empirical model suggested by Klein [6] has been used in this work, as given by 

Equation (4), where: a is the temperature coefficient of electrical conductivity (1/K or 1/°C), b is the 

stress coefficient of electrical conductivity (mm/kV, or m/MV). Other conductivity models will be 

extensively discussed in Chapter 5.  
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Figure 1.5 presents the flow chart of the iterative electric field calculation using Equations (1.27–

1.30) until the convergence on the electric field is reached. The field convergence is calculated using 

by checking the difference between the value of the electric field in the current iteration with the 

electric field of the last iteration, the convergence is reached when the maximum difference of the 

fields, at whatever generic radius r inside the insulation, is lower than or equal to a predefined error 

value, as follows: 

 

 𝑀𝑎𝑥{|𝐸(𝑟, 𝑡, 𝑘) − 𝐸(𝑟, 𝑡, 𝑘 − 1)|} ≤ 𝜖 % (1.31)  

 

where 𝜖 is the maximum permissible value of the field difference. Hereinafter, it is considered to be 

0.1%. 

 

1.2.2 Approximated electric field calculations using analytical methods: 

The approximation first introduced by Eoll in [7] can be derived using the macroscopic conductivity 

Equation (1.30) (as extensively interpreted in Annex A) by introducing the approximating Equation 

(1.32) in Equation (1.29) yielding the Equation (1.33): 

 

 
𝑒𝑥𝑝[𝑏𝐸(𝑟)] ≈ [

𝑒𝐸(𝑟)

𝐸𝑚
]
−𝑏𝐸𝑚

 (1.32)  

Input parameters, temperature profile …etc. 

Electric field 𝐸𝐷𝐶(𝑟, 𝑡(𝑖), 𝑘) 

Charge density 𝜌(𝑟, 𝑡(𝑖), 𝑘) 

Current density 𝐽(𝑟, 𝑡(𝑖), 𝑘) 

Conductivity 𝜎(𝑟, 𝑡(𝑖), 𝑘) 

Convergence check  

End 

Figure 1.5  Flow chart of the procedure for iterative electric field calculation 

iv 

Yes 

No 



20 
 

 

 
𝐸(𝑟) = 𝑈0

𝛿

𝑟𝑜 ∙ [1 − (𝑟𝑖/𝑟𝑜)𝛿  ]
 (𝑟/𝑟𝑜)

𝛿−1  (1.33)  

 

where: 

 

𝛿 =  
𝐴 + 𝐵

1 + 𝐵
=

𝑎𝑊𝑐

2𝜋𝜆𝑇,𝑑
+ 𝑏𝐸𝑚

1 + 𝑏𝐸𝑚
= 

𝑎𝑊𝑐

2𝜋𝜆𝑇,𝑑
+

𝑏𝑈0

𝑟𝑜 − 𝑟𝑖 

1 +
𝑏𝑈0

𝑟𝑜 − 𝑟𝑖 

=

𝑎∆𝑇𝑑

ln
𝑟𝑜
𝑟𝑖

+
𝑏𝑈0

𝑟𝑜 − 𝑟𝑖 

1 +
𝑏𝑈0

𝑟𝑜 − 𝑟𝑖 

 (1.34)  

 

This formula is able to estimate the electric field distribution within the insulation thickness using an 

analytical closed-form equation. It can be noticed in Equations (1.33) and (1.34) that the field is a 

function of the applied voltage, the inner and outer radii of cable insulation 𝑟𝑖 and 𝑟𝑜, the temperature 

drop across the insulation ∆𝑇𝑑, and the conductivity coefficients 𝑎 and 𝑏. The absolute temperature 

does not contribute to the electric field distribution since only the temperature drop across the 

insulation appears in the formula. 

 

1.3 Model for life estimation of HVDC cables: 

Cable insulation in HV systems are subjected to many types of stresses (e.g., thermal, electrical, 

mechanical, and environmental … etc). The continuous stress application leads to irreversible 

variation in the material electrical properties until the point at which the insulation becomes unable 

to withstand the applied stress. For this reason, the development of life models has raised a significant 

attention during the last decades to estimate the remaining life (time-to-failure) of cable insulation. 

Life models are mainly classified as either phenomenological (macroscopic) in which a correlation 

between stresses is established using Accelerated Life Tests ALTs, or physical (microscopic) 

whereby the model is established starting from physical aging phenomena. The physical life models 

can be thermodynamic models [8],[9],[10], space charge SC-based models [11],[12], or partial 

discharge PD-based models [13],[14]. While the phenomenological life models are thermal life 

model, electrical life model, or electrothermal life model as follows: 

 

1.3.1 Thermal life model 

In the early 1930, Montsinger showed halving of the insulation life by increasing the temperature 

between 8 to 10 °C [15]. Later, the thermal degradation is represented, according to Dakin [16], by 
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the Arrhenius life model which depends on the Arrhenius equation of the thermal reaction rate as in 

Equation (1.35): 

 

 
𝐿(𝑇) = 𝐿0 𝑒𝑥𝑝 [−𝐵 (

1

𝑇0
−

1

𝑇
)] = 𝐿0 𝑒𝑥𝑝[−𝐵𝑇′]  (1.35)  

 

where 𝐿(𝑇) is the estimated life of cable at the temperature 𝑇, 𝐿0 is the estimated life of cable at the 

absolute reference temperature 𝑇0, 𝐵 = ∆𝑊 𝐾𝐵⁄ , ∆𝑊 is the activation energy of the main thermal 

degradation reaction, 𝐾𝐵 = 1.38 × 10−23 𝐽/𝐾 is the Boltzmann constant. Life according to this 

model is plotted in the so-called Arrhenius plot which has ln(L) as y-axis and -1/T as x-axis. Equation 

(1.35) appears in Arrhenius plot as a line with a slope of −𝐵. The model’s parameters can be found 

using tests performed in ovens in the absence of electrical stresses. 

 

Figure 1.6  Arrhenius plot. 

 

 

1.3.2 Electrical life model: 

The most used electrical life model is the Inverse Power Model (IPM) which relates the life with the 

electric field in an inverse power function, as follows: 

 
𝐿(𝐸) = 𝐿0 (

 𝐸 

 𝐸0
)

−𝑛0

  (1.36)  

where 𝐿(𝐸) is the life corresponding to the electric field 𝐸, 𝐿0 is the life at the reference electric field 

 𝐸0 (usually taken as the field bellow which the electrical aging is deemed negligible),  𝑛0 is the 

voltage endurance coefficient (VEC). Note that 𝐿0 and  𝑛0 are relevant to a reference temperature 𝑇0, 

which – in the absence of thermal stress – is the ambient temperature. 

Log(L) 

-1/T 
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Figure 1.7  Inverse Power Model plot in log-log scale. 

 

This model is valid only in the absence of thermal stress – or under a constant temperature - therefore, 

the model’s parameters can be found only at a constant temperature. If this constant temperature is 

different from the ambient temperature, 𝐿0 and 𝑛0 have to be calculated considering the real 

temperature of the insulation, which depends on the applied thermal stress. 

 

1.3.3 Electrothermal life model: 

The electrothermal life model is a combination of the electrical and the thermal models yielding the 

so-called Arrhenius-IPM model. The development of this model is based on the electrical model since 

the electrical stress has the major effect on the cable life in HV and MV cables. Then the effect of 

temperature is taken into account, in addition to the synergism between the field and temperature 

 𝑏𝐸𝑇, as follows: 

 

 
𝐿(𝐸, 𝑇) = 𝐿0 (

 𝐸 

 𝐸0
)

−(𝑛0− 𝑏𝐸𝑇𝑇′)

𝑒𝑥𝑝[−𝐵𝑇′] (1.37)  

 

It is noteworthy to mention that  𝑏𝐸𝑇 = 0 represents the worst case and it is considered in this study 

as a conservative value. 

Due to the stochastic behavior of the breakdown process, the life of cable insulation is a random 

variable at a given failure probability. Weibull distribution function is the best one to be used for 

polymeric insulations [17],[18]: 

 

 
𝑃(𝑡𝐹, 𝐸, 𝑇) = 1 − 𝑅(𝑡𝐹, 𝐸, 𝑇) = 1 − 𝑒𝑥𝑝 (− [

𝑡𝐹
𝛼𝑡(𝐸, 𝑇)

]
𝛽𝑡

) (1.38)  

Log(L) 

Log(E) 
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where 𝑅 is the reliability which is the complement to one of the probability of failure 𝑃, 𝑡𝐹 is the 𝑃-

th percentile of the electrothermal life (time-to-failure), 𝛼𝑡 is the scale parameter of Weibull 

probability distribution of the life and corresponds to the 63.2-th percentile of the life, 𝛽𝑡 is the shape 

parameter of Weibull probability distribution of the life. 

By manipulating Equation (1.38), one can write the time-to-failure in the form: 

 

 𝑡𝐹 = [−ln (1 − 𝑃)]1/𝛽𝑡𝛼𝑡(𝐸, 𝑇) (1.39)  

 

By substituting 𝛼𝑡(𝐸, 𝑇) in Equation (1.39) with 𝐿(𝐸, 𝑇) in Equation (1.37), one gets: 

 

 
𝑡𝐹 = [−ln (1 − 𝑃)]1/𝛽𝑡𝛼0 (

 𝐸 

 𝐸0
)
−(𝑛0− 𝑏𝐸𝑇𝑇′)

𝑒𝑥𝑝[−𝐵𝑇′] (1.40)  

 

where: 𝛼0 is the 63.2-th percentile of failure probability. The parameters in Equation (1.40) can be 

found by performing ALTs tests on specimens and then can be extrapolated to consider full-scale 

cable using the dimensional factor D: 

 

𝐿𝐷 =  𝐿𝑇 [
1

𝐷
∙
𝑙𝑛(1 −  𝑃𝐷)

𝑙𝑛(1 −  𝑃𝑇)
]

1
𝛽𝑡

 (1.41)  

 
𝐷 ≈

 𝑙𝐷
 𝑙𝑇

(
 𝑟𝐷
 𝑟𝑇

)
2

 (1.42) 

 

where 𝑃𝐷 is the failure probability for the full-scale cable, 𝑃𝑇 is the failure probability for the 

specimens in the test, 𝑙𝐷 and  𝑟𝐷 is the length of the power cable and the radius of its conductor, 

respectively, 𝑙𝑇 and  𝑟𝑇 is the length of the specimen and the radius of its conductor, respectively. 

Since 𝐿0 (at the reference electric field  𝐸0 and the reference ambient temperature 𝑇0) is not easy to 

be found, it becomes more practical to express the life of cable with reference to the design life 𝐿𝐷 

(at the design electric field  𝐸𝐷 and the design temperature 𝑇𝐷) which corresponds to a reference 

failure probability  𝑃𝐷, as follows (the complete derivation of Equation (1.43) can be found in Annex 

B): 

 

 
𝐿(𝐸, 𝑇) = 𝐿𝐷 (

𝐸 

𝐸𝐷
)
−[𝑛𝐷− 𝑏𝐸𝑇𝑇′′]

(
𝐸𝐷

𝐸0
)
 𝑏𝐸𝑇𝑇′′

𝑒𝑥𝑝[−𝐵𝑇′′] (1.43)  
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where 𝑇′′ =
1

𝑇𝐷
−

1

𝑇
 , 𝑛𝐷 = 𝑛0 − 𝑏 (

1

𝑇0
−

1

𝑇𝐷
) is the voltage endurance coefficient at the design 

temperature, 𝐸𝐷 is the design electric field, 𝐸0 is the reference electric field (see above). 

It is also possible to estimate the life 𝐿𝐹 (𝐸, 𝑇) at a failure probability F different from the design one 

𝑃𝐷 using the following equation: 

 

𝐿𝐹 (𝐸, 𝑇) = [
 −𝑙𝑛 (1 − 𝐹) 

−𝑙𝑛 (1 −  𝑃𝐷)
]
1/𝛽𝑡

𝐿𝐷 (
𝐸 

𝐸𝐷
)
−[𝑛𝐷− 𝑏𝐸𝑇𝑇′′]

(
𝐸𝐷

𝐸0
)
 𝑏𝐸𝑇𝑇′′

𝑒𝑥𝑝[−𝐵𝑇′′]                        (1.44) 

 

1.3.4 Aging and Degradation: 

Aging is physically defined in [19] as the generation of free volume in the lattice; while it can be 

chemically defined by the formation of free radicals (or ions) in the insulation. Dissimilar to gaseous 

and liquid insulations, aging processes in solid dielectrics – including extruded polymers – are 

irreversible, whereby a scission in C–H or C–C bonds caused by electric stress, or the oxidation 

process of C-H bonds caused by thermal stress can take place, allowing the permanent formation of 

polar molecules. 

 Aging and degradation in insulating materials can be distinguished according to [20] using the hazard 

rate function: 

 

 ℎ(𝑡) = 𝛽. 𝛼𝑡
−𝛽 . 𝑡𝐹

𝛽−1
 (1.45)  

 

For values of <1, failures occur early on; this is often referred to as “infant mortality”. For =1, 

failures occur randomly and spontaneously, the distribution function tends to an exponential decay, 

and the hazard function is constant. In this case a specimen that has been stressed for some time would 

be indistinguishable in terms of breakdown probability from one that has not been stressed at all. 

When >1 failure becomes more likely as the specimen ages. Although there are no widely accepted 

definitions to distinguish ageing and degradation, degradation processes generally cause the failure 

rate to increase monotonically (>2), whereas ageing may simply result in an increase in the 

probability of failure (2≥>1). It may be acceptable for a commercial system to age within the design 

life of the product as the failure rate may still be controlled and low. Degradation, however, may 

cause the failure rates to increase uncontrollably [20]. 
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Fig. 1.8 Weibull hazard function curves vs. time to failure (normalized w.r.t. ) with conjectured ageing and 

degradation conditions 

 

 

By following Miner’s law [21], the stressing period can be divided into infinitesimal time intervals 

∆𝑡𝑖 during which both stresses can be considered constant. Then the loss of life of the cable insulation, 

subjected to M load cycles to failure, can be calculated as follows: 

 
𝑑𝐿𝐹 = 𝑑𝐿𝐹(𝐸𝑖(𝑡), 𝑇𝑖(𝑡)) =

𝑑𝑡

𝐿[𝐸𝑖(𝑡), 𝑇𝑖(𝑡)]
 (1.46)  

 

∫ 𝑑𝐿𝐹
L

0

≈ 𝑀 ∑𝐿𝐹𝑖

𝑁

𝑖=0

= 1 (1.47) 

 
𝐿𝐹𝑖 = ∫

𝑑𝑡

𝐿[𝐸𝑖 , 𝑇𝑖]

Δ𝑡𝑖

0

=
 𝛥𝑡𝑖

𝐿[𝐸𝑖 , 𝑇𝑖]
=

 𝑡𝐷
𝐿[𝐸𝑖 , 𝑇𝑖]𝑁

 (1.48) 

 

where the theoretically infinite number of infinitesimal time intervals dt making up each load cycle 

of duration 𝑡𝑑 is approximated via a finite number N of finite subperiods  𝛥𝑡𝑖, and 𝐿 is the life of 

cable. 

In this way, life L can also be expressed as the number M of identical load cycles to failure, as follows: 

 

 

𝑀 = (∑𝐿𝐹𝑖

𝑁

𝑖=0

)

−1

 (1.49)  
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Since the thermal and electrical stresses are not constant within the insulation thickness, the total life 

of cable is evaluated at the point inside the insulation which has the shortest life. It is worth noting 

that the load cycles temperature and electric field must be identical such that (1.49) can be applied. 
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Chapter 2 

 

The effect of electrical transients on HVDC cable insulation 
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2.1 Theoretical Introduction: 

2.1.1 Converters topologies: 

The converters used in HVDC cable systems fall in two categories (see Figure 2.1):  

• Line Commutated Converters LCC: (or Current Source Converters CSC): these converters 

are based on thyristors whereby the voltage is partially controlled (it can be controllably 

switched on, but uncontrollably switched off) and the current is unidirectional, therefore, it 

can be considered a current source in the AC power system. Consequently, reversing the 

power flow direction can be achieved by reversing the DC voltage polarity. 

• Voltage Source Converters VSC: thyristors are replaced by Insulated Gate Bipolar Transistor 

(IGBT) in this type of converters. This provides full controllability in switching on and off 

the voltage which is considered constant (using a large smoothing capacitance). In this case, 

reversing the power flow can be achieved by reversing the direction of current at a constant 

DC voltage. The main advantage of VSC HVDC systems compared to that of LCC is that in 

VSC systems both active and reactive powers are fully controllable independently of DC 

voltage level. Furthermore, self-commutated VSC allows black start since it can synthesize a 

balanced set of 3-phase voltages as a virtual synchronous generator able to control the reactive 

power on the AC side, dissimilar to the LCC which always requires reactive power from the 

AC grid. Another important advantage of the VSCs is the possibility of reversing the power 

flow by reversing the current direction without the need to reverse the voltage polarity as 

required in LCCs (see Figure 2.2). This is a very critical point in extruded HVDC cable 

insulations which is greatly affected by Voltage Polarity Reversal (VPR) events. 

 

Figure 2.1 schematic of (a) LCC (b) VSC HVDC transmission systems. 
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Figure 2.2 DC voltage and current controllability for (a) VSC and (b) LCC HVDC transmission systems to achieve 

power flow reversal. 
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2.1.2 Voltage Polarity Reversals (VPRs): 

Voltage Polarity Reversals are used to reverse the power flow direction only in LCC cable systems. 

They are classified into two main categories: 

• fast VPRs: the voltage polarity is reversed within hundreds of milliseconds, as shown in 

Figure 2.3a, as a fast response to contingencies in the electrical grid including either keeping 

the frequency within its operational limits (in the case of two unsynchronized grids) or 

keeping the power flow within its operational limits (in the case of one synchronized grid). 

This type of VPRs is not frequent in HVDC systems, as luckily also contingencies are not 

frequent as well. Its abrupt electrical transient may cause failure especially in extruded HVDC 

cable insulations [22]: for this reason, the number of fast VPRs permitted over cable life is 

strictly limited according to manufacturers’ prescriptions. 

• slow VPRs: the voltage is switched off within hundreds of milliseconds followed by a charge 

relaxation period at zero voltage, then a voltage with a reversed polarity is applied within 

hundreds of milliseconds, as shown in Figure 2.3b The slow PR is more frequent than the fast 

one in HVDC systems as it is used to meet the market needs [22]. However, also slow PRs 

are setting some challenge to cable insulation, therefore also the number of slow VPRs 

permitted over cable life is limited according to manufacturers’ prescriptions, although not so 

strictly as fast VPRs. Despite such limitation, TSOs are striving to increase the number of 

slow VPRs to follow market needs as closely as possible. 

 

 

2.1.3 Temporary Overvoltages (TOVs): 

Temporary Overvoltages TOVs are relatively long electrical transients that occur in VSC HVDC 

cable systems in both symmetric monopolar (see Figure 2.4a) and Rigid Bipolar Configuration (RBC) 

(see Figure 2.4b): they affect the healthy pole when the other one experiences a pole-to-ground fault. 

  

(a) (b) 

Figure 2.3 Voltage wave shape over time in (a) fast polarity reversal and (b) slow polarity reversal. 



31 
 

RBC consists of a bipolar scheme without earth return or dedicated metallic return [2]. This 

configuration provides benefits from an economic point of view, since a return cable – found in the 

Bipolar Configuration with dedicated metallic return – and/or the electrode systems are avoided, 

which reduces the total investment costs. In addition, the RBC – in contrast to the monopolar 

configurations – can operate with a reduced transmission capacity in case of failure or maintenance 

of a converter [23]. However, the redundancy in case of pole cable failure is provided neither in the 

monopolar configurations nor in the RBC. 

The post-fault voltage rises to reach the peak with a rise time in order of few milliseconds, then it 

gets limited by the surge arresters of the HVDC converter station which maintain the plateau voltage 

for hundreds of milliseconds until the cable is fully discharged withing few minutes (see Figure 2.5). 

Extensive simulations considering different fault types showed that pole-to-ground faults in the 

middle of the negative pole of a symmetric monopolar Voltage Source Converters VSC HVDC cable 

system leads to the most severe (or “worst case”) TOVs on the healthy pole i.e. a voltage up to 1.8 

times the pre-fault DC voltage or even higher [24].  

 

 

(a) 

 

 

(b) 

Figure 2.4 (a) symmetric monopolar and (b) Rigid bipolar configurations after [25]. 
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Figure 2.5 Waveshape of the Synthesized Long TOV induced on the healthy pole (After [24]). 

 

2.1.4 Superimposed Switching Impulses (SSIs): 

SSIs simulate the switching events on HVDC cable systems in qualification tests according to CIGRÉ 

Technical Brochure 496 [29] first and CIGRÉ Technical Brochure 852 later [74]. A SSI is a standard 

switching impulse superimposed onto the permanent DC voltage. The standard switching impulse is 

defined according to IEC Standard 60060-1 [26],[27],[28]. SSI has a rise time and a time to half-

value on the tail of 250 and 2500 μs, respectively (see Figure 2.6). The peak value of the lower bound 

of the SSI of the same polarity superimposed to the DC voltage, 𝑈𝑃2,𝑠,𝑚𝑖𝑛, is calculated according to 

CIGRÉ Technical Brochure 496 [29] as follows: 

 

 𝑈𝑃2,𝑠,𝑚𝑖𝑛 = 1.15 𝑈𝑇 = 1.15 ∗ 1.85 𝑈0 = 2.13 𝑈0 (2.1)  

 

where UT is the voltage applied during the Type Test according to [29], while U0 is the nominal DC 

voltage. As a conservative value, 2.13U0 is rounded to 2.2U0.  

 

 

Figure 2.6 Waveshape of the SSI of the same polarity of the applied voltage superimposed on the DC voltage U0. 

Dt1 Dt2 Dt3
Dt4
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2.2 Experimental effect of TOVs and SSIs on HVDC insulation 

2.2.1 Experimental procedure: 

This experiment consists of two main stages i.e., aging process and measurements. As it can be seen 

in Figure 2.7, the aging process begins with a custom-made low-voltage 13-bit digital-to-analog 

converter which is used as a low voltage signal generator (for either TOVs or SSIs). It is programmed 

to generate and replicate the impulse waveshapes shown in Figures 2.5 and 2.6 for a given number of 

impulses. Then, impulses in low voltage are amplified to high voltage using a Trek 30/20 high voltage 

amplifier (as shown in Figure 2.8). High voltage impulses are repetitively applied on XLPE 

specimens clamped between two circular flat electrodes (with radius of 20 mm) at room temperature 

(see Figure 2.9). After the aging process, both aged and non-aged specimens are characterized to 

assess the effect of aging on the dielectric properties and polymeric structure of XLPE. While 

dielectric spectroscopy and DC conductivity measurements are performed on sputtered specimens, 

Fourier Transform InfraRed spectroscopy (FTIR) and space charge measurements are performed on 

non-sputtered specimens. 

 

 

Figure 2.7 Block diagram that shows the aging and measuring processes. 
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Figure 2.9 schematic of the aging setup. 

 

Table 2.1 presents the waveshape characteristics of both TOVs and SSIs as shown in Figures 2.5 and 

2.6. Where intervals of likely values are given, the numbers in bold are those chosen in this 

experimental work. These values are chosen so that the total number of TOVs in the test is applied in 

a given time interval that is not excessively long. Two durations of the test (Table 2.2) and two electric 

field levels (Table 2.3) are selected in these tests to simulate different numbers and amplitudes of 

TOVs and SSIs. For both TOVs and SSIs the number of impulses applied in the aging process are 

1000 and 2000 at a frequency of 1 Hz – i.e., with a time interval of 1 (s) between each two consecutive 

impulses – as illustrated in Table 2.2, which includes the total duration of TOV and SSI aging tests. 

  

(a) (b) 

 

Figure 2.8 (a) High voltage amplifier Trek model 30/20, (b) the output voltage as plotted on the oscilloscope. 
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It is worthwhile pointing out that – notwithstanding the pulses have the same 1 Hz frequency for both 

TOVs and SSIs – the total duration of TOVs aging process is much longer than that in the case of 

SSIs, as the duration of one single TOV (45.2 s) is much greater than that of one single SSI (4.75 ms), 

see Table 2.2. The frequency and number of surges applied in the aging tests are significantly greater 

than those encountered in service conditions; this holds especially for the TOVs, which are associated 

with pole faults. These values of frequency and number are chosen to accelerate the possible aging 

effects of TOVs and SSIs, thereby easing their detection after the tests. The chosen values of the rated 

electric field E0, i.e., the DC component of the field at rated voltage U0 are (see Table 2.3): 

• 25 kV/mm, which is a typical order of magnitude of the design electric field in the state-of-

the-art HVDC cables [30]. 

• 50 kV/mm, which represents an upper limit of the electric field in the new generation of 

HVDC cables (e.g., 800 kV cables), and also serves to accelerate the aging effect of electric 

field on dielectric properties and the aging of XLPE insulating material [31]. 

Values of the peak and plateau voltages for TOVs, as well as the peak voltage of SSIs, are reported 

in Table 2.3, for each chosen value of E0. 

 

Table 2.1 Worst case TOV and SSI Waveshapes Characteristics 

impulse type symbol parameter value and unit 

TOV  

𝑈𝑎 Peak voltage 1.8 p.u. 

𝑈𝑏 Plateau voltage 1.5÷1.6 p.u. 

∆𝑡1 Time to peak 
[0.5÷5] ms 

2 ms 

∆𝑡2 Time of peak decay 
[0.5÷5] ms 

2 ms 

∆𝑡3 Time of plateau [100÷200] ms 

∆𝑡4 Discharge time 
[30 ÷ >600] s 

45 s 

𝑇𝑇𝑂𝑉  Duration of TOV 45.2 s 

SSI 

𝑈𝑃2,𝑠 Peak voltage 2.2 p.u. 

𝑇1 Front duration 250 µs 

𝑇2 Time-to-half 2500 µs 
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𝑇𝑆𝑆𝐼  Duration of SSI 4.75 ms 

 

Table 2.2 Total duration of TOV and SSI aging process 

impulse type 
Time interval 

between consecutive impulses 

Total duration 

1000 impulses 2000 impulses 

TOV 1 s 12.8 hours 25.7 hours 

SSI 1 s 17 minutes 34 minutes 

 

Table 2.3 TOV and SSI applied voltages during the aging process 

impulse type 𝑬𝟎 (kV/mm) voltage type value (kV) 

TOV 

25 

Peak (1.8 𝐸0) 6.75 

Plateau (1.5 𝐸0) 5.625 

50 

Peak (1.8 𝐸0) 13.5 

Plateau (1.5 𝐸0) 11.25 

SSI 

25 Peak (2.2 𝐸0) 8.25 

50 Peak (2.2 𝐸0) 16.5 

 

2.2.2 Specimens: 

Specimens used in this experiment are degassed flat samples (peelings) of DC-XLPE which are 

initially used in the framework of the European project ARTEMIS. The thickness of each sample is 

measured accurately using an electronic micrometer. The measured thickness of specimens falls in 

the range of 0.147÷0.152 mm. Five specimens are tested for each aging case to allow a statistical 

processing of results. The chosen number of specimens is a compromise between the test duration 

(especially for TOVs, which can require up to >24 hours per specimen) and the ability to describe an 

average trend of the population. As a consequence of the relatively small sample and population size, 

Student’s t-distribution with 5 degrees of freedom and a 95% confidence interval, is used to estimate 

the mean value of the real and imaginary permittivity, as shown in Equation (2.2): 
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 �̅� − 2.571  𝑠/√𝑛 ≤  𝜇 ≤ �̅� + 2.571  𝑠/√𝑛 (2.2)  

 

where �̅� is the mean value of the sample, s is the standard deviation, n is the number of tested 

specimens and µ is the mean value of the population. 

Golden electrodes were deposited on both sides of specimens by cold sputtering under 0.15 mbar 

pressure of Argon during 300 seconds using the setup shown in Figure 2.10 (a). This is necessary to 

ensure an ideal contact interface during dielectric spectroscopy. Figure 2.10 (c) and (d) shows the 

specimens before and after gold sputtering process. 

  

 

 

  

(a) (b) 

 

 

  

(c) (d) 

 

Figure 2.10 (a) Sputtering setup, (b) plasma light during sputtering process, (c) a XLPE specimen before gold 

sputtering, (d) the specimen after gold sputtering. 
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2.2.3 Characterization setup: 

2.2.3.1 Dielectric analyzer: 

A Novocontrol Alpha-A dielectric Analyzer (as in Figure 2.11) is used to measure the complex 

permittivity of aged and unaged XLPE specimens. Dielectric spectroscopy was carried out under a 

voltage of 3 kV (Vrms, to provide an electric field =20 kV/mm rms inside the 0.15-mm thick 

specimen), frequency range [10-2 ÷106] Hz, and a temperature of 25 (°C). The complex permittivity 

𝜀 consists of real and imaginary parts, as illustrated in Equation (2.3); the real part 𝜀′ represents the 

dielectric constant of the material. The imaginary permittivity 𝜀′′ consists of two terms as illustrated 

in Equation (2.4), the first one 𝛾/𝜔 considers conduction process in the insulation, while the other 

term 𝜀ℎ
′′ represents the contribution of dipolar losses [23].  

 

 𝜀 = 𝜀′ − 𝑗𝜀′′ 

 
(2.3)  

 𝜀′′ = 𝛾/𝜔 + 𝜀ℎ
′′ (2.4)  

 

where 𝛾 is electrical conductivity, 𝜔 is the angular frequency. It is worth noting that the conduction 

term dominates the imaginary permittivity as 𝜔 tends to 0; then, the logarithmic plot of ε′′ over the 

applied frequency 𝑓 = 𝜔/2𝜋 eventually becomes a line with slope -1, below a certain frequency 

depending on the value of 𝛾. Generally speaking, the higher the conductivity, the higher the frequency 

at which this phenomenon starts being noticeable.  

The setup consists of BDS 1200 cell equipped with gold-plated electrodes where the specimen is 

placed in-between. The cell is connected to Alpha-A analyzer Mainframe which is connected to a PC 

equipped with an ad-hoc software. 

 

 

 

 
Figure 2.11 Novocontrol Alpha-A dielectric analyzer system scheme. 
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2.2.3.2 DC Conductivity measurements: 

DC conductivity is one of the most important criteria for the selection of high voltage insulating 

materials used for DC applications. For this reason, DC conductivity measurements are carried out 

according to IEC 62631-3-1:2016 [32] in the framework of this experimental activity, to find out the 

effect of impulses (SSIs and TOVs) aging on the DC conductivity of XLPE flat specimens. The setup 

consists of an insulated cell in which three electrodes are placed as shown in Figure 2.12. The upper 

electrode is connected to the DC power supply which is kept at 3 kV during the experiment to provide 

an electric field =20 kV/mm inside the 0.15-mm thick specimen. The lower electrode is connected to 

the picoampere meter. While the guard ring is connected to earth to remove stray currents and ensure 

that the measured current is only the conduction current flowing in the bulk of the dielectric specimen. 

Due to the flat geometry of the test cell, the apparent conductivity can be calculated using the 

following equation: 

 

 
𝜎 =

𝐽

𝐸
=

𝐼 𝑑

𝐴 𝑈
 (2.5)  

 

where 𝜎 is the conductivity (S/m), 𝐽 is the current density (A/m2), 𝐼 is the current (A), 𝐸 is the electric 

field (V/m), 𝐴 is the effective electrode area, 𝑈 is the applied voltage (V), 𝑑 is the insulation thickness 

(m). 

 

Figure 2.12 schematic of the DC conductivity measurement setup. 

 

 

 



40 
 

2.2.3.3 Fourier Transform InfraRed spectroscopy (FTIR): 

Fourier Transform InfraRed spectroscopy FTIR is used to detect the molecular composition of XLPE 

specimens. FTIR can detect the formation of new functional groups and characterizing bonding 

information using the transmittance (or the absorbance) in a certain frequency range of the 

wavelength commonly indicated by its reciprocal, which is the wavenumber (cm-1). A Bruker 

ALPHA FTIR Spectrometer equipped with Attenuated Total Reflectance (ATR) with diamond 

crystal accessory allowing to measure solid specimens’ chemistry is used to characterize the aged 

specimens as well as the unaged ones to compare them and detect any variation of the XLPE material 

or formation of new aging bonds. The ATR tool allows for direct spectra recording on solid samples 

without specific preparation, thus being more representative of the actual specimen chemistry. Figure 

2.13 illustrates the concept of FTIR where an Infra-Red IR beam is directed toward ATR diamond 

crystal in which the beam is internally reflected on the specimen’s surface. The outgoing beam is 

analyzed and plotted using an ad-hoc PC software [33]. 

 

 

2.2.3.4 Space charge measurements: 

Pulsed Electro-Acoustic (PEA) method of Space Charge SC measurement is used to detect any 

possible aging in the insulating material i.e., XLPE by comparing the measurements of both aged and 

non-aged specimens. The schematic of the SC measurement setup is shown in Figure 2.14b. It 

basically consists of two electrodes where the flat specimen is placed in between with adding a thin 

semi-conductive flat layer between the specimen and both electrodes. A drop of silicon oil is used to 

ensure continuous acoustic properties for the propagating waves. The HVDC power supply is used 

to apply a certain electric filed inside the specimen (here it is 20 kV/mm). While the pulse generator 

aims at generating electrical pulses which induce a transient displacement of the space charges along 

 
 

(a) (b) 

Figure 2.13 Fourier Transform InfraRed spectroscopy (a) test setup, (b) concept of the measurement . 
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the thickness direction as a result of Coulomb effect. The latter displacement causes pressure waves 

with amplitude proportional to the local charge density. The pressure waves propagate inside the 

specimen with the speed of sound in the insulating material. The pressure waves are detected by the 

transducer (piezoelectric sensor) which converts them into electrical waves. Then, the voltage signals 

are subjected to deconvolution process (signal processing) to obtain the charge density distribution 

inside the specimen as well as its evolution over time [34], [35]. The SC measurement are performed 

under both the ambient temperature i.e., 25 (°C) and the typical design temperature of HVDC cables 

i.e., 70 °C. 

 

 

 

2.2.4 Results: 

2.2.4.1 Dielectric analyzer: 

Figure 2.15 presents in each curve the mean value (for the 5 specimens) of the imaginary permittivity 

with respect to the frequency in the range [10-2÷106] when the specimens are aged by TOVs in Figure 

2.15(a) and SSIs in Figure 2.15(b). The mean value of ε” shows peaks of different amplitudes and 

different corresponding frequencies. These peaks are dependent on the amplitude of the applied 

electric field and the duration of the aging process. In addition, a more careful inspection reveals that 

the higher the field applied on the samples, the more evident the peak of ε”. In particular, it is possible 

to note that the tests performed with E0=25 kV/mm yield peaks of ε” that are considerably lower than 

those performed with E0=50kV/mm. Furthermore, it can be noticed that, at a given amplitude of the 

applied stress, the peak of ε” is higher for the test with 2000 impulses with respect to that with 1000 

impulses. Indeed, this Figure emphasizes that, for E0=25 kV/mm, ε” has peaks in a range of 

frequencies between 100 and 102 Hz (yellow and red curves), while the curves corresponding to E0=50 

  

(a) (b) 

Figure 2.14 Pulsed Electro-Acoustic method of space charge measurement (a) PEA cell, (b) schematic of the setup . 
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kV/mm have permittivity peaks in the range 102 and 104 Hz. Hence, the longer the aging duration, 

the stronger the aging effect of the TOV on the dielectric properties of the extruded insulation. While 

increasing the aging field shifts the peaks towards higher frequencies beside the overall increase in 

the amplitude. The latter suggests the formation of polar molecules due to the aging process, which 

in turn increase the dipolar losses in the range [1÷104] Hz.  

Moreover, Figure 2.15 indicates that, especially at 50 kV/mm, the aging effect on conductivity in 

case of SSIs is greater than that in case of TOVs, although the polarization peaks in both TOVs and 

SSIs have approximately the same order of magnitude. This result might indicate an increase of the 

electrical conductivity 𝛾 of aged insulation, compared to the non-aged one. Such increase should 

result in higher values of the term 𝛾 𝜔⁄  in Equation (2.4), and an increase of the imaginary part of 

permittivity with a linear trend with slope of -1, as 𝜔 tends to 0 in bi-logarithmic scale, which is 

confirmed by conductivity measurement results. This tendency suggests a general increase of 

dielectric losses due to electrical aging caused by these transient voltage waveforms at high fields. 

This might set a challenge especially to the new generation of HVDC extruded insulation. 

 

 
(a) 

 

 
(b) 

Figure 2.15 The mean value of the imaginary permittivity vs frequency in a log-log scale for both unaged and aged 

specimens with two different values of number (1000 and 2000) and amplitude (E0=25 kV/mm and 50 kV/mm) of (a) 

Temporary Overvoltages TOVs (after[25]) and (b) Superimposed Switching Impulses SSIs. 
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Figure 2.16 illustrates the real permittivity variation after the aging of specimens using SSIs. It is 

clearly seen that only a slight increase in the real permittivity can be noticed for frequencies greater 

than 104 due to aging process. However, for lower frequencies i.e. [10-2÷104], the real permittivity 

increases as the frequency tends to 0; such increase is mild at E0=25 kV/mm, more significant at 

E0=50 kV/mm, especially as the number of impulses is increased from 1000 to 2000. Also the slope 

increment is greater for higher amplitude of the SSIs impulses. 

 

 

2.2.4.2 DC Conductivity measurements: 

Figure 2.17 shows the conductivity evolution over time until 80,000 s (≈22 hours) calculated from 

the polarization current for non-aged specimens (black curve) and specimens aged by 2000 SSIs at 

E0=25kV/mm (blue curve) and E0=50kV/mm (red curve) at room temperature. The results are 

processed using Matlab (10’th-order one-dimensional median filter) to make the results comparable. 

It can be noticed that the specimens reach the stability after 70,000 s (≈20 hours) showing an increase 

in the conductivity as a result of the aging process. The electrical conductivity is increased after the 

aging process due to SSIs: at 25 kV/mm it is increased by ≈ 25 %, but it is particularly doubled at 50 

kV/mm. As the electrical conductivity is one of the most critical properties used to assess the overall 

 
Figure 2.16 The mean value of the real permittivity vs frequency in a semi-log scale for both unaged and aged 

specimens with two different values of number (1000 and 2000) and amplitude (E0=25 kV/mm and 50 kV/mm) of 

Superimposed Switching Impulses SSIs. 
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quality and performance of HVDC cable insulation, these measurements suggest that for the new 

generation of HVDC extruded cables a high number of switching impulses might set a challenge to 

the useful service life of the cable. 

 

 

2.2.4.3 Fourier Transform InfraRed spectroscopy (FTIR): 

Figure 2.18 shows the results of FTIR spectroscopy measurements performed for unaged and aged 

specimens subjected to either TOVs (Figure 2.18(a)) or SSIs (Figure 2.18(b)). Those Figures plot the 

transmittance of the IR waves in a certain range of the wave length represented here by the 

wavenumber [400 ÷ 4000]  cm-1 . Polyethylene (PE) is characterized by 3 strong absorption peaks or 

conversely transmittance drops, (they are referred to as “absorption peaks” hereafter) [36] attributed 

to the aliphatic chain: 

 

• 2870 cm−1  corresponds to the stretching vibration of the C–H bond of methylene which 

includes two peaks: 2915 cm−1 and 2850 cm−1 for CH2 asymmetric and symmetric 

stretching, respectively; 

• 1460 cm−1 corresponds to the bending vibration of the methylene C–H bond; 

 
Figure 2.17 DC current measurements on a specimen aged by 2000 SSIs for E0=25 kV/mm and E0=50 kV/mm at 25 °C 

and electric field E =20 kV/mm. 
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• 720 cm-1 corresponds to the rocking vibration of the methylene C–H bond. 

 

Additionally, other smaller peaks can be observed at the wave numbers 1377, 1306 and 1176 which 

corresponds to CH3 symmetric deformation, twisting deformation and wagging deformation 

 
(a) 

 

 
(b) 

 

Figure 2.18 The mean value of the transmittance of non-aged samples and samples aged by (a) Temporary Overvoltages 

TOVs (after[25]) and (b) Superimposed Switching Impulses SSIs, measured by Fourier Transform Infrared 

Spectroscopy FTIR. 
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respectively (see strong peaks in the insets of Figure 2.19). While the aforementioned characteristics 

are related to the unaged and aged XLPE samples, both TOVs and SSIs aging processes cause a 

considerable variation in the transmittance at certain wavenumber bands as follows: 

1) A decrease of the IR transmittance (increase of absorption) at 3 wavenumber bands is observed by 

comparing the unaged mean curve with the mean curve of samples aged by either TOVs or SSIs: 

 

• [740÷1450], the absorption peak of C=C bond increased with aging field’s amplitude and 

time. The latter change might be related to oxidative cracking reaction which leads to the 

formation of aging products belonging to the vinylene group [37],[38]. Additionally, the peaks 

in this band might be also caused by the vibrations of –C–O–C– ether bonds [39],[40]. 

• [1500÷1750] cm-1: the absorption peak in this regions is ascribed to the possible formation of 

C=O and C=C bonds. Free radicals caused by the C–C bond rupture might be combined with 

oxygen to form carbonyl groups C=O, carboxylic acid RC(=O) OH, ketones RC(=O) R' or 

ester RC(=O) OR' [40]. 

• [3000÷3500] cm-1, the absorption peak at this wavenumber is typical of the O-H stretching 

that might belong either to the formation of carboxylic acid groups R–COOH and hydroxyl 

groups R–OH [41] both resulting from oxidative ageing processes;  

 

2) An increase of the IR transmittance (decrease of absorption) of characteristic XLPE peaks (720, 

1460, 2850 to 2915 cm-1) after the aging process. This could be a result of molecular chain scissions 

in XLPE by which the above-mentioned aging byproducts are formed. Figure 2.19 presents the full 

scale plot of the FTIR spectroscopy for unaged samples and samples aged with SSIs highlighting 

three clearly increasing absorption peaks in three zoom-in insets. 

As a comparison between the FTIR results of samples aged by TOVs and SSIs, it can be seen in 

Figure 2.18 that the transmittance of IR is reduced in SSIs approximately twice that in case of TOVs, 

for the same E0 and the number of impulses. This might be the cause of the different levels of 

conductivity increase noticed in the previous section. Consequently, according to the results of these 

measurements the effect of the applied SSIs on the aging of the tested XLPE insulation specimens 

seems to be more severe than that of the applied TOVs, although the duration of an SSI is much 

shorter than that of a TOV. On the other hand, the insulating material aged with SSIs is subjected to 

a peak electric field 20% greater than that in the case of TOV aging. This result highlights the strong 

impact of a small increase in the applied field on aging. The long plateau duration of TOVs seems to 



47 
 

have no noteworthy effect on the aging of XLPE, compared to the effects of a higher field, despite a 

shorter duration of the stress. 

 

 

  

 
Figure 2.19 The mean value of the transmittance of non-aged samples and samples aged by Superimposed Switching 

Impulses SSIs, measured by Fourier Transform Infrared Spectroscopy FTIR highlighting the variation of transmittance 

drops of XLPE in 3 zoom-in insets. 
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2.2.4.4 Space charge measurements: 

 

Figure 2.20 shows the space charge distribution inside the non-aged and aged specimens (with 

Superimposed Switching Impulses SSIs onto a DC field E0=50 kV/mm) at 25°C and 70 °C. By 

comparing Figures 2.20 (a) and (b), it can be noticed that space charges accumulate in the mid 

insulation at 25°C. However, at 70 °C, more space charges accumulate in mid-insulation in addition 

to homo-charges accumulation near electrodes.  

 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 2.20 Space charge measurements using Pulsed Electro-Acoustic method PEA of: 

(a) non-aged specimens at 25 °C 

(b) aged specimens E0=50 kV/mm, 2000 impulses at 25 °C 

(c) non-aged specimens at 70 °C 

(d) aged specimens E0=50 kV/mm, 2000 impulses at 70 °C 
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Figure 2.21 shows space charge evolution over time during polarization period (from 0 to 10400 s) 

and depolarization period (from 10400 to 14000 s) for non-aged and aged specimens at 25 °C and 70 

°C. The formation of hetero-charges at 25 °C and both hetero- and homo-charges at 70 °C can be 

noticed by comparing the non-aged (Figures a and c) and the aged (Figures b and d) specimens. It is 

worth noting from both polarization and depolarization periods that the aged XLPE tends to store 

more charges compared to the non-aged XLPE, in particular with a massive increase of heterocharges. 

 

 

 
(a) 

 
(b) 

 
(c)  

(d) 
 

Figure 2.21 Space charge evolution over time for: 

(a) non-aged specimens at 25 °C 

(b) aged specimens E0=50 kV/mm, 2000 impulses at 25 °C 

(c) non-aged specimens at 70 °C 

(d) aged specimens E0=50 kV/mm, 2000 impulses at 70 °C 
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Figure 2.22 shows the space charge evolution over time with zoom-in charge densities in the range [-

2,2] to highlight the space charge accumulation near the electrodes as well as in the mid insulation. 

It can be noticed by comparing Figures 2.22 (a) and (b) that hetero charges accumulate in the 

specimen as positive charges represented by yellow color accumulate closer to the earthed electrode, 

while negative charges represented by blue color accumulate closer to the HV electrode. A greater 

space charge accumulation can be clearly noticed at 70 °C by comparing Figures 2.22 (c) and (d). 

 

 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 2.22 Space charge evolution over time with zoom-in charge densities in the range [-2,2] (C/m3) for: 

(a) non-aged specimens at 25 °C 

(b) aged specimens E0=50 kV/mm, 2000 impulses at 25 °C 

(c) non-aged specimens at 70 °C 

(d) aged specimens E0=50 kV/mm, 2000 impulses at 70 °C 
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Figure 2.23 shows the electric field distribution inside the specimen as well as its evolution over time 

during polarization and depolarization periods. The homo-charges accumulated near the conductor 

reduces the field as represented by the green and yellow colors. The space charges accumulated in 

the mid insulation increase the local electric field as can be clearly seen in Figure 2.23 (d) represented 

by the dark red. 

 

 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 2.23 Electric field evolution over time for: 

(a) non-aged specimens at 25 °C 

(b) aged specimens E0=50 kV/mm, 2000 impulses at 25 °C 

(c) non-aged specimens at 70 °C 

(d) aged specimens E0=50 kV/mm, 2000 impulses at 70 °C 
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Figure 2.24 shows the probability density function (pdf) of the trap depth for both non-aged and aged 

specimens at 25 °C and 70 °C calculated using kernel density estimation. It is clear that at both 

temperatures the aging of the specimens leads to a shift of the pdf peak towards a higher trap depth 

i.e., from 0.88 eV to 0.94 eV at 25 °C and from 1.01 eV to 1.08 eV. 

 

 

 

 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 2.24 probability density function (pdf) of the trap depth for: 

(a) non-aged specimens at 25 °C 

(b) aged specimens E0=50 kV/mm, 2000 impulses at 25 °C 

(c) non-aged specimens at 70 °C 

(d) aged specimens E0=50 kV/mm, 2000 impulses at 70 °C 
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Figure 2.25 shows the mean value of the stored charge density (in blue) and the maximum electric 

field (in pink) inside the specimen for non-aged and aged specimens at 25 °C and 70 °C. By 

comparing Figures 2.25 (a) and (b), it can be noticed that the stored charges are doubled at the end of 

polarization period (i.e., at 10400 s). While it is increased 5 times at 70 °C when comparing Figures 

2.25 (c) and (d) at 10400 s. This confirms that the ability of the aged XLPE to store charges is 

“relatively” high compared to the non-aged specimens in Figures (a) and (c) where the charge 

evolution curve is approximately constant, while it is clearly increasing in the case of aged specimens 

Figures (b) and (d). During depolarization period (i.e., between 10400 s and 14000 s), the space 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 2.25 The stored charge density (in blue) and the  maximum electric field (in pink) for: 

(a) non-aged specimens at 25 °C 

(b) aged specimens E0=50 kV/mm, 2000 impulses at 25 °C 

(c) non-aged specimens at 70 °C 

(d) aged specimens E0=50 kV/mm, 2000 impulses at 70 °C 
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charge relaxation takes place gradually in a speed which depends on both the temperature and the 

ability of the insulation to store space charges. It can be noticed that the higher the temperature, the 

fastest the dissipation of the stored charges. At 25 °C in Figure 2.25 (b), the stored charges remain at 

the end of the experiment at 14000 s, while at 70 °C in Figure 2.25 (d), the charges are relaxed 

gradually, however, the steady-state is not reached at the end of the experiment at 14000 s.  

The maximum electric field presented in the pink curves in Figure 2.25 gives an indication how the 

specimen is stressed before and after the aging process. In the case of non-aged specimens, Figures 

2.25 (a) and (c), the evolution of the maximum electric field during the polarization period is 

approximately constant at 20 kV/mm, while it is < 1 kV/mm during the depolarization period. In the 

case of aged specimens, Figures 2.25 (b) and (d), the evolution of the maximum electric field during 

the polarization period is approximately constant at 20 kV/mm at the room temperature, while it is 

increasing to reach a value of 26 kV/mm at 70 °C.  

 

2.2.5 Discussion: 

Many proposals of the electrical aging mechanisms in polymeric insulations can be found in the 

literature [42],[43]. In [42], experimental results suggest that most physical and chemical aging 

processes occurs in cavities inside the insulation or at its interfaces. Two mechanisms of electrical 

aging can be distinguished according to the amplitude of the electric field distributed inside the 

insulation: 

 

• low (operational) electric fields: electrons in sub-excitation state are not expected to cause a 

chemical damage but a morphological change in the insulating material, where the electron 

moves as a polaron or by trapping/detrapping with energy that is sufficient to break only 

intermolecular bonds [42].  

• high electric field: when a high electric field is applied on the insulation, hot electrons in 

microcavities in the bulk probably gain sufficient energy to cause intramolecular bonds 

rupture (i.e. C-H or C-C bonds in the molecular structure) in the insulation surface near the 

voids [42], which in turn allows oxidation reactions and the formation of aging products. 

Dissado, Mazzanti, and Montanari in [44] introduced an electronic aging model in the 

presence of space charges due to the reduction of the free-energy barrier from ∆ to ∆(𝐸) < ∆ 

as illustrated in Figure 2.26. The reduction in the free-energy barrier could be translated into 

fatigue in the Van der Waals bonds leading to free-volume rearrangement [45]. The latter 

likely induces partially reversible / partially permanent deformation of the insulation leading 
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at the end to microcavities formation and expansion [44]. Ionization in the gaseous molecules 

in microcavities might contribute to the aging process, since it triggers and sustains localized 

electrical discharges within the insulation which increase the chemical damage inside the 

dielectric [42]. 

 

Other aging phenomena attributed to relatively long impulse duration i.e. TOV might be fast charge 

packets. Fast packets are clusters of electrons or ions with a high mobility value. Such packets could 

cause space charge layer accumulation inside the insulation which is expected to accelerate and 

enhance the above-mentioned space charge electronic aging. This phenomenon is not likely to occur 

in SSI because its duration is much shorter [46]. Another possible mechanism could be involving 

electromechanical stresses [47] able to cause local and global plastic strain and craze formation, from 

which energetic phenomena (such as partial discharges) can start incepting, eventually bringing the 

insulation to failure. 

 

Space charge measurements show a noticeable variation in the electrical properties of the aged XLPE 

including the more ability to store space charges which is considered critical for HVDC applications 

where hetero-charges increase the electric field locally. Although homo-charges reduces the electric 

field near the electrodes, it becomes hetero-charges during Voltage Polarity Reversal VPR giving a 

high field that might cause failure or affect the reliability of the complete HVDC system. 

  

 
Figure 2.26 Free energy diagram in the presence of electric field (after [40]). 
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2.3 Simulative study on the effect of VPRs on the life and reliability of 

cable: 

2.3.1 Voltage Polarity Reversals (VPRs): 

Voltage Polarity Reversals VPRs are transient events in HVDC cable systems that use Line 

Commutated Converters LCC to reverse the power flow in the electrical grid. Fast VPR events take 

place as a response to serious contingencies to keep the grid frequency within its operational limit in 

unsynchronized grids or to keep the power flow within its operational limits in synchronized grids. 

While slow VPRs are scheduled transient events that aim to reverse the power flow to meet the 

electricity market needs [48]. As the fast VPR events are linked to contingencies, they are not frequent 

in HVDC systems, unlike the slow VPR events which are linked to frequent variations in the 

electricity market. In fast VPR the voltage is switched off and reversed from U0 to -U0 within few 

hundreds of milliseconds as shown in Figure 2.27(a) between the time markers (1) and (2), creating 

two electric field transients Tr1 and Tr2 due to the residual space charge accumulated before the VPR 

under DC voltage. In slow VPR, the voltage is switched off from U0 to 0 within few hundred of 

milliseconds during Tr 1 (1)→(2), then the voltage is kept zero for some minutes during Tr 2 (2)→(3) 

followed by a voltage reversal from 0 to -U0 within hundreds of milliseconds during Tr 3 (3)→(4). 

The period at which the voltage is kept zero (t0) serves as a relaxation period for the space charge 

accumulated in the cable insulation revealing the electrical stress to which the cable is subjected 

during Tr 4, as shown in Figure 2.27(b) [22]. 

 

 

 

  

(a) (b) 

 

Figure 2.27 Voltage wave shape in (a) fast polarity reversal, and (b) slow polarity reversal. The markers (1), (2), (3), 

and (4) are the beginning instants of the transients Tr 1, Tr 2, Tr 3, and Tr 4, respectively. 
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2.3.2 Theoretical: 

2.3.2.1 Transient field calculation: 

The electric field in the insulation is calculated numerically by solving Maxwell’s equations i.e. 

Equations (1.27) – (1.29) in addition to the conductivity equation (1.30) which macroscopically 

describes the relationship between the conductivity on one side and the temperature and the field on 

the other side. Figure 2.28 shows a flowchart of the transient electric field calculation during the slow 

VPR transients (i=1 to 4). 

 

 

2.3.2.2 Life estimation: 

The lifetime of the cable is estimated according to the electrical Inverse Power Model (IPM) and 

Arrhenius thermal model as expressed in the following equation: 

 
Figure 2.28 Flowchart of the transient electric field calculation and the life estimation during the slow VPR transients. 
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 𝐿(𝐸, 𝑇) = 𝐿𝐷 . [𝐸/𝐸𝐷]−𝑛𝐷 𝑒𝑥𝑝 (−𝐵(1/𝑇𝐷−1/𝑇)) (2.6)  

 

where: 𝐿(𝐸, 𝑇) is life at a DC electric field E and temperature T (in K). ED, TD and LD are design 

electric field, temperature and life respectively, 𝑛𝐷 is the value of the voltage endurance coefficient 

(VEC) at temperature TD, 𝐵 = ∆𝑊 𝑘𝐵⁄ , ∆𝑊 is the activation energy of the main thermal degradation 

reaction (in J),  𝑘𝐵 = 1.38 × 10−23 𝐽/𝐾 is the Boltzmann constant. The life is estimated at each 

infinitesimal time interval 𝑑𝑡 in the range [0… , 𝑡, 𝑡 + ∆𝑡, … 𝑡𝑡𝑟] of the total transient period 𝑡𝑡𝑟. Then, 

the loss of life during one transient 𝐿𝐹𝑡𝑟 can be calculated according to Miner’s law of the cumulated 

aging during all infinitesimal time intervals 𝑑𝑡 [21], as follows: 

 

 
𝐿𝐹𝑡𝑟(𝑟) = ∫

𝑑𝑡

𝐿[𝐸(𝑟, 𝑡), 𝑇(𝑟, 𝑡)]

𝑡𝑡𝑟

0

 (2.7)  

 

where 𝐿[𝐸(𝑟, 𝑡), 𝑇(𝑟, 𝑡)] is life obtained from (2.6). 

The loss of life 𝐿𝐹𝑠𝑠  during the steady state period of the cable’s operation 𝑡𝑠𝑠 can be estimated 

similarly using the following equation:  

 

 
𝐿𝐹𝑠𝑠(𝑟) = ∫

𝑑𝑡

𝐿[𝐸(𝑟, 𝑡), 𝑇(𝑟, 𝑡)]

𝑡𝑠𝑠

0

=
𝑡𝑠𝑠

𝐿[𝐸(𝑟), 𝑇(𝑟)]
 (2.8)  

 

where 𝐿[𝐸(𝑟), 𝑇(𝑟)] is life obtained from (2.6) and 𝑡𝑠𝑠 is calculated by subtracting the total period 

𝑡𝑡𝑟,𝑡𝑜𝑡 at which the cable is subjected to n transients from a reference period of time 𝑡𝑡𝑜𝑡: 

 

 𝑡𝑠𝑠 = 𝑡𝑡𝑜𝑡 − 𝑡𝑡𝑟,𝑡𝑜𝑡 = 𝑡𝑡𝑜𝑡 − 𝑛 𝑡𝑡𝑟 (2.9)  

 

Accordingly, the loss of life during both the steady state and the transient periods can be calculated 

as follows: 

 

 
𝐿𝐹𝑡𝑜𝑡(𝐸(𝑟), 𝑇(𝑟)) = 𝐿𝐹𝑠𝑠(𝐸(𝑟), 𝑇(𝑟)) + ∑𝐿𝐹𝑡𝑟,𝑖(𝐸(𝑟), 𝑇(𝑟))

𝑛

𝑖=1

 (2.10)  

 

Then, the lifetime of the cable at each generic radius r can be calculated using the total reference 

period 𝑡𝑡𝑜𝑡, as follows: 
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𝐿(𝐸(𝑟), 𝑇(𝑟)) =

𝑡𝑡𝑜𝑡

𝐿𝐹𝑡𝑜𝑡(𝐸(𝑟), 𝑇(𝑟))
 (2.11)  

 

The life of cable is defined at the insulation radius which has the shortest lifetime over the insulation 

thickness between the inner insulation 𝑟𝑖 and the outer insulation 𝑟𝑜: 

 

 𝐿 = 𝑚𝑖𝑛
𝑟𝑖≤𝑟≤𝑟𝑜

(𝐿(𝐸(𝑟), 𝑇(𝑟))) (2.12)  

 

2.3.3 Case study: 

Table 2.4 illustrates the main characteristics of the 500-kV XLPE-insulated cable in addition to the 

laying environment that are used in both thermal and electrical calculations in this study. The 

temperature profile is calculated according to the transient thermal model of the cable layers in 

addition to the surrounding environment as described in IEC Standard 60853-2 [5]. More details about 

the transient temperature calculations can be found in Chapter 1. The insulation thickness is divided 

into 25 equally distributed points for Finite Difference Method FDM simulation performed in Matlab 

environment. The conductor’s temperature is assumed to be constant during the steady-state period 

𝑡𝑠𝑠, however, it becomes transient during the slow VPR events for the sake of accuracy [49]. Figure 

2.29 shows the temperature distribution inside the insulation thickness within 30 minutes of the period 

𝑡0. 

 

 

 
Figure 2.29 Temperature distribution within the insulation thickness during 30 minutes of the zero voltage period 𝑡0 of 

the slow VPR. 
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Table 2.4 The characteristics of the case-study cable and the laying environment. 

Parameter value 

Rated power (bipolar scheme) (MW) 1920 

Rated voltage (kV) 500 

Conductor Material Cu 

Insulation Material DC-XLPE 

Relative permittivity 𝜀𝑟 2.3 

Rated conductor temperature (°C) 70 

Ambient temperature 𝜗a (°C) 20 

Conductor cross-section (mm2) 2000 

Inner semiconductor thickness (mm) 2 

Inner insulation radius ri (mm) 27.2 

Insulation thickness (mm) 28.1 

Outer insulation radius ro (mm) 55.3 

Outer semiconductor thickness (mm) 1 

Metallic shield thickness (mm) 1 

Thermoplastic sheath thickness (mm) 4.5 

Thermal resistivity of dielectric [K.m/W] 3.5 

Thermal resistivity of sheath [K.m/W] 3.5 

Thermal resistivity of soil [K.m/W] 1.3 

Burial depth bb (m) 1.3 

Design life LD (years) 40 

ttot (year) 1 

Temperature coefficient of conductivity a (1/°C) 0.084 
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Field coefficient of conductivity b (mm/kV) 0.0645 

 

Table 2.5 shows the characteristics of the fast and slow VPR events investigated in this study. The 

number of VPR events is chosen according to [50] to occur from many times per year to many times 

per week. 

Table 2.5 Characteristics of VPR events. 

Parameter value 

Transient type Fast and slow VPR 

Frequency of VPR events [50] 

0 VPR/year 

1 VPR/year 

1 VPR/month 

2 VPRs/month 

1 VPR/week 

2 VPRs/week 

1 VPR/day 

t0  

0 (fast VPR) 

10 min 

20 min 

30 min 

 

2.3.4 Results: 

2.3.4.1 Electric field distribution before, during and after VPRs: 

Figure 2.30 shows the transient electric field calculated inside the insulation thickness according to 

Equations (1.27)–(1.30) during one (a) fast VPR (b) slow VPR with t0=10 min (c) slow VPR with 

t0=20 min (d) slow VPR with t0=30 min. In all cases, the initial point of the transient is always 

assumed that the cable has already reached the resistive electric field distribution as shown in the 

black solid curve in Figure 2.30. In Figure 2.30(a) the fast VPR first transient Tr 1 lasts 600 ms as 

illustrated in the dash-dotted curves, reaching the solid red curve at the end of Tr 1. Then, the transient 
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Tr 2 starts leading to charge relaxation within the insulation (the dotted curves) recovering at the end 

the resistive electric field distribution. Figure 2.30(b) shows the field distribution during the slow 

VPR whereby 4 transients take place Tr 1, Tr 2, Tr 3, and Tr 4 (see Figure 2.27). The only difference 

from fast VPR is that in slow VPR, the period Tr 2 allows a charge relaxation while the voltage is 

zero making the electric field low compared to the typical design fields of HVDC cables (see the 

dashed curves in Figure 2.30(b)). The latter reduces the electric field at the beginning of Tr 4 (the 

solid red curve) compared to that in the fast VPR in Figure 2.30 (a). Figures 2.30 (c) and 2.30 (d) 

show more charges relaxation when t0 increases from 10 to 20 minutes, however, the difference 

becomes barely noticeable when t0 increases from 20 to 30 minutes. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 2.30 The electric field distribution in the HVDC cable insulation thickness before, during and after (a) fast VPR, 

(b) slow VPR with t0=10 min, (c) slow VPR with t0=20 min, (d) slow VPR with t0=30 min. the markers (1), (2), (3), 

and (4) are defined in Figure (2.27) 
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2.3.4.2 Loss of life before, during and after VPRs: 

Figure 2.31 demonstrates the loss of life estimated inside the insulation thickness during one (a) fast 

VPR (b) slow VPR with t0=10 min (c) slow VPR with t0=20 min (d) slow VPR with t0=30 min. In 

Figure 2.31(a), the first transient Tr 1 of the fast VPR (the green solid curve) causes a relatively high 

loss of life in the inner insulation, while it has a low loss of life in the outer half of the insulation 

thickness. Nevertheless, the main loss of life occurs during the second transient Tr 2 (the red solid 

curve) whereby it dominates that of the Tr 1. The latter can be justified by the duration of both 

transients Tr1 and Tr 2 which last hundreds of milliseconds and minutes, respectively. Figures 

2.31(b), 2.31 (c), and 2.31(d) show similar patterns of the loss of life during the 4 transients Tr 1, Tr 

2, Tr 3, and Tr 4 highlighted in blue, green, yellow and red, respectively. While Tr 1 stresses the outer 

insulation, Tr 3 stresses the inner insulation and Tr 2 stresses the inner and the outer insulations. Tr 4 

still has the main contribution in the loss of life with many order of magnitudes higher values. It is 

worth noting that the loss of life during Tr 2 is always lower than that in both Tr1 and Tr 2 together, 

although Tr 2 lasts for minutes while Tr1 and Tr 3 last hundreds of milliseconds. The latter shows 

that slow VPR reduces the loss of life compared to the fast VPR due to the reduced electric stress 

during t0. Overall, only the transient after VPR (red solid curves) has noticeable effect on the life of 

cable. 
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Figure 2.32 presents the total loss of life during the steady state and all transients (1 VPR/day) 

estimated according to Equation (2.10) for fast and slow VPRs considering t0=10, 20, and 30 min 

(black, red, green and blue curves, respectively). It can be noticed that both fast and slow VPRs stress 

the inner insulation, although the outer insulation is still the most stressed point in all cases. 1 fast 

VPR/day makes the loss of life at the inner insulation just lower that that at the outer insulation. While 

1 slow VPR/day has lower effect on the loss of life of the insulation. The latter effect becomes lower 

when t0 increases until it becomes barely noticeable for t0=30 min. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 2.31 The loss of life of the case-study HVDC cable during all transients of (a) 1 fast VPR, (b) 1 slow VPR with 

t0=10 min, (c) 1 slow VPR with t0=20 min, (d) 1 slow VPR with t0=30 min. The transients 1, 2, 3, and 4 are defined in 

Figure (2.27). 
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2.3.4.3 Total estimated life of cable: 

Figure 2.33 shows the life of cable subjected to different number of VPR events according to Table 

2.5, (a) fast VPR (b) slow VPR with t0=10 min (c) slow VPR with t0=20 min (d) slow VPR with t0=30 

min. All Figures have the same steady-state curve (black curve) whereby the cable is subjected only 

to the steady-state period without any transient. The cable life is defined by the life of the outer 

insulation which is the most stressed point in this case. By increasing the number of transients, the 

inner insulation becomes more stressed until it reaches 44 years in the case of 1 fast VPR/day, 73 

years for 1 slow VPR/day with t0=10 min, 83 years for 1 slow VPR/day with t0=20 min, and 83 years 

for 1 slow VPR/day with t0=10 min, 87 years for 1 slow VPR/day with t0=20 min. However, in all 

cases the life of cable is still 40 years as defined by the point which has the shortest life i.e. the outer 

insulation. 

 

 
Figure 2.32 The total loss of life of the case-study HVDC cable subjected to 1 VPR/day. 
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2.3.5 Discussion: 

The results presented in this study highlight the effect of VPR events on the life of cable. The electric 

field distribution is significantly affected by the transients leading to a non-monotonous life 

distribution inside the insulation thickness. Furthermore, the results demonstrate the significant effect 

of fast VPRs on the life of cable compared to that of slow VPRs. While 1 fast VPR/month reduces 

the local life in the inner insulation by ≈ 10%, 1 VPR/day causes a life reduction by 60%. The latter 

affirms the importance of avoiding the fast VPR as much as possible or replace it with slow VPR 

where possible, since the same number of slow VPRs can enhance the life reduction by [40÷50]% 

compared to the fast VPRs. This is justified by the reduction of the maximum transient electric field 

after VPR because of the relaxation of the residual charges in the insulation during the period at which 

the voltage is kept zero t0. The results also show that the reduction of the life loss by increasing t0 is 

more effective in the first 10 minutes, then it gradually decreases as t0 becomes longer (and the 

transient electric field becomes lower and the conductivity becomes lower), then the time constant of 

the insulation increases. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.33 The life of cable subjected to different number of VPRs ranging from 1 VPR/year to 1 VPR/day, (a) fast 

VPR, (b) slow VPR with t0=10 min, (c) slow VPR with t0=20 min, (d) slow VPR with t0=30 min. 
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Chapter 3 

 

Life-based design of HVDC cables 
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3.1 Introduction: 

HVDC cable technologies have been getting more attention during the last decades, especially with 

the booming use of renewable energy sources [2]. This implies the need to transmit these energies to 

energy demand centers, accordingly, the need to raise the voltage and power of HVDC cable systems 

to reduce the losses as much as possible. In this regard - and due to the rising appeal of cables vs 

overhead lines in land and submarine links - some huge HVDC projects have been and are currently 

being installed, such as the land German corridors (525 kV) [51], using both Cross-linked 

Polyethylene (XLPE) and innovative High Performance Thermoplastic Elastomer (HPTE) extruded 

cables, and the Western Link project between Scotland, England and Wales (600 kV), using Mass 

Impregnated - Paper Poly-propylene Laminate (MI-PPL) cables. A higher voltage (640 kV) HVDC-

XLPE cable system was also fully qualified [31]. 

As readily seen, these latter developments are also driven by the progressive development of 

innovative HVDC insulating materials. This is a consequence of the continuous desire to extend the 

limits of transmission systems to higher and higher capacities, increasing transmission voltages 

and/or ampacity.  

In this chapter, the following points are investigated: 

• Parametric analysis of the life-based geometric design of HVDC cables. 

• the effect of Temporary OverVoltages (TOVs) and Super-imposed Switching Impulses (SSI) 

on the life-based geometric design of HVDC cables since higher voltage necessarily means 

greater and more severe electrical transients [52],[53]. 

3.2 Case study: 

3.2.1 Parametric Analysis: 

In this study, the DC electric field is calculated depending on the analytical closed-form formula 

introduced by Eoll in Equations (1.33) and (1.34), instead of the exact iterative method calculated 

using Maxwell’s Equations (1.27) to (1.30). The main reason is that a great number of designs is 

tested here, the latter makes applying the iterative method at each design is time consuming. 

 

Table 3.1 Main design parameters of the HVDC cable 

Cable parameters Symbol and unit value 

Design life LD [years] 40 

Voltage Endurance Coefficient 𝑛𝐷 [a.u.] 10 
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Design temperature TD (=Tro) [°C] 55 

Design electric field ED [kV/mm] 20 

Rated voltage U0 [kV] 

320 

525 

640 

Maximum conductor temperature 𝑇𝑚𝑎𝑥  [°C] 

70 

90 

Temperature coefficient 

of conductivity 
𝑎 [°𝐶−1] 

aL 0.042 

aM 0.084 

aH 0.168 

Stress coefficient 

of conductivity 
𝑏 [mm/kV] 

bL 0.03 

bM 0.06 

bH 0.12 

Thermal resistivity of dielectric 𝜌𝑇,𝑑 [K.m/W] 3.5 

Thermal resistivity of sheath 𝜌𝑇,𝑠ℎ [K.m/W] 3.5 

Thermal resistivity of soil 𝜌𝑇,𝑠𝑜 [K.m/W] 

1 

1.3 

1.5 

1.7 

 

Table 3.1 presents the main design parameters of the HVDC cable. For some of them multiple values 

are considered, in the framework of a dedicated parametric analysis. The bold numbers are the values 

of a reference cable design, with inner and outer insulation radii set to (ri, ro) = (21.4, 39.7) mm, 

whose design life is 40 years. In particular, the bold values of a and b are typical values for DC-XLPE 

insulation according to scientific literature [54]; the other two values of a and b are generated by 

halving and duplicating the medium values, thereby yielding the so called low values aL,bL and high 
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values aH,bH, respectively. The actual values of the compounds used by the various manufacturers 

are in fact confidential, but they can be deemed to span over the chosen intervals reported in Table 

3.1.  

 

All possible cable designs are simulated – with inner and outer insulation radii spanning over the 

following ranges: (𝑟𝑖, 𝑟𝑜)  =  (5 ÷ 50,10 ÷ 80) 𝑚𝑚 – using an ad hoc Matlab code to calculate the 

life of each design. This procedure results in a two-dimensional graph as in Figure 3.1, where the 

“feasibility loci” of the life map are defined by the limits given by 5 constrained quantities, i.e.: 

1) maximum dielectric temperature 𝑇𝑚𝑎𝑥 

2) maximum temperature drop across the insulation, ∆𝑇𝑚𝑎𝑥 

3) maximum electric field 𝐸𝑚𝑎𝑥. 

4) minimum conductor current density 𝐽𝑚𝑖𝑛 

5) maximum extrusion radius 𝑟𝑜,𝑚𝑎𝑥.  

Although the minimum design life  𝐿𝑚 > 𝐿𝐷 (green and blue areas) is highlighted in the results, 

shorter life designs which satisfies constraint 3) (red area) are also investigated for the sake of 

completeness. These limits are as stated in Table 3.2 on the basis of typical manufacturing constraints, 

in addition to the case in which ∆𝑇𝑚𝑎𝑥 is not limited by any constraint. It is worth noting that the 

positive thickness condition i.e., 𝑟𝑜 > 𝑟𝑖 is always redundant since it is implicitly included in the 

 
Figure 3.1 Life map in linear scale for hot cable, highlighting the constraints defining the feasible design area. 



71 
 

maximum electric field condition. Hereinafter, only the latter will be considered. On the contrary, the 

maximum extrusion radius is necessary to consider the technical limits of available industrial 

extruders. The minimum conductor current density 𝐽𝑚𝑖𝑛 represents the minimum utilization limit of 

the conductor cross section below which the conductor cross section becomes excessively large. 

 

Table 3.2 Constrained quantities and the relevant limits 

Feasible area conditions Limit value 

𝐽 > 𝐽𝑚𝑖𝑛 [A/mm2] 0.6 

Maximum extrusion radius 𝑟𝑜,𝑚𝑎𝑥  [mm] 80 

𝑟𝑜 > 𝑟𝑖  (𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡) & 𝑚𝑎 𝑥(𝐸(𝑟)) < 𝐸𝑚𝑎𝑥  𝑬𝒎𝒂𝒙 = 𝟒𝟎 𝐤𝐕/𝐦𝐦 

𝑇(𝑟𝑖) < 𝑇𝑚𝑎𝑥 

𝑻𝒎𝒂𝒙 = 𝟕𝟎 °𝑪 

𝑇𝑚𝑎𝑥 = 90 °𝐶 

∆𝑇 = 𝑇(𝑟𝑖) − 𝑇(𝑟𝑜) < ∆𝑇𝑚𝑎𝑥 

∆𝑇𝑚𝑎𝑥 = 10 °𝐶 

∆𝑇𝑚𝑎𝑥 = 15 °𝐶 

∆𝑻𝒎𝒂𝒙 = 𝟐𝟎 °𝑪 

∆𝑇𝑚𝑎𝑥 has no limit 

 

3.2.2 Electrical transients: 

In this study, voltage polarity reversal (VPR) is studied as an electrical transient due to its severe 

effect on HVDC polymeric cables. VPRs in HVDC systems can be of two types, namely fast and 

slow VPRs as defined in section 2.3.1. 

VPRs can be divided into 2 parts [48]:  

1) a first transient referred hereafter to as tr1, occurring while the polarity of the applied voltage is 

reversed (i.e. +𝑈0 → −𝑈0 or −𝑈0 → +𝑈0). This transient lasts hundreds of milliseconds in fast 

VPRs, while it lasts a few minutes in normal operation; 

2) a second transient, referred hereafter to as tr2, is the field transient occurring after the VPR, when 

the voltage applied is opposite to the voltage before the VPR. 

This study investigates only fast VPRs. As such: 
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a) during the first electrical transient the field distribution within the cable switches from the 

initial resistive to a subsequent quasi-capacitive distribution; 

b) during the second electrical transient the charges inside the insulation thickness redistribute 

within a period ranging between minutes to hours, until the electric field reaches a resistive 

distribution. For the sake of simplicity and computational efficiency, the electric field 

variation during such second electrical transient is represented here according to the 

following approximated exponential model, previously introduced in [48],[55], and 

validated in [22] giving uncertainty lower than 2% for fast VPR, see Fig. 1: 

 

 𝐸(𝑟, 𝑡) = 𝐸2(𝑟) + [𝐸1(𝑟) − 𝐸2(𝑟)] ⋅ 𝑒𝑥𝑝(− 𝑡 𝜏𝐸(𝐸, 𝑇)⁄ ) (3.1)  

 

where 𝑡 is the generic time, 𝜏𝐸(𝐸, 𝑇) is the electrical time constant of the insulating material of the 

cable, which is given in DC systems by the following equation: 

 

 𝜏𝐸(𝐸, 𝑇) = 𝜀/𝜎(𝐸, 𝑇) (3.2)  

 

 

𝐸1(𝑟), and 𝐸2(𝑟) are the electric fields at the beginning of the second transient tr2 and at the steady 

state after the VPR, respectively. The profiles within insulation thickness of 𝐸1(𝑟) and 𝐸2(𝑟) during 

the second electrical transient after a VPR from +𝑈0 to −𝑈0  for the so-called  reference cable (the 

main design data of the reference cable are listed in bold in Table 3.1) in hot conditions are 

  

(a) (b) 

 

Figure 3.2 Electric field variation over the period 5𝜏𝐸 during the second electrical transient after a fast VPR from 

+𝑈0 → −𝑈0 for the so-called reference cable in hot conditions and (a) 𝑎 = 0.042 and (b) 𝑎 = 0.084. The main design 

data of the reference cable are listed in bold in Table 3.1. 
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represented in Figure 3.2 by the black and red curves, respectively. Those fields are given by the 

following equations [56]: 

 

Transient 
𝐸1(𝑟) = 𝐸𝐷𝐶 − 2𝐸𝑎𝑐(𝑟) 

                          = 𝐸𝐷𝐶 −2𝑈0 𝑟 ln(𝑟𝑜 𝑟𝑖⁄ )⁄  
(3.3) 

Steady state 𝐸2(𝑟) = −𝐸𝐷𝐶 (3.4) 

 

Due to the negligible time duration of the first transient tr1 in fast polarity reversal, only the second 

transient tr2 will be investigated in this study. It is also worth noting that the time between two 

consecutive VPRs is assumed to be greater than or equal to 5𝜏𝐸 i.e., hence the steady state is supposed 

to be always reached after tr2. 

Table 3.3 shows the parameters of the electrical transients considered in this study. The initial electric 

field is the electric field directly after fast polarity reversal whereas the steady-state field is the 

resistive DC electric field distribution. It is worth noting that the time required to reverse the applied 

voltage is neglected here, being much shorter than the dielectric relaxation transient considered in 

Equation (3.2) (hundreds of milliseconds vs. minutes to hours). The electrical transients are applied 

during 𝑡𝑡𝑟, while the resistive DC electric field is used for the calculations during 𝑡𝑠𝑠. The number of 

electrical transients falls in the range from 1 transient per month up to 10 transients per day, as polarity 

reversals occur from few times per year to many per week according to [50]  (it should also be pointed 

out that 10 events are an upper limit of transients within one single day, which occurs only on a 

minority of the overall service days of the cable system). However, this number is limited in this 

study to 2 electrical transients per day when considering low values of the temperature coefficient of 

conductivity, 𝑎, causing the increase of the time constant of the insulation, as shown in Figure 3.3. A 

higher number of transients in this case would make the transients period longer than the total period 

𝑡𝑡𝑟 > 𝑡𝑡𝑜𝑡. 

 

Table 3.3 Parameters and Characteristics of Electrical Transients 

Parameter symbol Value 

State 1 𝐸1 E distribution directly after polarity reversal (6) 

State 2 𝐸2 Resistive electric field distribution (7) 

Direction  𝑡𝑟2: 𝐸1 → 𝐸2 , tr1 is neglected 

Transient equation  (4) 

Electrical time constant 𝜏𝐸 (5) 

Transients frequency nE 𝑎𝐿 0 
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1 per month 

1 per week 

2 per week 

1 per day 

2 per day 

𝑎𝑀 

0 

1 per month 

1 per week 

2 per week 

1 per day 

   2 per day 

   5 per day 

   10 per day 

 

 

 

 

3.2.3 Thermal transients: 

Thermal transients reflect the load cycles to which the cable is subjected throughout the year due to 

the load variation and in turn the variation in heat dissipation from the conductor across the insulation, 

 
Figure 3.3 Electrical time constant 𝜏 = 𝜀/𝜎 for a hot reference cable (𝑟𝑖 = 21.4, 𝑟𝑜 = 39.7 mm), for 𝑎 = 0.042 and 

𝑎 = 0.084. 
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see Figure 3.4 (the LT→HT transient and HT→LT transient are described in Table 3.4). Strictly 

speaking, the rigorous treatment of such thermal transients would require the use of high order 

“ladder-type” equivalent thermal models made of multiple cascaded series thermal resistances and 

shunt thermal capacitances, as prescribed by Standard IEC 60853 [5]. However - again for the sake 

of simplicity and computational efficiency - the thermal transients are also represented here according 

to the following approximated exponential model: 

 

 𝑇(𝑟, 𝑡) = 𝑇2(𝑟) + [𝑇1(𝑟) − 𝑇2(𝑟)] ⋅ 𝑒𝑥𝑝(− 𝑡 𝜏𝑇⁄ ) (3.5)  

 

where 𝑇1(𝑟) is the initial temperature and 𝑇2(𝑟) is the steady-state temperature. Equation (3.5) is the 

step response of a simplified first-order thermal circuit in which both the initial and the steady-state 

temperature is pre-defined to assure that the steady state temperature is reached and the load cycle is 

fully represented by the transient. 

 

The validation of the approximated exponential transient thermal model vs. the higher order models 

recommended by IEC 60853 for MV and HV cables can be found in [57],[58],[59],[60]. The 

temperature distribution within the insulation thickness 𝑇(𝑟) is found from considerations detailed in 

[5],[61], bringing to the following equation: 

 

 𝑇(𝑟) = 𝑇(𝑟𝑖) − [𝑇(𝑟𝑖) − 𝑇(𝑟𝑜)] 𝑙𝑛 (
𝑟

𝑟𝑖
) /𝑙𝑛 (

𝑟𝑜
𝑟𝑖

) (3.6)  

 

Table 3.4 presents the parameters of the thermal transients. Two types of thermal transients are 

investigated i.e., heating transient (𝑇1  →  𝑇2) and cooling transient (𝑇2  →  𝑇1), applied on the cable 

  

(a) (b) 

Figure 3.4 Temperature transients over time = 5𝜏𝑇 at 10 evenly spaced points inside the insulation thickness (a) 𝐿𝑇 →
𝐻𝑇 transient and (b) 𝐻𝑇 → 𝐿𝑇 transient. The LT→HT transient and HT→LT transient are described in Table 3.4. 
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during the transient period 𝑡𝑡𝑟. A full load (hot cable) is used for steady-state calculations during 𝑡𝑠𝑠. 

Thermal time constant 𝜏𝑇 ranges from 1 hour to many hours depending on the surrounding 

environment, burial depth …etc [62], [63]. In this study, two values of the thermal time constant are 

investigated i.e., 1 hour corresponding to air environment and 3 hours for soil environment. One 

transient per day is chosen for this study, i.e., one cycle includes both thermal transients (𝑇1  →  𝑇2 

and 𝑇2  →  𝑇1) every other day. 

 

Table 3.4 Parameters and Characteristics of Thermal Transients 

Parameter 
Symbol 

and unit 
Value 

State 1 of 𝑇𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟  𝑇1 [°C] 20 (Ambient temperature) 

State 2 of 𝑇𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟  𝑇2 [°C] 70 (Full load temperature) 

Direction  
𝑇1  →  𝑇2 

𝑇2  →  𝑇1 

Transient equation  (8) 

Thermal time constant 𝜏𝑇 [h] 
1 

3 

Transients frequency 𝑛𝑇 
0 

1 per day 

 

3.2.4 Life model: 

Life estimation is based on the Inverse Power Model (IPM) and Arrhenius electro-thermal life models 

which can be expressed as follows: 

 

 𝐿(𝐸, 𝑇) = 𝐿𝐷 . [𝐸/𝐸𝐷]−𝑛𝐷 𝑒𝑥𝑝(−𝐵(1/𝑇𝐷−1/𝑇))  (3.7)  

 

where: 𝐿(𝐸, 𝑇) is life at a DC electric field E and temperature T (in K). ED, TD and LD are design 

electric field, temperature and life respectively, 𝑛𝐷 is the value of the voltage endurance coefficient 

(VEC) at temperature TD, 𝐵 = ∆𝑊 𝑘𝐵⁄ , ∆𝑊 is the activation energy of the main thermal degradation 

reaction (in J),  𝑘𝐵 = 1.38 × 10−23 𝐽/𝐾 is the Boltzmann constant. 

Considering a reference time 𝑡𝑡𝑜𝑡 (e.g. 𝑡𝑡𝑜𝑡 = 1𝑦𝑟), a steady state fraction, 𝑡𝑠𝑠, can be defined as: 

 

 𝑡𝑠𝑠 = 𝑡𝑡𝑜𝑡 − 𝑡𝑡𝑟 (3.8)  
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where 𝑡𝑡𝑟 is the cumulative duration of all transient periods occurring within the same reference time 

𝑡𝑡𝑜𝑡. Consequently, the loss of life occurring during the steady state period 𝑡𝑠𝑠 within the reference 

time 𝑡𝑡𝑜𝑡 can be written as follows, according to Miner’s law of cumulated aging [21]: 

 

 
𝐿𝐹𝑠𝑠(𝐸(𝑟), 𝑇(𝑟)) = ∫

𝑑𝑡

𝐿𝑠𝑠(𝐸(𝑟, 𝑡), 𝑇(𝑟, 𝑡))

𝑡𝑠𝑠

𝑡=0

=
𝑡𝑠𝑠

𝐿𝑠𝑠(𝐸(𝑟), 𝑇(𝑟))
 (3.9)  

 

where 𝐿𝑠𝑠 is life obtained from (3.7), and fields and temperatures are considered constants (since that 

is the case during 𝑡𝑠𝑠). Accordingly, life loss during a single transient can be found by: 

 

 
𝐿𝐹𝑡𝑟,𝑖(𝐸(𝑟), 𝑇(𝑟)) = ∫

𝑑𝑡

𝐿𝑡𝑟(𝐸𝑖(𝑟, 𝑡), 𝑇𝑖(𝑟, 𝑡))

5𝜏

𝑡=0

 (3.10)  

 

where 𝜏 is the time constant, it is either the time constant of the electrical transient 𝜏𝐸 or the time 

constant of the thermal transient 𝜏𝑇 depending on the type of the transient. 𝐿𝑡𝑟 is life obtained from 

Equation (3.7), and considering both the electrical and thermal fields, 𝐸𝑖, 𝑇𝑖 are variables with time 

and the type of the transient i.e. electrical or thermal. The total loss of life occurring within 𝑡𝑡𝑜𝑡 can 

be attained by cumulating the loss of life during both the steady-state period 𝐿𝐹𝑠𝑠 and a number n of 

transient events: 

 

 
𝐿𝐹(𝐸(𝑟), 𝑇(𝑟)) = 𝐿𝐹𝑠𝑠(𝐸(𝑟), 𝑇(𝑟)) + ∑𝐿𝐹𝑡𝑟,𝑖(𝐸(𝑟), 𝑇(𝑟))

𝑛

𝑖=1

 (3.11)  

 

Then, the life (e.g., in years) of insulation at different points in the cable insulation thickness can be 

estimated as follows: 

 

 𝐿(𝐸(𝑟), 𝑇(𝑟)) = 𝑡𝑡𝑜𝑡/𝐿𝐹(𝐸(𝑟), 𝑇(𝑟)) (3.12)  

 

Then, cable life is defined by the shortest life found within the insulation thickness: 

 

 𝐿 = 𝑚𝑖𝑛
𝑟𝑖≤𝑟≤𝑟𝑜

(𝐿(𝐸(𝑟), 𝑇(𝑟))) (3.13)  
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3.3 Results: 

3.3.1 Parametric analysis: 

Figure 3.1 shows the life colormap of the HVDC cable reference design (bold values in Table 3.1 and 

Table 3.2). As a consequence, life is displayed as a gradient distributed between red (shortest life) 

and blue (longest life). For better visualization of the life map plots, the color scale is limited to values 

ranging (0 ÷ 100) years (i.e. >100 years until 106 years, are also represented by the same color, i.e. 

dark blue). Yellow, green and blue areas are the feasible design areas, and the white surrounding area 

outside the boundaries is infeasible, due to the violation of one (or more) of the conditions stated in 

Table 3.2. 

 

3.3.1.1 Effect of electric field and insulation thickness: 

Figure 3.5, which reports life in log scale, shows the great sensitivity of life to inner and outer 

insulation radii: a 1-mm uncertainty of these radii leads to many years variation in the electrothermal 

life of cable. This is mainly justified by the great effect of electric field variation (which in turn 

strongly depends on the inner and outer radii of the insulation as shown in Eoll’s Equation (1.33)) on 

HVDC cable insulation life. On the other hand, the same uncertainty would not be able to give a 

sensitive modification of the temperature gradient, and life consequently (considering the typical 

activation energy of HVDC cable insulation). This is the reason why the equi-life loci (points having 

the same color) are practically parallel to the maximum electric field limit, whereas the effect of the 

temperature is barely noticed. This means that the electric field impact dominates the thermal impact 

in the life map. To separate the electrothermal impact, the relative electric field and relative 

temperature are plotted separately in Figure 3.6(a) and 3.6(b), respectively. By comparing those two 

Figures, it can be clearly seen that the electric field is extremely sensitive to the cable geometries, 

while the temperature varies only slightly with the variation of the cable geometries.   
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While Figures 3.1, 3.5 are life maps, Figure 3.7 is a “field differential map” that reports the difference 

between the field at inner and outer insulation, ∆𝐸 = 𝐸(𝑟𝑖) − 𝐸(𝑟𝑜) for the cable in (a) hot and (b) 

cold conditions. This illustrates the field inversion phenomenon across the insulation of hot HVDC 

cables (Figure 3.7(a)) vs. the quasi-capacitive electric field distribution of the cold cable (Figure 

3.7(b)). It is necessary to limit the field inversion in HVDC cables (when ∆𝐸 < 0), which is greater 

with thinner insulation and vice versa. 

 
Figure 3.5 Life map in logarithmic scale for a hot cable 

  

(a) (b) 

Figure 3.6 Percentage relative variations of (a) electric field and (b) temperature, for all possible cable designs. 
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3.3.1.2 Effect of conductor temperature and Temperature drop: 

Figure 3.8 shows the life map of HVDC cable designs with the constraints on maximum insulation 

temperature 𝑇𝑚𝑎𝑥 and on temperature drop across the insulation ∆𝑇𝑚𝑎𝑥 set – for the sake of parametric 

analysis – to all values in Table 3.2, i.e. 70°C (the reference cable design) and 90°C for 𝑇𝑚𝑎𝑥, 20°C 

(reference design), 15°C and 10°C for ∆𝑇𝑚𝑎𝑥. ∆𝑇𝑚𝑎𝑥 is a limit usually set by the TSOs before the 

cable manufacturing process, to control the field inversion phenomenon and reduce HVDC cables 

losses. Feasibility loci can be found on the right side of the lines defined by both 𝑇𝑚𝑎𝑥 and Δ𝑇𝑚𝑎𝑥.  

It is seen that the greater the maximum conductor temperature, the smaller the allowed insulation 

radii (𝑟𝑖,  𝑟𝑜) and the overall size of the cable. Momentarily neglecting ∆𝑇𝑚𝑎𝑥 and increasing the 

maximum conductor temperature from 70 to 90 °C, the insulation radii of a cable having design life 

of 40 years can significantly be reduced, from (ri, ro) = (19, 37) mm to (9, 31) mm, (see Figure 3.8). 

This leads to a great reduction in the conductor radius but conversely a small increase in the insulation 

thickness. However, such a value violates one of the limits in Table 3.2 on temperature drop across 

the insulation, as ∆𝑇𝑚𝑎𝑥 > 20 °C (see Figure 3.9). This implies that the advantage of an increased 

feasible area due to maximum conductor temperature rise is limited by ∆𝑇𝑚𝑎𝑥, e.g. for ∆𝑇𝑚𝑎𝑥 =

10 or 15 °𝐶 respectively no or very small benefits can be attained by increasing 𝑇𝑚𝑎𝑥 above 70 °C, 

as readily seen from Figure 3.8. On the other hand, for ∆𝑇𝑚𝑎𝑥 = 20 °𝐶, the feasible area can be 

extended up to (14, 35) mm for 𝐿𝐷 = 40 years. As a result, developing insulating materials able to 

withstand higher temperatures can scale the overall cable dimensions down only when a suitable 

temperature gradient can also be allowed. Since those results come from the necessity to limit field 

inversion, which in turn is affected by both temperature and field coefficients of conductivity, their 

effects will be discussed in the next sections. 

  

(a) (b) 

Figure 3.7 Electric field difference between the inner and the outer insulation ∆𝐸 = 𝐸(𝑟𝑖) − 𝐸(𝑟𝑜) for (a) hot cable 

(field inversion), and (b) cold cable (quasi-capacitive field distribution). 
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Figure 3.8 Life map in linear scale for 3 different values of the maximum temperature drop inside the insulation 

thickness ∆𝑇𝑚𝑎𝑥 and 2 values of the maximum conductor temperature 𝑇𝑚𝑎𝑥. 

 

 
 

Figure 3.9 Temperature drop ∆T = T(ri) - T(ro) map between the inner insulation (Tmax) and the outer insulation T(ro). 
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3.3.1.3 Effect of temperature coefficient of electrical conductivity a: 

Temperature coefficient of electrical conductivity a has a major effect on the resistive electric field 

distribution inside the insulation of HVDC cables and in turn on cable life (Figures 3.10, 3.11, 3.12). 

For the sake of comparison, the 3 values of a from Table 3.1 are used to plot these Figures. It must 

be specified that results of field distribution in those figures are valid only for one geometry (𝑟𝑖 =

21.4, 𝑟𝑜 =  39.7) and are intended to be used only to describe the main conceptual reasons driving 

the influence of coefficient 𝑎 on life. Using the same values of this coefficient, with different inner 

or outer radii, would result in a different kind of electric field and temperature distribution. It is worth 

noting that the same design geometry is chosen in previous studies neglecting here the presence of 

the semi-conductive layers. 

The trend of the influence of 𝑎 on 𝐿 is nonlinear (Figure 3.10), since the electric field distribution is 

deeply affected by such parameter. Indeed, for lower values of 𝑎, the maximum electric stress is found 

near the inner electrode, and will be reduced for increasing levels of 𝑎, until field inversion is 

achieved. In those conditions 𝐿𝑚𝑖𝑛 will tend to increase. Once field is inverted, the maximum field 

will be found near the outer radius of the insulation, and a further increase of 𝑎 will result in the 

increase of stresses and reduction of 𝐿𝑚𝑖𝑛. Therefore, reducing a does not necessarily lead to an 

increase in the life of the cable, due to the non-linear effects of 𝑎 on the maximum electric field in 

the insulation, hence life. Consequently, an optimal value of a exists for each cable design, which 

guarantees a uniform distribution of life (and semi-uniform distribution of field) inside the insulation 

thickness. The optimal value of a for the reference cable is 𝑎 = 0.063 °𝐶 −1  < 𝑎𝑋𝐿𝑃𝐸 = 0.084 °𝐶 −1.  

Field and life distributions inside cables with insulations characterized by the chosen values of 𝑎 

listed in Table 3.1 can be seen in Figures 3.10 , 3.11, and 3.12 justifying the overlap of the 40-year 

equi-life lines for both 𝑎𝐿 and 𝑎𝑀 in Figure 3.13 (obtained for 𝑎𝑀). This figure also shows the 40-

year equi-life line for 𝑎𝐻 (grey-dashed line): as it can be seen, it moves toward greater cable 

dimensions. This emphasizes the importance of developing new materials having moderate a. 
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Figure 3.10 Estimated life of the insulation at the inner and outer radii for different values of a for the hot cable. 

where an optimum can be identified. 

 

 
 

Figure 3.11 DC field profile in the insulation of the reference design cable (21.4, 39.7) mm for the 3 values of a from 

Table 3.1, and hot cable. 
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Figure 3.12 Life distribution inside the insulation of the reference design cable in log scale for the 3 values of a from 

Table 3.1, and hot cable. 

 
 

Figure 3.13 Life map in linear scale for temperature obtained for coefficient of conductivity a= aM and hot cable. The 

40-year equi-life loci for aL, aM, aH are also shown. aL, aM lines are overlapped. 
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3.3.1.4 Effect of Field coefficient of electrical conductivity b: 

To investigate the effect of b on HVDC cable life, the 3 values of b in Table 3.1 are used. Figure 3.14 

shows a positive effect of increasing b on reducing the field inversion ∆E between the inner and the 

outer insulation. This positive effect can be seen also in the life distribution across the insulation, 

Figure 3.15, where the life distribution becomes flatter by increasing b, and the life in the most 

stressed point raises from 40 years for bL=0.03 to 56 years for bM=0.06 and 81 years for bH=0.12. 

Figure 3.16 shows that the 40 years equi-life points slightly shift downward, as b varies from bL to 

bH, reducing the feasible outer insulation radii by only ≈ 1 mm. However, the effects of 𝑏 are great 

only if the field inversion is great (i.e. for materials characterized by high values of the parameter 𝑎), 

hence while its impact is minor for the case reported, it will become much more important for 

materials and conditions with a stronger attitude to invert field distribution. 

 

 

 
 

Figure 3.14 DC field profile in the insulation of the reference design cable (21.4, 39.7) mm for the 3 values of b from 

Table 3.1, and hot cable. 
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Figure 3.15 Life distribution inside the insulation of the reference design cable in log scale for the 3 values of b from 

Table 3.1, and hot cable. 

 

 
 

Figure 3.16 Life map in linear scale for field coefficient of conductivity b=bL and hot cable. The 40-year equi-life 

loci for bL, bM, bH are also shown 
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3.3.1.5 Effect of soil thermal resistivity: 

Figure 3.17 illustrates the effect of soil thermal resistivity on HVDC cables design, which in turn 

affects the geometries characterized by 𝑇(𝑟𝑖) = 𝑇𝑚𝑎𝑥 = 70 °𝐶. It shows that a considerable reduction 

in the feasible design area is attained by increasing the thermal resistivity of the surrounding soil, 

until the feasible area vanishes for 𝜌𝑇,𝑠𝑜 > 1.7 𝐾.𝑚/𝑊; this is fully consistent with the life estimates 

obtained in [64]. Let us recall from IEC 60287-3-1:2017, Annex A [65], that 𝜌𝑇,𝑠𝑜 = 1 𝐾.𝑚/𝑊 

represents the moist soil in autumn or spring, 𝜌𝑇,𝑠𝑜 = 1.3 𝐾.𝑚/𝑊 is the typical value of the partially 

dry soil thermal resistivity in summer (recommended for current-carrying capacity calculations), 

whereas greater values tend to the fully dry soil. This emphasizes the importance of the backfill to 

avoid unacceptably great cable dimensions. It is worth noting that neither the intrinsic, nor the 

interactive thermal instability is considered in this study [66]. 

 

 

3.3.1.6 Effect of the rated Voltage: 

Figure 3.18 shows the effect of voltage U0 on the life map of HVDC cables, increasing it from 320 

kV (reference design value) to 525 kV and 640 kV, while keeping the other parameters, such as 

ampacity, unchanged. As expected, the rated voltage rise leads to a shift of the feasible design area 

toward greater dimensions of both the conductor and the insulation (Figure 3.18). It can be also 

noticed that the limits 𝑇𝑚𝑎𝑥, ∆𝑇𝑚𝑎𝑥 and 𝐽𝑚𝑖𝑛 are still unchanged, because the current carrying capacity 

of the cable is still the same, giving greater cable power values for greater voltages. 

 
 

Figure 3.17 Life map in linear scale for 4 different values of the soil thermal resistivity. 
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Variations of both 𝑟𝑖 and 𝑟𝑜 are necessary to maintain feasibility when 𝑈0 is increased, since a greater 

insulation thickness is required to keep the electric field distribution and the life to suitable values. 

On the other hand, the restraint in ∆𝑇𝑚𝑎𝑥 must also be respected. An increase of only 𝑟𝑜 would lead 

to increasing values of ∆𝑇𝑚𝑎𝑥, due to worse heat exchange conditions. Hence, the dimension 𝑟𝑖 must 

change as well, allowing for both reduced local electric fields and admissible values of temperature 

gradients. The effect of voltage explains the need to develop new insulating materials having better 

endurance to DC voltage (thus, higher maximum applied DC field) and/or appropriate values of 

temperature and field coefficients of conductivity a and b, such that equi-life points move downward 

when applying higher voltages, e.g. 800 kV.  

 

 

3.3.2 Electrical transients: 

Electrical transients, with reference to Table 3.3, are applied on the cable for two values of a (low 

and medium), for the sake of comparison. Figure 3.19 shows that the greater the frequency of 

electrical transients, the shorter the life. The latter demonstrates the need to enlarge the cable 

geometries to sustain the design life as the frequency of transients - thus their number over a given 

period - increases, which in turn shifts the equi-life loci upward. Comparing Figure 3.19(a) to 3.19(f), 

a more severe effect of transients on cable life can be noticed when the dielectric is characterized by 

a low value of a. In the worst case simulated here (a = aL, Figure 3.19(a), 3.19(b), and 3.19(c)), two 

polarity reversals per day are enough to increase the cable design thickness by ≈ 10 mm. On the other 

hand, when a = aM (Figure 3.19 (d), 3.19 (e), and 3.19 (f)), insulation thickness increases by ≈ 5 mm 

for the same frequency of transients. This is justified by the fact that low values of a will also imply 

lower values of conductivity. This will in turn increase the electrical time constant, hence the duration 

of transient conditions during which the insulation will locally have to withstand enhanced fields. For 

the sake of clarity, the life distribution inside the insulation thickness can also be analysed. In Figure 

3.20(a) and 3.20(b), it can be seen how electrical transients have a more detrimental effect on the 

 
         (a)      (b)         (c)  

Figure 3.18. Life map of HVDC cable in linear scale for hot cable and applied voltage = (a) 320 kV, (b) 525 kV, (c) 640 

kV. 
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inner insulation of dielectrics with lower values of a, since in this case the electric field is always 

maximum near the inner conductor of the cable (see Figure 3.20(a)). For higher values of a, the life 

distribution pattern can be non-monotone, due to field inversion. In this case, at steady state the outer 

insulation will be more stressed than the inner insulation, while the opposite occurs during transient 

conditions (Figure 3.20(b)). As a result, when no transients are considered, life is always related to 

the failure of the outer insulation. Introducing a number of transients, however, will modify life 

distribution and, from a certain amount (e.g. 1 electrical transient per day), life minimum can shift 

towards the inner insulation. This is also the reason why Figure 3.19(d) and 3.19(e) seem identical. It 

can be also noticed in Figure 3.19 that the increase in the inner insulation radius leads to a significant 

reduction of the effect of electrical transients on the life (i.e. 40-year life loci are converging). This is 

caused by the reduction of both steady state and transient electric field inside the insulation thickness. 

 

 

 
                                              (a)                                                                       (b)                                                                           (c) 

    
                                              (d)                                                                         (e)                                                                          (f) 

 

Figure 3.19 The effect of electrical transients on the life map for hot cable (a) 𝑎 = 0.042, no transients, (b) 𝑎 = 0.042, 2 

transients per week, (c) 𝑎 = 0.042, 2 transients per day, (d) 𝑎 = 0.084, no transients, (e)  𝑎 = 0.084, 2 transients per 

week and (f) 𝑎 = 0.084, 2 transients per day. 
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3.3.3 Thermal transients: 

Thermal transients are applied on the cable in the form of load cycles, each cycle consists of two 

transients LT→HT and HT→LT according to Table 3.4, see Figure 3.4. Figure 3.21 illustrates electric 

field variation over time for both types of thermal transients.  It can be noticed that the electric field 

distribution is quasi-capacitive in the cold cable, since an isothermal condition is considered at this 

stage. Hence, conductivity will be almost homogeneous (as only a slight effect of field coefficient b 

is observed), and field distribution in DC will be practically the same as in AC. Hence, the inner 

insulation is the most stressed part of the insulation at this stage. On the contrary, in the hot cable, the 

electric field distribution becomes resistive and the outer insulation is the most stressed point. Results 

from simulations considering a constant applied voltage 𝑈 = 𝑈0 and thermal transients with different 

time constants (Figure 3.22) show that life minimum is generally found in the outer insulation, since 

field redistribution due to thermal transients are usually faster than in the cases discussed in section 

3.3.2, hence most of life reduction will be due to steady state conditions. It can also be seen that more 

thermal transients can relieve the electro-thermal stress during insulation life, for two reasons: 

1) both LT→HT and HT→LT transients are characterized by a lower average temperature of the 

various points within the insulation compared to the unperturbed conditions of the hot cable 

at rated temperature, thereby reducing the thermal stress and aging within the insulation. 

2) both LT→HT and HT→LT transients extend the amount of time characterized by 

intermediate field distributions, when a lower maximum value of the field is found in the 

insulation (Figure 3.21). As a result, life in the insulation is increased for longer values of the 

thermal time constant 𝜏𝑇 (Figure 3.22).  

  

(a) (b) 

Figure 3.20 Life distribution in p.u. (base value is design life LD) inside the insulation thickness in linear scale for 

several numbers of electrical transients for a hot reference cable (𝑟𝑖 = 21.4, 𝑟𝑜 = 39.7 mm) and (a) 𝑎 = 0.042 and (b) 

𝑎 = 0.084. 
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The effect on life of thermal transients due to exclusively thermal stresses at different values of 𝜏𝑇 

can be noticed considering the insulation at 𝑟 ≈ 30 𝑚𝑚, where the electric field is mostly constant 

during thermal transients (Figure 3.21). Considering this point, life increases by 67% in the case of 

𝜏𝑇 = 3 ℎ due to the sole contribution of an average thermal stress reduction HT→LT.  

Figure 3.23 shows the effect of temperature transients on life map, with different time constants. Due 

to the positive effects of longer thermal time constants, smaller design geometries of the cable are 

allowed for the same life. In other words, equi-life loci are shifted toward smaller insulation 

thicknesses. Life minimum (hence cable life) in the reported case is always found in the outer 

insulation, but it should be mentioned that this is not the case when no field inversion is present at 

steady state (i.e. materials with lower values of the temperature coefficient 𝑎, as can also be seen in 

the Section 3.3.4).  

 

 

  

(a) (b) 

 

Figure 3.21 Electric field during thermal transients (a) T1→ T2 transient and (b) T2→ T1 transient. 

 

 

 
 

Figure 3.22 Life distribution in p.u. (base value is design life LD) inside the insulation thickness for different values 

of the thermal time constant τ_T 
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3.3.4 Electro-thermal transients: 

Figure 3.24 illustrates the combined effect of electrical and thermal transients on the total life of cable. 

One thermal and one electrical transients per day are applied in a non-simultaneous way on the 

reference cable, considering 𝑎 = 0.042  (Figure 3.24(a)) and 𝑎 = 0.084 (Figure 3.24(b)).  Results 

show, in the red curve, the combined effect of electrical and thermal transients on the life of different 

points distributed within the insulation. The case represented in Figure 3.24(a) shows that the 

combination of electrical and thermal transients does not induce a substantial difference on cable life, 

since its minimum is always found near the inner insulation, and the effect of electro-thermal 

transients are similar to that of the sole electrical transients. This can be explained reminding that 

most of life loss of the inner insulation is occurring during transients, when local field is increased. 

A closer look reveals a mild increase of life minimum in the case of electrothermal transients, due to 

slightly lower average temperatures experienced by the insulation during life (which is the reason 

behind the life increase observed with purely thermal transients). Life near the outer insulation is, on 

the other hand, higher in the presence of combined transients since it will benefit from both the local 

electric field reduction due to the electrical part of transients, and an average lower temperature due 

to the thermal part of transients. As can be noticed, life distribution after combined transients is 

monotonically increasing since both thermal and electrical stresses are generally decreasing with the 

considered radius. On the other hand, the case of Figure 3.24(b) shows that life distribution following 

combined transients can also be non-monotone. That is the case when the average electric stress is 

distributed in a non-monotone manner (as mentioned in Section 3.3.2), while thermal stress is 

monotonous. As a result, life of insulation near the inner conductor is, as before, similar for both the 

 
 

Figure 3.23 The effect of thermal transients on the life map. 
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electrical and combined transients, for the same reason discussed above. On the other hand, results 

closer to the outer regions are mostly similar to life in the case of thermal transients, since the 

influence of electrical transients is negligeable (notice that in Figure 3.24(b) life with and without 

electrical transients are practically the same in those regions). To further emphasize the role played 

by electrical transients, the quite severe – and far from reality, see above - case where 10 electrical 

transients per day take place throughout the cable life (combined or not with thermal transients) has 

also been considered in Figure 3.24(b). In this case, the cable life at inner insulation is dramatically 

reduced with respect to design life. It must be noticed that this study shows the effect of transients on 

only electrothermal life of cable. Other types of stress are out of the scope of this study. In fact, 

thermal load cycles cause consecutive heating (expansion) and cooling (contraction) of the cable 

components, resulting in radial and circumferential stresses in the insulation [67].  

 

 

 

 

3.4 Discussion: 

The comprehensive Figure 3.25 illustrates the effects on the feasible design area of HVDC cable life 

map when varying the 6 parameters analyzed, i.e., Tmax, ∆Tmax, 𝜌𝑇,𝑠𝑜, U0, a and b. Tmax decrease shifts 

its limit toward greater conductor dimension (rightward). ∆Tmax decrease rotates its limit clockwise, 

i.e., toward thinner insulation and lower conductor temperature. 𝜌𝑇,𝑠𝑜 rise shifts Tmax limit quasi-

parallelly toward greater conductor and outer insulation radii, which reduces the conductor 

temperature for the same rating. Rated voltage rise, for the same ampacity, shifts the whole feasible 

design area upward, i.e., toward greater conductor radius, outer insulation radius and insulation 

  

(a) (b) 

Figure 3.24 Total life of a hot reference cable with combined non-simultaneous electrical and thermal transients for (a) 

𝑎 = 0.042 and (b) 𝑎 = 0.084. 
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thickness, all together. The increase in field coefficient of electrical conductivity b slightly shifts the 

equi-life points downward in the life map, i.e., toward smaller conductor and outer insulation radii. 

On the contrary, increasing temperature coefficient of electrical conductivity a shifts the equi-life 

points in the life map upward, i.e., toward greater conductor radius, insulation thickness and outer 

insulation radius, all together. 

 

 

The field enhancement in the inner insulation due to electrical transients leads to life reduction of the 

cable. This shifts the equi-life loci toward greater cable radii. A material characterized by lower 

temperature coefficient of electrical conductivity, a, enhances this detrimental effect due to an 

increased electrical time constant of the dielectric, requiring longer time to reach stability (hence an 

extension of high local stress conditions).  Conversely, thermal transients relieve the average thermal 

stress applied on the insulation, increasing insulation life and extending feasibility towards smaller 

cables. The effects of the combination of those transients are dependent on two separate contributions: 

one negative, from the electrical part of the transient, and one positive, from the thermal part of the 

transient. The resulting cable life is generally similar to the one found after an equal amount of purely 

electrical transients, with minor benefits from temporary temperature reduction. 

  

 
 

Figure 3.25 Effect of variation of Tmax, ∆T, 𝜌𝑇,𝑠𝑜, Jmin, voltage, a and b on the feasible design area of HVDC cables. 
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Chapter 4 

 

Thermal stability in HVDC cables 
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4.1 Introduction: 

High voltage direct-current (HVDC) cables have progressively been used in high voltage (HV) 

transmission systems to meet the increasing energy demand [2]. For this reason, cable manufacturers 

are working on innovative materials to withstand higher voltages to meet the increasing demand. So 

far, HVDC cables have been qualified at rated voltages up to 640 kV [31]. The increase in both the 

applied voltage and the electric field justifies the need to investigate the insulation losses (i.e., 

dielectric losses or leakage current losses), which may lead to temperature rise and in some cases to 

thermal instability (thermal runaway) [68]. In AC cables, insulation losses are caused not only by the 

leakage (conduction) of current through the dielectric material, but also by dielectric polarization 

losses—mainly associated with dipolar hysteresis losses—which tend to overwhelm conduction 

losses. On the contrary, in DC cables, insulation losses are fully driven by leakage current [2]. 

Intrinsic thermal instability was studied by Whitehead and O’Dwyer [69],[70]. They worked on thick 

plane insulations with a constant boundary temperature, which is not fully comparable to this study 

where the temperature profile is transient according to CIGRÉ Technical Brochure 496 [29] for a 

cable buried in soil (not a constant boundary temperature). Whitehead found that intrinsic thermal 

instability occurs at a critical temperature rise (due to only insulation losses) as low as 10 °C [69]. 

Fallou [71], Brazier [72] and Jeroense and Morshuis [56] studied the so-called “interactive” thermal 

instability of cables, which occurs in the presence of thermal interaction of the cable with the outer 

environment. The authors in [56] studied the interactive thermal instability of 450 kV paper-insulated 

cable and found that the insulation losses become significant for sheath temperatures >70 °C, and 

interactive thermal instability becomes inevitable for sheath temperatures >83 °C. Eoll first 

introduced and studied the intrinsic instability of HVDC cables, which can occur even in the absence 

of thermal interaction with the outer environment [7]. Reddy et al. also studied the intrinsic thermal 

instability of HVDC cables, considering a 21.7-mm-thick Cross-Linked Polyethylene XLPE-

insulated cable at a constant temperature of the metallic screen/sheath, fixed at 25 °C to study the sole 

effect of the electric field on the thermal stability; the authors calculated the intrinsic Maximum 

Thermal Voltage (i.e., the maximum DC voltage above which no stability is achieved) and found that 

interactive Maximum Thermal Voltage will certainly have a lower value. They found out that the 

critical temperature rise, at which the intrinsic instability takes place, depends almost solely on the 

insulating material [73]. 

In this chapter, the intrinsic thermal instability will be investigated—due to either the electric field 

rise or to the effect of cable insulation characteristics—in XLPE-insulated HVDC cables buried in 

soil. Compared to the above-mentioned papers, the case study tackled first considers a constant 

interaction of the cable buried in soil having a constant thermal resistivity (neglecting soil drought).  
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Furthermore, for the sake of completeness and comparison this study considers two different voltage 

ratings of XLPE-insulated HVDC cables, 320 kV and 500 kV, which involve different insulation 

thicknesses, so as to analyze the effect of different cable insulation designs. 

Thermal stability is investigated from two intrinsic perspectives: 

• The insulation material characteristics, focusing here on the electrical conductivity 

coefficients of both temperature and electrical stress, a and b, respectively. 

• The electric field variation as a result of the applied voltage variation. This might happen 

during testing at very high and/or increasing voltage levels, e.g., during thermal stability tests. 

This study also aims at finding the critical values of the conductivity coefficients which guarantee a 

thermally stable operation of the cable under different applied voltages (and, in turn, in different 

electric fields). 

 

4.2 Coupled temperature and electric field calculations 

Thermal instability of both 320 and 500 kV XLPE-insulated HVDC cables are investigated as a 

function of cable insulation characteristics, represented by the temperature and stress coefficients (a, 

b) of electrical conductivity of the extruded dielectric and the insulation thickness. The effects of 

these parameters on temperature rise due to insulation losses and, consequently, on the thermal 

instability. The flow chart presented in Figure 4.1 explains step by step the algorithm implemented 

for such assessment. First, the temperature profile of load cycles according to CIGRÉ Technical 

Brochure 496 [29] is calculated using the CIGRE transient thermal network model following the 

guidelines of Standard IEC 60853-2 [5]. Then, the transient electric field inside the insulation of the 

cable subjected to load cycles is calculated using both Maxwell’s Equations (1.27) – (1.29) and the 

macroscopic conductivity Equation (1.30), followed by the calculation of insulation losses and the 

resulting temperature rise. Finally, the thermal stability diagram is found for both studied cables. It is 

noteworthy in Figure 4.1 that in this study the temperature profile is updated with iterations at each 

time instant. 
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4.2.1 Calculation of insulation losses: 

The temperature rise in the insulation can be found by solving the heat transfer Equation (4.1) in 

cylindrical coordinates in the steady-state form (𝜕𝑇 𝜕𝑡⁄ = 0): 

 

 1

𝑟

𝑑

𝑑𝑟
(

𝑟

𝜌𝑡ℎ

𝑑𝑇

𝑑𝑟
) = −𝑤𝑑 (4.1)  

 

where r is the generic radial coordinate in cable insulation, 𝜌𝑡ℎ is the thermal resistivity of the 

insulation, T is the temperature, 𝑤𝑑 is the per unit volume power generated due to insulation losses; 

it represents the source term in the equation and can be found as follows: 

 

 
𝑤𝑑 = 𝑱. 𝑬 = 𝑱.

𝑱

𝜎
=

𝐽2

𝜎
=

𝐼2

(𝐴)2. 𝜎
=

𝐼2

(2𝜋𝑟)2. 𝜎
 (4.2)  

 
 

Figure 4.1 Flowchart shows the algorithm implemented for the calculation of the electric field, insulation losses and 

thermal stability 
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where J is the current density inside the insulation, A is the lateral surface area of one meter length of 

the cylindrical cable at a generic radius r (see Figure 4.2), and  is the electrical conductivity of the 

insulation at the radial coordinate r. 

 

 

 

By manipulating (4.1), one obtains: 

 

 𝑑2𝑇

𝑑𝑟2
+

1

𝑟

𝑑𝑇

𝑑𝑟
= −𝜌𝑡ℎ𝑤𝑑 (4.3)  

 

where the negative Right-Hand Side RHS refers to the reduction of temperature in the direction of 

which the finite difference method (FDM) is used to solve (4.3), namely, the temperature variation 

from the inner-insulation towards the outer-insulation is always a temperature drop. The total 

dielectric losses in the unit length of cable insulation can be obtained using the following equation, 

which is derived by integrating (4.2) in cylindrical coordinates: 

 

 

𝑊𝑑 = ∭ 𝑤𝑑𝑟 𝑑𝑟 𝑑𝜑 𝑑𝑧

1 2𝜋 𝑟𝑜
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= ∬
𝐼2
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𝑟 𝑑𝑟 𝑑𝜑 

2𝜋 𝑟𝑜

𝜑=0 𝑟𝑖 

 (4.4)  

 

 

𝑊𝑑 =
 𝐼2

2𝜋
∫

1

𝑟. 𝜎
 𝑑𝑟  

 𝑟𝑜

 𝑟𝑖 

 (4.5)  

 

 
 

(a) (b) 

Figure 4.2 The conductor’s and insulation’s current densities from (a) 3D perspective, (b) cross-sectional 2D 

perspective. 
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As a result of the discretization in r axis, the electrical conductivity is considered constant within the 

infinitesimal differences dr. Consequently, Equation (4.5) can be simplified to an integrable form in 

each infinitesimal interval ∆𝑟 = 𝑟𝑖+1 − 𝑟𝑖, as follows: 
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𝐼2

2𝜋
∑

1

𝜎𝑖
∫

𝑑𝑟

𝑟
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1

𝜎𝑖
  [ ln (

𝑟𝑖+1

𝑟𝑖
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𝑛

𝑖=1

 (4.6)  

 

Boundary conditions: 

1) Inner boundary conditions: Neumann boundary conditions are applied to the inner insulation 

near the conductor surface. The RHS of (4.7) refers to the heat flowing from the conductor to 

the insulation due to conductor losses in the r axis where the temperature drop takes place. 

 

 𝑟

𝜌𝑡ℎ

𝑑𝑇

𝑑𝑟
|
𝑟 = 𝑟𝑖𝑛

=
𝑊𝑐

2𝜋
 (4.7)  

 

 
−𝑇1 + 𝑇2 =

∆𝑟 𝜌𝑡ℎ  𝑊𝑐

2𝜋 𝑟𝑖𝑛
 (4.8)  

 

where T1 and T2 are the temperatures at the first and second points of the mesh in the inner insulation. 

2) Outer boundary conditions: Neumann boundary conditions are applied to the outer insulation, 

where the heat flow in the direction of the r axis consists of both the heat generated due to 

conductor losses and the heat generated due to insulation losses. A ghost point n + 1 is placed 

at the metallic/screen sheath whose temperature is calculated using (4.10). This gives a more 

realistic simulation of heat flow in the thermoplastic sheath (which, contrary to the metallic 

sheath, has a non-negligible thermal resistance) and in the surrounding soil resulting in a more 

realistic metallic sheath temperature (see both Annex C and Annex D). 

 

 𝑟

𝜌𝑡ℎ

𝑑𝑇

𝑑𝑟
|
𝑟 = 𝑟𝑜𝑢𝑡

= −(
𝑊𝑐

2𝜋
+

𝑊𝑑

2𝜋
) (4.9)  

 

 𝑇𝑛+1 = (𝑊𝑐 + 𝑊𝑑)(𝑅𝑇,𝑆ℎ + 𝑅𝑇,𝑆𝑜) (4.10)  
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where 𝑅𝑇,𝑆ℎ is the thermal resistance of the thermoplastic sheath, 𝑅𝑇,𝑆𝑜 is the thermal resistance of 

the surrounding soil. 

 

4.2.2 Calculation of dielectric loss coefficient: 

According to IEC Standard 60287, the temperature drop can be re-written as in (4.11) [4]: 

 

 ∆𝜗 = 𝑊𝑐(𝑅𝑇,𝑑 + 𝑅𝑇,𝑠ℎ + 𝑅𝑇,𝑠𝑜) + 𝑊𝑑(𝛽𝑑𝑅𝑇,𝑑 + 𝑅𝑇,𝑠ℎ + 𝑅𝑇,𝑠𝑜)

= ∆𝜗𝑐𝑙 + ∆𝜗𝑑𝑙 
(4.11)  

 

where: ∆𝜗𝑐𝑙 = 𝑊𝑐(𝑅𝑇,𝑑 + 𝑅𝑇,𝑠ℎ + 𝑅𝑇,𝑠𝑜) is the temperature drop over the whole cable and soil layers 

due only to the conductor losses, ∆𝜗𝑑𝑙 = 𝑊𝑑(𝛽𝑑𝑅𝑇,𝑑 + 𝑅𝑇,𝑠ℎ + 𝑅𝑇,𝑠𝑜) is the temperature drop over 

the whole cable and soil layers due only to the insulation losses, and 𝛽𝑑 is the dielectric loss 

coefficient. It is only added to the insulation temperature drop term, because only a part of insulation 

losses contribute in the temperature drop inside the insulation. The other part of the insulation losses 

contributes instead in heating the entire insulation cross-section. 

By manipulating (4.11), one obtains the following Equation (4.12) which is used to calculate the 

dielectric loss coefficient of DC cable insulation: 

 

 
𝛽𝑑 =

∆𝜗𝑑𝑙 − 𝑊𝑑(𝑅𝑇,𝑠ℎ + 𝑅𝑇,𝑠𝑜)

𝑊𝑑 𝑅𝑇,𝑑
 (4.12)  

 

By calculating 𝛽𝑑, the temperature drops in the insulation, sheath and soil, due to both conductor and 

insulation losses, can be found using (17)–(19), respectively: 

 

 𝛥𝜗𝑑 = 𝑅𝑐𝑐𝐼𝑐
2𝑅𝑇,𝑑 + 𝑊𝑑𝛽𝑑𝑅𝑇,𝑑 (4.13)  

 

 𝛥𝜗𝑠ℎ = 𝑅𝑐𝑐𝐼𝑐
2𝑅𝑇,𝑠ℎ + 𝑊𝑑𝑅𝑇,𝑠ℎ (4.14)  

 

 𝛥𝜗𝑠𝑜 = 𝑅𝑐𝑐𝐼𝑐
2𝑅𝑇,𝑠𝑜 + 𝑊𝑑𝑅𝑇,𝑠𝑜 (4.15)  

 

where 𝐼𝑐 is the conductor’s current [A], 𝑅𝑐𝑐 is the DC electrical resistance of the conductor operating 

at the temperature 𝜗𝑐 as defined in Equation (1.9). 
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4.2.3 Calculation of the de-rating factor: 

Since the load current and its heat flow inside the insulation play an important role in the stability of 

HVDC cables, the calculation of the de-rating factor is needed to accurately define the stability limits. 

The power generated by the conductor current per meter cable is given by (4.16): 

 

 𝑊𝑐 = 𝑅𝑐𝑐𝐼𝑐
2 (4.16)  

 

Accordingly, the de-rating factor can be calculated using (22): 

 

 

𝐷𝐹 =
𝐼𝑐
𝐼𝑐,𝑛

= √
𝑊𝑐,𝑛 − 𝑊𝑑

𝑊𝑐,𝑛
 (4.17)  

 

where 𝑊𝑐,𝑛 [W/m] are conductor losses per meter cable at the rated current 𝐼𝑐,𝑛 [A], 𝑊𝑑 are the 

insulation losses per meter cable [W/m], 𝐼𝑐 [A] is the de-rated conductor current equivalent to the 

conductor losses considering insulation losses 𝑊𝑐,𝑛 − 𝑊𝑑 [W/m]. 

 

4.2.4 Thermal stability conditions: 

The stability study can be carried out using the so-called thermal stability diagram (Figure 4.3). The 

diagram consists of two basic curves: 

1. The heat generation curve (red solid curve in Figure 4.3) refers to the heat generated within 

the cable due to both insulation losses and conductor losses 𝑊𝑑 + 𝑊𝑐. 

2. The heat dissipation line (blue solid line in Figure 4.3) refers to the heat dissipated outside the 

cable through the insulation, thermoplastic sheath and soil, 𝑊𝑜. This full straight line is 

defined using two parameters: 

• The thermal resistance of the insulation, thermoplastic sheath and soil, represented by the 

reciprocal of the slope of the dissipation line. The higher the thermal resistance, the lower 

the slope, resulting in a higher temperature w.r.t the same losses, see dashed blue line in 

Figure 4.3; 

• The ambient temperature, the intersection of the dissipation line with the temperature axis. 

As the ambient temperature rises, the dissipation line shifts in the direction of the 

temperature rise without variation in the slope, see dash-dotted blue line in Figure 4.3. 
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Thermal instability occurs when thermal equilibrium cannot be achieved. A stable thermal 

equilibrium is reached only when the total heat of both conductor and insulation losses is equal to the 

heat dissipated from the cable [72]. This condition known as stable equilibrium is shown in Figure 

4.3 in the point (A), i.e., the first intersection between the generation curve and the dissipation line. 

Two cases of thermal instability were considered: 

 

 𝑊𝑜 > 𝑊𝑑𝑖𝑠𝑠 (4.18)  

 

 𝑊𝑜 = 𝑊𝑑𝑖𝑠𝑠 , 
𝜕𝑊𝑜

𝜕𝑇


𝜕𝑊𝑑𝑖𝑠𝑠

𝜕𝑇
 (4.19)  

 

where 𝑊𝑜 stands for the total losses [W/m], 𝑊𝑑𝑖𝑠𝑠 is the heat dissipation [W/m]. The second case of 

thermal instability refers to the so-called “unstable equilibrium” in which an equilibrium exists but 

even a slight temperature rise leads eventually to instability. The latter is shown in Figure 4.3 in the 

point (B). 

Thermal instability is of two types: 

 

1. Intrinsic thermal instability:  

In intrinsic thermal instability, there is no external interaction with the cable, namely no 

interaction between the cable layers and the outer environment. This type of instability 

depends on the characteristics of the insulation (dielectric material and insulation thickness) 

and on the electric field, regardless of the external thermal resistance variation. This type of 

instability is not associated with a runaway increase in the temperature of the metallic sheath 

(which in practice coincides with the temperature in the outer insulation surface, since the 

 
 

Figure 4.3 Thermal stability diagram. 
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thermal resistance of the metallic sheath is negligible) unlike the interactive instability [7]. 

Thus, it occurs even at ambient temperature in the case of unloaded cable [73]. Referring to 

Figure 4.3, it can be said that intrinsic thermal instability corresponds to shifting the red curve 

upwards until an intersection with the blue curve—namely thermal equilibrium—cannot be 

achieved anymore, even by moving the operating point along the red curve to the right. 

 

2. Interactive thermal instability:  

In interactive thermal instability, an interaction between the cable and the ambient leads to 

runaway if the equilibrium cannot be reached. In this type of instability, variation of external 

thermal resistance or variation in the ambient temperature are necessary for the runaway to 

take place [73]. Referring to Figure 4.3, it can be said that interactive thermal instability 

corresponds to shifting the blue curve to the right and/or tilting it downward until the 

equilibrium (intersection with the solid blue curve) cannot be achieved anymore. Indeed, 

Figure 4.3 shows that: 

i) for a value of the ambient temperature ≥Ta2 (dash-dotted line), equilibrium 

cannot occur, and thermal instability takes place; 

ii) the increase in the thermal resistance of the surrounding soil (dashed line) leads 

to inevitable thermal instability because the equilibrium cannot exist. 

Both intrinsic and interactive instability terminate with the same failure mechanism, which includes 

an extreme variation in the temperature distribution inside the insulation leading to an extreme rise 

of the electric field to values greater than the intrinsic dielectric strength of the insulation, and 

eventually the breakdown occurs [7]. 

 

4.3 Case study 

4.3.1 Characteristics of the HVDC cable: 

The main characteristics of the 320 kV and 500 kV HVDC cables are reported in Table 4.1. The 

thermal properties of the cable and the environment are reported in Table 4.2. 

 

Table 4.1 Characteristics of the HVDC cables under study. 

Parameter 500 kV Cable 320 kV Cable 

Rated power (bipolar scheme) (MW) 1920 1105 

Rated voltage (kV) 500 320 
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Conductor Material Cu Cu 

Insulation Material DC-XLPE DC-XLPE 

Relative permittivity 𝜀𝑟 2.3 2.3 

Rated conductor temperature (°C) 70 70 

Ambient temperature 𝜗a (°C) 20 20 

Conductor cross-section (mm2) 2000 1600 

inner insulation radius ri (mm) 27.2 24.6 

Insulation thickness (mm) 28.1 17.9 

Outer-insulation radius ro (mm) 55.3 42.5 

Design life LD (years) 40 40 

Design failure probability PD (%) 1 1 

Rated or design current (ampacity) Ic,n (A) 1920 1727 

 

Table 4.2 Thermal characteristics of the cables and the surrounding environment. 

 Thermal Resistivity 
Thermal Resistance 

500 kV 320 kV 

insulation 3.5 0.447 0.365 

Thermoplastic sheath 3.5 0.0421 0.054 

Soil 1.3 0.769 0.818 

 

4.3.2 Temperature profile calculations: 

The temperature profiles within the insulation of the 320 kV and 500 kV HVDC cable are calculated 

for the 24-h load cycles mentioned in CIGRÉ Technical Brochure 496 and prescribed during 

prequalification tests and type tests (see Figure 4.4). It is worth recalling briefly that the 24-h load 

cycles prescribed in [29] consist of at least 8 h of heating followed by at least 16 h of natural cooling, 

during at least the last 2 h of the heating period, a conductor temperature ≥ rated conductor 

temperature and a temperature drop across the insulation ≥ rated temperature drop shall be 

maintained. The insulation thickness is divided by n = 50 points into 49 layers which have a thickness 

∆𝑟 = 𝑟𝑖+1 − 𝑟𝑖 = (𝑟𝑜 − 𝑟𝑖) (𝑛 − 1)⁄ = 0.365 [𝑚𝑚] each. The time step is set to be 1 (s) that is found 

to achieve the stability of the algorithm especially for high values of the electric field and the 

conductivity. 
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4.3.3 Insulation characteristics: 

Many empirical models have been introduced in the literature to represent the relationship between 

electrical conductivity and both temperature and electric stress variations for different types of 

insulation [54]. However, as pointed out above, the empirical model suggested by Klein [6] has been 

used in this study (see Equation (1.30)). As far as this model is concerned, many values of 

conductivity coefficients a, b can be found in literature [54]; however, the set of values reported in 

[54] is considered in this study (see Table 4.3), of which the medium set of values corresponds to the 

XLPE, the low set of values corresponds to paper insulations and the high set corresponds to 

thermoplastic insulations. 

 

Table 4.3 The conductivity coefficients of HVDC cable insulation for different types of dielectrics. 

Type of Dielectric a (1/°C) b (mm/kV) 

Paper 0.074 0.018 ÷ 0.029 

Thermoset 0.084 ÷ 0.101 0.0645 

Thermoplastic 0.104 ÷ 0.115 0.034 ÷ 0.128 

 

Focusing on thermoset extruded dielectrics for HVDC cables, to which the XLPE insulation of the 

treated cables belong, let us take the medium set of values of conductivity coefficients aM = 0.084 

1/°C, bM = 0.0645 mm/kV as a reference. Due to the high sensitivity of the conductivity to a, b 

coefficients, more extreme values of a, b—which may fit future insulations—are considered in this 

 
 

(a) (b) 

Figure 4.4 The temperature profile of (a) 320 kV cable, (b) 500 kV cable at five points inside the insulation in the case 

of applying a 24-h load cycle according to CIGRÉ Technical Brochure 496. 
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study, by taking the medium set of values aM,bM as the base set (multiplier M = 1) and multiplying 

them by proper values of the multiplier M, as shown in Table 4. In more detail: 

- An extremely low set, aL,bL, is obtained by multiplying aM,bM by M = 0.5; 

- An extremely high set, aVH,bVH, is obtained by multiplying aM,bM by M = 2; 

- The interval [aL,bL ÷ aVH,bVH] is divided into 16 equally distributed sets of a,b values, each 

identified in Table 4.4 by the corresponding value of the multiplier M of the medium set 

aM,bM. 

 

Table 4.4 sets of coefficients a, b representing the characteristics of the insulating material. 

Classification Symbols of the a,b Set M (Multiplier of aM,bM) a (1/°C) b (mm/kV) 

Low set aL,bL 0.5 0.042 0.032 

 

0.6 0.05 0.0387 

0.7 0.059 0.045 

0.8 0.067 0.052 

0.9 0.076 0.058 

Medium set aM,bM 1 0.084 0.0645 

 1.1 0.092 0.071 

High set aH,bH 1.2 0.101 0.0774 

 

1.3 0.109 0.0839 

1.4 0.118 0.0903 

1.5 0.126 0.0968 

1.6 0.134 0.1032 

1.7 0.143 0.1097 

1.8 0.1512 0.116 

1.9 0.156 0.1225 

Very high set aVH,bVH 2 0.168 0.129 

 

 

4.4 Results 

4.4.1 Electric field distribution 

Figure 4.5 presents the electric field distribution inside the insulation for both 320 kV cable (Figure 

4.5(a)) and 500 kV cable (Figure 4.5(b)) during the first 24-h load cycle of the load cycle period 
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according to CIGRÉ Technical Brochure 496 at a voltage equal to rated voltage U0. Therefore, the 

electric field distribution in the first instance is a capacitive distribution. The DC electric field 

distribution for the cold cable is presented in the blue curve (24 h curve). 

In the simulations, different voltages—up to 4.5 times the rated voltage—are applied to the 320 kV 

XLPE-insulated cable, thereby obtaining the profiles within cable insulation of electric field, 

electrical conductivity and leakage current, shown in Figures 4.6–4.8, respectively. 

In more detail, Figure 4.6 presents the DC electric field profiles for (a) the cold cable at ambient 

temperature, (b) the hot cable (i.e., rated current flowing in the conductor, as prescribed in CIGRÉ 

Technical Brochure 496 for the 24-h load cycles of the high load period). The maximum mean electric 

field is ≈80 kV/mm in case of applied voltage = 4.5 U0; the electric field inversion phenomenon is 

observed in the hot cable (Figure 4.6(b)). Figure 4.7 demonstrates the effect of the applied voltage 

and temperature on the electrical conductivity in the insulation: it can be seen that the conductivity 

varies by [1.4 ÷ 2] orders of magnitude between the cold cable (Figure 4.7(a)) and the hot cable 

(Figure 4.7(b)). Moreover, it is worth noting that the conductivity of the inner insulation is much 

greater than that of the outer insulation for the hot cable due to the high temperature of the conductor. 

This difference in conductivity distribution inside the insulation is lesser in the cold cable because in 

this case the temperature is constant over the insulation and the quasi-capacitive electric field is the 

only variable quantity in the conductivity expression (1.30). Figure 4.7 also illustrates the effect of 

the applied voltage (i.e., the electric field) on the conductivity of XLPE insulation, which rises by 

≈1.5 orders of magnitude when rising the voltage from U0 to 4.5 U0. Figure 4.8 presents the leakage 

current for 320 kV XLPE-insulated cable for the considered applied voltages during the first 24-h 

load cycle of the load cycle period according to CIGRÉ Technical Brochure 496. It is clear that the 

leakage current increases by ≈2.5 orders of magnitude by applying 4.5 U0. 

 

  

(a) (b) 

Figure 4.5 The electric field distribution in the insulation of (a) 320 kV cable, (b) 500 kV cable, during the first 24-h 

load cycle of the load cycle period according to CIGRÉ Technical Brochure 496. 
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(a) (b) 

Figure 4.6 The DC electric field profiles in the insulation of the 320 kV cable for different applied voltages: (a) at the 

ambient temperature (cold cable), (b) in the high load period according to CIGRÉ Technical Brochure 496 (hot cable). 

  

(a) (b) 

Figure 4.7 The electrical conductivity profiles in y-log scale inside the insulation of the 320 kV cable for the different 

applied voltages: (a) at the ambient temperature (cold cable), (b) in the high load period according to CIGRÉ Technical 

Brochure 496 (hot cable). 
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4.4.2 Insulation losses 

Figure 4.9 shows the insulation losses during the first 24-h load cycle compared to the conductor 

losses in both linear and logarithmic y-scale for both the 320 kV and 500 kV cables subjected to many 

values of the applied voltage starting from U0, 1.45 U0 and 1.85 U0, which correspond, respectively, 

to the rated voltage, pre-qualification test (PQT) voltage and type test voltage (TT). It can be seen 

from Figure 10 that the insulation losses at rated voltage U0, PQT voltage = 1.45 U0 and TT voltage 

= 1.85 U0 are hardly noticeable compared to conductor losses, having maximum values of (0.06, 0.2, 

0.6 W), respectively, which can be deemed negligible compared to the conductor losses ≈40 W. 

Although TT voltage is the most severe condition to be continuously applied on the cable, higher 

values of the applied voltage are also considered to reach high enough values of insulation losses to 

cause thermal instability. It is evident that the insulation losses of the 500 kV cable are approximately 

1.5 times greater than that of the 320 kV cable (the same as the ratio between their insulation 

thicknesses). Therefore, the thicker the insulation is, the greater the insulation losses are. This ratio 

may be different according to the cable’s temperature and time during the load cycle, namely, this 

can be justified by the field inversion phenomenon which takes place in DC cables, during which the 

electric field in the outer insulation becomes greater than that in the inner insulation. 

 
 

Figure 4.8 The leakage current of the 320 kV cable in y-log scale for different applied voltages during the first 24-h 

load cycle of the load cycle period according to CIGRÉ Technical Brochure 496. 
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4.4.3 Temperature rise 

Many runs of the code have been performed to obtain the temperature rise in the insulation of the hot 

cable (i.e., with rated current flowing in the conductor) due to insulation losses —calculated according 

to Equations (4.1) – (4.10) — added to conductor losses. As a further verification, the results obtained 

have been also checked by calculating—in alternative to (4.2)—per unit dielectric losses as wd = 𝜎E2 

and the results have been found to be the same. Different values of a, b coefficients are considered to 

show the effect of the cable characteristics on the insulation losses and consequently on the 

temperature rise. 

It can be noticed from Figure 4.10 that the temperature rise due to insulation losses is strongly 

dependent on the values of conductivity coefficients of temperature and electric field for the 320 kV 

cable. In Figure 4.10(a) the low values of a, b (aL, bL) lead to weak dependency of the conductivity 

on the temperature and the electric field giving a temperature rise of 0.5 [°C] which is not enough for 

  

(a) 

 

(b) 

 

  
(c) 

 

(d) 

 

Figure 4.9 The insulation losses of (a,b) the 320 kV cable and (c,d) the 500 kV cable in both linear (a,c) and logarithmic 

(b,d) y-scale during the first 24-h load cycle of the load cycle period. 
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thermal runaway to take place. Figure 10(b) shows the case of aM, bM, where a considerable 

temperature rise due to insulation losses can be noticed; the temperature rise is negligible for rated 

voltage, PQT voltage and TT voltage, it increases by ≈ [2 ÷ 3] °C for 2.5 U0 and thereafter 

exponentially increases exceeding 30 °C for 4U0. Figure 10(c) shows the case of the high set aH, bH, 

in which even a moderate increase of the applied voltage with respect to U0 (e.g., PQT and TT 

voltages) leads to a temperature rise of [1 ÷ 3] °C; the temperature rise becomes ≈10 °C for an applied 

voltage equal to 2.5 U0, namely more than three times than in the case of aM, bM. 

Coming to the 500 kV cable in case of aM, bM—a set of conductivity coefficients which fits well on 

the average the overall behavior to XLPE insulating materials—in Figure 4.11 it can be noticed that 

the temperature rise is greater than that of the 320 kV cable, due to the greater insulation thickness—

since the electric field and the conductor temperature are similar in both cables. 
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(a) 

 
(b) 

 
(c) 

Figure 4.10 The temperature rise of the hot vable due to insulation losses added to conductor losses vs. the position 

within the insulation thickness for increasing values of applied voltages with 3 sets of conductivity coefficients: (a) aL, 

bL; (b) aM, bM; (c) aH, bH. 320 kV cable. 
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4.4.4 Dielectric loss coefficient 𝜷𝒅 

Figure 4.12 shows the values of 𝛽𝑑 for the 320 kV cable, obtained using relationship (4.12) calculated 

at each time step ∆𝑡 = 1 (𝑠) during the first 24-h load cycle of the load  cycle period after [29]. 

Similar curves are obtained for all values of applied voltages, all sets of a and b coefficients, as well 

as for the 500 kV cable. The capacitive electric field distribution at the beginning of the first load 

cycle gives a value of 𝛽𝑑 = 0.5, which agrees with the value of 𝛽𝑑 mentioned in IEC 60853-2 for AC 

cables. Then, it goes down within 30 min to fall within the range 𝛽𝑑 = [0.38 ÷ 0.4] which represents 

the typical range of values of 𝛽𝑑 for DC cables. As explained here below, this result is consistent with 

the well-known fact that the electric field of inner insulation in DC is lower than that in AC: this 

already holds for the unloaded cable (compare in Figure 4.5 the black curve = AC electric field vs. 

the blue curve = DC electric field at ambient temperature), but it holds a fortiori as the cable is loaded 

(see warmer color curves in Figure 4.5, corresponding to higher cable load and temperature). Thus, 

compared to AC cables, the insulation losses in DC cables move towards the outer insulation, i.e., 

they are lower in the inner insulation and higher in the outer insulation, as readily seen from the 

alternative expression of per unit volume dielectric losses: 

 

 𝑤𝑑 = 𝑱. 𝑬 = 𝜎𝐸2 (4.20)  

 

 
 

Figure 4.11 The temperature rise of the hot cable due to insulation losses added to conductor losses vs. the position 

within the insulation thickness for increasing values of applied voltages up to 4.5 times the rated voltage with the 

medium set of conductivity coefficients aM, bM. 500 kV cable.  
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(for the loaded cable at outer insulation the quadratic increase in losses due to the higher electric field 

overwhelms the decrease in losses due to the slight conductivity drop because of lower temperature). 

Now, by carefully inspecting Equations (4.11) and (4.12) it can be understood that, physically, the 

parameter 𝛽𝑑 represents the “equivalent”—from the viewpoint of the overall temperature drop across 

insulation ∆𝜗𝑑  —fraction of dielectric losses 𝑊𝑑 crossing the whole thermal resistance of the 

insulation, hence, it is the part of the dielectric losses which cause a temperature drop inside the 

insulation. Consequently, it is reasonable that 𝛽𝑑 is lower in DC than in AC, as dielectric losses in 

DC cables move towards outer insulation. By comparing the updated version of “Recommendations 

for Testing DC Extruded Cable Systems for Power Transmission at a Rated Voltage up to 500kV, 

CIGRÉ Technical Brochure 496, 2012.” [29] which is “Recommendations for testing DC extruded 

cable systems for power transmission at a rated voltage up to and including 800 kV, 2021” [74], it 

can be noticed that the minimum temperature drop inside the insulation thickness is also limited (in 

addition to the limit of the maximum temperature drop inside the insulation thickness). As a result, a 

minimum temperature drop inside the insulation thickness is required to ensure enough heat flux from 

the conductor towards the surrounding environment. 

 

 

 

4.4.5 Thermal stability diagram 

Figure 4.13 is the so-called “thermal stability diagram” of the 320 kV (Figure 4.13(a)) and of the 500 

kV (Figure 4.13(b)) cables for different values of applied voltage: with reference to Equations (4.18), 

and (4.19), it shows the insulation losses 𝑊𝑑 (colored curves) and the dissipation losses 𝑊𝑑𝑖𝑠𝑠 (black 

 
 

Figure 4.12 Dielectric loss coefficient βd during the first 24-h load cycle of the load cycle period after [29]. 320 kV 

cable.  
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straight line) on the y-axis as a function of the metallic sheath temperature Tsheath on the x-axis. The 

metallic sheath temperature in turn varies with conductor temperature according to the ∆𝜗𝑐𝑙 term in 

(4.11). From this diagram the so-called maximum thermal voltage (MTV) can be attained, namely 

the maximum value of the applied DC voltage above which no equilibrium is achieved in the design 

conditions of the environment. For both 320 kV and 500 kV XLPE-insulated cables, the medium set 

of conductivity coefficients (aM, bM) is considered for the sake of brevity. 

Figure 4.13 shows that the higher the applied voltage, the higher the insulation losses, which reduces 

the maximum (or critical) value of cable current Icrit that keeps the cable thermally stable. Icrit is 

obtained from the value of losses found on the y-axis as a complement of the insulation losses to the 

dissipation line. This implies a reduction in cable load current from the rated current in the design 

conditions of the environment, ID (cable ampacity), to critical current Icrit: such a load reduction is 

necessary to avoid thermal instability. 

Let us focus for the sake of illustration on Figure 4.13(a): for instance, in the absence of dielectric 

losses a metallic sheath temperature of 50 °C corresponds to a conductor temperature of 62.5 °C, as 

obtained from Equation (4.11) without insulation losses and for a conductor current lower than cable 

ampacity (note that conductor temperature in the absence of dielectric losses reaches 70 °C when 

conductor current is equal to cable ampacity and metallic sheath temperature is equal to 55 °C, see 

Figure 4.4(a)). In the case of applied voltage equal to 3.5 times the rated voltage = 1120 kV, the 

insulation losses are equal to 8.4 W (see point A in Figure 4.13(a)) and lead to temperature rise of 8.5 

°C in the inner insulation (again from Equation (4.11)). Then, as pointed out above, the critical value 

of cable current Icrit can be derived from the vertical distance along y-axis from the dissipation line 

(see point B in Figure 4.13(a)), which is ≈26 W and corresponds to a conductor temperature of 52 °C 

in the absence of insulation losses. However, this case falls within the “unstable equilibrium” 

expressed by conditions (4.19); namely, an equilibrium exists, but even a slight temperature rise leads 

eventually to instability, unless the cable is further underloaded. 
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For low applied voltages, in which two equilibrium points can be found, both conditions in Equation 

(4.19) need to be satisfied to reach the instability. In other words, to ensure thermal stability, a stable 

equilibrium must exist (𝑊𝑜 = 𝑊𝑑𝑖𝑠𝑠 & 𝜕𝑊𝑜 𝜕𝑇⁄ < 𝜕𝑊𝑑𝑖𝑠𝑠 𝜕𝑇⁄ ). Figure 4.13(a) shows that a stable 

thermal equilibrium exists up to 3U0 ≈ 1000 kV (54 kV/mm)—among the considered values of the 

applied voltages—for a fully loaded (i.e., conductor current equal to cable ampacity) 320 kV XLPE 

cable buried in soil. When higher voltages are applied, conductor current has to be progressively 

reduced with respect to cable ampacity to keep the cable thermally stable, until conductor current 

reaches zero at 4.5U0. Thus, in unloaded cable subjected to 4.5U0 no equilibrium between the 

insulation losses and the heat dissipation exists and thermal instability eventually occurs starting from 

a temperature rise equal to only 5 °C, then, raising the metallic sheath temperature and moving the 

operating point towards the direction of the metallic sheath temperature rise (to the right here) until 

an intersection between the generation curve and the dissipation line exists, if any. Otherwise, thermal 

instability will be inevitable as occurs anyway in case of 4.5U0, which is the first case of thermal 

instability, as in Equation (4.18). 

Coming now to Figure 4.13(b)—the same as Figure 4.13(a) but for the 500 kV cable (aM, bM)—the 

thermal runaway of intrinsic nature occurs at voltages slightly greater than 4.5 U0 ≈2250 kV, although 

the mean electric field necessary to reach thermal instability in unloaded cable is almost the same in 

both cables having different thicknesses. For lower voltages [2.5 ÷ 4] U0, it can be noticed from Figure 

4.13(b) that the insulation losses are greater than those of the 320 kV cable at the same voltages, with 

a more significant exponential rise. This implies more load reduction is required to avoid thermal 

instability, thus, worsening the stability and loading conditions. 

  

(a) (b) 

Figure 4.13 The thermal stability diagram for (a) the 320 kV cable and (b) the 500 kV cable for different applied 

voltages up to 4.5 times the rated voltage. 
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Figure 4.13(b) shows that a stable thermal equilibrium exists up to 2.5U0 = 1250 kV (45 kV/mm)—

among the considered values of the applied voltages—for a fully loaded 500 kV XLPE cable buried 

in soil. Thus, this voltage value can be deemed as the maximum thermal voltage of these cables. 

 

4.4.6 The effect of insulation characteristics 

For the sake of the generality of the obtained results, the results for different electrical conductivity 

characteristics of cable insulation are obtained as can be seen in Figure 4.14, which shows the 

insulation losses as a function of mean electric field in the insulation over a wide range of values of 

mean electric field (from the rated one up to 100 kV/mm) for different a, b coefficients (see Table 

4.4) at the maximum conductor losses (full load) for the 320 kV cable. This figure highlights the 

importance of the insulating material, represented here by the temperature and electric stress 

coefficients of electrical conductivity, on the thermal stability of the cable. The very high a, b 

coefficients give rise to very high insulation losses compared to conductor losses. Some thermoplastic 

materials tend to have a, b coefficients up to 0.15, 0.128, respectively, which is referred to as M = 1.8 

in Figure 4.14 and Table 4. According to the simulations summarized in Figure 4.14, materials having 

such characteristics would not have acceptable thermal stability properties for the insulation of HVDC 

cables. For materials having the so-called “high” values of a, b coefficients, namely aH, bH with M = 

1.2 in Table 4.4, the insulation losses are low up to TT voltage = 1.85 U0, then they exponentially 

increase for greater electric fields. Coming to the medium set of a, b coefficients, taken as a reference 

(M = 1 in Table 4.4) since they correspond to typical XLPE insulation for HVDC cables [54], it leads 

to a more stable behavior with low insulation losses up to E = 40 kV/mm which is a conservative 

value and greater than the electric field in case of type test at 1.85 U0 (the most severe DC voltage to 

be continuously applied to the cable in tests after [29]). For higher values of the electric field 

corresponding to a voltage up to 3U0, the insulation losses increase, however, a stable equilibrium 

can be attained; both stable and unstable equilibrium can be reached for voltages greater than 3U0 

(according to loading conditions); but instability becomes inevitable for field values corresponding 

to a voltage equal to or higher than 4.5U0. The lower set of values of a, b (M = 0.8, 0.9) which are 

typical of paper insulations [54] make the intrinsic thermal instability unlikely to take place even for 

high values of the electric field, say, higher than ≈70 kV/mm. The lowest set of values of a, b 

coefficients (which, to the best of the authors’ knowledge, does not correspond to any known 

insulating material used in HVDC applications, but is considered here for the sensitivity analysis), it 

does not give an insulation loss temperature rise greater than 6 °C for the highest electric field 

considered in this study. 
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4.4.7 De-rating factor 

Figure 4.15 demonstrates the de-rated conductor current, the so-called 𝐼𝑐 in Equation (4.16), (Figure 

4.15(a)) and the de-rating factor, DF in Equation (4.17), (Figure 4.15(b)) with respect to the applied 

voltage ranging from U0 to 3 U0. Greater voltages are not studied since 3.5U0 or higher voltages lead 

to unstable equilibrium at losses equivalent to the rated current 𝐼𝑐,𝑛 as discussed in Section 4.4.5 and 

shown in Figure 4.13. Figure 4.15 shows that at the rated voltage DF = 1, DF becomes lower than 

0.99 at ≈1.8 U0 and then it drops dramatically until the voltage 3U0 where it reaches a value DF = 

0.93 for 320 kV cable and DF = 0.88 for 500 kV cable. The results also clearly show that the 500 kV 

cable is more de-rated than the 320 kV cable for the same multiplier of the applied voltage. 

 

 
 

Figure 4.14 The insulation losses vs. the mean electric field in the insulation for different values of temperature and 

stress coefficients of electrical conductivity a, b as reported in Table 4.4 at the maximum conductor losses (full load). 

  

(a) (b) 

 

Figure 4.15 (a) The de-rated conductor current w.r.t times the rated voltage, (b) de-rating factor w.r.t times the rated 

voltage for both the 320 kV and 500 kV cables. 



120 
 

4.5 Discussion 

For the 320 kV cable, the 4.5U0 ≈ 1400 kV curve in Figure 4.13a refers to thermal instability of an 

intrinsic nature: no load current is required for instability to take place because of the extreme 

temperature rise inside the insulation without temperature runaway near the metallic sheath; in this 

case, the instability occurs even at the ambient temperature, because the insulation losses are enough 

to heat up the insulation and move the operating point towards higher temperatures (towards right on 

the red curve Figure 4.13) until the breakdown occurs due to the absence of any type of equilibrium. 

The insulation losses which lead to thermal instability can be found from Figure 4.13, then the 

resulting temperature rise is calculated from Equation (4.11) considering the value of βd = 0.4 to 

obtain ∆𝜗𝑑 = 5 °C at 𝜗𝑎 = 20 °C. This study shows that thermal instability occurrence is possible 

even at lower applied voltages because of its dependency on the load current. This value is lower than 

those found in the literature, which range between [8 ÷ 22] °C for a constant metallic sheath 

temperature fixed at the ambient temperature according to Whitehead, Eoll and Reddy. Reddy et al. 

found that the maximum thermal voltage is equal to 1300 kV at a rated current = 1400 [A] for a 17.9-

mm-thick XLPE cable. The soil environment can be a reasonable justification of this difference. 

Coming to the 500 kV cable, the results of this study show an increase in the insulation losses in the 

case of 500 kV cable compared to the 320 kV cable. Those results are approximately consistent with 

Reddy’s results in which the intrinsic maximum thermal voltage increases with the insulation 

thickness to reach a value ≈1800 kV for an insulation thickness ≈28 mm under load, whereas for the 

500 kV cable, the intrinsic instability is guaranteed for applied voltages greater than 2250 kV even in 

unloaded cable. (The results are not fully comparable due to the difference in the inner insulation 

radius). Another interesting result (see Figure 4.13) is that the mean electric field, necessary for 

intrinsic thermal runaway to take place ≈4.5 U0, is not noticeably affected by the variation of the cable 

thickness and this result is consistent with Reddy et al. [73]. The results shown in Section 4.5 lead to 

the conclusion that the greater the insulation thickness is, the more underloading is required to sustain 

the stability.The most important novelty in this study is the relationship between insulation losses and 

the conductivity coefficients of temperature and electric field, a, b, for different electric fields up to 

100 kV/mm, which has not been extensively studied in the literature so far, mainly due to the lack of 

available values of a, b. The results show high dependency of the insulation losses on the electrical 

conductivity coefficients of temperature and electric field. The calculation of the value of dielectric 

loss coefficient 𝛽𝑑 for DC cables compared to AC cables is also another novelty in this study, making 

the temperature calculations possible if the insulation losses are known. Furthermore, the dielectric 

loss coefficient for DC cables is found to be βd_DC = 0.4 which is lower than its value for AC cables 

βd_AC = 0.5. The latter highlights the fact that thermal instability is critical in DC cable. 
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Chapter 5 

 

Models for electrical conductivity 
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5.1 Introduction: 

DC electrical conductivity is considered one of the most critical parameters in determining the 

validity of a certain insulating material in DC systems. The main reason is the dependency of the 

electric field distribution on the conductivity (which in turn depends on both the temperature and the 

electric field) in DC cable systems as the poling DC field causes space charge mobility, trapping 

and/or de-trapping inside the cable insulation hence changing the capacitive electric field distribution 

into more complicated field distribution, dissimilar to the AC system where the electric field is still 

capacitive due to the absence of such space charge accumulation and mobility [75]. Physical models 

for describing the space charge behavior inside the insulation have been introduced with the proper 

fitting parameters to the space charge measurements (e.g., bipolar charge transport equation) [76]. 

Another simpler method for describing the space charge behavior is to be represented by the electrical 

conductivity in a phenomenological way, where the electrical conductivity is represented by a closed-

form function to the temperature and electric field, then the charge density can be calculated as the 

charges accumulated at the discontinuities of permittivity and conductivity from Equation (5.1) [2]. 

The former methods are called physical (or microscopic) models, while the latter are called 

phenomenological (or macroscopic) models for DC electrical conductivity.  

 

 𝜌 = 𝐽. ∇ (
𝜀

𝜎
) (5.1) 

 

While physical models are mainly used in numerical calculations in the full cables and accessories 

(joints and terminations) as a compromise with the difficulty in both finding its fitting parameters and 

its application, the macroscopic models are mainly directed to the applications where preliminary 

field calculations are required (e.g., cable design and standardization) due to its simplicity in both 

finding the fitting parameters and its application. In this chapter, the experimental conductivity 

measurements performed by L. Boyer et. al. in SuperGrid institute in [77] are fit to the macroscopic 

DC conductivity models mostly found in the literature. Furthermore, the latter models are modified 

in such a way that the experimental data have a better fit to those new models. 

 

5.2 Theoretical: 

The fitting method used in this study is the least squares in which coefficients of the best fit are 

obtained by minimizing the residual (i.e., the difference between the fit and the data), as follows: 

 

 𝑟𝑖 = 𝑦𝑖 − �̂�𝑖 (5.2) 
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 min (𝑆) = 𝑚𝑖𝑛 [∑𝑟𝑖
2

𝑛

𝑖=1

] = 𝑚𝑖𝑛 [∑(𝑦𝑖 − �̂�𝑖)
2

𝑛

𝑖=1

] (5.3) 

 

Where n is the number of data points. 𝑆 is the sum of squares to be minimized. 𝑟𝑖 are the residuals of 

the 𝑖’th data point. 𝑦𝑖 is the 𝑖’th data. �̂�𝑖 is the 𝑖’th fit to data. 

The electrical conductivity in DC cables are described by non-linear equations. Therefore, a non-

linear least-squares method will be used in this application where the coefficients cannot be estimated 

using simple matrices. Hence, an iterative method is used as follows: 

- Start with an initial estimate of each coefficient considered in the model based on the 

experience with fitting of similar models found in the literature. 

- Produce a fitted surface for the current set of coefficients. 

- Adjust the set of coefficients using one of the following algorithms: 

1) Levenberg-Marquardt: it is usually used when coefficients constraints are not provided. 

2) Trust-region: it is more efficient but it requires coefficients constraints to be provided. 

- Produce new fit and iterate until a minimum is found. 

 

5.3 Application: 

5.3.1 Leakage current measurements and conductivity calculation: 

Boyer et. al have performed current measurements on a cable with 5-mm-thick XLPE insulation in 

[77]. The current measurement was carried out by the means of a shunt resistor between the outer 

screen and the ground pit at three temperatures i.e., 19°C, 45°C and 75°C in 

polarization/depolarization cycles with a minimum duration of 1 hour each under applied voltages 

ranging between 15 kV and 165 kV. The leakage current was measured by summing the averaged 

values over the last 10 minutes of each polarization or depolarization stage. To calculate the 

conductivity, the electric field is assumed capacitive when the time constant is great enough to keep 

a quasi-capacitive field distribution within the insulation thickness during polarization or 

depolarization stages. The latter assumption becomes not accurate at high fields and/or temperatures 

(i.e., the green points in Figures 5.1 and 5.2). 

 

 𝜎 =
𝐽

𝐸
=

𝐼

2𝜋𝑟𝑙
.
𝑟 𝑙𝑛(𝑟𝑜 𝑟𝑖⁄ )

𝑈
=

𝐼 𝑙𝑛(𝑟𝑜 𝑟𝑖⁄ )

2𝜋𝑙 𝑈
 [𝑆/𝑚] (5.4) 
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where 𝜎 is the apparent conductivity [S/m], 𝑟𝑖 is the inner-insulation radius [m], 𝑟𝑜 is the outer-

insulation radius [m], 𝑈 is the applied voltage [V], 𝑙 is the length of cable in [m], 𝐼 is the measured 

leakage current [A] 

 

 

 

 
 

Figure 5.1 The time to stability required to reach a resistive field distribution inside the cable insulation for different 

voltages and temperatures. After [77] 
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5.3.2 Macroscopic conductivity models: 

Model 1: 

The empirical model first introduced by Klein in [6] which has exponential dependencies on both 

temperature and electric field: 

 

 𝜎 = 𝜎0 𝑒𝑥𝑝(𝑎𝑇 + 𝑏𝐸) (5.5) 

 

T and E are independent variables. 𝜎 is a dependent variable.  𝜎0, 𝑎, and 𝑏 are the parameters to be 

fit. 

 

Model 2: 

This model is similar to Model 1, however, the field coefficient is assumed to have a linear function 

with respect to the temperature to represent the a mutual increase of the conductivity due to both the 

 
 

Figure 5.2 The apparent conductivity calculated for different voltages and temperatures. After [77] 
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temperature and the field together. This synergism is represented in this model by the coefficient c. 

Model 2 has also exponential dependencies on both temperature and electric field, as follows: 

 

𝜎 = 𝜎0 𝑒𝑥𝑝(𝑎𝑇 + (𝑏 + 𝑐𝑇)𝐸) (5.6) 

 

where T and E are independent variables. 𝜎 is a dependent variable.  𝜎0, 𝑎, b, and 𝑐 are the parameters 

to be fit. 

 

Model 3: 

This empirical model can be also found in the literature, it has an exponential dependency on the 

temperature and a power dependency on the electric field: 

 

𝜎 = 𝜎0 𝑒𝑥𝑝(𝑎𝑇)𝐸𝛾 (5.7) 

 

where T and E are independent variables. 𝜎 is a dependent variable.  𝜎0, 𝑎, and 𝛾 are the parameters 

to be fit. 

 

Model 4: 

In this model the dependency of the conductivity is Boltzmann- (or Arrhenius-) like on the 

temperature whereas it is a quasi-hyperbolic sine function with respect to the electric field. 

 

𝜎 = 𝜎′ 𝑒𝑥𝑝 (−
𝐺𝑎

𝑘𝐵𝑇
) 𝑠𝑖𝑛ℎ(𝑐𝐸). 𝐸𝛾 (5.8) 

 

where T and E are independent variables. 𝜎 is a dependent variable.  𝜎′, 𝐺𝑎, 𝑐, and 𝛾 are the parameters 

to be fit. 𝐺𝑎 is the thermal activation energy governing the temperature dependence of the 

conductivity (eV), 𝑘𝐵 is Boltzmann constant 8.62 × 10−5 (eV/K). Although this model is also 

phenomenological as the other four models, its dependencies on the temperature and the electric field 

are related to the physical processes of the charge carriers which occur inside the insulation. While 

the relationship with the temperature in the first term follows the Arrhenius relationship of the 

chemical reaction rate, the second term of the conductivity can be justified by the hopping and ionic 

conduction processes inside the insulation in a quasi-hyperbolic sine function [78]. 
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Model 5: 

This empirical model was used in [79]. The dependency is Arrhenius-like on the temperature and 

exponential on the electric field. 

 

𝜎 = 𝜎0 𝑒𝑥𝑝(−𝑎/𝑇 + 𝑏𝐸) (5.9) 

 

where T and E are independent variables. 𝜎 is a dependent variable.  𝜎0, 𝑎, and b are the parameters 

to be fit. 

 

5.3.3 Fitting models to experimental data: 

MATLAB curve fitting tool is used in this study to fit the 5 models to experimental data. The fitting 

to the logarithmic function of Equations (5.5) to (5.9) is chosen instead of the fitting to the 

conductivity itself. The reason is that the conductivity varies over many orders of magnitude [10-16 ÷ 

10-13] which gives extreme weight to the residual errors 𝑟𝑖 of the conductivity points with high 

conductivity (temperatures and fields), while it gives negligible weight of the points with low 

conductivity (low temperatures and fields). Hence, Equation (5.3) becomes as follows: 

 

 𝑚𝑖𝑛 (𝑆) = 𝑚𝑖𝑛 [∑𝑟𝑖
2

𝑛

𝑖=1

] = 𝑚𝑖𝑛 [∑(𝑙𝑛(𝜎𝑖) − 𝑙𝑛(�̂�𝑖))
2

𝑛

𝑖=1

] (5.10) 

 

First, all conductivity models are fit to the experimental data. Then, the models having the best fit is 

further investigated 

 

5.4 Results 

Model 1: 

This model (having constant a, b) fits the sole temperature or field variation. The error increases for 

high (or low) temperatures and fields together. The model is good overall. 
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Model 2: 

This model has the best fit over other proposed models as it fits the experimental data for both low 

and high temperatures and/or electric fields. The term 𝑏 + 𝑐𝑇, as a temperature-dependent field 

coefficient, increases the field dependency at high temperatures. It is slightly more conservative than 

model 1 at 75 °C. 

 
 

(a) (b) 

Figure 5.3 Conductivity fitting of model 1 as a function of temperature and electric field in 3D plot in (a) linear scale 

and (b) z-log scale. The black curves are the experimental data and the colored surface is the fitting. 

 
 

Figure 5.4 Conductivity fitting of model 1 as a function electric field at 3 temperatures. The black curves are the 

experimental data and the colored curves are the fitted curves. 
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Model 3: 

It has the worst fit of the experimental data overall, as it is not conservative at low and high fields, 

but overconservative in the studied range of fields at 45°C and 75°C. 

 
 

(a) (b) 

Figure 5.5 Conductivity fitting of model 2 as a function of temperature and electric field in 3D plot in (a) linear scale 

and (b) z-log scale. The black curves are the experimental data and the colored surface is the fitting. 

 
 

Figure 5.6 Conductivity fitting of model 2 as a function electric field at 3 temperatures. The black curves are the 

experimental data and the colored curves are the fitted curves. 
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Model 4: 

This model is good overall, however, it is more conservative at 45°C, less conservative at 19°C and 

slightly less conservative at 75°C for high fields, compared to model 2. 

 
 

(a) (b) 

Figure 5.7 Conductivity fitting of model 3 as a function of temperature and electric field in 3D plot in (a) linear scale 

and (b) z-log scale. The black curves are the experimental data and the colored surface is the fitting. 

 
 

Figure 5.8 Conductivity fitting of model 3 as a function electric field at 3 temperatures. The black curves are the 

experimental data and the colored curves are the fitted curves. 
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Model 5: 

The model does not perfectly fit for all temperatures, especially, at 19°C where it is not conservative 

at low fields but overconservative at high fields. 

  

(a) (b) 

Figure 5.9 Conductivity fitting of model 4 as a function of temperature and electric field in 3D plot in (a) linear scale 

and (b) z-log scale. The black curves are the experimental data and the colored surface is the fitting. 

 
 

Figure 5.10 Conductivity fitting of model 4 as a function electric field at 3 temperatures. The black curves are the 

experimental data and the colored curves are the fitted curves. 
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Fitting only points with high accuracy: 

As mentioned in section 5.3.1, the points where the capacitive field distribution is guaranteed have 

higher accuracy in conductivity calculation compared to other points. Therefore, model 2 will be 

more investigated considering only the latter points (highlighted in red in Figures 5.13 and 5.14) by 

weighting them 1 in the least-squares formulation, while other points are weighted 0 (neglected from 

calculations). In this case, the following coefficients have been found for model 2: 

 

𝜎0 = 1.1 × 10−16(𝑆/𝑚) 

𝑎 = 0.038 (
1

°𝐶
) 

 
 

(a) (b) 

Figure 5.11 Conductivity fitting of model 5 as a function of temperature and electric field in 3D plot in (a) linear scale 

and (b) z-log scale. The black curves are the experimental data and the colored surface is the fitting. 

 
 

Figure 5.12 Conductivity fitting of model 5 as a function electric field at 3 temperatures. The black curves are the 

experimental data and the colored curves are the fitted curves. 
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𝑏 = 0.044 (
𝑚𝑚

𝑘𝑉
) 

𝑐 = 1 × 10−3  (
𝑚𝑚

𝑘𝑉. °𝐶
) 

 

 

 

 
 

Figure 5.13 Conductivity in log-linear scale fitting of model 2 as a function electric field at 3 temperatures. The black 

curves are the experimental data and the colored curves are the fitted curves. Points highlighted in red are weighted 1 

and all other points are weighted 0. 

 

 
 

Figure 5.14 Conductivity in log-log scale of model 2 as a function electric field at 3 temperatures. The black curves are 

the experimental data and the colored curves are the fitted curves. Points highlighted in red are weighted 1 and all other 

points are weighted 0. 
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Figure 5.15 Conductivity of model 2 as a function electric field at 19°C with error bars. The black curve is the 

experimental data and the blue curve is the fitted curves.  

 

 
 

Figure 5.16 Conductivity of model 2 as a function electric field at 45°C with error bars. The black curve is the 

experimental data and the yellow curve is the fitted curves.  
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Figure 5.17 Conductivity of model 2 as a function electric field at 75°C with error bars. The black curve is the 

experimental data and the red curve is the fitted curves.  

 

 
 

Figure 5.18 Conductivity of model 2 in log-linear scale as a function electric field at 3 temperatures with error bars. The 

black curves are the experimental data and the colored curve is the fitted curves.  
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5.5 Discussion 

Overall, the constants σ0, σ' fit in this paper are comparable to the ones found in the literature. All 

models show similar (or lower) temperature dependency of the conductivity “a”. While they have 

higher field dependency “b” compared to the values found in the literature by comparing Table 5.1 

and Table 5.2.The difference of the temperature coefficient “a” could be related to the different 

manufacturing and processing techniques of the DC-XLPE studied here on mini cables compared to 

that found in the literature and performed on flat specimens. It is worth also noting that the 

temperature fit in this study is the conductor temperature which is subjected to a temperature drop 

inside the insulation, while the flat specimens are in isothermal conditions when the measurements 

from the literature are carried out. Further investigations are necessary to figure out the effect of the 

temperature gradient on the apparent conductivity measurements in mini- or full-size cables. The 

electrode/insulation interface might have the key role in the value of the field coefficient “b”. Indeed, 

many studies in the literature concluded that both charge injection and extraction at the 

semicon/insulation interface (the case of mini- and full-size cables) are comparable. While metal 

electrodes (the case of conductivity measurements on flat specimens) has a high injection but low 

extraction of charge carriers, hence, it tends to accumulate homo charges which reduces the electric 

field as well as the injection itself (which is a function of the electric field). This might justify the 

 
 

Figure 5.19 Conductivity of model 2 in log-log scale as a function electric field at 3 temperatures with error bars. The 

black curves are the experimental data and the colored curve is the fitted curves.  
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considerable increase of the field coefficient “b” of the conductivity when scaling up the flat 

specimens (with metalized electrodes) to mini- or full-size cables (with semicon electrodes). It could 

be argued that the coefficients fit using conductivity measurements on metal electrodes might not be 

conservative and not fully representative of the phenomena that occur in full-size cables. However, 

further investigations are required to fully confirm this conclusion.  

The ohmic conductivity corresponds to low electric fields i.e., approximately lower than 10 kV/mm. 

The Space Charge Limited Conduction SCLC covers both operational electric fields and relatively 

high electric fields i.e., >8 –12 kV/mm. It can be also noticed that model 2 – in which the synergism 

between temperature and field coefficients is considered – has the best fit among all studied models. 

The best fit of the empirical model 2 can be physically justified by: 

 a dominance of Schottky injection mechanism (as discussed in [77]) for temperatures up to 

45 °C. This mechanism is empirically represented by a field- and temperature- driven exponential 

function. 

 a possible dominance of Poole-Frenkel conduction (as discussed in [77]) at 75°C that assists 

the thermally activated hopping process which is empirically described by the synergistic coefficient 

“c” in model 2 as a synergistic thermally ruled increment in the field-driven term of the electrical 

conductivity. Although this type of conduction mechanism has been observed at 75°C (in [77]), a 

constant value of “c” is assigned for all temperatures. Further future development of the model could 

be finding a threshold “Tth” of the temperature above which this conduction mechanism become 

obvious, which requires more conductivity measurements at different temperatures. 

 

Table 5.1 Summary of fitting coefficients found in this study. 

 Equation* 𝝈𝟎, 𝝈′ a, 𝑮𝒂 b c 𝜸 

Model 1 𝜎 = 𝜎0 𝑒𝑥𝑝(𝑎𝑇𝑐 + 𝑏𝐸𝑘) 3 × 10−17 
0.065 

(1/°C) 

0.09628 

(mm/kV) 

- - 

Model 2 𝜎 = 𝜎0 𝑒𝑥𝑝(𝑎𝑇𝑐 + (𝑏 + 𝑐𝑇𝑐)𝐸𝑘) 5 × 10−17 

0.052 

(1/°C) 

0.06477 

(mm/kV) 

6.9760e-04 

(mm/kV °C) 

- 

Model 3 𝜎 = 𝜎0 𝑒𝑥𝑝(𝑎𝑇𝑐) 𝐸𝑘
𝛾 1 × 10−18 

0.06865 

(1/°C) 

- - 

1.81 

(unitless) 

Model 4 𝜎 = 𝜎′ 𝑒𝑥𝑝 (−
𝐺𝑎

𝑘𝐵𝑇𝐾

) 𝑠𝑖𝑛ℎ(𝑐𝐸𝑉). 𝐸𝑉
−𝛾 30 0.6353 - 1.43e-07 0.9327 
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(eV) (m/V) (unitless) 

Model 5 𝜎 = 𝜎0 𝑒𝑥𝑝(−𝑎/𝑇𝐾 + 𝑏𝐸) 5 × 10−7 

6600 

(K) 

0.1 

(mm/kV) 

- - 

 

* 𝑇𝑐 is the temperature in °C. 

   𝑇𝐾  is the temperature in K. 

   𝐸𝑘 is the electric field in kV/mm 

   𝐸𝑉 is the electric field in V/m 

 

Table 5.2 Summary of fitting coefficients found in the literature. 

 Reference 𝝈𝟎, 𝝈′ [S/m][A/m2] a, 𝑮𝒂 b c 𝜸 

Model 1 

[80] 1 × 10−16 0.1 (1/°C) 

0.03 

(mm/kV) 

- - 

[54] 1 × 10−17 
0.084 

(1/°C) 

0.0645 

(mm/kV) 

- - 

Model 2 Not found - - - - - 

Model 3 

[81] 

For DC PPLP 

9 × 10−20 0.06 (1/°C) - - 

1.8 

(unitless) 

Model 4 

[79],[82],[83],[84] 30 0.6353 (eV) - 

2.7756e-07 

(m/V) 

1 

(unitless) 

[84] 3.6783 × 107 0.98 (eV) - 

1.086e-07 

(m/V) 

1 

(unitless) 

[85] 1 × 1014 1.48 (eV) - 

2e-07 

(m/V) 

1 

(unitless) 

Model 5 [86],[87] 2.2896 × 10−6 7600 (K) 

0.27756 

(mm/kV) 

- - 
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Conclusions: 

- The effect of VPRs on the life of extruded cables is significant. The main reason is the high 

electric field caused by the space charge accumulation in the insulation thickness, in addition 

to the relatively long time required to reach the steady-state after VPR compared to other types 

of electrical transients (e.g., TOVs and SSIs). 

- Fast VPRs are more critical to extruded cables compared to slow VPRs because the relaxation 

period in the slow VPRs helps in the reduction of charges accumulated inside the insulation. 

- Experimental investigation on the effect of TOVs and SSIs on the extruded cable insulation 

shows an evident change in the insulating properties by comparing non-aged and aged 

specimens.  

1) Dielectric spectroscopy shows an increase in the imaginary permittivity in the 

frequency band that corresponds to dipolar polarization. The latter means the 

formation of polar molecules inside the XLPE chemical structure.  

2) FTIR measurements show a decrease in the 3 absorption peaks of XLPE as well as 

an increase in the absorbance in other wavenumber bands. The former is an 

indication to scission in the single chemical bonds in XLPE, while the latter means 

the formation of new aging chemical bonds (e.g., carbonyl groups, carboxylic acid, 

and hydroxyl groups) throughout oxidation reactions.  

3) Space charge measurements show an increase in the space charges accumulation 

in mid insulation, in addition to more homo-charge accumulation in near the 

electrodes at high temperature which becomes critical to the insulation in the case 

of VPRs. A shift of the trap depth distribution towards higher value is also noticed 

in the aged specimens which means more deep traps due to the aging process. 

4) Conductivity measurements show and increase in DC electrical conductivity due 

to the aging process. 

- The electric field has a dominant effect on the design of HVDC cables as the equi-life loci are 

found to be parallel to the maximum field limit. Considering the effect of electrical transients 

in the design will lead to an increase in the cable geometries (i.e., inner and outer insulation 

radii) proportionally to the number of transients per year.  

- Intrinsic thermal instability is critical in HVDC cables, considering a significant effect of the 

conductivity coefficients (representing the insulation characteristics). The dielectric loss 

coefficient βd is found to be lower in DC than that in AC i.e., βd_DC = 0.4 < βd_AC = 0.5 due 

to the shift of the insulation losses towards the outer insulation as a result of the field inversion 

phenomenon in DC cables.  
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Future perspectives: 

The effect of transients on the field enhancement during VPRs could be more stressful in some points 

inside the insulation when the physical model of charge carriers is considered in the field calculations 

compared to the macroscopic conductivity models. A future research direction could be studying the 

effect of transients (TOVs, SSIs, VPRs) on the life estimation of the cable insulation using those 

models. 

Extending this study to cable accessories (i.e., joints and terminations) could also be a future research 

topic, as the majority of failures occurs in the accessories. 

Moreover, the continuous need to raise the voltage and the applied electric field inside the cables 

pushes towards finding new insulating materials with space charge mitigation, hence, lesser effect of 

VPRs (or other transients) on the cable insulation. 
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Annex A: The derivation of Eoll’s formula 

 

𝐸 = 𝐽. 𝜌 =
𝐼

2𝜋𝑟
𝜌0 𝑒𝑥 𝑝[−(𝑎(𝑇 − 𝑇0) + 𝑏𝐸)] 

 

By introducing the following approximation: 

 

𝑒𝑥𝑝[𝑏𝐸(𝑟)] ≈ [
𝑒𝐸(𝑟)

𝐸𝑚
]

−𝑏𝐸𝑚

= [
𝑒𝐸(𝑟)

𝐸𝑚
]
−𝐵

 

 

where: 

𝐸𝑚 =
𝑈0

𝑟𝑜 − 𝑟𝑖 
 

 

Yields: 

 

𝐸 = 𝐽. 𝜌 =
𝐼

2𝜋𝑟
𝜌0 𝑒𝑥 𝑝[−𝑎(𝑇 − 𝑇0)] (

𝑒𝐸

𝐸𝑚
)
−𝐵

 

 

𝐸 =
𝐼 𝜌0

2𝜋𝑟
 𝑒𝑥 𝑝[−𝑎(𝑇 − 𝑇0)] (

𝑒𝐸

𝐸𝑚
)
−𝐵

 

 

𝑇(𝑟) = 𝑇(𝑟𝑜) +
𝑊𝑐

2𝜋𝜆𝑇
𝑙𝑛(𝑟𝑜/𝑟) 

 

𝐸𝐵+1 =
𝐼 𝜌0

2𝜋𝑟
 𝑒𝑥 𝑝 [−𝑎 (𝑇(𝑟𝑜) +

𝑊𝑐

2𝜋𝜆𝑇
𝑙𝑛(𝑟𝑜/𝑟) − 𝑇0)] (

𝐸𝑚

𝑒
)
𝐵

 

 

𝐸 = (
𝐼 𝜌0 

2𝜋𝑟
)

1
𝐵+1

(
𝐸𝑚

𝑒
)

𝐵
𝐵+1

( 𝑒𝑥 𝑝[−𝑎(𝑇(𝑟𝑜) − 𝑇0)])
1

𝐵+1  (𝑒𝑥 𝑝 [−𝑎 (
𝑊𝑐

2𝜋𝜆𝑇
𝑙𝑛(𝑟𝑜/𝑟))])

1
𝐵+1

 

 

One can call: 

𝐴 =
𝑎 𝑊𝑐

2𝜋𝜆𝑇
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Yields: 

 

𝐸 = (
𝐼 𝜌0 

2𝜋𝑟
)

1
𝐵+1

(
𝐸𝑚

𝑒
)

𝐵
𝐵+1

( 𝑒𝑥 𝑝[−𝑎(𝑇(𝑟𝑜) − 𝑇0)])
1

𝐵+1 (𝑒𝑥 𝑝[−𝐴 𝑙𝑛(𝑟𝑜/𝑟)])
1

𝐵+1  

 

𝐸 = (
𝐼 𝜌0 

2𝜋𝑟
)

1
𝐵+1

(
𝐸𝑚

𝑒
)

𝐵
𝐵+1

( 𝑒𝑥 𝑝[−𝑎(𝑇(𝑟𝑜) − 𝑇0)])
1

𝐵+1 (𝑒𝑥 𝑝[𝑙𝑛(𝑟𝑜/𝑟)])
− 

𝐴
𝐵+1  

 

𝐸 = (
𝐼 𝜌0 

2𝜋𝑟
)

1
𝐵+1

(
𝐸𝑚

𝑒
)

𝐵
𝐵+1

( 𝑒𝑥 𝑝 [−
𝑎

𝐵 + 1
(𝑇(𝑟𝑜) − 𝑇0)]) ( 

𝑟𝑜
𝑟
)
−

𝐴
𝐵+1

  

 

𝐸 = (
𝐼 𝜌0 

2𝜋𝑟𝑜
)

1
𝐵+1

(
𝐸𝑚

𝑒
)

𝐵
𝐵+1

( 𝑒𝑥 𝑝 [−
𝑎

𝐵 + 1
(𝑇(𝑟𝑜) − 𝑇0)]) ( 

𝑟𝑜
𝑟
)
−

𝐴
𝐵+1

+
1

𝐵+1
  

 

𝐸 = (
𝐼 𝜌0 

2𝜋𝑟𝑜
)

1
𝐵+1

(
𝐸𝑚

𝑒
)

𝐵
𝐵+1

 𝑒𝑥 𝑝 [−
𝑎

𝐵 + 1
(𝑇(𝑟𝑜) − 𝑇0)] ( 

𝑟

𝑟𝑜
)

𝐴−1
𝐵+1

  

 

𝐸 = (
𝐼 𝜌0 

2𝜋𝑟𝑜
)

1
𝐵+1

(
𝐸𝑚

𝑒
)

𝐵
𝐵+1

 𝑒𝑥 𝑝 [−
𝑎

𝐵 + 1
(𝑇(𝑟𝑜) − 𝑇0)] ( 

𝑟

𝑟𝑜
)

𝐴−1
𝐵+1

  

𝛿 =
𝐴 + 𝐵

𝐵 + 1
 

𝛿 − 1 =
𝐴 − 1

𝐵 + 1
 

 

𝐸 = (
𝐼 𝜌0 

2𝜋𝑟𝑜
)

1
𝐵+1

(
𝐸𝑚

𝑒
)

𝐵
𝐵+1

 𝑒𝑥 𝑝 [−
𝑎

𝐵 + 1
(𝑇(𝑟𝑜) − 𝑇0)] ( 

𝑟

𝑟𝑜
)
𝛿−1

         (𝐴. 1) 

 

 

𝑈 = ∫ 𝐸 𝑑𝑟

𝑟𝑜

𝑟𝑖

= (
𝐼 𝜌0 

2𝜋𝑟𝑜
)

1
𝐵+1

(
𝐸𝑚

𝑒
)

𝐵
𝐵+1

 𝑒𝑥 𝑝 [−
𝑎

𝐵 + 1
(𝑇(𝑟𝑜) − 𝑇0)]

( 𝑟𝑜 − 𝑟𝑖)
𝛿

𝛿 𝑟𝑜𝛿−1
  

 

(
𝐼 𝜌0 

2𝜋𝑟𝑜
)

1
𝐵+1

(
𝐸𝑚

𝑒
)

𝐵
𝐵+1

 𝑒𝑥 𝑝 [−
𝑎

𝐵 + 1
(𝑇(𝑟𝑜) − 𝑇0)] =

𝛿𝑈𝑟𝑜
𝛿−1

( 𝑟𝑜 − 𝑟𝑖)𝛿
    (𝐴. 2) 
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Substitute (2) in (1) yields: 

 

𝐸 =
𝛿𝑈( 𝑟 𝑟𝑜⁄ )𝛿−1

𝑟𝑜( 1 − 𝑟𝑖 𝑟𝑜⁄ )𝛿
  

 

where:  

𝛿 =
𝐴 + 𝐵

𝐵 + 1
 

𝐴 =
𝑎 𝑊𝑐

2𝜋𝜆𝑇
 

𝐵 = 𝑏𝐸𝑚 =
𝑏𝑈0

𝑟𝑜 − 𝑟𝑖 
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Annex B: The derivation of life expression as a function of the design 

parameters 

 

 𝐿( 𝐸𝐷 , 𝑇𝐷)  = 𝐿0 (
 𝐸𝐷

𝐸0
)
−(𝑛0− 𝑏𝐸𝑇𝑇𝐷′)

𝑒𝑥𝑝[−𝐵𝑇𝐷′] 

Where 𝑇𝐷′ =
1

𝑇0
−

1

𝑇𝐷
 

 

 
𝐿(𝐸, 𝑇)

𝐿( 𝐸𝐷 , 𝑇𝐷)
= (

𝐸 

𝐸0
)
−𝑛0

(
𝐸 

𝐸0
)
 𝑏𝐸𝑇𝑇′

(
𝐸𝐷

𝐸0
)
𝑛0

(
𝐸𝐷

𝐸0
)
− 𝑏𝐸𝑇𝑇𝐷 ′

𝑒𝑥𝑝[−𝐵(𝑇′ − 𝑇𝐷′)] 

 

𝐿(𝐸, 𝑇) = 𝐿𝐷 (
𝐸 

𝐸0
)
−𝑛0

(
𝐸 

𝐸0
)
 𝑏𝐸𝑇𝑇′

(
𝐸𝐷

𝐸0
)
𝑛0

(
𝐸𝐷

𝐸0
)
− 𝑏𝐸𝑇𝑇𝐷′

𝑒𝑥𝑝[−𝐵(𝑇′ − 𝑇𝐷′)] =    

 

= 𝐿𝐷 (
𝐸 

𝐸𝐷
)
−𝑛0

(
𝐸 

𝐸0
)
 𝑏𝐸𝑇𝑇′

(
𝐸𝐷

𝐸0
)
− 𝑏𝐸𝑇𝑇𝐷′

𝑒𝑥𝑝[−𝐵(𝑇′ − 𝑇𝐷′)] =                                  

 

= 𝐿𝐷 (
𝐸 

𝐸𝐷
)
−𝑛0

(
𝐸 

𝐸0
)
 𝑏𝐸𝑇(

1
𝑇0

−
1
𝑇
)

(
𝐸𝐷

𝐸0
)
− 𝑏𝐸𝑇(

1
𝑇0

−
1

𝑇𝐷
)

𝑒𝑥𝑝 [−𝐵 (
1

𝑇0
−

1

𝑇
−

1

𝑇0
+

1

𝑇𝐷
)] =   

 

 

 

= 𝐿𝐷 (
𝐸 

𝐸𝐷
)
−𝑛0

(
𝐸 

𝐸0
)
 𝑏𝐸𝑇(

1
𝑇0

−
1
𝑇
)

(
𝐸𝐷

𝐸0
)
− 𝑏𝐸𝑇(

1
𝑇0

−
1

𝑇𝐷
)

𝑒𝑥𝑝 [−𝐵 (
1

𝑇𝐷
−

1

𝑇
)]  

           

 

𝐿(𝐸, 𝑇) = 𝐿𝐷 (
𝐸 

𝐸𝐷
)
−𝑛0

(
𝐸 

𝐸𝐷

𝐸𝐷

𝐸0
)
 𝑏𝐸𝑇(

1
𝑇0

−
1
𝑇
)

(
𝐸𝐷

𝐸0
)
− 𝑏𝐸𝑇(

1
𝑇0

−
1

𝑇𝐷
)

𝑒𝑥𝑝 [−𝐵 (
1

𝑇𝐷
−

1

𝑇
)] =                    

 

= 𝐿𝐷 (
𝐸 

𝐸𝐷
)
−𝑛0

(
𝐸 

𝐸𝐷
)
 𝑏𝐸𝑇(

1
𝑇0

−
1
𝑇
)

(
𝐸𝐷

𝐸0
)

 𝑏𝐸𝑇
𝑇0

(
𝐸𝐷

𝐸0
)
−

 𝑏𝐸𝑇
𝑇

(
𝐸𝐷

𝐸0
)
−

 𝑏𝐸𝑇
𝑇0

(
𝐸𝐷

𝐸0
)

 𝑏𝐸𝑇
𝑇𝐷

   𝑒𝑥𝑝 [−𝐵 (
1

𝑇𝐷
−

1

𝑇
)] 

 

 

 

= 𝐿𝐷 (
𝐸 

𝐸𝐷
)
−𝑛0

(
𝐸 

𝐸𝐷
)
 𝑏𝐸𝑇(

1
𝑇0

−
1
𝑇
)

(
𝐸𝐷

𝐸0
)
 𝑏𝐸𝑇(

1
𝑇𝐷

−
1
𝑇
)

𝑒𝑥𝑝 [−𝐵 (
1

𝑇𝐷
−

1

𝑇
)] 

         

 

 

By defining VEC at the design temperature 𝑛𝐷 = 𝑛0 − 𝑏 (
1

𝑇0
−

1

𝑇𝐷
), one gets: 
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𝐿(𝐸, 𝑇) = 𝐿𝐷 (
𝐸 

𝐸𝐷
)
−𝑛0

(
𝐸 

𝐸𝐷
)
 𝑏𝐸𝑇(

1
𝑇0

−
1
𝑇
)

(
𝐸𝐷

𝐸0
)
 𝑏𝐸𝑇(

1
𝑇𝐷

−
1
𝑇
)

𝑒𝑥𝑝 [−𝐵 (
1

𝑇𝐷
−

1

𝑇
)] =     

= 𝐿𝐷 (
𝐸 

𝐸𝐷
)
−[𝑛0− 𝑏𝐸𝑇(

1
𝑇0

−
1
𝑇
)]

(
𝐸𝐷

𝐸0
)
 𝑏𝐸𝑇(

1
𝑇𝐷

−
1
𝑇
)

𝑒𝑥𝑝 [−𝐵 (
1

𝑇𝐷
−

1

𝑇
)] =                         

 

= 𝐿𝐷 (
𝐸 

𝐸𝐷
)
−[𝑛0− 𝑏𝐸𝑇(

1
𝑇0

−
1

𝑇𝐷
+

1
𝑇𝐷

−
1
𝑇
)]

(
𝐸𝐷

𝐸0
)
 𝑏𝐸𝑇(

1
𝑇𝐷

−
1
𝑇
)

𝑒𝑥𝑝 [−𝐵 (
1

𝑇𝐷
−

1

𝑇
)] =           

 

= 𝐿𝐷 (
𝐸 

𝐸𝐷
)
−[𝑛0− 𝑏𝐸𝑇(

1
𝑇0

−
1

𝑇𝐷
)−𝑏(

1
𝑇𝐷

−
1
𝑇
)]

(
𝐸𝐷

𝐸0
)
 𝑏𝐸𝑇(

1
𝑇𝐷

−
1
𝑇
)

𝑒𝑥𝑝 [−𝐵 (
1

𝑇𝐷
−

1

𝑇
)] =      

 

 

= 𝐿𝐷 (
𝐸 

𝐸𝐷
)
−[𝑛𝐷− 𝑏𝐸𝑇(

1
𝑇𝐷

−
1
𝑇
)]

(
𝐸𝐷

𝐸0
)
 𝑏𝐸𝑇(

1
𝑇𝐷

−
1
𝑇
)

𝑒𝑥𝑝 [−𝐵 (
1

𝑇𝐷
−

1

𝑇
)]  

         

 𝐿(𝐸, 𝑇) = 𝐿𝐷 (
𝐸 

𝐸𝐷
)
−[𝑛𝐷− 𝑏𝐸𝑇𝑇′′]

(
𝐸𝐷

𝐸0
)
 𝑏𝐸𝑇𝑇′′

𝑒𝑥𝑝[−𝐵𝑇′′]          

 

it is also possible to express the life with certain failure probability F (when F ≠ 𝑃𝐷): 

 

𝑡𝐷,𝐹 (𝐸, 𝑇) = [
 −𝑙𝑛 (1 − 𝐹) 

−𝑙𝑛 (1 −  𝑃𝐷)
]

1/𝛽𝑡

𝐿𝐷 (
𝐸 

𝐸𝐷
)
−[𝑛𝐷− 𝑏𝐸𝑇𝑇′′]

(
𝐸𝐷

𝐸0
)
 𝑏𝐸𝑇𝑇′′

𝑒𝑥𝑝[−𝐵𝑇′′]                        
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Annex C: Calculation of temperature rise due to both conductor and insulation 

losses in MATLAB: 

 

Starting from (4.3): 

 

𝑑2𝑇

𝑑𝑟2
+

1

𝑟

𝑑𝑇

𝑑𝑟
= −𝜌𝑡ℎ𝑤𝑝  

 

by substituting the following in (4.3): 

 

𝑑2𝑇

𝑑𝑟2
=

𝑇𝑘+1
𝑗

− 2𝑇𝑘
𝑗
+ 𝑇𝑘−1

𝑗

∆𝑟2
 

 

𝑑𝑇

𝑑𝑟
=

𝑇𝑘+1
𝑗

+ 𝑇𝑘−1
𝑗

2∆𝑟
 

 

 

yields: 

 

𝑇𝑘+1
𝑗

− 2𝑇𝑘
𝑗
+ 𝑇𝑘−1

𝑗

∆𝑟2
+

𝑇𝑘+1
𝑗

− 𝑇𝑘−1
𝑗

2𝑟∆𝑟
= −𝜌𝑡ℎ𝑤𝑝 

 

2𝑟𝑇𝑘+1
𝑗

− 4𝑟𝑇𝑘
𝑗
+ 2𝑟𝑇𝑘−1

𝑗
+ ∆𝑟𝑇𝑘+1

𝑗
− ∆𝑟𝑇𝑘−1

𝑗

2𝑟∆𝑟2
= −𝜌𝑡ℎ𝑤𝑝 

 

2𝑟𝑇𝑘+1
𝑗

− 4𝑟𝑇𝑘
𝑗
+ 2𝑟𝑇𝑘−1

𝑗
+ ∆𝑟𝑇𝑘+1

𝑗
− ∆𝑟𝑇𝑘−1

𝑗
= −𝜌𝑡ℎ𝑤𝑝 2𝑟∆𝑟2 

 

(2𝑟 − ∆𝑟)𝑇𝑘−1
𝑗

+ (−4r)𝑇𝑘
𝑗
+ (2𝑟 + ∆𝑟)𝑇𝑘+1

𝑗
= −𝜌𝑡ℎ𝑤𝑝 2𝑟∆𝑟2 

 

𝑟𝑖𝑛  →
𝑟2  →

⋮
𝑟𝑘−1 →
𝑟𝑘  →
𝑟𝑘+1 →

⋮
𝑟𝑜𝑢𝑡  → [

 
 
 
 
 
 
 

𝐵𝐶 0 ⋯ 0 0 0 0 0
2𝑟 − ∆𝑟 −4r 2𝑟 + ∆𝑟 0 0 0 0 0

0 2𝑟 − ∆𝑟 −4r 2𝑟 + ∆𝑟 0 0 0 0
0 0 ⋱ ⋱ ⋱ ⋮ ⋮ ⋮
⋮ ⋮ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮
⋮ ⋮ ⋱ ⋱ 2𝑟 − ∆𝑟 −4𝑟 2𝑟 + ∆𝑟 0
0 0 ⋱ 0 0 2𝑟 − ∆𝑟 −4𝑟 2𝑟 + ∆𝑟
0 0 ⋯ 0 0 0 0 𝐵𝐶 ]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

𝑇1

⋮

𝑇𝑘−1
𝑗

𝑇𝑘
𝑗

𝑇𝑘+1
𝑗

⋮
𝑇𝑛 ]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

(𝐵. 𝐶)𝑖𝑛𝑛𝑒𝑟

⋮
−𝜌𝑡ℎ𝑤𝑝 2𝑟𝑘−1∆𝑟2

−𝜌𝑡ℎ𝑤𝑝 2𝑟𝑘∆𝑟2

−𝜌𝑡ℎ𝑤𝑝 2𝑟𝑘+1∆𝑟2

⋮
(𝐵. 𝐶)𝑜𝑢𝑡𝑒𝑟 ]
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Boundary Conditions: 

 

1) At the conductor 

 

−𝑇1 + 𝑇2 =
∆𝑟 𝜌𝑡ℎ  𝑤𝑐

2𝜋 𝑟𝑖𝑛
 

(A1) 

 

2) At the metallic sheath 

 

𝑇𝑛+1 − 𝑇𝑛

∆𝑟
= −(𝑊𝑐 + 𝑊𝑑)

𝜌𝑡ℎ

2𝜋 𝑟𝑜
 

 

 

𝑇𝑛 = 𝑇𝑛+1 + (𝑊𝑐 + 𝑊𝑑)
∆𝑟 𝜌𝑡ℎ

2𝜋 𝑟𝑜
 

 

 

𝑇𝑛 = [(𝑊𝑐 + 𝑊𝑑)(𝑅𝑇,𝑠ℎ + 𝑅𝑇,𝑆𝑜)] + (𝑊𝑐 + 𝑊𝑝,𝑡𝑜𝑡𝑎𝑙)
∆𝑟 𝜌𝑡ℎ

2𝜋 𝑟𝑜
 (A2) 

 

𝑟𝑖𝑛  →
𝑟2  →

⋮
𝑟𝑘−1 →
𝑟𝑘  →
𝑟𝑘+1 →

⋮
𝑟𝑜𝑢𝑡  → [

 
 
 
 
 
 
 

−1 1 ⋯ 0 0 0 0 0
2𝑟 − ∆𝑟 −4r 2𝑟 + ∆𝑟 0 0 0 0 0

0 2𝑟 − ∆𝑟 −4r 2𝑟 + ∆𝑟 0 0 0 0
0 0 ⋱ ⋱ ⋱ ⋮ ⋮ ⋮
⋮ ⋮ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮
⋮ ⋮ ⋱ ⋱ 2𝑟 − ∆𝑟 −4𝑟 2𝑟 + ∆𝑟 0
0 0 ⋱ 0 0 2𝑟 − ∆𝑟 −4𝑟 2𝑟 + ∆𝑟
0 0 ⋯ 0 0 0 0 1 ]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

𝑇1

⋮

𝑇𝑘−1
𝑗

𝑇𝑘
𝑗

𝑇𝑘+1
𝑗

⋮
𝑇𝑛 ]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

𝑒𝑞 (𝐴. 1)
⋮

−𝜌𝑡ℎ𝑤𝑝 2𝑟𝑘−1∆𝑟2

−𝜌𝑡ℎ𝑤𝑝 2𝑟𝑘∆𝑟2

−𝜌𝑡ℎ𝑤𝑝 2𝑟𝑘+1∆𝑟2

−𝜌𝑡ℎ𝑤𝑝 2𝑟𝑘+1∆𝑟2

𝑒𝑞 (𝐴. 2) ]
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Annex D: The part of the MATLAB code dedicated for the application of the 

matrix in Annex C: 

 

%%The part of the MATLAB code specified for the temperature matrices illustrated in Annex C is 

reported here below. 

%% calculate the temperature rise due to insulation losses: 

%% generating the tri diagonal matrix “MATR2” using sparse matrix %% 

MATR2 = diag ((2 * r_m (2:end)′-dr_m).* ones (nr-1,1),-1) + diag((-4 * r_m′).* ones(nr,1),0) + 

diag ((2*r_m(1:end-1)′ + dr_m).* ones(nr-1,1), + 1); 

MATR2 (end,1:end-1) = 0; 

MATR2 (end-1,1:end-3) = 0; 

MATR2 (1,3:end) = 0; 

MATR2 (end,end) = 1; %Neumann BC with ghost point last point 

MATR2 (1,1) = -1/dr_m; %Neumann BC first point 

MATR2 (1,2) = 1/dr_m; %Neumann BC first point 

%% generating the Right-Hand Side vector %% 

T_tt2 (j,:) = -(Wp_Per_unit_V(j,:).* rhoTd).* (dr_m^2.* 2.* r_m); %All points 

T_tt2 (j,1) = -(rhoTd.* Wc_total(1,j))./(2 *  pi * r_m(1,1)); %first point 

T_tt2 (j,end) = (dr_m.* rhoTd. * (Wc_total(1,j) + Wp_tot(j,1)))/(2 * pi * r_m(1,end)) + 

(thetafGt(j,end) + Wp_tot(j,1).* (RTg+RTt)); %last point 

T_ttt2 = T_tt2′; 

T_Losses (j,:) = MATR2\T_ttt2(:,j); 

 

 

 


