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Abstract

In the first part of this thesis, we study the action of the automorphism

group of a matroid on the homology space of the co-independent complex.

This representation turns out to be isomorphic, up to tensoring with the sign

representation, with that on the homology space associated with the lattice

of flats. In the case of the cographic matroid of the complete graph, this

result has application in algebraic geometry: indeed De Cataldo, Heinloth

and Migliorini use this outcome to study the Hitchin fibration [dCHM21]. In

the second part, on the other hand, we use ideas from algebraic geometry

to prove a purely combinatorial result. We construct a Leray model for a

discrete polymatroid with arbitrary building set and we prove a generalized

Goresky-MacPherson formula. The first row of the model is the Chow ring

of the polymatroid; we prove Poincaré duality, Hard-Lefschetz theorem and

Hodge-Riemann relations for the Chow ring.





Introduction

Since its introduction by Whitney [Whi35] in 1935, matroid theory has

received increasing attention because of its multiple connections with alge-

braic geometry, algebraic topology and representation theory; but also for

the countless applications in graph theory, network theory and combina-

torial optimization. Particularly, in recent years long standing conjectures

about log-concavity of polynomials have been brilliantly solved by studying

the Chow ring of matroids [Huh12, HK12, Len13, HW17, AHK18, BES19,

BHM+20b, ADH20, BEST21]. In [Rea68] Read conjectured the unimodality

of the chromatic polynomial; the relative log-concavity was conjectured by

Hoggar in [Hog74]. These conjectures have been extended to arbitrary ma-

troid by Rota and Heron in [Rot71, Her72]. The first step towards proving

these conjectures has been done by Huh in [Huh12]: indeed he managed to

prove the log-concavity for any realizable matroid over characteristic zero.

Huh was able to relate the coefficients of the characteristic polynomial of a

matroid to the Milnor numbers of an arrangement of hyperplanes, linking a

purely combinatorial problem to a geometric one. The geometric construction

comes from a milestone article in the literature, Wonderful models of sub-

space arrangements [DCP95] by De Concini and Procesi. The authors built

a smooth compactification of the complement of a subspace arrangement, in

which the arrangement is replaced by a simple normal crossing divisor. Work-

ing with a realizable matroid, Huh used the Hodge-Riemann relations for the

De Concini-Procesi wonderful model of a realizing hyperplane arrangement

to obtain the log-concavity conjecture. The work of De Concini-Procesi was
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iv INTRODUCTION

extended by Feichtner and Yuzvinsky in [FY04], by building a Chow ring

for an arbitrary matroid who specializes to the wonderful model cohomology

ring in the realizable setting. In [HK12] Huh and Katz performed a step

further proving the conjecture in the case of realizable matroids over some

field. Afterwards, it became more and more evident how the Hodge-Riemann

relations for the Chow ring are crucial in the log-concavity test. Although the

Chow ring is also defined in the non-realizable setting, it was not clear how to

prove the Hodge-Riemann relations without being able to work on the under-

lying variety. In the great work Hodge Theory for combinatorial geometries

[AHK18] Adiprasito, Huh and Katz proved the log-concavity conjecture of

the characteristic polynomial of an arbitrary matroid, by developing a com-

binatorial version of Hard-Lefschetz theorems and Hodge-Riemann relations.

For all these extraordinary results, revealing a new connection between alge-

braic geometry and combinatorics, June Huh was recently awarded the Fields

Medal.

This thesis is divided into two independent parts (which correspond re-

spectively to Chapter 2 and Chapter 3): in the first we prove a purely com-

binatorial result which has application to algebraic geometry ([dCHM21]);

in the second, on the other hand, we use geometric intuition and ideas from

algebraic geometry to obtain combinatorial results.

In the first part, in a joint work with Luca Moci [MP21], given a group

G of automorphisms of a matroid M , we relate the representations of G on

the homology of the independence complex of the dual matroid M∗ to the

representations on the homology of the lattice of flats of M , and (when M is

realizable) to the top cohomology of a hyperplane arrangement. Furthermore,

we analyze in detail the case of the complete graph. One motivation for this

work comes from a paper by de Cataldo, Heinloth and Migliorini ([dCHM21]),

that computes the supports of the perverse cohomology sheaves of the Hitchin

fibration for GLm over the locus of reduced spectral curves, studying the

related Cattani-Kaplan-Schmid complex. The dual graph of such a spectral

curve is the complete graph, and the action of the symmetric group on the
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irreducible components of the curve yields an action on its vertices, hence on

the independence complex of the dual matroid of the graph. A crucial step in

the analysis performed in [dCHM21] is then to determine the representations

of the symmetric group on the homology of this independence complex.

In the second part of this thesis, we deal with a natural question concern-

ing polymatroids: do the recent results about the Chow ring of matroids,

mentioned above, hold also for polymatroids [BEST21, Question 1.5]? Poly-

matroids generalize arrangements of subspaces in the same way as matroids

generalize hyperplane arrangements. In a joint work with Roberto Pagaria

[PP21], we construct a Leray model for a discrete polymatroid with arbitrary

building set and we prove a generalized Goresky-MacPherson formula. Fur-

thermore, we prove Poincaré duality, Hard Lefschetz, and Hodge-Riemann

theorems for the Chow ring of the polymatroid. Finally, we provide a rel-

ative Lefschetz decomposition with respect to the deletion of an element.

Recently, in [CHL+22] Crowley, Huh, Larson, Simpson and Wang introduce

the notion of Bergman fan of a polymatroid: a combinatorial model for the

wonderful compactification of a subspace arrangement. They prove that the

Chow ring of the Bergman fan is isomorphic to the Chow ring of the poly-

matroid introduced in [PP21]. Using the Bergman fan, they establish the

Kähler package for the Chow ring; recovering our result and also expanding

our σ-cone in which Hard-Lefschetz theorem and Hodge-Riemann relations

hold (See Remark 14).

Main results

In this section we present the main results of Chapter 2 and Chapter 3

of this thesis.

Representations on the homology of matroids

In a joint work with Luca Moci, we prove that the reduced homology of

the independence complex of the dual matroid M∗, up to a shift to a sign,
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is C[G]-isomorphic to the reduced homology of the non-spanning complex of

M , NS(M), and to the reduced homology of the order complex of the lattice

of flats of M , L(M):

Theorem A. Let M be a matroid of rank r on n elements and let G be a

group of automorphisms of M , we have the following isomorphism of C[G]-
modules for every i ≥ 0 (and nonzero only for i = r − 2):

1. H̃n−3−i(IN (M∗))⊗ sgn

2. H̃i(NS (M))

3. H̃i(L (M))

Here, the isomorphism between (1) and (2) holds more generally for any

simplicial complex, being a consequence of Alexander duality. Let K be

an abstract simplicial complex with vertex set V . The Alexander dual of

K is the simplicial complex on the same vertex set defined by K∗ = {σ ⊆
V | (V ∖ σ) /∈ K}.

Theorem B. Let K be an abstract simplicial complex and let K∗ be its

Alexander dual. Let G be a finite group of automorphisms of the face poset

of K. Then we have the following isomorphism of C[G]-modules:

H̃i(K,C) ≃G H̃n−i−3(K∗,C)⊗ sgn.

Also the isomorphism between (2) and (3) is a consequence of a more

general phenomenon. Let L be a lattice and C a cross-cut of L, i.e., a

particular subset of L satisfying three conditions (see Definition 2.6); we can

associate to each cross-cut C of L an abstract simplicial complex K(C) and

we define the homology space of C as the homology space of K(C).

Theorem C. Let L be a lattice and G a group of automorphism of L. Let

C be a G-stable cross-cut of L. Then we have the following C[G]-module

isomorphism:

H̃i(L) ≃G H̃i(C).
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Let M be a realizable matroid, then it is naturally associated with a

hyperplane arrangementA. The cohomology of the complementM(A) of the
arrangement admits a well-known presentation in terms of M , due to Orlik

and Solomon ([OS80]). We show that the top-degree part of this cohomology

is isomorphic as a representation of G, up to a sign, to the reduced homology

of the dual matroid M∗
A associated to A. Using Theorem A and results of

Orlik and Solomon [OS80] we get the following:

Theorem D. Let A be a central essential hyperplane arrangement of dimen-

sion r and let MA be the associated matroid with ground set of cardinality n.

Then we have the following C[G]-module isomorphism:

Hr(M(A)) ≃G Hn−r−1(IN(M∗
A))⊗ sgn.

Let M(Km) be the matroid associate to the complete graph Km, which

has rank r = m−1 and ground set of cardinality n =
(
m
2

)
. In fact, this is the

case of interest in [dCHM21]. Notice that the lattice of flats of this matroid is

isomorphic to the partition lattice Πm. In [Sta82] Stanley describes explicitly

the representations on the top homology of the partition lattice as induced

representations of an m-root of the unity from a subgroup Cm generated by

an m-cycle to Sm:

H̃m−3(Πm) ≃Sm sgn⊗ indSm
Cm

(e2πi/m).

In this case, Theorem A specializes to the following:

Theorem E. Let M(Km) be the matroid associate to the complete graph

Km, we have the following C[Sm]-module isomorphism

H̃n−3−i(IN(M∗(Km))) ≃Sm sgn⊗ H̃i(Πm) ≃Sm indSm
Cm

(e2πi/m),

where n =
(
m
2

)
is the number of edges Km, and Cm is the subgroup generated

by an m-cycle in Sm.

This result is the case of interest of [dCHM21].
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Hodge theory for polymatroids

Let A be a subspace arrangement in a C-vector space V , we define the

complement of the arrangement in the following way:

M(A) = Cr ∖
⋃
U∈A

U.

The problem of computing the cohomology of the complement of a sub-

space arrangement was solved by Goresky and MacPherson [GM88] and by

De Concini and Procesi [DCP95] with different techniques. Goresky and

MacPherson used stratified Morse theory to describe the cohomology spaces

ofM(A) using the combinatorial data of the lattice of intersections L:

Theorem (Goresky MacPherson ’88). Let A be an arrangement of subspaces

with complement M(A) and lattice of intersections L, there exists an iso-

morphism

H̃k(M(A),Z) ∼=
⊕

W∈L∖0̂

H̃2 cd(W )−2−k

(
∆((0̂,W )),Z)

)

where ∆((0̂,W )) is the order complex of the interval (0̂,W ).

Instead, in [DCP95] De Concini and Procesi built a rational model for

M(A) and proved that the rational cohomology algebra ofM(A) is uniquely
defined by the lattice of intersections. If A is an arrangement of subspaces

with complement M(A), a wonderful model is a smooth projective variety

Y containingM(A) as an open set, such that Y \M(A) is a simple normal

crossing divisor, i.e., the irreducible components are smooth and locally in-

tersects as coordinates hyperplanes. This wonderful model YG is obtained

from Pr by a sequence of blowups along some linear subspaces, the collec-

tion of those subspaces is called building set G. The variety YG is used for

studying the complement of the subspace arrangement, by considering the

Leray spectral sequence for the inclusion of the complement in the wonder-

ful model YG. The spectral sequence collapses at the third page yielding a
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Leray model (B•,•(A,G), d) (also known as Morgan algebra [Mor78]) for the

rational homotopy type. Furthermore, we have the following

B•,0(A,G) = H •(YG) and H •(B•,•(A,G), d) = H •(M(A)).

The problem that arises spontaneously is how to combine these two re-

sults, i.e., how to explicitly find the ring structure from combinatorics. In

particular how to relate the multiplication to the local homology of L that

occurs in the Goresky-MacPherson formula. In [Yuz02] Yuzvinsky solved

this problem only for a maximal building set. Yuzvinsky finds a significantly

smaller subalgebra CM(A,Gmax) quasi-isomorphic to B•,•(A,Gmax) whence

also a rational model ofM(G). The algebra CM(A,Gmax) gives a multiplica-

tive structure on the flag complexes of L(A) that induces the ring structure

on H •(M(A)).

Theorem (Yuzvinsky ’02). Let A be a subspace arrangement with comple-

mentM(A) and lattice of intersection L = L(A), there is an isomorphism

H̃k(M(A),Q) ∼= H̃k(CM(A,Gmax),Q) ∼=
⊕

W∈L∖0̂

H̃2 cd(W )−2−k

(
∆((0̂,W )),Q)

)
where ∆((0̂,W )) is the order complex of the interval (0̂,W ).

In a joint work with Roberto Pagaria, we extend these results of Yuzvin-

sky to a non realizable setting and to an arbitrary building set. A polymatroid

is a pair P = (E, cd) where E is a finite ground set and cd: 2E → N is a

increasing submodular function. If P is realized by a subspace arrangement,

then cd is the codimension of the corresponding flat. Inspired by the realiz-

able case, we give a combinatorial definition of building set for polymatroids

and we introduce a Leray model B(P,G) for a polymatroid with building

set. In the case of matroids the Leray model was recently studied by Bibby,

Denham, and Feichtner [BDF20]. The last combinatorial object that we

need is the G-nested set complex n(P,G). In the realizable case this complex

remembers whether the intersection of the corresponding divisors in YG is

non-empty.
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Theorem F. Let P be a polymatroid. The inclusion CM(P,G) ↪→ B(P,G)
is a quasi-isomorphism. Furthermore

H •(B(P,G)) ∼= H •(CM(P,G)) ∼=
⊕
f∈L

⊗
g∈F

H̃2 cd(g)−2−•

(
n((0̂, g),G)

)
.

In the realizable case with maximal building set, the above decomposition

specializes to the Goresky-MacPherson formula.

The Leray model contains a subalgebra DP(P,G) as the first row of the

spectral sequence, we call this algebra the Chow ring of the polymatroid.

For subspace arrangements, DP(P,G) is the cohomology (indeed the Chow

ring) of the wonderful model YG. The combinatorial Chow ring for matroids

was studied by Feichtner and Yuzvinsky [FY04] and later by Huh, Katz, and

Adiprasito [Huh12, HK12, AHK18] and others. We prove that the Chow ring

DP(P,G) of a polymatroid satisfies the Kähler package (see Theorems 3.31

and 3.43).

Theorem G. The ring DP(P,G) has the Poincaré duality property. More-

over, there exists a simplicial cone ΣP,G contained in DP1(P,G) such that for

each ℓ ∈ ΣP,G the Hard-Lefschetz theorem and the Hodge-Riemann relations

hold.

We proved the above theorem using methods similar to ones in [AHK18].

A second and easier proof of the Kähler package for matroid was given in

[BHM+20a] using a semismall decomposition; the decomposition is the first

step through the singular Hodge theory [BHM+20b]. In the realizable setting

the decomposition is induced by a map between wonderful models that is

semismall (for semismall maps in algebraic geometry see [dCM02, dCM09]).

In the case of polymatroids the corresponding map is not semismall, hence

we cannot deduce the Kahler package using this method. However we obtain

a relative Lefschetz decomposition of the Chow ring.

Theorem H. Let DP(a) be the Chow ring for the polymatroids P \ a where

an element a ∈ E is removed from the ground set. The Chow ring DP(P,G)
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decomposes into irreducible DP(a)-modules as

DP(P,G) = DP(a)⊕
⊕
f∈Sa

nf⊕
k=1

xkf DP(a) .

Moreover, the irreducibles are explicitly described by:

xkf DP(a)
∼= DP((P \ a)f\a, (G \ a)f\a)⊗DP(Pf ,Gf )[k].

The reduced characteristic polynomial of a polymatroid is defined by

χP (λ) =

∑
A⊆E(−1)|A|λcd(E)−cd(A)

λ− 1
.

As final step we relate the coefficients of the reduced characteristic polynomial

to the Hodge-Riemann bilinear form (see Theorem 3.53). In order to do that,

we restrict to the case of maximal building set and we fix an isomorphism

deg : DPr(P,Gmax)→ Q.

Theorem I. There exist elements α, β ∈ DP1(P,Gmax) such that

χP (λ) =
r∑
i=0

(−1)i deg(αiβr−i)λi.

The element α belongs to the closure of the σ-cone (morally it is nef), but

in general β is not in the closure of the ample cone. Hence, the coefficients

of the reduced characteristic polynomial do not form a log-concave sequence

(see Remark 16). Indeed every finite sequence of non-positive integers can

appear as a substring of the coefficients.

Overview

In Chapter 1 we recall all the preliminaries needed for understanding the

following chapters. In Section 1.1 we introduce the basic definition related

to poset and its homology, also providing the example of the partition lattice

Πn. In Section 1.2 we give all the fundamental definitions of matroid theory,
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focusing on various way to define a matroid and on the lattice of flats as-

sociated to each matroid which will result crucial for this thesis. In Section

1.3 we introduce the notion of polymatroids with its properties, analyzing

some differences with matroids. We also focus on realizable polymatroids,

i.e., polymatroids induced by an arrangement of subspaces. We describe

the problem of computing the cohomology of the complement of an arrange-

ment, showing the two different approaches of Goresky-MacPherson and De

Concini-Procesi.

In Chapter 2 we describe the representations of a group of automorphisms

G of a matroid M on the homology of the independence complex of the

dual matroid M∗. These representations are related to the homology of

the lattice of flats of M . In Section 2.1 we study the representations of a

group G on the homology spaces of any abstract simplicial complex ∆ and

its Alexander dual ∆∗, showing that the two C[G]-module are isomorphic

up to tensoring with the sign representation (see Theorem 2.2). In Section

2.2 we develop an equivariant version of Folkman’s machinery of cross-cuts

[Fol66]: see in particular our Theorem 2.11. In Section 2.3 we specialize the

previous results to the case of matroids, obtaining the fundamental result

of this chapter, see Theorem 2.17. In Section 2.4, we show that the top-

degree part of the cohomology of the complement M(A) of a hyperplane

arrangement is isomorphic as a representation of G, up to a sign, to the

reduced homology of the dual matroid M∗
A associated to A (see Theorem

2.19). In Section 2.5 we focus on the case when M is realized by a coned

graph or by a complete bipartite graph. Then our Theorem 2.17, combined

with results by Kook and Lee ([Koo07, KL18]), yields isomorphisms with the

C[G]-modules of edge-rooted and B-edged rooted forests (See Equations 2.11,

2.12). Finally, in Section 2.6 we specialize our results to the case in which

M is the matroid of the complete graph Km (See Theorem 2.23).

In Chapter 3 we construct a Leray model for a discrete polymatroid and

we prove a generalized Goresky-MacPherson formula. We prove the Kähler

package for the Chow ring of the polymatroid. In Section 3.1 we use Gröbner
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basis theory in order to give two explicit bases of the Leray model (See

Definition 3.4 and Theorem 3.7). In Section 3.2, by using algebraic discrete

Morse theory, we compute the cohomology of the Leray model generalizing

the Goresky-MacPherson formula (See Theorem 3.24). In Section 3.3, we

use an inductive procedure to prove the Kähler package (See Theorem 3.31

and Theorem 3.43). The main difference with the previous methods is that

we do not have partial building sets as in [BDF20] nor order filters as in

[AHK18]. Our induction is based on the cardinality of the building set,

and the inductive step involved completely different polymatroids. Section

3.4 is devoted to the proof of the relative Lefschetz decomposition using

some lemmas from the previous sections (See Theorem 3.46). The reduced

characteristic polynomial is studied in Section 3.5. We prove the claimed

equality by showing that both polynomials satisfy the same recursion (See

Theorem 3.53). In this proof we used the properties of the Möbius function

for posets. Finally, Section 3.6 contains an explicit and exhaustive example

that illustrates our definitions and properties.
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Chapter 1

Preliminaries

In this Chapter we recall all the fundamental notions needed for the

understanding of this thesis.

1.1 Poset and its homology

Definition 1.1. A partially ordered set is a set X taken together with a

partial order on it. Formally, a partially ordered set is defined as an ordered

pair P = (X,⩽) where X is called the ground set of P and ⩽ the partial

order of P .

Definition 1.2. Given two posets (S,⩽S) and (T,⩽T ), an order isomorphism

from (S,⩽S) to (T,⩽T ) is a bijective function f from S to T with the property

that, for every x, y ∈ S:

x ⩽S y ⇐⇒ f(x) ⩽T f(y).

An order isomorphism from a poset to itself is called an order automorphism.

An upper bound of a subset X of a poset P is an element a ∈ P such that

a ⩾ x, ∀x ∈ X. An upper bound b of a subset X is called least upper bound

(join) if for all upper bounds z of X in P , z ⩾ b.

The notions of lower bound of X and greatest lower bound (meet) of X

are defined dually.

1



2 1. Preliminaries

Definition 1.3. In a poset P an element p covers an element q when ∄z ∈ P
such that:

q < z < p.

An atom in P is an element that covers a minimal element 0̂. A coatom in

P is an element that is covered by a maximal element 1̂.

Definition 1.4. A lattice is a poset for which any two elements x and y have

a least upper bound (join) x ∨ y and greatest lower bound (meet) x ∧ y. A

finite lattice is semi-modular if whenever x and y cover x ∧ y (i.e, ∄z such

that x ∧ y < z < x or x ∧ y < z < y), then x ∨ y covers both x and y.

Definition 1.5. A finite lattice is geometric if it is semimodular and every

element is a join of atoms.

Definition 1.6. The Möbius function µ of a finite lattice L is a function of

two lattice-variables which for all x, y ∈ L satisfies the following properties:

µ(x, y) =


1, if x = y

−
∑

x⩽z<y µ(x, z), if x < y

0, if x ⩽̸ y

We now introduce a poset that will be useful for the work of this thesis.

We use the following notation [n] = {1, 2, . . . , n}.

Definition 1.7. Let Πn denote the poset of all set partitions of [n], ordered

by refinement. Thus the elements of Πn are sets:

β = {B1, . . . , Bk}

where the Bi’s are pairwise-disjoint nonempty subsets of [n] with union [n].

Moreover:

{B′
1, . . . , B

′
j} ⩽ {B1, . . . , Bk}

if and only if every B′
r is contained in some Bs.
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1|2|3

12|3 13|2 23|1

123

Figure 1.1: The Hasse diagram of the poset Π3

Example 1.1. Let Π3 be the partition lattice of {1, 2, 3}, then:

Π3 = {1|2|3, 12|3, 13|2, 23|1, 123}

The maximal chains are:

a1 = 1|2|3 ⩽ 12|3 ⩽ 123 a2 = 1|2|3 ⩽ 13|2 ⩽ 123 a3 = 1|2|3 ⩽ 23|1 ⩽ 123

Theorem 1.8. The poset Πn is a geometric lattice of rank n− 1.

Proof . See [Bir67, Theorem 12; page 95].

1.1.1 On the homology of a poset

Let P be a finite poset. A chain is a totally ordered subset of a poset

P . The length of a finite chain C is l(C) = |C| − 1. We assume that P

has a unique minimal element 0̂, a unique maximal element 1̂ and that every

maximal chain has the same length n; we call such a poset ranked. Define

the rank function:

r : P −→ N

by setting r(x) equal to the length of any chain in the interval
[
0̂, x

]
=

{y | 0̂ ⩽ y ⩽ x}.

Definition 1.9. Let P be a ranked poset of rank n and let S ⊆ [n − 1] =

{1, 2, . . . , n− 1}. We define the rank-selected subposet PS of P by:

PS = {x ∈ P | r(x) ∈ S} ∪ {0̂, 1̂}
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We refer to [Hat02] for all the terminology of simplicial complexes and

homology.

Definition 1.10. Let Q be any poset with 0̂ and 1̂, then define the order

complex ∆(Q) to be the abstract simplicial complex whose vertices are the

elements of Q = Q∖
{
0̂, 1̂

}
and whose faces (or simplices) are the chains

x0 < x1 < · · · < xk in Q∖
{
0̂, 1̂

}
Definition 1.11. The reduced (co)homology of a poset P , H̃i(P,R), with

coefficients in a ring R is defined as the reduced simplicial (co)homology of

its order complex H̃i(∆(P ), R). For x < y in P , we write H̃i(x, y) for the

homology of the open interval (x, y).

We review explicitly these concepts for poset in terms of chains, we use

the terminology of [Wac07]. Let P be a poset with 0̂ and 1̂ and let j be an

integer, we define the chain space

Cj(P,R) := R-module freely generated by j-chains of P ,

where R is a ring. The boundary map ∂j : Cj(P,R)→ Cj−1(P,R) is defined

by

∂j(x1 < · · · < xj+1) =

j+1∑
i=1

(−1)i(x1 < · · · x̂i < · · · < xj+1),

where ·̂ denotes deletion. Clearly we have that ∂j−1 ◦ ∂j = 0, which makes

(Cj(P,R), ∂j) an algebraic complex. Therefore we define the cycle space

Zj(P ;R) := ker ∂j and the boundary space Bj(P,R) := Im ∂j+1. The homol-

ogy space of the poset P in degree j is defined by

H̃j(P,R) :=
Zj(P ;R)⧸Bj(P,R)

.

The coboundary map δj : Cj(P,R)← Cj+1(P,R) is defined by

δj(x1 < · · · < xj) =

j+1∑
i=1

(−1)i
∑

x∈(xi−1,xi)

(x1 < · · · < xi−1 < x < xi < · · · < xj),
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for all chains x1 < · · · < xj. We define the cocycle space to be Zj(P,R) :=

ker δj and the coboundary space to be Bj(P,R) := Im(δj−1). The cohomol-

ogy space of the poset P in degree j is defined to be

H̃j(P,R) := Zj(P ;R)⧸Bj(P,R).

When R is a field, H̃j(P,R) and H̃j(P,R) are isomorphic vector spaces;

this follows from the Universal Coefficient Theorem (see [Hat02]). The j-th

(reduced) Betti number of P is given by dim H̃j(P,C), which is the same as

the rank of H̃j(P,Z).
Throughout this section we work with complex coefficients, then we de-

note by H̃i(Q) the reduced simplicial homology group H̃i(Q,C). Recall that
for any simplicial complex ∆, H̃−1(∆,C) = 0 unless ∆ = ∅, while by defini-

tion H̃−1(∅,C) ≃ C and H̃i(∅,C) = 0 for i ⩾ 0.

Now suppose G is a subgroup of order automorphism of P (see Definition

1.2). For any S ⊆ [n − 1] G permutes the maximal chain of PS. Let CS be

the free module over C on the set of maximal chains of PS:

CS = ⟨a1, . . . , ar⟩ ai maximal chains of PS

Let αPS denote the permutation representation of G on CS:

αPS : G −→ GL(CS)

g 7−→
(
αg : CS → CS

) (1.1)

where αg(ai) = g.ai.

Example 1.2. Let P4 = ({1, 2, 3, 4},⊆) be the Boolean lattice with four

elements and let S = {1} ⊆ [3]:

PS = P4S = {∅, {1, 2, 3, 4}, {1}, {2}, {3}, {4}}.

The maximal chains of PS are:

a1 = ∅ ⊆ {1} ⊆ {1, 2, 3, 4} a2 = ∅ ⊆ {2} ⊆ {1, 2, 3, 4}

a3 = ∅ ⊆ {3} ⊆ {1, 2, 3, 4} a4 = ∅ ⊆ {4} ⊆ {1, 2, 3, 4}
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Let CS be the free-module over C having {a1, a2, a3, a4} as basis:

CS = {λ1a1 + λ2a2 + λ3a3 + λ4a4; λi ∈ C}

The group of order automorphisms of P4 is S4. We choose G = S4.

αPS : S4 −→ GL(CS)

(123) 7−→ α(123)

(34) 7−→ α(34)

α(123) : CS −→ CS

a1 7−→ a2

a2 7−→ a3

a3 7−→ a1

a4 7−→ a4

α(123) =


0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1



α(34) : CS −→ CS

a1 7−→ a1

a2 7−→ a2

a3 7−→ a4

a4 7−→ a3

α(34) =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


Let χαP

S
be the character of the representation αPS , we have the following

χαP
S
((123)) = 1 Number of maximal chains fixed by (123)

χαP
S
((34)) = 2 Number of maximal chains fixed by (34)

As we have seen in the previous example, χαP
S
((g)) is the number of

maximal chains of PS fixed by g. In particular, χαP
S
((Id)) is just the number

of maximal chains of PS.

The group G acts on each reduced homology group H̃i(PS) with −1 ⩽

i ⩽ |S| − 1. Let γS,i denote this representation of G:

γS,i : G −→ GL(H̃i(PS))
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Now define a virtual representation βS = βPS of G by:

βS =

|S|−1∑
i=−1

(−1)|S|−1−i γS,i (1.2)

In particular, when S = ∅ then βS is the trivial representation, i.e., βS(g) =

γS,−1(g) = Id for all g ∈ G.

Example 1.3. Let P3 = (2{1,2,3},⊆) be the Boolean lattice with three ele-

ments and let S = {1, 2}. In this case we have that PS = P3. In order to

calculate the homology of P3 we have to consider P3 and his order complex:

{2}{1} {3}

{1, 2} {1, 3} {2, 3}

{1}
v1

{1, 2}

v4

{2}
v2

{2, 3}v6

{3}
v3

{1, 3} v5

Figure 1.2: The poset P3 on the left and its order complex ∆(P3) on the

right

Observing the order complex of P3 we immediately notice that:

H̃i(P3) = 0 for i = −1, 0 and H̃1(P3) ≃ C.

We explicitly calculate H̃1(P3) to see the action of the group on it.

The vertex set of ∆(P3) is {v1, . . . , v6}. The 1-chains of P3 are:

a1 = [v1, v4] a2 = [v1, v5] a3 = [v2, v4]

a4 = [v2, v6] a5 = [v3, v5] a6 = [v3, v6]

Hence:

C0 =
{ 6∑

i=1

λivi, λi ∈ C
}

C1 =
{ 6∑

i=1

λiai, λi ∈ C
}

C2 = 0



8 1. Preliminaries

C2
∂2−→ C1

∂1−→ C0

∂1 : C1 −→ C0

a1 7−→ v4 − v1
a2 7−→ v5 − v1
a3 7−→ v4 − v2
a4 7−→ v6 − v2
a5 7−→ v5 − v3
a6 7−→ v6 − v3

∂1 =



−1 −1 0 0 0 0

0 0 −1 −1 0 0

0 0 0 0 −1 −1
1 0 1 0 0 0

0 1 0 0 1 0

0 0 0 1 0 1



H̃1(P3) = ker(∂1)/Im(∂2) = ker(∂1) ker(∂1) =



x1 = −t

x2 = t

x3 = t

x4 = −t

x5 = −t

x6 = t

H̃1(P3) = Span{−[v1, v4] + [v1, v5] + [v2, v4]− [v2, v6]− [v3, v5] + [v3, v6]︸ ︷︷ ︸
l

}

Let G be a subgroup of order automorphism of P3, so G is a subgroup of S3.

Choose G = S3 and let’s calculate γ[2],1:

γ[2],1 : S3 −→ GL(H̃1(P3))

Id 7−→ γId

(12) 7−→ γ(12)

(123) 7−→ γ(123)

γId : H̃1(P3) −→ H̃1(P3)

l 7−→ l

γ(12) : H̃1(P3) −→ H̃1(P3)

l 7−→ −l

γ(123) : H̃1(P3) −→ H̃1(P3)

l 7−→ l

γ[2],1 is isomorphic to the sign representation:

ρ : S3 −→ C∗

g 7−→ sgn(g)
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And in this case we have β[2] = γ[2],1.

To be able to enunciate the next theorem we need two results due to

Baclawsky and Björner ([BB79]); we begin by setting some notation.

Definition 1.12. Given a poset P and a order automorphism f , we write

P f for the fixed point set :

P f = {x ∈ P | x = f(x)}.

Definition 1.13. Let P be a poset and let ϵi(P ) be the number of i-chains

of P = P ∖ {0̂, 1̂}. The Euler-characteristic E(P ) is defined by:

E(P ) =
+∞∑
i=0

(−1)i ϵi(P ).

In particular E(∅) = 0.

The well known Euler-Poincaré formula states that

E(P ) =
+∞∑
n=0

(−1)n dimCHn(P,C).

We can also introduce the definition of reduced Euler characteristic:

Ẽ(P ) =
+∞∑
n=−1

(−1)n dimCH̃n(P,C).

It is easy to see that:

E(P ) = Ẽ(P ) + 1.

It is a theorem of P. Hall [Rot64a, Prop 6, page 346] that:

E(P ) = µ(P ) + 1, i.e. Ẽ(P ) = µ(P ) (1.3)

with µ(P ) = µ
(
0̂, 1̂

)
the Möbius function of P .

Definition 1.14 (Lefschetz Number). Let P be a finite poset. For an order

automorphism f of P let:

fn : Hn(P,C) −→ Hn(P,C) f̃n : H̃n(P,C) −→ H̃n(P,C)
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be the linear maps induced on homology and reduced homology respectively.

The Lefschetz number of f is

Λ(f) =
+∞∑
n=0

(−1)n Tr(fn)

and the reduced Lefschetz number of f is

Λ̃(f) =
+∞∑
n=−1

(−1)n Tr(f̃n).

Theorem 1.15 (Hopf-Lefschetz fixed point theorem). Let P be a finite poset

and let f be an order automorphism of P . Then

Λ(f) = E(P f ) Λ̃(f) = Ẽ(P f ).

In particular, if Λ(f) ̸= 0, then P f ̸= ∅.

Proof . See [BB79, Theorem 1.1; page 265]. The result is stated for ordinary

simplicial homology, but the proof works just as well for reduced simplicial

homology.

Recall the definition of αS and βT respectively from Equation (1.1) and

(1.2). Now we can state the following theorem of Stanley ([Sta82]):

Theorem 1.16. The representation αS and the virtual representation βS are

related by the formulas:

αS =
∑
T⊆S

βT (1.4)

βS =
∑
T⊆S

(−1)|S∖T | αT . (1.5)

Proof . Let P be a finite poset and let G be a group of order automorphism

of P . Let Λ̃S(g) be the Lefschetz number of the map g ∈ G working in PS

subposet of P :

Λ̃S(g) =
+∞∑
n=−1

(−1)n Tr(g̃n) g̃n : H̃n(PS,C) −→ H̃n(PS,C).
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Recall that:

βS =

|S|−1∑
n=−1

(−1)|S|−1−n γS,n
γS,n : G −→ GL(H̃n(PS))

g 7−→ g̃n.

The character of the virtual representation βS is

χβS(g) =

|S|−1∑
n=−1

(−1)|S|−1−nχγS,n(g) =

|S|−1∑
n=−1

(−1)|S|−1−nTr(g̃n)

= (−1)1−|S|
|S|−1∑
n=−1

(−1)nTr(g̃n).

Since H̃n(PS,C) = 0 for all n > |S| − 1, we have that

Λ̃S(g) =

|S|−1∑
n=−1

(−1)n Tr(g̃n).

But as far as we see before we get

χβS(g) = (−1)1−|S| Λ̃S(g) Λ̃S(g) = (−1)|S|−1 χβS(g). (1.6)

Let Ẽ(P g
S) be the reduced Euler-characteristic of the subposet P g

S of PS. By

applying Theorem 1.15 to the poset PS we have that:

Λ̃S(g) = Ẽ(P g
S). (1.7)

By definition of the Euler characteristic, recalling that χαS
(g) is the number

of maximal chains of PS fixed by g, we claim that

Ẽ(P g
S) =

∑
T⊆S

(−1)|T |−1 χαT
(g).

Hence for (1.7):

(−1)|S|−1 χβS(g) =
∑
T⊆S

(−1)|T |−1 χαT
(g)

χβS(g) =
∑
T⊆S

(−1)|T |−|S| χαT
(g) =

∑
T⊆S

(−1)|S∖T | χαT
(g)

for all g ∈ G, so Equation (1.5) follows. For obtaining Equation (1.4), it

suffices to apply the Inclusion-Exclusion principle.
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Example 1.4. Let P3 = (2{1,2,3},⊆) be the Boolean lattice with three el-

ements. We want to calculate explicitly βS with the new characterization

provided by Theorem 1.16 and compare the result with that of the previous

example. Since length(P ) = 3, we take S = {1, 2} ⊆ [2].

In this case we have that PS = P3. We want to calculate:

β[2] =
∑
T⊆[2]

(−1)|[2]∖T | αT

i) For the first element of the sum let us consider T = S = [2]. The

maximal chains of PS are:

a1 = ∅ ⊆ {1} ⊆ {1, 2} ⊆ {1, 2, 3} a2 = ∅ ⊆ {1} ⊆ {1, 3} ⊆ {1, 2, 3}

a3 = ∅ ⊆ {2} ⊆ {1, 2} ⊆ {1, 2, 3} a4 = ∅ ⊆ {2} ⊆ {2, 3} ⊆ {1, 2, 3}

a5 = ∅ ⊆ {3} ⊆ {1, 3} ⊆ {1, 2, 3} a6 = ∅ ⊆ {3} ⊆ {2, 3} ⊆ {1, 2, 3}

Let CS be the free-module over C with {a1, a2, a3, a4, a5, a6} as basis:

CS = {λ1a1 + λ2a2 + λ3a3 + λ4a4 + λ5a5 + λ6a6; λi ∈ C}

Choose G = S3.

αS : S3 −→ GL(CS)

Id 7−→ I6

(12) 7−→ αS(12)

(123) 7−→ αS(123)

αS(12) : CS −→ CS

a1 7−→ a3

a2 7−→ a4

a3 7−→ a1

a4 7−→ a2

a5 7−→ a6

a6 7−→ a5

αS(12) =



0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0
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αS(123) : CS −→ CS

a1 7−→ a4

a2 7−→ a3

a3 7−→ a6

a4 7−→ a5

a5 7−→ a1

a6 7−→ a2

αS(123) =



0 0 0 0 1 0

0 0 0 0 0 1

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0


It turns out that αS is the regular representation of S3.

ii) We now consider T = T1 = ∅ ⊆ S. The only maximal chain of PT1 is

b1 = ∅ ⊆ {1, 2, 3}.

Let CT1 be the free-module over C with {b1} as basis:

CT1 = {λ1b1; λ1 ∈ C}
αT1 : S3 −→ GL(CT1).

g 7−→ Id

iii) Let T = T2 = {1} ⊆ S. The maximal chains of PT2 are

c1 = ∅ ⊆ {1} ⊆ {1, 2, 3} c2 = ∅ ⊆ {2} ⊆ {1, 2, 3} c3 = ∅ ⊆ {3} ⊆ {1, 2, 3}

Let CT2 be the free-module over C with {c1, c2, c3} as basis:

CT2 = {λ1c1 + λ2c2 + λ3c3; λi ∈ C}

αT2 : S3 −→ GL(CT2)

Id 7−→ I3

(12) 7−→ αT2(12)

(123) 7−→ αT2(123)

αT2(12) : CT2 −→ CT2

c1 7−→ c2

c2 7−→ c1

c3 7−→ c3

αT2(12) =


0 1 0

1 0 0

0 0 1





14 1. Preliminaries

αT2(123) : CT2 −→ CT2

c1 7−→ c2

c2 7−→ c3

c3 7−→ c1

αT2(123) =


0 0 1

1 0 0

0 1 0


The representation αT2 is isomorphic to the direct sum of the trivial

and the standard representations of S3, i.e.,

χαT2
= χ + χ .

iv) Let T = T3 = {2} ⊆ S. The maximal chains of PT3 are:

d1 = ∅ ⊆ {1, 2} ⊆ {1, 2, 3} d2 = ∅ ⊆ {1, 3} ⊆ {1, 2, 3}

d3 = ∅ ⊆ {2, 3} ⊆ {1, 2, 3}

Let CT3 be the free-module over C with {d1, d2, d3} as basis:

CT3 = {λ1d1 + λ2d2 + λ3d3; λi ∈ C}

αT3 : S3 −→ GL(CT3)

Id 7−→ I3

(12) 7−→ αT3(12)

(123) 7−→ αT3(123)

αT3(12) : CT3 −→ CT3

d1 7−→ d1

d2 7−→ d3

d3 7−→ d2

αT3(12) =


1 0 0

0 0 1

0 1 0


αT3(123) : CT3 −→ CT3

d1 7−→ d3

d2 7−→ d1

d3 7−→ d2

αT3(123) =


0 1 0

0 0 0

1 0 0


It turns out that the representation αT3 is isomorphic to the represen-

tation αT2 , hence:

χαT3
= χ + χ .
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Now we compute the character of the representation β[2]:

β[2] = αT1 − αT2 − αT3 + αS

χβ[2](Id) = χαT1
(Id)− χαT2

(Id)− χαT3
(Id) + χαS

(Id) = 1− 3− 3 + 6 = 1

χβ[2]((12)) = 1− 1− 1 + 0 = −1

χβ[2]((123)) = 1− 0− 0 + 0 = 1

β[2] is isomorphic to the sign representation:

ρ : S3 −→ C∗

g 7−→ sgn(g)

The result is consistent with the previous example. In this case, β[2] coincides

with the calculation of γ[2],1.

We try to generalize this result for some types of poset:

Definition 1.17. A finite ranked poset P with 0̂ and 1̂ is said to be Cohen–

Macaulay (over C) if for every interval I = [x, y] = {z : x ⩽ z ⩽ y} of P
we have:

H̃i(I) = 0 whenever i ̸= dim ∆(I).

Theorem 1.18. If P is a Cohen–Macaulay poset of rank n and if S ⊆ [n−1],
then PS is also Cohen–Macaulay.

Proof . See [Bac80, Theorem 6.4; page 247].

Let P be a Cohen–Macaulay poset with 0̂ and 1̂, it follows from (1.2),

that

βS = γS,s−1 s = |S|.

In other words:

Theorem 1.19. If P is a Cohen–Macaulay poset then βS is isomorphic to

the representation γS,s−1 of G on the top reduced homology group H̃s−1(PS).
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Now we report a result due to Folkman which applies to any geometric

lattice:

Theorem 1.20. Let L be a geometric lattice of rank r and let µ denote the

Möbius function of L. Then:

dim
(
H̃i(L)

)
=

|µ(0̂, 1̂)|, if i = r − 2

0, if i ̸= r − 2

Proof . See [Fol66, Theorem 4.1; page 634].

1.1.2 On the homology of the partition lattice

Let Πn denote the poset of all partitions of [n], ordered by refinement

introduced in Definition 1.7.

Proposition 1.21. Let µ be the Möbius function of the lattice of partitions

Πn, then:

µ(0̂, 1̂) = (−1)n−1 (n− 1)!.

Proof . See [Rot64a, Proposition 3; page 359].

From Theorem 1.20 it follows that every geometric lattice L is a Cohen-

Macaulay poset and then the only non-zero reduced homology group of L is

the (r − 2)-th. Hence, Πn is a Cohen-Macaulay poset.

The symmetric group Sn acts as an order automorphism group on Πn

by permuting the letters of the partitions. For example, the transposition

(12) acting on the partition 13|2|4 yields the partition 23|1|4. Let’s see an

example of how (12) acts on a chain:

1|2|3|4 < 23|1|4 < 234|1 < 1234 7−→ 1|2|3|4 < 13|2|4 < 134|2 < 1234

Our aim is to study the representation γn−3 of Sn on the top homology

group H̃n−3(Πn) of Πn .

If we take S = [n− 2], we obtain from Theorem 1.19:

(Πn)S = {x ∈ Πn | x = 0̂ ∨ x = 1̂ ∨ r(x) ∈ S} = Πn
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β[n−2] =
n−3∑
i=−1

(−1)n−3−i γS,i = γS,n−3 = γn−3.

So in the case of the partition lattice the representation we are looking for is

β[n−2] = γn−3:

β[n−2] = γn−3 : Sn −→ GL(H̃n−3(Πn)).

By Theorem 1.20 and Proposition 1.21 we have that:

dim(H̃n−3(Πn)) = |µ(0̂, 1̂)| = |(−1)n−1 (n− 1)!| = (n− 1)!.

Thus, β[n−2] is a representation of Sn of dimension (n−1)!. Before describing
β[n−2] more explicitly, let’s make an example:

Example 1.5. Consider the partition lattice Π4 of [4] with every maximal

chain of length 3 and with S = [2], we always consider S maximal since we

want that:

PS = P = Π4.

Figure 1.3: The partition lattice Π4

µ(Π4) = µ(0̂, 1̂) = −3! = −6 H̃1(Π4) ≃ C6
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C1 ≃ C18 C0 ≃ C13

BC1 =
{ a1

[v1, v7],
a2

[v1, v9],
a3

[v1, v12],
a4

[v2, v7],
a5

[v2, v8],
a6

[v2, v10],
a7

[v3, v7],
a8

[v3, v11],
a9

[v3, v13],

a10

[v4, v9],
a11

[v4, v10],
a12

[v4, v13],
a13

[v5, v10],
a14

[v5, v11],
a15

[v5, v12],
a16

[v6, v8],
a17

[v6, v9],
a18

[v6, v11]
}

BC0 =
{
v1, v2, . . . , v13

}
0

∂2−→ C1
∂1−→ C0 H̃1(Π4) = ker(∂1)/Im(∂2) = ker(∂1)

∂1 =



-1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 -1 -1 -1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 -1 -1 -1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1

1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0



H̃1(Π4) = Span{
b1

−a4 + a5 + a7 − a8 − a16 + a18;
b2

−a4 + a5 + a7 − a9 − a10 + a12 − a16 + a17;

b3
−a4 + a6 + a7 − a9 − a11 + a12;

b4
a2 − a3 − a10 + a11 − a13 + a15;

b5
−a8 + a9 + a11 − a12 − a13 + a14;

b6
a1 − a2 − a7 + a9 + a10 − a12} =

= {b1, b2, b3, b4, b5, b6}.
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We indicate with CS the free-module over C on the set of maximal chains of

PS = Π4 without the minimal and maximal element. Thus,

CS = C[2] = C1

Before we can calculate γ1 we need to see how α = α[2] works on C1:

α : S4 −→ GL(C1)

(12) 7−→ α(12)

(123) 7−→ α(123)

(1234) 7−→ α(1234)

(12)(34) 7−→ α(12)(34)

α(12)(a1) = a1 α(12)(a2) = a2 α(12)(a3) = a3 α(12)(a4) = a7 α(12)(a5) = a9

α(12)(a6) = a8 α(12)(a7) = a4 α(12)(a8) = a6 α(12)(a9) = a5 α(12)(a10) = a17

α(12)(a11) = a18 α(12)(a12) = a16 α(12)(a13) = a14 α(12)(a14) = a13

α(12)(a15) = a15 α(12)(a16) = a12 α(12)(a17) = a10 α(12)(a18) = a11

α(123)(a1) = a7 α(123)(a2) = a8 α(123)(a3) = a9 α(123)(a4) = a1 α(123)(a5) = a3

α(123)(a6) = a2 α(123)(a7) = a4 α(123)(a8) = a6 α(123)(a9) = a5 α(123)(a10) = a18

α(123)(a11) = a17 α(123)(a12) = a16 α(123)(a13) = a10 α(123)(a14) = a11

α(123)(a15) = a12 α(123)(a16) = a15 α(123)(a17) = a14 α(123)(a18) = a13

α(1234)(a1) = a8 α(1234)(a2) = a7 α(1234)(a3) = a9 α(1234)(a4) = a18 α(1234)(a5) = a16

α(1234)(a6) = a17 α(1234)(a7) = a14 α(1234)(a8) = a13 α(1234)(a9) = a15 α(1234)(a10) = a1

α(1234)(a11) = a2 α(1234)(a12) = a3 α(1234)(a13) = a10 α(1234)(a14) = a11

α(1234)(a15) = a12 α(1234)(a16) = a5 α(1234)(a17) = a4 α(1234)(a18) = a6
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α(12)(34)(a1) = a8 α(12)(34)(a2) = a7 α(12)(34)(a3) = a9 α(12)(34)(a4) = a18

α(12)(34)(a5) = a16 α(12)(34)(a6) = a17 α(12)(34)(a7) = a14 α(12)(34)(a8) = a13

α(12)(34)(a9) = a15 α(12)(34)(a10) = a1 α(12)(34)(a11) = a2 α(12)(34)(a12) = a3

α(12)(34)(a13) = a10 α(12)(34)(a14) = a11 α(12)(34)(a15) = a12

α(12)(34)(a16) = a5 α(12)(34)(a17) = a4 α(12)(34)(a18) = a6

γ1 : S4 −→ GL(H̃1(Π4))

Id 7−→ I6

(12) 7−→ γ1(12)

(123) 7−→ γ1(123)

(1234) 7−→ γ1(1234)

(12)(34) 7−→ γ1(12)(34)

γ1(12) : H̃1(Π4) −→ H̃1(Π4)

b1 7−→ -b3

b2 7−→ -b2

b3 7−→ -b1

b4 7−→ b1-b2 + b4-b5

b5 7−→ b1-b3-b5

b6 7−→ b2 + b6

γ1(12) =



0 0 −1 1 1 0

0 −1 0 −1 0 1

−1 0 0 0 −1 0

0 0 0 1 0 0

0 0 0 −1 −1 0

0 0 0 0 0 1



γ1(123) : H̃1(Π4) −→ H̃1(Π4)

b1 7−→ -b3-b4-b6

b2 7−→ -b1-b4 + b5-b6

b3 7−→ -b2-b6

b4 7−→ -b1 + b2

b5 7−→ b2-b3

b6 7−→ b1

γ1(123) =



0 −1 0 −1 0 1

0 0 −1 1 1 0

−1 0 0 0 −1 0

−1 −1 0 0 0 0

0 1 0 0 0 0

−1 −1 −1 0 0 0
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γ1(1234) : H̃1(Π4) −→ H̃1(Π4)

b1 7−→ -b1 + b3 + b5

b2 7−→ -b1-b4 + b5-b6

b3 7−→ -b1 + b2-b4 + b5

b4 7−→ -b6

b5 7−→ b4

b6 7−→ b4-b5 + b6

γ1(1234) =



−1 −1 −1 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 −1 −1 0 1 1

1 1 1 0 0 −1
0 −1 0 −1 0 1



γ1(12)(34) : H̃1(Π4) −→ H̃1(Π4)

b1 7−→ -b2 + b3

b2 7−→ -b2

b3 7−→ b1-b2

b4 7−→ b4-b5 + b6

b5 7−→ -b5

b6 7−→ -b6

γ1(12)(34) =



0 0 1 0 0 0

−1 −1 −1 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 −1 −1 0

0 0 0 1 0 −1


χγ1 : S4 −→ C

Id 7−→ 6

(12) 7−→ 0

(123) 7−→ 0

(1234) 7−→ 0

(12)(34) 7−→ −2
To do less calculations you could directly find βS using Theorem 1.16.

We note that the representation γ1 we found is isomorphic to the induced

representation indS4
C4
(i).

We want to show that the result we obtained is not a case but extends to

all the partitions lattices Πn, n ∈ N.
We need the following results of P. Hall and P. Hanlon:

Proposition 1.22. Let L be a finite lattice with atoms {a1, . . . , an} and

coatoms {b1, . . . , bm}.
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a) If 0̂ is not the meet of coatoms, i.e.

b1 ∧ b2 ∧ · · · ∧ bm ̸= 0̂

then:

µ(0̂, 1̂) = 0

b) If 1̂ is not the join of atoms, i.e.

a1 ∨ a2 ∨ · · · ∨ am ̸= 1̂

then:

µ(0̂, 1̂) = 0

Proof . See [Rot64a, Corollary (Ph. Hall); page 349].

Lemma 1.23. Let π ∈ Sn, and let Ππ
n denote the sublattice of Πn fixed

pointwise by π. Let µπ denote the Möbius function of Ππ
n. Then:

µπ(0̂, 1̂) =

(−1)d−1µ(n/d)(d− 1)!(n/d)d−1, if π is a product of d cycles of length n/d

0, otherwise

Here µ(n/d) denotes the usual number-theoretic Möbius function.

Proof . See [Han81, Theorem 4; page 338].

Hanlon actually computes µπ(xπ, 1̂), where xπ is the meet of all coatoms

of Ππ
n. It follows from [Han81] Lemma 2 that:

xπ = 0̂ ⇐⇒ all cycles of π have the same length

Combining the previous results with Proposition 1.22 we obtain the proof of

the lemma.

Theorem 1.24. Let µ denote the usual number-theoretic Möbius function.

Then:

µ(n) =
∑

1≤h≤n
(h,n)=1

e
2πih
n

i.e. the sum of the primitive n-th roots of unity.
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Proof . See [HW79], Theorem 271 and Equation (16.6.4), page 239.

In order to prove Lemma 1.26 we need the following result on the character

of an induced representation:

Theorem 1.25. Let χ be the character of the representation ρ of G induced

by the representation θ of H whose character is χθ. Let x be an element of

G and Cj its conjugacy class in G with hj elements, and let g = gjhj where

g is the order of G. Let h be the order of H. Then:

χ(x) =
gj
h

∑
z∈Cj∩H

χθ(z).

Proof . If G is a finite group, for every a ∈ G the elements in the conjugacy

class of a are in 1− 1 correspondence with the cosets of the centralizer:

CG(a) = {g ∈ G | ga = ag}.

This can be seen by observing that any two elements b, c belonging to the

same coset of CG(a), i.e. there exists an element z in CG(a) such that b = zc,

give rise to the same element while conjugating a:

b−1ab = c−1z−1azc = c−1ac.

Thus, the number of elements in the conjugacy class of a is the index [G :

CG(a)]. The cardinality of |CG(a)| and its cosets is g/hj = gj. We have seen

that two elements that belong to the same coset of CG(a) give rise to the

same element while conjugating a.

We define:

χ1(w) =

χθ(w) w ∈ H

0 w /∈ H.

From [Ser77, Theorem 12; page 30] we know that:

χ(x) =
1

h

∑
y∈G

y−1xy∈H

χθ(y
−1xy) =

1

h

∑
y∈G

χ1(y
−1xy). (1.8)
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As y ranges over G, y−1xy ranges over Cj and give the same z ∈ Cj exactly
gj times. From Equation (1.8) we obtain

χ(x) =
1

h
gj

∑
z∈Cj

χ1(z) =
1

h
gj

∑
z∈Cj∩H

χθ(z).

Lemma 1.26. Let Cn be a cyclic subgroup of Sn of order n generated by an

n-cycle σ. Let ζ = e2πi/n and let ρn be the associated representation of Cn:

ρn : Cn −→ GL(V ) ≃ C∗.

σ 7−→ ζ

Define the induced representation ψn = indSn
Cn

(ρn) and let π ∈ Sn. We have

the following:

χψn(π) =

µ(n/d)(d− 1)!(n/d)d−1, if π is a product of d cycles of length n/d

0. otherwise

Proof . Theorem 1.25 on the character of induced representation yields

χψn(π) =
|Sn|
|Cn||Cπ|

∑
τ∈Cπ

⋂
Cn

χρn(τ) =
(n− 1)!

|Cπ|
∑

τ∈Cπ
⋂
Cn

χρn(τ) (1.9)

where Cπ is the conjugacy class of Sn containing π.

Suppose that π has d cycles, if d ∤ n and π has not d cycles of length n/d

then Cπ
⋂
Cn = ∅. Hence,

χψn(π) = 0 unless d|n and π has d cycles of length n/d.

Let π have d cycles of length n/d, if τ ∈ Cπ
⋂
Cn then exists k with

gcd(n, k) = d such that σk = τ ; thus we have that ρn(τ) = χρn(τ) = ζk.

ζ is a primitive n-th root of unity. A power w = ζk of ζ is a primitive

a-th root of unity for

a =
n

gcd(n, k)
.
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Hence χρn(τ) is a primitive n/d-th root of unity, so χρn(τ) runs through all

primitive n/d-th root of unity. From Theorem 1.24 we obtain that∑
τ∈Cπ

⋂
Cn

χρn(τ) = µ(n/d).

We can compute the size of the conjugacy class Cπ using [Sag01, Proposition

1.1.1] and we obtain

|Cπ| =
n!

(n/d)d d!
=

(n− 1)!

(n/d)d−1 (d− 1)!
.

Substituting what obtained in Equation (1.9) we have the following

χψn(π) =
(n− 1)! (n/d)d−1 (d− 1)!

(n− 1)!
µ(n/d) = (n/d)d−1 (d− 1)! µ(n/d).

Theorem 1.27. Let G = Sn acts on P = Πn in the canonical way. Using

the notations described in the previous Lemma we claim that

β[n−2] = ψn ⊗ sgn .

Proof . From Equation (1.6) and Equation (1.7) we get:

χβ[n−2]
(π) = (−1)n−1 Λ̃[n−2](π);

Λ̃[n−2](π) = Ẽ(P π
[n−2]) = Ẽ(P π) = Ẽ(Ππ

n).

From Equation (1.3) we have also:

Ẽ(Ππ
n) = µπ(Π

π
n) = µπ(0̂, 1̂).

By combining these last two results with Lemma 1.23 we get that:

χβ[n−2]
(π) = (−1)n−1 Λ̃[n−2](π) = (−1)n−1 µπ(0̂, 1̂)

χβ[n−2]
(π) =

(−1)n+dµ(n/d)(d− 1)!(n/d)d−1, if π is a product of d cycles of length n/d

0, otherwise

Recall π is a d-cycle, using Lemma 1.26 we have

χβ[n−2]
(π) = (−1)n+d χψn(π) = (−1)n−d χψn(π).
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Remark 1. Note that if n ̸≡ 2(mod 4), then (−1)n−d = 1 for all d|n. Thus in
this case:

γn−3 = β[n−2] = ψn.

1.2 Matroids

In this Section we recall the fundamental definitions of matroid theory

following [Oxl06].

1.2.1 Basic definitions

Definition 1.28. A matroid M is an ordered pair (E, I) consisting of a

finite set E and a collection I of subsets of E satisfying the three following

conditions:

(I1) ∅ ∈ I

(I2) If A ∈ I and A′ ⊆ A, then A′ ∈ I

(I3) If A and B are in I and |A| < |B|, then there is an element e ∈ B∖A

such that A ∪ {e} ∈ I.

The first two properties define an abstract simplicial complex.

The members of I are the independent sets of M , and E is the ground

set of M . We shall often write IN(M) for I and E(M) for E. A subset of E

that is not in I is called dependent.

Proposition 1.29. Let E be the set of column labels of an m× n matrix A

over a field K, and let I be the set of subsets X of E for which the set of

columns labeled by X is linearly independent in the K-vector space V (m,K)

of dimension m. Then M = (E, I) is a matroid.

The matroid obtained as above from the matrix A will be denoted by

M [A]. This matroid is called the K-vector matroid of A. We say that a
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matroid M is representable on a field K if there exists a matrix A over K
such that M = M [A]. The list of column vectors in the matrix A, in the

vector space V (m,K), is called a K-realization of M .

Definition 1.30. A hyperplane arrangement A is a finite family of linear

hyperplanes A = {V1, . . . , Vn} in a K-vector space V . If Vi is a hyperplane,

write ni for some (nonzero) normal vector to Vi. Let A be the matrix with the

ni as column vectors, we define the matroid associate to A as MA =M [A].

Definition 1.31. A minimal dependent set in an arbitrary matroid M will

be called a circuit of M and we shall denote the set of circuits of M by C or

C(M). A circuit of M having n elements will also be called an n-circuit. A

1-circuit of M is called a loop, equivalently an element is a loop if it belongs

to no basis. An element that belongs to no circuit is called a coloop or

isthmus ; equivalently an element is a coloop if it belongs to every basis. If

a two-element set {a, b} is a circuit of M , then a and b are called parallel in

M .

Definition 1.32. A matroid is called simple if it has no circuits consisting of

one or two elements. Analogously, a matroid is simple if it does not contain

loops nor parallel elements.

Example 1.6. Let A be the matrix:

1 2 3 4 5

1 0 0 1 1

0 1 0 0 1

over the field R. Then E = {1, 2, 3, 4, 5} and

I = {∅, {1}, {2}, {4}, {5}, {1, 2}, {1, 5}, {2, 4}, {2, 5}, {4, 5}}.

Thus the set of dependent sets of this matroid is

{{3}, {1, 3}, {1, 4}, {2, 3}, {3, 4}, {3, 5}} ∪ {X ⊆ E : |X| ⩾ 3}.

The set of circuits, i.e., dependent sets all of whose proper subsets are inde-

pendent is

{{3}, {1, 4}, {1, 2, 5}, {2, 4, 5}}.



28 1. Preliminaries

Evidently, as in the last example, once I has been specified, C(M) can be

determined. Similarly, I can be determined from C(M): the members of I

are those subsets of E that contain no member of C(M). Thus a matroid is

uniquely determined by its set C of circuits.

We can associate a matroid to a graph:

Proposition 1.33. Let E be the set of edges of a graph Γ and C be the set

of edge sets of simple cycles of Γ. Then C is the set of circuits of a matroid

on E.

Proof . See [Oxl06, Proposition 1.1.7; page 11].

Definition 1.34. The matroid derived above from the graph Γ is called the

cycle matroid of Γ. It is denoted by M(Γ). Clearly a set X of edges is

independent in M(Γ) if and only if X does not contain the edge set of a

cycle or, equivalently, Γ[X], the subgraph induced by X, is a forest.

Definition 1.35. Two matroids M1 and M2 are isomorphic, written M1
∼=

M2, if there is a bijection:

ψ : E(M1) −→ E(M2)

such that, for all X ⊆ E(M1), ψ(X) is independent in M2 if and only if X is

independent in M1.

Example 1.7. Let Γ be the graph shown in Figure 1.4 and let M =M(Γ).

Then:

E(M) = {e1, e2, e3, e4, e5} C(M) = {{e3}, {e1, e4}, {e1, e2, e5}, {e2, e4, e5}}.

Comparing M with the matroid M [A] in the previous example, we see that,

under the bijection:

ψ : {1, 2, 3, 4, 5} −→ {e1, e2, e3, e4, e5}
i 7−→ ei

a setX is a circuit inM [A] if and only if ψ(X) is a circuit inM . Equivalently,

a set Y is independent inM [A] if and only if ψ(Y ) is independent inM . Thus

the matroids M and M [A] are isomorphic.



1.2 Matroids 29

Figure 1.4

A matroid that is isomorphic to the cycle matroid of a graph is called

graphic. So for instance the matroid M [A] is graphic.

Definition 1.36. If Γ is a graph, we can form a directed graph D(Γ) by

arbitrarily assigning a direction to each edge. Let AD(Γ) denote the incidence

matrix of D(Γ), that is, AD(Γ) is the matrix [aij] whose rows and columns

are indexed by the vertices and edges, respectively, of D(Γ), where:

aij =


1, if vertex i is the tail of non-loop edge j

−1, if vertex i is the head of non-loop edge j

0, otherwise

Proposition 1.37. If Γ is a graph, then M(Γ) ∼= M [AD(Γ)] over any field K
for any D(Γ) formed by Γ.

Proof . See [Oxl06, Proposition 5.1.2; page 138].

1.2.2 Basis, Rank and Closure Operator

Definition 1.38. A maximal independent set in a matroid M is called basis

of M .
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Lemma 1.39. If B1 and B2 are bases of a matroid M , then |B1| = |B2|.

Proof . See [Oxl06, Lemma 1.2.1; page 16].

If M is a matroid and B is its collection of bases, then, by (I1):

(B1) B is non-empty.

Lemma 1.40. B satisfies the following condition:

(B2) If B1 and B2 are members of B and x ∈ B1 ∖ B2, then there is an

element y of B2 ∖B1 such that:

(B1 ∖ {x}) ∪ {y} ∈ B

Proof . See [Oxl06, Lemma 1.2.2; page 17].

Theorem 1.41. Let E be a set and B be a collection of subsets of E satisfying

(B1) and (B2). Let I be the collection of subsets of E that are contained in

some member of B. Then (E, I) is a matroid having B as its collection of

bases.

Proof . See [Oxl06, Theorem 1.2.3; page 17].

Corollary 1.42. Let B a set of subsets of a set E. Then B is the collection

of bases of a matroid on E if and only if it satisfies (B1)-(B2).

Definition 1.43. Let M be the matroid (E, I) and suppose that X ⊆ E.

Define:

I|X = {A ⊆ X : A ∈ I}.

Then it is easy to see that the pair (X, I|X) is a matroid. We call this

matroid the restriction of M to X. It is denoted by M |X. We define the

rank rk(X) of X to be the size of a basis B of M |X.

In other words, the rank of X ⊆ E is the maximal cardinality of an

element of I contained in X. It is clear that rk has the following properties:

(R1) If X ⊆ E, then rk(X) ⩽ |X|.
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(R2) If X ⊆ Y ⊆ E, then rk(X) ⩽ rk(Y ).

Lemma 1.44. The rank function rk of a matroid M on a set E satisfies the

following condition (submodularity):

(R3) If X and Y are subsets of E, then:

rk(X ∪ Y ) + rk(X ∩ Y ) ⩽ rk(X) + rk(Y ).

Proof . See [Oxl06, Lemma 1.3.1; page 23].

Theorem 1.45. Let E be a set and rk be a function that maps 2E into the

set of non-negative integers and satisfies (R1)-(R3). Let I be the collection

of subsets X of E for which rk(X) = |X|. Then (E, I) is a matroid having

rank function rk.

Proof . See [Oxl06, Theorem 1.3.2; page 23].

Corollary 1.46. Let E be a set. A function

rk : 2E −→ Z+

is the rank function of a matroid on E if and only if rk satisfies (R1)-(R3).

Independent sets, bases and circuits are easily characterized in terms of

the rank function:

Proposition 1.47. Let M be a matroid with rank function rk and suppose

that X ⊆ E(M). Then:

i) X is independent if and only if |X| = rk(X)

ii) X is a basis if and only if |X| = rk(X) = rk(M)

iii) X is a circuit if and only if X is non-empty and, for all x ∈ X,

rk(X ∖ {x}) = |X| − 1 = rk(X)
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Definition 1.48. Let M be an arbitrary matroid having ground set E and

rank function rk. Let cl be the function from 2E into 2E defined for all

X ⊆ E, by

cl(X) =
{
x ∈ E : rk(X ∪ {x}) = rk(X)

}
.

This function is called the closure operator of M .

Definition 1.49. If M is a matroid and X ⊆ E(M), we call cl(X) the

closure of X in M . If X = cl(X), then X is called a flat of M . A hyperplane

of M is a flat of rank (rk(M)− 1).

1.2.3 Duality

In this subsection we define the dual of a matroid.

Theorem 1.50. Let M be a matroid and define

B∗ = {E(M)∖B : B ∈ B(M)}.

Then B∗ is the set of bases of a matroid on E(M). This matroid is called

dual matroid and is denoted by M∗.

Proof . See [Oxl06, Theorem 2.1.1; page 68].

The bases of M∗ are called cobases of M . A similar convention applies

to other distinguished subsets of E(M∗). Hence, for example, the circuits,

hyperplanes, independent set of M∗ are called cocircuits, cohyperplanes,

coindipendent sets of M .

Remark 2. If Γ is a planar graph, and Γ∗ is its dual, then:

M(Γ∗) =M∗(Γ).

Note that Γ∗ depends on the planar embedding of Γ, but M(Γ∗) not. If Γ

is not planar, then the dual graph is not defined, but we still have a dual

matroid M∗(Γ). This class of matroids is called cographic matroid.
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In general, we attach an asterisk to a symbol to denote association with

the dual. Thus, for example, rk∗ will denote the rank function of M∗ while

C∗ denotes its set of circuits. Evidently:

rk(M) + rk∗(M) = |E(M)| (1.10)

The next result generalizes Equation (1.10) to give a formula for rk∗, the

corank function of M .

Lemma 1.51. Let M = (E, I) be a matroid and M∗ = (E, I∗) its dual. Let

A be a subset of the ground set E, then:

rk∗(A) = rk(Ac) + |A| − rk(E)

Proof . See [Oxl06, Proposition 2.1.9; page 72].

1.2.4 Lattice of flats of matroids

Let M be a matroid, we denote by L(M) the poset of flats of M ordered

by inclusion (L(M),⊆).

Lemma 1.52. The poset (L(M),⊆) is a geometric lattice and, for all flats

X and Y of M , we have

X ∧ Y = X ∩ Y and X ∨ Y = cl(X ∪ Y ).

Proof . See [Oxl06, Lemma 1.7.3 and Theorem 1.7.5; page 54/55].

Example 1.8. Let Kn be the complete graph on n vertices. A particularly

important example of geometric lattice is the lattice of flats of the matroid

M(Kn). Let V be the vertex set of Kn. If F is a flat ofM(Kn), we denote by

πF the partition of V in which i and j are in the same partition if and only if

the edge ij is in F . Conversely, if β ∈ Πn we denote by Fβ the flat of M(Kn)

in which the edge ij is in Fβ if and only if i and j are in the same partition

of β. This determines a map from the set L(M(Kn)) of flats of M(Kn) and

the partition lattice Πn of the n-set V :

ϕ : L(M(Kn)) −→ Πn

F 7−→ πF
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1 2

3

a

bc

Figure 1.5

Moreover, ϕ is easily shown to be an order isomorphism. For F1, F2 ∈
L(M(Kn)) we have

F1 ⊆ F2 ⇐⇒ πF1 ⩽ πF2

where ⩽ indicates the order relationship introduced in Definition 1.7.

Let M(K3) be the matroid associated to the graph K3 (See Figure 1.5)

with:

E = {a, b, c} I = {{a}, {b}, {c}, {a, b}, {a, c}, {b, c}}

L(M(K3)) = {∅, {a}, {b}, {c}, {a, b, c}}.

In this case the order isomorphism between L(M(K3)) and Π3 is the following

ϕ : L(M(K3)) −→ Π3

∅ 7−→ 1|2|3
{a} 7−→ 12|3
{b} 7−→ 23|1
{c} 7−→ 13|1
{a, b, c} 7−→ 123.

1.2.5 Characteristic polynomial

The characteristic polynomial of a matroid is one of its most fundamental

invariants, it is the matroid analog of the chromatic polynomial of a graph.
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Definition 1.53. Let M = (E, I) be a matroid with rank function rk. We

define its characteristic polynomial to be

χM(λ) =
∑
A⊆E

(−1)|A|λrk(M)−rk(A).

It follows immediately that this polynomial is an invariant since, given two

matroids with the same rank function (hence isomorphic), they have the

same characteristic polynomial.

Definition 1.54. We denote the absolute value of the coefficients of λrk(M)−k

in χM(λ) with ωk and we call it k-th Whitney number of the first kind.

It is easy to see that any matroid with at least one loop has character-

istic polynomial χM(λ) ≡ 0. Furthermore, one can see that adding parallel

elements to M does not change χM(λ). These observations lead us to be-

lieve that all we need to study is simple matroids. Now we provide another

powerful presentation of this polynomial for simple matroids:

Theorem 1.55. Let M = (E, I) be a simple matroid and let L(M) be its

lattice of flats, then we have the following

χM(λ) =
∑

F∈L(M)

µ(∅, F )λrk(M)−rk(F );

where µ is Möbius function of L(M) and rk is the rank function of M .

Equivalently, we have

ωk = (−1)k
∑

F∈L(M)

rk(F )=k

µ(∅, F ).

Proof . See [Zas87, Proposition 7.1.4 and 7.2.1].

From the definition of Möbius function (See Definition 1.6), we know that

µ(∅, E) = −
∑

F ̸=E µ(∅, F ); hence it follows immediately that χM(1) = 0.

Definition 1.56. We define the reduced characteristic polynomial of M as

χ̄M(λ) =
χM(λ)

λ− 1
.
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The characteristic polynomial of a matroid contains important informa-

tion, let’s see some examples. If M(G) is a matroid of a connected graph G,

then λχM(G)(λ) is the chromatic polynomial of G, it counts the proper color-

ings of vertices of G with λ given colors, where no two neighboring vertices

have the same color.

Another important application is when the matroid is realized by an

arrangement of hyperplanes. Let A be an arrangement of hyperplanes in a

K-vector space and letMA be the associate matroid (see Definition 1.30); we

define the complement of the arrangement:

M(A) = Kr ∖
⋃
U∈A

U.

Depending on the underlying field, χMA(λ) stores different information about

M(A). If K = R is the field of real numbers, we have that M(A) consists
exactly of |χMA(−1)| regions. If we work with complex numbers we have

that

ωk = βk(M(A)),

where βk(M(A)) are the k-th Betti numbers of the complement M(A) in

the cohomology ring H∗(M(A)). Lastly when K = Kq is a finite field, the

complementM(A) has exactly χMA(q) points.

In [Rot71, Her72] Rota and Heron conjecture that the sequence of coef-

ficients of the characteristic polynomial is unimodal and log-concave. This

conjecture is now a theorem by Adiprasito, Huh and Katz:

Theorem 1.57. Let M be a matroid, the sequence of its Whitney numbers

of the first kind ωk form a sequence that is log-concave, i.e.,

ωk−1ωk+1 ≤ ω2
k;

for all 1 ≤ k ≤ rk(M). In particular, the sequence is unimodal.

Proof . See [AHK18, Theorem 9.9].
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1.3 Polymatroids

For general references about polymatroids we suggest [Wel76].

1.3.1 Basic definitions

Definition 1.58. A polymatroid P is an ordered pair (E, cd) consisting of a

finite set E and a codimension function cd: 2E → N satisfying:

(C1) cd(∅) = 0,

(C2) if A ⊆ B, then cd(A) ≤ cd(B), and

(C3) if A,B ⊆ E, then cd(A ∪B) + cd(A ∩B) ≤ cd(A) + cd(B).

A polymatroid is a matroid if the codimension of singletons are either zero

or one.

The closure of a subset A ⊆ E is the subset

cl(A) = {a ∈ E | cd(A ∪ {a}) = cd(A)}.

A flat is a closed set and the collection of flats with the inclusion forms a

poset L(P ), that we call the poset of flats. We will use the notation max(X)

for X a subset of a poset as the set of maximal elements of X. Edmonds

showed that the set of flats of a polymatroid is closed under intersection

([Edm70], Theorem 25). Since the set of flats of a polymatroid is finite and

has a maximal element, namely E, this implies that the set of flats ordered

under inclusion forms a lattice. The meet in this lattice is intersection and

the join is given by X ∨ Y = cl(X ∪ Y ).

Definition 1.59. Let P = (E, cd) be a polymatroid, we define the indepen-

dence polytope of P to be

Pind(cd) = {x ∈ RE : xi ≥ 0 for all i ∈ E,
∑
i∈A

xi ≤ cd(A) for all A ⊆ E}
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and its base polytope to be

Pbase(cd) = {x ∈ RE :
∑
i∈A

xi ≤ cd(A) for all A ⊆ E,
∑
i∈E

xi = cd(E)}.

A vector in Pbase(cd) is called a base vector. If cd is the rank function of a

matroidM then this defines the matroid independence polytope Pind(M) and

the matroid base polytope Pbase(M). When Edmonds in [Edm70] introduced

polymatroids, he defined the polymatroid itself to be the polytope Pind(cd).

Definition 1.60. Two polymatroids P1 = (E1, cdP1) and P2 = (E2, cdP2) are

isomorphic, written P1
∼= P2, if there is a bijection ψ : E1 −→ E2 such that

cdP2 ◦ψ = cdP1 .

1.3.2 Subspace arrangements

Definition 1.61. A subspace arrangement A is a finite family of linear sub-

spaces A = {V1, . . . , Vn} in a K-vector space V . Such A gives rise to a

polymatroid PA = ({1, . . . , n}, cdA) by defining for each A ⊆ [n]:

cdA(A) = cd
(⋂
i∈A

Vi

)
,

where cd is the codimension function in the K-vector space V . A polymatroid

is said to be realizable (or representable) over a field K if it is isomorphic to

a polymatroid ({1, . . . , n}, cdA)) for some subspace arrangement A in a K-

vector space V .

Example 1.9. Let E = {a, b, c} and cd: 2E → N the function defined by

cd(a) = cd(b) = 1, cd(ab) = cd(c) = 2,

cd(ac) = cd(bc) = cd(abc) = 3.

This function defines a polymatroid P with poset of flats L(P ) shown in

Figure 1.6. This polymatroid is realizable: a realization is a collection in R3

of two subspace of dimension 2 and a line in general position (See Figure

1.6).
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a b
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Figure 1.6: The poset L(P ) and a realization of P in R3

Definition 1.62. Let A be a subspace arrangement in a complex vector

space V of dimension r, we define the complement of the arrangement:

M(A) = Cr ∖
⋃
U∈A

U.

The combinatorial data associated with an arrangement is recorded in a

partially ordered set, the intersection lattice L(A). It is the set of intersection
of subspaces in A ordered by reversed inclusion. We can consider the order

complex ∆(L) of the proper part L := L∖{0̂, 1̂}, i.e., the abstract simplicial

complex formed by the linearly ordered subsets in L. The topology of ∆(L)
plays a crucial role for describing the topology of arrangement complements.

For instance, in [GM88] Goresky and MacPherson have used the stratified

Morse theory to describe the additive cohomology with integer coefficients

ofM(A) in terms of the intersection lattice L:

Theorem 1.63 (Goresky MacPherson ’88). Let A be a subspace arrangement

with complement M(A) and lattice of intersection L, there is an additive

isomorphism

H̃k(M(A),Z) ∼=
⊕

W∈L∖0̂

H̃2 cd(W )−2−k

(
∆((0̂,W )),Z)

)
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where ∆((0̂,W )) is the order complex of the interval (0̂,W ). We used the

convention that H̃−1((∅,Z)) = Z.

A completely different approach was used by De Concini and Procesi

in [DCP95]. They constructed a rational model for M(A) using only the

intersection lattice L(A) and proved that the rational cohomology algebra

and rational homotopy type ofM(A) are defined by this lattice.

Definition 1.64. LetA be a subspace arrangement with complementM(A),
a wonderful model is a smooth projective variety Y containing M(A) as

open subset such that Y \M(A) is a simple normal crossing divisor, i.e.,

the irreducible components are smooth and intersect locally as coordinate

hyperplanes.

Definition 1.65. Let L be the intersection lattice of an arrangement of

subspaces in a vector space V and let cd : L → N be the corresponding

codimension function. A subset G in L\{0̂} is a geometric building set if for

all x ∈ L
[0̂, x] =

∏
y∈max(G≤x)

[0̂, y]

and

cd(x) =
∑

y∈max(G≤x)

cd(y).

We define F (P,G, x) = max(G≤x) the set of G-factors of x.

The above definition of geometric building set is motivated by the follow-

ing construction of De Concini and Procesi:

Definition 1.66. Let A be a complex subspace arrangement, G a geometric

building set in L(A), and G1, . . . , Gt a non-increasing linear order on G. The
De Concini-Procesi wonderful model for A, YG, is the result of successively

blowing up subspaces G1, . . . , Gt, respectively their proper transforms.

Theorem 1.67 (De Concini Procesi ’95). The variety YG is a wonderful

model in the sense of Definition 1.64.
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Definition 1.68 (G-nested set complex). A subset S of G is called G-nested
if, for any set of incomparable elements x1, . . . , xt in S of cardinality at least

two, the join x1 ∨ · · · ∨ xt is not contained in G. The G-nested sets form an

abstract simplicial complex, called the G-nested set complex.

The geometric building set G is a good choice of some elements to blow

up, in order to obtain a wonderful model YG with some exceptional divisors

Dg ⊂ YG, g ∈ G indexed by G. A subset S of G is G-nested if and only if the

corresponding divisors {DW}W∈S have nonempty intersection.

The variety YG is used for studying the complement of the subspace ar-

rangement, by considering the Leray spectral sequence for the inclusion of

the complement in the wonderful model YG.

The Leray model (B•,•(A,G), d) is the second page of the Leray spectral

sequence for the natural inclusion

V \ ∪A∈AA ∼= YG \ ∪g∈GDg ↪→ YG.

This spectral sequence collapses at the third page (See for instance [Bib16,

Lemma 3.2]), hence it becomes a differential bigraded algebra also known as

the Morgan algebra (See [DCP95]). Furthermore,

B•,0(A,G) = H •(YG) and H •(B•,•(A,G), d) = H •(M(A)).

Explicitly, B•,•(A,G) is aQ-differential bigraded algebra generated by eW , xW

for W ∈ G with bidegree (0, 1) and (2, 0) respectively and relations:

eTxS

( ∑
Z≤W

xZ

)b
= 0

for S, T ⊂ G,W ∈ G and b = cd(W ) − cd(
∨
(T ∪ S)<W ), with differential

defined by d(eW ) = xW . In Chapter 3 (See Definition 3.4) we extend this

definition for any arbitrary polymatroid (not necessarily realizable).

De Concini and Procesi constructed this rational model forM(A) using
only the lattice L. The natural problem that was left open is how to re-

cover the ring structure explicitly from the combinatorics. In particular how



42 1. Preliminaries

to relate the multiplication to the local homology of L that occurs in the

Goresky-MacPherson formula (see Theorem 1.63).

In [Yuz02] Yuzvinsky solve this problem only for a maximal building set.

In this paper Yuzvinsky finds a significantly smaller subalgebra CM(A,Gmax)
quasi-isomorphic to B•,•(A,Gmax) whence also a rational model of M(G).
The algebra CM(A,Gmax) provides a multiplicative structure on the flag

complexes of L(A) that induces the ring structure on H •(M(A)).

Theorem 1.69 (Yuzvinsky ’02). Let A be a subspace arrangement with com-

plementM(A) and lattice of intersection L = L(A), there is an isomorphism

H̃k(M(A),Q) ∼= H̃k(CM(A,Gmax),Q) ∼=
⊕

W∈L∖0̂

H̃2 cd(W )−2−k

(
∆((0̂,W )),Q)

)
where ∆((0̂,W )) is the order complex of the interval (0̂,W ). We used the

convention that H̃−1((∅,Z)) = Z.

In [DGM00, dLS01] Pierre Deligne, Mark Goresky, Robert MacPherson

and, respectively, Mark de Longueville and Carsten A. Schultz generalize

Theorem 1.69 working with integer coefficients.

In Chapter 3 we extend the results of Theorem 1.69 to the non-realizable

setting and to arbitrary building sets, see Theorems 3.23 and 3.24, by using

the critical monomial algebra CM(P,G). In the case the polymatroid P is

generated from an arrangement of subspaces and G is the maximal building

set then CM(P,Gmax) = CM(A,Gmax). In relation to the work of [DGM00,

dLS01] we left open the problem with integer coefficients (See Conjecture

3.25).



Chapter 2

Representations on the

homology of matroids

In this Chapter, given a group G of automorphisms of a matroid M ,

we describe the representations of G on the homology of the independence

complex of the dual matroid M∗. These representations are related to the

homology of the lattice of flats of M , and (when M is realizable) to the top

cohomology of a hyperplane arrangement. Finally, we analyze in detail the

case of the cographic matroid of the complete graph, which has applications

to algebraic geometry.

2.1 Representations and Alexander duality

We recall here some basic facts in combinatorial topology. For more

details the reader can refer to [Hat02]. Let K be an abstract simplicial

complex with vertex set V with |V | = n. For σ ∈ K, let

σ = V ∖ σ.

Definition 2.1. The Alexander dual of K is the simplicial complex on the

same vertex set defined by

K∗ = {σ ⊆ V | σ /∈ K}.

43
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It is easy to see that K∗∗ = K.

Let G be a finite group of automorphisms of the face poset (K,⊆). Then
G is a subgroup of the symmetric group Sn, made out of the vertex maps

g : V −→ V such that whenever the vertices j1, . . . , ji+1 span an i-

simplex of K, the points g(j1), . . . , g(ji+1) span an i-simplex of K. Therefore

g induces a simplicial homeomorphism g̃, and g̃ induces a chain-isomorphism

g̃# on the group of oriented i-chains in the following way:

g̃#,i : Ci(K,C) −→ Ci(K,C).
[j1, . . . , ji+1] 7−→ [g(j1), . . . , g(ji+1)]

Moreover g̃# induces an isomorphism on the reduced homology groups H̃i(K)

(and the reduced cohomology groups H̃ i(K)):

ρi,g : H̃i(K,C) −→ H̃i(K,C).

This defines representations of G on the C-vector spaces H̃i(K,C), i.e., ho-
momorphisms

ρi : G −→ GL(H̃i(K,C)).
g 7−→ ρi,g

It follows from the definition of K∗ that G is also a finite group of automor-

phisms of the face poset of K∗. Therefore, following the construction above,

we get representations ρ∗
i
of G on the reduced cohomology of K∗:

ρ∗
i
: G −→ GL(H̃ i(K∗,C)).
g 7−→ ρ∗ig

The following theorem is the main result of this subsection; in order to de-

velop its proof we need few lemmas (Lemma 2.4 and Lemma 2.5).

Theorem 2.2. Let K be an abstract simplicial complex and let K∗ be its

Alexander dual. Let G be a finite group of automorphisms of the face poset

of K. Then:

ρi ≃ ρ∗
n−i−3 ⊗ sgn
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where n = |V | and sgn is the sign representation (restricted from Sn to its

subgroup G). Or, equivalently, we have the following isomorphism of C[G]-
modules:

H̃i(K,C) ≃G H̃n−i−3(K∗,C)⊗ sgn.

Our proof follows from Björner and Tancer ([BT09]), but carefully records

the action G. We introduce some notations: let us denote by {1, 2, . . . , n}
the elements of V , let also

p(σ) =
∏
j∈σ

(−1)j−1.

For j ∈ σ ∈ K, we define the sign

sgn(j, σ) = (−1)i−1

where j is the i-th smallest element of the set σ.

For σ ∈ K we write eσ to denote the oriented simplex associated to σ

considered with an increasing order of its elements:

σ = {j1, . . . , ji+1} eσ = [j1, . . . , ji+1] where j1 < · · · < ji+1.

For every g ∈ G, if eσ = [j1, . . . , ji+1] we denote

g.σ = {g(j1), . . . , g(ji+1)} g.eσ = [g(j1), . . . , g(ji+1)].

The g(j1), . . . , g(ji+1) are not necessarily in ascending order: let τ ∈ Si+1 ⊆
Sn be the permutation that rearranges the elements in ascending order, and

fixes the elements that are not in g.σ, so that τ.(g.eσ) = eg.σ. We also define:

c(g, σ) = sgn(τ).

Since τ−1 permutes the elements of eg.σ we obtain:

g.eσ = τ−1.(eg.σ) = sgn(τ−1)eg.σ = sgn(τ)eg.σ = c(g, σ)eg.σ.

Similarly, we define a permutation τ ∈ Sn−1−i ⊆ Sn which rearranges the

elements of g.eσ in ascending order:

τ .(g.eσ) = eg.σ g.eσ = c(g, σ)eg.σ.
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We can now formulate an important lemma that will prove to be crucial for

the proof of Lemma 2.4:

Lemma 2.3. Let V = {1, . . . , n} and let σ ⊆ V . Then, for every g ∈ Sn,

we have the following:

p(σ) sgn(g) c(g, σ) = c(g, σ) p(g.σ). (2.1)

Proof . For every g ∈ Sn, we define a permutation g′ = ττg. First we apply

the permutation g to σ and σ. Then applying τ and τ , we rearrange in

ascending order both g.eσ and g.eσ.

As we have defined it, g′ is a permutation of Sn such that:

if i, j ∈ σ with i < j then g′(i) < g′(j) and

if i, j ∈ σ with i < j then g′(i) < g′(j).

In particular, we have that:

g′.eσ = eg′.σ and g′.eσ = eg′.σ.

We can express g in the following way g = τ−1 ◦ τ−1 ◦ g′. It easy to see that

p(g.σ) = p(g′.σ). Thus, Equation (2.1) becomes:

p(σ) sgn(τ−1τ−1g′) c(g, σ) = c(g, σ) p(g.σ)

p(σ) sgn(τ−1)sgn(τ−1)sgn(g′) sgn(τ) = sgn(τ) p(g′.σ)

p(σ) sgn(g′) = p(g′.σ)∏
i∈σ

(−1)i−1 sgn(g′) =
∏
i∈σ

(−1)g′(i)−1

∏
i∈σ

(−1)i−g′(i) sgn(g′) = 1

∏
i∈σ

(−1)i−g′(i) = sgn(g′). (2.2)
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In order to prove Equation (2.2), let i ∈ σ be the k-th element of eσ and we

define:

Ai = {(i, j) | j ∈ σ, i < j, g′(i) > g′(j)} and

Bi = {(j, i) | j ∈ σ, j < i, g′(j) > g′(i)}.

We have that:

sgn(g′) = (−1)
∑

i∈σ(|Ai|+|Bi|).

Let us assume that i < g′(i). It is easy to see that |Bi| = 0. Furthermore:

|{(i, j) | j ∈ σ, i < j}| = (n− i)− (|σ| − k) = n− i− |σ|+ k

and

|{(i, j) | j ∈ σ, i < j, g′(i) < g′(j)}| = |{(i, j) | j ∈ σ, g′(i) < g′(j)}|

= (n− g′(i))− (|σ| − k) = n− g′(i)− |σ|+ k.

By subtracting term by term the two equalities above, we get:

|Ai| = (n− i− |σ|+ k)− (n− g′(i)− |σ|+ k) = g′(i)− i.

Similarly, if i > g′(i) we have that |Bi| = i− g′(i) and |Ai| = 0. Therefore:

|Ai|+ |Bi| = |g′(i)− i|.

It follows that:

sgn(g′) = (−1)
∑

i∈σ |g′(i)−i| =
∏
i∈σ

(−1)|g′(i)−i| =
∏
i∈σ

(−1)g′(i)−i.

Let 2V be the full simplex with vertex set V .

Lemma 2.4. Let K be a simplicial complex with ground set V of size n.

Then

H̃i+1(2
V , K) ≃ H̃n−i−3(K∗).
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Furthermore, if we consider the following representations of the group G on

the homology spaces of the pair (2V , K) and K∗:

αi+1 : G −→ GL(H̃i+1(2
V , K),C)) and

ρ∗
n−i−3

: G −→ GL(H̃n−i−3(K∗,C)) ,

we have that

αi+1 ≃ ρ∗
n−i−3 ⊗ sgn.

Or equivalently

H̃i+1(2
V , K) ≃G H̃n−i−3(K∗)⊗ sgn.

Proof . The chain complex for reduced homology of the pair (2V , K) is the

complex:

· · ·Ri+1
di+1−−→ Ri

di−→ Ri−1
di−1−−→ · · · , i ∈ Z

where Ri = ⟨eσ | σ ⊆ V, σ /∈ K, dim(σ) = i⟩, and the di’s are the unique

homomorphisms satisfying:

di(eσ) =
∑
k∈σ

σ∖k/∈K

sgn(k, σ) eσ∖k.

The cochain complex for reduced cohomology of K∗ is the complex:

· · · δi−1−−→ Ci−1 δi−→ Ci δi+1−−→ · · · , i ∈ Z

where

Ci = ⟨e∗σ | σ ⊆ V, dim(σ) = i, σ ∈ K∗⟩

= ⟨e∗σ | σ ⊆ V, dim(σ) = n− i− 2, σ /∈ K⟩

and the δi’s are the unique homomorphisms satisfying:

δi(e
∗
σ) =

∑
k/∈σ

σ∪k∈K∗

sgn(k, σ ∪ k)e∗σ∪k =
∑
k∈σ

σ∖k/∈K

sgn(k, σ ∪ k)e∗
σ∖k.

Let ϕi be the following isomorphism:

ϕi : Ri −→ Cn−i−2

eσ 7−→ p(σ) e∗σ
for σ /∈ K with dim(σ) = i. (2.3)
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We then have the following diagram:

di+1−−−→ Ri
di−−−→ Ri−1

di−1−−−→

ϕi

y ϕi−1

y
δn−i−2−−−−→ Cn−i−2 δn−i−1−−−−→ Cn−i−1 δn−i−−−→

We know from the proof of [BT09, Lemma 4.2] that

ϕi−1 ◦ di = δn−i−1 ◦ ϕi. (2.4)

Thus, we have that

H̃i+1(2
V , K) ≃ H̃n−i−3(K∗).

We now study the following two representations:

ρ1 : G −→ GL(Ri)

g 7−→ ρ1g

ρ1g : Ri −→ Ri

eσ 7−→ g.eσ

ρ2 : G −→ GL(Cn−i−2 ⊗ C)
g 7−→ ρ2g

ρ2g : Cn−i−2 ⊗ C −→ Cn−i−2 ⊗ C
e∗σ ⊗ 1 7−→ g.e∗σ ⊗ sgn(g)

for σ /∈ K with dim(σ) = i. We want to show that these two representations

are isomorphic. We extend the isomorphism (2.3):

ϕ̃i : Ri −→ Cn−i−2 ⊗ C
eσ 7−→ p(σ) e∗σ ⊗ 1

for σ /∈ K with dim(σ) = i.

To prove that ρ1 ≃ ρ2 we have to show that the following diagram commutes

for every g ∈ G:
Ri

ρ1g−−−→ Ri−1yϕ̃i yϕ̃i
Cn−i−2 ⊗ C

ρ2g−−−→ Cn−i−1 ⊗ C

We have to prove that the following equation holds:

ρ2g ◦ ϕ̃i = ϕ̃i ◦ ρ1g. (2.5)
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(ρ2g◦ϕ̃i)(eσ) = ρ2g(p(σ) e
∗
σ⊗1) = p(σ) g.e∗σ⊗sgn(g) = p(σ) sgn(g)c(g, σ)e∗g.σ⊗1

(ϕ̃i ◦ ρ1g)(eσ) = ϕ̃i(g.eσ) = ϕ̃i(c(g, σ)eg.σ) = p(g.σ)c(g, σ)e∗g.σ ⊗ 1.

By applying Lemma 2.3, since g.σ = g.σ, we have that Equation (2.5) holds.

We consider now the following diagram:

di+1−−−→ Ri
di−−−→ Ri−1

di−1−−−→

ϕ̃i

y ϕ̃i−1

y
δ̃n−i−2−−−−→ Cn−i−2 ⊗ C δ̃n−i−1−−−−→ Cn−i−1 ⊗ C δ̃n−i−−−→

And we define the δ̃i’s as an extension of the homomorphisms δi:

δ̃i(e
∗
σ ⊗ 1) =

∑
k/∈σ

σ∪k∈K∗

sgn(k, σ ∪ k)e∗σ∪k ⊗ 1.

From Equation (2.4) it follows that:

ϕ̃i−1 ◦ di = δ̃n−i−1 ◦ ϕ̃i.

Thus, we have that:

αi+1 ≃ ρ∗
n−i−3 ⊗ sgn.

Lemma 2.5. Let K be a simplicial complex with ground set V of size n.

Then:

H̃i(K) ≃ H̃i+1((2
V , K),C).

Furthermore if we consider the representations of the group G on the reduced

homology spaces of K and (2V , K)

ρi : G −→ GL(H̃i(K,C)) αi+1 : G −→ GL(H̃i+1((2
V , K),C))

we have that

ρi ≃ αi+1.
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Proof . The isomorphism follows from [Mun84, Theorem 23.3]: we have the

long exact sequence of the pair (2V , K):

· · · −→ H̃i+1(2
V ) −→ H̃i+1(2

V , K) −→ H̃i(K) −→ H̃i(2
V ) −→ · · ·

Since 2V is the full simplex the spaces H̃i+1(2
V ) and H̃i(2

V ) are zero. Hence,

the sequence becomes:

· · · −→ 0 −→ H̃i+1(2
V , K) −→ H̃i(K) −→ 0 −→ · · ·

It follows that the groups H̃i+1(2
V , K) and H̃i(K) are isomorphic.

We now consider the following diagram:

H̃i+1(2
V , K)

∂∗−−−→ H̃i(K)

αi+1,g

y ρi,g

y
H̃i+1(2

V , K)
∂∗−−−→ H̃i(K)

where ∂∗ is the homology boundary isomorphism (see [Mun84, Lemma 24.1]):

Ci+1(2
V )

π#−−−→ Ri+1(2
V , K)y∂Vi+1

Ci(K)
i#−−−→ Ci(2

V )

The isomorphism ∂∗ is defined by a certain zig-zag process: pull back via π#,

apply ∂Vi+1, and pull back via i#. For each g ∈ G we consider the action on

the chain groups of the full simplex, of K and of (2V , K):

g̃V#,i : Ci(2
V ) −→ Ci(2

V )

[j1, . . . , ji+1] 7−→ [g(j1), . . . , g(ji+1)],

g̃#,i : Ci(K) −→ Ci(K)

[j1, . . . , ji+1] 7−→ [g(j1), . . . , g(ji+1)],

g̃V,K#,i : Ri(2
V , K) −→ Ri(2

V , K).

[j1, . . . , ji+1] 7−→ [g(j1), . . . , g(ji+1)].
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We have that:

g̃V#,i
∣∣
Ci(K)

= g̃#,i, g̃V#,i
∣∣
Ri(2V ,K)

= g̃V,K#,i .

We also know that each boundary operator commutes with g̃#,i, g̃
V
#,i and

g̃V,K#,i+1 from [Mun84, Lemma 12.1]. Let b ∈ H̃i+1(2
V , K). There exists an

a ∈ Ri+1(2
V , K) such that b = a+ Im(di+2). Therefore:

ρi,g(∂
∗(b)) = ρi,g(∂

V
i+1(a) + Im(di+2)) = g̃#,i(∂

V
i+1(a)) + Im(di+2)

= g̃V#,i(∂
V
i+1(a)) + Im(di+2) = ∂Vi+1(g̃

V
#,i+1(a)) + Im(di+2),

∂∗(αi+1,g(b)) = ∂∗(g̃V,K#,i+1(a) + Im(di+2)) = ∂Vi+1(g̃
V,K
#,i+1(a)) + Im(di+2)

= ∂Vi+1(g̃
V
#,i+1(a)) + Im(di+2).

Thus, we have that

∂∗ ◦ αi+1,g = ρi,g ◦ ∂∗ for every g ∈ G,

and this implies that ρi ≃ αi+1.

Combining the results of Lemma 2.4 and Lemma 2.5 we obtain the proof

of Theorem 2.2.

Remark 3. From Alexander duality we know that for every simplicial complex

K on vertex set V such that V /∈ K, with n = |V |:

H̃i(K) ≃ H̃n−3−i(K∗).

In fact, working with complex coefficients the reduced cohomology group

H̃j(K) is the dual vector space of the reduced homology group H̃j(K), so

that H̃j(K) ≃ H̃j(K). Combining the two results we obtain:

H̃i(K) ≃ H̃n−3−i(K
∗). (2.6)
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4

1 3

2

Figure 2.1: K
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Figure 2.2: K∗

2.1.1 Example

Let V = {1, 2, 3, 4} be the vertex set of the following simplicial complex

K = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 4}, {1}, {2}, {3}, {4}}

shown in Figure 2.1. His Alexander dual is the following simplicial complex

K∗ = {{1, 3}, {1}, {2}, {3}, {4}}

shown in Figure 2.2. The groupG is isomorphic to Z2×Z2; seen as a subgroup

of the symmetric group S4 on V is the following

G = {(), (13), (24), (13)(24)}.

Therefore we can study the following two representations

ρ : G −→ GL(H̃1(K,C)) ρ∗ : G −→ GL(H̃0(K
∗,C)).

First we calculate the reduced homology space H̃1(K,C), we have that

C1(K) = {[1, 2], [1, 3], [1, 4], [2, 3], [3, 4]} C0(K) = {1, 2, 3, 4}

∂1 : C1(K) −→ C0(K)

[1, 2] 7−→ [2]− [1]

[1, 3] 7−→ [3]− [1]

[1, 4] 7−→ [4]− [1]

[2, 3] 7−→ [3]− [2]

[3, 4] 7−→ [4]− [3]
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H̃1(K,C) = ker ∂1 = ⟨
d1

[1, 3]− [1, 4] + [3, 4],
d2

[1, 2]− [1, 3] + [2, 3]⟩

Since G is a commutative group, we have four conjugacy classes, so we have

to study the character of the representation on each class.

ρ : G −→ GL(H̃1(K,C))
id 7−→ ρ()

(13) 7−→ ρ(13)

(24) 7−→ ρ(24)

(13)(24) 7−→ ρ(13)(24)

ρ(13) : H̃1(K,C) −→ H̃1(K,C)
d1 7−→ −d1
d2 7−→ −d2

ρ(24) : H̃1(K,C) −→ H̃1(K,C)
d1 7−→ −d2
d2 7−→ −d1

ρ(13)(24) : H̃1(K,C) −→ H̃1(K,C)
d1 7−→ d2

d2 7−→ d1

Thus, the character of the representation ρ is the following:

χρ : G −→ C
id 7−→ 2

(13) 7−→ −2
(24) 7−→ 0

(13)(24) 7−→ 0

Now we can calculate the reduced homology group H̃0(K
∗,C); we consider

the following sequence of chain spaces:

C1(K
∗) = {[1, 3]} C0(K

∗) = {1, 2, 3, 4}

C1(K
∗)

∂1−→ C0(K
∗)

ϵ−→ C

∂1 : C1(K
∗) −→ C0(K

∗)

[1, 3] 7−→ 3− 1

ϵ : C0(K
∗) −→ C

i 7−→ 1

ker ϵ = ⟨2− 1, 3− 1, 4− 1⟩ Im ∂1 = ⟨3− 1⟩
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H̃0(K
∗,C) = ker ϵ/ Im ∂1 = ⟨

f1

2− 1 + Im ∂1,
f2

4− 1 + Im ∂1⟩.

Now we can study the representation ρ∗:

ρ∗ : G −→ GL(H̃0(K
∗,C))

id 7−→ ρ()

(13) 7−→ ρ(13)

(24) 7−→ ρ(24)

(13)(24) 7−→ ρ(13)(24)

ρ∗(13) : H̃0(K
∗,C) −→ H̃0(K

∗,C)
f1 7−→ f1

f2 7−→ f2

ρ(24) : H̃0(K
∗,C) −→ H̃0(K

∗,C)
f1 7−→ f2

f2 7−→ f1

ρ∗(13)(24) : H̃0(K
∗,C) −→ H̃0(K

∗,C)
f1 7−→ f2

f2 7−→ f1

Thus, the character of the representation ρ∗ is the following:

χρ∗ : G −→ C
id 7−→ 2

(13) 7−→ 2

(24) 7−→ 0

(13)(24) 7−→ 0

Therefore we have the following isomorphism of C[G]-modules:

H̃1(K,C) ≃G H̃0(K
∗,C)⊗ sgn.

2.2 Equivariant cross-cut theory

Let L be a lattice with maximal and minimal elements 1̂ and 0̂ respec-

tively. We recall the following definition from [Fol66]:

Definition 2.6. If L is a lattice with 0̂ and 1̂, a cross-cut of L is a set C ⊆ L

such that:
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i) 0̂ , 1̂ /∈ C.

ii) If x, y ∈ C then x ≮ y and y ≮ x. (x and y are incomparable)

iii) Any finite chain x1 < x2 < · · · < xn in L can be extended to a chain

which contains an element of C.

In particular, axiom iii) implies that every maximal chain contains an element

of C.

Let L be a lattice with 0̂ and 1̂ and let C be a cross-cut of L.

Definition 2.7. A finite subset {x1, . . . , xn} ⊆ C ‘spans’ if and only if

x1 ∧ x2 ∧ · · · ∧ xn = 0̂ and x1 ∨ x2 ∨ · · · ∨ xn = 1̂.

Here x ∧ y denotes the largest element ≤ x and ≤ y, and x ∨ y denotes

the smallest element ⩾ x and ⩾ y.

Let K(C) be the abstract simplicial complex whose vertices are the elements

of C and whose simplices are all finite subsets of C which do not ‘span’. We

denote H̃i(C) = H̃i(K(C)). Let K(L) be the order complex of the lattice L

and denote H̃i(L) = H̃i(K(L)). The following result was proved in [Fol66,

Theorem 3.1]:

Theorem 2.8. Let L be a lattice and let C be a cross-cut of L, then:

H̃i(C) ≃ H̃i(L).

In order to see that the previous isomorphism is also a C[G]-module

isomorphism (Theorem 2.11) we need the following result:

Lemma 2.9. Let K be an abstract simplicial complex and let K ′ be its first

barycentric subdivision. Let also G be a finite group of automorphisms of the

face poset of K. Then we have the following isomorphism of C[G]-modules:

H̃i(K) ≃G H̃i(K
′).



2.2 Equivariant cross-cut theory 57

Proof . First, we need to describe the action of G on K ′. Let L(K) be the

face poset of K; it is clear that the order complex of L(K) is the barycentric

subdivision of K. Thus, we have a straightforward G-action on the order

complex of L(K) and its homology spaces. We have to show that the follow-

ing two representations are isomorphic:

ρ̃i : G −→ GL(Hi(K))

g 7−→ ρ̃i,g
and

ρ̃′i : G −→ GL(Hi(K
′)).

g 7−→ ρ̃′i,g

Let w ∗K be a cone. If eσ = [a0, . . . , ai] is an oriented simplex of K, let[
w, eσ

]
= [w, a0, . . . , ai]

denote an oriented simplex of w ∗ K. This operation is well defined and is

called the bracket operation (see [Mun84, Section §8]).
If σ = {a0, . . . , ai} is a simplex, let σ̂ denote the barycenter of σ. The

complex K ′ equals the collection of all simplices of the form

[σ̂1, . . . , σ̂n] where σ1 ⊃ · · · ⊃ σn.

We know from [Mun84, Section §17] that there is a unique augmentation-

preserving chain map sd : Ci(K) −→ Ci(K
′) called the barycentric sub-

division operator that induces an isomorphism of homology spaces. There is

an inductive formula for the operator sd. It is the following:

sd(v) = v̂ = v ∀v ∈ K0

sd(eσ) =
[
σ̂, sd(∂i(eσ))

]
for σ ∈ K with dim(σ) = i.

Now we consider the following two representations:

ρi : G −→ GL(Ci(K))

g 7−→ ρi,g

ρ′i : G −→ GL(Ci(K
′))

g 7−→ ρ′i,g

We want to show that the following diagram

Ci(K)
sd−−−→ Ci(K

′)

ρi,g

y ρ′i,g

y
Ci(K)

sd−−−→ Ci(K
′)

(2.7)

commutes for every g ∈ G. We proceed by induction on i:
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- Suppose i = 0. It follows from the action of G on the vertices of K and

K ′ that ρ0,g(v) = ρ′0,g(v) for every v ∈ K0. Thus:

ρ′0,g(sd(v)) = ρ′0,g(v) = ρ0,g(v) = sd(ρ0,g(v)).

- We now suppose the diagram commutes for i = n and we prove it for

i = n+ 1. Let g.σ = τ , thus:

ρ′i+1,g(sd(eσ)) = ρ′i+1,g(
[
σ̂, sd(∂i+1(eσ))

]
) =

[
τ̂ , ρ′i,g(sd(∂i+1(eσ)))

]
=i

[
τ̂ , sd(ρi,g(∂i+1(eσ)))

]
=

[
τ̂ , sd(∂i+1(ρi+1,g(eσ)))

]
=

[
τ̂ , sd(∂i+1(g.eσ))

]
= sd(g.eσ) = sd(ρi+1,g(eσ)),

where the symbol =i stands for the application of the inductive hy-

pothesis.

Since the diagram (2.7) commutes and both sd, ρi,g, ρ
′
i,g commute with the

border operator ∂ we have that the following diagram commutes and conse-

quently the lemma is proved:

H̃i(K)
sd∗−−−→ H̃i(K

′)

ρ̃i,g

y ρ̃′i,g

y
H̃i(K)

sd∗−−−→ H̃i(K
′).

Definition 2.10. Let L be a lattice and G a group of automorphism of L.

A cross-cut C of L is G-stable if G.C = C, i.e., if C is the union of G-orbits.

Theorem 2.11. Let L be a lattice and G a group of automorphism of L.

Let C be a G-stable cross-cut of L. Then we have the following C[G]-module

isomorphism:

H̃i(L) ≃G H̃i(C).

Proof . We briefly recall Folkman’s argument. Let K = K(L) be the order

complex of L and let C = {α1, . . . , αn} be a cross-cut of L fixed by G.
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For each α ∈ C let Lα be the subcomplex of K consisting of all simplices

{y1, . . . , yt} such that the set {y1, . . . , yt, α} is totally ordered. By the third

property of a cross-cut, the family {Lα}α∈C is a covering ofK. In the proof of

[Fol66, Theorem 3.1] Folkman shows that Lα1

⋂
· · ·

⋂
Lαn has the homology

of a point or is empty and shows also that

K(C) = N ({Lα}α∈C) (2.8)

where K(C) is the simplicial complex associated to the cross-cut C and

N = N ({Lα}α∈C) is the nerve of the covering {Lα}α∈C . Thus, we can apply

a nerve theorem. We follow the construction made by Björner in [Bjö95,

Theorem 10.6]. Let P (K) and P (N ) be the face lattice associated to K and

N , respectively. Björner defines the following order-reversing map of posets:

f̃ : P (K) −→ P (N )

σ 7−→ {α ∈ C | σ ∈ Lα}.

This map f̃ induces a simplicial map f between the respective order complex

of P (K) and P (N ) which are the first barycentric subdivision of K and N :

f : K ′ −→ N ′

{σ0, . . . , σi} 7−→ {f̃(σ0), . . . , f̃(σi)}

where {σ0, . . . , σi} is a simplex of K ′, then we have σ0 ⊇ · · · ⊇ σi with σj

simplex of K. Applying [Bjö95, Theorem 10.6] we get, in particular, that f

induces a chain map f# between Ci(K
′) and Ci(N ′) in the following manner:

f#([σ0, . . . , σi]) =

[f̃(σ0), . . . , f̃(σi)], if f̃(v0), . . . , f̃(vi) are distinct

0, otherwise

and moreover an isomorphism f∗ on homology spaces:

H̃i(K
′) ≃ H̃i(N ′).

We need to describe the action of G on K ′ and N ′: the G-action on L

induces an action on K and therefore on K ′ (in the sense of 2.9). Since C is
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G-stable, every g ∈ G acts on C permuting its elements. Furthermore, since

g is an order automorphism of L, it acts on the covering {Lα}α∈C respecting

the intersection relations. Therefore G yields an action on the nerve N and

therefore on N ′. We want to show that the following two representations are

isomorphic:

ρ̃1 : G −→ GL(H̃i(K
′)),

g 7−→ ρ̃1,g

ρ̃2 : G −→ GL(H̃i(N ′)).

g 7−→ ρ̃2,g

Let

ρ1 : G −→ GL(Ci(K
′)),

g 7−→ ρ1,g

ρ2 : G −→ GL(Ci(N ′)).

g 7−→ ρ2,g

be the representations on the chain spaces. Since g ∈ G is an order auto-

morphism of L we have the following: if f̃(σ) = {αj0 , . . . , αjt} = β then

f̃(g.σ) = {g.αj0 , . . . , g.αjt} = g.β. We explicitly describe the maps induced

by g ∈ G on the chain spaces:

ρ1,g : Ci(K
′) −→ Ci(K

′)

[σ0, . . . , σi] 7−→ [g.σ0, . . . , g.σi],

ρ2,g : Ci(N ′) −→ Ci(N ′).

[βj0 , . . . , βji ] 7−→ [g.βj0 , . . . , g.βji ]

where βj are simplices of N satisfying βj0 ⊆ · · · ⊆ βji . We want to show that

the following diagram commutes:

Ci(K
′)

f#−−−→ Ci(N ′)

ρ1,g

y ρ2,g

y
Ci(K

′)
f#−−−→ Ci(N ′),

i.e., ρ2,g(f#([σ0, . . . , σi])) = [g.βj0 , . . . , g.βji ] = (f#(ρ1,g([σ0, . . . , σi])).

Therefore the diagram commutes and since f# is a chain map we have

that ρ̃1 ≃ ρ̃2, i.e., H̃i(K
′) ≃G H̃i(N ′). Using the results of Lemma 2.9 and

Equation (2.8) we have the following C[G]-module isomorphism

H̃i(K) ≃G H̃i((K(C)) = H̃i(C).
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Remark 4. In [Lak72] Lasker proved that K(L) and K(C) are homotopy

equivalent. It could be shown that this homotopy equivalence isG-equivariant,

which would imply another proof of Theorem 2.11.

2.3 Applications to matroids

We now specialize the results of the previous two sections to matroids. Let

M = (E, I) be a matroid with ground set E and a collection of independent

sets I, which forms an abstract simplicial complex. Let M∗ = (E, I∗) be its

dual. We recall that the rank of A ⊆ E is the maximal cardinality of an

element of I contained in A. We say that A ⊆ E is non-spanning in M if

rk(A) < rk(E), i.e., A does not contain any basis of M . Let

NS(M) = {A ⊆ E | A is non-spanning in M}.

It is easy to see that NS(M) is an abstract simplicial complex.

Proposition 2.12. A ⊆ E is non-spanning in M∗ if and only if Ac is de-

pendent in M .

Proof . If A ⊆ E is non-spanning in M∗ we have:

rk∗(A) < rk∗(E).

This is equivalent to:

rk(Ac) + |A| − rk(E) < rk∗(E)

and therefore to

rk(Ac) < −|A|+ rk(E) + rk∗(E) = |E| − |A| = |Ac| ⇐⇒ Ac /∈ I.

For every A ⊆ E, we have rk(A) ⩽ |A|, thus A is independent if and only if

rk(A) = |A|.
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Proposition 2.13. Let IN(M) = I be the abstract simplicial complex asso-

ciated with the independent sets of the matroid M = (E, I) and let I∗ be its

Alexander dual, then:

I∗ = NS(M∗).

Proof . Using the result shown in Proposition 2.12 we claim that:

I∗ = {A ⊆ E : Ac /∈ I}

= {A ⊆ E : Ac is dependent in M = (E, I)}

= {A ⊆ E : A is not spanning of M∗} = NS(M∗).

The previous result, together with Equation (2.6), implies the following:

H̃i(NS(M)) ≃ H̃n−3−i(IN(M
∗)).

This is an isomorphism not only of vector spaces, but also of representations,

up to a sign. Indeed, by applying Theorem 2.2, we obtain:

Theorem 2.14. Let G be the automorphism group of a matroid. Then we

have the following C[G]-module isomorphism:

H̃i(NS(M)) ≃G H̃n−3−i(IN(M
∗))⊗ sgn,

where n is the cardinality of the ground set of M .

Similarly, we can specialize the results from Section 2.2 to the case of

matroids. Let M = (E, I) be a simple matroid with E = {a1, . . . am}. Let

L(M) be the lattice of flats of M ordered by inclusion. Since M is simple,

each singleton of E is a flat. Thus {a1}, {a2}, . . . , {am} ∈ L(M) and each

corresponds to an atom of the poset (L(M),⊆). We now consider a set C

defined as

C = {{a1}, {a2}, . . . , {am}} ⊆ L(M).
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Since C satisfies the three axioms of Definition 2.6, the set C is a cross-cut

of L. We want to prove that:

K(C) = NS(M).

In the following proposition we perform a slight abuse of notation by identi-

fying:

C = {{a1}, {a2}, . . . , {am}} = {a1, a2, . . . , am}.

Proposition 2.15. A ⊆ C does not ‘span’ (in the sense of Definition 2.7)

if and only if A is a non-spanning set in M = (E, I).

Proof .

=⇒) In L(M) we have:

0̂ = ∅ and 1̂ = E.

Let A = {ai1 , ai2 , . . . , ain} be a subset of C. If A ⊆ C does not ‘span’ :

ai1 ∨ ai2 ∨ · · · ∨ ain = D ̸= 1̂ (2.9)

D ∈ L(M) and D ̸= 1̂ implies that D is a non-spanning subset of E

because the only spanning subset in L(M) is E = 1̂.

It follows from (2.9) that A ⊆ D; since D is a non-spanning subset of

E therefore A is a non-spanning subset of E.

⇐=) In NS(M) the bases are the maximal non-spanning subsets of E, (i.e.,

the subsets of E, such that if we add an element they become spanning

set) so they are flats, in particular they correspond to the co-atoms of

(L(M),⊆).

Let A = {ai1 , ai2 , . . . , ain} be a non-spanning subset of E, there exist a

basis B of NS(M) such that:

if A ⊆ B and B is a flat, then B ∈ L(M).

This implies:

ai1 ∨ ai2 ∨ · · · ∨ ain ⊆ B ≠ 1̂

therefore A does not ‘span’.
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Using the result of Proposition 2.15, we obtain:

K(C) = NS(M).

Since C is a cross-cut fixed by G, we can apply Theorem 2.11 to L(M) and

C itself:

Theorem 2.16. Let G be the group of automorphism of the simple matroid

M . Then we have the following C[G]-module isomorphism:

H̃i(L(M)) ≃G H̃i(C) = H̃i(NS(M))

where C is the cross-cut of L(M) composed of its atoms.

By combining Theorem 2.14 and Theorem 2.16, we get the following

theorem:

Theorem 2.17. Let G be the group of automorphism of the simple matroid

M . Then we have the following C[G]-module isomorphism:

H̃n−3−i(IN(M∗)) ≃G H̃i(L(M))⊗ sgn

where n is the cardinality of the ground set of M .

2.4 Top cohomology of hyperplane arrange-

ments

Let A be a central arrangement of hyperplanes in Cr and let L(A) be its
intersection lattice. LetMA be the matroid associated with A (see Definition

1.30); then the lattice of flats L(MA) of MA is isomorphic to L(A). We can

assume that the arrangement is essential: then the rank of the matroid is r.

We define the complement of the arrangement:

M(A) = Cr ∖
⋃
H∈A

H.
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Let G be a subgroup of GL(Cr) that permutes the elements of A; it is easy
to see that G is also a group of automorphism of the matroid MA. Let A

be the Orlik-Solomon algebra associated to L(A), and let B be the algebra

defined by shuffle defined respectively in Section 2 and Section 3 of [OS80].

These algebras are Z−graded: we denote by Ar and Br the direct summands

corresponding to the top degree r. In Theorem 3.7 of the same paper, Orlik

and Solomon provide a G-isomorphism:

θ : A −→ B.

Furthermore, we state [OS80, Theorem 4.3]:

Theorem 2.18. Let L be a finite geometric lattice of rank r > 1. Then Br

and Hr−2(L) are isomorphic C[G]-modules.

Combining the previous results we get the following C[G]-module isomor-

phism:

Hr(M(A)) ≃G Ar ≃G Br ≃G Hr−2(L(A)). (2.10)

Applying Theorem 2.17 we obtain the following:

Theorem 2.19. Let A be a central essential hyperplane arrangement of di-

mension r and letMA be the associated matroid with ground set of cardinality

n. Then we have the following C[G]-module isomorphism:

Hr(M(A)) ≃G Hn−r−1(IN(M∗
A))⊗ sgn.

In [LS86] Lehrer and Solomon conjecture that if W is a Coxeter group

and AW is the hyperplane arrangement associated to W then there is a

C[G]-module isomorphism

Hp(M(AW )) ≃W
⊕
c

IndWZ(c)(ξc) p = 0, . . . , rank(W )

where c runs over a set of representatives for the conjugacy classes ofW such

that the dimension of the image of c (viewed as an element of GL(V )) is

equal to p and ξc is a suitable character of the centralizer Z(c) of c in W .
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They proved the conjecture for group of rank 2 and for W = Sr. In the case

of the symmetric group Sr the arrangement ASr is the braid arrangement

and the intersection lattice L(A) is the partition lattice Πr, that is, the

family of all partitions of the set {1, . . . , r} partially ordered by refinement.

Stanley studied the representations on the homology of the partition lattice

in [Sta82]. By Equation (2.10), his result agrees with the conjecture of Lehrer

and Solomon.

We remark that Theorem 2.19 allows us to rewrite Lehrer and Solomon’

conjecture in the top cohomology case in the language of matroids:

Hn−r−1(IN(M∗
AW

)) ≃W
⊕
c

IndWZ(c)(ξc)⊗ sgn.

2.5 Coned graphs and complete bipartite graphs

In [Koo07], Woong Kook studied the homology of the independence com-

plex IN(M(Γ̂)) of the matroid associated to a coned graph Γ̂, i.e. the graph

obtained by adding a new vertex p to a graph Γ and joining each vertex of Γ

to p by a simple edge. We recall the following definition from [Koo07, Section

2]:

Definition 2.20. An edge-rooted forest (F, e) in Γ is a spanning forest F

that contains at least one edge for each connected component of Γ, together

with the datum e of one edge for each component (called edge root).

The rank of the only non zero homology group of IN(M(Γ̂)) is shown to

be equal to the cardinality of the set of edge-rooted forests Fe(Γ) in Γ.

In [Koo07, Section 3], Kook constructs a basis {zF,e : (F, e) ∈ Fe(Γ)}
for H̃n−1(IN(M(Γ̂))) (where n is the number of vertices of Γ). This basis is

indexed by the elements (F, e) ∈ Fe(Γ). In the same Section, Kook describes

the action of the automorphism group G = Aut(Γ) on H̃n−1(IN(M(Γ̂)))

for a finite simple graph Γ, showing that this action is isomorphic to the

permutation action on Fe(Γ) tensored with the sign representation:

g(zF,e) = sgn(g) zg(F,e)
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where g(F, e) = (g(F ), g(e)) (see [Koo07, Theorem 6]). Extending by lin-

earity those two G-actions, we obtain two representations of G, respectively

on H̃n−1(IN(M(Γ̂)),C) and on the vector space Fe(Γ) of formal C-linear
combinations of elements of Fe(Γ), which are isomorphic up to a sign:

H̃n−1(IN(M(Γ̂))) ≃G Fe(Γ)⊗ sgn.

Applying Theorem 2.17 we obtain the following C[G]-module isomor-

phism:

H̃l−n−2(L(M∗(Γ̂))) ≃G Fe(Γ) (2.11)

where l is the number of edges of Γ̂.

Furthermore, in [KL18] Woong Kook and Kang-Ju Lee studied the ho-

mology of the independence complex IN(M(Km+1,n+1)) of the matroid as-

sociated to the complete bipartite graph Km+1,n+1. We need the following

definition:

Definition 2.21. A B-edge-rooted forest (F,b, e) in a complete bipartite

graph Km,n(m,n ≥ 1) is a spanning forest F in Km,n composed of two kinds

of connected components such that

- exactly one component is bi-rooted, i.e., has one vertex-root in each

bipartite set;

- each of the remaining components is edge-rooted, i.e., has one edge

marked as edge-root (see [KL18, Definition 3.3]).

The rank of the only non zero homology group of IN(M(Km+1,n+1)) is

shown to be equal to the cardinality of the set of the B-edge-rooted forests

FBe (Km,n) in Km,n.

In Section 5, the authors construct a basis {zF,b,e : (F,b, e) ∈ FBe (Km,n)}
for H̃m+n(IN(M(Km+1,n+1))). This basis is indexed by the elements (F,b, e) ∈
FBe (Km,n). In the same section, they proved the following theorem:

Theorem 2.22. The action of Sm ×Sn as a subgroup of Sm+1 ×Sn+1 on

H̃m+n(IN(M(Km+1,n+1))) is isomorphic to the action on FBe (Km,n) tensored
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with the sign representation:

σ(zF,b,e) = sgn(σ)zσ(F,b,e).

Now we consider the representations of the group Sm ×Sn that extend

by linearity the two Sm × Sn- actions, respectively on the vector space

H̃m+n(IN(M(Km+1,n+1))) and on the vector space FB
e (Km,n) of formal C-

linear combinations of elements of FBe (Km,n). Clearly we have the following

C[Sm ×Sn]-module isomorphism:

H̃m+n(IN(M(Km+1,n+1))) ≃Sm×Sn FB
e (Km,n)⊗ sgn.

Applying Theorem 2.17 we obtain the following C[Sm×Sn]-module isomor-

phism:

H̃l−m−n−3(L(M∗(Km+1,n+1))) ≃Sm×Sn FB
e (Km,n) (2.12)

where l is the number of edges of Km+1,n+1.

2.6 The dual matroid of the complete graph

We now consider the matroid M(Km) of the complete graph Km, which

has rank r = m− 1 and ground set of cardinality n =
(
m
2

)
. This matroid is

isomorphic to the matroidM(Φ+
Am−1

) associated with the positive roots of the

root system of type Am−1. In fact, this is the case of interest in [dCHM21].

We recall that the lattice of flats of this matroid is isomorphic to the

partition lattice Πm. In this case, Theorem 2.17 specializes to the following:

Theorem 2.23. H̃n−3−i(IN(M∗(Km))) and H̃i(Πm) ⊗ sgn are isomorphic

as Sm-modules for every i ≥ 0.

Remark 5. In [dCHM21], de Cataldo, Heinloth and Migliorini apply this

result to the computation of the supports of the perverse cohomology sheaves

of the Hitchin fibration for GLm over the locus of reduced spectral curves.
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Rephrased in terms of root system of type Am−1, the theorem above yields

the following C[G]-module isomorphism:

H̃n−3−i(IN(M∗(Φ+
Am−1

))) ≃Sm H̃i(Πm)⊗ sgn (2.13)

where

n = |E(M∗(Φ+
Am−1

))| = |Φ+(Am−1)| =
(
m

2

)
=
m(m− 1)

2
.

Remark 6. We can make a dimensional calculation to better understand the

dimensional shift. The matroid M(Φ+
Am−1

, I) has rank equal to m − 1, i.e.

each basis has m − 1 elements. Therefore, the matroid M∗(Φ+
Am−1

, I) has

rank equal to:

n− (m− 1) =
m(m− 1)

2
− (m− 1) =

(m− 1)(m− 2)

2
.

Thus, the dimension of the top homology of IN(M∗(Φ+
Am−1

) is one less than

the number of the elements of a basis of M∗(Φ+
Am−1

, I):

(m− 1)(m− 2)

2
− 1.

By Equation (2.13) we have the following isomorphism of C-vector spaces:

H̃n−3−i(IN(M∗(Φ+
Am−1

))) ≃ H̃i(Πm).

We impose

n− 3− i = (m− 1)(m− 2)

2
− 1

then we have i = m − 3 from n = m(m − 1)/2. Indeed, Hm−3(Πm) is the

only nonzero homology group of Πm.

By Theorem 2.23 these two representations

ρn−m : Sm −→ GL(H̃n−m(IN(M∗(Φ+
Am−1

))))

and

γm−3 : Sm −→ GL(H̃m−3(Πm)⊗ sgn)
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are isomorphic. From a result due to Stanley ([Sta82, Theorem 7.3]) we know

that the representations on the top homology of the partition lattice

γ̃m−3 : Sm −→ GL(H̃m−3(Πm))

are the following

γ̃m−3 ≃ sgn⊗ indSm
Cm

(e2πi/m).

Thus, we get

ρn−m ≃ indSm
Cm

(e2πi/m)

or as C[Sm]-modules:

H̃n−m(IN(M∗(Φ+
Am−1

))) ≃Sm indSm
Cm

(e2πi/m).



Chapter 3

Hodge theory for polymatroids

In this Chapter we construct a Leray model for a discrete polymatroid

(see Definition 3.4) and we prove a generalized Goresky-MacPherson formula

(see Theorem 3.24). We prove Poincaré duality, Hard Lefschetz, and Hodge-

Riemann theorems for the Chow ring of a polymatroid (see Theorem 3.31 and

Theorem 3.43). Furthermore, we provide a relative Lefschetz decomposition

with respect to the deletion of an element (see Theorem 3.46). The last

section contains an example that illustrate our definitions and properties

(see Section 3.6).

3.1 The Leray model

First, we extend Definition 1.65 and 1.68 to an arbitrary polymatroid,

not necessarily realizable.

Definition 3.1 (Combinatorial building set). Let P = (E, cd) be a poly-

matroid and let L be its lattice of flats. A subset G in L \ {0̂} is called a

combinatorial building set if for any x ∈ L the morphism of lattices:

φx :
∏

y∈max(G≤x)

[0̂, y]→ [0̂, x]

71
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induced by the inclusions is an isomorphism and the equality

cd(x) =
∑

y∈max(G≤x)

cd(y)

holds.

We define F (P,G, x) = max(G≤x) the set of G-factors of x.

Definition 3.2 (G-nested set complex). A subset S of G is called G-nested
if, for any set of incomparable elements x1, . . . , xt in S of cardinality at least

two, the join x1 ∨ · · · ∨ xt is not contained in G. The G-nested sets form an

abstract simplicial complex n(P,G).

We suggest to visualize a (realizable) polymatroid (E, cd) as a collection

of linear subspaces Se for e ∈ E in a fixed complex vector space V . For each

A ⊆ E, the codimension cd(A) is the codimension of the corresponding flat

∩a∈ASa. The (combinatorial) building set G is a good choice of some flats

to blow up, in order to obtain a wonderful model YG with some exceptional

divisors Dg ⊂ YG, g ∈ G indexed by G. A subset S of G is G-nested if and

only if the corresponding divisors {DW}W∈S have nonempty intersection.

The following proposition summarizes the main properties of building and

nested sets.

Proposition 3.3. Let P be a polymatroid with poset of flats L and G be a

building set. Then:

1. For each g ∈ G, x ∈ L with x ≥ g, there exists a unique G-factor p of

x such that p ≥ g.

2. If g, h ∈ G and g ∧ h > 0̂, then g ∨ h ∈ G.

3. If S is a G-nested set, then the G-factors of
∨
S are the maximal ele-

ments in S (i.e. F (P,G,
∨
S) = max(S)).

4. Let S be a G-nested set, the Hasse diagram of S (as subset of L) is a

forest.
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Proof . For (1) see [FK04] Proposition 2.5(1). For (2) see [BDF20] Proposi-

tion 2.5.3(b). For (3) see [FK04] Proposition 2.8. In order to prove (4) we

suppose that the Hasse diagram ΓS of S is not a forest. Thus there exist

two incomparable elements g, h ∈ S and t ∈ S such that g ∧ h ≥ t ∈ S; in
particular g ∧ h > 0̂. By part (2) we get that g ∨ h ∈ G but this contradicts

the definition of nested set. Therefore ΓS is a forest.

Let P = (E, cd) be a polymatroid, L be its poset of flats, and G be a

building set in L. Let R(G) = Q[eg, xg | g ∈ G] be the bigraded commuta-

tive algebra with exterior generators eg in bidegree (0, 1) and commutative

generators xg in bidegree (2, 0).

This algebra is equipped with a differential d of bidegree (2,−1) defined
on generators by d(eg) = xg, d(xg) = 0. Fix a linear extension ≻ of the

order on G, this gives a reverse order among the e-variables and among the

x-variables, i.e. xh ≺ xg and eh ≺ eg if and only if h ≻ g. We also set xg ≺ eh

for each g, h. The algebra R(G) has a monomial basis given by:

eTx
b
S := eg1 · · · egtxb1h1 · · ·x

bs
hs

where T = {g1, . . . , gt} with gi ∈ G satisfying g1 ≺ g2 ≺ · · · ≺ gt, S =

{h1, . . . , hs} with hi ∈ G and b = (b1, . . . , bs) is a s-tuple of positive integers.

We define the element:

cg =
∑
h∈G
h≥g

xh.

Definition 3.4 (The Leray model of a polymatroid). Let I(G) be the ideal

of R(G) generated by

(i) eTxS whenever S ∪ T /∈ n(P,G),

(ii) eTxSc
b
g whenever S, T ⊆ G, g ∈ G and b ≥ cd(g)− cd(

∨
(S ∪ T )<g).

The ideal I(G) is preserved by the differential d, so the quotient

B(P,G) = R(G)⧸I(G)

is a bigraded differential algebra, called the Leray model of the polymatroid.
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In the realizable case, the Leray model B(P,P) is the second page of the

Leray spectral sequence for the natural inclusion

V \ ∪e∈ESe ∼= YG \ ∪g∈GDg ↪→ YG.

This spectral sequence collapses at the third page, hence it becomes a differ-

ential bigraded algebra also known as the Morgan algebra [Mor78].

Remark 7. Let eTxSc
b
g be a monomial of type (ii) and let

S ′ = S ∩max(S ∪ T )<g and T ′ = max(S ∪ T )<g \ S.

The monomial eT ′xS′cbg divides the monomial eTxSc
b
g. Thus, when we con-

sider a monomial of type (ii) we can always assume that S ∩ T = ∅, S ∪ T
is an antichain and

∨
(S ∪ T ) < g.

Theorem 3.5. The generators of type (i) and (ii) of the ideal I(G) of Defi-
nition 3.4 form a Gröbner basis with respect to the deg-lex order.

Proof . We adapt the method used in [FY04, Theorem 2] and in [BDF20,

Theorem 5.3.1]. We are fixing a linear extension of the order on G with

xg ≺ eh for each g, h. With this we consider the deg-lex monomial order on

R(G). We explicitly compute S-polynomials.

Case (i)-(i) Since relations type (i) are monomials the S-polynomials will

be zero.

Case (i)-(ii) Now we consider f1 = eTxS of type (i) and f2 = eAxBc
b
g of

type (ii). We can assume that
∨
(A ∪ B) < g (see Remark 7). Let

U = T ∪ A, V = B ∪ S ∖ {g}, therefore the S-polynomial is

S(f1, f2) = eUxV x
b
g − eUxV cbg = eUxV (x

b
g − cbg).

If g /∈ S, we have that S ⊆ V and therefore

S(f1, f2) = ±eA\T eTxSxV \S(x
b
g − cbg)

is divisible by eTxS.
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Then assume g ∈ S, since S∪T is not nested we have that U ∪V ∪{g}
is not nested. If U ∪ V is not nested, then S(f1, f2) would be divisible

by eUxV .

So assume U ∪ V is nested, (thus we have that g /∈ U ∪ V ) since

U ∪ V ∪ {g} is not nested the S-polynomial modulo eUxV xg became

S(f1, f2) ≡ eUxV
(∑
f>g

xf
)b
.

The set U ∪ V ∪ {g} contains a non trivial antichain Y whose join∨
Y = y is in G and Y must contain g since U ∪ V is nested; let

y′ =
∨
(Y ∖ {g}). We have

b = cd(g)− cd
( ∨
l∈A∪B
l<g

l
)

≥ cd(g ∨ y′)− cd
( ∨
l∈A∪B
l<g

l ∨ y′
)

≥ cd(y)− cd
( ∨
l∈U∪V
l<y

l
)
= b′

and so eUxV c
b
y is a relation of type (ii). We claim that modulo relations

of type (i)

S(f1, f2) ≡ eUxV c
b
y.

To obtain this, we will show that if f ∈ G with f > g and f ≱ y,

then U ∪ V ∪ {f} is not nested. Suppose that U ∪ V ∪ {f} is nested
and consider the following antichain Y ′ = max(Y ∖ {g} ∪ {f}) ⊆
U ∪V ∪{f}. The set Y ′ is nested and by Proposition 3.3 the G-factors
of

∨
(Y ∖ {g} ∪ {f}) are exactly the elements of Y ′ = {y1, . . . , yk, f}.

We have ∨
(Y ∖ {g} ∪ {f}) = y′ ∨ f ≥ y′ ∨ g = y.

By definition of G-factor we have two cases:

• y ≤ yi for a certain i. But this is impossible since yi < y;
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• y ≤ f contrary to the assumption f ̸≥ y.

Thus, U ∪ V ∪ {f} is not nested and S(f1, f2) reduces to zero.

Case (ii)-(ii) Let f1 = eTxSc
d
g and f2 = eAxBc

f
h be two relations of type

(ii). We may assume
∨
(S ∪ T ) < g and

∨
(A ∪ B) < h (see Remark

7). We have the following cases:

First g = h and d ≤ f , then the S-polynomial is

S(f1, f2) = eT∪AxS∪Bc
d
g(x

f−d
g − cf−dg );

which is divisible by eTxSc
d
g.

Second g ̸= h, g /∈ B, h /∈ S, we also assume that h ≻ g. The S-

polynomial is

S(f1, f2) = eS∪AxT∪B(x
f
hc
d
g − xdgc

f
h).

Let y = eT∪AxS∪Bc
d
g(c

f
h − x

f
h), which is divisible by eTxSc

d
g and has a

leading term smaller or equal to that of S(f1, f2). The remainder is

S(f1, f2) + y = eT∪AxS∪B(c
d
g − xdg)c

f
h,

it is divisible by eAxBc
f
h, and reduces to zero.

Finally, assume g ̸= h and g ∈ B, by Remark 7 we must have g ≺ h

and h /∈ S. Let U = T ∪ A and V = S ∪B ∖ {g}, the S-polynomial is

S(f1, f2) = eUxV (x
f
hc
d
g − xdgc

f
h).

Let y = eUxV c
d
g(c

f
h−x

f
h), which is divisible by eTxSc

d
g and has a leading

term smaller or equal to that of S. It remains to verify that

S(f1, f2) + y = eUxV (c
d
g − xdg)c

f
h

reduces to zero. First, through division by eAxBc
f
h, since g ∈ B we

have

S(f1, f2) + y ≡ eUxV

(∑
k>g

xk

)d
cfh. (3.1)
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We claim that for any k > g, k ̸≥ h we have

eUxV xkc
f
h ≡ eUxV xkc

f
h∨k ≡ 0

modulo relations of type (i) and (ii). For the first claim, if p ≥ h but

p ≱ h∨k then {p, k} is not nested by Proposition 3.3 and we can divide

by the relations of type (i) xhxp. The last claim follows since h∨k ∈ G
by Proposition 3.3 and

f ≥ cd(h)− cd(
∨

(A ∪B))

≥ cd(h ∨ k)− cd(
∨

(U ∪ V ∪ {k})).

Therefore, the element in eq. (3.1) reduces to

S(f1, f2) + y ≡ eUxV c
d+f
h .

Then since d + f ≥ cd(h) − cd(
∨
(U ∪ V ∪ {k})) we may divide by

eUxV c
d+f
h and reduce to zero.

This completes the proof.

Corollary 3.6. The algebra B(P,G) has an additive basis given by the mono-

mials eTx
b
S for which S ∪ T ∈ n(P,G) and for each s ∈ S we have that

0 < b(s) < cd(s)− cd(
∨
(S ∪ T )<s).

Proof . An additive basis for the algebraB(P,G) is given by all the monomials

which are not divisible by the initial monomials of the Gröbner basis. The

proof follows immediately.

We now provide a second presentation for the algebra B(P,G) using a

different set of generators (τg and σg for g ∈ G) and different relations.

Theorem 3.7. The morphism

φ : Λ[τg | g ∈ G]⊗Q[σg | g ∈ G]→ B(P,G)

defined by φ(τg) =
∑

h≥g eh and by φ(σg) =
∑

h≥g xh, is surjective with kernel

generated by:
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(i)
∏

t∈T (τt − τg)
∏

s∈S(σs − σg) for S ∪ T a non-trivial antichain and g =∨
(S ∪ T ) ∈ G,

(ii)
∏

t∈T (τt−τg)
∏

s∈S(σs−σg)σbg for g ∈ G and b = cd(g)−cd(
∨
(S∪T )<g).

We will identify the elements τg, σg with their images in B(P,G). In

the realizable case the element σg is the fundamental class of Dg, the total

transform of the flat g. Analogously, τg is the sum of irreducible components

of the total transform of the flat g. The elements σg can be also seen in the

following way: consider the inclusion YG ↪→
∏

h∈G Pcd(h)−1 of [DCP95], σg is

the pullback of the hyperplane class of the factor Pcd(g)−1.

Before the proof of Theorem 3.7 we need a couple of technical lemmas.

Lemma 3.8. Let g ∈ G and S = {s1, . . . sn} ⊂ G such that
∨
S ≤ g, set

b = cd(g) − cd(
∨
S). Consider a set A = {a1, . . . an} ⊂ G such that ai ≥ si

and ai ̸≥ g for all i = 1, . . . , n. Then

yAc
b
g = 0,

where yai is equal to eai or xai and yA = ya1 · · · yan.

Proof . Define the element h =
∨
A ∨ g, we first prove the equality yAσ

b
g =

yAσ
b
h and then yAσ

b
h = 0.

We want to show that h ∈ G. Let h′ ∈ G be the unique G-factor of h

such that h′ ≥ g. For each ai we have h′ ∧ ai ≥ si and so ai ∨ h′ ∈ G. By

maximality of h′ we have ai ≤ h′ for all i. Therefore h = h′ ∈ G.
Firstly, let g′ ∈ G be any element such that g′ ≥ g and g′ ̸≥ h. Suppose

that A∪{g′} is a G-nested set. Then the G-factors of h∨ g′ are the maximal

elements of A∪{g′} by Proposition 3.3. So there exists an element in A∪{g′}
bigger or equal to h, this is impossible since g′ ̸≥ h and ai ̸≥ g. It follows

that A ∪ {g′} is not G-nested and yAxg′ = 0.

Finally, we show that yAσ
b
h = 0. Indeed, b ≥ cd(g)− cd(g∧

∨
A) which is

bigger than cd(h)− cd(
∨
A) by submodularity of cd. Applying the relations

of type (ii) in Definition 3.4 we complete the proof.
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Lemma 3.9. The elements
∏

t∈T (τt − τg)
∏

s∈S(σs − σg)σbg for g ∈ G, and
b = cd(g)− cd(

∨
(S ∪ T )<g) belong to the kernel of φ.

Proof . From the argument of Remark 7 we may assume that S ∩ T = ∅,
S ⊔ T is an antichain, and

∨
(S ∪ T ) ≤ g.

We have

φ
(∏
t∈T

(τt − τg)
∏
s∈S

(σs − σg)σbg
)
=

∑
A,B

eAxB

(∑
l≥g

xl

)b
,

where the sum is taken over the sets A = (ai)i and B = (bj)j such that

ai ≥ ti, bj ≥ sj, ai ̸≥ g, and bj ̸≥ g. Each term eAxB

(∑
l≥g xl

)b
is zero by

Lemma 3.8.

Proof of Theorem 3.7. Let ≺ be a reverse linear extension of the order on

G with xg ≺ eh and σg ≺ τh for each g, h. Now we consider the basis

formed respectively by the σg, τh and by the xg,eh ordered with ≺; with

respect of these two basis the matrix associated to the morphism φ is upper

unitriangular and therefore invertible. It follows that the map φ is surjective.

We want to prove that kerφ is generated by relations of type (i) and (ii)

of Theorem 3.7. From Lemma 3.9 we know that elements of the form (ii)

belong to kerφ. The relations (i) are a particular case of relations (ii) with

b = 0. Let J be the ideal generated by relation of type (i) and (ii), we denote

also by in(J) the initial ideal of J . It suffices to prove that

dim C⧸in(J) ≤ dimR(G)⧸in(I(G))

where C = Λ[τg | g ∈ G]⊗Q[σg | g ∈ G]. LetK ⊆ in(I) be the ideal generated

by the leading monomial of relation of type (i) and (ii), since

dim C⧸K ≥ dim C⧸in(J)

it suffices to check that

dim C⧸K = dimR(G)⧸in(I(G)). (3.2)
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The leading monomials of relation type (i) are of the form τTσS where S ∪T
is not G-nested; the leading monomials of relation type (ii) are of the form

τTσSσ
b
g whenever S, T ⊆ G, g ∈ G and b = cd(g) − cd(

∨
(S ∪ T )<g). The

monomials in C, which are not divisible by the these two type of leading

monomials, are of the form τTσ
m
S with S ∪ T ∈ n(P,G) and and for each

s ∈ S we have that 0 < m(s) < cd(s) − cd(
∨
(S ∪ T )<s). Hence eq. (3.2)

follows. Since the map φ is surjective it is also injective; and the initial ideal

in(J) is equal to K. Therefore, relation type (i) and (ii) form a Gröbner

basis for kerφ.

From the proof of Theorem 3.7 we obtain also the following corollary:

Corollary 3.10. The set of monomials τTσ
m
S with S ∪ T ∈ n(P,G) and,

for each s ∈ S, 0 < m(s) < cd(s) − cd(
∨
(S ∪ T )<s) is an additive basis of

B(P,G).

3.2 Generalized Goresky-MacPherson formula

In this section we generalize the Goresky-MacPherson formula (see [GM88])

to the non-realizable case and to arbitrary building sets. The choice of the

minimal building set yields a significantly smaller nested set complex and it

can be useful in practical computations. Other generalizations of this formula

can be found in [BLZ15, Des18, MP20].

3.2.1 Critical monomials

Definition 3.11. A standard monomial eTxS (resp. τTσS) is a monomial

that appears in the basis given by Corollary 3.6 (resp. by Corollary 3.10).

For the sake of notation for any standard monomial τTσ
b
S we extend the

function b by setting b(g) = 0 for g ̸∈ S.

Definition 3.12. Let τTσ
b
S be a standard monomial. An element g ∈ G

is called critical with respect to the monomial τTσ
b
S if g ∈ T and b(g) =
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cd(g)− cd(
∨
(S ∪T )<g)− 1. If every element of S ∪T is critical with respect

to τTσ
b
S then the monomial τTσ

b
S is called critical.

Notice that if the monomial τTσ
b
S is critical, then S ⊆ T and so the critical

monomial is uniquely determined by T .

Definition 3.13. The critical monomial associated with T ∈ n(P,G) is

cµ(T ) = τTσ
b
S,

where S = {t ∈ T | cd(t)−cd(
∨
(S<t)) > 1} and b(s) = cd(s)−cd(

∨
(T<s))−1

for all s ∈ S.

In Theorem 3.23 we will prove that the linear span of critical monomials

form a subcomplex (indeed a subalgebra) of B(P,G). Moreover, we will show

that this subalgebra is quasi-isomorphic to the Leray model. This first lemma

implies that the span of critical monomials is a sub-complex.

Lemma 3.14. For every critical monomial cµ(T ) we have

d(cµ(T )) =
∑

t∈T\max(T )

(−1)|T≺t|cµ(T \ {t}).

Proof . Let cµ(T ) = τTσ
b
S, we have

d(cµ(T )) =
∑
t∈T

(−1)|T≺t|τT\{t}σ
b
Sσt

=
∑

t∈T\min(T )

(−1)|T≺t|τT\{t}σ
b
Sσt,

because if t ∈ min(T ) then b(t) = cd(t)− 1 and so σ
cd(t)
t = 0.

Fix t ∈ T \min(T ), the set R = max(T<t) is nonempty. By using relation

(ii) of Theorem 3.7 and the fact that τ 2t = 0, we have

τRσ
b
Rσ

b(t)+1
t =

∑
r∈R

(−1)|R≺r|τR\{r}τtσ
b
Rσ

b(t)+1
t

=
∑
r∈R

(−1)|R≺r|τR\{r}τtσ
b
R\{r}σ

b(t)+b(r)+1
t ,
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where in the last equality we used

0 = τt(σr − σt)σb(t)+1
t

∏
l ̸=r

(τl − τt) = τtτR\{r}(σr − σt)σb(t)+1
t .

Notice that T ∈ n(P,G) implies cd(
∨
R) = cd(

∨
(R \ {r})) + cd(r) and

cd(
∨
(R \ {r}) ∨

∨
(T<r)) = cd(

∨
(R \ {r})) + cd(

∨
(T<r)); so bT\{r}(t) =

bT (t) + bT (r) + 1. Therefore

τRσ
b
Rσ

b(t)+1
t =

∑
r∈R

(−1)|R≺r|cµ((R \ {r}) ∪ {t})

and finally:

d(cµ(T )) =
∑

t∈T\min(T )

∑
r∈max(T<t)

(−1)|T≺r|µ(T \ {r})

=
∑

r∈T\max(T )

(−1)|T≺r|µ(T \ {r}),

because T is a forest by Proposition 3.3. This conclude the proof.

We want to apply algebraic Morse theory to the complex B(P,G). We

refer to [JW09] for basic definitions and properties of algebraic Morse theory.

We define the following matching M: for each non-critical monomial

τTσ
b
S let g ∈ S ∪ T be the smallest (with respect to ≺) non-critical element.

If g belongs to T , then the pair (τTσ
b
S, τT∖{g}σ

b
Sσg) is inM.

The algebraic Morse theory, together with Lemma 3.15 and Proposition

3.18, implies that the complex of critical monomials is quasi-isomorphic to

the Leray model.

Lemma 3.15. The set M is a matching. Moreover a monomial is critical

if and only if it is critical for the matchingM.

Proof . We need to check that each non-critical monomial appears exactly

once inM and that all monomials inM are non-critical.

By definition if the monomial τTσ
b
S appears in the first position inM, it is

non-critical. Moreover τT∖{g}σ
b
Sσg is non-critical because S ∪{g} ̸⊆ T ∖ {g}.

So every monomial in the matching is non-critical.
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Vice versa, if τTσ
b
S is a non-critical monomial, let g be the minimal non-

critical element in S ∪ T . If g ∈ T then τTσ
b
S appears in the matching (in

the first position). Otherwise, g ∈ S \T so the monomial τT τg
σb
S

σg
is basic and

non-critical. Notice that an element f ∈ G is critical for τTσ
b
S if and only if

is critical for τT τg
σb
S

σg
. Therefore the pair (τT τg

σb
S

σg
, τTσ

b
S) is inM.

Definition 3.16. Given a standard monomial τTσ
b
S we define m(T, S, b) as

the multiset {ga(g) | g ∈ G} where a(g) is the sum of the exponents of τg and

σg in the monomial τTσ
b
S. Moreover, we order these multisets lexicographi-

cally using the reverse order on G.

As an example, if h < g then h ≺ g and {h2} ≻ {h, g}.

Definition 3.17. Let G be the directed graph whose vertices are the stan-

dard monomials with a directed edge from τTσ
b
S to τT ′σb

′

S′ if the monomial

τT ′σb
′

S′ appears with nonzero coefficient in d(τTσ
b
S).

Let GM be the directed graph G with all directed edges inM reversed.

Proposition 3.18. The matchingM is a Morse matching.

Proof . We need to show that the graph GM is acyclic.

Although m is not a term order (because m(τg) = m(σg)) it has the

property that for any relation of Theorem 3.7∏
t∈T

(τt − τg)
∏
s∈S

(σs − σg)σbg (3.3)

with
∨
(S ∪ T ) ≤ g the monomial τTσSσ

b
g has m(T, S, b) strictly bigger than

any other monomial in the expansion of eq. (3.3). Moreover m is multiplica-

tive.

First notice that:

d(τTσ
b
S) =

∑
g∈T

(−1)|T≺g |τT\gσ
b
Sσg

=
∑
g∈T

g non-critical

(−1)|T≺g |τT\gσ
b
Sσg +

∑
g∈T

g critical

(−1)|T≺g |τT\gσ
b
Sσg

=
∑
g∈T

g non-critical

(−1)|T≺g |τT\gσ
b
Sσg +

∑
some T ′,S′,b′

m(T ′,S′,b′)≺m(T,S,b)

αT ′,S′,b′τT ′σb
′

S′ ,
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where αT ′,S′,b′ are some coefficients. In the last equality we used the relations

of Theorem 3.7 in order to write the non-standard monomials τT\gσ
b
Sσg as lin-

ear combination of standard ones. Notice also that if the pair (τTσ
b
S, τT\gσ

b′
S∪g)

is inM then m(T, S, b) = m(T \g, S∪{g}, b′). This implies that the function

m is weakly decreasing on every direct path in GM, so it is constant on every

directed cycle.

It is a classical fact that it is enough to prove that there are no alternating

directed cycles, i.e. cycles such that for every pair of consecutive edges exactly

one is in M. Suppose that there exists a directed cycle and consider two

consecutive edges. We can assume that the first one is inM and the second

one is not. The first edge is (τTσ
b
S, τT τg

σb
S

σg
) for some non-critical monomial

τTσ
b
S with g the smaller non-critical element and g ∈ S \T . The second edge

is (τT τg
σb
S

σg
, τT ′σb

′

S′) for some standard monomial τT ′σb
′

S′ . Since the value of m

is constant on the cycle we have that τT ′σb
′

S′ = τT\{f}τg
σb
S

σg
σf for some f ∈ T

non-critical for the monomial τT τg
σb
S

σg
. These two edges are shown below.

τTσ
b
S

τT τg
σb
S

σg

τT\{f}τg
σb
S

σg
σf

The sets of critical elements for τTσ
b
S and for τT τg

σb
S

σg
coincide, so both g

and f are non-critical for τT τg
σb
S

σg
. By minimality of g we have g ≺ f , so

T ≺ (T \ {f}) ∪ {g} = T ′.

We have proved that in every alternating path after two steps the set

indexing the variable τ strictly increases. Therefore there are no alternating

cycles.

3.2.2 Multiplicative structure

We want to describe the product of two critical monomials in B(P,G).
Let (g1, g2, . . . , gk) be a list of elements in G and recall that ≺ is a linear
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extension of the order on G. Define

λ̃(g1, g2, . . . , gk) = (f1, f2, . . . , fk)

where fi is the unique G-factor of g1 ∨ g2 ∨ · · · ∨ gi bigger than gi guar-

anteed by Proposition 3.3(1). Define λ(g1, g2, . . . , gk) = λ̃(g1, g2, . . . , gk) if

(f1, f2, . . . , fk) form a G-nested set and fi ≺ fi+1 for i = 1, . . . , k − 1. Set

λ(g1, g2, . . . , gk) = 0 otherwise. We will use the convention that cµ(0) = 0

and cµ(∅) = 1. Let π ∈ Sk be a permutation, we write π(g1, g2, . . . , gk) for

the list (gπ(1), gπ(2), . . . , gπ(k)) and we denote the concatenation of two lists T1

and T2 by T1 ∪ T2.

Remark 8. If λ̃(g1, g2, . . . , gk) = (f1, f2, . . . , fk), then g1 ∨ g2 ∨ · · · ∨ gj =

f1∨f2∨· · ·∨fj. Moreover, λ(g1, g2, . . . , gk) = 0 if there exist i < j such that

gj ≤ gi. Indeed, fj ≤ f1 ∨ f2 ∨ · · · ∨ fj−1 and {f1, . . . , fj} is G-nested, hence
fj = fc for some c < j contradicting fc ≺ fj.

Let T1 and T2 be two lists of elements in G and π ∈ S|T1∪T2| be a permu-

tation. If λ(π(T1 ∪ T2)) ̸= 0 then the last element of π(T1 ∪ T2) belongs to

max(T1 ∪ T2).
In the particular case when G is the maximal building set and T1, T2 are

chains in G, λ(π(T1 ∪ T2)) is zero if π is not a (|T1|, |T2|)-shuffles.

The following proposition describes the multiplication of critical mono-

mials using shuffles.

Proposition 3.19. Let T1 and T2 be G-nested sets. If cd(
∨
(T1 ∪ T2)) <

cd(
∨
T1) + cd(

∨
T2), then cµ(T1)cµ(T2) = 0. Otherwise

cµ(T1)cµ(T2) =
∑

π∈S|T1∪T2|

sgn(π)cµ(λπ(T1 ∪ T2)).

Before the proof of Proposition 3.19 we need two technical lemmas.

Lemma 3.20. Let T1 and T2 be nested sets such that cd(
∨
T1)+ cd(

∨
T2) =

cd(
∨
(T1 ∪ T2)) and

∨
(T1 ∪ T2) ̸∈ G. Then T1 ∪ T2 is G-nested and

cµ(T1)cµ(T2) = (−1)scµ(T1 ∪ T2),
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where s is the length of the permutation that reorder T1 and T2. Moreover:

cµ(T1)cµ(T2) =
∑

π∈S|T1∪T2|

sgn(π)cµ(λπ(T1 ∪ T2)).

Proof . Notice that [0̂,
∨
(T1 ∪ T2)] = [0̂,

∨
T1]× [0̂,

∨
T2] with the same codi-

mension, therefore

cµ(T1)cµ(T2) = (−1)scµ(T1 ∪ T2).

Since each subset of T1 ∪ T2 is G-nested, for each π ∈ S|T1∪T2| we have

λ̃π(T1 ∪ T2) = π(T1 ∪ T2) by (3) of Proposition 3.3. Hence λπ(T1 ∪ T2) is

zero for all permutations π except for the unique permutation that reorders

T1 and T2.

Lemma 3.21. Suppose that T is a G-nested set and g ∈ G such that cd(g ∨∨
T )− cd(

∨
T ) = cd(g)− cd(

∨
T<g). Set b = cd(g)− cd(

∨
T<g)− 1, then

cµ(T )τgσ
b
g =

∑
π∈S|T |+1

sgn(π)cµ(λπ(T ∪ {g})), (3.4)

where the sum is taken over all permutations of T ∪ {g}.

Proof . We prove the statement by induction on |T |.
If T ∪ {g} is nested then both side of eq. (3.4) agree with cµ(T ∪ {g}).

Let f = g∨
∨
T , if f /∈ G then there exist nonempty G-nested sets T ′ and T ′′

such that T ∪ {g} = T ′ ⊔ T ′′ and [0̂, f ] = [0̂,
∨
T ′] × [0̂,

∨
T ′′]. Assume that

g ∈ T ′ and set t′ = |T ′| and t′′ = |T ′′|. By using the inductive hypothesis

and Lemma 3.20, we have

cµ(T )τgσ
b
g = (−1)scµ(T ′′)cµ(T ′ \ {g})τgσbg
= (−1)scµ(T ′′)

∑
α∈St′′

sgn(α)cµ(λα(T ′))

=
∑
α∈St′′

(−1)s+sα sgn(α)cµ(T ′′ ⊔ λα(T ′))

=
∑

π∈St′+t′′

sgn(π)cµ(λπ(T ∪ {g})),
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where s corresponds to the permutation that reorder T ′′ and T ′ \ {g}, sα to

the permutation that reorders T ′′ and α(T ′).

Now suppose that f ∈ G and let Y = {g1, g2, . . . , gk} = max(g ∨
∨
T )

numbered such that g = gk. For the sake of notation set m(gk) = m. We

assume g ≻ t for all t ∈ T , the general case differs only by a sign. We have∏k
i=1(τgi − τf ) = 0 and so

τY =
k∑
i=1

(−1)k−iτY \{gi}∪{f}.

Set b(gi) = cd(gi)− cd(
∨
T<gi)− 1, for all i ≤ k we have

(σb(gi)gi
− σb(gi)f )τf

∏
j ̸=i

(τgj − τf ) = 0,

so τY \{gi}∪{f}σ
b(gi)
gi = τY \{gi}∪{f}σ

b(gi)
f . Therefore we have

cµ(T )τgσ
b
g = (−1)scµ(T \ Y )

k∏
i=1

τgiσ
b(gi)
gi

= (−1)scµ(T \ Y )
k∑
i=1

(−1)k−i
∏
j ̸=i

τgjσ
b(gj)
gj

τfσ
b(gi)
f

=
k−1∑
i=1

(−1)ti+1cµ(T \ {gi})τgσbgτfσ
b(gi)
f + cµ(T ∪ {f}),

where s (and ti) is the length of the permutation that reorders T \ Y and

Y \ {g} (respectively T \ {gi} and {gi}). The last summand corresponds

to the identity permutation. Apply the inductive hypothesis on the terms

cµ(T \ {gi})τgσbg so that

(−1)ti+1cµ(T \ {gi})τgσbgτfσ
b(gi)
f =

∑
π

sgn(π)cµ(λπ(T ∪ {g}))

where the sum is taken over all permutations π in S|T |+1 that sends the

element gi in the last position. Since every π such that λπ(T ∪ {g}) ̸= 0 has

in the last position an element of max(T ∪ {g}), the result follows.
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Proof of Proposition 3.19. For the first part notice that cµ(Ti) is in bidegree

(2(cd(
∨
Ti) − |Ti|), |Ti|) for i = 1, 2. Let f =

∨
(T1 ∪ T2), the product

cµ(T1)cµ(T2) can be rewritten as sum of standard monomials using only

relations of type ∏
s∈S

(τs − τg)
∏
t∈T

(σt − σg)σbg

for
∨
(S ∪ T ) ≤ g ≤ f . The standard monomials τSσ

b
T with

∨
(S ∪ T ) ≤ f

have bidegree at most (2(cd(f)− |S|), |S|). Therefore, if cd(f) < cd(
∨
T1) +

cd(
∨
T2) we have cµ(T1)cµ(T2) = 0 by degree argument.

We prove the second statement by induction on |T2|. The base case T2 = ∅
is trivial. If

∨
T2 /∈ G then there exist T3 and T4 nonempty G-nested sets

such that T2 = T3 ⊔T4 and [0̂,
∨
T2] = [0̂,

∨
T3]× [0̂,

∨
T4]. Applying Lemma

3.20 and the inductive step we have

cµ(T1)cµ(T2) = (−1)scµ(T1)cµ(T3)cµ(T4)

= (−1)s
∑

α∈St1+t3

sgn(α)cµ(λα(T1 ∪ T3))cµ(T4)

= (−1)s
∑

α∈St1+t3

sgn(α)
∑

β∈St1+t2

sgn(β)cµ(λβ(α(T1 ∪ T3), T4))

=
∑

π∈St1+t2

sgn(π)cµ(λπ(T1 ∪ T2)),

where ti = |Ti|.
Now we deal with the case

∨
T2 ∈ G. Let g = maxT2 ∈ G, T ′

2 = T2 \ {g},
and m = cd(g)− cd(T ′

2)− 1. We have

cµ(T1)cµ(T2) = cµ(T1)cµ(T
′
2)τgσ

m
g

=
∑

α∈St1+t2−1

sgn(α)cµ(λα(T1 ∪ T ′
2))τgσ

m
g

=
∑

α∈St1+t2−1

sgn(α)
∑

β∈St1+t2

sgn(β)cµ(λβ(α(T1 ∪ T ′
2) ∪ {g}))

=
∑

π∈St1+t2

sgn(π)cµ(λπ(T1 ∪ T2)),

where we used the inductive hypothesis on T1 and T ′
2 and Lemma 3.21 on

α(T1 ∪ T ′
2) and {g}.
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We define the algebra of critical monomials abstractly, by generators and

relations.

Definition 3.22. Let CM(P,G) be the Q-vector space generated by all the

nested sets T ∈ n(P,G) with bidegree (2(cd(
∨
T )−|T |), |T |). The differential

is defined on the base by

d(T ) =
∑

t∈T\max(T )

(−1)|T≺t|(T \ {t})

and the product by T · S = 0 if cd(
∨
(T ∪ S)) < cd(

∨
T ) + cd(

∨
S) and

T · S =
∑

π∈S|T |+|S|

sgn(π)λ(π(T ∪ S))

otherwise. This structure make CM(P,G) a differential bigraded algebra.

We summarize all the previous results of this section in the following

theorem.

Theorem 3.23. The morphism ξ : CM(P,G) → B(P,G) defined by ξ(T ) =

cµ(T ) is an inclusion of differential algebras and a quasi-isomorphism.

Proof . The map ξ is well defined as a morphism of Q-vector spaces. It is an

inclusion since the monomials cµ(T ) for T ∈ n(P,G) are standard monomials

and are linearly independent by Corollary 3.10. The equality d ξ = ξ d follows

from Lemma 3.14 and the equality ξ(S ·T ) = ξ(S)ξ(T ) from Proposition 3.19.

This also proves that CM(P,G) is a differential bigraded algebra.

Finally, the algebraic Morse theory applied to B(P,G) and the matching

M ensures that there exists a subcomplex NM such that the projection

B(P,G) ↠ B(P,G)⧸NM

is a quasi-isomorphism and the quotient is freely generated by critical mono-

mials. The composition of ξ with the projection gives an isomorphism of

chain complexes. Therefore ξ is a quasi-isomorphism.
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Let n((0̂, g),G) be the full subcomplex of n(P,G) on the set of vertices

{h ∈ G | h < g}.
All the homology groups are taken with rational coefficients. We use the

standard convention for the reduced homology that H̃−1(∅) = Q.

This final theorem provides an explicit description of the cohomology of

the Leray model in term of cohomology of very small simplicial complexes.

Theorem 3.24. Let P be a polymatroid and G be a building set. Then

H •(B(P,G), d) ∼= H •(CM(P,G), d) ∼=
⊕
f∈L

⊗
g∈F

H̃2 cd(g)−2−•

(
n((0̂, g),G)

)
,

where F = F (P,G, f) is the set of G-factors of f .
In particular the summand H̃i(n((0̂, g),G)) contributes in bidegree (2(cd(g)−

2− i), 2 + i).

Proof . We use Theorem 3.23 to obtain

H(B(P,G), d) ∼= H(CM(P,G), d).

For each flat f let CMf be the subcomplex of CM(P,G) generated by all

nested sets T such that max(T ) = F (P,G, f). Moreover for each g ∈ G set

CM(g) to be the subcomplex of CM(P,G) generated by all nested sets T such

that {g} = max(T ). We have

CM(P,G) =
⊕
f∈L

CMf

and

CMf =
⊗

g∈F (P,G,f)

CM(g)

as complexes. It is enough to prove that

H •(CM(g), d) = H̃2 cd(g)−2−•

(
n((0̂, g),G)

)
.

Indeed CM(g) coincides with the reduced simplicial chain complex for n((0̂, g),G),
under the correspondence T 7→ T \ {g}. Notice that the bidegree of T ∈
CM(g) is (2(cd(g)− |T |), |T |) and the degree of T \ {g} in the reduced chain

complex is |T \ {g}| − 1 = |T | − 2.
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Definition 3.22 has a straightforward generalization to integer coefficients,

we left open the following question.

Conjecture 3.25. Does Theorem 3.24 generalizes to integer coefficients?

The analogous statement in the realizable case with the maximal building

set was proven in [DGM00, dLS01].

3.3 Kähler package

Let DP•(P,G) be the graded algebra B2•,0(P,G). This algebra, in the

realizable case, is the Chow ring of the De Concini Procesi wonderful model

for the subspace arrangement. A presentation of DP(P,G) is given by the

generators xg for g ∈ G with relations

xSc
b
g

where S ⊆ G, g ∈ G and b ≥ cd(g) − cd(
∨
S<g). From Corollary 3.6 the

algebra DP(P,G) has an additive basis given by

xbS

where S ∈ n(P,G) and for each s ∈ S we have that 0 < b(s) < cd(s) −
cd(

∨
(S)<s).

A second presentation is given by the generators σg for g ∈ G with rela-

tions

σbg
∏
s∈S

(σs − σg)

where
∨
S ≤ g and b = cd(g) − cd(

∨
S), see Theorem 3.7. From Corollary

3.10 the algebra DP(P,G) has an additive basis given by

σbS

where S ∈ n(P,G) and for each s ∈ S we have that 0 < b(s) < cd(s) −
cd(

∨
S<s).



92 3. Hodge theory for polymatroids

Remark 9. If 1̂ /∈ G then the polymatroid P is direct sum of other polyma-

troids. Indeed, let a1, . . . , ak be the G-factors of 1̂, the poset L is a prod-

uct
∏k

i=1[0̂, ak]. There exist polymatroids P ai (defined in the following, see

Lemma 3.35) such that P = ⊕ki=1P
ai and building sets Gai = G ∩ [0̂, ai].

Moreover, DP(P,G) = ⊗ki=1DP(P
ai ,Gai) and the dimension of DP(P,G) is

cd(1̂)− |F (P,G, 1̂)| (where k = |F (P,G, 1̂)|).

For the clarity of exposition, we assume 1̂ ∈ G in this section. Consider

the isomorphism deg : DPcd(1̂)−1(P,G)→ Q defined by

deg(x
cd(1̂)−1

1̂
) = (−1)cd(1̂)−1.

Definition 3.26. LetA be a graded algebra with top degree n and deg : An →
Q an isomorphism. We say that

• the algebra A satisfies Poincaré duality if the bilinear pairing

Ak × An−k → Q

defined by (a, b) 7→ deg(ab) is non-degenerate.

• the element ℓ ∈ A1 satisfies the Hard Lefschetz property if the multi-

plication map

·ℓn−2k : Ak → An−k

is an isomorphism for all k ≤ n
2
.

• the element ℓ ∈ A1 satisfies the Hodge-Riemann relations if the bilinear

form

Qk
ℓ : A

k × Ak → Q

defined by Qk
ℓ (a, b) = (−1)k deg(aℓn−2kb) (for k ≤ n

2
) is positive definite

on the subspace

Pk = ker(·ℓn−2k+1 : Ak → An−k+1).

We will abbreviate these properties with PDA, HLA(ℓ), and HRA(ℓ) respec-

tively.
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3.3.1 Poincaré duality

In this subsection we give a direct proof of the Poincaré duality property

for DP(P,G).

Definition 3.27. Suppose that 1̂ ∈ G and let xbS be a standard monomial.

The element ϵ(xbS) is

ϵ(xbS) = (−1)|S\{1̂}|xcS+ ,

where S+ = S ∪ {1̂}, c(1̂) = cd(1̂) − cd(
∨
S<1̂) − b(1̂) − 1, and c(g) =

cd(g)− cd(
∨
S<g)− b(g) for g ∈ S \ {1̂}.

We will write cS instead of c when we want to stress the dependency on

S and b.

Recall the chosen monomial order with the property that if h > g then

h ≻ g and xh ≺ xg. We fix the basis of DPk consisting in all standard

monomials xbS of degree k ordered with the aforementioned monomial order.

In complementary degree DPcd(1̂)−k, we consider the basis given by ϵ(xbS)

ordered using the monomial order on xbS. In order to prove Poincaré duality

we will show that the matrix with entries deg(xbSϵ(x
c
T )) is non-degenerate.

Lemma 3.28 proves that the matrix has values±1 on the diagonal and Lemma

3.30 shows that the matrix is upper triangular.

Lemma 3.28. If 1̂ ∈ G then for all standard monomials we have

xbSϵ(x
b
S) = x

cd(1̂)−1

1̂
.

Proof . We prove the statement by induction on |S \ {1̂}|. The base case

S = {1̂} is trivial. For the inductive step we choose g ∈ max(S<1̂) and set

T = S\{g, 1̂}. For the sake of notation, let n(h) = b(h)+cS(h) for all h ∈ S+

(where cS(h) is introduced in Definition 3.27). Notice that xTxfx
n(1̂)

1̂
= 0 for

all f ∈ (g, 1̂) ∩ G, because f ∨
∨
T > g ∨

∨
T . Since xnTσ

n(g)
g = 0 by relation
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(ii), we have

0 = xnTσ
n(g)
g x

n(1̂)

1̂

= xnT (xg + x1̂)
n(g)x

n(1̂)

1̂

= xnT (x
n(g)
g + x

n(g)

1̂
)x

n(1̂)

1̂
,

where in the last equality we used xTxgx
n(1̂)+1

1̂
= 0. Therefore,

xbSϵ(x
b
S) = (−1)|S\{1̂}|xnTxn(g)g x

n(1̂)

1̂

= (−1)|S\{1̂}|−1xnTx
n(g)

1̂
x
n(1̂)

1̂

= (−1)|T\{1̂}|xnTx
n(g)+n(1̂)

1̂

= xbT ϵ(x
b
T ) = x

cd(1̂)−1

1̂
,

by the inductive hypotheses on T .

We set dS be the function defined by dS(1̂) = cd(1̂)− cd(
∨
S<1̂)− 1 and

by dS(g) = cd(g)− cd(
∨
S<g) for g ̸= 1̂.

Lemma 3.29. Let S be a nested set, g ∈ S and xbS be a monomial such that

for all h > g we have b(h) ≥ dS(h) and b(g) > dS(h). Then x
b
S = 0.

The proof of the lemma is the same of [BDF20, Lemma 5.4.1 (b)]. Recall

the chosen monomial order with the property that if h > g then h ≻ g and

xh ≺ xg. We need the following statement.

Lemma 3.30. Let xbS and xcT be two standard monomials in DPk(P,G) such
that xbS ≺revlex xcT . Then xbSϵ(xcT ) = 0.

Proof . Consider T ′ and c′ such that xc
′

T ′ = ϵ(xcT ) and notice that T ′ \ {1̂} =
T \ {1̂}. Define g = max≺{h | b(h) ̸= c(h)} and, by hypothesis, b(g) > c(g).

If S ∪ T ′ is not G-nested then we have xbSϵ(x
c
T ) = 0. Otherwise set A = (S ∪

T ′)≥g, by (4) of Proposition 3.3 we have that A is a chain (a1 < a2 < · · · < al)

with a1 = g. For ai ̸= g, 1̂ we have

b(ai) + c′(ai) = b(ai) + cd(ai)− cd(
∨

T<ai)− c(ai) (3.5)

= cd(ai)− cd(
∨

T ′
<ai

) (3.6)

≥ cd(ai)− cd(
∨

(S ∪ T ′)<ai) = dS∪T ′(ai). (3.7)
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The same holds for 1̂ (the proof has a minus one in the mid steps). For a1

we have b(g)+ c′(g) > dS∪T ′(g) because b(g) > c(g). Therefore the monomial

xbSϵ(x
c
T ) = xb+c

′

S∪T ′ satisfies the hypothesis of Lemma 3.29 and we obtain the

claimed result xbSϵ(x
c
T ) = 0.

Finally we can prove the Poincaré duality property:

Theorem 3.31 (Poincaré duality). If 1̂ ∈ G then the algebra DP(P,G) is a

Poincaré duality algebra of dimension cd(1̂)− 1.

More generally, DP(P,G) is a Poincaré duality algebra of dimension

cd(1̂)− |F (P,G, 1̂)|.

Proof . The function ϵ has the property ϵ2 = Id, and gives a bijection be-

tween standard monomials in degree k and in degree r − k. This, together

with Corollary 3.6, ensures that dimDPk(P,G) = dimDPr−k(P,G). We con-

sider on standard monomials the reverse lexicographical order. Lemma 3.30

ensures that the matrix of the Poincaré pairing (in the chosen basis) is upper

triangular. From Lemma 3.28 we obtain that the entries on the diagonal are

±1 and so the Poincaré pairing is non degenerate. The last statement follows

from the first one together with Remark 9.

We remark that the bases of standard monomials {xbS} and {(−1)rϵ(xbS)}
are not dual bases.

3.3.2 Tensor decomposition

This technical section is devoted to computing the annihilator Ann(σg)

and Ann(xg) for g ∈ G. We describe it using the Chow ring of different

polymatroids: trg P , P
g and Pg. In the case of matroids this operation are

known as truncation, restriction, and contraction.

The following proposition is needed for the proof of the main result of

this section.

Proposition 3.32. Let A and B be Poincaré duality algebra of the same

dimension n, then:
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• for each x ∈ Ak, x ̸= 0, the ring A/Ann(x) is a Poincaré duality

algebra of dimension n− k,

• each surjective homomorphism f : A→ B is an isomorphism.

The proof of the above proposition can be found, for example, in [AHK18,

Proposition 7.2, Proposition 7.13].

Let P = (E, cd) be a polymatroid with building set G. Consider g ∈ G
such that cd(g) > 1. Let trg cd: 2

E → N be the function defined by:

trg cd(h) =

cd(h)− 1 if cd(h) = cd(h ∪ g),

cd(h) otherwise.

We denote by trg L the poset of flats of trg cd. Finally, define

trg G = {h ∈ trg L | h ∈ G},

where h is the closure with respect to trg cd of the flat h. Notice that trg L

is a subposet of L but with a different codimension function.

Lemma 3.33. For all g ∈ G with cd(g) > 1, the pair trg P = (E, trg cd) is a

polymatroid and trg G is a building set for the poset of flats trg L.

Proof . It is easy to see that (E, trg cd) is a polymatroid. Let x ∈ trg L and

notice that for all h ∈ G we have h ≤ x in L if and only if h ≤ x in trg L.

Thus, we have that max trg G≤x = maxG≤x and it follows that

[0̂, x] ≃
∏

y∈max(G≤x)

[0̂, y] ≃
∏

y∈max(trg G≤x)

[0̂, y].

For the second part of the definition of a building set we have two cases. Let

{y1, . . . , yn} = maxG≤x and assume g ≰ x, which implies g ≰ yi for every i:

trg cd(x) = cd(x) =
∑

y∈maxG≤x

cd(y) =
∑

y∈max trg G≤x

trg cd(y).

Finally, let g ≤ x then by Proposition 3.3 there exists only one hi such that

g ≤ hi. Thus, we have the following:

trg cd(x) = cd(x)− 1 =
( ∑
y∈maxG≤x

cd(y)
)
− 1 =

∑
y∈max trg G≤x

trg cd(y).

This concludes the proof.
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Define the map

ζg : DP(trg P, trg G)→ DP(P,G)/Ann(σg)

by ζg(σk) = σh where h is any element in G such that h = k.

Remark 10. In the realizable case, this construction can be viewed geometri-

cally: consider a generic hyperplane H containing the flat g. The intersection

of the subspace arrangement with H describes a subspace arrangement in

H whose poset of intersection is trg L. Moreover, the natural closed inclu-

sion between the two wonderful compactification induces a surjective map

DP(P,G)→ DP(trg P, trg G) with kernel Ann(σg). The map ζg is its pseudo-

inverse.

Lemma 3.34. For g ∈ G with cd(g) > 1, the map ζg is well defined and an

isomorphism. Moreover deg(α) = deg(−σgζg(α)) for all α ∈ DP(trg P, trg G).

Proof . We show that the map ζg does not depend on the choice of h: suppose

that exist h, f ∈ G such that h = f . By symmetry we may assume h ̸≥ f .

Since g ∨ h = h = f = g ∨ f , we have h ∈ G, so replacing f with g ∨ f we

assume f > h. Notice that cd(f) = cd(h) + 1 and f = g ∨ h so

σg(σh − σf ) = σf (σh − σf ) = 0.

We verify that the relations (i) and (ii) of Theorem 3.7 are send to zero.

Consider an antichain A ⊂ trg G and k ∈ trg G such that k ≥
∨
A, set

n = trg cd(k)− trg cd(
∨
A). Let h ∈ G such that h = k and B ⊂ G such that

bi = ai for all i. We have

σgζg

(
σnk

∏
a∈A

(σa − σk)
)
= σgσ

n
h

∏
b∈B

(σb − σh).

Notice that cd(h) − cd(
∨
B) = n unless h ≥ g and

∨
B ̸≥ g which is

cd(h)− cd(
∨
B) = n+1. The non trivial case is the latter. Notice also that
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h = g ∨
∨
B. We use the relations to obtain:

σgζg

(
σnk

∏
a∈A

(σa − σk)
)
= σgσ

n
h

∏
b∈B

(σb − σh)

= σn+1
h

∏
b∈B

(σb − σh)

= 0.

We have proven that ζg is well defined.

The map is surjective because for each h ∈ G we have ζg(σh) = σh. Finally

applying Proposition 3.32 we obtain the sought isomorphism.

For the last statement it is enough to notice that σgζg(x
r−1

1̂
) = xr

1̂
.

Let P = (E, cd) be a polymatroid, G be a building set and g ∈ G any

element. The restriction of the polymatroid to the flat g is P g = (Eg, cdg)

where Eg = {h ∈ E | h ≤ g}. The contraction of P = (E, cd) to the flat g is

Pg = (Eg, cdg) where Eg = E \ Eg and cdg(h) = cd(h ∨ g)− cd(g).

Define Lg = [0̂, g], Gg = G ∩ Lg, Lg = [g, 1̂], and

Gg = {h ∨ g | h ∈ G \ [0̂, g]}.

The proof of the following lemma is analogous to the one of Lemma 3.33,

so we omit it.

Lemma 3.35. The restriction and the contraction at g ∈ G are polymatroids

with poset of flats Lg (respectively Lg) and building set Gg (resp. Gg).

Remark 11. In the case of matroids M , we have for every e ∈ E that Me =

treM is the contraction of the matroid.

Define the map

ψg : DP(P g,Gg)⊗DP(Pg,Gg)→ DP(P,G)⧸Ann(xg)

by ψg(σh ⊗ 1) = σh and ψg(1⊗ σg∨h) = σh.

Lemma 3.36. For all g ∈ G \{1̂} the map ψg is well defined and an isomor-

phism. Moreover deg(α) deg(β) = deg(xgψg(α ⊗ β)) for all α ∈ DP(P g,Gg)
and β ∈ DP(Pg,Gg).



3.3 Kähler package 99

Proof . We verify that ψg(1 ⊗ σg∨h) does not depend on the choice of the

element h. Suppose that there exist h, f ∈ G such that g ∨ h = g ∨ f and

h, f ̸≤ g. By symmetry we may assume h ̸≥ f . Replacing f with g ∨ f we

assume f > h, then

xg(σh − σf ) = xg
∑
l≥h
l ̸≥g

xl = 0,

because {g, l} cannot be G-nested since g < f ≤ g ∨ l and l ̸≥ g.

We verify that all relations in the domain are mapped to zero. The

ones in DP(P g,Gg) hold also in DP(P,G) trivially. Consider h ∈ G and

S ⊂ G an antichain such that
∨
S ≤ h and s ̸≤ g for all s ∈ S. Set

n = cd(g ∨ h)− cd(g ∨
∨
S). There are two cases:

• if g ∨ h ̸∈ G then n = cd(h)− cd(
∨
S) and

xgψg

(
1⊗ σng∨h

∏
a∈S

(σg∨s − σg∨h)
)
= xgσ

n
h

∏
a∈S

(σs − σh) = 0,

• if g ∨ h ∈ G then

xgψg

(
1⊗ σng∨h

∏
s∈S

(σg∨s − σg∨h)
)
= xgσ

n
g∨h

∏
s∈S

(σs − σg∨h)

=
∑
A

xgxAσ
n
g∨h,

where the sum is taken over all sets A = {a1, . . . ak} such that ai ≥ si

and ai ̸≥ g ∨ h. Applying Lemma 3.8 to g ∨ h, S ∪ {g} and A∪ {g} we
obtain that each term xgxAσ

n
g∨h is zero.

The map ψg is surjective because either h ∈ Gg or g∨h ∈ Gg for all h ∈ G.
We apply Proposition 3.32, DP(L,G)/Ann(xg) is a Poincaré duality algebra

of dimension cd(1̂) − 2. The algebra DP(P g,Gg) ⊗ DP(Pg,Gg) is Poincaré

duality of dimension (cd(g)− 1)+ (cd(1̂)− cd(g)− 1) (here is the only point

were we use g ̸= 1̂). Since ψg is surjective between Poincaré duality algebras

of the same dimension, it is an isomorphism.
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For the last statement we have

xgψg(x
cd(g)−1
g ⊗ xcd(1̂)−cd(g)−1

1̂
) = xgσ

cd(g)−1
g x

cd(1̂)−cd(g)−1

1̂

= (xg − σg)σcd(g)−1
g x

cd(1̂)−cd(g)−1

1̂

= −x1̂σcd(g)−1
g x

cd(1̂)−cd(g)−1

1̂

= −xcd(1̂)−1

1̂
,

so deg(x
cd(g)−1
g ) deg(x

cd(1̂)−cd(g)−1

1̂
) = (−1)cd(1̂) = deg(−xcd(1̂)−1

1̂
).

3.3.3 Hard Lefschetz and Hodge-Riemann

We define a simplicial cone Σ ⊂ DP1(P,G) and we will show that each

element ℓ ∈ Σ satisfies Hard Lefschetz and Hodge-Riemann relations.

Definition 3.37. The σ-cone ΣP,G ⊂ DP1(P,G) is the convex cone

ΣP,G =
{
−
∑
g∈G

dgσg | dg > 0
}
.

Let a ∈ E be an atom in L, i.e. the interval (0̂, a) is empty. Consider the

set

{g ∈ G \ {a} | g ̸= S for all S ⊆ E \ {a}}, (3.8)

of all elements g ∈ G that cannot be written as the closure of some subset

S ⊂ E not containing a. Define E(a) as the disjoint union of E \ {a} and
the minimal elements of the set in (3.8). Define the pair P (a) = (E(a), cd),

where with a slight abuse of notation

cd({e1, . . . , el, g1, . . . , gk}) = cd({e1, . . . , el} ∪ g1 ∪ · · · ∪ gk}).

We also define G(a) = G \ {a}. The polymatroid P (a) depends on G but we

omit this dependency in our notation.

In the realizable case, this polymatroidal operation corresponds to remov-

ing only the subspace Sa from the building set G and from the arrangement

A. Now, there are subspaces in the lattice of flats LA that are not flats of
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A \ Sa. Among them we want to keep trace only of the ones blown up, i.e.

belonging to G; so we add to the deleted arrangement A \ Sa all the flats

corresponding to elements in the set (3.8).

Lemma 3.38. The pair P (a) = (E(a), cd) is a polymatroid and G(a) is a

building set for the poset of flats of P (a).

Proof . It is easy to see that (E(a), cd) is a polymatroid and that the lattice

of flats LP (a) of P (a) is a subposet of the lattice of flats L of P . We verify

that G(a) is a building set. We check the definition for all x ∈ LP (a): if a is

not a G-factor of x then max(G≤x) = max(G(a)≤x) and it follows from the

properties of G. Otherwise, a is a G-factor of x and x cannot lie in the lattice

LP (a) generated by G \ {a}.

Lemma 3.39. For an atom a ∈ E, a ̸= 1̂, consider the element µ0 =

(xa − σa)cd(a). There exists an isomorphism:

pa : DP(Pa,Ga)→ DP(P (a),G(a))⧸Ann(µ0)
.

Moreover deg(α) = deg(µ0pa(α)) for all α ∈ DP(Pa,Ga).

Proof . Notice that µ0 = (xa− σa)cd(a) is a multiple of xa because σ
cd(a)
a = 0,

hence Ann(xa) ⊆ Ann(µ0). Define the morphism pa as the composition

DP(Pa,Ga) ↪→ DP(P a,Ga)⊗DP(Pa,Ga)
ψa−→ DP(P,G)/Ann(xa) ↠ DP(P,G)/Ann(µ0),

where the first map is the inclusion x 7→ 1 ⊗ x. Explicitly pa(σa∨h) = [σh]

for all h ̸= a. Since G(a) is a subset of G, DP(P (a),G(a)) is a subalgebra of

DP(P,G). The range of the map pa is equal to DP(P (a),G(a))/Ann(µ0), so

the morphism in the statement is well defined and surjective. Since a ̸= 1̂ we

have µ0 ̸= 0 and by Proposition 3.32 the map pa is an isomorphism, because

both algebras satisfy Poincaré duality of dimension cd(1̂)− cd(a)− 1.

For the last statement we have µ0pa(x
cd(1̂)−cd(a)−1

1̂
) = (−1)cd(a)xcd(1̂)−1

1̂
and

so deg(x
cd(1̂)−cd(a)−1

1̂
) = (−1)cd(1̂)−cd(a)−1 = deg((−1)cd(a)xcd(1̂)−1

1̂
).
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Lemma 3.40. Let a ∈ E, a ̸= 1̂, be an atom and µ0 = (xa − σa)
cd(a).

Consider the polynomial p(x) =
∑cd(a)

i=0

(
cd(a)
i

)
xi(xa − σa)cd(a)−i, then

DP(P (a),G(a))[x]⧸(xAnn(µ0), p(x))
∼= DP(P,G).

Proof . Define the morphism

DP(P (a),G(a))[x]→ DP(P,G)

by σg 7→ σg and x 7→ −xa. By Lemmas 3.39 and 3.36 the elements of the

form xAnn(µ0) are in the kernel. Also p(x) is in the kernel because its image

is (−σa)cd(a) = 0. Clearly, the map is surjective.

Notice that if A is a Poincaré duality algebra and p(x) ∈ A[x] a monic

polynomial with constant term µ0 then A[x]/(xAnn(µ0), p(x)) is a Poincaré

duality algebra. Indeed, if a generic element
∑j

i=0 aix
i (with aj ̸∈ Ann(µ0)

and j < deg(p)) of degree k is orthogonal to all elements of degree n − k,

then (
∑j

i=0 aix
i)a′ = 0 for all a′ ∈ An−k. This implies a0a

′ = 0 and a0 = 0.

Moreover, (
∑j

i=1 aix
i)a′xdeg(p)−j = 0 implies aja

′µ0 = 0 and ajµ0 = 0 by

Poincaré duality in A, contradicting the fact aj ̸∈ Ann(µ0). In particular,

DP(P (a),G(a))[x]/(xAnn(µ0), p(x)) is a Poincaré duality algebra of dimen-

sion cd(1̂)− 1.

The map DP(P (a),G(a))[x]→ DP(P,G) is injective by Proposition 3.32

because domain and codomain are Poincaré duality algebras of the same

dimension equal to cd(1̂)− 1.

The following theorem provides an abstract procedure to prove the Hodge-

Riemann relations inductively.

Theorem 3.41. Let C be a Poincaré duality algebra and p(x) = xd +

µd−1x
d−1+ · · ·+µ0 = 0 ∈ C[x] be a homogeneous polynomial with µ0 ̸= 0. Let

B = C/Ann(µ0) and A = C[x]/(xAnn(µ0), p(x)). Let ℓ ∈ C1 be an element

satisfying HRC(ℓ) and HRB(ℓ). Then HRA(ℓ+ϵx) holds for sufficiently small

positive ϵ.
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In the above theorem the degree function on B is induced by µ0, i.e.

degB(α) = degC(αµ0). Since the top degrees coincides Atop = Ctop, we also

implicitly assume that degA = degC .

The proof of Theorem 3.41 is the same of the proof of [AHK18, Proposi-

tion 8.2], so we omit it.

The following easy lemma shows that the maps introduced in Subsection

3.3.2 preserve the Σ-cone.

Lemma 3.42. The following holds:

1. For all g ∈ G, g ̸= 1̂ the natural map

DP1(P,G)→ DP1(P g,Gg)⊕DP1(Pg,Gg)

induced by the quotient by Ann(xg) composed with ψ−1
g , maps ΣP,G into

ΣP g ,Gg × ΣPg ,Gg .

2. For all g ∈ G the morphism

DP1(P,G)→ DP1(trg P, trg G)

induced by the quotient by Ann(σg) composed with ζ−1
g , maps ΣP,G into

Σtrg P,trg G.

3. For an atom a ∈ E, a ̸= 1̂ the natural map

DP1(P (a),G(a))→ DP1(Pa,Ga)

induced by the quotient by Ann(µ0) composed with p−1
a , maps ΣP (a),G(a)

into ΣPa,Ga.

Proof .

1. Let l = −
∑

h∈G dhσh be an element of the σ-cone, we have that

ψ−1
g ([l]) = −

∑
h≤g

dhσh ⊗ 1−
∑
h≰g

dh ⊗ σg∨h.

It may occur that there are two different h, h′ ∈ G such that g∨h = g∨h′

but, also in this case, the coefficient of 1⊗σg∨h is still negative. It follows
that ψ−1

g ([l]) ∈ ΣP g ,Gg × ΣPg ,Gg .
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2. Let l = −
∑

h∈G dhσh be an element of the σ-cone, we have that

ζ−1
g ([l]) = −

∑
h∈G

dhσh̄.

It may occur that there are two different h, h′ ∈ G such that h̄ = h̄′

but, also in this case, the coefficient of σh̄ is still negative. Thus,

ζ−1
g ([l]) ∈ Σtrg P,trg G.

3. Let l = −
∑

h∈G dhσh be an element of the σ-cone, we have that

p−1
a ([l]) = −

∑
h∈G

dhσa∨h.

It may occur that there are two different h, h′ ∈ G such that a∨h = a∨h′

but, also in this case, the coefficient of σa∨h is still negative. It follows

that p−1
a ([l]) ∈ ΣPa,Ga .

Now we are ready to prove the main theorem.

Theorem 3.43. For every element ℓ in the σ-cone ΣP,G the conditions

HLDP(P,G)(ℓ) and HRDP(P,G)(ℓ) hold.

Proof . We prove the statement by induction on |G| and cd(1̂). The base case

is |G| = 1, so DP(P,G) = Q[x1̂]/(x
cd(1̂)

1̂
). In this case, it is known that −λx1̂

satisfies Hard Lefschetz and Hodge-Riemann for all positive λ.

For the inductive step consider a polymatroid P , a building set G, and an

element ℓ ∈ ΣP,G. Under the morphisms of Lemma 3.42 Item 2 ℓ is mapped

in Σtrg P,trg G for all g ∈ G. Therefore by the inductive hypothesis the image

of ℓ in DP(P,G)/Ann(σg) satisfies Hodge-Riemann relations for all g ∈ G.
Notice also that ℓ is a sum of −σg with positive coefficients. By [AHK18,

Proposition 7.15], HLDP(P,G)(ℓ) holds.

We want to prove that the Hodge-Riemann relations hold for all ℓ ∈ ΣP,G.

By [AHK18, Proposition 7.16] it is enough to prove HRDP(P,G)(ℓ) for some

ℓ ∈ ΣP,G. We want to apply Theorem 3.41: consider any atom a ∈ E, since
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|G| > 1 then a ̸= 1̂. Set C = DP(P (a),G(a)) and p(x) =
∑cd(a)

i=0

(
cd(a)
i

)
xi(xa−

σa)
cd(a)−i; Lemma 3.39 ensures that B = DP(Pa,Ga) and Lemma 3.40 that

A = DP(P,G). Let ℓ ∈ ΣP (a),G(a), then under the morphism C → B (Lemma

3.42 Item 3) the class ℓ is mapped in ΣPa,Ga . By the inductive hypothe-

sis we have HRDP(P (a),G(a))(ℓ) and HRDP(Pa,Ga)(ℓ), hence by Theorem 3.41

HRDP(P,G)(ℓ− ϵxa) holds for sufficiently small ϵ > 0.

Moreover if ϵ is small enough then ℓ− ϵxa belongs to ΣP,G. Indeed using

the Möbius inversion formula we have

xa =
∑
g≥a

µG(a, g)σg

(where we consider G as a sub-poset of L). Let ℓ = −
∑

g∈G dgσg, taking ϵ

smaller than

min
g≥a

{∣∣∣ dg
µG(a, g)

∣∣∣} ,
then ℓ− ϵxa ∈ ΣP,G. This concludes the proof.

Remark 12. The ample cone depends on the geometric realization, however

our σ-cone is contained in the ample cone of every realization. Indeed, con-

sider 3 distinct lines in C3 and let P be the polymatroid realized by this

subspace arrangement. The projective wonderful model is the blowup of P2

in 3 distinct points; there are two cases. If the three points are collinear

the ample cone coincides with the σ-cone. Otherwise the three points are in

general position and the ample cone is

{−d1̂x1̂ − daxa − dbxb − dcxc | d1̂ > da + db, d1̂ > da + dc, d1̂ > db + dc}

which strictly contains the σ-cone.

Remark 13. If we restrict to the case of matroids with arbitrary building sets,

the generator x1̂ can be eliminated using the relation x1̂ = −
∑

g≥e, g ̸=1̂ xg for

any e ∈ E. Thus the Hard Lefschetz theorem (and so the Hodge-Riemann

relations) can be proven for the entire ample cone using as generators {xg}g ̸=1̂

instead of {σg}g∈G and Lemma 3.36 instead of Lemma 3.34.
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Remark 14. In [CHL+22] Crowley, Huh, Larson, Simpson and Wang intro-

duce the Bergman fan ΣP,G of a polymatroid P , a combinatorial model for

the wonderful compactification of a subspace arrangement, and they prove

that the Chow ring of the Bergman fan A(ΣP,G) is isomorphic to the Chow

ring of the polymatroid DP(P,G) (See [CHL+22, Theorem 4.2]). Let P be a

polymatroid and let ΣP,G be the relative Bergman fan, in this work the au-

thors show that there is a matroid M such that its Bergman fan ΣM has the

same support as ΣP,G. The Kähler package for A(ΣP,G), with respect to the

cone of strictly convex piecewise linear function on ΣP,G, follows applying the

results of [AHK18] to the matroidM and the general fact that the validity of

the Kähler package for the Chow ring of a fan depends only on the support

of the fan [ADH20]. In this way, they not only recover our result relative to

the Chow ring of a polymatroid but they also managed to extend our σ-cone;

in fact our σ-cone is always contained in the cone of strictly convex piecewise

linear function on ΣP,G (See [CHL+22, Remark 4.8]).

3.4 The relative Lefschetz decomposition

In this section we provide a decomposition of DP(P,G) as DP(P \a,G\a)-
module. This is analogous to the semi-small decomposition of [BHM+20a],

but in this more general setting the corresponding map is not always semi-

small.

Indeed, consider an arrangement of hyperplanes A and the deleted ar-

rangement A′ = A \ {H} for some hyperplane H ∈ A. There is a projec-

tion map between the wonderful models YA → YA′ (constructed using the

maximal building sets). This map is semi-small and induces the semi-small

decomposition of the Chow ring.

In the case of subspace arrangements, the projection between the won-

derful models exists but is not semi-small, because the dimension of the fiber

of the blow up is too big. Therefore, the proof of the Kähler package done

in [BHM+20a] for matroids cannot be adapted to polymatroids.
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Recall that for a polymatroid P = (E, cd) an atom a ∈ E is an element

such that the interval (0̂, a) ⊂ L is empty (where a is the closure of a).

Definition 3.44. For an atom a define the polymatroid P \a on the ground

set E \ {a} with the restricted codimension function cd. The building set

G \ a is the intersection of G with the poset of flats of P \ a.

Define a map

θa : DP(P \ a,G \ a)→ DP(P,G)

by θa(σh) = σh where h is the closure of h in P . Define the subalgebra

DP(a) = Im(θa).

Lemma 3.45. The map θa is injective.

Proof . Consider a standard monomial σbS ∈ DP(P \a,G \a) and let S = {h |
h ∈ S}. We have θa(σ

b
S) = σb

S
and it is enough to prove that σb

S
is a standard

monomial. Notice that h ∨ g = h ∨ g and the map between the two poset of

flats is an inclusion. Therefore S is G-nested. Since cd(h) = cd(h), then σb
S

is a standard monomial.

Let Sa = {g ∈ G | a ∈ g and g \ {a} ∈ L} be the set of all flats such that

a is a coloop for that flat.

Remark 15. Notice that θa(xg) = xg + xg∪{a}, where we use the convention

that xh = 0 if h is not a flat of P . Moreover DP(a) is generated as an algebra

by σg with g /∈ Sa and as vector space by the monomials σbS with S ∩Sa = ∅.

For f ∈ Sa define DPf as the DP(a)-submodule of DP(P,G) generated by

xf , x
2
f , . . . x

nf

f , where

nf = cd(f)− cd(f \ {a})− 1 + |F (P,G, f \ {a})|.

For a graded moduleM = ⊕iM i we defineM [k] to be the graded module

such that (M [k])i =M i+k.
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Theorem 3.46. Let a be an atom, then:

xkf DP(a)[−k] ∼= DP((P \ a)f\a, (G \ a)f\a)⊗DP(Pf ,Gf ), (3.9)

DPf =

nf⊕
k=1

xkf DP(a), (3.10)

DP(P,G) = DP(a)⊕
⊕
f∈Sa

DPf . (3.11)

as DP(a)-modules. Moreover, the last decomposition is orthogonal with respect

to the Poincaré pairing, with the exception of the summands DP(a) and DP1̂

(if a is a coloop).

Before the proof of the above theorem we need some lemmas.

Lemma 3.47. For all f ∈ Sa and k ≤ nf we have

xfσ
k−1
f DP(a)[−k] ∼= DP((P \ a)f\a, (G \ a)f\a)⊗DP(Pf ,Gf ), (3.12)

and these modules are in direct sum in DP(P,G).

Proof . Notice that, for k ≤ nf we have

DP((trk−1
f (P f )) \ a, (trk−1

f (Gf )) \ a) = DP((P \ a)f\a, (G \ a)f\a).

Using Lemma 3.36 and Lemma 3.34 we obtain the isomorphism

xfσ
k−1
f DP(P,G)[−k] ≃ DP(trk−1

f (P f ), trk−1
f (Gf ))⊗DP(Pf ,Gf ).

It is easy to check that the above isomorphism restricts to the one in eq.

(3.12). For the second claim suppose that there exists a linear combination

nf∑
k=l

σk−1
f pk = 0,

for some pk ∈ DP((P \ a)f\a, (G \ a)f\a) with pl ̸= 0. The above equality

implies
nf∑
k=l

σk−lf pk = 0
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in DP(trl−1
f P f , trl−1

f Gf ). Therefore pl belongs to the ideal generated by σf

(where f is the top element in the poset of flats of trl−1
f P f ). The ideal

(σf ) is linearly generated by all monomials σbT with f ∈ T . This yields

a contradiction since pl lies in DP((P \ a)f\a, (G \ a)f\a), which does not

contain the generator σf .

Lemma 3.48. For all elements f, g ∈ Sa such that f ̸≥ g we have xfσg =

xfσg\{a}. Moreover, we have

DPf =

nf⊕
k=1

xfσ
k−1
f DP(a) .

Proof . Consider h ∈ G such that h ≥ g\{a} and h ̸≥ g, we need to prove that

xfxh = 0. Notice that {f, h} is an antichain, f ∨g ∈ G and so (f ∨g)∨h ∈ G
because g \ {a} ≠ 0̂. Therefore

f ∨ h = (f ∨ a) ∨ ((g \ {a}) ∨ h) = f ∨ g ∨ h ∈ G,

and {f, h} is not G-nested that implies xfxh = 0.

For the second statement it is sufficient to prove that xfσ
k−1
f = xkf + z

with some z ∈
∑k−1

j=1 x
j
f DP(a). We write σf = xf +

∑
g>f bgσg for some

coefficients bg ∈ Z. Therefore,

xfσf = x2f + xf
∑
g>f
g/∈Sa

bgσg + xf
∑
g>f
g∈Sa

bgσg\{a},

and all the summand (except x2f ) belongs to xf DP(a). An inductive argument

on the exponent k concludes the proof.

Lemma 3.49. The submodules DP(a) and DPf for all f ∈ Sa generate

DP(P,G).

Proof . We prove that each monomial σbS belongs to the submodule M :=

DP(a)+
∑

F∈Sa
DPF by complete induction on f = min(S ∩Sa) and on b(f).

The base case is S ∩ Sa = ∅ and so σbS ∈ DP(a). For the inductive step

notice that S ∩ Sa is G-nested, so it is a chain. Call f = min(S ∩ Sa) and
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suppose that all monomials σb
′
S with b′(f) < b(f) and all monomials σb

′

S′ with

min(S ′ ∩ Sa) > f lie in M .

Let {g1, . . . , gl} = F (P,G, f \ {a}) be the set of G-factors of f \ {a}. We

have the relation

σ
cd(f)−cd(f\{a})
f

k∏
i=1

(σgi − σf ) = 0,

so in the case b(f) > nf we can rewrite σ
b(f)
f σT\{f} as sum of monomials with

b′(f) < b(f) using the above relation and the fact that gi ̸∈ Sa.
In the case b(f) ≤ nf we have

σbS = xfσ
b(f)−1
f σbS\{f} + (σf − xf )σb(f)−1

f σbS\{f}.

Using the first assertion of Lemma 3.48, it follows that the element

xfσ
b(f)−1
f σbS\{f} belongs to xfσ

b(f)−1
f DP(a) ⊂ M . The second summand

(σf − xf )σb(f)−1
f σbS\{f} is a linear combination of monomials σhσ

b(f)−1
f σbS\{f}

with h > f and so belongs to M by the inductive hypothesis.

Proof of Theorem 3.46. As in Remark 9, we may assume that 1̂ ∈ G. By

Lemma 3.48 and Lemma 3.47, DPf is a free DP((P \ a)f\a, (G \ a)f\a) ⊗
DP(Pf ,Gf )-module with basis xfσ

k−1
f for k = 1, . . . , nf . The elements {xkf}k

written in the basis {xfσk−1
f }k for an upper triangular matrix with ones on

the diagonal (the inverse of the one given in Lemma 3.48). Eq. (3.9) and eq.

(3.10) follow.

In order to prove eq. (3.11) we first prove the orthogonality. Let f ̸= 1̂;

the elements DPf and DP(a) are orthogonal because the product is contained

in DPf which is zero in degree cd(1̂)−1. Indeed from eq. (3.9) and eq. (3.10),

it follows that the top degree of DPf is cd(1̂)− 2.

Consider generic elements xbfy ∈ DPf and xcgz ∈ DPg in complementary

degrees (with y, z ∈ DP(a)). The product is zero if f and g are incomparable.

Otherwise, by symmetry we may assume g > f , hence

xfx
c
g = xf (xg + xg\{a})

c.

Since xg + xg\{a} ∈ DP(a), we obtain that the product lie in DPf . Again the

top degree is zero since f ̸= 1̂.
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We prove that if a is a coloop then DP(a) ∩DP1̂ = 0. In that case DP1̂

is the ideal generated by σ1̂. This ideal is linearly generated by all standard

monomials σbS with 1̂ ∈ S. Since 1̂ ∈ Sa then DP(a) ∩DP1̂ = 0. The di-

rect sum of eq. (3.11) follows from the orthogonality of all other summands

together with Lemma 3.49 and Theorem 3.31.

3.5 Characteristic polynomial

In this section we study the coefficients of the (reduced) characteristic

polynomial.

We consider only maximal building sets, so we omit the building set from

the notations. Moreover we suppose that the polymatroid is without loops,

i.e. cd({e}) > 0 for all e ∈ E.
Let α = αP = −x1̂ and β = βP =

∑
g∈Gmax

xg be two elements in DP1(P ).

We denote by µL(a, b) the Möbius function of L.

Lemma 3.50. For any polymatroid P with cd(E) > 0 and r = cd(E) − 1

we have

deg(βrP ) = (−1)r +
∑

g∈L\{0̂,1̂}

(−1)cd(g)−1 deg(β
r−cd(g)
Pg

).

Proof . A flag with repetition is F = (F a1
1 ⊊ F a2

2 ⊊ · · · ⊊ F al
l ) where ai > 0

are the multiplicity of the flats Fi ∈ L. We also require that
∑l

i=1 ai = r.

Define xF =
∏|F|

i=1 x
ai
Fi
, we will prove that xF = 0 if cd(F1) > a1. More

generally we have xF = 0 if cd(Fi) >
∑i

j=1 aj for some i, but we prove and

use the implication only for i = 1. From the isomorphism ψg of Lemma 3.36

we obtain

xF = xF1ψF1((xF1 ⊗ 1− 1⊗ βPg)
a1−1(1⊗ xF ′)),

where F ′ = (F a2
2 ⊊ · · · ⊊ F al

l ). Notice that the degree of xF ′ is r− a1, which
is greater than r − cd(F1), the top degree of DP(Pg).



112 3. Hodge theory for polymatroids

Let
(
r
a

)
be the multinomial coefficient where a = (a1, . . . , al) and

∑l
i=1 ai =

r. Since xfxg = 0 if f and g are incomparable, we have

βrP =
∑

F flag of P

(
r

a

)
xF

=
∑

F∈L\{0̂}

∑
F flag of P
F1=F

(
r

a

)
xF

=
∑

F∈L\{0̂}

r∑
k=cd(F )

(
r

k

)
xkF

∑
F ′ flag of PF

(
r − k
a′

)
xF ′

=
∑

F∈L\{0̂}

r∑
k=cd(F )

(
r

k

)
xkFβ

r−k
PF

.

The summand relative to F = 1̂ is exactly xr
1̂
and contributes (−1)r to

deg(βrP ). It is enough to prove that for every g ∈ L \ {0̂, 1̂}

deg
( r∑
k=cd(g)

(
r

k

)
xkgβ

r−k
Pg

)
= deg(β

r−cd(g)
Pg

).

We use Lemma 3.36 to obtain:

deg
( r∑
k=cd(g)

(
r

k

)
xkgβ

r−k
Pg

)
=

=
r∑

k=cd(g)

(
r

k

)
deg((xg ⊗ 1− 1⊗ βPg)

k−1(1⊗ βr−kPg
))

=
r∑

k=cd(g)

(−1)k−cd(g)

(
r

k

)(
k − 1

cd(g)− 1

)
deg(xcd(g)−1

g ⊗ βr−cd(g)
Pg

)

=
r∑

k=cd(g)

(−1)k−1

(
r

k

)(
k − 1

cd(g)− 1

)
deg(β

r−cd(g)
Pg

)

= (−1)cd(g)−1 deg(β
r−cd(g)
Pg

),

where in the last equality we used the identity

r∑
k=cd(g)

(−1)k
(
r

k

)(
k − 1

cd(g)− 1

)
= (−1)cd(g)
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which follows from [GKP94, eq. 5.24] with l = r, m = 0, n = cd(g)− 1, and

s = −1.

Lemma 3.51. For every polymatroid P with poset of flats L and r = cd(E)−
1 with cd(E) > 0 we have

deg(βrP ) = (−1)cd(E)µL(0̂, 1̂).

Proof . It is known that µL(0̂, 1̂) = χ̃(∆(0̂, 1̂)), i.e. the Möbius function coin-

cides with the reduced Euler characteristic of the order complex of the poset

L \ {0̂, 1̂} (e.g. see [Rot64b]). Let Lop be the opposite (dual) lattice of L

which is defined on the same set of L but with reversed order, i.e., x ≤ y in

Lop if and only if y ≤ x in L. Since the order complexes of L and Lop are

the same simplicial complex, we have

µL(0̂, 1̂) = µLop(0̂, 1̂).

Define deg(β0
P ) = 1 for rank zero polymatroids P . Therefore, the functions

(−1)cd(E) deg(βrP ) and µLop(0̂, 1̂) satisfy the same recurrence relation. One is

given by the definition of µLop(0̂, 1̂) and the other from Lemma 3.50. This

concludes the proof.

Notice that if L is a geometric lattice (i.e. the poset of flats of a matroid),

then the Möbius function has alternating sign, hence in this case deg(βr) ∈
N0.

Definition 3.52. The characteristic polynomial of a polymatroid P is

χP (λ) =
∑
g∈L

µL(0̂, g)λ
dim(g),

where dim(g) = cd(1̂)− cd(g). Since χP (1) = 0 by the definition of Möbius

function, we define the reduced characteristic polynomial as

χP (λ) =
χP (λ)

λ− 1

This definition of reduced characteristic polynomial coincides with the

one stated in [Whi93].
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Theorem 3.53. For every polymatroid P , we define r = cd(E) − 1. We

have

χP (λ) =
r∑
i=0

(−1)i degP (αiPβr−iP )λi.

Proof . We show that χP (λ) and the right hand side satisfy the same recur-

rence:

qP (λ)− λqtr1̂ P (λ) = −µL(0̂, 1̂)

where L is the poset of flats of P .

Let tr1̂ L be the poset of flats of tr1̂ P and notice that µL(0̂, g) = µtr1̂ L
(0̂, g)

for all g such that dim(g) > 1. Therefore χP (λ)− λχtrP (λ) is a polynomial

of degree one divisible by λ − 1. Hence χP (λ) − λχtrP (λ) is constant and

equal to χP (0) = −µL(0̂, 1̂). This proves that χP (λ) satisfies the recurrence.

Now observe that for i > 0 degP (α
i
Pβ

r−i
P ) = degtrP (α

i−1
trPβ

r−i
trP ) by Lemma

3.34. This proves that

r∑
i=0

(−1)i degP (αiPβr−iP )λi − λ
r−1∑
i=0

(−1)i degtrP (αi−1
trPβ

r−i
trP )λ

i =

= (−1)r degP (βr),

and so Lemma 3.51 proves the recurrence.

The base case cd(E) = 1 is trivial, so the proof follows.

Corollary 3.54. The coefficient of λi of the reduced characteristic polyno-

mial χP (λ) is (up to the sign) the reduced Euler characteristic of the order

complex of the poset (tri
1̂
L) \ {0̂, 1̂}:

[λi]χP (λ) = (−1)cd(E)χ̃(∆((tri
1̂
L) \ {0̂, 1̂})).

Proof . It follows from Theorem 3.53 and Lemma 3.51.

Remark 16. The coefficients of the characteristic polynomial χP and of the

reduced characteristic polynomial χP do not form a log-concave sequence.

Indeed if P1 is the polymatroid associated to 4 subspaces of codimension

2, 3, 4, 4 in C5 in general position, then

χP1(λ) = λ5 − λ3 − λ2 − 2λ+ 3,
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1̂

0̂

a b

c
ab

2

2 2

2

1

4

1

Figure 3.1: The Hasse diagram of the poset of flats L of Section 3.6

which is not log-concave. Let P2 be the polymatroid on E = {a, b, c, d, e}
with rank defined by cd(a) = 2, cd(b) = 3, cd(c) = 4, cd(d) = 4, cd(e) = 1,

by cd(A) = 6 if |A| ≥ 3 and cd({x, y}) = min{5, cd(x)+cd(y)}. The reduced
characteristic polynomial is not log-concave because

χP2
(λ) = λ5 − λ3 − λ2 − 2λ+ 6.

3.6 An example

Let E = {a, b, c} and cd: 2E → N the function defined by

cd(a) = cd(b) = 2, cd(ab) = cd(c) = 4,

cd(ac) = cd(bc) = cd(abc) = 5.

This function defines a polymatroid P with poset of flats L shown in Figure

3.1. Near every cover relation, the relative codimension of the two flats is

shown. This polymatroid is realizable: a realization is the collection in C5 of

two subspace of dimension 3 and a line in general position.

Consider the (minimal) building set G = {a, b, c, 1̂}; the nested set com-

plex n(P,G) is shown in Figure 3.2.

The algebra B(P,G) is generated by xa, xb, xc, x1̂, ea, eb, ec, e1̂ with rela-
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1̂

a

b

c

Figure 3.2: The nested set complex n(P,G).

2 1 2 1

1 3 7 7 3

0 1 4 5 4 1

0 1 2 3 4

Table 3.1: The dimensions of B2p,q(P,G)/(e1) in position (p, q).

tions:

eaec = ebec = 0 xaxc = xbxc = 0

xaec = xbec = 0 eaxc = ebxc = 0

(xa + x1̂)
2 = (xb + x1̂)

2 = 0 (xc + x1̂)
4 = 0

x5
1̂
= 0 xcx1̂ = ecx1̂ = 0

xax
3
1̂
= eax

3
1̂
= 0 xbx

3
1̂
= ebx

3
1̂
= 0

xaxbx1̂ = eaxbx1̂ = 0 eaebx1̂ = xaebx1̂ = 0

The homogeneous component B4,1(P,G) has dimension 12 and the additive

basis provided by Corollary 3.6 is:

e1̂xaxb, e1̂xax1̂, e1̂xbx1̂, e1̂x
2
c , e1̂x

2
1̂
,

eaxaxb, eaxax1̂, eax
2
1̂
, ebxaxb, ebxax1̂, ebx

2
1̂
, ecx

2
c .

Notice that B(P,G) = B(P,G)/(e1̂) ⊗ ⟨1, e1̂⟩ and their dimensions are

reported in Tables 3.1 and 3.2.

The other presentation of B(P,G) is given by generators σa, σb, σc, σ1̂,
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3 1 2 1

2 4 9 8 3

1 4 11 12 7 1

0 1 4 5 4 1

0 1 2 3 4

Table 3.2: The dimensions of B2p,q(P,G) in position (p, q).

τa, τb, τc, τ1̂ and relations:

(τa − τ1̂)(τc − τ1̂) = 0 (τb − τ1̂)(τc − τ1̂) = 0 σ4
c = 0

(σa − σ1̂)(σc − σ1̂) = 0 (σb − σ1̂)(σc − σ1̂) = 0 σ2
a = 0

(σa − σ1̂)(τc − τ1̂) = 0 (σb − σ1̂)(τc − τ1̂) = 0 σ2
b = 0

(τa − τ1̂)(σc − σ1̂) = 0 (τb − τ1̂)(σc − σ1̂) = 0 σ5
1̂
= 0

(σc − σ1̂)σ1̂ = 0 (τc − τ1̂)σ1̂ = 0 (σa − σ1̂)σ3
1̂
= 0

(τa − τ1̂)σ3
1̂
= 0 (σb − σ1̂)σ3

1̂
= 0 (τb − τ1̂)σ3

1̂
= 0

(σa − σ1̂)(σb − σ1̂)σ1̂ = 0 (τa − τ1̂)(σb − σ1̂)σ1̂ = 0

(τa − τ1̂)(τb − τ1̂)σ1̂ = 0 (σa − σ1̂)(τb − τ1̂)σ1̂ = 0

The homogeneous component B4,1(P,G) has dimension 12 and the addi-

tive basis provided by Corollary 3.10 is:

τ1̂σaσb, τ1̂σaσ1̂, τ1̂σbσ1̂, τ1̂σ
2
c , τ1̂σ

2
1̂
,

τaσaσb, τaσaσ1̂, τaσ
2
1̂
, τbσaσb, τbσaσ1̂, τbσ

2
1̂
, τcσ

2
c .

The set of critical monomials is:

1, τaσa, τbσb, τcσ
3
c , τ1̂σ

4
1̂
, τaτbσaσb, τaτ1̂σaσ

2
1̂
, τbτ1̂σbσ

2
1̂
, τcτ1̂σ

3
c , τaτbτ1̂σaσb,

and the dimensions of CM2p,q(P,G) are given in Table 3.3. The rank of the

cohomology group of (B(P,G), d) are given in Table 3.4

As an example we have

d(cµ(ab1̂)) = d(τaτbτ1̂σaσb) = τaτbσ1̂σaσb

= τbτ1̂σbσ
2
1̂
− τaτ1̂σaσ2

1̂
= cµ(b1̂)− cµ(a1̂),
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3 0 0 1

2 0 0 1 3

1 0 2 0 1 1

0 1 0 0 0 0

0 1 2 3 4

Table 3.3: The dimensions of CM(P,G) in position (p, q).

3 0 0 0

2 0 0 1 1

1 0 2 0 1 0

0 1 0 0 0 0

0 1 2 3 4

Table 3.4: The dimensions of H2p,q(B(P,G), d) in position (p, q).

that coincides with d((a, b, 1̂)) = (b, 1̂) − (a, 1̂) in the differential algebra

CM(P,G). Moreover, in CM(P,G) we have

(a) · (b) = λ(a, b)− λ(b, a) = (a, b),

because a ≺ b and it corresponds to the equality

cµ(a)cµ(b) = τaσaτbσb = τaτbσaσb = cµ(ab).

The posets related to P and a are shown in Figure 3.3. The polymatroids

P (a) and P \a are equal by coincidence; see below for the poset P (a) relative

to the maximal building set.

The σ-cone ΣP,G is given by the linear combinations −daσa−dbσb−dcσc−
d1̂σ1̂ with positive coefficients dg > 0.

We have Ann(xa) = (xc, xbσ1̂, σ
3
1̂
) and so in DP(P,G)/Ann(xa) we have

σc = σ1̂, (σb − σ1̂)σ1̂ = 0, and σ3
1̂
= 0. The last two equations corre-

spond to the defining relation for DP(Pa,Ga). Similarly, Ann(σa) = (σc −
σ1̂, σa, σ

4
1̂
, (σb−σ1̂)σ2

1̂
) and these are exactly the equations defining DP(tra P, tra G)

that do not appear in DP(P,G).
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1̂

ab

0̂

a b
2

1 2

1

1

(a) The poset of flats of tra P .

a

0̂

2

(b) The poset of flats of P a.

1̂

a

ab

1

2

(c) The poset of flats of

Pa.

1̂

0̂

b c
4

13

2

(d) The poset of flats of

P (a).

1̂

0̂

b c
4

13

2

(e) The poset of flats of

P \ a.

Figure 3.3: The Hasse diagram of some posets related to a. The circle nodes

are in the corresponding building sets.

The relative Lefschetz decomposition with respect to the atom a is

DP(P,G) = DP(a)⊕xaDP(a),

where

DP(a) = ⟨1, σb, σc, σ1̂, σbσ1̂, σ2
c , σ

2
1̂
, σbσ

2
1̂
, σ3

c , σ
3
1̂
, σ4

1̂
, ⟩

and

DPa = xaDP(a) = ⟨xa, xaσb, xaσ1̂, xaσ2
1̂
⟩ ≃ DP(Pa,Ga).

The relative Lefschetz decomposition with respect to the atom c is

DP(P,G) = DP(c)⊕DP1̂⊕DPc,

where DP(c) = ⟨1, σa, σb, σaσb⟩ and the other DP(c)-modules are DPc =

⟨xc, x2c , x3c⟩ and DP1̂ = x1̂DP(c)⊕x21̂DP(c). Moreover we have x1̂DP(c) ≃
x2
1̂
DP(c) ≃ DP((P \ c)ab, (G \ c)ab).
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1̂

0̂

b

c
{b, ab}

2

2

1

4

1

Figure 3.4: The Hasse diagram of the poset of flats of P (a) with maximal

building set on the groundset {b, c, ab}.

Maximal building set

Now consider the same polymatroid P with the maximal building set

Gmax = {a, b, c, ab, 1̂}. The polymatroid P (a) relative to the maximal build-

ing set is shown in Figure 3.4 and the groundset E(a) is {b, c, ab}. This

polymatroid P (a) associated with Gmax is different from the polymatroid

P (a) defined from the minimal building set G (shown in Figure 3.3d).

The characteristic polynomial is χP (λ) = λ5 − 2λ3 + 1 and the reduced

one is

χP (λ) = λ4 + λ3 − λ2 − λ− 1.

We have α = −x1̂, β = xa+xb+xc+xab+x1̂ and deg(α4) = 1, deg(α3β) = −1,
deg(α2β2) = −1, deg(αβ3) = 1, and deg(β4) = −1.
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